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ADVERTISEMENT 

TO 

THE FOURTH EDITION. 

The author has endeavoured to accommodate his Algebra 

to the present state of science in the United States. Consider¬ 

able alterations and improvements have been made in the dif¬ 

ferent sections of the original work. There are also intro¬ 

duced two new chapters, containing Fignrate and Polygonal 

Numbers, Vanishing Fractions, Indeterminate Coefficients, In¬ 

determinate and Diophantine Analysis- The chapters upon 

these subjects have chiefly been derived from Euler, Bonny- 

castle, Young, and Bourdon. 

JAMES RYAN. 

New York, July 4, 1838. 



ADVERTISEMENT. 

As Utility is the great object aimed at in this Publication, 

I have spared no pains to make a careful selection of materi¬ 

als, from the most approved sources, which may tend to eluci¬ 

date, in a full and clear manner, the Elements of Algebra, both 

in theory and practice. 

Those authors of whose labours I have principally availed 

myself, are Euler, Clairaut, Lacroix, Gamier, Bezout, La¬ 

grange, Newton, Simson, Emerson, Wood, Bonnycastle, Bridge, 

and Bland. 

To Bland’s Algebraical Problems, (a work compiled for the 

use of Students in one of the first Universities in Europe), I 

am chiefly indebted for the problems in Simple, Pure, and 

Quadratic Equations. 

By permission of the learned Dr. Adrain, I have added, as an 

Appendix, his method of demonstrating algebraically the pro¬ 

positions in the fifth book of Euclid’s Elements. 

JAMES RYAN. 

✓ 

New York, July 1, 1824. 
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I 

AN 

ELEMENTARY TREATISE 

ON 

ALGEBRA. 

INTRODUCTION. 

EXPLANATION OF THE ALGEBRAIC METHOD OF NOTATION I- 

DEFINITIONS AND AXIOMS. 

1. Algebra is a general method of computation, in which 
abstract quantities and their several relations are made the 
subject of calculation, by means of alphabetical letters and 
other signs. 

2. The letters of the alphabet may be employed at plea- 
sure for denoting any quantities, as algebraical symbols or ab¬ 
breviations ; but, in general, quantities whose values are 
known or determined, are expressed by the first letters, a, b, c, 
&c.; and unknown or undetermined quantities are denoted by 
the last or final ones, u, v, w, xy &c. 

3. Quantities are equal when they are of the same magni¬ 
tude. The abbreviation a = b implies that the quantity de¬ 
noted by a is equal to the quantity denoted by b, and is read 
a equal to b ; or a greater than b, that the quantity a is 
greater than the quantity b\ and a<^b, or a less than b> that 
the quantity a is less than the quantity b. 

4. Addition is the joining of magnitudes into one sum. The 
sign of addition is an erect cross ; thus, a-\-b implies the sum 
of a and b, and is called a plus b, if a represent 8 and 5, 4 ; 
then, a-\-b represents 12, or a6 = 8-4-4 12. 

5. Subtraction is the taking as much from one quantity as 
is equal to another. Subtraction is denoted by a single line ; 
as a — b, or a miuus b, which is the part of a remaining, when 
a part equal to b has been taken from it; if a = 9, and b = 5 ; 
a—b expresses 9 diminished by 5, which is equal to 4, or 
a — b~9—5=4. 

2 



2 INTRODUCTION. 

6. Also, the difference of two quantities a and b ; when it 
is not known which of them is the greater, is represented by 
the sign thus, a^b is a—b, or b — a; and a+b signifies 
the sum or difference of a and b. ~ 

7. Multiplication is the adding together so many numbers 
or quantities equal to the multiplicand as there are units in the 
multiplier, into one sum called the product. Multiplication is 
expressed by an oblique cross, by a point, or by simple appo¬ 
sition ; thus, axb, a . b, or ab, signifies the quantity denoted 
by a, is to be multiplied by the quantity denoted by b ; if a = 5 
and b — 7; then axb=5x 7 — 35, or a . b — 5. 7 = 35, or 
ab — 5 X 7 = 35. 

Scholium. The multiplication of numbers cannot be ex¬ 
pressed by simple apposition. A unit is a magnitude consi¬ 
dered as a whole complete within itself. And a whole num¬ 
ber is composed of units by continued additions ; thus, one 
plus one composes two, 2 + 1=3, 3 + 1=4, &c. 

8. Division is the subtraction of one quantity from another 
as often as it is contained in it; or the finding of that quo¬ 
tient, which, when multiplied by a given divisor, produces a 
given dividend. 

Division is denoted by placing the dividend before the sign 
and the divisor after it; thus a—b, implies that the quan¬ 

tity a is to be divided by the quantity b. Also, it is frequently 
denoted by placing one of the two quantities over the other, 

in the form of a fraction ; thus, % = a—b ; if a = 12, b = 4 ; 
b 

then a+&=-=12+4=—=3. 
b 4 

9. A simple fraction is a number which by continual addition 
composes a unit, and the number of such fractions contained 
in a unit, is denoted by the denominator, or the number below 
the line ; thus, i+i + i=l. A number composed of such sim¬ 
ple fractions, by continual addition, may properly be termed a 
multiple fraction ; the number of simple fractions composing it, 
is denoted by the upper figure or numerator. In this sense, 
§, §, j, are multiple fractions ; and^ = l, |-=-| + -g-=l +-i = l^-. 

10. When any quantities are enclosed in a parentheses, or 
have a line drawn over them, they are considered as one 
quantity with respect to other symbols; thus a — (6 + c), or 

a — 6 + c; implies the excess of a above the sum of b and c. 
Let a — 9, b — 3, and c=2 ; then a — (£> + c) = 9 — (3 + 2) = 9 

—5=4, or a—6+c=9 —3+2 = 9—5 = 4. Also, (a+£)x 
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(c-f^), or a-\-b X c-f-d, denotes that the sum of a and b is to be 
multiplied by the sum of c and d ; thus, let a—4, b — 2, c=3, 
and d—5; then (a-f5) X (c-M)=(4-f-2) X (3 -f- 5) = 6 X 8 = 

48, or a-\-b x c4-^=4-{-2 X 3 + 5 = 6 X 8=48. And (a — b)— 

(c-fd), or a - ; implies the excess of a above b, is to be di- 
c-j-a 

vided by the sum of c and d; if a=12, 5=2, c=4, and d=1 ; 

then, (a—5)-r(c+cZ)=(12—2)-r(4+l) = 10-^5=2, or 

12-2 10 

" 4 + 1 ~"5"~ * 
The line drawn over the quantities is sometimes called a 

vinculum. 
11. Factors are the numbers or quantities, from the multi¬ 

plication of which, the proposed numbers or quantities are 
produced ; thus, the factors of 35 are 7 and 5, because 7x5 
= 35 ; also, a and b are the factors of ab; 3, a2, b and c2, are 
the factors of 3a2bc2 ; and a-j- b and a—b are the factors of the 
product (a-f b) X (a — b). 

When a number or quantity is produced by the multiplica¬ 
tion of two or more factors, it is called a composite number 
or quantity ; thus, 35 is a composite number, being produced 
by the product of 7 and 5 ; also, 5acx is a composite quantity, 
the factors of which are 5, a, c, and x. 

12. When the factors are all equal to each other, the pro¬ 
duct is called a power of one of the factors, and the factor is 
called the root of the product or the power. When there are 
two equal factors, the product is called the second power or 
square of either factor, and the factor is called the second root 
or square root of the power. When there are three equal fac¬ 
tors, the product is called the third power or cube of either 
factor, and the factor is called the third root or cube root of the 
power. And so on for any number of equal factors. 

13. Instead of setting down in the manner of other products, 
the equal factors which multiplied together constitute a power, 
it is evidently more convenient to set down only one of the 
equal factors, (or, in other words, the root of the power,) and 
to designate their number by small figures or letters placed 
near the root. These figures or letters are always placed at 
the upper and right side of the root, and are called the indices 
or exponents of the power. 

For example : 
aXaXaXa or aaaa is denoted thus, a4; 

yXyXy xy xy or yyyyyt thus, y5; 
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where a4 and y5 are the powers ; a and y the roots, and 4 and 
5 the indices or exponents of the powers. Again : 4ax2, X 

4ax2 X 4aa;2, is thus abridged, (4a#2)3 ; where (iax2)3 is the 
power, 4ax2 the root, and 3 the index or exponent of the 
power. The same method is adopted, whatever be the form 
of the root: thus, (a2—x2—y2)x(a2— oc2—y2) X [a2—a;2—y2) 
is written briefly thus, (a2—x2—y2)3, where (a2 — a;2 —y2)3 is 
the power, a2—x2—y2 the root of the power, and 3 its index 
or exponent. 

N. B. Care must always be taken, to embrace the root in 
parentheses, except where it is expressed by a single charac¬ 
ter. 

14. The coefficient of a quantity is the number or letter pre¬ 
fixed to it; being that which shows how often the quantity is 
to be taker* ; thus, in the quantities 3b and 5a:2, 3 and 5 are 
the coefficients of b and x2. Also, in the quantities 3ay and 
ba2x, 3a and 5a2 are the coefficients of y and x. 

15. When a quantity has no number prefixed to it, the 
quantity has unity for its coefficient, or it is supposed to be 
taken only once ; thus, x is the same as la: ; and when a 
quantity has no sign before it, the sign -j- is always under¬ 
stood; thus, 3a2b is the same as -f-3a2b, and 5a — 3b is the 
same as 4* 5a — 36. 

16. Quantities which can be expressed in finite terms, or 
the roots of which can be accurately expressed, are rational 
quantities ; thus, 3a, -|a, and the square root of 4a2, are ra¬ 
tional quantities ; for if a=10 ; then, 3a = 3X 10 = 30 ; -|a = 
JX 10= ^ = 4 ; and the square root of 4a2 = the square root 
of 4 X 102= the square root of 4x10x10= the square root 
of 400=20. 

17. An irrational quantity, or surd, is that of which the 
value cannot be accurately expressed in numbers, as the 
square root of 3, 5, 7, &c. ; the cube root of 7, 9, &c. 

18. The roots of quantities are expressed by means of the 
radical sign -y/, with the proper index annexed, or by fraction¬ 
al indices placed at the right-hand of the quantity ; thus, -y/a, 

i i 
or a2, expresses the square root of a ; (a + a;), or (a-j-a;)^, 

the cube root of (a-j-a;) ; y (a-j-a;), or (a-j-a;)4, the fourth 
root of (a-j-a;). When the roots of quantities are expressed 

ill 

by fractional indices; thus, a , (a-j-a;)^, (a-j-a;)4 ; they are 
generally read a in the power (i), or a with (l) for an index; 
(a-j-a?) in the power (^), or (a-j-a;) with (J) for an index; and 
(a-j-a1) in the power (i), or (a-j-a;) with (i) for an index. 

19. Like quantities are such as consist of the same letters or 
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the same combination of letters, or that differ only in their 
numeral coefficients ; thus, 5a and 7a ; 4ax and 9ax ; -f-2ac 
and 9ac; —5ca ; &c., are called like quantities ; and unlike 
quantities are such as consist of different letters, or of differ¬ 
ent combination of letters ; thus, 4a, 3b, lax, 5ay2, &c. are 
unlike quantities. 

20. Algebraic quantities have also different denominations, 
according to the sign -j-, or—. 

Positive, or affirmative quantities, are those that are addi¬ 
tive, or such as have the sign + prefixed to them; as, -j-a, 
4~6a&, or 9ax. 

21. Negative quantities are those that are subtractive, or 
such as have the sign — prefixed to them ; as, —x, —3a3, 
— 4ab, &c. A negative quantity is of an opposite nature to a 
positive one, with respect to addition and subtraction : the 
condition of its determination being such, that it must be sub¬ 
tracted when a positive quantity would be added, and the re¬ 
verse. 

22. Also quantities have different denominations, according 
to the number of terms (connected by the signs -f- or —) of 
which they consist; thus, a, 3b, —4ad, &c., quantities con¬ 
sisting of one term, are called simple quantities, or monomi¬ 
als ; a-\-x, a quantity consisting of two terms, a binomial; 
a — x is sometimes called a residual quantity. A trinomial is 
a quantity consisting of three terms ; as, a-f- 2x — 3y ; a quad- 
rinomial of four ; as, a — b-\-3x — 4y; and a polynomial, or 
multinomial, consists of an indefinite number of terms. Quan¬ 
tities consisting of more than one term may be called compound 

quantities. 
23. Quantities the signs of which are all positive or all 

negative, are said to have like signs ; thus, -f-3a, -f-4jc, 
•\-5ab, have like signs ; also, —4a, —3b, —4ac. When some 
are positive, and others negative, they have unlike signs ; 
thus, the quantities -j-3a and —5ab have unlike signs ; also, 
the quantities —3ax, +3a2x : and the quantities —b, -f-A 

24. If the quotients of two pairs of numbers are equal, the 
numbers are proportional, and the first is to the second, as the 
third to the fourth ; and any quantities, expressed by such 

CL C 

numbers, are also proportional; thus, if then a is to 

b as c to d. The abbreviation of the proportion ; a : b :: c: 
d; and it is sometimes written a : b—c: d; if a =8, b=4, 

8 12 
c=12, and d =6 ; then, -= —=2, and 8 : 4 :: 12 ; 6. 

4 o 

2* 
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25. A term, is any part or member of a compound quanti¬ 
ty, which is separated from the rest by the signs -f- and —; 
thus, a and b are the terms of a-f-& ; and 3a, —2b, and -f-bad, 
are the terms of the compound quantity 3a—2b -\-bad. In 
like manner, the terms of a product, fraction, or proportion, 
are the several parts or quantities of which they are compos¬ 

ed ; thus, a and b are the terms of ab, or of y ; and a, b, c, d, 
b 

are the terms of the proportion a : b :: c : d. 
26. A measure, or divisor, of any quantity, is that which is 

contained in it some exact number of times ; thus, 4 is a 

measure of 12, and 7 is a measure of 35a, because 5^-=5a. 
7 

27. A prime number, is that which has no exact divisor, 
except itself, or unity; 2, 3, 5, 7, 11, &c. and the interven- 
ingnumbers ; 4, 6, 8, &c. are composite numbers. (Art. 11.) 

28. Commensurable numbers, or quantities, are such as 
have a common measure ; thus, 6 and 8, 8aa?, and 4b, are 
commensurable quantities; the common divisors being 2 and 
4 ; also, 4aj?2 and bax are commensurable, the common divi¬ 
sor being ax. 

29. Also, two or more numbers are said to be prime to 
each other, when they have no common measure or divisor, 
except unity ; as 3 and 5, 7 and 9, 11 and 13, &c. 

30. A multiple of any quantity, is that which is some ex¬ 
act number of times that quantity ; thus, 12 is a multiple of 

15 a 
4 ; and 15a is a multiple of 3a, because —-=5. 

3a 
31. The reciprocal of a quantity is that quantity inverted or 

S CE \ 
unity divided by it. Thus, the reciprocal of a, or of jis -, the 

reciprocal of ^ is - and the reciprocal of a-, f is 
r b a a-\-b a—b 

32. The reciprocal of the powers and roots of quantities, 
is frequently written with a negative index or exponent; 

thus, the reciprocal of a2=~, maybe written a 2; the re¬ 

ciprocal of (a-f#)3=—, may be written, (a+£) 3; but 
(a-f“#) 

this method of notation requires some farther explanation, 
which will be given in a subsequent part of the work. 

33. A. function of one or more quantities, is an expression 
into which those quantities enter in any manner whatever, 
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either combined, or not, with known quantities ; thus, a-\-2x, 

ax-\-3ax2, 5ax2—3a2, &c. are functions of a; and 3ax2-\-xy2, 
2 (x2+5xy)2, Sic. are functions of x and y. 

34. When quantities are connected by the sign of equali¬ 
ty, the expression itself is called an equation; thus, a-\~b = c 
-\-d, means that the quantities a and b, are equal to the quan¬ 
tities c and d; and this is called an equation ; it is divided into 
two members by the sign of equality, a-\-b is the first, and 
c-\-d the second member of the equation. 

35. In algebraical operations the word therefore, or conse¬ 
quently, often occurs. To express this word, the sign .*. is 
generally made use of: thus, a — b, therefore, a-\-cz=zb-\-c ; is 
expressed a-\-c=:b-\-c. 

Also oo is the sign of infinity; signifying that the quantity 
standing before it is of an unlimited value, or greater than any 
quantity that can be assigned. 

36. The signs + and —, give a kind of quality or affection 
to the quantities to which they are annexed. As all those 
terms which have the sign -f- prefixed to them, are to be 
added (Art. 4), and those quantities which have the sign — 
prefixed to them, are to be subtracted, (Art. 5), from the terms 
which precede them ; the former has a tendency to increase, 
and the latter to diminish, the quantities with which they are 
combined ; thus, the compound quantity, a—x, will therefore 
be positive or negative, according to the effect which it pro¬ 
duces upon some third quantity b ; if a be greater than x, then, 
(since a is added, and b subtracted) b-\-a—a'is >5 ; but if a be 
less than x; then, 5-fa—x is <5. 

In the first place, let a—10, a = 6, and 5 = 8 ; then b4-a—a 
= 8-}-10 — 6, which is >8 ; since 10 — 6 = 4, a positive quan¬ 
tity ; therefore, a—a is positive. Next, let a=12, a=14, and 
5 = 20; then 5-fa—a=20-fl2—14, which is <20; since 
12—14 = —2, a negative quantity ; therefore a—x is negative. 
In like manner, it may be shown that the expression a—b-\-c 
—d is positive or negative according as a-f c is > or <5-f d; 
and so of all compound quantities whatever. 

37. The use of these several signs, symbols, and abbrevia¬ 
tions, may be exemplified in the following manner: 

EXAMPLES. 

Example. 1. In the algebraic expression a-f^+c—d, let 
a=8, 5=7, c = 4, and d—6 ; then 

a+5-fc— d=8 + 7+4—6 = 19—6 = 13. 

Ex, 2. In the expression ab-\-ax—by, let a=5, 5=4 
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a?=8, and y=12 ; then, to find its value, we have ab+ax— 
5y = 5x 4 + 5x8—4x12 

=20+40—48 
= 60—48 = 12. 

Ex. 3. What is the value of where a—4. a?=5, y 
a-\-b J 

= 10, and b—6 1 

Here 3<z#+2y=3 X 4 X 5 + 2 X 10=60+20=80, and a+ 
5=4 + 6 = 10; 

3«.T+2y 80 _ 

’’’ a + b =10~8' 
Ex. 4. What is the value of a2-\-2ab—c+d, when a = 6, 

5 = 5, c = 4, and d—i ? Ans. 93. 
Ex. 5. What is the value of ab-^-ce—bd, when a = 8, 5=7, 

c=6, d—5, and e — l 1 Ans. 27. 

Ex. 6. In the expression , let a=5, 5=3, £c=7, 
5+# 

and y=5 ; what is its numerical value ? Ans. 5. 

Ex. 7. In the expression ^---, let a=3, 5=5, c=2, 
ox—az—c 

x—6 ; What is its numerical value ? Ans. 7. 
Ex. 8. What is the value of a2 X (a+5)—2a5c, where a=6, 

5 = 5, and c=4 ? Ans. 156. 
Ex. 9. There is a certain algebraic expression consisting 

of three terms connected together by the sign plus; the first 
term of it arises from multiplying three times the square of a 
by the quantity 5 ; the second is the product of a, 5 and c ; and 
the third is two thirds of the product of a and 5. Required 
the expression in algebraic writing, and its numerical value, 
where «=4, 5 = 3, and c=2 1 Ans. 176. 

DEFINITIONS. 

38. A proposition, is some truth advanced, which is to be de¬ 
monstrated, or proved; or something proposed to be done or 
performed; and is either a problem or theorem. 

39. A problem, is a proposition or question, stated, in order to 
the investigation of some unknown truth ; and which requires 
the truth of the discovery to be demonstrated. 

40. A theorem, is a proposition, wherein something is advanc¬ 
ed or asserted, the truth of which is proposed to be demon¬ 
strated or proved. 

41. A corollary, or consectary, is a truth derived from some 
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proposition already demonstrated, without the aid of any other 
proposition. 

42. A lemma, signifies a proposition previously laid down, 
in order to render more easy the demonstration of some theo¬ 
rem, or the solution of some problem that is to follow. 

43. A scholium, is a note, or remark, occasionally made on 
some preceding proposition, either to show how it might be 
otherwise effected ; or to point out its application and use. 

44. An axiom, is a self-evident truth, or proposition univer¬ 
sally assented to, or which requires no formal proof. 

45. As axioms are the first principles upon which all ma¬ 
thematical demonstrations are founded, I will point out those 
that are necessary to be observed in the study of Algebra, as 
there will be frequent occasion to advert to them. 

AXIOMS. 

46. When no difference can be shown or imagined between 
two quantities, they are equal. 

47. Quantities equal to the same quantity, are equal to each 
other. 

48. If to equal quantities equal quantities be added, the 
wholes will be equal. Thus, if a = b, then a-\-c — b-\-c ; if 
a—b—c, then adding b, a — b-\-b=.c-\-b, or a — c-\-b. 

49. If from equal quantities equal quantities be subtracted, 
the remainders will be equal. 

If a—b, then, a—2=6—2 ; if b + c — a-\-c, then b = a. 
50. If equal quantities be multiplied by equal numbers or 

quantities, the products will be equal. 
* ^ 

Thus, if a — b, 3a —3b ; if a—-, 3a=b ; if a — b, ca — cb ; 
O 

and if a=b, aXa—bXb, or a2=62. 
51. If equal quantities be divided by equal numbers or quan¬ 

tities, the quotients will be equal. 
5a 106 ^7 7 ca cb 

Thus, if 5a—lQb, —-=-r-, or a—2b ; if ca=cb, —= , 

a* ba 
or a—b : and if at-ba, then —=—, or a—b. 

a a 
Scholium. Articles (49), (50), (51), might have been de¬ 

duced from Art. (48); but they are all easily admitted as 
axioms. 

52. If the same quantity be added to and subtracted from 
another, the value of the latter will not be altered. Thus, if 
a—c, then a-\"b—c-\-b, and a-f-6—6=c-f-6—b, or a—c. 
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This might be inferred from Art. (48). 
53. If a quantity be both multiplied and divided by another, 

its value will not be altered. Thus, if az=zb ; then 3a=36, 

and dividing by 3, or a=6. 
O O 

/ 



CHAPTER I. 

ON THE 

ADDITION, SUBTRACTION, MULTIPLICATION, 

AND 

DIVISION OF ALGEBRAIC QUANTITIES. 

§ I. Addition of Algebraic Quantities. 

54. The addition of algebraic quantities is performed by 
connecting those that are unlike with their proper signs, and 
collecting those that are like into one sum; for the more 
ready effecting of which, it may not be improper to premise 
a few propositions, from which all the necessary rules may be 
derived. 

55. If two or more quantities are like, and have like signs, the 
sum of their coeff cents prefixed to the same letter, or letters, 
with the same sign, will express the sum of these quantities. 

Thus, 5a added to 1a is = 12a ; 

And—5a added to — 3a is=—8a. 
For, if the symbol a be made to represent any quantity or 

thing, which is the object of calculation, 5a will represent 
five times that thing, and la seven times the same thing, what¬ 
ever may be the denomination or numeral value of a ; and 
consequently, if the quantities 5a and la are to be incorpo¬ 
rated, or added together, their sum will be twelve times the 
thing denoted by a, or 12a. 

Moreover, since a negative quantity is denoted by the sign 
of subtraction: thus, if a-\-b=a —c, b=—c, and c=-—b. A 
debt is a negative kind of property, a loss a negative gain, and 
a gain a negative loss. 

Therefore it is plain that the quantities,—5a and—3a 
will produce, in any mixed operation, a contrary effect to that 
of the positive quantities with which they are connected ; 
and consequently, after incorporating them in the same man¬ 
ner as the latter, the sign — must be prefixed to the result; 
so that if a be greater than a, it is evident that 5 (a—a) 4* 
3(a—a), or (5a—5a)-f-(3A — 3a)r=8A—8a ; and therefore the 
sum of the quantities—5a and—3a, when taken in their iso 
lated state, will, by a necessary extension of the proposition 
be = — 8a. 
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56. If two quantities are like, but have unlike signs, the difference 
of their coefficients, prefixed to the same letter, or letters, with 
the sign of that which hath the greater coefficient, will express 
the sum of those quantities. 

Thus -j-6a added to—4a is=r-j-2« • 

And —6a added to +4a is=r—2a. 
Since, Art. (36), the compound quantity a — b+c—d, &c. 

is positive or negative, according as the sum of the positive 
terms is greater or less than the sum of the negative ones, the 
aggregate or sum of the quantities-4<z—2a-\-2a—2a, or 6a — 4a, 
will be +2a: since the sum of the positive terms is greater 
than the sum of the negative ones. And the sum of the quan¬ 
tities a—4o+3a—2a, or 4a—6a, will be—2a ; since the sum 
of the negative terms is greater than the sum of the positive 
ones. 

Corollary. Hence it appears, that if the sum of the posi¬ 
tive terms be equal to the sum of the negative ones, their ag¬ 
gregate or sum will be nothing. Thus 5a — 5a = 0 ; and 5a 
— 3(2 -f- 4(2 — 6a — 9 a—9a = 0. 

57. The preceding proposition is demonstrated in the fol¬ 
lowing manner by Bonnycastle in his Algebra. Yol. II. 
8vo. 

Where the quantities are supposed to be like, but to have 
unlike signs, the reason of the operation will readily appear, 
from considering, that the addition of algebraic quantities, 
taken in a general sense, or without any regard to their par¬ 
ticular values, means only the uniting of them together, by 
means of the arithmetical operations denoted by the signs + 
and — ; and as these are of contrary, or opposite natures, 
the less quantity must be taken from the greater, in order to 
obtain the incorporated mass, and the sign of the greater pre¬ 
fixed to the result. So that if 6a is to be added to 4 (a — a), or 
to 4a—4a, the result will evidently be 4A-j-6a—4a, or 4a+ 
2a; and if 4a is to be added to 6 (a—a), or to 6a — 6a, the 
result will be 6a+4«—6a, or 6a — 2a ; whence, by making this 
proposition general, as in the last, the sum of the isolated quan¬ 
tities 6a and —4a will be +2a, and that of 4a and —6a will 
be —2a. 

) . i 

58. If two or more quantities be unlike, their sum can only be 
expressed by writing them after each other, with their proper 
signs• 
Thus, the sum of 2a and 2b, can only be expressed, with 

the sign + between them, which denotes that the operation of 
addition is to be performed when we assign values to a and b. 
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For, if <35= 10, and 5=5 ; then the sum of 2a and 2b can be 
neither 4a nor 4b, that is, neither 4 X 10=40, nor 4 x 5=20 ; 
but 2 X 10+2 X 5=20+10 = 30. In like manner, the sum of 
3a, —5b, 2c, and —8c?, can no otherwise be incorporated, or 
added together, than by means of the signs + and — ; thus, 
3 a—55 +2c—8c?. 

These propositions being well understood, the following 
practical rules, for performing the addition of algebraic quan¬ 
tities, which is generally divided into three cases, are readily 
deduced from them. 

CASE I. 

When the quantities are like, and have like signs. 

RULE. 

59. Add all the numeral coefficients together, to their sum 
prefix the common sign when necessary, and subjoin the 
common quantities, or letters. 

• EXAMPLE 1. 

2 oj+3 a—4 b 
3#+4 a— b 
7oj+ a — 7b 

#+9#—95 
9o:+ a— 5 
05+8#—35 

23,r+26a—255 

In this example, in adding up the first column, we say, 1 + 
9+1+7 + 3+2=23, to which the common letter 05 is sub¬ 
joined. It is not necessary to prefix the sign + to the result, 
since the sign of the leading term of any compound algebraic 
expression, when it is positive, is seldom expressed ; for (14) 
when a quantity has no sign before it, the sign + is always 
understood. And it may be observed when it has no numeral 
coefficient, unity or 1 is always understood. 

Also, the sum of the second column is found thus, 8+1 + 9 
+ 1 + 4+3=26, to which the sign + is prefixed, and the 
common letter a annexed. 

Again, the sum of the third column is found thus ; 3+1 + 
9+7 + 1+4=25, to which the sign — is prefixed, and the 

3 
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common letter b subjoined. So that the sum of all the quan¬ 
tities is expressed by 23 times x plus 26 times a minus 25 
times b. 

Ex. 2. 
9xy—Abe+7 a?2 
Axy— 6c-{-3a:2 

xy—76c-j-4ac2 
8 xy—46c-{- x2 
7 xy— bc-\-9x2 

xy—3 6c + x2 

30a?y—206c-f-25a:2 

Ex. 3. 
5a3—3a?2-f- 3y—19 
4a3— a:2+4y—17 
a3—7x2-\-7y —14 

7a3— x2-\~ y— 1 
8a3—9a?2-]-9y—20 

7a3 —11a:2-f y— 8 

32a3 —32a:2+25y—79 

Ex. 4. Add together 2a?-f-3a, 4a:-f-a, 5£-f-8a, 7a?+2a, and 
a?+a. Ans. 19a?+15a. 

Ex. 5. Add together 7x2 — 5be, 3a?2— be, x2 — Abe, 5x2—be, 
and 4a:2—Abe. Ans- 20a:2—156c. 

Ex 6. Required the sum of 3a:3-{-4a:2—a:, 2a:3-]- a:2 — 3a:, 
7a?3-f-2a?2—2a?, and 4a?3-{-2a:2— 3a:. Ans. 16a?3-]- 9a:2—9a:. 

Ex. 7. What is the sum of 7a3 — 3a26-f-2a62—363, ab2 — 
a2b — 63-b4a3, —563+5a62 — 4a26-f-6a3, and —a26-f-4a62— 
463+a3? Ans. 18a3 —9a26+12a62 —1363. 

Ex. 8. Add together 2a?2y—a?4-2, x2y—4a?+3, 4a?2y— 3a? 
+ 1, and 5a?2y—7a:-f-7. Ans. 12a:2y — 15a:+13. 

i JL 
Ex. 9. Required the sum of 30 — 13a?2—3a?y, 23— 10a?2 — 

JL ii 
4a:y, —14a?2 —7a?y-f-14, —5a?y-{-10 — 16a:2, and 1 —2a:2 —xy. 

j_ 

Ans. 78 —55a:2—20xy. 
Ex. 10. Add 3(a: -f- y)2 — 4(a—b)3, (a? + y)2 — (a—b)3, 

—7(a—6)3-f-5(a?-f-y)2, and 2(a?+y)2—(a—6)3 together. 
Ans. ll(a?4~y)2—13(a—6)3. 

CASE II. 

When the quantities are like, but have unlike signs. 

RULE.. 

60. Add all the positive coefficients into one sum, and those 
that are negative into another ; subtract the lesser of these 
sums from the greater; to this difference, annex the common 
letter or letters, prefixing the sign of the greater, and the re¬ 
sult will be the sum required. 
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EXAMPLE 1. 

7a;3—3x2+3x 
—4a;3 + a?2—4a? 
— a?3—2a?2+7a? 

9a;3+6a;2—9a; 
3a;3—5a?2+6a? 

—5a?3+3a?2—6a? 

9a?3 * —3a; 

In adding up the first column, we say 3+9+7 = + 19, 
and —(5 + 1+4) = —10; then, + 19 —10= + 9 = the ag¬ 
gregate sum of the coefficients, to which the common quantity 
x3 is annexed. 

In the second column, the sum of the positive coefficients 
is 3 + 6+1 = 10, and the sum of the negative ones is —(5 + 2 
+ 3) = — 10; then, 10—10 = 0; consequently, (by Cor. Art. 
56), the aggregate sum of the second column is nothing. And 
in the third column, the sum of the positive coefficients is 
6+7+3 = 16, and the sum of the negative one is—(6 + 9 + 
4) = —19 ; then +16 — 19 =—3 ; to which the common let¬ 
ter is annexed. 

Ex. 2 
5a?2—6a+4a?—3 

—2a?2+ a—9a?+7 
7a?2+7a+7a?—1 

— a?2 — 3a—2a?+3 
+ 3a;2+ a—4a;+4 
— 7a?2—4a+3a? — 5 

Ex. 3. 
4a5 + 3a?y—2aa?+ c 

— ab— a?y + ax—5c 
5ab—2a?y—7aa?+7c 

—4ab-\- a?y+ aa?+ c 
lab — 3a?y+4aa?— c 

— ab— xy— aa?+4c 

5a?2—4a— a?+5 10a5—3 a?y—4aa?+7c 

Ex. 4. 

3(a+&)^— 5(a?2+y2)2+3(a3+e2)3 + 9a?y 

— (a+5)^+ (a?2+y2)2—5(a3+c2)3—4a?y 

+ 8(a+5)“>— 6(a?2+y2)2+8(a3+c2)3+ xy 

—2(a+&)^— (a?2+y2)2—7(a3+c2)3—3a?y 

+ 5(a+&)? — 7(a?2+y2)2— (a3+c2)3— xy 

13(a+£p—18(a?2+y2)2—2(a3+c2)3+2a;y 
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Ex. 5. Required the sum of 4a2, —5a2, a2, —6a2, 9a2, and 
—a2. A ns. 2a2. 

Ex. 6. Required the sum of 4x2—3cc+4, x—2a;2— 5, 1-f- 
3x2—5x, 2x—4-f-7a:2, 13—a2—4a?. Ans. 11a;2—9a; + 9. 

Ex. 7. Required the sum of 4a;3—2x-\-y, 4x—y—a;3, 9y-b 
7a;3—x, 21a;—2y+9a;3. Ans. 19a;3-f-22a;-f-7y. 

Ex. 8. Required the sum of 5a3—2ab-\-b2, ab—2b2—a3, 
b2—3a6 + 4a3, 4a?>-{-2a3—4Z>2. Ans. 10a3—4b2. 

Ex. 9. What is the sum of 2a—3a;2, 5a;2—7a,—3a+a;2, 
and a — 3a:2? Ans. —7a. 

Ex- 10. What is the sum of 4—3a;, a:—5, 2a;—4, —4a?-j- 
13, and —5a;-j-1 ? Ans. 9—9a;. 

CASE III, 

'When the quantities arc unlike, or when like and unlike 
are mixed together. 

RULE. 

61. When the quantities are unlike, write them down, one 
after another, with their signs and coefficients prefixed; but 
when some are like, and others unlike, collect all the like 
quantities together, by taking their sums or differences, as in 
the foregoing cases, and set down those that are unlike as 
before. 

Example 1. Add together the quantities 7a2, —5b, +4d, 

— 9a, and 8c2. 
Here, the quantities are all unlike ; .*. (Art. 58), their sum 

must be written thus ; 
7a2 — 5b-\-4d—9a-f 8c2. 

When several quantities are to be added together, in what¬ 
ever order they are placed, their values remain the same. 
Thus, 7a2 — 5b-\-4d—9a + 8c2, 8c2—5b -f- 4c?—9a -{- 7a2, or 
4c?—5b—9a+8c24-7a2, are equivalent expressions: though 
it is usual, in such cases, to take them so that the leading term 
shall be positive. 

Ex. 2. 
3#— y-f- d 
4a— x—3y 

5xy-\-lax-\- y2 
3 ax—2#y-f-4a;2 
5y-{- 2d-\-5x 

lx+y -f 3 d-j- 3 xy +1 Oaa;+4 a+y2 -f- 4a;2. 
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Ex. 3. 
4a;3—3xy-]-3y —3 —3a:2 
5y2 + 5x3 — 3a;2-f- 3 xy -f* 5y 
30 -f- 6a;22a? —3y2—2a;3 
2a:2—8 —5xy—7 y —2 y2 

7a;3—5a;y4-y+19-l-2a;24-2a;. 

In Ex. 2. Collecting together like quantities, and beginning 
with 3a:, we have 3a;+5a;—a;=8a;—x = (8 — l) x=z7x ; 5y — 
V — 3y = (5 — 1 —3) y = (5 — 4) yny ; d+2c?=(14-2)c?z=3d; 
5xy — 2xy — (5 — 2)xy — 3xy\ and 3aa:+7aa: = (34-7)aa:=-; lOaa:; 

besides which there are three quantities +4a, +y2, +4a;2; 
which are unlike, and do not coalesce with any of the others ; 
the sum required therefore is, 

7a:-f-y4-3e?-i-3a:y-f' 10aa:-j-4a-Ty2+4£2. 
In Ex. 3. Beginning with 4a:3, we have, 
4a:3+5a:3—2a:3=(4+5—2)a;3 = (9—2)a:3z=7a:3; 

— 3xy-{-3xy— 5ary = (3 — 5 — 3)xy = (3— 8)xy=z —5xy ; 
+ 3y+5y—7y=(3 + 5)y — 7y = (8 —7)y = +y ; 
— 3 + 30 — 8=30 — (8 + 3) = 30 —11 = + 19 ; 
2a;2—3a;2 —3a:2 + 6a;2 = 8a;2—(3 + 3)ic2 = (8-6)a;2=+2a:2; 
5y2 — 3y2—2y2=r5y2 — (3-}-2)y2=(5—5)y2=0 Xy2~0 ; -\-2x 

—2x. 

When quantities with literal coefficients are to be added 
together ; such as mx, ny, px2, yy3, &c. (where wz, n,p, q, &c., 
may be considered as the coefficients of a?, y, a:2, y2, &c.) it may 
be done by placing the coefficients of like quantities one after 
another (with their proper signs), under a vinculum, or in a 
parentheses, and then annexing the common quantity to the 
sum or difference. 

Ex. 4. 
ax-\-by-\- b 
bx-\-dy-\-2b 

(<*+b)x -f-{b+d)y+3b 

Ex. 5. 
ax3 + bx2 + cx 
ex3—dx2—fx 

(a-f-e)a:3-f-(&— d)x2-\-{c—f)x 

In Ex. 4. The sum of ax and bx, or ax-{-bx, is expressed by 
(a-f-Z>)a;; the sum of -\-by and -f c?y, or 4-by-\-dy, is = + 
[b-\-d)y. 3* 
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In Ex. 5. The sum of ax3 and ex3, or aa:2-f-£a:2 is =(a-{-e)x3 ; 
the sum of -\-bx2 and —dx2, or + for2 —c?a?2, is =z(b — d)x2 ; and 
the sum of -\-ex and —fx, or 4-ex—fx, is = + (c—f)x. Any 
multinomial may be expressed in like manner, thus ; the multi¬ 
nomial mx2-\-nx3—px2—qx2 may be expressed by —p—q) 
x2 ; and the mixed multinomialpxy-\-qy2—rxy-\-my2—nxy, by 
(p—r—n)xy -\-{q-\-m)y2 \ &LC. 

Ex. 6. Add 2x2-\-y2-\-9, 7xy — 3ab—x2, 4xy—y—9, and 
x2y—xy 4-2a:2 together. 

Ans. 4a:2 4-y24-lOay— 3ab—y-\-x2y. 
Ex. 7. Add together 72a2, 246c, 70xy, —18a2, and — 126c. 

Ans. 54a24-126c4-70xy. 
Ex. 8. What is the sum of 43a:y, 7a:2, —12ay, —Aab, —3a:2, 

md —4ay ? Ans. 43a?y-[-4a:2— 16ay—4a6. 
Ex. 9. What is the sum of 7xy, —166c, —12a;y ; 186c, and 

i\xy ? Ans. 26c. 
Ex. 10. Add together 5ax, — 60bc, lax,—4a:y, —6aa:, and 

— 126c. Ans. 6ax — 726c—4xy. 
Ex. 11. Add 8a2x2 — 3ax, lax—5a:y, 9xy — 5ax, and a?y-j- 

2a2x2 together. Ans. 10a2a:2— ax-\-5xy. 
Ex. 12. Add 2a:2—3y24-6, 9xy — 3aa?—x2, Ay2—y—6, and 

nc2y — 3a:y4-3a:2 together. Ans. 4a:2-fy3 4-6a:y — 3aa*—y4*a:2y. 
t i I 

Ex. 13. Add 2a:2 — 4x^-{-x2, 5x2y~~ab-}-x3, Ax2 — x3, and 
i i 

2a:3—34-2a:2 together. 
X X 

Ans. 4a:2—a:3 -\~.5x2-\-5x2y—ab—x3—3. 
Ex. 14. Required the sum of 4a:24-7(a4-6)2,4y2—5(a + ^)2, 

and a3 — 4a:2 — 3y2 — (a4-^)2* Ans. a34-y2+(a4*^)2* 
Ex. 15. Required the sum of ax4—6a:3 + ca:2, bcx2—acx3 — 

c2x, and ax2-\-c — bx. 

Ans. aa:4— (i+ ac )a:3 + (c4-6c4-<z)a:2 — (c2+6)a:4-c. 
Ex. 16. Required the sum of 5a436—4c, 2a — 564-6c4- 

2d, a—46—2c+3c, and 7a4-46 — 3c — 6c. 
Ans. 15a—26—3c+2cZ—3c. 

§ II. Subtraction of Algebraic Quantities. 

62. Subtraction in Algebra, is finding the difference be¬ 
tween two algebraic quantities, and connecting those quanti¬ 
ties together with their proper signs ; the practical rule for 
performing the operation is deduced from the following propo¬ 
sition. 

63. To subtract one quantity from another, is the same thing as 
to add it with a contrary sign. Or, that to subtract a posi- 
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five quantity, is the same as to add a negative; and to sub¬ 
tract a negative, is the same as to add a positive. 

Thus, if 3a is to be subtracted from 8a, the result will be 
8a — 3a, which is 5a ; and if b — c is to be subtracted from a, 
the result will be a—(6 — c), which is equal to a — 6+c : For 
since, in this case, it is the difference between b and c that is 
to be taken from a, it is plain, from the quantity b—c, which 
is to be subtracted, being less than b by c, that if b be only 
taken away, too much will have been deducted by the quan¬ 
tity c ; and therefore c must be added to the result to make it 
correct. 

This will appear more evident from the following conside¬ 
ration ; Thus, if it were required to substract 6 from 9, the dif¬ 
ference is properly 9 — 6, which is 3 ; and if 6—2 were sub¬ 
tracted from 9, it is plain that the remainder would be greater 
by 2, than if 6 only were subtracted ; that is, 9 — (6—2) = 9 
—64-2 = 3-1-2=5, or 9 —6+2 = 9—4=5. 

Also, if in the above demonstration, b — c were supposed ne¬ 
gative, or b—c= — d ; then, because c is greater than b by d, 
reciprocally c—b=.d, so that to subtract — d from a, it is ne¬ 
cessary to write a+t/. 

64. The preceding proposition demonstrated after the man¬ 
ner of Gamier. 

Thus, if b—c is to be subtracted from the quantity va ; we 
will determine the remainder in quantity and sign, according 
to the condition which every remainder must fulfil; that is, if 
one quantity be subtracted from another, the remainder added 
to the quantity that is subtracted, the sum will be the other 
quantity. Therefore, the result will be a—b-\-c, because a — b 
+ c+6—c~a. 

This method of reasoning applies with equal facility to com¬ 
pound quantities : in order to give an example ; 
suppose that from 6a—36+4c, 
we are to subtract, 5a — 56 + 6c ; 
designating the remainder by R, we have the equality, 

R + 5a—56 + 6c=6a— 36 +4c: 
which will not be altered (Art. 49.) by subtracting 5a, adding 
56, and subtracting 6c, from each member of the equality; 
therefore the result will be, 

R = 6a—36+4c—5a+56—6c, 
or, by making the proper reductions, 

R=a+26—2c. 
65. Another demonstration of the same proposition in La 

place’s manner. 
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Thus we can write, 
a=za-\-b—b .... (1), 

a—c—a—c-\-b — b .... (2); 
so that if from a we are to subtract + 5 or —b, or, which is 
the same, if in a we suppress -j-5, or — b, the remainder, from 
transformation (1), must be a — b in the first case, and a-\-b in 
the second. Also, if from a—c we take away -f-5 or —b, the 
remainder, from (2), will be a—c — b, or a—c-\-b. 

66. Hence, we have the following general rule for the sub¬ 
traction of algebraic quantities. 

RULE. 

Change the signs of all the quantities to be subtracted into 
the contrary signs, or conceive them to be so changed, and 
then add, or connect them together, as in the several cases of 
addition. 

Example 1. From 18a5 subtract 14aA 
Here, changing the sign of \4ab, it becomes —14a£>, which 

being connected to 18a6 with its proper sign, we have 18a5 
— \4ab — (18 — \4)ab~4ab. Ans. 

Ex. 2. From 15a?2 subtract —10a;2. 
Changing the sign of —10a;2, it becomes + 10a;2, which 

being connected to 15a;2 with its proper sign, we have 15a?2-{- 
10a;2 = 25a;2. Ans. 

Ex. 3. From 24ab-\-7cd subtract \8ab-\-7cd. 
Changing the signs of \Qab-\-7cd, we have —18a&—7cdf 

therefore, 24ab-\-7cd—18a£>—7cd=6ab. Ans. 
Or, 24ab + 7cd 

—18ab—7cd 

Gab Ans. 

Ex. 4. Subtract7a—5b-\-3ax from 12a-f 106-f-13aa;—3ab, 
12a+106-{- 13aa; — Sab 

Changing the signs of a > 
all the terms of 7a—5b > —7a-\-5b — 3aa; 3 
-f-3aa;; it becomes, 3 —--- 

by addition, 5a-f- 155-f-lOaa; — Sab. 

Ex. 5. From Sab—7ax-\-7ab-\-3ax, take 4ab—3aa:—4a;y, 
Sab—7ax \ 
7ab-\-Sax f 

Changing the signs of all) . , 3o_ . 4.„( 
the terms of 4ab—3ax—4xy, £ ' ' 

.*. by addition, Gab—ax-\-4xy. Ans. 
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Ex. 6. 
From 36a—12b-\-lc 
Take 14a— 4 + 7c — 8 

Rem. 22a— 85+8 Ans. 

In the above example, one row is set under the other, that 
is, the quantities to be subtracted in the lower line; then, 
beginning with 14a, and conceiving its sign to be changed, it 
becomes —14a, which being added to 36a, we have 36a — 
14a=22a ; also, —45, with its sign changed, added to —125, 
will give 45 —125 = (4 —12)5= —85 ; in like manner, 7c — 7c 
=0, and —8, with its sign changed, = + 8. The following 
examples are performed in the same manner as the last. 

Ex. 7. Ex. 8. 
From 3#—4a-j- 5 a+ 5 
Take 2,cc+3a — 75 a— 5 

Rem. x—7a+85 *+25 

Ex. 9. 

From 3a5—4c#4* y 
Take 4aa?4-2a;2 — 3y2 

Ex. 10. 
7x3-\-3x2—x 
6x3—2a:24-8o? 

Rem. 3a5—4ax-\-y—4cx—2#24"3y2 x3-\-5x2—9a: 

Ex. 11. 
From 5a:2—4a?y + 5 
Take 4a:2—4a:y+9 

Ex. 12. 
7a:2-8 
9x2-\-5ab— 3a:3 

Rem. x2 * —4 3x3t—2x2—5a5 —8 

Ex. 13. 
From ax3—5a:2 + x 
Take px3—cx2+ex 

(a—p)x3 — (5 — c)x2-\-{l-~e)x 

Ex. 14. 
From bx3+qx2—rx-\-py2 
Take ax3 — cx2-\-mx—sy2 

(5—a)x3-\-{q-\-c)x2—(r+m)a:+(j9 + ^)y2 

67. As quantities in a parentheses, or under a vinculum, are 
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considered as one quantity with respect to other symbols 
(Art. 10,) the sign prefixed to quantities in a parentheses af¬ 
fects them all; when this sign is negative, the signs of all 
those quantities must be changed in putting them into the pa¬ 
rentheses. 

Thus, in (Ex. 13), when —cx2 is subtracted from —bx2, the 
result is — bx2-\-cx2, or —(b — c)x2 : because the sign — pre¬ 
fixed to (b —c) changes the signs of b and c; or it may be writ¬ 
ten + (c — b)x2. 

Again, in (Ex. 14), when -f-ma: is subtracted from — rx, 
the result is —rx—mx ; and, as this means that the sum of rx 
and mx is to be subtracted, that negative sum is to be express¬ 
ed by —(rx-\-mx) — — (r-{-m)x. For the same reason, the 
multinomial quantity—my2-\-nzy2 —aby2 —ry2-f-6y2, when put 
into a parentheses, with a negative sign prefixed, becomes 

— (m—n2-\-ab-\-r—6)y2. 
Ex. 15. From a—b, subtract a+b. Ans. —2b. 
Ex. 16. From 7xy—5y-\-3x, subtract 3xy-\-3y-\-3x. 

Ans. 4xy—By 
Ex. 17. What is the difference between 7aa:2-{-5xy—l2ay 

+ 5be, and 4ax2-\-bxy—Bay—4cd. 
Ans. 3ax2—4ay-|-5&c-{-4ce?. 

Ex. 18. From 8x2—3ax-\-5, take 5x2+2ax-\-5. 
Ans. 3x2—5ax. 

Ex. 19. From a-\-b-{-c, take — a—-h—c. 
Ans. 2a-\-2b-\-2c. 

Ex. 20. From the sum of 3x3—4aa:-f-3y2, Ay2-\-5ax—x3, 
y2—ax-\~5x3, and 3ax—2a:2—y2 ; take the sum of 5y2—x2 
-f-a:3, ax—a:3+4x2, 3a:3—ax — 3y2, and 7y2—aa:-f-7. 

Ans. 4a:3+4aa:—2y2 — 5x2—7. 
Ex. 21. From the sum of x2y2—x2y — 3xy2, 9xy2 —15 — 

3x2y2, and 70 + 2a:2y2— 3x2y, subtract the sum of 5x2y2—20 
*-j-a:y2, 3x2y—x2y2-\-ax, and 3xy2—4a:2y2 — 9 -\-a2x2. 

Ans. 2xy2 — 7x2y — ax — a2x2+84. 
Ex. 22. From a3x2y2 — m2x3 + 3ca:—4a:2 — 9 : take a2x2y2 

—n2x3 + c2x -f- bx2 + 3. 
Ans. (a3—a2)x2y2 — (m2 — n2)a:3+(3c—c2)x—(4-f-^>.) 

a:2 —12. 
§ III. Multiplication of Algebraic Quantities. 

In the multiplication of algebraic quantities, the following • 
propositions are necessary to be observed. 

68. When several quantities are multiplied continually together, 
the product will be the same, in whatever order they are mul¬ 
tiplied. 
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Thus, axb = bXa=ab. 
For it is evident, from the nature of multiplication, that the 

product contains either of the factors as many times as the 
other contains an unit. Therefore, the product ab contains 
a as many times as b contains an unit, that is, b times. 

And the same quantity ab, contains b as many times as a 
contains an unit, that is, a times. Consequently, axb = ba = 
ab ; so that, for instance, if the numeral value of a be 12, and 
of b, 8, the product ab will be 12x8, or 8x12, which, in 
either case, is 96. 

In like manner it will appear that abc—cab—bca, &c. 

69. If any number of quantities be multiplied continually to¬ 
gether, and any other number of quantities be also multiplied 
continually together, and then those two products be multiplied 
together ; the whole product thence arising will be equal to 
that arising from the continual multiplication of all the single 
quantities. 

Thus, ab X cd=a xbXcX d—abcd. 
For ab — aXb^ and cd—cxd\ if x be put=cd, then ab x 

cd=abxx—axbxx ; but x is =cd=c X d, r.abxx=abxc 
Xdz=zaXbx cd—abcd. 

70. If two quantities be multiplied together, the product will be 
expressed by the product of their numeral coefficients with the 
several letters subjoined. 

Thus, 7ax5b — 35ab. 

For 7 a is = 7xa, and 5b=5 X b, 7a X 5b = 7 X a X 5 X b 
=z7 X 5 X a X b = 35 X ab — 35ab. 

71. The powers of the same quantity are multiplied together by 
adding the indices. 

Thus, to multiply a2 by a3, it is necessary to write the let¬ 
ter a only once, and to give it for an exponent the sum 2-f-3, 
the exponents of the factors; that is, a2Xa3 — a2+3=:a5 ; 
because a2 —a X a, and a3=flX«X«; therefore a2X a3 = aXct 
XaXaXa — a5, In general, the product of am by an , m and n 
being always entire positive numbers, is am+n . In fact, am is 
the abbreviation of aXaXa, &c., continued to m factors, and 
an is a X a X a, &c., continued to n factors ; therefore am X an 
==aXaXaXaXa, &c., continued to m-fn factors; which 
(Art: 12) is . 

Reciprocally am can be replaced by am Xan . The quan¬ 
tity am is sometimes called an exponential. 
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72. If two quantities having like signs are multiplied together, 
the sign of the product will be ; if their signs are unlike, 
the sign of the product will be—. 

1. A positive quantity being multiplied by a positive one, 
the product is positive ; thus -\-a x 6 =-{-a&, because -f-a 
is to be added to itself as often as there are units in b, and 
consequently the product will be -|-ab. 

2. A negative quantity being multiplied by a positive one, 
the product is negative ; thus, —aX -f-b = —ab ; because—a 
is to be added to itself as often as there are units in b, and 
therefore the product is —ab. Or, since adding a negative 
quantity is equivalent to subtracting a positive one, the more 
of such quantities that are added, the greater will the whole 
diminution be, and the sum of the whole, or the product, must 
be negative. 

3. A positive quantity being multiplied by a negative one, 
the product is negative; thus, -j-aX—b=z—ab ; because 
-f-« is to be subtracted as often as there are units in b, and 
consequently the product is —ab. 

4. A negative quantity being multiplied by a negative one, 
the product is positive ; thus, —aX —b--\-ab. For, aX — b 
— —ab, that is, when the positive quantity a is multiplied by 
the negative quantity b, the product indicates that a must be 
subtracted as often as there are units in b ; but when a is ne¬ 
gative, its subtraction is equivalent to the addition of an equal 
positive quantity ; therefore, in this case, an equal positive 
quantity must be added as often as there are units in b. 

73. If all the terms of a compound quantity be multiplied sepa¬ 
rately by a simple one, the sum of all the products taken to¬ 
gether, will be equal to the product of the whole compound quan¬ 
tity by the simple one. 

For, in the first place, if a-{-b be multiplied by c, the pro¬ 
duct will be ca-\-bc : Since a-\-b is to be repeated as many 
times as there are units in b ; the product of a by c, that is, 
ca, is too little by the product of b by c, that is, cb ; it is ne¬ 
cessary then to augment ca by cb, which will give for the pro¬ 
duct sought ca-\-cb, where the term +cZ> arises from multiply¬ 
ing -f-& by c. It would be found by reasoning in like manner, 
that the product of c by a-\~b must be ca-\-cb, where + cb is 
cx -\-b. If, in the second place, a—b be multiplied (where a 
is greater than b) by c, the product will be ca — cb. Since 
a—b is to be repeated as many times as there are units in c; 
the product of a by c will give too great a result by the pro- 
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duct cb ; it is necessary then to diminish the product ca by cb> 
so that the true product is ca—cb. 

Let, for example, 7—2 be multiplied by 4 ; the product will 
be 28 — 8, or 20 ; 

For, 7x4, or 28, is too great by 2 X 4, or by 8 ; therefore, 
the true product will be the first diminished by the second, or 
28 —8, that is 20. In fact, 7—2, or 5x4^20. The term 
— cb of the product, is the product of —b by c. 

It would be found, by reasoning in like manner, that the 
product of c by a — b, must be ac — be, the same as in the pre¬ 
ceding, and in which the term —be is the product of c by —b. 

If, in the third place, a-\-b-\-d be multiplied by c, the pro¬ 
duct will be ca-\-cb-\-cd. 

For, let a-\-b be designated by e; then, e-{-d multiplied by 
c is equal to ce-\-cd; but ce is equal to c X {a-\-b)—ca-\-cb, 
because e is equal to a-\-b ; therefore (a-{-b-\-d) X c — ca-\-cb 
-|-cd. Also, if («4-6)—d be multiplied by c, the product will 
be ca-\-cb — cd ; for let (a-\-b) — e, then (e — d)Xc—ce—cd 

c(a-f-&)— cd = ca-{-cb—cd. 
Finally, it may be demonstrated in like manner, that if any 

polynomial, a-\-b — d-\-e —f &c., be multiplied by c, the pro¬ 
duct will be ca-\-cb—cd-\-ce—cf &c. Also, if a quantity c 
be multiplied by any polynomial a-\-b—d-\-e, &c., the pro¬ 
duct will be acf-bc—dc-\-ec, &c. 

75. If a compound quantity be multiplied by a compound quan¬ 
tity, the product will be equal to every term of one factor, mul¬ 
tiplied by every term of the other factor, and the products 
added together. 
Let, in the first place, a-\~b be multiplied by c-\-d: a-\-b 

taken c times is ca-\-cb, as we have already proved ; but this 
product is too little by the binomial a-\-b repeated d times, it 
is necessary then to add to it da-\~db, and we will have ca-\-cb 
4-da-\-d.b for the product sought; in which the term -\-db 
arises from the multiplication of -\-b by -\-d. 

Suppose, in the second place, that a-\-b is multiplied by 
c—d, the product will be ca-fcb — da — db. 

Because the product of a-\-b by c, that is, ca-\-cb, is too 
great by that of a-\-b by d, which is da-\-db ; we will have 
therefore the true product equal to ca-\-cb — da—db, where the 
term —db is the product of -\-b by —d ; in multiplying c — d 
by a-\-b, we will find that —bd is the product of —d by -J-&- 

Let, in the third place, a — b be multiplied by c—d ; the 
product will be ca—cb—da-\-db. 

For, the product of a—b by c, that is, ca—cb, is too little by 
4 
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that of a — b by d, which is da — db ; because the multiplier e 
is too great by d \ it is necessary then to subtract the second 
product from the first, and the difference will be (66) ca — cb 
— da -}- db. 

Here the term -\-bd results from —b by —d. 
Finally, if a \-b-\-e be multiplied by c-\-d the product will 

be ca-\-cb-\-ce-\-ad-{-bd-\- de. 
For, in designating a-\-b by h ; then, (h-\-e) X (c-\-d)=hc-\- 

ec-f dh-\-ed, which is equal to hx(c-\-d)-\-cc-\-ed=(a-\-b)X 
{c-\-d)J[-ecJ\-ed—ca-\-cb-\-ce-\-ad-\-bd-\-de. 

The same mode of reasoning may be extended to compound 
quantities composed of any number of terms whatever. 

76. Cor. Hence, in general, if any two terms which are 
multiplied have different signs, their product must be preceded 
by the sign —, and if they have the same sign, the product 
is affected with the sign -j- ; agreeably to what has been de¬ 
monstrated (Art. 72.) where simple quantities, or isolated fac¬ 
tors, such as, 4-a, -\-b, —a, —b, were only considered. 

From the division of algebraic quantities into simple and 
compound, there arises three cases of Multiplication : the 
practical rules for performing the operation are easily deduced 
from the preceding propositions. 

CASE I. 

When the factors are both simple quantities. 

RULE. 

77. Multiply the coefficients together, to the product sub¬ 
join the letters belonging to both the factors, and the result, 
with the proper sign prefixed, will be the product required. 

Ex. 1. Ex. 2. Ex. 3. Ex. 4. 
Multiply 3 ab 5x — 6y — 4a2 

By 4c — 3 a -■}- 3a? — 6x2 

Product \2abc — 15a,r ■*— 18 xy -\-24a2x2 

Ex. 5. Ex. 6. Ex. 7. 

i 

Ex. 8. 
Mul. 2 ax —-3a2c x2y2 — 5 a2b2c 

By — 8aa? + 5ac2 —7 xy —4a2b'lx 

Pro. -16a2x2 — 15a3c3 — 7 x3y3 -\-20aAb*cx 
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Ex. 9. Required the product of 4abc and 3a2c. 

Ans. i2a?bc2. 
Ex. 10. Required the product of —7axy and — 2acx. 

Ans. +14 aicx2y. 
Ex. 11. Required the product of 7a?2y3 and —3y2xJ. 

Ans. —21a?5y5. 
Ex. 12. Required the product of a3 and —a5. Ans. —a8. 
Ex. 13. Required the product of axz and bx2z. 

Ans. abx3z2. 
Ex. 14. Required the product of —xyz and abc. 

Ans. —abcxyz. 
Ex. 15. Required the product of —4b2cd2 and —2a3bc2d. 

Ans. 8a3b3c3d3 
Ex. 16. Required the product of —3a3 and 4a. 

Ans. —12a4. 
Ex. 17. Required the product of a2b3c by a3bc2d. 

Ans. a5bic3d. 

CASE II. 

When one factor is Compound and the other Simple. 

RULE. 

78. Multiply each term of the compound factor by the sim¬ 
ple factor, as in the last case ; then these products placed 
one after another with their proper signs, will be the product 
required. 

Ex. 1. 
Multiply Axy—3ax-\-2y 

by 4aa? 

Product 16ax2y—12a2x2 8axy 

Ex. 2. 
Mul. 4a?3—3a:2—8 

by —2aa? 

Pro. —8aa:4+6aa:3+l6aa? 

Ex. 3. 
Mul. 8a3—762+3a—1 

by 2b 

Pro. 16a3b —14 a2b-\-6ab—2b 
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Ex. 4. 
Mul. 3 x2yz2—xy2z—2 a2y 

by —x2yz 

Pro. —3x*y2z2-\-x3y3z2-\-2a2x2y2z 

Ex. 5. Multiply 8o2x2—3^-f-c by 2ac. 
Ans. 16a3cx2—6a6c-f-2ac2. 

Ex. 6. Multiply —3a?2—4a2-\-5 by —4##. 
Ans. 12aa?3-f-16a3.z—20ax. 

Ex. 7. Multiply a2Jrax-\-x2 by ax. 
Ans. a?x-\-a2x2-\-ax3. 

Ex. 8. Multiply a:2—xy-\-y2 by —x2y. 
Ans. —a:4y+a;3y2-ftf2y3. 

Ex. 9. Multiply 3a2—2a5-p352 by a2b2. 
Ans. 3a4Z>2—2a3b3-{-3a2bi. 

Ex. 10. Multiply a2x2—ao; + 9by5. Ans. 5a2#2— 5ax-{-45. 
Ex. 11. Multiply 2cd—3ab—3 by 4ac. 

Ans. 8ac2d—12a2£c—12ae. 
Ex. 12. Multiply 7xz-\-3ab—5y2 by — xy. 

Ans. — 7 x2yz—3abxy-}~5xy3. 
Ex. 13. Multiply ac—d by abed. 

Ans. a2bcd-\-ab2cd~-abc2d~~abcd2. 

CASE III. 

When both factors are compound quantities. 

RULE. 
i . . . . 

79. Multiply every term of the multiplicand by each term of 
the multiplier successively, as in the last case ; then, add or 
connect all the partial products together, and the sum will be 
the product required. 

Note. It is necessary to observe that like quantities are ge¬ 
nerally placed under each other, in order to facilitate their addi¬ 
tion. And if several compound quantities are to be multiplied 
continually together ; thus, 

(a+^) X (a—b) X (a2-\-ab-\-b2) X (a2—ab-\-b2). 
Multiply the first factor by the second, and then that product 
by the third, and so on to the last factor; but it is sometimes 
more concise not to observe the order in which the compound 
quantities, or factors, are placed, as can be readily seen from 
the following examples. 
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EXAMPLE 1. 

Multiplicand 2 a4—3 ba3—5 b2a2 
Multiplier a3—2ba2-\-3b2a 

1st partial pro. 2a7 — 3ba6—5b2a5 
second —45a6 + 6&2a5-}-10&3a4 
third -f662a5—9b3a4—1554a3 

Total prod. —2a1—76a6-i-762a5-j- £>3a4—1554a3 

Ex. 2. 
Multiply a-f-5 

by a—b 

1st partial prod. a2+ab 
second —ab—b2 

Total product a2 * — b2 

Ex. 3. 
Multiply a2Jt-ab-\-b2 

by a2—b2 

1st partial product a4+a3Z>+«2^2 
second —a2b2—ab3—b4. 

Total prod. a't-\-a3b * —ab3—£4 

Ex. 4. 
Multiply a4-fa36—ab3—54 

by a2—ab -\-b2 

1st partial prod. a*-\-a5b—a3b3—a264 
second —abb—a4b2-\-a2^abb 
third aAb2-\-a3b3—ab5—bG 

Total product a6 * * * * —b6 

Ex. 5. 
Multiply a2-\-ab-\-b2 

by a2—ab }-53 

4* 
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1st partial prod. ai-\-a?b-\-a2b2 
second —a3b—a2b2—ab2 
third -\-a2b2+ab3+b4 

Total prod. a4 * -\-a2b2 * -}-&4 

Ex. 6. 

Multiply a4-f a252 + ^4 
by a2 — b2 

1st partial product a6+a4624-a2^4 
second —cfib2—a2b4—bG 

Total product a6 * * —b6 

Ex. 7. 

Multiply «2-f ab-\-b2 
by a —b 

1st partial prod. a3-\-a2b-\-ab2 
second —a2b—ab2—b3 

Total product a3 * * —b3 

Ex. 8. 

Multiply a2—ab-\-b2 

by a 4-^ 

first a3 — a2b-\-ab2 
second -a2b — ab2-\-b3 

Product a3 * * +63 

Ex. 9. Ex. 10. 

Mul. a3 — b3 a2—ob-\-b2 

by a3~\-b3 a —b 

1st. a6—a3b3 a3— a2b-\- ab2 
2nd. + a3b3 — b6 — a?b-\- ab2 — b3 

Prod. a6 * — 66 a3—2a2b-\-2ab2—b3 
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Ex. 11. 
Multiply aP+ab+b2 

by a -\-b 

first a3 -f* o2b -f- ab2 
second -\-a2b-\-ab2-\-b3 

Product a3-\-2a^b-\-2ab2-\-b3 

Ex. 12. 

Mult. a3-\-2a2b-\-2ab2-]rb3 
by a3—2a2b-\-2ab2— b3 

1st. ae,-\-2abb-\-2a*b2-\- a3b3 
2nd. —2 a5b—4a462—4a363—2 a2b* 
3d. -{-2a*b2-\-4a3b3-\-4a2b*-\-‘Zab5 
4th. — a3b3—2 a2b*—2ab5 — b6 

prod, a6 * * * * -&« 

When the quantities to be multiplied together have literal 
coefficients, proceed as before, putting the sum or difference 
of the coefficients of the resulting terms into a parentheses, or 
under a vinculum, as in Addition. 

Ex. 13. 
Mult, x2 — ax-\-p 

by a:2-f-6oj-}-3 

1st. x4 — ax3 -\-px2 
2nd. +&r3—abx2-\-bpx 
3d. -f-3a:2— 3ax-{-3p 

prod, x4 — (a—b)x3-H (p—ab-\-3)x2\-(bp — 3a)x + 3p 

Ex. 14. 
Mult, ax2— bx -\-c 

by x2— cx -f-1 

1st. ax*— &r3-}- cx2 
2nd. —acx3-{-bcx2—c2x 
3d. + clx2 — bx-\-c 

prod, ax4 — {b-f- ac)x3-f- (c-f- bc-\-a)x2 — (c2 + b) -f c 

Ex. 15. Required the continual product of a+2x, a—2x, 
and a2-\-4x2. 
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Multiply a-\- 2x 
by a—2x 

a2-\-2ax 
—2ax—4a2 

Multiply a2—4x2 
by a2-f-4a:2 

a4—Aa2x2 

■+4a2a;2— 16a;4 

Total product a4 * —16a;4 
• 

It may be necessary to observe, that it is usual, in some 
cases, to write down the quantities that are to be multiplied 
together, in a parentheses, or under a vinculum, without per¬ 
forming the whole operation ; thus, (a + 2a:)x(a— 2a:)x(a2+ 
4a:2). This method of representing the multiplication of com¬ 
pound quantities by barely indicating the operation that is to 
be performed on them, is preferable to that of executing the 
entire process ; particularly when the product of two or more 
factors is to be divided by some other quantity; because, in 
this case, any term that is common to both the divisor and 
dividend may be more readily suppressed ; as will be evident, 
from various instances, in the following part of the work. 

Ex. 16. Required the product of a+Z>+c by a — b+ c. 
Ans. a2-\-2ac—b2-\-c2. 

Ex. 17. Required the product of x-\-y-\-z by x—y.—z. 
Ans. x2—y2—2yz—z2. 

Ex. 18. Required the product of 1— a:+x2—x3 by 1+a?. 
Ans. 1—a:4. 

Ex. 19. Multiply a3-\-3a2b-\-3ab2 + 63 by a2-\-2ab-\-b2. 
Ans. a5 + 5a4£>+ \0a3b2-\- 10a263 + 5aJ4+&5. 

Ex. 20. Multiply 4a?2y + 3a:y — 1 by 2a:2 — x. 
Ans. 8a:4y+2a;3y—2a:2 — 3x2y-\-x. 

Ex. 21. Multiply a:3 + a:2y+a:y2+y3 by a:—y. Ans. a:4—y4. 
Ex. 22. Multiply 3a:3—2a2a:2+3a3 by 2a;3 — 3a2x2-±-5a3. 

Ans. 6a:6 — 13a2a;5-f- 6a4a:4+21 o3x3 — 19a5a:2 +15a6. 
Ex. 23. Multiply 2a2 — 3aa:+4a:2 by 5a2 — 6aa:—2a:2. 

Ans. 10a4—27a3a:+34a2a:2—18aa;3 — 8a:4. 
Ex. 24. Required the continual product of a+a:, a—x, a2 

+ 2aa:+a:2, and a2—2aa:+a:2. Ans. a6 — 3a4a:2+3a2a:4—x6. 
Ex. 25. Required the product of x3—ax2-\-bx—c, and x2 
2a;+3. 
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Ans. *5-(a4-2)^+(ft+2«+3)ir3-(c4-2i+3a>24-(2c+3i) 
x—3c. 

Ex. 26. Required the product of mx2—nx—r and nx—r. 
Ans. mnx3—(n2-f mr)a:2-f r2. 

Ex. 27. Required the product of px2—rx-\-q and x2—rx 
—q. Ans. px4—(r-+-pr)x3-\-(q-\-r2—pq)x2 — q2. 

Ex. 28. Multiply 3a:2—2a:y-f 5 by a:2-f 2a;y— 3. 
Ans. 3a?4-f4a:3y— 4a:2 X (1-f y2)-f 16a:y—15. 

Ex. 29. Multiply a3 -f 3a2b -f 3a£>2 -f b3 by a3—3a2b -f 
3ab2—b3. Ans. a6—3atb2 +3a2b*—be. 

Ex. 30. Multiply 5a3—4a2b-{-5ab2—353 by 4a2— 5ab-\-2b2. 
Ans. 20a5—41a46-f 50a3£2—45a253-f 25a&4—655. 

Ex. 31. Required the continual product of a-fa;, a2-f 2aa: 
-f #2> and a3-f 3a2a;-f3aa:2-f a:3. 

Ans. a6-f 6a5a:-f 15a4a:2-f 20a3a;3-f 15a2a;4-f 6aa:5-f a;6. 
Ex. 32. Required the continual product of a—x, a2—2ax-\- 

x2, and a3—3a2a;-f 3aa:2—.r3. 
Ans. a6—6a5a:-f 15a4a;2—20a3x3-\- I5a4a:2—6aa;5-f a:6. 

§ IV. Division of Algebraic Quantities. 

80. In the Division of algebraic quantities, the same circum¬ 
stances are to be taken into consideration as in their multipli¬ 
cation, and consequently the following propositions must be 
observed. 
81. If the sign of the divisor and dividend be like, the sign of the 

quotient will be -f ; if unlike, the sign of the quotient will be—. 

The reason of this proposition follows immediately from mul¬ 
tiplication. 

Thus, if -faX-f& = -fa& ; 

-fax—b——ab ; 

—flX -f b= — ab ; 

—aX —b--\-ab ; 

therefore 4—= + ^ 
-fa 

—ab 

-fa 
— ab 

— a 
A-ab 

= + b 

= -b 
-a 

82. If the given quantities have coefficients, the coefficient of the 
quotient will be equal to the coefficient of the dividend divided by 
that of the divisor. 

Thus, 4ab-^-2b, or 4rr=2a. 
2b 

For, by the nature of division, the product of the quotient, 
multiplied by the divisor, is equal to the dividend; but the co- 
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efficient of a product is equal to the product of the coefficients of 

the factors (Art. 70). Therefore, Aab-:r(Zb=^-x^-=2a. 

83. That the letters of the quotient are those of the dividend not 
common to the divisor, when all the letters of the divisor are com¬ 
mon to be dividend: for example, the product abc, divided by ab, 
gives c for the quotient, because the product of ab by c is abc. 

84. But when the divisor comprehends other letters, not common 
to the dividend, then the division can only be indicated and the quo¬ 
tient written in the form of a fraction, of which the numerator is the 
product of all the letters of the dividend, not common to the divisor, 
and the denominator all those of the divisor not common to the divi- 

Q 
dcnd : thus, abc divided by amb, gives for the quotient —, in ob- 

m 
serving that we suppress the common factor ab, in the divisor 
and dividend without altering the quotient, and the division is 

£ 

reduced to that of —, which admits of no farther reduction 
m 

without assigning numeral values to c and m. 

85. If all the terms of a compound quantity be divided by a simple 
one, the sum of the quotients will be equal to the quotient of the 
whole compound quantity. 

ab ac ad ab-\-ac-\-ad 
Thus,-{--1-—-b c~\~ d. 

a a a a 
For, (6-l-c+d) Xa=zab+ac-{-ad. 

86. If any power of a quantity be divided by any other power of 
the same quantity, the exponent of the quotient will be that of the 
dividend, diminished by the exponent of the divisor. 

Let us occupy ourselves, in the first place, with the division 
am 

of two exDonentials of the same letter; for instance, —and 
A - an 

n being any positive whole numbers, so that we can have, 
m^>n, m—n, m<^n. 

It may be necessary to observe that, according to what has 
been demonstrated (71), with regard to exponentials of the 
same letter, the letter of the quotient must also be a, and if the 
unknown exponent of a be designated by x, then a* will be the 
quotient, and from the nature of division, 

am =an Xa,x=an+x ; 
from which there necessarily results the following equality 
between the exponents, 
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m=n-\-x; 
And as, subtracting n from each of these equal quantities, the 
two remainders are equal (Art. 49), we shall have, 

m—n=-x .... (1). 
Therefore, in the first case, where m is the exponent of 

the quotient is m—n\ thus, 
■a3=a5~3 — a3, and a3-r-a=a3~l=a2. 

Also, it may be demonstrated in like manner, that (a+a)5-f- 

(a + xf=(a + x)M=(a + xf ; and|^i|p=(2*+y)7-5= 

(2x+yf. 

In the second case, where m=n, we shall have, 
am — an X ax—om X ax~am3rx ; 

From which there results between the exponents the equality, 
rri—m 4-#, 

and subtracting m from each of these equals (Art. 49), 
m—m=x, or 0 .... (2) ; 

therefore, the exponent of the quotient will be equal to 0, or 
ax—a0, a result which it is necessary to explain. For this 
purpose, let us resume the division of am by am> which gives 

am 

unity for the quotient, or—=1 ; and as two quotients, aris¬ 
a 

ing from the same division, are necessarily equal; therefore, 
a0— 1. 

Hence, as a may be any quantity whatever, we may conclude 
that ; any quantity raised to the power zero, must he equal to 
unity, or 1, and that reciprocally unity can he translated into 
a0. This conclusion takes place whatever may be the value 
of a ; which may also be demonstrated in the following man¬ 
ner. 

Thus, let a°—y; then, by squaring each member, a°X«°= 
y Xy, or a°—y2 ; 

therefore, (47), y2=y, 

and (51), — 
y y 

or y—l ; 
but a°—y ; consequently a°=l. 

In the third case, where m is less than n ; let n^-m+d, d 
being the excess of n above m; we shall always have, 

arn—am+d X ax—am*d+x, 

and equalising the exponents, because the preceding equality 
cannot have place, but under this consideration, 

m=m-\-d-\-x, 

subtracting m-\-d from both sides, the final result will be 
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x= — d.(3); 
then the quotient is ard. 

In order to explain this, let us resume the division of am by 
a11, or by am+d=am X ad; by suppressing the factor am, which 
is common to the dividend and divisor, according to what has 
been demonstrated with regard to the division of letters (Art. 

84), we have for the quotient — : therefore, 

This transformation is very useful in various analytical 
operations; in order to see more clearly the meaning of it, 
we may recollect that a*d is the same as aXaXa, Sic., con¬ 
tinued to d factors ; therefore, according to the acceptation 
and opposition of the signs, a~d must represent aXaXa Sic., 
continued to d factors in the divisor. 

Hence, according to the results (1), (2), and (3), the pro¬ 
position is general, when m and n are any whole numbers 

whatever: thus, a3~a5=a3~5=a~2, or — ; because the di- 
az 

visor multiplied by the quotient is equal to the dividend, a5 X 

1 OS* 
a~2=a5~2=a3 = the dividend, and — X a5= — =a5~2 = a3= 

a1 az 

the dividend, therefore, ar2=—~. In like manner it may be 
az 

shown that, -i-=a-3, ~ = a-4, Sic. But, according to the 
a3 a4 ' 

result (4), in general, —=ard, where d may be any whole 
CL 

number whatever ; hence the method of notation pointed out, 
(Art. 32), is evident. 

87. If a compound quantity is to be divided by a compound 
quantity, it frequently occurs that the division cannot be per¬ 
formed, in which case, the division can be only indicated, in 
representing the quotient by a fraction, in the manner that has 
been already described (Art. 8). 

’ • «, ' i 

88. But if any of the terms of the dividend can he produced by 
multiplying the divisor by any simple quantity, that simple 
quantity will be the quotient of all those terms. Then the re¬ 
maining terms of the dividend may be divided in the same 
manner, if they can be produced by multiplying the divisor 
by any other simple quantity; and by continuing the same 
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method, until the whole dividend is exhausted; the sum of all 
those simple quantities will be the quotient of the whole com- 
pound quantity. 

The reason of this is, that as the whole dividend is made up 
of all its parts, the divisor is contained in the whole as often as 
it is contained in all its parts. Thus, (ab+cb+ad+cd)-— 
(a-\-c) is equal to b-\-d: 

For b X(<z-f c)=ab-\-cb ; and dx (a-\-c)=ad-\~cd; but the 
sum of ab-{-cb and ad-\-cd is equal to ab-\-cb-\-ad-\-cd, which 
is equal to the dividend ; therefore b-\-d is the quotient re¬ 
quired. 

Also, (a2-\-2ab-\-2b2)-:r(a-\-b) is equal to a-\-2b. 
For, it is evident in the first place, that the quotient will 

include the term a, since otherwise we should not obtain a2. 
Now, from the multiplication of the divisor a-\-b by a, arises 
a2-\-ab ; which quantity being subtracted from the dividend, 
leaves a remainder 2ab-\-2b2; and this remainder must also 
be divided by a+b, where it is evident that the quotient of 
this division must contain the term 2b : again, 2b, multiplied 
by a-\- b, produces 2ab-\-2b2 ; consequently a-\-2b is the quo¬ 
tient required ; which, multiplied by the divisor a-\-b, ought 
to produce the dividend a2-{-3ab-\-2b2. See the operation at 
length : 

a-j- b)a2-\- 3a£ 4- 2b2(a+2b 
a2+ ab 

2ab+2b2 
2ab + 2b2 

* 

89. Scholium. If the divisor be not exactly contained in 
the dividend ; that is, if by continuing the operation as above, 
there be a remainder which cannot be produced by the mul¬ 
tiplication of the divisor by any simple quantity whatever ; 
then place this remainder over the divisor, in the form of a 
fraction, and annex it to the part of the quotient already de¬ 
termined ; the result will be the complete quotient. 

But in those cases where the operation will not terminate 
without a remainder; it is commonly most convenient to ex¬ 
press the quotient, as in (Art. 87). 

90. Division being the converse of multiplication, it also ad¬ 
mits of three cases. 

5 
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CASE I. 

When the divisor and dividend are both simple quantities. 

RULE. 

91. Divide, at first, the coefficient of the dividend by that of 
the divisor ; next, to the quotient annex those letters or factors 
of the dividend that are not found in the divisor; finally, pre¬ 
fix the proper sign to the result, and it will be the quotient re¬ 
quired. 

Note. Those letters in the dividend, that are common to it 
with the divisor, are expunged, when they have the same ex¬ 
ponent ; but when the exponents are not the same, the expo¬ 
nent of the divisor is subtracted from the exponent of the 
dividend, and the remainder is the exponent of that letter in the 
quotient. 

Example 1. Divide 18ax2 by 3ax. 
18 ax2 18 a x2 

-=—X-X— — 6 X 1 X x2~l 
3 ax 3 ax 

_ 18aa:2 18 , . _ . . „ 
Or, —r-=— X a1-1 X a:2-1 =r6 Xa°X x—6x. 

3 ax 3 
See (Art 

86.) 
Ex. 2. Divide —48a2b2c2 by 16abc. 
In the first place, 48-i-16r=3= the coefficient of the quo¬ 

tient, next, dlb2ci‘~abc — dl—1 x b2~1 X c2~1 z=.abc ; now, an¬ 
nexing abc to 3, we have 3abc, and, prefixing the sign — ; be¬ 
cause the signs of the dividend and divisor are unlike ; the re¬ 
sult is —3abc, which is the quotient required. 

Or, the operation may be performed thus, 
—48 a.2b2c2 48 a2 b2 c2 , . 
———r-— — T-X — XT-X~ = —3XaXbxc=z~3abc. 

16aoc lo a b c 
Ex. 3. Divide —21 x3y3z4 by —7x2y2z3. 

—21 x3y3z4 21 
= + —x3 2 x y3~2 X z4~3 = -f- 3xyz. 

—7x2y2z3 ' 7 
Ex. 4. Divide 28a4b5c7 by —7a2b2cb. 

28a4b5c1 --7a2b2c* ■. 
28 a? b5 c’ 

X ~7r X —— X 
a* b2 

— 4 X a4“2 X &5~2 

X c"~5— —4 X a2 X i3 X c2= —4a2b3c2. 
In order that the division could be effected according to the 

above rule ; it is necessary, in the first place, that the divisor 
contains no letter that is not to be found in the dividend : in 
the second place, that the exponent of the letters, in the divi- 



DIVISION. 39 

sor, do not surpass at all that which they have in the dividend ; 
finally, that the coefficient of the divisor, divides exactly that 
of the dividend. 

When these conditions do not take place, then, after can¬ 
celling the letters, or factors, that are common to the dividend 
and divisor ; the quotient is expressed in the manner of a frac¬ 
tion, as in (Art. 84). 

Ex. 5. Divide 48a3b5c2d by 64a3b3c^e. 

The quotient can be only indicated under a fractional form, 
thus, 

48 a3b5c2d 

64a363c4e* 
But the coefficients 48 and 64 are both divisible by 16, sup¬ 
pressing this common factor, the coefficient of the numerator 
will become 3, and that of the denominator 4. The letter a 
having the same exponent 3 in both terms of the fraction, it 
follows that a? is a common factor to the dividend and divisor, 
and that we can also suppress it. The exponent of the letter 
b is greater in the dividend than in the divisor ; it is ne¬ 
cessary to divide b5 by b3, and the quotient will be b2, or 
bs . , . 
~-z=zb5~3z=b2, which factor will remain in the numerator. 
o3 

With respect to the letter c, the greater power of it is in 
c^ 

the. denominator ; dividing c4 by c2, we have c2, or —= c4~2 

=c2, therefore the factor c2 will remain in the denominator. 
Finally, the letters d and e remain in their respective places ; 

because, in the present state, they cannot indicate any factor 
that is common to either of them. 

By these different operations, the quotient, in its most simple 
, . 3 b2d 
form, is ——. 

4 cze 
Note. The division of such quantities belongs, properly 

speaking, to the reduction of algebraic fractions. 
Ex. 6. Divide 36x2y2 by 9xy. Ans. 4xy. 
Ex. 7. Divide 30a2by2 by —Qaby. Ans. —5ay. 
Ex. 8. Divide —42c3x3y by 7c2x2. Ans. —6cxy. 

Ans. -f*4xy. 
\a2b2cx 

Ans. — 

Ex. 9. Divide —4aa:2y3 by —axy“. 

Ex. 10. Divide 16a5b3cx by —4a3bdy. 

Ex. 11. Divide — 18a362c2 by 12a5b3x. 

Ex. 12. Divide 17xyzw2 by xzyw. 

Ex. 13. Divide —12a3b3c3 by —Qabc. 

Ans. — 

dy 
3c2 

2a2bx' 
Ans. 17iy. 

Ans. 2a2b2c2. 
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Ex. 14. Divide ~9x2y2z2 by x4y4z4. 

Ex. 15. Divide 39a9 by 13a5. 

CASE II. 

Ans. — 
x*y*z* 

Ans. 3a4. 

When the divisor is a simple quantity, and the dividend a com¬ 
pound one. 

RULE. 

92. Divide each term of the dividend separately by the 
simple divisor, as in the preceding case ; and the sum of the 
resulting quantities will be the quotient required. 

Example 1. Divide 18a3-f-3a2&+6a62 by 3a. 

TT 18a3 3a2b . , 6ab2 
Here, ——=6a2, —— = ab, and ———2b2 ; 

3a 3a oa 

therefore, 18a3±3Wf??=6o,+aft+2y. 
3a 

Ex. 2. Divide 20a2#3— 12 a2#2-}-8a3#2—2a4#2 by 2ax2. 
20^3 

Here, ——--=10ax, — I2a2x2~2ax2= — 6a, 8a3#24-2a#2 
2 ax2 

4 4a2, and —2a4x2—2ax2= — a3 ; 

hence 
20a2#3— 12a2#248a3#2—2 a4x2 

2 ax2 
= 10 ax—6a + 4a2 —a3. 

Ex. 3. Divide 20a2# —15a#24"30a#y2— 5ax by 5ax. 
Here 20a2#-^5a# = 4a, —15a#2-i-5a#=:—3#, 30a#y2-r* 

5a#=6y2, and —5a#=5a# =— 1 ; 

. . 20a2x — 15a#2430a#y2—5ax A n n 
therefore,-----=4a—3#4-6y2—1. 

5a# J 
Ex. 4. Divide 5a6# —25a5#2 4-50a4#3 — 50a3#4*h25a2#5— 

5ax6 by 5ax. 

Here 
5a6x 

5 ax 
:aJ 

■25 a5x2 

5ax 
= —5a4x, 

+ 50 a4x3 

5ax 
= 4* 10a3#2, 

— 50a3#4 - 3 + 25a2#5 —5ax6 
—  -= — 10a2#J, — -= 4 5a#4, and-= — x5 : 

5a# 5a# 5a# 

therefore, a5 — 5a4# 410a3#2— 10a2#3 4 5a#4—%5 is the quo¬ 
tient required. 

Ex. 5. Divide 3a4#2 — 3a2#4 by —3a2#2. Ans. x2—a2. 
Ex. 6 Divide 21a3#3—7a2#2—14a# by 7a#. 

Ans. 3a2#2—a#—2. 
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Ex. 7. Divide 12abc — 4 8ax2y2 -f 64a2b2c2 — 16a2b2 by 

— 16a A Ans. ab-3?-+3f£ - 4abc*. 
4 o 

Ex. 8. Divide 72x2y2z2—12aa:y;?-|-24&c;ry;sr by 12a;y^. 
Ans. Sxyz—a-\-2bc. 

Ex. 9. Divide 4x2y2—#4y4+3ax3y* by x'3y3. 
, 4 
Ans.-#y-j-3a. 

xy 

Ex. 10. Divide 5a—7b-\-§c—3ac2-f-9c3 by 3c. 
5a 7b 

Ans. —————\-2—ac-|-3c3. 
3c 3c 

Ex. 11. Divide —60a?7y-l-50a;6y2—40a;5y3-f-30a:4y4—20x3ys 

-f-lOa^y6— 5;ry7 by —5 xy. 
Ans. y6—2#y5-j-4a:2y4—6a?3y3-f*8a;4y2—lOar’y-j- 12a;6. 

CASE III. 

When the dividend and divisor are both compound quantities. 

RULE. 

93. Arrange both the dividend and divisor according to the 
exponents of the same letter, beginning with the highest, and 
place the divisor at the right hand of the dividend ; then di¬ 
vide the first term of the dividend by the first term of the di¬ 
visor, as in Case I., and place the result under the divisor. 

Multiply the whole divisor by this partial quotient, and sub¬ 
tract the product from the dividend, and the remainder will be 
a new dividend. 

Again, divide that term of the new dividend, which has the 
highest exponent, by the first term of the divisor, and the re¬ 
sult will be the second term of the quotient. Proceed in the 
same manner as before, repeating the operation till the divi¬ 
dend is exhausted, and nothing remains, as in common arith¬ 
metic. This rule is evident from [Art. 88). 

Example 1. Divide 12a5b2— 6a463-f-8a2b5—4a364—22a6£-f- 
5a? by 4a262—2a3£-J-5a4. 

It can be readily perceived that the letter a is the one to be 
chosen, in order to arrange the terms of the dividend and divi¬ 
sor according to its powers, beginning with the dividend, 5a? 
is the term which contains the highest power of a ; placing 
5a? for the first term, —22a6&, for the second, and so on ; the 
terms of the dividend, arranged according to the powers of a, 
are written thus ; 

5* 
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5a7 •22 o% -f12 a5b2 - 6a463 - 4*3&4+ 8 a2b5. 
And the terms of the divisor, arranged according to the powers 
of a, are written thus ; 

5a4—2a?b-\-4a2b2. 

S3 
o 
3 

S3 <D 
3 

+ 4* 

o o 
a a »U 

CO CO 
I I 
a a 

co cj a* 4. 
+ + 
00 00 
a a 
to to a- a* U> 01 

S3 
CD 

I I 
to to 
o o 
a a O O) a- a* 

00 00 
a a 

Cn _n 

to to 

1 I 
t— 05 
05 a 
a j?' *1. a- w w 

O' 4* 
+ 
00 
a 
to a* 
Cn 

a co 
I 

Ox Oi 
a a 

to 
to to 
a a o> o> 
cn cn 

+ + 
a 

cn 
a- 
to 

to 
a 

Cn 
cn to 

05 
a 
a-* 

CO 

4^ 
a 

CO a* 4- 
+ 
00 
a 

to Cn Ol 

N» . a 
a 
a 
a- 

£.0 
to 

Cn g. 

+ I' 

Cl 
a 

1 to 
§•8' 

CO O 
+ 
a 
to 

Cn 
to 

Co 
a a 

The sign of the first term 5a7 of the dividend being the 
same as that of 5a4, the first, term of the divisor, the sign of 
the first term of the quotient is +> which is omitted (Art. 14). 
Dividing 5a7 by 5a4, the quotient is a3, which is written under 
the divisor. Multiplying successively the three terms of the 
divisor by the first term a3 of the quotient, and writing the 
product under the corresponding terms of the dividend ; sub¬ 
tracting 5a7—2a66-f-4a562 from the dividend, the remainder 
is 

—20a66+8a552—6a4b3—4a354-f 8 a2b5. 
Dividing —20a6b the first term of this new dividend by 5a4, 
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the result will be —4a2b, this quotient having the sign —, 
because the dividend and divisor have different signs. 
Multiplying all the terms of the divisor by —4a2b ; we have 
—20a6fr-j-8a562— 16<z453 ; subtracting this result from the par¬ 
tial dividend, the remainder will be 10a4b3—4a2P-\-8a2P, divid¬ 
ing the first term of this new partial dividend, lOa^P, by the first 
term 5a4 of the divisor, multiplying all the divisor by the result 
4-263, and subtracting the product from the last partial dividend, 
nothing remains ; therefore the last term of the quotient sought 
is 4-2b3, and the entire quotient is a3 — 4a26 + 263. 

94. It is very proper to observe that in division, the multi¬ 
plications of different terms of the quotient by the divisor, 
produce frequently terms which are not found in the dividend, 
and which it is necessary to divide afterward by the first term 
of the divisor. These terms are such as are destroyed when 
the dividend is formed by the multiplication of the quotient 
and divisor. 

See a remarkable example of these reductions : 
Ex. 2. Divide a3—b3 by a—b. 

Division. 

Dividend. 
a3—b3 
a3 — a2b 

Divisor, 
■b a 

Multiplication. 

Mul. a — b 
by a2-\-ab-\-b3 

a2b — P 
a2b- ab2 

ab2 -P 
ab2 -P 

* * 

Quotient. 
a2-\-ab-\-b2 

a3 — a2b 
-\-a2b — ah2 

-f-ab2—b3 

a3 * * — b3 

The first term a3 of the dividend divided by the first term 
a of the divisor, gives a2 for the first term of the quotient ; 
multiplying the divisor a — b by a2, the first term of the quotient, 
the result is a3—*a2b ; subtracting a3—a2b from the dividend, 
the term a3 destroys the first term of the dividend ; but there 
remains the term —a2b, which is not found at first in the divi¬ 
dend ; therefore the remainder is a2b — b3. Because the term 
a2b contains the letter a, we can divide it by the first term of 
the divisor, and we obtain -f-ab, which is the second term of 
the quotient. Multiplying the divisor by +ab, the product is 
a2b—ab2, which being subtracted from a2b—b3 ; the first term 
a2b destroys the term a2b which arose from the preceding 
operation ; but there remains the term —ab2, which being 
not yet in the dividend ; the remainder is therefore ab2—b3. 
Dividing ab2 by a, the result is b2, which is the third teira 
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of the quotient; multiplying the divisor by 52, we have 
ab2—b3; and subtracting this result from the last remain¬ 
der, the terms of both destroy one another ; so that nothing 
remains. 

In order to comprehend well the mechanism of the division, 
it is only necessary to take a glance at the multiplication of 
the quotient a2-\-abfi-b2 by the divisor a—b, and it will be rea¬ 
dily seen that all the terms reproduced in the partial divisions 
are those which destroy one another in the result of the mul¬ 
tiplication. 

Ex. 3. Divide y3—1 by y—I. 
Dividend. 

y3 1 
y3—y2 

y2—i 
y2—y 

Divisor. 

y-1 

Quotient. 

y2+y+1 

y-1 

y i 

Ex. 4. Divide a6— 
Dividend, 

a6—x6 
a6—a5x 

x6 by a—x. 
Divisor, 
a—x 

Quotient. 
y 

(fix—x6 
cfix—a*x2 

a5+a*x -f- cfix2 -{-1fix3 -f - axA - J- xB 

a*x2—x6 
(fix2—(fix3 

(fix3—x6 
cfix3—(fix*1 

ifix4—x6 
(fix'*—ax5 

ax5 — a:6 
ax5—x6 

* * 

Ex. 5 Divide xb-\-a5 by x+a. 
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Dividend. 
£5_|_a5 

ar5-j-0£4 

— ax41-}-a5 
—ax4—a2x3 

Divisor. 

a:-f*a 

Quotient. 

a?4—ax3 4“ *2—a3# 4“ 

a2a?34-a5 
a2#3 4-a3#2 

—a3#2 4*-a5 
— a3#2—a4# 

a4# 4" a5 
a4a?4-05 

95. When we apply the rule, (Art. 93), to the division of 
algebraic quantities of which one is not a factor of the other, 
we know it is impossible to effect the division ; because that 
we arrive, in the course of the operation, at a remainder, of 
which the first term cannot be divided by that of the divisor. 
In this case, the remainder is made the numerator of a frac¬ 
tion whose denominator is the divisor ; and the fraction thus 
arising, with its proper sign, is annexed to the other part of 
the quotient, in order to render its value complete. 

Ex. 6. Divide a?-\-a2b-\-2b3 by a2-}-b2. 

1st rem. 

Dividend. 
a3-\-a2b-\-2b3 
a3-\-ab2 

a2b—ab2-{-2b3 
a2b-\-b3 

Divisor. 
a2-\-b2 

Quotient. 
7 b3 

a-\-b-\- 
■ab2 

a24-&2 

2d rem. — ab2 + b3 
The first term — ab2 of the remainder, dannot be divided by 

c2, the first term of the divisor; thus the division terminates 
—ab2-\-b3 

at this point. The fraction —having the remainder 

for its numerator, and the divisor for its denominator, is an¬ 
nexed to the partial quotient a4"£ ; and the complete quotient 

. t . b3-~ab2 
lsa+J+-^-pr- 

96. It is necessary to remark, that the operation of divi- 
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sion may be considered as terminated, when the highest pow¬ 
er of the letter, in the first or leading term of the remainder, 
by which the process is regulated, is less than the first term 
of the divisor ; as the succeeding part of the quotient, after 
this, would necessarily become fractional; and which may be 
carried on, ad infinitum, like a decimal fraction. 

This subject belongs to algebraic fractions, and as it is of 
considerable importance in analysis, we will treat of it with a 
near attention in the next Chapter. 

97. In the preceding examples, the product of the first term 
of the quotient by the divisor, is placed under the dividend ; 
then the reduction is made by subtraction ; and every succeed¬ 
ing product is managed in like manner. In the following ex¬ 
amples, the signs of all the terms of the product are changed 
in placing it under the dividend ; and then the reduction is 
performed by the rules of addition; which is the method 
adopted by some of the most refined Analysts. 

Ex. 7. Divide a4-f 2a2Z>2+64—c4 by a2-\-b2-\-c2. 

1st. rem. 

Dividend. 
a4-f- 2a2b2-{-b4—e4 

•a4— a2b2—a2c2 

a?b2 — a2c2 -j- 54—c4 
- a2b2 — b2c2—&4 

Divisor. 

a2 -j- b2 c2 

Quotient. 

a2-\-b2—c2 

2d. rem. — a2c2 — b2c2—c4 
-f- a2c2+b2c2 -f- c4 

* 

Ex. 8. Divide 6a?4—96 by 3#—6. 
Dividend. Divisor. 

6 a?4 — 96 3a?—6 
— 6a?4-4-12a?3 - 
-Quotient. 

+ 12a?3 — 96 
— 12a?3-}- 24a?2 

2a?3 -f-4a?2-|- 8a?-|-16 

T-24a?2—96 
—24a?24-48a? 

48a?—96 
48a?—96 

* 
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Ex. 9. Divide 8a6—4a3624-4a3-f-2a3—52-f-l by 2a3—52-|-l. 

Dividend. 

8a6— 4asZ>2 + 4a3-j-2a3 — b2-\-1 
Sa6 + 4a362—4a3 

2a3 — b2+l 
—2a3 + 62 — 1 

Divisor. 
2a3 — b2-\- ! 

Quotient. 

4a3+ 1 

* # * 

98. The division of algebraic quantities can be sometimes 
facilitated by decomposing, at sight, a quantity into its fac¬ 
tors ; thus, in the above example, the divisor forms the last 
three terms of the dividend, it is only necessary to seek if it 
be a factor of the first three ; but those have visibly for a 
common factor 4a3, for 8a6—4a362-f-4a3 = 4a3 X (2a3 — 62-J-l). 

By this observation, the dividend will become 
4a3(2a3 — b2-\-1) -f-2a3— b2-\-\, 

or (2a3-62-f-l)x(4a3+l) : 
therefore the division is immediately effected, by suppressing 
the factor 2a3 — b2-\-\ equal to the divisor, and the quotient 
will be 4a3 -f-1. 

Experience, in algebraic calculations, will suggest a great 
many remarks of this kind, by which the operations can be 
frequently abridged. 

99. It sometimes happens that, in arranging the dividend 
and the divisor according to the same letter, there occur seve¬ 
ral terms in which this letter has the same exponent : In this 
case, it is necessary to range in the same column those terms, 
observing to order them according to another letter, common 
to the two quantities. 

Ex. 10. Divide —a4£2-j-£2c4—a2c4—a6-f-2a4c2-}-&64-2&4c2 
-f-a2&4 by a2 — b2 — c2. 

Ordering the dividend according to the letter a, we will 
place in the same column the terms —a462 and -|-2a4c2, in 
another the terms -a264 and —a2c4 ; finally, in the last 
column the three terms -f-66, 4-264c2, -\-b2c4, ordering them 
according to the exponents of the letter b; then the quanti¬ 
ties, so arranged, will stand thus : 
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Dividend. Divisor. 
—a6— a*b2-)ra2bK-{- b6 a2—b2—c2 

-f-2a4c2—a2c4-j-2£4c2 - 
-j- b2c4 Quotient. 

— a4-2a2i2—54 
-f» a2c2—&2c2 

1st rem. —2a462+a2&4+&6 
+ a4c2—a2c44-2fo*c2 

+ 62c4 
+ 2a4i2—2a2 fo1 

—2 a2b2c2 

2d rem. -f a4c2— a264 -f&6 
—2a2fo2c2-f-2fo4c2 
— a2c4 -f- i2c4 

a4c2 -f- a2b2c2 
+ a2c4 

3d rem. —a2&4 -f-^6 

—a2i2c2+2&4c2 
*{- b2c^ 

+a254 -fo5 
—64c2 

4th rem. —a2b2c2 -f* 64c2 
-f*62c4 

-{- a2b2c2—£>4c2 
~&2c4 

* 

Ex. 11. Divide ax** — (&+ac)#3+(c+ta+a)#: 

+c by ax2—bx-\-c. 
Dividend. 

— (c2+5)« 

ax4—(b-\-ac)x2-\-{c-\-bc-\-a)x2—(c24-^)^+c 
—ax4 -{-foe3 —cx2 —arc' ca: 

Quotient. 
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100. The following practical examples maybe wrought ac¬ 
cording to either of the methods pointed out, (Art. 93, 97) ; 
but in complicated cases, the latter should be preferred. See 
Example 10. 

Ex. 12. Divide #6—#4+#3—#2+2#—1 by #2-{-#—1. 
Ans. #4——#-f*l* 

Ex. 13. Divide a5 -f- 5a4# -}- 10a3#2—10a2#3-}" 5a#4—#5 by 
a3 — 3 a2# -f- 3 ax2—#3. 

Ans. a2—2a#+#2. 
Ex. 14. 

Ex. 15. 

Ex. 16. 
Ex. 17. 
Ex. 18. 

Ex. 19. 

E#20. 

Ex. 21. 

Divide 2#3 —19#2-f26#—16 by x—8. ?. 
Ans. 2#2—3#-{-2. 

Divide 48y3— 76ay2— 64a2yTT05a3 by 2y — 3a. 
Ans. 24y2—2ay—35a2. 

Divide a2 — b2 by a — b. Ans. a-\-b. 
Divide a4—#4 by a2—#2. Ans. a2-\-x2. 
Divide a6 — bG by a3-\-2a2b-{-2ab2-\-b3. 

Ans. a3—2a2b-{-2ab2—b3. 
Divide a4-\-d2b2-\-b4 by a2 — ab~\~b2. 

Ans. a2-{-ab-\-b2. 
Divide 25#6—#4—2#3—8#2 by 5#3—4#2. 

Ans. 5#3+4#2-|-3#+2. 
Divide a2+4a6-{-452-f-c2 by a-f-25^ 

Ans. a-j-25 -f- M'i 
a-J-26 

Ex. 22. Divide 8a4—2o?b —13a2b2 — 3a63 by 4a2-j-5a&+62. 
Ans. 2a2 — 3a&. 

Ex. 23. Divide 20a5 — 41a4Z> + 50a352—45a263-{-25a64—6b5 
by 4a2 — 5ab-{-2b2. 

Ans. 5a3—4a2b-\-5ab2 — 3&3. 
Ex. 24. Divide a4-{-8a3#-}~24a2#2-{-32a#34-16#4 by a-j-2#. 

Ans. a3 +6a2# 4-12a#2-f-8#3. 
Ex. 25. Divide #4— (a — b)x3-\-{p— ab -f- 3)#2 {bp—3a)# 

+ 3p by x2 — ax-\-p. - . Ans. #24-fo?+3. 
Ex. 26. Divide ax3—{a2 -\-b)x2-\-b2 by ax—b. 

Ans. x2 — ax—b. 
Ex. 27. Divide y6+a2y4-fA4y2— a6—262y4 — a4y2—2a462— 

a2Z>4 by y4-f-2a2y2-f-a4—b2y2-\-a2b2. 

Ans. y2—a2—b2. 
Ex. 28.'Divide 9#6— 46#5-{-95#2-f-150# by #2—4#—5. 

Ans. 9#4 — 10#3-f-5#2—30a?. 
Ex. 29. Divide 6a4-f 9a2— 15a by 3a2—3a. 

Ans. 2a2 + 2a4-5. 
Ex. 30. Divide 2a4— 16a36+31a262 —38a63+24M by2a2 — 

3a£-f452. Ans. a2—5a5-j-662, 
6 
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Ex. 31. Divide a8 + 8a7# + 28a6#2 -f- 56a5#3 -j- 70a4#4 -f* 
56a3#5-{-28a2#64-8a#7-j-#8 by a44-4a3#-j-6a2#24- 4a#3-}-#4. 

Ans. a4-f-4a3#-}-6a2#2 + 4a#3-(-#4. 
Ex. 32. Divide a6—6a5#-}-15a4#2—20a3#3-f- 15a2#4— 6a#5 

-}-#6 by a3— 3a2#-}-3a#2—#3. Ans. a3 — 3a2#-f-3a#2—#3 

§ Y. Some General Theorems, Observations, &c. 

101. Newton calls Algebra Universal Arithmetic. This 
denomination, says Lagrange, in his Traite de la Resolution 
des Equations numeriques, is exact in some respects ; but it 
does not make sufficiently known the real difference between 
Arithmetic and Algebra. 

Algebra differs from Arithmetic chiefly in this ; that in the 
latter, every figure has a determinate and individual value 
peculiar to itself; whereas the algebraic characters being ge¬ 
neral, or independent of any particular or partial signification, 
represent all sorts of numbers, or quantities according to the 
nature of the question to which they are applied. 

Hence, when any of the operations of addition, subtraction, 
&c., are to be made upon numbers, or other magnitudes, which 
are represented by the letters, a, b, c, &c., it is obvious that the 
results so obtained will be general; and that any particular 
case, of a similar kind, may be readily derived from them, by 
barely substituting for every letter its real numeral value, and 
then computing the amount accordingly. 

Another advantage, also, which arises from this general 
mode of notation, is, that while the figures employed in Arith¬ 
metic disappear in the course of the operation, the characters 
used in Algebra always retain their original form, so as to 
show the dependence they have upon each other in every 
part of the process ; which circumstance, together with that 
of representing the operations of addition, subtraction, &c., by 
means of certain signs, renders both the language and algorithm 
of this science extremely simple and commodious. 

Besides the advantages which the algebraic method of no¬ 
tation possesses over that of numbers, it may be observed, that 
even in this early part of the science we are furnished with 
the means of obtaining several general theorems that could 
not be well established by the principles of Arithmetic. 

102. The greater of any two numbers is equal to half their sum 
added to half their difference, and the less is equal to half their 
sum minus half their difference. 

Let a and b be any two numbers, of which a is the greater; let 
their sum be represented by s; and their difference by d. Then, 
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a-\-b = s 
b a Jd] 

by addition, 2a=s+d (Art. 48) ; 
s d 

and a=--j-- (Art. 51) 
2 2 

By subtraction, 2b=s-*-d (Art. 49); 

S d (Art. 51) 

:i 
.. '> 

and b=-—- (Art. 51);^ 
2 2 

Cor. 1. Hence if the sum and difference of any two num¬ 
bers be given, we can readily find each of the numbers ; thus, 
if s be equal to the sum of two numbers, and d equal to the 

^ - | ^ 
difference ; then the general expression for the first, is —— , 

and for the second 
s—d 

2 
Whatever may be the numeral values that we assign to s 

and d, or whatever values these letters must represent in a 
particular question, we have but to substitute them in the above 
expressions, in order to ascertain the numbers required : For 
example, 

Given the sum of two numbers equal to 36, and the diffe¬ 
rence equal to 8 : 

Then, by substituting 36 for s, and 8 for d, in 
s-f-c? 

and 
2 

5 — d , s-\-d 36-J-8 44 , s— d 36 — 8 

2 ’ 2 2 2 ’ 2 2 
28 
-—-=14. So that, 22 and 14 are the numbers required. 

Cor. 2. Also, if it were required to divide the number s 
into two such parts, that the jirst will exceed the second by d. 
It appears evident, that the general expression for the first 

part is --, and for the second --; s and d representing 

any numbers whatever. 

103. The general expression 
s-\-d 

2 
may be found after the 

manner of Gamier. Thus, let a: represent the first part; then 
according to the enunciation of the question, x — d will be the 
second ; and, as any quantity is equal to the sum of all its 
parts, we have therefore, 

x-\-x—d—s, or 2x—d—s. 
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This equality will not be altered, by adding the number d 
to each member, and then it becomes, 

2a:—d-\-d=s-\-d, or 2xz=:s-\-d ; 
£_|_ 

dividing each member by 2, we have the equality, x—-; 
2 

in which we read that the number sought is equal to half the 
sum of the two numbers s and d; thus the relation between 
the unknown and known numbers remaining the same, the 
question is resolved in general for all numbers s and d. 

104. We have not here the numerical value of the unknown 
quantity ; but the system of operations that is to be performed 
upon the given quantities ; in order to deduce from them, ac¬ 
cording to the conditions of the problem, the value of the quan¬ 
tity sought; and the expression that indicates these opera¬ 
tions, is called a formula. 

It is thus, for example, that if we denote by a the tens of a 
number, and the units by b, we have this constant composi¬ 
tion of a square, or this formula, 

a2-\-2ab-\-b2 ; 
this algebraic expression is a brief enunciation of the rules to 
be pursued in order to pass from a number to its square. 

105. From whence we infer that, if a number be divided into 
any two parts, the square of the number is equal to the square of 
the two parts, together with twice the product of those parts. 

Which may be demonstrated thus ; let the number n be di¬ 
vided into any two parts a and b ; 

Then n = a-\-b, 
and n=a-\-b; 

/.by Multiplication, n2=a2-\-2ab-\-b2 (Art. 50). 
106. If the sum and difference of any two numbers or quan¬ 

tities be multiplied together, their product gives the difference 
of their squares, observing to take with the sign — that of 
the two squares whose root is subtracted. 
Let m and n represent any two quantities, or polynomials 

whatever, of which m is the greater; then (m + n)x(m — n) 
is equal to m2—n2 ; for the operation stands thus ; 

(m + n) X ( m—n ) — m2 -f- M N 
— MN — N2 

107. When we put m — a2, and n — b3; then, 
(a3-f-63) X (a3—b3) = a6 — b6 ; (See Ex. 9. page 30). 

Where a6 is the square of a3, and b6 that of b3, and this last 
square is subtracted from the first. 

Reciprocally, the difference of two squares M2 — N2, can be 
put under the form (m4-n)X (m—n). 
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This result is a formula that should be remembered. 

108. The difference of any two equal powers of different quanti¬ 
ties is always divisible by the difference of their roots, whether 
the exponent of the power be even or odd. For since 

x2—a2 
-—x-f-a; 
x — a 

x3—a3 
-=x24-ax4-a2 
x—a 

J 

x* — a± 

x — a 
x5—a5 

x—a 

=x3-f-ax2+a2x-\- a3 ; 

=#4+ax3 -f- a2x2 -f a3x+a* ; 

-—x5-\- ax4+a?x3 4- a3x24*a4#+a5 ; 
x—a 

We may conclude that in general, xm —am is divisible by#—af 
m being an entire positive number ; that is, 

x •m. ■a m 

x—a 
:X -j-axm—24* . . . +am-2#+am-1 . . . (1). 

109. The difference of any two equal powers of different quanti¬ 
ties, is also divisible by the sum of their roots, when the expo¬ 
nent of the power is an even number. For since 

x2—a2 
—■——x — a ; 
x-\-a 

#4 — Gf4 
-— x3—ax2-j-a2x—a3 ; 
x—a 

&c. &c. 
Hence we may conclude that, in general, 
r2 m_ 
-— x2m~1—ax2m~2-f- . . +a2m-2x—a2m-1 . (2). 

x-\-a 

110. And the sum of any two equal powers of different quanti¬ 
ties, is also divisible by the sum of their roots, when the expo¬ 
nent of the power is an odd number. For since 

x3 + a3 

#5+#5 

—x2—ax 4-#2; 

=x*—ax3 4- (Tx2 4- <z3#4" ; 

Hence we may conclude that, in general, 

~-—x2m — a#2wi_1+. .—a2m-lX’\-a2m. (3). 
x+a 

6* 
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111. In the formulae (1), (2), (3), as well as in all others of 
a similar kind, it is to be observed, that if m be any whole num¬ 
ber whatever, 2m will always be an even number, and 2m+ 1 
an odd number ; so that 2m is a general formula for even num¬ 
bers, and 2m +1 for odd numbers. 

112. Also, if a in each of the above formulae, be taken =1, 
and x being always considered greater than a; they will stand 
as follows : 

xm — l 

x—1 
x2m-l 

a?4" 1 
x2m\\i 

x+l 

zxm i -j- xm~~2 4" -j- .... 4“a:4-1 . . . (4). 

"a;2m_l—x2m 2_j_a;2m_3__ _ . . 4~#— 1 . . . (5). 

:X2m— x2m—\ _j, x2m-2— # #—#4“! « • * (6). 

113. And if any two unequal powers of the same root be 
taken, it is plain, from what is here shown, that 

xm — xn, or xn(xm~n—1).(7), 
is divisible by x — l, whether m—n be even or odd; and that 

xm—xn, or xn(xm~n—1).(8), 
is divisible by x4*1, where m—n is an even number ; as also 
that 

xm-\-xn, or xn(xm-n-\-1).(9), 
is divisible by a?-j-l, when m—n is an odd number. 

114. It is very proper to remark, that the number of all 
the factors, both equal and unequal, which enter in the for¬ 
mation of any product whatever, is called the degree of that 
product. The product a2b3c, for example, which comprehends 
six simple factors, is of the sixth degree; this, a?b2c is of the 
tenth degree ; and so on. 

Also, that if all the terms of a polynomial, or compound 
quantity, be of the same degree, it is said to be homogeneous. 
And it is evident from the rules established in Multiplication, 
that if two polynomials be homogeneous ; their product will be 
also homogeneous; and of the degree marked by the sum of the 
numbers which designate the degree of those factors. 

Thus, in Ex. 1, page 29, the multiplicand is of the fourth 
degree, the multiplier of the third, and the product of the de¬ 
gree 4 4"3, or of the seventh degree. 

In Ex, 12, page 31, the multiplicand is of the third degree, 
the multiplier of the third, and the product of the degree 34-3, 
or of the sixth degree. 

Hence, we can readily discover, by inspection only, the er¬ 
rors of a product, which might be committed by forgetting 
some one of the factors in the partial multiplications. 



CHAPTER II. 

ON 

ALGEBRAIC FRACTIONS. 

115. We have seen in the division of two simple quantities 
(Art. 84,) that when certain letters, factors in the divisor, are not 
common to the dividend, and reciprocally, the division can only 
be indicated, and then the quotient is represented by a fraction 
whose numerator is the product of all the letters of the dividend, 
not common to the divisor, and denominator, all those letters of 
the divisor, not common to the dividend. 

Let, for example, abmn be divided by cdmn; then, 
abmn ab 

cdmn cd' 

It may be observed, that the fraction — may be a whole 

number for certain numeral values of the letters a, b, c, and d; 
thus, if we had a — 4, b = 6, c~2, d—3; but that, generally 
speaking, it will be a numerical fraction which can be reduced 
to a more simple expression. 

§ I. Theory of Algebraic Fractions. 

116. It is evident (Art. 103,) that if we perform the same opera- 
tion on each of the two members of an equality, that is, upon 
two equivalent quantities or numbers, the results shall always 
be equal. 

It is by passing thus from the fractional notation to the al¬ 
gorithm of equality, that the process to be pursued in the 
researches of properties and rules, becomes simple and uni¬ 
form. 

117. Let therefore the equality be 
a=:bxv.(1). 

when we divide both sides by b which has no factor common 
with a, we shall have 

a 
(2). 

Thus v will represent the value of the fraction y, or the quo- 
b 

tient of the division of a by b. 
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118. If the numerator and denominator of a fraction he both mul¬ 
tiplied, or both divided by the same quantity, its value will not 
be altered. 

For, if we multiply by m tlie two members of the equality 
(1), we will have these equivalent results, 

ma — mb xv.(3); 
dividing both by mb, we shall have 

ma 

mb~V ’ 

but %—v\ therefore 
b 

ma a ... 

mb = V~b.^ 
m being any whole or fractional number whatever. 

119 .If the fraction is to be multiplied by m, it is the same whether 
the numerator be multiplied by it, or the denominator divided 
by it. 

For, if we divide by b, the two members of the equality (3), 
we obtain the following, 

ma .. 
.(5). 

The equality (1) may also be put under the form 

a— -bXmv.(6), 

whence we derive, dividing each side by ^b, 

~a 
jl=mXv.(7)- 
m 

120. If a fraction is to be divided by m, it is the same whether the 
numerator be divided by m, or the denominator multiplied by it. 
For, from the equality (1), we deduce these 

/oV a . v 7 v .n. 
(8) . . . . — ~b X —, a=tnbx— . . . . (9), 

mm m 
dividing the first by b and the second by mb, in order to have 

—, they become 
m 

a 

(10)-7--\ _(11). 
b m mb m 

a 

It is to be observed, that in t, the numerator is — and the 
Q m 
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denominator &, and that we employ the greater line for se¬ 
parating the numerator from the denominator. 

121. If two fractions have a common denominator, their sum 
■will he equal to the sum of their numerators divided by the 
common denominator. 

For, let now the two equalities be 
(12) .... a—bXv ; a' — bxv' . . . . (13), 

corresponding to the fractions 
a a' 

b~Vj b' 

which have the same denominator; adding the two equalities 
(12) and (13), we shall have 

a-\-a —bv-\-bv =b{v-\-v/) ; 
and dividing both members by b, in order to have the sum 
sought v-\-t/, it becomes 

—-—=UTV .... (14). 

Note. In adding the above equalities, the corresponding 
members are added; that is, the two members on the left- 
hand side of the sign =, are added together, and likewise 
those on the right. The same thing is to be understood when 
two equalities are subtracted, multiplied, &c. 

122. If two fractions have a common denominator, their differ¬ 
ence is equal to the difference of their numerators divided by 
the common denominator. 

For, if we subtract the equality (13) from (12), we shall have 
a — a!—bv— bv' = b{y—v') ; 

dividing each side by b, and we will obtain 

123. Let us suppose that the fractions have different de¬ 
nominators, or that we have the equalities 

a=b . v, a' — b' . v'; 
we will multiply the two members of the first by b\ and those 
of the second by Z>, an operation which will give 

ab'^bb'v, a'b — bb'v' ; 
then adding and subtracting, we have 

ab'^-a'b — ^ 
the double sign dr which we read plus or minus, indicating at 
the same time both addition and subtraction ; dividing each 
side by bb\ in order to find the sum and difference sought 

we will have 



58 ALGEBRAIC FRACTIONS. 

ah' -j- afb 

w~ 
from Avhence we might readily derive the rule for the addi¬ 
tion and subtraction of fractions not reduced to the same de¬ 
nominator. 

124. It would be without doubt more simple to have re¬ 
course to property (4) in order to reduce to the same denomi¬ 
nator the fractions 

but our object is to show, that the principle of equality is suf¬ 
ficient to establish all the doctrine of fractions. 

125. We have given the rule for multiplying a fraction by 
a whole number, which will also answer for the multiplication 
of a whole number by a fraction. 

Now, let us suppose that two fractions are to be multiplied 
by one another. 

Let the two equalities be 
a — b . v, a =bf . v/; 

multiplying one by the other, the two products will be equal; 
thus, 

aa'= bb' . vv', 
and dividing each side by bb'} in order to have the product 
sought vv\ we will obtain 

aa' 

bb' 
=vv (17). 

Therefore the product of two fractions, is a fraction having 
for its numerator the product of the numerators, and for its de¬ 
nominator that of the denominators. 

126. It now remains to show how a whole number is to be 
divided by a fraction ; and also, how one fraction is to be di¬ 
vided bv another. 

Let, in the first case, the two equalities be 
m—m; a — b.v ; 

if we divide one by the other, the two quotients will be equal, 
that is, 

m m 

a bv ’ 
and multiplying both sides by b, in order to have the expres- 

771 
sion —, we shall find 

v 
mb m 

a v 
(18). 
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Therefore, to divide a whole number by a fraction, we must 
multiply the whole number by the reciprocal of the fraction, or 
which is the same, by the fraction inverted 

Let, in the second case, the two equalities be 
a=b . v, a'—V . v'; 

if the first equality be divided by the second, we shall have 
a b . v 

a b'. v / » 

multiplying each side by b' and dividing by b, for the purpose 
v 

of obtaining the expression —, we will arrive at 

ab'_v a b' 

7b~v' = bXa' 
(19). 

Therefore, to divide one fraction by another, we must multiply 
the fractional dividend by the reciprocal of the fractional divisor, 
or which is the same, by the fractional divisor inverted. 

127. These properties and rules should still take place in 
case that a and b would represent any polynomials whatever. 

According to the transformation a~d=:~, demonstrated 

(Art. 86), we can change a quantity from a fractional form to 
that of an integral one, and reciprocally. So that, we have 

-=iX-=JX<2-l=ia-1,4=JX-'T=^ X or* = £«-<*, and 
a a ad ad 

a-H-*d-*=z~X 
_1 l_ 

T*X d*' 

1 
In like manner any quan- 

a* 0“ a“ a2b2d2 
tity may be transferred from the numerator to the denominator, 
and reciprocally, by changing the sign of its index : 

Thus, ~ = 
be-2 

a~2c2 a i 2 a-2b-1’ 
and - 

a-3x~2z~ l cmyn 

c~mb2y —n a3b2x2z 

128. If the signs of both the numerator and denominator of a 
fraction be changed, its value will not be altered. 

—a -j-a a a a — b b—a 

rhus- ~b=+b=+-b=-b > —cTir-c 

Which appears evident from the Division of algebraic quan¬ 
tities having like or unlike signs. Also, if a fraction have the 
negative sign before it, the value of the fraction will not be altered 
by making the numerator only negative, or by changing the signs 
of all its terms. 
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Thus, — +~, and- 
a—b . I —a 

;=-r- 
a 

b 1 b ’ c-\-d ' c-\-d c-{-d 
And, in like manner, the value of a fraction having a negative 

sign before it, will not be altered by making the denominator 
only negative: Thus, 

a — b_—b_a—b 

c — d d—c d—c 
129. Note. It may be observed, that if the numerator be 

equal to the denominator, the fraction is equal to unity ; thus, 

if a=b, theny=:-=l : Also, if a is ^>b, the fraction is great- 
b a 

er than unity ; and in each of those two cases it is called an 
improper fraction: But if a is <^b, then the fraction is less than 
unity, and in this case, it is called a proper fraction. 

§ II. Method of finding the Greatest Common Divisor of two or 
more Quantities. 

130. The greatest common divisor of two or more quanti¬ 
ties, is the greatest quantity which divides each of them ex¬ 
actly. Thus, the greatest common divisor of the quantities 
16a2b2, 12a2bc and 4abc2, is 4ab. 

131. If one quantity measure two others, it will also mea¬ 
sure their sum or difference. Let c measure a by the units in 
m, and b by the units in n, then a —me, and b — nc.\ therefore 
a-\-b—mc-\-nc — (m-\-n)c ; and a—b — me—nc—[m—n)c ; or 
a,±b = (m±n)c ; consequently c measures a-\-b (their sum) 
by the units in m-\-n, and a—b (their difference) by the units 
in m—n. 

132. Let a and b be any two numbers or quantities, where¬ 
of a is the greater ; and let p— quotient of a divided by b, and 
c=z remainder ; q= quotient of b divided by c, and d= re¬ 
mainder ; r— quotient of c divided by d, and the remainder —0 ; 
thus, 
l) a(p 

pb 

c) b (q 
qc 

d) c (r 
rd 

Then, since in each case the divisor multi¬ 
plied by the quotient^??/,? the remainder is equal 
to be dividend ; we have 
c=rd, hence qc—qrd (Art. 50); 
b=qc-\-d=qrd-\-d=(qr-\-\)d ; and pb—pqrd 

-}-pd=(pqr-\-p)d (Art. 61.) , 
• a—pb-\-cz=pqrd-\-pd-\-rd=z(pqr-{-p-\-r)d. 

0 



ALGEBRAIC FRACTIONS. 61 

Hence, since p, q, and r, are whole numbers or integral 
quantities, d is contained in b as many times as there are 
units in qr-1-1, and in a as many times as there are units in 
pqr-\-p-\-r ; consequently the last divisor d is a common 
measure of a and b; and this is evidently the case, whatever 
be the length of the operation, provided that it be carried on 
till the remainder is nothing. 

This last divisor d is also the greatest common measure of 
a and b. For let ache a common measure of a and b; such 
that a—mx, and b—nx, then pbz=pnx ; and c — a—pb—mx— 
pnx=z[m—pn)x, also d=b—qc—nx — [qmx—qpnx) — na — qmx 
-t-pqnx=(n—qm-{-pqn)x; (because qc=qmx—qpnx) therefore 
a: measures d by the units in n— qm-\-pqn, and as it also 
measures a, and b, the numbers, or quantities a, b, and d have 
a common measure. Now the greatest common measure of d 
is itself; consequently d is the greatest common measure of 
a and b. 

133- To find the greatest common measure of three num¬ 
bers, or quantities, a, b, c ; let d be the greatest common 
measure of a and b, and x the greatest common measure of d 
and c ; then x is the greatest common measure of a, b, and c. 
For, as <z, and d have a common measure ; if d and c have 
also a common measure, that same number or quantity will 
measure a, b, and c ; and if x be the greatest common measure 
of d and c, it will also be the greatest common measure of a, 
b, and c. 

And, in like manner, if there be any number of quantities ; 
a, b, c, d, &lc. ; and that x is the greatest common measure 
of a and b ; y the greatest common measure of x and c ; ^ the 
greatest common measure of y and d ; &c. &c. ; then will y 
be the greatest common measure of a, 6, and c ; ^ the great¬ 
est common measure of a, b, c, and d &c. &c. 

134. The preceding method of demonstration is similar to 
that given by Bridge in his Treatise on the Elements of Alge¬ 
bra. The following is according to the manner of Garnier. 
Thus, to find the greatest common divisor of any number of 
quantities A, B, C, &c., it is sufficient to know the method of 
finding the greatest common divisor of two numbers or quan¬ 
tities. For this purpose, we will at first seek the greatest com¬ 
mon divisor D of the quantities A and B, then the greatest 
common divisor D' of D and C, and so on, and finally the last 
greatest common divisor will be that which was required. 

Let, in order to demonstrate it, the three quantities be A, 
B, C ; we will have 

7 
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2d 

, < A=mD, } (A—mrD', 
1St ’ • ' } B=^nD, f , )B = »rD', 

-pv t-v/ /• whence < 
U = rD , C j 
C=qV', ) {C=qD'‘, 

m and n are necessarily prime to one another, otherwise D 
would not be the greatest common divisor of A and B ; r and 
q are also prime to one another, in order that D7 may be the 
greatest common divisor of D and C. Now rD7, the greatest 
common divisor of A and B, cannot be the greatest common 
divisor of A, B, and C, unless that r be equal to q, or a factor 
of q ; but r and q being prime to one another ; D7 remains the 
greatest common divisor of A, B, and C. 

135. As the problem of finding the greatest common divisor 
of any two quantities A and B, is the same as to reduce a 

A 
fraction — to its most simple expression ; because that in di- 

viding A and B by their greatest common divisor, we have 
the two least quotients possible ; admitting this enunciation, 
and supposing A>B. 

The greatest common divisor of A and B, cannot exceed 
B ; it could be B itself, which we can readily know, if we 
perform the division of A by B, which gives 

A_, R_ m 

q being the integral quotient, and R the remainder, if A is not 
A 

exactly divisible by B. The fraction — being changed into q 

cannot be reduced unless that or its reciprocal ^ is 

reducible, because q is an integral quantity which is always 
irreducible; or B being > R, the quantity which ought to re- 

jg 
duce —, cannot exceed R, it might be R itself, which we will 

lV 

know in performing the division of B by R, which gives 

L-v+E ,2) 
R ~q +R- 

q' being the integral part of the quotient, and R' the remain- 
R 

der <R ; we say still that the reduction of — depends on that 

R/ 
of —, or its reciprocal, because that q' is an irreducible quan- 

tity ; so that by continuing in this manner we shall have the 
following decompositions : 
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R ^ , R// /OX 
—? *^"R' * * * * 

R' R/y/ 
^f=r+^r - . . . (4). R 

We see very clearly that the quantity which ought to reduce 

A R B 
jpr— is that which must reduce or —, which must reduce 
B x> K 

R' R f , R7/ R' 
=5- or yrj, which must reduce r—- or =^. 
lx K K K 

If, for example, R'"=0, this quantity cannot be greater 
than R" ; R" is therefore the greatest quantity which can re- 

A 
duce the fraction ^ ; consequently it is the greatest common 

B 
divisor of A and B. 

136. Let R"—0 and R'^rl : unity will be, according to 
what has been above demonstrated, the greatest common di- 

visor of A and B ; the fraction will therefore itself be the 
i) 

most simple expression, that is, it will be irreducible. Re- 
ciprocally, the last divisor being unity, we may conclude that the 
fraction proposed, is irreducible, or in its lowest terms. 

137. It may also be shown, that the greatest common mea¬ 
sure of two quantities will, in no respect, be altered, by mul¬ 
tiplying or dividing either of them by any quantity which is 
not a divisor of the other, or that, contains no factor which is 
common to both of them ; thus, let the quantities ab and ac 
be taken, of which the common measure is a; then, if ab be 
multiplied by d, they will become abd, and ac ; where it is 
evident that a is the common measure, as before. And, con¬ 
versely, if the first of the two quantities abd, ac, be divided 
by d, they will become ab, ac, where a is still the common 
measure. 

138. But it will not be the same if one or two of the quan¬ 
tities be multiplied or divided by a quantity which is a divisor 
of the other, or has a common factor with it; for if the first 
of the two quantities ab, ac, be multiplied by c, they will be¬ 
come abc, ac, of which the common divisor is ac, instead of 
a ; and, conversely, if the first of the two quantities abc and 
ac, be divided by c, they will become ab and ac ; of which 
the common divisor is a, instead of ac. 

139. Hence, if the numbers or quantities be mncN, pqcN'; 
the common factor c, to simplify the operation, may be sup¬ 

pressed, observing, in the meantime, after having found thp 
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greatest common divisor a, of the two quotients N and N', to 
multiply it by this factor c, and the product will be the great¬ 
est common divisor sought. Also, if a factor d is introduced 
into the two quantities, it is necessary to divide the greatest 
common divisor by this factor. • 

140. As the foregoing demonstration may be extended to 
any algebraic quantities whatever, we are therefore conducted 
to this practical rule. 

To find the greatest common divisor of two or more compound 
algebraic quantities. 

RULE. 

141. Arrange the two quantities according to the order of 
their powers, and divide that which is of the highest dimen¬ 
sions by the other, having first expunged any factor that may 
be contained in all the terms of the divisor without being 
common to those of the dividend ; then divide this divisor by 
the remainder, simplified, if necessary, as before ; and so on, 
for each remainder and its preceding divisor, till nothing re¬ 
mains : then the divisor last used will be the greatest com¬ 
mon divisor required. And the greatest common divisor, of 
more than two compound quantities, is found in like manner ; 
by finding in the first place the greatest common divisor of 
two of them, as above, and then of that common divisor and 
the third, and so on. The last divisor, thus found, will be the 
greatest common divisor of all the quantities. 

Example 1. The greatest common divisor of the compound 
quantities 3 a3-3a2b-\-ab2 — b3 and 4a2b— 5ab2-{-b3, is required. 

Dividend. Divisor. 
3a3 — 3a2b-\- ab2—b3 
4 

12a3 — \2a2b-\~4ab2— 4 b3 
12a3 — I5a2b-\~3ab2 

(4 a2b — 5ab2-\-b3)-^-b=. 
4a2 —5ab -}-b2 

Partial quot. 3a 

{3a2b-\- ab2 — 4&3)-^-&n= 
3a2 -f- ab —4 b2 
4 

12a2 + 4ab — 16b2 
12a2 — \5ab-\- 3b2 

19ai —1962 

Divisor. 
4 a2 — 5 ab-\-b2 

Partial quot. 3. 
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Dividend. 
4a2— 5ab-\-b2 
4 a2—4 ab 

Divisor. 
(I9ab-\9b2)-±\9b- 

a—b 

— ab-\-b2 
— ab-\-b2 Quot. 4a—b 

# # 

Here the quantities are already arranged according to the 
powers of the letter a ; the first is taken for a dividend, and 
the second for a divisor. In the first place, the factor b is 
found in every term of the divisor, and not in every term of 
the dividend ; therefore, the divisor is divided by the factor b, 
and the result is 4a2 — 5ab-\-b2 ; but the first term of this re¬ 
sult will not divide exactly that of the dividend, on account of 
the factor 4, which is not in the dividend ; the dividend is 
therefore multiplied by 4 in order to render the division of their 
first terms complete. Now, the dividend 12a3 — 12a26-j-4a62— 
4o3 is divided by the divisor 4a2 — 5ab+b2, and the partial quo¬ 
tient is 3a. Multiplying the divisor by this quotient, and sub¬ 
tracting the product from the dividend, the remainder is 3a2b 
4~ab2—4b3, a quantity which, according to (Art. 135), must 
still have with 4a2-5ab-\-b2 the same greatest common divisor 
as the first. 

Suppressing the factor b, common to all the terms of the 
remainder, or, which is the same, dividing the remainder by b, 
and multiplying the result by 4, to render possible the division 
of its first term by that of the divisor, we have then for the 
dividend the quantity 

12a2-\-4ab —1662, 
and for the divisor the quantity 

4a2—5ab-}-b2 ; 
the partial quotient is 3. 

Multiplying the divisor by the quotient, and subtracting the 
product from the dividend, the remainder is 

19ab—19b2, 
and the question is now reduced to finding the greatest common 
divisor of \9ab~l9b2 and 4a2 — 5ab-\-b2. 

But the letter a, according to which the division has been 
performed, being of the second degree in the divisor, and only 
of the first in the remainder ; it is necessary therefore to take 
the last divisor for a new dividend, and the remainder for a new 
divisor. 

Having, at the commencement of this new division, divided 
the divisor \9ab~\9b2 by the factor 196, common to all its 

y# 
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terms, and which is not at all common to those of the dividend , 
therefore the dividend is 4a2—bab-\-b2, the divisor a — b, and 
the quotient 4a — b ; 

The operation is completed, because nothing remains; and 
consequently, (Art. 135), a — b is the greatest common divisor 
sought. 

If we divide the two proposed quantities by a—b, the quo¬ 
tients will be 

3a2-\-b2 and 4ab — b2 : 
Whence, the two given quantities are thus decomposed as 

follows : 
(3a24-&2) X {a—b), (4ab—b2)x(a—b). 

Ex. 2. Required the greatest common divisor of 3a2—2a —1 
and 4a3—2a2 — 3a+l. 

Dividend. Divisor. 
4a3—2a2 — 3a-j-1 
3 

12a3 —6a2 —9a-f 3 
12a3 —8a2—4a 

2a2— 5a-j-3 
3 

3a2—2a — 1 

6a2—15a+9 
6a2— 4a — 2 

Partial quot. 4a 

Divisor. 
3 a2—2a — 1 

Partial quot. 2 

(— lla+ll)-=-11 = 
Dividend. 

3a2—2a —1 
3a2 — 3a 

a —1 
a—1 

a — 1 

Complete quot. 3a+l 

* # 

In the above operation, the remainder —lla+ll is divid¬ 
ed by —11, (its greatest simple divisor with a negative sign), 
so as to make the leading term positive : or, which is the same, 
if any of the divisors, in the course of the operation, become 
negative, they may have their signs changed, or be taken 
affirmatively, without altering the truth of the result; thus, in 
the above operation, changing the signs of — lla-f 11, it be¬ 
comes 11a—11, and dividing 11a—11 by its greatest simple 
divisor 11, we have a—1, as before. 
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Therefore a—1 is the greatest common divisor sought, 
and the two given quantities may be readily decomposed, 
thus; 

(3fl+l)x(o —1), (4a2+2«-l)x(tf — 1). 

Ex. 3. Required the greatest common divisor of a3—b3, 
a3-{-2a2b-\-2ab2-{-b3, and a4 + a2b2-f-£4. 

In the first place, the greatest common divisor of a3—b3 
and a3+2a2b+2ab2-{-b3, is a2-\-ab-\-b2, which is found thus ; 

Dividend. Divisor. 
a3-\-2a2b-\-2ab2-\-b3 
a3 -b3 

a3—b3 

(2a2b + 2ab2+2b3)+2b. 
Dividend. 

Partial quot. 1 

a3 — b3 
a3 -\-a2b-\-ab2 

— a2b — ah2—b3 
—a2b—ab2—b3 

* * # 

a2-\-ab-\~b2 

Complete quot. a—b 

Hence, the greatest common divisor of a3 — b3 and a3-\-2a2b 
-\-2ab2Jrb3, is a2-\-ab-\-b2 ; and the greatest common divi¬ 
sor of a2-\-abpb2 and a4-f-a2624-^45 is found to be a2 — ab+b2, 
thus; 

Dividend, 
a^atb2-\-b^ 
a*-\-a3b -\-a2b2 

Divisor. 
a2-^ab-{-b2 

— a3b Quotient. 
—a3b —a2b2 — ab3 a2—ab-\-b2 

a2b2 -f- ab3-f-&4 
a2b2 -f- ab3 -f- Z>4 

# # # 

Consequently a2-\-ab-\-b2 is the greatest common divisor 
which was required ; and dividing each of the given quanti¬ 
ties by this divisor, we will thus decompose them as follows: 
(a—b) (a2-\-ab-\-b2), {a-\-b) (a2-\-ab-{-b2), (a2 — ab-\-b2) («2+ 
ab-\-b2). 

142. It has been remarked (Art. 136), that if the last divi¬ 
sor be unity, and the remainder nothing; then the fraction is 
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already in its lowest terms; this observation is applicable to 
numbers, and as in algebraic quantities, the greatest simple 
divisor may be readily found by inspection. 

Now, it only remains to discover, if compound algebraic 
quantities can admit of a compound divisor. 

If, by proceeding according to the Rule (Art. 141), no 
compound divisor can be found, that is, if the last remainder 
be only a simple quantity; we may conclude the case pro¬ 
posed does not admit of any, but is already in its lowest terms. 

Ex. 4. Required the greatest common divisor of a2-\-ax-\- 
x2 and a3 -{-2a2x-\-3ax2-\-^oc3. It is plain by inspection that 
they do not admit of any simple divisor; then the operation 
according to the rule will stand thus ; 

Dividend. Divisor. 
a? + 2 a2x -f- 3 ax2 -f- 4a?3 
a?-\- a2x-{- ax2 

a2x-j- 2 ax2+4 x3 
a2x-b ax2-\- x3 

a2-\-ax-\-x2 

Partial qaot. a-\-x 

(a#2+3a:3) 4-a:2; 
Dividend. 

a2-f- ax-\- x2 a-\-3x 
a2 P3ax 

■2ax-\- x2 
-2 ax—6x2 

* 
+ 7x2 

Partial quot. a—2x 

Here, the last remainder is found to be the simple quantity 
7a:2 ; we may therefore conclude that the given quantities do 
not admit of any divisor whatever. 

143. When the quantity which is taken for the divisor con¬ 
tains many terms where the letter, according to which we 
have arranged, has the same exponent; then every succes¬ 
sive remainder becomes more complicated than the preceding 
one ; in this case, Analysts make use of various artifices, 
which can only be learned by experience. 

Ex. 5. Required the greatest common divisor of a2b-\-ac2 
—d3 and ab—ac-\-d2. 

Dividend. Divisor. 
a2b-\-ac2—d3 
a2b—a2c -f- ad2 

ab — ac-\-d2 

rem. a2c-\-ac2—ad2 — d3 Partial quot. a 
Dividing at first a2b by ab, we find for the quotient, t 
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multiplying the divisor by this quotient, and subtracting the 
product from the dividend, the remainder contains a new term, 
a2c, arising from the product of — ac by a. 

By proceeding after this manner there will be no progress 
made in the operation ; for, taking a2c-\-ac2 — ad2 — d3 lor a 
dividend, and multiplying it by b, to render possible the divi¬ 
sor by ab, we will have 

Dividend. 
a2bc-pabc2—abd2 — bd3 
a2bc — a2c2-\- acd2 

Divisor, 
ab—ac-\~d2 

Partial quot. 
ac rem. a2c2-\-abc2 — acd2 — abd2 — bd3 

and the term —ac will still reproduce a term a2c2, in which the 
exponent of a is 2. 

To avoid this inconveniency, we must observe that the di¬ 
visor ab—ac-j-d2 = a(b — c)-\-d2, reuniting the terms ab—ac 
into one, and putting, to abridge the calculations, b — c=m; 
we will have for the divisor am-\-d2 ; it is necessary to mul¬ 
tiply all the dividend a2b-\-ac2—d3 by the factor m, for the pur¬ 
pose of finding a new dividend whose first term would be divi¬ 
sible by the quantity am forming the first term of the divisor; 
the operation will become, 

Dividend. 
a2bm-{-ac2m 
a2bm-{-abd2 

■d3m 

1st rem. + ac2m — abd2—d3m 
-f- ac2m -f- c2d2 

Divisor. 
am-\-d2 

Partial quot. 
ab -j- c2 

2d rem. —abd2—c2d2—d?m 
By the first operation, the terms involving a2 are taken away 

from the dividend, and there remain no terms involving a ex¬ 
cept in the first power. In order to make them disappear, we 
will at first divide the term ac2m by am, and it gives for the 
quotient c2; multiplying the divisor by the quotient, and sub¬ 
tracting the product from the dividend, we will have the second 
remainder ; taking this second remainder for a new dividend, 
and cancelling in it the factor d2, which is not a factor of the 
divisor, it will become 

—ab—c2—dm ; 
multiplying by m, we shall have 

Dividend. Divisor. 
■ abm—c2m — dm2 
abm—bd2 

rem, -pbd2- c2m- ■dm2 

am-pd2 

Partial quot. 
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The remainder, bd2—c2m—dm2, of this last division does not 
contain the letter a ; it follows, then, that if there exist between 
the proposed quantities a common divisor, it must be indepen¬ 
dent of the letter a. 

Having arrived at this point, we cannot continue the divi¬ 
sion with respect to the letter a ; but observing that if there be 
a common divisor, independent of a, of the two quantities 
bd2 — c2in — dm2 and am-\-d2, it may divide separately the two 
parts am and d2 of the divisor ; for, in general, if a quantity be 
arranged according to the powers of the letter a, every term 
of this quantity, independent of a, must divide separately the 
quantities by which the different powers of this letter are 
multiplied. 

In order to be convinced of what has just been said, it is 
sufficient to observe, that in this case each of the proposed 
quantities should be the product of a quantity dependent on 
a, and of a common divisor which does not at all depend on it. 
Now, if we have, for example, the expression 

A a4-f- Ba3+ Ca2+ D«-(- E, 
in which the letters A, B, C, D, E, designate any quantities 
whatever, independent of a, and if we multiply it by a quantity 
M, also independent of a, the product, 

MAa4-f MBa3-|- MC«2-f MDa-f ME, 
arranged according to a, will still contain the same powers of 
a as before ; but the coefficient of each of these powers will be 
a multiple of M. 

This being admitted, if we substitute for m the quantity 
(b — c), which this letter represents, we shall have the quan¬ 
tities 

bd2 — c2(b — c) — c(b — c)2, 
a(b — c) -}- d2 ; 

now it is plain that b — c and d2 have no common factor what¬ 
ever : therefore the two proposed quantities have not a com¬ 
mon divisor. 

144. The greatest common divisor of two quantities may 
sometimes be obtained without having recourse to the general 
Rule. Some of the methods that are used by Analysts for this 
purpose, will be exemplified by the following Examples. 

Ex. 6. Required the greatest common divisor of a*b2-\-a3b3 
-}-b^c2 —■ a^c2 — a3bc2-^b2ci:, and a2b-\-ab2-\-b3 — a2c-^abc—b2c. 

After having arranged these quantities according to the 
powers of the letter «, we shall have 

(b2—c2)a4 -f (b3 - be2 )a3 + Wc2 - b2c4 
(b—c)a2-j-(b2 — bc)a -f- b3 — b2c ; 
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it may at first be observed, that if they admit of a common di¬ 
visor, which should be independent of the letter a, it must di¬ 
vide separately each of the quantities by which the different 
powers of a are multiplied, (Art. 143), as well as the quanti¬ 
ties b^c2— &'2c4 and b3 — 62c, which comprehend not at all this 
letter. 

The question is therefore reduced to finding the common 
divisors of the quantities b2—c2 and b — c, and, to verify af¬ 
terward, if, among these divisors, there be found some that 
would also divide b3 — be2 and b2 — be, b‘xc2 — £2c4 and b3 — b2c. 

Dividing b2 — c2 by b — c, we find an exact quotient 5-j-c : 
b — c is therefore a common divisor of the quantities b2 — c2 
and b — c, and it appears that they cannot have any other di¬ 
visor, because the quantity b — c is divisible but by itself and 
unity. We must therefore try if it would divide the other 
quantities referred to above, or, which is equally as well, if 
it would divide the two proposed quantities ; but it will bo 
found to succeed, the quotients coming out exactly, 

(6-f-c)a4-(-(62-\-bc)a3-\-bzc2-\-b2c3 ; 
and a2-{-ba-\-b2. 

In order to bring these last expressions to the greatest pos¬ 
sible degree of simplicity, it is expedient to try if the first be 
not divisible by b-\-c ; this division being effected, it succeeds, 
and we have now only to seek the greatest common divisor of 
these very simple quantities ; 

a*-\-bd3~\- b2c2, and a2-f- bci-\-b2. 
Operating on these, according to the Rule, (Art. 141), w© 

will arrive, after the second division, at a remainder contain¬ 
ing the letter a in the first power only ; and as this remainder 
is not the common divisor, hence we may conclude that the 
letter a does not make a part of the common divisor sought, 
which is consequently composed but of the factor b—c. 

Ex. 7. Required the greatest common divisor of (d2—c2) 
X«2+c4 — d2c2 and 4da2—(2c2-f-4c<i)a-4-2c3. 

Arranging these quantities according to d, we have 

(a2 — c2)^2-f-c4—a2c2, or (a2 — c2)d2—(a2—c2)c2, 
and (4a2—4ac)xd—(a—c)x2c2; 

it is evident, by inspection only, that a2 — c2 is a divisor of the 
first, and a—c of the second. But a2 — c2 is divisible by a—c ; 
therefore a — c is a divisor of the two proposed quantities : Di¬ 
viding both the one and the other by a—c, the quotients will 
be 

(a-\-c)x(d2—c2), and 4ad—2c2; 



72 ALGEBRAIC FRACTIONS. 

which, by inspection, are found to have no common divisor, 
consequently a—c is the greatest common divisor of the pro¬ 
posed quantities. 

Ex. 8. Required the greatest common divisor of y4—a;4 and 
y3—y2x—yx2-\-x3. Ans. y2—x2. 

Ex. 9. 'Required the greatest common divisor of a4—bA and 
a6 — b6. Ans. a2—b2. 

Ex. 10. Required the greatest common divisor of a4:-\-a3b— 
ab3 — 64 and a^-\-a2b2-\-b^. Ans. az-\-ab -\-b2. 

Ex. 11. Required the greatest common divisor of a2—2ax 
-\-xz and a3 — ci2x—ax2-{-x3. Ans. a2—2ax-{-x2. 

Ex. 12. Find the greatest common divisor of 6a;3—8ya?2-f- 
2y2a; and 12a;2 — 15ya;-)-3y2. Ans. x—y. 

Ex. 13. Find the greatest common divisor of 36b2a6 —18b2a5 
—21 b2a*9b2a3 and 21b2a5 — 1862a4 — 9b2a3. 

Ans. 9b2a*— 9b2a3. 
Ex. 14. Find the greatest common divisor of (c—d)a2-f- 

(2be—2bd)a-\-(b2c — b2d) and (be — bd-\-c2 — cd)a-\-(b2d-\-bc2 — 
bzc— bed). Ans. c—d. 

Ex. 15. Find the greatest common divisor of x3-{-9x2-\- 
27a; — 98 and x2-j- 12a;—28. Ans. x—2. 

§ III. METHOD OF FINDING THE LEAST COMMON MULTIPLE OF 

TWO OR MORE QUANTITIES. 

145. The least common multiple of two or more quantities 
is the least quantity in which each of them is contained with¬ 
out a remainder. Thus, 20abc is the least common multiple 
of 5a, 4ac, and 2b. 

146. The least common multiple of any number of quanti¬ 
ties, literal or numeral, monomial or polynomial, may be easily 
found thus : 

Resolve each quantity into its simplest factors, putting 
the product of equal factors ivhen there are any in the form of 
powers, then multiply all together the highest powers of every 
root concerned, and the product wilt be the least common multi¬ 
ple required. 

Ex. 1. Required the least common multiple of a3b2x, acbx2, 
abc2d. 

Here the quantities are already exhibited in the form re¬ 
quired. Therefore the least common multiple is a3b2c2dx2. 

Ex. 2. Required the least common multiple of 2a2a?, 4aa;2, 
and 6x3. 
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Here the literal quantities are already in the form requir¬ 
ed. The coefficients resolved into their simplest factors be¬ 
come 2, 22, 2x3. The least common multiple is therefore 
22X 3 X a2a?3 = 12a2a?3. 

Ex. 3. Required the least common multiple of \2a2y(a-{-b), 
Qa3y2-\-\2a2 by2-fQab2y2, and 4a2y2. 

These quantities resolved into their simplest factors become 
22 X 3 X a2y(a-\-b) 
2 x3 Xay2(a-\-b)2 

22 X #2y2 
Hence the least common multiple required is 22 X 3 X a2y2 

!sa-\-b)2 —i2a2y\a-\-b)2. 

Ex. 3. Required the least common multiple of 8a, 4a2, and 
12a5. Ans. 24a2b. 

Ex. 4. Required the least common multiple of a2—b2, a+b, 
and a2-j-b2. Ans. a4—b4. 

Ex. 5. Required the least common multiple of 72a, 155, 
9ab, and 3a2. Ans. 135a25. 

Ex. 6. Required the least common multiple of a34-3a25-j- 
3ab2-\-b3, a2-\-2ab-\-b2, a2—b2. Ans. a4-f-2a35—2ab3—54. 

Ex. 7. Required the least common multiple of a-j-5, a—5, 
a2-f-a5-M2j and a2 — ab-\-b2. Ans. a6—56 

§ IV. REDUCTION OF ALGEBRAIC FRACTIONS. 

CASE I. 

To reduce a mixed quantity to an improper fraction. 

RULE. 

147. Multiply the integral part by the denominator of the 
fraction, and to the product annex the numerator with its pro¬ 
per sign: under this sum place the former denominator, and 
the result is the improper fraction required. 

2b 
Ex. 1. Reduce 3a? to an improper fraction. 

OCl 

The integral part 3a?, multiplied by the denominator 5a of 
the fraction plus the numerator (2b), is equal to 3a?x5a+25 
= 15ax-}-2b ; 

tt 15aa?+25 . , . . . , 
.Hence,---is the fraction required. 

5a 

3a? 
Ex. 2. Reduce 5a —— to an improper fraction. 

8 
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Here 5aXy~5ay; to this add the numerator with its pro¬ 
per sign, viz. —3# ; and we shall have bay — 3a?. 

5 ciu ——* 3 cc 
Hence, —--is the fraction required. 

y 
($•_ 

Ex. 3. Reduce x2-— to an improper fraction. 
x 

Here, x2 X x=x3; adding the numerator a2—y2 with its pro- 
per sign: It is to be recollected that the sign — affixed to the 

cfi —— 
fraction -- means that the whole of that fraction is to be 

x 
subtracted, and consequently that the sign of each term of the 
numerator must be changed, when it is combined with a;3, 

xc ■a24ry2 
x 

Or, as hence the improper fraction required is 

y2_a2 
- (Art. 67), the proposed mixed 

a 2-yl -fl2_J_y2 

x 

quantity x2 

x 

a2—y2 

x 

x 
, may be put under the from x2-+ 

y2 — a2 

x 
which is reduced as Ex. 1. Thus, x2 X#-f y2—a2=x3-\-y2—a 2. 

-j/2_n2 t3-L «/2 

hence, 
X X 

2—a2 

3^2_a+7 
Ex. 4. Reduce 5a2-j---to an improper fraction. 

&CLdC 

Here, ba2X^ax=zl0a3x ; adding the numerator 3a:2—a + 7 
to this, and we have 10a3a:-f-3a:2 — a+ 7. 

10a3a:-f 3a:2 — a+ 7 . ^ 
Hence,---is the fraction required. 

/V dOC 

Ex. 5. Reduce 4a:2—t0 an improper fraction. 

Here, 4a2 x 2<zc=8aca;2, in adding the numerator with its 
. , • /. i , g» . 3ab ~i c , . 

proper sign ; the sign — prefixed to the fraction --signi¬ 

fies that it is to be taken negatively, or that the whole of that 
fraction is to be subtracted ; and consequently that the sign 
of each term of the numerator must be changed when it is 

combined with 8acx2 ; hence,-—r— -- is the fraction re¬ 

quired. Or, as 
3 ab-\-c 

= + 

2 ac 

—3 ab—c —3 ab — c 
(Art. 

2 ac ' 2ac 2 ac 
108) ; hence the reason of changing the signs of the numera¬ 
tor is evident. 
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a2—x2 
Ex. 6. Reduce x-to an improper fraction. 

x 

Ans. 
2 a?2—a2 

x 

a2-\-c 
Ex. 7. Reduce ab--— to an improper fraction. 

DX 

Ans. 
babx—a2—c 

5a? 
3 b 

Ex. 8. Reduce ax2-— to an improper fraction. 

Ans. 
o2x2—3 b 

a 

Ex. 9. Reduce a—x-{- 
a2—ax 

x 
to an improper fraction. 

Ans. 
a2—x2 

x 

Ex. 10. Reduce 3x2-=— to an improper fraction. 
7 a 

Ans. 
21 ax2—4a?-|-9 

7a 
2x_5 

Ex. 11. Reduce 5#--—to an improper fraction. 

Ans. 
13a?+5 

Ex. 12. Reduce 1+2#--—to an improper fraction. 
5a? 

Ans. 
a? + 10a?2-f-4 

bx 

CASE II. 

To reduce an improper fraction to a whole or mixed quantity. 

RULE. 

148. Observe which terms of the numerator are divisible 
by the denominator without a remainder, the quotient will give 
the integral part; and put the remaining terms of the nume¬ 
rator, if any, over the denominator for the fractional part; 
then the two joined together with the proper sign between 
them, will give the mixed quantity required. 
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/p3 I Qctoft | J) 
Ex. 1. Reduce---to a mixed quantity. 

x 
(ft ~^~Qfloft J) 

Here,---=#-f-2a is the integral part, and —- is the 

fractional part; 

therefore x-\-2a-\-~ is the mixed quantity required. 
X 
/^8 -1 . ^4y4 .1 ^8 

Ex. 2. Reduce —-—-—— to a whole quantity. 
^4-xV+i/4 n J ^-\-x2y2-\-y4 

Dividend. 
xB-\-x4y4 +y8 
x8 xGy2 x4y4 

—a:6y2-j-y8 
— x6y2—x4y4—x2y6 

x4y4-j-x2y6-\-y8 

x4y4+x2yG+y8 

Divisor. 
x4+x2y2+y4 

Quotient. 
x4—x2y2-\-y4 

Here the operation is performed according to the rule 
(Art. 93), and the quotient x4-x2y2-{-y4 is the whole quantity 
required. 

Ex. 3. Reduce —-to a mixed quantity. 
X 

Here, ~—a is the integral, and the fractional part; 
x x 

2b2 
therefore a-is the mixed quantity required. 

X 

oft - (ft [— J 
Ex. 4. Reduce-to a mixed quantity. 

x ~(X 

x-\-o)x2— a2-f b(x~a-\-the mixed quantity required. 

x2-\-ax 

— ax—a* 
—ax—a2 

* +b 

Here the remainder b is placed over the denominator x-\-a, 
and annexed to the quotient as in (Art. 89). 
t _ -q . 3a2b2-\-§ab—2x-\-2c . . 
Ex. o. Reduce-—1-to a mixed quantity. 

3 ab 
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Here —- - —a&42 is the integral part, 
3ab 

_ —2x+2c 2a:—2c 2c—2a: N . , e 
and——;—=-——=-\———— (Art. 128), is the frac- 

3 ab 
tional part; 

3 ab 

2a:—2c 

3 ab 

2c—2a: . 
. •. ab-f-2-—,—, or ab-\-2-j-—is the mixed quantity 

oab Sab 

required. 

Ex. 6. Reduce -=-to a mixed quantity. 
7 a 

Ans. 3a:2' 
4a:—9 

7a ' 
_ , 8x2y2—3 ax —6b .. , 
Ex. 7. Reduce ——-  -to a mixed quantity. 

3ax-\-6b 
Ans. 2y2— 

4a:2 

x4—a4 

Ex. 8. Reduce - - - to a whole quantity. 
OC | CL 

Ans. a:2—a2. 
_ ^ -n j 27a34-352—4a:—9a2 . , 
Ex. 9. Reduce-—-to a mixed quantity. 

9a2 

Ans. 3a — 1-f 
3b2-Ax 

Ex. 10. Reduce -—t0 a m^xe<^ quantity. 
or— 3 y2 

9 a2 

Ans. x2+ 
4aa: 

x2—3 y2' 

_ ,, , a:643aa:2—a6—& . , 
Ex. 11. Reduce-7-,—5-to a mixed quantity. 

x3-\-ac 

Ans. x3—a34 
3 ax2—b 

a:34«3 

_ . 3a:2—12aa:4y~9a: . , 
Ex. 12. Reduce--—--to a mixed quantity. 

oOC 

Ans. a:—4a —34 

'l.'i 

8* 
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CASE III. 

To reduce a fraction to its lowest terms, or most simple 
expression. 

RULE. 

149. Observe what quantity will divide all the terms both 
of the numerator and denominator without a remainder: Di¬ 
vide them by this quantity, and the fraction is reduced to its 
lowest terms. Or, find their greatest common divisor, accord¬ 
ing to the method laid down in (Art. 141); by which divide 
both the numerator and denominator, and it will give the frac¬ 
tion required. 

Example 1. 

D , \4x3-{-lax2+28x . . 
Reduce --—--to its lowest terms. 

2 lx* 
The coefficient of every term of the numerator and deno¬ 

minator of the fraction is divisible by 7, and the letter x also 
enters into every term ; therefore lx will divide both the nu¬ 
merator and denominator without a remainder. 

\4.x3-\-!ax2-\-28x .21a;2 _ , 
JNow---=2a;2+aa;4-4, and——= 3a-; hence 

lx lx 

the fraction in its lowest term is 
2a;2 4-aa;4-4 

3a; 

Ex. 2. Reduce 
30a262c — 6abc2 — 12 a2c2b 

to its lowest terms. 
36abcx 

Here the quantity which divides both the numerator and 
denominator without a remainder is evidently 6abc; then 
30a2b2c— 6abc2 —12a2c2b . 3Qabcx 

— Dab—c—2ac ; and — = ox ; 
6abc 6abc 

Hence---is the fraction in its lowest terms. 
6a; 

Ex. 3. Reduce 
ai ■b2 

to its lowest terms. 
a4— 64 

Here, a4 - ft4 = (a* 4 b2) X (a2 - b2), (Art. 107.) ; and, 
consequently, a2—b2 will divide both the numerator and de- 

a2—b2 
nominator without a remainder; that is, 

a2 — b2 
= 1 = new 
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(a2+62)x(a2 — b2) 
numerator, and ---^-L—a~-\-bz— new denomina¬ 

tor; hence, 
1 

a2-\-b2 

a2—b2 

is the fraction in its lowest terms. 

_ . x4—3ax3—8a2x2-{- 18a3a? — 8a4 . . 
Ex. 4. Reduce----—--—--to its lowest 

or—ax2—8 azx -f- oa3 

terms. 
Here, by proceeding according to the method of (Art. 141), 

we find the greatest common measure of the numerator and 
denominator to be x2-\-2ax—2a2 ; thus, 

a:4 — 3aa:3—8a2x2-\- 18a3a;— 8a4 
or ax 3 — 8a2#2 4- 6a3x 

x3 — ax2 — 8 a2x-f- 6a3 

Partial quot. x—2a 
—2ax3-{-\2a3x — 8a4 
—2aa:3-|- 2a2x2-\- 16a3#—12a4 

remaind. . . . —2a2x2—4a3a;-{-4a4; 
, —2 a2x2—4a3a:-f4a4 
then,-—-=x2 + 2aa? — 2a2 = the next di« 

—2a2 
visor ; 
x2-{- 2a x—2a2)#3 — ax2 — 8a2a? -f- 6a3(x—3a 

x3-\-2ax2—2 a2x 

— 3 ax2—6a2a:-j-6a3 
— 3aa:2 — 6a2x-\- 6 a3 

# # * 

And, dividing both terms by the greatest common measure, 
thus found, we have the fraction in its lowest terms ; but the 
numerator, divided by the greatest common measure, gives x 
— 3a, as above, equal to the new numerator ; and the denomi¬ 
nator, divided by the same, gives x2-5ax-{-4a2 ; thus, 

a:4—3aa:3— 8a2x2-{~l8a3x— 8a4 
£44-2aa;3— 2 a2x2 

—5aa:3— 6a2x2 -f- 18a3a: 
— 5 ax3—10a2a;24- 10a3a: 

a:2 + 2aa:—2a2 

Quotient. 
x2 — bax-\-4cP 

4a2a;2-f- 8a3a:—8 a4 

4a2a:2-j- 8a3a:—8a4 

* * * 

Hence, the fraction in its lowest terms is 
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x—3a 

x2 — 5 ax -J- 4a2 

150. In addition to the methods pointed out in (Art. 144), 
for finding the greatest common divisor of two algebraic quan¬ 
tities, it may not be improper to take notice here of another 
method, given by Simpson, in his Algebra, which may be used 
to great advantage, and is very expeditious in reducing frac¬ 
tions, which become laborious by ordinary methods, to the 
lowest expression possible. Thus, fractions that have in 
them more than two different letters, and one of the letters 
rises only to a single dimension, either in the numerator or in 
the denominator, it will be best to divide the numerator or de¬ 
nominator (whichever it is) into two parts, so that the said 
letter may be found in every term of the one part, and be to¬ 
tally excluded out of the other : this being done, let the 
greatest common divisor of these two parts be found, which 
will evidently be a divisor to the whole, and by which the 
division of the other quantity is to be tried; as in the follow¬ 
ing example. 

_ , a:3-f-—2a2x-\-ba%— 2ba2 . , 
Lx. 5. Jtieduce --— ---——-to its low- 

x 2 — bx + 2ax—2 ab 
est terms. 

Here the denominator being the least compounded, and b 
rising therein to a single dimension only ; I divide the same 
into the parts x2-\-2ax, and —bx—2ab ; which, by inspec¬ 
tion, appear to be equal to (a?-f-2a)x, and (#+2a)x —b. 
Therefore a?-f-2a is a divisor to both the parts, and likewise 
to the whole, expressed by (a;-j-2a) X (x—b); so that one of 
these two factors, if the fraction given can be reduced to lower 
terms, must also measure the numerator: but the former is 
found to succeed, the quotient coming out x2—ax-\-bx — ab, 

exactly : whence the fraction is reduced to 
x* ax-\-bx—ab 

x—b 
which is not reducible farther by x—b, since the division 
does not terminate without a remainder, as upon trial will be 
found. 

5a*b+\Qa*b'2+5a3b3 
Ex. 6. Reduce -to its lowest terms. 

a5b -j- 2 a^b2 -f- 2 a3b3 -j- a2b4 

Here, the greatest simple divisor of the numerator and de¬ 

nominator is evidently, a2b ; Now, 
5a5b-\- \0a^b2-\-5a3b3 

a2b 
,5 a3 

+ 10tf6+B«S*; and aA±2.a!b'+2/P+^ = a3+2a2b _ 
a2o 
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*2 I 7.3 it if * 5a34-10a2Z>4-5a&2 
•**+* Hence the Iesult 15 ; and the 

greatest common measure of this result is a 4-6, which is found 
thus ; 

a3 _j_ 2a2j_|_ 2a&2+^3) 5a3 _J_ 1 Oa2£ + 5a62(5 

5a3 4"10a26 4* 10a62+oi3 

remainder .... —5ab2—bb3 
_5^52_5J3 

And-—-which by another operation is 

found to divide the numerator without a remainder; and con¬ 
sequently dividing both the numerator and denominator of the 
r . 5a3-f-10a26+5«&2 
fraction —-----——-rr-rrr by a+o, we have the fraction 

a6 -|- 2a?b -f 2ab2+b 
. . . 5a34-10a2&-4-5a£>2 
m its lowest terms; that is,-—r-=5a2-f-5a6; 

a-\-b 

and?w±w!=85+a5+J2; 

Hence 

a-\-b 
5a2-{-5ab 

is the fraction in its lowest terms. 
a2 -f- ab -f- b2 

Ex. 7. Reduce to its lowest terms. 
7x3y 

Ans. 2-y-.3^, 
x 

_ „ , 51a?3-—17x2+34x . _ 
Ex. 8. Reduce-—-to its lowest terms. 

17a? 

Ans. 
3a?2—x4-2 

Ex. 9. Reduce 
a—b 

^4T3 
to its lowest terms. 

Ans. 

a?’ 

1 

at-^-ab-^-b2' 
qq4 J. ^2 fg2 _ | - q\. 

Ex. 10. Reduce „-r-7 to its lowest terms. 
a?4 4~ 0x3—a3x— 

Ans. 
a;4 ■ax-\-a2 

a?2—a2 

_ _ , 7a2—23a5-f-662 . . 
Ex. 11. Reduce —-——— „. . . ——77 to its lowest terms. 

5a3 — I8a2&-|-1 lab2—6 b3 

Ans. 
7a—2b 

5a2 — 3ab-^-2b2‘ 
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Ex. 12. Reduce ——^ to its lowest terms. 
a6— 

Ans. 
a2 4-b2 

Ex. 13. Reduce 
y2~y2x—yx2-\-x3 

a44*<*2#4+&4* 

to its lowest terms. 

y2+x2 
Ans. --. 

y~x 
— T> , a3—2a264-2a62—-63 . . 
Ex. 14. Reduce--——-to its lowest terms. 

<24-f-C52Z>2+64 

Ans. 
a—b 

a2-\-ab-\-b2' 
t, . _ ^ , a?-3a2x-\-3ax2—x2 . . 
Ex. 15. Reduce-—----to its lowest terms. 

a2—x2 

Ans 
a2—2ax-{-x2 

a-\-x 

_ i/. r> j a34-26a24~362a2 . . 
Ex. 16. Reduce ———■■ to its lowest terms. 

2a4—36<z3 —5 b2a2 

Ans. 
a+26+362 

2a2—36a—562* 
qP* | r Jq2 

Ex. 17. Reduce —-tc-——- to its lowest terms. 
a3—a2x—ax2 4* x3 

Ans. 

a3_b2a 
Ex. 18. Reduce — to its lowest terms. 

a-\-x 

a24-2a64"62 

Ans. 
a2—ab 

a-\-b 

CASE IV. 

To reduce fractions to other equivalent ones, that shall 
have a common denominator. 

rule I. 

151. Multiply each of the numerators separately, into all 
the denominators, except its own, for the new numerators, and 
all the denominators together for the common denominator. 

It is necessary to remark, that, if there are whole or mixed 
quantities, they must be reduced to improper fractions, and then 
proceed according to the rule. 
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3d %)ly cc 
Ex. 1. Reduce —— and - to a common denominator. 

4 c a 
3aXcXfl=3a2c 
56 X 4x 
xXcX 4: 

a=3a2c J 
a=20ab > 
4=4 cx 3 

new numerators; 

4XcXa=4ac common denominator; 
TT . - , 3a2c 20ab - 4e* 
Hence the fractions required are-,-, and - 

4ac 4ac 4ac 

Ex. 2. Reduce 
2*+l 

and 
2 a2 

3 b x 

(2*4-l)X* = 2*24-* > 
2 J X 3b = 6a*b i 116W numerators ; 

to a common denominator* 

36 x *=36* common denominator; 

Hence the fractions required are ——-, and ——. 
36* 36* 

3 5* 3*2 
Ex. 3. Reduce -, —, and a+—~ to a common denomina- 

4 3 5 
tor. 

TY , 3*2 5a 4-3*2 
Here a-\—--=---. 

o o 
3x3x5 = 45 

5* x 4 x 5 = 100* ^ new numerator ; 
(5<z4-3*2) X 4 X 3 = 60a-f- 36*2 

4 X 3 X 5 = 60 common denominator ; 
„ , f .• . 45 100* 60^4-36*2 
Hence the fractions required are —, -- - , and---. 

oO oO 60 

RULE II. 

152. Find the least common multiple of all the denomina¬ 
tors of the given fractions, (Art. 147), and it will be the com¬ 
mon denominator required. 

Divide the common denominator by the denominator of 
each fraction, separately, and multiply the quotient by the re¬ 
spective numerators, and the products will be the numerators 
of the fractions required. 

Ex. 4. Reduce and to the least common denomi- 
£T 4 a*2 

nator. 
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Here 4ax2 is the least common multiple of x2 and 4ax2; 
ax2 

then —— X 3a2b = 4aX 3a2b = 12a3b 
xi 

new numerators. ^^2 

and -—— X 5ab=.5ab 
4 ax2 

y x 12a3b , 5ab . r , 
Hence-— and-- are the fractions required. 

4 ax2 4 ax2 

Or, as 4ax2 (the least common multiple) is the denomina¬ 
tor of one of the fractions, it is only necessary to reduce the 

3 a2b 
fraction —— to an equivalent one, whose denominator shall 

x 
4ax2 3a2b 

be 4ax2 ; hence, ^ 4a, and 
x* x4 

4a 3 a2b X 4a 

* 4a x2X 4a 
12 a2b 

4ax2 
is the fraction required. 

These rules appear evident from (Art. 118). For, let 
ace adf cbf edb 
b* d’ f be tlie ProPose(4 fractions ; then -~j, —j, are trac¬ 

tions of the same value with the former, having the common 

denominator bdf. Since tj?=t 5 ’ an(* TJ7~7’ 
J bdf b bdf d bdf f 

Ex. 5. Reduce-—, —, and -—- to the least common de- 
4 cx2 2x 8ac2 

nominator. 
Here, the least common multiple of 4ca?2, 2a?, and Sac2, 

(Art. 147), is 8ac2x2 ; then, 
8 
——9—X Sa2b=2ac X 3a2b=z6a3bc 

4 cx2 

8ac2x* 

2x 
8 ac2x2 

8ac3 

Xy—4ac2x Xy=z4ac2xy f new numerators ; 

X 5x2 — x2X 5x2=z5xi 

TT 6a3bc 4 ac2xy . 5a?4 , - . , 
Hence -——r, -—and -—— are the fractions required. 

8ac2x2 8ac2x2 8aclx2 

5 oc a - ££ 1 
Ex. 6. Reduce-,-, and — to a common denomi- 

a + x 3 * 2 a? 
nator. 

Ans. 
30a?2 

6aa?+6a?2 ’ 6aa? + 6a?2 

2 a2x—2a?3 , 3«4-3a? 
, and 

8ax-\-8x2 
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Ex. 7. Reduce and to a common denomi- 
a; 3ao 

nator. 
, §abx-\-9ab . 5a:24*2.r 

Ans. -—--, and 
3 abx 3 abx 

X oc ~ ^ 1 

Ex. 8. Reduce -, and -to a common denomi- 
3 4 1+x 

nator. 
, 4o324“4aj 3a?2+6a?4-3 , 12a;»—-12 

Ans. ——and — 
12a;+12’ 12j?+ 12 12aj+12 

ct 3g 
Ex. 9. Reduce T, -r-, and x-\-to a common deno- 

b a x 
minator. 

X 

adx 2bc2x , 3abd 
Ans. t-7-, -. and 

bdx 1 bdx 
Aa—15 

bdx 

to a com- Ex. 10. Reduce —, a~ X ■ , and 7+ 
5y 3a; 2 

mon denominator. 
A  6x3 30axy — 10a;2y-|-50y 60axy—15xy 

nS‘ 30^y’ 30Vy ’ an 3(% * 
ci 3b 5cc 

Ex. 11. Reduce ——-,-, and —-— to other equiva- 
al—x2 4a—4a; a-\-x 

lent fractions having the least common denominator. 
4 a 3a£>-f36a; 20 ax—20a;2 

Ans. —-—————7-^, and 

Ex. 12. Reduce 

4a2—4a;2’ 4a2 — 4a;2’ 
1 1 

and 

4a2—4a;2 

to the 
ax—a;4 a2-{-2aa:+a;2’ a2—x2' 

least common denominator. 
a3-{-ax2—a2x—x3 a3-\-ax2-\-a2x-\'X3 

Ans. 

and 
bay-\-5xy 

a5—ax4 -f* a4#—x5 

a5—<za;4-f-a4x—x5 5 a5—aa;4+a4a;—a;5’ 

§ V. ADDITION AND SUBTRACTION OF ALGEBRAIC FRACTIONS. 

To add fractional quantities together. 

RULE. 

153. Reduce the fractions, if necessary, to a common deno¬ 
minator, by the rules in the last case, then add all the nurae- 

9 
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rators together, and under their sum put the common denomi¬ 
nator ; bring the resulting fraction to its lowest terms, and it 
will be the sum required. 

Ex. 1. Add and ~ together. 
o/ y 

1 = 126*1 
i = 135* I **• 

2* X 7 X 9 = 126* 
5*X 3 X 9: 
*X7 X 3= 21* 

3X7X9 = 189 

126*+135*+21* 282* 

189 189 
:* 

93* . 

189 
is the sum required. 

Ex. 2. Add Yi ?r> and —• together. 
b 36 4 a 

a X 35x4#= 12a2 A 
2aX5x4a= 8 a2b 
5bx3bxb = l5b3 r 

\2a2b + 8a2b +1553 

**' Y2ab2 

20a25+1553 

\2ab2 

20a2+15b2 

= (dividing by 5) 

is the sum required. 
b X 3b X 4a=12a52 j I2ab 

Or, the least common multiple of the denominators may be 
found, and then proceed, as in (Art. 152). 

It is generally understood that mixed quantities are reduced 
to improper fractions, before we perform any of the operations 
of Addition and Subtraction. But it is best to bring the frac¬ 
tional parts only to a common denominator, and to affix their 
sum or difference to the sum or difference of the integral parts, 
interposing the proper sign. 

3*2 
Ex. 3. It is required to find the sum of a— and 5+ 

2 ax. 

rr 3*2 ab — 
Here, a-r-—-r 

o b 

3*2 _ _ 2ax 
—, and 64- 

5c+2a* 

c c 
Then, (ab — 3x2)Xc = abc—3cx2 ) . 

\bc+2aJ)xb = Vc+2abX \ n«“erators- 

5Xc=5c= denominator. 
abc— 3c*2+52c+2a5* abc-\-b2c 

be 
2abx~- 3 c*2 

be 
:a+£-f 

bc 
2 abx- 

f 

3c*2 

be 
is the sum required, 
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Or, bringing the fractional parts only to a common deno¬ 
minator, 

Thus, 3*2xc=3<;a:2 > numerators 
2axXb=?,abx 5 Dumerators> 

And bxc—bc common denominator. 

Whence ^CX 
be 

_ , 2 abx , , , 2 abx—3 cx2 . 
5_j——---the sum. 

2>c fee 

a?—2 
Ex. 4. It is required to find tho sum of 5x-\—-— and 4a? 

2a:—3 

ox * 
Here, ( a:—2) X 5xz=z5x2— 10a: 

(2a:—3) X 3 
~5x2— 10a: > 
—6x —9 y 

numerators, 

And 3x5x=:15x common denominator. 

Whence 5x+^±2?+ix- ^-=9x+ ^ 

9—6x 

~ Ibx 
= 9a?4 

15a: 
5a:2—16a:+ 9 

10a? 

15a; 

15a? 

the sum required. 

9—6x 

15a? 
4- 

9 j wo/ 
Here,-—— is evidently = — (Art. 128) ; but we 

J. DOC 1 OuC 

might change the fractions into other equivalent forms before 
we begin to add or subtract; thus, the fractional part of the 

2x_3 
proposed quantity 4a:---maybe transformed by chang- 

njOC 

ing the signs of the numerator, (Art. 128), and the quantity 
3_2x 

itself can be written thus, 4a?4--: It is well to keep this 
5x 

transformation in mind, as it is often necessary to make use of 
it in performing several algebraical operations. 

t c a j i 3a2 2a b 
Ex. 5. Add —, — and - together. 

Ex. 6. Add 

Ex. 7. Add 

x 
and 

. 105a2+28ab+l0b2 
Ans. -—- 

X— together. Ans. 2X 
x—3 " a: 4-3 
a-\-b a—b , 
-r and —— together. 
a—b a+b 6 

x* 

Ans. 
2a2-\-2b2 

a2 — })2 
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Ex. 8. Add -~~x and — ~ together. 
a—x a+x 

Ans. 
4 ax 

a2—x2 
ry> - - O 9, V — ^ 

Ex. 9. Add 2aH—-— and 3*H--— together. 

Ans. 5*-f- 
10*—17 

12 
7 tJ/ oc 

Ex. 10. Add 4#, - and 2+- together. 
y o 

. . , , 44a; 
Ans. 4x-\-2-\— 

45 
2 y 

Ex. 11. Add 5x-y an^ ~g-4* together, 

Ans. *4 
17* 

63 

Ex. 12. It is required to find the sum of 2a, —-—, and 
a—x 

a—x 

a 
Ans. 2a-}-2 + — 

xi 

a2—ax 

To subtract one fractional quantity from another. 

RULE. 

154. Reduce the fractions to a common denominator, if ne¬ 
cessary, and then subtract the numerators from each other, 
and under the difference write the common denominator, and 
it will give the difference of the fractions required. 

Or, enclose the fractional quantity to be subtracted in a 
parentheses ; then, prefixing the negative sign, and perform¬ 
ing the operation, observing the same remarks and rules as in 
addition, the result will be the difference required. 

The reason of this is evident; because, adding a negative 
quantity is equivalent to subtracting a positive one (Art. 63); 
thus, prefixing the negative sign to the fractional quantity 
a — b . . (a — b\ a — b b—a . 
-, it becomes — (-) =-= - ; to the 

c \ c ) c c 

fractional quantity 
x2-\-a 

y 
, it becomes 

y 
oc^ *1"* a cloc • t~ J) 

+- (Art. 128); to the fractional quantity--—, it 
■‘3r ' ^ J 5 
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becomes — ^ 

3<z-j-5 

ax—b\ ax—b 

)= 

5#-—-. it becomes — (5x— 
V \ 

and to the mixed quantity —3a-\- 

to the mixed quantity 

3 a-\-b 3 a+b^ 

y 

(-3«+ =3«- 
2—x 

:3 a+ 

2—x 

c * 
x—2 

—5# -J- 
y 

it becomes — 

Ex. 1. Subtract —, from 
5 7 

Here 3# X 7=21# 
5#x 5=25# 

numerators, 

5x7=35 com. denom. 

25#—21# 4#. . 

—3^“ = 351Sthe 
difference required. 

~ , 2a—4# „ #—y 
Ex. 2. Subtract-from 

5c 36 
Here (2a—4#)x36=6a6—126# > 

(x—y) X 5c= 5c#— hey > 
numerators. 

5cx36=156c common denominator. 
,Tri 5c# — bey 6ab —126# 5c# — bey , 126#—6ab 

whence- ~TWc-1537“ =~[Ebr +-i337-= 
5c#—bcy-\-\2bx—6ab . . . 
--- —r-is the difference required. 

156c 

Or, by prefixing the negative sign to the quantity 
2 a—4# 

5c ’ 

it becomes — 
fZa—4# 4#—2 a 

5c 5c 
; then it only remains to add 

\oc cc_u 
——— and — together, as in addition, and the result will 

be the same as above. 

Ex. 3. From 2<z6-|-— subtract 2ab—-—-. 
«yf-# a -f- # 

Here prefixing the 'negative sign to the quantity 2ab— 
a—# 

a-\-x 
, we have — 2ab- 

a—#> 

a-\-xi 
•2<z6-l- 

a—# 

a-{-x 
hence the 

difference of the proposed fractions is equivalent to the sum 

of 2ab-\- 
a-j-x 

06 CL | y* 
, and —2ab-\- —— ; but the sum of the frac- 

a—# 
9* 
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tional parts —; and is : Therefore the diffe- 
a-\-x a—x a2 — x2 

rence required is 2ab —2ab-\~ 
2a2-\-2x2 2a2-j~2x2 

a2—x2 a2—x2 
3#—5 1 Ox_9 

Ex. 4. From———subtract ^ 

Here (10*-9)X 7=70*-63 > numerators. 
(3a;—5) X 15 = 45o?—75 > 

Therefore, 

15x7 = 105 common denominator. 
70a: — 63 45a: —75 

105 105 
70a:—63 — 45a:+ 75 25a:+12 . 

105 105 
is the fraction required. 

Ex. 5. From subtract a 
a — b 

Ex. 6. From subtract 

a+b' 

1 

a— x 

Ex. 7. From subtract 

a-\-x 

2x — 3 

Ans. 

Ans. 

4 ab 

a2 — b2 

2x 

a2—x2' 

3a; 
A 4a:2 + 3 
Ans.- 

3a: 

Ex. 8. From 3a:-f t subtract a:— -—- 
b c 

Ans. 2a: + • 
cx-\-bx—ab 

be 
2a:+7 3a;2-f-a2 

Ex. 9. Subtract—-—from 
8 3 b 

24x2+8a2-6bx—21b 
Ans* # 

24 b 

Ex. 10. Subtract 4a:— ——- from 5a?4- ——- 
5 3 

Ans. x-\ 
1 la:—19 

Ex. 11. Subtractfrom a + ° °° 
a(a—x) a(a-{-x)' 

Ans. a— 

Ex. 12. Required the difference of 3a; and 
5 

15 

4a: 

a2—x2' 

Ans. 
3a:—3 a 

5 
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_2 4r4-pi 
Ex. 13. From 2x-\--— subtract 3x--—. 

Ans. 
16oj-|-23 

42 

§ VI. MULTIPLICATION AND DIVISION OF ALGEBRAIC FRAC¬ 

TIONS. 

To multiply fractional quantities together. 

RULE. 

155. Multiply their numerators together fora new nume¬ 
rator, and their denominators together for a new denominator ; 
reduce the resulting fraction to its lowest terms, and it will be 
the product of the fractions required. 

It has been already observed, (Art. 119), that when a frac¬ 
tion is to be multiplied by a whole quantity, the numerator 
is multiplied by that quantity, and the denominator is retain¬ 
ed : 

a ac .2x „ lOa? 
Thus, T X c= —, and — X 5 

oob o 
or, which is the same, 

making an improper fraction of the integral quantity, and 
Cl c ac 

then proceeding according to the rule, we have 

1 2x 5 10a? 
andTxT=ir- 

Hence, if a fraction be multiplied by its denominator, the 

product is the numerator; thus, rxb=%-=zb. In like 
o o 

manner, the result being the same, whether the numerator 
be multiplied by a whole quantity, or the denominator divid¬ 
ed by it, the latter method is to be preferred, when the de¬ 
nominator is some multiple of the multiplier: Thus, let 

be the fraction, and c the multiplier; then — Xc= 
be 
ad 

T 

be be 
, ad ad 

and — xcz= -- 
be bc-^-c 

ad 

~b 
=-r-, as before. 

Also, when the numerator of one of the fractions to be mul¬ 
tiplied, and the denominator of the other, can be divided by 
some quantity which is common to each of them, the quo¬ 
tients may be used instead of the fractions themselves ; thus, 
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a-\-b x x 
; cancelling x-\-b in the numerator of the 

the fraction required is 

a—b a-{-b a—b 
one, and denominator of the other. 

Ex. 1. Multiply 2^ by 

3aX4a=12a2 = numerator, ) 
5x7=35= denominator ; > 

12a2 

35 * 

Ex. 2. Multiply ^xby 

Here, (3#-J-2) X 8a;=24o?2-j-16#= numerator, 
and 4x7=28= denominator ; 

2 4 x2 I 1 0x 
Therefore, -—-= (dividing the numerator and de» 

28 
0/^2 

nominator by 4) --—, the product required. 

ffi — 

Ex. 3. Multiply —-— by 
3a * a — x 

Here, (a2—a2) X 7x2=(a-{-x) x (a—x)x 7x2— numerator 
(Art. 106), and 3ax(a—a:) = denominator ; see Ex. 15, (Art. 
79.) 

Hence, the product is 
(a-b#) X (a—x) X 7x2  

(dividing 

7 x2(a -f- x) 

3a 

3a x (a—x) 

the numerator and denominator by a—x,) 

7ax2-\-7x2 

~~3a * 

Ex. 4. Multiply a+^ by a— 
O O 

TT , x 5a-j-x 1 x 3a—x 
Here, a+-=—-—, and a—-=—— : 

Then, (5a-j-x)x(3a—x) = 15a2—2ax—x2— new numerator, 
1 f) a2 ■" 2ax x2 

and 5 X 3 = 15= denominator : Therefore, 
15 

a2—?axJ^X- is the product required. 
1 o 

156. But, when mixed quantities are to be multiplied to¬ 
gether, it is sometimes more convenient to proceed, as in the 
multiplication of integral quantities, without reducing them to 
improper fractions. 
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Ex. 5. Multiply a?2—-Ja?+J- by Ja?-f-2. 
—2_1-12. 
^ 2* ■ 3 
ix+2 

1 y 3 _ 1 <y>2 2 y 
6X » 

+ 2a?2 —a?-ff 

1/y3 -1 - 1_1 <y>2 7 /m _i 4 
3^ • 6 * 9X 

■n n/r i • 1 3x2 — 5x 7a 
Ex. 6. Multiply ——— by 

Ex. 7. Multiply 

14 

3a?2 
by 

3a?3 — 3a? 

15a?—30 

Ans. 
3aa?—5a 

6a?2—6 
. 9x 

Ans. . 
z 
2x 

Ans. —r. 
DO 

5a? —10 2a? 
^ ,, . . , 2a—2a? , 3aa? 

Ex. 8. Multiply by —- 

Ex. 9. It is required to find the continual product of 
3a 2a?2 " , a-j-b . 2ax-\-2bx 
—, —and -. Ans. ---. 
5 ’ 3 ’ aa? 5 

Ex. 10. It is required to find the continued product of 
a4—a?4 a-\-y 

a2—y2’ a2-}-a? ,2’ 
and a—y 

a — a? 
Ans. a-fa?. 

Ex. 11. It is required to find the continued product of 
a2—a?2 a2 — b2 a . a2—ab 

-, and Ans. 
a? a-\-b 1 a-\- x 1 ax—a?2 

Ex. 12. Multiply a?2—|a?+1 by a?2—\x. 

Ans. a?4—|a?3-f 

To divide one fractional quantity by another. 

RULE. 

157. Multiply the dividend by the reciprocal of the divisor, 
or which is the same, invert the divisor, and proceed, in every 
respect, as in multiplication of algebraic fractions ; and the 
product thus found will be the quotient required. 

When a fraction is to be divided by an integral quantity; 
the process is the reverse of that in multiplication ; or, which 
is the same, multiply the denominator by the integral, (Art. 
120), or divide the numerator by it. The latter mode is to be 
preferred, when the numerator is a multiple of the divisor. 
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Ex. 1. Divide—by-. 
a c 

Jy £ k)0C 0 
The divisor — inverted, becomes -r, hence —Xt = —r is 

c b a o ab 

the fraction required. 
•n t~v * . i 3a — 3a?, 5a—5a? 
Ex. 2. Divide-—— by 

a-f- b 
'5a—5a? 

a~\~b 

The divisor (——inverted, becomes 
\ a-\-b J 

a-f-J . • 

5a—5a? ’ 
. 3a —3a? a-f-6 3a — 3a? 3(a—a?) 3 . , 

hence ^+rx^T5^=5^=;3(^T)=515 the quo- 
tient required. 

Ex. 3. Divide ——— by a+b. 
x 

The reciprocal of the divisor is 

(a-f-£)(a — b) a — b 

a-\-b 

. a2 — b2 
; hence-X 

x a-\-b 

x xX (a-j-6) 
a2—b2 a 

Ur,-——a — b ; hence - 
a -f- b 

Ex. 4. Divide 

Here, a-j 

is the quotient required. 

a? 
is the fraction required. 

x* ■a* 
by a- 

x* a* 

a-f-c 
x2—a2 a2-j-a?2— a2 

a 
x'i x 2 -a2 

a a 
a?2 x2 — a2 

X 

=—; then, the fraction 
a a~rc 

ax2-—a3 a 

x2 aa?2-f-ca?2 
= the quotient divided by — becomes 

a a-f-c 
required. 

158. But it is, however, frequently more simple in prac¬ 
tice to divide mixed quantities by one another, without re¬ 
ducing them to improper fractions, as in division of integral 
quantities, especially when the division would terminate. 

Ex. 5. Divide a?4 — f a?3+ya;2—^x by a?2—^a?. 
x2—-^a?)a?4—fa?3+ y a?2—^a?(a?2 — -fa?-}-1 

xH 1 r3 
hx 

_3.^3 _1_ 11 _1~ 
A.'*' 1 Q A 2X 4 

.3_„3 
4 a?3-f- -fa:2 

x2—-g-a? 
/y*2 1 ryy 

# 



Ex. 7. Divide 

Ex. 8. Divide 

Ex. 9. Divide 
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4a . 3<z 

Tby T' 
a 20 Ans. . 

%/ 

4x-f-2 , 2a?-f-l 

5 by 5x 
Ans. 2a:. 

9a;2 — 3a: x2 

5 by 5' 

9a:—3 
Ans. ---. 

X 

x*-b* 

x2—2bx-\-b2 J x — b 
by 

a:2 4-bx b2 

x 
O <y>2 m 

Ex. 10. Divide —rby 

Ex. 11. Divide—-by 

a3 4 a:3 J x-\-a' 
a—x 

Ans. 

Ans. tf-f- 

2a; 

x2—ax-\-a2 

a-\-x J a2-\-2ax-\-x2' 
Ans. a2-\-2a2x+2ax2-\-xi. 

Ex. 12. Divide a:4— ^-xz-\-x2-{\x—2 by \x—2. 
D O O 

Ans.jx3—^x2J(-l 
4 fif 

CHAPTER III. 

ON 

SIMPLE EQUATIONS, 

INVOLVING ONLY ONE UNKNOWN QUANTITY. 

159. In addition to what has been already said, (Art. 34), 
it may be here observed, that the expression, in algebraic 
symbols, of two equivalent phrases contained in the enuncia¬ 
tion of a question, is called an equation, which, as has been 
remarked by Garnier, differs from an equality, in this, that 
the first comprehends an unknown quantity combined with 
certain known quantities ; whereas the second takes place 
but between quantities that are known. Thus, the expression 

s d 
a = (Art. 102), according to the above remark, is called 

an equality; because the quantities a, s, and d, are supposed 
to be known. And the expression a?4 x — d—s, (Art. 103), is 
called an equation, because the unknown quantity x, is com¬ 
bined with the given quantities d and s. Also, a;—a=0 is an 
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equation which asserts that a?- - a is equal to nothing, and there¬ 
fore, that the positive part of the expression is equal to the ne¬ 
gative part. 

160. A simple equation is that which contains only the first 
power of the unknown quantity, or the unknown quantity 
merely in its simplest form, after the terms of the equation have 
been properly arranged: 

oc oc 
Thus, a?+a=b ; aa?+fot==c; or,—&c. where x de- 

4 3 
notes the unknown quantity, and the other letters, or numbers, 
the known quantities. 

^ I. REDUCTION OF SIMPLE EQUATIONS. 

161 .Any quantity may be transposed from one side of an equa¬ 
tion to the other, by changing its sign. 

Because, in this transposition, the same quantity is merely 
added to or subtracted from each side of the equation; and, 
(Art. 48, 49,) if equals be added to or subtracted from equal 
quantities, the sums or remainders will be equal’. Thus, if x 
+ 5 = 12 ; by subtracting 5 from each side, we shall have 

a?+5— 5 = 12 — 5 ; 
but 5 — 5 = 0, and 12—5 = 7 ; hence #=7. 

Also, if x+a—b—2x ; by subtracting a from each side, we 
shall have 

a?+a—a—b—2x—a ; 
and by adding 2x to each side, we shall have 

a?+a—a-\-2x—b—2x—<z + 2x ; 
but a—a—0, and —2a?+2a? = 0: therefore 

a?+2x — b— a, or 3x—b—a. 
Again, if ax—c = d, and c be added to each side, aa;—c+c 

~d-\-c, or aa? = c?+c. 
Also, if 5a?—7=2a? + 12 ; by subtracting 2a? from each side, 

we shall have 
5x—7—2a?=2a? +12—2 a?, or 3a?—7 = 12 ; 

subtracting —7, or, which is the same thing, adding +7 to each 
side of this last equation, and we shall have 

3a?—7+7 = 12 + 7; 
but 7-7 = 0, .*. 3a?= 19. 

Finally, if a:—a + £=c—2a?+c?, then, by subtracting b from 
each side, we shall have 

a?—a-\-b—b — c—2a?+cZ—b ; 
and adding a+2a? to each side, it becomes 

—— 
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x— a-\-b — bJra-\-2x=c—2x-\-d—b-\-a-\-2x ; 
but a —a—0, b — b — 0, and —2x-j~2x = 0 ; 

therefore, x-\-2x=zc-\-a—b-{-d, or 3x=c-\-a — b~\-d. 
Cor. 1. Hence, if the signs of the terms on each side of 

an equation be changed, the two sides still remain equal; be¬ 
cause in this change every term is transposed : Thus, if —x 
+ 6—c—a — 9-|-a;; then, x—5 + —a—x ; or, which is the 
same thing, by transposing the right-hand side to the left, and 
the reverse, we shall have 9 — a—x — x—b-{-c. 

Cor. 2. Hence, when the known and unknown quantities 
are connected in an equation by the signs -f- or —, they may 
be separated by transposing the known quantities to one side, 
and the unknown to the other. 

Thus,if 3a?—9—a = 12 + &—4.x2 ; then, 4a;23a:=«-j-^ + 21. 
Also, if 3x2—2-\-x~b — 4a:3—3a:4 ; then, 3a:4-j-4a:3T 3a:2+ 

x=b-\-2. 
Hence also, if any quantity be found on both sides of an 

equation, it may be taken away from each ; thus, if x-{-a=a 
+ 5, then x=z5 ; if x — b = c-\-d — b, then x=.c-\-d ; because, 
by adding b to each side, we shall have a:—b-\~b = c-\-d—b-\-b ; 
but b—b — 0, .\x=c-\-d. 

162. If every term on each side of an equation be multiplied by 
the same quantity, the results will be equal: because, in multi¬ 
plying every term on each side by any quantity, the value of 
the whole side is multiplied by that quantity ; and, (Art. 50), 
if equals be multiplied by the same quantity, the products wrili 
be equal. 

Thus, if x=5-{-a, then 6a:=30-f-6a, by multiplying every 
x 

term by 6. And, if-—4, then, multiplying each side by 2, 
Z 

OC X 
we have -x2=4 x2, or a:=8, because, (Art. 155), - x2=ac. 

x 
Also, if - —3=za~b, then, by multiplying every term by 4, 

t: 

we shall have a:—J2—4a~4b. 
3 

Again, if 2a:—--f-l^a:; then, 4a:—3+2=:2a:; and 4a:— 
z 

2x=3—2, or 2a:=l. 
Cor. 1. Hence, an equation of which any part is fraction¬ 

al, may be reduced to an equation expressed in integers, by 
multiplying every term by the denominator of the fraction ; 
but if there be more fractions than one in the given equation, 
it may be so reduced by multiplying every term by the pro¬ 
duct of the denominators, or by the least common multiple of 

10 
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them; and it will be of more advantage, to multiply by the 
least common multiple, as then the equation will be in its 
lowest terms. 

cc cc oc 
Let --f- -+ -=11 > then, if every term be multiplied by 

24, which is the product of all the denominators ; we have 

^X24+^x24+-X24 = ll X24 ; and l2x+8x-{-6x=264 ; 
Z 3 4 
or, if every term of the proposed equation be multiplied by 
12, which is the least common multiple of 2, 3, 4, (Art. 146); 
we shall have 6a?+4o?-l-3a?:=132, an equation in its lowest 
terms. 

Cor. 2. Hence also, if every term on both sides have a 
common divisor, that common divisor may be taken away ; 

■i .(, 3a? a4-6 2a?-j-7 - , . . . . 
thus, if ——1—-—=;—-—, then, multiplying every term by 5, 

o o o 
we shall have 3a?+a4-6=2a?-|-’7', or a? = l—a. 

CLOC t) q 7 i— y* 

-, then multiplying by c, we shall Also, if 

have ax—5-1-3 —7—x. or axf-x — b-\-4. 
163. If every term on each side of an equation be divided by 

the same quantity, the results will be equal: Because, by divid¬ 
ing every term on each side by any quantity, the value of the 
whole side is divided by that quantity; and, (Art. 51), if 
equals be divided by the same quantity, the products will be 
equal. 

Thus, if 6a2-j-3a?=:9 ; then, dividing by 3,2a2-f a?=3. 
Also, if ax2 + bx =.acx; then, dividing every term by the 

ax‘ bx acx 
common multiplier x, we shall have--}-—=—, or aa?-f-& 

x X X 

=ac. 
Cor. 1. Hence, if every term on both sides have a common 

multiplier, that common multiplier may be taken away. 
Thus, if ax-{-ad=ab, then, dividing every term by the com¬ 

mon multiplier a, we shall have x-{-d = b. 
ci'T nh 

Also, if-=—-—; then dividing by the common multi- 

r ' ' r ’ 

CL C 

plier -, or (which is the same thing) multiplying by we shall 
C CL 

have x-\-b — Aax. 
Cor. 2. Also, if each member of the equation have a com¬ 

mon divisor, the equation may be reduced by dividing both 
sides, by that common divisor. 
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Thus, if ax2 — cPx—abx—a2b, or (ax-—a2)x=(ax—a2)b ; then 
it is evident that each side is divisible by ax—a3, whence x—b. 

Again, if x2 — a2=x-{-a ; then, because x2 — a2 — (ac-f-a) 
. (x—a), it is evident that each side is divisible by x-\-a ; and 

£>2_(ft /£ _|_ Q 

hence we have -=—-—, or x—a—1, and £=a+1. 
x-\-a x-{-a 

164. The unknown quantity may be disengaged from a divi¬ 
sor or a coefficient, by multiplying or dividing all the terms of 
the equation by that divisor or coefficient. 

b b 
Thus, if 2£+4=b, then £+2 = - and £=- —2. 

2 2 

x 

x 

Also, let --{-9 = 17 ; then, multiplying by 2, we shall have 
tit 

X2+18=17X2, 

or #-{-18 = 34, .-.£—34—18. 
Again,let ax-\-bx—c—d, or, which is the same, let (a-\-b)x 

=c—d ; then, dividing both sides by a~\-b, the coefficient of 
£, and we shall have 

c—d 
£ = 

a-\-b * 
£ £ 

Finally, let - — ^=c+cZ; then, the equation may be put 

under this form, * ^ 

(a-l)X=C+d' 

and dividing each side by-we shall have £=(c+c?) + 
a b ' ' 

(a ~~ 1) J w^ich may st^ farther reduced, because i — i 

b—a 

ab 
; therefore 

. , 7. b—a 
£=(c+^)“——, 

or x—{c-\-d) x 

ab 
ab 

£=- 

b—a9 
abc-\-abd 

b — a 

165. Any proportion may be converted into an equation; for 
the product of the extremes is equal to the product of the means. 
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Because, if a : b :: x : d; then ^=^, (Art. 24), and .*. 

(Art. 162), ad=zbx, by clearing of fractions. 
Let 3x : 5x : : 2x : 7 ; then 7 X 3a;=2a;X 5#, 

or 21a;=10a:2 : and 21 = 10a;. 
Again, let 5a;+20 : 4a:+4 : : 5 : a?+l ; then, 

(5a;+20) X (a;+1) — 5 X (4a:+4) ; 
or, 5a;2+25a;+ 20=20a;+ 20 ; 

and (Art. 161), 5a;2+25a; = 20a;; 
.*. (Art. 163), 5a;+25=20. 

166. When an unknown quantity enters into, or forms a 
pan of an equation ; and if the equation can be so ordered, 
that the unknown quantity may stand by itself on one side, 
with its simple or first power, and only known quantities on 
the other, the quantity that was before unknown, will then 
become known. 

Thus, suppose 3a:+18 = 5a:—2 ; then, by transposing 3a: 
and —2, we shall have 

18 + 2=5a;—3a;, or 20=2a;; 

i ^ 20 
therefore, cc=—=10. 

Here, in the above equation, the value of the unknown 
quantity x, becomes known, and 10 is the value of x that ful¬ 
fils the condition required, which we can readily see verified, 
by substituting this value of x in the given equation; thus, 

3a; = 3 X 10 = 30, and 5a; = 5 X 10 = 50 ; 
hence, 3a;+18 = 30+18 = 48, and 5a?—2 =50 — 2 = 48 ; 
therefore 10 is the true value of x, which answers the condi¬ 
tion required, and this value of x is called the root of the equa¬ 
tion. 

167. Hence the root of an equation is such a number or 
quantity, as, being substituted for the unknown quantity, will 
make both sides of the equation vanish or equal to each other: 
Thus, in the simple equation 

3a: — 9 + 6=0 ; 
the value of x must be such, that if substituted for it, both 
sides must vanish, because the right-hand side is 0 ; but this 
value is found to be 1, for by transposition 

3 a’=9 — 6=3, 
and dividing by 3, we shall have 

3a: 3 
—=—, or a:= 1 ; 
3 3 

therefore 1 is the root of the given equation, which can be 
easily verified by substituting it for x; thus, 
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3z—9+6 = 3x1—9+6=3—94-6=9—9-0. 
Hence, the value of the unknown quantity being substitu¬ 

ted in the equation, will always reduce it to 0=0. 

§ II. RESOLUTION OF SIMPLE EQUATIONS, 

Involving only one unknown Quantity. 

168- The resolution of simple equations is the disengaging 
of the unknown quantity, in all such expressions, from the 
other quantities with which it is connected; and making it 
stand alone, on one side of the equation, so as to be equal to 
such as are known on the other side, or, which is the same 
thing, the value of the unknown quantity cannot be ascertain¬ 
ed till we transform the given equation, by the addition, sub¬ 
traction, multiplication, or division of equal quantities, so that 
we may fully arrive at the conclusion, 

x=n, 
n being a number, or a formula, which indicates the opera¬ 
tions to be performed upon known numbers. This number 
n being substituted for x in the primitive equation, has the pro¬ 
perty of rendering the first member equal to the second. And 
this value of the unknown quantity, as has been already ob¬ 
served, is called the root of the equation, this word has not 
here the same acceptation as in (Art. 15.) 

169. In the resolution of simple equations, involving only 
one unknown quantity, the following rules, which are dedu¬ 
ced from the Articles in the preceding Section, are to be ob¬ 
served. 

RULE i. 

When the unknown quantity is only connected with known quan¬ 
tities by the signs plus or minus. 

170. Transpose the known quantities to one side of the 
equation, so that the unknown may stand by itself on the 
other ; and then the unknown quantity becomes known. 

Ex. 1. Given a?-j- 8 = 9, to find the value of x. 
By transposition, x = 0 — 8, .•. x=l. 

Ex. 2. Given 3x—4 = 2a:+5, to find the value of x. 
By transposition, 3a;—2a; = 5-|-4, ar=9. 

Ex. 3. Given x-i-a=a+5, to find the value of x. 
By taking a from both sides, we have 

x=z5 ; or by transposition, 
x=a—a-{-5 ; but a— a=z0 .*. x=5, 

10* 
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Ex. 4. Given 9—a?=2, to find the value of a?. 
By changing the signs of all the terms, we have 

—9 + a?= —2, 
by transposition, a?=9—2,a?=7. 

It may be remarked, that it is the general practice of Ana¬ 
lysts, to make the unknown quantity appear on the left-hand 
side of the equation, which is principally the reason for 
changing the signs. 

Ex. 5. Given —b—x=a—c to find x in terms of a, b, and c. 
(161. Cor. 1), by changing the signs of all the terms, we 

have b-\-x=rc—a ; .'. by transposition, a?=c—b — a. 
Ex. 6. Given 2a?— 4 + 7 = 30?—2, to find the value of x. 
(161.) by transposition, 2x—3a? = 4 —7—2, and (161. Cor. 

1), by changing the signs, 3a?—2a? = 7+2—4 ; but 3a?—2a? = 
a?, and 7 + 2—4 = 5; .-. a? = 5. 

Ex. 7. Given 7a?+3—5 = 6a?—2 + 7, to find the value of x. 
Ans. a? = 7. 

Ex. 8. Given 3a?+5—2—2a?—7=0, to find the value of x. 
Ans. a?=4. 

Ex. 9. Given a?—3+4—6=0, to find the value of a?. 
Ans. a?=5. 

Ex. 10. Given 7+a?=2a?+12, to find the value of a?. 
Ans. x——5. 

Ex. 11. Given 12 — 3a?=9—2a?, to find the value of a?. 
Ans. a? = 3. 

Ex. 12. Given a?—a-\-b—c=0, to find the value of x in 
terms of a, b, and c. Ans. a? = a—b-\-c. 

Ex. 13. Given a?—a-\-b=.2a?—2a-\-b, to find the value of x 
in terms of a and b. Ans. x—a. 

Ex. 14. Given 2a?+a=a?+£, to find a? in terms of a and b. 
Ans. x — b—a. 

RULE II. 

171. Transpose the known quantities to one side of the 
equation, and the unknown to the other, as in the last Rule ; 
then, if the unknown quantity has a coefficient, its value may 
be found by dividing each side of the equation by the coeffi¬ 
cient, or by the sum of the coefficients. 

Ex. 1. Given 3a?+9 = 18, to find the value of x. 
By transposition, 3a?=18—9, or 3a?=9 ; dividing both sides 

3a? 9 
of the equation by 3, the coefficient of a?, we have—=-, x 

o o 
= 3. 



SIMPLE EQUATIONS. 103 

Ex. 2. Given 2x—3 = 9—x, to find the value of x. 
By transposition, 2x+x=9-\'3, 

by collecting the terms, 3#=12, 
, ,. . . 3# 12 
by division, —=-—; x=4. 
J 3 3 

Ex. 3. Given 7—4x=3x—7, to find the value of x. 
By transposition, —4x—3x= — 7—7, 

by collecting the terms, —7x= —14, 
by changing the signs, 7a::=14, 

7r 14 
by division, ——— ; /. x—2. j ’ 7 7 

Ex. 4. Given 6o?-)-10 = 3o?-f-22, to find the value of a?. 
By transposition, 6x—3x~22 —10, 

by collecting the terms, 3a:=l2, 
, j . a . 3x 12 . 
by division, —x=4. 

O O 

Ex. 5. Given ax+b—-c to find the value of x in terms of a, 
5, and c. 

By transposition, ax—c—b> 

, ,. . . ax c—b c—b 
by division, ——-; .\x=-. 

a a a 
The value of x is equal to c—b divided by a, which may 

be positive or negative, according as c is greater or less than 
9_5 

b ; thus, if c = 9, b=5, a—2, then x—————2 ; if c—12, bz=: 

12-16 —4 
-2. 16, and <3=2, then, _ 

o £ 

Ex. 6. Given 3a:—4=7a:—16, to find the value of x. 
Ans. x — 3. 

Ex. 7. Given 9—2a;=3a:—6, to find the value of a?. 
Ans. a:=3. 

Ex. 8. Given aa:24* 9a:2+ca:, to find the value of x in 
/.to . c—b 

terms of a, b, &c. Ans. x=z-. 
a—9 

Ex. 9. Given x—9=4a:, to find the value of x. 
Ans. x— —3. 

Ex. 10. Given 5ax—c=zb—3ax, to find the value of x in 

terms of a, b, and c. Ans. x=z —— 
8 a 

Ex. 11. Given 3a:—1 + 9—5a:=:0, to find the value of x. 
Ans. a: = 4. 

Ex. 12. Given ax=ab-—ac, to find the value of x. 
Ans. x—b—c. 
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Ex. 13. Given #2-f-2#=(#4“ «)2> to find the value of #. 

Ans. #=- 
2—2<z 

Ex. 14. Given (#—1)2=#4-1, t0 find the value of #. 
Ans. #=3. 

Ex. 15. Given #34-2#24~#=(#24~3#) X (# —1)4-16, to find 
the value of x. Ans. #=4. 

RULE III. 

172. If in the equation there be any irreducible fractions, in 
which the unknown quantity is concerned, multiply every term 
of the equation by the denominators of the fractions in succes¬ 
sion, or by their least common multiple ; and then proceed ac¬ 
cording to Rules I, and II. 

2 cc 
Ex. 1. Given-\-l—x—9. to find the value of x. 

4 
Multiplying by 4, 2#4-4 = 4#— 36, 
by transposition, 2#—4# =— 36—4, 

by collecting the terms, —2#=—40, 
by changing the signs, 2#=40, 

°x 40 
by division, -= 

Ex. 2. Given ^4-3: 
x 
-, to find the value of #, 

2x , _ „ ^ 2# 
Multiplying by 2, x—-—h G == 10——, 

o 4 

6# 
.by 3, 3#—2#4-18 = 30~- , 

.... by 4, 12#—8#4-72 = 120 — 6#. 
by transposing, and collecting, 10#=48, 

, ,. . . 10# 48 
by division, — =— ; .-. #=4|. 

Or, it is more concise and simple to multiply the equation by 
the least common multiple of the denominators ; because, then 
the equation is reduced to its lowest terms ; thus, 

Multiplying by 12, the least common multiple of 2, 3, and 4, 
we have, 6#—4#4-36 = 60 — 3#, 

by transposition, 5#=24, 
i i. . • 5# 24 .. 
by division, —; .*.#=44. 

cc oc cc 
Ex, 3. Given #—-—1=-4--, to find the value of x. 

q 5 6 
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Here 30 is the least common multiple of 3, 5, and 6 ; 

Multiplying by 30, 30a?---30=—+—, 

30a;—10a?—30 = 6a?+5a?, 
by transposition, 9a;=30, 
, . . 9a? 30 10 
by division,—=—=y; .\a?=3j. 

oc oc 
Ex. 4. Given-—a=~—3, to find the value of a?. 

4 5 
Here 20, the product of 4 and 5, being their least common 

multiple, 
. . . . __ 20a? ^ 20a? 

Multiplying by 20, —-20a——-60, 

5a?—20a=4a?—60, 
by transposition, 5a?—4a? = 20a—60, 

a?=20« — 60. 

Ex. 5. Given ^=^, to find the value of a?. 

Multiplying by 5, 
5ax 5 bx 5x2 a 

5 5 5 
ax—bx=2a, 

by collecting the coefficients, (a—b)x—2a, 

■ 2a 
.*. by division, a?=-r. 

-v a—b 

_ „ 2«a? , 3bx 5a? . „ _ . , , 
Ex. 6. Given-——=-[-3, to find the value oi a?. 

c 2 a 
Here 2<zc, the product of 2, a, and c, being the least common 

multiple, 
Multiplying by 2ac, 4a2a?+3«6ca?=10ca?+6(zc, 
by transposition, and collecting the coefficients, we shall have 

(4<z2+3(2&c—10c)a?=6(2c, 
. ,. . . 6ac 

■•■by division, x=4ai+3abc_1-0(.- 

Ex. 7. Given 3x—x 4—^ to find the va- 
t: O 

iue of a?. 
Multiplying by 12, the least common multiple, 

we have 36a?—3a?+12 — 48=20a? + 56 — 1, 
by transposition, 36a:—3a?—20a?=56 —1 + 48 —12, 

or 13a?=91, 
, . . 13a? 91 
by division, —=— ; .-. a?=7, 
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53 33 
Ex. 8. Given---, to find the value of x. 

5a?+3 14a;—5 
Ans. x~l. 

a;+1 , a;+2 a;+3 _ _ . 
Ex. 9. Given—-—1—— = 16--—, to find the value 

of x. Ans. a;—13. 

Ex. 10. Given --—+^—20—^ ---, to find the value of x. 
2 3 2 

Ans. a;=23j. 
J J ] Q_j; 

Ex. 11. Given aH--—=—-—, to find the value of x. 
3 2 m 

F* 

Ans. £=5. 
^_^ _ 

Ex. 12. Given —-----to find the value of x. 
4 5 

Ans. a;=9. 
_ „ „ , 2a;+6 _ , 11a;—37 „ , . . 
Ex. 13- Given 3a?-j——-—=5-j---, to find the value 

of x. Ans. a?=7. 
6a;—4 18 —4a; 

Ex. 14. Given ————2=— -fa?, to find the value of 
O O 

x. Ans. x=4. 
r, ax—3 6a?+2 2a;—9 £—1 
Ex. 15. Given —--——-—=-—-— --—, to find the 

value of x. 

2 3 

Ans. x— 
87 

106+20—6a 
_ x—1 a;+3 2a;+l a?—3 _ , . 
Ex. 16. Given ————-—=——— --—, to find the va- 

14 
lue of a;. Ans. x=—94. 

RULE iv. 

173. If the unknown quantity be involved in a proportion, 
the proportion must be converted into an equation (Art 165); 
and then proceed to resolve this equation according to the 
foregoing Rules. 

Ex. 1. Given 3a;—2 : 4:: 5a;—9 : 2, to find the value of x. 
Multiplying extremes and means, we have 

2(3a;—2) = 4(5a;—9), 
or 6a;—4 = 20a;—36, 

by transposition, 6x—20a;= — 36+4 ; 
or —14a?— —32, 

by changing the signs, 14a1=32, 
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. .. . . 14a; 32 
by division, y4-=n X: :2f. 

Ex. 2. Given 3a : x : : 6+5 : x—9, to find the value of x.' 
Multiplying extremes and means, we have 

3a . (x—9)=a: . (6 + 5), 
or 3ax—27a=bx-{-5x, 

by transposition, 3ax—bx—bx—27a, 
collecting the coeff’s, (3a—6—5)x=27a, 

, . . 27a 
by division, x=z---— 

3a — o — o 
^_5 2 3 

Ex. 3. Given —-— : #—5 to find the value of x» 
4 3 4’ 

Multiplying extremes and means, we have 

or 

3 /a:—5^ 

4 
3a;—15 2a; —10 

•(=?) =5 •(-«). 

16 3 ’ 
by clearing of fractions, 9a;—45 = 32a;—160, 

by transposition, 9a; —32a;=45—160, 
collecting and changing signs, 23a?=115, 

. . 23a: 115 
by division, —=— ; .\x=5. 

Ex. 4. Given 2a;—3 : a;—1 : : 4a; : 2a;+2, to find the value 
of ar. 

Multiplying extremes and means, we shall have 
(2a;—3) . (2a?+2)=4a;(a'—1), 

or 4a:2—2a;—6 = 4a;2—4a:, 
by transposition, &c., 2a;=6, 

by division, a;=3. 

Ex. 5. Given a+a: : b : : c—a; : d, to find the value of x in 
terms of a, 6, c, and d. 

Multiplying extremes and means, ad-\-dx—bc—bx, 
by transposition, bx-\-dx=bc—ad, 

or (b-\-d)x—bc—ad, 

, ,. . . be —ad 
by division, x 

J b+d 
x_j 3 

Ex. 6. Given ——- : a:+2 : : - : 1, to find the value of x» 
3 4 

x- 1 3a:+6 
Multiplying extremes, &c., _ , 

clearing of fractions, 4a;—4 =9a:+18, 
by transposition, 4a;—9a:=18+4, 
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changing the signs, &c., 5o;= —22, 
22 

.-.by division, x=-— =—4f. 
o 

Ex. 7. Given 2o! — 1 : a:4-1 : : to find the value of x. 
2 4 

Ans. x= — If. 

Ex. 8. Given x4- 3 : a :: b : - to find the value of x. 
x 

a 
Ans. x= 

ab~ 1* 
1 3a; 

Ex. 9. Given - : — : : 5 : 2a;—2, to find the value of x. 
2 4 

Ans. x=— T4T. 
4 3 2x—1 

Ex. 10. Given - : -:: a;—1 : —-—, to find the value of x. 
7 4 4 

Ans. a;=lT43-. 
1 ^4-1 

Ex. 11. Given ——— : : : 6 : 3, to find the value of a;. 
3 a 3 a 

Ans. a;—3. 

§ III. EXAMPLES IN SIMPLE EQUATIONS, 

Involving only one unknown Quantity. 

174. It is necessary to observe that an equation express¬ 
ing but a relation between abstract numbers or quantities, may 
agree with many questions whose enunciations would differ 
from that of the one proposed : but the principles of the reso¬ 
lution of equations being independent of any hypothesis upon 
the nature and magnitude of quantities ; it follows, therefore, 
that the value of the unknown quantity substituted in the 
equation, will always reduce it to 0 = 0, although it may not 
agree with the particular question. This is what will hap¬ 
pen, when the value of the unknown quantity shall be nega¬ 
tive ; for it is evident that when a concrete question is the 
subject of inquiry, it is not a negative quantity which ought 
to be the value of the unknown, or which could satisfy the 
question in the direct sense of the enunciation. 

The negative root can only verify the primitive equation 
of a problem, by changing in it the sign of the unknown ; this 
equation will therefore agree then with a question in which 
the relation of the unknown to the known quantities shall be 
different from that which we had supposed in the first enuncia- 
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tion. We see therefore that the negative roots indicate not an 
absolute impossibility, but only relative to the actual enuncia¬ 
tion of the question. 

The rules of Algebra, therefore, make not only known certain 
contradictions, which may be found in enunciations of problems of 
the first degree ; but they still indicate their rectification, in ren¬ 
dering subtractive certain quantities which we had regarded as 
additive, or additive certain quantities which we had regarded as 
subtractive, or in giving for the unknown quantities, values affect¬ 
ed with the sign —. 

Hence, it follows, that we may regard as forming, properly 
speaking, but one question, those whose enunciations are not 
connected to one another in such a manner, that the solution 
which satisfies one of the enunciations, can, by a simple 
change of the sign, satisfy the other. 

We must nevertheless observe that we can make upon the 
signs and values of the terms of an equation, hypotheses which 
do not agree with the enunciation of a concrete question, whereas 
the change which we will make in this enunciation might be 
always represented by the equation. 

These principles, which will be illustrated by examples, are 
applicable to equations of all degrees, and to determinate equa¬ 
tions containing many unknown quantities. 

The question which conducts to the equation, 
ax-\-b=cx-\-d, 

is not well enunciated for a>c, and b>d, since the first mem¬ 
ber is greater than the second. 

Thus the formula 
d-b 

x—-, 
a—c 

gives for x a negative value ; but by rendering the unknown 
x negative, the equation is changed into the following, 

b—ax—d—cx, 
which is possible under the above relations between a and c, 
b and of, and which gives then for x an absolute value. 

If we have b^>d and cf>a, the two subtractions become im¬ 
possible in the formula 

d-b 
X— -; 

a—c 
but in order to resolve the equation, let us subtract cx + ?> 
from both members, which would be impossible, because that 
cx-\-b is greater than each of the two members : we must 

11 
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therefore, on the contrary, take away ax-\-d from both sides, 
and it becomes 

b—d—cx—ax; 
from whence we deduce 

b-d 
x=-. 

c—a 
This formula compared to the preceding, differs from it in this, 
that the signs of both terms of the fraction are changed. 

We may therefore conclude, that we can operate on negative 
isolated quantities, as we would do if they had been positive. 

These principles will be clearly elucidated, when we come 
to treat of the solutions of Problems producing simple Equa¬ 
tions : we shall now proceed to illustrate the Rules in the pre¬ 
ceding Section, by a variety of practical examples. 

Ex. 1. Given 21-1-==—=—5-1-7,—, to find the 
1 o 8 2 

value of x. 
Multiplying both sides of the equation by 16, the least com¬ 

mon multiple of 16, 8, and 2, we shall have 
336-4-3# —11 = 1 (he—10-}-776 — 56a;; 

/. by transposition, 
3a?-10a?+56a;= 11 —10 + 776—336, 

or 49a?=441 ; 
441 

by division, x: 
49 

.\x~9. 

Ex. 2. Given a?-|--—=12--—, to find the value of x. 
•g O 

Multiplying both sides of the equation by 6, the product of 
2 and 3, which is the least common multiple, we have 

6#+9#—15 = 72—4a?-f-8 ; 
/.by transposition, 6a?-j-9a?4-4a;—72-f-8-j-15, 

or 19a? = 95 ; 
95 

by division, a?=—, /. x=5. 

I11 this example, when the fraction — 
2 a;—4 

19 

, is multiplied 

12a;—24 
by 6, the result is---= —(4a?—8)= — 4a?-f8, or, 

O 

which is the same thing, when the sign — stands before a 
fraction, it may be transformed, so that the sign + may stand 
before it, by changing the sign of every term in the numerator ; 
therefore, we make the above step — 4a?-f-8, and not 4a?—8. 
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_r 

Ex. 3. Given 4#-——=#4---j-24, to find the value 
Z O 

of x. 1 
Multiplying by 10, the least common multiple, and we have, 

40#—5# 4-5 = 10#+4#—4 + 240, 

by transposition, 40#—5#—10#—4#=240—4—5, 
or, 40#—19#=231; 

and 21#=231, 

by division, #=^-, .*. #=11. 
21 

# 
Ex. 4. Given 2#— -+1=5#—2, to find the value of #. 

Z 

Multiplying by 2, we have, 
4#—#+2 = 10#—4, 

.*. by transposition, 4#—#—10#= —4—2, 
or —7#= — 6, 

by changing the signs, 7#=6, g 
.*. by division, #=-. 

Ex. 5. Given 3a#—2bx—3b—a, to find the value of #. 
Here, 3a#—25#=(3a—2b)x, by collecting the coefficients 

of #. Therefore, 
(3a—2b)x—3b— a, 

. i. . . 3b ——a 
by division, 

Ex. 6. Given £#+#=2#+3a, to find the value of #. 
by transposition, &#+#—2#=3a, 

or (b — l)#=3a, 

.*.by division, x=~%-. 
J b—1 

Ex. 7. Given c+y=4#+?^, to find the value of #. 
a b a 

Multiplying by abd, we have, 
3 bdx — abed + adx — 4 abdx+2 abxt 

by transposition, 3bdx-\-adx—4abdx—2abx — abed, 
or (3bd-\-ad — 4abd—2ab) x=abcd, 

. ,. . . abed 

•• bydlvlslon’ 

x x a 
Ex. 8. Given -—-+-=& +c, to find the value of #. 

5 6 6 • 

Multiplying by 30, the product of 5 and 6, the product be* 
comes 
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6#—5#+5a=305+30e; 
by transposition, 6#—5#=30& + 30c—5a, 

and .*. #=306 + 30c—5a. 

Ex. 9. Given—-: 5x—:: 1 : 8, to find the value 
9 

of x. 
Multiplying extremes and means, we have 

96 — 8# _ 14 + # 
.-— 5#-, 

9 3 ’ 
Multiplying by 9, the least common multiple, 

96 — 8#=45#—42 — 3#, 
by transposition, —45#—8# + 3# =—96—42, 

by changing the signs, 45#+8#—3#=96 + 42, 
or 50#= 138, 

, v . . 138 19 
.-.by division, #=-—=2- 

50 25 

^ ax—b , a bx bx — a _ . . , 
Ex. 10. Given'— --o—> t0 find the value 

4 o Z o 

of #. 
Multiplying by 12, the least common multiple of the deno¬ 

minators, and the equation will become, 
3a# — 3b-\-4a—6bx—45#+4a, . . (1), 

by taking away 4a from each member, we shall have 
3a#—3 b — 6bx—4bx=2bx, 

by transposing —3b and 2bx, it becomes 
3a#—2bx=3b, 

by collecting the coefficients of #, we shall have 
(3a—2b)x=3b, 

, . 3b 
by division, #=- 

J 3a—2b 
Ex. 11. Given 2a#+5=3c#+4a, to find the value of #. 

by transposition, 2ax—3c#=4a—b, 
by collecting the coefficients, (2a—3c)#=4a — b, 

, . . 4a—b 
.*. by division, #=-—. 

J 2a —3c 

Ex. 12. Given 19#+13=59—4#, to find the value of #. 
by transposition, 19#+4#=59 —13, 

or, 23#=46 ; 
by division, #=2. 

Ex. 13. Given 3#+4— -=46—2#, to find the value of x. 
O 

Multiplying both sides by 3, 
9# + 12— #=138 — 6#, 
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by transposition, 9*46*—*=138 —12, 
or 14*=126 ; 

126 
by division, *=—.-.*=9. 

14 
Ex. 14. Given x2-\-l5x=z35*—3jj2, to find the value of *. 

Dividing every term by *, 
*4-15 = 35 — 3*, 

by transposition, *43*=35 —15, 
or 4*=20 ; 

x — 5. 

Ex. 15. Given ^—-410=^—-411, to find the value of x. 
o 4 3 2 

Here 12 is the least common multiple of 6, 4, 3, and 2 ; 
.‘.multiplying both sides of the equation by 12, 

2x—3*4120=4*—6*4132 ; 
by transposition, 2*—3*—4*46*=132 —120, 

or 8* — 7*=12 ; 
* = 12. 

—to find the value Ex. 16. Given ^—1+23 
5 

of *. Ans. *=8. 
-p. ,vy r>- 7*45 1644* 3*49 j u 
Ex. 17. Given-—-—■ — -—z--f6 = -—-—, to find the 

value of *. 

Ex. 18. Given 

the value of *. 

Ex. 19. Given *— 

to find the value of *. 

3 

17-3* 

5 

4*42 

2 

:5-6*4 

Ans. *—1. 
7*414 * * 4 
—--, to find 

3*—3 
f4 

20 — * 

2 

T, _ 4*—21 , , 57 — 3* 
Ex. 20. Given——-—J-3JH-——=241 — 

Ans. *=4. 
6* — 8 4*—4 

- 1 - , 

Ans. *=6. 
5* — 96 

11*, to find the value of *. 

Ex. 21. Given —4f— 
1 O 

4 

11—3* 

36~ : 
:5*—48 — 

12 
Ans. *=21. 

13—* 

21—2* 

18 
, to find the value of *. 

_~  a'?—3 bx . 
Ex. 22. Given ax-ab2 = ox 4 

12 

Ans. *=10. 

6bx—5a2 

a 

bx-\-A.a 
, to find the value of *. Ans. *=- 

2 a 
Aab2 — 10a 

4 a—36 4 
11* 
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„ „. 7a?4-16 a;-b8 x , „ , , , „ 
Ex. 23. Given ——---—to find the value of x. 

21 4#—11 3 
Ans. x=8. 

6a;-{-7 , 7a>-13 2a;+4 . , , 
Given—r-f- ——r—=—-—, to find the value Ex. 24. 

of x. 

Ex. 25. Given 

of x. 

Ex. 26. 

9 ' 6a;+3 3 

4a;+3 , lx—29 8x+\9 

bx—12 18 

Ans. a;=4. 

, to find the value 

Ans. x=z6. 
cc 

Given 12—x : - :: 4 : 1, to find the value of x. 

Ans. x=z4. 

Given ■- : ——— : : 7 : 4, to find the value 
2 4 

Ans. x=2. 
Given (2a?4“8)2=4a;2+14a?-fT72, to find the value 

Ans. a=6. 
3a;+4 , _ 22 —a; , . „ _ , , 

Given— -f-2x=— -[-16, to find the value 
5 5 

Ans. x=7. 
7—# . . 3ap—11 . 8a;+15 - , . 

Given —r—[-4=—-—+———, to find the va- 

Ex. 27. 

of X. 

Ex. 28. 
of x. 

Ex. 29. 

of x. 

Ex. 30. 

lue of x. 

Ex. 31. 

2 

x2 . x Sax2 
Ans. a:=3, 

Given , to find the value of x. 

Ans. X— 
1 

3a— 1 

■n /T a?-{-3 12a;+26 „ _ . . 
Ex. 32. Given 2a;---M5=---, to find the value 

of x. 
Ex. 33. 

of X. 

Ex. 34. 

value of x. 

Ex. 35. 

Ex. 36. 

of x. 

3 1 5 
Ans. a?=12. 

Given 5ax—26-f-45a;=2a;-J-5c, to find the value 
. 5c+2b 

Ans- e=5a+4i-a- 
2x — 5 19 —a; 10a;—7 5 a , . 

Given ——j-—-=—g-to find the 

Ans. x=z7. 

Given x— to find the value of a;. 
3 4 

Ans. a:=13. 

Given — ---^"-^=39—5x, to find the value 
o 3 

Ans. a:=9, 
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Ex. 37. Given 4#— 

lue of #. 

Ex. 38. Given- 

value of x. 

19-J-2a: 7#+ll £ j v 
-—15-—;—, to find the va- 

21—3# 4#+6 

3 

5 . 3#- 

~6- 

4 

5#+l 

1 

6 , 4 

7#+3 8#+19 

Ans. #=3. 

, to find the 

Ans. #=3. 

, to find the Ex. 39. Given 7 , , . _. 
8 ' 4 16 8 

* 

Ans. #—7. 
6#+8 5#+3 27—4# 3#-j-9 „ , 

, to find 

value of #. 

Ex. 40. Given 

the value of #. 

Ex. 41. Given #+ 

11 2 3 2 
Ans. x—6. 

27—9# 5#+2_61 2#+5 29+4# 

”12 ~~ 

Ex. 42. Given 

Ex. 43. Given 

:3#- 

3 12 * 
Ans. #=5. 

# 

4 6 
to find the value of #. 

7#—8 . 15#+8__ 31 

TT"+ 13 
value of #. 

5# 1 7# x ^ £n(j the value 

to find the 

Ans. #=9. 

2 10 

10+# 4#—9 

5 

17-4# 

of #. 

Ex. 44. Given 

of x. 

Ex. 45. Given 
4 

the value of #. 

Ex. 46. Given 16#+5 

the value of #. 

7 

15+2# 

3 

4#+14 

9#+31 

Ans. #=3. 

: : 14 : 5, to find the value 

Ans. #=4. 

—2# : : 5 : 4, to find 

Ans. #=3. 

: : 36#+10 : 1, to find 

Ans. #=5. 

Ex. 47. Given 
V 

the value of #. 

4#+ 3 

6#—43 
1 : : 2#+19 : 3#—19, to find 

Ans. #—8. 
7r4-Q 1 Or2_18 

Ex. 48. Given 5#+-;——=9 + ————, to find the va¬ 

lue of #. 

Ex. 49. Given 

4#+3 2#+3 

9#+20 4#—12 x 
Ans. #=3. 

36 5#- 
f-, to find the value of #. 

4 4 
Ans. #=8. 

^ _ 20#+36 , 5#+20 4# , 86 „ , . 
Ex. 50. 0^-^—+^-^=-+-, to find the va- 

lue of x. Ans. #=4. 



116 SIMPLE EQUATIONS. 

^ R1 n. 10*+17 12a?4-2 5a:-4 . 
Ex- 51. Given——-—-7- ——-—, to find the 

18 13a:—16 
value of x. Ans. x=4. 

r? rn r*‘ 18a?—19 , lltf + 21 9a?+15 
Ex. 52. Given——-——r—=———, to find the va- 

28 6a?4-14 14 
lue of x. Ans. x=7. 

Ex. 53. Given °-=ac4-~, to find the value of x. 
ox 0 

Ex. 54. Given 
cx m dx 

Ans. x=z-. 
c 

m 

a 4-bx e 4-fx 
, to find the value of x. 

Ans. x: 
ad—ce 

~tf-bd' 
ace? 

Ex. 55. Given ~—p——P7—\-~-=zkt to find the value of x. 
bx ax Jx hx 

A _adfh-\-bcfh-\-bdeh-\-bdfg 
Ans. --jp*-• 

2 

Ex. 56. Given (6+a:).(S+a:)—-«.(&+c)=:^+a:2, to find 

the value of x. Ans. x= 
ac 

b * 
tt, r- • 3a:—3 3a:—4 , 27+4a? , , 

Ex. 57. Given-— ----—“54——-—, to find the 

value of x. Ans. a:“9. 
KO r<‘ 4a:—34 258 —5a: 69 — x 

Ex. 58. Given——--————-—, to find the va- 
17 

lue of x. Ans. a:=51. 
4a:— 2 2a?4-ll 7 — 8a: _ _ , 

Ex. 59. Given 2a:——77r“=----, to find the 

value of x. 

Ex. 60. Given 

value of x. 

Ex. 61. Given 

13 5 

2a:+l 402—3a? 

29 

3«4-a? 

12 

Ans. a?=7. 
n 471-6a: _ , . 

: 9-—, to find the 
tit 

Ans. x—7'2. 

5=-, to find the value of x. 
x 

Ans. 
3 a—6 

X: 

x 
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CHAPTER IV. 

ON 

THE SOLUTION OF PROBLEMS, 

PRODUCING SIMPLE EQUATIONS. 

175. The solution of a problem is the method of discover¬ 
ing, by analysis, quantities which will answer its several con¬ 
ditions ; for this purpose, there are four things to be distin¬ 
guished : 

I. The given, that is to say, the known quantities, enunci¬ 
ated in the problem, and the quantities that are to be found. 

II. The translation of the problem into algebraic language, 
which is composed of the translation of every distinct condi¬ 
tion that it contains into an algebraic equation. 

III. The resolution of the equations, that is, the series of 
transformations which the immediate translation must under¬ 
go, in order to arrive at an equation containing in the first 
member one unknown quantity alone in its simple state, and 
in the other a formula of operations to be performed upon the 
representations of given numbers. 

IY. Finally, the numerical valuation, or the geometrical 
construction of this formula. 

176. Algebraic problems and their solutions may be con¬ 
sidered as of two kinds, that is, numerical and literal, or par¬ 
ticular and general. In the numerical, or particular method 
of solution, unknown quantities are represented by letters, and 
the known ones by numbers, as in arithmetic. In the literal, 
or general solution, all quantities, known and unknown, are 
represented by letters, and the answers given in general terms. 
A problem solved in this way, furnishes a theorem, which may 
be applied to the solution of all questions of the same kind. 

$1. SOLUTION OF PROBLEMS PRODUCING SIMPLE EQUATIONS, 

Involving only one unknown Quantity. 

177. If from certain quantities which are known, another 
quantity be required which has a given relation to them, let 
the unknown quantity be represented by x ; then, the condi¬ 
tion enunciated in the problem being clearly understood, it can 
be easily translated into an algebraic equation, by means of the 
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signs pointed out in the Introduction. Having now brought 
the question into an algebraic form, the value of the unknown 
quantity can be readily found by the application of the rules 
delivered Chap. III. 

Or, if there be more than one unknown quantity required, 
and that they bear given relations to one another, instead of 
assuming a symbol to represent each of them, it is more con¬ 
venient to assume one only, and from the conditions of the 
problem to deduce expressions for the others in terms of that 
one and known quantities. And as the number of conditions 
ought to be one more than the number of quantities thus ex¬ 
pressed, there will remain one to be translated into an equa¬ 
tion ; from which the value of the unknown quantity may be 
determined as above ; and this being substituted in the other 
expressions, their values also may be discovered. 

Problem I. 

What number is that, to which 17 being added, the sum 
will be 48 ? 

Let the required number be represented by x : 
Then by the problem, #+17 = 48 ; 

by transposition, #=48 — 17 : 
.*. #=31. 

Prob. 2. What number is that, from which a being sub¬ 
tracted, the remainder is 5 ? 

Let # represent the number required. 
Then by the problem x—a=b ; 

by transposition, #=a+5. 
Here, if a = 16, and 5 = 14 ; then #= 16 +14 = 30 ; that is, 

30 is a number, from which 16 being subtracted, the remain¬ 
der is 14. 

Prob. 3. To find a number which, being subtracted from 
a, leaves b for a remainder. 

Designating the unknown number by #, we shall have this 
translation, 

a—#=5, x—a—b. 
178. If we suppose <z=10, 5 = 4, we shall have #=6 ; then 

the subtraction is arithmetically performed. But if we had 
a = 10, 5 = 14, we must subtract 14 from 10, which cannot be 
done except in part, or that with respect to the portion of 14 
equal to 10. 

The excess, in as much as it exists subtractively, will indi¬ 
cate that the number # of which it is the representation must 
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enter negatively in the enunciation where it is already sub¬ 
tracted from the number a, so that the enunciation of the pro¬ 
blem is corrected and brought to these terms : to find a num¬ 
ber which being added to 10, the sum will be 14 ; a problem 
whose translation is, designating the unknown quantity by a?, 

10 + a?=14; .\a?=14 —10=4 ; 
whereas, the translation in the former case would be 

10—a?=14 ; .*. x — 10 — 14, or x=—4. 
The negative root —4, satisfies the equation of the problem, 

besides it announces a rectification in the enunciation ; this is 
what appears evident, since the subtraction of a negative 
quantity is equivalent to the addition of a positive, (Art. 63). 
In fact, as has been already observed, (Art. 174), it makes 
known that the enunciation ought to be taken in an opposite 
sense to that which we first proposed in the problem. 

Prob. 4. A person lends at interest for one year a certain 
capital at 5 per cent; at the end of the year, according to 
agreement, he is to receive a sum 6, besides the principal and 
interest, and the whole sum he receives must be equal to the 
capital. I demand what is the capital ? 

Let the capital be designated by x : 
Since 100 dollars becomes at the end of the year 105 dollars, 

we shall have the capital at the same time by this proportion, 
, ^ ^ 105a? T . , 
100 : 105 :: x : -Jqq-= the capital. 

The sum 
105a? / • 

b, by the problem, must be equal to x, we 
100 

have therefore the equation 
105a? 

105a?-f-1006=100a?; 

by transposition, 5a?= —1006; 
.*. by division, x——20b. 

179. Thus the capital shall be —20b. This answer does 
not agree with the problem, and still if this value —206, be 
substituted for a? in the equation found, we obtain 

105x20b 

100 
f6= — 206, ’ 

and, performing the operations indicated in the first member, it 
becomes 

—206= —206, 
which is true. This value of a?, although it is negative, satis¬ 
fies the equation of the problem, as has been already observed 
(Art. 174), since its two members become identically equal by 
making the proper substitution. 
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If we return again to the enunciation, we discover that it is 
impossible that a capital augmented by the interest would re¬ 
main equal to itself, and that much more this impossibility 
takes place, if, besides the interest, we add to it a sum b ; it 
is necessary therefore that one of these two parts, namely, 
the interest at 5 per cent, and b, be subtracted. 

In fact, if we carry into the first equation this circumstance 
—*, which is but *= — a number, we find 

105 I h 
“To 6x+b= 

■x; .. 105* 

Too" •b — x, 

a translation of the enunciation, by supposing the interest ad¬ 
ditive to the capital, in which case, the sum b ought to be 
subtracted. 

This equation, treated as the preceding, shall give 
*=20 b, 

If the interest at 5 per cent be subtracted from 100, in which 
case 100 reduces itself to 95, we have the capital * at the 
end of the year, by the proportion 

Q5cc 
100 : 95 : : * : the capital, 

consequently, — --}-&=*; 

multiplying by 100, and transposing, we shall have 
100& = 5*, .*. *=20b. 

The negative isolated result, that is, the negative value of 
*, would announce a rectification or a correction in the terms 
of the enunciation, and the problem proposed could be re-es¬ 
tablished in two ways. 

Prob. 5. What number is that, the double of which exceeds 
its half by 6 ? 

Let *= the number ; 
cc 

Then by the problem, 2*— -=6, 
2 
/.multiplying by 2, 4*—* = 12, 

or 3*=12, 
.*. by division, *=4. 

Prob. 6. From two towns which are 187 miles distant, two 
travellers set out at the same time, with an intention of meet¬ 
ing. One of them goes 8 miles, and the other 9 miles a day. 
In how many days will they meet ? 

Let *= the number of days required ; 
then 8*= the number of miles one travelled, 
and 9*= the number the other travelled; 
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and since they meet, they must have travelled together the 
whole distance, 

consequently, 8*-h9*=187, 
or 17* = 187, 

.*. by division, #=11. 

Prob. 7. What number is that, from which 6 being sub¬ 
tracted, and the remainder multiplied by 11, the product will 
be 121 ? 

Let x— the number required ; 
Then by the problem (* —6)xll=:121, 

by transposition, 11#=121 -f 66, 
or 1 l,r=187, 

.-.by division, a?=17. 

Prob. 8. A Gentleman meeting 4 poor persons, distributed 
five shillings amongst them: to the second he gave twice, the 
third thrice, and to the fourth four times as much as to the first. 
What did he give to each ? 

Let x — the pence he gave to the first, 
.*.2* = the pence given to the second, 

and 3a: =.-to the third, 
4a: =.to the fourth. 

.*.by the problem, x + 2x-{-3x-\-4:X=:5 X 12 = 60, 
or 10a: — 60, 

by division, a: = 6, 
and therefore he gave 6,12,18,24 pence respectively to them. 

Prob. 9. A Bookseller sold 10 books at a certain price ; and 
afterwards 15 more at the same rate. Now at the latter time 
he received 35 shillings more than at the former. What did 
he receive for each book ? 

Let x= the price of a book. 
then 10a:= the price of the first set, 

and 15a:= the price of the second set; 
but by the problem, 15a: = 10a:-|-35 ; 

.-.by transposition, 5x = 35; 
and by division, x = 7. 

Prob. 10. A Gentleman dying bequeathed a legacy of 1400 
dollars to three servants. A was to have twice as much as 
B ; and B three times as much as C. What were their re* 
spective shares ? 

Let # = C’s share, 
.*. 3#=B’s share, 

and 6*=A’s share * 
12 
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them by the problem, oc4- 3a?+6#=1400, 
or 10a? = 1400, 

.*.by division, a: = 140 = C’s share. 
.*. A received 840 dollars ; B, 420 dollars ; and C, 140 dol¬ 

lars. 

Prob: 11. There are two numbers whose difference is 15, 
and their sum 59. What are the numbers ? 

As their difference is 15, it is evident that the greater num¬ 
ber must exceed the lesser by 15. 

Let, therefore, x — the lesser number; 
then will a:-}-15 = the greater ; 

.-.by the problem, a:-j-a:-{-15=59, 
or 2a:+15 = 59, 

by transposition, 2a: = 59 —15 = 44, 
.‘.by division, a? = 22 the lesser number, 

and x-fl5=22 + 15 = 37 the greater. 

Pros. 12. What two numbers are those whose difference 
is 9 ; and if three times the greater be added to five times the 
lesser, the sum shall be 35 ? 

Let x= the lesser number; 
then x+9= the greater number. 
And 3 times the greater = 3(a:-j-9) = 3a:-j-~27, 

5 times the lesser —5x. 
by the problem, (3a:-f-27)-}-5a:=35 ; 

by transposition, 3a: + 5a: = 35 — 27, 
or 8a: = 8 ; 

.’.by division, a: = l the lesser number, 
and a:-p9 = l-{-9 = 10 the greater number. 

Prob. 13. What number is that, to which 10 being added, 
|ths of the sum will be 66 ? 

Let x— the number required ; 
then a?-f-10 = the number, with 10 added to it. 

Now jths of . 

But, by the problem, Jths of (a:+10) = 66 ; 
3a:+30 

...—Z——66; 
J 

by multiplication, 3^+30 = 330; 
by transposition, 3a:=300; 

.•. by division, x= 100. 

Prob. 14. What number is that, which being multiplied by 
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6, the product increased by 18, and that sum divided by 9, the 
product shall be 20 ? 

Let #= the number required ; 
then G#= the number multiplied by 6 ; 

6#+18 = the product increased by 18 ; 

and ———= that sum divided by 9, 
%s 

it ii 6#+18 
by the problem, —-—=20 ; 

♦/ 

by multiplication, 6#+18=20x9 ; 
by transposition, 6#=180—18, 

or 6# = 162 ; 
/. by division, #=27. 

Prob. 15. A post is ^-th in the earth, ^ths in the water, and 
13 feet out of the water. What is the length of the post ? 

Let x— the length of the post; 
cc 

then — = the part of it in the earth, 
xJ 

2x 
—= the part of it in the water, 

and 13= the part of it out of the water. 
But by the problem, part in the earth + part in water + 

part out of water = whole part; 

•••©+(7)+”“ 

and - X 35+-= x 35+13X 35 = 35#; 
5 7 

or 7#+15# + 455 = 35# ; 
by transposition, 455 = 35#—7#—15#= 13#, 

or 13#=455 ; 
.*. by division, #=35, length of the post. 

Prob. 16. After paying away 1th and ith of my money, I 
had 850 dollars left. What money had I at first ? 

Let x— the money in my purse at first; 
X X 

then-+-= money paid away, 
o / 

But money at first — money paid away = money remaining; 

by the problem «—^+^ = ^50, 

x x 
or _-= 850. 
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Multiplying by 28, the product of 4 and 7, which is the 
least common multiple, 

and 28x— -A x 28—- X 28 = 850 X 28, 
4 7 

or 28a:—7x—4#=23800, 
.*. 17#=23800 ; and by division, #=1400 dollars. 

Prob. 17. What number is that, whose one half and one 
third, plus 12, shall be equal to itself? 

Let x— the number required ; 

X X 
then, by the problem, #=-+-+12 ; 

£ O 

Now to clear this of fractions, multiply by 6, 
and 6#=3#+2#+72 ; 

by transposition, 6# —5# = 72 ; 
x—72. 

It can be readily proved that 72 is the number required ; 
72 72 

thus, —+—+12 = 36 + 24 + 12 = 72. 
O 

All other problems in this Section may be proved in like 
manner. 

Prob. 18. To find a number, whose half, minus 6, shall be 
equal to its third part, plus 10. 

Let x— the number required ; 
X X 

then by the problem, -—6=-+10, 
^ u 

.•. clearing of fractions, 3# — 36=2#+60, 
by transposition, 3#—2#=60 + 36, 

.*. a? = 96. 

Prob. 19. Two persons, A and B, set out from one place, 
and both go the same road, but A goes a hours before B, and 
travels n miles an hour ; B follows, and travels m miles an 
hour. In how many hours, and in how many miles travel, 
will B overtake A ? 

Let #= the hours that B travelled ; 

then #+a = the hours that A travelled. 

Also mx= the number of miles travelled by B ; 
and n(#+a)=n#+7*a = the miles travelled by A ; 

,*.by the problem, mx—nx-\-na ; 
by transposition, mx — nx—na} 

or (m—n)x—na; 
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by division, 
(m—n)x na 

m—n m—n 
na 

x= •, the hours that B travelled. 

Then x-\-a — 
na 

■a-- 

m—n 
na-\-ma — na ma 

m — n m — n m—n 
■, the hours 

mna 
that A travelled ; and mx —-== the miles travelled. 

m—n 
180. This is a general or literal solution, because m, n, a, 

may be any numbers or quantities taken at pleasure ; for ex¬ 
ample, 

Let a—9, n — 5, and m — 7 ; 
Then, A travels 9 hours at the rate of 5 miles an hour, be¬ 

fore B sets out; and B follows after at the rate of 7 miles an 
hour. 

Now, by putting these values of #, n, and m, in the formula, 
found above ; we have, 

x — —na. — 22i, the hours that B travelled ; 
m — ii 7 — 5 2 2 

, ma 9x7 63 . , 
and #===-=-——rr3l4, the hours travelled by A, 

m—n 7—5 2 J 
And mx—1 x 22j=157^, the miles travelled by each. 

Prob. 20. Four merchants entered into a speculation, for 
which they subscribed 4755 dollars ; of which B paid three 
times as much as A ; C paid as much as A and B ; and D 
paid as much as C and B. What did each pay 1 

Here, if we knew how much A paid, the sura paid by each 
of the rest could be easily ascertained; 

Let, therefore, x~ number of dollars A paid ; 
3x=z number B paid ; 
4#=: number C paid ; 

and 7x= number D paid; 
.*. (#+3£+4#+7aj=:)15;r=4755, 

and #=-317. 
/.they contributed 317, 951, 1268, and 2219 dollars re¬ 

spectively. 

Prob. 21. Let it be required to divide 890 dollars between 
three persons, in such a manner, that the first may have 180 
more than the second, and the second 115 more than the third. 

Here, it is manifest that if the least or third part were 
known, the remaining parts could be easily ascertained ; 
therefore, 

12* 
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Let the least or third part . . = #. 
Then the second part . . . =#+115. 

the greatest ox first part . . =#+115+180. 
But the sum of the three parts . =890. 

3#+115 +115 +180 = 890, 
or 3# + 410 = 890 ; 

.*.by transposition, 3#=890—410, 
or 3# = 480, 

.*.# = 160= least part. 
.•. #+115 = 160 + 115=275= second part, 

and #+115 + 180 = 160+115 + 180 = 455= greatest part. 

Prob. 22. A prize of 2329 dollars was divided between two 
persons A and B, whose shares therein were in proportion of 
5 to 12. What was the share of each ? 

Let 5#=A’s share ; 
then 12#=B’s share ; 

.*. 5#+12#=2329, or 17#=2329 ; 
and #=137 ; 

/.their shares were 685 and 1644 dollars respectively. 

Prob. 23. A fish was caught, whose tail weighed 91bs.; 
his head weighed as much as his tail, and half his body; and 
his body weighed as much as his head and tail. WTliat did the 
fish weigh ? 

Let 2#= the number of lbs. the body weighed ; then 9 + # 
= the weight of the tail; 

.*. 9 + 9 + #=2# ; 
by transposition, #=18 ; 

.’. the fish weighed 36 + 27 + 9 = 72lbs. 

Prob. 24. A hare, 50 of her leaps before a greyhound, 
takes 4 leaps to the greyhound’s three ; but two of the grey¬ 
hound’s leaps are as much as three of the hare’s. How many 
leaps must the greyhound take to catch the hare ? 

Let 3#= the number of leaps the greyhound must take ; 
.*. 4#= the number the hare takes in the same time, 

4#+50= the whole number she takes, 
and 2 : 3 : : 3# : 4#+50 ; 

.*. 9# = 8#+100 ; 
by transposition, #=100, 

and the greyhound must take 300 leaps. 

Prob. 25. The number of soldiers of an army is such, that 
its triple diminished by 1000, is equal to its quadruple aug¬ 
mented by 2000. What is this number ? 
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Let x designate tlie number required ; 
then, we are conducted to this equation, 

3a:— 1000=4^4-2000, whence x~—3000, 
which gives an absurd answer with respect to the terms of the 
question, since that a number of soldiers cannot be negative. 

181. We shall render this impossibility very plain, by ob¬ 
serving that the triple of a number being less than the quadru¬ 
ple of the same number, the triple diminished by 1000 is much 
less than the quadruple augmented by 2000. But by writing 
— a: in the place of -fa: in the equation of the problem, then 
changing the signs of both sides, we find 

3a:-f 1000 = 4a: — 2000 ; .*. a:-3000. 
We can from the equation 

3a:-f 1000 = 4a:—2000, 
re-establish the enunciation of the problem in such a manner 
that there results from the solution an absolute number, that is, 

a:=3000. 
If in place of taking x for the representation of the unknown 

number, we had taken 
3a: — 6000, or x=x/ — 6000 

we should find for the equation 
x' —19000 = 4a:'—22000 ; 
by transposition, 22000 — 19000 = 4a:'— 3a:', 

and x' = 3000 as before. 

A | M | A' 

Thus the value x = — 3000 being represented, on a line, by 
the length A/M, counted from A' towards M, or to the left of 
Af we pass by the substitution x=x/—6000 from the origin 
A/ to the origin A, to the left of A', and distant from A' by 
6000=i2A'M ; then the length AM = a:/ is positive. 

Prou. 26. A Courier sets out from Trenton for Washington, 
and tra vels at the rate of 8 miles an hour ; two hours after his 
departure another Courier sets out after him from New-York, 
supposed to be 68 miles distant from Trenton, and travels at 
the rate of 12 miles an hour. How far must the second Cou¬ 
rier travel before he overtakes the first 1 

N- 
R M 

W 

Let x represent the number of miles which the second Cou¬ 
rier travels before he overtakes the first ; then, by a little at¬ 
tention, we discover that this distance should be equal to the 
distance from New-York to Trenton, or NT=:68 miles, plus 
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the distance travelled by the first Courier in two hours which 
his departure preceded that of the second, together with the 
number of miles which the first travels whilst, the second 
Courier is on route ; that is, NM, or a?=NT + TR + RM. 

Let us translate the two last distances, that is, TR and RM ; 
in the first place, 2 X 8 = 16=TR = the number of miles which 
the first Courier travels before the second sets out; then, in 
order to find an expression for MR ; we shall say, since the 
distances passed over in an hour are as 8 : 12, or 2 : 3 ; as, 2 : 

2x • 
3 :: MR: a:; and consequently MR =—. So that we obtain 

O 

for a translation of the enunciation, 

£C = 68 + 16-f -77-— 84-]—7T 
O O 

by multiplication, 3a:=252 + 2;r; .*. # = 252, 
that is to say, the two Couriers would meet when the second 
shall have travelled 252 miles. In fact, while the second 

2# 
travelled 252 miles, the first, travelled 168 miles ; since — is 

O 

the expression for the number of miles which the first travelled 
while the second was on route ; that is, substituting 252 for x, 

2x_2 X 252 

T— 3~~ 

504 - .. 
---=168 miles. 

O 

Now, the place from whence the first Courier departed, be¬ 
ing 68 miles distant from Nevv-York, besides he has the ad¬ 
vantage of having travelled 16 miles before the other set out. 
Consequently 68 + 16 + 168 must be equal to the number of 
miles which the second Courier travels before they meet; 
that is, 684-16 + 168 = 252. 

We see here an example of verification of the value of the 
unknown ; it is a proof which the student can, and should al¬ 
ways make. 

182. In order to have a general solution of this problem, 
let us therefore represent in general, by a the distance between 
the two places of departure, which was 68 miles in the preced¬ 
ing question, by b the number of hours which the departure of 
the first precedes that of the second, by c the number of miles 
that the first Courier travels per hour, and by d the number 
which the second travels in the same time. Let x= the dis¬ 
tance which the second Courier must travel before they meet; 
then, we shall have the distance travelled by the first Courier 
during the time that the second has been travelling, by calcu¬ 
lating the fourth term of a proportion that commences thus ; 
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7 c X x cx 
d : c :: x : —— or —. 

d d 
The first Courier travelling c miles an hour, he will have tra¬ 

velled cxb miles before the second set out. 
Therefore by the condition of the problem, we shall have 

cx , 7 , 7 d(cb-\-a) 
x— —--)rbc-\-a ; whence x=-^---, 

d d—c 
which gives the solution of all questions of the same kind. 

In order to show the use of this formula, let us resume again 
the preceding enunciation, and by recollecting that we must 
replace a by 68, b by 2, c by 8, and d by 12. 

Then the value of x becomes 

x— ---^^—252 miles as before. 
12 — 6 

Prob. 27. What two numbers are those, whose difference 
is 10, and if 15 be added to their sum, the whole will be 43 ? 

, Ans 9 and 19. 
Prob. 28. What two numbers are those, whose difference 

is 14, and if 9 times the lesser be subtracted from six times the 
greater, the remainder will be 33 ? Ans. 17 and 31. 

Prob. 29. What number is that, which being divided by 6, 
and 2 subtracted from the quotient, the remainder will be 2 ? 

Ans. 24. 
Prob. 30 What two numbers are those, whose difference 

is 14, and the quotient of the greater divided by the lesser 3 1 
Ans. 21 and 7. 

Prob. 31. What two numbers are those, whose sum is 60, 
and the greater is to the lesser as 9 to 3 ? Ans. 45 and 15. 

Prob. 32. What number is that, which being added to 5, 
and also multiplied by 5, the product shall be 4 times the sum ? 

Ans. 20. 
Prob. 33. What number is that, which being multiplied by 

12, and 48 added to the product, the sum shall be 18 times the 
number required ? Ans. 8. 

Prob. 34 What number is that, whose J part exceeds its im¬ 

part by 32 ? Ans. 640. 
Prob. 35. A Captain sends out J of his men, plus 10 ; and 

there remained minus 15 ; how many had he ? Ans. 150. 
Prob. 36. What number is that, from which if 8 be sub¬ 

tracted, three-fourths of the remainder will be 60 ? Ans. 88. 
Prob. 37. What number is that, the treble of which is as 

much above 40, as its half is below 51 ? Ans 26. 
Prob, 38. What number is that, the double of which ex¬ 

ceeds four-fifths of its half by 40 ? Ans 25. 
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Prob. 39. At a certain election, 946 men voted, and the 
candidate chosen had a majority of 558. How many men voted 
for each ? Ans. 194 for one, and 752 for the other. 

Prob. 40. After paying away ^ of my money, and then -1 of 
the remainder, I had 140 dollars left: what had I at first ? 

Ans. 180 dollars. 
Prob. 41. One being asked how old he was, answered, that 

the product of of the years he had lived, being multiplied 
by J of the same, would be his age. What was his age ? 

Ans. 30. 
Prob. 42. After A had lent 10 dollars to B, he wanted 8 

dollars in order to have as much money as B ; and together 
they had 60 dollars. What money had each at first ? 

Ans. A 36 and B 24. 
Prob. 43. Upon measuring the corn produced by a field, 

being 48 bushels ; it appeared that it yielded only one third 
part more than was sown. How much was that ? 

Ans. 36 bushels. 
Prob. 44. A Farmer sold 96 loads of hay to two persons. 

To the first one half, and to the second one fourth of what his 
stack contained. How many loads did that stack contain ? 

Ans. 128 loads. 
Prob. 45. A Draper bought three pieces of cloth, which 

together measured 159 yards. The second piece was 15 yards 
longer than the first, and the third 24 yards longer than the 
second. What was the length of each ? 

Ans. 35, 50 and 74 yards respectively. 
Prob. 46. A cask which held 146 gallons, was filled with 

a mixture of brandy, wine, and water. In it there were 15 
gallons of wine more than there were of brandy, and as much 
water as both wine and brandy. What quantity was there of 
each ? Ans. 29, 44, and 73 gallons respectively. 

Prob. 47. A person employed 4 workmen, to the first of 
whom he gave 2 shillings more than to the second ; to the se¬ 
cond 3 shillings more than to the third ; and to the third 4 
shillings more than to the fourth. Their wages amounted to 
32 shillings. What did each receive ? 

Ans. 12, 10, 7, and 3 shillings respectively. 
Prob. 48. A Father taking his four sons to school, divided 

a certain sum among them. Now the third had 9 shillings 
more than the youngest ; the second 12 shillings more than 
the third ; and the eldest 18 shillings more than the second; 
and the whole sum wras 6 shillings more than 7 times the sum 
which the youngest received. How much had each ? 

Ans. 21, 30, 42, and 60 shillings respectively. 
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Prob. 49. It is required to divide the number 99 into five 
such parts, that the first may exceed the second by 3 ; be less 
than the third by 10 ; greater than the fourth by 9 ; and less 
than the fifth by 16. Ans. 17, 14, 27, 8, and 33. 

Prob. 50. Two persons began to play with equal sums of 
money ; the first lost 14 shillings, the other won 24 shillings, 
and then the second had twice as many shillings as the first. 
What sum had each at first. ? Ans. 52 shillings. 

Prob. 51. A Mercer having cut 19 yards from each of 
three equal pieces of silk, and 17 from another of the same 
length, found that the remnants together were 142 yards. 
What was the length of each piece ? Ans. 54 yards. 

Prob. 52. A Farmer had two flocks of sheep, each con¬ 
taining the same number. From one of these he sells 39, and 
from the other 93 ; and finds just twice as many remaining in 
one as in the other. How many did each flock originally 
contain? Ans. 147 

Prob. 53. A Courier, who travels 60 miles a day, has been 
dispatched five days, when a second is sent to overtake him, 
in order to do which he must travel 75 miles a day. In what 
time will he overtake the former ? Ans. 20 days. 

Prob. 54. A and B trade with equal stocks. In the first 
year A tripled his stock, and had $27 to spare ; B doubled 
his stock, and had $153 to spare. Now the amount of both 
their gains was five times the stock of either. What was 
that ? Ans. 90 dollars. 

Prob. 55. A and B began to trade with equal sums of mo¬ 
ney. In the first year A gained 40 dollars, and B lost 40 ; 
but in the second A lost one-third of what he then had, and B 
gained a sum less by 40 dollars, than twice the sum that A 
had lost; when it appeared that B had twice as much money 
as A. What money did each begin with ? Ans. 320 dollars. 

Prob. 56. A and B being at play, severally cut packs of 
cards, so as to take off more than they left. Now it happened 
that A cut oft' twice as many as B left, and B cut off seven 
times as many as A left. How were the cards cut by each ? 

Ans. A cutoff 48, and B cut off 28 cards. 
Prob. 57. What two numbers are as 2 to 3 ; to each of 

which if 4 be added, the sums will be as 5 to 7 ? 
Ans. IS and 24. 

Prob. 58. A sum of money was divided between two per¬ 
sons, A and B, so that the share of A was to that of B as 5 to 
3 ; and exceeded five-ninths of the whole sum by 50 dollars. 
What was the share of each person ? 

Ans. 450, and 270 dollars. 
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Prob. 59. The joint stock of two partners, whose particu¬ 
lar shares differed by 40 dollars, was to the share of the les¬ 
ser as 14 to 5. Required the shares. 

Ans. the shares are 90 and 50 dollars respectively. 
Prob. 60. A Bankrupt owed to two creditors 1400 dollars ; 

the difference of the debts was to the greater as 4 to 9. What 
were the debts ? Ans. 900, and 500 dollars. 

Prob. 61. Four places are situated in the order of the four 
letters A, B, C, D. The distance from A to D is 34 miles, 
the distance from A to B : distance from C to D : : 2 : 3, and 
one-fourth of the distance from A to B added to half the dis¬ 
tance from C to D, is three times the distance from B to C. 
What are the respective distances 1 

Ans. AB = 12, BC = 4, and CD = 18 miles. 
Prob. 62. A General having lost a battle, found that he had 

only half his army plus 3600 men left, fit for action ; one-eighth 
of his men plus 600 being wounded, and the rest, which were 
one-fifth of the whole army, either slain, taken prisoners, or 
missing. Of how many men did his army consist ? 

Ans. 24000. 
Prob. 63. It is required to divide the number 91 into two 

such parts that the greater being divided by their difference, 
the quotient may be 7. Ans. 49 and 42. 

Prob. 64. A person being asked the hour, answered that it 
was between five and six; and the hour and minute hands 
were together. What was the time 1 

Ans. 5 hours 27 minutes 16^T seconds. 
Prob. 65. Divide the number 49 into two such parts, that 

the greater increased by 6 may be to the less diminished by 
11 as 9 to 2. Ans. 30 and 19. 

Prob. 66. It is required to divide the number 34 into two 
such parts that the difference between the greater and 18, 
shall be to the difference between 18 and the less : : 2 : 3. 

Ans. 22 and 12. 
Prob. 67. What number is that to which if 1, 5, and 13, be 

severally added, the first sum shall be to the second, as the 
second is to the third. Ans. 3. 

Prob. 68. It is required to divide the number 36 into three 
such parts, that one-half of the first, one-third of the second, 
and one-fourth of the third, shall be equal to each other. 

Ans. 8, 12, and 16. 
Prob- 69. Divide the number 116 into four such parts, 

that if the first be increased by 5, the second diminished by 
4, the third multiplied by 3, and the fourth divided by 2, the 
result in each case shall be the same. Ans. 22, 31,9, and 54. 
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Prob. 70. A Shepherd, in time of war, was plundered by a 
party of soldiers who took J of his flock, and ^ of a sheep ; 
another party took from him ^ of what he had left, and ^ of a 
sheep ; then a third party took \ of what now remained, and 
% of a sheep. After which he had but 25 sheep left. How 
many had he at first ? Ans. 103. 

Prob. 71. A Trader maintained himself for 3 years at the 
expense of 50/. a year ; and in each of those years augmented 
that part of his stock which was not so expended by J thereof. 
At the end of the third year his original stock was doubled. 
What was that stock 1 Ans. 740/. 

Prob. 72. In a naval engagement, the number of ships ta¬ 
ken was 7 more, and the number burnt 2 fewer, than the num¬ 
ber sunk. Fifteen escaped, and the fleet consisted of 8 times 
the number sunk. Of how many did the fleet consist 1 

Ans. 32- 
Prob. 73. A cistern is filled in twenty minutes by three 

pipes, one of which conveys 10 gallons more, and the other 5 
gallons less, than the third, per minute. The cistern holds 820 
gallons. How much flows through each pipe in a minute ? 

Ans. 22, 7, and 12 gallons. 
Prob. 74. A sets out from a certain place, and travels at 

the rate of 7 miles in five hours ; and eight hours afterwards 
B sets out from the same place, and travels the same road at 
the rate of 5 miles in three hours. How long, and how far, 
must A travel before he is overtaken by B ? 

Ans. 50 hours, and 70 miles. 
Prob. 75. There are two places, 154 miles distant, from 

which two persons set out at the same time to meet, one tra¬ 
velling at the rate of 3 miles in two hours, and the other at 
the rate of 5 miles in four hours. How long, and how far, did 
each travel before they met ? 

Ans. 56 hours ; and 84, and 70 miles. 

13 
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CHAPTER V. 

ON 

SIMPLE EQUATIONS, 

INVOLVING TWO OR MORE UNKNOWN QUANTITIES. 

183. It has been observed (Art. 159), that an equation was 
the translation into algebraic language of two equivalent 
phrases comprised in the enunciation of a question ; but this 
question may comprehend in it a greater number, and if they 
are well distinguished two by two, and independent of one an¬ 
other, they furnish a certain number of equations. 

Thus, for example, let us propose to find two numbers, such 
that double the first added to the second, gives 24, and that five 
times the first, plus three times the second, make 65. We find 
here two phrases, which express the same thing in different 
terms ; 1st, the double of an unknown number, plus another un¬ 
known number, then the equivalent 24 ; 2d, five times the first un¬ 
known number, plus three times the second, then the equivalent 65. 

The translation is easy, and it gives these two determinate 
equations : 

2x-j-y = 24 ; 5#-f 3y=65. 
When two or more equations, involving as many unknown 

quantities, are independent of one another, they are called de¬ 
terminate. But if for the second of these two conditions we 
had substituted this : and such that six tunes the first number, 
plus three times the second, make 72 ; these two phrases ex¬ 
press nothing more than the first two, since that we have only 
tripled two equal results ; we should have but one translation, 
and consequently a single equation. It can therefore happen 
that we may have less equations than unknown quantities, 
and then the question is said to be indeterminate ; because the 
number of conditions would be insufficient for the determina¬ 
tion of the unknown quantities, as we shall see clearly illus¬ 
trated in the following section. 

$ I. ELIMINATION OF UNKNOWN QUANTITIES FROM ANY NUM¬ 

BER OF SIMPLE EQUATIONS. 

184. Elimination is the method of exterminating all the un¬ 
known quantities, except one, from two, three, or more given 
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equations, in order to reduce them to a single, or final equa¬ 
tion, which shall contain only the remaining unknown, and 
certain known quantities. 

185. In order to simplify the calculations, by avoiding frac¬ 
tions, we shall here make use ofliteral equations, which will 
modify the process of elimination : And also, to avoid the in¬ 
convenience arising from the multitude of letters which must 
be employed in order to represent the given quantities, when 
the number of equations involving as many unknown quanti¬ 
ties surpasses two, we shall represent by the same letter all 
the coefficients of the same unknown quantity; but we shall 
affect them with one or more accents, in order to distinguish 
them, according to the number of equations. 

186. In the first place, any two simple equations, each in¬ 
volving the same two unknown quantities, may, in general, be 
written thus: 

ax-{-by=zc.(A), 
a'x+b'y=zc'.(B). 

The coefficients of the unknown quantity x are represent¬ 
ed both by a ; those of y by b ; but the accent, by which the 
letters of the second equation are affected, shows that we do 
not regard them as having the same value as their correspond¬ 
ents in the first. Thus o' is a quantity different from a, b' a 
quantity different from b. 

187. We can readily see, by a few examples, how any two 
simple equations, each involving the same two unknown quan¬ 
tities, may be reduced to the above form. 

Ex. 1. Let the two simple equations, 

5x4-3 y — 5—y—2a;+ 7, 
Qx-2y-\-3 — x—7y+16, 

be reduced to the form of equations (A) and (B). 
By transposition, these equations become 

5x-{-3 y—y-\-2x—l-\-5, 
9x —2y—x-{-7y~\§— 3 ; 

by reduction, we shall have 
7x4-2y=12, 

8x4-5y=13 ; 
equations which are reduced to the form of (A) and (B), and 
which may be expressed under the form of the same literal 
equations, by substituting a, b, and c, for 7, 2, and 12 ; and 
a', b', and c\ for 8, 5, and 13. 

Ex. 2. Let the two simple equations, 
mx-\-6y — 7 =px—2y4~3, 

rx — 9y4-6 = 3y — 3x4-12, 
be reduced to the form of equations (A) and (B). 
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By transposition, these equations become 
mx-\-6y— px-\~2y=z3-\-7, 
rx — 9y — 3y-\-3x=.\2—6 ; 

by reduction, we shall have 
(m—p)x-\- 8y = 10, 
(r-p3)a:— 12y = 6 ; 

which are reduced to the form required, and which may be 
expressed under the form of the same literal equations, by 
substituting a for m—p, b for 8, c for 10, a■ for r+3, V for 
—12, and c' for 6. 

In like manner any two simple equations may be reduced to 
the form of equations (A) and (B) ; hence we may conclude 
that a, b, c, a/ b\ and c', may be any given numbers or quan¬ 
tities whatever, positive or negative, integral or fractional. 

It is to be always understood, that when we make use of 
the same letters, marked with different accents, they express 
different quantities. Thus, in the following equations, <z, a\ 
a", are three different quantities ; and the same of others. 

188. Any three simple equations, each involving the same 
three unknown quantities, may be expressed thus ; 

ax-\-by-\-cz — d . . . . (C), 
ax-\-b'y-\-c'z—d/ . . . (D), 
a"x-\-b"y~\-c//z~d'/ . . (E) ; 

where «, b, c, d, a\ b', c'd', a", b'\ c", d", are known quanti¬ 
ties ; and x, y, z, unknown quantities whose values may be 
found in terms of the known quantities. 

In like manner, any four simple equations maybe expressed 
thus ; 

ax-\-hy-\-cz-\-du — e .... (F), 
a! x-\-b'y-\-c'z-\-d'u — e' . . . (G), 
a'/x-\-b"y-\-c,,x-\-d"u — e// . . (H), 

b"'y-f-c"'z-j-d'"u — e'" . . (I) ; 
And so on for five, or more simple equations. 
189. Analysts make use of various methods of eliminating 

unknown quantities from any number of equations, so as to 
have a final equation containing only one of the unknown 
quantities ; some of which are only applicable in particular 
cases; but the most general methods of exterminating un¬ 
known quantities in simple equations, are the following. 

FIRST METHOD. 

190. Let us consider, in the first place, the equations, 
ax-\-by — c . . . (A), 
a'x-\-b'y — c'. . . (B). 
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It is evident that if one of the unknown quantities, x, for 
example, had the same coefficient in the two equations, it 
would be sufficient to subtract one from the other, in order 
to exterminate this unknown : Let, for example, the equa¬ 
tions be 

10*+lly=27, 

10a:+ 9y=z\5 ; 
if the second be subtracted from the first, we shall have 

lly — 9y=27 —15, or 2y=12. 
It is very plain, that we can immediately render the coeffi¬ 

cients of x equal, in the equations (A) and (B) ; 
By multiplying the two members of the first by athe co¬ 

efficient of x in the second ; and the two members of the se¬ 
cond by «, the coefficient of x in the first; we shall thus ob¬ 
tain, 

a! ax-\-dby — a'c ; 
adx-\-ab'y—ac 

Subtracting the first of these from the second, the unknown 
x will disappear, we shall have only 

(ab' — db)y=ac'—a'c, 
an equation which contains no more than the unknown quan¬ 
tity y, and we will deduce from it 

ad—a c 

y= ab’-cTb ' ' ' 
By eliminating in the same manner the unknown quantity 

y, from the proposed equations; we would arrive at the equa¬ 
tion 

(ab'—a'b)x~b'c—bd; 
from which we will deduce 

b'c — bd 
x= (»)• ab'—a'b 

191. The process which we have just employed, may be 
applied to all simple equations, for exterminating any number 
whatever of unknown quantities. 

If we apply this process to three equations, involving x, y, 
and 0, we will at first eliminate x between the first and se¬ 
cond ; then between the second and third ; and we shall 
thus arrive at two equations, which involve only y and 0, and 
between which we will afterward eliminate y, as in the preced¬ 
ing article. 

If we effect the equation in 0, at, which we will arrive, we 
snail have a factor too much in all its terms ; and consequent¬ 
ly it will not be the most simple which might be obtained. 

13* 



138 SIMPLE EQUATIONS. 

SECOND METHOD. 

192. Let us resume again the equations, 
(A) . . ax-\-by—c ; a'x-\-b'y—c' . . . (B) : 
If we find the value of x in terms of y and the known quan¬ 

tities in each of these equations, we shall have 

y. c — by c'• 
J /y» ■- - . 

M-- t CV - 5 

a a' 
the equality of the second members, furnishes the equation 

c — by c' — b'y 
— ; > 

a a 
which, by making proper reductions, gives 

ac/ — a'c 

^ ah'—a'b ’ 
by substituting this value for y, in one of the values of x, we 
shall, after the reductions, have 

b'c—be' 
ry\ . _________ • 

ah'—a'b ’ 

These values of x and y are the same as before. 
Now, it is evident, that by proceeding in the same manner, 

with three equations containing x, y, and z, we will find the 
value of x in each of them, then by comparing these values, 
we shall arrive at two equations, involving only y and from 
which we can eliminate y, as in equations (A) and(B). And, 
we can proceed, in a similar manner, when there are four equa¬ 
tions with four unknown quantities ; and so on, for five, or more 
equations. 

THIRD METHOD. 

193. Now, if in the equation (A), we find the value of x, in 
terms of y and the given quantities, we shall have 

e—by 
x~- 

a 
by substituting this value in equation (B), we shall have 

c—by 
a'X -— -\-b'y=c', 

a 
which, by reduction, becomes 

/ /7x , ac'—a'c 
(ab -a b)y=ac'-a c, y=ab/~^ 5 

this value being substituted for y in the above value of #, after 
making the proper reductions, we shall obtain 

b'c—be' 
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These values of x and y are the same as in the two former 
instances. 

194. We might eliminate in like manner, when any num¬ 
ber of simple equations are concerned ; thus, for example : 
Let it be required to deduce from the three equations, (C), (D), 
and (E), (Art. 188), a single equation involving only the un¬ 
known quantity z. 

By finding the value of x in each of these equations, in 
terms of y, z, and the given quantities, we shall have 

d—by—cz 
' • • 

a 
d'-b'y-c'z 

X: 

X— 
a 

(1) ; 

(2) ; 
dr/ — b/fy—c'z 

x=. 
a 

(3); 
Putting the first value of a? equal to the second, and also 

equal to the third, we shall have these two equations, 
d—by — cz d'—b'y — c'z 

a a' ’ 
d—by — cz d'r—V'y—c"z 

a a 
From which we deduce, by reduction and proceeding as in 

equations (A) and (B), 
(a! c—ac')z-\-ad/—a'd 

V--Jr—n.-• • • (4); 

y 

ab'—a'b 
(a" c — ac')z-\-ad"—a"d 

(5). 
ab"-a"h 

The equality of the second members furnishes the equation 
(a c — ac)z-\-ad'—ad (a'c — ac/')z-f-ad" — a'd 

ab'—a'b ab"— a'b 
which, by proper reductions, will give the value of z : having 
obtained the value of 0, substitute it in equation (4) or (5), 
and the value of y can be readily found. 

Now, the values of y and z being known, by substituting 
them in the equation (1), (2), or (3) ; we shall easily obtain 
the value of x. 

FOURTH METHOD. 

195. Let, as before, the two equations be 
(A) . . . ax-\rby — c ; a'x-\~Vy=.c' . . . (B). 

Multiplying equation (A) by some indeterminate quantity 
m, it will become 

amx-\-bmy=.mc; 
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and subtracting from this result equation (B), we shall have 
{am— a')x-\-{bm—b')y—cm — c . . . (6). 

And since the value of m, in this equation, is indeterminate, 
b' 

we can take bm—b'=0, or m—T; in which case the second 

term will disappear, we shall have 
V , 

£ X , -t' c 
cm—c' b _cb'— be' 

x~-; —' 
am — a ’ b' 

aX-r 
b 

ab'—a'b ’ 
■a 

which is the same value of x, as before. 
Also, as the value of x, thus found, is independent of that 

a 
of m, we can now take am —a' or m=— ; according to which 

a 
supposition the term involving x will vanish, and the result 
will give 

ca'—acr 

^ ba'—ab' 
By changing the signs of the numerator and denominator 

(Art. 128) of this value, its denominator will be the same as 
that of x, since we shall have, 

ac'—a'c 

^ ab'—ba' ’ . 
which is the same value of y as in each of the preceding 
methods. 

This method, given by Bezout, is very simple for elimi¬ 
nating all the unknown quantities, except one ; besides, it has 
the advantage of greater brevity above the preceding methods, 
as we can deduce the values of each of the unknown quanti¬ 
ties from the same equation. 

§ II. RESOLUTION OF SIMPLE EQUATIONS, 

Involving two unknown Quantities. 

196. When there are two independent simple equations, in¬ 
volving two unknown quantities, the value of each of them 
may be found by any of the following practical rules, which 
are easily deduced from the Articles in the preceding Section. 

RULE i. 

197. Multiply the first equation by the coefficient of one of 
the unknown quantities in the second equation, and the se- 
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cond equation by the coefficient of the same unknown quan¬ 
tity in the first. If the signs of the term involving the un¬ 
known quantity be alike in both, subtract one equation from 
the other ; if unlike, add them together, and an equation arises 
in which only one unknown quantity is found. 

Having obtained the value of the unknown quantity from 
this equation, the other may be determined by substituting in 
either equation the value of the quantity found, and thus re¬ 
ducing the equation to one which contains only the other un¬ 
known quantity. 

Or, multiply or divide the given equations by such numbers, 
or quantities, as will make the term that contains one of the un¬ 
known quantities the same in each equation, and then proceed 
as before. 

Ex. 1. Given | 5*^2^-" It)5 ^ t0 ^le va^ueso^x an(^y* 

Multiply the 1st equation by 5, then 10x-|-15y = 115 ; 
2nd . . . . 2, . . 10a?— 4y = 20; 

by subtraction, 19y=95, 

by division, y — 
95 

19’ 

Now, from the first of the preceding equations, we shall have 

23 
x—- ■3v / • *n23 —=(since y—5) — 

-15 8 , 

2-=2=4- 

The values of x and y might be found in a similar manner, 
thus: 

Multiply the 1st equation by 2, then 4a?-}-6y=46 ; 
2nd.3, . 15a?—6y =30; 

.*. by addition, 19a?=76, 

by division, a?=^=4. 

Now, from the first of the preceding equations, we shall 

, 23 —2a? , . 23 — 8 15 e 
have y——  =(since a?=4) —-—=—=5. 

o o o 

Ex. 2. Given | 12^ — 48’ \ t0 ^le va*ues x 

and y. 
Multiply the 1st equation by 6, then 24a?'-|-54y=210; 

2nd .... 4, . 24a?+48y = 192; 

/. by subtraction, 6y= 18, 
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by division, y=~=z3. 

Now, from the first of the preceding equations, we shall 
, 35 — 9y , . 35-9x3 35-27 
have x=—-—-=(since y=3)---=—-—, 

4 v J ' 4 4 
8 

or x=~, /. x—2 
4 

The values of x and y may be found thus ; 
Multiply the 1st equation by 3, then 12a?+27y = 105 ; 

2nd ... 2, . 12;r + 24y= 96; 

.*. by subtraction, 3y=9, 
9 

by division, y=-=3. 
O 

35-27 8 
And x=---=-=2. 

4 2 
The numbers 3 and 2, by which we multiplied the given 

equations, are found thus ; 
The product of two numbers or quantities, divided by their 

greatest common measure, will give their least common mul¬ 
tiple. 

6x4 
—-—=12 the least common multiple, 

12 
Then—= 3, the number by which the first equation is 

12 
multiplied ; and —=2, the number by which the second equa¬ 

tion is multiplied. 
By proceeding in a similar manner with other equations, 

the final equation will be always reduced to its lowest terms. 

Ex. 3. Given | gy’ ^ 10 fiud ^ie values of 

and y. 
Multiply the 2nd equation by 5, then 15a:-|-35y=335; 

1st , i . 3, . 15a?-{- 12y—174; 

/.by subtraction, 23y=161, 

a 161 * andy=--=7; 

whence, 5a?=58—4y=58—28 = 30, 

, 30 
and /. x=-z-=b. 

5 

x 
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If the second equation had beeri multiplied by 4, and sub¬ 
tracted from the first when multiplied by 7, an equation would 
have arisen involving only #, the value of which might be de¬ 
termined, and thence, by substitution, the value of y. 

Ex. 4. Given | 5#_6y ——10* ^ t0 ^ie va^ues °f x 

and y. 

Multiply the first equation by 3, 
18#—6y= 42 ; 

but 5#—6y =—10 ; 

.-.by subtraction, 13#=52, and #=4, 
. 5#+10 20+10 30 _ 

whence y=--—=--—=—=5. 
6 6 

198. These values being substituted in the place of x and 
y in each of the equations, shall render both members iden¬ 
tically equal, or, what is the same thing, each of the equations 
will reduce to 0 = 0. 

Thus, by substituting 4 for #, and 5 for y, in the above 
equations, they become 

6x4— 2X5= 14,) ( 14= 14;) 
5x4 — 6X5 = —10 ; > 01 ( -10 = —10. $ 
Therefore, by transposition, 

14 — 14 = 0, or 0 = 0 ; 
and —10 + 10 = 0, or 0 = 0. 

Since (Art. 56) 14 —14 = 0, and 10 —10=0. 

If these conditions do not take place, it is evident that there 
must be an error in the calculation: therefore, the student, 
whenever he has any doubt respecting the answer, should al¬ 
ways make similar substitutions. 

Ex. 5. Given \ lltf+%—100, > tQ £n(j values of x 
( 4x—7y = 4, S 

and y. 
Mult, the 1st equation by 7, then 77#+21y=700, 

2d . . . 3, . 12#—21y = 12; 

by addition, 89#=712, 
712 

by division, ; 

and .*. #=8 ; 
whence 3y—100 —11 #=100 —11 X 8=100 — 88=12 ; 
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Ex. 6. Given 
-+7y = 99, 5 

(j|+7*=51, 

Multiply each equation by 7, 
#-{-49y=693, 

and y-{-49#=357; 

to find the values of # and y 

by addition 50#+50y = 1050, 
1050 

and by division, #+y=- 
50 

=21 ; 

but since #-{-49y=693, 

subtracting the upper equation from the lower, 
we have 48y=693—21 =672, 

_672_-m 

48 ~14, 
whence #=21 —y=21 — 14=7. 

to find the values of x 
and y. 

Clearing the first equation of fractions, 
#-f2-t~24y = 93 ; 

by transposition, #-f24y=91 . . . (1) 
Clearing the second equation of fractions, 

y-{-5-{-40# = 768 ; 
by transposition, 40#-f-y=763 . . . (2). 

Multiplying equation (1) by 40, and subtracting equation 
(2) from it, 

40#-}-960y=3640 ; 
40#— y = 763 ; 

Ex. 7. Given 

#-{-2 

3 
y-f-5 

f 8y= 31, 

f 10#=192, 

/. 959y=2877, 
and by division, y=3 ; 

From equation (1), # = 91-— 24y, 
by substitution, #=9l—24x3, 

or #=91—72, .*.#=19. 
If from equation (2), multiplied by 24, equation (1) had 

been subtracted, an equation would have arisen involving only 
#, the value of which might be determined, and this being sub¬ 
stituted in either of the equations, the value of y might also 
be found. 
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Ex. 8. Given ^ ^ to find the values of x and y. 

By addition, 2x=za-\-b ; 

By subtraction, 2y=a—b, .-.y — 

a-j-b 
l ——■ • 

2 
a — b 

Ex. 9. Given | —^4* ^ t0l^eva^ues of* andy 

Multiply the 1st equation by 2, then #+4y=24 • 
2nd .... 2, . x — 4y= 8 ; 

by addition, 2x=32, 
32 

.*. by division, #=— = 16. 

By subtraction, 8y = 16 ; 
.*. by division, y = 2. 

Or, the values of x and y may be found thus : 
From the first equation subtract the second, and we have 

4y — 8, y — 2. 
Add the first equation to the second, 

and .*. #=16. 
Ex. 10. Given 4#-f-3y=31, and 3#-f-2y=22 ; to find the 

values of x and y. Ans. #=4, y = 5. 
Ex. 11. Given 5x—4y = 19, and 4#-f2y = 36, to find the 

values of x and y. Ans. # = 7, y = 4. 

Ex. 12. Given ——2y=2, and —~+y=^ ; to find 

the values of x and y. 

Ex. 13. Given——-+14 = 18, 
2 

and^+16^19, 

5 1 J 5 
Ans. #=11, y = l. 

to find the values of x 
and y. 

Ex. 14. Given-}-^=8, 
o o 

^a7V~3x _II 

Ans. #=5, and y= 2. 

to find the values of x 

and y. 
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Ex. 15. Given 3#-j-7^=22, 
2 
2r 

and 11?/———20, 
J 5 

to find the values of x and y. 

to find the values 

Ans. x=5, and y—2. 
Ex. 16. Given #-{-1 : y :: 5:3, 1 

, 2x 5—v 41 2a?—1 > 
and 

of x and y. 

Ex. 17. Given 

and 

3 2 12 4 ’ ' 

Ans. a:—4, and y = 3. 
x—2 1 

1 0
 

r—i _y-10 ^ 

5 
2y + 4 

3 
2x-\-y 

4 ’ f 
^^23 / t0 find. l^e values 

3 8 “ “ 4 3 
of x and y. 

Ans. x=7, and y = 10. 

Ex. 18. Given Jc-j- ^^y~53, l to find the values of# and y. 
and y+ 3a:=:27, ) y 

Ans. £c = 8, and y—3. 

to find the values of x and y. 

Ans. a?=6, and y—3. 

Ex. 19. Given 4«+ 9y=51, 
and 8a:- 

1 

?+ 9y = 51, > 
:—13y= 9, $ 

Ex. 20. Given ^+7=6, 
o 4 

and 1+6=5J’ 
to find the values of x and y. 

Ans. x—12, and y=16. 

RULE II. 

199. Find the value of one of the unknown quantities in 
terms of the other and known quantities, in the more simple 
of the two equations ; and substitute this value instead of the 
quantity itself in the other equation ; thus an equation is ob¬ 
tained, in which there is only one unknown quantity ; the va¬ 
lue of which may be found as in the last Rule. 

Ex. 1. Given | ^ \ t0 va^ues ^ an(^ y* 

From the first equation, x — 17—2y ; 
Substituting therefore this value of x in the second equatioil, 

3.(17—2y)— y=2, 
or 51 —6y—y —2 ; 

by changing the signs, and transposing; 



SIMPLE EQUATIONS. 147 

7y = 51 —2 = 49, 
.\ by division, y~7 ; 

whence x — 17 — 2y = 17 —14 = 3. 

Here a value of y might be determined from either equa¬ 
tion, and substituted in the other; from which would arise an 
equation involving only oc, the value of which might be found ; 
and therefore the value of y also might be obtained by sub¬ 
stitution, thus ; 

From the second equation, y — 3x —2 ; substituting there¬ 
fore this value of y in the first equation ; we have, 

x+2 . (3x—2) = 17, 
or as-}-6 a;— 4 = 17 ; 

.‘.by transposition, 7#=17-{~4=21 

by division, a?=™, .*.#=3 ; 

and .•. y — 3x— 2 = 3x3—2 = 9—2=7, 

Ex. 2. Given \ , \ to find the values of 
* 5a:-l-10 = 78 + y, $ 

and y. 
From the first equation, y=60— 3a; ; 
Let the value of y be substituted in the second equation, 

and it becomes, 
5a;+10=78 + (60-3a;). 

Then, by transposition, 8^=78-1-60 —10 ; 

x 

128 
= 16. and by division, x — 

Whence, y = 60— 3x=60 — 3 x 16 = 60—48 ; 

x-\-y 

Ex. 3. Given 

.*. y=12. 

to find the values of x 
and y. 

Mult, the 1st equation by 3, then 
rc + y = 198 — 6y . . . (1) , 

2nd by 3, then x—y=186 — 6a; . . . (2) 
From equation (1), we have a? = 198—7y 

(2),.7x—y = 186 
By substituting the above value of x, in the last equation, it 

becomes 
7(198- 7y)-y=186, 

or, 1386 — 49y—y = 186; 
by transposition, —50y=186 —1386 = —1200, 

by changing the signs, 50y = 1200, 
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. 1200 
. . by division, ?/ = ■■■ --=24. 

J *50 

Whence, *=198-7y=198—7x'24 = 198 —168, 
.*. *=30. 

Ex. 4. Given ^ ^ p^Ugg’ | t0 find the values of* and y* 

From the second equation, *=60—y: 
By substituting this value of * in the 1st equation, we have, 

60—y-j- 2y = 80, 
by transposition, y=80 —60, 

.*• y=20. 
And *=60— y= (by substitution) 60—20, 

.-. * = 40. 

Ex. 5. Given | — ^2* j t0 va^ues of * and y. 

From the 1st equation, *=17—2y. 
And this value substituted in the second, 

3(17—2y)—y=2, 
or 51 —6y —y = 2, 

by transposition, &c., 7y=49, 
.-. by division, y=7, 

whence, * = 17—2y = 17—2x7 = 17 —14, 
y=3. 

l ^ —1 - ^ i 

Ex. 6. Given < 9 ? Uto find the values of * and y. 
d —y4 = 5, ) y 

From the first equation, * = 5 —y, 
squaring both sides, *2 = (5—y)2. 

And by substituting this value for *3 in the second equa¬ 
tion, it becomes, 

(5-y)2—y2 = 5, 
by reduction, 25—10y=5, 

by transposition, 10y = 20/ 
.-. by division, y=2. 

Whence, *=5—y = 5 —2 = 3. 
^ \ 

194, / t0 gng va]ues 0f x 

and y. 
i-j-8*=131, \ 

Ex. 7. Given 

Multiplying the first equation by 8, 
*-f-64y= 1552, 

by transposition, *=1552 — 64y. 

And substituting this value for *, in the second equation, it 
becomes, 
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|+8(1552 —64y) = 131, 

by reduction, y+99328 —4096y = 1048, 
by transposition, 4095y = 98280, 

, ,. . . 98280 
by division, y=—--- 

.\y = 24. 
Whence a=1552—64y=1552 — 64x24, 

or a=1552—1536 ; 
.*. x~\ 6. 

The value of y might be found from the second equation, in 
terms of a and the known quantities ; which value of y substi¬ 
tuted for it in the first, an equation would arise involving only 
x, the value of which might be found ; and therefore the value 
of y also may be obtained by substitution. 

Ex. 8. Given ^—27, and ———=6, to find the va- 
3 4 

lues of x and y. 
Ans. x=9, and y — 6. 

Ex. 9. Given 15y+45a=300, and a+15y=36, to find the 
values of a and y. 

Ans. #=6, and y—2. 
Ex. 10. Given 3a+yrr:60, and 5a+10=78 + y, to find the 

values of x and y. Ans. a:—16, and y—12. 
Ex. 11. Given 10a1 — 3y=38, and 3a—y = ll, to find the 

the values of a and y. Ans. a —5, and y — 4. 
Ex. 12. Given a+y=198 — 6y, and a—y = 186 —6a, to find 

the values of a and y. Ans. a=30, and y—24. 

Ex. 13. Given ^+y —26, and ^+8a = 131, to find the va¬ 

lues of a and y. Ans. a=16, and y—24. 

Ex. 14. Given ^+|—7, and ~+|=8, to find the values of 

a and y. Ans. a —6, and y —12. 
Ex. 15. Given 4a+y = 34, and 4y + a —16, to find the va¬ 

lues of a and y. Ans. x—.8, and y—2. 
Ex. 16. Given 3a+2y=54, and a : y :: 4 : 3, to find the 

values of a and y. Ans. x—\2, and y=9 

Ex. 17. Given t?+6y=21, and ~-^+ 5a=23, to find 
4 3 

the values of a and y. Ans. a=4, and y=3. 

14* 
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RULE III. 

200. Find the value of the same unknown quantity in terms of 
the other and known quantities, in each of the equations ; then, 
let the two values, thus found, be put equal to each other ; an 
equation arises involving only one unknown quantity ; the va¬ 
lue of which may be found, and therefore, that of the other un¬ 
known quantity, as in the preceding rules. 

This rule depends upon the well-known axiom, (Art. 47) ; 
and the two preceding methods are founded on principles which 
are equally simple and obvious. 

Ex. 1. Given | —Iqq* j t0 values of x 

and y. 
From the first equation, a1 = 100 — 3y, 

, . . . 100—y 
and from the second, x————— ; 

. ..loo—y_100_3y 
•O 

Multiplying by 2, 100—y=200 —6y, 
by transposition, 6y—y—200 —100, 

or, 5y= 100 ; 
/. by division, y—20, 

whence, #=100 —3y=100 —3 X20 ; 
.'. #=40. 

Here, two values of y might have been found, which would 
have given an equation involving only x ; and from the solu¬ 
tion of this new equation, a value of x, and therefore of y, 
might be found. 

Ex. 2. Given J#+ Jy=7, and ia?-f-iy = 8, to find the values 
of x and y. 

Multiplying both equations by 6, and we shall have 
3#-{-2y = 42, arid 2#-{-3y = 48, 

42_o u 
From the first of these equations, a?=-—, 

3 

and from the second, # = ——— ; 
’ 2 

42—2y_48— 3y _ 

3 2 ’ 
Multiplying each member by 6, we shall have 

84—4y = 114—9y ; 
by transposition, 9y —4y = 144 —84, 

or by—60 ; y=12 
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And, by substituting this value of y, in one of the values of 
x, the first, for instance, we shall have 

42—24 18 „ ,=—-=t=6. 

Ex. 3. Given 8a?+183/=94, and 8a;—13y = l, to find the 
values of x and y. 

From the first equation, ; 

and from the second, : 

47—9y l + 13y 
... - = - ; 

And multiplying both sides of this equation by 8, 
94 — 18y = 1 + 13y ; 

.-.by transposition, — 18y—13y= —94+1 ; 
Changing the signs, or what amounts to the same thing, 

multiplying both sides by —1, and we shall have 
I8y+13y = 94 — 1, or Sly = 93 ; 

93 0 
•••y=3l=3; 

, l + 13y 1 + 39 40 E 
whence oc=--—-=—-—-=5. 

8 8 8 

Ex. 4. Given aH-y._ a, ) tQ values of x and y. 
bx-\-cy=de, ) y 

From the first equation, x—a—y ; 

and from the second, x: 
de—cy 

’’ b ’ 
de — cy 

••• a—y= 

and multiplying by b, we shall have 
ab — by — de — cy ; 

by transposition, cy—by—de—ab ; 
by collecting the coefficients, (c — b)y — de — ab ; 

, . . de—ab 
.-. by division, y. 

whence x — a — v—a 

c — b 
de — ab 

that is, x — 
ca- 

c-b * 
ab—de-\-ab ca — de 

b ' 

Ex. 5. Given 3a;+7y=79, and 2y — ^x=9, to find the va¬ 
lues of a: and y. Ans. a;=10, and y = 7. 
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Ex. 6. Given ^-i--j-l=6, and ""'-+3—4, to find the 

values of a; and y. Ans. ®=11, and y =4. 
ox_o 67 

Ex. 7. Given-|-y=7, and 5®—13y=—-, to find the 

values of x and y. 

2 

Ans. x—8, and y. 

Ex. 8. Given ?!LzH=?^tS±\ and 8 - ^ = 6, 
'3 5 5 

1 
2 

to 

find the values of x and y. Ans. # = 13, and y = 3. 

Ex. 9. Given o:-(-y = 10, and 2x—3y = 5, to find the values 
of x and y. Ans. ®=7, and y = 3. 

Ex. 10. Given 3® —5y = 13, and 2x-\-'7y — Q\, to find the 
values of x and y. Ans. ®=16, and y=7. 

Ex. 11. Given + 8y = 31, and - -f 10®=192, to 
3 4 

find the values of x and y. Ans. ®=19, and y= 3 

Ex. 12. Given 14== 18, and j~~—3, to find the 
/& O 

values of x and y. Ans. x=5, and y =2. 

Ex. 13. Given?^i-^-=8-|, 

, 7y-3oc 
and ——11 +y, 

to find the values of x 
and y. 

Ans. x=.6, and y=8. 

201. Examples in which the preceding Rules are applied, in 
the Solution of Simple Equations, Involving two unknown 
Quantities. 

Ex. 1. Given 2y— 

and 4® — 

®4-3 , 3®—2y 
'-=74- 

4 
8-y 

=24’— 

5 7 
2® 4-1 

2 1 

Sto find the va¬ 
lues of x and y. 

Multiplying the first equation by 20, 

40y —5® —15 = 1404- 12®-8y ; 
.*. by transposition, 48y —17® = 155. 

Multiplying the second equation bv 6, 
24®—164-2y=147—6®—3 ; 

.-.by transposition, 2y4-30® =160 . . . (A). 
Multiplying this by 24, we have 
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48y+720a: = 3840 ; 
but 48y— 17*= 155 ; 

by subtraction, 737a: = 3685, 
and by division, a:=5. 

From equation (A), 2y=160 —30a:; 
.-.by substitution, 2y= 160—150. 

by division, y=i^ > .’.y = 5. 

The values of x and y might be found by any of the methods 
given in the preceding part of this Section ; but in solving this 
example, it appears that Rule I, is the most expeditious method 
which we could apply. 

~y 8x~2=i 4+y I x~y ) 
36 3 ' 6 ^ 

Ex. 2. Given 
18 36 3 

and * : 3y : : 4 : 7, 
to find the values of x and y. 

Reducing the first equation to lower terms, 

y 
9 

4a?— 1 

18 “ 
= 1 

4-fy x—y 

3 ‘ 6 ! 
and therefore, multiplying by 18, 

2y—4a:+ 1 = 18—24 — 6y+3a:— 3y ; 
.-. by transposition, 7 = 7a:—lly 

But from the second equation 7a: = 12y. 
Substituting therefore this value in the preceding equation, 

it becomes 
12y-lly=7, or y = 7, 

, 12y 84 
and .-. x— _-=--= 12. 

7 7 

Ex. 3. Given 
3y—2-\-x 

15* + 
4 y 

11 
= 1 + 

33 
1 

, 3a:+2y y — 5 11*+152 3y+l and_y_+_=__-— 

to find the values of * and y. 
Multiplying the first equation by 33, 

33a:—9y + 6 — 3*=33 + 15a:+ 4y. 
3 

multiplying again by 3, and transposing, we shall have 45a:— 
31y=81. 

Multiplying the second equation by 12, 
6a?+4y—3y+15—T la:+152— 18y—6 ; 

.-.by transposition, 19y — 5a:=131. / 
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Multiplying this by 9, 171y—45#:= 1179 ; 
but 45a; — 31y = 81 ; 

by addition, 140y=1260 ; 
and by division, y— 9. 

Now, 5a==:19y—131 = 171 —131 =40 ; 
.-.by division, a=8. 

_ 80 + 3a . 4a+3y —8 
Ex. 4. Given—r~=i8i— y 

15 
0 or_3 5 

and 10yd---=55 +10a’, 

to find the va¬ 
lues of a andy. 

Multiplying the first equation by 105, the least common 
multiple of 3, 7, and 15. 

560+21a = 1925 — 60a —45y+120; 
by transposition, 81a+45y=1485 , 

and dividing by 9, 9a+5y=165 
From the second equation, 

50y+6a—35 = 275 +50a, 
by transposition, 50y—44a=310 ; 

and dividing by 2, 25y—22a=155 ; 
but multiplying the equation > 25 +45x=825 
found above, by 5, 

.’.by subtraction, 67a = 670, 
and by division, a=10. 

Now 5y=165 —9a=165 — 90=75, .\y=15. 

Ex. 5. Given _j) 
a4 r y 

4 7.3 
to find the values of a 
and y. 

and -+-'=-+--, 
a y a 2 

Reducing the first equation to lower terms, 
4 5 9 
—|——-1 ; 
x y y 

4 4 
by transposition,-= —1 ; 

x y 
2 4 3 

from the 2nd equation, by transposition,-1—=- ; 
a y 2 

4 4 
Now -=—f-l=2 ; 

y a 

.-.by addition, 
J a 2 

and, consequently, a = 4. 

2y=4, and a=2 
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Ex. 6. Given — 
x y 
c d 
——=n, 
x y 

to find the values of x and y. 

Multiplying the first equation by c, and the second by a, we 
shall have 

ac be 
-1-—me. 
x y 

. ac ad 
and —1—- ==na, 

x y 
.A ■ ■■ 

by subtraction, (be—ad) . -=mc—na ; 

be—ad 
y= mc—na 

inbe—nab 

_mbc—mad—mbc-\-nab nab—mad 

be—ad be—ad ’ 
1 nb—md 

* x be—ad 

And -=zm— -=m— , , 
x y be—ad 

, and x: 
be—ad 

nb—md 

Ex. 7. Given 3 — 

7+— 
y = D 

and y— 
4 + 15y 

6a:—2 

2xy- 

5x + 9 

107 

~8~ 

> 

2x-\-5 

to find the values 
of x and y. 

Multiplying the first equation by 15y, 
4by—21y—6a:=75y—25a:—45 ; 

and by transposition, 51y—19a:=45. 
Multiplying the second equation by 2a:-{-5, 

0 , c 8a:4-20-f 30a:y + 75y 107 
*****--—±-L=2xy-—; 

K _L107_8a:+20 + 30a:y + 75y ^ 

**’ y+_8_“* 6aT^2 J 
and multiplying by 6a;—2, we shall have 

Qoir_107 
30ay—10y+- -=8g+20+30ay+75y; 
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321a?—107 0 , _ 
---=8a:+85y+20, 

and 321a:—107=32a:+340y+80; 
by transposition, 340y—289a:=—187. 

The coefficients of y in this case, having aliquot parts ; 
multiplying the first by 20, and the last by 3, 

1020y— 380a:— 900, 
and 1020y— 867a: = —561 ; 

by subtraction, 487a:=1461, 
and cc=3 ; 

consequently, 51y = 45 +19a:=45 + 57= 102 ; 
y =2. 

„ 0 Q 16 +60a: 16*y-107 
Ex. 8. Given 8a:- — y 

3y— 1 5 + 2y ’ 
j _ , _ , . 27a:2 — 12y2 + 38 

and 2+6y+9*=-3J=5+r-) 

Multiplying the first equation by 5 + 2y, 

to find the va¬ 
lues of x and y. 

40*+16,y- 80+300»+32jy+180a=1 07. 
3y—i 

.-.by transposition 40a:+107: 
80 + 300a:+32y+120a:y 

3^=1 
and multiplying by 3y — 1, we shall have 

]20a:y — 40a:+321y — 1 07=80 +300a:+32y+120a:y ; 
.-.by transposition, 289y—340a: = 187. 

And from the second equation, 
27a;2 — 12y2+ 15a:+2y+2=27a:2— 12y2+38 ; 

by transposition, 15a: + 2y = 36 ; 
whence, the coefficients of x having aliquot parts, multiplying 
the first equation by 3, and the second by 68, 

867y — 1020a: = 561, 
and 136y+1020a:=2448; 

/.by addition, 1003y = 3009, 

' andy_=3; 
consequently, 15a: = 36—2y = 36 — 6 = 30 ; 

and by division, a: = 2. 

Ex. 9. Given x— 
2 y—x 

23—x 
= 20 — 

59—2a: 

to find the va- 



SIMPLE EQUATIONS, 157 

3 r_1 
Ex. 10. Given-b3y—4 = 15, 

5 J 

and -- --- -+ 2a:—8 — 7|, 

Ex. 11. Given 9*+^=70, 
5 

and 7y—i|-=44, 

to find the values of 
a: and y. 

Ans. a?=7, and y—5. 

to find the values of x and y. 

Ans. £ = 6, and y=10. 

Ex. 12. Given - — ——-“3y—5, 
5 4 y 

and —18—5«, 
2 ' 6 

to find the values of x and y. 

Ex. 13. Given x+l-^±^^7~^±!-, 

Ans. x~3, and y=2. 

5.x—4y lly —19 
and y—3--^-—x— 

to find the values of x and y. 
2 4 

Ans. x—6, and y—5. 

Ex. 14. Given 4aH-z=2y-\-5-\--—, 
4 lo 

and 3y— *=+*=8*+^. 

to find the values of a? and y. Ans. a?=3, and y=4. 

Ex. 15. Givena-^±^+17=5y+^±^ 

and 

17 * " “"’* * 3 
22—6y 5ar—7 ®+l 8y-f5 

3 iT~“ * 
to find the values of x and y. 

6 18 ’ 
Ans. x—8, and y=2. 

Ex. 16. Given——+?^=4+^^, 
6 ~ 3 2 ’ 

and2a?+y 9;r_7 3y+9 4a;+5^ 
aT1 2 8 4 16 a 

to find the values of x and y. Ans. aj=9, and y=4. 

Ex. 17. Given ^+1^=3*-2^-fa, and 
11 o 2 5 

3a:-{-4 : 2y—3 : : 5 : 3, to find the values of x and y. 
Ans. x=7t and y=9. 

15 
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5*+13 8y—3x—5 . , 7x—3y+l , 
Ex. 18. Given—--=9+-^-.and 

2 o 6 

4# : : 4 : 21. to find the values of x and y. 
3 4 n 

Ans. x—5j and y=4. 
„ 3£+4y-f3 2^4-7—y y—8 , 
Ex. 19. Given—-;- = 5-f-^—, and 

10 15 5 

—? — f-j—to find the values of a: and y. 
12 4 11 * 

Ans. a;—7, and y —9. 

Ex. 20. Given 3-k—2y=rl5, ) . c , - , c , 
and y+10 : *-15 :: 7 : 3, \ tofmd the Talues of * and * 

Ans. x = 45, and y r=60. 
Ex. 21. Given a:-f-150 : y — 50 : : 3 : 2, > to find the va- 

and x—50 : y-J-100 : : 5 : 9, y lues of x and y. 
Ans. # = 300, and y = 350. 

Ex. 22. Given (#+5) . (y-f-7) = (a;-f 1 )(y—9)-f-l 12, 
and 2ir-j-10 = 3yd-l, to find the values of x and y. 

Ans. a:=3, and y = 5. 

Ex. 23. Given 3*+6y+l=^±H°-^! 
J 2x—4y+3 ’ 

, 0 151—1607 9*y —110 
and 3a?— — 

4y — 1 
to find the values of x and y 

3y — 4 ’ 
Ans. x=9, and y=2- 

Ex. 24. Given lG*+6y—1 
ox—3y+2 

lQac+lOy—35 _ 54 
and _ , „ 

2a?+2y~h3 
to find the values of x and y. 

3a?+2y — l’ 
Ans. x—6, and y=5. 

§ III. RESOLUTION OF SIMPLE EQUATIONS, 

Involving tln'ee or more unknown Quantities. 
rr * I 

202. When there are three independent simple equations 
involving three unknown quantities. 

RULE. 

From two of the equations, find a third, which involves only 
two of the unknown quantities, by any of the rules in the pre¬ 
ceding Section ; and in like manner from the remaining equa¬ 
tion, and one of the others, another equation which contains the 
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same two unknown quantities may be deduced. Having 
therefore two equations, which involve only two unknown 
quantities, these may be determined ; and, by substituting 
their values in any of the original equations, that of the third 
quantity will be obtained. 

203. If there be four unknown quantities, their values may 
be found from four independent equations. For from the four 
given equations, by the rules in the last Section, three may be 
deduced which involve only three unknown quantities, the va¬ 
lues of which may be found by the last Article ; and hence the 
fourth may be found by substituting in any of the four given 
equations, the values of the three quantities determined. 

If there be n unknown quantities, and n independent equa 
tions, the values of those quantities may be found in a similar 
manner. For from the n given equations, n—1 may be de¬ 
duced, involving only n — 1 unknown quantities ; and from 
these n — 1, n—2 may be obtained, involving only n—2 un¬ 
known quantities ; and so on, till only one equation remains, 
involving one unknown quantity ; which being found, the va¬ 
lues of all the rest may be determined by substitution. 

Ex. 1. Given a;-f-y-\-z—29, \ 
x-\-2y-\-3z—Q2, f to find the values of x, yt 
x , y , z „ ^ ( and z. 

2 + 3 + 4 = 10’ ) 
Subtracting the first equation from the second, 

y-\-2z = 33 . . . (A). 
Multiplying the third equation by 12, the least common 

multiple of 2, 3, and 4, 
Qx-irAy-\-3z = 120 

multiplying the 1st equation by 6, 6a;+6y-f 6^ = 174 ; 

.*. by subtraction, 2y-\- 32=54 ; 
but, multiplying equation (A) by 2, 2y + 42=66 ; 

by subtraction, 2=12. 
From equation (A), by transposition, y — 33 — 2z ; 

by substitution, y — 33—24, or y — 9. 
From the first equation, by transposition, 

x =29—y—2-; 
by substitution, x—29 — 9 —12, 

and x—29 — 21, a?=8. 
In like manner, had the first equation been multiplied by 2, 

and subtracted from the second, an equation would have re¬ 
sulted, involving only x and 2-; and had it been multiplied by 
4, and subtracted from the third when cleared of fractions, 
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another equation would have been obtained, involving also x 
and ^ ; whence by the preceding rules, the values of x and z 
could be found, and consequently the value of y also, by sub¬ 
stitution. 

Or if the first equation be multiplied by 3, and the second 
subtracted from it, an equation would arise, involving only x 
and y; and if the first when multiplied by 3, be subtracted 
from the third when cleared of fractions, another would arise 
involving only x and y ; whence the values of x and y might be 
determined. And hence the third, that of .a, might be found. 

SECOND METHOD. 

From the first equation, x=z29—y~z; 

substituting this value of x in the second equation, 

29—y—z-\-2y-\-3z — 62 ; 

by transposition, y = 33 — 2z. 
Also substituting, in the third equation, the value of x found 

from the first, 
29—v—z y z 

y 1 y-hT = 10; 
2 3 * 4 

multiplying this equation by 12, the least common multiple of 
2, 3, and 4, 

174_6y—6z-Hy+3s:=120, 

and by transposition, 2y-f 3^ — 54 ; 

in which, substituting the value of y found above, 

2(33 — 2z)-\-3z=54 ; 
or 66 — 4z-j-3z=:54 ; 

by transposition, z=12 ; 
whence y—33—2^ = 33 — 24 — 9, 

and #=29—y—z—29 — 9 —12 = 8. 

It may be observed, that there will be the same variety of 
solution, as in the last case, according as x, y, or 2, is exter¬ 
minated. 

THIRD METHOD. 

The values of x, found in each of the equations, being 
compared, will furnish two equations each involving only y 
and z ; from which the values of y and ^ may be deduced by 
any of the rules in the preceding Section, and hence, the va¬ 
lue of x can be readily ascertained. 
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The same observation applies to this method of solution, as 
did to the last. 

In some particular equations, two unknown quantities may 
be eliminated at once. 

Ex. 2. Given x-\- y-\-z — 31 x-\- y-\-zz=S 1 \ 
x-\-y—z—25 >to find the values of#, y, &z. 
x—y—z—9 j 

Adding the first and third equations, 2#=40 ; 

Subtracting the second from the first, 2z=6; 

and subtracting the third from the second, 

x—y—2, 

Ex. 3. Given Z #—z=3, to find x, y, and z. 

#=20. 

z~3 ; 

2y=16 ; .\y = 8. 
( x—y-2, \ 
< oc—z=3, > 
ty-z=l,) 

Here subtracting the first equation from the second, we 
have y—z—1 \ which is identically the third. 

Therefore, the third equation furnishes no new condition ; 
but what is already contained in the other two ; and, conse¬ 
quently, the proposed equations are indeterminate ; or, what 
is the same, we may obtain an infinite number of values which 
will satisfy the conditions proposed. 

204. It is proper to remark, that in particular cases, Ana¬ 
lysts make use of various other methods besides those pointed 
out in the practical rules ; in the resolution of equations, 
which greatly facilitate the calculation, and by means of 
which, some equations of a degree superior to the first, may 
be easily resolved, after the same manner as simple equations. 

We shall illustrate a few of those artifices by the following 
examples. 

Ex. 4 Given —-j-—=^, 
x y 8 

Wto find the values of #, y, and z. 
x z 9 ‘ 

1.1 1 
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By adding the three equations, we shall have 

?+?+2=444 
x y z 8 9 10 360 

Or, dividing by 2, 

v. 
x y s 720' 

From this subtracting each of the three first equations, and 
we shall have 

1 31 720 

z 720’ 01 Z~ 3\ 
•••*=23-; 

1 41 720 

y~ ~720’ 01'y=Tf; 

i 49 720 

X ~720’ °r *“* 49 ’ 
a; = 14 

23 

41 

34 

49* 

Ex. 5. Given 2x—y-\-z-\-u, ^ 
3y=x-\-z-\-u, f to find the values of x, y, z, 
4z=x-\-y-\-u, t and u. 

and u — x—14, j 

By adding x to each member of the first equation, y to the 
second, and z to the third, we shall get 

x-\-y-\-z-\-u—3x—\y — 5z ; 

and from thence, z—~, and y=-— ; 
O 4 

which values being substituted in the first equation, we have 
_ 3x , 3x 13a; 

2x=T+T+Ui •■•“=20 ; 
but, by the fourth equation, u=zx—14 ; 

13a; 
a;-14=—-, or 20a;—280=13a?; 

-wU 

3a; 
whence a;=40 : consequently y=—= 30, z=24, and u—x 

t: 

— 14=26. 
i 

Ex. 6. Given 4a; —4y—4^=24, ■, c 
c n n 0 /f to find the values of x, y, 
6y—2x—2z = 24, > , 

T J ’ 1 and z. 
and iz— y— a;=24, ) 

By putting x-j-y-j-z— S, the proposed equations become 

8a;—4S=24, 8y-2S=24, 8*-S=24 ; 

.*. nt;=3 —f— S, y=3-J--jS, #=3 -p'g'S. 
By adding these three equations, we have 

a;+y+^=94-|-S ; whence S=72. 
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Substituting this value for S, in x, y, and 0, we shall find 
£ = 39, y =21, and 0 = 12. 

Ex. 7. Given > „ «„d ,h. rf ,, 

and 2£—40+40 = 10, ) Zm 
Ans. a: = 35, y=30, and 0=25. 

Ex. 8. Given £+a_ y+0, J t0 £nq the values of x, y, 

y+a=l*+f’Undz. 
and 0+<z=3£+3y, J 

a 5a , 7 a 
Ans. £=—, y=—, and 0=— 

Ex. 9. It is required to find the values of x, y, and 0, in 
the following equations; 

£+y = 13, £+0=14, and y+0=15. 
Ans. x—6, y—7, and z=8. 

Ex. 10. In the following it is required to find the values of 
x, y, and z. 

* . y . *_124 
2+3+4~124’ 
x y z 
3 + 4+5 = 9L 

x y z 

i+s+e^76’ 

r £=48, 
Jy=120, 
lz—240. 

Ex. 11. Given £+y+0=26, 4 , c c 
y 1 , f to find the values of x, y, 

x—y = 4, > i J 
i y ~ i and 0. 

and x—0 = 6, ) 
Ans. £=12, y = 8, and z — 6. 

Ex. 12. Given £+ y-f- z— 9, 4 . a , c 
x + 2y + Zz=\&, i t0 ®nd lhe Values 0f X’V’ 

and £+ y—2z= 3, S an Z% 
Ans. £=4, y—3, and 0=2. 

= 12, 4 

, , ;+2y+3^=20,tand 
and f£+iy + z— 6, 3 

Ans. £=6, y=4, and z—2. 

Ex. 14. Given £+y—0=8, £-f-0—y=9, and y + 0—£= 
10 ; to find the values of x, y, and 0. 

Ans. £ = 8J, y = 9, and z — 9\. 

Ex. 15. Given £+iy = 100, y-{-±z=100, and 0+j£= 
100 ; to find the values of x, y, and 0. 

Ans. £=64, y = 72, and 0=84. 

Ex. 13. Given £-[- y+ 0=12,4. ^ . r 
*+2w+3«=20, i t0 ?nJ the ValueS 0f *> y> 

0. 
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Ex. 16. Given a:-f-^y=357, 3/+^=476, ^+1^=595, and 
«-{-4a:=:714 ; to find the values of #, y, z, and u. 

Ans. #=190, y = 334, ;?=426, and u=676. 

§ IV. SOLUTION OF PROBLEMS PRODUCING SIMPLE EQUATIONS, 

Involving more than one unknown Quantity. 

205. The usual method of solving determinate problems of 
the first degree, is, to assume as many unknown letters, name¬ 
ly, #, y, z, &c., as there are unknown numbers to be found ; 
then, having properly examined the meaning and conditions of 
the problem, translate the several conditions into as many 
distinct algebraic equations ; and, finally, by the resolution of 
these equations according to the rules laid down in Chapter 
IV, the quantities sought will be determined. It is proper to 
observe that, in certain cases, other methods of proceeding 
may be used, which practice and observation alone can sug¬ 
gest. 

• , \ 

Problem I. 

There are two numbers, such, that three times the greater 
added to one-third the lesser is equal 36 ; and if twice the 
greater be subtracted from 6 times the lesser, and the remain¬ 
der divided by 8, the quotient will be 4. What are the num¬ 
bers ? 

Let x designate the greater number, and y the lesser num¬ 
ber. 

Then 3*+! =36, 

. 6y—2x 
and —=4 ; 

8 

9#+ y = 108 (A), 
6y—2x= 32(B); 

Multiplying equation (A) by 6, 6y-j-54# = 648 ; 
but 6y— 2x= 32 ; 

.*. by subtraction, 56#=616, 
and by division, #=11. 

From equation (A), y—108—9# ; 
/.by substitution, y=108—99, or y—9. 
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Prob. 2. After A had won four shillings of B, he had only 

half as many shillings as B had left. But had B won six shil¬ 
lings of A, then he would have three times as many as A 
would have had left. How many had each ? 

Let x— designate the number of shillings A had, and y= 
the number B had; 

then y — 4 = 2#+8, 
and y-{-6 = 3a:—18 ; 

by subtraction, 10 = 2—26, 
and by transposition, 36 = x, or a; = 36 ; 

by substitution, y-j-6 = 3 X 36— 18 ; 
and by transposition, y = 84 ; 

.-. A had 36, and B 84. 

Prob. 3. What fraction is that, to the numerator of which 
if 4 be added, the value is one-half, but if 7 be added to the 
denominator, its value is one-fifth ? 

Let *= its numerator, > then the fraotion » 
y= denominator, ) y 

cc 4 
Add 4 to the numerator, then --=i, 

y 
X 

Add 7 to the denominator, then ——=4, 
y + 7 s’ 

.*. 2; 

.•.5a?=y+7; 

by subtraction, 3x—8 = 7 ; 
by transposition, 3a? = 15 ; .*. x = 5 ; 

and y=2a?+8 ; .’.by substitution, y=10-f-8=18, 
5 

and the fraction is —. 

Prob. 4. A and B have certain sums of money, says A to 
B, give me 15/ of your money, and I shall have 5 times as 
much as you have left: says B to A, give me 51 of your 
money, and I shall have exactly as much as you will have 

. left. What sum of money had each ? 

Let x= A’s money, ) then x4-15= what A would have, 
y— B’s, $ after receiving 15/ from B. 

y —15= what B would have left. 
Again, y-f 5= what B would have after receiving 5/from A. 

x — 5= what A would have left. 
Hence, by the problem, a:-f-15 —5 X (y—15) = 5y—75, 

and y-j-5=# — 5. 
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by transposition, 5y—x—9(5, 
and y—xz= —10 ; 

.-.by subtraction, 4y = 100, 
and by division, y—25 B’s money. 

From the second equation, x=y-f- 10 ; 
by substitution, a?=25 4-10=35 A’s money. 

Prob. 6. A person was desirous of relieving a certain num¬ 
ber of beggars by giving them 2s. 6d. each, but found that he 
had not money enough in his pocket by 3 shillings ; he then 
gave them 2 shillings each, and had four shillings to spare. 
What money had he in his pocket; and how many beggars 
did he relieve ? 

Let x= money in his pocket (in shillings) ; 
y— the number of beggars. 

5 ?/ 

Then 2^ X y, or ~= number of shillings which would have 

been given at 2s. 6d. each; 
and2Xy, or 2y = .... at 2s. each. 

Hence, by the problem, ~=zx-\-3(A), 

and 2y=a?—4(B). 

V 
.*. by subtraction, ;|=7, 

z 
or y—14, the number of beggars. 

From equation (B), a;=2y4-4 = 2 X 144-4, by substitution, 
a?:=32, the shillings in his pocket. 

Prob. 6. There is a certain number, consisting of two digits. 
The sum of those digits is 5 ; and if 9 be added to the number 
itself, the digits will be inverted. What is the number ? 

Here it may be observed, that every number consisting of 
two digits is equal to 10 times the digit in the tens place, plus 
that in the units ; thus, 24 = 2 X 10+ 4 = 20-}-4. 

Let x=z digit in the units place ; 
y= that in the tens. 

Then 10^4-^== the number itself, 
and 10y-f-;r= the number with its digits inverted. 

Hence, by the problem, £c + y = 5(A), 
and 10a:-f-?/4-9 = 10y-f-^? or by transposition, 9a;—9y=— 9 ; 

.*.by division, x—y= — 1(B). 
Subtracting equation (B) from (A), 2y=6 ; 
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y=3, and x=5—y=5—3=2 ; 
.-. the number is (10a?+y)=23, 

Add 9 to this number, and it becomes 32, which is the num¬ 
ber with the digits inverted. 

Prob. 7. A sum of money was divided equally amongst a 
certain number of persons ; had there been four more, each 
would have received one shilling less, and had there been four 
fewer, each would have received two shillings more than he 
did : required the number of persons, and what each received. 

Let x designate the number of persons, 
y the sum each received in shilllings ; 

then xy is the sum divided ; 

and («11) x (y+2)=^! \ ** the 1uestion ; 
.’.xy-\-4y—x—4 = a?y, or 4y— a? = 4, 

and xy—4y-f-2a?—8 = a?y, or —4y4-2j? = 8 ; 
.*. by addition, a; = 12 ; 

and 4y = 4-j-a? = 4-|-12 ; .\y=4. 

Prob. 8. A man, his wife, and son’s years make 96, of 
which the father and son’s equal the wife’s and 15 years over, 
and the wife and son’s equal the man’s and two years over. 
What was the age of each ? 

Suppose x, y, and ^ — their respective ages. 
1st condition £-|-y+^=96, ^ 
2nd . . . x-\-z—y-\-15, > by the problem. 
3d ... y-\-z—a?-}- 2,) 

Subtracting the 2nd from the 1st, y=96 —y —15 ; 
.\2y=81, and y—40J by division. 

Subtracting the 3d from the 1st, a?=96—a?—2 ; 
.*. by transposition and division, x=47, 

And from the 1st, z = 96—y—x ; .*. ^=8^. 
And their ages are 47, 40^-, and 84 respectively. 

Prob. 9. A labourer working for a gentleman during 12 
days, and having had with him, the first seven days, his wife 
and son, received 74 shillings ; he wrought afterwards 8 other 
days, during 5 of which he had with him his wife and son, and 
he received 50 shillings. Required the gain of the labourer 
per day, and also that of his wife and son. 

Let x= the daily gain of the husband, 
y= that of the wife and son ; 

12 days work of the husband would produce 12a?, 
7 of the wife and son would be 7y ; 



168 SOLUTION OF PROBLEMS 

by the first condition, 12a?4- 7y= 74; 
and by the second, 8x-\- 5y— 50 ; 

Multiplying the 1st equation by 2, 2\x-\-\Ay — lA8 ; 
2nd . . by 3, 24tf-j-15y = 150; 

.•.by subtraction, y — 2. 
And from the 2nd, 8x=50 — 5y — 50 — l0 ; 

by division x=5. 
Consequently the husband would have gained alone 5s.per 

day, and the wife and son 2 shillings in the same time. 
206. Let us now suppose that the first sum received by the 

workman was 46s, and the second 30s, the other circumstances 
remaining the same as before ; 

The equations of the question would be 
12a?-|-7y = 46, and 8a-j-5y=30. 

From whence we find, by proceeding as above, 
x—5, and y ——2. 

By putting in the place of x its value 5, in the above equa¬ 
tions, they become 

60-f 7yr=46, and 40 + 5y=30. 
The inspection alone of these equations show an absurdity. 

In fact, it is impossible to form 46 by adding an absolute num¬ 
ber to 60, which is already greater than it, and in like man¬ 
ner it is impossible to form 30 by adding an absolute number 
to 40. 

Consequently what we attributed as a gain to the labour of 
the wife and son, must be an expense to the husband, which 
is also verified by the result y=—2. 

207. The negative value of y makes known therefore a 
rectification in the enunciation of the problem ; since that, in¬ 
stead of adding 7y to 12a: in the first equation, and 5y to 8a: in 
the second, y being considered a positive or an absolute num¬ 
ber, we must subtract them in order to have the sum given for 
the common wages of these three persons ; or, what is the 
same thing, if, in place of considering the money attributed to 
the wife and son as a gain, we would regard it as an expense 
made by them to the charge of the workman ; then we must 
subtract this money from what the man would have gained 
alone, and there would be no contradiction in the equations, 
since they would become 

60 — 7y — 46, and 40 —5y=30 ; 
from either of which we would derive y=2 ; and we should 
therefore conclude that if the workman gained 5s.per day, his 
wife and son’s expense is 2s., which can be otherwise verified 
thus: 
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For 12 days work, he receives 5 X 12 or 60s. ; the expense 
of his wife and son for 7 days, is 2 X 7 or 14s.; and there re¬ 
mains 46 shillings. 

Again, he receives for 8 days work 5x8 or 40s. ; the ex¬ 
pense of his wife and son during 5 days, is 2x5 or 10s.; 
therefore his clear gain is 30 shillings. 

208. It is very evident that, in place of the enunciation of 
(Prob. 9), we must substitute the following, in order that the 
problem proposed may be possible, with the above given, 
quantities : 

A labourer working for a gentleman during 12 days, having 
had with him, the frst 7 days, his wife and son, who occasion an 
expense io him, received 46 shillings ; he has wrought, after¬ 
wards, for 8 other days, on 5 of which he had with him his wife 
and son, whose expenses he must still defray, and he received 
30 shillings. Required the salary of the workman per day, and 
also the expense of his wife and son in the same time. 

Designating by x the daily wages of the workman, and by 
y the expense of his wife and son, for the same time ; the 
equations of the problem shall be 

12a?—7y —46, and 8a?—5y = 30 ; 
which, being resolved, will give 

a? = 5s., and y = 2s. 
209. Although negative values do not answer the enuncia¬ 

tion of a concrete question, as has been observed (Art. 174), 
yet they satisfy the equations of the problem, as may be rea¬ 
dily verified, by substituting 5 for a?, and —2 for y, in the 
equations (Art. 206), since they would then become identi¬ 
cally equal. 

Prob. 10. Two pipes, the water flowing in each uniformly, 
filled a cistern containing 330 gallons, the one running during 
5 hours, and the other during 4 ; the same two pipes, the first 
running during two hours, and the second three, filled another 
cistern containing 195 gallons. The discharge of each pipe 
is required. 

Let a? represent the discharge of the first in an hour ; y that 
of the second in the same time. 

And in order to have a general solution, put a = 5, b — 4, 
c=330, a= 2, b' — 3, c' = 195 ; then by the conditions of the 
problem we shall have these two equations, 

ax-\-by—c, and a'x-\-b'y—cr ; 

which, being resolved (Art. 190), will give 

b'c—be' 

ah' —~a'b' 

i ad—a!c 
and y — 

16 

x 
ab' — a'b' 
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Now, by restoring the values of a, b, c, &c., we have 

990—780 2 L0 
oc = ———-—=—- = 3U ; 

and y = 

15—8 
975 — 660 

7 

45. 
15 — 8 

Thus, the first pipe discharges 30 gallons per hour, and the 
second 45. 

210. Let us now suppose that the first pipe running during 
3 hours, and the second during 7, filled a cistern containing 
190 gallons ; that afterwards, the first running 4 hours, and 
the second 6, filled a cistern containing 120 gallons. 

In this case, a=3, 6 = 7, c=190, a— 4, Z/ = 6, c'=120; 
and, consequently, b'c—5^=1140 — 840 = 300, ab'—a'b= 18 
—28= —10, ad — a/c = 360—760=—400, which will give x 
= —30, and y=40. 

In order to understand the meaning of these results, we 
must return again to the conditions of the problem, or, what 
amounts to the same, we must try how these values of x and 
y satisfy the equations of the problem : 

Thus, if we substitute —30 for x, and 40 for y, in the 
equations 3x+7y = 190 and 4a: + 6y=l20, resulting from the 
above problem, we find first, that 3a?= — 90, and 7y = 280, 
consequently 3x-\-7y= — 90 + 280, which in effect is equal 
to 190. In like manner 4a?+6y is found to be —120 + 240, 
which is equal to 120. 

Having, therefore, discovered how the values —30 and +40 
of x and y answer the equations 3a;+7y = 190 and 4a? + 6y = 
120, we perceive at the same time how they would answer the 
conditions of the problem ; for since the use that has been 
made of the quantities 3a; and 4a:, which express the quanti¬ 
ties of water discharged by the first pipe in the first and se¬ 
cond operation, was to subtract them from 7y and from 6y, 
which express the quantities furnished in the same operations 
by the second pipe. The first pipe must be considered in 
this case as depriving the cisterns of water instead of fur¬ 
nishing any, as it did in the preceding problem, and as it was 
supposed in expressing the conditions of this problem. 

211. Hence, in almost every question solved after a gene¬ 
ral manner, we may always conclude that when the value of 
the unknown quantity becomes negative, the quantity ex¬ 
pressed by it should be considered as being of an opposite 
kind from what it was supposed in expressing the conditions 
of the problem. 

What has been said with respect to unknown quantities, is 
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equally applicable to known quantities, that is, when a gene¬ 
ral solution is applied to any particular case, if any of the gi¬ 
ven quantities a, 5, c, &c. in the problem, are negative. 

212. Let it be proposed, for example, to find what should 
be, in the foregoing problem, the discharges of two pipes, 
that the first furnishing water during 3 hours, and the second 
4, may fill a cistern containing 320 gallons, and that the se¬ 
cond pipe afterwards furnishing water during 6 hours, whilst 
the first discharges it during 3 hours, may fill a cistern con¬ 
taining 180 gallons. 

We have only to put in the general solution (Art. 209), 
a — 3, 5 = 4, c—320, a ——3, 5'=6, ^=180, and there will 
result #=40, and y — 50. 

From whence it appears that the discharge of the first pipe 
is 40 gallons per hour, either to carry away the water as in 
the second operation, or to furnish it as in the first, and the 
discharge of the second, 50 gallons an hour, which it furnishes 
in both operations. 

Prob. 11. A certain sum of money put out to interest, 
amounts in 8 months to 297/. 12s. ; and in 15 months its 
amount is 306/. at simple interest. What is the sum and the 
rate per cent ? Ans. 288/. at 5 per cent. 

Prob. 12. There is a number consisting of two digits, the 
second of which is greater than the first, and if the number 
be divided by the sum of its digits, the quotient is 4; but if 
the digits be inverted, and that number divided by a number 
greater by 2 than the difference of the digits, the quotient be¬ 
comes 14. Required the number. Ans. 48. 

Prob. 13. What fraction is that, whose numerator being 
doubled, and denominator increased by 7, the value becomes 
|; but the denominator being doubled, and the numerator 
increased by 2, the value becomes ? Ans. 

Prob. 14. A farmer parting with his stock, sells to one 
person 9 horses and 7 cows for 300 dollars : and to another, 
at the same prices, 6 horses and 13 cows for the same sum. 
What was the price of each ? 

Ans. the price of a cow was 12 dollars, and of a horse 24 
dollars. 

Prob. 15. A Vintner has two casks of wine, from the great¬ 
er of which he draws 15 gallons, and from the less 11 ; and 
finds the quantities remaining in the proportion of 8 to 3. Af¬ 
ter they became half empty, he puts 10 gallons of water into 
each, and finds that the quantities of liquor now in them are 
as 9 to 5. How many gallons will each hold ? 

Ans. the larger 79, and the smaller 35 gallons, 
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Prob. 16. A person having laid out a rectangular bowling- 
green, observed that if each side had been 4 yards longer, the 
adjacent sides would have been in the ratio of 5 to 4 ; but if 
each had been 4 yards shorter, the ratio would have been 4 
to 3. What are the lengths of the sides ? 

, Ans. 36, and 28 yards. 
Prob. 17. A sets out express from C towards D, and three 

hours afterwards B sets out from D towards C, travelling 2 
miles an hour more than A. When they meet it appears that 
the distances they have travelled are in the proportion of 13 
to 15 ; but had A travelled five hours less, and B had gone 2 
miles an hour more, they would have been in the proportion 
of 2 : 5. llow many miles did each go per hour, and how 
many hours did they travel before they met ? 

Ans. A went 4, and B 6 miles an hour, and they travelled 
10 hours after B set out. 

Prob. 18. A Farmer hires a farm for 245Z. per annum, the 
arable land being valued at 2l. an acre, and the pasture at 28 
shillings : now the number of acres of arable is to half the 
excess of the arable above the pasture as 28 : 9. How many 
acres were there of each ? 

Ans. 98 acres of arable, and 35 of pasture. 
Prob. 19. A and B playing at backgammon, A bets 3s. to 

2s. on every game, and after a certain number of games found 
that he had lost 17 shillings. Now had A won 3 more from 
B, the number he would then have won, would be to the num¬ 
ber B had wron, as 5 to 4. How many games did they play ? 

Ans. 9. 
Prob. 20. Two persons, A and B, can perform a piece of 

work in 16 days. They work together for 4 days, when A 
being called off, B is left to finish it, which he does in 36 days 
more. In what time would each do it separately ? 

Ans. A in 24 days, and B in 48 days. 
Prob. 21. Some hours after a courier had been sent from 

A to B, which are 147 miles distant, a second was sent, who 
wished to overtake him just as he entered B; jn order to 
which he found he must perform the journey in 28 hours less 
than the first did. Now the time in which the first travels 17 
miles added to the time in which the second travels 56 miles, 
is 13 hours and 40 minutes. How many miles does each go 
per hour ? 

Ans. the first goes 3, and the second 7 miles an hour. 
Prob. 22. Two loaded wagons were weighed, and their 

weights wTere found to be in the ratio of 4 to 5. Parts of their 
loads, which were in the proportion of 6 to 7, being taken out, 
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their weights were then found to be in the ratio of 2 to 3 ; and 
the sum of their weights was then ten tons. What were the 
weights at first ? Ans. 16, and 20 tons. 

Prob. 23. A and B severally cut packs of cards ; so as to 
cut off less than they left. Now the number of cards left by 
A added to the number cut off by B, make 50 ; also the num¬ 
ber of cards left by both exceed the number cut off, by 64. 
How many did each cut off? Ans. A cut off 11, and B 9. 

Prob. 24. A and B speculate with different sums ; A gains 
150/, B loses 50/, and now A’s stock is to B’s as 3 to 2. But 
had A lost 50/, and B gained 100/, then A’s stock would have 
been to B’s as 5 to 9. What was the stock of each ? 

Ans. A’s was 300/, and B’s 350/. 
Prob. 25. A Vintner bought 6 dozen of port wine and 3 

dozen of white, for 12/. 126-. ; but the price of each after¬ 
wards falling a shilling per bottle, he had 20 bottles of port, 
and 3 dozen and 8 bottles of white more, for the same sum. 
What was the price of each at first ? 

Ans. the price of port was 2s. and of white 3s. per bottle. 
Prob. 26. Find two numbers, in the proportion of 5 to 7, 

to which two other required numbers in the proportion of 3 to 
5 being respectively added, the sums shall be in the propor¬ 
tion of 9 to 13 : and the difference of those sums =16. 

Ans. the two first numbers are 30 and 42 ; the two others, 
6 and 10. 

Prob. 27. A Merchant finds that if he mixes sherry and 
brandy in quantities which are in the proportion of 2 to 1, he 
can sell the mixture at 78s. per dozen ; but if the proportion 
be as 7 to 2, he must sell it at 79 shillings a dozen. Required 
the price of each liquor. 

Ans. the price of sherry was 81s., and of brandy 72s.per 
dozen. 

Prob. 28. A number consisting of two digits when divided 
by 4, gives a certain quotient and a remainder of 3 ; when di¬ 
vided by 9 gives another quotient and a remainder of 8. Now 
the value of the digit on the left-hand is equal the quotient 
which was got when the number was divided by 9 ; and the 
other digit is equal jyth of the quotient got when the number 
was divided by 4. Required the number. Ans. 71. 

Prob. 29. To find three numbers, such, that the first with 
^ the sum of the second and third shall be 120 ; the second 
with ith the difference of the third and first shall be 70 ; and 
\ the sum of the three numbers shall be 95. 

Ans. 50, 65, and 75. 
Prob. 30. There are two numbers, such, that 4 the greater 

16* 
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added to J the lesser is 13 ; and if l the lesser be taken from J 
the greater, the remainder is nothing. What are the numbers ? 

Ans. 18, and 12. 
Prob. 31. There is a certain number, to the sum of whose 

digits if you add 7, the result will be three times the left-hand 
digit; and if from the number itself you subtract 18, the digits 
will be inverted. What is the number ? Ans. 53. 

Prob. 32. A person has two horses, and a saddle worth 
10/ ; if the saddle be put on the first horse, his value becomes 
double that of the second ; but if the saddle be put on the se¬ 
cond horse, his value will not amount to that of the first horse 
by 13/. What is the value of each horse ? 

Ans. 56 and 33. 
Prob. 33. A gentleman being asked the age of his two sons, 

answered, that if to the sum of their ages 18 be added, the re¬ 
sult will be double the age of the elder; but if 6 be taken 
from the difference of their ages, the remainder will be equal 
to the age of the younger. What then were their ages ? 

Ans. 30 and 12. 
Prob. 34. To find four numbers, such, that the sum of the 

1st, 2d, and 3d, shall be 13 ; the sum of the 1st, 2d, and 4th, 
15 ; the sum of the 1st, 3d, and 4th, 18 ; and lastly the sum 
of the 2d, 3d, and 4th, 20. Ans. 2, 4, 7, 9. 

Prob. 35. A son asked his father how old he was. His 
father answered him thus. If you take away 5 from my 
years, and divide the remainder by 8, the quotient will be 
of your age ; but if you add 2 to your age, and multiply the 
whole by 3, and then subtract 7 from the product, you will 
have the number of the years of my age. What was the age 
of the father and son? Ans. 53, and 18. 

Prob. 36. Two persons, A and B,had a mind to purchase 
a house rated at 1200 dollars ; says A to B, if you give me |- 
of your money, I can purchase the house alone ; but says B 
to A, if you will give me |th of yours, I shall be able to pur¬ 
chase the house. How much money had each of them ? 

Ans. A had 800 and B 600 dollars. 
Prob. 37. There is a cistern into which water is admitted 

by three cocks, two of which are exactly of the same dimen¬ 
sions. When they are all open, five-twelfths of the cistern is 
filled in 4 hours ; and if one of the equal cocks be stopped, 
seven-ninths of the cistern is filled in 10 hours and 40 minutes. 
In how many hours would each cock fill the cistern ? 

Ans. Each of the equal ones in 32 hours, and the other in 24. 
Prob. 38. Two shepherds, A and B, are intrusted with the 

charge of two flocks of sheep. A’s consisting chiefly of ewes, 
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many of which produced lambs, is at the end of the year in¬ 
creased by 80 ; but B finds his stock diminished by 20 : when 
their numbers are in the proportion of 8 : 3. Now had A lost 
20 of his sheep, and B had an increase of 90, the numbers 
would have been in the proportion of 7 to 10. What were 
the numbers ? Ans. A’s 160, and B’s 110. 

Prob. 39. At an election for two members of congress, three 
men offer themselves as candidates ; the number of voters for 
the two successful ones are in the ratio of 9 to 8 ; and if the 
first had had 7 more, his majority over the second would have 
been to the majority of the second over the third as 12 : 7. 
Now if the first and third had formed a coalition, and had one 
more voter, they would each have succeeded by a majority of 
7, How many voted for each ? 

Ans. 369, 328, and 300, respectively. 

CHAPTER VI. 

ON 

INVOLUTION AND EVOLUTION 

OF NUMBERS, AND OF ALGEBRAIC QUANTITIES. 

213. The powers of any quantity, are the successive products, 
arising from unity, continually multiplied by that quantity. Or, 
the power of the order m of a quantity, m being a whole pos¬ 
itive number, is the product of that quantity continually mul¬ 
tiplied m — 1 times into itself, or till the number of factors 
amounts to the number of units in that given power. 

214. Involution is the method of raising any quantity to 
a given power ; Evolution, or the extraction of roots, being 
just the reverse of Involution, is the method of determining a 
quantity which, raised to a proposed power, will produce a 
given quantity. 

Note.—The term root has been already defined, (Art. 12). 

§ I. involution of algebraic quantities. 

215. It has been observed, (Art. 13), that the powers of al¬ 
gebraic quantities are expressed by placing the index or expo¬ 
nent of the power over the quantity. 
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Hence, if a proposed root be a single letter, and without a co¬ 
efficient, any required power of it will be expressed by the same 
letter with the index of the power written over it. Thus, the 
nth power of a is = an, n being any positive number whatever. 

216. If the proposed root be itself a power, the required power 
will be obtained by multiplying the index of the given power into 
that of the required power. Thus the with power of a?, or 
(ap)m = amp ; for since, (Art. 213), (ap)’n=ap X ap X ap, &c. = 
ap+nnetc. — apm.(!) 

where the number of factors ap is equal to m. 
217. Also, if a simple quantity be composed of several factors, 

it can be raised to any power by multiplying the index of every fac¬ 
tor in the quan tity by the exponent of the power. Thus the with 
power of [arbqcT), or (arbqcr)rn is = apmbqmcrm ; for since (Art. 
274), (apbqcr)m — (apbqcT) X (apbqcr), &c. = apap . . . bqbq . . 

crcr . . . =(ap)mx (b9)mX(cr)m ; . . . • (2); 
by observing that in each of these products, such as apap, &c., 
or bqbq, &c., there enter m equal factors. 

Cor. Hence, if the proposed quantity has a numerical coeffi¬ 
cient, it jnust also be involved to the required power. Thus the 
fourth power of 3a2b2 is — 3*a24b2,4: — 3 X 3 X 3 X 3 X asb8=z 
81 aGbs. For the numerical coefficient is in this case the 
same as any other factor. 

ROOTS AND POWERS OF NUMBERS. 

1st. 2d 3d. 4th. 5th. | 6th. 7th. 
Square 
Root. 

Cube 
Root. 

1 1 1 1 1 I1 1 1 1 
2 4 8 16 32 64 128 1.414213 1.26 
3 9 27 81 243 729 2187 1.732 1.442 
4 16 64 256 1024 4096 16384 2. 1.587 
5 25 125 625 3125 15625 78125 2.236 1.71 
6 36 216 1296 7776 46656 279936 2.449 1.817 
7 49 343 240116807 117649 823543 2.646 1.913 
8 64512 4098 32768 262144 2097152 2.828 2. 
9 81|729 6561 59049 531441 47829693. 2.08 

218. Any power of a fraction is equal to the same power of 
the numerator divided by the like power of the denominator. 

Thus the mth power of f°r 

a 
Xj, &c. = (Art. 156), 

aXaXa, etc. am 

bxb xb, etc. bm 

ber of factors ^ is equal to m. 

where the mini- 



INVOLUTION. 177 

And in like manner the mth power of 
avbi 

cncr ’ 
or 

(<aP)m(bv)m aPmMm 

\cn)m(dr)™~ cmndrm 
219. Any even power of a positive or negative quantity, is ne¬ 

cessarily positive. In fact, 2m being the formula of even num¬ 

bers, we have (±«)2wi=[(db«)2]”1 =z(-\-a2)m = -f-a2m • • . (4). 
220. Any odd power of a quantity will have the same sign as 

the quantity itself. For, the general formula of odd numbers, 
(Art. 111), being 2m + l,we have (±a)2m*l=(±a)2OTX (dbtf) 
— a2,n X ita2™*1.(5). 

The involution of algebraic quantities is generally divided 
into two cases. 

CASE I. 

To involve a simple algebraic Quantity. 

RULE. 

221. Raise the coefficient, if any, to the required power, 
then multiply the index of each factor, or letter, by the index 
of the required power, and write their several products over 
their respective factors ; Let the quantities thus arising be an¬ 
nexed to each other and to the same power of the coefficient, 
prefixing the power sign, and it will be the power required. 
Or, multiply the quantity into itself as many times less one as 
is denoted by the index of the power, and the last product, with 
the proper sign prefixed, will be the answer. 

Ex. 1. Required the square, or second power of 2ab. 
Here, (2ab)2 = 4: X a,2 X b2—\a2b2. Ans. 
Ex. 2. What is the cube of —3a2b2\ 
Here, (-3a262)3 = (Art. 220), -(3a2£2)3= -27 X a2'3 X b2-3 

= — 27a666. Ans. 
Ex. 3. What is the 4th power of —2a3x2 ? 
Here, (—2a3x2f= (Art. 219), +(2a¥)4=16xa3'V’4= 

16«12a?3. Ans. 
Ex. 4. What is the cube, or third power of abc l 

Here, abc XabcXabc = a X a X a X b X b X bx cX c X cz=. 
a3b3c3. Ans. 

222. When the quantity to be involved is a fraction, raise both 
the numerator and denominator to the power proposed. 

Ex. 5. Required the 4th power of ——. 
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tt / b \ . / b \ b b b b b4, _ 

Her6’ (-^)‘,= + Gta)‘-TaXTaXTaXTa=l^- 0r 

( 
b4 ¥ 

2 a) 
V-+—- 

~^(2a)4“24Xa4 16a4' 

2a 
Ex. 6. What is the 4th power of — ~ ? 

OX 

Ex. 7. What is the 8th power of 2a2 ? 
Ex. 8. What is the 7th power of —a:? 

a2 
Ex. 9. What is the 6th power of-- ? 

x6 
Q 

Ex. 10. What is the 5th power of-? 

Ans. 
16a4 

81a;4 
Ans. 256a16. 

Ans. ■x‘ 
a 12 

Ans. —. 
x 18 

Ans. 

5 x 
Ex. 11. What is the 4th power of — ? Ans. 

2 ax^ 

Ex. 12. Required the cube of-—? Ans. - 

3125 
625a;4 

2401 * 

8a3a:6 

3b 
Ex. 13. Required the square of ■^za2b2'l 
Ex. 14. Required the 9th power of —xy ? 
Ex. 15. Required the 0th power of xy ? 
Ex. 16. Required the 4th power of a-2? 

27b*' 
Ans. a464. 

Ans. —x9y9. 
Ans. 1. 

Ans, a-8, or -5. 
a8 

CASE II. 

To involve a compound algebraic Quantity. 

rule 1. 

223. Multiply the given quantity continually into itself as 
many times minus one as is denoted by the index of the power, 
as in the multiplication of compound algebraic quantities (Art. 
79), and the last product will be the power required. 

Ex. 1. What is the square of a-{-2b ? 
a-\-2b 
a-\-2b 

a2-\-2ab 
-\-2 ab-\-4:b2 

Square — a2-{-Aab-\-Ab2 
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Ex. 2. What is the cube of a2—x2 ? 

a2—as2 
a2—x2 

a4—a2#2 

—a2a;2-{-a:4 

a4—2a2a:2 + a:4 
a2—x2 

a6—2aix2-{- a2#4 
— a4a:2+2a2a:4—£c6 

Cube —aQ — 3a4a:2-}-3a2a:4—x6 

Ex. 3. Required the fourth power of a-\-3b. 
Ans. a44-12a3^H-54a263+108a^3 + 8U4. 

Ex. 4. Required the square of 3x2-\-2x+5. 
Ans. 9a:4-f 12a;3 + 34a:2-f20a: + 25. 

Ex. 5. Required the cube of 3a:—5. 
Ans. 27a:3 —135a:24-225a: —125. 

Ex. 6. Required the cube of x2 — 2a:+l. 
Ans. a:6 — 6a:5-}-15a:4—20a:3+15a:2 — 6a:-f-l. 

Ex. 7. Required the fourth power of 2-}-3a:. 
Ans* 16 + 96a:+216a:2 + 216a:3-f 81a:4. 

Ex. 8. Required the fifth power of 1—2a\ 
Ans. 1 — 10a:+40a:2 — 80a:3 4-SO^4 — 32a:5. 

Ex. 9. Required the square of a-{-b-\-c-\-d. 
Ans. a2 -\-b2 -{■ c2 d2 ^2^ ac-\- ad-\-bc -\~bd-\- cd). 

224. In the involution of a binomial or residual quantity of 
the form a-\-b, or a—b ; the several terms in each successive 
power are found to bear a certain relation to each other, and 
observe a certain law, which the following Table is intended 
to explain. 
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TABLE OF THE POWERS OF a-{-b. 

Powers. 
Mode of ex¬ 

pressing them. 
Powers expanded. 

Square. (a-f-6)2. a2-\-2ab-\-b2. 

Cube. (a+b)3. a3 -f- 3 a2b -f- 3 ab2 + b3. 

4th power. (a+b)K a4-\-Aa3b-\-Qa2b2‘\-Aab3-\~b4. 

5th power. («+6)5. 
ab 5a4b-\-\0a3b2 \0a2b3 -\-5ab4 
+ b\ 

6th power. (a + 6)6. 
a6-{-6a5b -f- \5a4b2-\-20a3b3 
-)-15a2b4-\-6ab5-{-b6. 

The successive powers of a — b are precisely the same as 
those of a-\~b, except that the signs of the terms will be al¬ 
ternately + and —. Thus, the fifth power of a — b is a5 — 
5a4b-\~ 10a3^2— \0a2b2-\-5ab4— b5. 

225. In reviewing that column of the above Table which 
contains the powers of a-\-b expanded, we may observe, 

I. That in each case, the first term is raised to the given 
power, and the last term is b raised to the same power; thus, 
in the square, the first term is a2, and the last b2 ; in the cube, 
the first term is a3, and the last b3 ; and so on of the rest. 

II. That, with respect to the intermediate terms, the pow¬ 
ers of a decrease, and the powers of b increase, by unity in 
each successive term. Thus, in the fifth power, we have 

In the second term,. a4b ; 
third,. a3b2 ; 
fourth.. a2b3 ; 
fifth,. a b4 ; 

and so on in other powers. 

III. That in each case, the coefficient of the second term is 
the same with the index of the given power. Thus, in the 
square, it is 2 ; in the cube, it is 3 ; in the fourth power, it is 
4 ; and so on of the rest. 

IV. That if the coefficient of a in any term be multiplied by 
its index, and the product divided by the number of terms to that 
jilace, this quotient will give the coefficient of the next term. 
Thus, in the fifth power, the coefficient of a in the second 
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term multiplied by its index, and divided by the number of terms 
4 X 5 20 

to that place = ——=—=10= coefficient of the third term, 
2 

In the sixth power, Coeff. of a in the 4th term . its index-_^0 X 3 
number of terms to that place. A 

—=15= coefficient of the fifth term. 

Hence, we are furnished with the following general rule for 
raising a binomial or residual quantity to any power, without 
the process of actual multiplication. 

RULE II. 

226. Find the terms without the coefficients, by observing 
that the index of the first, or leading quantity, begins with that 
of the given power, and decreases continually by 1, in every 
term to the last ; and that, in the following quantity, its indices 
are 1, 2, 3, &c. Then, find the coefficients, by observing that 
those of the first and last terms are always 1 ; and that the 
coefficient of the second term is the index of the power of the 
first; and, for the rest, if the coefficient of any term be mul¬ 
tiplied by the index of the leading quantity in it, and the pro¬ 
duct be divided by the number of terms to that place, it will 
give the coefficient of the term next following. 

Ex. 1. Required the 8th power of a-\-h. 
Here the terms, without the coefficients, are 

a9, a?b, oGb2, a5b3, a464, a3b5, a2bG, ab7, b8. 
And the coefficients, according to the rule, will be 1, 8, 
8X7 

2 “ 
28X2 

=28, 

= 8, 

28X6 56x5 ,70x4 56x3 
= 56,—-—=70, —-—=56, 

3 6 
8x1 

8 
Then, the terms are thus : 

'The first term is . . 
second, .... 

third, .... 

fifth, .... 

sixth, .... 

.8 cPb. 

52lZ x asA2=2 8a6i2. 
2 

25211 Xa5A3=56a563. 
o 

^^-Xa4&4=70a464. 
4 

70 X 4 
—-2—XaV>5 = 56aV>5. 

5 
17 
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56 X 3 
seventh, .... —-—Xa266=28a266 

6 
• , . 28x3 _ __ 

eighth, .... —-—Xab1 = Bab1. 

8x1 lft lft 
ninth, .... —-—X o — o°. 

o 

And thus we have, (a+6)8=a8+86575-f-28a6&2-f"56a5i3 + 
70a464-{- 56a365-)- 28a256+8aZ>7-f b8. 

227. From this example and the foregoing Table the whole 
number of terms will evidently be one more than the index of 
the given power; after having calculated therefore as many 
terms as there are units in the index, of the given power, we 
may immediately proceed to the last term. And in like man¬ 
ner it may be observed, that when the number of terms in the 
resulting quantity is even, the coefficients of the two middle 
terms is the same ; and that in all cases the coefficients in¬ 
crease as far as the middle term, and then decrease precisely in 
the same manner until we come to the last term. By attend¬ 
ing to this law of the coefficients, it will be necessary to cal¬ 
culate them only as far as the middle term, and then set down 
the rest in an inverted order. 

Thus in the above example, the middle term is 70aibi, and 
we have, 

The first four coefficients, 1, 8, 28, 56. 
The last four .... 56, 28, 8, 1. 

228. But we are not yet arrived at the most general form in 
which this Rule may be exhibited. Suppose it was required 
to raise the binomial a-\-b to any power denoted by the num¬ 
ber (n). Proceeding with n as we have done with the several 
indices in the preceding examples, it appears that, 

The first term would be an. 

The second, . . . nan~lb. 

ml 7 n{n — 1) 7 
The third, . . . —-an—zb. 

2 

The fourth, 

The fifth, . 

. . ±-±\XJn-?-).an-W' 
2X3 

n{n — l) X (n-2) X (n—3) 

2X3X4 

The sixth, 
n{n— 1) X (n—2) X (w—3) X (n—4) ^n_ 

2 X 3 X4 X 5 

The last, . . hn • • U • 
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Or (a+b)n=an+nan~'b+ 

n(n — l)x(n—2) n >aj,3 , 7i(rc—1) X(n—2) X(n—3) 

2.3 ® 6 273.4 
an~4b4, &c. .-f4”. 

By the same process, (a—b)n=an—n<z”“*1&4“ 

n(n—1) 
an~“2b2 ■ 

ii(n—1 )x(n—2)x(n — 3) 

n(n-l)x(n-2) 

2.3 

2.3.3 
a""’4b4—&c. ; the signs of the terms 

being alternately + and —1 ; and the sign of the last term is 
4- or —1, according as n is even or odd ; we have the last 
term in the former case, ~\-bn, and in the latter —bn. 

This general and compendious method of raising a binomial 
quantity to any given power, is called from the name of its ce¬ 
lebrated inventor, Sir Isaac Newton’s “ Binomial Theorem.” 
The demonstration of this Theorem, with its application to the 
finding the powers and roots of compound quantities, forms 
the subject of another Chapter. Its present use will appear 
from the following Example. 

Ex. 2. Required the fifth power of x2-\-3y2. 
Substituting these quantities for a, b, n, in the foregoing 

general formula, it appears that 
rhe first £ /*,2\s 

term, 
2nd, . 

=as10. 

3d, . 

4th, . 

(3y2)3 
5th, . 

^ (a11) .... (x2) 

. (nan—lb) . is 5 X (a;2)4 X 3y2 . . . = 15a:8y2. 

^n~l\n_2b2^ . 5 X ^ X (a:2)3 X (3y2)2=90a?6y4. 

^n{n — 1)X(n—2)a„_3^ ' is 5X|X|X(a?2)aX 

(- 
(n l)(n 2)(;i 3) n 

2.3.4 

—270x4y6. 
4 3 2 

an-4b4 ) is 5 X~ X-X - x a2 X 
2 3 4 

(3j/2)4 
Last, 

. . . . . . . = 405a:2y8. 
(b”) is (3y2)5 . =243y™. 

So that (£c24-3y2)5 = x10 + 15xey2 -}- 80a:6y4 -j- 270a;4y6 -j- 
405.r2y8 + 243y10. 

229. By means of this Theorem, we are enabled to raise a 
trinomial, or quadrinomial quantity to any power, without the 
process of actual multiplication. 

Ex. 3. Required the square of a-j-6-j-c. 
Here, including a-\-b in a parentheses (a-\-b), and consider¬ 

ing it as one quantity, we should have (a-\-b~fc)2 = [(a + 5) 
-he]2 ; and comparing them with the general formula ; 
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we have {an)=:{a-\-b)2=a2-\' 2ab-\-b2 
(nan—16)':=2(a-|-6) X c — 2ac-\-2bc 

(bn) = c2 =c2 

Hence, (a+b-\-c)2==(aJrb)2-\-2(a-\-b) X c4'C2=a2+2a£> -f* 
52+2ac-f-2 6c+c2. 

Ex. 4. Required the seventh power of a—b. 
Ans. a7 — lefib -{- 21cr562—35a463 -f- 35a364—21a265 4* 7a66 

—A7. 
Ex. 5. Required the sixth power of 3#4-2y. 
Ans. 729a?6+2916;r5y + 4860a;4]/2+4320a:3y3-|-2160a:2y4-f* 

576#y5-i- 64y6. 
Ex. 6. Required the square of x-\-y-\-3z. 

Ans. x2-\-2xy-\-y2-{-§xz-\‘§yz-\-§z2. 
Ex. 7. Required the fifth power of l-{-2x. 

Ans. l + 10^+40^2+80a:3 + 80a:4+32a;5. 
Ex. 8. Required the cube of x2—2xy-\-y2. 

Ans. a;6 — 6x5y 4* 15#4y2—20a;3y3-f-15ac2y4 — 6xy5-^-y6. 

§ II. EVOLUTION OF ALGEBRAIC QUANTITIES. 

230. The quantity which has been raised to any power is call¬ 
ed the root of that power ; thus the mth root of a power, is that 
quantity which we must continually multiply into itself, till 
the number of factors be equal to m, m being a positive whole 
number, in order to produce the power proposed. We may 
conclude from this definition, and from the Articles in the pre¬ 
ceding section. 

231. That the mth root of a quantity such as apm, pm being a 
multiple of p, is obtained by dividing the exponent pm of this 
quantity, by the index of the required root. Thus the mth root of 

pm g 
apm=am z=zap ; the square root of a6=a2=za3, and the cube 

6. 

root of a6 = a3=a2. 
232. Also that the mth root of a product such as a2mb3m, is 

equal to the mth root of each of its factors multiplied together. 
Thus, the mth root of a2mb3m is = the mth root of a2m X the mth 

2m 3 m 

root of b3m=za m X b m=za2b3. 
d'* 

233. And that the mth root of a fraction such as —, is 

to the mth root of the numerator divided by the mth root of its 
denominator. 

Thus the mth root of 
a" 

bm 

am a 
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234. The square, the fourth root, or any even root of an affir¬ 
mative quantity may he either or — 1. Thus the square root 
of a2 = aor—a; for +a X +a= -fa2, and — a X — a--\-a2. 
In fact, the 2mth root of a2mis equal to -j-a or —a ; for (ia)2rn 

— (± a)2 X am = a2m. 
235. Any odd root of a quantity, will have the same sign as the 

quantity itself Thus the (2m-f1 )th root of ^a2”1 *1 is equal to 
-fa; for (±«)2m+1 is equal to d:«2m+1* 

236. Evolution, or the rule for extracting the root of any 
algebraic Quantity whatever, is divided into the four following 
Cases. 

CASE I. 

To find any root of a simple algebraic Quantity. 

RULE. 

237. Extract the root of the coefficient for the numeral part, 
and the root of the quantity subjoined to it for the literal part, 
by the methods pointed out in the above propositions ; then, 
these, joined together, will be the root required. 

Ex. 1. It is required to tind the square root of #4. 
± 

Here, the square root of #4 — dr y^4— Ax2 = A®2' 
Ex. 2. Required the cube root of —27#?a6. 
Here, the cube root of —27#3a6= — 27x3a6 = —y/ 27 X 

yf oc3 Xy/ a6= —3 X a; X a2— —3a2#. 
a2x2 

Ex. 3. Required the square root of —-. 
b2c2 

Here, the square root of a2x2—\/a2X'\/x2 — axi and the 

square root of b2c2 = -yjb2 X \A2 = be _L— is the root 

quired. 
Ex. 5. It is required to find the square root of 64a2#4. 

Ans. 8a#2, or —8a#2. 
Ex. 6. It is required to find the cube root of 729a6#12. 

Ans. 9a2#4. 
Ex. 7. Required the fourth root of 256a4Z»8. 

Ans. 4ab2, or —4ab2. 
Ex. 8. Required the fifth root of 32a5#10. Ans. 2a#2. 

729a6/>6 . . 3ab 
Ex. 9. Required the sixth root of 

17* 
4096#12’ 

Ans. d: 
4#2* 
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Ex. 11. 

Ex. 10. 

Ex. 12. 

CASE II. 

To extract the square root of a compound Quantity. 

RULE 

238. Observe in what manner the terms of the root may be 
derived from those of the power ; and arrange the terms ac¬ 
cordingly ; then set the root of the first term in the quotient; 
subtract the square of the root, thus found, from the first 
term, and bring down the next two terms to the remainder for 
a dividend. 

Divide the dividend, thus found, by double that part of the 
root already determined, and set down the result both in the 
quotient and divisor. 

Multiply the divisor, so increased, by the term of the root 
last placed in the quotient, and subtract the product from the 
dividend, and to the remainder bring down as many terms as 
are necessary for a dividend, and continue the operation as be¬ 
fore. 

Ex. 1. Required the square root of a2-\- 2ab-\-b2, 
a2-\-2ab-\-b2 
a2 (a {a-\-h 

2 a + b 2 ab-\-h2 
2ab-\-b2 

On comparing a-\-b with a2-\-2ab-\-b2, we observe that the 
first term of the power (a2) is the square of the first term of 
the root («). Put a therefore for the first term of the root, 
square it, and subtract that square from the first term of the 
power. Bring down the other two terms 2ab-\-b2, and double 
the first term (a) of the root; set down 2a, and having divi¬ 
ded the first term of the remainder (2ab) by it, we have b, the 
other term of the root; and since 2ab-\-b2 — [2a-\-b) xb, if to 
2a the term b is added, and this sum multiplied by b, the re¬ 
sult is 2abJrb2; which being subtracted from the terms brought 
down, nothing remains. 
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Ex. 2. Required the square root of a2-\-2ab-{-b2-\‘2ac-\-2bc 
+ c2. 

a2-\-2ab-\-b2-\-2ac-\-2bc-{- c2(a+5+c 

2 a~\-b 2ab-\-b2 
2ab-\-b2 

2gj+26 + c 2ac-\‘2bc-\-c2 
2ac-\-2bc-\-c2 

On comparing the root a-\-b-\-c, thus found with its power, 
the reason of the rule for deriving the root from the power 
is evident. And the method of operation is the same as in the 
last example. Thus, having found the first two terms of the 
root as before, we bring down the remaining three terms 2ac 
+2bc-{-c2 of the power, and dividing 2ac by 2a, it gives c, the 
third term of the root. Next, let the last term (b) of the pre¬ 
ceding divisor be doubled, and add c to the divisor thus in¬ 
creased, and it becomes 2a-\-2b-\-c ; multiply this new divisor 
by c, and it gives 2ac-\-2bc-{-c2, which being subtracted from 
the terms last brought down, leaves no remainder. In like 
manner the following Examples are solved. 

&9 
Ex. 3. Required the square root of 4#4+6#3-l-#2+ 15# 

+ 25. 
89 / 3 

4#4+6#3+-^-#2+15#+25^2#2+-#+5 

4#4 

4#2+—x) 6x3 -j-x2 
2 J 4 

6#3-j—x2 
4 

4#2+3#+5)20#2+15#+25 
20#2+15#+25 

Ex. 4. Required the square root of #6+4#5+2#4+ 9#2—4# 
+4. Ans. #3+2#2—#+2. 

Ex. 5. Required the square root of #4+4a#3 + 6«2#2 + 4a3# 
+ a4. Ans. x2 + 2ax + a2 • 

Ex. 6. Required the square root of a4—2a3+f a2—^a+x^- 
Ans. a2—a++ 
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Ex. 7. Required the square root of 4a4+T2a3;r+ \3a2x2-\- 
6ax3 + x*. Ana. 2a2-{-3ax+x2. 

Ex. 8. Required the square root of 9;r4 + \2x3-\-3ix2-\-20x 
+ 25. Ans. 3x2-\-2x-\-5. 

Ex. 9. Required the square root of a2-\-2ab-\-b2-\-2ac-\- 
2bc-\-c2-\-2ad-\ 2bd-\-2cd~\-d2. Ans. a-\-b-\-c-\-d. 

Ex. 10. Required the square root of «4+ 12a36 + 54a2Z>2 + 
108a63+81&4. Ans. a2+6<z& + 9&2. 

Ex. 11. Required the square root of a6 — 6a5;r+15a4a:2— 
20a3ar3+ 15a2a?4 — Qaxb-\-x&. Ans. a3—3a2x-\-3ax2—x3. 

Ex. 12. Required the square root of a4—2a2#2+x4. 

> Ans. a2—a:2. 

CASE III. 

To extract the cube root of a compound Quantity. 

RULE. 

239. Arrange the terms as in the last case ; and set the 
root of the first terms in the quotient; subtract the cube of the 
root, thus found, from the first term, and bring down three 
terms for a dividend. 

Next, divide the first term of the dividend by 3 times the 
square of that part of the root already determined, and set the 
result in the quotient; then, to 3 times the square of that part 
of the root, annex 3 times the product of the same part and the 
last result, and also the square of the last result, with their pro¬ 
per signs ; and it will give the divisor, multiply the divisor by 
the term of the root last placed in the quotient, and subtract 
the product from the dividend, bring down three terms or as 
many as may be necessary for a dividend, and proceed as be¬ 
fore. 

Ex. 1. Required the cube root of a?-\-3a2b-\-3ab2-\-b3. 
a3 + 3a2b + 3 ab2 + b3 
a3 (a-[-b 

3a2+ 3ab-\-b2)3a2b-\-3ab2-\-b3 
3a2b -\-3ab2 -\-b3 

The reason of the rule may be made evident from a com¬ 
parison of the roots with its cube. 

Or, thus, if the quantity whose root is to be extracted, has 
an exact root, the root of the leading term must be one term 
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of its root; that is, the cube root of a3, which is a, is one 
term of the root, and the remaining terms being brought 
down, the root of the last term b3 is consequently another term 
of the root; but as the root may consist of more terms than 
two ; the next term (b) of the root is always found by dividing 

the first term of the dividend by three times the 

square of the divisor, and the two remaining terms of the di¬ 
vidend 3ab2-j-b3=(3ab-j-b2)b ; hence 3ab-j-b2 must be added 
to 3a2 for a divisor ; and so on. 

Ex. 2. Required the cube root of a:6-}-6a:5— 40a:3-}- 96a:~64. 
a:6-}-6a:5—40a:3-}-96a:— 64 (x2-\-2x—4 

3a:4-}- 6a:3 -{- 4a;2)6a'5—40a;3 
6a;5-}-12a;4-f* 8a,3 

3a:4-}- 12a:3—24 a:-}- 16) — 12a:4—-48a:3-}-96a:— 64 
— 12a:4—48a:3-f-96a:— 64 

Ex. 3. Required the cube root of (a-f-&)3-f-3(a+&)2c-f- 
3(a + &)c2-|-c3. Ans. a+6-f-c. 

Ex. 4. Required the cube root of a:6—-6a:5-f- 15a:4—20a:3-f- 
15a:2—6a:+l. Ans. a:2—2a:-}-l. 

Ex. 5. Required the cube root of x6-{- Qxsy-\~ 15a:4y2-}-20a:3y3 

-}-15a:2y4-j-6a:y5-}-y6. Ans. x2-\-2xy-\~y2. 
Ex. 6. Required the cube root of 1—6a:-f 12a:2 —8a:3. 

Ans. 1—2a?. 

CASE IV. 

To find any root of a compound Quantity. 

RULE. 

240. Find the root of the first term, which place in the quo¬ 
tient ; and having subtracted its corresponding power from 
that term, bring down the second term for a dividend. Divide 
this by twice the part of the root above determined, for the 
square root; by three times the square of it, for the cube root; 
by four times the cube of it, for the fourth root, &c. and the 
quotient will be the next term of the root. 

Involve the whole of the root, thus found, to its proper 
power, which subtract from the given quantity, and divide 
the first term of the remainder by the same divisor as before. 
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Proceed in the same manner for the next following term of the 
root; and so on, till the whole is finished. 

241. This rule may be demonstrated thus ; (a-\-b)n=an 
•f ttan-]&-f, &c. Here the nth root of an is a, and the next 
term nan-^b contains b, (the other term of the root) nan-1 
times ; hence, if we divide nan-lb by na”-1, we have b, or 

™a -n-b — b ; and so on, for any compound quantity, the root 

of which, consists of more than two terms. 
Now, if n=2 ; then, the divisor naP-l=2a, for the square 

root; 
if n = 2> ; then, .... nan—l—3a2} for the cube 

root; 
if n=4 ; then, .... nan-1=4a3) for the 4th 

root; 
if n=5 ; then, .... nan-1=5ai, for the 5th 

root. 
And so on for any other root, that is, involve the first term 

of the root, to the next lowest power, and multiply it by the 
index of the given power for a divisor. 

Ex. 1. Required the square root of a4—2a3a:-f 3a2x2—2ax3 
-fa;4. 

a4—2 a3 x-f3 a2 x2—2 ax3 -f a:4(a2—ax -f a;2. 
a4 

2a2)—2 a3x 

(a2—aa?)2=a4—2a3a;-J- a2x2 

2a2)-\-2a2x2 

(a2—ax-\~x2)2 = a4—2a3a; -f 3a2a:2—2aa;3 -f a;4. 

Ex. 2. Required the 4th root of 16a4 — 96a3x-{~216a2x2— 
216aa;3-f 81a?4. 

16a4 — 96a3a;-f 216a2a?2—216aaj3 + 81a;4(2a — 3a; 
16a4 

4 X (2a)3r=32a3) — 96a3a; 

(2a — 3a;)4 = 16a4—96a3x-\-2\6a2x2—216aa;3-f 81a:4. 

242. As this rule, in high powers, is often found to be very 
laborious, it may be proper to observe, that the roots of cer¬ 
tain compound quantities may sometimes be easily discovered: 
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tlius, in the last example, the root is 2a—2>x, which is the 
difference of the roots of the first and last terms ; and so on, 
for other compound quantities. 

Hence, the following method in such cases ; extract the 
roots of all the simple terms, and connect them together by 
the signs + or —, as may be judged most suitable for the 
purpose ; then involve the compound root thus found, to its 
proper power, and if it be the same with the given quantity, 
it is the root required. But if it be found to differ only in 
some of the signs, change them from + to —, or from — to 
+ , till its power agrees with the given one throughout. How¬ 
ever, such artifices are not to be used by learners, because 
the regular mode of proceeding is more advantageous to them ; 
besides, a knowledge of those artifices which are used by ex¬ 
perienced Algebraists, can only be acquired from frequent 
practice. 

Ex. 3. Required the square root of a2-\-2ab-\-b2-\-2ac-\-2bc 

-fc2. 

Here, the square root of a2—a ; the square root of b2 = h ; 
and the square root of c2=c. Hence, a-\-b-\-c, is the root re¬ 
quired, because (a-\-b-{-c)2 — a2-\-2abJrb2-\-2ac-\-2bc-f c2. 

Ex. 4. Required the fifth root of 32a:5 — 80a:4-{-80a:3 — 40a:2 
-f-10a:— 1. Ans. 2a: — 1. 

Ex. 5. Required the cube root of a:6 — 6a5+15a:4—20a:3-f- 
15a:2 — 5a:+l. Ans. a:2—2a?-fl. 

Ex. 6. Required the fourth root of a4—4a3a:+6a2a:2—4aa:3 
+ a:4. Ans. a—x 

Ex. 7. Required the square root of a:8-j-2a:4y4-|-y3. 
Ans. a:44-y4 

Ex. 8. Required the square root of a:8—2a:4y4-f-y8. 
Ans. a:4—y4. 

Ex. 9. Required the cube root of a3 —6a2a:-j-12aa:2 —8a:3. 
Ans. a—2a:. 

Ex. 10. Required the sixth root of a:6—6a:5+15a:4—20a:3+ 
1 5a:2 — 6a:-f-1. Ans. a?— 1. 

Ex. 11. Required the fifth root of ad°-f- 15a:8y2-f-90a:6y4+ 
270a:4y6-{-405a:2y8-{-243y10. Ans. a:2-f-3y2. 

Ex. 12. Required the square root of a:2-f-2a:y-f-y2-f-6a:^-f- 
§yz-\-Qz2. Ans. x-{-y-\-3z. 

§ III. INVESTIGATION OF THE RULES FOR THE EXTRACTION 

OF THE SQUARE AND CUBE ROOTS OF NUMBERS. 

243. It has been observed, (Art. 104), that, a denoting the 
tens of a number, and b the units, the formula a2-\-2ab-\-b2 
would represent the square of any number consisting of two 
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figures or digits ; thus, for example, if we had to square 25 
put a — 20 and 6 = 5, and we shall find 

a2 = 400 
2ab=200 

62 = 25 

(a+6)2 = (25)2 = 625. 
244. Before we proceed to the investigation of these Rules, 

it will be necessary to explain the nature of the common 
arithmetical notation. It is very well known that the value 
of the figures in the common arithmetical scale increases in a 
tenfold proportion from the right to the left; a number, there¬ 
fore, may be expressed by the addition of the units, tens, hun¬ 
dreds, &c. of which it consists ; thus the number 4371 maybe 
expressed in the following manner, viz. 4000 + 300+ 70 +1} 
or by 4x1000 + 3x100 + 7x10 + 1; also, in decimal arith¬ 
metic, each figure is supposed to be multiplied by that power 
of 10, positive or negative, which is expressed by its distance 
from the figure before the point: thus, 672.53 = 6 x 102+7 x 
101+2X10°+5X 10-1 + 3X10-2 = 6X100 + 7X10+2X1 

+A+iIo=672+^0o+T6o=672^3o' Hence> if the digits 
of a number be represented by a, b, c, d, e, &c. beginning 
from the left-hand ; then, 

A number of 2 figures may be expressed by 10a+6. 
3 figures ... by 100a+106+c. 
4 figures . by 1000a +1006 + 10c+d. 

&c. &c. &c. 
By the digits of a number are meant the figures which com¬ 

pose it, considered independently of the value which they 
possess in the arithmetical scale. 

Thus the digits of the number 537 are simply the numbers 
5, 3 and 7 ; whereas the 5, considered with respect to its 
place, in the numeration scale, means 500, and the 3 means 30. 

245. Let a number of three figures, (viz. 100a+106 + c) 
be squared, and its root extracted according to the rule in (Art. 
288), and the operation stands thus ; 

I. 10000a2+ 2000a6 + 10062 + 200ac+206c+c2 
10000a2 (100a+106 + c 

200a+ 106)2000a6 + 10062 
2000a6+1006 

200a + 206 +e)200ac+206c+c2 
200ac + 206c + c2 
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II. Let a—2 
b m and the operation is transformed into the 

following one : 

40000+12000+900+4004-60+1(200-1-30+1 
40000 

400 + 30)12000 + 900 

400 + 60 + 1)400 + 60+1 
400 + 60 + 1 

III. But it is evident that this operation would not be af¬ 
fected by collecting the several numbers which stand in the 
same line into one sum, and leaving out the ciphers which are 
to be subtracted in the operation. 

• • • 

53361(231 
4 

43 133 
129 

461 461 
461 

Let this be done ; and let two figures be brought down at a 
time, after the square of the first figure in the root has been sub¬ 
tracted ; then the operation may be exhibited in the manner 
annexed ; from which it appears, that the square root of 53361 
is 231. 

246. To explain the division of the given number into pe¬ 
riods consisting of two figures each, by placing a dot over 
every second figure beginning with the units, as exhibited in 
the foregoing operation. It must be observed, that, since the 
square root of 100 is 10 ; of 10000 is 100 ; of 1000000 is 1000; 
&c. &c. it follows, that the square root of a number less than 
100 must consist of one figure ; of a number between 100 and 
10000, of two figures ; of a number between 10000 and 
1000000, of three figures ; &c. &c., and consequently the num¬ 
ber of these dots will show the number of figures contained 
in the square root of the given number. From hence it fol¬ 
lows, that i\\e first figure of the root will be the greatest square 
root contained in the first of those periods reckoning from the 
left. . . . 

Thus, in the case of 53361 (whose square root is a num- 

16 
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ber consisting of three figures); since tbe square of the figure 
standing in the hundred's place cannot be found either in the 
last period (61), or in the last hut one (33), it must be found 
in the first period (5); consequently the first figure of the root 
'will be the square root of the greatest square number contained 
in 5 ; and this number is 4, the first figure of the root will be 
2. The remainder of the operation will be readily understood 
by comparing the steps of it with the several steps of the pro¬ 
cess for finding the square root of (a-\-h-\-c)2 (Art. 238); for, 
having subtracted 4 from (5), there remains 1 ; bring down 
the next two figures (33), and the dividend is 133 ; double the 
first figure of the root (2), and place the result 4 in the divisor ; 
4 is contained in 13 three times ; 3 is therefore the second 
figure of the root; place this both in the divisor and quotient, 
and the former is 43 ; multiply by 3, and subtract 129, the re¬ 
mainder is 4 ; to which bring down the next two figures (61), 
which gives 461 for a dividend. Lastly, double the last figure 
of the former divisor, and it becomes 46 ; place this in the next 
divisor, and since 4 is contained in 4 once, 1 is the third figure 
of the root; place 1 therefore both in the divisor and quotient; 
multiply and subtract as before, and nothing remains. 

247. The method of extracting the cube root of numbers 
may be understood by comparing the process for extracting 
the cube root of (a-j-^+c)3, (Art. 239), with the following- 
operations, in which is deduced the cube root of the number 
13997521. 
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• • • 

13997521(200 + 40 + 1 
a3=(200)3 = 8000000 

1st remainder 5997521 

3a2=3 X (200)2 = divisor, 
•/ 3a2b =3(200)2 X 40=4800000 

3a62 = 3x 200 X (40)2= 960000 
63=40 X 40 X 40= 64000 

5824000 

2nd remainder 173521 

3(a + 6)2c=3(200 + 40)2x 1 = 172800 
3(a+6)c2 = 3(200+ 40) X 1 = 720 

c3 = lxlXl— 1 

173521 

3d remainder 000000 

Omitting the superfluous ciphers, and bringing down three 
figures at a time, the operation will stand thus ; 

• • • 

13997521)241 
23= 8 

5997 

300 x22 X 4= 4800 
30 x 2 X 42= 960 

43= 64 

5824 

173521 

300 X (24)2 X 1 = 172800 
30 X 24 X 12= 720 

173521 



196 EVOLUTION. 

248. These operations may be explained in the following 
manner ; 

I. Since the cube root of 1000 is 10, of 1000000 is 100, 
&c.; it follows, that the cube root of a number less than 1000 
will consist of one figure ; of a number between 1000 and 
1000000 of two figures, &c. &c. ; if, therefore, the given num¬ 
ber be divided into periods, each consisting of three figures, 
by placing a dot over every third figure, beginning with the 
units, the number of those dots will show the number of 
figures of which the cube root consists ; and for the reason 
assigned in the preceding Article, (respecting the first figure 
of the square root), the first figure of the root will be the 
cube root of the greatest cube number contained in the first 
period. 

II. Having pointed the number, we find that its cube root 
consists of three figures. The first figure is the cube root of 
the greatest cube number contained in 13 ; this being 2, the 
value of this figure is 200, or a — 200, consequently a3= 
8000000 ; subtract this number from 13997521, and the re¬ 
mainder is 5997521. Find the value of 3x2, and divide this 
latter number by it, and it gives 40 for the value of a, the se¬ 
cond number of the root; put this in the quotient, and then 
calculate the value of 3a2b-\-3ab2-\-b3, and subtract it, and 
there remains 173521. Find now the value of 3x(«+&)2, 
and divide 173521 by it, and it gives 1 for the value of c, the 
third member of the root; put this in the quotient, and then 
calculate the amount of 3(aJ{-b)2c-\-3(a-\-b)c2-\-c3, which sub¬ 
tract, and nothing remains. 

III. In reviewing the first of these two operations, it is 
evident that six ciphers might have been rejected in the va¬ 
lue of a3, and three in the value of 3a2b-\-3ab2-\- b3, without af¬ 
fecting the substance of the operation ; having therefore sim¬ 
plified the process as in the second operation, we are fur¬ 
nished with the following rule, for extracting the cube root of 
numbers. 

RULE. 

249. Point off every third figure, beginning with the units ; 
find the greatest cube number contained in the first period, 
and place the cube root of it in the quotient. Subtract its 
cube from the first period, and bring down the next three 
figures ; divide the number thus brought down by 300 times 
the square of the first figure of the root, and it will give the 
second figure ; add 300 times the square of the first figure, 
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30 times the product of the first and second figures, and the 
square of the second figure together, for a divisor ; then mul¬ 
tiply this divisor by the second figure, and subtract the result 
from the dividend, and then bring down the next period, and 
so proceed till all the periods are brought down. 

The rules for extracting the higher powers of numbers, and 
of compound algebraic quantities, are very tedious, and of no 
great practical utility. 

Examples for practice in the Square and Cube Roots of 
Numbers. 

Ex. 1. Required the square root of 106929. 
106929(327 

9 

169 
124 

> 

647 4529 
4529 

Ex. 2. Required the cube root of 48228544. 
• • • 

48228544(364 
27 

3276(21228 
19656 

393136) 1572544 
1572544 

Divide by 300 X 32=2700 
30x3x6:=: 540 

6x6= 36 

1st Divisor =3276 

Divide by, (36)2 x 300 = 388800 
30x36x4= 4320 

4x4= 16 

2d Divisor 393135 
Ex. 3. Required the square root of 152399025. 

Ans. 12345. 
Ex. 4. Required the square root of 5499025. 

Ans. 2345. 
Ex. 5. Required the cube root of 389017. Ans. 73. 
Ex. 6. Required the cube root of 1092727. Ans. 103. 

18* 
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CHAPTER VII. 

ON 

IRRATIONAL AND IMAGINARY QUANTITIES. 

§ I. THEORY OF IRRATIONAL QUANTITIES. 

250. It lias been demonstrated (Art. 231), that the 772th root 
of ap, the exponent p of the power being exactly divisible by 

p_ 
the index m of the root, is am. Now in case that the expo¬ 
nent p of the power is not divisible by the index m of the root 
to be extracted, it appears very natural to employ still the same 
method of notation, since that it only indicates a division which 
cannot be performed : then the root cannot be obtained, but 
its approximate value may be determined to any degree of ex¬ 
actness. These fractional exponents will therefore denote im¬ 
perfect powers with respect to the roots to be extracted; and 
quantities, having fractional exponents, are called irrational 
quantities, or surds. 

It may be observed that the numerator of the exponent 
shows the power to which the quantity is to be raised, and the 

m 

denominator its root. Thus, an is the 72th root of the mth 

power of a, and is usually read a in the power 

251. In order to indicate any root to be extracted, the ra¬ 
dical sign -yf is used, which is nothing else but the initial of 
the word root, deformed, it is placed over the power, and in the 
opening of which the index m of the root to be extracted is 
written. 

p_ 

We have therefore ’(/ ap =am. For the square root, the 
sign -y/ is used without the index 2 ; thus, the square root of 
ap is written *\/ap, as has been already observed, (Art. 18). 

Quantities having the radical sign -y/ prefixed to them, are 
called radical quantities: thus, a, y/b, c2,y xm ,&c, are 
radical quantities; they are, also, commonly called Surds. 

252. From the two preceding articles, and the rules given 
in the second section of the foregoing Chapter, we shall, in 
general, have, 
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P_ *L JL 

y (ap.b«.cr) = y apxy b<xy cf=za”> X bm X cm ; 

7ap.bq y [op.bq) _y bpxybq 

‘~y"cdT~y crxy~d;' 

_p p 

am X bn 
r 

c,n Xbn 

Therefore, y a3b=y a3xy b=axy b—dy b ; 

3 ,a6b3c2 y aGb3c2 y a6 xy b3 X-y/ c3 

y c3#% y e3xy oc3xy xz 
a2by 

7 
a2b 31c2 

ex\ xz * ex'y xz 

253. Two or more radical quantities, having the same in¬ 
dex, are said to be of the same denomination, or kind ; and they 
are of different denominations, when they have different indices. 

In this last case, we can sometimes bring them to the same 
denomination; this is what takes place with respect to the 

6 4 3 o 

two following, -y/a3b2 an^y a^^a* xb* =ia? . V1 ~ya3-y/b2 
= -ffa3b2. In like manner, the radical quantities y 2aGb and 
y 1 Qa3b, may be reduced to other equivalent ones, having the 
same radical quantity ; thus, y 2a6b~y a6 xy 2b—a2 y 2b, 
and y 16a3b=y 8a3.2b—y 8 .y a3 .y 2b—2dy 2b ; where 
the radical factor y 2b is common to both. 

254. The addition and subtraction of radical quantities can 
in general be only indicated : 

Thus, y a2 added to, or subtracted from yb, is written yb 
ddy a2, and no farther reduction can be made, unless we as¬ 
sign numeral values to a and b. But the sum of ya2b, ya2b, 
and y4a2b is —ayb-\-ayb-\-2aybz=.\ayb ; 3y ab~y ab 
=2y ab ; and yab2-\~y a^—b y a-{-aby a2=bya-\-abya 
= (b-]rab)y a. 

255. Hence we may conclude, that the addition and sub¬ 
traction of radical quantities, having the same radical part, are 
performed like rational quantities. 

Radical quantities are said to have the same radical part, 
when like quantities are placed under the same radical sign ; 
in which case radical quantities are similar or like. It is some¬ 
times necessary to simplify the radical quantities, (Art. 252), 
in order to discover this similitude, and it is independent of 
the coefficients. 

Thus, for example, the radical quantities 3b3y 2a5b2, 8ay 
2a2b5, and —laby 2a2b2, become, by reduction, 3ab3y 2a2b2, 
8aby 2a2b2, and —laby 2a2b2 ; which are similar quantities, 
and their sum is =4aby 2a2b2. 
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256. We have demonstrated, (Art. 252), this formula, 
y aWcr-y apxy bbxy cr; from which the rule for the 
multiplication of radical quantities, under the same radical 
sign, may be easily deduced. 

257. Let us pass to radical quantities with different indices, 
and suppose that we had to find, for instance, the product of 

_p s 
y a? by y bq, or that of a'n by b m>: we can bring this case to 
the preceding, by reducing to the same denominator, (Art. 

152), the fractions — and^-: ; and we shall have y apXm{/ bq 
m m 

p JL pmf qm 

— a^bm' = amnw X bmm'—mmy apmf Xmmy/ bqm—mmy apm'bqm. 

258. The rule for dividing two radical quantities of the 
same kind, may be read in this formula (Art. 233). 

y a”_m Iap 
y bq~\¥’ 

and it only remains to extend it to two radical quantities of 
different denominations. 

Let therefore y ap be divided by ny bq : by passing from 
radical signs to fractional exponents, we have 

p pm' 

y ap om apm> 

W' 

Vv^e may likewise suppose, under the radical signs, any 
number of factors whatever, and it shall be easy to assign the 
quotient, (Art. 252). 

Let now a — b in the formula 
y apxy bq — y ap .bq ; 

it becomes, by passing from radical signs to fractional expo 
nents, 

am Xa’n 

ph 

■y ap±q=zam ■ am m . 

Therefore the rule demonstrated (Art. 71), with regard to 
whole positive exponents, extends to fractional exponents. 

y ap 
259. In the same hypotheses 5 = ot, the quotient ~_be- 

another extension of the rule given (Art. 86), to fractional 
positive exponents. 
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260. We may, in the preceding formula, suppose p—o ; and 

it becomes, (since am=am=a°—l)—=a m, a transformation 

a” 

demonstrated, (Art. 86) in the case of whole exponents, and 
which still takes place when the exponents are fractional. 

261. If we now admit the two equalities, 

and if we multiply them member by member, we shall have 

the equal products, 

111 2 q l — L 
—Px~l=~— ; or am X am = am m‘ 

a m am am + m 

It appears therefore evident, that exponentials with frac¬ 
tional negative exponents, follow the same rule in their mul¬ 
tiplication, as those with whole positive exponents. 

_v _P 
262. The division of am by an\ gives for the quotient, 

__ _P J? 

~am a”1 -l-p- -p-\q~. 
--——— am m = am m 
_1 _£ 

am am 

Now the exponent of the qnolient, namely-- + is the expo¬ 

nent of the dividend, minus that of the divisor, which is still 
a generality of the rule (Art. 86), relative to the division of 
exponentials. 

263. The rules that have been demonstrated in the pre¬ 
ceding articles may be extended to radical quantities having 

irrational exponents: For instance, ——, &c. since that 

the roots of y^2 and -y/3 might be obtained with a sufficient 
degree of approximation, and such that the error may be ne¬ 
glected ; so that these exponents shall be terminated decimal 
fractions, which can be always replaced by ordinary fractions. 

264. The formation of the powers of radical quantities, is 
nothing else but the multiplication of a number of radical 
quantities of the same denomination, marked by the degree 
of the power ; so that it is sufficient to raise the quantity 
under the radical sign to the proposed power, and afterwards 
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to affect this power with the common radical sign. If the in¬ 
dex of the radical sign is divisible by the exponent of the 
power in question, the operation then is performed by dividing 
that index by the exponent of the power. Let us give two 
examples for these two cases, (y apbq)s=y apsbbs; ("y avbq)‘ 
=y apbq. 

265. If the exponent of the power is equal to the index of 
the radical sign, the power is the quantity under the radical 
sign. In fact, the indication y op, shows that ap is the with 
power of a certain number y ap, which we can always assign, 
either rigorously, or by an approximation, so that the with 
power of y ap is ap. In like manner, the square of y a is 
a ; the cube of y a is a ; the 5th power of y (—a2) is —a2 ; 
and so on. 

266. A rational quantity may be reduced to the form of a given 
surd, by raising it to the power whose root the surd expresses, and 
prefixing the radical sign. Thus a2~y a10— y a3 — y a6, &c. 

m 

and a-\-x—{aJrx)m. In the same manner, the form of any 
radical quantity may be altered ; thus, (a-\-x)z=y (a-J-a?)2 — 

2 2. 3. 

y (a-\-x)3, &c. or (a-\-x)2 — [a-^xfi rz^a-ba)6, &c. Since the 
quantities are here raised to certain powers, and the roots of 
those powers are again taken ; therefore the values of the 
quantities are not altered. Also, the coefficient of a surd may be 
introduced under the radical sign, by first reducing it to the form 
of the surd, and then multiplying as in (Art. 257). Thus, a-yx 
— ya2 X -\/x— y a2x ; 6-^/2 = ^36 X y2=z y 72 ; and x[2a 

—x)2=:[x2)2 x (2a—a:)2 = f(2ax2 — x3). 

267. Conversely, any quantity may be made the coefficient of a 
surd, if every part under the sign be divided by this quantity, 
raised to the power whose root the sign expresses. Thus, y(a3 
— a2x)— ya2 X y (a—x)= ay (a—x); ^60— y(4 X 15) = 
y4x V15=2yi5 ; and y (amn — arnxn) =y [am X {an—a”)] 
=y amxy (a”—xn) — ay [a11—xn). 

268. Let us pass to the extraction of roots of radical quan¬ 
tities, and let the with root of y a1 be required, which we in¬ 
dicate thus, y y a1. We shall put y f a! —x, or y a'=x, by 
making y ae = a'. Involving both sides to the power m, we 
find a or y at-=xm, raising again to the power n, we obtain 
a‘=xmn. If the wiwth root of both sides be extracted, we have 
another enunciation of x ; namely, 
my ae=:x=y y a‘. 
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We shall find, by a like calculation, 

» In I ^1 

Vw V at— v a*• 
And, in fact, we make 1st,yyy a'=ra', whence y a'=a?, and 
a'=y yy a‘~xm\ 2d, by putting yy a'= a", whence J/a'7 
= #m, and of' — xmn; 3d, making y a‘=za'", whence y a"'=ac’"*, 

and a'"—y at=xmnp ; and finally at—a!mpqt :. x= ya*. 
Thus, for example, the 12th root of the number a can be trans¬ 

formed into y y y a. 
169. It is to be observed, that radical quantities or surds, 

when properly reduced, are subject to all the ordinary rules 
of arithmetic. This is what appears evident from the preced¬ 
ing considerations. It may be likewise remarked, that, in the 
calculations of surds, fractional exponents are frequently more 
convenient than radical signs. 

§ II. REDUCTION OF RADICAL QUANTITIES OR SURDS. 

CASE I. 

To reduce a rational quantity to the form of a given Surd. 

RULE. 

270. Involve the given quantity to the power whose root 
the surd expresses ; and over this power place the radical sign, 
or proper exponent, and it will be of the form required. 

Ex. 1. Reduce a to the form of the cube rout. 
Here, the given quantity a raised to the third power is a3, 

and prefixing the sign y , or placing the fractional exponent 
JL 

(-J-) over it, we have a=y a3 = (a3)3 (Art. 251). 
271. A rational coefficient may, in like manner, be reduced 

to the form of the surd to which it is joined ; by raising it to 
the power denoted by the index of the radical sign. 

Ex. 2. Let 5ya=y25 X ya = y25a. 
Ex. 3. Reduce —3a2b to the form of the cube root. 
Here, ( — 3a2b)3 = — 27a6b3 ; .*. — y 27a6b3 is the surd re¬ 

quired. 

Ex. 4. Reduce —4xy to the form of the square root. 
Here, (— Axy)2 — \Qx2y2 ; .*. —4xy— — yiQx2y2. 
Ex. 5. Reduce Lr to the form of the cube root. 

2 l 
Ans. (|-a;3)3. 
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Ex. 6. 

Ex. 7. 

Ex. 8. 

Ex. 9. 

Reduce a-\~z to the form of the square root. 

Ans. (a2-\-2azz2) 
1 

Reduce 4x4 to the form of the cube root. 
3 3 1 

Ans. (|/ 64a:4) or (64a:4)3. 
i i 

Reduce —x^y^ to the form of the square root. 
Ans. —^xy. 

Reduce —ah to the form of the square root. 
Ans. —f a2b2. 

CASE II. 

To reduce Surds of different indices to other equivalent 
ones, having a common index. 

RULE. 

272. Reduce the indices of the given quantities to fractions 
having a common denominator, and involve each of them to 
the power denoted by its numerator ; then 1 set over the com¬ 
mon denominator will form the common index. 

Or, if the common index be given, divide the indices of the 
quantities by the given index, and the quotients will be the 
new indices for those quantities. Then over the said quantities, 
with their new indices, set the given index, and they will make 
the equivalent quantities sought. 

Ex. 1. Reduce fa and f b to surds of the same radical 
sign. 

i l 

Here, -fa—a2, and f b — b3. Now, the fractions J and ^ 
reduced to the least common denominator, are -| and f ; 

a2=a«=:(a2f=f a3, and b* =b«=(b2f=f b2. 
Consequently f a3 and f b2 are the surds required 
Ex. 2. Reduce -fa and f x to surds of the same radical 

sign f , or to the common index jr. 
l X 

' -- «v* 4- t1)0" 14-1—1x6 — 3; 

“l 6 3 1 

(Art. 251), f a—a2, and f x=x4 ; then -^4-4- 
3 

and t4-¥=Tx6: 

the quantities required. 
2 > f a3 and f x2, or (a3)6 and (x2 )6, are 

Ex. 3. Reduce a2 and b2 to the same radical sign f . 
3 

Ans. f a0, and f b2. 
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Ex. 4. 

Ex. 5. 
sign. 

Ex. 6. 

Ex. 7. 

Ex. 8. 

Reduce a4 and x5 to surds of the same radical sign 
Ans. 1 y x3 and 1 y #4. 

Reduce y a and y y to surds of the same radical 

Ans. my °m and "V Vn- 

Reduce a3 and b5 to surds of the same radical sign. 
Ans. iy a5 and 2y 63. 

Reduce 3^/ 2 and 2^5 to the same radical sign. 
Ans. 3^/ 4 and 2^/ 125, 

Reduce y xy and y a# to the same radical sign. 
Ans 1 y #4y4 and 1 y a3#3. 

CASE III. 

To reduce radical Quantities or Surds, to their most simple 
forms. 

RULE. 

273. Resolve the given number, or quantity, under the ra¬ 
dical sign, if possible, into two factors, so that one of them 
may be a perfect power ; then extract the root of that power, 
and prefix it, as a coefficient to the irrational part. 

Ex 1. Reduce -y/ a2b to its most simple form. 
Here -y/ a2b= yj a2X y/b=aX -fb — a^b. 
Ex. 2. Reduce y a”'x to its most simple form. 

Here y amx—y amxy x — amxy x — aXy x. 
Ex. 3. Reduce -y/72 to its most simple form. 
Here ^72 = y'(36 X 2)=V36 X -v/2 = 6'/2. 

274. When the radical quantity has a rational coefficient 
prefixed to it; that coefficient must be multiplied by the root 
of the factor above mentioned ; and then proceed as before. 

Ex. 4. Reduce by 24 to its simplest form. 
Here 53f 24 = 53/ (8 X 3) = 53/ 8 X y 3— 5 X 2 X y 3 = 

loy 3. 
Ex. 5. Reduce -y/a*bc and -y/98a2x to their most simple 

form. Ans. «2yAc and 7«-y/2a\ 
Ex. 6. Reduce y 243 and y 96 to their most simple form. 

Ans. 3y 3 and 25f 3. 
Ex. 7. Reduce y (a3-\-a3b2) to its most simple form. 

Ans. ay (1 + 62). 

Ex. 8. Reduce 
a3b — 4 a2b2-\~4ab3 

) to its most simple 

Ans. -——-y/ah. form. 

19 
c 
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Ex. 9. Reduce (a+b)V [(a-£)3Xoc2] to its most simple 
form. Ans. (a2—b2)^/ x2. 

275. If the quantity under the radical sign he a fraction, it 

may he reduced to a vohole quantity, thus : 
Multiply both the numerator and denominator by such a 

quantity as will make the denominator a complete power cor¬ 
responding to the root; then extract the root of the fraction 
whose numerator and denominator are complete powers, and 

take it from under the radical sign. 

TT c a2 c .a2b c ,al c a ca . 
Here- dVT-dVT>=dVPxb=dxTyl'=-,Vi>- 

simple form. 

b2 ><b~dXb bd 

Ex. 2. Reduce If- to an integral surd in its simplest form. 

Here, (J^) = W TT X V t X W 
=|3/(fVxl8)=Jxi3/ 18=A3/ 18- 

Ex. 3. Reduce |-\/f t0 an integral surd in its most simple 
form. Ans. 

b c2 
Ex. 4. Reduce x^f - and a2f -- to integral surds in their 

x 
most simple form. Ans. - fby and c2a2. 

Ex. 5. Reduce -i and -Jy'i t0 integral surds in their most 
simple form. Ans. ify' 27 and l\/2. 

54 a3 
Ex. 6. Reduce —- and y' — - to their most simple form. 

I Zi. I ll. i. 

Ans. -%/ 2 and /2a. 
o v 4x2 

276. The utility of reducing surds to their most simple forms, 
especially when the surd part is fractional, will be readily per¬ 
ceived from the 3d example above given, where it is found that 

14, in which case it is only necessary to extract 
the square root of the whole number 14, (or to find it in some of 
the tables that have been calculated for that purpose), and then 
multiply it by whereas we must, otherwise, have first divid¬ 
ed the numerator by the denominator, and then have found the 
root of the quotient, for the surd part ; or else have determined 
the root of both the numerator and denominator, and then divide 
the one by the other; which are each of them troublesome pro- 
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cesses ; and the labour would be much greater for the cube 
and other higher roots. 

277. There are other cases of reducing algebraic Surds to 
simpler forms, that are practised on several occasions ; for in¬ 
stance, to reduce a fraction whose denominator is irrational, to 
another that shall have a rational denominator. But, as this 
kind of reduction requires some farther elucidation, it shall be 
treated of in one of the following sections. 

$ III. APPLICATION OF THE FUNDAMENTAL RULES OF ARITH¬ 

METIC TO SURD QUANTITIES. 

CASE I. 

To add or subtract Surd Quantities. 

RULE. 

278. Reduce the radical parts to their simplest terms, as in 
the last case of the preceding section ; then, if they are similar, 
annex the common surd part to the sum, or difference of the 
rational parts, and it will give the sum, or difference required. 

Ex. 1. Add 4 y/x, /x, and 5y/x together. 
Here the radical parts are already in their simplest terms, 

and the surd part the same in each of them; .\ 4 •v/x+ y/x 
+ 5 -/a? =(4 +1 +5) x ^/x = \0ffx the sum required. 

Ex. 2. Find the sum and difference of yT6a2x and /4a2x. 
y/ 16a2x=y/16a2 X y/x=z4ay/x, 

and y/4a2x=z y/4a2 X y/x~2ay/x ; 
the sum = (4a + 2a) X y/x=6ay/x ; 

and the difference —(4a—2a) X y/x—2ay/ x. 
Ex. 3. Find the sum and difference of / 108 and 9/ 32. 

Here 3/ 108 = 3/ 27X-j/4 = 3x-J/4 = 33/ 4> 
and 93/ 32 = 9y 8X^/ 4_18 x^> 4 = 183/ ^ 

the sum =(18 + 3) x/ 4=20/ 4 ; 
and the difference =(18 — 3) X3/ 4 = 153/ 4. 

279. If the surd part be not the same in each of the quan¬ 
tities, after having reduced the radical parts to their simplest 
terms, it is evident that the addition or subtraction of such 
quantities can only be indicated by placing the signs + or ^ 
between them. 

Ex. 4. Find the sum and difference of 3/ a3b and by/c2d. 
Here 3/ a3b = 3/ a3X/ b — 3a X / bz=3a/ b, 

and b /c2d = by/c2 X y/d—bcX ■/d=bc /d j 
the sum =3a2/ b-V-bc'Jd • 

and the difference =3a/ b^bey/d. 
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Ex. 5. Find the sum and difference of /-^y an^ /-g-* 
Ans. The sum = y7g-/6, and difference —rtVGi 

Ex. 6. Find the 6-mot and difference of ffZla^x and /3a4#. 
Ans. The sum =4a2/3#, and difference = 2a2-v/3a\ 

Ex. 7. Find the sum and difference of ^/a2Z> and 4-/6#4. 

Ans. The sum = (5f!+JLa) yj, and difference 

■s/b. 

Ex. 8. Required the sum and difference of 33/ 625 and 
2/ 135. 

Ans. The sum =21/ 5, and difference = 9/ 5. 
Ex. 9. Required the sum and difference of / u6b2 and / x5y2. 
Ans. The sum = a/a& + ^/ x2y2, and difference z=zcn/ab^* 

#/ x2y2. 

CASE II. 

To multiply or divide Surd Quantities. 

RULE. 

280. Reduce them to equivalent ones of the same deno¬ 
mination, and then multiply or divide both the rational and the 
irrational parts by each other respectively. 

The product or quotient of the irrational parts may be re¬ 
duced to the most simple form, by the last case in the preced¬ 
ing section. 

Ex. 1. Multiply /a by / b, or a2 by b3. 
The fractions and reduced to a common denominator, 

are £ and I-. 
is. 11 

.-. a2— aG =/ a3 ; and b3 =b6—^/b2. 
Hence /ax/ &=/ a3x{/ 62=/ a3b2. 

Ex. 2. Multiply 2/3 by 3/ 4. 
v 

By reduction, 2/3=2 X 36 = 2 X/ 33=2/ 27 ; 
2 

and 3/4 = 3x46 = 3/ 42 = 3/ 16. 

.*.2/3x3/4=2/27x3/ 16 = 6/ 432. 

Ex. 3. Divide 8/ 512 by 4/ 2. 
Here 8 = 4=2, and / 512—/ 2=/ 256 = 4/ 4. 

.-. 8/ 512 = 4/ 2=2 X 4/ 4 = 8/ 4. 
Ex. 4. Divide 2/ be by 3/ac. 

1 ” I 
Now 2/ 6c=2 X [bef =2 X /c)b =2/ &2c2, 
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and 3 yj ac—3 X (acp — 3 X (ac)6= 3y a3c3 ; 

22/ be_2 6 jbffjf3 fbffjl6 |iW = :2_6 Lw 

"3 “3 Va¥ 3V a3c 3V a6^ 3acV 

281. If two surds have the same rational quantity under the 
radical signs, their product, or quotient, is obtained by making 
the sum, or difference, of the indices, the index of that quantity. 

2 
,3 Ex. 5. Multiply a4 by |/ a3 or a3 by a . 

Here, a3 X af—d6 ^-= a3=a2. Or-£/a4Xy/ a2=y (a4X«2) 
a6=a2, as before. 

4. 
.3 Ex. 6. Divide y a3 by |/ a4, or a4 by a' 

3 ^ 3_4 9 __ 7_ -I 

Here, a4-4-a3 =a4 3 = aT^ 12 =a 12=-y- 
,T 2 

i2 n 

: V^‘ 
a 

282. If compound surds are to be multiplied, or divided, by 
each other, the operation is usually performed as in the multi¬ 
plication, or division of compound algebraic quantities. It fre¬ 
quently happens that the division of compound surds can only 
be indicated. 

Ex. 7. Multiply f‘3—y a2 by y 3-f-J/ a. 
3. 2. 
6 w o 6 -\/3—a2 } Since y/3 xy 3 =3b X 3° = 

i/3+J/a ^(33X32)^(27X9): 
-£>243 

£/243-£/ (3a2) 
+y (27a2) — « 

Product =£/ 243 — 3/ (3a2)+£/ 27a2—q. 
Ex. 8. Divide fb2ca-\-y a2b— —-/a5c by ybc-\-yJa. 

y b2ca -f- y a2b — bc~y abc y/ be -f- y/ a 
y/b2ca-\- y a2b - 
-Quot. — yba— y/bc. 

— be — y abc 
—be — y abc 

Ex. 9. Multiply y 15 by y\0. 
Ex. 10. Multiply \y 6 by J£/ 18. 
Ex. 11. Multiply y 18 by y 4. 
Ex. 12. Multiply ±y 6 by -f-sy 9. 
Ex. 13. Divide 4-y/50 by 2-y/5. 
Ex. 14. Divide by J'v/J. 
Ex. 15. Divide y a2d3b2 by yd. 

19* 

Ans. y 225000. 
Ans. y 4. 

Ans. 2y 9. 
Ans. foy 2. 
Ans. 2 y/10. 
Ans %yi0. 
Ans. y ab. 
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Ex. 16. Multiply a3 x2 by «4 a:6. 
5 

11 2 

Ans. a12 x3. 

Ex. 17. Multiply a2b3c4 by S/ a263c4. Ans. a2b3c^. 

Ex. 18. Divide (a4-f 53)2 by (a4+53)3 
Ans. y/ (a4-f b3). 

Ex 19. Multiply 4+2 y/2 by 2 — -y/2. Ans. 4. 
Ex. 20. Multiply ^/(a — -y/(6 — -/3)) by -y/(a + 

-v/3)). Ans. y^a2—5+^3). 
Ex. 21. Divide a3b—ab2c by a2-\-a^bc. 

Ans. ab—b-yfbc. 
Ex. 22. Divide a4-}-#4 by a2-\-ax-f2-\-x2 

Ans. a2—ax-y/2-\-x2. 

283. It is proper to observe, since the powers and roots of 
quantities may be expressed by negative exponents, that any 
quantity may be removed from the denominator of a fraction into 
the numerator; and the contrary, by changing the sign of its index 
or exponent; which transformation is of frequent occurrence in 
several analytical calculations. 

1 a2 
Ex. 1. Thus, (since ~=b~3), — may be expressed by 

1 a2 1 
a2b~3 ; and (since a2——-), we have —o* 

a~1 O'* o6a~i 
a2b3 

Ex. 2. The quantity-- may be expressed by a253c—4e—6. 
c c 

1 2 
a2x3 

Ex. 3. Let the denominator of —be removed into the 
cb2 

numerator. 

Ex. 4. Let the numerator of 

minator. 

1_ 2. 

Ans. a2x3 c~~lb~2. 
a2x3 

be removed into the deno- 

Ans. 
1 

a~2x~~3b’ 

Ex. 5. Let x2y2a5 be expressed with a negative exponent. 

C Ans.- 
X——2a 

—r 3 
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CASE III. 

To involve or raise Surd Quantities to any power. 

RULE. 

284. Involve tlie rational part into the proposed power, then 
multiply the fractional exponents of the surd part by the index 
of that power, and annex it to the power of the rational part, 
and the result will be the power required. 

Compound surds are involved as integers, observing the 
rule of multiplication of simple radical quantities. 

Ex. 1. What is the square of 2y/ a 1 

The square of 2-\/a=(2a2)2=22 X a2 =4a. 
Ex. 2. What is the cube of (a2 — b2-\- -\/3) ? 

The cube of y/ (a2 — b2-\- -y/3) — {a2—52-f"v/3)3 —a1—b2 

4V3- 
285. Cor. Hence, if the quantities are to be involved to a 

power denoted by the index of the surd root, the power re¬ 
quired is formed by taking away the radical sign, as has been 
already observed. 

Ex. 3. What is the cube of \y/2ax ? 
** 1.3 3 

Here (4)3=i, and (y/2ax)3~{2ax)2 = (2ax)~ 
X 1 

=(2ax) X (2ax)2 ; .*• -g-X 2axX (2ax)2— 
\ax^J2ax is the power required. 

Ex. 4. It is required to find the square of -yja— y/b. 

y/a—-\/b 
y/a—yjb 

a—y/ ab 
— y/ ab-\-b 

The square a — 2y/ ab-\-b. 

Ex. 5. It is required to find the square of 3y/ 3. 
Ans. 9^/ 9. 

Ex. 6. Find the cube of y/a. Ans. ay/a 
Ex. 7. Find the 4th power of —a2. Ans. a2^/ a2. 
Ex. 8. Find the 5th power of — ab. Ans. — ab. 
Ex. 9. Required the cube of a— y/b. 

Alls, a3—3a2y/b-\-3ab— by/b 
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Ex. 10. Required the square of 3-f- y/5- 
Ans. 14 + 6^5. 

Ex. 11. Required the cube of — ^/ (y'a— fbc). 
Ans. fbc— fa. 

CASE IV. 

To evolve or extract the Roots of Surd Quantities. 

RULE. 

286. Divide the index of the irrational part by the index of 
the root to be extracted ; then annex the result to the proper 
root of the rational part, and they will give the root required. 

If it be a compound surd quantity, its root, if it admits of 
any, may be found, as in Evolution. And if no such root can 
be found, prefix the radical sign, which indicates the root to 
be extracted. 

Ex. 1. What is the square root of 81 ■fa ? 
i i 

Here -v/^1 — 9, and the square root of -fa or a2=:a^4-2 — 

a2 X 2 — a^ — \/ a ; .*. -f (8iy a)=z9Af a, or 9a4. 

Ex. 2. What is the square root of a2—6ayA4- 9b. 

a2—6a fb-\-9b{a—3 fb 

2a-*-3 fV) — 6afb-\-9b 
— 6a^/b-\-9b 

Ex. 3. Find the square root of 9^/ 3. 
Ex. 4. Find the 4th root of a2. 

Ex. 5. Find the cube root of (5a2 — 3a:2)2. 
- Ans. 

Ex. 6. Required the cube root of \a?b. 
Ex. 7. What is the ffth root of 32x5 ? 
Ex. 8. What is the 4th root of 16a2f x l 
Ex. 9. What is the nth root of y anx2 ? 

Ans. 3^ 3. 
Ans. a. 

f(5a2—3x2). 
Ans. \af b. 
Ans. 23/ x. 

Ans. 2y/ a%. 

1 2_ 
Ans. amxmn» 

Ex. 10. It is required to find the cube root of a3 — 3a2-fx-{- 
3ax—x-y/x. Ans. a — fx. 
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§ IV. METHOD OF REDUCING A FRACTION, WHOSE DENOMI¬ 

NATOR IS A SIMPLE OR A BINOMIAL SURD, TO ANOTHER THAT 

SHALL HAVE A RATIONAL DENOMINATOR. 

287. A fraction, whose denominator is a simple surd, is of 
a 

the form -— ; where x may represent any rational quantities 
v f 

whatever, either simple or compound ; thus, 
be a c — d D 

-_ . qZ/C 

^ab'y (a2—b)'y [a+y)' 
are fractions, whose denominators are simple surd quantities. 

288. It is evident that, if a surd of the form y x be multi¬ 
plied by y a?n—1, the product shall be rational ; since y x X 
y xn~l=y (x X ocn~l)=y xn—X ; in like manner, if y (a-f-a?) 
be multiplied by y (a-fa:)2, the product will be a-\-x. 

289. Hence, if the numerator and denominator of a fraction 
a 

of the form ——be multiplied by y xn~1i the result will be a 

fraction, whose denominator shall be rational. 
Thus, let both the numerator and denominator of the frac¬ 

tion be multiplied by x, and it becomes a^x ; an(j by 
y x X 

multiplying the numerator and denominator of the fraction 

ff—, by ^ („+„)», it becomes = Qf+f)!. 
y [a-{-x) J y v y (a + xf a+x 
Or, in general, if both the numerator and denominator of a 

fraction of the form be multiplied by y a:"-1, it becomes 
y x 

ary xn—^ 

-, a fraction whose denominator is a rational quan- 
oc 

tity. 

290. Compound surd quantities are such as consist of two 
or more terms, some or all of which are irrational; and if a 
quantity of this kind consist only of two terms, it is called a 
binomial surd ; and a fraction whose denominator is a binomial 

surd, is, in general, of the form - 
y a±y b 

291. If a multiplier be required, that shall render any bi¬ 
nomial surd, whether it consist of even or odd roots, rational, it 
may be found by substituting the given numbers, or letters, of 
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which it is composed, in the places of their equals, in the fol¬ 
lowing general formula: 
Binomial, y a+y b. 
Multiplier, y an~lzpy an~2b + y an—3b2 y an~4&3+, &c., 
where the upper sign of the multiplier must be taken with the 
upper sign of the binomial, and the lower with the lower ; 
and the series continued to n terms. This multiplier is de¬ 
rived from observing the quotient which arises from the actual 
division of the numerator by the denominator of the following 
fractions: thus, 

I. 
xn—yn 

x— y 
=xn~1 + xn~2y -f- xn~3y2 -j-, &c. . -\-yn~1 to n 

terms, whether n be even or odd, (Art. 108). 

—xn—2y-\-xn—3y2 —, Sic. II. 
x” 

■y 

x-{-y 
-—x' —yn~~1 to 

n terms, when n is an even number, (Art. 109). 

TTT + III.-~~ = Xn- 
x+y 

■x* -2y-\-xn—3y2 —, &c. +y 
n — 1 

to n terms, when n is an odd number, (Art. 110). 

292. Now let xn~a, yn=b ; then, (Art. 116), x—y a, 

y—y b, and these fractions severally become 

a—b 
:<and 

a-\-b 
y a—y b* 

and by the application of the rules 
ya+yy ya+yb’ 
in the preceding section we have xn~l=y an~1- xn~2=y an~2, 
xn—3=y an—3, Sic. also, y2=y b2 ; y3=y' b3 ; &c. ; hence, 
xn 2y~y an—2 xy b—y an~2b ; xn—3y2 — y an~3 xy b2=y a 
n—3b3 ; &c. By substituting these values of xn—1,xn—2y, xn~3y2, 

a_^ 

&c., in the several quotients, we have ---—r=y a^~l + 

y an~2b-\~y an~3b2+, Sic.+y bn~l to n terms ; where 

n may be any whole number whatever. And -- — 
7 J ya+yb 

y an~l—y an—2b+y an—3l2—, Slc. . . +y Jn_1 to n terms ; 
where the terms b and y b”--1 have the sign +, when n is an 
odd number : and the sign —, when n is an even number. 

293. Since the divisor multiplied by the quotient gives the 
dividend, it appears from the foregoing operations that, if a 
binomial surd of the form y a—y b be multiplied by y an~l + 
y an~2b + , Sic. . -j~y bn—1 (n being any whole number what¬ 
ever), the product will be a — b, a rational quantity ; and if a 
binomial surd of the formy' ci+y b be multiplied by y an~l 
~y an—2b+y *~-3b2-~, Sic. . . . +y h”—1, the product will be • • • 
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a-\-b or a—b, according as the index n is an odd or an even 

number. 

294. Hence it follows, that, if the numerator and denomina¬ 
tor of the fraction (Art. 290), be multiplied by the multiplier, 
(Art. 291), it becomes another equivalent fraction, whose deno¬ 
minator shall be rational. 

There are some instances, in which the reduction may be 
performed without the formal application of the rule, which 
will be illustrated in the following examples. 

Ex. 1. Reduce to a fraction with a rational 
y 5 —y 3 

denominator. 
To find the multiplier which shall make -/5 —y3 rational, 

we have n=2, a — 5, b—3 ; .*. (Art. 291), y a,*-1+ y aT‘-2b 

= (since an-2=a2~2=a°=l) y5 + y3 ; .* V 
ys+y3 i6+4yi5 

y5—y3 
x 

= 8+2yi5. ys+ya 2 
295. This multiplier, y5 + \/3, could be readily ascertain¬ 

ed, without the application of the formula, by inspection only ; 
since the sum into the difference of two quantities gives the 
difference of their squares ; also the multiplier that shall render 
y«yy6 rational, is evidently -fa — ffb. In like manner, a 
trinomial surd may also be rendered rational, by changing the 
sign of one of its terms for a multiplier ; and a quadrinomial 
surd by changing the signs of two of its terms, &c. 

2 
Ex. 2. Reduce - .——-— to a fraction with a rational 

denominator. 

In the first place, 

y5-fy3 —y/2 

X 
y5+y3+y2_ 

y 5 + y 3 - y 2 " y 5+y 3+y 2 
2(y5+y3+y2) ys+y3+y2 -3+yi5 

6 + 2yi5 ’ 3 + yi5 X— 3 + yi5; 

(y5+y3+y2)x(-3+yi5) 

6 
1 

Ex. 3. Reduce 

is the fraction required, 

to a fraction with a rational de- 
V3~V 2 

nominator. 
To find the multiplier which shall make y 3 — y 2 rational, 

we have n-:3, a—3, b—2 ; V an-l-\- y an-25+ y bn-] — 
3/9+y 6 + 3/4. 

Now (V 3 - y 2)(y 9 + 3/ 6-f y 4) - a — 5 = 3—2 = 1 ; 
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■ . the denominator is 1, and the fraction is reduced to y 9+ 

296. Hence for the sum, or difference, of two cube roots, 
which is one of the most useful cases, the multiplier will be 
a trinomial surd consisting of the squares of the two given 
terms, and their product, with its sign changed. 

Ex. 4. Reduce to a fraction with a rational 
'V/15-i-V,5 

denominator. 

Ex. 5. Reduce 

nominator. 

Ex. 6. Reduce 

Ans. 
13—7^3 

y' 5 — -y/ x 

8 

to a fraction with a rational de- 

Ans. 
3 -\J 5+3+" x 

■x 

•\/ 3 + +^2 + 1 
nator shall be rational. 

to a fraction whose denomi 

Ans. 4+2-\/2—2y^6. 

Ex. 7. Reduce ^— t0 a fraction whose denominator 
V oc+y y 

shall be rational. 

Ans. -■^—(3/ x2—y xy-\-3/ y2). 

2 
Ex. 8. Reduce -2—— to a fraction whose denominator 

y 5 + y 3 
shall be rational. Ans. y 125 — ^/ 75 + ^/ 45 — ^/ 27. 

297. It may not be improper to take notice here of another 
transformation which binomial surd quantities may undergo 
by equal involution, and evolution. 

Ex. 1. To transform -y/2 + -\/3 to a universal surd. 
Its square =5 + 2 ^6; .*. the root = +'(5 + 2+^6). 
Ex. 2. To reduce +^7 + -^48 to a universal surd. 
Here ( yJ21+ V48)2=27 + 2+T296 + 48=:147 ; .*. /27 

+ ^/48 = yi47-= A/49x3 = 7+'3. 
Ex. 3- To transform y 320 — y 40 to a general surd. 
Here (3y 320 —y 40)3 = 320-3y 4096000 + 3 y 512000 

—40 = 40 ; .*. y 320 —y 40=2^ 5. 

298. This transformation is very useful, since, by means 
of it, we can always reduce the sum or difference of any two 
surd quantities, if they admit of the same irrational part, to a 
single surd. This may be proved, in general, thus ; if y a and 
y b admit of the same irrational part, they must be of the 
form y a'nm and y b'nm ; and ( y a'"m+ y b,nm)n — a'nm-\-n 
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y (aMn l)mn~lb/nm)-\~ —-—~V^ (a!n(n~2'>mn~2b'2nm3) -j- &c. . 

b'nm = a/nm-\-na'n~-'i X.mb'n-{-&ic.b'nm r.y a~\-y b=y 
{dnm-\-nm,a'n—lb/n-\- Sic.b/nm) = the wthroot of a rational 
quantity. Hence the product of y a by -\/b is rational if 

a and yb admit of the same irrational part; also, y a2 X 
y b, or y axy b2, is rational, if y a and y b admit of the 
same irrational part; and, in general, y a -1 xy b, or y aX 
y bn-1, is rational, if y a and y b admit of the same irrational 
part. 

299. It is propel to observe, that, for the addition or sub¬ 
traction of two quadratic surds, the following method is given 
in the Bija Ganita, or the Algebra of the Hindoos, translated 
by Strachey. Thus, to find the sum or difference of two surdsy 
ya and yb, for instance. 

RULE. 

Call a-\-b the greater surd ; and, if axb is rational, (that 
is, a square), call 2 yab the less surd, the sum will be y[a-\-b 
+2yab), {— (ya-\~yb)2), and the difference y(a-\-b — 
2yab). If a X b is irrational, the addition and subtraction are 
impossible ; that is, they can only be indicated. 

Example. Required the sum and difference of y2 and -y/8. 
Here 2 + 8 = 10 = > surd ; 2x8 = 16, .-. +T6 = 4, and 2^ 16 
=2 X 4 = 8= <surd. Then 10 + 8 = 18, and 10—8 = 2; 
*. y 18= sum, and y2= difference. 

ANOTHER RULE. 

Divide a by b, and write ^ in two places. In the first 

place add 1, and in the second subtract 1 ; then we shall have 

~/b. 

11 is irrational, (that is, not a square), the addition or 

subtraction can be only made by connecting the surds by the 
signs + or — 1, as they are. 

Sturmius, in his Mathesis Enucleata, has also given a me¬ 
thod similar to the above. 

Ex. 4. To transform y 2 + y"3 to a general surd. 
Ans. y (5+2^/ 6). 

20 
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Ex. 5. To transform y'a—2-y/ x to a universal surd. 
Ans. -y/(a-\-4x—4y/ax). 

Ex. 6. To transform 3?/ 4+2/ 72 to a universal surd. 
Ans. 3^/ 9. 

§ Y. METHOD OF EXTRACTING THE SQUARE ROOT OF BINOMIAL 

SURDS. 

300. The square root of a quantity cannot he partly rational and 
partly a quadratic surd. If possible, let f n — a-\- 'Vm I then by 
squaring both sides, n = a2+2a-y/m + m, and 2a-y/m=.n—a2—m; 

_ci2_m 
therefore, -fin—-—-, a rational quantity, which is con- 

<v' tv 

trary to the supposition. 
A quantity of the form -y/ a is called a quadratic surd. 
301. If any equation a?+ f y — a-\--y/b, consisting of rational 

quantities and quadratic surds, the rational parts on each side are 
equal, and also the irrational parts. 

If x be not equal to a, let x=a+ m 5 then a-f-m-f- y/y — a 
~]-y/b, or y — 'fb ; that is, -y/b is partly rational, and 
partly a quadratic surd, which is impossible, (Art. 300); .\x—a, 
and f y= fb. 

302. If two quadratic surds -y/x and fy, cannot be reduced to 
others which have the same irrational part, their product is irra¬ 
tional. 

If possible, let -y/xy—rx, where r is a whole number or a 
fraction. Then xy — r2x2, and y—r2x ; :. ■yf y — ry/x \ that is, 
y/y and q/x may be so reduced as to have the same irrational 
part, which is contrary to the supposition. 

303. One quadratic surd, yf x, cannot be made up of two others, 
y/m and yf n, which have not the same irrational part. 

If possible, let y/x — -y/m-\-f n ; then by squaring both 
sides, x—m-\-2fmn-\~n, and x—m — n—2fmn, a rational 
quantity equal to an irrational, which is absurd. 

304. Let {a-\-b)7=zx-\-y, where c is an even number, a a ra¬ 
tional quantity, b a quadratic surd, x and y, one or both of them, 

i_ 

quadratic surds, then [a — b)c=x—y. 
• . c_1 

By involution, « + Z>=;£c+ca:c—ay + c.-■ xc—2y2-f- Sic., and 

since c is even, the odd terms of the series are rational, and 
c_i 

the even terms irrational; .-.a^Z+c. •-xe-2y2 + Sic., and 
2 

b—cx'-'y+c.0-——.0—^-?a,c-3y3 + Sic., (Art. 301); hence, a — b 
2 * 3 
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z=xc — cxc—ly -f- c 
c—l 

2 
xc—2y2—> &c. 5 an(l consequently, by 

evolution, (a—b)c =x—y. 
305. If c be an odd number, a and b, one or both quadratic 

surds, and x and y involve the same surds that a and b do re- 
l « 

spectively, and also (a+&)c =x-\-y, then (a—b)c—x—y. 
£_ 

By involution, a-\-b—xc-\-cxc~'[yJrc . - -xc~2y2-ir, &c., 

where the odd terms involve the same surd that x does, be¬ 
cause c is an odd number, and the even terms, the same surd 
that y does ; and since no part of a can consist of y and its 

c — l 
parts, (Art. 301), a—xc-\-c . — -xc—2y2-\-, &c.,and b — cx^y 

c—2 

3 
. xc—3y3+, &c.; hence, a—b=xc—cxc~-^y 

c—l 

2~ 

xc—2y2—, &c. ; 
i_ 

/. by evolution, (a—b)c =x—y. 

306. The square root of a binomial, one of whose terms is a 
quadratic surd, and the other rational, may sometimes be ex¬ 
pressed by a binomial, one or both of whose terms are quadratic 
surds. 

Let a-\-y/b be the given binomial, and suppose ^(a-^--y/b) 
~x-\-y ; where x and y are one or both quadratic surds ; then 
y/(a—-\/b) = x—y-, .‘.by multiplication, '\/(«2 — b) — x2—y2, 
also, by squaring both sides of the first equation, 
a-\-y/b = x2-\-2xy-\-y2, and a—x2-\-y2 ; 
.-.by addition, a-j-i/(a2 — b)=2x2, and by subtraction, a — 
■\/(a2 — b)=2y2; and the root x+y— -y/[^a-\- ^-y/(a2 — 6)] -j- 

Vlia—W(a2~h)\\ 
From this conclusion it appears, that the square root of 

a-^-fb can only be expressed by a binomial of the form x-\-y, 
one or both of which are quadratic surds, when a2—b is a per¬ 
fect square. 

By a similar process it might by shown that the square root 

of a—y/b is + i V{a2~^)]—f\.\a—WW‘~^)]> su^“ 
ject to the same limitation. 

Ex. 1. Required the square root of 3+ 2-^2. 
Let y'(3+2y'2)=ra;-l-y \ then -y/(3— 2y/2)=x — y ; by 

multiplication, y'(9 —8)—x2—y2', that is, x2—ij2=1. 
Also, by squaring both sides of the first equation, 34-2^2 

■=x2-\-2xy—y2, and x2-\-y2=3 ; /.by addition, 2a;2-—4, and 
X—-y/2. 
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s Again, by subtraction, 2y2=2 ; .*.y=l, and*+y=yr2 + l 
= the root required. 

Or, the root may be found by substituting 3 for a, 2^2 = 
-y/8 for -y/b, or 8 for b, in the above formula ; thus, 

«+y=v'[§+iv'l9-8)]+V»-iv,(9-8) = V(i+i)+ 
V( |-i)=v'2+i- 

Ex. 2. Required the square root of 19+8^3. 
Ans. 4-f •/3. 

Ex. 3. What is the square root of 12 — -y/140 ? 
Ans. — 

Ex. 4. Find the square root of 7+4^/3. 
Ans. 2-f-y/3. 

Ex. 5. Find the square root of 7—2yT0. 
Ans. y'O — ^2. 

Ex. 6. Find the square root of 31 -f 12y^—5. 
Ans. 6-f- V — 5. 

Ex. 7. Find the square root of 18 —10 •/—7. 
Ans. 5 — y/—7. 

Ex. 8. Find the square root of —1-1-4-/—5. 
Ans. 2-f y'—5. 

307. The cth root of a binomial, c?ic or 6o//i o/' whose terms 
%re possible quadratic surds, may sometimes be expressed by a 
binomial of that description. 

Let A-f B be the given binomial surd, in which both terms 
are possible ; the quantities under the radical signs whole 
numbers ; and A is greater than B. 

Let{/ [(A-f B) X yQ]=x+y ; 
then y [(A — B) X 'y/Q] =oc—y ; 

.-.by multiplication, y [(A2— B2)X Q] =x2—y2; now let 
Q be so assumed, that (A2 — B2) X Q may be a perfect cth 
power —nc, then x2—y2 — n. 

Again, by squaring both sides of the first two equations, we 
have 
y [(A-fB)2 X Q] — x2-\-2xyy1 
y [(A — B)2 X Q] = x2—2xy-\-y2 ; 

y [ (A-f B)2xQ]-f{/ [(A —B)2 X Q]=2a;2-f 2y2 ; which is 
always a whole number when the root is a binomial surd ; take 
therefore s and t, the nearest integer values ofy [(A-f B)2X 
Q] and y [(A — B)2 X Q], one of which is greater and the 
other less than the true value of the corresponding quantity; 
then since the sum of these surds is an integer, the fractional 
parts must destroy each other, and 2x2-\-2y2 = s-\~t, exactly, 
when the root of the proposed quantity can be obtained. We 
Rave therefore these two equations, x2—y2~n, and x2-\-y2—^s 
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.*. by addition, 2x2=zn-\-jf, and # = Jy'(2n + s-M) ; 
and by subtraction, 2y2=-Js-|--^7—ra, and y=^^/[s-\-t—2n). 

Consequently, if the root of the binomial y [(A + B) x VQ] 
be of the form x+y, it is {2n-\-s-\-t)-\-±^(s-f f — 2n); and 

i , c A tj . 'y/s1)—2rc) 
the cth root of A-j-B is--* 

Ex. 1. Required the cube root of 10-f ^108. 
In this case, ^108 is >10 ; .*. A= A/108, B = 10, A2-B2 

= 108 — 100 = 8, and 8Q = n3. Now, since 8 is a cube number, 
Q may be taken equal to 1 ; then 8Q = 8 = ?i3; .\ n=2. Also, 

[(A-f B)2]=7 +/; ^ [(A —B)2] = l—/, where / is some 

fraction less than unity ; .*. s=7, £ = 1 ; and #-f-y = ^^^~'° 

~ \/ 3 +1. 
If therefore the cube of 10-}-yT08 can be expressed in the 

proposed form, it is ^/3-f 1 ; which on trial is found to suc¬ 
ceed. 

Ex. 2. Find the cube root of 26-f 153. 
Ans. 2-f-y'3, 

Ex. 3. Find the cube root of 93 —11^2. 
Ans. ^/3 — -y/2. 

Ex. 4. Find the cube root of 4-\/5 + 8. 

V5+1 
Ans. 

^2 
308. In the operation, it is required to find a number Q, such 

that (A2 — B)2 X Q may be a perfect cth power ; this will be 
the case, if Q be taken equal to (A2 — B2)c_1; but to find 
a less number which will answer this condition, let A2 —B3 be 
divisible by a, a, ... (m); b, b, . . . (n); d, d, . . . (r); &c. 
in succession, that is, let A2 — B2—ambndr, &c ; also, let Q = 
axbvd~, &c. Then (A2—B2).Q =am+x X b’1™ X dr+z, &c. which 
is a perfect cth power, if x, y, 2-, &c., be so assumed that m-\-x% 
n-\-y, r-\-z, &c. are respectively equal to c, or some multiple 
of c. Thus, to find a number which multiplied by 2250 will 
produce a perfect cube, divide 2250 as often as possible bv 
the prime numbers 2, 3, 5, &c. and it appears that 2x3x3 
X 5 X 5 X 5=2 X 32X 53=2250 ; if, therefore, it be multiplied 
by 22 X 3, it becomes 23 X 33 X 53, or (2.3.5)3 ; a perfect cube. 
See Wood’s Algebra 

§ VI. CALCULATION OF IMAGINARY QUANTITIES. 

309. In the Involution of negative quantities, it was ob¬ 
served, that the even powers were all affected with the sign 
and the odd powers, with — ; there is consequently no quan- 

20* 
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tity which, multiplied into itself in such a manner that the num¬ 
ber of factors shall be even, can generate a negative quantity. 
Hence quantities of the form y/—a2, y —16, |/ —a?,y —a4, 
and in general y —a, have no real roots ; and are therefore 
usually called impossible or imaginary. 

It is to be observed that all quantities, either positive or ne¬ 
gative, or even irrational, are considered to be real. 

310. Although the values of imaginary quantities are un¬ 
assignable in numbers, they are yet of great use in some of 
the- higher branches of analysis, as well as in showing when 
a result of this kind occurs, that the question, under the pro¬ 
posed conditions, is impossible. 

Thus, if it should be required to find a number whose square 
subtracted from 3, gives 7 for a remainder. We have for a 
translation 

3 — x2 = 7 ; .-. x2 = 3—7= —4. 

The unknown quantity x is therefore the square root of the 
number —4, a root which is imaginary ; and in fact, the 
enunciation comprehends an impossibility. If we had thus 
proposed the question, to find a number whose square added to 
3, gives 7 for a sum, we should have had for the translation 
a:2-f-3 = 7 ; .-. x2=z^ and x=2, which is a real root. 

Thus negative isolated results arise from the subtraction of 
a greater number from a lesser, and imaginary quantities are 
given by a new operation to be performed upon these kind of 
remainders. 

311. This being premised, it is only necessary farther to 
observe, that the method of adding and subtracting imaginary 
radicals, is the same as for real quantities. 

Thus, -a-\-2y—a — 3y—a ; 6-f4-f 6 —-/-4 
— 12; and 3 y/—ax-j~y—y — (yf — ax—y—y')—2\/ — ax 
-J-2J/ —y. 

312. Every imaginary radical quantity of the form y/—a, 
l 

can be reduced to the form y/a X y/ — 1, or a2 y/ —1. 
In order to demonstrate this, let the identical equality be, 

(c—b)a=:(c—b)a', by extracting the root of both sides, we 
shall have y/(c — b)x y/a=z y/[(c — b)a] ; which under the 
relation Z>>c, or in the hypotheses, for instance, b—c-f-1, be¬ 
comes y/ — 1 X y/a=yf — a ; and, in general, 2V —a—2y aX 

v-i. 
It may be demonstrated, in a similar manner, that 

c 

m 
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x V _1; and in general> that 

V"1- 
313. Hence, in the calculation of imaginary radicals, it is 

sufficient to demonstrate the rules for multiplying and involving 
the imaginary radical y' — 1 ; since imaginary quantities can 
be always resolved into factors ; so that —1 only shall remain 
under the radical sign. 

314. In the first, place, then it may be observed, when a2 
is considered abstractedly, or without any regard to its gene¬ 
ration, then -yfa2 maybe either +« or —a there being no¬ 
thing in the nature of the quantity so taken, to denote from 
which of these two expressions it was derived. 

315. But this ambiguity, which, in the above mentioned case, 
arises from our being unacquainted with the origin of the 
quantity whose root is to be extracted, will not take place when 
the sign of the quantity from which it was produced is known ; 
as there can, then, be only one root, which must evidently be 
taken in plus or minus, according to the state it existed in be¬ 
fore it was involved. 

316. Thus, 'V/[(_ha) or VT!-^2)] ca^not be of the 
ambiguous form T a, as h would have been if a2 had been un¬ 
conditionally assumed, but it is simply a ; and, for a like rea¬ 
son, -\/[( — a) X ( — «)], or -\Z( — a)2 is = — a, and not J^a ; 
since the value of the equivalent expression-}- a2, or —-y/a2 
in these cases, is determined, from the circumstance of its be¬ 
ing known how a2 is derived. 

317. Hence the product of -yj— 1 by -y/ — 1, or which is the 
same, (y' — 1 )2 is = — — — 1. This is what appears evi¬ 
dent from, since that in squaring a quantity with the radical 
sign y, we have only to take it away, that is, to pass the 
quantity from under the radical sign. 

318. Also, if the factors, in this case, be both negative, the 
result will be the same as before ; since —(y" — l)x —(yj — 1) 
— + (-\/ —l)2=r— 1 ; but if one of the factors be positive and 
the other negative, we shall have -f(y' — 1) X —(v—1)=— 
(V ~ l)2—+1. 

319. All whole positive numbers are comprised in one of these 
four formulae; 

4n, 4ra-f-l, 4n-f-3, 47i-j-3, 
* 

n being a whole positive number ; since that, if any whole num¬ 
ber be divided by 4, the remainder must be 0, 1, 2, or 3. 
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If we designate f — 1 by cc, the several powers ofy' —1 
shall be therefore represented by one of these four formulae : 

(-/-I)4"=a^=(®4)"=( + 1)*= + 1 ; 
(f — iyn^=x^1 = x4n.x—x — -j-y/ — l ; 
( yf — 1 )4n+2rzrX^2 = Xin.X2 = X2=—\. 

(yf — 1 )4"+3 = a4'+3 := xin.x3 = — 1 .x — — yf — 1. 
Thus, in order to know any given power of yf — 1, it is suffi¬ 

cient to divide the exponent of the power proposed by 4, and the 
power of -yf — 1 indicated by the remainder shall be that which 
is required. 

320. When one imaginary quantity is to be multiplied by an¬ 
other, the result whether they be both positive or both negative, 
is equal to minus the square root of the product, taking them as 
real quantities. 

Thus, (4--/ — a) X (+-/ — T>) = —/ ab ; since, (-j-/ — a) 
X( + / - i)=/flX/-l X/ bXyf — 1—y a X/ b X 
(yf — 1 )2 = — 1 y,fab— —yf ab. And, in a similar manner, it 
may be proved that (—yf —a)x( — yf —b) — —yfab. 

321. And if one of the imaginary radicals be positive, and the 
other negative, the result arising from their multiplication will 
be plus the square root of their product, taking them as before. 

Thus, ( + V“a) X ( — V—b~A- f ab ; since + yf — a— 
A-yfaXyf — l, and —yf—b = (— yf — 1) X yfb ; :.(y/aX 

t/-1)x(-V-l)X-/6)= [( + A/-1) • (--v/-l)]Vo4= 
•fix y/ abzzz *T yf ab. 

322. When one imaginary radical is to be divided by another, 
the result, whether they be both positive or both negative, will be 
equal to plus the square root of their quotient, taking them as 
real quantities. 

H- yf —a — f — a a ~\- yf 
or-v-t — + Vt ; and Thus 

-v 

■a 

V — v 4- V 
or 

■a 
a 

1. 
— yf — a 

323. And if one of the imaginary radicals be positive and the 
other negative, the result arising from division, ivill be minus 
the square root of their quotient, taking them as before. 

rpi 4- yf —a, — yf —a a 4- yf —a 
1 hus,-t-1 or --7-- — — yf - ; and --or 

— yf —b 4" y/ —h yf —a 
— yf — 

+ V—a 
324. If an imaginary radical is to be divided by a real radi¬ 

cal, or a real radical by an imaginary one, the result will be equal 
to plus or minus the square root of their quotient, according as 
the radical is affirmative or negative. 
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Thus, yj ■a yf a 
or 

y/b / -b 
+ / —y 5 and^ 

a —/ o 
or ^ 

■a / « V 
“/-I- 

The several powers of imaginary radicals can be readily 
derived from the formulas (Art. 319); it only now remains to 
illustrate the preceding rules by a few practical examples. 

Ex. 1. It is required to multiply a—/ —b by a—/ — b, or 
to find the square of a—/ — b. 

« — /—b 
a— -/ — b 

a2—a/ — b 
— a /—b — b 

a2—2<z(/ — &) — b Ans 
Ex. 2. It is required to find the quotient of 1 + y/— 1 divid¬ 

ed by 1 — / — 1. 

Here 
i+ /-l^i + V-i l-bV-i^v-i 
1-V-1 l-/-ixi + /-i 2 

Ans. 
Ex. 3. It is required to multiply 1 + / — I by 1 + /— 1 ; 

or to find the square of 1 + / — 1. Ans. 2 / — 1. 
Ex. 4. It is required to find the product arising from mul¬ 

tiplying 1+ / — I by 1 — / — l Ans. 2. 
Ex. 5. It is required to find the square, or second power of 

«+/— b2. Ans. a2— b2-\-2aby— 1. 
Ex. 6. It is required to multiply 5 + 2 V — 3 by 2 —V —3. 

Ans. 16—-/ —3. 
Ex. 7. It is required to find the cube, or third power, ol 

a—•/ —b2. Ans. a3 — 3ab2-{-(b3 — 3a2b)y —1, 
Ex. 8. It is required to find the quotient of 3+/ —4 di 

vided by 3—2/ —1. Ans. I'13-(5+12/ —1) 
Ex. 9. It is required to find the square of / [a-\-by—1) + 

/ (a—-by —1). Ans. 2«+2/ (a2-\-b2) 
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CHAPTER VIIL 

ON 

PURE EQUATIONS. 

325. Equations are considered as of two kinds, called sim¬ 
ple or pure, and adfected; each of which are differently de¬ 
nominated according to the dimensions of the unknown quan¬ 
tity. 

326. If the equation, when cleared of fractions and radical 
signs or fractional exponents, contain only the first power of the 
unknown quantity, it is called a simple equation. 

327. If the unknown quantity rises to the second power or 
square, it is called a quadratic equation. 

328. If the unknown quantity rises to the third power or cube, 
it is called a cubic equation, &c. 

329. Pure equations, in general, are those wherein only one 
complete power of the unknown quantity is concerned. These are 
called pure equations of the first degree, pure quadratics, pure 
cubics,pure biquadratics, &lc., according to the dimension of the 
unknown quantity. 

Thus, x — a-\- b is a pure equation of the first degree; 
'P — oPPab is a. pure quadratic ; 
x3=a3 + a?b -j- c is a pure cubic ; 
#4 =a4-f-a3b-{-ac2+d is a. pure biquadratic ; &c. 

330. Adfected equations are those wherein different powers of 
the unknown quantity are concerned, or are found in the same 
equation. These are called adfected quadratics, adfected cubics, 
adfected biquadratics, &c., according to the highest dimension 
or power of the unknown quantity. 

Thus, x2-\-ax — b, is an adfected quadratic 
x3 -\-ax2Jrbx=.c, an adfected cubic ; 
xiA-ax3jrbx2-3rcx=d, an adfected biquadratic. 

In like manner other adfected equations are denominated ac¬ 
cording to the highest power of the unknown quantities. 

§ I. SOLUTION OF PURE EQUATIONS OF THE FIRST DEGREE 

BY INVOLUTION. 

331. We have already delivered, under the denomination of 
Simple Equations, the methods of resolving pure equations of the 
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first degree, in all cases, except when the quantity is affected 
with radical signs or fractional exponents, in which case the 
following rule is to be observed. 

RULE. 

332. If the equation contains a single radical quantity, 
transpose all the other terms to the contrary side ; then in¬ 
volve each side into the power denominated by the index of 
the surd; from whence an equation will arise free from radi¬ 
cal quantities, which may be resolved by the rules pointed out 
in Chap. III. 

If there are more than one radical sign over the quantity, 
the operation must be repeated ; and if there are more than 
one surd quantity in the equation, let the most complex of 
those surds be brought by itself on one side, and then proceed 
as before. 

Ex. 1. Given y/ (4a:-j-16)=12, to find the value of x. 
Squaring both sides of the equation, 4a:-J- 16 = 144 ; 

by transposition, 4a: = 144 —16 ; .-. x = 32. 
Ex. 2. Given 1/ (2a?-f"3)-}-4 = 7, to find the value of x. 

By transposition, (2a:-f 3) = 7 — 4 = 3 ; 
cubing both sides, 2a:-f3=27 ; 

by transposition, 2a:=27-—3 ; x=12. 
Ex. 3. Given y/(12 + a?) = 2 -\--\/x, to find the value of x. 

By squaring, 12 + a: = 4 + 4'/a:-f- x ; 
by transposition, 8=4 y/x, or y/x = 2 ; 

/. by squaring, a: = 4. 
Ex. 4. Given y/[x4-40) = 10 — y/x, to find the value of x. 

By squaring, a:+40 = 100—*20-y/a:-f-a: ; 
by transposition, 20 ^/a?=60, or y/x—3 ; 

.•.by squaring, x = 9. 
Ex. 5. Given -\/{x—16)=8 — y/x, to find the value of a:. 
By squaring both sides of the equation, 

a: —16 = 64 —16 y^-fa: ; .*. 16yG:=64-f-16 = 80 ; 
by division, y/a: = 5 ; .*. a: = 25. 

Ex. 6. Given y/{x— o)= /x—\y/a, to find the value of x. 
Squaring both sides of the equation, 

x—a~x — y/(ax)-\-~a ; 
.-. by transposition, -\/(ax) = ^a; 

, . 25a2 ' 25a 
by squaring, «a?=-y^-; .*. x=z—~. 

Ex. 7. Given -y/5 X y/(x-{-2)=:-\/5x+2, to find the value 
of x. 
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By squaring, 5x-\- 10 = 5#-j-4-y/5#-f-4 ; 
by transposition, 6 = 4 y5x ; <\/5x — % ; 

by squaring again, 5#=|- ; x _9_ 
20* 

Ex. 8. Given 
x 
-7--=—^ to find the value of x. 
yx x 

Multiplying both sides of the equation by yx, 
x 

x—ax—-— 1, or (1—«)x=l ; X: 
x 1 ■a 

. -v/#-}-28 y X~\~3S /'ll i r 
Ex. 9. Given —--= -, to find the value of x. 

yx+4 Va:+6’ 
Multiplying both sides by ( vG-|-4) x ( -yG-f-G), 

we have x-\-34^/x-{- 168=#+42'y/#-f- 152 ; 
by transposition, 16 = 8yG, or 2 = yG; 

by squaring, x=4. 

_ „. -v/ax—b 3 Jax — 2h , , 
Ex. 10. Given -—, to find the value of x. 

yax+b sy ax-\-ob 
Multiplying both sides by (yax-\-b)x {3yax5b), 

3ax~\-2b y ax—5b2 — 3ax-\-byax—2b2, 
.'. by transposition, byax = 3b2 ; 

by division, yax = 3b; 

9 b2 
v by squaring, ax—9b2, and x=- 

a 

Vt X 

Ex. 11. Given y(x+ yx)-y(x-yx) — 

, to find the value of x. 
kx+ y{x)) 

Multiply both sides of the equation by -y/(#-{- yx), 

yy)— 

*v/ (tt) 
.*. by transposition, x—- A- — y(x2 — x) ; 

and dividing by yx, y x—\— y(x — 1) ; 
.-.by squaring, x~yx-\-± = x— 1 ; .-. yx—\, 

25 
and by squaring, 

Ex. 12. Given y (x—24) = yG—2, to find the value of x. 
Ans. #=49. 

Ex. 13. Given y (4«-f-#)=2y' (J-j-#)— Vx, to find the va¬ 

lue of x. Ans. x — ^ 
2a —b ' 

Ex. 14. Given x-\-a-\-y (2ax-\-x2) — b,\.o find the value of x. 
(b a)2 

Ans. 
2b 
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Ex. 15. Given -~ X-x jlfa t0 ^ri(j the value of #. 
-/#-f-o -/#+3o 

Aas-X={~b)2- 

Ex. 16. Given—^=l+^—~—-, to find the value 
•/ 3#+l 2 

of X. Ans. # = 3. 

Ex. 17. Given x~^\a2^x^{b2-\- x2]\-—a, to find the va- 
b2 — 4a2 

Ans. #= lue of x. 
~ * . - 

Ex. 18. Given y(2-f-#)+y\# 
V^+x) 

4 a 

, to find the va¬ 

lue of x. 

Ex. 19. 

Ex. 20. 

Ex. 21. 

Ex. 22. 

Ex. 23. 
x. 

Ex. 24. 
lue of x. 

Ex. 25. 

lue of x. 

Ex. 26. 

lue of x. 

Ex. 27. 

Ex. 28. 

Ex. 29. 

of x. 

Ans. #=~. 
O 

Given y (10#-{-35)—1=4, to find the value of x. 
Ans. # = 9. 

Given y (9#—4)-f 6 = 8, to find the value of x. 
Ans. #=4. 

Given •/(#-!-16)=2+ y#, to find the value of x. 
Ans. x = 9. 

Given -/(# —32) = 16 — -y/x, to find the value of x. 
Ans. #=81. 

Given -y(4#-j- 21)=2-y#-f-l, to find the value of 
Ans. #=25. 

Given y[l-f#y(#24-12)] = l + #, to find the va- 
Ans. #=2. 

3 6 
Given y'#-}-yr(#—9) = —^-—to find the va- 

y (oc y J 
Ans. #=25. 

Given y (<z-f-#)=2y (#2+5«# + 52), to find the va- 
a2— b2 

Ans. #=—  . 
3 a 

Given 

y 9#—4 15+-/9* 
y#+2 “ ~ y#-j- 40 ’ 

■\J 6#—2 V6*-9 , 
/6#+2" '4/ 6#+6’ 

5#—9 n y 5#—3 

y 5#-f 3 1_ 2 ’ 

Ans. #=4. 

Ans. # = 6. 

Ans. #=5. 

21 
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Ex. 30. Given 
ax—b2 

y' ax-\-b 

■yj ax—b „ . . . 
-j- --, to find the value of x. 

c 

Ans. . (b-\—~)2. 
a \ c—1/ 

§ II. SOLUTION OF PURE EQUATIONS OF THE SECOND, AND 

OTHER HIGHER DEGREES, BY EVOLUTION. 

RULE. 

333. Transpose the terms of the equation in such a man¬ 
ner, that the given power of the unknown quantity may be 
on one side of the equation, and the known quantities on the 
other ; then extract the root, denoted by the exponent of the 
power, on each side of the equation, and the value of the un¬ 
known quantity will be determined. In the same way any 
adfected equation, having that side which contains the un¬ 
known quantity, a complete power, may be reduced to a sim¬ 
ple equation, from which the value of the unknown quantity 
will be ascertained, by the rules in Chap. ill. 

Ex. 1. Given x1—17 = 130—2a:2, to find the values of x. 
By transposition, 3a:2 = 147 ; 

.*. by division, a:2=49, 
and by evolution, x=^ 7. 

334. It has been already observed, that 2y a may be either 
+ or —. where n is any whole number whatever ; and, con¬ 
sequently, all pure equations of the second degree admit of 
two solutions. Thus, +7 X +7, and —7 x —7, are both 
equal to 49; and both, when substituted for x in the original 
equation, answer the condition required. 

Ex. 2. Given x2-\-ab=z5x2, to find the values of x. 
By transposition, 4a:2 —ab ; 

.*. 2x—^-y/cib, and a;=±J-v/«a^. 
Ex. 3. Given a:2 — 6a:+9 = «2, to find the values of x. 

By evolution, x — 3 = -k<z ; x — 3^-a. 
Ex. 4. Given 4a:2 — 4«a: —f-«2 =:a?2-f— 12a:-q— 36, to find the va¬ 

lue of x. 

By extracting the square root on both sides, we have 2a;— 
«=£+6 ; 

.’. by transposition, x = a-{-6. 

to find the values of x and y. 

2a:2=18; .*. X — J- ^y/9= ^3. 
By subtraction, 2y2 = 8 ; .-. y = ±-y/4 = ^2. 

Ex. 6. Given 81a;4=256, to find the values of x. 

Ex. 5. Given a:2-fy2 = 13, ) 
and x2—y2=5, £ 

By addition, 
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By extracting the square root, 9o?2= i 16 ; 
By extracting again, 3x=Jf]/i 10 = i4, or ±4y' —1 ; 

.*. x= + |-, or x=r if V — 1* 
Ex. 7. Given x6 — 3a:4+3a:2 — l =27, to find the values of x. 

By evolution, x2 —1=3 ; .*. x2=4, and a:=+2. 
Ex. 8. Given 36x2=a2, to find the values of x. 

Ans. a;=±+-|^. 
Ex. 9. Given a:3=27, to find the value of x. Ans. x~3. 
Ex. 10. Given a:2+6a:+9=25, to find the values of x. 

Ans. x=2, or —8. 
Ex. 11. Given 3a;2—9=21 + 3, to find the values of x. 

Ans. a:= + -y/l 1. 
Ex. 12. Given a;3—a;2+Ja; —2Y=«3, to find the values of a:. 

Ans. a, = a+^-. 
Ex. 13. Given x2Jc%xJr^ — a2b2, to find the values of x. 

Ans. x = 4^-ab —i. 
Ex. 14. Given x2-\-bx-{-\b2 — a2, to find the values of x. 

Ans. x— + «—\b. 
Ex. 15. Given a;4—2a:2+l=9, to find the values of a?. 

Ans. a:=+2, or + +' —2. 
Ex. 16. Given a;4—4a:2+4=4, to find the values of a:. 

Ans. a:=+2, or + +0. 
Ex. 17. Given 5a:2—27=3a:2+215, to find the values of x. 

Ans. a:=-{-ll. 
Ex. 18. Given 5a:2—1=244, to find the values of x. 

Ans. ,r= + 7. 
Ex. 19. Given 9a:2 + 9 = 3a;2+63, to find the values of a:. 

Ans. x— + 3. 
Ex. 20. Given 2ax2-{-b — 4 — cx2 — 5-{-cl—ax2, to find the 

values of x. Ans. x~ +. I~r———• 
v 3a—c 

Ex. 21. Given a;4+y4=a and a:4—y4=Z>, to find the values 
of x and y. 

Ans. x=z±-\/(4tz^y/r(2a + 2b)) and y — ±y'(+Jy'(2a — 
2b)). 

§ III. EXAMPLES IN WHICH THE PRECEDING RULES ARE AP¬ 

PLIED IN THE SOLUTION OF PURE EQUATIONS. 

335. When the terms of an equation involve . powers of the 
unknown quantity placed under radical signs. 

Let the equation be cleared of radical signs, as in Sect. I; 
then, the value of the unknown quantity will be determined 
by extracting the root, as in Sect. II. 

And by a similar process, any equation containing the pow 
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ers of a function of the unknown quantity, or containing the 
powers of two unknown quantities, may frequently be reduced 
to lower dimension’s. 

Ex. 1. Given x2=.y (a-\-b), to find the values of x. 
Cubing both sides, x2 — a-\-b ; 

.*. x=^zy'(a-\-b). 
Ex. 2. Given (x2—9)=y(£— 3); to find the values of x. 
Here, the given quantity may be exhibited under the form 

i i ' i x 2 
(x2—9)* = (x—3)^ ; then, by squaring both sides, (#2—9)4 

rr(#—3)2 * or (x2 — 9)2 ~x — 3 ; 
by squaring again, x2 — 9 = a:2—6#-f-9 ; 
.-.by transposition, 6#=18 ; and £=3. 

Ex. 3. Given x2—y2=9, and x-— y — 1 ; to find the values 
of x and y. 

Dividing the corresponding members of the first equation 
by those of the second, we have x+y=9 ; 

adding this equation to the second, 2a:=10 ; 
a?=5, and y — 9—x ; .*. y —4. 

.Ex. 4. Given -y/x-\--y/y 5, > tQ y^e values of x and y. 
and yx— yy — 1, ) J 

Adding the two equations, 2^/xz=6, .*. ^x=3, 
and by involution, #=9. 

Subtracting the two equations, 2-\/y = 4, and -y/y =2 ; 
by involution, y=4. 

Ex. 5. Given x2-\- xy=12, ) . - , , . c j 
i . > to find the values oi x and y. 

and yl-\-xy—24, S y 
By addition, x2-\-2xy-\-y2=z36; 

extracting the square root, a?4-y=4z6* 
Now x2-\-xy=x . (;r-|-y)= 4;6a? ; 

.*. 4- Qx = 12, and x— 4-2 ; 

.vy=4=6=F2 = 4.4. 
2 a2 

Ex. 6. Given a;-{- V(a2-\-x2)~—7T—-to find the values 
y (or-f-ar) 

of X. 

Multiplying by *\/(a2-\-x2), we have x^/(a2x2)-\-a2-\-x2 — 

2 a2; 

by transposition, xa/ (a2 x2) — a2 —x2, 
and squaring both sides, a2x2-\-xi—a^—2a2x2-\-xi; 

.*. 3a2x2—cfi, and x— 4r 
’ y 3 

Ex. 7. Given a;24~y2: 
13 

1 & 7 rt0 find values °f * an(5 y- 
and xy~ 

x—y 
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From the 1st equation subtracting twice the 2d. 

x2—2xy+y2 = (x—y)2—-]— r.(x—y)3=± 1, 
x y 

and a;—y = l; .\x?-{-y2= 13; 
and 2xy = 12 ; 

.*.by addition, x2-\-2xy-\-y2=25, 
by extracting the square root, x+y — T;5 ; 

but x—y — 1 ; 

.-. by addition, 2x—6, or—4 ; and a: = 3, or —2 ; 
by subtraction, 2y —4, or—6 ; and y=z2, or —3. 

to find the values of x and y. 
Ex. 8. Givren a:3 +y3 = 

i i 
and x3 

2 t!2 
Squaring the second equation, x3 -\-2x3y3 y325 

but x% -J-y3 —13 

= 13, > 

r= 5,5 

I l 
.*. by subtraction, 2x3y3 = 12. 

Subtracting this from-the 1st equation, 
2 ill 

x3 —2 x3y3 -f-y3 — 1 
1 i 

extracting the square root, a;3 — y3 = -J-1 
1 L 

but x3 ~\-y3 = 5 

.*. by addition, 2a;3 =6, or 4 
i 

and a?^ = 3, or 2 ; x=27, or 8 
i 

.•.by subtraction, 2y3 =4, or 6 
1. 

and y3— 2, or 3 ; ■‘■y=8, or 27 

Ex. 9. Given x8-{-xiyi-\-y8=273, ) to find the values of a? 
and a:4-f-^2y2 + y4;=:21, $ and y. 

Dividing the first equation by the second, ad—x2y2-\-y* 

= 13 ; 
subtracting this from the second equation, 2x2y2=8 ; 

.*. x2y2 = 4 ; 
by adding this equation to the second, a;4-f-2a;2y2-f-y4 

—25; x2Jry2~ T5. 
Subtracting the equation x2y2 = 4, from a;4—a;2y2-f-y4= 13, 

a;4—2a;2y2-f-y4=:9 ; .'.x2—y2— T;3, 

21* 
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by addition, 2x2= -J-8, and x— -^2, or rt^V+lj and by 
subtraction, 2y2=dt2, and y = dbl, or iV — 1* 

Ex. 10. Given + ——=b, to find the value 
y (a+x) — y [a—x) 

of x. 
Multiply the numerator and denominator by #) +V 

la-x), [V>±5l±v^-r^r=5, or 2a+2 j (a*-x*)=2bx ; 

<J(a2 —x2) — bx—a, and squaring both sides, a2—x2—b2x2 
—2 abx-{-a2, 

.*• b2x2 x2=2abx, and x= 
bz-j-1 

Ex. 11. Given (a?2-—y2) X (a:—?/) = 3a:y, > . ~ j v 
j / a v// b J *r 9 v > to find the values and (a;4—y4) X (a;2—y~)=45a;2y2, $ 

of x and y. 
Dividing the second equation by the first, 

(a;2"by2) . (x-\-y) = \5xy ; a?34-#2y+ ^y2-}-y3—lfi#y ; 
but from the first, x3 — x2y—xy2-\-y3 = 3ay; 

by addition, 2a3 + 2y3 = 18,ry, and x3-\-y3=9xy. 
But by subtraction, 2a2y + 2a:y2 = 12ay, and x-{-y = 6 ; 

.-. by cubing, a,3 + 3a;2y+3a:y2-i-y3:=216 , 
x3 -\-y3 — 9xy ; 

.*. by subtraction, 3a;2y + 3a:y2=216 — 9ay, 
or 3 . (a:+y) . xy — 3 X 6 . a?y=216 — 9a:y ; .*. 27a?y=216, and 
xy=. 8. 

Now x2-\-2xy-\-y2 — 99, 
and 4a?y =32 ; 

.*. by subtraction, x2—2xy-\-y2=z4, 
and by extracting the square root, x—y=^-2, 

by x+y= 6, 

.*. by addition, 2a?=8, or 4; and a?=4, or 2 ; 
and by subtraction, 2y = 4, or 8 ; .\y=2, or 4. 

Ex. 12. Given —f 
a -y/ (a2—x2) x 

, to find the values of x. 
x x b' 

Ans. a:=A: ■/(2,ab—b2). 
18 

Ex. 13. Given #2-f-3a?—7=#-f-2-|-, to find the values 
. x 

of x. Ans. x=3, or —3. 

Ex. 14. Given J (~)+tJ (~) =b>X 
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V(4s)' to find the values of #. 
x-\-( 

Ex. 15. Given #+y : 
lues of x and y. 

Ex. 16. Given x—y : 
values of x and y. 

Ex. 17. Given #-|-y : 
the values of x and y. 

Ans. #=- 
a 

x 

x :: 5 

# 

{b^lf 
3, and #y = 6, to find the va- 

Ans. #=^3, and y= =L2. 
6, and #y2 = 384, to find the 

Ans. a:=24, and y = 4. 
5, and a;y + y2 = 126, to find 
Ans. # = rh 15, and y = ±6. 

Ex. 18. Given ffy2+y=21, and #2y4-{-y2 = 333, to find the 
values of x and y. Ans. #=2, or y-L-; and y = 3, or 18. 

Ex. 19. Given #2y+#y2 =180, and #3-}-y3 = 189, to find the 
values of x and y. Ans. #=5, or 4 ; and y = 4, or 5. 

Ex. 20. Given #-{- y/xy-\-y = 19, and #2 + #y-|-y2 = 133, to 
find the values of x and y. Ans. #=9, or 4 ; and y = 4, or 9. 

Ex. 21. Given #2y+#y2=6, and #3y2-f-#2y3= 12, to find the 
values of x and y. Ans. # = 2, or 1 ; and y=l, or 2. 

Ex. 22. Given (#2-f-y2) X (#-fy) = 2336, and (x2—y2) 
(#—y) = 576, to find the values of x and y. 

Ans. #=11, or 5 ; and y=5, or 11. 
Ex. 23. Given #3+y3 = (tf-j-y) . xy, and #2y-{-#y2=4#y, to 

find the values of x and y. Ans. #=2, and y = 2. 
Ex. 24. Given 2 . (#2+y2) . (#-f~y) = 15#y, and 4 (a:4—y4) 

(#2-f-y2) = 75#2y2, to find the values of x and y. 
Ans. # = 2, and y= 1 

y : : 4 : 5, and #2-f-4y2= 181, to find 
Ans. #=±9, and y=-{-5. 

x2—y2 : : 17 : 8, and #y2 = 45, to find 
Ans. # = 5, and y =3. 

Ex. 27. Given 4/ x—|/y = 3, and y #+{/ y = 7 ; to find 
the values of x and y. Ans. # = 625, and y=16. 

Ex. 28. Given -y/x-\--y/y : ■yj#— -yf y : : 4 : 1, and x—y— 
16, to find the values of x and y. Ans. # = 25, and y = 9. 

Ex. 29. Given #3-{-y3 : #3—y3 :: 559 : 127, and #2y=294 ; 
to find the values of # and y. Ans. # = 7, and y = 6. 

4 2. 2 J 
Ex. 30. Given #3+y5 =20, and #3-fy5 =6 ; to find the 

values of # and y. 
Ans. #=-J-8, or -h y/8, and y=32, or 1024 

Ex. 31. Given #4-J-2#2y2-f*y4 = 1296 — 4#y(#2-j-#y-j"y2)> 
and x—y — 4 ; to find the values of # and y. 

Ans. 5, or —1, and y = l, or —5. 

Ex. 32. Given — 9? to find the value of #. 
y (4#-f-l) — y 4# 

Ex. 25. Given x—y 
the values of # and y. 

Ex. 26. Given #2+y2 
the values of # and y. 

Ans. #=£, 
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Ex. 33. Given xy — a2, and a72-f"y2=r,?2 ; to find the values 

of x and y. Ans. a?= ± i['/(^2+2«2)+ V(*2—2<z2)], 
and y=±J[^/(^2 + 2«2)-v/(6'2-2a2)]. 

Ex. 34. Given x2-{-x3/ xy2=208, and y2+y^/ a;2y = 1053, to 
find the values of x and y. • Ans. a;=d;8, and w—-L27. 

3 3 3 3 

Ex. 35. Given x2x~*y*-\-y2 — 1009, 
3 j* 

and a;3 + a;2y2+y3=:582193, 
to find the values of x and y. 

Ans. a?=81, or 16 ; and y —16, or 81. 

CHAPTER IX. 

ON 

THE SOLUTION OF PROBLEMS, 

PRODUCING PURE EQUATIONS. 

336. In addition to what has been already said, with re¬ 
spect to the translation of problems into algebraic equations, 
it is very proper to observe, that, when two quantities are re¬ 
quired which are in the given proportion of m to n, the un¬ 
known quantities are represented by mx and nx; then the 
values of x, found from the equation of the problem by the 
methods in the preceding chapter, being multiplied by m and 
n respectively, will give the numbers required. 

If three quantities are required, which have given ratios to 
one another, assume mx, nx, and px, m to n being the ratio of 
the first to the second, and n to p being that of the second to 
the third ; then proceed as before. 

Problem 1. There are two numbers in the proportion of 4 
to 5, the difference of whose square is 81. What are those 
numbers ? 

Let 4# and bx— the numbers ; 
then (25a;2—16a:2 = ) 9a;2=81 ; .\ x2=9, and x— d-3. Conse¬ 
quently the numbers are T12 and ^15. 

Prob. 2. It is required to divide 18 into two such parts, 
that the squares of those parts may be in the proportion of 25 
to 16. 

Let x— the greater part; then 18—x—. the less ; 
.*. x2 : (18—x)2 : : 25 : 16, and 16a;2=:25(18—a:)2 ; 
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extracting the square root, Ax — 5( 1 8 — x), and 
9x = 90 ; x— 10, and the parts are 10 and 8. 

Prob. 3. What two numbers are those whose di Here nee, 
multiplied by the greater, produces 40, and by the less 15 ? 

Let x=z the greater, and y = the less ; 
x2 — xy=z40, and xy—y2 — 15; 
by subtraction, x2 — 2xy + y2=25, 

and x — y = -L5. 
from the first equation, x[x—y)=T5a? = 40, 

and X— d-8. 
From the 2d, y(x—y) = ±5y = ±15 ; y = ±3. 

Prob. 4. What two numbers are those whose difference, 
multiplied by the less, produces 42, and by their sum 133 ? 

Let x— the greater, and y — the less ; 
(x—y) . y — 42, and (x — y) . (x^-y) = 133 ; 
by subtracting twice the first from the second, 

x2—2xy-\~y2~A9 ; .'.x—y — ^-1) 
whence ff-7y— 42, and yr=r:L6 ; 

but a:—yd=7 ; a;==h6T;7=±13. 

Prob. 5. What two numbers are those, which beincr both 
multiplied by 27, the first product is a square, and the second 
the root of that square ; but being both multiplied by 3, the 
first product is a cube, and the second the root of the cube ? 

Let a- and y be the numbers ; 
then -sJ21x—27y, and .-. a; = 27y2, 

also yf 3x—3y ; and .-.a: = 9y3 ; 
whence 9y3r=27y2, and y —3 ; .-..r— 9 X 27=243 ; 

.-. tlie numbers are 243, and 3. 

Prob. G. Two travellers, A and B, set out to meet each 
other ; A leaving the town C at the same time that B left D. 
They travelled the direct road, CD : and, on meeting, it ap¬ 
peared that A had travelled 18 miles more than B : and that 
A could have gone IPs journey in 15f days, but B would have 
been 28 days in performing A’s journey. What was the dis¬ 
tance between C and D ? 

Let x— the number of miles A has travelled ; 
.\x —18— the number B has travelled ; 
and x —18 : x : : 15j : the number of days A travelled, = 

63 a? 

4.(x — 18) 

veiled — 

— ; also 18 :: 28 : to the number of days B tra- 

28.(a?— 18) 28.(a?—IS) 63a? 
- ; or 16.(a? — 

x x 4(a? —18) 
18)2=9a;2; 4-(« — 18) = =L3a:, and x = 72, or 10|-; whence 
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A travelled 72, and B 54 miles ; and, the whole distance, CD 
126 miles. 

Prob. 7. Two partners, A and B, dividing their gain (60/), 
B took 20/. A’s money continued in trade 4 months ; and if 
the number 50 be divided by A’s money, the quotient will give 
the number of months that B’s money, which was 100/., con¬ 
tinued in trade. What was A’s money, and how long did B’s 
money continue in trade 1 

50 
Suppose A’s money was x pounds ; .*.—= the number of 

oc 

months B’s money was in trade ; and since B gained 20/., A 
gained 40/. 

, 50X100 , 10000 
4x :-:: 2 : 1, and 4x—-; 

x x 
.*. 4x2 —10000, and #2=2500 ; .*. a?= + 50. 
.•. A’s money was 50/., and B’s money was one month in 

trade. 

Prob. 8. A detachment from an army was marching in re¬ 
gular column, with 5 men more in depth than in front; but 
upon the enemy coming in sight, the front was increased by 
845 men ; and by this movement the detachment was drawn 
up in five lines. Required the number of men. 

Let x— the number in front; 
£+5 = the number in depth, 

and a:(a?+5) = the whole number of men ; 
also, (a? + 845) X 5= the whole number of men ; 
.*. x2-\-5x=5x-\-4225, and x2 — 4225 ; .*. a;=±65. 

And, consequently, 5a? + 4225 — 325 + 4225 = 4550, the 
number of men. Here, although the negative value of x will 
not answer the conditions of the problem, yet it will satisfy 
the above equation ; for, if we substitute —65 for x, we shall 
have (— 65)2 + 5( — 65) = 5( — 65) + 4225 ; that is, or 4225 — 
325 = —325 + 4225 ; .\ 4225-4225, or 4225 — 4225=0, that 
is, o — o. 

Prob. 9. It is required to divide the number a into two such 
parts, that the squares of those parts may be in the proportion 

of m to n. 
Let x— one of these parts ; then a—x— the other ; and ac¬ 

cording to the enunciation of the problem, we shall have the 
equation, 

v2 m 

n 

x 

(a—x)2 

(a — x) y/m'. 

a — x 

V 771 771 
—, or (putting —= m'), x = ± 

71 71 
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By resolving separately the two equations of the first de¬ 
gree comprised in the above formula, namely, 

x=-{-(a—x)y/m/, and x——(a—x)y/m', 
we shall have, from the first, 

aVm’ ^ a —ciy/m' 
X— -—-—t—-, and from the second x— ---— 

1 + ym 1 — y/m 

By the first solution, the second part of the proposed num- 
/ / at 

ber is a — 
ay/ m' a 

1+ y/m! \-\-y/m' ’ 
and the two parts, 

a y/ mf 

1 -pyW 

and --— -, are, as was required in the enunciation of the 
1 yj Tfl 

question, both less than the number proposed. 
By the second solution, we have 

/ — a y/m' \ ay/mf 

a~\i 

X 

are 

0 , 
ay/m 

y/m' 1 — y/m 
- ; and the two parts 

and 
a 

1 — y/m! l—y/mr 

Their signs being contrary, the number a is not, properly 
speaking, their sum, but their difference. 

Now, if a=:18, m=z25, and 7i= 16 ; then substituting these 

values in the formula aand —;> we shall find 10 
1 -f- y/m/ 1+ y/m 

and 8 equal to the two parts required, the same as in Ex. 2., 
which is a particular case of this general problem. 

Proe. 10. What two numbers are those, whose sum is to 
the greater as 10 to 7 ; and whose sum, multiplied by the 
less, produces 270? Ans. ^21 and ^9. 

Prob. 11. What two numbers are those, whose difference 
is to the greater as 2 to 9, and the difference of whose squares 
is 128 ? Ans. ^18 and ^14. 

Prob. 12. A mercer bought a piece of silk for 16Z. 4s.; 
and the number of shillings which he paid for a yard was to 
the number of yards as 4 : 9. How many yards did he buy, 
and what was the price of a yard ? 

Ans. 27 yards, at 12s. per yard. 
Prob. 13. Find three numbers in the proportion of J, §-, 

and J : the sum of whose squares is 724. 
Ans. JH2, J-16, and T:18. 

Prob. 14. It is required to divide the number 14 into two 
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such parts, that the quotient of the greater part, divided by 
the less, may be to the quotient of the less divided by the 
greater as 16 : 9. Ans. The parts are 8 and 6. 

Prob. 15. What two numbers, are those whose difference 
is to the less, as 4 to 3 ; and their product, multiplied by the 
less, is equal to 504 ? Ans. 14 and 6. 

Prob. 16. Find two numbers, which are in the proportion 
of 8 to 5, and whose product is equal to 360. 

Ans. ±24, and ±15. 

Prob. 17. A person bought two pieces of linen, which, 
together, measured 36 yards. Each of them cost as many 
shillings per yard, as there were yards in the piece ; and their 
whole prices were in the proportion of 4 to 1. What were 
the lengths of the pieces ? Ans. 24 and 12 yards. 

Prob. 18. There is a number consisting of two digits, which 
being multiplied by the digit on the left hand, the product is 
46 ; but if the sum of the digits be multiplied by the same 
digit, the product is only 10. Required the number. 

Ans. 23. 

Prob. 19. From two towns, C and D, which were at the 
distance of 396 miles, two persons, A and B, set out at the 
same time, and met each other, after travelling as many days 
as are equal to the difference of the number of miles they tra¬ 
velled per day; when it appears that A has travelled 216 
miles. How many miles did each traveller day? 

Ans. A went 36, and B 30. 

Prob. 20. There are two numbers, whose sum is to the 
greater as 40 is to the less, and whose sum is to the less as 90 
is to the greater. What are the numbers ? 

Ans. 36, and 24. 

Prob. 21. There are two numbers, whose sum is to the 
less as 5 to 2 ; and whose difference, multiplied by the dif¬ 
ference of their squares, is 135. Required the numbers. 

Ans. 9, and 6. 

Prob. 22. There are two numbers, which are in the pro¬ 
portion of 3 to 2 ; the difference of whose fourth powers is to 
the sum of their cubes as 26 to 7. Required the numbers. 

Ans. 6, and 4. 

Prob. 23. A number of boys set out to rob an orchard, 
each carrying as many bags as there were boys in all, and 
each bag capable of containing 4 times as many apples as 
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there were boys. They filled their bags, and found the num¬ 
ber of apples was 2916. How many boys were there ? 

Ans. 9 boys. 
Prob. 24. It is required to find two numbers, such that the 

product of the greater, and square of the less, may be equal 
to 36 ; and the product of the less, and square of the greater, 

may be 48. Ans. 4, and 3. 
Prob. 25. There are two numbers, which are in the pro¬ 

portion of 3 to 2 ; the difference of whose fourth powers is to 
the difference of their squares as 52 to 1. Required the num¬ 
bers. Ans. 6, and 4. 

Prob. 26. Some gentlemen made an excursion, and every 
one took the same sum. Each gentleman had as many ser¬ 
vants attending him as there were gentlemen ; and the num¬ 
ber of dollars which each had was double the number of all 
the servants ; and the whole sum of money taken out was 
$3456. How many gentlemen were there ? Ans. 12. 

Prob. 27. A detachment of soldiers from a regiment, be¬ 
ing ordered to march on a particular service, each company 
furnished foitr times as many men as there were companies 
in the regiment; but those becoming insufficient, each com¬ 
pany furnished 3 more men ; when their number was found 
to be increased in the ratio of 17 to 16. How many compa¬ 
nies were there in the regiment'? Ans. 12. 

Prob. 28. A charitable person distributed a certain sum 
among some poor men and women, the numbers of whom 
were in the proportion of 4 to 5. Each man received one- 
third of as many shillings as there were persons relieved ; 
and each woman received twice as many shillings as there 
were women more than men. Now the men received all to¬ 
gether 18.?. more than the women. How many were there 
of each? Ans. 12 men, and 15 women. 

Prob. 29. Bought two square carpets for 62/. lv.; for each 
of which I paid as many shillings per yard as there were yards 
in its side. Now had each of them cost as many shillings 
per yard as there were yards in a side of the other, I should 
have paid 17s. less. What was the size of each? 

Ans. One contained 81, and the other 64 square yards. 

Prob. 30. A and B carried 100 eggs between them to mar¬ 
ket, and each received the same sum. If A had carried as 
many as B, he would have received 18 pence for them ; and 
if B had only taken as many as A, he would have received 8 
pence. How many had each ? Ans. A 40, and B 60 

‘22 
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Prob. 31. The sum of two numbers is 5 (s), and their pro¬ 
duct 6 (p): What is the sum of their 5th powers ? 

Ans. 275 = (s5 —5ps3-\-5p2s). 

chapter x. 

ON 

QUADRATIC EQUATIONS. 

337. Quadratic equations, as has been already observed, 
are divided into pure and adfected. All pure equations of 
the second degree are comprehended in the formula x2=n, 

where n may be any number whatever, positive or negative, 
integral or fractional. And the value of x is obtained by ex¬ 
tracting the square root of the number n ; this value is dou¬ 
ble, for we have, x=-^.y/n, and in fact, {^-y/n)2 = n. This 
may be otherwise explained, by observing, (Art. 106), that 
x2 — n = (x-\- y/n).(x— y/n) = o, and that any product consist¬ 
ing of two factors becomes nought, when there is no restric¬ 
tion in the equality to zero of that product, by making each 
of its factors equal to zero. 

We have, therefore, xz=z — if n, x=-\- y/ n, or x— -j-y/n. 

338. Now, since the square root is taken on both sides of 
the equation, x2=n, in order to arrive at 0:=^ y/n ; it is very 
natural to suppose that, x being the square root of x2, we 
should also affect x with the double sign -k ; and, therefore, in 
resolving the equation x2=n, we should write -k x = ± y/n ; 
but by arranging these signs in every possible manner, namely; 

-j-x=-j-y/n, -j-x——y/n, 
— x= — y/n, —x=: -f- y/n, 

we would still have no more than the two first equations, that 
is, ~j-x=-jzy/?i; for if we change the signs of the equations 
—x= — y/n and —f n, they become -\-x—-\-y/n and 
*-j-a?:= — y/n, or x= -k fn. 

339. If, in the formula x2—n, n be negative, or, which is the 
same thing, if we have x2=—n, where n is positive ; then, 

—n~ A y/nX f — 1, and in fact (^ y/n)2 X (y/ — l)2 
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—1 = — n ; therefore, the two roots of a pure equation 
are either both real or both imaginary. 

340. All adfected quadratic equations, after being properly 
reduced according to the rules pointed out in the reduction of 
simple equations, may be exhibited under the following general 
forms; namely, x2-\-nx~o, and x2Jrnx — n'; where n and n! 
may be any numbers whatever, positive, or negative, integral 
or fractional. ; 

341. The solution of adfected quadratic equations of the 
form x2-\-nx = o, is attended with no difficulty ; for the equation 
x2-\-nx—o, being divided by x, becomes x-j-n=o, from which 
we find x=—?i, though we find only one value of x, according 
to this mode of solution, still there may be two values of x, 
which will satisfy the proposed equation. 

In the equation, x2=3x, for example, in which it is required 
to assign such a value of x, that x2 may become equal to 3x, 
this is done by supposing a: = 3, a value which is found by di¬ 
viding the equation by x; but besides this value, there is also 
another which is equally satisfactory ; namely* x = o ; for then 
x2 = o, and 3x=zo. 

342. An adfected quadratic equation is said to be complete, 
when it is of the form x2-\-nx—nf; that is, when three terms 
are found in it; namely, that which contains the square of 
the unknown quantity, as x ; that in which the unknown quan¬ 
tity is found only in the first power, as nx ; and lastly, the term 
which is composed only of known quantities ; and, as there 
is no difficulty attending the reduction of adfected quadratic 
equations to the above form by the known rules : the whole 
is at present reduced to determining the true value of x from 
the equation x2-\-nx—n'. 

We shall begin with remarking, that if x2-\-nx were a real 
square, the resolution would be attended with no difficulty, be¬ 
cause that it would be only required to extract the square root 
on both sides, in order to reduce it to a simple equation. 

343. But it is evident that x2-\-nx cannot be a square ; since 
we have already seen, that if a root consists of two terms, for 
example, x+a, its square always contains three terms, namely, 
twice the product of the two parts, besides the square of each 
part, that is to say, the square of x-\-a is x:2-\-2ax-\-a2. 

344. Now, we have already on one side x2~\~nx ; we may, 
therefore consider x2 as the square of the first part of the root, 
and in this case nx must represent twice the product of x, the 
first part of the root, by the second part: consequently, this 
second part must be and in fact the square of x-\-^n is found 
to be x2-\-nx-\-^n2. 
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345. Now a?2-|-tt£+ 4ft25 being a real square, which has for 
its root x-\-\n, if we resume our equation x2-\-?ix=n', we have 
only to add in2, to both sides, which gives us x2-\-nx-\-\n2 — n' 
-\-\n2, the first side being actually a square, and the other 
containing only known quantities. If, therefore, we take the 
square root of both sides, we find x+^n=z-y/ (\n2-\-ri) ; and 
as every square root may be taken either affirmatively or ne¬ 
gatively, we shall have for x two values expressed thus ; 

*=—(t»2T-**/)- 
346. This formula contains the rule by which all quadratic 

equations may be resolved, and it will be proper, as Euler 

justly observes, to commit it to memory, that it may not be 
necessary to repeat, every time, the whole operation which we 
have gone through. We may always arrange the equation in 
such a manner, that the pure square x2 may be found on one 
side, and the above equation have the form x2~—nx + »', 
where we see immediately that x — —{\rt2-\-n'). 

347 The general rule, therefore, which may be deduced 
from that, in order to resolve x2=—nx-j-?i/, is founded on this 
consideration. That the unknown x is equal to half the co¬ 
efficient or multiplier of x on the other side of the equation, 
plus or minus the root of the square of this number, and the 
known quantity, which forms the third term of the equation. 

Thus, if we had the equation «2 = 6a:-|-7, we should imme¬ 
diately say, that a? = 3±'y/(9-l-7) = 3±4 ; whence we have 
these two values of x ; namely, x~7, and x= — 1. 

348. The method of resolving adfected quadratic equations 
will be still better understood by the four following forms; in 
which n and n may be any positive numbers whatever, integral 
or fractional. 

I. In the case x2-\-nx = n\ where x=r.—\n-f- -\/(\n2-{-n'), or 
—\n — y/(l?i2+ ?*'), the first value of x must be positive, be¬ 

cause -\/(in2-fn') is or bs equal ^n ; and its second 
value will evidently be negative, because each of the terms of 
which it is composed is negative. 

II. In the case x2 — nx=zn\ from which we find x=^n-j-y/ 
(4n2-\-ri), or 2-ft —V{\n2jrn'), the first value of x, is manifest¬ 
ly positive, being the sum of two positive terms ; and the se¬ 
cond value will be negative, because ^{\n2-\-n) is >V 
or its equal 

III. In the case x2—nx= —n', we have x=^n-\~ y/(\n2—n')} 
or \n — y'(\n2 — n') ; both the values of x will be positive, 
when \n2 is ; for its first value is then evidently positive, 
being composed of two positive terms ; and its second value 
will also be positive, because y'(\n2—n') is less than y/ (Jrc2), 
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or its equal Jn. But if \n2, in this case, be less than n', both 
the values of x will be imaginary; because the quantity, 
— n' under the radical sign, is then negative ; and consequently 
■\Z(\n2—n') will be imaginary, or of no assignable value. 

IV. Also, in the fourth case, x2-\-nx——n\ where x =— 
±n-\- y/(\n2—n'), or —Jn— ^{\n2 —n'), the two values of x 
will be both negative, or both imaginary, according as \n2 is 
greater or less than n'. 

349. Hence we may conclude, from the constant occur¬ 
rence of the double sign before the .radical part of the preced¬ 
ing expressions, that every quadratic equation must, have two 
roots ; which are both real, or both imaginary ; and though 
the latter of these cannot be considered as real quantities, but 
merely as pure algebraic symbols, of no determinate value, 
yet. when they are submitted to the operations indicated by the 
equation, the two members of that equation will be always 
identical, or which is the same, it shall be always reduced to 
the form 0 = 0 

350. It may here also be further observed, that, in some 
equations involving, radical quantities of the form y'(ax + b) 
both values of x, iound by the ordinary process, will not an¬ 
swer the proposed equation, except that we take the radical 
quantity with the double sign -k. Let, for example, the values 
of x be found in the equation #+V(5^4-10) = 8. 

Here, by transposition, yj(5^4-10) = 8 — x , 
therefore by squaring, 5x4-10 = 64 — 16x + x2, 

or x2 — 2lx— — 54 ; and .\x=18, or 3. 
Now, since these two values of x are found from the reso¬ 

lution of the equation x2—21x=—54 ; it necessarily follows, 
that each of them, when substituted for x, must satisfy that 
equation; which may be verified thus ; in the first place, by 
substituting 18 for x, in the equation x2—2lx=—54, we have 
(18)2-21 Xl8 = —54, or 324—378=—54 ; that is, —54 = 
— 54, or 0 = 0. 

Again, substituting, 3 for x, we have (3)2 —21x3 = —54, 
or 9-63 = —54; —54 = — 54, or 54 — 54=0 ; .-.0 = 0. 

351. And as the equation x2—21x =—54, may be deduced 
from the equation 4--/ (5a?4”10) = 8—x, or —,/ (5x-f 10) = 
8—x ; it is evident that the radical quantity y' (5x4-10), must 
be taken, with the double sign 4:? in the primitive equation, 
in order that it would be satisfied by the values, 18 and 3, of 
x, above found ; that is, 18 answers to the sign —, and 3 to 
the sign 4-* But if one of these signs be excluded by the 
nature of the question ; then only one of the values will sa- 

22* 
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tisfy the original equation ; for instance, if in the equation x 
+y'(5a’-f-10) = 8, the sign — be excluded from the radical 
quantity, then the square root of 5a:-j-10 must be considered 
as a positive quantity; and because it is equal to 8 — x ; the 
value of x, since both are positive, which will answer the pro¬ 
posed equation, must be less than 8 ; therefore, 3 is the value 
of x, which will satisfy the equation x-\-ff (ox-\- 10) = 8, which 
can be readily verified thus ; substituting 3 for x, we have 3 + 

(15 -f-10) = 8, or 3 + 5 — 8. And for a similar reason, 18 is 
the value of x, which will Answer the equation x—y^Sx+lO) 
= 8; for 18—V(90+10) = 18 —10 = 8 ; .-.8 = 8, or 0 = 0. 

352. It is proper to take notice here of the following me¬ 
thod of resolving quadratic equations, the principle of which 
is given in the Bija Ganita, before mentioned : thus, if a 
quadratic equation be of the form 4a2x2dn4abx = + 4«c, it is 
evident that, by adding b2 to both sides, the left-hand member 
will be a complete square, since it is the square of 2ax^zb ; 
and, therefore, by extracting the square root of both sides, there 
will arise a simple equation, from which the values of x may 
be determined. 

353. Now, any quadratic equation of the form ax2ztbx— 
+ C, (to which every quadratic may be reduced by the known 
rules), by multiplying both sides by 4a, will become 4a2x2J^ 
4abx = +4ac. From which we infer, that if each side of the 
equation be multiplied by four times the coefficient of x2, and to 
each side there be added the square of the coefficient of x, the quan¬ 
tity on the left-hand side of the resulting equation will always be 
a complete square ; from which, by extracting the square root, the 
values of x will be determined. If the coefficient a— 1, then 
both sides of the equation is multiplied by 4, and the square of the 
coefficient of x is added, as before. 

§ I. SOLUTION OF ADFECTED QUADRATIC EQUATIONS, INVOLV¬ 

ING ONLY ONE UNKNOWN QUANTITY. 

I 

354. Rule I. Let the terms be arranged on one side of 
the equation, according to the dimensions of the unknown 
quantity, beginning with the highest ; and the known quanti¬ 
ties be transposed to the other ; then, if the square of the un¬ 
known quantity has any coefficient, either positive or negative, 
let all the terms be divided by this coefficient. If the square 
of half the coefficient, of the second term be now added to both 
sides of the equation, that side which involves the unknown 
quantity will become a complete square ; and extracting the 
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square root on both sides of the equation, a simple equation 
will be obtained, from which the values of the unknown quan¬ 
tity may be determined. 

355. Rule II- The terms of the equation being arranged 
as above, let each side be multiplied by four times the coeffi¬ 
cient of x2, and to each side add the square of the coefficient 
of x; then the left-hand member, being a complete power, ex¬ 
tract the square root on each side of the equation, and there 
arises a simple equation, from which the values of x may be 
determined. 

356. It may be observed, that all equations maybe solved 
as quadratics, by completing the square, in which there are 
two terms involving the unknown quantity, or any function of 
it, and the exponent of one is double that of the other. 

n_n 3 n 

Thus, x&-\-px2=q, x2n—pxn=:q, x2 -j-#4 — ci, a2x2-\-axz=.b, x 

-f-ax 2 =zb, p2xin—px2n=d, (x2-\-px-\-q)2-\-(x2-\- px + q)=r, 
x.(xJt~ax)2-\-bx.(x2-\-ax)—d, are of the same form as quadratics, 
and the values of the unknown quantity may be determined 
in the same manner. 

357. Many equations also, in which more than one unknown 
quantity are involved, may, in a similar manner, be reduced to 
lower dimensions by completing the square, as x2y2-\-pxy = q, 
(x2-\-y2)2jrp.(x2-\-y2)—r. Instances of this kind will occur 
in the next section. 

358. And many adfected equations of the third, and other 
higher degrees, may be exhibited under the form of a quad¬ 
ratic, from which, by completing the square, the value of the 
unknown quantity will be determined. The biquadratic equa¬ 
tion a:4—Qax2-\-Qa2x2-\-32a?x=zd, for instance, may be reduced 
to the form (x2—4ax)2 — 8a2(a?2 — 4ax) = d. Thus the two first 
terms (x2—4ax) of the square root of the left-hand member 
being found according to the rule (Art. 299), and the remain¬ 
der — 8a2;r2-j-32a3;r, being evidently equal to —8a2(x2—4ax); 
therefore a;4 — 8ax3 -f- 8a2#2 -f- 32a3x=[x2—4ax)2 — 8a2(a:2—4ax) 
— d. Hence it follows, that if the remainder, after having 
found the first two terms of the square root (Art. 238), can be 
resolved into two factors, so that the factor containing the un- 
known quantity, shall be equal to the terms of the root thus 
found; the proposed biquadratic may always be reduced to a 
quadratic form. 

359. In a similar manner, the cubic equation a;3+ 2ax2j^ 
5a2x-\-4a3=o, may be reduced to the form (x2-\-ax)2 x 4a2 
(x2-\- ax)=o ; thus, multiplying every term of the proposed 
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equation by x, it becomes x4r-\~2ax3-\-5a2x2-{-4a3x—0, which 
can be reduced to the above form, as in the preceding article. 
There are a variety of other artifices for reducing equations 
to lower dimensions, which will be illustrated in the following 
examples. 

Ex. 1. Given a;24 8^=20, to find the values of x. 
Completing the square, a:24-8#+16 = 36 » 

and extracting the root, x4- 4 = 4:6 ; 
Whence, by transposition, # = 2, or —10. 

Ex. 2. Given x2 — 8a:+5 = 14, to find the values of x. 
By transposition, x2—8a:=9 ; 

and completing the square, x2 — 8a?-f-16—25 ; 
.•.extracting the root, x—4=4:5, 

and a?=9, or — 1. 

Ex. 3. Given x^—~~—2)2, to find the values 
x — -y/ [x2 — 9) v ' 

of x. 
Multiplying the numerator and the denominator of the fraction 

i i ,, » n\ (*+ Vi*2—9))2 oV> x+*\/(x2 — 9) 
by #4 V{*2—9), ---2)2 ; |-- 

= 4(#—2): Taking the positive sign, x4- -\/(*2 — 9) = 3a?—6, 
or -\f (x? — 9)=:2a;— 6; .’.a:2 — 9 = 4a:2—24a?436 ; by transpo¬ 
sition and division, x2 — 8a: =—15 ; .*. completing the square, 
&c.-x—5, or 3. 

But, by taking the negative sign, x4- V(x7— 9) = —3a?-f-6 ; 
by transposing and squaring, x2~9 = 16a:2—48a?436, and 

16 
by transposition and division, x2——a: =—3 ; completing the 

D 

, 16 ,64 11 . . 
squaring, a;2 — — x+ — =—•—; taking the root and trans- 

o Zd Z5 

posing, x: 
84V-11 

17 
Ex. 4. Given ar44--^-#3—34a: —16, to find the values of x. 

z 
17 

By transposition, a:44-7r#3 = 34a: 4“ 16 ; completing the 
z 

square, a;4-}- ~a:34 (~^'xj2~ ^^^24-34a:4-16 ; .’. extracting 

17 /17 \ 
the root, x2-\-—x = 4 a?4-4j. 

Let the positive root be taken ; then, by transposition, a:2=4 ; 
x=2, or —2. 
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17 17 
But if the negative value be taken, a?2-\—— x—-— a? — 4 ; 

17 17 
x2-4--—-x=—4; and x2A-x- 

2 2 

289 289 , 225 

76=76 -4=T6-;-'-ex- 
17 15 

tracting the root, a:-f- —==t~r', an^ by transposition, x= —8, 
t: t: 

or — 2* 

Ex. 5. Given 4a?2—3a? = 85, to find the values of x. 
Multiplying by 16, 64a?2 —48a?=1360, and, adding the 

square of 3, 64a:2 — 48a?+9 = 1369 ; 
/.extracting the square root, 8a: — 3 = ^37 ; 
by transposition, 8a? = 40, or —34, .-. a? = 5, or —4^. 

35_3# 
Ex. 6. Given 6a:-]-= 44, to find the values of x. 

x 
Multiplying by x, 6a?24-35 — 3a: = 44a?; 
by transposition, 6a;2 — 47a?= —35 ; 

47 35 
and by division, a:2-—a?=-; therefore completing the 

6 
2209 35 1369 

144 

47 /47\ 
square, a:2- — x+ 

, 47 37 , 
the root, x— —=4-—, and a?=7, or 4. 

12 12 6 

144 
.’. extracting 

3 3 cc 6 
Ex. 7. Given 5a:-—=2a?-j-——, to find the values 

x—3 2 
of X. 

Multiplying by 2a: —6, we have 10a:2—36a:4- 6 = 4a:2 — 12a? 
+ 3a:2—15a:+18; 

/.by transposition, 3a?2 — 9a?=12 ; 
and by division, a?2 — 3a? = 4 : 

•*. completing the square, a?2 — 3a?+-|=4-}-f = 2£, 
and extracting the root, x—4= 5 

a?=4, or —1. 

-r-i on- n 3a:—10 6x2—40 
Ex. 8. Given 3a?--—-—=2 + -=-—, to find the va- 

y—/£x —i 

lues of x. 

Multiplying by 2x— 1, 
* , 0 6a?2—23a?-|-10 J , o 
6a:" — 3a?--— -= 4a?—2 + 6a?2—40, 

y— 

„ , 6a?2 — 23a? -f-10 or7a!+_____=43. 

.’.63a: — 14a;2+6a:2 —23a:+ 10 = 378 — 84a:; 
by transposition, 124a: —8a:2 = 368, 
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and x—3^x= — 46 ; .*.by completing the square. 

, 31 , 961 961 225 

X~ ~i6=ZT6; 
31 , 15 

extracting the root, x—— 

and therefore x: 
23 

or 4. 

Ex. 9. Given -y/x5-{--\/x3=z6^/x, to find the values of x. 
Dividing by -y/a?, a:2-{-a;=6 : 
completing the square, x2-\-x-\-^=6-)-\=:2-£ ; 

and extracting the root, a:+-|=: drf > 
x=2, or —3. 

Ex. 10. Given xn—2ax2 = b, to find the values of a;. 
n 

Completing the square, xn —2ax'2 -\-a2=a2-\-b ; 
n 

extracting the root, x* —y/(ft24-£>), 
n 

and xl —a^z y'(a2+6) ; .*. a? = (tf ^ -y/(a2-\-b))n . 

Ex. 11. Given x2—2a?-f-6y/(a:2—2a:-f-5)=:li, to find the 
values of x. 

Adding 5 to each side of the equation, 
[x2—2a?d-5)-f 6-y/(x2 —2a:+5) —16 ; 

.•.by completing the square, 
(x2 — 2x+5) + 6i/(x2 — 2a:+5)-f9-25 ; 

and extracting the root, -\/(x2 — 2x-\~5)Jr3~ 4-5 ; 
.*. y/(a:2—2a?+5)=2, or -8 ; 
.-. squaring both sides, x2—2a;-f 5=4, or 64 ; 

whence x2—2#-)-1=0, or 60; 
and extracting the root, x —1=0, or 4-v/60; 

.\ x=l, or 1±t/60. 

Schol. It is proper to observe, that the equation, a;2 — 2a? 
-j-1, has two equal roots, although x appears to have only one 
value ; but it is because x is twice found =1, as the common 
method of resolution shows ; for we have x = lzfc-y/0, that is 
to say, x is in two ways =1. 

Ex. 12. Given a?4+4a;3-t- 12a;2-f- 16a: = «, to find the values 
of x. 

Here the two first terms of the square root of the left-hand 
member (Art. 238), is found to be x2-{-2x, and the remainder 
is 8a?2+16.x, which can be readily resolved into the factors 8 
and x2-\-2x, since (8a;2-|-16a;)-^-(a?2+2a?) gives 8 for the quo¬ 
tient. Consequently the proposed equation may be exhibited 
under the quadratic form (tt2 + 2#)2 + 8(a:2+2a?) = a - 
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.•.by completing the square, (#34-2#)24-8(#24*2#)4-16:=a4* 
16 ; and extracting the root, #24-2#+4 = AV{a~^16). 

Now by taking the positive sign, 
#24-2#44 = -4--y/(a-4-16) ; 

by transposition, #2 + 2#=— ; 
completing the square, x2-\~2x-\-l =—3 +16) ; 

and extracting the root, #4-l = 4:'v/( — 3+ -v/a4-16)) ; 
... # — — 1 -j- V( —3 + V («+16)). 

Again, by taking the negative sign, 
#242#-f-4 =— y'(a-Tl6); 

.\#24-2#=—4 — y^a-j-lG); and 
completing the square, #4-2#-41 = —3— ^/(a+16); 

extracting the root, #4-1 — A Vi— 3 — ViaJr 16)); 

and #= —1 A V(~3“ V(«+16))* 
Ex. 13. Given 3#2—12#+12 = 16—4, to find the values 

of #. 
By transposition, 3#2 —12# = 16—-4 —12 = 0; 

and by division, #2—4#=0 ; 
.•.by completing the sqnare, #2 — 4#4~4 = 4 ; 

and extracting the root, #—2 = 4:2 ; 
.*. #=4, or 0. 

Ex. 14. Given #3—4#24~6# = 4, to find the values of #. 
Multiplying both sides by #, #4—4#34-6#2—4# = 0, 

/. (#2 — 2#)242(#2—2#) = 0. 
•. #3—2#4~ 1 — 4:1) and #=1 4= V A1 > 

.-. the three roots of the proposed equation, are 1, \-\~V —1> 
and 1 — V — I* The °lber value of #, which is equal to 1 —1, 
or 0, belongs to the equation (#2—2#)24-2(#2—2#) = 0 ; hence 
there are four roots, or four values of #, which will satisfy this 
last equation. 

841 17 oo<> 1 
Ex. 15. Given 27#2— —^4- —=—--—4-5, to find the 

OX o oX oX* 

values of #. 
Multiplying every term by 3, 

2 841 I 81#2-=4-17: 
232 1 

#4 

.•.by transposition, 81#2 4-174- 
1 

# 

841 
x* 

4-15; 

4^+15. 
#<i #* #4 

Adding unity to each side, in order to complete the square ; 

81#24-184- i-=—^4—4-16 ; 
#4 #4 # 

1 29 
and extracting the root, 9#4—=±(-|-4). 

X X 
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Let the positive value be taken; then by transposition, 9x 

28 
•—4 =—, and 9a;2—4a;=28 ; by completing the square, &c., 

x 

14 
we shall have a;=2, or ——. But if the negative value be 

%J 

taken, 9a’2-f4a;= — 30 and completing the square, &c., x— 
~2-kV(-266) 

9 
Ex. 16. Given 3a;2-}-2a;—9=76, to find the walues of x. 

17 

3 ' 

r-. ^ ■ 8 — X 2x—11 X — 2 ' . , , . 
Ex. 17. Given—-— -———-— to find the values 

Ans. x—5, or 

2 x—3 6 
of x. Ans. a;=6, or, 

~. 3a;-f-4 30—2a; 7a; —14 „ . . . 
Ex. 18. Given —r-—=———, to find the values 

5 x—6 10 
of X. Ans. a; = 36, or 12. 

a;3 —10a;2+ 1 
Ex. 19. Given —-—-—r—=a;—3, to find the values of x. 

x2—6 a;+8 
Ans. a?=l, or —28. 

Ex. 20. Given -yj(a;+5) X -y/(a;-f-12) = 12, to find the values 
of x Ans. a; = 4, or —21. 

Ex. 21. Given 2a;2-f-3a;—5y/r(2x2+3x-\-9)-f-3 = 0, to find 
l 0 9 -3iV-55 

Ans. a;=3, or-, or--- 
2 4 

the values of x. 

Ex. 22. Given 9a;-}- -v/(16a;2-f-36a;3) = 15a;2—4} to find the 

9=t V 481 
values of a?. a 4 1 Ans. a;=-, or —- ; or 

o o 50 
49a;2 48 6 

Ex. 23. Given  -—-—49 = 9-)—, to find the values 
4 a;2 x 

of x. 
. n 8 -3iV93 

Ans. a;=2, or—-, or--. 
7 7 

Ex. 24. Given a;4—2a;3-f- a;=132, to find the values of x. 

k A 0 1±V(—43) 
Ans. a;=4, or —3, or— 

2 
6 

,5 
J3 
.5 Ex. 25. Given a;5-{-a;5 =756, to find the values of x. 

5 

Ans. a;=243, or (—283. 

Ex. 26. Given x3—a;2 =56, to find the values of a;. 
2 

Ans. a; = 4, or ( —7)3. 
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Ex. 27. Given #45=4^+5)46,t0 +e values of#. 
Ans. #=4, or — 1. 

Ex. 28. Given #+16—7y'(#+16) = 10—4y'(#+16), to 
find the values of #. Ans. #=9, or —12. 

•7X_» 
Ex. 29. Given #+4-j-=13, to find the values of #. 

# 

Ans. #=4, or —2. 

Ex. 30. Given 14+4*- 3x+^±i-, 

values of #. 

Ex. 31. Given 

lues of #. 

#+4 

#—7 

7 — # 4#+7' 

#■ 

to find the 
3 ' 
Ans. #=28, or 9. 

1, to find the va- 

Ans. #=21, or 5. 

Ex. 32. Given 2#418—-7—=27—to find 

the values of #. 
4#+7 2#—3 

Ans. #=8, or 5. 
3;4_j_2a;3_|_ 8 

Ex. 33. Given—--— =#24#48, to find the values 
#24# — 6 

of #. Ans. #=4, or — 4|. 

Ex. 34. Given-\/(4#45) X-\/(7#4 1) “30, to find the va¬ 
lues of #. Ans. #=5, or — 6^-4. 

#412 # 78 
Ex. 35. Given-4——r, to find the values of #. 

# #412 15 
Ans. #=3, or —15. 

4 2. 1 
Ex. 36. Given #347#3=44, to find the values of #. 

3 

Ans. #=48, or 4( — ll)2. 
1 j 

Ex. 37. Given 4#^4a;6:=:::39, to find the values of #. 

Ans. #=729, or ^~)6- 

Ex. 38. Given 3#6442#3 = 3321, to find the values of #. 

Ans. #=3, or — ?/ 41. 
8 17 

Ex. 39. Given -^42=—, to find the values of #. 
#d 

# 

Ans. #=4, or 2. 
Ex. 40. Given #24114V^ + H) — 42, to find the va¬ 

lues of #. Ans. #=45, or 4 +38. 

Ex. 41. Given #2 —12#450 = 0, to find the values of #. 
Ans. #=r6dr-\/( —14). 

Ex. 42. Given 3#—|#2=10, to find the values of #. 

Ans. #=64 —4. 
23 
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Ex. 43. Given x6 —2#3 = 48, to find the values of x. 
Ans. x—2, or -J/ —6. 

Ex. 44. Given a;44-2a:2—7a;2—8a:=-—12, to find the va¬ 
lues of x. Ans. 2, or —3, or 1, or —2. 

Ex. 45. Given a;4— 10a:3+35a:3 — 50a:-f 24 = 0, to find the 
values of x. Ans. a; —1, 2, 3, or 4. 

Ex. 46. Given a:3—-8a;2-j-19a:—12=0, to find the values 
of a\ Ans. a:=l, 3, or 4. 

Ex. 47. Given to find the values of x. 
x — y x 4 

Ans. a;=4, or 1, or |-j- J-y/—7. 
x 

Ex. 48- Given ■\--:=‘ix2-\-?>3, to find the values of x. 
z 

Ans. x=2, or 
25 “ 

l±-/(-43) 

§ II. SOLUTION OF ADFECTED QUADRATIC EQUATIONS, IN 

VOLVING TWO UNKNOWN QUANTITIES. 

360. When there are two equations containing two un¬ 
known quantities, a single equation, involving only one of the 
unknown quantities, may sometimes be obtained, by the rules 
laid down for the solution of simple equations ; from which 
equation the values of the unknown quantity may be found, 
as in the preceding Section. Whence, by substitution, the 
values of the other may also be determined. In many cases, 
however, it may be more convenient to solve one or both of 
the equations first; that is, to find the values of one of the un¬ 
known quantities, in terms of the other and known quantities, 
as before ; when the rules for eliminating unknown quantities, 

I. Chap. IV), may be more easily applied. 
The solution will sometimes be rendered more simple by 

particular artifices ; the proper application of which shall be 
illustrated in the following examples. 

Ex. 1. Given a;-|-2y = 7, 
and x2-{-3xy—y2=23, 

^ to find the values of x and y. 

From the 1st equation cc=7—2y ; 
.*. o:2 = 49—28y+4y2 ; 

Substituting these values for x and x2 in the 2d equation, 
then 49—28y-f4?/2-h21y —6y2—w2 —23, 

or 3y2+7y=49-23=26. 
36y2-f84y + 49 = 312 + 49 = 361 ; 

.•.extracting the square root, 6y+7 = 19, 
and 6y = 19—7=12; y =2, 
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Ex. 2. Given 4xy=96—x2y2, and x-\-y=G, to find the va¬ 

lues of x and y. 
From the first equation £2y2-f-4a'y+4 = 100, 

and extracting the root, xy-[-2 = ^10 ; 
.*. #y=8, or —12. 

Now squaring the second equation, 
a:2+2,ry-j-y2=36 ; 

but 4xy =32, or —48. 

/.by subtraction, x2—2a:y-f-y2=4, or 84 ; 
and extracting the root, x—y = ±2, or^-v/^ > 

but x-\-y= 6 ; 

.-.by addition, 2x—8, or 4, or 6dt ^84 ; 
whence, a? = 4, or 2, or 3 -{- -y/21 ; 

and by subtraction, 2y=4, or 8, or 6^ ^84 ; 
.\y = 2, or 4, or 8zf-y/2l. 

Ex. 3. Given x2-\-x-\-y—18— y2, and xy=6, to find the va¬ 
lues of x and y. 

By transposition, x2-{-y2-\-x-\-y=18; 
and from the second equation, 2xy =12 ; 

.*. by addition, x2-\-2xy-iry2-)rx-\-y~30 ; 
and completing the square, 

(^+y)2+(^+y)+i=304-i=i?i; 

.*. extracting the root, x-\-y-{-i y, 
and a:-fy=5, or —6 ; 

whence, from the first equation, a;2-f-y2=13, or 24 ; 
but 2xy = l2 ; 

.-.by subtraction, x2 — 2xy-{-y2= 1, or 12 ; 
•\ extracting the root, x—y = ± 1, or ^2^/3. 

Now x-{-y—5, or —6 ; 

.*. by addition, 2x=6, or 4, or —6^2v^3 » 
.*. a; = 3, or 2, or — 3rhy'3 ; 

and by subtraction, 2y = 4, or 6, or —6t2\/3 ; 

y=2, or 3, or —3T \/2. 

Ex. 4. Given a?—2 -y/xy-\-y— -\/a?-f--^/y = 0, and ■\fx-\~'\/y 
=5, to find the values of x and y. 

Completing the square in the first equation, 

(Yx~ Vy)2—Wx— 

and extracting the root, -/x— /y—; 
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-y/a— y/y, =1 or 0, 
but from the second equation, 'y/a+- \/y~5 ; 

by addition, 2-y/a=6, or 5, 
5 o 25 

and ya=3, or -, .\a=9, or —. 
2 4 

, 25 
By subtraction, 2 y/y—4, or 5 ; y=4, or . 

2 ** 
2 3 XX 

Ex. 5. Given a3 y2=2y2, and 8a3—y2 = 14, to find the va¬ 
lues of x and y. 

2 .1 2 x 
From the 1st equation, x3 =2y2 ; and ,\ia3=y2 ; substi¬ 

tuting this value in the second equation, 

8a:3—io:3 = 14: and .*. 16a3—a3—28 
2 1 

or, by changing the signs, x3 — 16a3 —28 
2 .1 

completing the square, a:3 —16a3+ 64=36 
X. 

and extracting the root, a3—8=+ 6 
_i 

.-.a3 = 14, or 2, and a=2744, or 8. 
3 2 1 j_ 

Ex. 6. Given a2 + y3=3a, and a2+y3=a, to find the va¬ 
lues of a and y. 

12- 2. 

By squaring the second equation, a+2a2y3+y3 =a2 ; 
? 2 

but a2 +y3 =3a ; 

3. 11. 

.-.by subtraction, a—a2 + 2a2y3 =a2 —3a ; 
i i 

but from the second equation, y3=x — x2; 
Let this value be substituted in the preceding equation ; 

a. 3 
then a—a2+2a^—2a=a2 — 3a; 

3 

/.by transposition, 2a = a2—a"2 ; 
l 

and dividing by a, 2—a—a^'; 
i 

completing the square, a—a2 + J=2+J-=| ; 
i 

and extracting the root a^—i=+| ; 
i 

a2 = 2, or —1 ; and a = 4, or 1. 
i i 

By taking the former value of a, we have y3 =a—a2 
=4 -2=2; .\y=8. 

I. 1 
and by taking the latter value, y3~x—a2 = 1 + 1 =2, 

(since a2 = — 1, —a2 = + l); y= 8 
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l l JL 
Ex. 7- Given y2—64 = 8a;^y, and y — 4=2y2a:2, to find the 

values of x and y. 
1 

From the first equation, y2—8a;2y=64 ; 
i 

completing the square, y2 — 8a?2y-(-16a? = 16o?-d- 64 ; 
r 

extracting the root, y —4a;2 = d=4'y/(a:+4) ; 

and -’■y = 4a:2Ih4y'(a:4'4). 
l i 

Also, from the second equation, y—2y2x2 =4 ; 
1 JL 

.-. completing the square, &c., y2 =x2 ± -yj(a?-}-4); 
1 JL 

multiplying by 4, 4y2=a:2d:4y,(a;+4); 
l 

.\ y —4y2, and y=r!6. 

But, from the second equation, afi=. V •4 12 

2y2 
\ 8 

3 

2 

9 
by involution, 

^ 4 

361. When the equations are homogeneous, that is, when 
x2, y2, or xy, is found in every term of the two equations, they 
assume the form of 

ax2 4- bxy -f* cy2=d, 
a V+?/a;y+c'y2 == d'; and their solution may be effected 

in the following manner : 
Assume x — vy, then x2=zv2y2 ; by substituting these values 

for x2 and x in both equations, we have 

avY+tjvf+c,f=d- . . . (1), 

d' 
a'v2y2-\-b'vy2-\-c'y2 — d'\ .\y2—— —-—. . . (2). 

y y y ’ y + v 7 

<2 d' 
Hence 

au2Hr&t>-|-c a'v2-\-b'v-\-c 
t 5 

(a'd — ad')v2-\-(b'd—bd')v—cd'—cd ; which is a quadratic 
equation, from whence the value of v may be determined. 
Having the value of u, the value of y may be found from ei¬ 
ther of the equations (1) or (2) ; and then the value of x, from 
the equation x^zvy. 

Ex. 8. Given 2a;2-f-3a:y-j-y2 = 20, and 5a;2-|-4y2=i41, to find 
the values of x and y. 

Let x—vy, then 2v2y2-\-3vy2-\-y2=:20 ; 
23* 
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20 
*’,y2^2~^+3^+I5 and 5uV2+4y2=41 5 

41 _ 20 41 
y Hence or 6v2—41v=r 

5u2 + 4’ 2i>2+3u + 4 5u2+4’ 
-13; 
.-.by division, completing the square, &c. v—1^ or 1. 

41 369 
Let v=^, then y2—- 

5u2+4 41 
— 9 ; r.y—3, or —3, 

13 
Again, let v=— ; then y 

and x = vy — 1, or —1. 
164 _ , 13 .164 

^sei’ and x-:t'3'v/86l- 
Consequently there are four values, both of x and y, which 
satisfy the proposed equations. 

362. When the unknown quantities in each equation are 
similarly involved, the operation may sometimes be shortened, 
by substituting for the unknown quantities the sum and differ¬ 
ence of two others. 

Ex. 9. Given —+—=18, ) 
y x > to nnd the values of x and y. 

and £+y = 12, ) 
Assume x=z-\-v, and y—z—v ; . x-\-y=z2z—\2 ; 

or;s=6; a?=:6 + u, and y —6—v. 

Also, since -—f—=18, x3-\-y3—\8xy ; 
y x 

.*. (6 + u)3 + (6 —u)3 = 18(6 + u) X (6—v) ; 
or 432 + 36u2 = 648 — 18u2 ; 

and by transposition, 54u2=216 ; 
.\i;2=4 ; and v = zk2 ; .-. a:=6 +2 = 8, or 4 ; 

and y=6±2 = 4, or 8. 
363. In all quadratics of this kind, in which x may be 

changed for y, and y for x, in the original equations, without 
altering their form, the two values of one of the quantities may 
be taken for the values of the two quantities sought. 

Ex. 10. Given x-\-y—2a, and ar5+y5 = 6, to find the values 
of x and y. 

Let x—y—2z ; then x — a-\-z, and y—ci—z ; 
.-. by substitution, (a+;z)5+(a—z)5=b, or, by involution and 
addition, 2a5-j-20a2z2-j- 10az4=b ; 

.-. z*+2a2z2 = ^-1 and z— + V[~V(~T7^“)]- 
10a 10a 

.-.x~a±^[ — a2±y(h-~^)\, and y=a+y[ —a2+ 

A+8a5 

V(“ToT)]- 



QUADRATIC EQUATIONS. 259 

Now, let x-\-y = 6, and £5-j-y5=1056 ; then by substituting 
3 for a, and 1056 for b, in the formula of roots, the values of 
x and y will be found ; that is, £=3^1, or 3 —19 ; and 
v —3^ 1, or STV —19- Or, by substituting the above va¬ 
lues of a and b in the equation lOciz4—20a3224-2a5 — b, it be¬ 
comes 30^4+540^+486 = 1056 ; from which the values of z 
may be found ; whence, by substitution, the values of x and y 
will be determined, as before. 

Ex. 11. Given £-f-4y = 14, and y2+4£=2y-}-l 1, to find 
the values of x and y. 

Ans. x~ —46, or 2 ; and y—15, or 3. 
Ex. 12. Given 2£4*3y = 118, and 5x2—7y2=4333, to find 

the values of x and y. 

a on 3899 j 3268 Ans. a;=35, or —— ; and y=lb, or-. 
17 J 17 

Ex. 13. Given £2-f-4y2=256— 4xy, and 3y2—£2 = 39, to 
find the values of a? and y. 

Ans. x= -^6, or dr 102 ; and y= ^5, or dr 59. 
Ex. 14. Given £”-f-y”=2an, and xy=c2, to find the values 

of x and y. 
l 

£=[a,,d: -yf(ain—; 
Ans. 

y~- 
[owdb -y/ (a,w—c*")]n 

Ex. 15. Given £2-f-2^y+y2+2£=120—2y, and a:y—y2— 
8, to find the values of x and y. 

Ans. x=6, or 9, or —9; and y=4, or 1, or — 3dr 
Vx5. 

Ex. 16. Given £2d-y2—oc—y=78, and £y-{-£-f-y=39, to 
find the values of x and y. 

Ans. £=9, or 3 ; or —^dr^l/ — 39 ; and y—3, or 9, or 
-6iTiV~39. 

x 2 4£ 85 
Ex. 17. Given -- -\-= yt'y 9 ’ > to find the values of £ and y. 

and x—y—2, 

17 3 
Ans. £=5, or — ; and y—3, or — —. 

Ex. 18. Given £4 —2£2y+y2=49, ) to find the values of x 
and £4—2£2y2+y4—£2d-y2=20, > and y. 

Ans. £=^3, or dz-\/6, or drjq/(39i9 V"5) ; 
and y=2, or —1, or ^(1 d=3 -/5).* 

* There are four other values, both of x and y, which are all imaginary. 
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i 1 
Ex. 19. Given 4—a?2 = 3 — y, and 4—x—y—y2,tofindthe 

values of x and y. Ans. 03=4, or ^ ; and y = 1, or 2\. 
3 i 

Ex. 20. Given x2-}-x—4o32=y2 + y-l-2, and xy—y2-\-3y, 
to find the values of x and y. 

Ans. x=4, or 1 ; and y = 1, or —2. 
Ex. 21. Given 032-j-o?y = 56, and xy-\-2y2 = 60, to find the 

values of x and y. Ans. x — ^4^2, or ^14 ; 
and y=4:3-\/2, or 4:10. 

Ex. 22. Given x—y = 15, and xy~2y3, to find the values 
of x and y. Ans. x= 18, or 12 J ; and y = 3, or —2i. 

Ex. 23. Given \0x-\-y — 3xy, and 9y — 9o3=18, to find the 
values of x and y. Ans. 03 = 2, or —^ ; and y = 4, or ^. 

Ex. 24. Given x-{-y : x—y : : 13 : 5, ) to find the values 
and y2-j-x = 25, $ of x and y. 

Ans. 03=9, or — 14^; and y=4, or — 6^. 
Ex. 25. Given x2y4—7o"y2 = 1710, and xy—y = 12, to find 

the values of x and y. 

Ans. x=5, or 
-19 

0117=P6V—2 
and y=3, or —15, or — 

6i-v/-2. 
Ex. 26. Given xy-{-xy2 = 12, and o?4-a?y3 = 18, to find the 

values of x and y. Ans. x=2, or 16 ; and y=2, or^. 
Ex. 27. Given x~\-y-\-^/(#+y)=6, and as2-f-y2= 10, to find 

the values of x and y. 
Ans. x—3, or 1 ; or 4j4;^-\/—61 ; and y=l, or, 3, or 

Ex. 28. Given 0324-4y'(a32-j-3y-f-5) = 55— 3y, and 6x—7y 
= 16, to find the values of x and y. 

__53 —9±v/5072 
x=5, or-; or -—-. 

Ans. 
430 —1664:6^/5072 

y=2’ or - —; or---. 

Ans 

Ex. 29. Given 032-f-2o33y=441—x4y2, and a:y=34-a:, to find 
the values of x and y. 

a?=3, or -7 ; or —2± V —17, 
y=2, or f ; or|=fiV —17. 

Ex. 30. Given (x-j-y)2 — 3y — 28-\-3x, and 2xy-j-3x=z35, to 
find the values of x and y. 

An. 5 X = 5’ 01 4’ OT —255). 
AnS" 1 y—2, or J, or _ u =py'l(_255.') 

Ex. 31. Given x2+3x-\-y—73—2xy, and y2-j-3y-h#=44, 
to find the values of 03 and y. 

. ( 03 = 4, or 16 ; or — 12=F v"58, 
Ans-} y=5, or •7 ; or —14z *y/58. 
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x 
Ex. 32. Given 

the values of x and y 

_ 4-^-=136j—2xy, and x-\-y=\0} to find 
y* x~ 

Ans. a? = 6, or 4 ; or 5-d-5-v/( — tx,) 
y = 4,or6; or 

Ex. 33. Given y4— 432 = 12xy2, and y2~12-f-2a?y, to find 
the values of x and y. 

Ans. x=2, or 3 ; and y=6, or -/(21)-f*3. 

CHAPTER XI. 

ON 

THE SOLUTION OF PROBLEMS, 

PRODUCING QUADRATIC EQUATIONS. 

§ I. SOLUTION OF PROBLEMS PRODUCING QUADRATIC EQUA¬ 

TIONS, INVOLVING ONLY ONE UNKNOWN QUANTITY. 

364. It may be observed, that, in the solution of problems 
which involve quadratic equations, we sometimes deduce, 
from the algebraical process, answers which do not correspond 
with the conditions. The reason seems to be, that the alge¬ 
braical expression is more general than the common language, 
and the equation, which is a proper representation of the con¬ 
ditions, will express other conditions, and answer other suppo¬ 
sitions. 

Prob. 1. A person bought a certain number of oxen for 80 
guineas, and if he had bought four more for the same sum, 
they would have cost a guinea a piece less. Required the 
number of oxen and price of each. 

80 
Let x= the number ; then —= the price of each; 

x 
80 80 .. _ 

-1, by the problem, 
OC “j— oc 

and by reduction, x2-\-4x—320 ; 
.*. x2~\-Ax'\-4.~32^, and x+2 = A: 18 ; 

.-. a;^=16, or —20. 

4 
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And —=^=5 guineas, the price of each. 

The negative value (—20) of #, will not answer the con¬ 
dition of the problem. 

Prob. 2. There are two numbers whose difference is 9, and 
their sum multiplied by the greater produces 266. What are 
those numbers ? 

Let #= the greater ; .*. a?—y= the less. 

and #.(2# — 9)=266 ; x2— . 

9 47 
completing the square, &c. x—-= J 

#=14, or —9J ; and x—9 = 5, or —18^. 
Here both values answer the conditions of the problem. 

Prob. 3. A set out from C towards D, and travelled 7 miles 
a day. After he had gone 32 miles, B set out from D to¬ 
wards C, and went every day one-nineteenth of the whole 
journey; and after he had travelled as many days as he went 
miles in one day, he met A. Required the distance of the places 
C and D. 

Suppose the distance was x miles. 
OC 

■—= the number of miles B travelled per day; and also 

= the number of days he travelled before he met A. 
x2 7x 

-■•36T+32+T9=a:: 
by transposition and completing the square, 

r2 i o~ 

3m~T9 +36=36-32=4: 
extracting the root, 

x 

19 
-6=^2; 

OC 
—-=8, or 4 ; and x=\52, or 76, both which values an- 
J. o 

1 
swer the conditions of the problem. The distance therefore 
of C from D was 152, or 76 miles. 

Prob. 4. To divide the number 30 into two such parts, that 
their product may be equal to eight times their difference. 

Let x— the Lesser part ; .-.30 — xz=z the greater part, and 
30—x—x, or 30—2x— their difference. 

Hence, by the problem, a(30 — #) = 8(30 — 2x), or 30#—x2 
=240 —16#; .'. #2—46#=—240. 
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completing the square, a?2 —46a?+529=289 ; 
a?=23 +17=40, or 6= lesser part; 

and 30 — x = 30 — 6 = 24= greater part. 

In this case, the solution of the equation gives 40 and 6 
for the lesser part. Now as 40 cannot possibly be a part of 
30, we take 6 for the lesser part, which gives 24 for the 
greater part; and the two numbers, 24 and 6, answer the 
conditions required. 

Prob. 5. Some bees had alighted upon a tree ; at one flight 
the square root of half of them went away ; at another eight- 
ninths of them; two bees then remained. How many then 
alighted on the tree l 

16x2 
Let 2a?2= the number of bees; a:-l—-—p2=2a?2, 

y 
or 9a?+16a?2+18 = 18a?2 ; .*. 2a?2—9a?=18; 

Multiplying by 8, 16a?2 — 72a?=144 ; 
adding 81 to both sides, 16a?2 — 72a? + 81=225 ; 

4a?=9+15=24, or —6 ; and a?=6, or — 14.. 
2a?2 = 72, or4i 

But the negative value —1-4 of a?, is excluded by the na¬ 
ture of the problem ; therefore, 72= number of bees. 

365. If, in a problem proposed to be solved, there are two 
quantities sought, whose sum, or difference, is equal to a 
given quantity, for instance, 2a ; let half their difference, or 
half their sum, be denoted by a?; then x-\-a will represent 
the greater, and x—a the lesser, (Art. 102). According to 
this method of notation, the calculation will be greatly abridg¬ 
ed, and the solution of the problem will often be rendered very 
simple. 

Prob. 6. The sum of two numbers is 6, and the sum of 
their 4th power is 272. What are the numbers ? 

Let x— half the difference of the two numbers ; then 3 + 
a? = the greater number, and 3—a?= the lesser. 

.*. by the problem, (3 + a?)4+(3 — a?)4 = 272, 
or 162 +108a?2 + 2a?4 = 272 ; from which, by transposition and 
division, a?4 + 54a?2=55 : 

completing the square, a?4+54a?2+729 = 784, 
and extracting the root, a?2+27=+28 ; 

.'. a?2——27 + 28, and a?= + 1, or + +’— 55. 

Now, by taking the positive value, + 1, fora?, (since in this 
case, it is the only value of a? which will answer the problem); 
we shall have 3 + 1—4= the greater, and 3 — 1=2= the 
lesser. 
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Prob. 7. To divide the number 56 into two such parts, that 
their product shall be 640. Ans. 40, and 16. 

Prob. 8. There are two numbers whose difference is 7, 

and half their product plus 30, is equal to the square of the 
lesser number. What are the numbers? 

Ans. 12, and 19. 

Prob. 9. A and B set out at the same time to a place at the 
distance of 150 miles. A travelled 3 miles an hour faster than 
B, and arrives at his journey’s end 8 hours and 20 minutes 
before him. At what rate did each person travel per hour ? 

Ans. A 9, and B 6 miles an hour. 

Prob. 10. The difference of two numbers is 6 ; and if 47 
be added to twice the square of the lesser, it will be equal to the 
square of the greater. What are the numbers ? 

Ans. 17, and 11. 
Prob. 11. There are two numbers whose product is 120, 

if 2 be added to the lesser, and 3 subtracted from the greater, 
the product of the sum and remainder will also be 120. What 
are the numbers ? Ans. 15, and 8. 

Prob. 12. A person bought a certain number of sheep for 
120?. If there had have been 8 more, each would have cost 
him ten shillings less. How many sheep were there ? 

Ans. 40. 
Prob. 13. A Merchant sold a quantity of brandy for 39?. 

and gained as much per cent as the brandy cost him. What 
was the price of the brandy ? Ans. 30?. 

Prob. 14. Two partners, A and B, gained 18?. by trade. 
A’s money was in trade 12 months, and he received for his 
principal and gain 26?. Also, B’s money, which was 30?. was 
in trade 16 months. What money did A put into trade ? 

Ans. 20?. 
Prob. 15. A and B set out from two towns which were at 

the distance of 247 miles, and travelled the direct road, till 
they met. A went 9 miles a day ; and the number of days, 
at the end of which they met, was greater by 3 than the 
number of miles which B went in a day. How many miles 
did each go ? 

Ans. A 117, and B 130 miles. 

Prob. 16. A man playing at hazard won at the first throw, 
as much money as he had in his pocket ; at the second throw, 
he won 5 shillings more than the square root of what he then 
had ; at the third throw, he won the square of all he then had ; 
and then he had 112?, 16a-. What had he at first? 

Ans. 18 shillings. 
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Prob. 17. If the square of a certain number be taken from 
40, and the square root of this difference be increased by 10, 
and the sum multiplied by 2, and the product divided by the 
number itself, the quotient will be 4. Required the number. 

Ans. 6. 

Prob. 18. There is a field in the form of a rectangular 
parallelogram, whose length exceeds the breadth by 16 yards ; 
and it contains 060 square yards. Required the length and 
breadth. Ans. 40 and 24 yards. 

Prob. 19. A person being asked his age, answered, if you 
add the square root of it to half of it, and subtract 12, there 
will remain nothing. Required his age. Ans. 16. 

Prob. 20. To find a number from the cube of which, if 
19 be subtracted, and the remainder multiplied by that cube, 
the product shall be 216. Ans. 3, or —2. 

Prob. 21. To find a number, from the double of which if 

you subtract 12, the square of the remainder, minus 1, will be 
9 times the number sought. Ans. 11, or 3|. 

Prob. 22. It is required to divide 20 into two such parts, 
that the product of the whole and one of the parts, shall be 
equal to the square of the other. 

Ans. 10^5—-10, and 30 — 10^5. 

Prob. 23. A labourer dug two trenches, one of which was 
6 yards longer than the other, for 17/. 16s., and the digging 
of each of them cost as many shillings per yard as there were 
yards in its length. What was the length of each ? 

Ans. 10, and 16 yards. 

Prob. 24. A company at a tavern had 8/. 15v. to pay, but 
before the bill was paid, two of them sneaked oft’, when those 
who remained had each 10s. more to pay. How many were 
there in the company at first ? Ans. 7. 

Prob. 25. There are two square buildings, that are paved 
with stones, a foot square each. The side of one building ex¬ 
ceeds that of the other by 12 feet, and both their pavements 
taken together contain 2120 stones. What are the lengths 
of them separately ? Ans. 26, and 38 feet. 

Prob. 26. In a parcel which contains 24 coins of silver 
and copper, each silver coin is worth as many pence as there 
are copper coins, and each copper coin is worth as many 
pence as there are silver coins, and the whole is worth 18 
shillings. How many are there of each ? 

Ans. 6 of one, and 18 of the other. 

Prob. 27. Two messengers, A and B, were despatched at 
24 
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the same time to a place 90 miles distant; the former of whom 
riding one mile an hour more than the other, arrived at the 
end of his journey an hour before him. At what rate did 
each travel per hour 1 

Ans. A went 10, and B 9 miles per hour. 

Prob. 28. A man travelled 105 miles, and then found that 
if he had not travelled so fast by 2 miles an hour, he should 
have been 6 hours longer in performing the journey. How 
many miles did he go per hour ? Ans. 7 miles. 

Prob. 29. Bought two flocks of sheep for 65/. 13s., one 
containing 5 more than the other. Each sheep cost as many 
shillings as there were sheep in the flock. Required the 
number in each flock. Ans. 23, and 28. 

Prob. 30. A regiment of soldiers, consisting of 1066 men, 
is formed into two squares, one of which has 4 men more in 
a side than the other. What number of men are in a side of 
each of the squares ? Ans. 21, and 25. 

Prob. 31. What number is that, to which if 24 be added, 
and the square root of the sum extracted, this root shall be 
less than the original quantity by 18 1 Ans. 25. 

Prob. 32. A Poulterer going to market to buy turkeys, met 
with four flocks. In the second were 6 more than three times 
the square root of double the number in the first. The third 
contained three times as many as the first and second ; and 
the fourth contained 6 more than the square of one-third the 
number in the third ; and the whole number was 1938. How 
many were there in each flock ? 

Ans. The numbers were 18, 24, 126, and 1770,respectively. 

Prob. 33. The sum of two numbers is 6, and the sum of 
their 5th powers is 1056. What are the numbers ? 

Ans. 4, and 2. 

§11. SOLUTION OF PROBLEMS PRODUCING QUADRATIC EQUA¬ 

TIONS, INVOLVING MORE THAN ONE UNKNOWN QUANTITY. 
■' .. ■ . • * • y% » 

366. It is very proper to observe, that the solution of a 
problem, producing quadratic equations, involving two un¬ 
known quantities, will sometimes be very much facilitated by 
assuming x equal to their half sum, and y equal to their half 
difference; then, (Art. 102), x-\-y will denote the greater, 
and x—y the lesser. The solution, according to this method 
of notation, will, in general, be more simple than that which 
would have been found, if the two unknown quantities were 
represented by x and y respectively. 
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Problem 1. Required two numbers, such, that their sum, 
their product, and the difference of their squares, may be all 

equal. 
Let x-\-y~ the greater ; and x—y— the lesser ; 

2x = (x+y). (x--y)=x2—y , £ , the problem. 
and 2x — {x-\-y)2 — (x—yY = 4xy, $ 

From the 2d equation, y=^', y2 — \ : 
Now, by substituting this value of y2, in the first we have 

2x=x2—.-.x2 — 2x=± and a? = l±J V5- 
367. The preceding problem leads also to the solution of 

the following. 

Prob. 2. To find two numbers, such, that their sum, their 
product, and the sum of their squares, may be all equal. 

Let, as in the last problem, x-\-y= the greater, and x—y — 
the lesser ; then, by the problem, 
2x=x2—y2, and 2x—{x-i~y)2Jr{x—y)2z=2x2-\-2y2 ; 

.*. x=zx2-\-y2 ; 
but 2x=x2—y2 ; 

by addition, 3x=2a:2, and x — § ; 
by substitution, -|=f + y2 ; and y— — 3 ; 

.*. x+y — ^^^ V —3, and x—y — jTj'y/ — 3. 
Hence it follows, that no two numbers can be found to answer 
the conditions ; and therefore the problem is impossible : Al¬ 
though the above values of x and y are imaginary, still they 
will satisfy the equations, 2x=zx2—y2, and 2x-=z2x2-\-2y2, 
which may be readily verified by substitution. 

368. It is sometimes more expedient to represent one of 
the unknown quantities by x, and the other by xy- The 
utility of this method of notation for eliminating one of the 
unknown quantities, will appear evident, from the solution of 
the following problem. 

• Prob. 3. What two numbers are those, whose sum multi¬ 
plied by the greater is 77 ; and whose difference, multiplied 
by the lesser, is equal to 12 1 

Let xy— the greater, and x — the lesser ; then by the pro¬ 
blem, x2y2-\-xyz=zll, and x2y—a?2=:12 ; 

2 77 ,'12 12 77 
*• *“=—£-» anda: =-- ; .*.- 

y+y y—1 y—1 yHy 
and clearing of fractions, 12y2-f 12y=77y —77 ; 

by transposition and division, y2— y^y~—y^ ; 
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/.completing the square, and extracting the root, y=1g1, or 
-J-. Either value of y will answer the conditions of the prob- 

12 
lem ; Letyz=7; then x=---=16; .*.a:=T;4, and ocy=: 

y- 
±7. Hence the numbers, by taking the positive values, are 
4 and 7. Let also y — 1^ ; then x2 =; /.a?=-j=|^2, and 
scy— X ±§-\/2 = j=:i21y2. Hence the irrational numbers, 

and V y'2, will also answer the conditions of the prob¬ 
lem. 

369. When a problem expresses more than two distinct 
conditions, which require to be translated into as many equa¬ 
tions ; the solution cannot be obtained by means of quadra¬ 
tics, unless that some of the equations are of the first degree ; 
for the final equation resulting from the elimination of the 
unknown quantities will, in general, be of a higher degree than 
the second. There are, however, some particular cases in 
which the unknown quantities may be eliminated by certain 
artifices, (which are best learned by experience), so as to leave 
the final equation of a quadratic form. 

Prob. 4. It is required to find three numbers, such, that 

the product of the first and second, added to the sum of their 
squares, shall be equal to 37 ; the product of the first and third 
added to the sum of their squares, shall be equal to 49 ; and 

the product of the second and third added to the sum of their 
squares, shall be equal to 61. 

Let x= the first number, y — the second, and z— the third. 
Then, x2-\-y24-xy — 37 ; ^ 

x2-\-z2 -\-xz=49 ; > by the problem. 
and y2-\-z2-\-yzz=Ql ; } 
By subtracting the first equation from the second, x2—y2+ 

. . 12 
(z—y)x= 12 ; /. z-\-y-\-x — ...(a). 

x—y 
By subtracting the second equation from the third, y2—#2-p 

12 
(y — x)z = l2 ; /. y-\-x-\-z —..(6); 

12 12 

-y y- ■X 

y—x 

, and y — x—z—y; /. 2y — x-\-z. 

By substituting 2y for x-\-z, in equations (a) and (b), we 

12 _ 12 
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Now, by substituting these values of x and x2 in the first of 
the original equations, it becomes 

'j/^—4 \2 y2—4 
y ) -hy2-hy-~-=37; /.byreduction, ( y y 

y4-__y2 

1 49 2 

v Yy 

= —16 ; and, by completing the square, 

, /49\2 2401-192 , 49 , 47 

Hy) =—36-; -'-y 
and, by taking the positive sign, y=-f:4 ; 

— 4 16—4 
/.by taking y=4, #=--=-=3, and 

y 4 
_ y2+4_ 16+4 _20 _ 

~ y ~ 4 ~ 4 ~ ‘ 
Hence the three numbers sought are 3, 4, and 5, which are 
in arithmetical progression. This relation appears also evi¬ 
dent from the result 2y=x-\-z, found in the beginning of the 
solution. 

Prob. 5. There are three numbers, the difference of whose 
differences is 8 ; their sum is 41 ; and the sum of their squares 
669. What are the numbers ? 

Let x— the second number, 
and y = the difference of the second and least; 
/.a?—y, x, and #+y-f-8 are the numbers, 
and their sum = 3#+8 = 41 ; .*. 3# = 33, and #=11 ; 
/.(ll-y)2 + 121 + (19 + y)2=669, or y2 +8y=48 ; ' 
/. completing the square, and extracting the root, 
y-f-4 = J=8) and y — 4, or—12, both which values answer 
the conditions ; and the numbers are 7, 11, and 23. 

Prob. 6. What number is that, which being divided by the 
product of its two digits, the quotient is 2 ; and if 27 be added 
to it, the digits will be inverted ? Ans. 36. 

Prob. 7. There are three numbers, the difference of whose 
differences is 5 ; their sum is 44 ; and continual product is 
1950. What are the numbers 1 Ans. 6, 13, and 25. 

Prob. 8. A farmer received 71. 4s. for a certain quantity 
of wheat, and an equal sum at a price less by Is. Gd. per 
bushel, for a quantity of barley, which exceeded the quantity 
of wheat by 16 bushels. How many bushels were there of 
each ? Ans. 32 bushels of wheat, and 48 of barley. 

Prob. 9. A poulterer bought 15 ducks and 12 turkeys for 
five guineas. He had two ducks more for 18 shillings, than 

24* 



270 SOLUTION OF PROBLEMS 

he had of turkeys for 20 shillings. What was the price of 
each? Ans. the price of a duck was 35. and of a turkey 55. 

Prob. 10. There are three numbers, the difference of whose 

differences is 3 ; their sum is 21 ; and the sum of the squares 
of the greatest and least is 137. Required the numbers. 

Ans. 4, 6, and 11. 

Prob. 11. There is a number consisting of 2 digits, which, 
when divided by the sum of its digits, gives a quotient greater 
by 2 than the first digit. But if the digits be inverted, and 
then divided by a number greater by unity than the sum of the 
digits, the quotient is greater by 2 than the preceding quotient. 
Required the number. Ans. 24. 

Prob. 12. What two numbers are those, whose product is 
24, and whose sum added to the sum of their squares is 62 ? 

Ans. 4, and 6. 

Prob. 13. A grocer sold 80 pounds of mace, and 100 
pounds of cloves, for 65/. ; but he sold 60 pounds more of 
cloves for 20/. than he did of mace for 10/. What was the 
price of a pound of each ? 

Ans. the mace cost 105. and the cloves 5s. per pound. 

Prob. 14. To divide the number 134 into three such parts, 
that once the first, twice the second, and three times the third, 
added together, may be equal to 278 ; and that the sum of the 
squares of the three parts may be equal to 6036. 

Ans. 40, 44, and 50, respectively. 

Prob. 15. Find two numbers, such, that the square of the 
greater minus the square of the lesser, may be 56 ; and the 
square of the lesser plus one third, their product may be 40. 

Ans. 9, and 5. 

Prob. 16. There are two numbers, such, that three times 
the square of the greater plus twice the square of the less is 

110 ; and half their product, plus the square of the lesser, is 
4. What are the numbers? Ans. 6, and 1. 

Prob. 17. What number is that, the sum of whose dibits is 
1 O 

15 ; and if 31 be added to their product, the digits will be in¬ 
verted ? Ans. 78. 

Prob. 18. There are two numbers, such, that if the lesser 
be taken from three times the greater, the remainder will be 
35 ; and if four times the greater be divided by three times the 
lesser plus one, the quotient will be equal to the lesser number. 
What are the numbers ? Ans. 13, and 4. 

Prob. 19. To find two numbers, the first of which, plus 
2, multiplied into the second, minus 3, may produce 110 ; and 
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the first minus 3, multiplied by the second plus 2, may pro¬ 
duce 80. Ans. 8, and 14. 

Prob. 20. Two persons, A and B, comparing their wages, 
observe, that if A had received per day, in addition to what 
he does receive, a sum equal to one-fourth of what B receiv¬ 
ed per week, and had worked as many days as B received 
shillings per day, he would have received 48.?. ; and had B 
received 2 shillings a day more than A did, and worked for a 
number of days equal to half the number of shillings he re¬ 
ceived per week, he would have received 4l. 18s. What were 
their daily wages ? Ans. A’s 5 shillings, and B’s 4. 

Prob. 21. Bacchus caught Silenus asleep by the side of a 

full cask, and seized the opportunity of drinking, which he 
continued for two-thirds of the time that Silenus would have 
taken to empty the whole cask. After that Silenus awoke, 
and drank what Bacchus had left. Had they drunk both 
together, it would have been emptied two hours sooner, and 
Bacchus would have drunk only half what he left Silenus. Re¬ 
quired the time in which they could have emptied the cask 
separately. Ans. Silenus in 3 hours, and Bacchus in 6. 

Prob. 22. Two persons, A and B, talking of their money, 
A says to B, if I had as many dollars at 5s. 6d. each, as I 
have shillings, I should have as much money as you ; but, if 
the number of my shillings were squared, I should have twice 
as much as you, and 12 shillings more. What had each ? 

Ans. A had 12, and B 66 shillings. 

Prob. 23. It is required to find two numbers, such, that if 
their product be added to their sum it shall make 62 ; and if 
their sum be taken from the sum of their squares, it shall leave 
86. Ans. 8, and 6. 

Prob. 24. It is required to find two numbers, such, that 
their difference shall be 98, and the difference of their cube 
roots 2. Ans. 125, and 27. 

Prob. 25. There is a number consisting of two digits. The 
left-hand digit is equal to 3 times the right-hand digit ; and if 
12 be subtracted from the number itself, the remainder will 
be equal to the square of the left-hand digit. What is the 
number ? Ans. 93. 

Prob. 26. A person bought a quantity of cloth of two sorts 
for 71. 18 shillings. For every yard of the better sort he gave 
as many shillings as he had yards in all ; and for every yard 
of the worse as many shillings as there were yards of the bet- 
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ter sort more than of the worse. And the whole price of 
the better sort was to the whole price of the worse as 72 to 7. 
How many yards had he of each ? 

Ans. 9 yards of the better, and 7 of the worse. 
Prob. 27. There are four towns in the order of the let¬ 

ters, A, B, C, D. The difference between the distances, from 
A to B, and from B to C, is greater by four miles than the dis¬ 
tance from B to D. Also the number of miles between B 
and D is equal to two-thirds of the number between A to C. 
And the number between A and B is to the number between 
C and D as seven times the number between A and C : 26. 
Required the respective distances. 

Ans. AB=:42, BC=6, and CD=26 miles. 

CHAPTER XII. 

ON 

THE EXPANSION OF INFINITE SERIES. 

I. RESOLUTIONS OF ALGEBRAIC FRACTIONS. 

' - - " ' x 
370. An infinite series is a continued rank, or progression of 

quantities, connected together by the signs -f* or — ; and usu¬ 
ally proceeds according to some regular, or determined law. 

Thus, I+J+J+j+J+T1T+, &c. 

°r, J—s"H—1+ro—TI+> &c- 
In the first of which, the several terms are the reciprocals 

of the odd numbers, 1,3, 5, 7, &c.; and in the latter the recipro¬ 
cals of the even numbers, 2, 4, 6, 8, &c., with alternate signs. 

371. We have already observed (Art. 96), that if the first 
or leading term of the remainder, in the division of algebraic 
quantities, be not divisible by the divisor, the operation might 
be considered as terminated ; or, which is the same, that the 
integral part of the quotient has been obtained. And it has 
also been remarked, (Art. 89), that the division of the remain¬ 
der by the divisor can be only indicated, or expressed, by a 
fraction: thus, for example, if we have to divide a0 by a-j-1, 
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we write for the quotient-: This, however, does not pre- 
a-\- i 

vent ns from attempting the division according to the rules that 
have been given, nor from continuing it as far as we please, and 
we shall thus not fail to find the true quotient, though under 
different forms. 

372. To prove this, let us actually divide a0 or 1, by l—a, 
thus; 

1 
1 —a 

remainder a 

Therefore —-—=1 + - 
1 —a 1 

1 ■a 

Quot. 1 
a 

\+a 

a . a , a 
-; but--=a+-- 
— a 1—a 1—a 

a4 

•a 

«2+ 
ac a* 

1 ■a 1 —a 
—a2 T 

aq cf 

1 — a ’ .1 — a 

a- 

1 —a 
, &c. 

This shows that the fraction 
1 —a 

may be exhibited under 

all the following forms : 
1 

1 —a 

= 1 -\-a-\-a2 

= 1 + 
a 

; =1 + 0-4- 
a4 

l—a ’ 

1 —a 

1 —a 

; =l + a+a2 + a34 
a2 - , . . „ . ' a4 

1 —a 

= 1 + o+a2+a3 + a'* 1 + 
a- 

1 —a 
&c. 

Now, by considering the first of these formulae, which is 

l+~—, and observing that 1=^—we have 1 + 

1 
l—a 

■a . a 

1 ■a ■a 

1—a-\-a 1 

1—a 1—a 1—a 1—a 
If we follow the same process with regard to the second ex¬ 

pression, that is to say, if we reduce the integral part \-\-a to 
1 •a4 

the same denominator, 1—a, we shall have the fraction-, 
1 —a 

to which if we add 
a4 

we shall have 
1—«2+ + 1 

1—a ~ 1—a 1—a 
In the third formula of the quotient, the integers l + a + a2 

reduced to the denominator 1—a make 
1 •a- 

■a 
, and if we add 

to it the fraction 
a•’ 

1 
the sum will be 

■a ■a 
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Therefore each of these formula is in fact the value of the 

proposed fraction —?—. 
1—a 

273. This being the case, we may continue the series as far 
as we please, without being under the necessity of performing 
any more calculations ; by observing, in the first place, that 
each of these formulee is composed of an integral part which 
is the sum of the successive powers of a, beginning with a°=l 
inclusively; 

Secondly, of a fraction which has always for the denomi¬ 
nator l—a, and for the numerator the letter a, with an ex¬ 
ponent greater, by unity, than that of the same letter in the 
last term of the integral part. 

This constant formation of the successive formulae, is what 
Analysts call a law. And the manner of deducing general 
laws by the consideration of certain particular cases, is usu¬ 
ally called induction ; which, though not a strict method of 
proof, says Laplace, has been the source of almost all the 
discoveries that have hitherto been made, both in analysis and 
physics, of which all the phenomena are the mathematical re¬ 
sults of a small number of invariable laws. It is thus that 
Newton, by following the law of the numeral coefficients, in 
the square, the cube, the fourth power, &c. of a binomial, 
arrived soon at the general law, that is to say, at the general 
formula that bears his name, and which will be demonstrated 
in one of the following Sections : This Geometer has carefully 
added, that in following this mode of investigation, we must 
not generalize too hastily ; as it often happens, that a law, 
which appears to take place in the first part of a process, is 
not found to hold good throughout. Thus, in the simple in- 

531251 
stance of reducing to a decimal, its equivalent value 

3093750 
is 17174949, &c., of which the real, repeating period is 49, 
and not 17, as might, at. first, be imagined. 

374. From what has been observed with regard to the suc¬ 
cessive quotients, we can, in general, put 

—— r=l+« + a2 + a3 + a4. 
1 — a 1 a 
n being a whole positive number, which augmented by unity, 
gives the place of the term. In fact, making-rt=3, an becomes 
a3, which is the fourth term of the quotient, for n — 4, an becomes 

which is the fifth term. But as nothing hinders us from 
removing indefinitely the fractional term which terminates the 
series, that is, of adding always a term to the integral part; 
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so that we might still go on without end ; for which reason it 
may be said that the proposed fraction has been resolved into 
an infinite series ; which is, 1 + «2+a3+4 + a5+a6+a7 + a8 
+ a9 + a10-i_a11-f-a12 + , &c. to infinity: and there are suffi¬ 
cient grounds to maintain that the value of this infinite series 

is the same as that of the fraction —-—. 
1 —a 

Or that, --=l + a+a2-i*a3-]-a4+ ; &c. 
1 —a 

375. What has been just observed may at first appear 
strange ; but the consideration of some particular cases will 
make it easily understood. 

Let us suppose, in the first place, a=. 1 ; the general quo¬ 
tient above will become a particular quotient corresponding 

to the fraction 
1-1 

The series taken indefinitely, shall be 

- = 1 +1 + 1 + 1 + 1 + 1+, &c. 

In order to see clearly the meaning of this result, let us 
suppose that we have to divide unity or 1 successively by the 

numbers 1, —, 
1 

Too’ 
l i 

1000’ 10000’ 

&c., we will have the 

quotient, 1, 10, 100, 1000, 10000, &c., continually and inde¬ 
finitely increasing ; because the divisors are continually and 
indefinitely decreasing ; but these divisors tend towards zero, 
which they cannot attain, although they approach to it con¬ 
tinually, or that the difference becomes less and less ; and at 
the same time the value of the fraction increases continually, 
and tends to that which corresponds to the divisor zero or 0 ; 
and it is as much impossible that the fraction in its successive 

augmentations, attains as it is that the denominator in its 

successive diminutions arrives at zero. Thus i is the last 

term or limit of the increasing values of the fraction : at this 

period, it has received all its augmentations : i is not therefore 

a number, it is the superior limit of numbers ; such is the no¬ 

tion that we must have of this result ~, which the analysts call, 

for abbreviation, infinity, and which is denoted by the character 
oo, (Art. 35). It is frequently given as an answer to an im« 
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possible question, (which will be noticed in a subsequent part 
of the Work); and in fact, it is very proper to announce this 
circumstance, since that we cannot assign the number denoted 
by this sign. 

It may still be remarked, that if we would take but the first 
six terms of the series, we must close the development by the 
corresponding remainder divided by this divisor, which gives, 

' “=5=1+1+14-1+1+1+3; 

this equality, absurd in appearance, proves that six terms at 
least do not hinder the series from being indefinitely conti¬ 
nued. And in fact, if after having taken away six terms from 
this series, it would cease to be infinite, or become terminat¬ 
ed, in restoring to it these six terms, it should be composed of 
a definite or assignable number of terms, which it is not. 
Therefore the surplus of the series must have the same sum 

as the total. We can yet say that inasmuch as it is not 

a magnitude, can receive no augmentation, so that 1 -J-1 1 +, 
1 . 1 

&c. must remain equal to 

Hence, we might conclude that a finite quantity added to, 
or subtracted from infinity, makes no alteration. 

Thus, 00-f-a— 00. 
However, it may be necessary in this place to observe, that, 

although an infinity cannot be increased, or decreased, by the 
addition, or subtraction, of finite quantities ; still, it may be in¬ 
creased or decreased, by multiplication or division, in the same 

manner as any other quantity ; Thus, if i be equal to infinity, 

2 3 
^ will be the double of it, - thrice, and so on. See Euler’s 

Algebra, Vol. I. 

Note.— i, —, —-*-t —J—, &c. are considered to be lrac- 
1 : 

10 
1 ' 

100 
a_ 

1000 

tions, in which the denominators are 1, — 
1 1 1 

10 
1 ; 

Too 1000 

& c. 

Now, as 1 divided by any assignable quantity, however 
great it may be, can never arrive completely at 0, consequent¬ 
ly the fractions in their successive augmentations can never 
arrive at infinity, except that unity or 1, be divided by a 
quantity infinitely groat ; that is to say, it must be divided by 
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infinity; hence we may conclude that is in reality equal to 

nothing, or “=0. 

360. It may not be improper to take notice in this place of 
other properties of nought and infinity. 

I. That nought added to or subtracted from any quantity, 
makes it neither greater nor less ; that is, 

a-\-Q — a, and a—0—a. 
II. Also, if nought be multiplied or divided by any quantity, 

both the product and quotient will be nought; because any 
number of times 0, or any part of 0, is 0 : that is, 

, 0 
Ox a, or flX0 = 0, and -—0. 

a 
III. From the last property, it likewise follows, that nought 

divided by nought, is a finite quantity, of some kind or other. 
For since 0x«=0, or 0 = 0 X«, it is evident from the ordinary 
rules of division, that 

0 

IV. Farther, if nought be multiplied by infinity, the pro¬ 

duct will be some infinite quantity. For since ^ or ^=go ; 

therefore, 0 X <x> = <z. 
361. It may be also remarked, that nought multiplied by 0 

produces 0 ; that is, 
0x0 = 0- 

For, since 0 x« = 0, whatever quantity a may be, then, sup¬ 
posing a = 0, 0 X 0 = 0. 

From this we might infer, according to the rules of division. 

that the value of jj=0, or that nought divided by nought is 

nought, in this particular case. 
Also, that 0, raised to any power, is 0; that is, 0OT=0 ; it 

Qm 0 . CLm 

follows that — =- ; but if in am—m=— (Art. 86), we suppose 

<z = 0, which may be allowed, since a designates any number, 
. „ 0 

we have 0°=-. 

If we really effect the division of 0 by 0, we could put for 
the quotient any number whatever, since any number, multi¬ 
plied by zero, gives for the product zero, which is hero the 
dividend. 

25 
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This expression, 0°, appears therefore to admit of an infi¬ 

nity of numerical values ; and yet such a result as ? can, in 

many cases, admit of a finite and determined value. It is thus, 
K am 

for example, that the fraction-, in the hypothesis of <z=0, 
o.n 

becomes 
KxO 

0 : 

0 

0* 

But, if at first we write this fraction under the form Kam~n, 
and that we put a = 0, we find that it becomes KxOm“n, 
which is 0 for m^>n ; in case of m<^n, or m=n— d, we shall 

K K 
have (Art. 86), — = —; which is equal to infinity, as has been 

already observed ; finally, for m=n, we can divide above and 
below by am, and the fraction is reduced to K, which is a finite 
quantity. 

362. If we suppose, in the fraction (Art. 358), ci=2, we 
find 

— = 1 + 2-f 4 + 8+16-f 32 + 64-f, 
1 —2 

which at first sight it will appear absurd. But it must be re¬ 
marked, that if we wish to stop at any term of the above se¬ 
ries, we cannot do so without joining the fraction which re¬ 
mains. Suppose, for example, we were to stop at 64 ; after 
having written l+2-b4-p8-j-16-|-32-|-64; we must join the 

fraction - —or—? or —128 ; we shall therefore have for 
1 --- I 

the complete quotient 127 — 128, than is in fact —1. 

Here, however far the fractional term may be extended, its 
numerical value, which is negative, will always surpass, by a 
unit, that of the integral part, so that this is totally destroyed ; 
and as in the hypotheses of a>l, we shall always subtract 
more than what we will add, we shall never meet with the 

result 

363. These are the considerations which are necessary 
when we assume for a numbers greater than unity ; but if 
we now suppose a less than 1, the whole becomes more in¬ 

telligible ; for example, let and we shall have —— — 

—2, which will, also be equal to the following se- 
1- TT 



EXPANSION OF INFINITE SERIES. 279 

ries, l+7+J+i+TV+3l2 + F4+T'2T> &c-> t0 infinity (Art. 
358). Now, if we take only two terms of the series, we 
shall have l+i, and it wants of being equal to 2 ; if we 
take three terms, it wants 4, for the sum is 1J; if we take 
four terms, we have 1-J, and the deficiency is only 1: There¬ 
fore, we see very clearly that the more terms of the quotient 
we take, the less the difference becomes; and that, conse¬ 
quently, if we continue to take successive portions of this 
series, the differences between those consecutive sums and 

the fraction ——=2, decrease, and end by becoming less than 
1 2 

any given number, however small it may be. The number 
2 is therefore still a limit, according to the acceptation of this 
word. 

Now, it may be observed, that if the preceding series be 
continued to infinity, there will be no difference at all between 

its sum and the value of the fraction ■ or 2. U 
2 

364. A limit, according to the notion of the ancients, is some 
fxed quantity, to which another of variable magnitude can never 
become equal, though, in the course of its variation, it may ap¬ 
proach nearer to it them any difference that can be assigned ; 
always supposing that the change, which the variable quantity 
undergoes, is one of continued increase, or continued diminution. 
Such, for example, is the area of a circle, with regard to the 
areas of the circumscribed and inscribed polygons, for, by in¬ 
creasing the number of sides of these figures, their difference 
may be made less than any assigned area, however small ; 
and since the circle is necessarily less than the first, and 
greater than the second, it must differ from either of them by 
a quantity less than that by which they differ from each other. 
The circle will thus answer all the conditions of a limit, 
which is included in the above definition. 

365. The preceding considerations are very proper to de¬ 
fine the nature of the word limit; but as algebra, which is 
the subject we are treating of here, needs no foreign aid to 
demonstrate its principles, it is necessary, therefore, to explain 
the nature of the word limit, by the consideration of algebraic 
expressions. For this purpose, let, in the first place, the 

ax 
very simple fraction be-, in which we suppose that x may 

OC “j ct 

be positive, and augmented indefinitely ; in dividing both terms 

of this fraction bv x, the result 
x 

evidently shows that 
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the function remains always less than a, but that it approaches 
continually to a, since that the part of its denominator, di¬ 

minishes more and more, and can be reduced to such a degree 
of smallness as we would wish. 

366. The difference between a and the proposed fraction be- 
ax 

ing in general expressed by a--—=-, becomes so much 
x-\-a x-\-a 

smaller, according as x is larger, and can be rendered less 
than any given magnitude, however small it may be ; so that 
the proposed fraction can approach to a as near as we would 

Q/X 
wish : a is therefore the limit of the fraction ——, relatively to 

x-{-a 
the indefinite augmentation which x can receive. It is in the 
characters which we have just expressed, that the true accep¬ 
tation, which we must give to the word limit, consists, in order 
to comprehend every thing which can relate to it. 

367. If we had remarked in the preceding example, that by 
carrying on, as far as we would wish, the augmentation of x, we 

could never regard, as nothing, the fraction- : therefore 
x-\-a 

we would reasonably conclude, that the fraction 
ax 

x-\-a’ 
though 

it would approach indefinitely to the limit a, could never at¬ 
tain «, and, consequently, cannot surpass it ; but it would be 
wrong to insert this circumstance as a condition in the gene¬ 
ral definition of the word limit; we would thereby exclude 
the ratios of vanishing quantities, ratios whose existence is 
incontestable, and from which we derive much in analysis. 

368. In fact, when we compare the functions ax and ax-{- 
x2, we find that their ratio, reduced to its most simple ex¬ 

pression, is-, and that it approaches nearer and nearer to 
a + x > 

unity, according as x diminishes. It becomes exactly 1, when 
x—0 ; but the quantities ax and ax-\-x2, which are then rigor¬ 
ously nothing, can they have a determinate ratio ? This is 
what appears difficult to conceive ; and we cannot give a clear 
idea of it but by presenting the quantity 1 as a limit to which 
the ratio of the functions ax and ax-\-x2 can approach as near 

a x 
as we would wish, since the difference, 1-=-, can 

a -f- x a -f- x 

be rendered less than any assignable magnitude, however 
small this magnitude may be. 
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On the other hand, the ratio —, of the quantities ax and 
ct —|— x 

ax+x2 can not only attain unity when we make a? = 0, but 
surpass it when we suppose x negative, since it becomes then 

—-—, a quantity which is greater than 1, when x<^a. This 
cl oc 

circumstance appears not at all contrary to the idea of limit; 
for we can regard the value 1, which answers to x=0, as a 
term towards which the ratio of the functions ax and ax-\-x2 
tends, by the diminutions of the values of x, whether positive 
or negative. For further illustrations of the world limit, and 
what is meant by infinity, and infinitely small quantities or in¬ 
finitesimals, the intelligent reader is referred to Lacroix’s 

Introduction to the Traite du Calcul Differenliel et du Calcul In¬ 
tegral, 4to. where these subjects are clearly elucidated. 

369. Now, let in the fraction 
1 

1 —a 

and we shall 

have = + + 24 3+> If W(? take 
3 

two terms, we find 1+^-, and the difference =ri; three terms 
give 1 -bf, the error ; for four terms the error is no more 
than Jj-. Since, therefore, the error always becomes three 
times less, it tends towards zero, which it cannot attain, and 
the sum tends toward which is the limit. 

370. Again, let us take a—j, and we shall have^—- =3 

= l-f-§+d+-27+iHr + 5 here, in the first place, 
the sum of two terms, which is l-ff, is less than 3 by 1+y- ; 
taking three terms, which make 2^, the error is ; for four 
terms, whose sum is 2yy the error is yy. 

371. Finally,for a—\, we find 1 1+T+TS+A 
1 4 

+ 25 6 + J &c.; the first two terms are equal to ly, which gives 
y2 f°r the error ; and taking one term more, we shall have 
only an error of •yg-. 

372. From the preceding considerations we may readily 
conclude, that any fraction having a compound denominator 
may be converted into an infinite series by the following rule : 
and if the denominator be a simple quantity, it may be divided 
into two or more parts. 

25* 
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RULE. 

Divide the numerator by the denominator, as in the division 
of integral quantities, and the operation continued as far as may 
be thought necessary, will give the series required. 

ax 
Ex. 1. It is required to reduce -into an infinite series. 

a—x 
ax 
ax—x2 

X3 
X3- 

a 

1st rem. . . 
x* 

a 

a — x 

Quotient. 
/y*2 /y>3 /yt4 

+ + &C. 
a a1 aJ 

xc 

a 

xq 

2d rem. . . . 

a2 
> 

a?4 

x4, xb 

a2 a3 

* 
aJ 

The terms in the quotient are found thus; dividing the 
first remainder x2, by a, the first term of the divisor a—x, 

x 
we shall have — for the second term of the quotient, because 

a 
the division can be only indicated ; multiplying the divisor by 
x 
—, and subtracting the product from x2, the remainder is 

m3 p » /jq3 

—, again, dividing this remainder by a, the result will be —, 

which is the third term in the quotient; and, in like manner, 
we might continue the operation as far as we please : But the 
law of continuation is evident, because the powers of x increase 
by unity in each successive term of the quotient, and the powers 
of a increase by unity in the denominator of each of the terms 
after the first. 
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And the sum of the terms infinitely continued is said to be 

CLX 
equal to the original fraction-. Thus we say that the 

CL' X 

numerical fraction J, when reduced to a decimal, is equal to 
.6666, &c., continued to infinity. 

Ex. 2. It is required to 

nes. 
a 
a—x 

x 
x2 

X- 
a 

x2 

a 
X‘ 

a a 

/y»3 

“o’, &c. 
a3 

In this example, if x be less than a, the series is convergent, 
or the value of the terms continually diminishes; but, when 
x is greater than a, it is said to diverge : Thus, let a=z 3 and 

2 3 

x—2, then 1-j-h—+~T"j &c- =1 -j- §-+|-~b > <^;c* > 
Cl CL Cl 

where the fractions or terms of the series grow less and less, 
and the farther they are extended the more they converge or 
approximate to 0, which is supposed to be the last termor limit. 

2 3 

But if —2, and xzzz3, then 1-f-1—-—j-—-—f-j &c. 1 T* 
a az a6 

i|-ht+V'-K &c., in which the terms become larger and 
larger. This is called a diverging series. 

w . 1 S S , 

Ex. 3. It is required to convert —-—into an infinite series. 
1 +a 

a . . . 
convert-into an infinite se- 

a—x 

a—x 

Quotient. 
x . x2 , x3 

Id-h-gH—3 + > &c- 
a a2 aJ 

xJ 
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1 
1 + a 

— a 
—a—a? 

1 + a 

Quotient. 
/ 

1— a-\-a2—a3+a4— a5+a6—, &c. 

a2+a3 

— 

—a3—a4 

a1 
a4 + a5 

•a5, &c. 

Whence it follows, that the fraction 
1 + a 

is equal to the 

series, 1—a-\-a2—a3+a4— a5 + «6— a7+> &c. 
372. If we make a = l, we have this remarkable compari¬ 

son : —t—= 1 —1 + 1 —1 + 1 —1 + 1 —, &c. to infinity; which 
1 + a 

appears rather contradictory; for if we stop at —1, the se¬ 
ries gives 0 ; and if we finish at +1, it gives +1. The real 
question, however, results from the fractional parts, which 
(by division) is always +-2- when the sum of the terms is 0, 
and —^ when the sum is +1 : because the complete quotient 
is found by placing the remainder over the divisor, in the form 
of a fraction, and annexing it to the terms in the quotient with 
its proper sign ; but the remainder in the present case is +1, 
or —1 ; hence the fraction to be added is +-^, or —^ ; and, 
consequently, i is the true quotient in the former case, and 
1 —or \ in the other. This will appear evident by taking 
successive portions of the series ; thus, for six terms, we shall 
have 1 —1 + 1 — 1 + 1 — l+i=+,and for seven terms, 1 — 1 
+ 1 — 1 + 1 —1 + 1 —i_i. 

Scholium. Here we might infer, by conversion, that the 
sum of an infinite series is found, when we know the fraction 
which would produce such a series by actual division ; but, 
although it is a fact that the fraction is a value of the series, 
still it may not be the only one which would produce the same 
series : Thus, the above series, 1—1 + 1 —1 + 1 —1 + 1 —1 + , 
&c., to infinity, can be produced by several other fractions 
besides the fraction -J. 
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Let, for example, J be converted into an infinite series by 

actual division : Now, it is plain that ■■ i, and the 

operation will stand thus 
1 +1 + 1 

1 

1 + 1 + 1 

-1-1 
-1-1-1 

1 + 1+1 

Quotient. 

1-14 1-1 + 1-1+, &c. 

+ 1 
+ 1 + 1 + 1 

1—1 
•1 — 1 — 1 

+ 1) &c. 

In like manner, J will produce the above series, and so on. 

374. Let us now make a—\\ and the preceding develop¬ 
ment shall be 

1 

i+i 
■ 2 —l_lJ.i_iJ._l_LJ. &c • 
'3—x 2 ■ 4 8T 16 

The sum of two terms is which is too small by ^ ; three 
terms give which is too much by ; for the sum of four 
terms, we have ■§-, which is too small by &c. 

We see here that the successive portions of the series are 
alternately greater and less than the fraction §, which repre¬ 
sent it ; but that the difference, whether it be in excess or 
deficiency, becomes less and less. 

375. Suppose again and we shall have 

^ 1 —3_1 _111_ 1_I_1_1_(_ 
g-J.J-l-1 3+S 57 + ST 213 + .<E<:- 1+a 1 + 3' 

Now, by considering only two terms, we have which is 
too small by ^ • three terms make J-, which is too much by 

; four terms give which is too small by y^-, and so on. 

376. The fraction-may also be resolved into an infi- 
l + a J 

nite series another way ; namely, by dividing 1 by a+1, as 
follows : 
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1+- 
a 

d-\~ 1 

Quot. 

1—L-|—L. 
a o2 a3 1,+ 1 

er aJ 
■j &c. 

a 
1_1_ 

a a2 

-&c. 
a- 

It is however unnecessary to carry the actual division any 
farther, as we are enabled already to continue the series to 
any length, from the law which may be observed in those 
terms we have obtained ; the signs are alternately plus and mi¬ 

nus, and each term is equal to the preceding one multiplied byi. 
d 

It is thus by changing the order of the terms of the deno¬ 
minator, we obtain the quotient under different forms, and that 
we pass from a diverging series, for certain values of a, to a 
converging series for the same values. 

It may also be here observed, that in the division of the two 
polynomials, if we deviate from the established rule (Art. 93), 
we arrive at quotients which do not terminate : 

Thus, for example, a2—b2, divided by a-\-b, according to the 
rule above quoted, gives for the quotient a — b\ but if we divide 
a2—b2 by b-\-a, we shall arrive at a quotient which does not 
terminate : thus, 

a2 — bz 

a2+ 
<r 

b-\-a 

Quot. 
a a- <r a 
- —L — ■ - —1— <fcc. 
b b2^b3 b* ’ 
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a _. -b2 
b2 
a4 a5 

+w P 

a5 

P 
&c. 

Here, we can clearly see that the quotient will not termi¬ 
nate, however far we may continue the operation, because we 
have always a remainder. 

In this case, by taking b-{-a for a divisor, we must, in order 
to find the quotient a— b, divide the whole dividend by all the 
divisor, that is to say, a2—b2 or (a-f-5) X(a—-b) by a+b. 

377. When there are more than two terms in the divisor, 
we may also continue the division to infinity in the same man¬ 
ner. 

Ex. 4. It is required to convert --- into an infinite 
1— a-\-a2 

1—a+a2 
series. 

1 
1 — a + a2 

a—a2 
a — a2-j-a3 

—P a- 
a3-j-a4- cr 

Quot. 
— a3—a4+a6'f-a7, &e. 

• a4 -f- a5 
.a4_j_a5 — a6 

a6 
a6—a7-j-a8 

a7—a8 
a7—a8+a9 

•a3 

1 —a-j-a2 

&c. 

l + c—a3—a4+a6-f a7, &c. We have therefore 
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to infinity: where, if we make <z=l. we have ----- = 
J 1—1+1 

1 = 1 + 1 — 1—1 + 1 + 1, &c., which series contains twice the 
series found, (Art. 372), 1—1 + 1 — 1 + 1, &c. Now, as we 
have found this to be equal to i, it is not extraordinary that 
we should find or 1, for the value of that which we have 
just determined. 

By making a=z±, we shall have i=| = l+^—-J—j^+^j 
4 

J_1_1 Arc 
^T2lT 5 12> 

If a~±, we shall have 
1 9_1+1 
7 - 7 - '•I 3 

1_ 
'2 7 "iv 729> 

&C. 

And if we take the four leading terms of this series, we 
have ^4, which is only less than 

Let us suppose again a—J, and we shall have \ = |-=1+|- 
9 

— 28y~ir^-T%V+’ &c. series is therefore equal to the 
preceding one, and by subtracting one from the other, we ob¬ 

tain ^—27T“8T_^T249’ &c., whi°h is necessarily =0. 

378. The method w+ich has been here explained, serves 
to resolve, generally, all fractions into infinite series ; which 
is often found, as has been observed by Euler in his Algebra, 
to be of the greatest utility; it is also remarkable, that an in¬ 
finite series, though it never ceases, may have a determiate 
value. It should likewise be observed, that from this branch 
of Mathematics, inventions of the utmost importance have 
been derived, on which account the subject deserves to be 
studied with the greatest attention. 

Ex. 5. It is required to convert —into an infinite series. 
a+a: 

/y> Af>2 

Ans. 1 —-+^r-“T+j &c. 
a a'■ ac 

. — ^ * i ' 
c 

Ex. 6. It is required to convert -7 into an infinite series. 
a-\-b 
t, be b2c b3c . e 

Ans.-y+~T-r * » 

Ex. 7. It is required to convert-into an infinite series. 
a-fx 
b. x , £C2 

Ans. -(1-p 
a a a‘ 

xJ 

a‘ 
+ , Sic 
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Ex. 8. It is required to convert-into an infinite series. 
^ a — x 

A . x x2 x3 „ 
Ans. -(1H-b —&c.) 

a a a1 a3 ' 

1 ~j~ X 
Ex 9. It is required to convert-into an infinite series. 

1 —x 
Ans. 1 +2a:+2a:3 + 2a:4 + 2,r5-|-, &c. 

ci3 
Ex. 10. It is required to convert --— into an infinite se- 

(a-\-xy 

ries. Ans. 1--+%— <fcc. 
a a* a“ 

Ex. 11. It is required to convert 
a 

into an infinite series. 
c—x 

a ax . ax1 . ax3 
Ans. - d—T-+—r+> &c- ^3 

^2 —OC^ 

Ex. 12. It is required to convert --into an infinite se- 
n a4-}-#4 

I /y*4 /y»8 /y*12 /y*16 

ries. Ans^-^+^-^+^-.&c. 

A ^ g 

Ex. 13. It is required to convert-, or——into an infi- 
J. A 

* 0 0 0 6 
nite series. Ans. +I_+, &c. 

Ex. 14. It is required to convert ~ or into an infinite 
4 5 — 1 

series. 

Ans. 
1 1 

5 ' 25 * 125 ,'625 + ’ 5+ 52+ 53+ 54+’ &C‘ 

§11. INVESTIGATION OF THE BINOMIAL THEOREM. 

379. Previous to the investigation of the Binomial Theorem, 
it is necessary to observe, that any two algebraic expressions 
are said to be identical, when they are of the same value, for all 
values of the letters of which they are composed. Thus, x — 1 
=x— 1, is an identical equation : and shows that x is indeter¬ 
minate ; or that the equation will be satisfied by substituting, 
for x, any quantity whatever. 

Also, \xf-a) X (a? —a) and a:2 — a2, are identical expressions ; 
that is, {x-\-a) X (x— a) = x2 — a2; whatever numeral values 
may be given to the quantities represented by x and a. 

26 
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380. When the two members of any identity consist of the 
same successive powers of some indefinite quantity x, the coeffi¬ 
cient of all the like powers of x, in that identity, ivill be equal 
to each other. 

For, let the proposed identity consist of an indefinite num¬ 
ber of terms ; as, 

a-\-bx-\-cx2-\-dx2-\- &c. — a'-\- b'x-\-c'x2-\-d/x3-{-&c. 
Then since it will hold good, whatever may be the value of 

x, let a: = 0, and we shall have, from the vanishing of the rest 
of the terms, a=a\ 

Whence, suppressing these two terms, as being equal to 
each other, there will arise the new identity bx-\~cx2-\-dxiJr 
&c. z=zb'x-[-c'x2Jrd'x2-\-&Lc. which, by dividing each of its 
terms by x, becomes 

b-\-cx-\-dx2-\- &c. — b'-\- c'x-{-d'x2-\-&c. 
And, consequently, if this be treated in the same manner as 

the former, by taking a:—0, we shall have b — b\ and so on ; 
the same mode of reasoning giving c~c\ d—d', &c., as was 
to be shown. 

381. Newton, as is well known, left no demonstration of 
this celebrated theorem, but appears, as has already been ob¬ 
served, to have deduced it merely from an induction of parti¬ 
cular cases, and though no doubt can be entertained of its truth 
from its having been found to succeed in all the instances in 
which it has been applied, yet, agreeably to the rigour that 
ought to be observed in the establishment of every mathemati¬ 
cal theory, and especially in a fundamental proposition of such 
general use and application, it is necessary that as regular and 
strict a proof should be given of it as the nature of the subject 
and the state of analysis will admit. 

382. In order to avoid entering into a too prolix investiga¬ 
tion of the simple and well-known elements, upon which the 
general formulae depends, it will be sufficient to observe, that it 
can be easily shown, from some of the first and most common 
rules of Algebra, that whatever may be the operations which 
the index (m) directs to be performed upon the expression 
(«-4-a?)"1, whether of elevation, division, or extraction of roots, 
the terms of the resulting series will necessarily arise, by the 
regular integral powers of x ; and that the first two terms of 
this series will always be am-\-mam-’[x ; so that the entire ex¬ 
pansion of it may be represented under the form 

am-\-mam-lx-\■■ Y*>am-2x2-\-Cam-z-\-Y)am-^x'i-\- &c. 
Where B, C, D, &c. are certain numerical coefficients, 

that are independent of the values of a and x ; which two lat¬ 
ter may be considered as denoting any quantities whatever. 
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383. For supposing the index m to be an integer, and taking 
a—1, which will render the following part of the investigation 
more simple, and equally answer the purpose intended ; it is 
plain that we shall have, according to what has been shown, 

{\-\-x)m—l-\-mx-{-bx2-\-cx2-\-dxii:-\-, &c. ...... (1) 

384. And if the index m, of the given binomial, be negative, 
it will be found by division, that (1-j-x)-w, or the equivalent 

expression 
1 1 

,, . —, , _ —i—-— = 1—mx— Vx2—c'x2 —, &c. 
(1-f#)'7* 1 -{-mx-\-bx2-\-cx3, &c. 

where the law of the terms, in each of these cases is similar, 
to that above mentioned. 

m 
385. Again, let there be taken the binomial (1 + #)”, hav- 

Til 
ing the fractional index — ; where m and n are whole positive 

numbers. 
m 

Then, since (l+^)m is the nth power of (1+#)” ; and, as 
above shown, (1 + »’)'” = 1 -J- -J- 52+co;3, &c., such a 

m 

series must be assumed for (l-f-#)n > that., when raised to the 
nth power, will give a series of the form \-\-ax-\-bx2-\-cx2Jr 
dx*-\-, &c. 

But the nth or any other integral power of the series 1 -j- 
px-\-qx2-{-rx2-\-sxi:-\-, &c. will be found, by actual multiplica¬ 
tion, to give a series of the form here mentioned ; whence, in 
this case, also, it necessarily follows, that 

(l+tf)n ml -\-px-\-qx2-\-rxz-{-sx^-\-, &c. 

And if each side of this last expression be raised to the nth 
power, we shall have (14~^)m = [l 4-(p#+2#24-^3 + -?a:4--b, 
&c.)]" ; or, by actual involution, 

\-{-mx-\-bx2-{-cx2-\-, &c. = 1 +n(px-\-qx2-\-, <fcc.)-}-, &c. 

Whence, by comparing the coefficients of x, on each side 
of this last equation, we shall have, according to (Art. 380), 

np—m, or »=— ; so that, in this case, 
n 

— Tfl 
(I-f-#)n ml-|—x-\-qx2-\-rx'i-\-sx*-\’, &c.(2) ; 

n 

where the coefficient of the second term, and the several 
powers of x} follow the same law as in the case of integral 
powers 
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386. Lastly, if the index — be negative, it will be found 
n 

_in 

by division as above, that (1 + #) ” or the equivalent expres¬ 
sions, 

—■■ 1-= &c. (3), 

(1 4oc'\n 1 -\—x-\-gx2, &c. 
n 

where the series still follows the same law as before. 
387. And as the several cases, (1,2, 3), here given, are of 

the same kind with those that are designed to be expressed in 
universal terms, by the general formula ; it is in vain, as far 
as regards the first two terms, and the general form of the se¬ 
ries, to lock for any other origin of them than what may be 
derived from these, or other similar operations. 

388. Hence, because (a-}-x)m = am if there be as¬ 

sumed (a-\-x)m = am -\-mam~lx -f- BF2 4 Cx3 4 Dar4, &c. ; or 
which will be more commodious, and equally answer the de¬ 
sign proposed, 

(l+D’-l+A10+^Q2+A3©3+> .(4>- 

it will only remain to determine the values of the coefficients 
At, A2, A3, &c. and to show the law of their dependence on 
the index (m) of the operation by which they are produced. 

389. For this purpose, let m denote any number whatever, 
X 

whole or fractional, positive or negative ; and for -, in the 

above formula, put y-\-z ; then, there will arise ^ 1 -f- —^r"=[ 1 

-F(y+2)]m:=[(l+ which being all identical expres¬ 
sions, when taken according to the above form, will evidently 
be equal to each other. 

390. Whence, as the numeral coefficients, At, A2, A3, &c. 
of the developed formulae, will not change for any value that 
can be given to a and x, provided the index (m), remains the 
same, the two latter may be exhibited under the forms 

[i+(y+*)]”=i + A, (y+z)+A2 (y+£)2+, &c. 
[(1 +y)+*]*=(l +y)' + A,z(l +y)”-1+A2s2(l +y)”-2+ &c. 

And, consequently, by raising the several terms of the first 
of these series to their proper powers, and putting 1+y^pin 
the latter, we shall have 
14- kx{y 4-z) -f- A2(y24 2yz-{-z2)-\- A3(y34 3y2z-{- 3yz2+z3) 4, 
&c. =pm+Aipm~l-sr+Aapm-2z24 A3pm~3z34, &c. 
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z+A2 z2+A3 

-f3A3y + 4A4y 
+ 6A4y2 + 10A5y2 

+ 10A5y3 + 30A6y3 
&c. &c. 

s3+&c. (5). 

391. Or, by ordering the terms, so that those which are af¬ 
fected with the same power of ^ may be all brought together, 
and arranged under the same head, this last expression will 
stand thus : 

1+At 
Aiy+ 2A2v 

A2y2 + 3A3y2 
A3y3 + 4A4y3 

&c. 
—p -j- Ajp771- lz+A zpm~2z2+A 2pm~3z3 + & c. 

In which equation it is evident, that both y and ^ are inde¬ 
terminate, and independent of the values A,, A2, A3, &c. ; 
since the result here obtained arises solely from the substitu- 

X 
tion of the sum of these quantities for - in equation (4). 

392. Hence, as the first terms and the coefficients, or mul¬ 
tipliers of the like powers of z, in these two expressions, are, 
in this case, identical, we shall have, by comparing the first 
column of the left-hand member with the first term of that on 
the right, 

l +A1y4-A2y2+A3y3-f A4y4-f- &c. — pm, 
which is an identity that verifies itself; since, by hypothesis, 
(l+y)m=pm, and, according to the general formula, (l-fy)”1 

^zl + Ajy-f A2y2-j-A33/3+ &c. 

393. Also, if the second of these columns be compared in 
like manner, with the second on the right, there will arise the 
new identity, 

A1-f-2A2y-f-3A3y2-f-4A4y3=A1p7n—1; which will be suffi¬ 
cient, independently of the rest of the terms for determining the 
values of the coefficients Av A 

For since Alpm~1=Al~—(1 + Axy -f- A2y2-f- A3y3-f* 

&c.), the equating this series with the last, and multiplying 
the left-hand side by 1+y, will give 
[A1 + 2A2y+3A3y2+&c.] (1 + y)=Al4* A^y-f- AlA2y2+Al 
A.jy3 -b&c. 

And, therefore, by actually performing the operation, and 
arranging the terms accordingly, we shall have 

y3-f- &c. 

m 

A3, &c. 

A1+2A2 y+3A3 y2+4A4 

+Aj + 2A2 -f3A3 

= Aj-f-AjA4y-f-A4A2y2-f~A4A3y3-j~ &c. 
394. From which last identity, there will obviously arise, 

by equating the homologous terms of its two members, the fol¬ 
lowing relations of the coefficients : 

26* 
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A,=Ai A1=A! 

2A2=A1Al—Ax 
» A.fA.-O 
Aa~ 2 

3A3=A1A2—2A2 

or 

Aa(A, 2) 

3“ 3 

4A4=A1A3—3A3 
, A3(A,-3) 
A4- 4 

nA — AA — C'1—i)A 
n in1 n—1 

\ K-r[\-(n — 1)] 

A"- 

And, consequently, as t ie coefficient At of the second term 
of the expanded binomial, has been shown to be equal, in all 
cases, to the index (m) of the proposed binomial, the last of 
these expressions will become of the form 

A t=m 
?n(m— 1) 

A3= 

m{m — 1 ).(m—2) 

273 
A  m{m — l).(m—2).{m — 3) 
A4_ — 

A m[m—l).(m —2).(m—3) .... [m—(n — 1)] 
2.3.4 5 7 7 ”7 r. n ’ 

where the law of the continuation of the terms, from A4 to the 
general term A„, is sufficiently evident. 

395. Whence it follows, that, whether the index m be in¬ 
tegral ox fractional, positive or negative, the proposed binomial 
(a-{-x)m, when expanded, may always be exhibited under the 
form 

am(l+°?)m— 

&c.]; 
or (a-\-x)m — 

, , , m(rn—1) „ , mim— 1) (m— 2) „ „ „ 
am-\-rnam—lx-]---am~2x-J-— --am~3x3 &c. 

Z Z .o • 
oc cc 

And if-be substituted in the place of 4—, the same for¬ 
es a 

mula will, in that case, be expressed as follows : 
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/ ®\ /x\ , m(m—l)/n„ 
° (l-(-) + ^-;(-)2- 

?n(m—1) . (m — 2) at 

2.3 

, v , I -1) o o 
or (a—x)m = am—mam~lx-\-----am~2x2 ■ 

2 
m (m— 1) . (m—2) oop 
--am~3x3, &c. 

2.4 ’ 

Where it is to be observed, that the series, in each of these 
cases, will terminate at the (m-f-l)th term, when m is a whole 
positive number ; but if m be fractional or negative, it will 
proceed ad infinitum ; as neither the factors m — 1, m—2, m— 
3, &c. can then become =0. 

396. To this we may add, that in the two last instances 

here mentioned, the second term f-j of the binomial must be 
\x / 

less than 1, or otherwise the series, after a certain number of 
terms, will diverge, instead of converging. 

397. It may also be farther remarked, that when a and x 
in these formulae, are each equal to 1, we shall have, agree¬ 
ably to such a substitution, (<z + n)m = (1 -f-l)’”=2'"r=: 1 -j-m-f- 

m{m—1) ( m{m — 1) . (m—2) ( m[rn — 1) . (m—2) . (m—3) ( 

2 1 ^ 
&c., and 

2.3 2.3.4 

(«—x)m=z(l — l)m = 0m=z0=z 1— m-b 

m[m — 1) m(m — 1) . (m—2) m(m — 1) . (m—2) . (m — 3) 

2.3 2.3.4 
—, &c. 

From which it appears, that the sum of the coefficients 
arising out of the development of the mth power, or root of 
any binomial, is equal to 2m; and that the sum of the coeffi¬ 
cients of the odd terms of the m\h power, or root of a resi¬ 
dual quantity, is equal to the sum of the coefficients of the 
even terms. 

m 0 0—1 

398. Finally, let m=0 ; then (<z + #) =a o X a x + 

0(0-1) 0—2 2 X X4 
a x -j~> &c., ~a +0 . —1-0 ♦ &c. 

a a4 

where it is evident that the series terminates at the first term 
(a0); since the coefficient of every successive term involves 
0 for one of its factors ; therefore (ad-T)°=ran=l, (Art. 86). 
And, if a=x ; then (a—T)°=a°=l, thatis, 0°=1. Hence, it 
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follows, that any quantity, either simple or compound, raised 
to the power 0, is equal to unity or 1 ; and also that 0° is in 
all cases equal to unity or 1. 

399. Although it has been observed, that 0° appears to 
admit of an infinity of numerical values ; because it is equal 
to which is the mark of indetermination; yet it is plain, 
from what is above shown, that 0° is only one of the values of 

0m 0 
jj, which, in that particular case, where —=0°=-, is equal 

to unity. The intelligent reader is referred to Bonnycastle’s 

Algebra, 8vo. vol. ii. Also, Lagrange’s Theorie des Fonc- 
tions Analytiques, and Lecons sur le Calcul des Fonctions. 

§ III. APPLICATION OF THE BINOMIAL THEOREM TO THE 

EXPANSION OF SERIES. 

400. The method of expanding any binomial of the form 
(a-j-x)’", when m is any whole number whatever, has been 
already pointed out, and it has also been observed, that the 
series will always terminate, when m is a whole number : 
But when m is a negative number, or a fraction, then the se¬ 
ries expressing the value of (a+^)m does not terminate. 

n n 
Let in—r, and substitute r for m in the series then 

n n tt n 

ing the approximate value of any binomial surd quantity, r 
being either positive or negative, n and r any whole numbers 
whatever. 

1 
Ex. 1. Find the approximate value of3/(63+c3) or (63-fc3)3. 

71 

Here a—b3 .*. ar =^/ b3=b ; 
, n/x\ 1 /c6\ e3 
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n(n—r).(n—2r)/x2\_1(1—3).(1 — 6)/#9 \ 5c9 

‘ 2~.3? W / “ 2.3.31 W) ’ 
&c. — &c. 

y.3 

Hence y [P+c)3=J(l + 
5c9 

Ex. 2. Find the value of 

363 32A6 ' 3\bQ 

1 

, &c.). 

(b + cf 
or (&+c)“2in a series. 

Here a~b' 

c—x 

« l 
.*. a r=zb ~2 — 

b2’ 

n/x\ *c 

re=-2 ; 

r=l I (m—r)/x2\ —2(—2 — l)/c 

J 

Hence 

2 r 

—L—=—(i 
(J+c)2 b2 \ 

(?)= 
/c2\ _3c2 

\P j “T2 ’ 
&C. — &c. 

2c 3c2 4c3 

T + l2' 63'"* 
&c ) 

401. Now let n=l, (a+a:)r =(a-{-x)r —y (a-fa?); and a 
n 

J a ; hence the series (Art. 398) is transformed into y 

,. + **«, + ,(£)+!g g) +U^Hi_zlO( £) 
+ &c.) (A). 

Let a- 1, x=l; then y 2=1+' ++ ^ r^1 ^ 

+ &c. 
2r2 2.3 . r3 

Thus, if r=2, then +2 = 1+^-^3+§*-§7+^-^ 

(B). 

-L&c. And if r=3, 

then y 3=1+-—5^+^ 2-5,+?£L+2*7-11 
3 32 1 34 35 ‘ 36 38 

&c 

By means of the series marked A, the rth root of many other 
numbers may be found ; if a and x be so assumed, that x is a 
small number with respect to a, and y a, a whole number. 

Ex. 3. It is required to convert yo, or its equal + (4+1), 
into an infinite series. 

Here a — 4, x=l, r—2; then y a— y4 =2, and we have 

+ (4 + l)=2(l+^—2r+2^~2T3+&;c-) 

Ex. 4. It is required to convert y 9, or its equal 3/ (8 + 1) 
into an infinite series. 
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Here <2—8, a?= 1, r=3 ; then{/ a=^/ 8=2, and we obtain 

3/ ^8“f" 1) 9 = 2 ^ 1 + 3^~32.82 + 34.83-'35^+&C* 

402. The several terms of these series are found by sub¬ 
stituting for a, x, and r, their values in the general series mark¬ 
ed (A) or (B), and then rejecting the factors common to both 
the numerators and denominators of the fractions. 

Thus, for instance, to find the 5th term of the series express¬ 
ing the approximate value of 9, we take the 5th term of the 
general series marked (A), which is 

■■ where 0=8> *=1. ai)d r=3; 

, . r . . . 2.5 . 8/1 \ 2.5 
the value of the fraction is — ———l ) =-rr— 

2.3.4.3A 84/ 2.3.4.34.83 
2.5 2.5 

— —;-t————. In this manner each term of the 
3.34.8.8J 35 . 84 

series is calculated ; and the law which they observe is, that 
the numerators of the fractions, consist of certain combinations 
of prime numbers, and the denominators of combinations of cer¬ 
tain powers of a and r. 

3 

Ex. 5. Find the value of (c2—a2)4 in a series. 

Ans • Vc3( 3 a?2 3 a:4 5 a:6 
■&c •) 22.c2 2s.c4 27.c6 

Ex. 6. It. is required to convert 6, or its equal 3/ (8—2), 
into an infinite series. 

5 ^(i-L __L &c ) .42 34.43 
Ex. 7. It is required to extract the square root of 10, in an 

infinite series. Ans. 3+-^ -JL3+^l±^s-&c. 

■1 

Ex. 8. To expand a2(a2—x) 2 in a series. 

a i 1 , 3 /x2 \ , 3.5 /a?3 \ . 

'2\a) 2.4\a3/ 2.4.6 \a5 / 

Ex. 9. To find the value ofy (a5-J-a:5) in a series. 

&c. 

Ans. 1 
X' 

X5 2a?10 6a:15 

5a4 25 a9 1 125a14 

— X3, in a series. 
1 a:6 5a:9 10a?12 

! 9 81 243 



CHAPTER XIII. 

ON 

PROPORTION AND PROGRESSION. 

§ I. ARITHMETICAL PROPORTION AND PROGRESSION. 

403. Arithmetical Proportion is the relation which two 
numbers, or quantities, of the same kind, have to two others, 
when the difference of the first pair is equal to that of the se¬ 
cond. 

404. Hence, three quantities are in arithmetical proportion, 
when the difference of the first and second is equal to the dif¬ 
ference of the second and third. Thus, 2, 4, 6 ; and a, a + 6, 
a+ 26, are quantities in arithmetical proportion. 

405. And four quantities are in arithmetical proportion, 
when the difference of the first and second is equal to the 
difference of the third and fourth. Thus, 3, 7, 12, 16 ; and 
a, a + 6, c, c + 6, are quantities in arithmetical proportion. 

406. Arithmetical Progression is, when a series of 
numbers or quantities increase or decrease by the same com¬ 
mon difference. Thus 1, 3, 5, 7, 9, &c. and a, a-\-d, a-\-2d, 
a-\-3d, &c. are an increasing series in arithmetical progres¬ 
sion, the common differences of which are 2 and d. And 15, 
12, 9, 6, &,c. and a, a — d, a—2d, a —3d, &c. are decreasing 
series in arithmetical progression, the common differences of 
which are 3 and d. 

407. It may be observed, that Garnier, and other Euro¬ 
pean writers on Algebra, at present, treat of arithmetical pro¬ 
portion and progression under the denomination of equi-differ- 
ences, which they consider, as Bonnycastle justly observes, 
not without reason, as a more appropriate appellation than the 
former, as the term arithmetical conveys no idea of the nature 
of the subject to which it is applied. 

408. They also represent the relations of these quantities 
under the form of an equation, instead of by points, as is usu¬ 
ally done; so that if a, b, c, d, taken in the order in which 
they stand, be four quantities in arithmetical proportion, this 
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relation will be expressed by a—b — c—d\ where it is evi¬ 
dent that all the properties of this kind of proportion can be 
obtained by the mere transposition of the terms of the equa¬ 
tion. 

409. Thus, by transposition, a+d—b-^c. From which it 
appears, that the sum of the two extremes is equal to the sum of 
the two means : And if the third term in this case be the same 
as the second, or c=b, the equi-difference is said to be con¬ 
tinued, and we have 

a-\-d—2b ; or b=^{a-\-d) ; 
where it is evident, that the sum of the extremes is double the 
mean ; or the mean equal to half the sum of the extremes. 

410. In like manner, by transposing all the terms of the 
original equation, a — b — c—d, we shall have b—a — d—c; 
which shows that the consequents b, d, can be put in the 
places of the antecedents a, c; or, conversely, a and c in the 
places of b and d. 

411. Also, from the same equality a—b — c—d, there will 
arise, by adding m—n to each of its sides, 

(rt+m)—(6-b«) = (c+m) — (d-\-n) ; 
where it appears that the proportion is not altered, by aug¬ 
menting the antecedents a and c by the same quantity m, and 
the consequents b and d by another quantity n. In short, 
every operation by way of addition, subtraction, multiplica¬ 
tion, and division, made upon each member of the equation, 
a — b — c — d, gives a new property of this kind of proportion, 
without changing its nature. 

412. The same principles are also equally applicable to 
any continued set of equi-differences of the form a — b = b— 
c — c—d—d—e, &c. which denote the relations of a series of 
terms in what has been usually called arithmetical progres¬ 
sion. 

413. But these relations will be more commodiously shown, 
by taking a, b, c, d, &lc. so that each of them shall be greater 
or less than that which precedes it by some quantity d/; in 
which case the terms of the series will become 

a, a^d', a^2d/, adtSd', a-^^d', &c. 
Where, if l be put for that term in the progression of which 
the rank is n, its value, according to the law here pointed out, 
will evidently be 

7=a±(w — l)d' ; 
which expression is usually called the general term of the se- 
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ties ; because, if 1, 2, 3, 4, <fcc. be successively substituted 
for n, the results will give the rest of the terms. 

Hence the last term of any arithmetical series is equal to the 
first term plus or minus, the product of the common difference, 
by the number of terms less one. 

414. Also, if s be put equal to the sum of any number of 
terms of this progression, we shall have 

5=a-|-((zT:C?,)4-(«3{=2(i)"{- .... ~\-\gAz{n— 1)^]* 
And by reversing the order of the terms of the series, 

— l)d'] -f-[adt{n—2)cT]4- . . . + 
Whence, by adding the corresponding terms of these two 

equations together, there will arise 
2s—\2a±{n— l)^/] + [2a=f:(n — l)ff], &c. to n terms. 

And, consequently, as all the n terms of this series are equal 
to each other, we shall have 

2s=n\2a^z(n—l)d'], or s=|-[2#=t;(ft—l)cZ'] . . (1). 

415. Or, by substituting l for the last term «±(n — l)(f, as 
found above, this expression (1) will become 

s=5-(a“^) • • • • (2)., 
Hence, the sum of any series of quantities in arithmetical 

progression is equal to the sum of the two extremes multiplied 
by half the number of terms. 

It may be observed, that from equations (1) and (2), if any 
three of the five quantities, a, d', n, /, s, be given, the rest may 
be found. 

416. Let Z, as before, be the last term of an arithmetic se¬ 
ries, whose frst term is («), common differerice (d'), and num¬ 

ber of terms (n); then l=a-\-(n — 1 )d'; d/=-Now 
n- 1 

the intermediate terms between the first and the last is n—2 ; 
^_ 

let 7i—2 —m, then n—l=m+l. Hence, d'———, which 
m -j-1 

gives the following rule for finding any number of arithmetic 
means between two numbers. Divide the difference of the two 
numbers by the given number of means increased by unity, and 
the quotient will be the common difference. Having the com¬ 
mon difference, the means themselves will be known. 

Example 1. Find the sum of the series 1, 3, 5, 7, 9, 11, 
&c. continued to 120 terms. 

Here a= 1, } 

d'=2, [ 
n=120 ) 

.\s=[2a+{n - l)(Z/]5.=1|°[2.Xl + (120 

1)2] =14400. 

27 
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Ex. 2. The sum of an arithmetic series is 567, the first term 
7, and the common difference 2. What are the number of terms ? 

Here s=567, \ 2s=n\2a-\-{n — l)d] = n[14 + (rc — 1)2] 
a = 7, > =rl47i-|-2n2—2?irrll34 ; .*. n2-i“6n4-9 = 
d'=2 ; ) 576, and n = 21. 

Ex. 3. The sim of an arithmetic series is 1455, the^r^ 
term 5, and the number of terms 30. What is the common dif¬ 
ference? A ns. 3. 

Ex. 4. The sum of an arithmetic series is 1240, common 
difference 4, and number of terms 20. What is the first term ? 

Ans. 100. 
Ex. 5. Find the sum of 36 terms of the series, 40, 38, 36, 

34, &c. Ans. 108. 
Ex. 6. The sum of an arithmetic series is 440, first term 3, 

and common difference 2. What are the number of terms ? 
Ans. 20. 

Ex. 7. A person bought 47 sheep, and gave 1 shilling for 
the first sheep, 3 for the second, 5 for the third, and so on. 
What did all the sheep cost him? Ans. 110/. 9s. 

Ex. 8. Find six arithmetic means between 1 and 43. 
Ans. 7, 13, 19, 25, 31, 37. 

§ II. GEOMETRICAL PROPORTION AND PROGRESSION. 

417. Geometrical Proportion, is the relation which two 
numbers, or quantities, of the same kind, have to two others, 
when the antecedents or leading terms of each pair, are the 
same parts of their consequents, or the consequents of their 
antecedents. 

418. And if two quantities only are to be compared together, 
the part, or parts, which the antecedent is of the consequent, 
or the consequent of the antecedent, is called the ratio; ob¬ 
serving, in both cases, to follow the same method. 

419. Direct proportion, is when the same relation subsists 
between the first of four quantities, and the second, as between 
the third and fourth. 

Thus, a, ar, b, br, as in direct proportion. 

420. Inverse, or reciprocal proportion, is when the first and 
second of four quantities are directly proportional to the re¬ 
ciprocals of the third and fourth. 

Thus, a, ar, br, b, are inversely proportional; because a, ar 

i, are directly proportional. 

421. The same reason that induced the writers mentioned 
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in (Art. 407), to give the name of equi-differences to arithmeti¬ 
cal proportionals, also led them to apply that of equi-quotients 
to geometrical proportionals, and to express their relations in 
a similar way by means of equations. 

Thus, if there be taken any four proportionals, a, b, c, d, 
which it has been usual to express by means of points, as 
below, 

a : b : : c : d. 
This relation, according to the method above-mentioned, 

a 
will be denoted by the equation (Art. 24); where the 

equal ratios are represented by fractions, the numerators of 
which are the antecedents, and the denominators the conse¬ 
quents. Hence, ad^zbc. 

422. And if the third term c, in this case, be the same as 
the second, or c — b, the proportion is said to be continued, 
and we have ad—b2, b—'f ad ; where it is evident, that the 
product of the extremes of three proportionals, is equal to the 
square of the mean : or, that the mean is equal to the square root 
of the product of the two extremes. 

a 
423. Also, from the equality,there will result 

a^zb 

~T~ 

c-^-d * 

d * 
for, by adding or subtracting 1 from each side of the 

.• i a , „ c , „ a4-b c-X-d 
equation; then Til =-^1 ; and aX-b : b : : 

b d b d 
c -I* d i d. 

Hence, when four quantities are proportionals, the sum or dif¬ 
ference of the first and second is to the second as the sum or dif¬ 
ference of the third and fourth, is to the fourth. 

424. In like manner, if a: b :: c : d; then, ma : mb : : Jc : 
Ic 
y-r; and, ma : mb : fc : 
n(l 

Hence, when four quantities are proportionals, if the first and 
second be multiplied, or divided by any quantity, and also the 
second and fourth, the resulting quantities will still be propor¬ 
tionals. 

Id por . 
” b~d’ 

(Art. 118), 
ma 

mb 

425. Also, if a : b : : c : d; then and a": 

bn : : c": dn; where n may be any number either integral or 
fractional. 
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Hence, if four quantities be proportionals, any power or root 
of those quantities will be proportionals. 

And, by proceeding in a similar manner, all the properties 
and transformations of ratios and proportion, can be easily ob¬ 

a 
tained from the equalityor ad—be. 

426. In addition to what is here said, it may be observ¬ 
ed, that the ratio of two squares is frequently called duplicate 
ratio ; of two square roots, subduplicate ratio; of two cubes, 
triplicate ratio; and of two cube roots, subtriplicate ratio. 
See the Appendix at the end of this Treatise, where the doc¬ 
trine of ratios and proportion is fully explained and clearly 
illustrated. 

427. Geometrical Progression, is when a series of num¬ 
bers, or quantities, have the same constant ratio, or which in¬ 
crease, or decrease, by a common multiplier, or divisor. Thus, 
the numbers 1,2, 4, 8,16, &c. (which increase by the continual 
multiplication of 2), and the numbers 1,^,1, -fij, &c. (which 
decrease by the continued division of 3, or multiplication of J), 
are in Geometrical Progression. 

428. In general, if a represents \he first term of such a 

series, and r the common multiplier or ratio; then may the 
series itself be represented by a, ar, ar2, ar3, arx, &c., which 
will evidently be an increasing or decreasing series, according 
as r is a whole number, or a proper fraction. In the foregoing 
series, the index of r in any term is less by unity than the num¬ 
ber which denotes the place of that term in the series. Hence, 
if the number of terms in the series be denoted by (n), the last 

term will be ar"-1. 

429. Let l be the last term of a geometric series, then Z= 
l n-i /1 

arW_1 and rn~1=~; .*. r— - The number of interme- 
a v a 

diate terms between the first and last is n—2 ; let n—2 = m, 
11 

then n — 1 =m-f-l, and r— which gives the following 

rule for finding any number of geometric means between two 
numbers ; viz. Divide one number by the other, and take that 
root of the quotient ivhich is denoted by ; the result will 
be the common ratio. Having the common ratio, the means are 
found by multiplication. 

430. Let S be made to denote the sum of n terms of the 
series, including the first, then 
a+ar-\-ar2-\-ar3-\-.-j-ars-2-J-arn J = S 
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Multiply the equation by r, and it becomes 

ar-f-ar2+ar3 -j-.-\-arn~2=arn-~l-{-arn=irS. 

Whence, subtracting the first of these equations from the 
second, observing that all the terms except a and arn destroy 
each other, we shall have 

arn—a = rS—S~(r—1)S ; and S: 
arn—a 

r— 1 (!)• 

Or, by substituting l for the last term arn~1, as above found, 
rl Q, 

this expression will become S =-- ; from which two 

equations, if any three of the quantities a, r, n, l, S, be given, 
the rest may be found. Thus, from the second equation, 

a—tl—(r-^l)S ; and 1=^-- 
S — l r 

In the formula (1), when r= I, we have S=j— 

Now, the value of the symbol 5, in this particular case, shall 

be equal to na ; because the series a-\-ar-\-ar2jr . . . 

arn~2_|_flrn—i? for r==\f becomes -, &c., and the 

sum of 11 terms of this series, is evidently equal to na ; there¬ 

fore Sz=- = na. Or, since 
arn — a 

= a 
1 1 —r" 

— a X 
r—1 r—1 1 

a . \rn—1 -\-rn~2-f-7'r,—3 . . -j-r-f-1] —a X [1 -{-r-^r^-^-r3 . . rn :], 

which, in the case of 7 = 1, becomes a. [1 + 1 + 1+j &c.], and 
the sum of n terms of the series l-f-l + l + , &c. is evidently 

1 —rn 0 
equal to n ; therefore S = « . —-— a . — = a . (1-f-l-f-l-f-, 

1 —r 0 
&c.) — aXn=<zn, as before. 

431. When the common factor r, in the above series, is a 
whole number, the terms a, ar} ar2, arn~l, form an increasing 
progression ; in which case n may be so taken, that the value 
of the sum (S) shall be greater than any assignable quantity. 

432. But if r be a proper fraction, as the series a, a„ 

-^j, will be a decreasing one, and the expression (Art. 430), 

by substituting ~ for r, and changing the signs of the numera- 

7* 



306 PROPORTION AND PROGRESSION. 

CLT*( 1 — T>n 1 
tor and denominator, will become —~—^—- ; where it is 

r' — 1 
1 

plain, that the term — will be indefinitely small when n is 

indefinitely great ; and consequently, by prolonging the se- 
clt' 

ries, S may be made to differ from ——- by less than any as¬ 

signable quantity. 

433. Whence, supposing the series to be continued indefi- 
clt' 

nitely, or without end, we shall have in that case, S=——- ; 
r— 1 

which last expression is what some call the radix, and others 
the limit of the series ; as being of such a value, that the sum 
of any number of its terms, however great, can never exceed 
it, and yet may be made to approach nearer to it than by any 
given difference. 

434. If the ratio, or multiplier, r, be negative, in which 
case the series will be of the form 
a —- ar-f- ar2—ar3-{-.-h arn~1, where the terms 

, . . _ ill ~ -\zarn-\-a 
are + and — alternately, we shall have S— ~ 

And if r be a proper fraction, -, as before, we shall have, 
r 

for the sum of an indefinite number of terms of the series a— 

a , a a . » c ar' 
H—To — ~~To i 5 & C. j S = —-• r 1 /2 /3 J r +1 

Ex. 1. Find the sum of the series, 1, 3, 9, 27, &c. to 12 
terms. 

Here a =1,\ „ arn—a lx312~l 813 —1 
r—3, 

/. S: 

n: 12 
r—1 

531441 
3 — 1 

1 531440 
=265720. 

2 2 

Ex. 2. Find three geometric means between 2 and 32. 

Here a=2,} . "tl/ l _* /32 

1=32,[ ■■ sja -\l¥~Vlb-^’ 
m — 3 ; ) 

and the means required are 4, 8, 16. 

Ex. 3. The first term of a geometrical progression is 1, 
the ratio 2, and the number of terms 10. What is the sum of 
the series ? Ans. 1023 
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Ex. 4. In a geometrical progression is given the greatest 
term =1458, the ratio =3, and the number of terms =7, to 
find the least term. Ans. 2. 

Ex. 5. It is required to find two geometrical proportionals 
between 3 and 24, and four geometrical means between 3 and 
96. Ans. 6 and 12 ; and 6, 12, 24, and 48. 

Ex. 6. Find two geometric means between 4 and 256. 
Ans. 16, and 64. 

Ex. 7. Find three geometric means between ^ and 9. 
Ans. 1, 3. 

Ex. 8. A gentleman who had a daughter married on New- 
year’s day, gave the husband towards her portion 4 dollars, 
promising to triple that sum the first day o. every month, for 
nine months after the marriage ; the sum paid on the first day 
of the ninth month was 26244 dollars. What was the lady’s 
fortune ? Ans. 39364 dollars. 

Ex. 9. Find the value of + &c. a,d infinitum. 
Ans. 2. 

Ex. 10. Find the value of l+f-bx9F+li+ &c. ad infini- 
Ans. 4. 

§ III. HARMONICAL PROPORTION AND PROGRESSION. 

435. Three quantities are said to be in harmonical propor¬ 
tion, when the first is to the third, as the difference between 
the first and second is to the difference between the second 
and third. 

Thus, a, b, c, are harmonically proportional, when 
a : c :: a—b : b—c, or a : c. :: b—a : c — b. 

And c, [since a[b—c)=c(a — b) or ab = (2a—6)c], is a third 

harmonical proportion to a and b, when c—-- 

436. Four quantities are in harmonical proportion, when the 
first is to the fourth, as the difference between the first and 
second is to the difference between the third and fourth. 

Thus, a, b, c, d, are in harmonical proportion, when 
aid:: a—b : c—d, or aid:: b — a : d—c. 

And d, [since a(c—d) — d(a—b) or ac—{2a — b)d\, is a 

fourth harmonical proportional to a, b, c, when d— 
ac 

2 a — b 
In each of which cases, it is obvious, that twice the first 

term must be greater than the second, or otherwise the pro¬ 
portionality will not subsist. 
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437. Any number of quantities, a, b, c, d, e, Ac. are inhar- 
monical progression, if a : c : : a—b : b—c; b : d : : b — c : 
c—d ; c : e :: c—d : d—e, &c. 

438. The reciprocal of quantities in harmonical progression, 
are in arithmetical progression. For, if a, b, c, d, e, Ac. are 
in harmonical progression ; then, from the preceding Article, 
we shall have bc-{-ab=2ac ; dc-\-bc=2db ; ed-\-cd—2ec} 
Ac. Now, by dividing the first of these equalities by abc ; 

the second by bdc ; the third by cde ; Ac., we have, = 
J a c 

2 11 2 1 1_2 
tj t+-7=~ ; —b~—-1; Ac. 
o b a c c e a 
are in arithmetical progression. 

Therefore, i i -, Ac. 
a b c a e 

439. An harmonical mean between any two quantities, is equal 
to twice their product divided by their sum. For, if a, oc, b, 
are three quantities in harmonical proportion, then, a : b :: 

a—x : x—b ; .’.ax — ab — ab — bx, and x=--. 
a-\-b 

Ex. 1. Find a third harmonical proportional to 6 and 4. 
Let x= the required number, then 6 : x :: 6 — 4 : 4—x; 
24 — 6x=2x, and x—2. 

Ex. 2. Find an harmonical mean between 12 and 6. 
Ans. 8. 

Ex. 3. Find a third harmonical proportional to 234 and 
144. Ans. 104. 

Ex. 4. Find a fourth harmonical proportional to 16, 8, and 
3. Ans. 2. 

§ IV. PROBLEMS IN PROPORTION AND PROGRESSION. 

Prob. 1. There are two numbers whose product is 24, and 

the difference of their cubes : cube of their difference : : 19 : 1. 
What are the numbers ? 

Let x— the greater number, and y~ the lesser. 
Then, xy=24, and ar3—y3 : (a?—y)3 : : 19 : 1. 

By expansion, x3—y3 : x3—3x2y-j-3xy2—y3 : : 19 : 1 ; 
.*. 3x2y — 3xy2 : (x—y)3 : : 18 : 1 ; 

and, dividing by x—y, 3xy : (x—y)2 :: 18 : 1 ; 
but xy—24; .*. 72 : {x—y)2 :: 18 : 1. 
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Hence, 18 (#—y)2=72, or (x—y)2=4 
.*. x—y=2 

Again, x2—2a:y-}-y2 = 4 
and 4a:y =96 

a?2-f-2:ry-{-y2=100, and a?-}-y = 10, 
but x—y— 2, 

.*. a?=6, and y=4. 

Prob. 2. Before noon, a clock which is too fast, and points 
to afternoon time, is put back five hours and forty minutes ; 
and it is observed that the time before shown is to the true time 
as 29 to 105. Required the true time. 

Ans. 8 hours, 45 minutes 

Prob. 3. Find two numbers, the greater of which shall be 
to the less as their sum to 42, and as their difference to 6. 

Ans. 32, and 24. 

Prob. 4. What two numbers are those, whose difference, 
sum, and product, are as the numbers 2, 3, and 5, respectively ? 

Ans. 10, and 2. 

Prob. 5. In a court there are two square grass-plots ; a side 
of one of which is 10 yards longer than the other ; and their 
areas are as 25 to 9. What are the lengths of the sides ? 

Ans. 25, and 15 yards. 
Prob. 6. There are three numbers in arithmetical progres¬ 

sion, whose sum is 21 ; and the sum of the first and second 
is to the sum of the second and third as 3 to 4. Required the 
numbers. 

Ans. 5, 7, 9. 

Prob. 7. The arithmetical mean of two numbers exceeds 
the geometrical mean by 13, and the geometrical mean ex¬ 
ceeds the harmonical mean by 12. What are the numbers ? 

Ans. 234, and 104. 

Prob. 8. Given the sum of three numbers, in harmonical 
proportion, equal to 26, and their continual product =576 ; to 
find the numbers. 

Ans. 12, 8 and 6. 

Prob. 9. It is required to find six numbers in geometrical 
progression, such, that their sum shall be 315, and the sum of 
the two extremes 165. 

Ans. 5, 10, 20, 40, 80, and 160. 

Prob. 10. A number consisting of three digits which are in 
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arithmetical progression, being divided by the sum of its di¬ 
gits, gives a quotient 48 ; and if 198 be subtracted from it, the 
digits will be inverted. Required the number. 

Ans. 432. 
Prob. 11. The difference between the first and second of 

four numbers in geometrical progression is 36, and the diffe¬ 
rence between the third and fourth is 4 ; What are the num¬ 
bers 1 

Ans. 54, 18, 6, and 2. 
Prob. 12. There are three numbers in geometrical pro¬ 

gression ; the sum of the first and second of which is 9, and 
the sum of the first and third is 15. Required the numbers. 

Ans. 3, 6, 12. 
Prob. 13. There are three numbers in geometrical pro¬ 

gression, whose continued product is 64, and the sum of their 
cubes is 584. What are the numbers ? 

Ans. 2, 4, 8. 
Prob. 14. There are four numbers in geometrical progres¬ 

sion, the second of which is less than the fourth by 24 ; and 
the sum of the extremes is to the sum of the means as 7 to 3. 
Required the numbers. 

Ans 1, 3, 9, 27. 
Prob. 15. There are four numbers in arithmetical progres¬ 

sion, whose sum is 28 ; and their continued product is 585. 
Required the numbers. 

Ans. 1, 5, 9, 13. 
Prob. 16. There are four numbers in arithmetical progres¬ 

sion ; the sum of the squares of the first and second is 34 ; 
and the sum of the squares of the third and fourth is 130. 
Required the numbers. 

Ans. 3, 5, 7, 9. 



CHAPTER XIV. 

ON LOGARITHMS. 

440. Previous to the investigation of Logarithms, it may 
not be improper to premise the two following propositions. 

441. Any quantity which from positive becomes negative, and 
reciprocally, passes through zero, or infinity. In fact, in order 
that m, which is supposed to be the greater of the two quantities 
m and n, becomes n, it must pass through n ; that is to say, 
the difference m—n becomes nothing ; therefore p, being this 
difference, must necessarily pass through zero, in order to 
become negative, or —p. But if p becomes — p, the fraction 

will become — J ; and therefore it passes through -J, or in¬ 
finity. 

442. It may be observed, that in Logarithms, and in some 
trigonometrical lines, the passage from positive to negative is 
made through zero ; for others of these lines, the transition 
takes place through infinity : It is only in the first case that 
we may regard negative numbers as less than zero ; whence 
there results, that the greater any number or quantity a is, 
when taken positively, the less is —a ; and also, that any ne¬ 
gative number is, a fortiori, less than any absolute or positive 
number whatever. 

443. If we add successively different negative quantities to 
the same positive magnitude, the results shall be so much less 
according as the negative quantity becomes greater, abstract¬ 
ing from its sign. For instance, 8 —1 >8—2>8-—3, &c. 

It is in this sense, that 0>—1>—2>—3, &c.; and 3> 
0>—1>—2>—3>—4, &c. 

444. Any quantity, which from real becomes imaginary, or 
reciprocally, passes through zero, or infinity. This is what may 
easily be concluded from these expressions, 

x =y^(a2—y2), x— 
V(a2—y2) 

considered in these three relations, 

y2 /_ a2, y2=a2, y2 f a2. 
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§ I. THEORY OF LOGARITHMS. 

445. Logarithms are a set of numbers, which have been , 
compnted and formed into tables, for the purpose of facilitat¬ 
ing arithmetical calculations ; being so contrived, that the ad¬ 
dition and subtraction of them answer to the multiplication 
and division of the natural numbers, with which they are made 
to correspond. 

446. Or, when taken in a similar, but more general sense, 
logarithms may be considered as the exponents of the pow¬ 
ers, to which a given, or invariable number, must be raised, 
in order to produce all the common, or natural numbers. 
Thus, if ax~y, cix/—y', ax"~y'\ &c.; then will the indices 
x, x/, x/f, &c. of the several powers of a, be the logarithms of 
the numbers y, y', y", die. in the scale or system, of which a 
is the base. 

447. So that, from either of these formulre, it appears, that 
the logarithm of any number, taken separately, is the index 
of that power of some other number, which, when it is involved 
in the usual way, is equal to the given number. And since 
the base a, in the above expressions, can be assumed of any 
value, greater or less than 1, it is plain that there may be an 
endless variety of systems of logarithms, answering to the 
same natural numbers. 

448. Let us suppose, in the equation ax=y, at first, # = 0, 
we shall have y~ 1, since a° = l ; to a?=zl, corresponds y — a. 
Therefore, in every system, the logarithm of unity is zero ; and 
also, the base is the number whose proper logarithm, in the sys¬ 
tem to which it belongs, is unity. These properties belong es¬ 
sentially to all systems of logarithms. 

449. Let be changed into —a? in the above equation, 
and we shall have 

——y : 
ax y 

a1 

Now, the exponent x augmenting continually, the fraction 
* t * 

if the base a be greater than unity, will diminish, and may 

be made to approach continually towards 0, as its limit; to 
this limit corresponds a value of x greater than any assignable 
number whatever. Hence it follows, that, when the base a is 
greater than unity, the logarithm of zero is infinitely negative. 

450. Let y and y' be the representatives of two numbers, 
x and x' the corresponding logarithms for the same base : we 
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shall have these two equations, <f—y, and a1'—y', whose pro¬ 
duct is ax.ax> —y.y', or aJ+*'=yy/, and consequently, by the de¬ 
finition of logarithms, a?+a;'=;log. yy', or log. yy'=■ log. y-{- 
log. y'. 

And, for a like reason, if any number of the equations 
ax=y, ax/—f, ax" —y'\ &c. be multiplied together, we shall 
have Xxtx/+x//letc-z-yy'y, &c. ; and, consequently, xx/ 

&c. = log. yy'y", ; or log. yy'y", &c.=log. y+log. y -f- 
log. y", <&c. 

The logarithm of the product of any number of factors is, 
therefore, equal to the stim of the logarithms of those factors. 

451. Hence, if all the factors y, y', y", &c. are equal to 
each other, and the number of them be denoted by m, the pre¬ 
ceding property will then become log. (ym)z=m, log. y. 

Therefore, the logarithm of the mth power of any number is 
equal to m times the logarithm of that number. 

452. In like manner, if the equation aT—y, be divided by 
a xt 

a ’—f, we shall have, from the nature of powers, — , or 
a1 

x—x' 

a L 

y 
t» 

and by the definition of logarithms, oc — #'=:log 

CP 
£5 

(f) ’ 01 l°g.y-log. y’=log. (f). 

Hence the logarithm of a fraction, or of the quotient amsin 
from dividing one number by another, is equal to the logarithm 
of the numerator minus the logarithm of the denominator. 

453. And if each member of the equation, ax—y, be rais 

ed to the fractional power we shall have an —y” ; and 

m - 
consequently, as before, —a:=log. (yr!):=log. y/ ym ; or, log. 

- m 
yn — — log. y. 

n 

Therefore, the logarithm of a mixed root, or power, of any 
number, is found by multiplying the logarithm of the given 
number, by the numerator of the index of that power, and divi¬ 
ding the result by the denominator. 

454. And if the numerator m of the fractional index of the 
number y, be, in this case, taken equal to 1, the preceding 
formula will then become 

i 

log. yn-\log. y. 

From which it follows, that the logarithm of the nth root of 
28 
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any number, is equal to the nth part of the logarithm of that 
number. 

455. Hence, besides the use of logarithms in abridging the 
operations of multiplication and division, they are equally ap¬ 
plicable to the raising of powers and extracting of roots ; 
which are performed by simply multiplying the given loga¬ 
rithm by the index of the power, or dividing it by the number 
denoting the root. 

456. But, although the properties here mentioned are com¬ 
mon to every system of logarithms, it was necessary for 
practical purposes to select some one of these systems from 
the rest, and to adapt the logarithms of all the natural num¬ 
bers to that particular scale. And as 10 is the base of our 
present system of arithmetic, the same number has accord¬ 
ingly been chosen for the base of the logarithmic system now 
generally used. 

457. So that, according to this scale, which is that of the 
common logarithmic tables, the numbers, 

—4—3—2—10 1 2 3 4 
etc. 10 ,10 ,10 ,10 , 10 , 10 , 10 , 10 , 1.0 , 

etc. ; or, 

etc* TOOOO’ 

1 

1000’ 

1 l 

ioo’ To , 1, 10, 100, 1000, 10000, 
etc., have for their logarithms, 

etc. —4, —3, —2, —1, 0, 1, 2, 3, 4, etc. 
which are evidently a set of numbers in arithmetical progres¬ 
sion, answering to another set in geometrical progression ; as 
is the case in every system of logarithms. 

458. And, therefore, since the common or tabular logarithm 
of any number (?i) is the index of that power of 10, which, 
when involved, is equal to the given number, it is plain, from 
the equation 10*=^, or 10—that the logarithms of all the 
intermediate numbers, in the above series, may be assigned 
by approximation, and made to occupy their proper places in 
the general scale. 

459. It is also evident that the logarithms of 1,10, 100, 
1000, etc., being 0, 1,2, 3, respectively, the logarithm of any 
number, falling between 1 and 10, will be 0, and some deci¬ 
mal parts ; that of a number between 10 and 100, 1 and some 
decimal parts ; of a number between 100 and 1000, 2 and some 
decimal parts ; and so on. 

460. And, for a like reason, the logarithms of 
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1 
1000’ 

etc. or of their ’ equals, .1, .01, .001, etc. in the de¬ 

scending part of the scale, being —1, —2, —3, etc. the loga¬ 
rithm of any number, falling between 0 and .1, will be —1 and 
some positive decimal parts ; that of a number between .1 and 
.01, —2 and some positive decimal parts ; and so on. 

461. Hence, as the multiplying or dividing of any number 
by 10, 100, 1000, etc. is performed by barely increasing or 
diminishing the integral part of its logarithm by 1, 2, 3, &c. 
it is obvious that all numbers which consist of the same 
figures, whether they be integral, fractional, or mixed, will 
have the same quantity for the decimal part of their loga¬ 
rithms. Thus, for instance, if i be made to denote the index, 
or integral part of the logarithm of any number N, and d its 
decimal part, we shall have log. N=z-j-c?; log. 10mxN=: 

N 
; log. j^=(t—m)-\-d ; where it is plain that the 

decimal part of the logarithm, in each of these cases, remains 
the same. 

462. So that in this system, tne integral part of any loga¬ 
rithm, which is usually called its index, or characteristic, is 
always less by 1 than the number of integers which the natu¬ 
ral number consists of; and for decimals, it is the number 
which denotes the distance of the first significant figure from 
the place of units. Thus, according to the logarithmic tables 
in common use, we have 

Numbers. 
1.36820 
335.260 

.46521 

.06154 
&c. 

Logarithms. 
0.1361496 
2.5253817 

1.6676490 

2.7891575 
&c. 

where the sign — is put over the index, instead of before it, 
when that part of the logarithm is negative, in order to distin¬ 
guish it from the decimal part, which is always to be consi¬ 
dered as -{-, or affirmative. 

463. Also, agreeably to what has been before observed, the 
logarithm of 38540 being 4.5859117, the logarithms of any 
other numbers, consisting of the same figures, will be as fol- 
lows • 
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Numbers. 
3854 
385.4 
38.54 
3.854 

Logarithms 
3.5859117 
2.5859117 
1.5859117 
0.5859117 

.3854 1.5859117 

.03854 2.5859117 

.003854 3.5859117 

l 

which logarithms, in this case, differ only in their indices, the 
decimal or positive part, being the same in them all. 

464. And as the indices, or the integral parts of the loga¬ 
rithms of any numbers whatever, in this system, can always 
be thus readily found, from the simple consideration of the 
rule above-mentioned, they are generally omitted in the ta¬ 
bles, being left to be supplied by the operator, as occasion re¬ 
quires. 

465. It may here, also, be farther added, that, when the 
logarithm of a given number, in any particular system, is 
known, it will be easy to find the logarithm of the same num¬ 
ber in any other system, by means of the equations, ax—n, 
ex/ = ?i, which give 
(1) . . . . x = log. n, x/— 1. n ..... (2). 
Where log. denotes the logarithm of n, in the system of which 
a is the base, and 1. its logarithm in the system of which e is 
the base. 

£_ xg_ 

466. Whence ax=ex\ or ax'=c, and e* = a, we shall have, 

0C ft/ 
for the base a, —— log. e, and for the base e,—=l.a ; or 

oc oc 
(3) .... x = x’ log. e, x' — x.l.ci.(4). 

Whence, if the values of x and x', in equations (1), (2), 
be substituted for x and x' in equations (3), (4), we shall have, 

log. n— log. exl.n, and 1.71=-—— X log. n ; or l.n—l.a X 
log. e 

1 l 
log. n, and log. n = y—Xl.n. where log. e, or its equal j— ex- 

L »(Z L.d 

presses the constant ratio which the logarithms of n have to 
each other in the systems to which they belong. 

467. But the only system of these numbers, deserving of 
notice, except that above described, is the one that furnishes 
what have been usually called hyperbolic or Neperian loga¬ 
rithms, the base of which is 2.718281828459 .... 
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468. Hence, in comparing this with the common or tabular 
logarithms, we shall have, by putting a in the latter of the 
above formulae =10, the expression 

log. n— | X l.7i, or l.n = Z. 10 X log. n 
L\J 

Where log., in this case, denotes the common logarithm of 
the number n, and l. its Neperian logarithm ; the constant 

faCtOT 7T0WhichiS 2^02^50929’ °r '4342944819 • • 
ing what is usually called the modulus of the common or ta¬ 
bular system of logarithms. 

469. It may not be improper to observe, that the logarithms 
of negative quantities, are imaginary; as has been clearly 
proved, by Lacroix, after the manner of Euler, in his Traite 
du Calcul Diffei'entiel et Integral; and also, by Suremain-Mis- 

sery in his Theorie Purement Algebrique des Quantites hna- 
ginaires. See, for farther details upon the properties and cal¬ 
culation of logarithms, Garnier’s d'Algebre, or Bonnycastle’s 

Treatise on Algebra in two vols. 8vo. 

§ II. application of logarithms to the solution of expo¬ 

nential EQUATIONS. 

470. Exponential equations are such as contain quanti¬ 
ties with ujiknown or variable indices : Thus, ax~b, xx=c, 
y 

—=d, &c. are exponential equations 

471. An equation involving quantities of the form xx, where 
the root and the index are both variable, or unknown, seldom 
occur in practice, we shall only point out the method of solv¬ 
ing equations involving quantities of the form av, abx, where 
the base a is constant or invariable. 

472. It is proper to observe that an exponential of the 
bx 

form a , means, a to the power of bx, and not ab to the power 
of x. 

Ex. 1. Find the value of x in the equation ax=b. 
Taking the logarithm of the equation ax=b, we have xX 

log. a=:log. b ; x=j°~— ; thus, let a = 5, 6 = 100 ; then in 
log. a 

the equation 5*= 100, 
log. 100 2.0000000 o 

*“* log. 5--0.698970CT~' * 
28* 
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Ex. 2. It is required to find the value of x in the equation 
tflx — c. 

Assume bx—y, then av=c, and yxlog. a—log. c\ :.y. 

log. c 
. —. Hence bx=zj°^-~ (which let) = <A Take the loga- 
log. a log. a 

log. d 
rithm of the equation b*—d, then, by (Ex. 1), x= 

log. b“ 
Thus, let a±z9, b—3, c=1000 ; then in the equation 93 = 

_ __ log. c log. 1000 _ , ,. 7. , log. d 
1000, - - —7 — —— = 3.14( = cZ) ; and a=r- ■■■ = 1 7 i - ^ v / log. b 

= 1.04. 

log. b log. 9 
log. 3.14__.4969296 

log. 3 “.4771213 

Ex. 3. Make such a separation of the quantities in the equa- 

.7 7 7 x log. («+^) 
tion (a1— b~Y=za-+-b, as to show, that -——=:---rr. 

v l—x log. (a — b) 
Taking the logarithm, we have 

ffXlog. (a2 — b2) = log. (a-f-6), or tcxlog. (a-{-6) X (a—&) = 
log. (a+6) ; 
that is, a:Xlog. (a+^) + trXlog. (a — &)=log. (a-fZ>). 

Hence tcXlog. (a—6)=log. (# + 6) —xXlog. [a + b) = 
si / . 7s ® log. (a+b) 

(1 — x) log. (<z-f-b); -=——;-rr-. 
v v ^ ’ 1—a? log. {a—b) 

Ex. 4. Given ax-\-by=zc, and ax—b^zzd, required the va¬ 
lues of x and y. 

c-\-d 
By addition, 2ax=zc-\-d, or ax=——, which put =m ; then 

log. m 
x= 

log. a * 

Again, by subtraction, we have 2bv=zc—d, or by: 
■ - \ i- 

log. n 

c—d 

: ~2~, 

(which let —n) ; .\ y — 
log. b’ 

Ex. 5. Find the value of x in the equation —x^rC — e. 
d ' 

Ans. 
log. b 

Ex. 6. Find the value of x in the equation a*= 
V(b2-c2) 

{I d e 

Ans. x- 
•ilog. (&4-c)+ilog. (b—c)-f log. d—\ log. e 

log. a 
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Ex. 7. Find the value of x in the equation 

+ 1. Ans. £———. 
log. a 

Ex. 8. Given log. x+log. y=§ Mo find the values of x 
and log. x—log. y — \ ) and y. 

Ans. 10 -y/10, and y-rlO. 
Ex. 9. In the equation 2*= 10, it is required to find the va¬ 

lue of x. Ans. £ = 3.321928, &c. 
Ex. 10. Given y 729=3, to find the value of x. 

Ans. £=6. 
Ex. 11. Given y 57862 = 8, to find the value of x. 

Ans. #=5.2735, &c 
3 

Ex. 12. Given (216)* =64, to find the value of x. 
Ans. £=3.8774, &c 

Ex. 13. Given 43=4096, to find the value of £. 

Ans. £=|——^ = 1.6309, &c. 
log. 3 

Ex. 14. Given a*4y=c, and bx-y—d, to find the values of 
£ and y. 

m-\-n . m — n . log. c , 
Ans. =——and y=-; where m=r^-—, and n — 

2 y 2 ’ log. a 
log. d 

log. b' 

\ 

k 



CHAPTER XV. 

ON 

THE RESOLUTION OF EQUATIONS 

OF THE THIRD AND HIGHER DEGREES. 

< / V . ' " 

§ I. THEORY AND TRANSFORMATION OF EQUATIONS. 

473. In addition to what has been already said (Art. 168), 
it may here be observed, that the roots of any equation are 
the numbers, which, when substituted for the unknown quan¬ 
tity, will make both sides of the equation identically equal. Or, 
which is the same, the roots of any equation are the numbers, 
which, substituted for the unknown quantity, reduce the first 
member to zero, or the proposed equation to the form of 0 = 0 ; 
because every equation may, designating the highest power of 
the unknown quantity by xm, be exhibited under the form 

A#m_I+B;Em“2+Ca:m-3+ . . . Ta?-f-V = 0. (1), 

A,B, C, ... T, V, being known quantities. And the resolu¬ 
tion of an equation is the method of finding all the roots, which 
will answer the required condition. 

474. This being premised, it may now be shown, that if a 
he a root of the equation (1), the left-hand member of that equa¬ 
tion will be exactly divisible by x — a. 

For if a be substituted for x, agreeably to the above defini- 
nition, we shall necessarily have 

am + Aam-1 + Bam-2+Cam-3+ . . . Ta + Y = 0. 

And consequently, by transposition, 

Y =—am—Aam-1 — Bam-2 — Cam~3— . . . —Ta. 

Whence, if this expression be substituted for Y in the first 
equation, we shall have, by uniting the corresponding terms, 
and placing them all in a line, 

(xm—a’”)T A(Fn-1 —am~1)-|-B(aim-2— am-3) + T(#—a) — 0. 

Where, since the difference of any two equal powers of 
two different quantities is divisible by the difference of their 
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roots (Art. 108), each of the quantities (xm—am), (xm- — am~1), 
(xm~2—am~2), &c. will be divisible by x— a. And, therefore, 
the whole compound expression 

— am-l) + lZ(xm~2 — am~2)+ &c. =0, 
which is equivalent to the equation first proposed, is also di-* 
visible by x—a\ as was to be shown. 

But if a be a quantity greater or less than the root, this 
conclusion will not take place ; because, in that case, we shall 
not have 

V= — am—A«w‘—1 — Bam~~2 — Cam~3— .... —Ta ; 

which is an equality obviously essential to the division in 
question. 

475. The preceding proposition may be demonstrated, af¬ 
ter the manner of D’Alembert, as follows : In fact, desig¬ 
nating by X, the polynomial, which forms the first member of 
the equation (1); then we shall always carry on the division 
of X by x — a, till we arrive at a remainder R, independent of 
x, since x is only of the first degree in the divisor; so that, 
representing by Q the corresponding quotient, Ave shall have 
this identity, 

X = Q(;r—«) + R. 
Now, by hypothesis, a substituted for x reduces the poly¬ 

nomial X to zero ; and it is evident that the same substitution 
gives Q(x—a) = 0 ; therefore we shall necessarily have 0 = R : 
Hence x—a divides the equation (1), without a remainder. 

Reciprocally, if the first member of any equation of the form 
X = 0 be divisible by x — a, a is a root. In fact we have, accord¬ 
ing to this hypothesis, the identity X = Q(aj — a), which, for 
x=za, gives X = 0 ; therefore, (Art. 473), a is a root of the 
proposed equation. 

Cor. 1. Hence we may easily conclude, that if a be not a 
root of the equation (1), the first member will not be divisible 
by x — a. 

Cor. 2. And if the first member of the equation (1), be 
not divisible by x — a, a is not a root of the proposed equa¬ 
tion. 

476. Supposing every equation to have one root, or value of 
the unknown quantity, it can then be shown, that any proposed 
equation will have as many roots as there are units in the index 
of its highest term, and no more. For let a, according to the 
assumption here mentioned, be a root of the equation (1), 

xm~\ kxm~l4-Ba? —2-kC^m—3T- • . . 4-T®-|-V==0. 
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Then, since by the last proposition this is divisible by x~a, 
it will necessarily be reduced, by actually performing the ope¬ 
ration, to an equation of the next inferior degree, or one of the 
former 

a^-i+AV^-f B'a^+CV*-4-}- . . T'a+V'rsO. 

And as this equation, by the same hypothesis, has also a root, 
which may be represented by a', it will likewise be reduced, 
when divided by x—a', to another equation one degree lower 
than the last; and so on. 

Whence, as this process can be continued regularly in the 
same manner, till we arrive at a simple equation, which has 
only one root, it follows that the proposed equation will have 
in roots 

a, aa", a"\.a[m~1)'; 
and that its successive divisors, or the factors of which it is 
composed, will be 

x—a, x—a', x—a\ x—a.... x—a(m~1)'', 

being equal in number to the units contained in the index m 
of the highest term of the equation. 

Cor. If the last term of an equation vanishes, as in the 
form xm+ Aa:wl"'14-Ba;m''24- .... +Ta;=0, it is evident that 
a? = 0 will satisfy the proposed equation; and consequently 0 
is one of its roots. And if the two last terms vanish, or the 
equation be of the form xm-\-Axm~l-\-^xm~2■ . • +S#2r=0, 
two of its roots are 0 ; and so on. See, for another demon¬ 
stration of the preceding proposition, Bonny castle's Algebra, 
vol. ii. 8 vo. 

477. Since it appears (Art. 474), that every equation, 
when all its terms are brought to one side, is exactly divi¬ 
sible by the unknown quantity in that equation minus either of 
its roots, and by no other simple factor, it is evident that the 

equation 

xm+Axm !+ Ba;OT-2+Ctfm"'3-f- . . Ta:+Vr=0 . (1), 

of which a, b, c, d, . . . I, are supposed to be its several roots, 
is composed of as many factors 

(a: — a) (x — b) (x—c) (x—d) . . (a?—7) . (2), 

as the equation has roots ; and that it can have no other factor 
whatever of that form. 

478. Whence, as these two expressions are, by hypothe¬ 
sis, identical, the proposed equation, by actually multiplying 
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the above factors, and arranging the terms according to the 
powers of x, will become 

xm—\abcX)—0 xm—a Xm—1 aJ) xm—2 — a}JC 

-b -\-ac — abd 
— c ~\-ad —acd 
-d -j-be —bed 
&c. &c. &c. 

which form is general, whatever maybe the different signs of 
the roots, or of the terms of the equation ; taking a, b, c, &c. 
as well as A, B, C, &c. in -f- or — as they may happen to be. 

479. Hence, since the two equations (1), (3), are identical, 
the coefficients of the like powers of x, are equal; and con¬ 
sequently, the following relations between the coefficients and 
roots will be sufficiently obvious. 

I. The sum of all the roots of any equation, having its terms 
arranged according to the order of the powers of the unknown 
quantity, is equal to the coefficient of the second term of that 
equation, with its sign changed. 

II. The sum of the products of a,ll the roots, taken two and 
two, is equal to the coefficient of the third term, with its proper 
sign; and so on. 

III. The continued product of all the roots, is equal to the 
last term, taken with the same or a contrary sign, according as 
the equation is even or odd. 

480. It is very proper to observe, that we cannot have all 
at once x — a, x=b, x=c, &c. for the roots of any equation as 
in the formula (2); except when a = b=zc=d, &c., that is, 
when all the roots are equal. The factors x — a, x—b, x — c, 
&c. exist in the same equation : because algebra gives, by one 
and the same formula, not only the solution of the particular 
problem from which that formula may have originated ; but 
also the solution of all problems which have similar condi¬ 
tions. The different roots of the equation satisfy the respect¬ 
ive conditions ; and those roots may differ from one another 
by their quantity, and by their mode of existence. 

481. To this we may likewise add, that, if the roots of any 
equation be all positive, as in formula (2), where the factors 
are of the form 

(x — a) (x — b) (a? — c) (#—d) .... (x —1) = 0, 
the signs of the terms will be alternately + and — ; as will 
jeadily appear from performing the operation required. 
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482. But if the roots be all negative, in which case the 
factors will be of the form 

(a;-f a) (x-j-b) (x-f-c) (x-\-d) . . (a?-W) = 0, 
the signs of all the terms will be positive ; because the equa¬ 
tion arises wholly from the multiplication of positive quanti¬ 
ties. 

Some equations have their roots in part positive, and in part 
negative : Thus, in the cubic equation, (x—a) X (a:—b) X 
(a;-j-c) — 0, or a:3 + (c—a — b)x2-\-(ab — ac—be) X xf-abcmO, 
there are two positive and one negative root; because, when 
x — a —0, x—a ; x — b — 0, x=b ; x-{-c=0, x=—c. 

483. Any equation, having fractional coefficients, may be 
transformed into another, that shall have the coefficient of its 
first term unity, and those of the rest, as well as the absolute 
terms, whole numbers. 

For let there be taken, instead, of a general equation of this 
kind, the following partial example, 

0, 
which will be sufficient to show the method that should be 
followed in other cases. 

Then if each of the terms be multiplied by the product of 
the denominators, or by their least common multiple, we shall 
have 12a;3 + 6aj2 + 8a;-l-9=:0, where the coefficients and abso¬ 
lute term are all whole numbers. 

V 
And if 12a;, in this case, be put =y, or x—~, there will 

arise by substitution, 

r 
12: +6(fb)+8(il)+9=0' 

Which last equation, when all its terms are multiplied by 122, 
gives y3-|-6y2-h96y+ 1296 = 0 ; where the coefficient of the 
first term is unity, and those of the rest whole numbers, as 
was required. 

So that when the value of y in this equation is known, we 

shall have for the proposed equation x= ~. 
1 ^ 

484. Any equation may be transformed into another, the roots 
of which shall be greater or less than those of the former by a 
given quantity. 

Thus, let there be taken, as before, the following geqeral 
equation, 
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xm-\- Aa?m“1 + Ba;OT“2+Ca;m""3+ • • T#4-V=0. 
And suppose it were required to transform it into another, 
whose roots shall be greater than those of the given equation 
by e. 

Then, if y be made to represent one of these roots, we shall 
have, by the nature of the question, 

y=.x-\-e, or x—y—e. 

And, consequently, by substituting?/—e for x, in the proposed 
equation, there will arise 

ym—me 

4* A 
ym—1_|_ 

■{m—l)Ae 
+ B 

ym-2 &c.—0 

(4), 
which equation will evidently fulfil the conditions required, 
y being here greater than x by e. And if y be taken —x—e, 
or x=y-\-e, we shall obtain, by a similar substitution, an 
equation whose roots are less than those of the given equation 
by e. 

485. Whence, also, as e, in the above case, is indeterminate, 
this mode of substitution may be used for destroying one of the 
terms of the proposed equation. For putting in the above ex¬ 
pression the coefficient —?ne-{- A. — 0, we shall have 

A , A 
c=—, and x — y — e~y-; 

m J m 

where it is plain, that the second term of a,ny equation may he 
taken away, by substituting for the unknown quantity some other 
unknown quantity, together with such a part of the coefficient of 
the second term, taken with a contrary sign, as is denoted by the 
index of the highest power of the equation. 

Thus, for example, to transform the equation x3 — 9x2-\~7x 
+ 12r=0 into one which shall want the second term. Assume 
x~y-1-3 ; then 

z3=y3-f 9y2+2 7y+27 ) 
— 9x2— —9y2—54y —81 ( 
4- 7x = 4-7y4-21(~U 
4-12 = 4-12) 

that is, y3 — 20y—21 =0 ; and if the values of y be a, b, c, the 
values of x are a + 3,&4-3, and c4-3. 

The third term of the proposed equation may also be taken 
away by means of the coefficient, or formula, 

m(m—1) „ , , _ 
--e2-(m-l)Ae4-£==0, 

29 
2 
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where the determination of e requires the solution of an equa¬ 
tion of the second degree ; and so on. 

486. Any proposed equation may be transformed into another, 
the roots of which shall be any multiples or parts of those of the 
former. „ 

Thus, let there be taken, as in the former propositions, the 
general equation 

Rxm-2+Cxm—3+ • • T^+V = 0. (1). 
And, in order to convert it into another, whose roots shall 

be some multiple of those of the given equation ; let there be 

V 
put y—ex, or £=“• 

Then, by substituting this value for x in the proposed equa¬ 
tion, there will arise 

4/Wl n/T71 —— 1 —2 

-—bA-—--f-B---9+-T-+V=0. 
£>771 1 £>771 1 1 £>771—2 £> 1 

And, consequently, if this be multiplied by em, we shall have 
ym+Aeym-l + Be2ym~l-\- • • • • r?em~ly+ \em — 0, 

which equation will evidently fulfil the conditions required, y 
being equal to ex. 

00 
And if y be put =-, or x=ey, we shall obtain, by a similar 

substitution of this value for x, and then dividing by em, the 
equation 

A * "B 
ym-1-yWl—1_|_ yWl—2_}_ , . . 

T 
em—\ em 

where the roots are equal to those of the proposed equation, 
divided by e. 

And it may easily be proved, that if the alternate terms, 
beginning with the second, be changed, the signs of all the roots 
are changed. 

487. For a more particular account of the general Theory 
and Doctrine of Equations, see Bonnycastle’s Algebra, vol. 
ii. 8vo. Bridge’s Equations, and Lagrange’s Traite de la Re¬ 
solution des Equations Numeriques; where the intelligent 
reader will find a full investigation of this part of analysis. 

§ II. RESOLUTION OF CUBIC EQUATIONS BY THE RULE OF 

Cardan, or of Scipio Ferreo. 

488. Cubic equations, as has already been observed in 
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Chap. VIII., are of two kinds ; that is, pure and adjected. All 
pure equations of the third degree are comprehended in the 
formula x3 — n, where n may be any number whatever, posi¬ 
tive or negative, integral or fractional. And the value of x is 
obtained by extracting the cube root of the number n. 

489. But in this manner, we obtain only one value for x; 
whereas every equation of the third degree has three values. 
In order to show how the two remaining values of x may be 
determined in equations of the above form, let us, for example, 
consider the equation x3 — 8 — 0 ; where x is readily found 
=2. And as 2 is a root of the proposed equations, it is plain 
that x3 — 8 must be divisible by x—2 : therefore, this division 
being actually performed, the quotient will be x2-\-2x-\-4. 

Hence it follows, that the equation a?3—8 = 0, may be re¬ 
presented by these factors ; 

(x—2) X (x2-\-2x-{-4) — 0. 

490. Now the question is, to know what number we are to 
substitute instead of x, in order that x3 — 8 = 0 ; and it is evi¬ 
dent that this condition is answered by supposing the product 
which we have just found equal to 0: but this happens, not 
only when the first factor x—2 = 0, which gives x=2, but 
also when the second factor a?2-f-2a;-f-4: = 0. 

Let us, therefore, make x2-\-2x-{-4 = 0 ; then x— — l± 
■yf — 3. So that besides the case in which x — 2, we find two 
other values of x, which will satisfy the equation x3 — 8 = 0. 
It is true, as Euler justly observes, that these values are im¬ 
aginary ; but yet they deserve attention. 

491. What has been just said applies in general to every 
pure cubic, such as x3 — n, and the three roots or values of x, 
may be found in a similar manner. To abridge the calcula¬ 
tion, let us suppose n—n', so that n=n'3 ; the proposed 
equation will then assume this form, x3—n'3 — 0, which, be¬ 
ing divided by x—n', will give for the quotient x2-\-n'x-\-n'2. 
Consequently, the equation x3—n—0, may be represented by 
the product (a?—n') [x2-{-n'x-\-n'2)=0, which is in fact =0, 
not only when x — n'=z0, or x—n'; but also when x2-\~n'x~ir 
n'2 = 0. Now this expression contains two other values of x, 

•3 : both of which answer the 
, . • n' v! I 
for it gives x= ——±—^J- 

required condition. 

492. All adfected cubic equations, after being properly re¬ 
duced by the known rules, may be exhibited under the follow? 
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ing general forms ; namely, x3-\-ax2-\-bx = 0, and x3-\-a'x24r 
b'x-\-c'—0, where a, b, a', b\ and c', may be any numbers 
whatever, positive or negative, integral ox fractional. 

493. The solution of a cubic equation, of the form x3-\-ax2 
-\-bx = 0, is attended with no difficulty ; since it may at once 
be put under the form x x (a:2 + a^ + ^) = 0 ; and it is evident 
that the product x x may be =0, in two ways, 
that is, when # = 0, or x2-\-ax -\-b — 0 ; so that nothing now 
remains, but to find the values of x in the quadratic equation 

a 
x2-\-ax-\-b=z0, wdiich are readily found to be x=-±^y'(a2 

2 
—4b). Consequently, the three values of x, which answer 
the required condition, are 0,—-Ja-f- \ y'fa2 — 4i), and — \d—b 
•y/ (a2—4b). 

494. An adfected cubic equation is said to be complete, 
when, after being properly reduced by the known rules, it is 
of the form x3-\-a'x2-{-b'xfc'—0. And it has already been 
shown, that every cubic equation of the above form, whose 
roots are r', r', r", may be transformed into another deficient in 
its second term, by substituting y—^a' for x in the given equa¬ 
tion ; in which case the roots of the transformed equation 
will be r—\a' r’—\a' r"—^a' ; if, therefore, the roots of the 
transformed equation be known, the roots of the given equation 
will be known also. Hence the resolution of a cubic equation 
complete in all its terms will be effected, if we can arrive at 
the resolution of it in the form x3-\-ax — b. In which a and b 
may be any positive or negative numbers whatever. 

495. For this purpose, let there be taken x—y-\z, and the 
above equation, by substitution, will become y3-\-3y2z-\-3yz2 
+ z3-\-ay -f- az =. b. 

Or, because 3y2z-\-3yz2 = 3yz(y-\- z), and ay-\~az = a(y 4-s), 
it will be y3-\-z3-\-(3yz4ra)(y-\-z) = b. 

Now, as another unknown quantity has been introduced into 
the equation, another condition may be annexed to its solution. 

Let this condition be, that 3yz4ra — 0, or z——^-, in which 
3 y 

case the transformed equation becomes 

y3-\-z3 — b, or by substitution f- 
aJ 

2 7y 
; 

y6 — by3—^ja3 ; which equation solved, gives 
y—V [\b-{- y/\\b2-[-ffa3)'\ ; .'. since z3 — b—y3, we have 
Z-?/[lb—-\/{}i2+^ja3)]; and .x = i/+z = J/ 

W>~ •••(!); 
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where by taking a and b in + or —1, as they may happen 
to be, we have always one root of the transformed equation ; 
and this is the formula which is called the Rule of Cardan. 

496. And since one value of x is now determined, the equa¬ 
tion may be depressed to a quadratic, from which the other 
two roots may be readily found. 

Ex. 1. Given a:3+ 2#=: 12, to find the values of x 
Comparing this with the general equation, x?-\-ax — b, we 

have a—2, and b —12 ; therefore, by substituting these values 
for a and b in the above formula (1), 

*=V [6 + V[(36 + 28f)]+y [6- V(36 + 2y)] 
=+ (6+ 6.024633)++ (6-6.024633) 
=+ (12.024633)++ ( — .024633) = 2.29 — .29 = 2. 
One root of the equation, therefore, is 2 ; divide x3-\-2x— 

12 by x—2, and the quotient is a?2—2.Z + 6 ; r.x2—2a: + 6 = 0, 
whose roots are ldr +—5. Hence, the three roots of the 
equation are 2, i+V—5> i—V — 5, the two last of which 
are imaginary. 

Ex. 2. Given x3—48#:= 128, to find the values of x. 
Here, by comparing this with the equation, (Art. 494), we 

have a——48, and 6 = 128 ; 
.-. #=+ [64+ +(4096-4096)1 + ?/ [64 — +(4096-4096)] 

=+ (64 + 0)++ (64 — 0)=4 + 4=8. 
One root of the equation, therefore, is 8 ; divide x3 — 48a: 

—128 by y — 8, and the quotient is #2+8#+16 ; .*. #2+8#+ 
16 = 0, whose roots are —4 + 0 the three roots of the pro¬ 
posed equation are 8, —4, —4, the two last of which are 
equal. 

497. Hence we may infer, if a be negative, and +ya3, taken 
with a positive sign, equal to \b2, or \b2fjo,3—0 ; then two 
roots of the proposed equation are always equal. 

498. But if a be negative, and +7a3, taken with a positive 
sign, greater than +2 ; then \b2-\--£ja3 is a negative quantity ; 
and consequently, y/(\b2-f^a3) is imaginary. 

Although the value of x cannot be obtained from Cardan’s 
formula, (Art. 495), by the ordinary method, we are not, how¬ 
ever, to conclude, that the value of x, in this case, is imagi¬ 
nary ; since it may be proved to be a real quantity after the 
following manner. 

499. For this purpose, let \b be represented by a, and 
+(|-63+yy03), supposed imaginary, by 6'+—1 ; then #=+ 
(a/+6,-+ —1)++ (a'-&V — !)• Now, let V (a-\-b'y~\) 
and + (a' — 6'-+ — 1) be expanded by means of the binomial 
theorem; and since, by adding the resulting series together, 

29* 
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the terms involving the imaginary quantity -y/—1 destroy on© 
another, we shall have 

n , 6'2 106'4 , 1546'6 . « 

X~2a (1 + 9a'2 243?*+6561«'<s ’ &C-) ' (3); 
which is a real expression. When a! is greater than b' ; the 
above series converges rapidly, and a few of the first terms 
will give a near value of the root required. But if a' is less 
than b\ b'-y/ — 1 must be put for the first term of the binomial, 
and a' for the second : See Clairaut’s Algebra, Vol. II. 

Ex. 3. Given #3—-6# = 5.6, to find the values of x. Com¬ 
paring this with the equation x3-\-ax=b, we have 
a——6, and 6 = 5.6; therefore, 

[2.8++(7.84-8)]++ [2.8-+(7.84-8)] 
=+(2.8 + .4 + -l)++ (2.8-.4+-1.) 
Now, by comparing this value of x, with + (a/+6'+ — 1) + 

+ (a'—b'-y/ —1), we have a'=2.8, and b'=.4; .*. substituting 
these values for a' and b' in the above formula (2), #=2+ 2.8 

.16 .2560 
(1 + &c.) = 2.82(1+ .00227 —.00002, 

70.56 14936.1408’ 
&c.) =2.826345 nearly. 

Here, three terms of the series are sufficient, on account of 
its converging so rapidly, to give an approximate value of x, 
which is exact enough for all practical purposes. And, in 
fact, the value may be still found more accurate by continuing 
the series to five or six terms. 

Ex. 4. Given zQ—3z*—2z2—8=0, to find the values of z. 
Let z2=zx-\-l, and the equation will be transformed into a:3 

— 5#=12 ; .*. since a— — 5, and 6 = 12. 

*=¥ [6+ V(36-W)]+y [6-V(36-W)] 
(6 + 5.6009)++ (6 —5.6009) = 2.26376 + .73624=3. 

And, consequently, z2 = x-\-1=4, or ^=+2. 
500. Two roots of the proposed equation, therefore, are 2 

and —2 ; divide z6 — 3z*—2-s-2—8 by z2 — 4, and the quotient 
is ^4 + ^2 + 2 ; .*. #4 + z2 + 2 = 0, whose roots are ^= dr 
V{ —^i^+—7). Hence four roots of the proposed equation 
are imaginary. 

It may be observed that, in general, all equations, as z3nt-\- 
az2m-\-bzmc—0, may be reduced to one of the third degree, 
by putting zm=x—^a. 

Ex. 5. Given #3 + 30#=117, to find the values of x. 
Ans. #=3, or — J+J+-—3. 

Ex. 6. Given #3+9#=270, to find the values of#. 
Ans. #=6, or —3 + 6+ — 1. 

Ex. 7. Given #3 —36#=91, to find the values of x. 

Ans. x~7, or — 2 + 
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Ex. 8. Given x3—6a:2-}-10#—8=0, to find the values of x. 
Ans. a:=4, or 1 ±y' —• L. 

Ex. 9. Given x3 — 3a:—4 = 0, to find the values of x. 
Ans.# = 2.2; 1.1 + V — .63; —1.1 — -f— .63, very nearly. 

Ex. 10. Given #3 + 24#=250, to find the value of x. 
Aris. # = 5.05. 

Ex. 11. Given z3—6z2-{-13z—12=0, to find the values 
of z. Ans. z=3, or — — 7. 

Ex. 12. Given 2a:3 — 12#2-}-36#=44, to find the value of x. 
Ans. 2.32748, &c. 

§ III. RESOLUTION OF BIQUADRATIC EQUATIONS BY THE 

METHOD OF DeS CARTES. 

501. The same observation may be applied to biquadratic 
equations as was applied to cubic equations in (Art. 494), that, 
since the equation x^-\-a'x3-\-b'x2-\-r'x-{-s'—0, may be trans¬ 
formed into another which shall be deficient in its second term, 
and whose roots shall have a given relation to the roots of the 
given equation, the complete solution of a biquadratic equation 
will be effected, if we can arrive at the solution of it in the form 

#4-f■ax2-\-bxJrc=zO .... (1) ; 
where a, b, c, may be any numbers whatever, positive or ne¬ 
gative. 

502. In the solution of a biquadratic equation, after the 
manner of Des Cartes, the formula x^-{-ax2-\-bx-\-c is suppos¬ 
ed to be the product of two quadratic factors, x2-\-px-\-q and 
x2-\~rx-\-s, in which p, q, r, s, are unknown quantities. Or, 
which is the same, the biquadratic equation x*ax2 f-bx c—0 
is considered as produced by the multiplication of the two 
quadratics, 
(2) .... x2-\-px-\-q=z0; #2-f-r#-f-s = 0 . . . (3). 

503. Hence, by the actual multiplication of the above two 
factors, we shall have 

x4, -\-ax2 -^-bx-i-c. 
And, consequently, by equating the coefficients of the like 

powers of x in this last equation, we shall have the four fol¬ 
lowing equations, 

p-f-r=0 ; s-j-q-j-pr=a ; ps-{-qr—b ; qs = c. 
Or, if —p, which is the value of r in the first of these, be 

substituted for r in the second and third, they will become, 

i + ?=a+p2; s-qJ-;qs=c. 

Whence, subtracting the square of the second of these from 
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that of the first, and then changing the sides of the equation, 
we shall have 

b2 
a2+2ap2+p4-——Aqs, or 4c. 

And, therefore, by multiplying by p2, and placing the terms 
according to the order of their powers, the result will give, 
pG-\-2apA-\-[a2—4c)p2=b2. . (4). 

From which last equation, if there be put p2=z, we shall 
have, z3-{-2az2-{-(a2 — Ac)z — b2.(5). 

Hence, also, since s-\-q=.a-\-p2, and s—q=—, there will 
P 

arise, by addition and subtraction, 

where p being known, s and q are likewise known. 
And, consequently, by extracting the roots of the two as¬ 

sumed quadratics, (2) and (3) ; or of their equals, x2-\-px-]~ 
q—0, and x2—px±sz=0 ; we shall have 

*= —V(}p2—q).(6); 
x=ip±V(ip2'—s).... • * (7); 
which expressions, when taken in -f* and —, give the four 
roots of the proposed biquadratic, as was required. 

504. It may be observed, that whichever of the values of 
the unknown quantity, in the cubic or reduced equation (5), 
be used, the same values of x will be obtained. 

505. To this we may further add, that when the roots of 
the cubic, or reduced equation (5), are all real, then the roots 
of the proposed biquadratic are all real also. But if only one 
root of the cubic equation (1) be real, and, therefore, the other 
two imaginary; then the proposed biquadratic will have two 
real and two imaginary roots. 

Ex. 1. Given the equation a:4 — 3a:2+6a: + 8 = 0, to find its 
roots, or the values of x. 

Comparing this equation with x*-\-ax2-\-bx-\-c=0, we have 
a~—3, & = 6, and c = 8 ; therefore, 

z3-\-2az2-\- (a2—4c)z—b2=z3— 6z2-\-23z— 36 = 0. 
Let z—y4-2, and substitute y + 2 for z in the latter equa¬ 

tion ; the resulting equation is y3— 35y —98 = 0. Now, by 
comparing this last equation with #34-ax=b, we have a= — 
35, and b = 98 ; therefore, (Art. 495), 
y[49+^/(65856)]+£/ [49-i/(65856)] 

=/ (49 + 28.514)4 3/ (49-28.514)=^ (77.514)+/ 20. 
466) 
=4.2644-2.736 = 7. 
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Hence, z—y-\-2 — 9, and p2—z—9, or p — 4;3 ; 
/.(Art. 504), taking p — 3, s = —§ + §-{-1 = 3 1 =4, and 
q ——1=2. Consequently, by substituting these va¬ 
lues forp, q, and s, in the equations (2), (3), we shall have 

x2-\-3x-\-2 = 0, and x2—3,r-f-4=0; 
/. x= — fii, and x—7 ; 

so that the four roots of the given equation are —1, —2, 

iV-7, i-W-7- 

Ex. 2. Given a;4—6x2 — 17a:-{-21 =0, to find the values of x. 
Ans. # — 3, or 1 ; or —2±V — 3. 

Ex. 3. Given the equation a:4—4a;3 — 8a;+32 = 0, to find its 
roots, or the values of x. Ans. 4, or 2 ; or —l±-y/ — 3. 

Ex. 4. Given the equation a:4—6a:3 + 5a;2-f-2a; —10 = 0, to 
find its roots, or the values of x. 

Ans. —1, or +5 ; or 1 1. 
Ex. 5. Given a:4 — 9a:3+30a;2—46a?-f-24 = 0, to find the 

roots, or values of x. Ans. x=l, or 4 ; 2^-y/—2. 
Ex. 6. Given a;4-fl6a;3+99a;24-228a;-l-144 = 0, to find the 

roots, or values of x. 
Ans. x——1, —3 ; or — Giy' — 12. 

Ex. 7. What two numbers are those, whose product, mul¬ 
tiplied by the greater, is equal to 1 ; and if from the square 
of the greater, added to six times the lesser, the cube of the 
lesser be subtracted, the remainder shall be 8. 

Ans. -y^iVQ + ys), +V2iy'(l--y'2). 

§ IV. RESOLUTION OF NUMERAL EQUATIONS BY THE METHOD 

OF DIVISORS. 

506. Since the last term (v) of the equation (A) = a;m-f' 
Aa;»i—1_pBa;wl—2 .... T£-t-v = o, is equal to the product 
of all its roots, it is evident, that if any of those roots be whole 
numbers, they will be found among the divisors of that term. 
To discover, therefore, whether any of the roots of a given 
equation be whole numbers, we have only to find all the divi¬ 
sors of its last term, and substitute each of them, first with the 
sign -f- and then with the sign —, for x, in the given equa¬ 
tion, such of them as reduce the equation to 0 = 0, will be 
roots of the equation. 

507. Or, if the divisors of the last term should be too nu¬ 
merous, the equation may be transformed into another, that 
shall have its last term less than that of the former ; which is 
done by increasing or diminishing the roots by 1, or some 
other quantity. 

Ex. 1. Given x3-*x2-— 2x-{-8 = 0, to find the roots of the 
equation, or values of x. 
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Here the divisors of its last term, are 1, 2, 4, 8 ; substitute 
1, 2, 4, 8, and —1, —2, —4, —8, for x in the given equation, 
and —2 will be found to be the only one of these numbers 
which gives the result 0 ; —2 therefore is the only integral 
root of the equation. Hence, x-\-2 will divide x3—x2—2x~h 
8 without a remainder ; let this division be made, and the 
quotient being put equal to 0, we shall have x2—3;r-f4 = 0, a 
quadratic equation which contains the other two roots. The 
solution of this quadratic gives x—^dt^V — 7 5 the three 
roots of the given equation, therefore, are —2, f —7, 

I-W-7- . 
508. The integral roots of any numeral equation of the 

kind above mentioned, may also be found, by Newton’s Me¬ 
thod of Divisors, which is founded upon the following prin¬ 
ciples. 

Let one of the roots of the equation (a) = 0, be —a, or, 
which is the same, let the proposed equation be represented 
under the form (a:-{-«)p = 0, where the binomial x-\-a denotes 
one of the divisors, or factors, of which the equation is com¬ 
posed, and p the product of the rest. Then, if three or more 
terms of the arithmetical series, 2, 1, 0, —1, —2, be succes¬ 
sively substituted for x, the divisors of the results, thus ob¬ 
tained, will be 

a-j-2, a-\-1, a, a — 1, and a — 2. 
And as these are also in arithmetical progression, it is plain 

that the roots of the given equation, when integral, will be 
some of the numbers in such a series. 

Whence, if a progression of this kind, whose common dif¬ 
ference is 1, can be found among the divisors of the results 
above mentioned, b}’' taking one number out of each of the 
lines, that term of it which answers to the substitution of 0 
for x, taken in -f or —, according as the series is increasing 
or decreasing, will generally be a root of the equation. 

Ex. 2. Given;r5 + a;4— 14a;3 — 6x2-f-20a;-h 48 = 0, to find the 
roots of the equation, or values of x. 

5 
4 

are found to succeed; so that the equation has three integral 
roots ; namely, 2, 3, —4. The equation whose roots are 2, 
3, —4, is (x—2) . (x — 3) . (x+4) = a;3—x2 — 14a?+24 = 0, let 
the given equation be divided by it, and the quotient is x2-\- 
2x-\-2=z0, whose roots are —li v/ —1 ; the five roots of 

Nurn. Results. Divisors. Proo 

1 50 1, 2, 5, 10, 25, 50, 1‘ 2 
0 49 1, 2, 3, 4, 6, 8, 12, 24, 48, 2 3 

— 1 36 1, 2, 3, 4, 6, 9, 12, 18, 36, 3 4 
Here the numbers to be tried are 2, 3, —4, a 11 of 
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the proposed equation are, therefore, 2, 3, —4, —-1 + y'— 1, 

509. If the highest power of the unknown quantity has any 
coefficient prefixed to it, let the equation be assumed of the form 
(«a:+a)p = 0, and substitute 2, 1, 0, —1, —2, successively for 
x, as in the former instance. 

Then, as before, the divisors of the several results, arising 
from this substitution, will be the terms of the arithmetical 
series, 

2n-\-a, n-\-a, <z, —n-\-a, and —2n-\-a; 
where the common difference n must be a divisor of the first 
term of the equation, or otherwise the operation would not 
succeed. 

Hence, in this instance, the progressions must be so taken 
out of the divisors, that their terms shall differ from each other 
by some aliquot part of the coefficient of the first term. 

Therefore, if the terms of these series, standing opposite 
to 0, be divided by the common difference, the quotient thus 
arising, taken in + and —, according as the progression is 
increasing or decreasing, will generally be the roots of the 
equation. 

It is necessary to continue the series 2, 1, 0, —1, —2, far 
enough to show whether the corresponding progression may 
not break off, after a certain number of terms ; which it never 
can do when it contains a real rational root. 

Ex. 3. Given 2x3 — 3a:2+16a:—24 = 0, to find the roots of 
the equation or values of x. 

Substituting 2, 1, 0, —1, —2, successively, for x, as in the 
former case, we shall have 

Num. Results. Divisors. Prog. 
2 12 1,2, 3, 4, 6,12, — 1 
1 — 9 1,3,9,. + 1 
0 —24 1, 2,3, 4, 6, 8, &c. + 3 

— 1 — 45 1,3,5, 9,15,45, + 5 
—2 — 84 1,2, 3,4, 6, 7, &c. + 7 

Where the progression is ascending, the number to be tried 
is, therefore, which is found to be a root of the equation. 

Let the given equation be divided by x — •§, and the quotient 
is 2x2 —16 = 0, whose roots are zt2\/2 ; the three roots of the 
proposed equation are, therefore, —J, + 2y/2, —2+2. 

Ex. 4. Given a:4+a:3—29a:2 — 9a: +180 = 0, to find the roots 
of the equation. Ans. 3, 4, —3, and —5. 

Ex. 5. Given a:4—4a:3 —8a:+32 = 0, to find the roots of the 
equation, or values of x. 

Ans. a:=2, or 4 ; or —1+ + —3. 
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Ex. 6. Given a:3—5a;2-|-10a;—8=0, to find the integral root 
of the equation. Ans. 2. 

Ex. 7. Given a:4—-8a;3-\-x2+82a;—60 = 0, to find the integral 
roots of the equation. Ans. 5, and —3. 

Ex. 8. Given a:5 —9a;3+8a;2—72=0, to find the roots of the 
equation, or values of x. 

Ans. #=—3, or —2, or 3 ; or li-y/—3. 

§ Y. RESOLUTION OF EQUATIONS BY NeWTON’s METHOD OF 

APPROXIMATION. 

510. The methods laid down in the preceding section, will 
be found sufficient for determining the integral or rational 
roots of equations of all orders ; but when the roots are irra¬ 
tional!, recourse must be had to a different process, as they 
can then be obtained only by approximation ; that is to say, 
by methods which are continually bringing us nearer to the 
true value, till at last the error being very small, it may be 
neglected. 

511. Different methods of this kind have been proposed, 
the simplest and most useful of which, as Lagrange justly re¬ 
marks, is that of Newton, first published in Wallis’s Algebra, 
and afterwards at the beginning of his Fluxions—or rather 
the improved form of it, given by Raphson, in his works, en¬ 
titled Analysis JEquationem Universalis. 

512. In order to investigate the above-mentioned method, 
let there be taken the following general equation, 

xm-\-pxm~]1-f qxm~2-\-'f'xm~~3-\- . . sx2-}- to-f-w=0 . (1). 
Then, supposing a to be a near value of x, found by trial, and 
z to be the remaining part of the root, we shall have x — a-\-z ; 
and, consequently, by substituting this value for x in the given 
equation, there will arise 

• • • s(a4 z)2-\-t{a'}rz)-\-u — Q ; 

which last expression, by involving its terms, and taking the 
result in an inverse order, may be transformed into the equa¬ 
tion 

P4-Q-3-+R^2+S03-f- . . . -\-zm—0 . . (2), 
where P, Q, R, &c. are polynomials, composed of certain func¬ 
tions, of the known quantities, a, m, p, q, r, &lc. which are de¬ 
rived from each other, according to a regular law'. 

513. Thus, by actually performing the operations above in¬ 
dicated, it will be found that 

P=om+jt)om~:l-\-qam~2+ • ♦ • sa2-\-ta-\-u \ 



RESOLUTION OF EQUATIONS. 337 

which value is obtained by barely substituting a for x in the 
equation first proposed. 

And, by collecting the several terms of the coefficients of z, 
it will likewise appear, that 

Qz=mam~l — \)pam~2-\- ... -\-2sa-\~t; 
which last value is found by multiplying each of the terms of 
the former by the index of a in that term, and diminishing the 
same index by unity. 

514. Hence, since # in equation (2) is, by hypothesis, a 
proper fraction, if the terms that involve its several powers 
z2, z3, s4, &c. which are all, successively, less than z, be neg¬ 
lected in the transformed equation, we shall have 

•o , ^ A am+pam~l-{-.+ ta + u 
P -f" Q-^ —— 0, Or Z—--7-rr-7—-;—. 

mam~~k-\~(m— \)pam "+ . . -\-t 
And, consequently, if the numeral value of this expression 

be calculated to one or two places of decimals, and put equal 
to b, the first approximate part of the root will be z — b, or 
x~a-\-b — a . 

Whence also, if this value of a?, which is nearer its true 
value than the assumed number «, be substituted in the place 
of a in the above formula, it will become 

am -\-pa/m~ 1+ . . • • -\-ta-\-u 

ma/m~1-\-{m — l)pam~~‘2+ . + £ 
which expression being now calculated to three or four places 
of decimals, and put equal to c, we shall have, for a second 
approximation towards the unknown part of the root, 

z=zc, or x-d-\-c—d'. 
And, by proceeding in this manner, the approximation may 

be carried on to any assigned degree of exactness ; observing 
to take the assumed root a in defect or excess, according as it 
approaches nearest to the root sought, and adding or subtract¬ 
ing the corrections b, c, &c. as the case may require. 

515. A negative root of any equation may also be found in 
the same manner, by first changing the signs of all the alter¬ 
nate terms, and then taking the positive root of this equation, 
when determined as above, for the negative root of the propos¬ 

ed equation. 

516. In the practical application of this rule we must en¬ 
deavour to find two whole numbers, between which some one 
root of the given equation lies ; and by substituting each of 
them for .t in the given equation, and then observing which of 
them gives a result most nearly equal to 0, we shall ascertain 
the whole number to which x most nearly approaches; we 

30 
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must then assume a equal to one of the whole numbers thus 
found, or to some decimal number which lies between them, 
according to the circumstances of the case. 

517. Since any quantity, which from positive becomes ne¬ 
gative passes through 0, if any two whole numbers n and n'; 
one of which, when substituted for x in the proposed equation, 
gives a positive, and the other a negative result; one root of the 
equation will, therefore, lie between n and n!. This, of course, 
goes upon the supposition that the equation contains at least 
one real root. 

518. It is necessary to observe, that, when a is a much 
nearer approximation to one root of the given equation than 
to any other, then the foregoing method of approximation can 
only be applied with any degree of accuracy. To this we 
also farther add, that, when some of the roots are nearly 
equal, or differ from each other by less than unity, they may 
be passed over without being perceived, and by that means 
render the process illusory ; which circumstance has been 
particularly noticed by Lagrange, who has given .a new and 
improved method of approximation, in his Traite de la Reso¬ 
lution des Equations Numeriques. See, for farther particulars 
relating to this, and other methods, Bonnycastle’s Algebra, 
or Bridge’s Equations. 

Ex. 1. Given a:3-}-2a:2 — 8a:=24, to find the value of x by 
approximation. 

Here, by substituting 0, 1, 2, 3, 4, successively for x in the 
given equation, we find that one root of the equation lies 
between 3 and 4, and is evidently very nearly equal to 3. 
Therefore let a = 3, and x—a'-{-z. 

f x3=za3-j-3a2z-}-3az2-J-z3 \ 
Then J 2x2 = 2a2 + 4az + 2z2 S =24. 

t —8x =—8a — 8 z j 
And by rejecting the terms z3-\-3az2-{-2z2, (Art. 514), as be¬ 
ing small in comparison with £, we shall have 

a3 + 2a2— 8a-\-3a2z-\~4az— 8.s = 24 ; 
24 — a3—2a2+8a 3 

• z —___—__ HQ • 
3a2+4a— 8 31 ’ 

i 

and consequently x —a4-2 = 3.09, nearly 
Again, if 3.09 be substituted for a, in the last equation, we 

shall have 

_24-a3—2a2 + 8a __ 24—29.503629 — 19.0962 + 24.72 

3a2 + 4a — 8 ~ 28.6443+T2.36-8 
= .00364; and, consequently, x = a + z=3.09 + .00364 = 
3.09364, tor a second approximation 
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And, if the first four figures, 3.093, of this number, be sub¬ 
stituted for a in the same equation, an approximate value of x 
will be obtained to six or seven places of decimals. And by- 
proceeding in the same manner the root may be found still 
more correctly. 

Ex. 2. Given 3a?5-{-4a:3—5a?=140, to find the value of a: by- 
approximation. Ans. x — 2.07264. 

Ex. 3. Given a?4—9a?3 + 8a?2— 3a?+4=0, to find the value of 
x by approximation. Ans. a? = 1.114789. 

Ex. 4. Given a?3-{-23.3a?2— 39a?—93.3=0, to find the va¬ 
lues of x by approximation. 

Ans. a? = 2.782 ; or —1.36 ; or —24.72 ; very nearly. 
Ex. 5. Find an approximate value of one root of the equa¬ 

tion a?3-f-a?2 + a? = 90. Ans. a? = 4.10283. 
Ex. 6. Given a?3+ 6.75a?2+4.5a?—10.25 = 0, to find the va¬ 

lues of a? by approximation. 
Ans. a?=.90018 ; or —2.023 ; or —5.627 ; very nearly. 

„ ' ' f 
_ - • < 

CHAPTER XVI. 

ON 

INDETERMINATE COEFFICIENTS, VANISHING FRAC¬ 

TIONS, AND FIGURATE AND POLYGONAL NUMBERS. 

§ I. ON INDETERMINATE COEFFICIENTS* 

519. This is a species of investigation, which is frequently 
used for obtaining the development of certain fractional and 
other expressions, without having recourse to the operations 
of division, or the extraction of roots; the method of per¬ 
forming which is as follows : 

RULE. 

Assume a series, or other expression, with unknown coeffi¬ 
cients, for that which is required to be found ; then, having 
multiplied it by the denominator of the given fraction, or 
raised it to its proper powers, find the value of each of these 
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coefficients, by equating the homologous terms of the two ex¬ 
pressions, or putting such of them as have no corresponding 
terms, equal to 0, as the case may require. 

Example 1. Let it be required to find the development of 

° according to the above method. 
a'+bx2 * 

Assume 
a 

, = A-f-Bo:-l-Ca:2 + D^3-l-Ex4, &c. 
a + b'x2 

Then, multiplying the right hand side of the equation by 
a'~\~b'x2, and, transposing a, we shall have 

x3, &c. 0 = Aa' + Ba' x-\-Ca' a:2 4-Da" 
— a -J-A6' + B b' C b' 

And by putting the first term, and the coefficients of the 
several powers of x, each =r0, there will arise the following 
equations: 

A af— a =0 

Ba'+A^O 

Ca'+B&'^O 

Da'+Cb'=:0 

&c. 

or 

a 

Hence, 
a a b' 

A = 
a 

B = 

C = — 
a' 

D = -Lc 
a' 

&c. 

a'-\-b'x2 a' a a a' 
Where it is obvious, that each coefficient, in parting from the 
second inclusively, is equal to that which precedes it, multi- 

V 
plied by-— : which law renders it unnecessary to take a 

a 
greater number of equations, or to push the calculation far¬ 
ther. 

Ex. 2. Required the development of — - L/ , , accord¬ 

ing to the same method. 

Assume 
a-\-b 

a' -\-b'x-\-c' x2 
i 

:A4-Ba;4’Ca:24-Da:3, &c. 
a' -f- b'x+c'x* 

Then multiplying the right hand side of the equation by 
a'-\-b'x-\-c'x2, and transposing a-\-bx, we shall have 

a:3, &c 0 = Aa'4-Ba' £-4-C a' 

— a +A V + B V 4-C bf 
- b -f Ac" 4-Be" 



INDETERMINATE COEFFICIENTS. 341 

And by putting the coefficients of the several powers of 
oc=zO, there will arise the equations 

A a'—a=0 

Ba'+A^'—b = 0 

Ca'+B&'+Ac'rrO 

Da'+C&'-fBc^O 

&c. 

Whence 

or 

A= IT 

b 
a a 

c—Lb-'a 

D=r 

a 
6' 

a 

C-~B 
a' a 

&c. 

a'-j-^+c'ic2 

°--(^-a-4-)«-(^-b+^-a)^-(^-c+4b)*3, &c. 
a \a a / \a a / \a a / 

Where each coefficient, in parting from the third inclusively, 
may be readily deduced from the two that precede it. So 
that if P, Q, R, be any three consecutive coefficients, we 
shall have 

7/ f 

Ra'+Q&'+Pc'rrO ; or R =--Q-— P. 
a a 

Ex. 3. Given (#2-4-p)2— {qx-\-r)2=zx* -\-ax2'\-bx-\-c, to find 
the indefinite coefficients p, q, and r. 

Here, by squaring the terms on the left hand side of the 
equation, and collecting those that are alike, we have 

+ (2p — q2)x2—2 rqx -\-p2 — r2 = a:4 -f- ax2 -\-bx-\-c. 
And consequently, by equating the homologous terms, 

2p—a=q2 
or 

q2 = a 2p 

— 2 qr~b 
p‘ ■r2 — c 

b=2qr 
p2—C — T2 

Where it is plain, that the product of the first and third of 
these equations is equal to \ of the square of the second ; or 

2p3 — ap2—2 cp-\-acz=:^b2. 
Hence the value of p may be found by a cubic equation, 

and then q and r from the former equations. 

Ex. 4. It is required to convert -—— into a series by the 

above method. 

Ans. —-(1 

30* 

ax 
f-r-t 

■ax 

a2x2 a3x3 a4#4 

b2 b3 ‘ 64 l-H +, &c.) 
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_ T . . . 1 —(— 2 , . . 
Ex. 5. It is required to convert --- into a series by 

1 —x—x2 

the same method. 
Ans. l+3*+4a;2+7a;3+lla;4+18tf5+ &c. 

1_x 
Ex. 6. It is required to convert -— -—- into a series 

1 — £x — ox^ 

by the same method. 
Ans. l-F#+5a'2+13a:3 + 4l£4-F121a:5-!- &c. 

Ex. 7. It is required to convert y^l— x) into a series by 
the same method. 

Ans. 
x x2 

2 lZA 

3a:3 3.5a:4 

2.4.6 2T4A8 

3.5.7a:5 

2.4.6.8.10 
— &c. 

§ II. ON VANISHING FRACTIONS. 

520. Vanishing fractions, and other similar expressions, 

are such, as in certain cases, become equal to which sym¬ 

bol, though apparently nugatory, or of no value, must not be 
rejected as useless, being of frequent occurrence in several 
Algebraical and Fluxional investigations, where it will often 
from the nature of the subject, denote some fixed, or determi¬ 
nate quantity. 

Thus, if a be made to represent the first term of any regular 
geometrical series, r the ratio, and n the number of terms, we 
shall have 

nyn — (i 

-=aJrar2-\-ar2-\-ari -f-.arn~'2-{-arn~1. 
r— 1 

Where the left hand member of the equation is a universal 
expression for the sum (S) of the series, whatever may be the 
values of a, r, and n; as will appear by dividing the numera¬ 
tor by the denominator. 

Let, therefore, the ratio or multiplier r, be taken =:1 ; and 
the expression for the same will be 

a~a_° 
~ 1—1 0* 

But when r=l, the original series becomes of the form 
+ .to n terms ; of which the sum 

is, evidently, —na ; and, therefore, in this case, it follows, that 
0 ' / 
——na. 
0 

521. And in the same way it might be shown, that this 
symbol is the representative of various other quantities, accord- 
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ing to the nature of the expression from which it is derived ; 
but it will be here sufficient to observe, that the true value of 
any fractional expression of this kind may be readily obtained 
as follows. 

RULE. 

1. If both the terms of the given fraction be rational, divide 
each of them by their greatest common measure ; then, if the 
hypothesis which is found to reduce the original expression 

to the form 5, be applied to the result, it will give the true va¬ 

lue of the fraction in the state under consideration. 
2. Where any part of the fraction is irrational, observe what 

the unknown quantity is equal to when the numerator and de¬ 
nominator both vanish, and put it = that quantity + or i; then, 
if this be substituted for the unknown quantity, and the roots 
of the surds be extracted, to a sufficient number of places, 
the result, when i is put =0, will give the true value of the 
fraction. 

Example 1. It is required to find the value of the fraction 

when x is equal to a. 
x—a 

Here, if we put x=a, there will arise 
a ■a2 0 

But, by 
a—a 0 

division, 

have 

x2 — a2 

x- 
a2—a2 

■a 
; and if x be now put —a, we shall 

0 
—2a ; whence -, or the given fraction, in its va- 

a — a 0 
nishing state, is — 2a. 

Ex. 2. It is required to find the value of the expression 

b(x— -y/ax) 

x — a 
-, when x is equal to a. 

Here, if x be taken according to the rule, we shall 

have y~ 
b{a-\-i—\f a2-\-ai) 

And, by extracting the square 

root of a2 +«?, and then dividing by i, 

y=sU+£4©-aT6(i)'*c-! 
Whence, putting the indeterminate quantity i~ 0, there will 
arise 

; 
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which is the true value of the expression, in the case pro- 

3. Let there be taken, as another example of this kind, 
the equation 

posed. 
Ex. 

P (x—a)m 

y~Q(*-a)”' ’ 
where P and Q are supposed to be certain functions, or com¬ 
binations of x, which do not become 0 for the same value of x. 

Then taking x = a, the expression, according to this hypo¬ 
thesis, will become of the form 

P x 0__0 
QxO'O' 

But by considering the indices m, ?i, of the proposed frac¬ 
tion, under each of the relations 

in^>n, m=n, m<^n, 
we shall have, by division, the three following results ; 

P(a? —a)OT~n P P 

y_ Q ’ y_Q’ y-Q(x-ap^' 
And consequently, by now taking x~a, there will arise 

PXO P P 

y~~Q~’y~Q’y~QxO' 

Whence, the value of the symbol in this case, will be no¬ 

thing, finite, or infinite, according to the conditions above 
mentioned. 

Ex. 4. It is required to find the value of the fraction 

cc'' ~ a5 • 
--—* when x is equal to 1. Ans. 4. 

1 —x 
Ex. 5. It is required to find the value of the fraction 
_am 
-, when x—a. Ans. mam~l. 

x — a 
Ex. 6. It is required to find the value of the fraction 

QQ3 _, q3 

-, when x is equal to a. Ans, 3a2. 
x—a 

i 

* The value of this fraction was the cause of a violent controversy between 
Waring and Powell, in 1760, when these gentlemen were candidates for the 
mathematical professorship at Cambridge ; Waring maintaining that the value 

x—xs . 
of the fraction -j-is equal to 4 when #=1, and Powell, (or rather Maseres, JL X 
who is commonly thought to have conducted the dispute,) that it was equal 
to 0. 

The idea of vanishing fractions first originated about the year 1702, in a 
contest between Varignon and Rolle, two French mathematicians of consider¬ 
able eminence, concerning the principles of the Differential Calculus, of 
Which Rolle was a strenuous opposer, 
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3 
2 (x2—a^Y 

Ex. 7. It is required to find the value of --when 

x is equal to a. 

(x — a) 2 

Ans. (2a) . 

Ex. 8. It is required to find the value of the expression j-, 

when x is equal to 1. Ans. n. 
Ex. 9. It is required to find the value of the expression 

d \ f cixmmmm oc^ 
-=rr, when x is equal to a. Ans. 3a. 

a— ax 
Ex. 10. It is required to find the value of the expression 

nxn+l — (n -f-1 )•£”+1 

1 —x2 
-, when x is equal to 1. 

Ans. 
n(n-\-1) 

Ex. 11. It is required to find the value of the expression 
•x/x—-yJa-\- -\/(x—a) , . . .1 
--jr——~-when x is equal to a. Ans. — 

Vix2—a2) n ^2 a 

§ III. ON FIGURATE AND POLYGONAL NUMBERS. 

522. Figurate Numbers, are such as arise from taking 
the successive sums of the series of natural numbers 1, 2, 3, 
4, 5, &c.; and then the successive sums of these last, and so 
on: and polygonal numbers, are those which are formed of 
the successive sums of the terms of any arithmetical pro¬ 
gression beginning with unity ; each of them being usually 
divided into orders, according to the scale of their generation, 
which, as far as regards those of the first class, may be shown 
as follows : 

Order. 

1 

2 

3 

4 

&c. 

Figurate Numbers. 

1, 2, 3, 4, 5, 6, <fec. 

1, 3, 6, 10, 15, 21, &c. 

1, 4, 10, 20, 35, 56, &c. 

1, 5, 15, 35, 70, 126, &c. 

&c. 

Gen. Terms. 

n 
n(n-4-1) 

1 72" 

n(n-\- 1 )(n-j-2) 

1.273 
n(w+ l)(n-j-2)(ft-t-3) 

172.3 4 
&c. 

Where it is to be observed that the general terms, here given, 

are &o called, because if 1, 2, 3, 4, &c, be respectively sub* 
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stituted in each of them, for n, we shall obtain the several terms 

of the series. 
And if, instead of the natural numbers 1,2, 3, 4, &c. which 

give triangular numbers, an arithmetical series be taken, the 
common difference of which is 2, the sum of its successive 
terms will be the series of square numbers ; if the common 
difference be 3, the series will be pentagonal numbers ; if 4, 
hexagonal; and so on : thus, 

Arith. Series. 

1, 2, 3, 4, &c. 

Ord. 

1 

Polygonal Numbers. 

Tri. 1, 3, 6, 10, &c. 

1, 3, 5, 7, &c. 2 Sqrs. 1, 4, 9, 16, &c. 

1, 4, 7, 10, &c. 3 Pent. 1, 5, 12,22, &c. 

1, 5, 9, 13, &c. 4 Hex. 1, 6, 15, 28, &c. 

&c. 
• 

&c. 

Gen. Terms. 
n(n-j-l) 

2 
n(2n+0) 

2 
n(3n — 1) 

2 
n(4n—2) 

2 

&c. 

Where the number denoting any order, is the common differ¬ 
ence of the arithmetical series, from which the polygonal num¬ 
bers, belonging to that order, are generated. 

In like manner, if we take the successive sums of the se¬ 
veral polygonals thus obtained, and then the successive sums of 
these last, and so on, a great variety of other orders of series 
of this kind may be readily obtained. 

Hence, also, in general, if n be made to denote the number 
of terms of the series, a figurate of any m, may be expressed 
by the following formula. 

n n-f-1 n-j-2 n-\~(m — 1) 
TX 7} X—~—.... 
12 3 m 

And supposing n to be the number of terms of the series, 
as before, a polygonal number of the order m — 2, or one that 
has the number of its sides denoted by m, may be expressed 

(m—2)n2~ (m—4)n 
by --r-. 

So that figurate numbers, of any order, may be always de¬ 
termined, without computing those of the preceding orders, 
by taking as many factors, in the first of these formulae, by 
substituting the number denoting that order for m—2, or the 
number of sides of the polygon, for m, and taking n equal to 
the term required. 

Example 1. Required the 15th term of the second order of 
figurate numbers, 1, 3, 6, 10, 15, 
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Here m being =2, and n — 
formula, —• — 
7z(n+l)_15(15 + 1)_15x16 
  2 

15, we shall have by the first 

= 15X8 =120, 

the term required. 
Ex. 2. It is required to find the 12th term of the fifth order 

of polygonal numbers, being those called heptagonal, or such 
as would be represented by a figure of seven sides. 

Here m being equal 7, and n = 12, we shall have, by the 
second formula, 
(m-2)n^~(m — 4)n_ (7—2) X 144 —(7-4) X 12 
   = 5x72-3 

X 6 = 360 —18 = 342, the term required. 
Ex. 3. It is required to find the 20th term of the 5th order 

of figurate numbers. Ans. 42504 
Ex. 4. It is required to find the 13th term of the 9th order 

of figurate numbers. Ans. 293930. 
Ex. 5. It is required to find the 36th term of that order of 

polygonal numbers, which is denoted by a figure of twenty- 
five sides. Ans. 14526 

CHAPTER XVII. 

ON 

INDETERMINATE AND DIOPHANTINE 
ANALYSIS. 

§ I. ON INDETERMINATE ANALYSIS 

523. When the enunciation of a question does not furnish 
as many equations as there are unknown quantities to be de¬ 
termined, the question is said to be indeterminate, being usually 
such as admit of a great variety of solutions ; although, when 
the answers are required only in whole positive numbers, they 
are generally confined within certain limits : the determina¬ 
tion of which forms a particular branch of Algebra, called 

Indeterminate Analysis, 
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To begin with one of the easiest questions ; let there be 
required two positive integer numbers, the sum of which is 
equal to 10. 

Let us represent them by x and y ; then we have, x-\-y 
= 10, and a;=10—y, where y is so far only determined that 
it must represent an integer and positive number. We 
may therefore substitute for it all integer and positive num¬ 
bers from 1 to infinity ; but since x must likewise be a posi¬ 
tive number, it follows, that y cannot be greater than 10 ; be¬ 
cause x must be positive ; and if we also reject the value a; = 0, 
we cannot make y greater than 9; so that only the following 
solutions can take place : 

If y=l, 2, 3, 4,5,6, 7, 8, 9, 
then a?=9, 8, 7, 6, 5, 4, 3, 2, 1. 

But the four last of these nine solutions being the same 
as the four first, it is evident, that the question really admits 
only of five different solutions. 

524. As we have found no difficulty in this question, we 
may proceed to others, which require different considera¬ 
tions. 

Problem 1. To find the values of the unknown quantities 
x and y in the equation 

ax-\J)y—c, or ax-\-by=c, 
where a and b are given numbers which admit of no common 
divisor, except when it is, also, a divisor of c. 

RULE. 

525. 1. Let wh. denote a whole or integral number, and 

reduce the equation to the form x=^ —- = ick. 
a 

2. Make - ^~~~=} by throwing all whole numbers 

out of it, till d and e be each less than a. 
dv 4- c 

3. Find the difference, or sum, of --, or some mul- 
a . 

ay 
tiple of it, and —, or any other multiple of it that comes near 

CL 

the former, and the result will be a whole number. 

4. Take this, or anymultiple of it, from one of the fore¬ 
going fractions, or from any whole number which is nearly 
equal to it, and the result, in this case, will also be a whole 
number. 
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5. Proceed in the same manner with this last result, and 
so on, till the coefficient of y becomes equal to 1, or 

a -- P- 

6. Then will y=ap^zr, where p may be any whole num¬ 
ber whatever, that makes y positive; and as the value of 
y is now known, that of x may be found from the given equa¬ 
tion. 

Example 1. Given 2#+3y=25, to determine x and y in 
whole positive numbers. 

tt 25— 3y , 1—y 
Here x=.——--=12—yd—7~. 

Z Z 

Hence, since x must be a whole number, it follows that 

-—- must also be a whole number. 
2 

1 — y 
Let, therefore, tvh.=p ; 

z 
then 1—y—2p, or y=l —2p. 

And since 

X: 12—y- i y -=12-(l-2p)+p=12 + 3p-l. 

we shall have a?=ll + 3p, and y=l —2p ; 
where p may be any whole number whatever, that will render 
the values of x and y in these two equations positive. 

But it is evident, from the value of y, that p must be either 
0 or negative, and, consequently, from that of x, that it must be 
— 1, —2, or —3. 

Whence,p—0,p—. — 1 ,p = —2,p=—3 ; 
then 5 *=11.^8, *=5, z=2 ; 

(y— l,y=3,y=5,y=7; 
which are all the answers in whole positive numbers that the 
question admits of. 

Ex. 2. Given 21z+ 17y=r2000, to find all the possible va¬ 
lues of x and y in whole numbers. 

T1 2000 —17y ^ , 5 — 17y 
Here x—-—-—=95-1-——-~wh.; 

Z1 Z1 

or omitting the 95, —=ivh.; 
21 

consequently, by addition, 
21y 5 — 17y 4y+5 

21 21 21 

31 

=wh, 
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or, by rejecting the whole number 1, -=wk. 
1 

And, by subtraction, —-—-=wh.—p ; 
’ J ’ 21 21 21 r 

whence y — 2lp-\-4, 

and 

Whence, if p be put = 0, we shall have the least value of y — 4, 
and the corresponding, or greatest value, of x — 92. 

And the rest of the answers will be found by adding 21 
continually to the least value of y, and subtracting 17 from the 
greatest value of x; which being done, we shall obtain the 

7 
109 

These being all the solutions the question admits of. 
Ex. 3. Given \9x~\Ay~ 11, to find x and y in whole 

numbers. 

-!4y~n=ioh., and ; 
1 t? I V 

x = 92 75 58 41 24 

y— 4 25 46 67 88 

Here x: 

. , , , 19 y 14y—11 5y+ll 
whence, by subtraction, —-Q--^—= in—=wn. 

J. kJ 19 19 

Als0’ ^I^x4=^^~=i'+2+?lF=u’A': 
and by rejecting y-f-2, which is a whole number, 

'Wh.—p ; y—\9p — 6, and 
19 

x— 
14-y—ll 14(19jo — 6) —11_266y— 95 

19 19 19 
— = 14jo — 5. 

Whence, if p be taken =1, we shall have x — 9 and y —13, 
for their least values ; the number of solutions being obviously 
indefinite. 

526. When there are three or more unknown quantities, 
and only one equation by which they can be determined, it 
will be proper first to find the limit of that quantity which has 
the greatest coefficient, and then to ascertain the different va¬ 
lues of the rest, by separate substitutions of the several values 
of the former, from 1 up to the extent required, as in the fol¬ 
lowing example. 

Ex. 4. Given ‘2xAr'dy-\-'rlz — 100, to find all the different 
values of x, y, and in whole numbers. 

Here each of the least integer values of x and y are 1, by 
the question j whence it follows* that 
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100-5-3 
z~ - 

100-8^92^131 

7 7 7 
Consequently cannot be greater than 13, which is also 

the limit of the number of answers ; though they may be con¬ 
siderably less. 

By proceeding, therefore, as in the former rule, we shall 
have 

100—5y — 7z 
= 33—y—2z- 

1“2 y- 

3 * ' 3 
and by rejecting 33—y~2z, 

1—2y—3y , 1—2y—z y-\-\—^ 
—=wh. ; or ---= -- 

O 

: wh.; 

or :wh.=p. 
3 3 ' 3 3 

Whence, y=3p-\-z—1 ; and, putting p — 0, we shall have 
the least value of y—z—1 ; where ^ may be any number 
from 1 up to 13, that will answer the conditions of the ques¬ 
tion. 

When, therefore, z—1, we have y~0, 
100—7 ' 

and x——-—=31. 
O 

And by taking z=2, 3, 4, 5, &c. the corresponding values 
of x and y, together with those of will be found to be as 
below. 

Z— 1 

y—0 
x=31 

o 3 4 5 6 7 
1 2 3 4 5 6 
27 23 19 15 11 7 

8 
7 
3 

Which are all the integer values of x, y, and that can be 
obtained from the given equation. 

527. If there be three unknown quantities, and only two 
equations, exterminate one of these quantities in the usual 
way, and find the values of the other two from the resulting 
equation, as before ; then, if the values, thus found, be sepa¬ 
rately substituted, in either of the given equations, the cor¬ 
responding values of the remaining quantities will likewise 
be determined. 

Ex. 6. Given a? —2y-f z=.5. and 2x-\-y—z~7, to find the 
values of x, y, and 

Here, by multiplying the first of these equations by 2, and 
subtracting the second from the product, we shall have 

3z—5y = 3, or :^ = l+y + | = WS. 

and consequently or ~ 
2y_ y , 
T 3=Wh-=P 

whence y=3p. 
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And by taking p=0, 1, 2, 3, 4, &c. we shall have y=0, 
3, 6, 9, 12, 15, &c. and z— 1, 6, 11, 16, 21, &c. 

But from the first of the two given equations 

x=5-\-2y—z ; 
whence, by substituting the above values for y and z> the re¬ 
sults will give 

X — A, 5, 6, 7, 8, 9, &c. 
And therefore the first six values of x, y, and z, are as 

below: 
x=A 5 6 7 8 

y—o 3 6 9 12 
Z—l 6 11 16 21 

9 
15 
26 

Where the law by which they can be continued is suffi¬ 
ciently obvious. 

Ex. 6. Given 3a? = 8y —16, to find the least values of x, 
and in whole numbers. Ans. x=8, y = 5. 

Ex. 7. Given lAx = 5y-\-7, to find the least values of x and 
y in whole numbers. Ans. a?=3, y—7. 

Ex. 8. It is required to divide 100 into two such parts, that 
one of them may be divisible by 7, and the other by 11. 

Ans. The only parts are 56 and 44. 
Ex. 9. Given lla?-}-5y = 254, to find all the possible values 

of x and y in whole numbers. 
i ( a;=19, 14, 9, 4, 

AllS' \ y-9, 20, 31, 42. 

Ex. 10. Given 17;»-f-19y4-21.z —400, to find all the an¬ 
swers in whole numbers which the question admits of. 

Ans. 10 different answers. 
Ex. 11. Given 5;r4-7y + llz=224, to find all the possible 

values of x, y, and z, in whole positive numbers. 
Ans. The number of answers is 59. 

Ex. 12. A person bought as many ducks and geese, to¬ 
gether, as cost him 28s. ; for the geese he paid 4s. Ad. apiece, 
and for the ducks 2s. Qd. a piece ; what number had he of 
each? Ans. 3 geese and 6 ducks. 

Ex. 13. How many gallons of spirits, at 12s., 15s., and 
18s. a gallon, must a rectifier of compounds take to make a 
mixture of 1000 gallons, that shall be worth 17 shillings a 
gallon ? Ans. 1114- at 12s., 1114- at 15s., and 777J at 18s. 

PROBLEM. 

528. To find such a whole number, as, being divided by 
other given numbers, shall leave given remainders 
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RULE. 

1. Call the number to be determined x, the numbers by 
which it is to be divided a, b, c, &c., and the given remain¬ 
ders f g, h, &c. 

2. Subtract each of the remainders from x, and divide the 

differences by a ; and there will arise , -——, -—-, &c. 
a a a 

z*. whole numbers. 

*-/ 3. Put the first of these fractions —'——Pi and substitute 
a 

the value of x, as found from this equation, in the place of x 
in the second fraction. 

4. Find the least value ofp in this second fraction, by the 
last problem, which put =r, in the place x in the third frac¬ 
tion. 

529. Find, in like manner, the least value of r, in this third 
fraction, which put z=s, and substitute the value of x, in terms 
of s, in the fourth fraction, as before ; and so on, to the last; 
when the value of x thus found, will give the whole number 
required. 

Example 1. It is required to find the least whole number, 
which, being divided by 17, shall leave a remainder of 7, and 
when divided by 26, shall leave a remainder of 13. 

Let x= the number required. 

Then * 
17 

7 x_]3 
and ——-- = whole numbers. 

26 
x — 7 

And, putting ——=p, we shall have x=l7p-\-7 ; which 

value of x, being substituted in the second fraction, gives 
17p 4- 7 —13 17p — 6 

26 26 
~wh. 

But it is obvious that —^ — ==u;#.. • 
26 26 26 

9p + 6 27^+18 o+18 
Of -i__X3 = -4^-=p+!-rr^-=wh. 

26 26 26 

And by rejecting p, there remains ^-^-s=wh.=r; 

therefore p=26r—18 ; 
where, if r be taken =1, we shall have p=8. 

And consequently x—l7p+7=17 x 84-7 = 143, the num¬ 
ber required. 31* 
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Ex. 2. To find a number, which, being divided by 6, shall 
leave the remainder 2, and when divided by 13, shall leave 
the remainder 3. Ans. 68. 

Ex. 3. It is required to find the least whole number, which, 
being divided by 39, shall leave the remainder 16, and when 
divided by 56, the remainder shall be 27. Ans. 1147. 

Ex. 4. It is required to find the least whole number, 
which, being divided by 11, 19, and 29, shall leave the re¬ 
mainders, 3, 5, and 10. Ans. 4128. 

Ex. 5. It is required to find the least whole number, 
which, being divided by each of the nine digits, 1,2, 3, 4, 5, 
6, 7, 8, 9, shall leave no remainder. Ans. 2520. 

FROELEM. 

On Compound Indeterminate Equations. 

530. Equations of this kind, not higher than the second 
degree, which admit of answers in whole numbers, are chiefly 
such as consist of the products, or squares, of two unknown 
quantities, together with the quantities themselves ; being, 
usually, one of the four general forms given in the following 
rule. 

RULE. 

1. If the equation be of the form xy—ax-\-by-\-c, we shall 

have, for its solution in whole numbers, y~a-• where 
17 x—b 

x~b must be a divisor of ab-\-c. 
2. If the equation be of the form x2-\-xy=zax-\-by-\-ci we 

shall have 
c-\-b(a—b) 

y=-*+a-i>+ x_b 

where x—b must be a divisor of c-\-b{a—b). 
3. If the equation be x2=zy2-\-ay-\-b, we shall have y-~ 

a2—4 b n—a a . , , , 
— -f-—-—, and x—--\-y—ji ; where a and n must be even 

8?i 2 2 
numbers, and n be so taken that 8n may be a divisor of 
a2-4b. 

4. If the equation be x2=ay2-{-by+c2, we shall have y — 

—and x=c4-ny : where n must be some whole num- 
a J n* 

her between -y/a and 
2c 
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Example 1. Given *y=42—2x—3y, to findTthe several va¬ 
lues of x and y in whole numbers. 

Here, by the first form, 
a—— 2, b=z— 3, and c = 42, 

, „ , 6 + 42 0 , 48 
whence y=-2 + —f= -2 + —. 

Where it is plain, that x must be such a number, that, when 
added to 3, it shall be a divisor of 48. But the divisors of 
48, that will give quotients greater than 2, are 16, 12, 8, 6, 4, 
and 2. 

And consequently the integral values of the two unknown 
quantities are 

*=16—3, or 13 | =12—3, or 9 | =8 — 3, or 5 | 
= 6—3, or 3 | =4—3, or 1. 

48 „ 
y=i6~2- or 1 

48 

48 „ 48 
=—-—2, or 2 =——2, or 4 

12 ’ 8 5 

■2, or 6 
48 

=-—2, or 10. 
4 

Which are all the answers in whole positive numbers that the 
question admits of. 

Ex. 2. Given *2=y2+20y, to find the values of x and y in 
whole positive numbers. 

Here, by the third form, a—20, and b = 0, 

. 400 n—20 50 , n _ , , . , 
whence, y=——|--—=-—10, and * = 10+y — n. 

on 2 n 2 

Where it is plain, that n must be some even number which 
is a divisor of 50. 

But the onl^’number of this kind, that will give positive re¬ 
sults, is 2. 

\y=^+1 — 10=16, and *=10+16-2=24. 

Ex. 3- Given x2=5y2—12y+64, to find the values of x and 
y in whole positive numbers. 

Here, by the 4th form, a = 5, b = — 12, and c=8. 

Whence, y= —__ 
nl — 5 5—n2 

Where it is plain, that n must be less than the i/5, and great¬ 
er than ; which numbers are only 1 and 2. 

16n 16(w.—-j) 
— 4-, and *=8 + ny. 

.*.y: 
— 12 — 16 

1—5 
= 7 

— 12 — 32 

4 — 5 
—44, 

and *=8+1x7 = 15 I =8+2x44=96 
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Ex. 4. Given a;24-^y=2a?+3y+29, to find the values of * 
and y in whole positive numbers. 

= 4, 5, Ans 
y=21, 7. 

Ex. 5. It is required to find two numbers, such, that their 
product, added to their sum, shall be 79. 

3, 4, 7, 
Ans 

•{39, 19, 15, 19. 
Ex. 6. Given #2+;ry=4#4-3y+27, t0 £n(j the several va¬ 

lues of x and y in whole numbers. 

Arw 5 *= 4> 5> and 6> 
AnS' 1 y-27, 11, and 5. 

Ex. 7. Given £2=y24-100y-f-1000, to find the two last va¬ 
lues of x and y, in whole numbers. 

Ans. a; = 70, and y = 30. 
Ex. 8. Given £2 = 50y2-}-100y-{-100, to find the values of x 

and y in whole numbers. 
Ans. #=190, and y=40. 

§ II. ON THE DIOPHANTINE ANALYSIS. 

531. The Diophantine Analysis relates chiefly to the find¬ 
ing of square, cube, and other similar numbers, or the rendering 
certain compound expressions free from surds; the principal 
methods of effecting which are comprehended in the following 
problems. 

PROBLEM I. 

532. To render surd quantities of the form y/{a-\-bx-\-cx2) 
rational; or, to find such values of x as will make a-\-bx-\-cx2 
a square. 

Case 1. When the expression is of the form -/(a-f&r), that 
is, whenc = 0. Put ^{a + hx) — n, or a-\-bx=n2 ; and we shall 

have x= 
n2 — a 

; where n may be any number, either integral 
1 

or fractional, that will render the value of x positive. 

Example 1. It is required to find a number, such, that if it 
be multiplied by 5, and then added to 19, the result shall be 
a square. 

n2—19 
Let 5£-}-19 = 7i2, or x=-; 

5 
where n may be any number whatever greater than y' 19. 

Whence, if n be taken =5, 6, 7, respectively, we shall have 
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25 — 19 36-19 o2 49-19 
X——-—=1K or —-——3J, or —  —6 

the latter of which is the least value of x, in whole numbers, 
that will answer the conditions of the question ; and conse¬ 
quently 

5a; + 19 = 5x6-1-19 = 30 +19=49, 
a square number, as was required. 

533. Ex. 2. Find a number such, that if it be multiplied 
by 5, and the product increased by 2, the result shall be a 
square, 

ft2—2 
Put 5a;-}- 2 — ft3, then x =—-— ; 

5 
if we assume ft=2, then x—\ ; and by assuming other values 
for ft, different values of x may be obtained. 

534. Case 2. When the expression is of the form *\/(bx-p 
cx2) ; that is, when a — 0. 

Put "Y/{bx-\-cx2)z=znx \ .*. bx-\-cx2 — n2x2, then b-\-cx=n2x; 

whence x=—-, and whatever value may be given to n in 
7X ■ 1C 

this expression, there will result a value of x that will make 
-y/{bx-\-cx2) rational. 

Example 1. It is required to find an integral number, such, 
that it shall be both a triangular number and a square. 

It is here first to be observed, that all triangular numbers 
| - oc 

are of the form ——— ; and therefore the question is reduced 

rp 2#^—2 oc 
to the making —-—, or it equal ——-a square. But since 

a square number, when multiplied, or divided, by a square 
number is still a square ; it is the same thing as if it were 
required to make 2x2-\~2x a square. 

71$ 0$ 
Let therefore 2x2-{-2x———, then dividing by x, andmul- 

ft2 

tiplying the result by ft3, the equation will become 2n2a:4-2ft2 
=zm2x ; and consequently 

__2ft3 

X m2—2ft3' 
Where, if n be taken —2 and m—3, we shall have 

0 , x' + x 64 + 8 72 
®=8. “d -_=__=_=36, 
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for the least integral triangular number that is at the same 
time a square. 

535. Ex. 2. Find a number such, that if its half be added 
to double its square, the result shall be a square. 

Let a denote the number, then we must have 2x2-\-^x=z a 

square =n2x2, or 2a-|- b=n2x ; therefore, x=( 
1 

n be- 
2n2—43 

ing any number whatever : if n=2, then i—a 
o—*4 4 

square number. 

536. Case 3. When a is a square number, put if equal to 
d2, and make ^/(d2-\-bx-\-cx2) = d-\-nx ; then d2-\-bx-\-cx2— 
d2-\-2dnx-\-n2x2, or b-\-cx=2dn-\~n2x ; and consequently, a = 
2 dn — b 2 dn 

Or, if 5=0, x= 
c — n‘ •—n2' 

Example 1. It is required to divide a given square number 
into two such parts, that each of them shall be a square 
number. 

Let a2= the square to be divided, x2= one of its square 
parts, a2—x2— the other ; which is also to be a square. 

Put a2—x2=(nx — a)2 — ri2x2—2anx-\-a2, and we shall have 
2anx = n2x2-\-x2, or n2x-\-x=2an ; and consequently a= 

2 an 

n2+1 
-, and nx — a — 

2 an 

2 an 
■a-. 

2 an2 an2-\-a an4 ■a 

n2 1 n2-\-1 
an2 — a\ 

n2+1 n2-\-1 

Hence, ( ------ \2 and —-)2 are the parts required; 
\7i"+ 1/ \ n2-\-1/ 

where a and n may be any numbers whatever, provided n be 
greater than unity. 

537. Ex. 2. Find two numbers, whose sum shall be 16, 
and such, that the sum of their squares shall be a square. 

Let x= one of the numbers, then 16 —a; denotes the other, 
and we have to make x2-\-(x —16)2, or 2a2 — 32a+256, a 
square. 

Put 2a2 — 32a+256 = (na—16)2 = n2a2 — 32na-j-256 ; 
hence, 2a2 — 32x=n2x2 — 32na, and 2a — 32=n2x — 32n; 

. 32(ti—1) 
consequently x= —^ 

If we take n = 3, we shall have a=9|-; therefore the two 
numbers are 9^ and 6|. 

538. Case 4. When c is a square number, put it =e2, and 
^/{a-\-bx-\~e2x2)=zn-\-ex ; then, a-\-bx-\-e2x2 = n2 -f- 2enx-\- 
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a+bx—n2-{-2enx; x=--T. 
Zen — b 

_ ~ a—n2 
Or, if b=0, x——-• 

Zen 
Example 1. It is required to find the least integral number 

such, that if 4 times its square be added to 29, the result 
shall be a square. 

This being the same thing as to make 4x2-\-29 a square ; 
let 4&o2+29 = (2;r+ft)2=4£2+4n£+ft2* Then, 4na;+n2=29, 

or 4na;=29 — n2 \ .'. x — 
29—n2 

4 n 
; where, if n be taken equal 

to 1, we shall have x——-—=— = 7, which is the only in¬ 

tegral number that answers the conditions of the question. 

539. Ex. 2. Find a number such, that if it be increased by 
2 and 5 separately, the product of the sums shall be a square. 

Let x— the number, then we have to make (a?-J-2) (<r-|-5), 
or x2-\~ 7x+10, a square, which denote by (x—n)2 ; then, 
x2-\-7x-\-10 —x2 — 2nx-\-n2, or 

7#+10 = —2nx-\-n2 ; 
n2 —10 

X= 7 + 2n‘ 
2 

If we take n — 4, we shall have x=~. 
5 

540. Case 5. When neither a nor c are square numbers, 
yet if the formula can be resolved into two simple factors, 
(which it always can when b2 — 4c is a square, but not other¬ 
wise), the irrationality of it may be taken away, by putting 
<\/{a-\-bx-\-cx2)— +J j (d-\-ex) (f~\-gx) j =zn(d-\-ex) ; in which 
case we shall have 

(d-\r ex){f-\-gx)—n2{d-\-cx)2, or f-\-gx=n2(d-\-ex); 

dn2 —f 
and consequently x: 

,2 * g — en“ 

Or, if d=z0, x= - £ -, and if/=0, x— ^U 
en1—g ~ g—en* 

The two factors above mentioned will be found by putting 
a-\-bx-{-cx2=z0 ; and solving this equation, we shall have 

x=-^rZ-<g(b‘1-iac), and *=— 

or putting ^(b2—4ac)=d2, the values of x are 
8 
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S—b b+t 
and, consequently, (caH—-—), and (aH—-—), are the factors 

required. 

Example. It is required to find such a value of x, that 
y'ffi-f 13a?4-6a:2) shall be rational, and consequently 6-{-13a? 
-\-6x2 a square. 

Let Qx2-\- 13aj + 6=0 ; 
and solving this equation, we shall have x=—^, and x: 
therefore the two factors are 2#-1-3, and 3x-{-2. 

_2 
3 

m m4 
Put (2a?4-3)(3*+2)=-^(3;r+2)2, or 2z+3=—(3*+2), 

3n2_2m2 
and consequently, by reduction, x-————-. 

3m?—2 n* 
Where it appears, that, in order to obtain a rational answer, 

must be less than §, and greater than J. 

Whence, if m = 6, and n=5, we shall have 

m2 

n* 

X=z 
3X25—2 X 36 

3X36—2X“25: :n^5=4the value required- 

Case 6. When neither of the foregoing will apply, if the 
formula can be resolved into two parts, one of which is a 
square, and the other the product of any two simple factors. 

Put -y/(a-\-bx-\-cx2) = V\{d-\-exY + (/+£*) (A-M®)} = 
(d-\-ex)-\-n{f-\-gx) ; in which case we shall have (e?-f-ea’)2-j- 

(f+gx)(h + kx) = (d+ea;)2+2n(^+ea;) (f+gac) + n2(f+gx)2, 
or h-\-kx — 2n{d-\-ex)~\-n2{f-\-gx) ; 

, , n{2d-\-fn)—h 
and consequently, x=. J 

Or, if d—0, x — 

k—n[2e-\-gn)' 

fn2 — h 

k—n(2e-j- gn)' 
Or, if the part in this case, which is found to be a square, 

be a known quantity, put -\/(a-\-bx-\-cx2) — -\/\[d2-{-(e-\-fx) 
(g-\-hx)~d-\-n{e-\-fx) \ ; then we shall have 

d2+(e+fx) (g+hx)—d2-\-2dn(e-\-fx) -f- {e-rfx)2 

or g-\- hx=2dn-\-(e-{-fx), 

and consequently, by transposing and uniting the different 
e-\-2dn—g 

terms, x——;—?—. 
«—/ 

Example 1. It is required to find such a value of x, that 
*y/(13a?2-f 15#-{-7) shall be rational, or l3x2-\-\5x-\-7 a square. 
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Let this formula be separated into the two parts (1 —#)2 and 
6+17*+12a:2. 

Then, since ] 72—4(6 X 12), which is equal to 1, is a square, 
the latter part may be divided in the factors 3a:-f-2, and 4*+ 
3 ; and consequently the original formula may be represented 
by 

(l-x)2+(2+3x)x(3 + 4x). 
Hence, putting -y/ (12x2-\-15x-\-7)=z 

+ 1(1 —a:)2+(2 + 3a:) X (3 + 4a:) [ =(1 -a:) + ft(2 + 3a?), 

we shall have (1 — a:)2+(2 + 3a:) X (3 + 4) = (l — a:)2 + 2ft(l —a?) 
X (2 + 3) + ft2(2 + 3a+, or 

3 + 4a:=2ft(la:) + ft2(2 + 3*) ; 

and consequently, by reduction, xz= 

Where, taking n=1, we have x— 

2n-\-2n2— 3 

4 + 2 n— 3n2’ 

2+2-3 1 

4+2—3~3 

, 10 2 , - 13,15 . 13 45 63 
and 13a:2+15a:+7 = —+—+7=—+—+ —: 

121 
1 9 * 

a square number, as required. 

Ex. 2. Find a value of x, such, that 2*2+8a:+7 shall be 
a square. 

This expression, after a few trials, is found to be equiva¬ 
lent to (a: + 2)2 + (a:+1) X (a: + 3), which being equated with 
|(ac + 2) — ft(.r +1)|2 = (*2 + 2)2—2ft(* + 2) X (* + l) + ft2(a:+ 
l)2, there results 

* + 3 =—2n(a:+2) + ft2(a:+l) ; 

ft2—4ft — 3 
whence, *= ——-5. 

1 + 2ft — ft1 

If we take ft=3, we shall have *=3, and 2*2+8*+7=: 
49, a square, as was required. 

PROBLEM 11. 

541. To render surd quantities of the form +(a+Ar+ca?2 
-\-dx3) rational, or to find such values of x as will make a-^bx 
+ ex2 + dx3 a square. 

This problem is much more limited, and difficult to be re¬ 
solved, than the former, there being but a few cases of it that 
admit of answers in rational numbers. The rules for obtain¬ 
ing them are of such a confined nature, that when the un¬ 
known quantity has more than one value—which, however, 
is not often the case—the rest can onlv be determined one at 

32 
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a time, by repeating the operation with the value last obtain¬ 
ed, as often as may be found necessary. 

RULE. 

542. Case 1. When a—o, and b—o, put the remaining 
part (cx2-\-dx3) = nx, or cx2-\-dx3=n2x2 ; then we shall have 

7l2_C 
c4-dx=n2; .*. xz=—-—. 

d 

Where n may be any number whatever greater than the square 
root of c. 

Example 1. It is required to find such a value of x that 
*y/(3o:24- 11a:3) shall be rational, and consequently 3o:2-f-11 a?3 
a square. 

Let 'y/(3x2-\-\\x3)—nx, or 3a:24*Hx3 — n2x2. 
Then, by dividing, we shall have 34 llo:=n2. 

n2 — 3 
And consequently x -. 

11 
; where n may be any number, 

positive or negative, that is greater than -y/3. 
Taking therefore, n=2, 3, 4, 5, &c. respectively, we shall 

1 613 22 
have # = —, —, yy, yy, or 2, the last of which is the least in¬ 

tegral answer which the question admits of. 
Ex. 2. Find a number such, that if three times its cube be 

added to twice its square, the sum shall be a square. 
Here we must make 3a:3-f 2a:2 a square ; 

let n2x2 be the square, then 3x+2 = n?; 

n2-3 

’**X 2 

If we take n = 3, we have a: = 3, the number required. 
543. Case 2. When a is a square number, put it equal to e2, 

and make ^(e2-\-bx-\-cx2-{-dx3)z=.e-\-—-x, or e2 bx -\-cx2-\- 

dx3—(e-\-—)xz=.c2-\-lx-\- 
2e 

Hence, cx2-\~dx3: 

b2 

4e2 
x* 

4e2 
x, and by division and reduction 

b2- 
x — 

4 de2 

*4 
; or, when c = 0, x— 

4 de2 

Note. The assumed root e-\-—x is determined by first tak- 

ing it in the form c-\-nx, and then equating the second term 
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of it, when squared with the second term of the original for¬ 

mula; in which case n will be found=—. 

Example l. It is required to find such a value of x, that 
l+2a?—x2-4-x3 shall be a square. 

Here, 1 being a square, let 1 + 2a?—a;2-f-ns3 = (1 + a:)2=l “b 
2x-\-x2 ; then, we shall have x3 — x2 — x2i or x3=.2x2 ; and con¬ 
sequently x=2, and l + 2a: — x2 + a:3 = l +4—4 + 8 = 9, a 
square as required. 

Ex. 2. Find such a value of x as will make the expression 
3a:3 — 5a:2 + 6a:+ 4 a square. 

Put 3a:3 —5a:2+6a: +4 = (i|a:+2)2 = |a:2 + 6a:+4, 
then, 3a:3 — 5x2=^x2, or 3a:—5 = |; .*. x=l%, which being 

substituted in the proposed expression, makes it equal to 

problem in. 

544. To render surd quantities of the form + (a-\-bx-\-cx2 
+ cfa3 + ea:4), rational, or to find such values of x as will make 
a+£a:+ca:2+c?a?3+ea;4 a square. 

RULE. 

Case 1. When a is a square number, put it =f2, and make 

then since the first three terms on each side of the equation 

x3=exi-\-dx3; and therefore, by division and reduction, 

64dfG-8bf2(4cf2—b2) m 

X (4c/'2 — b2)2 — 64 ef6 ’ 

which form fails when any two of the coefficients b, c, d, are 
each =0. 

Example 1. It is required to find such a value of x, that 
1 —2a:+3a:2—4ai3 + 5a:4 shall be a square. 

Here, the first term being a square number, let 1—2a:+3a;2 
4a;3+5a:4=(l —x—x2)2= 1 —2a?+3a:2 — 2a:3 + a:4. 
Then, since the first three terms on each side of the equa¬ 

tion destroy each other, we shall have 5a:4—4a;3=a:4—2 a:3 j 
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2’ and consequently l—2aj+3a;2—4a:3 + 5a:4^l—l-ff 
+ tV 5 which is a square number, as was required. 

Ex. 2. Find such a value of x that we may have 22a;4—40a:3 
8 

—40a:24-64#+16 a square. Ans. 

545. Case 2. When c is a square number, put it —g2, and 
/ d 4 cp** — d<^,\^ 

make g2x4, -f- dx3-f*cx2a= \gx2-\-— x-|--—J =g2x4 

dx3-\-cx2-\- 
d(4cg2— d2) (4 eg2 — d2)2 

%4 64g6 
then, we shall have 

a I | d(4cg*~<P) a+bx- ^ + 8^4 *. 

(4 eg2—d2)2 — 64 age 
x~ 

64 bg6- 8dg2(4cg2— d2) * 
which form also fails in the same case as the former. 

Example 1. It is required to find such a value of x} that 
—2 + 3#—x2-2x3-\-4x* shall be a square number. 

Let 4a:4—2a:3 — a:2+3a:—2 = (2a'2—±x—TSg-)2 —4a:4—2a3—a2 
H-yg-a-}-> then we shall have 3a—2 = j^a-f- 25 a 

_ 256 » 

_5 3 7 
— 6 8 8* 

Ex. 2. It is required to find such a value of a, that 4a4-j- 
4a3+4a2+2a—6 shall be a square. 

Put 4a4+4a3 + 4a2 + 2a — 6 = (2a24-^+f)2=: 
4a4-f-4a3-i-4a2-|-|a:-l-Y6j and we have 

2a — 6 —|[a-}-yg- ; .*. a=13|-. 
546. Case 3. When the first and last terms are both squares, 

put a=f2 and e=g2, and make f2-\-bx-\-cx2-\-dx3~\-g2x4:= 

(f + ^+gx2)2=f2+bx+(2fg+~)2x2+^-x3+g2x*; 

then, since the second terms, as well as the first and last, on 
each side of the equation, destroy each other, we shall have 

cx2 + dx3-(2fg+~)x2-\- -yx3; 

a = 
f2(c~2fg)—\b2 

f{bg-fd) 

And because g is found in the original formula only in its 
second power, it maybe taken either positively or negatively; 
and consequently we shall also have 

yp—pQfg+c). 
A^g+fi) ’ 

bo that this mode of solution furnishes two different answers. 

x=- 



DIOPHANTINE ANALYSIS. 365 

Example 1. It is required to find such a value of oc, as 
shall make 1 -\-3x-\-7x2 —2a:3-{-4a:4 a square. 

Let 1 + 3*47*2—2 a;3+4a;4 = (1 + § x 4 2 a:2)2= 
25 

14 3a: 4-r#2 4 6a:34 4a:4; 
4 

25 3 
.*. 6a;3-j--—x2—7x2—2a:3, and x~~. 

4 32 
Ex. 2. It is required to find such a value of a:, as shall make 

16—24a;+4x2—6a:3-}-a;4 a square. 
Let a:4—6a:3-{-4a:2—24a:4- 16 = (a;2—3a:—4)2= 

a:4—6a:3 4 a;24 24a: 416, 
and there results 

4a:2—24a: = a:2-j-24a:, or 4a?—24—a:424 ; 
a: = 16. 

PROBLEM IV. 

547. To render surd quantities of the form (a-{-bx-\-cx2 
4-dx3) rational, or to find such values of x as will make c+ 
bx-\-cx2-\-dx3 a cube. 

Case 1. When a is a cube number, put it =e3, and take 
b _ „ . , b2 „ b3 

e3-\-bx-\~cx:i-\‘dx3=z(e-\-—-x)3 = e3-\-bx-\-~-7;X‘i 
3e2 3e° 27e6 

x3; then 

b3 b2 
we shall have dx3-\-cx2=——■^a:3-f-~--a:2; or, by dividing by 

06° 

x2, and reducing the terms, 

27Je6a:-f-27ce6=53a: + 9i2e3 : whence x = 
9e3(3 ce3—b2) 

b3—27de6 

Example 1. It is required to find such a value of x, as will 
make the formula l-{-x-{-x2 a cube. 

Let 1 -f-a:4-a:2 = (l -j-|a:)3:=: lH-a^^-a^+^V^3’ or 
x2=±x2-\--£jX3 ; .*. a:=18, and consequently, 

l+a?-4a:2:=14-18-|-324 = 343-_73, a cube number, as was 
required. 

Ex. 2. It is required to find such a value of x that will 
make the formula 2x3-\-3x2—4a: 48 a cube. 

Let 2a:3 + 3a:2 — 4a:-}- 8 = (— fa: -f- 2)3 = — £jx3 4 \x2 — 4a: 4 8, 
and we have 2a:34-3a;2 =z—-£jx34-Ja:2, 

or 2a?4 3 — —yyX4§ i 
x __6 3 

5 5' 

Ex. 3. It is required to find such a value of xy as to make 
the formula 3a:342a:41 a cube. Ans. If. 

548. Case 2. When d is a cube number, put it =f3. and 
32* * J 
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take a-f 6a-f ca2-f/3a3 = (^2+fx)3=7fip' 

f3x3 ; then we shall have a + bx= 

27a/'6 — c3 
27/6 3/ 

j+ cat2 4* 
3/3 

/»2 
f 

'3* ; 
a = 

9f3(c2-3bf3)' 
Example 1. It is required to find such a value of x as will 

make 133-j-3a24-a3 a cube. 
Let 133 + 3a2 + a3 = (l 4-a)3=l-f-3a-j-3a2+a3; and since 

the two last terms of this equation destroy each other, there 
will remain 1-f-3a=: 133, or 3a=133—1 = 132 ; whence a = 
1|2=44, and consequently 133-{-3a2-f-a3 = 92025 = (45)3, a 
cube number, as was required. 

Ex. 2. It is required to find such a value of x as will make 
the formula 8a3— 4a2-|-2a—12 a cube. 

Let 8a:3 — 4a2+2a — 12 = (2a — 4.)3 = 8a3—4a2-f-|a+yy, 
and we have 2a: — 12=1*+^; 

• ■y* — 3 2 5 • • a — 36 • 
Ex. 3. It is required to find such a value of x as will make 

the formula x3 — 3a2 + a a cube. Ans. a=4* 
549. Case 3. When a and d are both cube numbers, let 

them be put = e3 and f3, and make e3 -\-bx-\- cx2-\-f3x3=(e + 
j^a43 = e3 + 3y'e2a43e/'2a2+y'3a3 ; then, we shall have bx-\-cx2 

3fe 
=z3fe2x-\-3ef 2x2 

*2 — b 
X — which formula may be also 

c—3ef2 
resolved by either of the two first cases. 

Example 1. It is required to find such a value of x, that 
8 4 28a-f 89a2— 125a:3 shall be a cube. 

Let 8 +28a:489a:2— 125a3 = (2— 5a:)3 = 8 — 60a4150a2— 
125a:3 ; and, since the first and last terms of this equation 
destroy each other, there will remain 28a:+89a:2=—60a: 4 
150a:2; /.150a — 89a=28 + 60, or, 61a=88, and a=-|y, the 
value required. And as this formula can, also, be resolved 
by the first or second case, other values of x may be obtained, 
that will equally answer the conditions of the question. 

Ex. 2. It is required to find such a value of a, that the for¬ 
mula 8 4 4a 4 9a2 4 shall be a cube. 

Let 8 + 4a-|-9a2-l-a3=(2+a)3 = 8 + 12a+6a24-a3, and we 
shall then have 9a2 + 4a=6a2+12a ; a=2J-. 

problem v. 

On the Resolution of Double and Triple Equalities. 

550. When a single formula, containing one or more un¬ 
known quantities, is to be transformed to a perfect power, 
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such as a square or a cube, this is called in the Diophantine 
Analysis, a simple equality ; and when two formulae, con¬ 
taining the same unknown quantity, or quantities, are each 
to be transformed to some perfect power, it is then called a 
double equality, and so on ; the methods of resolving which, 
in such cases as admit of any rule, are as follows. 

Prob. 1. When the unknown quantity does not exceed 
the first degree, as in the double equality 

a-\-bx— a square, and c-\-dx— a square. 
Let the first of these formula a-\-bx=it2, and the second 

c-\- dx — n2 ; then, by eliminating x from each of these equa¬ 
tions, we shall have bu2-\-ad—bc — dt2, or bdu2-\~(ad— bc)d=: 
d2t2 ; and since the quantity on the right hand side of this 
last equation is now a square, it is only necessary to find such 
a rational value of u, as will make bdu2-\-[ad — bc)d a square, 
which being done according to one of the methods already 

^2_Q 

explained, we shall have x= —-—. 

Example. It is required to find a number x, such, that x-\- 
128 and x+192 shall be both squares. 

Here, let a?-f-128 = u2, and #+ 192 = £2 ; 
then, by eliminating x, we shall have u2 —128 — t2—192 ; or 
w2-f-64 = 22; and, as the quantity on the right-hand side 
of the equation is now a square, it only remains to make 
ft2+64 a square ; for which purpose, put u2-}-64 = (w-|-ft)2 = 

u2-\-2nu~\-n2, 2nu-\-n2 — 64 ; whence, w = 
64 — n2 

2 n 
or, taking 

ft, which is arbitrary, =2, we shall have u 
64-4 

4 
15; and 

consequently, x = n2—128=225 —128 = 97, the number re¬ 
quired. 

551. Prob. 2. When the unknown quantity does not ex¬ 
ceed the second degree, and is found in all the terms of the 
two formulae, as in the double equality, ax2-\-bx~ a square, 
and cx2-\-dx— a square. 

Let #=- ; then, by multiplying each of the two resulting 

equations by y2, we shall have 
a-\-by— a square, and c-\-dy— a square ; 

from which the value of y, and consequently that of x, may 
be determined, as in Problem I. 

But if it were required to transform the two general expres- 
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sions a-^bx + cx2 and d-\-ex-\-fx2 into squares ; the solution 
could only be obtained in a few particular cases, as the result¬ 
ing equality would rise to the fourth power. 

Example. It is required to find a number x, such, that 
ccz-f-x and x2—x shall be both squares. 

Here, let x—-; then the two formulae in the question will 
V 

become J-+- and or A;(14-y) and —(1— y), which 
y‘ y y2 y y2 y2 

are to be squares. But since a square number, when multi¬ 
plied or divided by a square number, is still a square, it is the 
same thing as to transform 1 -\-y and 1 —y to squares ; for 
which purpose, let 1 -fy=j92, or y=p2 — 1 ; 1—y— 2 —p2, 
which is also to be a square. But as neither the first nor last 
terms of this new formula are squares, we must, in order to 
succeed, find some simple number, that will answer the con¬ 
dition required ; which, it is evident, from inspection, will be 
the case when^=l. 

Let, therefore, p — 1—q, and we shall have 1—y=2—pz= 
]-f2q—q2', or, putting l+2q—q2 = (l—rq)2 = l—2rq-\-r2q2-i 

whence 2— q— — 2r-f r2q, or q — ; and consequently, 

_1__1_ (1+r)2 

y ?2—2Q —4r3 y 

where, in order to make x positive, r may be taken equal to 
any proper fraction whatever. 

t 
Let, therefore, for the sake of greater simplicity, r=~, and 

u 

we shall have x ~ , 0 , in which case, any whole 
4 tu(u2 — t2) J 

numbers may be now substituted for u and t, provided u be 
greater than t. 

25 
If, for instance, u=z2 and £ = 1, we shall have x=—; and 

24 

; and so on, for any other numbers. if u — 3 and t=2, 

552. Prob. 3. In the case of a triple equality, where 
three expressions of the former, ax-\-by, cx~{-dy, and ex~{-fy, 
are to be transformed to squares. 

Let the first of them cix-\-by=t'2, the second cx-\-dy=uz, 
d the third cx-\-fy — s2 ; then, if x be eliminated from each 
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of these equations, and afterwards y in the two resulting 
equations, we shall have (ctf—be)u2 — (cf—de)t2=(ad—cb)s2 ; 

and by putting °r u=tz, there will arise 

af—be 2 cf—de s2 

ad—cb ~ ad— cb t2 7 

and since the quantity on the right-hand side of this equation, 
is a square, it only remains to find such a rational value of z 
as will make 

af—be . cf—de 
--r-z2——-r a square ; 
ad—cb ad—cb 

which being done by one of the methods before explained, 
we shall readily obtain, by means of the first two equations, 

d-bz2 
X: t2, and y-. 

az 2 —, 

■cb ad—cb y ad- 

where t may be any number whatever. 

Example. It is required to find three numbers in arith¬ 
metical progression, such, that the sum of every two of them 
may be a square. 

Let x, x-\-y, x-\-2y=z the three numbers ; and put 2a:-f-y=. 
t2, 2x-\-2y=u2, and 2x-\-3y — s2 ; then, by eliminating x and 
y from these equations, we shall have u2—t2=:s2—u2, or 2u2 
— l2=s2 ; and if we now put u~tz, then will arise 2t2z2—t2 

=a2, or 2z2—1= —; where, — being a square, it only re- 
L V 

mains to make 2.2 — 1 a square; what it evidently is when 
z=zl. But as value would be found not to answer the con¬ 
ditions of the question, let z = l—p; 2z2—1—2(1—p)2 — 1 =: 
1—4p + 2p2 ; and by putting this last expression =(1—rp)2, 
we have 1— 4p+2p2 = l—2rp-\-r2p2, or —4-j-2p — —2r+ 

r2p ; whence p— 
2r—4 

r2—2”’ 
and z—1 

2r—4 r2—2r-{-2 

•2 
or. 

, . m a 
making r=-, z=- . 

And since, by the first two equations, y=zu2—t2z=t2z2—t2 
= (z2 — l)t2, and x—\(t2—y2)=z±[2—z2)t2 ; it is evident, that 
z must be some number greater than 1 and less than y'2. 

If, therefore, m—9 and n—5, we shall have z=®^ 90 + 59 

m2—2mn-\-‘Zn2 

41 

3T1 

81—50 
241 t2 , 720 0 

X-, and y=—~~xt2; or, taking2=2 X31, #= 
312'' 2 

482, and y=2880. 
312 

Hence, 
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#—482, x-\-yz=.3362, and x-\-2y—§2i2y 
the numbers required. 

EXAMPLES FOR PRACTICE. 

Ex. 1. It is required to find a number such, that x-\-1 and 
x— 1 shall be both squares. Ans. x 

Ex. 2. It is required to find a number x, such, that x-\-4 
and £+7 shall be both squares. Ans. 

Ex. 3. It is required to find two numbers such, that if their 
product be added to the sum of their squares, the result shall 
be a square. Ans. 3 and 5. 

Ex. 4. Find two numbers such, that if the square of each 
be added to their product, the sums shall be both squares. 

Ans. 9 and 16. 
Ex. 5. It is required to find two whole numbers such, that 

the sum or difference of their squares when diminished by 
unity, shall be a square. Ans. 8 and 9. 

Ex. 6. To find two whole numbers such, that if unity be 
added to each of them, and also to their halves, the sums in 
both cases shall be squares. Ans. 48 and 1680. 

Ex. 7. It is required to find three square numbers, that 
shall be in arithmetical progression. Ans. 1,25, and 49. 

Ex. 8. It is required to find three square numbers that shall 
be in harmonica! proportion. Ans. 1225, 49 and 25. 

Ex. 9. To find three whole numbers such, that if to the 
square of each the product of the other two be added, the 
sums shall be squares. Ans. 9, 73 and 328. 

Ex. 10. It is required to resolve 4225, which is the square 
of 65, into two other integral squares. Ans. 2704 and 1521. 

Ex. 11. It is required to resolve 92+22, or 85 into two 
other integral squares. Ans. 72 + 62. 

Ex. 12. It is required to find three square numbers, such, 
that their sum shall be a square. Ans. 9, 16 and Yj- 

Ex. 13. To find two numbers such, that their sum shalf be 
equal to their cubes. Ans. ^ and -§-. 
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APPENDIX. 

Algebraic Method of demonstrating the Propositions in theffth 
book of Euclid's Elements, according to the text and arrange¬ 
ment in Simson’s edition. 

Simson’s Euclid is undoubtedly a work of great merit, and 
is in very general use among mathematicians ; but notwith¬ 
standing all the efforts of that able commentator, the fifth book 
still presents great difficulties to learners, and is in general less 
understood than any other part of the Elements of Geometry. 
The present essay is intended to remove these difficulties, and 
consequently to enable learners to understand in a sufficient de¬ 
gree the doctrine of proportion, previously to their entering 
on the sixth book of Euclid, in which that doctrine is indis¬ 
pensable. 

I have omitted the demonstrations of several propositions, 
which are used by Euclid merely as lemmata, but are of no 
consequence in the present method of demonstration. 

Instead of Euclid’s definition of proportion, as given in his 
fifth definition of the fifth book, I make use of the common al¬ 
gebraic definition ; but I have shown the perfect equivalence 
of these two definitions. This perfect reciprocity between the 
two definitions is a matter of great importance in the doctrine 
of proportion, and has not (as far as I can learn) been discuss¬ 
ed by any preceding mathematician. 

With respect to compound ratio, I have also given another 
definition of it instead of that given by Dr. Simson ; as his 
definition is found exceedingly obscure by beginners, and is 
in my judgment one of the most objectionable things in his 
edition of Euclid’s Elements. 

The literal operations made use of in the present paper are 
extremely simple, and require very little previous knowledge 
of algebra to render them intelligible. 

The algebraic signs commonly used to indicate greater, 
equal, less, are f, /_ : thus the three expressions a ~/b 
c=d, eff signify that a is greater than b, that c is equal to d, 
and that e is less than f The expression c=d is called an 
equation or equality; the others a fb, e/_f^Q called in¬ 
equalities, 
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Also when four quantities are proportionals, we shall express 
this relation in the usual mode by points ; thus, 

A : B :: C : D 
is to be read, A is to B as C is to D ; or, A has the same ratio 
to B that C has to D. 

THE ELEMENTS OP EUCLID, BOOK V. 

Definitions. 
I. 

A less magnitude is said to be apart of a greater, when the 
less measures the greater, that is, when the less is contained a 
certain number of times exactly in the greater. 

II. 
A greater magnitude is said to be a multiple of a less, when 

the greater is measured by the less, that is, when the greater, 
contains the less a certain number of times exactly. 

III. 
Ratio is a mutual relation of two magnitudes of the same 

kind to one another in respect to quantity. 
IY. 

Magnitudes are said to have a ratio to one another, when 
the less can be multiplied so as to exceed the other. 

V. 
The ratio of the magnitude A to the magnitude B is the 

number showing how often A contains B ; or, which is the 
same thing, it is the quotient when A is numerically divided by 
B, whether this quotient be integral, fractional, or surd. 

Explication. 

This fifth definition, with its corollaries, is used in the pre¬ 
sent essay instead of Euclid’s 5th and 7th definitions : the 
following examples will sufficiently illustrate the definition. 
Let A=20, and B=5, then the ratio of A to B, or of 20 to 5, 

A 20 
is or—, or 4, so that the ratio of 20 to 5 is 4. Again, let 

B 5 
A 5 1 

A — 5, and B=20, then and therefore the ratio of 
13 4 

1 ' A 
5 to 20 is - Lastly, let A = 12^/2, and B=4, then — 

4 B 

12-v/2 
:3 -v/2, and therefore the ratio of 12 </2 to 4 is 3^2- 

Corollary I. If four magnitudes, A, B, C, D, be so related 
A C 

that , it is evident the ratio of A to B is the same with 
B JJ 

the ratio of C to D. 
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Cor. II. Any four magnitudes whatever, so related that the 
ratio of the first to the second is the same with the ratio of the 
third to the fourth, may be expressed by 

rA, A, rB, B ; 
the first of the four being rA, the second A, the third rB, and 
the fourth B ; the magnitudes A and B being any whatever, 
and the letter r denoting each of the two equal ratios or quo¬ 
tients when the first rA is divided by the second A, and the 
third rB divided by the fourth B. 

Cor. III. When four magnitudes A, B, C, D, are so relat- 
A C 

ed that g- is greater than —, it is evident that the ratio of A 

to B is greater than the ratio of C to D ; or that the ratio of C 
to D is less than the ratio of A to B. 

The Fifth Definition according to Euclid. 

The first of four magnitudes is said to have the same ratio 
to the second which the third has to the fourth, when any 
equimultiples whatsoever of the first and third being taken, 
and any equimultiples whatsoever of the second and fourth, 
if the multiple of the first be less than that of the second, the 
multiple of the third is also less than that of the fourth ; or, 
if the multiple of the first be equal to that of the second, the 
multiple of the third is also equal to that of the fourth ; or if 
the multiple of the first be greater than that of the second, 
the multiple of the third is also greater than that of the 
fourth. 

Scholium. We shall demonstrate towards the close of this 
essay, that this definition of Euclid’s and our 5th definition, 
acccording to the common algebraic method, are not only con¬ 
sistent with each other, but also perfectly equivalent, each 
comprehending, whatsoever is comprehended by the other. 

VI. 
When four magnitudes are proportionals, it is usually ex¬ 

pressed by saying, the first is to the second as the third to the 
fourth. 

The Seventh Definition according to Euclid. 

When of the equimultiples of four magnitudes, (taken as 
in the fifth definition) the multiple of the first is greater than 
that of the second, but the multiple of the third is not greater 
than that of the fourth; then the first is said to have to the 
second a greater ratio than the third has to the fourth ; and, 
on the contrary, the third is said to have to the fourth a less 
ratio than the first has to the second. 

33 
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VIII. 
Analogy or proportion is the equality of ratios. 

IX. 
Omitted. 

X. 
When three magnitudes are proportionals, the first is said to 

have to the third the duplicate ratio of that which it has to the 
second. 

XI. 
When four magnitudes are continued proportional, the first 

is said to have to the fourth the triplicate ratio of that which 
it has to the second, and so on, quadruplicate, &c. increasing 
the denomination still by unity in any number of propor¬ 
tionals. 

Definition A, viz. of compound ratio, omitted. 
XII. 

In proportionals, the antecedent terms are called homologous 
to one another, as also the consequents to one another. 

XIII. 
Permutando, or Alternando, by permutation, or by alter¬ 

nation, or alternately, are terms used, when of four propor¬ 
tionals it is inferred that the first is to the third as the second 
to the fourth. 

XIV. 
Invertendo by inversion, or inversely, when of four propor¬ 

tionals, it is inferred that the second is to the first as the fourth 
to the third. 

XV. 
Componendo, by composition, when it is inferred that the 

sum of the first and second is to the second as the sum of the 
third and fourth is to the fourth. 

XVI. 
Dividendo, by division, wThen it is inferred that the excess 

of the first above the second is to the second as the excess of 
the third above the fourth is to the fourth. 

XVII. 
i 

Convertendo, by conversion, or conversely, when it is in¬ 
ferred that the first is to its excess above the second, as the 
third to its excess above the fourth. 

XVIII. 
Ex aequali (sc. distantia), or ex aequo, from equality of dis¬ 

tance, when there is any number of magnitudes more than 
two, and as many others, so that they are proportionals when 
taken two and two of each rank, and it is inferred that the first 
is to the last of the first rank of magnitudes as the first is to 
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the last of the others : of this there are the two following 
kinds, which arise from the different, order in which the mag¬ 
nitudes are taken two and two. 

XIX. 
Ex aequali, from equality; this term is used simply by it¬ 

self, when the first magnitude is to the second of the first 
rank, as the first to the second of the other rank, and the se¬ 
cond to the third of the first rank as the second to the third 
of the other ; and so on in order; and it is inferred that the 
first is to the last of the first rank as the first is to the last of 
the other rank. 

XX. 
Ex ssquali, in proportione perturbata, seu inordinata, from 

equality in perturbale proportion : this term is used when 
the first is to the second of the first rank as the last but one 
to the last of the other rank, and the second is to the third of 
the first rank as the last but two to the last but one of the 
other rank, and so on in a cross order; and it is inferred that 
the first is to the last of the first rank as the first is to the last 
of the other rank. 

XXI. 
If A, B, C, D, be any number of magnitudes of the same 

kind, and P any other magnitude ; and if we make A : B : : 
P : Q ; and B : C : : Q : R; and C : D : : R : S ; the ratio 
of P to S is said to be compounded of the ratios of A to B, B 
to C, C to D. 

AXIOMS. 

I. Equimultiples of the same, or of equal magnitudes, are 
equal. 

II. These magnitudes of which the same, or equal magni¬ 
tudes, are equimultiples, are equal to one another. 

III. A multiple of a greater magnitude is greater than the 
same multiple of a less. 

IV. That magnitude of which a multiple is greater than 
the same multiple of another, is greater than that other mag¬ 
nitude. 

PROPOSITIONS. 

Propositions I. II. III. V. and VI. are omitted, as they do 
not treat of proportion, and are not wanted in the method of 
demonstration adopted in this essay. 

PROP. IV. TIIEOR. 

If the first of four magnitudes has the same ratio to the se¬ 
cond which the third has to the fourth; then any equimulti¬ 
ples whatever of the first and third shall have the same ratio 
to any equimultiples of the second and fourth ; that is, the 
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equimultiple of the first shall be to that of the second as the 
equimultiple of the third is to that of the fourth. 

DEMONSTRATION. 

Ity Cor. 2. Def. 5. let any four proportionals be repre¬ 
sented by 

rA, A, rB, B ; 
and m and n being any two integers greater than unity, the 
equimultiples of rA and rB will be 

mrA, mrB ; 
and in like manner the equimultiples of A, B, will be nA, nB. 

We are to prove that the four following quantities, mrA, 
nA, mrB, nB, are proportionals. 

Bv Def. 5. the ratio of mrA to nA is —-A— ~ 
' nA n 

mrB mt 
and the ratio of mrB to nB is —— : 

nB n 

now these two ratios being each =~, 
n 

♦ 

are manifestly equal to each other, and therefore by Cor. 1. 
Def. 5. 

mrA : nA : : mrB : nB. Q. E. D. 
Cor. Likewise if the first be to the second as the third to 

the fourth, then also any equimultiples of the first and third 
shall have the same ratio to the second and fourth; and, in 
like manner, the first and third shall have the same ratio to any 
equimultiples of the second and fourth. 

DEMONSTRATION. 

We have first to prove that the four following, 
mrA, A, mrB, B are proportionals. 

7YlT xSl. 
The ratio of mrA to A is —^~=?nr, 

and the ratio of mrB to B is 

B 
mrB 

~B~ 
■—mr 

A : 
nB. 

mrB : B. Therefore mrA 
In like manner we prove that rA : nA :: rB 

PROP. A. THEOR. 

If the first of four magnitudes has the same ratio to the 
second which the third has to the fourth ; then if the first be 
greater than the second, the third is also greater than the 
fourth ; if equal, equal; and if less, less. 

DEMONSTRATION. 

by 
By Cor. I. Def. 5. any four proportionals maybe expressed 

rA, A, rB, B. 
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If we have rA 7 A, i if rA—A, \ KrAZ A, \ 
then by division r y 1, > then r=l, £ then r Z 1, > 
and by multip. rB^ZB, j and rB = B, ) and rB^/B. ) 

Q. E. D. 
PROP. B. THEOR. 

If four magnitudes are proportionals, they are proportionals 
also when taken inversely. 

DEMONSTRATION. 

Let rA, A, rB, B be any four proportionals, we are to prove 
that A, rA, B, rB will also be proportionals. 

The ratio of A to rA is ~=— 
rA r 
B 1 

and the ratio of B to rB is ; 
rB r 

and therefore 
A : rA B : rB. Q. E. D. 

PROP. C. THEOR. 

If the first be the same multiple of the second, or the same 
part of it that the third is of the fourth; the first is to the 
second as the third is to the fourth. 

DEMONSTRATION. 

1. Supposing m to be any integer greater than unity, let mA 
the first be the same multiple of the second A, that mB the 
third is of the fourth B ; we are to prove that mA, A, mB, B 
are proportionals. 

The ratio of mA to A is m, 

and the ratio of mB to B is 

A 
mB 

B 
m, 

therefore mA : A : : mB : B. 
2. The letter m still denoting an integer greater than unity, 

let A the first be the same part of mA the second, that B the 
third is of mB the fourth; then we are to show that 

A, mA, B, mB are proportionals. 

A 1 
The ratio of A to mA is ——. 

mA m 
B 1 

and the ratio of B to mB is — 
mB m 

therefore 
A : mA : : B : mB. Q. E. D. 

PROP. D. THEOR. 

If the first be to the second as the third to the fourth, and 
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if the first be a multiple, or part of the second; the third is 
the same multiple, or the same part of the fourth. 

DEMONSTRATION. 

Any four proportionals being expressed by 
rA, A, rB, B ; 

1. Let the first rA be a multiple of A, then it is to be proved 
that rB is the same multiple of B. 

Because rA is a multiple of A, it is evident that r is an in¬ 
teger greater than unity, and r being such an integer, rA, and 
rB are manifestly equimultiples of A and B. 

2. If rA be a part of A, we are to show that rB is the same 
part of B. 

A 1 
Because rA is a part of A, therefore —- must be an in- 

1 r A r 

teger greater than unity ; but when reduced, is also equal 

to -, that is, to the same integer, and therefore rA, rB, are 
r 

the same parts of A and B. Q. E. D. 
PROP. VII. THEOR. 

Equal magnitudes have the same ratio to the same magni¬ 
tude ; and the same has the same ratio to equal magnitudes. 

DEMONSTRATION. 

Let A and B be any two equal magnitudes, and C any 
other, we are to prove that A and B have each the same ratio 
to C, and that C has the same ratio to A and B. 

Because by hypothesis A = B, 

therefore by division ^=5-; 

that is, A : C :: B : C. 
Again, since by hypothesis A = B, 

C C 
therefore by division —=— ; 

A Jd 
that is, C : A : : C : B. Q. E. D. 

PROP. VIII. THEOR. 

Of unequal magnitudes the greater has a greater ratio to 
the same, than the less has : and the same magnitude has a 
greater ratio to the less, than it has to the greater. 

DEMONSTRATION. 

Let A and B be two unequal magnitudes, of which A is the 
greater, and let C be any magnitude whatever of the same 
fond with A and B : it is to be shown that the ratio of A to C 



APPENDIX. 379 

is greater than the ratio of B to C : and also that the ratio of 
C to B is greater than the ratio of C to A. 

1 Because by hypothesis A>B, 
A B 

therefore, by division —— ; 

that is, the ratio of A to C is greater than the ratio of B to C. 
2 Because by hypothesis A7B, therefore B/A, 

C C 
and therefore by division we have — 

B A 
because the less the divisor of C is, the greater is the quo¬ 
tient ; and therefore the ratio of C to B is greater than the 
ratio of C to A. Q. E. D. 

PROP. IX. THEOR. 

Magnitudes which have the same ratio to the same magni¬ 
tude are equal to one another ; and those to which the same 
magnitude has the same ratio, are equal to one another. 

DEMONSTRATION. 

1. Let A and B have the same ratio to C, it is to be proved 
that A is equal to B. 

Because A and B have, by hypothesis, the same ratio to C, 
A B 

therefore we have the equality —and therefore by mul- 

tiplication A=B. 
2. Because by hypothesis, C has the same ratio to A as to 

C C 
B, therefore we have the equality therefore, by divid- 

A D 

ing by C, and multiplying by A and B, we have A = B. 
Q. E. D. 

PROP. X. THEOR. 

That magnitude which has a greater ratio than another has 
to the same magnitude, is the greater of the two : and that 
magnitude to which the same has a greater ratio than it has to 
another, is the less of the two. 

DEMONSTRATION. 

1. Let A have to C a greater ratio than B has to C, it is to 
be proved that A is greater than B. 

A B 
Since the ratios of A and B to C, are and 

V V 

A B 
therefore by supposition — , an(I therefore by mul« 

tiplication A>B. 
2. Here the ratio of C to B is greater than he ratio of C 

to A, and we have to prove that B is less than to A: 
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C C 
We have, therefore, by hypothesis 

D A. 

Since then C contains B oftener than C contains A, it is 
manifest that B must be less than A. Q. E. D. 

PROP. XI. THEOR. 

Ratios that are the same to the same ratio, are the same to 
one another. 

DEMONSTRATION. 

Let A be to B as C to D, and also E to F as C to D ; it is 
to be shown that A is to B as E is to F. 

A C 
Because A is to B as C to D, therefore, —, 

B JJ 

, _ E C , , 
for the same reason ■=-==-; therefore 

A=i-, that is, A : B :: E : F. 
B F 

Q. E. D. 

PROP. XII 

If any number of magnitudes be proportionals, as one of 
the antecedents is to its consequent, so shall all the antece¬ 
dents taken together be to all the consequents. 

DEMONSTRATION. 

By Cor. 2. Def. 5. any number of proportionals may bo 
expressed by rA, A ; rB, B ; rC, C ; 

Where rA, rB, rC, are the antecedents, and A, B, C, the 
consequents ; and we are to prove that. 

as rA is to A, so is rA+rB-j-rC to A+B + C. 
7* A. 

The ratio of rA to A is expressed by -L-=r,and the ratio of 

rA-H'B-f'T'C to A-f-B-j-C, by—A : r> -=r ; and therefore 
A-f-B + C 

rA : A :: rA-f-rB-j-rC : A-f-B-f-C. 

Q. E. D. 
PROP. XIII. THEOR. 

} If the first has to the second the same ratio which the third 
has to the fourth, but the third to the fourth a greater ratio 
than the fifth has to the sixth ; the first shall also have to the 
second a greater ratio than the fifth has to the sixth. 

DEMONSTRATION. 

Let A, B, C, D, E, F be the first, second, third, fourth, fifth, 
and six magnitudes respectively. 

The ratios of A to B, of C to D, and of E to F 
ACE 

are B ’ D"’ F ; 

V 
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A C 
and since by hypothesis -^=g-, 

and also jjr, 

A E 
therefore we have --g> jy-. 

Q.E.D. 
Cor. And if the first have a greater ratio to the second 

than the third has to the fourth, but the third the same ratio 
to the fourth which the fifth has to the sixth ; it may be de¬ 
monstrated, in like manner, that the first has a greater ratio to 
the second than the fifth has to the sixth. 

PROP. XIV. THEOR. 

If the first has to the second the same ratio which the third 
has to the fourth ; then, if the first be greater than the third, 
the second shall be greater than the fourth ; if equal, equal, 
and if less, less. 

DEMONSTRATION. 

Let rA, A, rB, B, be any four proportionals. 
1. Suppose rA/rB, 

then by division A/7 B ; 
next, suppose rA = rB, 

then by division A= B ; 
lastly, suppose rA rB, 

then by division A/_ B. Q.E.D. 

PROP. XV. THEOR. 

Magnitudes have the same ratio to one another which their 
equimultiples have. 

DEMONSTRATION. 

Let A, B, be any two magnitudes of the same kind ; and m 
being any integer greater than unity, let mA, mB, be equimul¬ 
tiples of A, B ; it is to be proved that 

A, B, mA, mB, are proportionals. 
A 

The ratio of A to B is the numerical quotient —, and the 

ratio of mA to mB is 
mA 

mB' 
which is reducible to 

A 

B; 

the two ratios 
A 

B’ 
are equal, and therefore 

mil 
A : B :: mA : mB. 

therefore 

PROP. XVI. THEOR. 

If four magnitudes of the same kind be proportionals, they 
shall also be proportionals when taken alternately. 
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DEMONSTRATION. 

We may express any four proportionals by 
rA, A, rB, B, 

and we are to demonstrate that the four 
rA, rB, A, B, 

will also be proportionals. 
f A 

The ratio of rA to rB is -=r, which, because the factor r is 
rB 

in both numerator and denominator, is evidently reducible to 
A \ A 

g: again the ratio of the third A to the fourth B is also — ; 

therefore, the two ratios, viz. of rA to rB, and of A to B, be¬ 
ing equal, we have 

rA : rB :: A : B. 
Q. E. D. 

PROP. XVII. THEOR. 

If magnitudes taken jointly be proportionals, they shall also 
be proportionals when taken separately ; that is, if two mag¬ 
nitudes together have to one of them the same ratio which 
two others have to one of these, the remaining one of the first 
two shall have to the other the same ratio which the remain¬ 
ing one of the last two has to the other of these. o 

DEMONSTRATION. 

By hypothesis we have A + B:B::C + D:D, an(i we 

are to prove that A : B :: C : D. 
A _L B A 

Now the ratio of A-pB to B is —-— 
13 13 

C + D G 
and the ratio of C-f-D to D is — —-fl ; 

and since by hypothesis these two ratios are equal, therefore 
, A C ' .A C . . 

we have g 1 “ jJ +1» consequently, — ; that is, 

A : B : : C : D. 

Q. E.D. 

PROP. XVIII. TIIEOR. 

If magnitudes taken separately be proportionals, the)'' shall 
also be proportionals when taken jointly ; that is, if the first 
be to the second as the third is to the fourth, the first and se¬ 
cond together shall be to the second as the third and fourth 
together to the fourth. 
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DEMONSTRATION. 

By hypothesis we have A : B :: C : D, 
and we are to demonstrate that A + B : B :: C + D : D. 

Since the ratio of A to B is the same with that of C to D, 

therefore A C f 
ri L) 

to each side of this equation add unity, and we have 
A , C , _ . . A + B C + D 

-+1 =—+1, that is, 
B * D 

and therefore A+B B : :C + D 
B 
D. 

D 
Q. E. D. 

PROP. XIX. THEOR. 

If a whole magnitude be to a whole, as a magnitude taken 
from the first is to a magnitude taken from the other, the re¬ 
mainder shall be to the remainder as the whole to the whole. 

DEMONSTRATION. 

Let A, B, be the two whole magnitudes, and C, D, the mag¬ 
nitudes taken from them. 

So that by hypothesis A : B : : C : D, 
we are to prove that A : B : : A—C : B—D. 

By Prop. XYI. we have 

, A B , . . A-C B-D 
consequently —— 1 — 1, that is, —=—g—; 

By this last divide the first equation, 
- , . A B 

and the equal quotients are  -77———— 
A —C B—D 

^ A_C 
and therefore by mult, and div. +-=r-— 

J B B —D 
that is, A : B :: A —C : B—D. - Q. E. D. 

ANOTHER DEMONSTRATION. 

Since by hypothesis A : B :: C : D, 
therefore by alternation, prop. XYI. A : C :: B : D, 

and by division, prop. XVII. A—C : C :: B — D : D, 
and by alternation, A—C : B—D :: C : D, 

and therefore by prop. XI. A-—C : B —D :: A : B. 
Q. E. D. 

ANOTHER DEMONSTRATION. 

Let A+C, and B + D, be the whole magnitudes, and C, D, 
the magnitudes taken away, so that by hypothesis 
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A+C : B + D :: C : D. 
And we are to show that 

A + C : B + D :: A : B. 
Since by hypothesis A+C : B + D :: C : D, 

therefore by prop. XVI. A + C : C :: B + D : D, 
consequently by prop. XVII. A : C :: B : D, 
and therefore by prop. XVI. A : B :: C : D, 

therefore by prop. XI. A+C : B + D :: A : B 
Q.E.D 

ANOTHER DEMONSTRATION. 

Supposing r greater than unity, let rA, rB, be the two 
wholes, and A, C the magnitudes taken away, so that by hy 
pothesis, we have rA : rB : : A : C ; 

. , rA A A A 
ol course we have — = -, or - =-, 

rJj U B O 
have therefore only to show that 

rA : rB :: rA—A : 

whence C=B, and we 

rA 
Now the ratio of rA to rB is —=^ , 

rB B 

rB-B 
A 

and the ratio of rA —A to rB—B, is 

A 
and therefore 

B 

rA—A_(r—1).A_ 

rB —B (r— 1).B 

rA : rB : : rA—A : rB—B. 
Q. E. D 

PROP. E. THEOR. 

If four magnitudes be proportionals, they are also propor¬ 
tionals by conversion ; that is, the first is to its excess above 
the second as the third is to its excess above the fourth. 

DEMONSTRATION. 

Let rA, A, rB, B, be the four proportionals, 
we have to demonstrate that 

* Y 

rA : rA—A :: rB : rB—B. 

The ratio of rA to r A—A is r-—■ ——, 
rA—A r—1 

rB r 
and the ratio of rB to rB —B is -——=- 

rB — B r—1 
therefore rA : rA—A :: rB : rB—B. 

Q.E.D 
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PROP. XX. THEOR. 

If there be three magnitudes, and other three, which taken 
two and two have the same ratio ; if the first be greater than 
the third, the fourth will be greater than the sixth ; if equal, 
equal; and if less, less. 

DEMONSTRATION. 

Let the three first magnitudes be A, B, C, 
and the other three be D, E, F; 

so that by hypothesis, A is to B as D to E, and B to C as E 
to F ; and it is to be proved that if A be greater than C, D 
will be greater than F ; if equal, equal; and if less, less. 

AD 
Because A : B : : D : E, therefore ~ 

d hi 

B E 
and because B : C :: E : F, therefore 7=-=^: 

C F 
therefore by multiplication of fractions, 

AB_DE . A__D^ 

BC “EF,thatl® C ~F ’ 
A 

from which it is evident that when the quotient —- is greater 

D 
than unity, the quotient — is also greater than unity; that is, 

if A be greater than C, D is also greater than F ; in a similar 
manner it is shown that when A is equal to C, D is equal to 
F ; and if less, less. Q. E. D. 

PROP. XXI. THEOR. 

If there be three magnitudes, and other three, which have 
the same ratio taken two and two, but in a cross order ; if the 
first be greater than the third, the fourth shall also be greater 
than the sixth ; if equal, equal; and if less, less. 

DEMONSTRATION. 

Let the three first magnitudes be A, B, C, 
and the other three be D, E, F, 

so that A is to B as E to F, and B to C as D to E ; it is to be 
shown that if A be greater than C, D will be greater than F ; 
if equal, equal ; and if less, less. 

A E 
Since A : B :: E : F, therefore we have —=r^,andbe- 

B F 

cause B : C : D : E, therefore also 5- 

by multiplication, 34 

and therefore 
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AB DE , .A D 

BC“EF’ Uat 1S> C ~F ; 
from which it is manifest, that according as the quotient 

— is greater than, equal to, or less than unity, the quotient 
V 

D 
p- must also be greater than, equal to, or less than unity, and 

therefore if A be greater than C, D will be greater than F ; 
if equal, equal; and if less, less. 

PROP. XXII. THEOR. 

If there be any number of magnitudes, and as many others, 
which, taken two and two in order, have the same ratio ; the 
first shall have to the last of the first rank of magnitudes, the 
same ratio which the first of the others has to the last. 

N. B. This is usually cited by the words ex cequali, or ex 
cequo. 

DEMONSTRATION. 

Let the first rank of magnitudes be A, B, C, D, 
and the second rank be E, F, G, H, 

so that by hypothesis A is to B as E to F, B to C as F to G, 
and C to D as G to H ; we are to show that A : D : : E : H. 

Since A : B : : E : F, therefore we have , 
B F 
B F 

in like manner we have — =—-, 
C G 

, C G 

and D“H’ 
ABC 

now multiply the quotients —, —, — together, and also the 

E F G , . ABC EFG 
quotients —, —, and we have the equation - r- = r^—-- , 

r U n JdUD Jb Grl 

which by reduction becomes —=—, 
D H 

and therefore A : D : : E : H. 
In like manner the truth of the proposition may be shown, 

whatever be the number of magnitudes. 
Q. E. D. 

PROP. XXIII. THEOR. 

If there be any number of magnitudes, and as many others, 
which, taken two and two in a cross order, have the same ra- 
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tio ; the first shall have to the last of the first magnitudes the 
same ratio which the first of the others has to the last. 

N. B. This is usually cited by the words ex equali in pro- 
portione perturbata, or ex cequo perturbato ; that is, by equality 
in perturbate proportion. 

DEMONSTRATION. 

Let the first rank of magnitudes be A, B, C, D, 
and the other rank E, F, G, H, 

so that, by hypothesis, A is to B as G to II ; B to C as F to 
G, and C to D as E to F ; we are to prove, that 

A : D :: E : H. 

Since A : B :: G 

and because B : C :: F 

and because C : D :: E 

H, therefore 4-=7r> 
d ri 
B F 

G, therefore, — = ~, 
L- (jr 

„ , , C E 
F, therefore T-=—- 

D F 
ABC 

now multiply the quotients together, and also the 
D b D 

GFE 

HGF* 

GFE,,. . ABC 
quotients —, —, —, and we have the products ^ ■ 

rl G r IjCJJ 

which reduced, becomes 
JJ EL 

and therefore A : D :: E : H. 
In like manner we may proceed for any number of magni¬ 

tudes. Q. E. D. 

PROP. XXIV. 

If the first has to the second the same ratio which the third 
has to the fourth ; and the fifth to the second the same ratio 
which the sixth has to the fourth ; the first and fifth together 
shall have to the second the same ratio which the third and 
sixth together have to the fourth. 

DEMONSTRATION. 

By hypothesis we have rA : A :: rB : B, 
and r'A : A : : r'B : B, 

in which rA is the first, A the second, rB the third, B the 
fourth, r'A the fifth, and r'B the sixth : r' denoting each of 
the two equal ratios when the fifth is divided by the second, 
and the sixth by the fourth ; and we have to show, that 

rA+r'A : A :: rB-f-^B . g 
T A -Y* A 

The ratio of rA-t-r'A to A is ----=r-4 /, 
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and the ratio of rB-p^B to B is 
rB-pr'B 

B 
—r+r'; 

therefore, rA-pr'A : A :: rB-j-PB : B. 
Q.E.D 

Cor. 1. If the same hypothesis be made as in the propo¬ 
sition, the excess of the first and fifth shall be to the second, 
as the excess of the third and sixth to the fourth. 

Cor. 2. The prop, holds true of two ranks of magnitudes, 
whatever be their number, of which each of the first rank 
has to the second magnitude the same ratio which the corres¬ 
ponding one of the second rank has to a fourth magnitude. 

PROP. XXV. THEOR. 

If four magnitudes of the same kind be proportionals, the 
greatest and least of them together are greater than the other 
two together. 

DEMONSTRATION. 

Let the proportionals be rA, A, rB, B ; 
and let the first rA be the greatest: then since by hypothesis 
rA is the greatest, rA 7 A, therefore r~/1. 

Again, since by hypothesis rA is the greatest, therefore 
rA 7rB, and consequently A 7 B ; since then r is greater than 
■unity, and A is greater than B, it is manifest that B is the 
least; and we are to show that rA-pB 7r^>Jr A 

Now because A—B=A—B, 
and r 71, 

therefore, by multiplication rA—rB^A—B ; 
to each side of this equation add rB + B, 
and we shall have rA-pB^A + rB. 

A similar mode of demonstration may be adopted, which¬ 
ever of the four proportionals be the greatest. 

Q. E. D. 

PROP. XXVI. THEOR. 

If there be any number of magnitudes of the same kind, 
the ratio compounded of the ratios of the first to the second, 
of the second to the third, and so on to the last, is equal to the 
ratio of the first to the last. 

DEMONSTRATION. 

Let the magnitudes of the same kind be A, B, C, D ; we are 
to prove that the ratio compounded of the ratios of A to B, of 
B to C, and of C to D, according to the definition of com¬ 
pound ratio, is equal to the ratio of A to D. 
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Take any magnitude P, 
and let A be to B as P to Q, and A, B, C, D, 
B to C as Q to R, and C to D as P, Q, R, S ; 
R to S ; then by the definition of 
compound ratio, the ratio of P to S is the ratio compounded of 
the ratios of A to B, B to C, and of C to D ; and it is to be 
proved that the ratio of A to D is the same with P to S. 

Now because A, B, C, D, are several magnitudes, and P, 
Q, R, S, as many others, which, taken two and two in order, 
have the same ratio ; that is, A is to B as P to Q ; B to C as 
Q to R, and C to D as R to S ; therefore ex equali, prop. 
XXII. 

A : D :: P : S. 
In like manner the proposition is proved for any number of 

magnitudes. 
Q. E. D. 

PROP. XXVII. THEOR. 

If four magnitudes be proportionals according to the com¬ 
mon algebraic definition, they will also be proportionals ac¬ 
cording to Euclid’s definition. 

DEMONSTRATION. 

Let the four rA, A, rB, B, 
be the proportionals according to our fifth definition ; that is, 
according to the common algebraic definition; it is to be proved 
that the same four 

rA, A, rB, B, 
are proportionals by Euclid’s fifth def. of the fifth book. 

Let m and n be any two integers, each greater than unity, 
so that mrA, mrB, are any equimultiples whatever of the first 
and third ; and nA, wB, are any whatever of the second and 
fourth ; and the four multiples are therefore • 

mrA, nA, mrB, nB ; 
Now the thing to be proved is, that according as the multiple 
mrA is greater than, equal to, or less than nA ; the multiple 
mrB will also be greater than, equal to, or less than wB. 

First let mrAynA, 
then by division 
and by multiplication 

Secondly, if 
then 
and therefore 

Lastly, if 
then 
therefore 

mr~/ n, 
mrB y /iB. 
mrA = nA, 

mr—n, 
mrB=7iB. 
mrA^/nA, 

mr yn, 
mrB^/nB. Q. E. D. 
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PROP. XXVIII. THEOR. 

If four magnitudes be proportionals by Euclid’s fifth defini¬ 
tion, they will also be proportionals by the common algebraic 
definition. 

DEMONSTRATION. 

Let A', A, B', B, be any four magnitudes, such that m, n, 
being any integers greater than unity, and the equimultiples, 
mA', mB', being taken, and likewise the equimultiples nA, nB ; 
making the four multiplies 

otA', nA, mB\ nB ; 

the hypothesis is, that if mA' be greater than nA, mW is also 
greater than nB ; if equal, equal; and if less, less : and it is 
to be proved that 

A' : A :: B' : B ; 
A' B' 

or, which is the same thing, that — =—. 

A' B' 
If — be not equal to — , one of these quotients must be the 

A' B' 
greater; first, let —- be the greater, so that if we may 

A. D 

have ^-=r-fr/; 

then the four quantities A', A, B', B, 
are equal to rA+rA, A, rB, B. 

Now, let m be such an integer greater than unity, that mr 
and mr' may be each greater than 2 ; and take n the next in¬ 
teger greater than mr, of course n will be less than mr-}-mr': 
and the four multiples mA", nA, mB', nB, 
become mrA-\-mr'A, nA, mrB, nB, 

By construction 
and therefore 

But by construction 
and therefore 

or 
thus it appears that 

but 
but, because 

mr-\-mr' y n, 
mrA-\-mr' Ay n A ; 

mr<n, 
*nrB<nB ; 
mB'<nB 
mA’ y nA, 
mB/<nB : 
mA'^nA, 

therefore, by hypothesis, also mB' y nB ; 
so that mB' is both greater and less than nB, which is impos* 
sible 

A' B' 
It is manifest therefore that — cannot be greater than ; 
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and in like manner it is shown that cannot be greater than 

— ; and therefore 
A 

that is A' : A .: B' : B. Q. E. D 

Scholium. Thus we have shown, that if four quantities be 

proportionals by the common algebraic definition, they will 
also be proportionals according to Euclid’s definition ; and con¬ 
versely, that if four quantities be proportionals by Euclid’s de¬ 
finition, they will also be proportionals by the common algebraic 
definition ; and by a similar method of reasoning we may easily 
show, that when four quantities are not proportionals by one of 
these two definitions, they cannot be proportionals by the other 
definition. 

Thus it appears, that the two definitions are altogether 
equivalent; each comprehending, or excluding, whatever is 
comprehended, or excluded, by the other. 

THE END 

s 
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