

EASY INTRODUCTION

MATHEMATICS.

Being principally defigned for the Inftruction of young Students, before they enter upon the more abftrufe and difficult parts thereof.
W. Eomarsonv vide pos.

Scriber laws magna eft: fed foriptis addere lucom, Hoc verò egregice dexteritatis opus. Ruf. Med.
LONDON,

Printed for J. Nourse, Bookfeller in Ordinary to his MAJESTY. $\overline{\text { MDCCLXIII. }}$

General Introduction

Concerning the

NATURE, USEFULNESS, and CERTAINTY

OFTHE

MATHEMATICS.

AS man is endued with the noble faculty of reafon, and likewife with a ftrong innate defire of knowledge; it is natural for him to exert this his dittinguilhing talent in the purfuit of knowledge. Truth alone is the object of knowledge; for it is impoffible to know a falle thing to be true: and evidence is the certain mark or criterion of truth; and this confifts in the perception of the agreement or difagreement of our ideas in the mind, according as the things in nature agree or difagree. As there is no ftronger paffion in the buman foul than the love of truth, and no greater defire for any thing than to find it out; fo, when it is found, there is no greater pleafure to the underftanding, than the contemplation thereof in the feveral branches of fcience; even when the fearch of it is attended with the greateft labour and pains. Truth is of fuch a nature, as always to be confiftent with itelf, and needs nothing to enforce or recommend it, but its
own native evidence. It is but one fimple, uniform, invariable thing; whillt its oppofite, falfhood, is infinitely various, inconfiftent, and contradictory. As truith is what all men admire, and every one aims at; and error what every man hates, that is not blinded by felf-intereft; it is neceffary that we take care never to receive any thing for truth, which does not bring its proper evidence along with it. For it is evidence alone that can gain our affent, and remove all our doubts; and when that appears, the mind can neither expect nor defire any thing further. By. the help of this we are enabled to diftinguifh truth from falfhood, right from wrong; and we likewife have a power of fufpending our affent till that evidence appears; and when it does appear, it compels our affent, and carries abfolute conviction. Truth, when expreffed in words, is the fame thing as a true propoficion; and, as evidence is a neceffary voucher for truth, we ought never to give affent to a doubtful or obfcure propofition; but fhould deny it as long as we can, and not give our judgment as long as we can withhold it, in fuch things as we can have an evident knowledge of.

Now fince truth is of fo amiable a nature, and fo defirable to the underftanding, it will be anked where it is to be found, and how fhall we come to the knowledge of it? I anfwer, it is to be found in the writings of the mathematicians, where the method of finding it is clearly explained. In the mathematical fciences truth appears molt confpicuous, and Shines in its greateft luftre. In other fciences it is either felf evident, and then it affords little pleafure to the mind; or elfe it appears with fo much obfcurity, that falhood is often miftaken inftead of it, The evidence for it is fo dim, that it is only feen as in a mift; and truth, feen through fuch a dull medium. will hardly be known to be truth; the mind will be loft in doubs and obfeurity, and will
bc unable to make any certain conclufion. But in the mathematics, all their demonftrations are free from any obfcurity, every ftep has a clear and intuitive cvidence; and where that falls fhort, the matter is thrown out as not deferving a place among machematical truths.

The manner whereby truth is found out, is by reafoning, which is performed by firft laying down, as a foundation, certain evident principles, or fuch a's cannot be denied; and then proceeding from thefe by feveral fteps till they, come at the conclufion; which fteps are fo to be linked with each other, and laid in fuch order, that the undertanding may perceive their connection and agreement; which being every where true and right, the conclufion mut infallibly be true: for all the parts being locked together by truth; the laft refult, though never fo long, muft be equally true.

Thus marhematicians, from a few plain and fimple principles, and a continued chain of reafoning, proceed to the difcovery and demonftration of truths that appear at firf fight beyond human capacity. The art of finding proofs, and the admirable methods they have invented for finding out and laying in order, thofe intermediate ideas that fhew the connection of the feveral fteps of the proof, or the feveral links of this chain of reafoning; is that which has carried chem fo far, and produced fuch wonderful and unexpected difcoveries. In this fcience there appears to be an inexhauftible fund in the feveral branches thereof; any one of which a man may purfue as far as he pleafes, and ftill improve his knowledge further and further: and thus, by the help of truths already known, more and more may till be found out ad infinitum.

When the mind works on mathematical ideas, it works fecurely, which cannot be done in other things fo truly; becaufe one cannot keep fo ftriftly to the definitions, or the ineaning of words, in other fubjects;

I NTRODUCTION.

where the ideas are often confounded. But matheticians take care not to confound theirs; for none ever miftook the idea of a fquare for that of a circle. Therefore mathematical demonftrations are the moft proper means to cleanfe the mind from errors, and to give it a relifh of truth; which is the natural food and nourifhment of the underftanding.

Reafoning, which is the exercife of reafon, is beft learned from the examples and practices of the mathematicians. It is certain, that no fort of human knowledge can lay fo juft a claim to an unfraken evidence and certainty, or boaft fo great a ftrength of its demonftrations, or produce fuch a multitude of undeniable truths, as the mathematics. All that beautiful analogy, and that harmonious connection and confiftency, is quite loft in other fciences. Wherefore it is no wonder that greater improvements have been made in the mathematical fciences, than in all the reft put together. By following their methods, a habit of right reafoning is obtained by frequent practice, like other things; and the caufe why many people reafon fo badly is, for want of practice, due attention, and confideration. They proceed in that tract which chance has put them into, being ignorant of true fcience, and of thofe univerfal invariable principles, upon which true reafoning depends: as is evident from the many inftances of falfe reafoning and ignorance, wherewith the difcourfes and writings of mankind abound.

In purfuance of our reafoning in the mathematical way, we are often forced to draw diagrams, in order to reprefent the thing in queftion; likewife to form ideas of the feveral parts, compound them, divide ther, abftract from them; to confult the memory, to fee what has been done and what is to do; to infpect tables, books, inftruments, \mathcal{E}^{2} c. to call up all fuch axioms, theorems, experiments, and obfervations, as are already known, and which can be ufeful
to us. And then the mind examines, compares, methodizes, and alters them; till the feries be laid in a proper order, from the firft principles to the laft conclufion. For the principal thing required in ftrict reafoning is, to lay the feveral fteps in due order, to fee that they be firmly connected, and properly expreffed, without any rhetorical flourifhes, and to aim at truth by the fhorteft method. This indeed requires cool, fedate, and fober thinking; as alfo frequent application and practice, without which nothing can be done to the purpofe. To which we may add, a fixt, conftant, and firm refolution to embrace truth wherever we find it; and to fhun error and falfehood, when we find ourfelves in danger of falling into them.

There is but one method of true reafoning, fuch as has been defrribed; but the grounds of falfe reafoning are many, fuch as thefe, want of faculcies, want of learning, defects of memory, want of due reflection, not connecting the fteps of the proof, trufting too much to the fenfes, paffions, appetites, prejudices, cuftom, felf-intereft, errors of education, wrong ftating the quettion, not underftanding theterms, want of proofs, vulgar received opinions, weak authorities, precipitancy of judgment, \mathcal{E}°. thefe will frequently difturb us in our fearch after truth, and are apt to bials the mind in reafoning upon all other fubjects; but few or none of thein intrude in the mathematical fciences. Mathematicians never attempt to refolve any problems without proper data.

It muft be owned that the progrefs of this fort of knowledge is but flow, owing to the difficulty of the feveral branches that come under confideration; but then it is fure and certain; the acquifition here gained is real knowledge. For this reafon it is the work of ages to bring even a fingle branch to perfection: and every fircceeding age improves upon the foregoing.

viii

 I NTRODUCTION.And therefore it is no wonder if the ancients have, in many cafes, made ufe of round-about methods to encompafs their ends, and given us long and tedious demonftrations, and laid down many propofitions, either of no ufe, or too fimple and trifling to be taken notice of. Whence moft of their inventions may be demonftrated fhorter, propounded eafier, difpofed in a better method, and taught in a more compendious way.

But befides the pleafure a man finds in the fearch and attaining of knowledge, and the agreeable furprize the mind is affected with, at the difcovery of new and difficult truths ; the advantages arifing to mankind from thefe fciences, in all the parts of human life, are endlefs. By help thereof we are able to keep our accounts regular and juft, and manage all our tranfactions with one another; to caft up and calculate immenfe fums, for nothing lies without the power of numbers; to meafure and divide lands and eftates; and alfo all manner of furfaces or folids; to meafure inaccefible diftances and altitudes, and find the hight of the clouds; to build houles, caftles, $\xi^{\circ} c$. by which we enjoy the principal delights of life, and fecurity of health; to make fortifications to defend us from the enemy; to make guns and other inftruments of war, and to fhew how to ule them in our defence; to refolve all manner of pleafant and fubtle queftions; to build hips, and by the help of wind and fails, and the rules of art, to fail upon the fea, and find our way through it to diftant countries, and traffick with foreign nations, whereby our wealth is increafed; to contrive inftruments to weigh and meafure all forts of commodities, and give every man his juft weight and meafure; to make engines for raifing and removing huge bodies ; to invent innumerable machines, ufeful in private life, and neceffary for our living commodioufy, fuch as clocks, watches, jacks, pumps, $E^{2} c$. to make dials and other inftruments for keeping
a regular account of time; to make ephemerides and chronological tables, to fhew and account for the return of the various feafons of the year, and to keep account of remarkable tranfactions and events; to defcribe the feveral countries of the earth, and make maps and reprefentations thereof, and even to meafure the whole earth and fea; to account for the rifing and falling of the tides; to number the ftars, and range them in their proper order; to meafure the magnitude and diftances of the planets, and explain the laws of their motion, and fet bounds to their wandering courles; to afcertain the fituation of all the great bodies of the univerle, and fhew the fabrick and conftruction of the whole world; and to admire that wonderful power that contrived and framed it; to lead us through the dark mazes of nature, and through the intricate labyrinths and hidden fecrets of philofophy; to make proper inftruments to improve the fight, and even reftore it in old age; and to magnify fmall bodies, imperceprible to the naked eye, and make them become vifible; and to caufe remote invifible things to appear to us large and diftinct; to give the true reprefentation or draught of any object, fuch as towers, cafles, trees, towns, छc. and to fix in the mind a method and habit of right reafoning, a thing of the utmoft confequence, without which a man can hardly be called a rational creature.

The time would fail me in attempting to enunierate all the ufes and advantages of mathematical learning; and no words can fully exprefs the praifes of that fcience, which wanders through the heavens, the earth, and the feas: nor is it poffible to fet any bounds to fo extenfive a fcience. In this age, the number of its admirers and profeffors are many, and daily increafe more and more. Moft people feem to be infpired with the love of mathematical learning, and to be inamoured with its charms, and to court
its favours and acquaintance. For this reafon the ingenious and polite, of all ages, have applied themfelves to it, and made it a great part of their ftudies. And in many countries princes and noblemen have practifed and exercifed themfelves herein. Nay, the greateft kings and philofophers, charmed with the beauties of this fcience, have not only beftowed a great part of their time, in the contemplation and ftudy thereof, but have travelled abroad to diftant places, in order to make improvements in this admirable knowledge. And have, at great expence, fent perfons of learning and fagacity into remote countries, on purpofe to make new difcoveries in fome branch or other of this feience : a fcience truly divine, being converfant in nothing but truth; which fo fatisfactorily inftructs and informs the underftanding, and feeds the mind with fuch variety of pleafures and recreations, and productive of fuch infinite advantages to mankind.

And upon account of the great importance of this art, and its utility to all ranks of men; foreign nations have honoured men of eminent learning therein, with peculiar marks of their efteem, by allowing public falaries to perfons of diftinguihed merit, who have by their writings inftructed mankind, and fpent their time and money in improving and explaining the feveral branches of this fcience; as motives and encouragements for promoting thefe arts, and profecuting their ftudies therein, and as rewards for the labour and difficulties they undergo in travelling through thefe craggy paths, in order to increafe the common ftock of knowledge, for the public good.
Having faid thus much concerning the certainty, extent, and ufe, of the mathematics; I fhall now proceed to explain the nature thereof more particularly, and to defcribe the feveral methods that mathematicians proceed in, for the difcovery of truth;
by which will appear the excellency of mathematical reafoning, above all others in the world; and confequently that it is juftly to be efteemed the beft pattern, that men can propofe to follow.

Matbematics is a fcience that confiders and treats of all kinds of quantities whatever, that can be numbered or meafured. That part which treats of numbering is called aritbmetic: and that which concerns meafuring is called geometry. Thefe two, which are converfant about multitude and magnitude, are called pure or abitract mathematics, becaufe they inveftigate and demonftrate the properties of abftract numbers and magnitudes of all forts: thefe two are the foundation of all the other paris. And when thefe two parts are applied to particular fubjects, they are called mint matbematics. Nathematics is allo called δ peculative, fo far as it is concerned in finding out true propofitions; and practical, as thefe relate to ufe, and are applied to practice.

Quantity is whatever will admit of increafe or decreafe; or is capable of any fort of calculation or menfuration.

A propofition is fomething propofed to be proved; or fomething required to be done.

A theorem is a demonftrative propofition, wherein the nature and property of a thing is propofed to be proved. And a fee of fuch theorems is called a theory.

A problemz is a queftion requiring fomething to be done. A limited problem is that which has but one anfwer. An unlimited problem is that which has an infinite number of anfwers. A determinate problenis. is that which has a certain number of anfwers.

Solution of a problem, is the anfwer given to it. A numerical folution is the anfwer in numbers. A geometrical folution is an anfwer by the principles of geometry. A mecbanical folution is one which is gained by trials.

A lemma is a fhort preparatory propofition, laid down in order to fhorten the demonftration of the main propofition which follows it:

A corollary, or confectary, is a confequence drawn from a propofition already demonftrated.

A fobolium is a remark made on any propofition, corollary, or other difcourfe.

Principles are the firft grounds, rules, or foundations, of any fcience; as definitions, axioms, poftulates, and hypothefes.

A definition is the explication of any word or term, in any fcience ; every definition ought to be clear, and contain no word or term but what is perfectly underftood.

An axiom, or maxim, is a felf-evident propofition. Thefe appear to be true at firft hearing, and no body can deny them, without contradicting common fenfe and reafon. Here nothing ought to be allowed for an axiom, but what is clear and felf-evident: as this, the whole is greater than a part. Out of an infinite number of felf-evident truths that occur to the mind, men felect fuch as are general, and of moft ufe in demonftrating any fcience, and lay them up in ftore, to have recourfe to, as need requires. And though men in their reafoning do not always mention fuch and fuch axioms; yet the mind perceives the force of them, and what they mean, without ftopping to repeat the words, or name them.

A poftulate, or petition, is fomething required to be done, which is fo eafy, that no body will difpute it.

An bypothefis is a fuppofition affumed to be true, by which a man is to argue, and build his reafoning upon.

Demonfration is the collecting the feveral proofs and arguments, and laying them in fuch order, as to fhew the truth of the propofition under confideration. Thefe proofs are to be drawn only from firft principles,
principles, and from propofitions already demonftrated. Hetre we mutt keep ftricily to one and the fame fenfe of each definition; and when nothing is admitted but definitions, and axioms, and fuch poftulates and hypotheres as are agreeable to the nature of the thing ; and the conftruction of figures in geometrical fubjects; and demonftrated propofitions; and when the feveral arguments, or fteps, are rightly connected together, fo as one is plainly feen to be directly inferred from another, through the whole feries or chain of reafoning : the conclufion at laft obtained muft be certain and true. Thus one truth is drawn from another, and from thefe a third, and thus continuing to deduce truths from truths, through the whole train of truths, we come at laft to the conchufion or truth fought after.

A direEt, pofitive, or affirmative demonfiration, is that which concludes with the certain and direct proof of the propofition in hand. This kind of demonftration is moft fatisfactory to the mind; and therefore is called an offenfive demonftration.

A negalive, or indireef demonftration, is that which fhews a propofition to be true, by fome abfurdity which would neceffarily follow if the propofition ad-vanced Thould be falfe : this is called reductio and $a b$ furdum ; and fhews the abfurdity and falihood of all fuppofitions, but that contained in the propofition. This is frequently made ufe of for eafe and brevity's fake, and to avoid a long perplext ofenfive demionftration. But although this fort equally convinces the mind, and forces affent, yet it does not equally enlighten it. For it does not fo much demonitrate the truth itfelf directly, as the confequent abfurdity or impoffibility of the oppofite fuppofition; whence it follows certainly (though indirectly) that the propofition is true. When, at the fame time, the original reafon of its truth, or by what intrinfic caufe it comes to be fo, remains quite obfcure and in the flark.

Agen

A geometrical demonfration, is that which depends on the principles of geometry.

It has been fhewn, that when the firft principles, are all true, upon which the reafoning relies; and all the fteps truly and evidently connected together; that the conclufion we come to at laft, muft neceffarily be true.

But if we lay down a falfe hypothefis, and argue upon it as true, although we carry on our reafoning ever fo rightly, yet the conclufion will moft certainly be falle. For from falfe premifes nothing but falfhood can follow. And therefore, on the contrary, when we argue from a precarious hypothefis, and conduct our reafoning with the greateft rigour of truch, and at laft come to a falfe conclufion; we may be affured, the hypothefis we argued from is falfe. For there is no other poffible caufe for falling into a falfe conclufion. And this is the foundation of that way of reafoning before mentioned, called reductio ad abfurdum vel impofibile. And this teaches us how to detect falfe hypothefes.

Again, if our hypothefis and other principles be all true; and we happen to reafon wrong, either by giving a falfe meaning to any term, or making ufe of falfe propofitions, in the courfe of our reafoning; or not connecting the feveral fteps rightly together; then falfhood and not truth muft again be the conclufion; except it be by mere chance, that one error may correct another. And if our firft principles and reafoning be both falfe; it is a thoufand to one but the conclufion will be falfe, and truth here, mut have a poor chance for appearing.

Metbod is the art of difpofing a train of arguments, in a right order, either to find out the truth, or falhood of a propofition; or to demonftrate it to others, when we have found it out. This is either analytical or fynthetical.

Analy/s, or the analytic metbod, is the art of finding out the truth of a propofition, by fuppofing the thing to be done; and going back ftep by ftep, till we arrive at fome known truth. This is called the metbod of invention, or refolution, and is generally ufed in algebra.

Synthefis, or the fyntbetic metbod, is the fearching out truth, by firit laying down fome fimple and eafy principles, and purfuing the confequences till we come at the conclufion. This method begins at: the moft fimple and eafy things, and proceeds to the more compounded and general. It is alfo called the method of compofition, and is contrary to the analytic method; as this proceeds from known principles to an unknown conclufion; whilft the other goes in a retrograde order from the thing fought, as if it was known, to fome known principle. And therefore when any truth has been found out by the analytic method; it may be demonftrated in a backward order, by fynthefis.

Thus you have an account of the rules and methods, whereby the mathematicians manage this their fcience, and handle their feveral fubjects. Methods fo clear and inftructive, that they may juftly challenge the world to produce any others, of equal perficuity, evidence, and certainty. And the ffructures they erect thereby are equally ftrong and impregnable, as well as admirable and furprizing. For in the firft place, they premife fome general principles to begin with, as definitions, axioms, E'c. from thefe they derive fome fimple and eafy propofitions; and from thefe others are drawn ftill harder; and then by diegrees they arrive at the more difficult ones; what goes before being always helpful for finding our the following. Thus a chain of arguments is camied on in, an uninterrupted feries, and their truth confirmed by infallible reafoning. Then the moft general and uffeful propofitions are collected together, and drawn
up in order, and put into a body or magazine, and referved for ufe, to be called forth, as occafion requires, for the inveftigation and demonftration of others. Thus they form fo many fyitems of mathematical truths, according to the various fubjects they examine; which mult ftand as principles for finding out new ones, or as tefts for trying the truth of others. For any propofition being once proved true, muft eternally remain true, and can never vary: it being the nature and effence of truth to continue invariable.

Now thefe feveral fyftems, or branches of the mathematics, that is, the divifion of the mathematical fciences, have been differently made and reckoned up, by different men. But the principal branches or parts thereof, at leaft thofe of moft ufe, may be reckoned to be thefe: arithmetic, geometry, proportion, trigonometry, projection of the fphere, menfuration, furveying, guaging, dialling, gunnery, geography, conic fections and curve lines, navigation, mechanics, optics, perfpective, chronology, algebra, centripetal forces, aftronomy, fluxions, increments. I have already publifhed feveral of thefe in feparate tracts; and from the regard I always had for thefe arts, and the great defire I have of feeing them flourifh; I intend from time to time, in the courfe of this work, to publifh the reft, as foon as they can be got ready for the prefs. Which done, I doubt not but the young ftudent will be furnifhed with 2 compleat courfe of the mathematics, fufficient to inftruct him in his progrefs, through thefe difficult paths, and to make him fit and able to read larger ${ }_{2}$ and more elaborate treatifes.

A
 TREATISE 0 F
 ARITHMETIC,
 CONTAINING

All the Practical Parts thereof;
BOTHIIN

WHOLE NUMBERS,
VULGAR FRACTIONS,
AND DECIMALS.
LIKEWISE

The Theory of Numbers,
And their Principal Properties, demonftrated in a plain and eafy manner.

Dicfores, elementa velint ut difcere prima. Hor.

再 $\square \quad 1+1$

THE
 PREFACE.

HE that would make any confiderable progress in the matbematics, muft begin at the firft principles, and proceed gradually forward from one branch of that fcience to another; according as they are naturally conneited togetber, and bave a dependance upon one another. This will make the progrefs as eafy, Bort, and intelligible, as the nature of the thing will admit of. Whilft be that takes a contrary cour \int e, will always be invalved in difficulty, doubt, and obscurity; the knowledge be gains will be imperfeet; and for want of evidence, the mind will want that convifition which is neceffary for eftablifbing truth.

Aritbmetic may be jufly faid to be the bafis of all the other parts of mathematics. All tbings of whatever kind they are, may be reduced to numbers, and their quantities and proportions, calculated by numbers. All otber branches bave need of aritbmetic, fome way or other; and would often be at a fland without it. Yet aritbmetic bas no need of them, but fands folely upon its own principles. In all parts of the matbematics, no problem of any fort is deemed to be compleatly folved, till it be calculated aritbmetically, and its value brougbt out in numbers. And fince it is of fuch confequence, it is abfolutely neceffary for the young fudent, who would lay a good foundation for attaining a competent knowledge in the matbematics, firtt of all to make bimself ac-

The PREFACE.

quainted with all the parts of aritbmetic, and the nature and properties of numbers : witbout wbich it would be in vain for bim to attempt any thing.

And as it is of fucb great ufe in the fciences, fo it is equally ferviceable in buman attions and employments. He muft be very little verfed in the common affairs of life, that does not know the great ufefulness of arithmetic in every inflance thereof. No bufinefs can be carried on without the belp of numbers; no trade or commerce exercifed without regular accounts: fo that in all fituations of life, aritbmetic is a neceffary accomplifbment.

As to the enfuing treatife, I bave in the firf book, fully, and yet very concifely bandled all the parts of common aritbmetic; and bave made all the rules thereof, as Joort as poflible, fo as to be intelligible; and the reader cannot fail of underftanding them, by means of the examples there given, wbich I fuppofe are fufficient for that end, and no more. I bave alfo endeavoured to give the reafons for the feveral operations in the fundamental parts of this art, wbich cannot mifs pleafing the reader, as be will bave bis judgment and underJanding informed, at the fame time be is learning the practice.

In the fecond book, I bave delivered the fubftance of what Euclid and others bave written about the properties of numbers, adding whatever I thought of any confequence in the theory of numbers. And bere I bave for the moft part demonftrated the propofitions of Euclid after a different manner from bim, and often more generally. And though the theory ought to precede the practice, in any fcience : yet bere it was bardly poffible to obferve that rule. For there is not only frequent ufe made of multiplication, divifion, \&xc. but there is a good deal of abftract reafoning about the properties of
aumbers, which could not well be underftood, till the reader was well acquainted with the operations of arithmetic; which is the reafon I bave put it laft. I knowo of nothing that is wanting in this treatife, except it be a greater variety of examples; and this would require more room; and the intelligent reader can eafly fupply thefe of bimself; to whoms I wiff fuccefs, and werable to bis endeavours.

W. Emerfon.

THE

CONTENTS.

DEFINITIONS Notation \square Page 1 3 Axioms, E° c.

Chap. I. Whole Numbers.
Numeration
Addition
Subtraction
Mulliplication
Divifion
Extraction of the fquare root
Extraction of the cube root

Chap. II. Vulgar Fractions.

Chap. III. Decimal Fractions.
Notation Addition
Subtraction —— ——

Multiplication
Divifion
Reduction
Square root
Cube root

Chap. IV. The Practical Rules of Arithmetic.

BOOK II.

The Theory of Numbers.
Chap. I. Even and odd numbers; prime and compofite numbers, fquares, cubes, $\xi^{\circ} c$.
Chap. II. Proportional numbers, mean pro-
portionals, plane and folid num-
bers
$\mathrm{C}_{\mathrm{hap}}$ IIII. Particular numbers, divifors, aliquot
$\begin{array}{ll}\text { Char.IV. Numerical problems } & 218 \\ & 228\end{array}$

ARITH.

ARITHMETIC.

DEFINITIONS.

1.

ARITHMETIC is the art of computing by numbers; it is called vulgar or common Aritbmetic, when it treats of whole numbers.
2. Unity is that by which every thing is called one; and a unit is the beginning of number.
3. Number is a multitude of units : by this every thing is reckoned.
4. An integer is any whole thing.
5. A whole number is a precife number without any parts annext.
6. A mixt number is a whole number with fome part annext.
7. A fraction is a part or parts of an unit.
8. A proper fraction is lefs than a unit.
9. An improper fraction is greater than a unit.
10. An aliquot part is that which is contained a precife number of times in another.

Cor. Hence I is an aliquot part of any number : but a number cannot be called an aliquot part of itfelf.
if. An aliquant part is fuch as is contained in another, fome number of times, with fome part or parts over.

DEFINITIONS.

12. One number is faid to be multiple of another, when it contains it a precife number of times.
13. One number is faid to meafure another, when it is contained in the other a precife number of times, without a remainder. The faid meafure is alfo a divifor.

Cor. Any number is a meafure to itfelf. And I is a meafure to any number.
14. An even number is that whofe half is a whole number.
15. An odd number is that which cannot be divided into two equal whole numbers.

Cor. The numbers one, two, three, four, $E^{c} c$. are alternately odd and even for ever.
16. A prime number is that which can only be meafured by a unit.
17. Numbers are faid to be prime to one another, when only a unit meafures both. Thefe are alfo called coprimes.

Cor. Therefore I is prime to every number.
18. A compofite number is that produced by mulciplying feveral other numbers together, called faitors or multipliers. Allfo what is produced by fuch multiplication, is called a product.
19. Numbers are faid to be compofed to one another, when fome number (greater than a unit) meafures both.
20. A plane number is the number produced by multiplying two other numbers.
21. A Solid number is the product of three numbers.
22. A Square mumber is the product of a number by itfelf.
23. A cube number is the product of a number, and its fquare.
24. Like or fimilar plane or folid numbers, are thofe whofe fides or multipliers are proportional.

$$
25 . \mathrm{A}
$$

DEFINITIONS.

25. A perfect number is that which is equal to the fum of all its aliquot parts.
26. The power of any number, fignifies, that the number (called the root) fhall be fo often multiplied, as is denoted by the number (or index) expreffing the power. Thus the 2 d power of 5 , is 5 multiplied by 5 , or 25 ; the 3 d power of 5 , is 25 multiplied by $5, \xi^{c} c$.
27. Four numbers are faid to be proportional, or in the fame proportion, when comparing two and two; the firft is the fame multiple, or the fame part or parts of the fecond, as the third is of the fourth, thus: $6,2,9$ and 3 , are proportional ; for 6 contains 2 thrice, and 9 contains 3 thrice. Alfo 4,6 , 10,15 , are proportional; for 6 is once and half 4 , and 15 is once and half 10 . And the feveral numbers are called the terms of the proportion; and the quotient arifing, by dividing the former by the latter number, is called the Ratio.
28. Numbers are faid to be in continual proportion, of in geometrical progreffion, when the firft has the fame proportion to the fecond, as the fecond to the third, and as the third to the fourth, and fo on, thus: $2,6,18,54, \mathcal{E}^{3} c$. are continual proportionais.
29. Mean proportionals are all the intermediate terms, between the extremes, in a geometrical progreffion.
30. Surds are fuch numbers as have no exact roots.

NOT.ATION.

1. The characters by which numbers are expreffed, are thefe ten: $0,1,2,3,4,5,6,7,8,9$; 0 is called a cypber; and the reft, or rather all of them, are called figures, or digits. The names and fignification of thefe characters, and the origin or generation of the numbers they ftand for, are here fet down :

$$
B_{2} \text { ono- }
$$

o nothing.
I one, or a fingle thing called

$$
\text { then } \mathbf{1}+\mathbf{1}=2 \text { two. }
$$

$$
2+1=3 \text { three. }
$$

$$
3+1=4 \text { four. }
$$

$$
4+\mathbf{I}=5 \text { five. }
$$

$$
5+1=6 \text { fix. }
$$

$$
6+1=7 \text { feven. }
$$

$$
7+\mathbf{1}=8 \text { eight }
$$

$$
8+1=9 \text { nine. }
$$

then $9+1=$ ten, which has no fingle character; and thus by the continual addition of 1 , all numbers are generated.
2. The value of any number depends not on the figure or figures alone, but upon the figures and places where they ftand, jointly. And the order of places is backward from the right hand towards the left. The firft place is called the place of units; the fecond, tens; the third, hundreds; the fourth, thoufands; the fifth, ten thoufands; the fixth, hundred thoufands; the feventh, millions; and fo on. Thus in the number $7654^{8} 7654 ; 4$ in the firft place fignifies only $4 ; 5$ in the fecond place fignifies five tens or fifty ; 6 in the 3 d place fignifies fix hundred; 7 in the 4 th place is feven thouland; δ in the 5 th place is eighty thoufand; 4 in the 6th place is four hundred thoufand; 5 in the 7 th place is five millions; and foon.
3. A cypher, though of no value by itfelf, yet it occupies a place, and advances the figures on the left hand into higher places, from whence they have a greater value. Thus 3 fignifies only 3 , but 30 fignifies 3 tens or thirty, and 300 fignifies 3 hundred.
4. The values of all figures increafe in a tenfold proportion from the right hand towards the left, each following place being ten times greater than the foregoing. Thus in the number $33333333 ; 3$ in the firft place is three; in the fecond, 30 thirty; in the third,
third, 300 three hundred; in the fourth, 3000 three thoufand; in the fifth, 30000 thirty thoufand, ξ° c. And thus I fignifies one, 10 fignifies ten, 100 fignifies a hundred, rooo fignifies a thoufand, and fo on; and in general, ten units make 1 ten, ten tens make I hundred, ten hundred make 1 thouland, $\xi^{c} c$.
5. Hence, placing $1,2,3, E^{2} c$. cyphers on the right hand of any number, -makes it ten, a hundred, a thoufand times, \mathcal{E}°. greater than before. But placing cyphers on the left hand does not alter the value, becaufe every figure remains in the fame place as before.

This method of exprefling numbers, by the different values of the figures in different places, is an admirable invention; without which it had been neceffary to have as many different characters, as there are numbers to be expreffed; which would have been impoffible.

A X I O M S.

1. If two numbers are equal to a third, they are equal to one another.
2. If equal numbers be added to equal numbers, the wholes will be equal.
3. If from equal numbers the fame or equal numbers be taken away, the remainders will be equal.
4. Thofe numbers are equal, which are the fame multiple of equal numbers.
5. Thofe numbers are equal, which are the fame part of equal numbers.
6. The fame powers, or the fame roots of equal numbers, are equal.
7. Unity or I neither multiplies nor divides; that is, the product or quotient is ftill the fame number.
8. If a number be compofed of two numbers, multiplied together; either of them meafures it by the other.
9. If a number meafures feveral other numbers;
it likewife meafures the fum (or difference) of thefe numbers.
10. If a number meafures another; it alfo meafures every number which that other meafures.
11. If a number meafures the whole, and a part taken away; it alfo meafures the refidue.

The Signification of other Cbaradters bere ufed.

Characters.
Signification.

+ more, and, to be added, being an affirmative fign.:Thus $7+3$ fignifies 3 added to 7 ; and $A+B$ denotes the fum of A and B.
- lefs, leffened by, abating, being a negative fign. Thus $7-3$ means 3 taken out of 7 , and $A-B$ denotes the remainder, when B is fubtracted from A.
x multiplied by, as 7×3 fignifies 7 times 3 ; alfo $A \times B$ or $A B$, is the product of A and B multiplied together. Where note, if letters ftand to denote numbers, they are commonly fet together, like letters in a word.
\div divided by, thus $6 \div 3$ fignifies 6 divided by 3 ; alfo 3) 6 (fignifies 6 divided by 3 ; alfo $\frac{6}{3}$ fignifies 6 divided by 3 ; and in general $\mathrm{A} \div \mathrm{B}$, or B) A (, or $\frac{A}{B}$, is the quotient of A divided by B.
A^{2} the fquare of A, that is, AA.
A^{3} the cube of A, that is, AAA.
A^{n} the $n^{\text {th }}$ power of A, the index n being any number.
- the fquare root, thus $\sqrt{16}$ is the fquare root of 16 , and $\sqrt{ } A$ is the fquare root of A.

CHARACTERS.

Characters. Signification.
$\sqrt[3]{ }$ the cube root, as $\sqrt[3]{8}$ is the cube root of 8 , and $\sqrt[3]{ } \mathrm{A}$ is the cube root of A .
$=$ equal to, as $7+3=10,7$ and 3 equal. to 10.
\therefore A note of proportion, thus $2: 3:: 4: 6$, fignifies 2 is to 3 , as 4 to 5 ; and $A: B:: a: b, A$ is to B, as a to b, fometimes written thus, $A-B-a-b$.
\because continual proportionals, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D} \div$, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are in continual proportion.
$\overline{A+B+C}$ the fum of A, B, and C; a line drawn over feveral numbers, denotes the fum of them.

$$
\begin{gathered}
{[\delta]} \\
\mathrm{BOO} \mathrm{O}
\end{gathered}
$$

The Practice of Arithmetic.

C H A P. I.

The fundamental Rules of common or vulgar Aritbmetic.
PROBLEM I.

To read or exprefs any Number weritten.

THIS is called Numeration, and is eafily performed by help of the following table, which fhews the names of the feveral places, and confequently of the figures ftanding there, as explained before in the Notation.

NUMERATION TABLE.

RULE.
I. Begin at the units place, and divide, or rather diftinguifh your number into periods of 6 figures apiece, called grand periods, or double periods. The firft period to the right is units, the fecond millions, the third bi-millions, the fourth tri-millions, the 5 th, 6th, E c. quadri-millions, quinti-millions, fexti-millions, fepti millions, octi-millions, nonimillions, deci-millions, $E^{2} c$.
2. Likewife diftinguif thefe grand periods into two parts, called fingle periods of three figures apiece ; in thefe write (or fuppofe to be written) units over the firft place, tens over the fecond place, and hundreds over the third place.
3. Begin to read at the left hand, expreffing hundreds, tens, units, as you come to the refpective places where thefe figures are; and at the end of each fingle period (on the left hand) always pronounce thoufands ; and at the end of the grand period, exprefs its title or furname belonging to it; proceeding thus to the right hand where the number ends.

$$
\text { Ex: } \mathbf{1}
$$

Read the number 50765.

$$
\begin{aligned}
& t u \cdot h t u \\
& 50765
\end{aligned}
$$

Having diftinguifhed the number into periods, and written u over units, t over tens, h over hundreds, it will be read thus: fifty thoufand, feven hundred and fixty-five.

$$
\text { Ex: } 2 .
$$

Forty three bi-millions, eight hundred and feventy fix thoufand, five hundred and forty three millions, eight hundred and feventy fix thoufand, five hundred and forty three.

Ex.

Ex. 3.
Read this number 24:185796432190046132547680g6.
htu htu htu htu htu
2418579643219004613254768096

Two thoufand, four hundred and eighteen quadri-millions;
Five hurdred feventy nine thoufand, fix hundred forty three tri-millions; Two hundred nineteen thoufand, and four bi-millions; Six hundred thirteen thoufand, two hundred fifty four millions; Seven hundred fixty eight thoufand, and ninety fix.

> PROBLEM.II.

To add whole numbers together.
Addition is the rule by which feveral numbers are put together, in order to find the fum of them all.

R U L E.

I. Place all the numbers fo, that units may fand under units, tens under tens, hundreds under hundreds, $\mathcal{E}_{c} c$. and draw a line underneath.
2. Begin at the units place, and reckon up all the figures in that place from the bottom to the top, and what overplus there is above even tens, fet down, and carry fo many to the next row as there were tens.
3. Reckon up all the figures in the place of tens, together with what you carried, and fet down the overplus, carrying the tens to the next row; and fo proceed to the laft.
4. If you don't choofe to reckon forward, you may make a prick when you have reckoned to ten or more, carrying on the overplus; and then add fo many to the next row as you have pricks.

$$
E x .1 .
$$

Let thefe numbers be added together :

9482
590
307
85
10464
:---

Chap. I.
Beginning at 5 , fay the fum of 5 and 7 is 12 and 2 is 14 , fet down 4 and carry 1 . The fum of 1 and 8 is 9 and 9 is 18 and 8 is 26 , fet down 6 and carry 2. Then 2 and 3 is 5 and 5 is 10 and 4 is 14 , fet down 4 and carry \mathbf{I}. Laftly, I and 9 is 10, which being the laft, fet it down.

The reafon of carrying the tens to the next place is plain; for the fum of 5,7 and 2 being 14 , the 4 belongs to the units, and the 1 to the tens. Again, the fum of $1,8,9$ and 8 being 26 , which are tens, the 6 belongs to the tens, and the 2 to the next fuperior place, which is hundreds. Then the fum of 2, 3, 5 and 4 being 14 , viz. 14 hundreds, the 4 belongs to that place, and the 1 to the place above, which is thoufands. Laftly, the fum of I and 9 is 10 , that is ro thoufand, that is 0 in the place of thoufands, and I in the place of ten thoufands. In fhort, thus:

The fum of the row of units	14
The fum of the row of tens	2,50
The fum of the row of hundreds	1.200
The fum of the row of thoufands	9000

Ex. 2.
Add thefe numbers together.

> 350709
> 31806500

339087
46011
2935
fum

$$
32545242
$$

The proof of Addition is this: begin at the top, and add all the numbers downwards, by the fame rule as you added them upwards before; then if the total fums agree, the work is right.

PROB-
PROBLEM III.

To add numbers of feveral denominations logether.

R U L E.

r. Place the numbers fo, that thofe of the fame denomination may ftand directly under one another, then draw a line under them.
2. Begin at the loweft denomination firft, and reckon upwards till you. get as many as makes one of the next denomination above; then make a prick, and carry the overplus, or excefs, to the next figures; and fo reckon forward, always pricking when you have as many as makes one of the next denomination. Proceed thus till that denomination is finifhed, and fet down the overplus at bottom:
3. Reckon your pricks in the denomination you have finifhed, and carry fo many, to be added to the next denomination, which muft be added up by the fame rule; and fo of the reft. In the laft denomination, add them up as whole numbers.
Ex. I. Money.

Add thefe fums of money together.

Note, 4 farthings make 1 penny, 12 pence 1 fhilling, 20 fhillings I pound.

Chap. I.
ADDITION.

Note. In Troy weight, 24 grains make a pennyweight, 20 penny-weights an ounce, 12 ounces a pound.

Note, In Apothecary's weight, 20 grains make 2 frruple ($Э$), 3 fcruples a dram (3), 8 drams an ounce $(\xi), 12$ ounces a pound (Ib).

Ex. 4. Averdupoize lefter weigh.

Note, 16 drams make an ounce, 16 ounces a pound.

$$
E x .
$$

Ex. 5. Averdupoize greater weight.

Note, 14 pounds make a ftone, 8 ftone 1 hundred weight, 20 hundred weight I tun.

Ex. 6. Long Meafure.

Note, 3 barley-corns make an inch, 12 inches a foot, 3 feet a yard; alfo $5^{\frac{1}{2}}$ yards make a pole, 22 yards a chain, 10 chains a furlong, 8 furlongs a mile.

> Liquid Measure.

2 pints make a quart, 2 quarts a pottle, 2 pottles a gallon, $8 \frac{x}{2}$ gallons a firkin or anker, 6 firkins a hogshead of ale, 63 gallons a hogshead of wine.

> Dry Meafure.

2 pints make a quart, 2 quarts a pottle, 2 pottles a gallon, 2 gallons a peck, 4 pecks a bufhel, 8 bufhels a quarter, 4 quarters a chaldron, 10 quarters 2 lat.
SCHOLIUM.

If a long lift of numbers is to be added up, divide
vide it into feveral parcels, and add them feparately; and then add all thefe parcels together.

The proof of this rule is the fame as the laft; only in reckoning downward, make croffes inftead of pricks, to avoid confufion.

PROBLEM IV.

To fubtraEZ one whole number from anotber.

Subtraction is the taking one number from another, to find their difference.

> RULE.

1. Place the greater number uppermoft, and the other under it, fo as units may be under units, tens under tens, $\mathcal{E}^{\circ} c$. and draw a line under them.
2. Begin at the right hand or place of units, and fubtract the lower figure from the upper, and fet down the difference underneath them; do the fame with the reft of the figures.
3. When the lower figure is greater, borrow 10 , and add it to the upper number, from which fubtract the lower, and fet down the remainder; carry I to be added to the next lower figure, and fubtract the fum from the upper, and fet down the remainder; and fo on from one row to another.

The reafon of this operation is plain, only when the lower number is.lefs, 10 is added to the upper number, as here, 5 is lefs than I , therefore I is borrowed from 8 to make II, then 5 from II remains 6 ; then the next figure 6 ought in reality to be taken
from 7 , inftead of 8 ; but the difference will be the fame, whether you take 6 from 7 , or add the 1 borrowed to 6 , and take the fum 7 out of 8 , in either cafe I remains.

	Ex. 2.
from	
take	30076058972
17078032863	
rem.	12998026109

Ex. 3.
One born in 1682, bow old is be in 1763 ?

$$
1763
$$

1682
81 anfwer.
The proof of Subtraction is to add the remainder to the leffer number, which ought to make up the greater, if the work be right.

> PROBLEMV.

To fubtraEt numbers of different denominations.
R U L E.

1. Place the numbers, fo that the greater may be uppermoft, and that thofe of the fame denomination may ftand directly under one another, and draw a line under them.
2. Begin at the loweft denomination, and take the lower number from the upper one, and fet down the difference, or remainder, underneath. Do the fame with the next denomination, and fo on till the laft, which muft be fubtracted as whole numbers.
3. When the lower number in any denomination happens to be the greater, borrow I, that is, add as many

Chap. I. SUBTRACTION.

 many to the upper number as makes one of the next higher denomination, and then fubtract the lower number, and fet down the remainder. Then carry \mathbf{I}, and add it to the lower number of the next denomination; and then fubtract as before.

Ex. 3. Troy Weigbt.

lb.	oz.	prots.	gris.
19	12	15	18
13	11	17	7
6	0	18	11

PROBLEM VI.

To multiply one wobole number by anotber.
Multiplication is taking the multiplicand, or number to be multiplied, fo many times as there are units in the multiplier; and the refult is called the product. Multiplication is a compendious method of addition, and is performed by help of the following table; which muft be got by heart.

Mut.

Multiplication Table.

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

The ure of the table is this: find one figure on the fide of the table, and the other at top; then in the angle of meeting is their product. Thus the product of 5 and 7 is 35 ; and the product of 9 times 8 is 72 .
i. A general R U L E.

1. Place the multiplier under the multiplicand, the units under units; p and draw a line under them.
2. You mult multiply from the right hand to the left, thus: begin with the units or loweft figure of the multiplier, by which multiply the loweft figure of the multiplicand, and fet down the overplus above the tens, and carry the tens. Then multiply the 2 d figure of the multiplicand by the fame, adding fo many units, as you had tens to carry; and fet down the overplus, and carry the tens as before. Do thus till you come to the laft figure, whofe product muft be fet down entire.
3. Then take the fecond figure of the multiplier, and multiply by this as you did before; fetting the firt figure of the product under the figure you multiply'with; do fo with the reft of the figures in the multiplier; fetting the firft figure of each product under, or in the fame place as the figure you multiply by. Or, which is the fame thing, fetting each product fo many places back towards the left hand, as the multiplying figure is diftant from the firft figure.
4. Lafty, add all there products together, for the product of the two numbers given.

Note, you may eafily multiply by 12 in one line, as if it was a fingle figure, if you get by heart all the products of all the natural numbers by 12 , as far as g.

Ex. I .
$\begin{array}{cr}\text { multiply } & 60735 \\ \text { by } & 7 \\ \end{array}$
product $\overline{425145}$
Explanation.
7 times 5 is 35 ; fet down 5 and carry 3 . 7 times 3 is 21 and 3 I carry is 24 ; fet down 4 and carry 2 . 7 times 7 is 49 and 2 carried is 5 I ; fet down I and carry 5. 7 times o is o but 5 is 5 ; fet down 5 and carry 0 . 7 times 6 is 42 , which fet down.

$$
\begin{array}{r}
\text { Ex.2. } \\
\text { multiply } 2760325 \\
\text { by } \frac{37072}{5520650} \\
19322275 \\
193222750 \\
8280975
\end{array}
$$

Demonftration of the rule.

In Ex. I. 7 multiplying 5 produces 35 , the 5 will fall in the place of units, and the 3 belongs to the tens. Then 7 multiplying 3 in the 2 d place, or place of tens, produces $\frac{1}{2} 1$, of which I belongs to the tens, to which the 3 catried being alfo tens, muft be added, which makes 4 tens; and the 2 belongs to the 3 d place, or hundreds. Then 7 multiplying 7 in the third place, makes 49 , the 9 belongs to the 3 d place, to which add the 2 , which alfo belongs to the 3 d place, the fum is 5 I ; I belongs to the third place and 5 to the 4 th place. Then 7 times 0 is 0 , (in the 4 th place) but 5 is 5 . Laftly, 7 times 6 is 4^{2}, the 2 belongs to the 5 th place, and 4 to the 6th: Thefe particular products will ftand thus :

And in Ex. 2. 2 multiplying 5 produces 10, the 0 is in the place of units, and to on. Again, 7 mulriplying 5 makes 35 , the 5 is in the 2 d place, becaufe the multiplier is really 70 . Again, 7 in the 4 th place multiplying 5 makes 35 , and the 5 will be in the 4th place, becaufe you really multiply by 7000 , and fo for all the reft.

- Ex. 3.

If I boghead coft I 3 pound, what will z 8 coft?

2 R U L E.

When one or both the numbers end with cyphers, neglect the cyphers and multiply the remaining figures as before; and to the product, annex the cyphers that are in both numbers.

3 R U L E.

When any number is to be multiplied by $10,100,1000, \mathcal{E}^{\circ} c$. annex fo many cyphers at the end of the number, as there are in the multiplier.

$$
\text { Ex. } 5 .
$$

Multiply 23079 by 100, the product is 2307900 .

4 RULE.

In large multiplications, make a table of the multiplicand multiplied by all the 9 digits. Then you have no more to do, but so take out the refpective product for each figure of the multiplier, and add them all together.
C_{3} Ex.

T A BLE.

1	70500768
2	141001536
3	211502304
4	282003072
5	352503840
6	423004608
7	493505376
8	564006144
9	634506912

Ex. 6.

The proof of Multiplication, is by making the multiplicand to be the multiplier; then if the product comes out the fame as before, your work is right.

That two numbers will give the fame product, whichever is the multiplier, will appear thus: fuppofe the numbers 4 and 36 . Then 36 times 1 is the fame with once 36 ; and therefore 3^{6} times $1+1+1+1$, or 36 times 4 is the fame with 4 times 3^{6}; and fo of others.
S с HOLIUM.

There is a way of proving multiplication by cafting away the nines, which though not infallible, ferves to confirm the other, and is very expeditious. It is thus, fee Ex. 4. make a crofs, and add all the figures or digits of the multiplicand together, as units, thus $5+7+3=15$, throw away the nines, and fet the remainder 6 on one
 fide of the crofs. Do the fame with the multiplier $4+2=6$, fet the remainder on the other fide of the crofs. Do the like with the product, and fer the remainder at top. Laftly, multi- multiply the figures on the fides, and throw away the nines, and feet the remainder at bottom, which mut be the fame with the top,
Ex. 6. $66 / 4$ if the work is right.

PR OB L EM VII.

To multiply numbers of different denominations, by a given number.

> I RULE.

If the multiplier be a ingle figure; begin at the loweft denomination, and multiply it by the given number, and fee how many of the next denomination is contained in the product; fer down the odds, and carry fo many to the next. Then mustiply the next denomination, adding what you carried; and feet down the odds. Proceed thus till all be multiplied.

This method is rather reckoning than multiplying. Ex. I. Money.

2 RULE.
If the multiplier be a great number made up of feveral others multiplied together. Multiply fucceffively by the parts, inftead of the whole.

$$
C_{4}
$$

Ex.

3 R U LE.

If the multiplier is not compofed of others; find two or more numbers, whofe product comes neareft : then multiply as before, and add what is wanting, or fubtract what is over.

Divifion teaches to find how often one number, called the divifor, is contained in another, called the dividend. Or it fhews how to find fuch a part of the dividend as the divifor expreffes. The number here fought is called the quoticnt.

1. Set down the dividend, and the divifor on the left hand of it, within a crooked line; alfo make another crooked line on the right hand, for the quotient.
2. Enquire how oft the firft figure of the divifor is contained in the firtt figure of the dividend, or in the two firlt figures, when that of the divifor is greater ; and place the anfwer in the quotient.
3. Multiply the whole divifor by the quotient figure, and fet the product orderly under the dividend towards the left hand, and fubtract it therefrom. But note, if this product be greater than that part of the dividend; a lefs figure muft be placed in the quotient.
4. Make a prick under the next figure of the dividend to mark it, and bring it down, annexing it to the remainder; then this number is called the dividual.
5. Seek how of the divifor is contained in the dividual, and fet the anfwer in the quotient; then multiply and fubtract as before; and proceed thus till all the figures in the dividend are brought down one by one. And note, for every figure brought down, a figure (or a cypher) muft be placed in the quotient.

Note, fince there is a neceffity of trial, to find out the true quotient figure ; therefore, before it be fet down, multiply 2. or 3 figures of the divifor on the left hand, by that figure in mind, to fee if it exceed the dividual.

> Ex. I.

Divide 14122 by 46.
46). 14122 (307 the quotient. 138°

322
322

Firft I afk how oft 4 in I, which is no times at all : then how oft 4 in 14, which is 3 times; then I place 3 in the quotient, and then multiply 46 by 3 , and fet the product 138 under 141 , and fubtracting there remains 3 . Then I prick the 2 and bring it down to 3 , which then is 32 for a dividual ; then enquiring how oft 4 in 3 , the anfwer is 0 , which I place in the quotient. Then I prick, and bring down the next figure 2, and the dividual is now 322, then I ank how oft 4 in 32 , the anfwer would be 8 ; but then 46 multiplied by 8 would exceed 322 , therefore I place 7 in the quotient, by which I multiply 46 , and the product is 322 ; and that fubtracted from 132, leaves nothing. Then 307 is the quotient.

$$
\text { Ex. } 2 .
$$

Divide 18972584 by 6023 .

134 the remainder.

Demonftration of the rule.

In Ex. I. fince 4^{6} is contained 3 times in 141, therefore it is contained 300 times in 14122 ; that is', 3 muft be in the third place:

Alfo fince 46 is contained 7 times in the remainder 322 ; therefore 46 is contained in the whole dividend 307 times.

And in Ex. 2. fince 6023 is contained 3 times in 18972 ; it is contained 3000 times in 18972584; and 100 times in the remainder 903584 , and 50 times in the next remainder 301284; and o times in the laft remainder 134. Therefore the divifor is contained in the whole dividend; 3150 times.

2 RULE.

When the divifor ends with cyphers, cut them off, and likewife cut off as many places of the dividend on the right hand; and perform the divifion by the remaining figures. And when the divifion is finifhed, annex the figures cut off to the remainder.

$$
\text { Ex. } 3 \text {. }
$$

Divide $745^{6} 78$ by 30400:
304|00) $7456 \mid 78$ (24 quotient. $\frac{608}{1376}$
1216
16078 remainder:

3 RULE.

To divide by $10,100,1000, \xi^{3}$ c. cut off from the dividend fo many places as the divifor has cyphers; and that will be the quotient; and the figures cut off the remainder.

$$
\begin{gathered}
E x .4 . \\
\text { Divide } 78607 \text { by } 100 .
\end{gathered}
$$

The quotient is 786 , and 07 remaining.

$$
4 \mathrm{RULE} \text { : }
$$

When you have a large dividend, and your divifor is often repeated; make a table of all the pro- done by continually adding the divifor. By this table divifion may be wrought by infpection, only by the help of addition and fubtraction. For you have no more to do, but only to take out of the table the number always the next lefs than each dividual, and the quotient figure along with it; which numbers are to be continually fubtracted from thefe dividuals, as in the general rule.

$$
\text { Ex. } 5
$$

Divide 40377982057 by 35016 .

TABLE.

1 35010 2 70032 	35016)	$\begin{aligned} & 40377982057 \\ & 350169 \end{aligned}$
3105048		
$4{ }^{1} 4006_{4}$		53619
5175080		35016
${ }_{6} 2110196$		186038
		175080
		109582
10350160		105048
		$\begin{aligned} & 45340 \\ & 35016 \end{aligned}$
		$\begin{array}{r} 103245 \\ 70032 . \end{array}$
		$\begin{aligned} & 332137 \\ & 315144 \end{aligned}$
		16993

5 RULE.

5 RULE.

When you are to divide by a fingle figure, you need not fet down the operation at large, but perform it in mind; the fame may be done with 12 .

> 7) 30721 Ex. 6. 4388 quotient. 5 rem.

Thus 30721 divided by 7 ; the quotient is 4388 , and 5 remaining.

Divifion is proved by multiplying the divifor and quotient together, and adding the remainder, when there is any; which muft be equal to the dividend, when the work is right.

Or it may be proved by cafting away nines, as in multiplication. Caft away the nines in the divifor and quotient, and fet the remainders on the fides of the crofs. Do the fame with the dividend, and fet the remainder at top.
 Multiply the figures on the fides, throw away the nines, and fet the remainder at bottom, which mult be equal to the top. See Ex. I. Note, if there be a remainder, it mult be added to the product, on the fides of the crofs, and the nines thrown out as before.

PROBLEM IX.

To divide a mumber of different denominations by a given number: -

1 RULE.

If the divifor be a fingle figure, begin at the higheft denomination, which divide by the given divifor, and fet the anfwer in the quotient, and to be of the fame denomination; what remains mutt
be multiplied by the number of parts in the next inferior denomination, and added to the given number of that denomination, and then divide as before. Proceed thus through all the denominations.

$$
\begin{aligned}
& \text { Ex. } 1 . \\
& \text { f. s. } d \\
& \text { Divide } 5^{8} \text { Io } 3 \text { into } 7 \text { parts, what is I part? } \\
& \text { f. s. d. f. s. d. } \\
& \text { 7) } 5^{8} \quad 10 \quad 3(8 \quad 7 \quad 2 . \\
& 5^{6} \\
& 2=40 \\
& \text { 7) } 50(7 \\
& 49 \\
& 1=12 \\
& \text { 7) } 15(2 \\
& 14 \\
& \text { I }
\end{aligned}
$$

Explanation.

Say how oft 7 in 58,8 times; which feet in the quotient, then 8 times 7 is 56 , which fubtracted from 5^{8}, leaves 2. But 2 pounds are 40 fillings, to which add 10 , the fum is 50 . Then fay how oft is 7 in 50 , anfwer 7 times, which fer in the quotient for fillings; then 7 times 7 is 49 , which taken from 50 leaves I shilling, or 12 pence, to which add 3, the fum is 15. Then fay how oft 7 in 15 , the anfwer is 2 , which feet in the quotient for pence, then 2 times 7 is 14 , which taken from 15 , I remains. So the anfwer is $8 l .75 .2 \mathrm{~d}$.; and I penny remaining.

Chap. I.
DIVISION.
Ex. 2. c. At. lb.
What is the 6 th part of $72 \quad 6$ I ?

6) $72 \quad 6$ II (12 $\quad 15$ the quotient.
$\frac{72}{7)} 6(0$
0
$6=84$
65
$\frac{90}{5}$ remains:
2 RULE:
If the divifor be a great number made up of feveral others by multiplication. Divide fucceffively by the parts, inftead of the whole.

$$
\text { Ex. } 3 .
$$

$$
\text { fo s. } d
$$

Divide $320 \quad 12 \quad 8$ by 35 :

PROBLEM X.
To extract the Square root.

i. A general RULE.
I. Begin at the units place, and point every other figure on the top, dividing it into feveral periods.
2. Find the greateft fquare that is contained in the firft period, towards the left hand. Set the root in the quotient, and fubtract the fquare from the figures of that period.
3. To the remainder bring down the two figures under the next point, for a reefolvend. This is always to be repeated.
4. Double the quotient for a divifor, and fee how oft it is contained in the refolvend (excepting the lat figure) ; and feet the answer in the quotient, and alpo after the divifor. This mut always be repeated; for a new divifor muff be found for every figure.
5. Then multiply this whole divisor by that quotent figure, and fubtract the product from the whole refolvend; but if that product be greater, a lefs figure mut be placed in the quotient. Proceed thus till all the figures or periods be brought down.
6. Note, inftead of doubling the quotient every time for a divifor, you may always add the lat quotient figure to the lat divifor, for a new divifor; and proceed as before.

> Ex. i.

Extract the fquare root of 393129.

$$
393129 \text { (} 627 \text { the root. }
$$

Expla-

Explanation.

The neareft fquare to 39 the firft pointing, is 36 , whofe root 6 I place in the quotient; and fubtract the fquare 36 from 39 , the remainder is 3 .

Then I bring down 31 , the next point, and annex it to 3, and the refolvend is 33 I . Then I double the quotient for a divifor, which is 12 ; and I feek how oft 12 in 33, the anfwer is 2 , which I place in the quotient, and alfo after 12; then the divifor becomes 122; and 122 multiplied by 2 produces 244 , which I fubtract from 331 , the remainder is 87 .

Laftly, I bring down 29, the next point, and the refolvend is 8729 . Then I either double the quotient 62, which is 124 ; or I add the quotient figure 2 to 122 , the laft divifor, which is 124 ; and this is a new divifor. Then I afk how off I 24 in 872 , the anfwer is 7 times. Then I multiply 1247 by 7 , and fubtract the product 8729 from 8729 , and there remains o. So the root is exactly 627 .

Ex. 2.
Extract the root of 733120000 .

733120000 (27076 the root.

$\frac{4}{47)}$| 333 |
| :--- |
| +7 |
| $5407)$
 +7
 $54146)$$\frac{31200}{37849}$ |
| $\frac{335100}{324876}$ |
| 10224 |
| rem. |

Ex. 3.

What is the root of 3272869681 ?

$$
2 R U L E .
$$

When more than half the figures of the root are found; all the reft will be found as truly by plain divifion; as is thewn more at large in the extraction of the roots of decimal fractions. But if common divifion be ufed, you muit bring down as many figures, as there were periods to come down, when you began with divifion.

Ex. 4.

Let 14876008357020684 be given.

divifor 24392) 176675

The proof is, to multiply the root by itfelf, and add the remainder; which mut be equal to the number given to be extracted, if the work be right.

PROBLEM XI.

To extract the cube root.

R U L E.

1. Begin at the units place, and point every third figure; that is, the Ift, 4 th, 7 th, $\mathcal{E}^{\circ} c$. miffing two places.
2. Find the neareft lefs root of the figures of the firft punctation on the left hand, fubtract its cube from the number given; to the remainder annex the next figure, for the refolvend.
3. Take $\frac{1}{3}$ of the refolvend for a dividend.
4. And for a divifor, take the fquare of the root, added to half the root, (or rather added to the product of the root, and the next quotient figure, leaving out the laft figure of the product).
5. Divide the faid dividend by that divifor, the quotient is the fecond figure of the root.
6. Begin the operation anew, viz. cube the two figures of the root, and fubtract the cube from the given number, annexing another figure, for the refolvend.
7. Take the third part of the refolvend for a dividend, and the fquare of the root added to half the root (or rather added to the product of the root, and next quotient figure, ftriking off the laft figure of the product) for a divifor.
8. This divifion gives another figure of the root, but the divifion is to be continued on to two figures, by the contraction in divifion of decimals, or otherwife.
9. Repeating the operation with 4 figures in the root, you will get 4 more by a new divifion, which gives 8 figures in the root; and from 8 to $16, \xi_{6}$. always double.
10. Note, when the cube exceeds the number given, a lefs figure muft be writ in the quotient. And obferve every divifion gives one figure, and the reft are found by continuing the divifion, and dropping a figure of the divifor every time.

$$
E_{x .1 .}
$$

Extract the cube root of 7892485271 .

Then 1991 cubed is 789248527 I , and therefore 1991 is exactly the root required.

Explanation.
I being the greateft cube contained in 7 , the firf point; fubtract I there remains 6 , to which annex 8 , and the refolvend is 68, the third part is 22 for a dividend. Then I the fquare of the root being a divifor, fay how oft I in 22 , the quotient would give more than 10 , but fince we can have no figure above 9 , we will take 9 by guefs for the quotient ; then 9 times the root 1 is 9 , which is very near 10 , throw away the O and add I to the root I, which makes 2
for the true divifor ; then to have the true quotient figure, fay how oft 2 in 22, anf. 9 times, for we can

- take no more ; therefore 9 is rightly taken.

Then the root 19 being fquared gives 361 , and cubed is 6859 . This cube fubtracted from 78924 leaves 10334 the refolvend, which divided by 3 gives 3445 for a dividend; and 361 is the divifor, and the quotient is 9 ; then the root 19 multiplied by 9 gives 171 , therefore add 17 to 36 r gives 378 for the exact divifor. Then by dividing you will get 91 : and the root 199I.

$$
\text { Ex. } 2 .
$$

To extract the cube root of 28373625 .

All the root might have been had at once by bringing down another figure, and that is becaufe the fecond figure happens to be 0 .

$$
\begin{aligned}
& \text { Thus } 2837 \\
& \frac{27}{\text { 3) } 137} \\
& \text { 9) } 45(05
\end{aligned}
$$

Chap. I.
 Ex. 3.

To extract the cube root of 8302348000000 .

```
830234\dot{8000000 (202 = I root}
8
3) 3
4) 1 ( 02
    O
    IO
```

then 202 fquared is 40804 , and cubed is 8242408 .

		$\begin{aligned} & 83023480 \\ & 8242408 \end{aligned}$
	$\begin{array}{r} \text { 3) } \\ 10804) \end{array}$	3) 599400 4) $199800\left(4^{8}\right.$
$\frac{1}{2}$ root	101	1163620
	40905	536180
	,	32724
		3456

$$
\text { Ex. } 4
$$

Extr. the cube root of 118248245000000000000000 :

Then 49 fquared is 2401 , and cubed is 117549 .

$$
\begin{aligned}
& \text { II } 824.80 \\
& \text { II7649 } \\
& \text { 3) } 5990
\end{aligned}
$$

divifor 2401) 1996 (08; and the root is 4908. 1920

Then the fquare of 4908 is 24088464 , and its cube 118226181312, therefore proceed

> 1182482450000
> 118226181312

Therefore the root is 49083052 , or very near 49083053 .

The proof of your work is, to multiply the root by itfelf and the product by the root; which muft equal, or nearly equal, the number given to be extracted.

CHAP.

C H A P. II.
 VULGAR FRACTIONS.

DEFINITIONS.

1. $A R A C T I O N$ is fome part or parts of an integer or whole thing, reprefented by I ; as ${ }_{3} \frac{3}{4}$ is a fraction denoting three fourth parts of an integer or 1. Every fraction confifts of two numbers, placed one above the other, with a line between them, as in this fraction $\frac{3}{4}$. The lower number 4 is called the denominator, and fhows how many parts the integer is divided into; the upper number 3 is called the numerator, and expreffes how many of thefe parts the fraction confifts of. And both numerator and denominator are called terms of the fraction.
2. A proper fraction is that where the numerator is lefs than the denominator, as $\frac{3}{4}$.
3. An improper fraction is that wherein the denominator is lefs than, or equal to, the numerator, as $\frac{4}{3}$ or $\frac{3}{3}, \xi^{2} c$.
4. A fingle fraction is that which confifts of but one numerator and one denominator.
5. A compound fraction, or fraction of a fraction, is that whofe parts are vulgar fractions, connected with the word of, as $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{4}{5}$.
6. A mixt number is a whole number with a fraction annexed, as $15 \frac{2}{3}$.
7. Denomination is the name of any integer or thing. Thus pounds, fhillings and pence are feveral denominations; where fhillings are of a lower denomination than pounds, and higher than pence.
SCHOLIUM.

Any fraction, as $\frac{3}{4}$, may be confidered either as \pm of the number 3 , or as $\frac{3}{4}$ of 1 . For \div of 3 being thrice as much as $\frac{1}{4}$ of 1 , and $\frac{3}{4}$ of I being alfo thrice as much as $\frac{\pi}{4}$ of 1 ; it follows, that $\frac{:}{4}$ of 3 , and $\frac{3}{4}$ of 3 fignify the fame quantity.

Likewife in any fraction as $\frac{3}{4}$, the numerator 3 may be confidered as a dividend, and the denominator 4 as a divifor. For as $\frac{3}{4}$ fignifies the fourth part of 3 , it intimates a divifion by 4 ; therefore 3 becomes a dividend and 4 a divifor, by the nature of divifion, and $\frac{3}{4}$ reprefents the quotient.

When an integer is divided into any number of parts (denoted by the denominator); the fewer or more parts taken, the lefs or greater is the fraction, that is, the lefs or greater the numerator, the lefs or greater is the fraction. And if the number of parts taken be the fame as the integer is divided into, that is, if the numerator be equal to the denominator, then that fraction will be equal to the whole or integer. Thus 2 halfs, 3 thirds, E^{2}. that is, $\frac{2}{2}$ or $\frac{3}{3}$ or $\frac{4}{4} E^{2} c$. is equal the whole thing, or equal to I the integer. And therefore when the numerator is lefs or greater than the denominator, the fraction is lefs or greater than \mathbf{I}.

From what has been faid, if one fraction or mixt number as $18 \frac{x}{1} \frac{1}{4}$, be to be divided by another as $4 \frac{3}{5}$, it may be written thus, $\frac{18 \frac{i}{\frac{1}{4}}}{4 \frac{3}{5}}$, and if any fuch fractional quantity as this $\frac{18 \frac{1}{1} \frac{1}{4}}{14 \frac{3}{5}}$ occur, it denotes a divifion of the number $18 \frac{1}{1+\frac{1}{4}}$ by $4 \frac{3}{5}$.

PROBLEMI.

To reduce a fraction into another of equal value.
R U L E.

Multiply (or divide) both terms of the fraction by one and the fame number, and you will have a new fraction equivalent to the fraction given.

Example.

Let the fiaction be $\frac{3}{5}$, multiply both terms by 6 produces $\frac{18}{30}$ for the new fraction; that is, $\frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30^{\circ}}$. On the contrary, in the fraction $\frac{18}{30}$, divide both terms by 6 , gives $\frac{3}{5}$, with is equivalent to $\frac{18}{30}$.

For in the fraction $\frac{3}{5}$, it is plain the 5 th part of 3 is all one as the roth part of 6 , or the 15 th part of 9 , and fo on; that is, the 5 th part of 3 , is the fame as the $\overline{6 \times 5}$ th part (3 oth part) of 6×3 or 18 .

Or thus, in the improper fraction $\frac{4}{2}, 4$ contains 2 as oft as 3 times 4 (12), contains 3 times $2(6)$; that is, $\frac{4}{2}=2$ for the quotient, and $\frac{12}{6}=2$ for the quotient, therefore $\frac{4}{2}=\frac{12}{6}, \Xi^{2} c$.

In like manner it is evident that 3 pennies contain 1 penny, as oft as 3 groats contain I groat; or as oft as 3 fhillings contain I fhilling. That is, $\frac{3}{1}=$ $\frac{3 \times 4}{1 \times 4}=\frac{3 \times 12}{1 \times 12}, \xi 3 c$.

And the fame holds equally true for divifion, that is, $\frac{3 \times 12}{1 \times 12}=\frac{3}{1}, \xi^{2} c$.
PROBLEMI.

To redice a whole number to the form of a frastion:
R U L E.

Place I under it for a denominator.

Example.

Suppofe 7 is the whole number, then it becomes $\frac{7}{1}$ for the fractional çuantity required.

PROBLEMIII.

To reduce a wbole number to a fraction of a giver denominator.

R ULE.

Multiply the whole number by the given denominator, and under the product write the fame denominator.

Example.
Suppofe 7 to have the denominator II.
7
$\frac{11}{77}, \quad$ then $\frac{7 \times I I}{I I}$ or $\frac{77}{1 I}$ is the fraction required.
For $\frac{7 \times I I}{I I}=\frac{7}{I}=7$.
PROBLEM IV.

To reduce a compound fracion into a fingle one.

R U L E.

Multiply all the numerators together for a new numerator, and all the denominators together for a new denominator, of the fingle fraction.

$$
E_{x: 1} .
$$

Let the fraction be $\frac{1}{2}$ of $\frac{3}{5}$ of $\frac{2}{7}$.
$\frac{7}{\frac{3}{6}} \quad \frac{5}{35}$
$\frac{1}{6}$
$\frac{2}{70}$ then $\frac{1 \times 3 \times 2}{2 \times 5 \times 7}=\frac{6}{70}$ the fingle fraction.

For $\frac{1}{5}$ of $\frac{2}{7}$ is the fame as $\frac{2}{7}$ divided by 5 , or $\frac{2}{5 \times 7}$, therefore $\frac{3}{5}$ thereof will be 3 times as much or $\frac{3 \times 2}{5 \times 7}$. Laftly, the whole fraction being now $\frac{3 \times 2}{5 \times 7}$, the

Chap. II. VULGAR FRACTIONS. the $\frac{1}{2}$ of it is $\frac{3 \times 2}{5 \times 7}$ divided by 2 , or $\frac{1 \times 3 \times 2}{2 \times 5 \times 7}=\frac{6}{70^{\circ}}$.

$$
\text { Ex. } 2 .
$$

What fraction of a pound is $3 \frac{1}{2} d$?
$3 \frac{1}{2} d_{0}=\frac{7}{2}$ of $\frac{x}{12}$ of $\frac{1}{20}$ of a pound,
that is, $3 \frac{1}{2} d .=\frac{7 \times 1 \times 1}{2 \times 12 \times 20}=\frac{7}{480}$ of a pound.
And thus $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{4}{5}$ of a pound is $\frac{24}{60}$ or $\frac{8}{20}$ of a pound or 20 fhillings, that is, 8 fhillings. For $\frac{4}{5}$ of a pound is 16 fhillings, and $\frac{3}{4}$ of 16 fhillings is 12 fhillings, and $\frac{2}{3}$ of 12 fhillings is 8 fhillings.
PROBLEM.V.

To reduce a mixt number into an improper fraction.
R U'L E.

Multiply the whole number by the denominator of the fraction, and to the product add the numerator; and the fum is a new numerator, and the denominator the fame as before.

> Example.

The mixt number is 32%.

$$
32
$$

$\frac{7}{224}$
$\frac{+5}{229}$ then $\frac{32 \times 7+5}{7}=\frac{229}{7}$ is the fraction required.

For 32 wholes or $\frac{32}{1}=\frac{23 \times 7}{7}=\frac{224}{7}$ or 224 fe venths, to which if the other 5 fevenths be added, the whole is 229 fevenths or $\frac{229}{7}$.

PRO.

PROBLEM. VI.

To reduce an improper fraction into a wobole or mixt number.

R U L E.

Divide the numerator by the denominator, and the quotient is the whole number. Then what remainder there is, place it over the denominator, and annex this fraction to the quotient before found.

> Example.

Let $\frac{631}{16}$ be propofed; 631 divided by 16 gives 39 for the quotient, and 7 remaining, therefore $39 \frac{7}{r_{6}}=\frac{631}{16}$ as required.

For the fraction $\frac{631}{16}$ fignifying 631 fixteenths, therefore every 16 makes 1 , and therefore the quotient 39 fhows how many ones are contained in the number, and the 7 fixteenths which remains, muft therefore be placed as a fraction.

PROBLEM VII.

To find the greateft common divifor for the numerator and denominator of a fraction, or for any two nimbers.

1. RULE.

I R U L E.

Divide the greater by the leffer, and the laft divifor by the remainder, and fo on continually till nothing remain ; then the laft divifor is that required.

Or in dividing take the neareft quotient, and the difference between the dividend and that multiple; for the next divifor, $E^{3} c$.

$$
\text { Ex. } \mathrm{I} .
$$

Let $\frac{252}{364}$ be propofed; dividing according to rule, the laft divifor is 28 , which is the greateft number that will divide both numerator and denominator, without a remainder.

Note, if the laft divifor be I, the 2 numbers are prime to one another.

For fince 28 meafures 112, it likewife meafures twice 112, or 224 ; and therefore 28 meafures $224+28$, or 25^{2}.

Again, fince 28 meafures 112 and 252, therefore it meafures $25^{2}+112$, or 364 ; and fo on. Therefore 28 meafures both 252 and 364 .

Now 28 is the greateft common meafure; for if there be a greater G, then fince G meafures 25^{2} and 364, it alfo meafures the remainder 112, and fince G 2 meafures 28 , that is, the greater meafures the lefs, which is abfurd.

2 R U L E.

If the numbers given be mixt numbers, or fractions; reduce them to a common denominator; and take the two new numerators, and proceed as in the firft rule to find their greateft common meafure; make it a numerator, under which put the common denominator; and that fraction will be the greateft common mealure fought.

$$
\text { Ex. } 2 .
$$

Let $9^{\frac{3}{4}}$ and 13 be propofed.
Thefe reduced to a common denominator are $\frac{39}{4}$ and $\frac{52}{4}$, then 39$) 5_{32}^{52}$ (1
13) 39 (3 fo $\frac{13}{4}$ is the greateft 39. common meafure of $0 \quad 9^{\frac{3}{4}}$ and 13 .

PROBLEMVIII.

To reduce a fraction to its leaft terms.
i. A general RULE.

Find the greatelt common meafure, by which divide both terms of the fraction; the quotients will be the terms of the fraction required.

$$
E x . \mathrm{I} .
$$

Let the fraction be $\frac{252}{364}$, whofe greateft common meafure is 28 , divilion being performed, we have $\frac{9}{1 \cdot 3}$, that is, $\frac{252}{364}=\frac{9}{13}$.

Chap. II. VULGAR FRACTIONS.
28) $252(9$ 252
28) ${ }_{28}^{364}$ ($13 \quad \frac{9}{13}$ the fraction.

Particular, RULES.

$$
2 R \text { UL E. }
$$

When the terms of the fraction are even numbers, divide them by 2 continually.

$$
\text { Ex. } 2 .
$$

$\frac{48}{27^{2}}$, being continually haled is $\frac{48}{27^{2}}\left|\frac{24}{16}\right| \frac{1}{68}\left|\frac{6}{34}\right| \frac{3}{17^{2}}$ therefore $\frac{4^{8}}{23^{2}}=\frac{3}{17}$.
3. When both terms end with 5 ; or one with 5 , and the other with a cypher; divide both by 5 .

Ex. 3.
As $\left.\frac{225}{475} ; 5\right) \frac{225}{475}\left(\frac{45}{95}\left(\frac{9}{19}\right.\right.$.
4. When both terms end with cyphers, cut off equal cyphers in both.

Ex. 4.
As $\frac{10000}{25700}$, which becomes $\frac{100}{257^{\circ}}$.
5. If you can efpy any number which will divide both terms, divide by that number.

$$
\text { Ex. } 5 \text {. }
$$

As $\frac{21}{39}$, divide by 3) $\frac{21}{39}\left(\frac{7}{13}\right.$.
6. For expedition, try all numbers $2,3,4,5, \exists^{2}$ c. till you find rome that will divide both, if any there be.

$$
E \quad E x
$$

REDUCTION OF BookI.

Ex. 6.
As $\frac{119}{168}$; trying $2,3,4,5,6$, none of them will do, but trying 7 it fucceeds, 7$) \frac{119}{168}\left(\frac{17}{24}\right.$.
PROBLEM IX.

To reduce fractions of different denominators, to thofe of equal value, baving a common denominator.

> 1. A general rule.

Multiply each numerator by all the denominators except its own, for a new numerator; then multiply all the denominators together for a new denominator.

Ex. I .

$$
\begin{aligned}
& \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \text { become } \frac{40}{60}, \frac{45}{60}, \frac{48}{60^{\circ}} \\
& 2 \\
& \frac{3}{8} \\
& \frac{4}{9} \\
& \frac{4}{16}
\end{aligned} \frac{4}{12} .
$$

For in each fraction, both terms are multiplied by the fame number; and therefore its value is not altered.

> Particular RULES.

$$
2 \mathrm{R} \text { U L E. }
$$

Divide the denominators by their greateft common divifor; and multiply both terms of each fraction, by all the other quotients, which will produce as many new fractions. This is the beft rule for 2 fractions, as

Ex. 2.

$\frac{5}{12}, \frac{7}{18}$. Divide by 6) $\frac{5}{12}, \frac{7}{18}$, the quotients are
2, 3. Then $\frac{5 \times 3}{12 \times 3}=\frac{15}{36}$, and $\frac{7 \times 2}{18 \times 2}=\frac{14}{3^{\circ}}$.
3 RULE.
In feveral fractions, divide all the denominators by their greatelt common divifor, fetting the quotients underneath; then find the leaft number which all thefe quotients can meafure; and divide this number feverally by all thefe quotients, and fet thefe new quotients underneath. Then multiply the terms of each fraction by its new quotient, gives the correfpondent fraction required, and all thefe will be in their leaft terms.

Ex. 3 .
3) $\frac{13}{36} \frac{1}{24} \frac{11}{18} \frac{7}{12} \frac{4}{9}$, $\begin{array}{llll}12 & 8 & 6 & 4 \\ 3 & 3\end{array}$, the leaft number they mea$\begin{array}{llllll}2 & 3 & 4 & 6 & 8\end{array}$ fure is 24 . $\frac{26}{7^{2}} \frac{3}{7^{2}} \frac{44}{72} \frac{42}{7^{2}} \frac{32}{72}$ the fractions required.
It is evident each of thefe is of the fame value as that given, having both its terms muitiplied alike. And they will be in the leaft terms, becaufe $2+$ is the leaft number that the firft quotients meafure.
S C H OLIUM.

By this problem the greateft of two or more fractions may be difcovered.
PROBLEM X.

Several fractions being given; to find as many wbole numbers, in the fame proportion.

R U L E.

Reduce the fractions to a common denominator, then the feveral numerators will be to one another as the fractions given.

E 2
Exam-

Suppofe $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. There are reduced to $\frac{6}{12}, \frac{4}{12}$, $\frac{3}{12}$, therefore the fractions $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, are as the numbers 6,4 , and 3 .

PROBLEM XI.

To find the value of a vulgat fration in known parts of the integer R U L E.
Multiply the numerator by the number of parts contained in the integer, and divide the product by the denominator, the quotient fhews the known parts. If there be any remainder, multiply it by the next inferior denomination, and divide by the denominator as before: and continue this work till you come at the loweft denomination.

Example.
What is $\frac{3}{17}$ of a pound fterl.? Anf. 3 s. 6 d. $1_{17}^{7} f$.

PR O BL EM XII.

Fo reduce a fraction of one denomination to the fraction of another denomination.

RULE.

1. From a left to a greater denomination; multiply the denominator by all the denominations, from that given, to that fought.
2. From a greater to a leis denomination; miltiply the numerator by all the denominations, from that given, to that fought.

$$
\text { Ex. } \mathrm{I} .
$$

Given $\frac{3}{5}$ of a penny; what fraction of a pound is it?

$$
\text { Anfw. } \frac{3}{5 \times 12 \times 20}=\frac{3}{1200} \text { of a pound. }
$$

Ex. 2.
$\frac{3}{5}$ of a pound, what is that of a penny?
Ant. $\frac{3 \times 20 \times 12}{5}=\frac{720}{5}$ of a penny.
For $\frac{3}{5}$ of a penny is $\frac{3}{5}$ of $\frac{1}{12}$ of $\frac{1}{20}=\frac{3}{5 \times 12 \times 20^{\circ}}$.
And $\frac{3}{5}$ of a pound reduced to pence is $\frac{3}{5} \times 20 \times 12$.

PROBLEM XIII.
 To add fractions together.

1. A general RULE.

Reduce compound fractions to fingle ones; mist numbers to improper fractions; and fractions of different denominators to a common denominator.

Then add the numerators, and fubfrribe the common denominator.

$$
\text { Ex. } \mathbf{I} .
$$

What is the fum of $\frac{2}{9}$ and $\frac{3}{9}$?

$$
{ }^{\text {to }}{ }^{2 d d} \frac{2}{5} \text { anf. } \frac{5}{9} .
$$

Ex.2.

What is the fum of $\frac{3}{4}$ and $\frac{3}{5}$?
When reduced to a common denominator they are

$$
\begin{aligned}
& \frac{15}{20} \text { and } \frac{12}{20^{\prime}} \\
& \text { to } 15 \\
& \text { add } \frac{12}{27} \text { the fum } \frac{27}{20} \text { or } 1 \frac{7}{20}
\end{aligned}
$$

$$
\text { Ex. } 3 .
$$

What is the fum of $\frac{1}{3}$ of $\frac{1}{4}$, and $\frac{3}{8}$, and $1 \frac{x}{4}$? $\frac{1}{3}$ of $\frac{1}{4}=\frac{x}{12}$, alfo $1 \frac{1}{4}=\frac{5}{4}$. Then
$\frac{1}{12}, \frac{3}{8}$ and $\frac{5}{4}$, reduced to a common denominator are $\frac{2}{24}, \frac{9}{24}$ and $\frac{30}{24}$.

$$
\begin{array}{r}
2 \\
9 \\
30 \\
\hline 41
\end{array}
$$

the fum $\frac{41}{24}$ or $1 \frac{17}{24}$.
Particular RULES.

2 RULE.

When many fractions are given, firft add two of them, and to the fum add a third, and to that fum a fourth, and fo on.

$$
\text { Ex. } 4 .
$$

Add together $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$.
$\frac{2}{3}$ and $\frac{3}{4}$ are reduced to $\frac{8}{12}$ and $\frac{9}{12}$; whole fum is $\frac{17}{12}$. Then
$\frac{17}{12}$ and $\frac{4}{5}$ are reduced to $\frac{85}{60}$ and $\frac{48}{60}$, whole fum is $\frac{133}{60}$.
Then $\frac{133}{60}$ and $\frac{5}{6}$ are reduced to $\frac{133}{60}$ and $\frac{50}{60}$, whore fum is $\frac{183}{60}$ or $33^{3} 0$, the fum of all the four fractions.

3 RULE.

When mist numbers are to be added, frt add the fractions to the fractions; and then the whole numbers by themfelves.

Ex. 5.
Let $3^{\frac{1}{2}}, 4^{\frac{\pi}{3}}$, and $10 \frac{3}{8}$, be added.
$\frac{1}{2}, \frac{1}{3}$ and $\frac{3}{8}$ are reduced to $\frac{12}{24}, \frac{8}{24}$ and $\frac{9}{24}$,
12
8
$\frac{9}{29} \quad \frac{29}{24}$ or $1 \frac{5}{24}$ is the fum of the fractions, to which add the whole numbers $\left\{\begin{array}{l}{ }^{1} \frac{5}{3} \\ 3 \\ 4 \\ 10\end{array}\right.$

$$
\text { the fum } 18 \frac{5}{2 \pi}
$$

4 RULE.

In fractions of different denominations, reduce them to thole of a common denomination, and then to a common denominator. Then add the nomerators, and fubferibe the common denominator.

$$
E_{4}
$$

Er

$$
\text { Ex. } 6
$$

Add together
$\frac{3}{5}$ of a pound, $\frac{5}{10}$ of a filing, and $\frac{7}{8}$ of a penny.
$\frac{5}{10}$ of a milling is $\frac{5}{200}$ of a pound, and $\frac{7}{8}$ of a penny is
$\frac{7}{1920}$ of a pound.
Then.

$$
\frac{3}{5}, \frac{5}{200} \text { and } \frac{7}{1920} \text { are reduced to } \frac{5760}{9600}, \frac{240}{9600}, \frac{35}{9600}
$$

$$
240
$$

$$
35
$$

$$
\overline{6035}
$$

The fum of the fractions is $\frac{6035}{9600}$ of a pound, or $\frac{1207}{\frac{1920}{9}}$ in left terms.

Or the fractions may be reduced to Chillings, or pence.

> PROBLEM XIV.

To subtract one fraction from another.
I: Acmeral RULE.

Reduce compound fractions to ingle ones; mist numbers to improper fractions; and fractions of different denominations to thole of the fame denemination; and laftly, fractions of different denominators to a common denominator.

Then fubtract the numerators, and fublcribe the common denominator.

$$
\begin{gathered}
\because E x .1 \\
\text { From } \frac{4}{5} \text { take } \frac{2}{5} .
\end{gathered}
$$

from 4 take $\frac{2}{2}$, the remainder is $\frac{2}{5}$.

Ex. 2.

$$
\text { From } \frac{6}{13} \text { take } \frac{3}{8}
$$

Reduced to $\frac{48}{104}, \frac{39}{104}$.
from 48
take $\frac{39}{9}$, the rem. $=\frac{9}{104}$.
Ex. 3.
Take $\frac{2}{3}$ of $\frac{4}{5}$ from $\frac{2}{3}$.
$\frac{2}{3}$ of $\frac{4}{5}$ is reduced to $\frac{8}{15}$.
Then $\frac{8}{15}$ and $\frac{2}{3}$ are reduced to $\frac{8}{15}$ and $\frac{10}{15}$.
$\frac{8}{2}$. The remainder is $\frac{2}{15}$.
Ex. 4.
From $25 \frac{3}{8}$, take $21 \frac{1}{4}$.
Reduced to $\frac{203}{8}$ and $\frac{85}{4}$.

$$
\frac{853}{118}, \text { the rem. }=\frac{118}{4}=29 \frac{2}{4}, \text { or } 29 \frac{1}{2} .
$$

Ex. 5.
From $\frac{1}{3}$ of a pound take $\frac{7}{9}$ of a shilling.
$\frac{1}{3}$ of a pound $=\frac{20}{3}$ of a shilling.
20
$\frac{7}{13}$, the rem. $=\frac{13}{3}$ of a chilling $=4 \frac{7}{3}$ filing?
Or $\frac{7}{9}$ of a Milling may be reduced to pounds, ξ° c.

$$
2 \text { RULE. }
$$

In mixt numbers, take the fraction from the fraction, and the whole number from the whole number, remembring to reduce the fractions to a common denominator: and if the fraction to be fubtracted is lefs, borrow \mathbf{I}.

Ex. 6.
Take $21 \frac{1}{4}$ from $25^{\frac{3}{8}}$.
$\frac{1}{4}$ is reduced to $\frac{2}{8}$. Then
from $25^{\frac{3}{8}}$
take $2 \mathrm{I}_{\frac{2}{8}}$
remains $\overline{4 \frac{2}{8}}$
Ex. 7.
From $108 \frac{3}{4}$ take $92 \frac{5}{6}$.
$\frac{3}{4}$ and $\frac{5}{6}$ reduced to a com. denom. are $\frac{9}{12}$ and $\frac{10}{12}$.
from $108 \frac{9}{T 2}$ or $107_{T 2}^{21}$
rake $\frac{92 \frac{1}{1} \frac{0}{2}}{15^{\frac{1}{2} \frac{x}{2}}}$

here as 10 is greater than 9 ; add 1 , that is, $\frac{12}{12}$ to 9 makes $\frac{2 I}{12}$, then 10 from $2 I$, remains I twelfths, then carry 1 to 2 makes 3 ; and 3 from 8 , remains 5 , 9 from io remains I :

$$
\text { Ex. } 8 .
$$

From $272{ }^{T}{ }^{7}$ take 14.

Chap. II. VULGAR FRACTIONS.

$$
3 \text { R ULE: }
$$

A fraction from I or an integer ; fubtract the numerator from the denominator, the remainder is the numerator to be placed over the given denominator.

$$
\begin{gathered}
\text { Ex. } 10 . \\
\text { Take } \frac{17}{23} \text { from } 1 .
\end{gathered}
$$

23
$\frac{17}{6}$. Then the remainder is $\frac{6}{23}$.

$$
4 \mathrm{RULE} .
$$

A proper fraction from any whole number; fubtract the numerator from the denominator, for the numerator of the fraction, which is to be annext to the whole number leffened by 1 .

$$
\text { Ex. } 11 .
$$

Take $\frac{17}{23}$ from 57 , the remainder is $56 \frac{6}{23}$.

$$
\begin{aligned}
& \text { from } 57 \\
& \text { take } \frac{0_{\frac{1}{2} 7}^{3}}{} \\
& \text { rem. } 5^{6_{\frac{6}{2} T}^{2}}
\end{aligned}
$$

The reafon of the rules in addition and fubtraction, is èvident; for when fractions are reduced to the fame denominator, they have the fame name; therefore as 2 fhillings and 3 hillings make 5 hillings, fo

60 MULTIPLICATION OF BookI: fo 2 twentieths and 3 twentieths, make 5 twentieths. And 2 twentieths from 3 twentieths leaves 1 twentieth. That is, $\frac{2}{20}+\frac{3}{20}=\frac{5}{20}$, and $\frac{3}{20}-\frac{2}{20}$ $=\frac{1}{20}$. And for the fame reafon $\frac{2}{9}$ and $\frac{3}{9}$ make $\frac{5}{9}$. And $\frac{2}{5}$ from $\frac{4}{5}$, remains $\frac{2}{5}, \mathcal{E}^{\circ}$.

> PROBLEM XV.

To multiply fractions togetber.
i. A general R ULE.

Reduce mixt numbers to fractions; then multiply the numerators together for a new numerator, and the denominators together for a now denominator.
Ex. I.

Multiply $\frac{2}{3}$ by $\frac{5}{7}$. The product is $\frac{2 \times 5}{3 \times 7}=\frac{10}{21}$.

$$
\text { Ex. } 2 .
$$

Multiply $7 \frac{1}{2}$ by $\frac{3}{4}$.
$7 \frac{7}{2}$ is reduced to $\frac{15}{2}$; then the product is $\frac{15 \times 3}{2 \times 4}=\frac{45}{8}$, or $5 \frac{5}{8}$.

$$
\text { Ex. } 3=
$$

Multiply $3{ }^{\frac{4}{7}}$ by 13 .
There are reduced to $\frac{25}{7}$ and $\frac{13}{1}$.

Particular RULES.

2 RULE.

When the numerator of one and denominator of the other, can be divided by any number; take the quotients inftead thereof.

$$
\text { Ex. } 4
$$

Multiply $\frac{3}{8}$ by $\frac{4}{7}$:
Divide by 4.

$$
\text { 4) } \frac{3}{8} \times \frac{4}{7} \text {, then } \frac{3}{2} \times \frac{1}{7}=\frac{3}{14} \text { the }
$$ product.

$$
\begin{gathered}
\text { Ex. } 5 \\
\text { Multiply } \frac{3}{8} \text { by } \frac{4}{9} \\
\text { 3) } \frac{3}{8} \times \frac{4}{9}=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \text { the product. } \\
\text { 3 R U L E. }
\end{gathered}
$$

A mist number or fraction, to multiply by a whole number; multiply the whole number by the whole number; and then multiply the numerator by the raid whole number, and divide by the denominator, and add this quotient to the former product.

$$
E_{x .} 6
$$

Multiply $\frac{3}{4}$ by 9 . Then $\frac{3 \times 9}{4}=\frac{27}{4}$ the product.
4) 27 ($6 \frac{3}{4}$ the product.

$$
\frac{24}{3}
$$

$$
4 \text { RULE. }
$$

When a fraction is to be multiplied by a number which happens to be the fame with the denominator; take the numerator for the produet.

$$
\text { Ex. } 8 .
$$

Multiply $\frac{3}{5}$ by 5 , the product is 3 .

5 RULE.

When feveral fractions are to be multiplied; ftrike out fuch multipliers as are found both in the numepators and denominators.

$$
\text { Ex. } 9 .
$$

Multiply the $\frac{2}{7}, \frac{14}{15}, \frac{5}{8}$.

$$
\text { That is, } \frac{2 \times 14 \times 5}{7 \times 15 \times 8} .
$$

This becomes $\frac{1 \times 2 \times 1}{1 \times 3 \times 4}$, or $\frac{1 \times 1 \times 1}{1 \times 3 \times 2}=\frac{1}{6}$.
For 2 and 8 become x and 4,14 and 7 become 2 and I, and 5 and 15 become I and 3 ; by dividing refpectively by 2,7 , and 5 .

A fraction is multiplied by any number, by multiplying the numerator by that number, or dividing the denominator by it, when it can be done;

Chap. II. VULGAR FRACTIONS.

as to multiply $\frac{3}{4}$ by 9 , the product is $\frac{27}{4}$. For fince 3 of any denomination multiplied by 9 produces 27 of that denomination, therefore 3 fourths multiplied by 9 produces 27 fourths, or $\frac{27}{4}$. And fince $\frac{3}{4}$ $=\frac{3 \times 9}{4 \times 9}=\frac{27}{3^{6}}$, therefore if $\frac{3}{4}$ or $\frac{27}{36}$ be multiplied by 9, the product is $\frac{27 \times 9}{36}$, or $\frac{27 \times 9}{4 \times 9}=\frac{27}{4}$, the fame as dividing 36 (the denominator of $\frac{27}{36}$) by 9 .

The reafon of the general rule is this; $\frac{2}{3}$ multiplied by $\frac{5}{7}$, makes $\frac{2 \times 5}{3 \times 7}$ or $\frac{10}{21}$. For to take $\frac{2}{3}$ once we fhall have juft $\frac{2}{3}$, but to take $\frac{2}{3}$ only $\frac{1}{7}$ of a time, we fhall only have $\frac{2}{3 \times 7}$, or $\frac{2}{21}$, becaufe dividing any fraction by any number as 7 , is but multiplying the denominator by that number $7 \cdot$ Again, taking $\frac{5}{7}$ of $\frac{2}{3}$ is taking 5 times as much as $\frac{1}{7}$, that is, 5 times $\frac{2}{21}$, and this will be $\frac{2 \times 5}{21}$, becaufe multiplying any fraction by any number 5 , is the fame as multiplying the numerator by that number 5 ; and therefore the product is $\frac{10}{21}$.

And in the particular contracted rules, fince both numerator and denominator are divided by the fame numbers, the fraction will be of the fame value.

Multiplication of fractions is only reducing a compound fraction to a fingle one, for to multiply $\frac{2}{3}$ by $\frac{5}{7}$, is no more than to take $\frac{5}{7}$ of $\frac{2}{3}$.

In multiplication of proper fractions, the product is less than either the multiplier or multiplicand. As if $\frac{2}{3}$ be multiplied by $\frac{5}{7}$; if $\frac{2}{3}$ be multiplied by 1 , the product will be juft $\frac{2}{3}$; but if $\frac{2}{3}$ be taken not fo much as once, as only $\frac{5}{7}$ of a time, the product will be lefs than $\frac{2}{3}$. And for the fame reafon it will be lefs than $\frac{5}{7}$, if $\frac{2}{3}$ be the multiplier.

PROBLEM XVI.

To divide one fraEkion by anotber.
i A general R U Le.
Reduce compound fractions to fingle ones, mixt numbers to improper fractions, and fractions of different denominations to thofe of the fame denomination. Then multiply the denominator of the divifor by the numerator of the dividend, for a new numerator; alfo multiply the numerator of the divifor by the denominator of the dividend, for a new denominator; the new fraction is the quotient.

Ex. I.
Divide $\frac{5}{8}$ by $\frac{3}{7}$. $\left.\frac{3}{7}\right) \frac{5}{8}\left(\frac{7 \times 5}{3 \times 8}=\frac{25}{24}=1 \frac{1}{2} \frac{7}{4}\right.$

Ex. 2.
Divide $\frac{3}{5}$ of a pound by $\frac{8}{9}$ of a fhilling.
$\frac{8}{9}$ of a fhilling is reduced to $\frac{8}{180}$ of a pound $=\frac{2}{45}$ of a pound. $\left.\frac{2}{45}\right) \frac{8}{9}\left(\frac{360}{18}=20\right.$.
Ex.

Chap. II. VULGAR FRACTIONS.

$$
\text { Ex. } 3 \text {. }
$$

Divide $1 \mathrm{I}_{\frac{2}{3}}^{2}$ by $2^{\frac{3}{4}}$.
There are reduced to $\frac{35}{3}$ and $\frac{11}{4}$.

$$
\begin{gathered}
\left.\frac{11}{4}\right) \frac{35}{3}\left(\frac{140}{33}=4 \frac{8}{35}\right. \\
\text { Ex. } 40 \\
\text { Divide } 7 \text { by } \frac{3}{5} . \\
\left.\frac{3}{5}\right) \frac{7}{1}\left(\frac{35}{3}=11 \frac{2}{3} .\right. \\
\text { PARTICULAR RULES. }
\end{gathered}
$$

2 RULE.
When it can be done, divide the numerator of the dividend by the numerator of the divifor, and the denominator by the denominator, for the quotient.

Ex. 5.
Divide $\frac{8}{15}$ by $\frac{2}{3}$.
$\left.\frac{2}{3}\right) \frac{8}{15}$ ($\frac{4}{5}$ the quatient.
3 R U L E.
When the two numerators, or the two denomi nators, can be divided by any number; take the quotients inftead thereof.

$$
\begin{aligned}
& \quad \text { Ex. } 6 . \\
& \text { Divide } \frac{12}{27} \text { by } \frac{8}{5} . \\
& 2 \\
& \left.\frac{8}{5}\right) \frac{12}{27}\left(\frac{15}{54} .\right.
\end{aligned}
$$

$$
\frac{\mathbf{1}}{\frac{2}{45}} \begin{gathered}
\frac{4}{5} \\
\frac{8}{9} \\
1
\end{gathered}\left(\frac{20}{I}=20\right.
$$

4 R U L E.

A fraction by a whole number; multiply the denominator by the whole number.

$$
\text { Ex. } 8 .
$$

Divide $\frac{13}{15}$ by 7 , the quotient $\frac{13}{15 \times 7}=\frac{13}{105}$.

$$
5 \text { R U L E. }
$$

If the denominators are equal, place the numesator of the dividend over the numerator of the diwifor, for the quotient.

$$
\text { Ex. } 9 .
$$

Divide $\frac{8}{19}$ by $\frac{3}{19}$, the quotieni is $\frac{8}{3}$, or $2 \frac{2}{3}$.
To demonftrate that $\frac{5}{8}$ divided by $\frac{3}{7}$, gives $\frac{35}{2.4}$ in the quotient, let them be reduced to a common denominator, then $\frac{3}{7}=\frac{24}{56^{\circ}}$ and $\frac{5}{8}=\frac{35}{56}$; then it is plain $\frac{5}{8}$ divided by $\frac{3}{7}$ is the fame as $\frac{35}{56}$ divided by $\frac{24}{56}$. But 35 fifty fixths contain 24 fifty fixths, as oft as 35 contains 24 , therefore the quotient is $\frac{35}{24}$ or $\frac{7 \times 5}{3 \times 8^{\prime}}$ as by the rule.:

Alfo a fraction is divided by a whole number by multiplying the denominator by that number. As if $\frac{13}{15}$ be divided by 7 , the quotient is $\frac{13}{15 \times 7}=\frac{13}{105}$. For

For $\frac{13}{15}=\frac{13 \times 7}{15 \times 7}=\frac{91}{105}$: now if we take the 7 th part of $\frac{13}{15}$, or its equal $\frac{91}{105^{2}}$ this is the fame as dividing 9 I hundred and fifths by 7 , and the quotient is 13 hundred and fifths, or $\frac{13}{105}=\frac{13}{15 \times 7}$. And hence a fraction is divided by a whole number, by dividing the numerator by that number, when it can be done; for $\frac{91^{\prime}}{105}$ divided by 7 , gives $\frac{13}{105}$ for the quotient.

In divifion of fractions, if the divifor be a proper fraction, the quotient will always be greater than the dividend. For it is evident, when any quantity or dividend is to be divided by $\mathbf{1}$, the quotient will be equal to the dividend : therefore if it is divided by a proper fraction, which is lefs than 1 , the guotient will then be greater than the dividend: for a lefs divifor will be oftener contained in the dividend, than a greater divifor.

PR OBLE M XVII.

To extract the square root of a fraction, \& \& c. R U L E.
I. Reduce them to the leaft terms; then extract the root of the numerator for a new numerator; and the root of the denominator for a new denominator.
2. When they have not exact roots, add an equal number of cyphers to both terms, and then extract : or
3. When neither numerator nor denominator has an exact root, multiply the numerator by the denominator, and exeract the root of the product, for a numerator, and under it place the faid denominator.
4. To find the fractional part of the root of a whole number nearly, take the remainder for a numeration, and twice the ront (+1 if you will) for a denominator, of the fractional part.

Or more exactly, make twice the remainder a numerator; and add 1 to 4 times the root, for a denominator.
Ex. I.

Extract the fquare root of $\frac{50}{18}$.
Here $\frac{50}{18}=\frac{25}{9}$, and the root of 25 is 5 , and the root of 9 is 3 ; therefore the root of $\frac{25}{9}$ is $\frac{5}{3}$, or $1 \frac{2}{3}$. Ex. 2.
Extract the root of $55^{\frac{3}{6}}$.
$5 \frac{3}{10}=\frac{83}{16}$, then the root is $\frac{\sqrt{83}}{4}=\frac{9}{4}$ nearly.
Or thus.
$\frac{83}{16}=\frac{83000}{16000}$, and the root of $\frac{83000}{16000}$ is $\frac{\sqrt{1328000000}}{16000}$
$=\frac{3644 \mathrm{I}}{16000}=\frac{9110}{4000}=\frac{91 \mathrm{I}}{400}$ near.
To extract the root of $\frac{2}{3}$.
Here $\frac{2}{3}=\frac{20000}{30000^{\circ}}$. But the root of 20000 is 14 I ; and the root of 30000 is 173 ;
Therefore the root of $\frac{2}{3}$ is $\frac{141}{173}$.
Or thus.
$\frac{2}{3}=\frac{200}{300^{\circ}}$, and $200 \times 300=60000$, whole root
is 245 , then the root is $\frac{245}{300}=\frac{49}{60^{\circ}}$.

$$
\text { Ex. } 4 \text {. }
$$

Extract the root of $27 \frac{3}{5}$.
$27^{\frac{3}{5}}=\frac{138}{5}$, and $138 \times 5=690$, and the root of 690 is 26 , then the root is $\frac{26}{5}=5 \frac{3}{5}$, nearly, but too fall.

Chap. II. VULGAR FRACTIONS.
Extract the root of 22 , or $\frac{22}{1}$.
$\begin{array}{r}22 \\ 16 \\ \hline 6\end{array}$
rem. $\overline{6}$
($4 \frac{6}{8}$, or $4 \frac{6}{9}$ the root.

$$
\begin{aligned}
& 22 \text { (4in the root. } \\
& \frac{16}{6} \\
& \frac{2}{12} \frac{4}{16+1}=17
\end{aligned}
$$

Ex. 6.
Or thus.

To extract the root of 253 .
253 ($155^{\frac{28}{3} \circ}$) or $15^{\frac{28}{5} 5}$ the root.
25) 153

125 or more exactly $15 \frac{56}{6} \frac{1}{2}$ is the root:
28

$$
E x .7
$$

Extract the root of $\frac{7}{8}$.
Here $8 \times 7=56$. And the root of 56 is $7 \frac{7}{14,}$ or $77^{\frac{7}{5}}$.
$5^{6}\left(7 \frac{7}{7}=7 \frac{1}{2}\right.$. And the root is $\frac{7 \frac{1}{2}}{8}=\frac{15}{16}$. 49
7 or more exactly $\frac{7 \frac{1}{2} \frac{4}{3}}{8}$.

PROBLEM XVIII.

To extract the cube root of a fraction.
RU LE.

1. Reduce the fraction to the leaf terms ; then extract the roots of the numerator and denominator, if they have any, for the numerator and dinominator of the fraction.

$$
\mathrm{F}_{3}
$$

2. If
3. If they have not exact roots, add an equal. number of cyphers to both terms, and then extract : or
4. If neither of them have exact roots, multiply the numerator by the fquare of the denominator, and extract the root of the product for a numerator, and under it place the faid denominator. And here you may add cyphers to both, before you begin, as before.
5. To find the fractional part of the cube root of a whole number; make the remainder a numerator, and thrice the fquare of the root a denominator. .
Or more exactly, make twice the remainder a numerator, and add 3 times the root to 6 times its fquare, for a denominator.

But the moft general method is to reduce the fraction to a decimal, and then extract the root, as hereafter.

$$
E x . \mathrm{I} .
$$

Extract the cube root of $\frac{1}{27}$.
The root of, I is I, and the root of 27 is 3 , then $\frac{1}{3}$ is the root.

$$
\text { Ex. } 2 .
$$

To extract the root of $\frac{24}{375}$.
$\frac{24}{375}$ is reduced to $\frac{8}{125}$, whofe root is $\frac{2}{5}$.

$$
E x .3 .
$$

Extract the root of $\frac{2}{3}$.
$\frac{2}{3}=\frac{20000}{30000}$, the root of 20000 is 27 , and the roo of 30000 is 31 , therefore the root of $\frac{2}{3}$ is $\frac{27}{31}$.

Chap. II. VULGAR FRACTIONS.
$2 \times 3 \times 3=18$. And the root is $\frac{\sqrt[3]{18}}{3}$. But $\sqrt[3]{18}$ $=2 \frac{5}{6}$.

$$
18\left(2 \frac{10}{52}=2 \frac{5}{6}\right. \text { the numerator. }
$$

$10 \quad$ or rather $2 \frac{20}{30}=2 \frac{2}{3}$ for the

$$
\begin{array}{ll}
2 \times 3=6 & \text { numerato } \\
4 \times 6=\frac{24}{30} & \frac{22}{3}=\frac{8}{9} .
\end{array}
$$

$$
\text { Ex. } 4 .
$$

Extract the cube root of $13 \frac{4}{7}$.
$13 \frac{4}{7}$ is reduced to $\frac{95}{7}$, then $\frac{95}{7}=\frac{95000}{7000}$.
The root of 95000 is 45 the numerator.
And the root of 7000 is 19 the denominator,
And the root $\frac{45}{19}=2 \frac{7}{15}$.

Otberwife.

$95 \times 7 \times 7=4655$, whofe root is 16 or 17 ; therefore the root is between $\frac{16}{7}$ and $\frac{17}{7}$.

Or thus.
4655 (16
4096
rem. 559, and thrice the fquare of $16=768$, and the root is $16 \frac{559}{168}=16 \frac{8}{T_{1}^{3}}$ nearly, the numerator. Therefore the root of $13 \frac{4}{7}$ is $\frac{16_{T 1}^{8}}{7}=2 \frac{30}{77}$.

C H A P. III.
 DECIMAL FRACTIONS.

Notation.

ADECIMAL FRACTION is a fraction whofe denominator is I with one or more cyphers; thus, $\frac{1}{10}, \frac{3}{10}, \frac{5}{100}, \frac{27}{100}, \frac{9}{1000}$, are decimal fractions.

Here 1, or the integer, is always fuppofed to be divided into $10,100,1000, \delta^{\circ} c$. equal parts ; or, which is the fame thing, 1 is fuppofed to be divided into 10 equal parts, and each of thefe parts into 10 equal parts, and each of thefe into io parts more, and fo on, by a continual fubdivifion.

A decimal fraction is expreffed without the denominator, by writing only the numerator and prefixing a point on the left hand of it. And the number of places in the numerator is al ways equal to the number of cyphers in the denominator; thus $\because 3$ fignifies $\frac{3}{10}, 03$ fignifies $\frac{3}{100}, 37$ fignifies $\frac{37}{100}$, and .004 fignifies $\frac{4}{1000}$; therefore when the numerator hath not fo many places as the denominator has ryphers, the void places mutt be filled up with cyphers towards the left hand. And from hence is difcovered how many cyphers the denominator confits of.

Cyphers on the right hand of a decimal do neither increafe nor diminifh the value; thus 3 and 30 and $.300,83$. are all equal, becaufe $\frac{3}{10}=\frac{30}{100}=\frac{300}{1000}$, ξ°, as is plain from vulgar fractions: and therefore decimals

Chap. III. DECIMAL FRACTIONS. 73 decimals are foon reduced to a common denominator, by annexing cyphers.

The notation of decimal fractions, will be plain from the following table.

As in whole numbers, the ift place contains units, the fecond place to the left, tens; the third, hundreds; E^{c} c. So in decimals the order of places is contrary, for the firft place in decimals is tenths; the 2 d place to the right is hundred parts; the 3 d , is thoufand parts; \mathcal{E}_{6}. And as whole numbers increafe from the right hand to the left in decuple proportion, or decreafe from the left to the right in a fubdecuple proportion; fo decimals alfo increafe from the right to the left in a decuple proportion, and decreafe from the left to the right in the fame fubdecuple proportion. Thus in the table above, 3 fignifies $\frac{3}{10}, 2$ fignifies $\frac{2}{100}, 8$ fignifies $\frac{8}{1000}$.

But in reading any decimal, as. 328 , we do not fay 3 tenths, 2 hundredths, 8 thoufands; but firtt reduce them all to the denominator of the greateft; and call them all by that name. Thus $\frac{3}{10}=\frac{300}{1000}$, $\frac{2}{100}=\frac{20}{1000}$, and $\frac{8}{1000}$ remains the fame; and collecting them rogether, we have $\frac{328}{1000}$, that is, three hundred

A mixt number, is made up of a whole number and a decimal, which are feparated from one another by a point. Thus 32.17 fignifies $32 \frac{1,7}{\frac{1}{00}}$. And 5.03 fignifies $5{ }^{\frac{3}{1} 0}$. 0.

Hence any mixt number, as 5.03 , may be expreffed thus, $\frac{503}{100}$, or $\frac{5030}{1000}$, or $\frac{50300}{10000}, \mathcal{E}^{\circ} c$. and 32.17 $=\frac{32.17}{1}=\frac{32 \mathrm{I} .7}{10}=\frac{3217}{100}=\frac{32170}{1000}, \mathrm{Ec}_{\mathrm{c}}$.

Numeration, or the reading of decimals, is the very fame as that of whole numbers, only adding the name of the parts fignified by the decimal. Thus 328.328 fignifies 328 thoufands, and 328 thoufand parts.

Since decimals as well as whole numbers decreafe to the right hand in a fubdecuple proportion, therefore decimals have the fame properties as whole numbers, and are fubject to the fame rules of operation. For in any whole number, the feveral parts of it are, in effect, but decimal parts of one another.

> P R O B L E M I.
> To add decimal fractions.

R U L E.

Place all the points directly under each other, then tenths will be under tenths, and hundred parts under hundredehs, $\xi^{2} c$. then add them together as if they were whole numbers; and laftly, put a point under the other points, which will prick off the number of decimal places in the fum.

Chap. III. DECIMAL FRACTIONS. 75

PR O B L EM II.

To fubtract one decimal from anotber.
R U L E.

Place the greater number uppermoft, the points under the points, tenths under tenths, $E^{\circ} c$. then fubtract fubtract as in whole numbers; placing the point of feparation under the other points.

PROBLEM III.

To multiply decimals togetber.

1. A general RULE.

Multiply the decimals as if they were whole numbers; and from the product cut off as many. decimal places, as there are in both numbers. If there be not fo many places, make them out with cyphers on the left.

Chap.III. DECIMAL FRACTIONS. 77 :

78

 MULTIPLICATION OF BookI.To prove the truth of the rule, let 9087 be multiplied by 852 ; thefe are equivalent to $\frac{9087}{10000}$ and $\frac{852}{1000}$, whence if the numerators be multiplied together, and the denominators alfo, the product will be $\frac{7742124}{10000000}$, that is, .7742124 confifting of as many decimal places as there are cyphers, that is, of as many places as are in both the numbers.
For the fame reafon $\frac{2717}{100}$ multiplied by $\frac{2016}{1000^{\prime}}$, produces $\frac{4671072}{100000}$, or 46.71072 .

Particular RULES for contracling the woork. 2 RULE.
In large decimals, you muft multiply in a contrary order, thus: Begin with the left. hand figure of the multiplier, by which multiply the whole multiplicand.
Then prick off the laft figure of the multiplicand on the right, and multiply the reft by the next figure of the multiplier on the left.

Then prick off another figure of the multiplicand, and multiply the reft by the next figure of the multiplier. Go on thus with all the figures of the multiplier; always pricking off a figure in the multiplicand, at each multiplying. And obferve what is to be carried from the preceding figure, when you begin each multiplication.
Set the firtt figure of each product directly in a line under one another, to be added together.

Laftly, when you multiply by the units place, obferve what place of the multiplicand it begins with; and cut off fo many decimals, in the product.

Or, obferve the places of any two decimals that begin the multiplication, and the fum of them gives the number of decimal places in the product.

Note, inftead of pricking off the figures gradually in the multiplicand; you may know where to begin to multiply every time thus: If the firft figure on the left of the multiplier, begins, with the firft figure on the right of the multiplicand; then the 2 d figure begins with the 2 d ; and the 3 d with the 3 d ; and fo on.

multiply by	$\begin{array}{r}76.84375 \\ 8.21054 \\ \hline 6.47400 \\ \hline\end{array}$
	61475000
	1536875
	76843
	3842
	307
product	630.92867
	Ex. 2.
multiply by	-3570643
	. 2210576
	7141286
	357064
	17853
	2499
	214
producs	. 007518916

Explanation:

In Ex. I. 8 multiplying the whole multiplicand, gives 61475000 for the product. Then prick off 5 , and multiply by 2 , faying 2 times 5 is Io , carry 1 , 2

80 MULTIPLICATION OF BookI. and 2 times 7 is 14 and 1 is 15,2 times 3 is 6 and 1 is $7, \Xi_{c} c$. and the product is i 536875 . Again, prick off 7 , and fay once 3 is 3 , once 4 is $4, \xi \subset$. and that product is 76843 . Then prick off 3 , and fay o times 4 is 0 ; again, prick off 4 , and fay 5 times 4 is 20 , carry 2, then 5 times 8 is 40 , and 2 is $42, \delta^{\circ} c$. and the product is 3842 . Laftly, prick off 8 , and fay 4 times 8 is 32 , carry 3 ; then 4 times 6 is 24 and 3 is 27,4 times 7 is 28 , and 2 is 30 , and that product is 307 . And the fum of all 630.92867 . And fince 8 the units begins with 5 in the 5 th place, there muft be 5 places of decimals.

And fince 2 begins to multiply at 7,1 at 3 , 0 at 4,5 at 8 , and 4 at 6 ; it is plain the firft figure of each product will be in the 5 th place of decimals; becaufe the fum of the places of the two multipliers always makes 5 .

In the 2d Ex. 2 begins to multiply at 3, I at 4 , o at 6,5 at 0,7 at 7,6 at 5 . Where the fum of both places makes 9 ; therefore there are 9 places of decimals.

3 RULE.

When any decimal is to be multiplied by 10 , 100,$1000 ; \xi_{6}$. remove the feparating point fo many

Chap. III. DECIMAL FRACTIONS. 8ı many places to the right hand, as there are cyphers.

$$
4 \text { R ULE. }
$$

In large multiplications, make a table of all the products of the multiplicand by the 9 digits ; and then the feveral products, are eafily taken out of the table and writ down, as directed in multiplication of whole numbers.
PROBLEM IV.

To divide one decimal by anotber.
I. A general RULE.

Divide as if they were whole numbers. Then cut off as many decimal places in the quotient, as the number of decimal places in the dividend exceeds the number in the divifor; if there are not fo many in the divifor, prefix fo many cyphers.

Or thus, the firft figure of the quotient (or indeed any quotient figuice, is of the fame degree as that f gure of the dividend, under which the units place of the product ftands.

Annex cyphers to the dividend, when there are not places fufficient. Likewife by continually annexing cyphers, the divifion may be continued as far as you pleafe.

> Ex. I.
> Divide 13.4 by 3207.3

Explanation.
As the dividend wants places, I add cyphers at pleafure; and there being fix places of decimals in the dividend, and I in the divifor; there will be 5 in the quotient; therefore 2 cyphers muft be prefixt before 417 , and the quotient is .00417 as required.

Or thus, fince 9 the units place (of the product of the divifor by 4) ftands under the third place of decimals, therefore 4 is in the third place of decimals:

Chap. III. DECIMAL FRACTIONS. 83
Ex. 2.
Divide 27 I. 5 by 5.746

Ex. 4
Divide . 05^{2701} by 36 . 36) $.052701(.001463$

$\frac{36 \cdots}{167}$
$\frac{144}{230}$
$\frac{16}{145}$
108
33

To prove the rule; fince the number of decimals in the dividend is equal to the number in both divifor and quotient ; it follows that the quotient contains as many as the dividend exceeds the divifor.

Again, the quotient contains as many decimals, as 12829 (the product of 3207 . by 4) contains, (for there are none in 3207 the divifor); and thar is, as many as are in the dividend I 3.400 , uncer which it ftands to be fubtracted; therefore it follows, that the quotient figure 4 is of the fame degree as 9 , the product of the units place of the divifor, or as (o) the figure above it in the dividend. Therefore 4 the quotient figure is in the 3 d place of decimals.

$$
2 . \mathrm{R} U \mathrm{~L} \text {. }
$$

To contract the work in Jarge divifions, inftead of pricking one down from the dividend, prick one figure off the divifor each operation; and in multiplying leave out thefe figures prickt off, only you muft have regard to what is to be carried from the figure laft prickt off.

Note, if the firft figure in the quotient begins to multiply at the firft figure in the divifor, then the 2 d begins at the 2 d , the 3 d at the $3 \mathrm{~d}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$.

$$
\begin{aligned}
& \text { Ex. } 5 . \\
& 76.84375) 630.92878(8.210541 \\
& \frac{61475000}{1617878} \\
& 1536875 \\
& 81003 \\
& 76843 \\
& 4159 \\
& \frac{3842}{317} \\
& \frac{307}{10} \\
& \frac{7}{3}
\end{aligned}
$$

Chap.III. DECIMAL FRACTIONS. 85

Explanation.

Here 8 is multiplied into 76.84375 ; then 2 is multiplied into 76.8437 (carrying 1); then 1 is multiplied into 76.843 ; the multiplication of 7684 by 0 , is omitted; then 768 by 5 ; then 76 by 4 , laftly 7 by 1 .

3 R U L E.

To divide by $10,100,1000, \xi^{c}$. remove the feparating point, fo many places to the left hand as there are cyphers.

$$
\text { Ex. } 6 .
$$

Divide 32.075 by 10 . quotient 3.2075
$\because E x .7$.
Divide 25.7 by 1000 . quotient . 0257

$$
4 \mathrm{RULE} .
$$

In large divifions, make a table of the products of the divifor and all the 9 figures. And then divifion will be wrought by infpection; for the feveral products are eafily taken out of the table, as you want them, according to the directions in divifion of whole numbers.
PROBLEMV.

To reduce or change a vulgar fraction to a decimal fraction.

R U E.

Add cyphers at pleafure to the numerator, reprefenting fo many places of decimals; and then divide by the denominator,, as far as you pleafe.

Ex. 1.
Reduce $\frac{3}{4}$ to a decimal.
4) $3.0000(.7500$, or .75
28 • :
-20
20
.00

Ex. 2.
Reduce $13 \frac{4}{7}$ to a decimal or mist number.
7) $4.000000(.571428$
35°
49 then $13 \frac{4}{7}=13.571428$
$\frac{7}{30}$
28
20
14
$-\overline{6}$
5^{6}

$$
48 z^{2}
$$

Chap. III. DECIMAL FRACTIONS.
Ex. 3.
To reduce $\frac{16}{3}$ to decimals.

Ex. 4.
To change $\frac{1}{243}$ to a decimal.
243) $\frac{1.00000000}{\frac{972}{280}}\left(.004\right.$ II $_{5}=\frac{1}{243}$.

243
370
243
1270
1215
55 Etc.
Scholium.
To reduce a decimal to a vulgar fraction, is no more than dividing by the greateft common meafure; the denominator of the decimal being $10,100,1000$, $E_{0} c$.

G 4
PRO-

P.R OBLEM VI.

To reduce the known part or parts of any integer to a decimal.

R U L E.

Begin at the laft part, and reduce it to a vulgar fraction, of the next fuperior denomination, and fo to a decimal. Then take that, and the next part, if there is any, which alfo reduce to a decimal of the next fuperior denomination; and fo on to the laft.

> Ex. I.

What decimal of a fhilling is three half-pence?
3 half-pence is $=1 \frac{1}{2} d .=1.5 d$, then $\frac{1.5}{12} d .=$ the fraction of a hilling, by dividing, $\frac{1.5}{\sqrt{2}}=.125$ the decimal of a fhilling.

$$
\text { Ex. } 2 .
$$

Reduce 6 s. $3 \frac{1}{4} d$. to the decimal of a pound.
Here $\frac{1}{4}$ of a penny $=.25$, and $3 \frac{1}{4}$ or 3.25 divided by 12, that is, $\frac{3.25}{12}=.270833$ the fraction of a fhilling; and 6 s. $3^{\frac{1}{4}} d$. or 6.270833 divided by

Chap. III. DECIMAL FRACTIONS. 89 $20\left(\frac{6.270833}{20}\right)$ is $=.31354166$ the decimal of a pound.

Ex. 3.
What decimal of a hundred weight is 3 ff . 7 lb . $9 \mathrm{oz}$. ; at 14 lb . to the flone. $90 z=\frac{9}{16} l b=-5625 l b$., and $\frac{7.5625}{14}=.540178 \mathrm{fl}$. and $\frac{3.540178}{118}=442522$ hundreds.

Hence the following decimal table is made.

STMoney. I l. the integer. $1 s ;=.05$ $1 d .=.00416667$ $1 f .=.00104167$	Averdupoife veight. 1 lb . the integer. $\begin{aligned} & \text { Ioz. }=.0625 \\ & \text { I } d r .=.0390625 \end{aligned}$
Troy weight. I 16 . the integer. 1 oz. $=.0833333$ 1 prot. $=.0041665$ ${ }^{1} \mathrm{gr}$. $=.00017{ }^{2} 6$	Averdupoife weight. I hundred the integer. $\begin{aligned} & 1 q r=.25 \\ & 1 \mathrm{lb}=.00892857 \end{aligned}$ $10 z=.00055803$
Apâtbecary's weight. I oz. the integer. I $d r .=.125$ 1 fcr. $=.0416666$ 1 gr. $=.0020833$	Long meafure. A yard the integer. $\begin{aligned} & \text { If. }=.3333333 \\ & \text { I in. }=.0277777 \end{aligned}$
Time. I day the integer. I bo. $=.0416666$ I min. $=.0006944$ 1 fec. $=.0000115$	Square and Solid meafure. I in. $=.006945$, the decimal of a fquare foot. I in. $=.00057^{8} 7$, the decimal of a cubic foot.

PROBLEM VII.

To find the value of a decimal in known parts of the integer.

RULE.

Multiply the decimal by the number of parts containe in the next inferior denomination, gives the parts required : and if the decimal cut off be multiplied by the next lower denomination, you'll have the parts of that denomination; and fo on.

Ex. I.
How much money is $.73^{2}$ of a pound?

$$
.73^{2 l}
$$

$$
20
$$

14.640 s. Ans. 14 s. 7 d. $2 \frac{7}{10}$ f: 12
7.680 d .
$\frac{4}{2.72 f}$
Ex. 2.
What weight is 5.7305 lb . averdupoife? 5.7305 lb .

16 Anf. 5 lb . II oz. II dr.

43830
7305
11.68800 z
$\frac{16}{4128}$
688
11.008 dr

Chap. III. DECIMAL FRACTIONS. 91
PROBLEM VIII.

To change a common divifor into a common multiplier.

R ULE.

Divide I by that divifor, the quotient is a multiplier. If the divifor be a vulgar fraction, invert it, making the numerator the denominator, $\mathcal{E} c$.

Ex. I .
If 2150.4 be a divifor, what is the multiplier to effect the fame thing ?
2150.4) 1.000000000 (. 00046503 the multiplier. 86016 …

I 39840
129024
108160
107520
64000
64512
Ex. 2.
If $\frac{5}{8}$ be a divifor, what is the multiplier?
$\left.\frac{5}{8}\right) \frac{\mathrm{I}}{\mathrm{I}}\left(\frac{8}{5}\right.$ the multiplier $=\mathrm{I} .6$

> P. R O B L EM IX.

To extract the Square root of a decimal, or mixt number.

R ULE.

Annex cyphers on the right hand as many as you pleare, and begin at the units place and point every ceed to extract in all-refpects as if it was a whole number; and cut off as many whole numbers in the root, as there are points in the whole number, and as many decimals, as points in the decimals. And the operation may be continued as far as you will, by adding pairs of cyphers.

$$
E x .1 .
$$

Extract the root of 2211.8209
2211.8209 (47.03 the exact root.
16
$8 7 \longdiv { 6 1 1 }$

$9403) \quad$| 28209 |
| :--- |
| $\frac{28209}{\cdots}$ |

Ex. 2.
What is the fquare root of 10 ?
$10.0000\left(3.16227 \mathcal{E}^{3} c\right.$, the root.

Chap.III. DECIMAL FRACTIONS. 98

Ex. 3.
Extract the fquare root of .001234
0.001234 (. 0351283362 the root near.
$\frac{}{65)} \frac{9}{334}$
$\frac{+5}{701)} \frac{325}{900}$
$+1701$
7022) 19900
+2 14044
70248) 585600
$\frac{561984}{23616}$
$\frac{21074}{2542}$
435

Erpia-

Ex. 4.
To extract the fquare root of $\frac{7}{9}$.
$\frac{7}{9}$ reduced to a decimal is .777777 , Esc:

PROBLEM IX.

To extrait the cube root of a decimal, or mixt number.

R ULE.

Add cyphers at pleafure on the right hand, that the decimals may confift of $3,6,9,12, \xi^{2} c$. places; and begin at the units place and point every third figure

Chap. III. DECIMAL FRACTION'S. 95 figure both to the left and right hand. Then extract the root as if it was a whole number; and the extraction may be continued as far as you will, by ftill adding ternaries of cyphers. At laft cut off as many places of whole numbers, as there are points in the whole numbers, and the like for decimals.

Note, if you defire the laft quotient to go true to more places of figures, do thus; add half the laft. quotient to the laft root, and fquare the fum for a divifor, and divide over again.

CUBE RO

What is the cube root of 2 ?

2.000000 (1.259921 Ef. the root. I
3) 10
I) 3 (3 too much. 3
1 root $=12$ fquare $=144$ cube $=1728$

1. 728
3) 2720
2 root $=1259$
4) $906(60$, too fquare $=158508$ I
7906 much. cube $=1995616979$
2,0000000000
1995616979

> 3) 43830210
> 1585081) 14610070 (92106
> $1133 \quad 14275926$
> 1586214) 334144
> $\frac{317243}{16901}$
> 15862
> 1039
> 951
> 88

Chap. III. DECIMAL FRACTIONS. 97
Ex. 3.
What is the cube root of .0001357 ?
$0.000135700000\left(.05138 \mathrm{E}^{\circ} \mathrm{c}\right.$, the root.
125
3) 107
25) 35 (1
$\frac{2}{27} \frac{27}{8}$
1357000
$132.6_{5} \mathrm{I}$
3) 30490

2б01) $10163(38$
$\frac{15}{2616} \frac{7848}{2315}$

- 2093

222
Ex. 4 :
Extract the cube root of $1 \frac{3}{3}$.
Reduce $\frac{2}{3}$ to a decimal, and the number is 13.666666

3) $\frac{8}{56}$
4) 18
$\frac{1}{5} \frac{15}{3}$
136666
12167
'I root 23
Square 52.9
cube 12167
cube $\$ 32.65$ I

CUBE ROOT OF BookI:

549.9) 499.80 (9089

499.80 (9089	
49491 and the root 2.3908	46900 7035 489
439	
50	938 117

Ex. 5.
What is the cube root of 171.46776406 ?

Chap. III. DECIMAL FRACTIONS.

	Or thus.	${ }^{55}$
3055.312) 159750	(55558	55.2750
$\cdots 152767$	and the root $=$	55.275
16983	$5.55555{ }^{\circ} \mathrm{c} .=5 \frac{5}{9}$.	2763750
15276.		276375
1707		11055
1528		386 276
179		3055.325
153		divifor.
26		

C H A P. IV.

Serveral Practical Rules in Aritbmetic.

PROBLEMI.

To refolve a quefion in reduction.

REduction defcending is when fome integers of a greater denomination are to be reduced to thofe of a lefs.

Reduction afcending is when the leffer denomination is to be reduced to the greater.

> R, U L E.

In reduction defcending, multiply continually by all the denominations from the given one to that fought; adding to each product by the way, thofe of the fame denomination with itfelf, if fuch there be.

In reduction afcending, where the quantity is to be reduced to a higher denomination; divide continually by all the denominations from the given one to that fought. Sometimes both rules mult be ufed promifcuoully as occafion requites.
Ex. I.

In 415 pounds, how many pence?
45
20
$\overline{8300}$
12
16600
8300

Anfwer 99600 pence.

$$
\text { Ex. } 2 .
$$

In 3076 l . $13^{5 .} 11_{4}^{\frac{1}{4}} \mathrm{~d}$. how many fillings, pence, and farthings?

$$
\underset{20}{3076-13-11 \frac{1}{4}}
$$

61533 shillings adding 13

$$
12
$$

$$
\overline{123077}
$$

$$
61533
$$

$73^{840^{\prime}}$ pence adding 11 4
2953629 farthings adding I

$$
\text { Ex. } 3
$$

In 354 lb. oo. 16 dw .15 gr . how many grains?
$\frac{12}{708}$

4248 ounces 20

84976 pennyweights
$\begin{array}{r}24 \\ \begin{array}{r}339919 \\ 169952\end{array} \\ \hline\end{array}$
2039439 grains

REDUCT

In 48067 ounces averdupoife, how many hundred weight?

> 14) 8)
16) 48067 (3004 lb . (214 ff . (26 C. 6 ft. $8 \mathrm{lb} .30 \mathrm{z}_{\text {, }}$ $\frac{48 \cdots}{067}$
$\frac{28}{64}$
$\frac{14}{20}$
$\frac{14}{64}$
$\frac{56}{8}$

Ex. 5 .
In 11923 pence, how many pounds? 20)
12) 11923 (993 fillings (49 pounds.
108.0°

Chap. IV. REDUCTION.
In 207l. 15s. Wd. how many pieces (at 7 s. $3 \frac{1}{\frac{1}{2} d .}$ per piece) gowlands (at 7 pieces per gowland) and ringlets (at II gowlands a ringlet)?

$$
\begin{array}{lc}
7 \text { s. } & 3^{\frac{1}{2} d .} \\
\frac{12}{87} & \frac{207 l}{4155} \\
\frac{2}{175} & \frac{12}{8316} \\
\text { halfpence } & \frac{4155}{49866}
\end{array}
$$

If 27 pounds be divided among 31 perfons, what is the hare of each?

$$
\begin{aligned}
& \begin{array}{l}
27 \% \\
\text { 31) } \\
\frac{20}{540} \\
\frac{31}{230} \\
\frac{217}{13}
\end{array} \\
& \text { 31) } \frac{12}{156} \\
& \frac{155}{1} \\
& \text { 31) of: answer. } \\
& \text { 3 } \frac{4}{4}
\end{aligned}
$$

In 8769 dollars, at 4 s .7 d . per dollar, how many groats, Ahillings, crowns, and pounds?
43. 7 d.

12
55 pence
55
43845
43.84
4) 482295 (120573 groats. rem. 3 pence
3) 120573 (4019 I fini. (8038 crowns (2009 pounds; 0 I rem. 2 rem.
The proof of reduction is to work the queftion backwards.

PROBLEM II.

To refolve a quefion in the rule of three.
Here are three numbers given to find a fourth in proportion. If a greater number requires a greater, or a lefs requires a lefs, it is called the rule of three direct.
But if a greater requires a lefs, or a lefs requires a greater number; it is called the rule of three inverfe.

> I. Á general R ULE.

1. To ftate the queftion, place the three given terms fo, that the firft and third may be of one name, the third being that which anks the queftion. And the fecond muft be of the fame name with the fourth term fought. And let them be reduced to their loweft denomination, where the firft and third muft be of the fame.
2. Then fay, if the firlt term give or require the fecond, what does the third give or require. If more be required, mark the leffer extreme; if lefs be required, mark the greater extreme, for a divifor. Multiply the other two numbers together, and divide

Chap. IV. RULE OF THREE. 105 by this divifor. The quotient is the anfwer, of the fame denomination with the fecond term.
3. What remains will either make a fractional part; or it mut be reduced to a lower denomination, and divided as before.

$$
E_{x, ~ I . ~}^{\text {I. }}
$$

If 18 lb . of Sugar cot 12 fillings, what will 150 colt?

$$
\begin{aligned}
& l b . \\
& 18
\end{aligned}: \quad 12: \ddots \begin{aligned}
& l b . \\
& 150 .
\end{aligned}
$$

Here, if 181 b . cot 12 fillings, 150 lb . mut cot more, therefore divide by 18 the lifer extreme.

$$
\begin{aligned}
& \text { * } 18 \frac{12}{\frac{150}{12}} \begin{array}{l}
\text { 18) } \frac{150}{1800} \text { (} 100 \text { fillings } \\
\frac{18 \cdots}{00} \\
\text { 20) } 100 \frac{100}{(5 l . t h e} \text { answer. } \\
\frac{10}{9}
\end{array}
\end{aligned}
$$

Ex. 2.
If 35 yards of cloth colt $39 l .7$ s. 6 d . how many yards may be bought for 1 gl .2 s .6 d ?

$$
\begin{aligned}
& \text { * } 39 \text { l. } 7 \text { s. id. : } 35 \text { ids. : : gl. es. id. } \\
& \frac{20}{787} \Rightarrow \frac{20}{3^{82}} \\
& : 35: \frac{12}{4590} \\
& \frac{35}{22950} \\
& \text { 9450) } \frac{160650}{1606} \text { (17 yes. anew: } \\
& \frac{9450^{\circ}}{66150} \\
& \begin{array}{c}
66150 \\
\hdashline \cdot
\end{array}
\end{aligned}
$$

Ex. 3.
If $40 \frac{1}{2} l \mathrm{lb}$. of tobacco colt 3 l . how much can I buy for $7 l .15$ s.?

$\frac{155}{3240}$
3^{240} 648

$$
\text { 60) } \begin{aligned}
& \frac{16)}{100440}(1674 \text { ounces (10 4lb. 10 oz } \\
& \frac{16 \cdot}{74} \\
& \frac{64}{10}
\end{aligned}
$$

Or thus by vulgar fractions.

* $3: 40 \frac{4}{2}:: 7 \frac{3}{4}:$
that is $3: \frac{8 \mathrm{r}}{2}: \frac{31}{4}:$

$$
\begin{aligned}
& \frac{81}{81} \\
& \left.\frac{243}{5}\right)^{\frac{2511}{8}}\left(\frac{837}{8}=104 \frac{4}{8} l 6 .\right.
\end{aligned}
$$

Or thus by decimals.

3l. : 40.5 lb . : : 7.75 l .
$\frac{40.5}{3875}$
3100
3) $313875\left(104.625=104 \mathrm{l}\right.$. $100 \mathrm{z}_{\text {: }}$
375°
625

$$
10.000
$$

Ex. 4.
If 6 men be io days in finifhing a piece of work, how long will 8 men be?

$$
6 m .: \text { io d. }:=8 m .{ }^{*}
$$

Here 8 men will be lets time than 6 , therefore more requires less; and 8 , the greater extreme, is the divisor.

$$
\text { Ex. } 5
$$

If I lend a perfon 300 l . for a year, how long ought he to lend me 500 l . to requite me?

$$
\begin{aligned}
& 300 \mathrm{l}: 365 \text { d. }: 500 .^{*} \\
& \frac{300}{1095100}(219 \text { days. }
\end{aligned}
$$

Here leis time is required, and 500 the divifor, by the inverfe rule.

How many yards of cloth, a yard and a quarter broad, will line a piece of tapeftry 10 yards long, and $3^{\frac{1}{2}}$ broad?

$$
\left.\frac{5}{4}\right) \frac{70}{2}\left(\frac{280}{10}=28 y d s\right.
$$

2 Rule for contracting the work.

When the divifor and either of the other terms, can be exactly divided by forme common divifor; then divide them, and take the quotients inftead of there terms. And proceed thus as oft as you can.

$$
\text { Ex. } 7
$$

If σ_{3} gallons of brandy coff 42% what will 72 gallons cot? Here σ_{3} is the divifor.

Divide by 9) ${ }^{*} 6_{3}: 4^{2}:: 7^{2}$

$$
\begin{aligned}
& \text { 7) }{ }^{*} 7: 42:: 8 \\
& \text { * 1: } 6:: 8: 48 \% \text { inf. } \\
& \text { Ex: } 8 .
\end{aligned}
$$

There is a pafture which will feed 18 horfes for 7 weeks; how long will it feed 42 horfes? Here 42 is the divifor, and the rule inverfe.

$$
\begin{aligned}
& \text { 7) } 18: 7:: 42^{*} \\
& \text { 6) } 18: 1:: 6^{*} \\
& 3: 1 \text { 1 } \\
& \text { 1) } \frac{3}{3}(3 \text { weeks; answer. }
\end{aligned}
$$

$$
\text { Ex. } 9
$$

If $\frac{3}{8}$ of a yard colt 27 . Tilings; what will $\frac{7}{8}$ of a yard coff?

$$
\begin{aligned}
& \left.\frac{-7}{8}\right)^{* \frac{3}{8}}: 27:: \frac{7}{8} \\
& \text { 3) }{ }^{*} 3: 2.7: 7 \\
& \text { 63s. answer: }
\end{aligned}
$$

The proof is made by multiplying the quotient by the divifor, adding the remainder; which muft be equal to the product of the other two numbers.

P R O B L E.M III.

To refolve a queftion in the double rule or compoind rule of tbree.

R U L E.

1. Here, as in the fingle rule of three, put that term into the fecond place, which is of the fame denomination with that fought; and the terms of fuppofition one above another in the firlt place; alfo the terms of demand in the fame order, one above another, in the third place. Then the firft and third of every row will be of one name, and muft be reduced to the fame denomination, viz. the loweft concerned.
2. Then proceed with each row as with fo many feparate queftions in the fingle rule of three, in order to find out the feveral divifors; ufing the fecond term in common for each of them. That is, in any row, fay, if the firf term give the fecond, does the third require more or lefs? if more, mark the leffer extreme; if lefs, the greater, for a divifor.
3. Multiply all thefe divifors together for a divifor; and all the rèt of the numbers together, for a dividend. The quotient is the anfwer, and of the fame name with the fecond term.
4. To contract the work, when the fame numbers are concerned in both divifor and dividend, throw them out of both. Or divide any numbers by their greateft common divifor, and take the quotients inftead of them.
Ex. I.

If 16 horfes in 6 days eat up 9 buhhels of oats; how many horfes muft there be to eat up 24 bufhels. in 7 days?
$*$
$9 b .-16 b .-24 b$
$6 d$.

Explanation.
Say, if 9 buthels ferve 16 horfes, 24 buthels will ferve more horfes, therefore mark the leffer extreme 9 for a divifor.

Again, fay if 6 days require 16 horfes to eat up any quantity, 7 days will require fewer horfes to eat them; fo mark the greater extreme 7 for divifor.

Then $9 \times 7=63$ for divifor, and $16 \times 24 \times 6$ $=2304$ for a dividend; and the quotient is $36 \frac{1}{2} \frac{2}{7}$ horfes $=36 \frac{4}{7}$.

Ex. 2.
If 9 ftudents fpend 12 pounds in 8 months, how much will ferve 24 ftudents 16 months?
*9ft. $-12 l .-24 \rho$.
${ }_{72}$

72) 4608 (64 pounds; anfwer.
$\frac{43^{\circ}}{288}$

288

Or thus by contraEtions.
3)* 9 ft . $-121 .-24 . f$. 8)* ${ }^{*} \mathrm{~m} . \square 16 \mathrm{~m}$ 。

$$
\begin{aligned}
& \text { And furtber. } \\
& \text { 3) }{ }^{*} 3-12--8 \\
& \text { and then } \\
& \text { divifor } \overline{1} \\
& 16 \\
& \frac{4}{64} \text { anfwer. }
\end{aligned}
$$

Ex.

If 8 men be 6 days in digging 24 yards of earth; how many men mut there be to dig 18 yards in 3 days?

Contracted.

$$
\text { 4) }{ }^{2 d .} 4 y .-8 m .-1 d .
$$

Further contracted.
2 d. $-2 m$ m- 1 d.*

$\overline{6}$
2
12 men; answer.
Ex. 4.
If a garrifon of 6000 men may have each 15 ounces of bread to lat 16 weeks, how much mut 5000 men have a-piece to loft 24 weeks?
1000) 6000 m. - $150 \mathrm{z} .-5000 \mathrm{~m}$. * 8) $16 w$.

Contracted.

Further contracted.
I divifor
Answer $\frac{3}{12}$ ounces.

Ex:

What principal will gain 20 pounds in 8 months, at. 5 per cent. per annum?

$$
\begin{gathered}
12 \mathrm{~m} .-100 \mathrm{l} .-8 \mathrm{~m} . \\
\\
\\
\\
5 g .-20 g_{0}
\end{gathered}
$$

Here the principal is 100 . and the time 12 months.
${ }_{\text {Dividend }}=\frac{12 \times 100 \times 20}{8 \times 5}=($ by contraction $) \frac{3 \times 100 \times 4}{2 \times 5}$
$=\frac{3 \times 100 \times 2}{1 \times I}=600 \%$ principal, the answer.
Ex. 6.
If the carriage of 5 hundred weight colt $3 l .75$ $6 d$. for 150 miles, what will the carriage of $7^{\frac{3}{7}}$ hundred weight come to for 64 miles?

$\begin{aligned} & \text { Dividend } 810 \times 31 \times 64 \\ & \text { Divifor } \\ & 20 \times 150\end{aligned}=\frac{27 \times 31 \times 32}{10 \times 5}$, by contraction.

510) $\frac{267814}{34}$ (535 pence
50) $\frac{4}{136}$

If the carriage of 150 feet of wood, that weighs 3 ftone a foot, comes to 31 . for 40 miles, how much will the carriage of 54 feet of free ftone, that weighs 8 tone a foot, colt for 25 miles?

$$
\begin{aligned}
& 150 f-3 l-54 f . \\
& * \quad 3 \mathrm{f}-2 \mathrm{ft} \\
& * \quad 40 \mathrm{~m} .-25 \mathrm{~m} .
\end{aligned}
$$

Dividend $\frac{54 \times 8 \times 25 \times 3}{150 \times 3 \times 40}=\frac{54 \times 1 \times 25 \times 1}{150 \times 1 \times 5}=\frac{54 \times 5}{150}$

$$
=\frac{54}{30}=\frac{18}{10} .
$$

10) 18 (1 10 16s. answer.

Ex. 8.
If 248 men , in $5 \frac{*}{2}$ days of 11 hours each, dig a trench of 7 degrees of hardness and $232 \frac{1}{2}$ yards long, $3^{\frac{2}{3}}$ wide, and $2 \frac{1}{3}$ deep; in how many days of 9 hours, will 24 men dig a trench, of 4 degrees of hardness, and $337^{\frac{1}{2}}$ yards long, $5^{\frac{3}{5}}$ wide, and $3^{\frac{1}{2}}$ deep ?

$$
\begin{aligned}
& 248 \mathrm{~m}:-5 \frac{1}{2} \mathrm{~d} .-24 \mathrm{~m} \text {. * } \\
& \text { II b. } \text { O }_{\text {b. * }} \\
& 7 \text { deg. - } 4 \text { deg. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } 2 \frac{1}{3} \text { deep }-3 \frac{3}{2} \text { deep. }
\end{aligned}
$$

Dividend $\frac{248 \cdot 11 \cdot 7 \cdot 5 \frac{1}{2} \cdot 337_{2}^{1} \cdot 5 \frac{3}{3} \cdot 3 \frac{1}{2}}{232 \frac{1}{2} \cdot 3 \frac{1}{3} \cdot 2 \frac{1}{3} \cdot 24 \cdot 9 \cdot 4}=$ (by reducing)

$$
\frac{248.11 .7 \cdot \frac{11}{2} \cdot \frac{675}{2} \cdot \frac{7}{2} \cdot \frac{28}{5}}{\frac{465}{2} \cdot \frac{11}{3} \cdot \frac{7}{3} \cdot 24 \cdot 9 \cdot 4}=\frac{248.11 .7 \cdot 11.675 \cdot 7.28}{465 \cdot 11.7 \cdot 24 \cdot 9.4} \times \frac{2.9}{8.5}
$$

$$
\begin{gathered}
=\frac{248 \cdot 11 \cdot 675 \cdot 7 \cdot 28 \cdot 2}{465 \cdot 24 \cdot 4 \cdot 8 \cdot 5}=\frac{31 \cdot 11 \cdot 675 \cdot 7 \cdot 28}{465 \cdot 24 \cdot 2 \cdot 5} \\
=\frac{31 \cdot 11 \cdot 135 \cdot 7 \cdot 7}{93 \cdot 6 \cdot 2 \cdot 5}=\frac{11 \cdot 27 \cdot 7 \cdot 7}{3 \cdot 6 \cdot 2}=\frac{11 \cdot 9 \cdot 7 \cdot 7}{6 \cdot 2}=\frac{11 \cdot 3 \cdot 7 \cdot 7}{2 \cdot 2} \\
=\frac{1617}{4}=404 \frac{1}{7} \text { days, the anfwer. All this by }
\end{gathered}
$$ throwing equal quantities out of both numerator and denominator.

The proof of this rule is, by multiplying the quotient and all the divifors together; whofe product mult be equal to the product of all the other num. bers, when the work is righe.
S CHOLI U M.

Any quettion in the compound rule of three may alfo be refolved at feveral operations, by the fingle rule of three, but with more labour, thus:

The queftion being rightly ftated, take the three terms in the firft row, and find a fourth term, by the fingle rule. Make this the fecond term in the fecond row; from thefe three terms in the fecond row find a fourth term. Proceed thus to the laft.

As if the queftion in Ex. i. was propofed, fay; if 9 bufhels ferve 16 horfes any time, how many horfes will 24 bufhels ferve for the fame time; they will ferve more horfes, and therefore 9 is the divifor, and the anfwer is $42 \frac{2}{5}$ horfes:

Again fay, if 6 days require $42 \frac{2}{3}$ horfes to eat up any quantity, how many do 7 days require. Here fewer horfes ate required, therefore 7 is divifor, and the anfwer is $36^{\frac{4}{7}}$ horfes.

PROBLEMIV。
 To refolve a queftion by the rule of prasice.

When a queftion in the rule of three has I for the fift term, it is more expeditiounly refolved, by tak12
ing fome aliquot part or parts of the thing propofed: and this is called the rule of practice.

i. A general R ULE.

Firft value the integers, obferving to multiply integers by integers; and for the inferior denominations take what aliquot part you can get, and for what is wanting take parts of that part, and fo on. Then fum up the whole.

$$
\text { Ex. } \mathrm{I}
$$

What will 37 c .3 q .12 lb . come to, at 5 l. 15 s. $7 \frac{1}{2}$ d. the hundred weight ?

Explanation.

Firft I multiply 37 by 5 gives 185%. Then fince 15s. is $\frac{3}{4}$ of a pound, or $\frac{1}{2}$ and $\frac{1}{2}$ of that. Therefore I take half 37 which 18 l . Ios. and half of that which is $9 l$. 5^{s}. and the fifth part of $9 l .5 s$. is $1 l$. 17s. the price at is. the hundred weight. Then becaufe $7^{\frac{1}{2}} \frac{1}{2}$. is the half of a fhilling, and a fourth of that half. Therefore half of $1 l$. 17 s . is 18 s .6 d . and $\frac{1}{4}$ of that is $4 s \cdot 7 \frac{1}{2} d .:$ fo now the integers are valued.

Chap. IV. PRACTICE.
Then $\frac{3}{4}$ of a hundred being a half and half of that half, I take half of $5 l$. 15 s. $7 \frac{1}{2}$ d. which is $2 l$. 17 s . $9 \frac{3}{4} \mathrm{~d}$. and half that 1 l .8 s . 11 d . Laftly, fince 12 lb . is $\frac{12}{28}$ or $\frac{3}{7}$ of a quarter, I take $\frac{1}{7}$ of Il .8 s . 11 d . which is $4 \mathrm{~s} .1 \frac{4}{7} \mathrm{~d}$. and triple that is 12 s . $4 \frac{1}{2} \mathrm{~d}$. the price of 12 pounds. And the fum of all thele, is 2181 . 175. $2 \frac{3}{4} d$.

Particular RULES.

2 R U L E.

Sometimes the value may be eafily found by reckoning the price fome even number above what is given, which done, take fome aliquot part for what it is above, and fubtract it from the former.

$$
\text { Ex. } 2 .
$$

If a pound of tobacco cofts 11 d . what is a hundred weight?

3 RULE.

When the price is fhillings, or pounds and flillings. Firft multiply the quantity by the pounds, if there be any; then multiply by half the (even) number of fhillings, obferving to write double the product of the firft figure for fhillings, and the reff of the product for pounds, And for an ood Milling take $\frac{1}{20}$ of the quantity.

What comes 413 yards to, at 2 filing a yard? 413 1

Ex. 4.
If an ounce coots 12 fillings, what will $\eta 6$ colt? $\begin{array}{r}76 \\ 6 \\ \hline\end{array}$

AnT. 45\%: 12 s .
Ex. 5.
What is the price of 796 grofs, at 13 s. the gross? 7.96 6

4 RULE.

When the price is pence, or Chillings and pence. Multiply the quantity by the fillings, if there be any. Then for the pence take forme aliquot part or parts of the quantity proposed.

$$
\text { Ex. } 7
$$

What comes 472 ounces to, at $8 d$. an ounce?

Ex. 8.
What will 74 yards of cloth coff, at 13 s. 9 d. the yard?

$$
\begin{aligned}
& \frac{\begin{array}{l}
74 \\
13 \\
222
\end{array}}{\frac{74}{962}} 0 \text { at } 13 s . \\
& \text { 2) } 74-37 \text { o at } 6 d . \\
& \text { 4) } 74-18 \text { at } 3 d . \\
& \text { 20) } \frac{1017 l \cdot 6 d .}{}
\end{aligned}
$$

$$
\text { Af. } 50 \mathrm{l.} 17 \mathrm{s.} 6 \mathrm{~d}
$$

$$
\begin{aligned}
& \text { 3) } 472 \text { (} 157 \mathrm{~s} .4 \mathrm{~d} \text { at } 4 \mathrm{~d} \text {. } \\
& 157 \text { 4. at } 4 \text { d } \\
& \text { 20) } 314 \mathrm{~s} .8 \mathrm{~d} \text {. } \\
& \text { And. 15l. 14s. } 8 \text { d. }
\end{aligned}
$$

$$
E x .9 .
$$

What comes 150 hundred weight to; at $2 l$. IIs. $8 \frac{1}{2} d$. or 5 ts .8 d . the hundred ?

150
$5 \mathrm{I} \quad 8$
150

75°
7650 s.
2) $150-75$
3) $75-25$
20.) 7750 . Anf. 387l. 1os.

5 R ULE.

When the price is an aliquot part or parts of a pound; then take fuch aliquot parts of the quantity propofed.

Ex. 10.
What does 6_{3} gallons come to, at 5 fillings a gallon ?

$$
\begin{gathered}
\text { 4) } 63(15: 15 \text { anf. } \\
\text { Ex. } 11 \text {. }
\end{gathered}
$$

If I gain 13 s .4 d . for a dozen, what do I gain for ioo dozen?
3) $100-\begin{array}{llll}33 & 6 & 8 \\ 33 & 6 & 8\end{array}$ at $6 s, 8 d$.

6 R ULE.

If farthings be concerned in the price, take fuch aliquot parts as you can find; or parts of aliquot parts.

$$
\text { Ex. } 12 .
$$

What comes 37 I gallons to, at $13 \frac{1}{2} d$. per gallon?

$$
\text { Ex. } 13 .
$$

How much money can I get for 347 French crowns, at. 4 S. $5^{\frac{1}{4}} d$. a piece?

The proof of this rule is to work the queftion by different methods.

> SCHOLIUM.

Other queftions that may occur, are eafily refolved by the rules of compound multiplication.

When it happens that the firft term is more than 1; work by the foregoing rules as if the firft term was 1; and at left divide by that term, according to the rules of compound divifion. But fuch queftions as there are bet refolved by the rule of three.

> PROBLEM V.

To refolve a question in the jingle rule of fellowship.
The single rule of fellowship, is that which determines how much gain or lofs, is due to every partner concerned; by having the whole gain or lops, and their particular flocks, given.

1. A general RULE.

Say by the rule of three, as the whole flock : is to the whole gain or loft :: fo is every man's particular flock : to his particular part of the gain or lofs.

$$
\text { Ex. } \mathbf{1}
$$

Two partners A, and B, make a flock of 56 pounds; A puts in 24 l .; and B 32 l . They gain $7 l$. by trade. What is the gain of each ?

24
32
(1) $5^{6}: 7:: 24$

(2) $5^{6}: 7:: 3^{2}$

$$
\text { 56) } \frac{7}{224}(4 l .=\text { B's gain. }
$$

$$
\text { Ex. } 2 .
$$

Three men A, B, C, freight a hip with wine; A had 284 tuns; B, 140 , and C, 64. By a form at fea, they were obliged to caft 100 tuns overboard. What lois does each fuftain?

(2) $488: 100:: 140$ 100
488) $14000\left(28 \frac{336}{488}\right.$ tuns $=B ' s$ loss. $\frac{976}{4240}$
3904
33^{6}
(3) $488: 100:=\begin{array}{r}64 \\ 100\end{array}$

Where many partners are concerned; find the Share of i integer, by dividing the whole gain or loss by the whole flock, and the quotient will be a common multiplier; by that multiply every man's part of the flock, and it will give his hare of the loft or gain. Ex. 3.
Four men trade together, A puts in 200 l. B $150, \mathrm{C}$ 85, D70; and they gain $60 l$. What is the share of each? A 200 505) 60.0 (.11881 a common multiplier:

B 150	-505
C 85	$-\frac{950}{70}$
$\frac{505}{505}$	$\frac{4450}{400}$
	$\frac{4040}{4100}$
	$\frac{4040}{600}$

A gains 23 l. 15 s. 2.9 d.
$\begin{array}{lrrrr}\text { B } & 17 & 16 & 5.2 \\ \text { C } & 10 & 1 & 1 \times 8 \\ \mathrm{D} & & 8 & 6 & 4.1 \\ \mathbb{I} & \mathrm{U} & 1 & 60 & 0\end{array} \frac{0}{}$

$$
E_{x, 4} .
$$

Five captains plundered the enemy of 1200% The firlt had 20 men, the fecond 40 , the third 55 , the fourth 55 , the fifth 70 . What mult each captain have in proportion to his number of foldiers?

20	240) $1200(5$		
40	1200		\#
355	\cdots		
455	10 0		
$5 \longdiv { 7 0 }$	2040	55	
240	$5: 5$	5	15
	100\% 200\%	2751.	350

the firft the fecond the third the fourth	$\mathbf{1 0 0}$ 200
the fifth	275

3 R ULE.

When there are a great number of partners; the beft way is to make a table, after this manner. Divide the gain or lofs by the whole flock, to find what is the gain or lofs of is Then by continual addition of this, make your table as far as 10 ; then by the continual addition of the gain or lofs of 10, continue the table through all the tens to 100: add in like manner, for all the hundreds to 1000 , if there be occafion. Then you have no more to do, but take every man's fhare out of the table (at once or oftener) and write it down.

Ex. 5.
There is a certain townfhip, which is to raife a tax of 566.8 s. 3 d . To find what each much pay towards

126 SINGLE RULE OF BookI. towards it, the inhabitants being rated as in the following table.

Perfons.	Rent.	Perf.	Rent.	Perr.	Rent.
	l.		l. s.		l. s.
A	150	I	30	R	4
B	125	K	24	S	3-10
C	100	L	15-10	T	3
D	100	M	12	V	3
E	87	N	12	U	2
F	80	O	12	W	1-10
G	63	P	7	X	1-10
H	40	Q	5-10	Y	1
	745		1180		1
					2010
					118
					745
					88310

Here 883 \%. 10s. $=883.5 \%$ and $56 l .8 \mathrm{~s} .3 \mathrm{~d} .=56.4125 \%$.
56.4125
53010 $\begin{array}{r}.0638513 \\ 34025\end{array} \begin{array}{r}1.27702610\end{array}$

44

Chap. IV. FELLOWSHIP.
So Il. is 15 . 3 d. $1.297 f$. whence the following table is made.

$$
\begin{array}{|c|cccc}
f . & f & s . & d & f \\
0 & 0 & 0 & 7 & 2.648 \\
1 & 0 & 1 & 3 & 1.297 \\
2 & 0 & 2 & 6 & 2.594 \\
3 & 0 & 3 & 9 & 3.891 \\
4 & 0 & 5 & 1 & 1.188 \\
5 & 0 & 6 & 4 & 2.485 \\
6 & 0 & 7 & 7 & 3.782 \\
7 & 0 & 8 & 11 & 1.079 \\
8 & 0 & 10 & 2 & 2.376 \\
9 & 0 & 11 & 5 & 3.673 \\
\hline 10 & 0 & 12 & 9 & 0.97 \\
20 & 1 & 5 & 6 & 1.94 \\
30 & 1 & 18 & 3 & 2.91 \\
40 & 2 & 11 & 0 & 3.88 \\
50 & 3 & 3 & 10 & 0.85 \\
60 & 3 & 16 & 7 & 1.82 \\
70 & 4 & 9 & 4 & 2.79 \\
80 & 5 & 2 & 1 & 3.76 \\
90 & 5 & 14 & 11 & 0.73 \\
\hline 100 & 6 & 7 & 8 & 1.7 \\
200 & 12 & 15 & 4 & 3.4 \\
\hline 300 & 19 & 3 & 1 & 1.1
\end{array}
$$

Enc. f. s. d. f.
Hence the hare of A for 100 is $\begin{array}{llll}6 & 7 & 8 & 1.7\end{array}$ for 50 is $\begin{array}{lllll}3 & 3 & 10 & 0.85\end{array}$
total hare of A 9 II $6 \quad 2.55$
The flare of B
f. s. d. f.
for 100 $\begin{array}{llll}6 & 7 & 8 & 1.7\end{array}$
$\begin{array}{lllll}20 & I & 5 & 6 & 1.94\end{array}$

$$
\begin{array}{lllll}
5 & 0 & 6 & 4 & 2.48
\end{array}
$$

Whole flare of B

1	19	7

128 D OUBLE RULE OF BookI. and fo on with the reft; whence we get the follows ing bill.

	£. s.	d. f.		E.	s. d.	f.
A	9 II	$6 \quad 2.55$	0	-	153	$3 \cdot 56$
B	719	7.2.12	P	-	8 II	1.08
C	6	8 8 1.70	Q	\bigcirc	7	1.13
D	67	$8 \quad 1.70$	R	\bigcirc	5 I	1.19
E	511	0.84	S	-	4	2.54
F	5	13.76	T	\bigcirc	39	3.89
G	$4 \bigcirc$	5 1.71	V	\bigcirc	39	3.89
H	2 II	- 3.88	U	o	26	2.59
I	118	$\begin{array}{lll}3 & 2.91\end{array}$	W	\bigcirc	10	$3 \cdot 95$
K	10	$7 \quad 3.13$	X	o	10	3.95
L.	- 19	9 2.1i	Y	-	13	1.30
M	- 15	$\begin{array}{lll}3 & 3.56\end{array}$	Z	-	13	1. 30
N	-15	3 3.56		2	17	2.37
	5310	1.53		53	10	1.53
					$\begin{array}{cc} 8 & 2 \\ \text { ae to th } \end{array}$	$\begin{aligned} & 3.9 \\ & \text { 10th } \end{aligned}$
					art of a	arth.

The proof is made, by adding together all the fhares, which mult be equal to the whole gain or lofs.

PR O B L E M VI.

To refolve a queftion by the double rule of fellowfhip.
The double rule of fellowbip, is that which determines how much gain or lofs is due to every partner concerned; by having the whole gain or lofs, and the particular ftocks, and their times of continuance, given.

I RULE.

Multiply every man's ftock, by the time it is employed; then by the rule of three, fay, as the fum of thefe products : to the whole gain or lofs : : fo each of thefe products : to each man's gain or lofs.

Ex. 1.

Three merchants, A, B, C, enter into partnerhip. A puts in $65 l$. for 8 months; B 781 . for 12 ; and C 84 for 4 months, and $6 \mathrm{l} . \mathrm{viz} .90 \mathrm{l}$. for 2 months. They gain 166 l .12 s . What is each man's flare of the gain?

1972) $86632.0\left(43\right.$ l. I 8 s. $7 \frac{1}{2} d$ for A. 7888°

	$\begin{aligned} & 7752 \\ & 5916 \end{aligned}$
	$\begin{array}{r} 1836 \\ 20 \end{array}$
1972)	$\begin{aligned} & 367.20 \\ & 1972 \end{aligned}$
	$\begin{aligned} & 17000 \\ & 15776 \end{aligned}$
	$\begin{array}{r} 1224 \\ 12 \end{array}$
1972)	$\begin{aligned} & 14688 \\ & 13804 \end{aligned}$
	884

K
Again,

130
Again,

Laftly, $1972-166.61 .-516-43$ l:11s.:10 $0_{7}^{1} d$. for C.

$$
\text { Ex. } 2 .
$$

Four men, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, hold a paiture in common, for which they pay 60 l . A had 24 oxen 32 days; B_{12} oxen 48 days; C 16 oxen for 24 days; and \mathbf{B} had 10 oxen for 30 days. What mut each pay?

$$
\begin{aligned}
& 24 \times 32=768 \\
& 12 \times 48=576 \\
& 16 \times 24=384 \\
& 10 \times 30=\frac{300}{2028}
\end{aligned}
$$

Then $2028: 601$: : fo each product : to its flare. That is $169: 5 l .:: 768: 22 \frac{122}{10}$ and $169: 5:: 576: 17 \frac{7}{69}$

$$
169: 5:: 384: 1161
$$

$$
169: 5: 300: 8 \frac{188}{10 y}
$$

f. s. d.

Hence there is paid by A, 22,14

$$
\begin{array}{lll}
\mathrm{B}, 17 & 0 & 10 \\
\mathrm{C}, 11 & 7 & 2 \frac{1}{2} \\
\mathrm{D}, & 8 & 17 \\
\hline \frac{1}{4}
\end{array}
$$

2 RULE.

$2 R U L E$.

When many people are concerned ; divide the whole gain or lots, by the firft term or fum of the products ; the quotient is a common multiplier, by which multiplying the feveral products, you'll have the feveral flares.

$$
\text { Ex. } 3 .
$$

Four merchants trade after this manner.
A puts in 100 l. for 8 months.
B puts in 80%. for 5 months, and then puts in 40%. more for 3 months longer.
C puts in $176 l$. for 4 months, and then takes out 50l. for four months more.
D puts in 230%. for 6 months, and then takes out the whole.
They gained $212 l$. 10 s.; then what is the gain of each merchant.

The feveral products of the flock and time will be as follows.
 a common multiplier.

. 05123	. 05123	. 05123	. 05123
800	760	1208	1380
40.984	30738	40984	40984
for A.	35861	614760	15369
	38.9348	61.88584	5123
	for B.	for C .	$\begin{aligned} & 70.6974 \\ & \text { for D. } \end{aligned}$

He A' fore s. d.

A's fhare is 40	19	8	
B's	38	18	$8 \frac{1}{4}$
C's	6 r	17	$8 \frac{1}{2}$
D's	70	13	$11^{\frac{2}{4}}$

The proof is had, by adding all the parts of the gain or lofs together, which muft be equal to the whole.
PROBLEMVII.

To refolve a question in the rule of alligation medial.
Alligation medial teaches how to find the mean rate of a mixture, when the particular quantities mixt, and their feveral rates are given.

R U L E.

Multiply the quantities of the mixture by their refpective prices, and divide the fum of the products by the fum of the quantities, gives the mean rate.

$$
E_{x .1} .
$$

A man would mix 10 buhels of wheat, at 4 fhillings a bufhel, with 8 bufhels of rye at $2 s .8 d$. a bufhel.
a bufhel. At what price muft the mixture be fold?

18) $736\left(40 \frac{8}{9}\right.$, or 3 s. 5 d. a bufhel very near, $\frac{72^{\circ}}{16}$ the price of the millegin.
$\frac{0}{16}$

Ex. 2.
A vintner would mix 30 gallons of Malaga, at 75. 6 d . the gallon; with 18 gallons of Canary, at 6 s .9 d. ; and 27 gallons of white wine, at 4 s .3 d . how muft the mixture be fold ?

$$
\begin{aligned}
& 90 \times 30=2700 \\
& 81 \times 18=1458 \\
& 51 \times 27=1377
\end{aligned}
$$

75) 5535 ($73 \frac{1}{5}$ d. or 6 s. $1 \frac{1}{5} d$. per gallon. $\frac{5^{2} 5^{\circ}}{285}$

$$
225
$$

The proof is made, by finding the value of the whole mixture at the mean price; which muft be equal to the total value of the feveral ingredients.

PROBLEMVIII.

To refolve a queftion in the rule of alligation alternate.
Alligation alternate fhows how to find the particular quantities concerned in any mixture; when the particular rates of each fort, and alfo the mean rate, are given.

Preparation.

Set down the feveral rates in order from the greateft to the leaft, as the letters a, b, c, d; and the mean price (m) behind in its due order.

Couple every two rates together by an arch, fo as one rate may be greater and another lefs than the mean, till they be all coupled. Where note, that one rate may be coupled with feveral others one by one, as oft as you will.

Take the difference between each rate and the mean rate, and place it alternately, that is, againft all its yoke-fellows. Do thus with all the rates; then the differences will fand as $p ; q, r, s$. When feveral differences happen to ftand againft one rate, add them all together. Then,

1 R U L E,

When no quantity is given of any of thefe forts; the numbers (or differences) ftanding againf the feveral rates, are the quantities required.

$$
E x, \mathrm{I} .
$$

A man would mix wheat at 4s. a buhhel, with rye at $2 s .8 d$ a buhel; to fell it at $3 s .6 d$. per bufhel. How much of each muft he take?
d.
$\left.\left.42 . \begin{array}{c}48 \\ 42\end{array}\right) \left\lvert\, \begin{array}{c}\text { Io bufhels of wheat } \\ 6 \text { bufhels of rye, }\end{array}\right.\right\}$ the anfwer.
En:

Ex. 2.
A vintner would mix Malaga at 7s. 6 d . per gallon, with Canary at 6 s .9 d . and white wine at 4 s . 3 d . ; to fell it at 5 s . 2 d . per gallon. What quantity of each mult he take?

Explanation of Ex. 2.
The difference between 62 and 51 is 11 , which I fet againft 81 , and alfo againft 90 . The difference between 62 and 81 is 19 , which I place againft 51 . The difference between 62 and 90 is 28 , which I alfo fet againft 51 . Then 19 added to 28 is 47 . So the differences, to work by, will be 11, II, 47 .

2 R U L E.

In alligation partial, where one of the quantities (to be mixed) is given. Say, by the rule of three,

As the difference ftanding againft the price of the given quantity :

To the given quantity : :
So are the feveral other differences:
To the refpective quantities required:

$$
\text { Ex. } 3 .
$$

I would mix 10 buhhels of wheat at $5 s$. with rye at 3 s .6 d . and barley at 2 s .4 d ; ; to be fold at 4 s . per bufhel. How much rye and barley mult I take? \(\left.4^{8}\left\{\begin{array}{ll}wheat \& 60

rye \& 42

barley \& 28\end{array}\right) \right\rvert\,\)| 6.20 | 26 |
| :---: | :---: |
| 12 | 12 |
| 12 | 12 |

Then $26: 10:: 12: 4 \frac{8}{13}$ bufhels of rye and of barley.
K_{4} Ex.

Ex. 4.

How much Malaga at 7s. 6d. the gallon, fherry at 5 s. white wine at 4 s . 3 d. muft be mixt with 24 gallons of Canary at 6 s .9 d ; ; that the whole may be fold for $6 s$. per gallon?

Or tbus.

Then the quantity of Canary being given, fay by the firft method, $21: 24::$ fo is each difference : to its refpective quantity; that is,
As $7: 8::\left\{\begin{array}{rlll}12: & 13 \frac{5}{7} & \text { gal, Malaga } \\ 18: & 20 \frac{4}{7} & \text { fherry } \\ 9: & 10^{2} & \text { w. wine }\end{array}\right\}$ anfwer.

Or thus, by the latter metbod.

3 R U L E.

In alligation total, where the total fum of the quantities (to be mixt) is given; add up all the differences together, then fay by the rule of three,

As the fum of the differences :
To the quantity given : :
So every particular difference :
To its refpective quantity.

$$
\text { Ex. } 5 \text {. }
$$

A goldfmith would mix gold of 24 carracts, with fome of 21 carracts, and with fome other of 19 car-

Chap. IV. ALLIGATION. racts fine, and with a due quantity of allay; fo that 190 ounces might bear 17 carracts fine. How much of each fort mult he take?

> 17 here allay is to be reckon17 ed o carracts.

17
$\frac{13}{64}$
oz.
 $\left\{13: 38 \frac{5}{3} \frac{9}{2}\right.$ of allay.

Ex. 6.
A mixture of wine is to be made up confifting of 130 quarts, from thefe five forts, whofe prices are $7 d ., 8 d .$, 10 d., $14 d$. , and 15 d . a quart: and the whole is to be fold at $12 d$. a quart. Quere, how much of each ?

Here being 5 quantities concerned, they will admit of feveral alternations.
firt way.

fecond way:

tbird way.

15	2.4 .5	
(14)	$2.4 \cdot 5$	II
104	3.2	5
82	3.2	5
7	3.2	5

The operation, by the laft way, is thus. $37: 130::\left\{\begin{aligned} 11: & 38 \frac{24}{7} \text { qrts. of wine at } 15 d \text {. and } 14 d . \\ 5: 17 \frac{2}{3} \% & \text { quarts, at } 10 d ., 8 d ., \text { and } 7 d .\end{aligned}\right.$
SCHOLIUM.

Although the feveral ways of combining or coupling the rates, as before directed, afford fo many different folutions to the queftion; yet they do not give all the anfwers the queftion is capable of. To remedy which, and to make the method more general; you may repeat any two alternate (or correfponding) differences as often as you will; and the like for any other two, $\varepsilon^{2} c$. This will give a great variety of folutions, from which the eafieft, and moft fuitable may be felected. Or rather proceed by the following rule.

> 4. R U L E, universally.

Having coupled the rates as before directed; then inftead of any couple of the differences, take any equimultiples thereof; that is, multiply them both by any number you will; do the like for any other couple, Eoc. By this means, you'll have a new fet of differences, to work with.

$$
E_{x .} 7 .
$$

A grocer would mix 12 lb . of fugar at rod., with two other forts of ' $8 d$. , and $5 d$. ; fo that the mixture may be fold at $7 d$. How much muft he take?
common way.
\(7\left\{\begin{array}{c}10

8

5\end{array}\right) |\)| 2 | 2 |
| :--- | :--- |
| 2 | 2 |
| 1.3 | 4 |

$$
\left.7\left(\begin{array}{l}
10 \\
88 \\
55
\end{array}\right)\right) \left.^{\text {general way. }} \begin{aligned}
& 2 \times 2 \\
& 2 \times 3 \\
& 1 \times 2.3 \times 3
\end{aligned} \right\rvert\, \begin{aligned}
& 4 \\
& 6 \\
& 11
\end{aligned}
$$

Here the couple of differences againft io and 5 being 2 and I , I multiply them both by 2 , and they become 6 and 9 . Then you will have 4,6 , in for a new fet of differences. Therefore

$$
4: 12::\left\{\begin{array}{rlll}
6: 18 \mathrm{lb} . & \text { at } 8 \mathrm{~d} . \\
11 & : & 33 \mathrm{lb} . & \text { at } \\
5 \mathrm{~d} .
\end{array}\right.
$$

Ex. 8.
A farmer would mix wheat at 4 s . with rye at 3 s . and barley at 2 s . and oats at is. per bufhel; to have a quantity of 120 bufhels, to be fold at 2 s .4 d . the bufhel. How much of each mult he take?
d.
\(28\left\{\begin{array}{ll}wheat \& 48

rye \& 36

barley \& 24

oats \& 12\end{array}\right) |\)| 16×3 | 48 |
| ---: | ---: | ---: |
| 4×5 | 20 |
| 8×3 | 40 |
| 20×3 | 60 |
| 168 | |

Then $168: 120$, or $7: 5:: \begin{cases}48: 34 \frac{2}{7} & \text { bufh. wheat. } \\ 20: 14 \frac{2}{7} & \text { rye. } \\ 40: 28 \frac{4}{7} & \text { barley. } \\ 60: 42 \frac{6}{7} & \text { oats. }\end{cases}$
The proof is had by finding the value of the whole mixture at the mean rate; which muft be equal to the total value of the feveral fimples. And moreover, in alligation total, the fum of the particulars, muft agree with the fum given.

PROBLEM IX.

To refolve a quefion in the fingle rule of falfe.
This rule makes a fingle fuppofition of fome falre number to refolve the queftion, by means whereof the true number or numbers are found out.

RULE.

R U L E.

Suppofe fome fit number, and proceed with this according to the tenor of the queftion. Then fay by the rule of three,
As the falfe number refulting:
To the true number given : :
So the whole or any part of the falre number :
To the whole or refpective part of the number fought.
Ex. I.

A man would divide 30 crowns among 3 perfons; fo that the firft fhould have half; the fecond, a third; and the third, a fourth part. To find each one's fhare.

Take a number which is divifible by $2,3,4$; fuppofe 12 , then 2) $12(6,3) 12(4,4) 12(3$.

$$
\text { Ex. } 2 .
$$

A, B, and C buy a parcel of timber, which cofts 48 l . and it is agreed that B hall pay a third part more than A, and C a fourth more than B. What fum muft each pay?

Suppofe A pays 3 , then B pays 4 , and C pays 5 . But $3+4+5=12$, which fhould be 48. Therefore fay,
As $12: 48$, or as $\mathrm{I}: 4::\left\{\begin{array}{l}3: 12, \text { A's fhare. } \\ 4: 16, \text { B's 'hare. } \\ 5: 20, \text { C's Share. }\end{array}\right.$
Ex: 3.
There are 3 cocks, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, belonging to a ciftern; A can fill it in I hour, B in 2 , and C in 3. In what time will they all fill it?

Suppofe they fill it in half an hour; then fay,
bour. ciftern. bour.

$$
\begin{array}{rl}
\text { AS } 1 — 1-\frac{1}{2}-\frac{1}{2} \text { ciftern for } A . \\
2 & 1=\frac{1}{2}=\frac{1}{4} \text { ciftern for } B . \\
3 & I=\frac{1}{2} \text { ciftern for } C .
\end{array}
$$

But $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}$ ciftern, which fhould be icift. Therefore $\frac{11}{12}$ cift. : 1 cift. : : $\frac{1}{2}$ hour $: \frac{6}{11}$ hour the time fought.

Thbe proof. of this rule is made, by fumming up the feveral parts, which muft be equal to the whole.

PROBLEM X.

To refolve a quefion in the double rule of falfe.
This rule refolves queftions, by making two fuppofitions of falfe numbers; by means of which, the true number, which anfwers the queftion, is found out.

$$
\mathrm{r}^{\mathrm{R}} \mathrm{ULE} .
$$

1. Take fome number by guefs, for a firft fuppofition, and try if it will anfwer the queftion. If not, fet the error under it, and mark it with + if it exceeds the truth, or with - if it fall fhort. Then make a fecond fuppofition with another number, and proceed the fame way with it. (It is ufual to fet a crofs between them).
\therefore 2. Multiply alternately the firft number by the 2 d etror, and the 2 d number by the If error. And divide the fum of the products by the fum of the errors, when the errors are of different kinds, (that is, when one is greater and the other lefs than the for which the fuppofitions were made.

In fhort thus, addito diffimiles, fubtrabitoque pares.

$$
\text { Ex. } 1 .
$$

A workman agreed to thrafh 60 bufhels of corn, part of it wheat, and part oats; at the rate of $2 d$. per bufhel for the wheat, and $I_{2}^{\frac{1}{2} d}$. for the oats. At laft he received 8 fhillings for his labour. How much of each did he thrafh?
I. Firft, I fuppofe there are 30 bufhels of wheat; then there are alfo 30 buthels of oats.

Price of the wheat
Price of the oats
too much
which hould be 8 s. or

2. Again, I fuppofe 20 bufh. of wheat, the pr. 40 a. then there is 40 bufhels of oats, pr. 60

whole price, too much		100
		9^{6}
	2 error	$+4$

Then

Chap. IV. OF FALSE.

$$
\text { Ex: } 2 .
$$

A man hired a labourer for 40 days, on condition that he fhould have 20 pence for every day he wrought, and forfeit 10 pence for every day he idled. At laft he received 4 rs. 8 d. for his labour. How many days did he work, and how many was he idle?
 received but $\quad \begin{aligned} & 320 \\ & 8 \text { d. or } \\ & \end{aligned} \begin{aligned} & \text { an } \\ & 500\end{aligned}$
1 error fhort - 180
2. Suppofe he wrt. 32 days 640 pence.

144. DO U BL E R U LE Book I.

240) 7200 (30 days he wrought, confequently 720 he idled 10 days.

Ex. 3.
Two merchants, A, B, lay out an equal fum of money in trade. A. gains 126l. and B lofts 87 And A's money is now double to B's. What did each lay out?
I. Suppose each lays out 200 \%
then $\begin{array}{ll}200 & 200 \\ 126 & 87\end{array}$
then $\begin{array}{ll}200 & 200 \\ 126 & 87\end{array}$

$$
200 \quad 250
$$

2. Suppose each lays out $250 \%^{50} \cdot 15000(300$ f.

$$
\begin{array}{rl}
\text { then } 250 & 250 \\
\text { A's money } & =\frac{126}{376} \\
& \frac{87}{163} \\
2 \text { 326 } & \frac{2}{3}
\end{array}
$$

Ex. 4.

A perfon finding feveral beggars at his door, gave each of them 3 pence a-piece, and had 5 pence remaining. He would have given them 4 pence a-piece, but he wanted 7 pence to do it. How many beggars were there?

1. Suppore 14 - beggars. 14

2. Suppofe 10 beggars. io.

$\frac{3}{30}$	$\frac{4}{40}$
$\frac{45}{35}$	$\frac{-7}{33}$
2 error -2	-

Ex. 5.
A and B play at cards; A ftakes B 8s. to 6 s. every game. After 28 games they leave off play, and find that neither of them are winners. How many games did each win?

1. Suppofe A won 12, then B won 16 : and A wins 72 s . and (B wins 128 s . or A) lofes 128 s . that is, he lofes 56 s . therefore ift error $=-56$.
 and lofes 104: fo the fecond error is - 14 .

$$
\begin{aligned}
& \text { 42) } \begin{array}{l}
672 \\
\frac{42}{} \quad \text { formes } \\
\frac{\text { for } A .}{252} \\
25^{2} \\
\text { and } 12 \\
\hline
\end{array} \text { for } \mathrm{B} .
\end{aligned}
$$

2 R U L E.

You muft proceed as directed in the ift rule, till you have found the errors, and their figns, then
I. Multiply the difference of the fuppofed numbers, by the leaft error, and divide the product by the difference of the crrors, if they are like; or by the fum if unlike: The quotient is the correction of the number belonging to the leaft error.
2. Obferve whether this be the leffer or greater number, as alfo whether the errors have like or unlike figns.
If it is the leffer number, and like figns, fubtract the correction; if unlike figns, add it.
If the greater number, and like figns, add the correction; if unlike figns, fubtract it: fo you'lt have the true number required.

Or in other woords,
If like figns, fubtract from the leffer, or add to the greater number.
Unilike figns, add to the leffer, or fubtract from the greater number; to get the true number.

$$
\text { Ex. } 6 .
$$

A certain man being afked what was the age of his four fons; anfwered, that his eldeft was 4 years older than the fecond, and the fecond 5 years older than the third, and the third 6 years elder than the fourth, which was half the age of the eldeft. How old was each ?
I. Suppofe 16 for the eldeft, then the youngeft is I half the eldeft 8

$$
E x .7
$$

Two perfons difcourfing of their money; fays A, if you will give me 25 l. I fhall have as much as you; fays B, if you will give me $22 l$. I fhall have twice as much as you. How much had each?

$$
2 \text { Sup. }
$$

A has
I Sup.
B has left
add

$$
\begin{array}{r}
120 \\
25 \\
\hline 145
\end{array} \cdot \begin{array}{r}
130 \\
\hline 155
\end{array}
$$

B had at first 170 add

B has now 192
A has left 98 double 19^{6}
1 error $\quad-14 \quad 2$ er. +14
180
22
202
108
216

25
130
-120

14
-4
10$)$
$-\frac{40}{420}$
-10

116 A's mon.

$$
\text { Ex. } 8 .
$$

There is a crown weighing 60 lb . which is made of gold, brats, tin, and iron. The weight of the gold and the brads together is 40 lb . of the gold and tin, 45 ; of the gold and iron 36 . Quere, how much gold was in it? $35 \quad 29$

$$
\text { I Sup. } 2 \text { sup. }
$$

Gold 3516.29 lb . Brats 5 II Tin 1016 Iron $\frac{1}{51} \quad \frac{7}{63}$
x er. - $-\mathrm{g} .2 \mathrm{er} .+3$
12) $\frac{18}{12} \quad\left(1 \frac{9}{2}=\operatorname{cor}\right.$.

$$
\frac{6}{29}
$$

ant. $30 \frac{1}{2}$ gold.

Ex.

Chap. IV. OF FALSE.

Ex. 9.
A factor delivers 6 French crowns, and 2 dollars for 45 fillings. And at another time 9 French crowns, and 5 dollars for 76 fill. What is the value of each? 1. Suppofe 5 s. $=1$ crown. 2 . Suppofe $7 s$. $=1$ crown.
(I) $6 \times 5=\begin{aligned} & 45 \\ & 30\end{aligned}$
(2) $6 \times 7=45$

1 error $+6 \frac{1}{2}$
2 er. $\left.-5 \frac{1}{2} \quad 12\right) \mathrm{II}\left(\frac{1}{1} \frac{1}{2}=\right.$ cor.

Ex. 10.
To find the logarithm of 740326.

1. I fuppofe 5.8694077 to be its $\log . ;$ but by a table of logarithms, it proves, only to be the logarithm of 740300.

740326
740300
5.869466_{4}
I error -26
2. I fuppofe 5.8694664 for the $\log \left\lvert\, \frac{5.8694077}{.0000587}\right.$ but this by the table is the log. of 740400 .

the logainithm fought 5.8694229

The proof of this rule is, by trying the number found, according to the conditions of the queftion, in the fame manner as you find out the errors. And if it agree, the work is right.

Scholium.

It will fometimes fhorten the work, by fuppofing one of the numbers o, and you may fuppofe the other 1 , if you pleafe. A great many queftions may be refolved by this rule, which cannot be refolved by any other rules in arithmetic. But there are many queftions, where it cannot be certainly known, whether they can be refolved by it or not, till they be tried.

The rule is founded upon this fuppofition, that the firft error is to the fecond; as the difference between the true and firft fuppofed number, to the difference between the true and fecond fuppofed number. When this does not happen, the rule of falfe does not give the exact anfwer, except the two fuppofed numbers be taken very near the true one: as in the laft example.

In the rule of falfe, whatever operations the queftion requires to be performed with the number fought, and any given number or numbers; the fame operations in every refpect are to be made with the two fuppofed numbers, and the fame given numbers. From the refult of thefe three operations, are colleited the errors, which are nothing elfe, but the differences between the true refult, and each of the falfe refults. Hence if the errors are unlike, the true number lies between the fuppofed numbers:

Chap.IV. EXCHANGE.
and if the errors are like, the true number lies without them both.

The rule of falre, efpecially the latter, will refolve any the moft difficuit queftion, by many trials; provided the queftion can any way be proved, if the true refolution was given. But then the fuppofed numbers mult be talken near the truth, And after each operation is over, you muft take the laft refult for one of the next fuppofed numbers; and the neareft of the two former (or that with the leaft error), for the other. And by repeating this procefs, the anfwer will continually approximate to the true number, within any degree of exactnefs you pleafe. For this reafon it is of prodigious fervice in the abftrufer parts of the mathematics. For in many difficult problems, there is hardly any other way to come at a folution, but by this method of trial and error.

PROBLEMXI.

To refolve a quefion in the rule of exicbange.
When feveral different forts of thing's are compared together, as to their value; this rule teaches to find, how many of one fort is equal to a given number of another fort.

R U L E.

Place the terms in two perpendicular columns, fo that there may not be found in either column, two terms of one kind. Then the numbers in the leffer column muft be multiplied for a divifor ; and the numbers in the greater column, where the odd term is, for a dividend. The quotient is the anfwer.

Note, to abridge the work, throw out any numbers that you can find in both columns.

$E x$. r.

If 6 lb . of fugar be equal in value to $\eta \mathrm{lb}$. of raifons, 5 pound of raifons to 4 yards of ribbon, 10 yards of ribbon to 40 nutmegs, and 7 nutmegs to 18 pence; what is 3 pound of fugar worth?

Ex. 2.
If 3 pair of gloves be worth 2 yards of lace, 3 yards of lace equal to 7 dozen of buttons, 6 dozen of buttons to 2 . penknives, and 2I penknives to 18 pair of buckles; how many pair of gloves is equal to 28 pair of buckles?

$$
\frac{3 \times 3 \times 6 \times 21 \times 28}{2 \times 7 \times 2 \times 28}=\frac{3 \times 21 \times 28}{2 \times 7 \times 2}=3 \times 21=630
$$

Ex, 3 .
If 9 fhillings Englifh be equal in value to 2 French crowns, and i French crown to 3 livrés, and 4 livrés to 3 guilders, and 9 guilders to 4 rix dollars, and 4 rix dollars to 3 Barcelona ducats; what is 5 Barcelona ducats worth in Englifh money?

9 Shil. Eng. $=2 \mathrm{Fr}$. cr.	$\underline{9 \times 1 \times 4 \times 9 \times 4 \times 5}$
I Fr. cr. 3 liv.	$2 \times 3 \times 3 \times 4 \times 3$
4 liv. 3 guil.	$9 \times 4 \times 9 \times 5$
9 guil. 4 rix doll.	$2 \times 3 \times 3 \times 3$
4 rix doll. 3 Barc. duc.	$\underline{4 \times 3 \times 5}=$
5 Barc. duc.	${ }^{2}=30 \text { hillings. }$

PR O B L E M XII.

To refolve a queftion by belp of a table of logarithms.
Logaritbms are a certain fet of artificial numbers, fitted to the feries of natural numbers, and formed into a table; whofe property is fuch, that they perform the fame thing by addition and fubtraction, which the natural numbers do by multiplication and divifion.

A logarithm confifts of two parts, a decimal fraction and an integer. The decimal part is always affirmative, the integer may be either affirmative or negative, and is called the chaf acterific. It always Shews how far the firft figure of the abfolute number is diftant from the units place. Thus when the characteriftic is $0,1,2,3, \mathcal{E}^{2} c$. the firt figure of the correfponding number will be units, tens, hundreds, thoufands, 8 c c. refpectively. And if it be-1,-2, $-3, \varepsilon^{2} c$. then the firft figure of the number belonging, is in the firf, fecond, third, δ° c. place of decimals.

In many tables, the characteriftic is not fet down, becaufe it is eafily fupplied, for any given number, from the rule before mentioned; , by only confidering how many places of integers, $\mathcal{E}^{\circ} c$. ; the given number confifts of.

Though the decimal part of the log. is always affirmative, yet in fome particular cale's, where the characteriftic is negative, it is neceffary to reduce it to another form, where the whole is negative. Thus the log. -2.3406424 which fignifies the fame as $-2 .+34.06_{424}$, is reduced to -.-6593576 , or -1. 6593576 , where the whole is negative; which is done by fubtracting the decimal from I. But when the operation is over, it mutt be feduced to its original form. Or it may be otherways reduced fo as to be expreffed in two parts, without making the decimal negative, by adding equal numbers to both the negative and affirmative part. Thus -2.34064 .24 is equivalent to $-3 .+\mathrm{r} .3406424$, or $=-4 .+2 \cdot 34064.24$ $=-5 \cdot+3.3406424, \varepsilon_{c} c$. where the latter part is entirely affirmative: and this way is more commodious for fome fort of operations.

Having a number given to find its log. and the contrary. Look through the column of numbers, till you find the given number, againft this is its logarithm. Or when the log. is given, look through the column of logarithms till you find it, or the neareft thereto, and againft it is the number. Thus if the number is 2191 , the \log. is 3.3406424 . And if the log. be 2.8241900 , the number is 667.1 ; and fo of others. But if the number exceed the table, that is, if it confifts of more than 4 places, proceed as in Ex. 10. Prob. 10, to find the log. or the contrary.

The table of logarithms is too large for this book, its principal ufe being in trigonometrical operations. See my Trigonometry, Edit. 2.

I RULE.

After the queftion is refolved in form, and the numbers are ready for operation. To find the product of any numbers multiplied together. Set down all the numbers and their logarithms againft them; then add all the logarithms together. When you come at the characteriftics, add what you carried, to the affirmatives, and take the difference between the fum of the affirmatives, and the fum of the negatives, and fet it down with the fign of the greater. This is the characteriftic of the product; whofe number muft be found in the table.

> Ex. I.

What is the product of 37×250 ?

$$
\begin{aligned}
& 37 \text { - - } 1.5682017 \\
& 250 \text { - - } 2.3979400 \\
& \text { prod. } 9250 \ldots 3.9661417
\end{aligned}
$$

$$
\text { Ex. } 2 .
$$

What is the product of $7 \times 486 \times .0042$?

2 R U L E.

When a quantity appears in form of a fraction, to find the quotient arifing by dividing the numerator by the denominator. Subtract the log. of the denominator from the log. of the numerator. If you carry I, add it to the lower charact. if + , or fubtract it, if -; which done;' if the charact. have unlike figns, add them with the fign of the upper; if like figns,
fins, fubtract with the fame fin ; except the lower be the greater, and then with a contrary fign.

If either numerator or denominator is any product of certain numbers, its log. mut be found by Rule I .

Ex. 3.
What is the value of $\frac{438}{73} ?$
$43^{8}-\quad 2.6414741$
$73-\quad 1.8633229$
quotient 6.- 60.7781512
Ex. 4.

Divide 125 by 3125.
$125-2.0969100$
$3125-3.494^{8} 500$

quotient .04 - - -2.6020600
Ex. $5 \cdot$
Divide 34^{2} by . 035 .

$342-$2.5340261 $.035--2.5440680$ 9.9899581

Ex. 6.
What is the value of $\frac{.54 \times .0157}{48}$?

$$
\begin{aligned}
& .54-\text { - } 1.7323938
\end{aligned}
$$

3 R U L E.

When a number is to be fquared, cubed, $\xi^{\circ} c$. multiply its log. by the index of the power. Obferving, when the characterific is negative, to fubtract what you carry thither. Then find the number anfwering.

$$
\text { Ex. } 7 .
$$

What is the fquare root of 2 ?

$$
\begin{array}{r}
426-\frac{2.6294096}{2} \\
\text { fquare } \quad 181500--\frac{2.258192}{5}
\end{array}
$$

Ex. 8.
What is the cube of 405 ?

$$
.405-1.66074550
$$

$$
3
$$

cube $.06643 \cdots-\overline{2.8223650}$

$$
\text { Ex. } 9 .
$$

To find the $4^{\text {th }}$ power of .09054 .

$$
.09054--2.956840445
$$

4th power $.0000672-\cdots-5.8273620$

4 R ULE.

When any root is to be extracted; divide the \log. of the number by the index of the root. Remembring to reduce the log. if the characteriftic be negative, when there is occafion.

Ex. 10.
What is the fquare root of 2 ?

Ex. 1 .
Find the fquare root of 4823 .
root 69.45 - I. 8416586
Ex. 12.
What is the cube root of .005832 ?

root | $\left..005^{8} 3_{2}-3\right)-3.7658175$ |
| :--- |

Ex. 13.
To find the cube root of .02456 .

$$
\begin{aligned}
& .02456---^{2.3902284} \\
& \text { reduced }-3)-1.609716 \text { all neg. }
\end{aligned}
$$

reduce this back - 0.5365905
root .2907 - - -1.4634095
Or thus.
The log. -2.3902284 is equal to $-3 .+\mathrm{I} .3902284$
root $\begin{array}{r}.2907-\quad 3)-3 .+1.3902284 \\ \hline\end{array}$
Ex. 14.
What is the 5 th root of .004705 ?

$$
004705--3.6725596
$$

reduced to 5)-5+2.6725596
root $.3424-\quad-1.5345$ II 9

5 RULE.

When in the folution of a queftion, you come at forme compound quantity, confifting of products, powers, roots, \mathcal{E}_{c}. connected by the figns + and -; they mut be wrought feparately by the foregoing rules, and the numbers found and collected, according to the figns.

$$
E x .15
$$

To find the number expreffed by this quantity.

$$
\frac{350 \times 20 \times 11-108 \times 13^{2}}{11 \times 13 \times 15}
$$

This is the fame as the two quantities $\frac{350 \times 20 \times 15}{11 \times 13 \times 15}$ $-\frac{108 \times 13 \times 13}{11 \times 13 \times 15}$. That is $\frac{350 \times 20}{13 \times 15}-\frac{108 \times 13}{11 \times 15}$.

$35.90^{\prime} \quad 1.555^{\circ} 634$ the firft part.

Ex. 16.

Suppofe in a certain queftion, I come to this conclufion for the number fought, $\frac{12 \times \times 20+\overline{2}^{3}}{37 \times 25-12 \sqrt{37 \times 20}}$, what is the number?
n. \log.
121.0791812
371.5682017
201.3010300
3.9484129
numb. 8880.
$37 \left\lvert\, \begin{aligned} & 37 \\ & 25682015 \\ & \frac{1}{2} 3979400 \\ & 2.9661417\end{aligned}\right.$
numb. 925.0
n. \log.
$25 \left\lvert\, \begin{array}{r}\mathrm{I} .3979400 \\ -\quad 3 \\ \hline\end{array}\right.$
4. 1938200
numb. ${ }^{1} 5620$

half \begin{tabular}{r|r}
37

20 \& | 1.5682017 |
| ---: |
| 1.3010300 |
| 2.8692317 |
| 1.4346158 |
| 1.0791812 |

\hline 2.5137970
\end{tabular}

numb. 326.4
The folution becomes $\frac{8880+15620}{925 \cdot 0-326.4}=$
$\frac{24500}{598.6}$
log. $\begin{aligned} & 4.3891661 \\ & \text { log. } \\ & 2.7771367 \\ & 1.6120294\end{aligned}$
the numb. 40.93 anfwer.

PR O B L E M XIII.

To refolve the ufual queftions about the intereft of money, and annuities.
Intereft is the money paid for the ufe or loan of any fum or principal ; and is generally eftimated at 2 cent.; ϑ^{3} c. which is calleed the rate of intereft.

Simple intereft is that which is charged only upon the principal, for any length of time after it is due.

Compound intereft, or intereft upon intereft, is that which arifeth from both principal and intereft ; this fuppofes that the intereft itfelf, fhall alfo. gain intereft, after the time it becomes due.

Rebate is the abatement made by paying a fum of money before it is due.

Amount is the quantity of money in arrear, confifting of the principal or annuity, together with its intereft, forborn for fome time after it is due.

Several queftions in the bufinefs of intereft being very difficult to refolve folely by arithmetic ; I have therefore inferted the four following tables; by help of which all the common queftions relating to intereft and annuities may very fpeedily be refolved, for any numbers that come within the reach of thefe tables.

Their ufe is eafy and evident at fight : for the rate of intereft being found at the top, and the time of continuance on the fide; at the angle of meeting, you have the amount of I pound, (Tab.i and 3); or of I pound annuity. (Tab. 2 and 4), at either finnple or compound intereft. But their ufefulnefs will more clearly appear from the following rules and examples.

I RULE.

When the fimple intereft for days, is required; divide the rate by 100 , to have the rate for 1% then multiply the principal, the rate for i pound, and the number of days, continually; and divide the product by 365 ; the quotient is the interef.:

What is the intereft of $160 l$. for 85 days, at 3 per cent. ?

$$
\begin{aligned}
& \frac{3}{100}=.03 \text { the rate of } 1 l \text {. f. s. } \\
& 160 \\
& \frac{.03}{365)} \\
& \frac{408}{4.80} \\
& \frac{85}{240} \\
& \frac{365}{240} \\
& \frac{384}{408.0} \\
& \hline
\end{aligned}
$$

2 RUEE.

To find the prefent worth of \mathbf{I}. in noney, due any number of years hence; or of 1 l . annuity to continue any number of years, at a given rate either of fimple or compound intereft.

For 1 l. in money. Look into Tab. I. for fimple intereft, or Tab. III. for compound intereft, and under the given rate, and againft the number of years, you'll find a number for a divifor, by this divide I , the quotient is the prefent worth.

For Il. annuity. Confult the Tables I. and II. for fimple intereft ; or III. and IV. for compound intereft. And under the given rate, and againft the number of years, in both tables, you'll find two numbers, which take out, and divide the latter by the former, for the prefent worth.

Chap.IV. INTEXEST:

$$
\text { Ex. } 2 .
$$

What is the prefent worth of $1 l$. die 14 years hence, at 4 per cent. at fimple or compound intereft? Num. Tab. I. .-1.56) i.000 (. 6410 the pref. worth | $\frac{936}{640}$ |
| :--- |
| 624 |

E 3.
What is the prefent worth of $\mathrm{i} i$. annuity to continue 14 years, at 5 per cent: fimple and compound intereft?

Tab. II. $--\frac{18.55}{\mathrm{I} .7}=$ prefent worth at fimp. intereft.
That is, 1.7) 18.55 (10.91176 the prefent worth at

155
153
20
17
30
17
130
119
II
Tab. IV. $-\frac{19.59863}{}$ Tab. III. $-\frac{\text { prefent worth at comp. inter. }}{1.97993}$.
That is, I. 97993) 19.59863 (9.89865 the pref. worth

3 R U L E.

Queftions, where principal, annuity, amount, \mathcal{E}^{2}. are concerned, are likewife to be folved by the tables. For there are fimilar numbers in the tables analogous to thofe given; and therefore having three terms given, a proportion or analogy muft be made by the rule of three, between the numbers given in the queftion, and thofe in the proper table, for the fame rate and time, in order to find the 4 th term, which is either the thing itfelf which is fought, or it will fhew it by the table. And as I is commonly a term in the proportion, the queftion will generally be folved by multiplication or divifion.

If any thing is wanting to make the proportion, or to carry on the procefs, it muft be found from what is given in the queftion.

$$
\text { Ex. } 4 .
$$

If $250 l$. be put out to intereft, what will it amount to in 21 years, at 4%.per cent. fimple or compound intereft?

By Tab. I. the amount of l . for 2 I years, at 4 per cent. is 1.84 ; therefore fay, as 1 (principal): 1.84 (amount) : : 250 (principal) : $1.84 \times 250=460$, the amount required, at fimple intereft.

Again, by Tab. III. the amount of 1 l. is 2.27877 ; Therefore fay, as \mathbf{I} (pr.) : 2.27877 (am.) :: 250 (pr.): $2.27877 \times 250=569.6925 l$. the amount required, at compound intereft.

$$
E x .5 \text {. }
$$

What principal put out for 21 years will amount to 460% at 4 per cent. fimple intereft ?

By Tab. I. the amount of $I l$. is 1.84 for the given time and rate; then fay, $1.84 \mathrm{am} .-1 \mathrm{pr} .-460 \mathrm{am}$. . $\frac{460}{1.84}=250 l$. the principal fought.

Ex. 6.

In what time will 250 l . amount to 569.6925% being put out at 4 per cent: compound intereft?

Say, as $250 \mathrm{pr} .: 569.6925 \mathrm{am} .::$: $\mathrm{pr}:: \frac{569: 6925}{250}$ $=2.27877$ the amount of $1 l$. Seek this number in Tab. III, col. 4 per C. and you'll find it againft 27 years, the time fought.

$$
E_{x}, 7
$$

At what rate of fimple interef will 250%. amount 40 460 l . in 21 years?

By Tab. I. fay, 250 pr. -460 ami. - 1 pr. $-\frac{460}{250}$ $=1.84$, the amount of $1 l$; which being fought for againft 21 years, will fall in col. 4 per C: the rate of intereft required.

Ex. 8.
If 320 l. yearly rent be forborn for 12 years, what will be in arrear at that time, at $4 \frac{1}{2}$ per cent. fimple and compound intereft?

By Tab. II, the amount of 11 . annuity for 12 years is 14.97 ; then fay, 1 an. $-14.97 \mathrm{am} .-320 \mathrm{an}$. $-14.97 \times 320=4790.4$ l the arrear fought, at fimple intereft.

Again, by Tab. IV. the amount of 1%. annuity is 15.46 .403 ; therefore fay, as 1 rent -15.46 .403 am . $-320 \mathrm{r} .-15.46403 \times 320=4948.49 l_{0}$ the amount ${ }_{7}$ at compqund intereft.

Ex. 9.

What yearly rent being forborn 12 years, will mount to 4948.49 , at $4 \frac{1}{4}$ per cent. comp. intereft ?
By Tab. IV. the amount of ll . annuity is 15.46403 ; then fay, as $15: 46403 \mathrm{am}$. - 1 r. -4948.49 am . $4548.49=320 \mathrm{l}$. the rent fought

Ex. 10.
In what time will $320 l$. yearly rent, amount to 4790.4l. at $4 \frac{1}{2}$ per cent. fimple intereft?

Say, 320 rent - 4790.4 am. - 1 rent - $\frac{4790.4}{320}$
$=14.97$, the amount of $1 l$. annuity; which being found in col. $4 \frac{1}{2}$ per C. Tab. II. ftands over-againft 12 years, the time fought.
Ex. II.

At what rate of compound intereft, does 320%. rent, amount to 4948.49 l . in 12 years?

Say, as $320 \mathrm{rent}-4948.49 \mathrm{am}$ - 1 rent- $\frac{4948.49}{320}$
$=15.46403$ the amount of $1 l$. annual rent. Seek this number over-againft 12 years in Tab. IV. and it is found under $4 \frac{1}{2}$ per C. the rate fought.

Ex. 12.

What is the prefent worth of 65% a year, to continue 40 years, at 5 per cent. fimple and compound intereft?

By Rule 2, find the prefent worth of 1 l. annuity at fimple intereft, for the time and rate given, which is $\frac{79}{3}$; then fay,

$$
\text { As } \mathrm{x} \text { an. }-\frac{79}{3} \text { pr. }-65 \text { an. }-\frac{65 \times 79}{3}=1711.66
$$

the prefent worth fought, at fimple intereft.
Again, by Rule 2, find the prefent worth of 1 l. annuity at compound intereft, which is $\frac{120.79977}{7.03999}$; then fay, 1 an. $-\frac{120.7}{7.0}$ \&c. pr. -65 an. $-\frac{120.79977 \times 65}{7.03999}$
$=1115.34$, the prefent worth fought, at comp. intereft.

Ex. 13.

What annuity to continue 40 years, will 1711.66%. ready money purchafe, at 5 per cent. fimple intereft?

By Rule 2, find the prefent worth of $1 l$. annuity, which is $\frac{79}{3}$, then fay, $\frac{79}{3}$ pr.-1 an .-1 7 II 166 pr . $\frac{3 \times 171 \mathrm{I} .66}{79}=65$. the annuity required.

$$
\text { Ex. } 14 .
$$

How long may one have a leafe of 65 \% a year, for 1711.661 ready money, at 5 per cent. fimple intereft?

Say, as 65 rent-1 7 Ir. 66 pr-1 rent $-\frac{17 \text { ir. } 66}{65}$ $=26.33$, the prefent worth of 1% annuity, for an unknown time. Then,

Take fome year by guefs, and find the amount by Tab. II. and the prefent worth of that amount, by Tab. I. If this agrees not with 26.33 , try again, and by a few eafy trials you'll come to the truth.

In hort thus, fet down the correfpondent numbers in Tab. II. and I. fractionwife, to approach continually to 26.33 , which at laft you'll obtain.

Suppofe 30 years $-\frac{51.75}{2.5}=20$. E'c. too little.

$$
\begin{aligned}
& 38 \text { years }-\frac{73.15}{2.9}=25.2 \text { E3c. too little, } \\
& 40 \text { years }-\frac{79}{3}=26.33 \text { juft So } 40
\end{aligned}
$$

years is the time required.

$$
\text { Ex. } 15 .
$$

If one give 115.34 l . ready money, for the purchafe of an anntify of 65%. a year, to continue; 40 years; what is the rate at compound intereft?

Say, as 65 an.-1115.34 pr.-1 an.- $\frac{1115.34}{65}$ $=17.159$, the prefent worth of $1 l$. annuity, at an unknown rate.

Take fome rate of intereft by guefs, and find the amount for 40 years by Tab. IV; and the prefent worth of that amount by Tab. III. repeat this worls with other rates, till the refult be 17.159 .

Or in fhort thus, fet down the correfpondent numbers in Tab. IV. and III. fractionwife, and you will approach to the rate fought by a few trials. Thus,

Suppofe 3 per cent. $-\frac{75 \cdot 4}{3.2}=23$, too great.

$$
\begin{aligned}
& 4 \text { per cent. }--\frac{95.0}{4.8}=19.8, \text { too great: } \\
& 5 \text { per cent. }--\frac{120.799}{7.0399}=17.159 \text {, juft: }
\end{aligned}
$$

Therefore 5 per cent. is the rate required.

4 R U L E.

When freehold eftates are to be valued; divide \mathbf{I} by the rate of $I l$. the quotient fhows how many years purchafe it is worth, at compound intereft.

Or if the annuity or rent be required; multiply the purchafe money by the rate of $i l$. for the annuity.

$$
E x .16 .
$$

What is an eftate at 301 . a year worth, at $3 \frac{1}{2}$ per cent.?
Here $\frac{1}{.035}=28.571$ years purchafe.
Or $28.57 \mathrm{I} \times 30=857.13$ l. the purchafe money:

$$
\text { Ex. } 17 \text { : }
$$

What annuity can I buy for 857.13 l. at $3 \frac{1}{2}$ per cent. ? Here $857.13 \times .035=29.999 l$. or $30 l$. the annuity.

5 RULE.

5 R ULE.

When feveral fums of money are out at fimple intereft, and are to be paid in, at different times ; to find the time, when the whole may be paid in at once, without lofs to the debtor or creditor.

Multiply every fum of money by the time it is to continue ; and divide the fum of the products, by the total fum of all the money, the quotient will be the mean time of payment.

And the fame rule holds true, very near ; when feveral fums of money are due at different times, only it makes the mean time a fmall matter too big.

$$
\text { Ex. } 18 .
$$

I have three fums of money let out to intereft, for different times; viz, 50 l. continues for 2 years, 40% for $3 \frac{3}{2}$ years, and 20% for $4 \frac{1}{2}$ years. But it is now agreed, that they fhall be all paid at once. The queftion is, when muft I receive the whole together?

Ex. 1g:
A man has three feveral fums of money due at different times, 50% at the end of 5 months, 84%. at the end of 10 months, and 36l. a year and half: hence. But he would receive them all at once; in what time fhall he receive the whole fum?

74
68
60

The proof, in all queftions of intereft, is to change the data, and work the queftion backwards.

$$
\mathrm{SCHOLIUM} .
$$

It is contrary to law to let out money at compound intereft. Yet in the valuation of annuities, it is always the cuftom to allow compound intereft; for by fimple intereft, they would be overvalued.

Tab. I.
A table of the amount of 1 pound for years, at fimple intereft.

Years.	4 per C	$4^{\frac{1}{2}}$ per C. 5
1	. 1.04	1.045
2	1.08	1.090
3	1.12	1.1535
4	. 1.16	1.180
5	1.20	1. 225
6	1.24	- 1.270
7	1.28	1.315
8	1.32	1.360
9	$1.36^{\text {1 }}$	1.405
10	1.40	. 1.450
rr	1.44	1.495
12	-1. 48	1.540
13	1.52	1.585
14	1.56	1.630
15	1.60	1.675
16	1.64	1.720
17	1.68	1.765
18	1.72	1.810
19	1.76	1.855
20	1.80 .	1.900
2 I	1.84	1.945
22	1.88	1.990
23	$1.92{ }^{\prime \prime}$	2.035
24	1.96	2.080
25	. 2.00	2.125
26	2.04	2.170
27	2.08	2.215
28	2.12	2.260
29	2.16	2.305
30	2.20	2.350

TAb. I .

Years.	3 per C.	$3 \frac{1}{2}$ per C.	4 per C.	$4 \frac{1}{2}$ per C.	5 per C.
31	1.93	2.085	2.24	2.395	2.55
32	1.96	2.120	2.28	2.440	2.60
33	1.99	2.155	2.32	2.485	2.65
34	2.02	2.190	2.36	2.530	2.70
35	2.05	2.225	2.40	2.575	2.75
36	2.08	2.260	2.44	2.620	2.80
37	2.11	2.295	2.48	2.665	2.85
38	2.14	2.330	2.52	2.710	2.90
39	2.17	2.365	2.56	2.755	2.95
40	2.20	2.400	2.60	2.800	3.00
41	2.23	2.435	2.64	2.845	3.05
42	2.26	2.470	2.68	2.890	3.10
43	2.29	2.505	2.72	2.935	3.15
44	2.32	2.540	2.76	2.880	3.20
45	2.35	2.575	2.80	3.025	3.25
46	2.38	2.6 .10	2.84	3.070	3.30
47	2.41	2.645	2.88	3.115	3.35
48	2.44	2.680	2.92	3.160	3.40
49	2.47	2.715	2.96	3.205	3.45
50	2.50	2.750	3.00	3.250	3.50
51	2.53	2.785	3.04	3.295	3.55
52	2.56	2.820	3.08	3.340	3.60
53	2.59	2.855	3.12	3.385	3.65
54	2.62	2.890	3.16	3.430	3.70
55	2.65	2.925	3.20	3.475	3.75
56	2.68	2.960	3.24	3.520	3.80
57	2.71	2.995	3.28	3.565	3.85
58	2.74	3.030	3.32	3.610	3.90
59	2.77	3.065	3.36	3.655	3.95
60	2.80	3.100	3.40	3.700	4.00

Tab. IH^{2}

A table of the amount of I pound annuity for years; at fimple intereft.

Years.	3 per C.	$3 \frac{1}{2}$ per C.	4 per C	$4^{\frac{1}{2}}$ per C.	5 per C.
1	1.00	1.000	1.00	1.000	1.00
2	2.03	2.035	2.04	2.045	2.05
3	3.09	3.105	3.12	3.135	3.15
4	4.18	4.210	4.24	4.270	4.30
5	5.30	5.350	5.40	5.450	5.50
6	6.45	6.525	6.60	6.675	6.75
7	7.63	7.735	7.84	7.945	8.05
8	8.84	8.980	9.12	9.260	9.40
9	10.08	10.260	10.44	10.620	10.80
10	11.35	11.575	11.80	12.025	12.25
11	12.65	12.925	13.20	13.475	13.75
12	13.98	14.310	14.64	14.970	15.30
13	15.34	15.730	16.12	16.510	15.90
14	16.73	17.185	17.64	18.095	18.55
15	18.15	18.675	19.20	19.725	20.25
16	19.60	20.200	20.80	21.400	22.00
17	21.08	21.760	22.44	2.120	23.80
18	22.59	23.355	24.12	24.885	25.65
19	24.13	24.985	25.84	26.695	27.55
20	25.70	26.650	27.60	28.550	29.50
21	27.30	28.350	29.40	30.450	31.50
22	28.93	30.085	31.24	32.395	33.55
23	30.59	31.855	33.12	34.385	35.65
24	3.2 .28	33.660	35.04	36.420	37.80
25	34.00	35.500	37.00	38.500	40.00
26	35.75	37.375	39.00	40.625	42.25
27	37.53	39.285	41.04	42.795	44.55
28	39.34	41.230	43.12	45.010	46.90
29	41.18	43.210	45.24	47.270	49.30
30	43.05	45.225	47.40	49.575	51.75

TAB. II.

Years.	3 per C.	$3 \frac{1}{2}$ per C.	4 per C'.	$+^{\frac{1}{2}}$ per C.	5 per C.
31	44.95	47.275	49.60	51.925	54.25
32	46.88	49.360	51.34	54.320	56.80
33	48.84	51.480	54.12	56.760	59.40
34	50.83	53.635	56.44	59.245	62.05
35	52.85	55.825	58.80	6:.775	64.75
36	54.90	58.050	61.20	64.350	67.50
37	56.98	60.310	63.64	66.970	70.30
38	59.09	62.605	66.12	69.635	73.15
39	61.23	64.935	68.64	72.345	76.05
40	63.40	67.300	71.20	75.100	79.00
41	65.60	69.700	73.80	77.900	82.00
42	67.83	72.135	76.44	80.745	85.05
43	70.09	74.605	79.12	83.635	88.15
44	72.38	77.110	81.84	86.570	91.30
45	74.70	79.650	84.60	89.550	94.50
46	77.05	82.225	87.40	92.575	97.75
47	79.43	84.835	90.24	95.645	101.05
4^{8}	81.84	87.480	93.12	98.760	104.40
49	84.28	90.160	96.04	101.920	10.7 .80
50	86.75	92.875	99.00	105.125	111.25
51	89.25	95.625	102.00	108.375	114.75
52	91.78	98.410	105.04	111.670	118.30
53	94.34	101.230	108.12^{-}	$115 \% 010$	121.90
54	96.93	104.085	111.24	II 8.395	125.55
55	99.55	106.975	114.40	121.825	129.25
56	102.20	109.900	117.60	125.300	133.00
57	104.88	112.860	120.84	128.820	136.80
5^{8}	107.59	115.855	124.12	132.385	140.65
59	110.33	118.885	127.44	135.995	144.55
60	113.10	121.950	130.80	139.650	148.50

T а в. III.

'A table of the amount of I pound for years, at com: pound intereft.

Years.	3 per C.	$3 \frac{\mathrm{x}}{2} \operatorname{per} \mathrm{C}$.	4 per C.	$4 \frac{1}{2}$ per C.	5 per C.
1	1.03000	1.03500	1.04000	1.04500	1:05000
2	1.06090	1.07122	1.08160	1.09202	1.10250
3	1.09273	1.1087.2	1.12486	I. 14116	1.15762
4	1.12551	1.1475^{2}	1.16986	1.19252	1.21550
5	1.15927	1.18769	1.21665	1.24618	1.27628
6	1.19405	1.22925	1.26532	1. 30226	1.34009
7	1.22987	I. 27228	I. 31593	I. 36086	1.40710
8	1.26677	1.31681	1. 36857	1.42210	I. 47745
9	I. 30477	1. 36290	1.42331	1.48609	1.55132
10	1.34391	1.41060	1.48024	1.55297	1.62889
1 I	1.38423	I. 45997	1.53945	1. 62285	1.71034
12	1.42576	1.51107	1.60103	1.69588	1.79585
13	I. 46853	1.56395	1.66507	1.77219	1.88565
14	1. 51259	1.61869	1.73167	1.85194	1.97993
15	1.55797	1.67535	1.80094	1.935^{-28}	2.07893
16	1.60470	1.73398	1.87298	2.02237	2.18287
17	1.65285	I. 7.9467	1.94790	2.11338	2.29202
18	1.70243	1.85749	2.02582	2.20848	2.40662
19	1.75350	1.92250	2. 10685	2.30786	2.52695
20	$1.8061{ }^{\text {I }}$	1.98979	2.19112	2.41171	2.65330
2.1	1.86029	2.05943	2.27877	2.52024	2.78596
22	1.916 .10	2.131 .51	2.36992	2.63365	2.92526
23	1.9 .7359	2.20611	2.46471	2.75216	3.07152
24	2.03279	2.28333	2.56330	2.87601	3.22510
25	2.c935 ${ }^{8}$	2.35324	2.65583	$3 . \cos 43$	$3 \cdot 38635$
26	2.15659	2.44596	2.77247	3.14068	3.55567
27	2.22129	2.53157	2.88337	3.28201	3.73345
28	2.28793	2.62017	2.99870	3.42970	3.92013
29	2.35656	2.71188	3.11865	3.58403	4.11613
30	2.42726	2.80679	3.24340°	3.74532	4.32194

Chap.IV. INTEREST:
TAB, IH:

	3 p	$3 \frac{1}{2}$ per C.		$4 \frac{1}{2}$ per C.	5 per ${ }^{\text {c }}$
31	2.50008	2.90503	3.37313	3.91386	4.53804
32	2.57508	3.00671	3.50806	4.089 .78	4.76494
33	2.65233	3.11194	3.64838	4.27403	5.00319
34	2.73190	3.22086	3.79431	$4 \cdot 46636$	5.25335
35	2.81386	3.33359	$3 \cdot 94609$	4.66735	5.51601
36	2.89828	3.45026	4.10393	4.87738	5.79181
37	2.98523	3.57102	4.20809	5.09686	6.08141
38	3.0747^{8}	3.69601	$4 \cdot 43881$	$5 \cdot 32622$	6.3854^{8}
39	3.16703	3.82537	4.61631	5.56590	$6.7<475$
40	3.26204	395926	4.80102	5.81630	7.03990
41	3.35990	4.09783	4.99306	6.07810	$7 \cdot 39199$
42	3.46069	4.24126	$5 \cdot 1927^{8}$	6.35161	$7 \cdot 76159$
43	$3 \cdot 564.52$	4.38970	5.40049	6.63744	8.14967
44	3.67145	4.54334	5.61651	6.93612	8.55715
45	3.78159	4.70236	5.84117	7.24825	8.98501
46	3.89504	4.86694	6.07482	$7 \cdot 5744^{2}$	9.43426
47	4.01189	5.03728	6.31781	$7 \cdot 91527$	9.00597
48	4.1322 .5	5.21359	6.57053	8.27145	10.40127
49	4.25622	5.39606	6.83335	8.64307	10.92133
50	4.38390	5.58492	$7 \cdot 10658$	9.03263	11.46740
51	4.51542	5.78040	7.39095	9.43910	12.04077
52	4.65088	5.98271	7.68659	9.86386	12.64281
53	4.79041	6.19211	7.99405	10.30774	$13.2749 ;$
54	4.93412	6.40883	8.31381	10.77158	13.93869
55	5.08215	6.63314	8.64637	11.25631	14.63563
56	$5 \cdot 23461$	6.86530	8.99222	11.76284	17.36741
57	$5 \cdot 39165$	7.10558	9.35191	12.292 .17	16.13578
58	5.55340	7:35428	9.72599	12.84532	16.94257
59	$5 \cdot 72000$	7.61168	10.11502	13.42335	-7.78970
60	5.89160	7.87809	10.51963	14.02741	18.67918

TАв. IV.

A table of the amount of 1 pound annuity for years, at compound intereft.

Years.	3 per C.	$3^{\frac{1}{2}}$ per C.	4 per C.	$4 \frac{1}{2}$ per C.	5 per C
1	. 00000	. 00000	1.00000	1.00000	1.00000
2	2.03000	2.03500	2.04000	2.04500	2.05000
3	3.09090	3.10622	3.12160	3.13702	3.15250
4	4.18363	4.21494	4.24646	4.27819	4.31012
5	$5 \cdot 30913$	$5 \cdot 36246$	$5 \cdot 41632$	$5 \cdot 47071$	$5 \cdot 52563$
6	6.4	6.55015	6.63297	6.71689	6.80191
7	7.66242	7.77941	7.89829	8.01915	8.14201
8	8.89233	9.05169	9.21422	9.38001	9.54911
	10.15910	10.36849	10.58279	10.80211	
10	11.46388	11.73139	12.00611	12.28821	12.577^{89}
11	12.80779	13.14199	13.486_{35}	13.84118	14.20679
12	14.19203	14.60196	15.02580	15.46403	15.91713
13	15.61779	16.11303	16.62684	17.15991	17.71298
14	17.08632	17.67698	18.2919!	18.93211	19.59863
15	18.59891	19.29568	20.02359	20.78405	21.57856
16	20.15688	20.97103	21.82453	22.71934	23.65749
17	21.76159	22.70501	23.6975^{1}	24.74171	25.84036
18	23.41443	2.4 .49969	25.64541	26.85508	28.1323^{8}
19	25.11687	26.35718	27.67123	29.06356	30.53900
20	26.87037	28.27968	29.77808	31.37142	33.06595
21	28.67648	30.26947	31.96920	33.78314	35.719^{25}
22	30.53678	32.32890	34. 24797	36.30338	38.50521
23	32.45288	34.46041	36.61789	38.93703	+1.43047
24	34.42647	36.66653	39.08260	41.68919	44.50200
25	36.45926	38.94986	41.64591	44.56521	47.72710
26	38.55304	41.31310	44.31174	47.57064	51.11345
27	40.70963	43.75906	47.08421	50.71132	54.66912
28	42.93092	46.29063	49.96758	53.99333	58.4025^{8}
29	45-21885	48.91080	52.96628	$57 \cdot 42303$	52.32271
30	147.57541	151.62268	56.08494	61.00707	66.43885

TAB. IV.

Yea.	3 per C.	$3{ }^{\frac{2}{2}}$ per C.	4 Per C.	$4^{\frac{1}{2}}$ per C.	5 per C.
31	50.00268	54.42947	59:32833		70.76079
32	52.50276	57.33450	62.70147	68.6662_{4}	75.29883
33	55.07784	60.34121	66.20953	72.75622	
34	57.73018	63.45315	69.85791	77.03025	85.06696
35	60.46208	66.67401	73.65222	81.49662	90.32031
36		70.00760	77.59832	86.16396	
37	66.17422	73.457 .87	81.70224	91.04134	101.62814
38	69.15945	77.02889	85.97033	96.13820	107.70954
39	72.23423	80.72490	90.40915	101.46442	114.09502
40	75.40126	84.55028	95.02551	107.03032	120.79977
41	78.66330	88.50954	99.82653	112.84669	127.83976
42	82.02320	92:60737	104.81960	118.92479	135.23175
43	85.48389	96.84863	110.01238	125.27640	142.99334
44	89.04841	101.23833	115.41288	131.91384	151.14300
45	92.71985	105.78167	121.02939	138.84996	15
46	96.50146	110.48403	126.87057	146.09821	168.68516
47	100.39650	115.35097	132.94539	153.67263	178.11942
48	104.40839	120.38826	139.26320	161.5879 c	188.02539
49	108.54065	125.60184	145.83373	169.85936	198.42 c6
50	112.79687	130.99790	152.66708	178.50303	209.34799
51	117.18077	136.58284	159.77377	187.53566	
52	121.69620	142.36323	167.16472	196.97477	$232.8 ; 616$
53	126.34708	148.34595	174.85130	206.83853	$245 \cdot 49897$
54	131.13749	154.53806	182.84536	217.14637	258.7732^{2}
55	136.07162	160.94689	191.15917	227.91796	272.71262
56	141.15377	167.58003	199.80554	239.1742;	
57	146.38838	174.44533	208.79776	250.9371 C	302.71566
58	151.78003	181.55092	218.14967	263.22928	318.85144
59	157.33343	188.90519	$227.875^{6} 6$	276.0746 C	335.79402
60	163.053	196.			2

C H A P. V.

A collection of quefions to exercife the feveral rules of arithmetic.

$$
2 u e f . \text { i. }
$$

AMerchant buys 890 C. $3 \dot{q}$. grofs weight of goods, but tare is to be fubtracted at the rate of 14 lb . to the hundred of grofs weight, how much neat weight will remain?

Grofs weigbt is the weight of the goods, together with the cheft, bag, $E^{\circ} c$.

Tare is the cheft, bag, but, cafk, $\xi^{2} c$. which contains the goods.

Neat weeight is the weight of the goods alone.
$890 \frac{3}{4} \times 8=7126$ ftone, and $14 \mathrm{lb} .=1$ ftone, and $112 \mathrm{lb} .=8 \mathrm{ft}$.
then $8 \mathrm{ft},: \mathrm{I}$ ta. $:: 7126 \mathcal{A}_{0}: \frac{7126}{8}=89^{\frac{3}{4}}$ ftone, the tare.
from 7i26
take $89^{\frac{3}{4}}$
remains $7036 \frac{1}{4}$ the neat weight.

2uef. 2.

A merchant buys 235 l . weight of goods, buit is to have an additional allowance of 4 lb . tret for every 100 ll . weight of goods. Then how much weight does he receive of all?

Tret is the allowance made to the buyer, of to much per hundred, $E^{2} c$. over and above. And Clöf another allowance of the fame kind.

Chap. V. QUESTIONS.

Say as, $100: 104:: 235: 244.4 \mathrm{lb}$. Anfwer,

$$
\text { 2ueft. } 3 .
$$

If 200 lb . weight of goods coft 3 l . at what price muft a pound be fold, to gain 10\%. in the hundred laid out?

$$
100
$$

$$
10
$$

$100: 110:: 3: 3.3$ advanced price. $200: 3.3::$ I $: .0165 \%$ the price of Ilb . but .o165l. $=3.96$ pence, near 4 d . a pound.

2 थeft. 4.

How much fugar, at 8 d . a pound, may be bought for $10 C$. weight of tobacco, at $3 l$. the C.?

IC.: 3 l. : : $10 C .: 30 \%$. the value of the tobacco.
then, fince $8 d$. is $\frac{2}{3}$ of a pound,
$\frac{1}{30} l$. : $1 \mathrm{lb} .:: 30 \mathrm{l} .: 30 \times 30=900 \mathrm{lb}$. of fugar.

$$
2 u e f .5:
$$

Two merchants, A and B, barter with one another thus, A has 43 yards of broad cloth, worth $9 \mathrm{s}$.2 d . per yard, but in barter he will have 11 s . a yard. B has fhaloon, worth 2s. per yard, which he charges at 2 s .6 d . How much fhaloon muft A receive for his cloth; and what does he gain or lofe by the bargain?

In this queftion, firft find what the cloth comes to at the advanced price; then how inuch fhaloon, at its advanced price, may be bought for that money; aṇd laftly the true value of both.
I y. : IIs. : : 43 y: : 473 s. the price of the cloth. $2 \frac{1}{2}$ s. : $1 y .:: 473 \mathrm{~s}$. $189 \frac{2}{5}$ yards of the fhaloon received.
then $1 y .: 9 \frac{7}{8} s .:: 43 \%: 394 \frac{7}{6}=394$ s. $-2 d$. the value of the cloth.
and $1 y_{0}: 2$ s. $: \leq 189 \frac{1}{3} y_{:}: 378 \frac{2}{5}=378$ s. $4 \frac{3}{4} d$. the value of the fhaloon.

So A lofes $15 s=-9 \frac{1}{4} d$, by the bargain:

शथef. 6.

A hath 100 -pieces of filk worth 3 l. a-piece; but he charges them at $4 l$. a-piece, and barters them with B for wool worth 7l--10s, the C weight. How much wool muft A receive from B for the filk, that both may be equal gainers?

In this queftion the price of B's wool muft be advanced in the fame proportion as A 's filk.
3l.: 4l.: : $7^{\frac{1}{2} l .: ~ 10 l . ~ t h e ~ a d v a n c e d ~ p r i c e ~ o f ~ t h e ~}$ wool.
then $1001 . \times 4=400 \%$ the value of the filk. 10l. : iC. : : 400 l : 40 C . the quantity of wool.

$$
\text { 2ueft: } 7 .
$$

How many ducats, at 5 s. -6 . may be had for 250 dollars, at 4 s. -3 d. a-piece?
$66 \mathrm{~d} .=$ a ducat, $5 \mathrm{id}=$ I dollar.
$250 \times 51=12750 \mathrm{~d}$. the value of 250 dollars.
$\frac{12750}{66}=193^{2}{ }^{2}$ ducats.

2ueft. 8.

A man would exchange 200 l . for dollars, at 54 d . ducats at 68 d . and crowns at 73 d . and would have 2 ducats and 3 crowns for 1 dollar. How many of each milt he have?

$$
\begin{array}{rlr}
54 & =1 \text { dollar } & \frac{200}{20} \\
2 \times 68=136 & =2 \text { ducats } & 4000 \\
3 \times 73=\frac{219}{409} & =3 \text { crowns fum. } & \frac{12}{48000 d}
\end{array}
$$

Now it is plain, as oft as 409 is contained in 48000 , fo often I dollar, 2 ducats, and 3 crowns muff be taken.

$$
\begin{aligned}
\frac{48000}{409}= & 117 \frac{1}{4} \frac{4}{4} 9 \\
& \text { the dollars. } \\
& 234 \frac{294}{4} \text { the ducats. } \\
& 35^{2} \frac{33}{405} \text { the crowns. }
\end{aligned}
$$

2uef. 9.

A man buys 120 faves at 3 a penny, and afterwards 120 more for 2 a penny; how mull he fell them out to lope nothing ?
3) $120=40 \mathrm{~d}$. for the firft bargain.
2) $120 \equiv 60 \mathrm{~d}$. for the fecond bargain,
240 $\quad 100$

100d. : 240 ff . : : $\mathrm{Id} .: 2 \frac{2}{5}$ f. per penny ; that is, 12 faves for 5 pence.
Quef. 10.

A tradefman begins the world with 1000%. and finds that he can gain 1000 l . in 5 years by land trade alone, and that he can gain 1000%. in 8 years by fea trade alone; and likewife that he feerids 1000%. in $2 \frac{1}{2}$ years by gaming. How long will his eltate laft, if he follows all three?

$$
\begin{aligned}
\frac{1000}{5}= & 200 \text { his gain by land trade in } 1 \text { year. } \\
\frac{1000}{8}= & 125 \text { his gain by fea trade in } 1 \text { year. } \\
& \frac{325}{} \frac{1000}{2 \frac{1}{2}}=400 \text { his whole gain. }
\end{aligned}
$$

the difference 75 his lofs by all three in I year. then 751 . : $1 y$. : : $1000 \mathrm{l}: 13 \frac{\mathrm{t}}{3}$ years his eftate will laft.
Quef. I I.

There were 25 coblers, 20 taylors, is weavers, and 12 combers, fpent 133 hillings at a meeting; to which reckoning 5 coblers paid as much as 4 taylors, 12 taylors as much as 9 weavers, and 6 weavers as much as 8 combers ; how much did each company pay?

Find 4 numbers by the rule of three to express thefe proportions, as thefe, coblers, taylors, weavers, combers, that is, 5 coblers paid as much as 4 taylors, or 3 weavers, or 4 combers. Suppofe each company

Chap. V. QUESTIONS.
paid I fhilling, then, by the fingle rule of falfe, $\frac{1}{}$ man in each company will pay $\quad \frac{5}{5} \quad \frac{1}{4} \quad \frac{7}{3} \quad \frac{2}{4}$ $\begin{array}{lllll}\text { which multiply by the number } & 25 & 20 & 18 & 12\end{array}$. of men produces
whofe fum is 19 ; then it will be
$\begin{array}{llll}5 & 5 & 6 & 3\end{array}$

$$
19: 133::\left\{\begin{array}{l}
5: 35 s \text { for the coblers. } \\
5: 35 \text { taylors. } \\
6: 42 \text { weavers. } \\
3: 21
\end{array}\right.
$$

2uef. 12.

There is an inland 72 miles about, and two footmen fet out together to travel round it the fame way. A travels 9 miles a day, and B7. To find the time they will be together again.

It is plain A will overtake B when he leads him the circumference of the inand.

2 miles gained by A in I day.
then $2 m .: 1 d .:: 72 m .: 36$ days, the Anfwer.

> 2uef. iz.

There is an iffand 73 miles round, and 3 footmen all ftart together, to travel the fame way about it. A travels 5 miles a day, B 8, and C 10. When will they all come together again?
 A, and $14 \frac{3}{5}$ days, the period of C's meeting with A; and they can never meet but at the end of thefe periods. Therefore B and C can never both meet with A, but when fome number of B 's periods is equal to fome number of C 's periods. Therefore find two whole numbers which are in the fame proportion, as $24 \frac{\pi}{3}$ to $14 \frac{3}{5}$, which will be 365 and 219 . Therefore after 365 of B's periods, or 219 of A's; all three men will meet again, and not before, as 365 and $21 g$ are in their leaft terms. Therefore the time of meeting is $219 \times 24^{\frac{1}{3}}=53^{2} 9$ days.

2uef. $14:$

. A clock hath two hands or pointers, the firft, A, goes round once in II hours, the fecond, B , once in an hour. Now, if they both fet forward together, in what time will they meet again?

Here A goes only $\frac{x}{x}$ of the circumference in an hour.

And B goes the whole circumference in an hour.
So B gains $\frac{x}{12}$ of A in that time.
Therefore $\frac{11}{12} C: 1 b::{ }_{1} C: \frac{12}{11} b .={ }_{1} \frac{1}{11} b \cdot=$ 1b. : $5 \frac{5}{11} m$. the Anfwer.

A greyhound is courfing a hare, which is 100 of her leaps before him; and the bare takes 4 leaps for every 3 leaps of the greylhumd; but 2 of the greyhound's leaps are equal to 3 of the hare's. How many leaps muft he take before he catch her?
$2 \mathrm{gr} .: 3 \mathrm{ba} .:: 3 \mathrm{gr} .: 4 \frac{1}{2}$ hare's leaps $=3$ of the greyhound's.
Therefore, for every 3 leaps of the greyhound, the hare lofes $\frac{x}{2}$ of one of hers. Therefore $\frac{1}{2} h_{0}: 3 \mathrm{gr} .:: 100 \mathrm{l}: 600$ of the greyhound's leaps; the Anfwer.

Quef. 16.

Four merchants, A, B, C, D, gain 2000 l. by trade, whereof $\frac{1}{2}$ of A's thare is equal to $\frac{3}{4}$ of B 's, $\frac{4}{5}$ of C's, and $\frac{5}{6}$ of D's. What fhare had each?

Take a number at pleafure, and divide in proportion to their fhares, then proceed by the fingle rule of fale.

A 120	
C 75	
P 7^{2}	[120: $691 \frac{123}{}{ }^{23}$ for
	$\int 80: 461 \frac{3}{347}$ B.
	$\left\{\begin{array}{l}\text { 7 }\end{array}\right.$
	[$72: 414 \frac{3}{4} \frac{3}{47}$ D.

2uef. 17.

Two merchants together make up a fock of 600%. A's ftock continued in company 9 months, and B's II, they gain 200 l . which they divide equally. How much did each put in?

Since the gains are equal, A's fock multiplied by his time 9 , is equal to B^{\prime} 's ftock multiplied by his time II ; therefore A's fock is to B's ftock as II to 9 .

$$
\frac{9}{20}: 600::\left\{\begin{array}{l}
11: 330 \text { A's frock. } \\
9: 270 \text { B's ftock. } \\
24 e f t:
\end{array}\right.
$$

An apothecary has feveral fimples, A hot in 3 degrees, B hot in 1, C temperate, D cold in 2 ; and he intends to make up 1 gdrams, to be in 1 degree of cold. How much of each muft be taken?

Put 1, 2, 3, \&c. for the 4 th, 3 d, $2 \mathrm{~d}, \& \mathrm{c}$. degree of cold, and proceed by the rule of alligation, $4\left\{\begin{array}{l|l|ll}8 & 1 & 1 & \\ 6 & 1 & 1 & 0 \\ 5 & 1 & 1 & \\ 3 & 1.2 .4 & 7 & \end{array}\right.$

$$
\text { 10: } 17:\left\{\begin{array}{l}
1: 1 \frac{7}{70} \text { of } A, B, C . \\
7: 11 \frac{1}{70} \text { of } D,
\end{array}\right.
$$

2uef. 19.
A factor delivers 6 French crowns and 4 dollars for 53^{s}. $-6 d$ and at another time 4 French crowns and 6 dollars for 49 s.-10d. What was the value of each ?
Suppofe, by the double rule of falfe, there are o French crowns; then 4 doll. $=53^{\frac{1}{2}}, 1$ doll. $=13^{\frac{3}{8}}$. and $4 \mathrm{cr} . \frac{1}{1} 6$ doll. $=80 \frac{1}{4}$
$1 \mathrm{cr}+30_{\frac{5}{\frac{5}{2}}}^{\frac{10}{\frac{10}{2}}}$

Again,

Chap. V. QUESTIONS.

Again, fuppofe 1 crown, then 4 dollars $=47^{\frac{x}{2}}$, and I dollar $=\mathrm{I}_{\mathrm{I}}^{\frac{7}{8}}$,
and 4 crowns +6 dollars $=75^{\frac{x}{4}}$

$$
2 \text { er. }+\frac{49^{\frac{10}{1 \cdot 2}}}{25^{\frac{3}{12}}}
$$

diff. er. 5) $30 \frac{5}{12}\left(\sigma_{\frac{1}{2}}=6 s\right.$. -1 . the value of a crown. and $4 \frac{x}{4}$ or 4 s. $-3 d=$ a dollar.

$$
2 u e f .20 .
$$

Three companies of foldiers paffing by a fhepherd, the firft takes half his flock and half a fheep, the fecond takes half the remainder and half a fheep, the third takes half the laft remainder and half a fheep; after which the fhepherd had 20 heep remaining. How many had he at firft?

By the double rule of falfe, fuppofe two numbers, as follows.

$$
2 u e f .21,
$$

There is a fifh whofe head is 9 inches in length, and his tail is as long as his head and half his body, and his body as long as his head and tail. How long was the fifh?
I fup. body 0.2 fup. body I

$$
\begin{aligned}
& 18 \\
& 17 \frac{7}{2} \\
& \frac{x}{2} \text {) } 18 \text { (} 36 \text { the body. } \\
& 27 \\
& \begin{aligned}
\frac{9}{18} & \frac{9}{72} \\
\text { tail } 27 & -\quad .
\end{aligned}
\end{aligned}
$$

2uef. 22:

There is an annuity of 75% in reverfon, which is not to commence for feven years, and then it is to continue for 14 years; what is the prefent value of it at 4 per cent. compound intereft?

Find

Find the prefent worth of the annuity of $\mathrm{I} l$. for: 14 years, and then the prefent worth of that fum of money for 7 years, which multiply by the annuity.

By Tab. III. and IV. the prefent worth of $\mathrm{I} \boldsymbol{l}_{\text {. }}$ annuity is $\frac{18.29191}{1.73167}=10.56313$. Then by Tab. III. the prefent worth of $1 l .7$ years hence, is $\frac{1}{1.35593}$, this multiplied by 10.56313 gives $\frac{10.56313}{1.31593}=$ 8.02713 , the prefent worth of $1 l$. annuity in reverfion; laftly, $8.02713 \times 75=602.035 l_{\text {a }}$ the prefent value required.

$$
\text { Quef. } 23 .
$$

There is a houfe rented at 25 l. a year for 21 years: but the tenant is defirous to pay rool. fine (or prefent money). How much rent then muft he pay, allowing 5 per cent. compound intereft?

By Tab. III. and IV. the prefent worth of 17. annuity for 21 years, is $\frac{35.71925}{2.78596}$; then fay, $\frac{35.71925}{2.78596}$ (pr.) : 1 l. (an.) : : 1001 . (pr.) $: \frac{278.596}{35.7192}$ $=7.7997$ l the rent anfwering the fine of 100 . then from 25.0000
take 7.7997
remains 17.2003 the rent fought.

B O OK II.

The. Theory of Numbers.

C H A P. I.

Numbers produced by addition, fubtraction, multiplication, and divifion. Of odd and even numbers. Prime and compofite numbers. Numbers that are prime to one another; and fuch as meafure others. Powers and products of Squares, cubes, \&c.

PROP. I.

If A and B be two numbers; then A added to B is the Same fum as B added to A .

FOR if both of them be refolved into its units, and

Cor. Henee if feveral numbers are to be added together, they will amount to the Jame fum, whatever order they are placed in. Or if feveral numbers are to be fubtracted, it is the Same thing, whether they be Jubtracted one after anotber, or all togetber.

Chap. I. of NUMBERS.

PROP. II.

If two numbers A, B, are to be multiplied together ; the produal of i multiplied by B , is equal to the produEt of B multiplied by A .

For A times $\mathrm{I}=$ to the units
in $A=1$ ce A.
And A times $\mathrm{B}=\mathrm{B}$ times that product, that is $=\mathrm{B}$ times A.

Cor. i. If feveral numbers are to be multiplied together; they will make the fame product, in whatever order they are multiplied.

Cor. 2. If feveral numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are to be multiplied together; it is the fame thing, whether A be multiplied by the product of the reft BC ; or A be multiplied firft by B , and the product by C ; and S_{o} on.

For by either method the product will be $A B C$.
Cor. 3. And on the contrary, if a number ABC is to be divided by another BC ; it is the fame thing whetber ABC is divided by BC at once; or it be divided froft by one factor B , and then the quotient by another factor C , and fo orn.

For $\frac{A B C}{B C}=A(A x .8) ;$ and $\frac{A B C}{B}=A C(A x .8)$, and then $\frac{A C}{C}=A(A x .8)$, that is, $=\frac{A B C}{B C}$.

PROP. III.

If the number S , be made up of the parts $\mathrm{A}, \mathrm{B}, \mathrm{C}$; the product of S , by any number M , is equal to the fum of the feveral products, made by multiplying feparately, each particular pari A , B, C, by M.

For $\mathrm{M} \times \mathrm{S}=\mathrm{M} \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}(\mathrm{A} \times 4)=\overline{\mathrm{A}+\mathrm{B}+\mathrm{C}} \times \mathrm{M}$ (Pr. 2). But $\overline{A+B+C}$ times M is nothing elfe but taking M as oft as there are units in $A+B+C$; that is, as oft as there are units in A, and alfo as oft as there are units in B, and alfo in C; and that is, $A M+B M+C M$. Therefore $M S=A M+B M$ $+C M=($ Pr. 2) $M A+M B+M C$.

$$
\begin{aligned}
& \text { A, B, C, }
\end{aligned}
$$

Cor I . If D be the difference of two numbers A and B; then D multiplied by any number M, is equal to the difference of the products, of A by M , and B by M .

A, B,
$\mathrm{D}, 2=9-7$
$\mathrm{M}, 5$
$-\quad 5$
$10=45-35$

Cor. 2. If $\mathrm{S}=\mathrm{A}+\mathrm{B}+\mathrm{C}$, and $\mathrm{M}=\mathrm{F}+\mathrm{G}$; then the product of the wholes, $\mathrm{S} \times \mathrm{M}=$ fum of the products of all the parts of one, by all the parts of the other, $\mathrm{FA}+\mathrm{FB}+\mathrm{FC}+\mathrm{GA}+\mathrm{GB}+\mathrm{GC}$.
For $S M=M A+M B+M C=\overline{F+G} \times A+\overline{F+G}$ $\times B-\bar{F}+G \times C=F A+G A+F B+G B+$ $\mathrm{FC}+\mathrm{GC}$.

PROP. IV.

The quotient arifing by dividing the fum of two or more numbers $(\mathrm{A}+\mathrm{B})$, by any divifor D ; is equal to the fum of the quotients arifing by dividing the parts A, B, Separately by the Same divijor. That is,

$$
\begin{aligned}
\frac{A+B}{D}=\frac{A}{D}+\frac{B}{D} & \frac{A+B}{D} \cdot \frac{A}{D}+\frac{B}{D} \\
\therefore & \frac{9}{3}=\frac{3}{3}+\frac{6}{3} .
\end{aligned}
$$

Chap. I. of NUMBERS.
For let the whole be called S, then fince $A+B$ $=S$, any part of A, together with the fame part of $B=$ the like part of S (Ax.5); that is,

$$
\frac{A}{D}+\frac{B}{D}=\frac{S}{D}=\frac{A+B}{D}
$$

> PR O P. V.

If any multitude of even numbers be added togetber, the fum will be erven.
For fince an even number may be divided into two equal whole numbers, let thefe numbers be $2 \mathrm{~A}, 2 \mathrm{~B}$, ${ }_{2} \mathrm{C}, \mathcal{\delta}^{2} c$. then the fum will be $2 \mathrm{~A}+2 \mathrm{~B}+2 \mathrm{C}, \mathcal{E}^{\circ} \mathrm{C}$; and the half is $A+B+C, \mathcal{E}_{c} c_{\text {a }}$ a whole number (Def. 14).

Cor. If an even number be taken from an event number, the remainder is even.

> P R O P. VI.

If an even mulitude of odd numbers be added together; their fum is even.
For thefe odd numbers may be reprefented by $2 \mathrm{~A}+1,2 \mathrm{~B}+1, \varepsilon^{3} c$. And the fum of 2 A and $2 \mathrm{~B}, \mathrm{E}^{2} \mathrm{c}$. is an even number (Pr. 5). And an even number of units, is an even number. Therefore their fum is an even number.

Cor. An odd multitude of odd numbers added together makes an odd number.

$\mathrm{O}_{2} \quad \mathrm{PROP}_{i}$ or an odd number from an even number; the remainder is odd.
For let 2 A be an even number, then 7 10 fince 2 A taken from an even number, $4 \quad 7$ leaves an even number (Cor. Pr. 5); therefore 2 A taken from that even num- 3 ber and I/more, will leave I more; that is, an odd number will remain: and alfo $2 \mathrm{~A}+\mathrm{I}$ (an odd number) taken from that even number, I lefs will remain; that is, an odd number remains.

Cor. If an odd number be taken from an odd number, the remainder is even.

P R O P. VIII.

If an odd number be multiplied by an odd number, the product rwill be odd.
For the product confifts of an odd number taken an odd number of times, and therefore is odd (Cor. Pr. 6).

Cor. I. If an odd number be divided by an odd number, the quotient will be odd.

Cor. 2. Every number is odd, wobich meafures an odd number. Or an even number cannot meafure an odd number.

> PR O.P. IX.

If an even number be multiplied by any number, even or odd, the product will be even.
For the product confifts of the even 66 number taken fo many times as there 2,3 are units in the multiplier, and therefore will be cven (Pr. 5).

12 $\quad \frac{3}{18}$
Cor. I. If an even number be divided by an odd number, the quotient will be even.

Chap. I. of N U M B ER S.
Cor. 2. If an odd number meafures an even number, it JBall alfo meafura balf of it.

Cor. 3. If an odd number A , be prime to any number B , it Jall be prime to its double 2 B .

For no even number can meafure A (Cor. 2.Pr. 8); and an odd number which meafures 2 B , will alfo meafure B (Cor. 2); and then A and B would not be prime.

Cor. 4. A number wbich is prime to any in a double progreflion, is prime to them all.

PROP. X.

If there be two numbers, A the greater, and B the leffer, and the leffer B be continually taken from the greater A ; and the remainder C froin B ; and the next remainder D from C ; and the next remainder E from D , and So on, till notbing remains. I fay, the laft number E that remained, will be the greateft common. meafure of the numbers A and B .
27) $75(2$
$\frac{54}{21) 27(1}$
$\frac{21}{6) 21(3}$
$\frac{18}{3) 6(2}$
$\frac{6}{0}$

For E meafures D, fince o remains; and it alfo meafures C which is fome multiple (once or oftener) of D with Eover (Ax.io, iI). For the fame reafon it meafures B , which is a multiple of C with D over; and laftly, it meafures A, which is a multiple of B with C over. Therefore E is a common meafure.

And it is the greateft; for if there was one F greater than E , then fince F is fuppofed to meafure A and B , it alfo meafures C (Ax. 11); and for the fame reafon fince F meafures both B and C , it alfo meafures D; and fince it meafures both C and D, it alfo meafures E, the greater the lefs; which is abfurd.
O_{3}
Cor.

Cor. 1. If there be two numbers given, and the greater be divided by the lefs; and then the leffer divided by the remainder; and this remainder by the next remainder, and fo on, fill making the laft remainder a divifor. By proceeding thus, if 1 remains at laft, then the two given numbers are prime to one another.

$$
\text { Ex. } 28 \text { and } 19 . \quad 19) 28(7
$$

Cor. 2. If a number F meafures feveral numbers, it weill alfo menfure their greateft common meafure E .

This is plain from the demonftration of this prop. For if F meafures A and B, it alfo meafures E, the greateft common meafure of thefe two quantities. And if F meafures E and a third number: it meafures their greateft common meafure; that is, it meafures the greateft common meafure of all the three numbers; and fo on.

PROP. XI.

If the number N be the leaft, which feveral other numbers meafure; thefe numbers 乃ball only meafure all the multiples of N , but no other number befides.

For fince they meafure N , they fhall alfo meafure $2 \mathrm{~N},{ }_{3} \mathrm{~N}, \Xi^{3} c$. or in general $r \mathrm{~N}($ Ax. 10), r being any number.

But they can meafure no other number as P; for take $r \mathrm{~N}$ the nearef multiple to P ; then fince they meafure both $r \mathrm{~N}$ and P , they will alfo meafure their difference (Ax. 9). But that difference is lefs than N ;

Chap. I. of N U M.BERS.
therefore N is not the leaft number which they meafure ; contrary to the hypothefis.

Cor. If feveral numbers meafure any number; the leaft which they meafure fiball alfo meafure the fame number; that is, their leaft common dividend, Sall alfo meafure it.
P R O P, XII.

If N be the leaft number (or the leaft common dividend) that feveral prime numbers, A, B, C, meafure: no other prime D fall meafure the fame.
For if the prime D meafures it, then D muft be a factor in N , as well as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are ; and then N would not be the leaft number, which $\mathrm{A}, \mathrm{B}, \mathrm{C}$, meafure.

P R O P. XIII.

If two numbers, A, B, be prime to one anotber; the number C , which meafures one of them A , will be prime to the other B.

For if C and B be not prime to C,3. D.. one another, let D meafure both. But becaufe D meafures C, it alfo meafures A (Ax. 10) ; confequently A and B are not prime to one another: contrary to the hypothefis.

PROP. XIV.

If two numbers, A, B, be prime to any number C , their product AB will be prime to it.
For no numbers can meafure $A B$ and C, but fuch (prime) factors as A, B, and $\mathrm{C}, \mathrm{A}, 5 . \mathrm{C}, 8$. are made up of. But in A and C there are none that are common to both; becaufe A and $\mathrm{C} A B, 15$. are prime to one another; nor in B and C for the O 4 fame another.

Cor. 1. If feveral numbers, bow many so ever, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, §c. be each of them prime to any number F ; their product, $\mathrm{ABCD} \mathrm{E}^{2}$. will alfo be prime to the fame F .

For (by this prop.) $A B$ and C are both prime to F; therefore $A B C$ is prime to F. Again, $A B C$ and D are both prime to F; therefore $A B C D$ is prime to F.

Cor. 2. If one number A be prime to anotber F ; its Square, cube, or any power A^{n}, fball aljo be prime to the fame number F.

This is evident from Cor. I. by fuppofing A, B, $C, D, E^{\circ} c$. all equal.

PROP. XV.

If two numbers, A, B, be prime to one number C , and alfo to another D ; their products AB and CD faill aljo be prime to one another.

For $A B$ is prime to C, and alfo to $D(\operatorname{Pr}, 14)$; therefore $A B$ is prime to $C D$.

Cor. $\mathbf{1}$. If feveral numbers, $\mathrm{A}, \mathrm{B} ; \mathrm{C}, \mathrm{D}, \mathrm{E}^{2} \mathrm{c}$. be prime to eaclo of the numbers $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathcal{E}^{3} \mathrm{c}$. then their products, ABCD , and FGHI, E'c. will be prime to one anotber.
. For (by this prop.) $A B$ is prime to $F G$, and fince $A B$ and C are prime to $F G$ and H; therefore $A B C$ is prime to $F G H$. Again, fince $A B C$ and D, are prime

Chap. I. of N U M B.ER S. 201 prime to FGH and I , therefore ABCD is prime to FGHI, $\underbrace{\circ}$.

Cor. 2. If two numbers, A, F, be prime to one another; then any power of one A^{n}, will be prime to any power of the otber F^{n}.

This follows from Cor. I. by fuppofing B, C, D, $E c_{0} \equiv A$, and $\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{E}_{\mathrm{c}}=\mathrm{F}$.

PR O P. XVI.

If troo numbers, A, B, be prime to one anotber, and each of them meafures fome number D ; then their product AB ball meafure the Same number D .
For fince \mathbf{A} and \mathbf{B} are prime to one another, there is no factor common to both; and fince they both of them meafure D , therefore they both are factors in D . Therefore let $\mathrm{D}=\mathrm{ABF}$, then A and B meafure $A B F$, and it appears that $A B$ meafures $A B F$ or D.

Cor. If Several numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathcal{E}^{c}$. be prime to one another; and each of them meafures anotber D ; then their product $\mathrm{ABC}, \mathcal{E} c$. Ball meefure the fame number D .

PR O P. XVII.

If two numbers, A, B, be prime to one another; their fum $\mathrm{A}+\mathrm{B}$ will be prime to either of them.

If you deny it, let D be the common meafure of A and $A+B$, then it will meafure the refidue B (Ax.II). Therefore A, B, are not prime : againft the hypothefis.

Cor. If a number be prime to one of its parts; it is alfo prime to the remaining part.

PROP. XVIII.

If the number A be prime to B ; then A Sall meafure no multiple of B , lefs then $\mathrm{A} \times \mathrm{B}$; or wobofe multiplier is lefs than A.

Let r be any number, and fuppofe r times B, or $r \mathrm{~B}$ to be fome multiple of B . Now the numbers A, B, being prime to one another, there is no factor common ro both A and B : therefore if A meafures $r \mathrm{~B}$, it muft meafure r alone. But it can never meafure r lefs than itfelf: therefore r mult be equal to A, or to fome multiple of A.

Cor. If A, B, be prime to one anotber; then A fhall meafure all the multiples of AB , and no otber multiples of B befides.

PR.O P. XIX.

More prime numbers may be found, than any propofed multitude, $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

Let N be the leaft number which $\mathrm{A}, \mathrm{B}, \mathrm{C}$, meafure; then if $\mathrm{N}+\mathrm{I}$ be a prime number, another prime is found. But if it is a compofite number, then fome other prime, as D , meafures it, and fo the prime D is found.

P R O P. XX.

Let M be any number, $1,2,3,4, \mathcal{F}^{2}$. then $\mathrm{M} \times 6-\mathrm{I}$, and $\mathrm{M} \times 6+\mathrm{I}$, confitute a Series, which contains all prime numbers above 3.

For thofe left out of the feries are no primes. For $6 \mathrm{M}+2$, and $6 \mathrm{M}-2$, are not primes, being divifible by 2 . Alfo $6 \mathrm{M}+3$, and $6 \mathrm{M}-3$, being divifible by 3, are no primes. But thele are all the numbers left out.

P R O P. XXI.

No number is a Square number, that confifs not of two equal faitors; nor a cube, that confifts not of tbree equal factors: and jo for bigher powers.
This appears from the definition of fquare and cube numbers; and other higher powers. For a fquare requires to have two equal multipliers, or elfe a fquare could not be produced; and a cube mult have three. And fo on.

Cor. 1. There is no fucb thing as the exact fquare root of $2,3,5,6,7,8,10, \mathcal{B}_{c}$. Nor the exact cube root of $2,3,4,5,6,7,9, \mathcal{E}^{c}$.

For there are no fuch factors to be found in thefe numbers, and infinite others. For example, the two factors in 2 , are 1 and 2 ; in 3,1 and 3 ; in 6 , 2 and $3, \mathcal{F}^{2}$. and therefore they are no fquares. Again, the three factors in 2, are 1,1 , and 2 ; in 3 , are $1, I$, and 3 ; in 12 , they are 2,2 , and $3, \mathcal{E}^{\circ}$ c. which are no cubes.

Cor. 2. All numbers are furds, wobofe roots are not fome of the natural Series, $1,2,3,4,5,6, \mathcal{E}^{\circ}$. ad infinitum.

P R O P. XXII.

The fum of two numbers differing by a unit, is equal to the difference of their Squares.
Let N and $\mathrm{N}+\mathrm{I}$ be the numbers;

multiply $-N+\mathrm{N}+\mathrm{I}$
by $-\mathrm{N}+\mathrm{I}$

the fquare of $\mathrm{N}+\mathrm{I}-\mathrm{NN}+\mathrm{N}+\mathrm{N}+\mathrm{I}$ the fquare of N . . . NN fubtract
remains - - $-\mathrm{N}+\overline{\mathrm{N}+\mathrm{r}}$, the fum of the two numbers.

Cor.

Cor. The differences of the 厅quares of $0,1,2,3,4$, $\xi^{2} c$. proceed by the odd numbers, $1,3,5,7, \mho_{c} c$.

PR O P. XXIII.

The fum of any number of terms (n), of the Series of odd numbers $1,3,5,7, \mho_{c}$. is equal to the Square ($n n$) of that number.

Set down the feries of
uares, and their diffe- $\begin{array}{cccccccc}0 & 1^{2} & 2^{2} & 3^{2} & 4^{2} & 5^{2} & 6^{2} & 7^{2} \\ 1 & 3 & 5 & 7 & 9 & 1 & 1 & 1\end{array}$. we fhall have
$0+1$ or the fum of I term $=\mathrm{I}^{2}$, or x ,
$1+3$ or the fum of 2 terms $=2^{2}$ or 4 ,
$4+5$ or the fum of 3 terms $=3^{2}$ or 9,
$9+7$ or the fum of 4 terms $=4^{2}$ ori 16 , $16+9$ or the fum of 5 terms $=5^{2}$ or 25 , and foon. Whence it is plain, let n be what number you will, the fum of n terms will be $=n n$.

P R O P. XXIV.

The fum of two numbers multiplied by their difference, is equal to the difference of their Squares.

Let the numbers be A, E; which multiplied together will produce AA-EE (Prop.3, and Cor. 1).

Cor. The difference of the Squares of two numbers, is divifible, by either the fum or difference of there numbers.

P R O P. XXV.

The fum of two cube numbers is divifible by the fum of their roots. Or the fum of any two numbers will meafure the fum of their cubes.

Let the numbers be A, E; multiply $\mathrm{AA}-\mathrm{AE}+\mathrm{EE}$ by $A+E$

$$
\begin{aligned}
& A^{3}-A^{2} E+A E E \\
& +A^{2} E-A E E+E^{3}
\end{aligned}
$$

(by Pr.3. and Cor.) product, $A^{3} \cdots \cdots+E^{3}$
Therefore $A^{3}+E^{3}$ is diviifible by $A+E(A x .8)$.
P R O P. XXVI.
The difference of any two numbers will meafure the difference of their cubes.

If A, E, be the numbers;
mult. $\mathrm{AA}-\mathrm{AE}+\mathrm{EE}$
by $\quad A-E$

$$
\begin{aligned}
& A^{3}+A^{2} E+A E E \\
& -A^{2} E-A E E-E^{3}
\end{aligned}
$$

$$
\text { the product }(\operatorname{Pr} \cdot 3) \quad A^{3}-\cdots-E^{3}
$$

Therefore the product $A^{3}-E^{3}$ is divifible by $A-E$ (Ax. 8).

P R O P. XXVII.

The product of two Square numbers, is a Square number; and of two cube numbers, a cube number: and So on.

For $A A \times B B=A A B B=A B \times A B$, the fquare of $A B$.

Alfo $A^{3} \times B^{3}=A A A B B B=A B A B A B$, the cube of $A B$, and fo of others.

Cor. If a Square number divide or meafure a Square number; or a cube number a cube number; \&xc. the quotient will be a Square, or cube number, \&c. respectively. For $\frac{A A B B}{B B}=A A(A x .8)$, the fquare of A. and $\frac{A^{3} B^{3}}{B^{3}}=A^{3}$, the cube of $A ; \vartheta_{c}$.

PROP. XXVIII.

Every power of a Square number is a Square number: and every power of a cube number is a cube number: and fo on.
For $A A$ or A^{2} is the fquare of A; and $\overline{A A}^{2}$ or A^{4} is the fquare of $\mathrm{AA} . \overline{A A}^{3}$ or A^{6} is the fquare of $A^{3} \cdot \overline{A A^{5}}$ or A^{10} is the fquare of $A^{5}, \xi^{3} c$.

Again, $\overline{A_{A A}}{ }^{2}$ or A^{6} is the cube of AA : and $\overline{A A A^{3}}$ or A^{9} is the cube of A^{3} : alfo $\overline{A A A}^{4}$ or A^{12}. is the cube of $A^{4}, \mathcal{E}^{2} c$. and fo of others.

CHAP:

CH A P. II.

Of proportional numbers, and thole in geometrical progreffion. Mean proportionals. Like plane and Solid numbers.

PR O P. XXIX.

If four quantities, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are proportional; the product of the means is equal to the product of the extremes, $\mathrm{AD}=\mathrm{BC}$.

HOR fence $A: B:: C: D$; then $\frac{A}{B}=\frac{C}{D}=r$ (Def. 27); and $\mathrm{A}=\mathrm{Br}, \mathrm{C}=\operatorname{Dr}(\mathrm{Ax} .4,5)$. Whence $\mathrm{AD}=\mathrm{BrD}$, and $\mathrm{BC}=\mathrm{BDr}(\mathrm{Ax} .4)$; therefore $A D=B C$ (Ax. I).

Cor. 1 . The firft is to the third, as the second to the fourth; A: C : : B : D.

For fince $A D=B C$, then $\frac{A D}{C D}=\frac{B C}{C D}(A x .5)$, that is, $\frac{A}{C}=\frac{B}{D}$, or $A: C:: B: D$.

Cor. 2. The fecond is to the first, as the fourth to the third, or $\mathrm{B}: \mathrm{A}:: \mathrm{D}: \mathrm{C}$.

For fince $\mathrm{BC}=\mathrm{AD}, \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AC}}$ (Ax. 5), that is, $\frac{\mathrm{B}}{\mathrm{A}}=\frac{\mathrm{D}}{\mathrm{C}}$.

Cor. 3. $\mathrm{A}: \mathrm{B}:: \mathrm{A}+\mathrm{C}: \mathrm{B}+\mathrm{D}:: \mathrm{A}-$ $C: B-D$.

For fince $\frac{\mathrm{A}}{\mathrm{B}}=r$, and $\mathrm{A}=\mathrm{B} r, \mathrm{C}=\mathrm{D} r$; then $\mathrm{A}+\mathrm{C}=\mathrm{B} r+\mathrm{D} r=\overline{\mathrm{B}+\mathrm{D}} \times r$ ($\mathrm{A} \times 2$ 2); therefore $\frac{A+C}{B+D}=r=\frac{A}{B}(A x, I)$.

In like mamner $\mathrm{A}-\mathrm{C}=\mathrm{Br}-\mathrm{Dr}=\mathrm{B}-\mathrm{D}$ $\mathrm{x} r$, and $\frac{\mathrm{A}-\mathrm{C}}{\mathrm{B}-\mathrm{D}}=r=\frac{\mathrm{A}}{\mathrm{B}}$, whence $\mathrm{A}: \mathrm{B}:: \mathrm{A}$ $+\mathrm{C}: \mathrm{B}+\mathrm{D}:: \mathrm{A}-\mathrm{C}: \mathrm{B}-\mathrm{D}$ (Def. 27).

Cor. 4. If any like parts or multiples of A and B be denoted by r, then $\mathrm{A}: \mathrm{B}:: r \mathrm{~A}: r \mathrm{~B}$.

For $\frac{r \mathrm{~A}}{\mathrm{~A}}=r=\frac{r \mathrm{~B}}{\mathrm{~B}}$; therefore $r \mathrm{~A}: \mathrm{A}:: r \mathrm{~B}:$ B (Def. 27); and $r \mathrm{~A}: r \mathrm{~B}:: \mathrm{A}: \mathrm{B}($ Cor. I$)$.

Cor 5. If A : B : : C : D; then D can only be. a whole number, when A meafures the product BC .

For $A D=B C$, and $D=\frac{B C}{A}(A x .5)$.
Cor. 6. If three numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are in continual proportion; then the Square of the mean is equal to the producl of the extremes, $\mathrm{BB}=\mathrm{AC}$.

This is plain, by fuppofing the two middle terms to be equal; and then the fourth becomes the third.

P R O P. XXX.

If two numbers, A, B, are prime to one another, no otber numbers can be found in that proportion, but wobat are forme multiple of A and B .
Let C, D be others in the fame $\mid \mathrm{A}, 5 . \mathrm{B}, 3$. proportion, then fince $\mathrm{A}: \mathrm{B}:: \mid \mathrm{C}, 10 . \mathrm{D}, 6$. $C: D$, then $A D=B C(\operatorname{Pr} .29)$; and $D=\frac{B C}{A}$ (Ax. 5). Now D can only be a whole number, when A meafures BC (Cor. 5. Pr. 29). But A being prime to B , there is no factor common to both; therefore if A meafures BC , it muft meafure C alone ; that is, C is fome multiple of A , and confequently D is fome multiple of B .

Cor. 1. Numbers, A, B, that are prime to one another, ars the leaft of all numbers in the fame proportion.

Cor. 2. Numbers, A, B, that are the leaft in a given proportion, are prime to one another.

For if they are not prime; they may be reduced to lefs numbers in the fame proportion.

P R O P. XXXI.

If there be a Series of numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, (greater than I) in continual proportion; and the extremies A,D prime to one anoth r; there cannot be found another number in the fame proportion.
Let E be another term, $\mathrm{A} \cdot \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}$ if poffible; then $\mathrm{A}: \mathrm{B}:: \begin{array}{lll}8 & 12 & 18-27\end{array}$ $\mathrm{D}: \mathrm{E}$; and $\mathrm{A}: \mathrm{D}:$:
B : E (Cor. I. Pr. 29); but A, D, are prime to one another by fuppofition; therefore B, E are multiples of A and D (Pr. 30.); therefore A meafures B. And fince A meafures B , therefore B meafures C , and C meafures D (Def. 27); therefore A meafures D (Ax. 10). Therefore A and D are not prime to one another : contrary to the hypothefis.

Cor. I. If two numbers (greater than I) be prime to one another, there cannot be found a tbird number in the fame proportion.

P R O P. XXXII.

If there be feveral numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, in continual. proportion, and the extremes A, D prime to one anther; then the fe numbers are the leaft of all numbers in the fame proportion. And the contrary.
For let E, F, G, H, be other A : B : C : D numbers in the fame proportion. $\quad 8 \quad 12 \cdot 18 \quad 27$ Then fince $\mathrm{A}: \mathrm{B}:: \mathrm{E}: \mathrm{F}$, E F G H therefore $\mathrm{A}: \mathrm{E}:: \mathrm{B}: \mathrm{F}:$:
$\mathrm{C}: \mathrm{G}:: \mathrm{D}: \mathrm{H}$ (Cor. I. Pr. 29). And A : D $:: E: H$ (ib.). But A and D are prime to one another, by fuppofition, and therefore the leaft in that proportion (Cor. I.Pr. 30.) therefore E, H are greater than A, D; and all of them, A, B, C, D, are lefs than E, F, G, H.
P
On

On the contrary, if A, B, C, D are the leaft in that proportion, then A and D are prime to one another. For if you fuppofe E, H to be prime to one another, then $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ will be the leaft in that proportion: contrary to the hypothefis.

Cor. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be in continual proportion, and the extremes A, D prime to one another; then all other numbers, $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, in the fame proportion, muft be fome multiple of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.

For it being $A: D:: E: H$, and A, D being prime to one another (this Prop.), E, H muf be fome multiple of $\mathrm{A}, \mathrm{D}(\operatorname{Pr} .30)$. Thereforè E, F, G, H are multiple of A, B, C, D.

P•R O P. XXXIII.

In a feries of numbers the leaft in continual proportion;
if there be ibree nusmbers, the extremes are Squares; if four, cubes; and in general if there be n numbers, the extremes are the $n-I^{\text {th }}$ powers of two numbers, which are the leaft in that proportion.
For let A, B

$$
\mathrm{A}, 4: \mathrm{B}, 6: \mathrm{C}, 9 .
$$

be the leaft in. $A, 8: B, 12: C, 18: D, 27$: that proportion, then $\mathrm{AA}, \mathrm{AB}, \mathrm{BB}$ are continual proportionals, in the fame proportion of A to B (Cor. 4. Pr. 29). And fince A, B are prime to one another (Cor. 2. Pr. 30), AA and BB will be prime to one another (Cor. 2. Pr. 15); therefore AA, $A B$, and BB are the leaft in the proportion of A to $B(\operatorname{Pr} .28)$; where the extremes are fquares.

For the fame reafon $A^{3}, A^{2} B, A B^{2}, B^{3}$ are the leaft in continual proportion of A to B; where the extremes are the cubes of A and B. And fo of others.

Cor. 1. Between two Square numbers there is one mean proportional; between two cubes, two means. And in general, between two $n^{\text {th }}$ powers, there are $\overline{n-I}$ means.

Chap. II. of N U M BERS. $2 \pi I$

For between $A A$ and $B B$ there is the mean $A B$, and between the cubes A^{3} and B^{3} are the means $A^{2} B$, $A B^{3}$. And fo forward.

Cor. 2. In a feries of numbers, the leaft in continual proportion; two numbers, wobich are the leaft in that proportion, meafure all the means.

For both A and B meafure $A B$, the mean of three proportionals. Alfo both A and B meafure $A^{2} B$ and $A B^{2}$, the two means of four proportionals. And fo on.

Cor. 3. If there be three numbers the leaft in continual proportion, the fum of any two is prime to the other.

For in the numbers $A \mathrm{~A}, \mathrm{AB}, \mathrm{BB}$ no number can meafure any one of them, and alfo the fum of the other two.

P R O P. XXXIV.

In a Series of numbers in continual proportion, if the firft meafure not the fecond; neither Jall any one meafure any other.
I fay, for example, B does
 not meafure E . For, as E is the fourth from B , take the four numbers, F, G, H, I, the leaft in that proportion; then $\mathrm{B}: \mathrm{C}:$: $\mathrm{F}: \mathrm{G}$; therefore $\mathrm{B}: \mathrm{F}:: \mathrm{C}: \mathrm{G}:: \mathrm{D}: \mathrm{H}$ $:: E: I$ (Cor. I. Pr. 29); and $B: E:: F: I$ (ib.). But F, I are prime to one another (Pr. 32). Therefore F does not meafure I (except F be I), and confequently B does not meafure E.

Here F is not I , for $\mathrm{A}: \mathrm{B}:: \mathrm{F}: \mathrm{G}$. If F was $1, F$ would meafure G, and A meafure B; contrary to the hypothefis.

Cor. If the firft meafure the laft, it foall alfo meafure the fecond.

For if you fay it meafures not the fecond, then it fhall not meafure the laft : againft the hypothefis.

$$
\mathrm{P}_{2} \quad \mathrm{PROP}
$$

PR O P. XXXV.

If between two numbers there fall feveral mean proportionals; fo many foall alfo fall between two other numbers, baving the fame proportion.
$\begin{array}{ll}\text { For fuppofe the four quan- } & 27: 36: 48: 64 \\ \text { tities, } A^{3}, A^{2} B, A B^{2}, B^{3} \text {, to } & 54: 7^{2}: 9^{6}: 128\end{array}$ be the leaft in that proportion. Then, fince A^{3} and B^{3} are prime to one another (Pr. 32), all other numbers, in that proportion, muft be fome multiple thereof (Cor. Prop. 32). Take any number, r, and let $r \mathrm{~A}^{3}, r \mathrm{~B}^{3}$ be the extremes; then $r \mathrm{~A}^{2} \mathrm{~B}$ and $r \mathrm{AB}^{2}$ will be the means (Cor. 4. Pr. 29). And the like for any other number of mean proportionals.

PROP. XXXVI.

If between two numbers; prime to one another, there fall feveral mean proportionals; fo many hall alfo fall between either of them and a unit. And the contrary.
For in the four proportional numbers, $A^{3}, A^{2} B$, $A B^{2}, B^{3}$, there are two means, $A^{2} B, A B^{2}$, between A^{3} and B^{3}, which fuppofe to be prime. Now put $\mathrm{A}=\mathrm{I}$, then the four proportionals become I, B, $\mathrm{B}^{2}, \mathrm{~B}^{3}$; where B and BB are the two means. Again, put $B=1$, then the four proportionals become A^{3}, A^{2}, A, I; where A and $A A$ are the two means.

And on the contrary, between A^{3} and B^{3} wwo mean proportionals fall (Cor. I. Prop. 33). And fo of others.

PROP. XXXVII.

If there be a feries of numbers continually proportional; and the firft be a Square, the third Ball be a Square. If the firft be a cube, the fourth fioall be a cube. If the firft be a fourth power, the fifth 乃all be a fourth porver.

Chap. II. of N U M BERS.
Let $\mathrm{AA}: \mathrm{B}: \mathrm{C}$; then $\mathrm{AAC}=\mathrm{BB}$ (Cor. 6 . Pr. 29), and $C=\frac{B B}{A A}$; therefore C is a fquare (Cor. Pr. 27).

Again, let $A^{3}: B: C: D$; then $B B=A^{3} C$ (Cor. 6. Pr. 29), and $\mathrm{B}^{3}=\mathrm{A}^{3} \mathrm{BC}$ (Ax. 4), and BC $=\frac{B^{3}}{\bar{A}^{3}}(A x .5)$. Alfo $A^{3} D=B C$ (Pr. 29), and confequently $A^{3} D=\frac{B^{3}}{A^{3}}$; and $D=\frac{B^{3}}{A^{6}}$; therefore D is a cube (Cor. Pr. 27).

Likewife if $A^{4}: B: C: D: E . \quad$ Then $C=\frac{B B}{A^{4}}$, and $A^{4} E=B D=C C=\frac{B^{4}}{A^{8}}$, and $E=\frac{B^{4}}{A^{12}}$, a fourth power, whofe root is $\frac{B}{A^{3}}$. And fo on.

P R O P. XXXVIII.

In a feries of numbers continually proporitional, beginning at I ; any prime number, that meafures the laft, Shall meafure all the reft after the unit.
Let the feries be $1: A: A A: A^{3}: A^{4}: A^{5}$; and let the prime P meafure A^{5}; then if you deny that P meafures A, then P is prime to A, and therefore it is prime to A^{5} (Cor. 2. Pr. 14); contrary to the hypothefis,

Cor. I. If any number meafures the laf and not the firft (after the unit), it is a compofite number.

Cor.' 2. If the firft term (after the wnit) be a prime, no otber prime Soll meafure the laf.

Cor. 3. In a feries of contimual proportionals fions I, if the term next i be a prime, so number Soall meafure the laft, but thofe in that feries.

For $A, A^{2}, A^{3}, \mathcal{B}^{2} c$, all meafure A^{5}; and no others $\mathrm{d} \theta$, becaufe A is a prime number (Cor. 2. Pr. 14).

$$
\mathrm{P}_{3} \quad \because \quad \mathrm{PROR}_{0}
$$

PR O P. XXXIX.

If four numbers are proportional, and tbree of thens Squares, the fourth is a Suuare; and if three of thems be cubes, the fourth is a cube; and fo on.
Suppofe $A A: B B:: C C: D$, then $A A D=$ BBCC (Pr.29), and $D=\frac{B B C C}{A A}(A x .5)$; therefore D is a fquare (Cor. Pr. 27).

Again, $\mathrm{A}^{3}: \mathrm{B}^{3}:: \mathrm{C}^{3}: \mathrm{D}$; then $\mathrm{A}^{3} \mathrm{D}=\mathrm{B}^{3} \mathrm{C}^{3}$ and $D=\frac{B^{3} C^{3}}{A^{3}}$, and D is a cube (Cor. Pr. 27).

Cor. Hence the proportion of a Square number to one not Square, cannot be expreffed by two Square numbers; heitber can the proportion of a cube number to one not cube, be expreffed by two cube numbers.

PROP. XL.

The product of two like plane numbers is a fquere number; and of tobree like folid numbers, a cube; \&c.
Let $a b, A B$ be two like plane numbers; then fince $a: \mathrm{A}:: b: \mathrm{B}$, we fhall have $a \mathrm{~B}=\mathrm{Ab}$ (Pr. 29). But $a b \times \mathrm{AB}=a \mathrm{BbA}=\mathrm{A} b \times b \mathrm{~A}$, or $a \mathrm{~B} \times a \mathrm{~B}$, a fquare, whofe root is $a \mathrm{~B}$ or $\mathrm{A} b$.

Again, let abc, ABC, EFG, be three like cube numbers; then fince $a: b:: A: B$, and $a: c$ $:: E: G$; alfo $B: C:: F: G$; therefore $a B=$ $b \mathrm{~A}, a \mathrm{G}=c \mathrm{E}$, and $\mathrm{CF}=\mathrm{BG}$; then $a b c \times \mathrm{ABC} \times$ $\mathrm{EFG}=a \times b \mathrm{~A} \times c \mathrm{E} \times \mathrm{BG} \times \mathrm{CF}=a \times a \mathrm{~B} \times$ $a \mathrm{G} \times \mathrm{BG} \times \mathrm{BG}=a^{3} \mathrm{~B}^{3} \mathrm{G}^{3}$, a cube; whofe root is $a \mathrm{BG}$ or $a \mathrm{CF}$, or $b \mathrm{AG}$, or $b \mathrm{CE}$, or $c \mathrm{AF}$, or $c \mathrm{BE}$.

Cor. 1. If the product of two numbers be a Souare; or of three numbers a cube; they are fimilar plane or folid numbers.

For if it is not $a: \mathrm{A}:: b: \mathrm{B}$, then it is not $a B=A b$, but rather $a B=D b$, and then we fhould not have $a \mathrm{~B} \times b \mathrm{~A}$, or $a \mathrm{~B} \times a \mathrm{~B}$, a fquate number (but rather $a \mathrm{~B} \times 6 \mathrm{D}$); contrary to the hypothefis.

Cor. 2. Two difimilar plane numbers cannot produce a Square.

For a fquare is only produced from fimilar numbens (Cor. 1).

Cor. 3. If the Square of a number, \mathbf{A}, be a cube, the number itself, A, is a cube.

For A^{3} is a cube by nature, and A^{2} is a cube by fuppofition; therefore $\frac{A^{3}}{A^{2}}$ or A is a cube (Cor. Pr. 27).

Cor. 4. If any number measure or divide a Square number; the quotient will be a plane number, Similar to the divisor.

PROP. XII.

Between two like plane numbers there is one mean proportional; between two like Solid numbers there are two means; and fo on.
Let $a b, \mathrm{AB}$ be two like plane numbers; then there numbers $\begin{aligned} & \text { are proportional }\end{aligned}\left\{\begin{array}{c}a \\ : \begin{array}{l}\mathrm{A} \\ b\end{array} \\ b\end{array} \mathrm{~B}\right.$ $\left.\begin{array}{l}\text { whence there are } \\ \text { proportional }\end{array}\right\} a b: A b: A B$ (Cor. 4. Pr. 29).

Again, let $a b c, A B C$ be two fimilar folid numbers; then
there numbers
are proportional $\left\{\begin{array}{rlll}a: & \mathrm{A} \\ & b & : & \mathrm{B} \\ & & & c\end{array}\right.$
whence there are $\{a b c: \mathrm{Abc}: \mathrm{ABc}: \mathrm{ABC}$ (Cor. 4.
proportional And fo on for others.

Cor. 1. The fe are like plane numbers, that have one mean proportional between them; and like folid numbers, that have two means: And fo. on.

For fine $a b: A b: A B$; therefore $a b \mathrm{AB}=$ AbAb (Pr. 29), and $a \mathrm{~B}=\mathrm{Ab}(\mathrm{Ax} .5)$; alfo $\frac{a \mathrm{~B}}{\mathrm{AB}}$ $=\frac{\mathrm{Ab}}{\mathrm{AB}}$ (ib.) or $\frac{a}{\mathrm{~A}}=\frac{b}{\mathrm{~B}}$, therefore $a: \mathrm{A}:: b: \mathrm{B}$ (Def. 27). P 4 Like-

Likewife $a b c \times \mathrm{AB} c=\mathrm{A} b c \times \mathrm{A} b c$, or $a \mathrm{~B}=\mathrm{A} b$, whence $a: \mathrm{A}:: b: \mathrm{B}$; alfo $a b c \times \mathrm{ABC}=\mathrm{Abc}$ $\times \mathrm{ABc}$, or $a \mathrm{C}=\mathrm{Ac}$, whence $a: \mathrm{A}:: c: \mathrm{C}$. And fo of others.

Cor. 2. Between two nonsmilar numbers, one or more means carnot be found.

For if there were any means, the numbers would be fimilar (Cor. 1).

PROP. XLII.

Like plane numbers are to one another, as the fquares of their fimilar Jides or factors; and like Solid numbers are as their cubes; and 50 on.
For if $a b, \mathrm{AB}$ be fimilar planes, then $a: \mathrm{A}:$: $b: \mathrm{B}$, and $a \mathrm{~B}=\mathrm{A} b$; but $a b: \mathrm{AB}:: a b$: $a \mathrm{AB}$ or $\mathrm{AAb}:$: $a a$: AA (Cor. 4. Pr. 29).

Again, if $a b c, A B C$ are fimilar cubes, then fince $a B=A b$, and $a C=A c$, therefore $a b c: A B C:$: $a a \times a b c: a a \times \mathrm{ABC}$ (Cor. 4. Pr. 29) : : $a^{3} \times b c$ $: A \times A b \times A c:: a^{3}: A^{3}$ (Cor. 4. Pr. 29).

Cor. No numbers prime to one anotber, except Squares, are Jumilar plane numbers.

For if they be fimilar plane numbers, they are not prime; for if a be prime to A, yet b and B are fome equal multiple of a, A; and therefore are not prime to one another (Pr. 30).

PR O P. XLIII.

If a number of any power meafures another number of the fame porwer; then the root of the firft will meafure the root of the laft. And the contrary.
For in the continual proportionals, $A^{3}, A^{2} B, A B^{3}$, B^{3}; fince A^{3} meafures B^{3}, it alfo meafures $A^{2} B$ the fecond term (Cor. Pr. 34), But fince $A^{3}: A^{2} B$ $1:$: $: B\left(\right.$ Cor. 4 . Pr. 25); therefore if A^{3} meafure 3 $A^{2} B$, A will meafure B (Def. 27). On the contrary,

Chap. II. of N U M B ERS. 217 if A meafures B, A^{3} will meafure $A^{2} B$; and $A^{2} B$, $A B^{2}$; and $A B,{ }^{2} B^{3}$: therefore A^{3} meafures $B_{3}{ }^{3}$ (Ax. io).

Cor. If the power does not meafure the power, neither fiwall the root meafure the root; and the contrary.

For if you fay A meafures B , then fhall A^{3} meafure B^{3}; contrary to the hypothefis.

And if you fay that A^{3} meafures B^{3}, then A will meafure B; likewife againt the hypothefis.

$C H A B$.

C H A P. III.

The properties of particular numbers. Divifors and aliquot parts. Circulating numbers, and fuch as terminate, or run on ad infinitum by divifion.

PR O P. XLIV.

$\mathcal{A}^{L L}$ the the powers of any number, ending in 5 : and if a number ends in 6 , alfo end in 5 : and if a number ends in 6, all its powers end in 6.
For 5 times 5 is 25 . And 6 times 6 is 36 .
P R O P. XLV.

No number is a Square, that ends in $2,3,7$, or 8 ,
This is plain by fquaring all the natural numbers to 10.

PROP. XLVI.

Any even Square number is divifible by 4:
The root is even ($\operatorname{Pr} .9$), therefore let $2 n$ be the root, then 4 mm is the fquare of it; and 4 meafures or divides 4 mm .

Cor. A number confifing of two, three, \&c. even Squares, is divifible by 4.
PROP. XLVII.

An odd Square mumber, divided by 4 , leaves a remainder

$$
\text { of } \mathrm{I} \text {. }
$$

The roat of an odd fquare is odd (Pr. 8), therefore let $2 n+\mathrm{I}$, be the root, which multiplied by 4

Chap. III. of N U M B ER S. itfelf, gives the fquare $4 n n+4 n+1$, but 4 will meafure $4 n n+4 n$, and I will remain.

Cor. If a number confifing of two odd Squares, be divided by 4 , it leaves a remainder of 2 ; of three odd Squares, it leaves a remainder of 3 .

P R O P. XLVIII.

In every Square number, the number of divifors is odd: in nonquadrate numbers, even.

Let $3^{6}(a a b b)$ be a fquare $113^{6} \mid \pm a a b 3$ number; now fince any di- $\quad 2 \quad 18$ a $a b b$ vifor and its quotient, are two divifors ; therefore if they be fet down together, you will

3	12	b	$a a b$
4	9	$a a$	$b b$
	6		$a b$

Cor. If the number of divifors be odd, it is a Jquare number; if even, it is no Square.

PROP. XLIX.

Any power of a prime number bath as many aliquot parts, as is the dimenfion of its power.

As if a be a prime, then any power as a^{3} contains the 3 aliquot parts $1, a, a a$. Alfo a^{4} contains thele, i, a, a, a, a^{3}, which are 4 ; and fo on.

Cor. The number of divijors in any power of a prime number, is equal to the index of the next fuperici poter thercof.

For it is I more than the number of aliquot parts.
PROP.

PR ○ P. L.

In any number made up of different primes or their powers; the number of divifors thereof, is equal to the continual product of the indices of the next fuperior pocuers of thefe primes.

For the divifors of a^{3}, are $\mathrm{I}, a, a a_{2} a^{3}$ (Cor. Pr. 48); that is 4 . And the divifors of $a^{3} b^{2}$, are fuch as are produced by multiplying $\mathrm{I}, a, a a, a^{3}$, by each of the divifors in b^{2}, that is, by $1, b, b b$, which will make 4×3 or 12 divifors. Likewife the divifors in $a^{3} b^{2} c$, are had by multiplying thefe twelve into I, c, the two divifors of c, which will be $4 \times 3 \times 2=24$; and fo on. .

Cor. If the powers of feveral different prime numbers be multiplied togetber; the number of divifors in the product, is equal to the product made by the number of divifors in each power, multiplied togetber.

For the number of divifors in a^{3} is 4 , in b^{2} is 3 , in c is 2 ; and in $a^{3} b^{2} c$ is $4 \times 3 \times 2=24$.

PROP. LI.

Any number divided by 9 , will leave the fame remain. der, as the fum of its figures or digits divided by 9 .
Let there be any number, as 7604 ; this feparated into feveral parcels becomes $7000+600+4$; but $7000=7 \times 1000=7 \times \overline{999+1}=7 \times 999+7$. In like manner $600=6 \times 99+6$. Therefore 7604 $=7 \times 999+7+6 \times 99+6+4=7 \times 999+$ $6 \times 99+7+6+4$. Therefore $\frac{7604}{9}=\frac{7 \times 999+6 \times 99}{9}$ $+\frac{7+6+4}{9}$ (Ax.5); but $7 \times 999+6 \times 99$ is evidently divilible by 9 , therefore 7604 divided by 9 leaves the remainder
remainder $7+6+4$ to be divided by 9 , which is nothing elfe but the fum of the digits $7+6+0+4$. And the fame holds for any other number.

Cor. 1 . If any number is divifibie by 9 , the jum of its figures or digits is divifible by 9." And the contrary.

For then the remainder will be nothing, in both of them.

Cor. 2. Any number divided by 9, leaves the fame remainder, as when all the figures of it are any way tranfoofed, and then divided by 9 .

For the fum of the digits ftill remains the fame.

PROP. LII.

Any number divided by 3, will leave the fame remainder, as the fum of its figures or digits divided by 3 .

For fuppofe any number, as 7604 , and proceeding as in the laft Prop. we have $7604=7 \times 999+6$ $\times 99+7+6+4=7 \times 3 \times 333+6 \times 3 \times 33+7$ $+6+4$, and $\frac{7604}{3}=\frac{21 \times 333+18 \times 33}{3}+\frac{7+6+4}{3}$. But it is evident $21 \times 333+18 \times 33$ is divilibly by 3 , confequently there remains only $7+6+4$ to be divided by 3, which is the fum of the digits, as was propofed.

Cor. I. If any number is divifible by 3, the fum of its digits is aljo divifible by 3 : and the contrary.

For in both cafes nothing will remain.
Cor. 2. Any number divided by 3, leaves the fame remainder as it would do, when its digits are tranfpofed and placed in dny other order.

For the fum of the digits remains the fame in any pofition.

If any two numbers are Separately divided by 9 , and the two remainders multiplied together, and that product divided by 9 , this taft remainder will be the fame, as if you divide the product of the two jurist numbers by 9 . For let $9 \mathrm{~A}+a$, and $9 \mathrm{~B}+b$, be two numbers; a, b, being the two remainders. Then the product of the two numbers is $9 \times 9 \mathrm{AB}+9 \mathrm{Ab}+9 \mathrm{~B} a+a b$. But $9 \times 9 \mathrm{AB}+9 \mathrm{~A} b+9 \mathrm{~B} a$ is divifible by 9 ; therefore there is no remainder but what is had by dividing ab by 9 .

Cor. This Prop. holds equally true for the number 3; and is demonstrated the fame way.

PROP. RIV.

If one number be divided by another prime to it, and the division continued on indefinitely; the number of f gures which circulate (or return again) in the quotent, will be always less than the number of units in the divisor.
Suppofe 6 divided by 7 ; 7) $6.0(857142,857142,8$ here the divifor being 7 , the remainder mut be always leis than it, and mut be either $1,2,3,4,5$, or 6 . So that in the 7 th place, if not before, one of there remainders mut needs return a fecond time; and the fame remainder returning, as before, a repetition of the fame figures mut return again in the quotent: and fo forward.
And it is evident the fame will hold for any divifor; the number of remainders, being always left than the number of units in it.

[^0]
PR O P. LV.

If one number divide another prime to it, the quotient will end after a certain number of figures, when the divifor is compounded of 2 or 5 , or both: In all other cajes, the quotient will never end.

For fince dividing by any power of 2 is equivalent to dividing, firft by 2 , and then the quotient by 2 , and fo on; alfo dividing by any power of 5 is the fame as dividing firft by 5 , and then the quotient by 5 , and fo forward; and laftly, fince any number may be divided by 2 or 5 , at moft by adding a cypher: therefore it is plain, when the divifor is a compofite number made u p of the powers of 2 and 5 , if the divifion be performed continually by the fingle numbers 2 , and 5 , as offen as they are involved; that fo many feveral operations will end the divifion, and the quotient be at an end.

On the contrary; any number P that is prime to 2 and 5 , will be prime to 2×5 or 10 (Prop. 14). And the fame being prime to IO, will be prime to 100, 1000, 10000, E° c. ad infinitum (Cor. 2. Pr. I4); and therefore P can meafure none in that feries. Likewife if Q be prime to P, then P will be prime to $10 \mathrm{Q}, 100 \mathrm{Q}, \mathrm{E}^{3} c$. (Pr. 14). So that P can fill meafure none in this laft feries. Whence if Pdivide any of thefe, the quotient will continue without end. Yet the numbers will at laft circulate, according to Prop. 54.

P R O P. LVI.

In any circulating number, the whole circulating or repeating part, running on for ever; is equal to a vulgar fraition whofe numerator is the number repeating (or ibe repetend), and denominator as many 9^{\prime} as there are figures in the repetend.

As in the number 24.350765076507650768 c . ad infinitum; $507650765076 \mathrm{EJ}_{\mathrm{c}} .=\frac{5076}{9999}=\frac{564}{11 \mathrm{II}}$, in the leaft terms.

For let $C=$ whole circulating part, $R=$ repetend or repeating figures 5076 ; then from the whole circulating part, that is,
from. $50765076507650765076 \mathrm{E}^{\circ} \mathrm{c}$. $=\mathrm{C}$,
take . $.5076507650765076 \mathrm{E}^{\circ} \mathrm{C} .=\frac{\mathrm{I}}{10000} \mathrm{C}$;
rem. $.5076=R$.
But this taking away from C the rooooth part of itfelf, is equivalent to multiplying C by 1 $\frac{1}{10000}$ or by $\frac{10000-1}{10000}$, that, is by $\frac{9999}{10000}$, where there are as many cyphers and 9 ' s, as there are places of figures in the repetend. Therefore $\frac{9999}{10000} \mathrm{C}=\mathrm{R}=.5076$, and $C=\frac{10000 \times .5076}{9999}=\frac{5076 .}{9999 .}=.507650765076$ $\Xi^{\circ} c$. ad infinitum. And it is evident from the procefs, that it holds equally for any circulating number.

Cor. I. The circulation may be fuppofed to begin at any figure of the repetend, and therefore 24.350765076
 $=24.350 \frac{7650}{9999}=24.3507 \frac{6.507}{9999}=24.35076 \frac{5076}{9999}$ \& c.

Cor. 2. Hence if the repetend be divided by as many 9's as it confifs of places; the quotient will be the whole circulating part, or the figures of the repetend, repeated over and over for ever.

For $\frac{5076}{9999}=C$.
Cor. 3, And if the whole circulating part be multiplied by a number confifing of as many 9 's, as there be places in the repetend (conjidered as a decimal); the product witl be the repetend.

For

For $9999 \mathrm{C}=5076$, and $.9999 \mathrm{C}=.5076$, the firft repetend.

Cor. 4. If ainy circulating number be multiplied by any given numuer, the product will be a circulating number; and the repetend will conflil of the fome number of figures as before.

For in the circulating number 50765076 E c. every repetend 5076 being equally multiplied, muft produce the fame product. And if thele products confift of more places, the overplus in each being alike, is carried to the next, fo that each product is equally increafed, and therefore every four places continue alike. And the fame holds for any other number. For example, $5076 \times 13=65988$, but the 6 belongs to the firft place of the next repetend; which being every where added, the repetend now appears to be 5994.

But the fame thing does not hold in divifion.
Cor. 5. If you take any prime number (except 2 and 5) for a divifor; and by it divide 1.0000 \&cc. till 1 remains, or divide .99999 \&xc. till o.remains; the number of cypbers or nines made ufe of, will be equal to the number of figures in the repetend; when the dividend is any number which is prime to the divifor.

For in dividing $1.00 \delta^{\circ} c$. by any number, when I remains, the figures in the quotient begin then to repeat over again, as you had . at firlt to begin with. And fince $999 \mathcal{E}_{c}$. is lefs by I than 1000 Esc. therefore o muft remain here when the repeating figures are at their period. Whatever number of repeating figures we have when this dividend is 1 ; we fhall have the fame number of figures in the repetend, whatever the dividend be, by Cor 4 . Therefore altering the dividend at pleafure, does not alter the number of places in the repetend, the divifor continuing the fame; provided the divifor and divilend U be
be prime to one another. For when the contrary happens, the quotient will circulate in fewer figures.

Cor. 6. If a circulating decimal bas a repetend of any number of figures, it may be confidered as baving a repetend of twoice or thrice t.bat number of figures, or any multiple tberecf.

Thus in the number 4.137,37,37, having the repetend 37 of 2 places; it may be confidered as having the repetend 3737 , or 373737 ; of 4 or 6 places, $\xi^{3} c$.

Cor. 7. If tweo or more numbers be added togetber, that bave repetends of equal places; the fum will bave a repetend of the Same number of places.

This appears from Cor. I , and by the reafoning in Cor. 4. For every column of periods or repetends amounts to the fame fum.

PROR. LVII.

If A, B, be two numbers, prime to one anotber; and each of them divides a number prime to it, and gives in the quotients two repetends of C and D places: I fay, the fame number divided by the product AB , will give a repetend of jo many places, as is denoted by the leafo dividenid of C and D .

For let N be the leaft number that C, D, divide; and let $a \times \mathrm{C}=\mathrm{N}=b \times \mathrm{D}$. Now it is plain that a periods of C will end with b periods of D; and therefore they both terminate together after N places, if they begin together, as they may be fuppofed to do (Cor. I. Pr. 56). And they do not end fooner, becaufe N is the leaft dividend. Therefore the repetend confifts of N places, and no more.

To make it plainer, fuppofe $\frac{1}{11 \times 37}$ or $\frac{1}{407}$ to be the fraction propofed. Then fince $\frac{1}{I I}=0, \mathcal{E}_{6}$. repeats in 2 places, and $\frac{I}{37}=.027, \delta^{\circ}$ c. repeats in three places. And the leaft common dividend of 2 and 3 is 6 , therefore we may fuppofe them both to repeat in 6 places (Cor. 6. Pr. 56). And fince 99 is divifible by 11 ; therefore $09,99,99$ is alfo divifible by 11 ; and fince 999 is divifible by 37 , therefore 999,999 , is alfo divifible by 37 . Therefore 999999 is divifible both by II and 37 ; and therefore it is divifible by 11×37 or 407 (r rop. 16). And therefore the repetend of $\frac{1}{407}$ will confift of 6 places (Cor. 5. Pr. 56).

Cor. If the feveral divifors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&cc. be prime to one another, and repeat in $\mathrm{E}, \mathrm{F}, \mathrm{G}$, \& c . places, reSpectively. And if N be the leaft dividend of E, F, G, \&c. then if the product $\mathrm{ABC}, \& \mathrm{c}$. be made a divijor, the quotient will repeat in N places.

This follows from Cor. Prop. 16 , and the reafon. ing in this Prop.

$$
Q_{2} \quad C H A P
$$

C H A P. IV.

Numerical Problems.

PROBLEM I.

To find the greateft common meafure of two or more numbers.

R U L E.

AKE two of the numbers, and divide the greater by the leffer, and the leffer by the remainder, and the laft divifor by the laft remainder, and fo on, till nothing remain : then the laft divifor is the greateft common meafure of thefe two numbers.

If there be more numbers, take the number laft found and another of the given numbers, and find their greateft common meafure as before: then this is the greateft common meafure of the three given numbers. And fo on. This procels is plain from Prop. ${ }^{10}$.

$$
\text { Ex. } 1 .
$$

Find the greateft common meafure of 72 and 60.

$$
\begin{aligned}
& \text { 60) } 72(1 \\
& 60 \\
& \frac{12) 60(5}{}
\end{aligned}
$$

$$
60
$$

So 12 is the greateft common meafure of 72 and 60.

$$
E_{x .2} .
$$

To find the greateft common meafure of 72,60 and 28 .

Chap. IV. PR O B L E M S.
Find 12 the greateft common meafure of 72 and 60 ; then find the greateft common meafure of 12 and 28.

$$
\begin{aligned}
& \text { 12) } \begin{array}{l}
28(2 \\
\frac{24}{4)} 12(3 \\
12
\end{array}
\end{aligned}
$$

So 4 is the greatef common meafure of 72,60 ; and 28 .

PR O B L E M II.

Tiwo or more numbers being given, to find the leaf numbers, that bave the fame proportion with them.

R U L E.

Divide the feveral numbers by their greateft common meafure; and the quotients will be the numbers required. By Cor. 1. Pr. 30.

$$
E x . \mathbf{I} .
$$

Let 12 and 18 be propofed, then 6 is the greateft common meafure, found by Prob. I.

$$
\text { 6) } 12(2 \quad \text { 6) } 18
$$

Then 2 and 3 are the numbers fought.

$$
\text { Ex. } 2 .
$$

Let 6,4 , and 8 be the numbers given; their greateft common divifor is 2 .

$$
\text { 2) } 6(3 \quad \text { 2) } 4(2 \quad \text { 2) } 8(4
$$

Then $3,2,4$, are proportional to 6,4 , and 8 , and the leaft in that proportion.

PROB-LEM III.

Two or more numbers being given, to find out their leaft common, divideud.

R ULE.

Take two of the numbers, and divide their product by the greateit common meafure of thefe numbers; the quotient is the anfwer for thefe two numbers.

Then take a third number and the laft quotient, and divide their product by their greateft common meafure; and the quotient is the leaft number which thefe three numbers meafure. And fo on.

For let the two numbers be A, B; let P, Q, be the leaft in that proportion, M their greateft common meafure; then $\mathrm{PM}=\mathrm{A}, \mathrm{QM}=\mathrm{B}$. Then AQ or AB \bar{M} is the leaft number A and B can divide or meafure.

If you fuppofe F to be lefs; let $\frac{F}{A}=G, \frac{F}{B}=H$, or $\mathrm{F}=\mathrm{AG}$ or BH , then by proportion $\mathrm{P}: \mathrm{Q}::$ $\mathrm{A}: \mathrm{B}:: \mathrm{AG}$ or $\mathrm{BH}: \mathrm{BG}:: \mathrm{H}: \mathrm{G}$ (Cor 4. Pr. 29). But P meafures H; and Q meafures G (Prop. 30). And $Q: G:: A Q$: AG. And fince Q meafures G, therefore $A Q$ or $\frac{A B}{M}$ meafures AG or F; that is, the greater meafures the lefs; which is abfurd.

And if there be three numbers $A, B, C ; \operatorname{let} D=$ $\frac{A B}{M}$ be the leaft dividend of A and B, and let E be the leaft that C and D meafure. Then E will be the leaft that $\mathrm{A}, \mathrm{B}, \mathrm{C}$, meafure.

For if you fay there is a lefs, as E; then fince D is the leaft that A, B, meafure; therefore D meafures F (Cor. Pr. II); and fince E is the leaft that C, D meafure; therefore E meatures F , the greater the lefs: which is abfurd.

$$
\text { Ex. } 1 .
$$

To find the leapt number which 12 and 15 meafire, or their lealt dividend.

$$
\frac{15}{60}
$$

$$
12
$$

$$
18^{\circ}
$$

o

Ex. 2.
To find the leaf number that 12,15 , and 24 meafure."

60 is the leapt dividend of $i 2$ and 15 . Then the greateft common meafure of 60 and 24 is 12 .

$$
24
$$

12) 1440 (120 , the leaf common dividend.
PROBLEM IV.

To find out the leafs numbers continually proportional, as many as all be required, in a given proportion.

RU LE.

Find A, B, the leapt numbers in the given properion (Prob. 2) ; then $A^{2}, A B, B^{2}$, will be the three leaft; and $A^{3}, A^{2} B, A B^{2}, B^{3}$, will be the four leaf numbers. And in general if $n+1$ denote the number of terms required, then $-A^{n}, A^{n-1} B, A^{n-2} B^{2}, A^{n-3} B^{3}$, $\xi^{c} c$. to B^{n} will be the numbers fought.

This is plain from Prop. 33. and Cor. I.

$$
\text { Ex. } 1 .
$$

To find three the leaft numbers in proportion as 8 to 12. Two the leaft are 2 and 3, therefore the 3 numbers are $4: 6: 9$.

$$
\text { Ex. } 2 .
$$

To find the four leaft numbers, as 4 to 6 .

$$
\text { Anf. } 8: 12: 18: 27
$$

Ex. 3.
To find five the leaf numbers, as 2 to 3 .
Ant. $16: 24: 36: 54: 8 \mathrm{I}$.
PR OB L EM V.
Several proportions being given in the leaf terms; to find out the leafs numbers that continue these proporlions.

RU LE.

Let $A: B, C: D, E: F$ be the feveral proportions; A : B
The feveral proportions being placed as in the margin; multiply the two firft terms A, B, by the leading terms of all the other proportions, C, E; this gives the two first terms.

Multiply the latter term D in the fecond proporton, by fuch factors as the frt term C is multiplied by : this is the third term.

Multiply the latter term F in the third proportion, by fuch factors as the former E is multiplied by, for the fourth term. And proceed thus through all the proportions.

Laftly, divide all by their greateft common meafure, when there is any foch. By Cor. 4. Pr. 29.

$$
E x .1
$$

Let the proportions be $6: 5$, and $10: 9$. 10 : 9
common divifor 5) $60: 50: 45$
anfwer 12 : 10 : 9
Ex. 2.
Suppofe $6: 5$, and $4: 3$, and $2: 7$, $6: 5$
$4: 3$
$2: 7$
anf. $\begin{array}{ll}2 \times 4 \times 6: 2 \times 4 \times 5: 2 \times 5 \times 3: 5 \times 3 \times 7 \\ : 40: & : 30: 105\end{array}$

P R O B L E M VI.

To refolve a number into all its component parts or factors.

R U L E.

Divide the number by 2 as oft as you can, then by 3 , then by 5 , by 7 , and all the fmalleft prime numbers, till you get a prime number in the quotient. Then you have all the compounding prime numbers, which being continually multiplied, produce the number given. Def. 18 .

Ex. I.
Let 60 be propofed.
23
2) $60(30(15(5$. then $2 \times 2 \times 3 \times 5=60$ 。

Ex. 2.

What are the component parts of -360 ?

Therefore

$$
\text { 2) } 360\left(180\left(90(45) r_{1}^{2}\right)(5)(\mathrm{r} .\right.
$$

$$
2 \times 2 \times 2 \times 3 \times 3 \times 5=360 .
$$

PROBLEM VII.

To find all the juft divifors of a given number.

R.U L E.

Divide it and all the fucceeding quotients by the fmalleft prime numbers in order, till the laft quotient be 1 . Then you have all the prime divifors. Then multiply every two together, and every three, and every four, and fo on. And thus you will have all the compound divifors thereof.

This follows from Prop. 50.
Ex. I.

What are all the divifors of 48 :
2) $48 \stackrel{2}{2} \stackrel{2}{2} \stackrel{2}{12}(6 \cdot 3)$ (1. Then $1,2,2,2,2,3$; are all the prime divifors, and $I \times 2,1 \times 3,2 \times 2$, 2×3, and $2 \times 2 \times 2,2 \times 2 \times 3$, and $2 \times 2 \times 2 \times 2$, $2 \times 2 \times 2 \times 3$, and $2 \times 2 \times 2 \times 2 \times 3$; that is, $1,2,3$ s $4,6,8,12,16,24$, and 48 , are all the divifors.

Ex. 2.

What are all the divifors of $a b b c^{3}$?
The fimple divifors are $\dot{s}, a, b, b, c, c, c$. And all the divifors will be $1, a, b, c, a b, a c, b c, a b b, a b c$, $a c c, b b, c c, b b c, b c c, c^{3}, a b b c, a b c c, b b c c, a c^{3}, b c^{3}, a b b c^{2}$, $a b c^{3}, b b c^{3}, a b b c^{3}$.

Chap. IV. PROBLEMS.

PROBLEM VIII.

To find a number that hall bave a given multitude of divijors.

R U L E.

Take the powers of as many prime numbers as is convenient, io that their indices being each leffened by - , and then multiplied together, may be equal to the number of diviors, I fay, thefe powers all multipiied together is the namber fought. And the leffer the prines, the leifer the number will be.

This is plan by sop. 50.

> Example.

To find a number having 20 divifors.
Here $20=10 \times 2=5 \times 4=5 \times 2 \times 2$. Then take $a, b, c, d, \& x$. and any of thefe $a^{19}, a^{9} b, a^{4} b^{3}$, $a^{+b} c$, will do. Let $a=2, b=3, c=5$. Then $2^{19}, 2^{9} \times 3,2^{4} 3^{3}, 2^{4} \times 3 \times 5$; that is, 524288,1536 , 432,240 , will any of them anfwer the queftion.

Scholium.

The number of aliquot parts, being \mathbf{I} lefs, is found the fame way. And by this operation it appears how to find all the different ways it can be denoted : which in this example are but four. But any prime numbers may be ufed in each of thele ways.

PROBLEM IX.

To reduce a given fraction, or a given ratio, to the leaft terns; and as near as may be, of the fame value.

1 R U L E.

Let A, B, be the two numbers. Divide the latter B by the former A, and you will have ifor A; and fome number and a fraction annext, for B , call this C. Place thefe in the firft ftep.

Then fubtract the fractional parts, from the denominator, and what remains put after $\mathrm{C}+1$, with a negative fign. Then throw away the denominator, and place 1 and that laft number in the fecond ftep. This is the foundation of all the reft.

If the fractional parts in both be nearly equal, add thefe two fteps together; if not, multiply the leffer by fuch a number as will make the fractional parts, in both, nearly equal, and then add. And this multiplier is found by dividing the greater fraction by the leffer, fo far as to get an integer quotient. When you add the fteps together, you muft fubtract the fractional parts from one another, becaufe they have contrary figns.

The procefs is to be continued on, the fame way, adding the laft ftep, or its multiple, to a foregoing ftep, viz. to that which has the leaft fraction.

Note. The ratios thus found will be alternately greater and leffer than the true one, but continually approaching nearer and nearer. And that is the neareft in fimall numbers, which precedes far larger numbers : and the excefs or defect of any one is vifible in the operation.

Chap. IV. PROBLEMS. 237

Ex. 1.

To find the ratio of 10000 to 7854 , in fmall numbers.

Explanation.
The ratio of 10000 to 7854 is the fame as 1 to $0+.7854$ or 1 to $1-.2146$; here 1 and I is the firt ratio. But $2 \div 46$ being lefs than 7854 , divide the latter by the former, and you get 3 in the quotient, then multiply I and $\mathrm{I}-.2146$ by 3 , produces 3 and $3-.643^{8}$ as in the 3 d tep. This third ftep added to the firft itep produces 4 and 3 for the integers, and fubtracting the fractional parts, leaves 141 I 6 . 4 and 3 is the 2 c ratio. In this manner it is continued to the end; and the feveral ratios approximating nearer and nearer, are $\frac{1}{1}, \frac{4}{3}, \frac{5}{4}, \frac{9}{7}, \frac{14}{11}$, $\frac{219}{172}, \frac{233}{183}, \frac{452}{355^{2}}, \frac{1137}{893}$, and $\frac{5000}{3927^{\circ}}$. Here $\frac{14}{11}$ is the neareft in fmall numbers, the defect being only $\frac{44}{10000}$.

$$
\text { Ex. } 2 .
$$

To find the ratio of 268.8 to 282 in the leaft numbers.

So the feveral ratios are $\frac{\mathrm{I}}{1}, \frac{20}{21}, \frac{4 \mathrm{I}}{43}, \frac{6 \mathrm{I}}{64}, \frac{224}{235^{\circ}}$ And the defect or excefs is plain by infpection, e.g. $\frac{4 \mathrm{I}}{43}$ differs from the truth only $\frac{36}{2688}$ parts; and $\frac{20}{2 \mathrm{I}^{2}}$ but 48 fuch parts.

Chap. IV. PROBLEMS.

The reafon of this procefs is evident from Cor. 3 . Pr. 29. For if the terms of equal ratios be added together, the fums will be in the fame ratio.

2 R U L E.

Divide the greater number by the leffer, and the divifor by the remainder, and the laft divifor by the laft remainder, and fo on till o remain. Then

I divided by the firf quotient, gives the firft ratio.
And the terms of the firt ratio multiplied by the fecond quotient, and I added to the denominator, gives the fecond ratio.

And in general, the terms of any ratio, multiplied by the next quotient, and the terms of the foregoing ratio added, givés the next fucceeding ratio.

$$
\text { Ex. } 3 .
$$

Let the numbers be 10000 and 31416 , or the ratio $\frac{10000}{31416^{\circ}}$.

$$
\begin{aligned}
& \text { 10000) } \begin{array}{l}
31416(3 \\
\frac{30000}{1416) 10000(7} \\
\frac{9912}{88) 1416(16} \\
\frac{88}{536} \\
\left.\frac{528}{8}\right) 88(11 \\
88
\end{array}
\end{aligned}
$$

Then $\frac{1}{3}=$ firft or leapt ratio.
$\frac{1 \times 7}{3 \times 7+1}$ or $\frac{7}{22}=$ fecond ratio.
$\frac{7 \times 16+1}{22 \times 16+3}$ or $\frac{113}{355}=$ third ratio.
$\frac{113 \times 11+7}{355 \times 11+22}$ or $\frac{1250}{39^{2} 7}=$ fourth ratio.
Ex. 4.
The ratio of 268.8 to 282 is required.
2688) 2820 (1

2688

$$
\begin{aligned}
& \text { 132 }_{2688(20}^{264} \\
& \frac{48){ }_{132}(2}{96} \\
& \frac{96)}{36(1} \\
& \frac{36}{12)_{36(3}^{36}} \\
& \frac{36}{0}
\end{aligned}
$$

Then $\frac{I}{I}=$ firft ratio.
$\frac{1 \times 20}{1 \times 20+1}$ or $\frac{20}{2 I}=2 \mathrm{~d}$ ratio.
$\frac{20 \times 2+1}{21 \times 2+1}$ or $\frac{4 I}{43}=3$ d ratio.
$\frac{41 \times 1+20}{43 \times 1+2 I}$ or $\frac{61}{64}=4$ th ratio.
$\frac{6 \times 3+41}{64 \times 3+43}$ or $\frac{224}{235}=5$ th ratio.

To prove the truth of this rule, let $\frac{10000}{31416}$ be the ratio propofed; this is reduced to $\frac{\mathrm{I}}{3 \cdot 14 \mathrm{I} 6^{\circ}}$. It is plain that $\frac{1}{3}$ is the firft ratio, or that expreffed in the leaft terms. Now inftead of 3 take $3 \frac{1416}{1000}$ or $3 \frac{3}{7}$, which is more exact than 3 . Then inftead of $\frac{1}{3}$ we fhall have $\frac{1}{3 \frac{1}{7}}$ or $\frac{1 \times 7}{3 \times 7+1}=\frac{7}{22}$ for the 2 d ratio. Now in: ftead of 7 take $7 \frac{88}{4 \times 5}$ or nearly $7 \frac{7}{16}$, which is nearer: than 7. Then $\frac{1 \times 7}{3 \times 7+1}$ becomes $\frac{1 \times 7 \frac{1}{3} \frac{1}{3}}{3 \times 7 \frac{1}{18}+1}$ or $\frac{1 \times 7 \times 16+1}{3 \times 7 \times 16+16+3}=\frac{7 \times 16+1}{22 \times 16+3}$ for the third ratio, which is equal to the 2 d ratio multiplied by $16, \frac{1}{1}$ the 1 ft ratio: Again, for 16 take $16_{\frac{8}{88}}$ or $16_{\frac{4}{T} T}$, which will be more exact ftill; then $\frac{7 \times 16+1}{22 \times 16+3}$ becomes $\frac{7 \times 16_{T}^{i}+1}{22 \times 16_{T}^{\frac{1}{T}}+3}$ or $\frac{7 \times 16 \times 11+11+7}{22 \times 16 \times 11+3 \times 1+22}$ $=\frac{\frac{4 \times 16+1}{22 \times 11+7}}{2 \times 16+3 \times 11+22}$ for the 4 th ratio, which is equal to the 3 d ratio multiplied by 1 t, , the 2 d ratio. And fo forward, if there were more.
PROBLEM X.

To reduce a decimal to a vulgar fraction:

R:U E.

Place the decimal as a numerator over 1 and as many cyphers as there are figures, for a denominator. Then reduce it to the loweft terms.

If the decimal circulate, place the figures of the repetend for a numerator, and as many 9 's for a de-nominator:-and reduce as before. This appears from Prop. 56.

Ex. 1 .

Let .3065 be propored:
$.3065=\frac{3065}{10000}$, divide by 5 , then $\frac{613}{2000}$ is the fraction required.

$$
\text { Ex. } 2 .
$$

To reduce 6.32309309309 E c. to the form of a vulgar fraction.

Here $6: 32309309$ छc. $=6.32 \frac{309}{99 ?}=6.32 \frac{10}{3} \frac{3}{3}$ $=6 \frac{32 \frac{{ }^{\frac{103}{335}}}{100}}{100}=6 \frac{10759}{33300}$.
PROBLEM XI.

Having a vulgar fraction given in the loweft terms, and the denominator a prime (neither 2 nor 5); to find the number of. figures that circulate, by dividing the numerator by the denominator.

R U L E.

Divide 9999 छ c c. by the denominator till o remains, then the number of 9 's made ufe of, will be equal to the number of places in the repetend.

By Cor. 5. Prop. 56.

> Ex. I.

Suppofe $\frac{287}{37}$, to be given.
37) 99999 (027. Here are three nines ufed, therefore 74° the repetend confifts of 3 places.

252
 259

Ex. 2.
Let $\frac{I}{I T}$ be propofed.
1I) 999 (9. Here are 2 nines made ufe of, therefore the repetend has 2 places.
99
\bigcirc
Ex. $3 \cdot$
Let $\frac{2}{7}$ be given.
7) 9999999 (142857 . Here are 6 nines, and the repetend confifts of 6 places.

PR O BLEM XII.

Having a vulgar fraction in the loweft terms, and the denominator made up of two or more different primes (neitber 2 nor 5) ; to find the number of figures circulating, by dividing thereby.
RULE.

Find the number for each fingle prime in the denominator, by Prob. ir. Then find the leaft dividend of all thefe numbers, by Prob. 3. And that is the number of figures circulating.

This appears by Prop. 57. and Cor.

> Ex. I.

Let $\frac{13}{1 \times 37}$ be propofed.
The repetend by 11 confifts of 2 places; and that by 37 of 3 places; and 6 is the leaft number that 2 and 3 divide; therefore if 13 be divided by 407 , the repetend in the quotient will confift of 6 places.

Ex. 2:

Let the fraction be $\frac{1}{3 \times 7 \times 1 \times 37}$ or $\frac{1}{8547}$.
The repetend by $3,7,11$, and 37 , is $1,6,2,3$, refpectively; and the leaft number which $1,6,2$, and 3 meafure; is 6 , for the number of places in the repetend.
SCHOLIUM?

It is not my defign here to fhew the feveral ways of working with circulating numbers, or repeating decimals. It is fufficient for me to explain the general principles thereof; that the reader may have an idea of the nature of them. For almoft all operations may be as fpeedily performed by the fhort rules delivered in multiplication and divifion of decimals. They that would fee more of it may confult Mr. Cum's treatife of circulating numbers。
(1)

[^0]: $\frac{5^{6}}{40}$
 $\frac{35}{50}$
 $\frac{49}{10}$
 7 56

 40
 35
 50
 49

