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A B S T R A C T   

To efficiently solve mathematical expressions and equations, students need to notice the systemic structure of 
mathematical expressions (e.g., inverse relation between 3 and − 3 in 3 + 5 – 3). We examined how symbol-
s—specifically variables versus numbers—and students’ algebraic knowledge impacted seventh graders’ 
problem-solving strategies and use of systemic structures within an online algebra game where students could 
dynamically transform expressions. We found that on simple problems, symbols did not impact students’ strategy 
efficiency, although students with higher vs lower algebraic knowledge were more efficient at solving these 
problems. On complex problems, students with higher algebraic knowledge were more efficient at solving var-
iable vs numerical problems, whereas students with lower algebraic knowledge were less efficient at solving 
variable vs numerical problems. The visualizations and examination of first steps further revealed that whether 
students leveraged systemic structures during their problem-solving varied across problems. The findings have 
implications for research on cognitive processes of symbols and practices on teaching mathematics.   

1. Introduction 

Symbols are cognitive tools that support reasoning, problem solving, 
and higher-level thinking (DeLoache, 2004; Koedinger et al., 2008; 
Vygotsky, 1978). However, learners’ struggles with abstract symbols are 
documented across development and domains (Fyfe et al., 2014). In 
mathematics, a defining challenge of algebraic learning is the shift from 
working with concrete numbers that can be calculated to reasoning 
about the abstract notion of variables—letters that represent a range of 
unknown values and denote a systemic relation within expressions 
(Küchemann, 1981). For instance, a previous study has revealed that 
middle school students struggled with problems presented in variables 
more so than problems presented in numbers (Chan, Smith, Closser, 
Drzewiecki, & Ottmar, 2021). While the transition from numbers to 
variables is typically challenging for students, introducing and using 
algebraic symbols, such as variables, in early years can promote a 
smooth transition (Blanton & Kaput, 2005; Carpenter et al., 2005). Prior 
work has emphasized instructional and developmental sequences that 
use concrete numbers to broadly support how students think about ab-
stract unknown variables (Fyfe et al., 2014; Koedinger & Anderson, 
1998). However, less is known about how individual differences in 

students’ mathematical knowledge may moderate learning and problem 
solving with variables. In the current study, we investigate how seventh- 
grade students’ strategies may differ when solving matched problems 
presented in variables versus numbers and explore how their algebraic 
knowledge may interact with the symbols presented in notation to in-
fluence their algebraic problem solving. By focusing on seventh-grade 
students who are just beginning to work with variables on a regular 
basis (NGA Center & CCSSO, 2010), this work provides insights into how 
students may solve problems as they transition from reasoning about 
numbers to variables, as well as contributes new findings that inform 
instructional practices to better support this transition. 

1.1. Mathematical structures and strategies 

Noticing structures, especially systemic structures, in mathematics is 
an important foundation for learning algebra (Kaput, 1998; Venkat 
et al., 2019). There are two different types of “structure”: surface struc-
ture and systemic structure (Kieran, 1989). Surface structure refers to how 
the terms and operands are presented within an expression. Surface 
structure includes individual features that make up an expression, such 
as the specific symbols used and the locational proximity between terms 
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within an expression (i.e., whether the terms to be combined are adja-
cent to each other). For instance, “3 + 5 – 3” has the surface structure of 
3 followed by + 5 then − 3. Systemic structure refers to the underlying 
mathematical properties within an expression, such as commutativity, 
associativity, and distributivity. For instance, leveraging the systemic 
structure of “3 + 5 – 3” involves recognizing the inverse relation be-
tween 3 and − 3, and identifying the opportunity to apply the 
commutative property in order to simplify the expression to 5. 

Understanding and noticing the systemic structure of expressions are 
important aspects of flexible and efficient problem solving (NGA Center 
& CCSSO, 2010; Rittle-Johnson & Star, 2007; Schneider et al., 2011). 
Mathematicians and mathematics teachers appreciate the elegance of 
efficient strategies involving the fewest number of steps and use them 
frequently in problem solving (Star & Newton, 2009). Efficient strate-
gies allow students to solve problems with minimal time, effort, or 
cognitive resources, and to reserve these resources for learning and 
solving more challenging problems. However, many students struggle to 
leverage systemic structures while solving problems (Newton et al., 
2020), especially when the terms to be combined are not adjacent to 
each other and the surface structure regarding the locational proximity 
of terms does not support uses of efficient strategies (Lee, Hornburg, 
Chan, & Ottmar, 2022). For instance, 3 and − 3 are non-adjacent to each 
other in “3 + 5 – 3”, and students may calculate from left to right in 
response to the surface structure (3 + 5 – 3 = 8 – 3, 8 – 3 = 5), 
simplifying the expression in two steps. Alternatively, recognizing that 3 
and − 3 are opposite numbers, students can use the systemic structure 
and combine the opposites to efficiently simplify to 5 in one step. 

Although students can use the surface structure to compute and 
simplify numerical expressions or the systemic structure to combine the 
opposites, only the latter approach applies to expressions involving 
variables. For example, in “x + y − x”, students cannot simply calculate 
from left to right. Rather, they need to notice the systemic structure and 
combine the opposites (i.e., x and − x) in order to isolate y. Because 
understanding the properties of opposites and inverses is an important 
aspect of mathematics and this understanding supports algebraic 
reasoning as well as efficient problem solving (Vamvakoussi & Vosnia-
dou, 2004), we focus on opposites and inverses (hereafter opposites/ 
inverses) as a systemic structure that students can leverage during 
problem solving. We examine how variation in symbols (i.e., presenting 
problems with identical systemic structure in either variables or 
numbers) impacts students’ problem-solving strategies. 

1.2. Variables and numbers 

Unlike numbers that represent specific, known, and concrete values, 
variables are symbols that can be used to represent unknown values, 
relations between terms, or generalized patterns or structures in arith-
metic (Usiskin, 1988). For example, in 5x + 2 = 12, the variable x 
represents an unknown value to be solved. In the formula, A = LW, 
variables are used to indicate relations between area, length, and width, 
and they can be substituted with specific numbers when solving area 
problems (Malisani & Spagnolo, 2009). Further, in a + b = b + a, the 
variables are used to illustrate a generalized principle of commutativity 
in addition (Bardini et al., 2005). These varying uses of variables com-
bined with their abstract conceptualization contribute to the challenges 
students face when learning algebra (Usiskin, 1988). 

Students can solve a numerical problem by relying on the surface 
structure of the notation and carrying out operations with numbers; 
however, they need to notice the systemic structure within variable 
problems to simplify them (Malisani & Spagnolo, 2009). Students often 
struggle to solve variable problems because these problems require 
students to understand the meaning of variables, operate with un-
knowns, and make explicit relations between the terms (Filloy & Rojano, 
1989; Herscovics & Linchevski, 1994; Malisani & Spagnolo, 2009; 
Philipp, 1992). While students can reason algebraically without the use 
of variables (Radford, 2006; Sfard & Linchevski, 1994), they may 

struggle to make sense of the symbolic letters and fail to recognize that, 
in certain situations, these letters represent variables which can be 
replaced by any number (Bardini et al., 2005; Malisani & Spagnolo, 
2009). As variables can be used to represent generalized relations and 
can be substituted with varying or multiple values (Philipp, 1992; 
Schoenfeld & Arcavi, 1988), variables and their complex conceptuali-
zation may influence the ways in which students leverage the systemic 
structure of expressions when solving algebraic problems that move 
beyond concrete numbers. 

While much work has shown that students struggle with variables 
and algebraic notations, presenting expressions with variables instead of 
numbers may actually facilitate learning of algebraic concepts because it 
removes the opportunities and impulse to calculate (Givvin et al., 2019; 
Stacey & MacGregor, 1999). Many students view mathematics as a set of 
numbers to calculate or procedures to memorize, rather than a set of 
concepts to understand (Garofalo, 1989). Prior work has demonstrated 
that presenting problems in numbers as opposed to variables draws 
students’ attention to calculation procedures rather than the common 
structure between algebraic problems, hindering their learning of the 
underlying concepts (Lawson et al., 2019). On the contrary, presenting 
problems in variables instead of numbers limits calculations, and may 
encourage students to focus on the systemic structure and strategically 
leverage the structure in problem solving. 

Although there are notable differences between variables and 
numbers, they share many of the underlying mathematical principles 
(Booth, 1981, 1984). Students can leverage systemic structures and 
apply mathematical properties, such as commutativity, to transform or 
simplify both variable and numerical expressions (Kieran, 1989); how-
ever, they often struggle to do so (Warren, 2003). In a preliminary study, 
sixth- and seventh-grade students rarely leveraged systemic structures to 
simplify variable or numerical expressions, and their struggles were 
particularly apparent on problems presented in variables (Chan, Smith, 
Closser, Drzewiecki, & Ottmar, 2021). Specifically, students took more 
steps and attempted problems more times when the problems were 
presented in variables as opposed to numbers, aligning with the litera-
ture on students’ struggles with variables. Further, students’ step and 
attempt counts did not vary by their mathematical knowledge. However, 
the sample was relatively small, most students were in advanced sixth- 
grade mathematics class, and only four problems were included in the 
prior analyses, warranting further investigation on the roles of symbols 
and students’ mathematical knowledge in their problem-solving 
strategies. 

1.3. Mathematical knowledge and strategy efficiency 

In the context of mathematics equation-solving, strategy efficiency has 
been operationalized as using a strategy with the fewest steps and/or the 
computation that involves simple (e.g., small or whole numbers) rather 
than complex numbers (e.g., large numbers, fractions; Xu et al., 2017). 
To implement efficient problem-solving strategies to a mathematical 
problem flexibly and adaptively, students need to have the knowledge of 
underlying mathematical concepts and procedures (Robinson et al., 
2018; Star & Rittle-Johnson, 2008). Conversely, students’ strategy ef-
ficiency may also influence their performance on algebra assessments, 
especially when the assessments tap students’ procedural knowledge in 
algebraic equation solving. This potentially bidirectional association 
between knowledge and strategy use has been demonstrated across 
different age groups and mathematics topics (Star & Rittle-Johnson, 
2008; Torbeyns et al., 2006). For instance, on the topic of algebraic 
equation solving, middle school students with higher mathematics 
achievement are more likely to use a more efficient strategy that in-
volves fewer steps compared to those with lower mathematics 
achievement (Newton et al., 2020; Wang et al., 2019). 

One potential mechanism underlying the association between 
mathematical knowledge and strategy efficiency may be students’ 
abilities to identify and leverage systemic structures (Rittle-Johnson & 
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Star, 2007; Schneider et al., 2011; Xu et al., 2017). In particular, stu-
dents with higher vs lower mathematical knowledge may be more likely 
to notice the systemic structures and the opportunities for applying 
mathematical properties that support efficient problem solving (Chi 
et al., 1982) as well as transfer of knowledge across problems (Novick, 
1988). Although noticing structural similarities between problems 
supports mathematical learning and problem solving, fifth- and sixth- 
grade students tend to focus on surface structures rather than systemic 
structures of equations and expressions (Sidney & Alibali, 2015, 2017). 

1.4. The current study 

In the current study, we aim to extend prior work by focusing on how 
symbols—variables vs numbers—impact students’ strategy efficiency, 
as measured by the number of problem-solving steps. In particular, we 
examine whether seventh-grade students are more or less efficient at 
solving variable vs numerical problems by quantitatively comparing the 
number of steps that students take to solve these problems. We also 
investigate whether students’ algebraic knowledge moderates the effect 
of symbol on their problem-solving strategies. In addition to the quan-
titative analyses, we qualitatively compare students’ strategies by 
visualizing the problem-solving processes as well as the mathematical 
principles they use on these two types of problems. 

Further, other non-systemic factors, such as the locational proximity 
of symbols (Lee, Hornburg, Chan, & Ottmar, 2022), the complexity of 
the problems (e.g., addition/subtraction or multiplication/division 
inversion problems; Robinson et al., 2006), and students’ prior experi-
ence working with problems of the same structure (Sidney, 2020) may 
also impact their use of systemic structures as well as strategy efficiency. 
Therefore, we account for these factors to examine how symbols and 
students’ algebraic knowledge independently impact their problem- 
solving strategies. Specifically, we designed four pairs of problems 
that were identical in systemic structure but varied in whether they were 
presented with variables (e.g., x  + y − x) or numbers (e.g., 3 + 5 – 3). 
We also systematically varied the complexity of problems, the locational 
proximity (hereafter proximity) of symbols, and the order in which 
variable and numerical problems were presented. Our specific research 
questions (RQs) and the corresponding hypotheses are pre-registered on 
the Open Science Framework (https://osf.io/tpnu2/) and are as 
followed: 

(RQ1) Confirmatory: Does students’ strategy efficiency, as indicated 
by their number of problem-solving steps, vary on problems presented in 
variables vs numbers? 

Hypothesis 1: Students may use less efficient strategies by taking 
more steps on problems presented in variables as opposed to numbers. 

(RQ2) Confirmatory: Does the effect of symbol on students’ strategy 
efficiency vary by students’ algebraic knowledge? 

Hypothesis 2: Students with lower algebraic knowledge may use less 
efficient strategies by taking more steps on variable problems as opposed 
to numerical problems; this effect may be smaller or insignificant among 
students with higher algebraic knowledge. 

(RQ3) Exploratory: Do the effects of symbol and algebraic knowledge 
on students’ strategy efficiency remain after controlling for other non- 
systemic factors, such as the proximity of the terms to be combined, 
the order in which the problems were presented, and the complexity of 
the problems? 

Hypothesis 3: Based on related prior research, we expect that stu-
dents may use more efficient strategies when the opposites/inverses are 
adjacent vs non-adjacent to each other, when they solve the second vs 
first of the paired problems, and when the problems are simple vs 
complex. We will explore whether the effects of symbol and its inter-
action with algebraic knowledge remain after accounting for these po-
tential influences. 

(RQ4) Confirmatory: How do symbols impact students’ use of sys-
temic structures during problem solving? 

Hypothesis 4: Based on prior research suggesting that students are 

more efficient on numerical vs variable problems, we hypothesize that 
students may be more likely to use systemic structures by leveraging 
mathematical properties on problems presented in numbers as opposed 
to variables. 

We quantitatively address our first three research questions using the 
number of steps students take to complete the problems as the focal 
dependent variable. We qualitatively address our final research question 
by visualizing and comparing students’ problem-solving processes on 
variable and numerical problems, paying close attention to whether 
their first step demonstrates leveraging the systemic structure of the 
problem. We first address our research questions on two pairs of simple 
problems involving addition and subtraction, then repeat the analyses 
on another two pairs of complex problems involving all four arithmetic 
operations in order to test the robustness of the findings. 

2. Methods 

2.1. Participants 

The sample for this within-subjects study was drawn from a larger 
randomized controlled trial conducted with ten in-person schools and 
one virtual school in one large, suburban district in the Southeastern 
United States during the 2020–2021 school year amidst the COVID-19 
pandemic. The larger study aimed to examine the efficacy of three 
educational technologies (see Decker-Woodrow et al., forthcoming). In 
the current study, we focused our analysis on the 445 seventh-grade 
students who were randomly assigned to playing From Here to There!, 
completed a pretest on algebraic knowledge, and completed the four 
pairs of problems in the From Here to There! game designed to address 
our research questions. In this game, students can manipulate algebraic 
symbols on the screen in real-time (Ottmar, Landy, Goldstone, & Weit-
nauer, 2015); all students’ actions are recorded for each problem so we 
can examine their problem-solving processes and strategy efficiency. 
The other two technologies (i.e., online problem sets and an equation- 
solving game) did not provide the appropriate log data for our 
research questions, thus were not included in the current study. 

A total of 911 students started the game, however, only 445 students 
completed all four pairs of problems in the game designed for this study. 
The analytic sample of 445 was much smaller than the original sample 
because (a) two schools opted out during the first two weeks of the study 
due to instructional concerns related to COVID-19 and (b) the paired 
problems were embedded in the middle of the game, requiring students 
to play at their own pace for several hours (problem 79 to 119; see From 
Here to There! section for more detail). 

Among the 445 students (54 % male, 46 % female), 36 % were in 
advanced mathematics classes that were designed for students who 
excelled in mathematics, and 64 % were in on-level classes that imple-
mented a typical mathematics curriculum. We received race and 
ethnicity information on 444 students from the school district. Of the 
444 students, 51 % were White, 30 % were Asian, 12 % were Hispanic, 3 
% were Black, and 4 % were of other races/ethnicities. Due to COVID- 
19, 70 % of the students (and their families) chose to receive their in-
struction in-person at the start of the Fall 2020, and the remaining 30 % 
of students (and their families) chose to receive virtual instruction. 

This research was approved by the Institutional Review Board at a 
University in the Northeastern United States. This research involved 
typical educational practices and did not require parental consent. 
Instead, parents received a letter informing them about the research and 
the data collected from the educational technologies. The parents had 
the opportunity to opt their child out of this study. 

2.2. Procedure 

The larger study consisted of nine 30-minute intervention sessions, 
and four 45-minute assessment sessions to be completed before, during, 
immediately after, and two months after the intervention, respectively 
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(see details in Decker-Woodrow et al., forthcoming). All sessions were 
administered online as a part of students’ regular mathematics instruc-
tion. During each intervention session, students worked individually 
through the problems within the game at their own pace using a device. 
The system automatically ended the game and saved students’ progress 
after 30 min. In each subsequent session, students continued the game 
from the problem on which they left off. In the current study, we used 
the log data recorded on the four pairs of problems within the game and 
the algebra pretest to address our research questions, thus we only 
described the tasks relevant to the current study. 

2.3. From Here to There! 

In From Here to There! game, mathematical topics were organized 
into 14 worlds, each containing 18 problems that provided practices on 
a mathematical topic (e.g., factoring). All students worked on the 
problems in the same order starting from basic arithmetic operations to 
more complex topics, such as fractions, distributions, and algebraic 
equations. For each problem, students were presented with an initial 
expression and a mathematically equivalent goal (Fig. 1a). The objective 
was to transform the expression into the specified goal using a series of 
gesture-actions (e.g., tapping or dragging) that transform expressions 
from one state to another. A sample problem with a series of step-
s—gesture-actions that lead to valid transformations—between the 
initial expression and the goal is illustrated in Fig. 1. In this example, 

students were asked to transform 1/7 ⋅ 7 + 6 − 6 + 5/5 into 1 + 0 + 1 
(Fig. 1a). The student first multiplied 7 with 1/7 by dragging 7 on top of 
the denominator (Fig. 1b and 1c). Next, the student subtracted 6 from 6 
by tapping the subtraction sign (Fig. 1d and 1e). Last, the student 
simplified 5/5 by tapping the division bar (Fig. 1f), reaching the goal 1 +
0 + 1 (Fig. 1g). A rewards board appeared showing the number of clo-
vers (one, two, or three) awarded to the student based on their strategy 
efficiency as measured by the number of steps taken to reach the goal 
(Fig. 1h). Students received more clovers for using more efficient stra-
tegies that involved fewer steps. Further, the step count (in the bottom 
right next to the goal; Fig. 1) turned red when students’ steps exceeded 
the minimum number required to complete the problem. In these ways, 
students received feedback on strategy efficiency and were encouraged 
to take the fewest possible steps. 

All student actions and the corresponding transformations of math-
ematical expressions were time-stamped and recorded (Fig. 2a), allow-
ing us to compare students’ equation-solving processes in ways not 
accessible in answer-based learning systems or paper-and-pencil tasks. 
Furthermore, students could take any series of mathematically valid 
steps that link the initial expression and the goal (Fig. 2b). The game 
thus provided an ideal context for examining variation in problem- 
solving processes and strategy efficiency (See detailed information on 
the game in Chan, Lee, Mason, Sawrey, & Ottmar, 2022). 

Fig. 1. A sample problem in From Here to There! (a) and a potential transformation process involving three steps (b, c, d, e, f) to reach the goal (g, h).  

Fig. 2. (a) A visualization of the log data on a student’s problem-solving process for a problem in From Here to There! (b) An illustration of two different problem- 
solving processes. 
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2.3.1. Problem structures 
We designed and embedded two simple pairs and two complex pairs 

of problems into the game. The two simple pairs only involved the op-
posites, and they were placed in World 5: Mixed Practice of Addition and 
Subtraction; the two complex pairs involved both opposites (addition and 
subtraction) and inverses (multiplication and division), and they were 
placed in World 7: Order of Operations. Within each pair, problems were 
matched on the systemic structure of the initial expression and the goal; 
the paired problems only varied on whether the symbols were numbers 
or variables (Table 1). For example, the numerical problem in Pair 1.1 
was to transform “9 – 9 + 8 – 8 + 7 – 7” into “0 + 0 + 0”, and its variable 
counterpart was to transform “x − x + y − y + z − z” into “0 + 0 + 0”. In 
the numerical problem, students could tap on the three subtraction signs 
to subtract 9 from 9, 8 from 8, and 7 from 7 to reach the goal of 0 + 0 +
0. Similarly, students could tap on the three subtraction signs in the 
variable problem to reach the goal. In this example, the paired problems 
both required three steps—combining the opposites three times. 

The proximity of the opposites/inverses to be combined (adjacent vs 
non-adjacent) was counterbalanced between pairs of problems. The 
presentation order of numerical and variable problems was also coun-
terbalanced between pairs. The order in which the students received the 
four pairs of problems (all eight problems) was the same for all students. 
For primary analyses, we dummy coded the paired problems and used 
the numerical problems as the reference group. We used this dummy 
coded variable to test the effect of symbol (numbers vs variables) on 
students’ strategy efficiency for the first research question, and its 
interaction with algebraic knowledge for the second research question. 

2.3.2. Total steps in From Here to There! 
All student actions, including clicks and drags, were logged within 

the game. Using the log data, we computed the total number of steps 
students took to complete a problem and used it as a measure of strategy 
efficiency. As an example, the student in Fig. 1 took a total of three steps 
(also see Fig. 2a). We used students’ total steps to complete a problem as 
the dependent variable in our analyses for the first three research 
questions. Further, we used the log data to visualize students’ problem- 
solving processes for the final research question. 

2.4. Algebraic knowledge assessment at pretest 

Students’ algebraic knowledge was assessed with 10 multiple-choice 
items selected from a previously validated measure (Star et al., 2014; 
Cronbach’s α = 0.89). The 10 items were selected because they 
measured students’ conceptual knowledge, procedural knowledge, and 
procedural flexibility in algebraic equation solving, capturing aspects of 
students’ mathematical knowledge relevant to the intervention. Two 
sample items were “solve for y in the equation 5(y − 2) = 3(y − 2) + 8” 
and “identify the expressions that are equivalent to 4(n + 3)”. While the 

paired problems in the game focused specifically on simplifying ex-
pressions using systemic structures of opposites/inverses, the pretest 
focused more broadly on students’ knowledge relevant to algebraic 
equation solving, tapping into students’ algebraic understanding beyond 
opposites/inverses. Each item was scored as correct (1) or incorrect (0). 
The reliability of the assessment was good, Kuder-Richardson Formula 
20 = 0.74. Kuder-Richardson Formula 20 is a reliability measure 
developed for binary variables; the values range between 0 and 1, and 
higher values represent higher reliability (Kuder & Richardson, 1937). 
The total score on the assessment at pretest was included as a covariate 
for the first research question, and its interaction with symbol was 
included as a focal fixed effect for the second research question. 

2.5. Approach to analysis 

First, we conducted descriptive and correlational analyses to 
examine the distribution of and relations between variables, as well as to 
inform our primary analyses. Because students could take as many steps 
as needed to reach the goal, we used the interquartile-range methods to 
replace outliers (Walfish, 2006). This method extracted the top and 
bottom 25 % of values from the data. Within these two quartiles, the 
values that were beyond 1.5 times the interquartile range were consid-
ered as outliers. These values were then replaced with observed values at 
either the fifth or ninety-fifth percentile. This method allowed us to 
retain all participants in the analyses while avoiding the results being 
distorted by the influential cases. 

We addressed the first three research questions by conducting a se-
ries of mixed-effect regression models using the lme4 package (Bates 
et al., 2015) with maximum likelihood estimation in R. In each model, 
we included students as a random effect to account for the repeated 
measures (i.e., all students completed all paired problems in the game). 
We considered the nesting structure of students within teachers or 
schools; however, the intra-class correlation was 0.01 for teacher and 
0.003 for school, indicating that 1 % or less of the variance in step count, 
our primary dependent variable, was attributable to teacher or school, 
respectively. Because the values were well below the 0.07 threshold for 
including the nesting structure (Niehaus et al., 2014) and we did not 
have teacher- or school-level fixed effects, we proceeded with parsi-
monious models without nesting. 

To address the first research question on the effect of symbol, we 
conducted a mixed-effect model with total steps as the dependent var-
iable, symbol (variables vs numbers) as the problem-level fixed effect, 
and algebraic knowledge as the student-level fixed effect. To address the 
second research question on the potential moderating effect of algebraic 
knowledge, we built on the first model by adding the Symbol × Alge-
braic Knowledge interaction as a fixed effect. To address the third 
research question on the unique influences of symbol and algebraic 
knowledge, we built on the second model by adding proximity and 

Table 1 
Mean, standard deviation, minimum, maximum, skewness, and kurtosis of students’ total steps on each focal problem in the game.  

Problem Pair Problem Number Problem Order Proximity M (SD) Min-Max (min steps)a Skewness Kurtosis 

Simple Problems – World 5 
1.1 79 9 – 9 + 8 – 8 + 7 – 7 → 0 + 0 + 0 Second Adjacent 3.38 (1.00) 3 – 6 (3)  2.22  2.93 
1.1 78 x − x + y − y + z − z → 0 + 0 + 0 First Adjacent 4.05 (1.83) 3 – 8 (3)  1.31  − 0.03 
1.2 81 3 + 4 + 5 – 3 − 4 – 5 → 5 – 5 First Non-adjacent 6.42 (3.35) 4 – 15 (3)  1.14  − 0.05 
1.2 82 a + b + c − a − b − c → c − c Second Non-adjacent 5.96 (2.95) 4 – 14 (3)  1.65  1.72 
Complex Problems – World 7 
2.1 115 1/7 ⋅ 7 + 6 − 6 + 5/5 → 1 + 0 + 1 First Adjacent 8.14 (4.73) 3 – 20 (3)  1.21  0.56 
2.1 116 1/c ⋅ c + b − b + a/a → 1 + 0 + 1 Second Adjacent 5.08 (2.41) 3 – 11 (3)  1.48  1.25 
2.2 119 (5 ⋅ 8 ⋅ 1/5 − 8) /7 ⋅ 0 ⋅ 7 → 0⋅0 Second Non-adjacent 6.99 (4.47) 2 – 19 (4)  1.11  0.74 
2.2 118 (x ⋅ y ⋅ 1/x − y) /z ⋅ 0 ⋅ z  → 0⋅0 First Non-adjacent 11.39 (9.29) 2 – 36 (4)  1.40  1.23 

Note. The problem number indicates the order in which the problem is presented to students within the game. 
Order indicates the order of the problems within the pair. 
Proximity indicates whether the opposites and inverses are adjacent or non-adjacent to each other. Abbreviations: M = Mean, SD = Standard Deviation, Min =
Minimum, Max = Maximum. 

a The values in parentheses represent the minimum number of steps required to complete each problem by combining opposites/inverses. 
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problem order as problem-level fixed effects to account for their po-
tential influences on students’ strategy efficiency. We first conducted the 
analyses with the simple paired problems in World 5, then repeated the 
analyses with the complex paired problems in World 7 to explore the 
consistency of the findings. We also explored whether the pattern of 
results remained when we included all four pairs of problems in one 
model and added problem complexity (i.e., World) as a problem-level 
fixed effect. To aid the interpretation of the results, we grand-mean 
centered the problem-level (i.e., symbol, proximity, order, complexity) 
and student-level (i.e., algebraic knowledge score) fixed effects. 

To address the fourth research question on how symbols impacted 
students’ problem-solving strategies, we visualized and qualitatively 
compared students’ problem-solving processes on problems presented in 
variables vs numbers. Specifically, for each problem, we created a 
Sankey diagram to illustrate the variation in the problem-solving paths 
taken by students. In a Sankey diagram, each vertical line represents a 
step in the problem-solving process; the height of the vertical lines 
represents the number of students taking that step; the horizontal paths 
between vertical lines connect the steps to form the processes that stu-
dents took to solve the problem (see Lee, Stalin, Drzewiecki, Trac, & 
Ottmar, in press for details). Using the Sankey diagrams, we graphed and 
descriptively compared the percentage of students who combined the 
opposites/inverses or moved them adjacent to each other as their first 
step on each problem. By focusing on students’ first step, we illustrated 
the proportion of students who initially leveraged the systemic structure 
on each problem and whether their steps varied by the symbols in which 
the problems were presented. 

3. Results 

3.1. Preliminary analyses 

A review of the descriptive statistics revealed that students scored an 
average of 5.76 points (SD = 2.65) out of 10 on the algebraic knowledge 
pretest, indicating that the scores were not subject to floor or ceiling 
effects. Further, the algebraic knowledge scores were widely (minimum 
= 0, maximum = 10) and normally distributed (skewness = − 0.11, 
Kurtosis = − 1.06), indicating that the sample captured a wide range of 
students at varying knowledge levels. Students’ total step count across 
the eight problems, as well as their algebraic knowledge score descrip-
tively varied by their course level, biological sex, and race/ethnicity (see 
Appendix A Table A1). To examine the relative contribution of algebraic 

knowledge, course level, biological sex, and race/ethnicity on students’ 
total step count, a regression was conducted. After accounting for stu-
dents’ algebraic knowledge—a planned focal fixed effect in primary 
analyses—the demographic variables did not significantly predict step 
count (see Appendix A Table A2). Therefore, for all primary analyses, we 
conducted parsimonious models including algebraic knowledge and 
excluding demographic variables. 

Next, a descriptive analysis of students’ total step count on each focal 
problem revealed that their total steps were widely distributed, as 
indicated by the minimum, maximum, skewness, and Kurtosis (Table 1). 
Because students’ total steps were skewed towards the minimum, as 
indicated by the means, we conducted Poisson instead of linear models 
to address the first, second, and third research questions. We noted that, 
descriptively, students tended to take fewer steps on the second as 
opposed to first of the paired problems. They also tended to take fewer 
steps on problems where the opposites/inverses were adjacent to each 
other as opposed to non-adjacent. Because of the prior research and 
these descriptive findings, we included proximity and order as cova-
riates for our third research question. 

3.2. Does students’ strategy efficiency vary on problems presented in 
variables vs numbers? 

To address our first research question, we conducted a mixed-effect 
model with the two simple problem pairs in World 5, then repeated 
the analyses on the complex problem pairs in World 7. In each model, we 
included the symbol of the problem (variables vs numbers) as a dummy- 
coded problem-level fixed effect, and pretest algebraic knowledge as a 
student-level fixed effect. 

We found that whether the problems were presented in variables or 
numbers did not significantly impact students’ strategy efficiency on 
simple problems, p = .343. However, students with higher algebraic 
knowledge tended to use more efficient problem-solving strategies that 
involved fewer steps, p <.001 (Table 2, Model 1.1). In particular, stu-
dents who scored one point higher than average on the algebraic 
knowledge assessment took 3 % (i.e., 1 – 0.97) fewer steps to solve these 
problems. The fixed effects together accounted for 3 % of the variance in 
students’ total steps. 

We repeated the analyses with complex problems in World 7 and 
found a different pattern of results. The effect of symbol was significant, 
p = .004, but the effect of algebraic knowledge was not, p = .083. 
Compared to complex problems presented in numbers, students took 5 

Table 2 
Beta coefficients, standard errors, and exponents of the coefficients in the mixed-effect models predicting students’ total steps on simple and complex problems.   

Simple Problems – World 5 Complex Problems – World 7 
Fixed Effects Model 1.1 

B (SE) 
exp(B) 

Model 1.2 
B (SE) 
exp(B) 

Model 1.3 
B (SE) 
exp(B) 

Model 2.1 
B (SE) 
exp(B) 

Model 2.2 
B (SE) 
exp(B) 

Model 2.3 
B (SE) 
exp(B) 

Intercept 1.60 (0.02)*** 
4.93 

1.60 (0.02)*** 
4.93 

1.56 (0.02)*** 
4.76 

2.02 (0.02) *** 
7.54 

2.02 (0.02) *** 
7.52 

1.98 (0.02) *** 
7.21 

Algebraic Knowledge − 0.03 (0.01) *** 
0.97 

− 0.03 (0.01) *** 
0.97 

− 0.03 (0.01)*** 
0.97 

− 0.01 (0.01) 
0.99 

− 0.01 (0.01) 
0.99 

− 0.01 (0.01) 
0.99 

Symbol: Variable 0.2 (0.2) 
1.02 

0.02 (0.02) 
1.02 

0.05 (0.02)* 
1.06 

0.05 (0.02)** 
1.05 

0.04 (0.02)** 
1.04 

− 0.04 (0.02)* 
0.96 

Symbol × Algebraic Knowledge – 0.001 (0.01) 
1.001 

0.001 (0.01) 
1.001 

– − 0.05 (0.01) *** 
0.95 

− 0.05 (0.01)*** 
0.95 

Order: First – – 0.13 (0.02) *** 
1.14 

– – 0.46 (0.02)*** 
1.58 

Proximity: Non-adjacent – – 0.52 (0.02)*** 
1.68 

– – 0.37 (0.02) *** 
1.45 

Marginal R2 0.03 0.03 0.25 0.01 0.02 0.22 
Conditional R2 0.25 0.25 0.42 0.62 0.62 0.70 

Note. Symbol: Variable = 0.5, Number = − 0.5; Order: First = 0.5, Second = − 0.5; Proximity: Non-adjacent = 0.5, adjacent = − 0.5. 
* p <.05. 
** p <.01. 
*** p <.001. 
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% more steps on complex problems presented in variables (Table 2, 
Model 2.1). The fixed effects accounted for 1 % of the variance in stu-
dents’ total steps. 

3.3. Does the effect of symbol on students’ strategy efficiency vary by 
algebraic knowledge? 

We built on the models for RQ1 by adding an interaction term be-
tween symbol and algebraic knowledge. We found that the Symbol ×
Algebraic Knowledge interaction was not a significant fixed effect of 
students’ strategy efficiency on simple problems, p = .916 (Table 2, 
Model 1.2; Fig. 3a). However, the interaction was a significant fixed 
effect of students’ strategy efficiency on complex problems, p <.001 
(Table 2, Model 2.2; Fig. 3b). Specifically, students with lower algebraic 
knowledge took more steps on complex variable vs numerical problems, 
whereas students with higher algebraic knowledge took fewer steps on 
complex variable vs numerical problems. Post-hoc analyses further 
revealed that, while students with higher algebraic knowledge took 
significantly fewer steps on complex variable problems compared to 
students with lower algebraic knowledge, p = .001, the relation between 
total steps and algebraic knowledge was not statistically significant for 
complex numerical problems, p = .578. In other words, students’ 
strategy efficiency on complex variable problems varied by their alge-
braic knowledge level, but they were equally efficient at solving com-
plex numerical problems regardless of their algebraic knowledge level. 
The fixed effects accounted for 2 % of the variance in students’ total 
steps. 

3.4. Do the effects of symbol and algebraic knowledge on strategy 
efficiency remain after controlling for the order of problems and proximity 
of terms to be combined? 

To explore whether the order of the problems and the proximity of 
the terms to be combined impacted the pattern of our findings, we built 
on the models from our second research question by adding problem 
order and term proximity as problem-level fixed-effects. We found that 
both order and proximity significantly impacted students’ strategy ef-
ficiency. Specifically, on simple problems, students took 14 % more 
steps on the first vs second of the paired problems, p <.001, while other 
fixed effects were held constant. Students took an average of 68 % more 
steps when the opposites were non-adjacent vs adjacent to each other, p 
<.001. The fixed effects of order and proximity accounted for 22 % of 
the variance in the model (Table 2, Model 1.3). Similarly, on complex 
problems, order and proximity significantly predicted students’ strategy 
efficiency. Students took an average of 58 % more steps on the first vs 
second of the paired problems, p <.001; they took an average of 45 % 
more steps when the opposites/inverses were non-adjacent vs adjacent 
to each other, p <.001 (Table 2, Model 2.3). These two fixed effects 
accounted for 20 % of the variance in the model. Although these non- 
systemic factors significantly impacted students’ strategy efficiency, 
the effects of algebraic knowledge and Symbol × Algebraic Knowledge 
interaction remained significant for simple and complex problems, 
respectively. 

Finally, we explored whether the pattern of the results remained 
when both the simple and complex problems were included in one 
model. We found that the Symbol × Complexity, Algebraic Knowledge 
× Complexity, as well as the Symbol × Algebraic Knowledge ×
Complexity interactions were significant, ps <.001. These interactions 
indicated that the effects of symbol, algebraic knowledge, and Symbol ×
Algebraic Knowledge interaction differed between simple and complex 
problems (Table 3 and Fig. 3). Together, the findings aligned with the 
results reported for the first and second research questions. 

Fig. 3. The interaction of symbol and algebraic knowledge on students’ total 
problem-solving steps on simple problems in World 5 (a) and complex problems 
in World 7 (b). The bandwidths represent 95% confidence intervals of 
the estimates. 

Table 3 
Beta coefficients, standard errors, and exponents of the coefficients in the mixed- 
effect model including all four pairs of problems.   

Model 3 
Fixed Effects B (SE) exp(B) 

Intercept 1.79 (0.02)***  5.97 
Algebraic Knowledge − 0.02 (0.01) ***  0.98 
Symbol: Variable 0.03 (0.01) *  1.03 
Symbol × Algebraic Knowledge − 0.02 (0.005) ***  0.98 
Order: First 0.33 (0.01) ***  1.39 
Proximity: Non-adjacent 0.43 (0.01) ***  1.53 
Complexity: Complex 0.50 (0.01) ***  1.65 
Algebraic Knowledge × Complexity 0.02 (0.005) ***  1.02 
Symbol × Complexity − 0.12 (0.03) ***  0.89 
Algebraic Knowledge × Symbol × Complexity − 0.05 (0.01) ***  0.95 
Marginal R2 0.37  
Conditional R2 0.63  

Note. Symbol: Variable = 0.5, Number = − 0.5; Order: First = 0.5, Second =
− 0.5; Proximity: Non-adjacent = 0.5, adjacent = − 0.5. 

* p <.05. 
*** p <.001. 
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3.5. How do symbols impact students’ use of systemic structures during 
problem solving? 

To qualitatively examine how students’ problem-solving strategies 
varied by problems presented in numbers or variables, we first created 
Sankey diagrams for each problem to visualize students’ problem- 
solving process (Appendix B). Within our sample, the diagrams 
showed that students’ problem-solving processes were highly variable in 
terms of the number of steps taken by the students, as indicated by the 
number of vertical lines (i.e., nodes) within each path, as well as the type 
of steps, as indicated by the label of each vertical line within each col-
umn. Examining the leftmost paths of each diagram provided insights 
into the most common first steps students took on each problem and 
whether they leveraged systemic structures in their first step of problem- 
solving. 

For each pair of problems, we graphed and descriptively compared 
the percentage of students who combined the opposites/inverses or 
moved them adjacent to each other as their first step (Fig. 4; see Table 4 
for the steps that are categorized as combining the opposites/inverses or 
moving them adjacent to each other). On simple problems, over 97 % of 
students combined or moved the opposites together when they were 
adjacent to each other (Problems 78 and 79), regardless of the symbols 
in which the problems were presented. When the opposites were not 
adjacent to each other, only 17 % of students combined or moved the 
opposites together on the numerical problem (Problem 81), whereas 95 
% of students did so on the variable problem (Problem 82). Similarly, on 
complex problems, over 97 % of students combined or moved the op-
posites/inverses together on both numerical and variable problems 
when opposites/inverses were adjacent to each other (Problems 115 and 
116). When the opposites/inverses were not adjacent to each other, only 
20 % (Problem 118) to 25 % (Problem 119) of students leveraged the 
systemic structure of the problem by combining or moving opposites/ 
inverses together. 

4. Discussion 

In the current study, we examined how problems that were matched 
in systemic structures but presented in either variables or numbers 
influenced students’ problem solving. We tested this effect by presenting 
four problem pairs in variables as opposed to numbers within the 
context of a mathematical game and examined how this within-student 
variation in symbols influenced students’ strategy efficiency and 
problem-solving processes on simple and complex problems. Three main 
findings emerged. First, the effects of symbol on students’ problem- 
solving strategies were not straightforward. Students’ strategy effi-
ciency did not vary by variables vs numbers on simple problems, 
although students with higher algebraic knowledge tended to use more 
efficient strategies on these problems. Second, students with lower 
algebraic knowledge were more efficient on complex numerical vs 
variable problems, whereas students with higher algebraic knowledge 
were more efficient on complex variable vs numerical problems. Third, 
both order and proximity significantly impacted students’ strategy ef-
ficiency, yet the Symbol × Algebraic Knowledge interaction on students’ 
strategy efficiency remained significant for complex problems. We 
discuss these findings and their implications in detail. 

4.1. Nuanced effects of symbol on strategy efficiency and use of systemic 
structures 

We hypothesized that students may use less efficient strategies, 
indicated by taking more steps, on problems presented in variables as 
opposed to numbers. Although symbols did not impact students’ strat-
egy efficiency on simple problems, we did find an effect of symbol on 
complex problems and this effect varied by students’ algebraic knowl-
edge. Some prior studies indicate that middle school students with 
higher mathematics achievement are more likely to use efficient stra-
tegies involving fewer steps when solving algebraic equations compared 
to students with lower mathematics achievement (Newton et al., 2020; 
Wang et al., 2019). Although students’ strategy use seems to be tightly 

Fig. 4. The percentage of students combining opposites/inverses or moving opposites/inverses adjacent to each other as their first step on numerical and variable 
problems. Note. Gray bars represent the percentage of students who either combine the opposites/inverses or move them adjacent to each other. White bars represent 
the percentage of students who take other types of steps. Abbreviations: N = Number, V = Variable. 
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related to their mathematical knowledge in prior studies, this relation 
has been evidenced as weak or inconsistent across studies (Rittle- 
Johnson & Star, 2007; Schneider et al., 2011; Xu et al., 2017). Our 
finding extends prior work by showing that students’ strategy efficiency 
is influenced by their algebraic knowledge as well as symbol and other 
non-systemic factors of the problems. This finding contributes to the 
larger theory of perceptual learning (Goldstone et al., 2017; Kellman 
et al., 2010), which suggests that thinking, learning, and problem 
solving are grounded in the environment and that the ways in which 
problems are presented influence how individuals process mathematical 
information. 

Visualizations of students’ problem-solving processes also do not 
seem to align with our fourth hypothesis that students may be more 
likely to leverage systemic structures on numerical vs variable problems. 
However, the visualizations do provide insights into when students 
attend to systemic structures, and these insights build on prior research 
in an important way. Prior research has reported that fifth- and sixth- 
grade students tend to focus on the surface features of problems, but 
they can leverage the systemic similarities between problems to support 
mathematical learning when problems are grouped by systemic struc-
tures (Sidney & Alibali, 2015, 2017). Using the Sankey diagrams, we 
found that students used a wide variety of strategies (Appendix B), and 
they did not consistently leverage the systemic structures by combining 

the opposites/inverses to simplify expressions. Even so, they were more 
likely to leverage the systemic structures when simple problems were 
presented in variables and when the opposites/inverses were adjacent to 
each other (Fig. 4). 

When the opposites were non-adjacent to each other, 95 % of stu-
dents combined the opposites as their first step on the simple variable 
problem, whereas only 17 % of students did so on the simple numerical 
problem. Further, among the students who did not combine the oppo-
sites, about half of them performed calculations to combine 3 and 4 as 
their first step on the simple numerical problem. One possible expla-
nation for this finding is that students are often trained to solve problems 
quickly (Schoenfeld, 1992), contributing to their tendency to rush 
through problems without pausing. Indeed, when presented with nu-
merical problems, students tend to perform operations from left to right 
(Blando et al., 1989; Bye et al., 2022; Gunnarsson et al., 2016); they may 
also be inclined to immediately perform calculations instead of noticing 
the systemic structures (Givvin et al., 2019; Lawson et al., 2019; Stacey 
& MacGregor, 1999). Conversely, students who pause longer vs shorter 
before problem solving tend to complete problems with higher strategy 
efficiency (Chan, Ottmar, & Lee, 2022). 

Because students cannot combine unlike terms in the game (e.g., 
tapping the addition sign in x + y makes the expression shake and the 
expression remains as x + y), presenting problems in variables as 

Table 4 
A list of the first steps that are categorized as combining or moving opposites/inverses together for each problem.  

Number Variable 

Simple Problems – World 5 
Problem 79. 9 – 9 + 8 – 8 + 7 – 7 Problem 78. x − x + y − y + z − z 

• 0 + 8 – 8 + 7 – 7 • 0 + y − y + z − z 
• 9 – 9 + 0 + 7 – 7 • x − x + 0 + z − z 
• 9 – 9 + 8 – 8 + 0 • x − x + y − y + 0  

Problem 81. 3 + 4 + 5 – 3 − 4 – 5 Problem 82. a + b + c − a − b − c 
• 0 + 4 + 5 – 4 – 5 or • 0 + b + c − b − c or  

4 + 5 – 0 − 4 – 5  b + c − 0 − b − c 
• 3 + 0 + 5 – 3 − 5 or • a + 0 + c − a − c or  

3 + 5 – 3 − 0 – 5  a + c − a − 0 − c 
• 3 + 4 + 0 – 3 − 4 or • a + b + 0 − a − b or  

3 + 4 – 3 − 4 – 0  a + b − a − b − 0 
• commute such as • commute such as  

3 – 3 + 4 + 5 – 4 − 5  a − a + b + c − b − c  

Complex Problems – World 7 
Problem 115. 1

7
⋅7+ 6 − 6+

5
5 

Problem 116. 1
c
⋅c+ b − b+

a
a 

•
1+ 6 − 6+

5
5 

•
1+ b − b+

a
a 

• 1
7

⋅7+ 0+
5
5 

• 1
c
⋅c+ 0+

a
a 

• 1
7

⋅7+ 6 − 6+ 1 
• 1

c
⋅c+ b − b+ 1 

• 1⋅7
7

+ 6 − 6 +
5
5 

or 
• 1⋅c

c
+ b − b +

a
a 

or  

7⋅1
7

+ 6 − 6+
5
5  

c⋅1
c

+ b − b+
a
a  

Problem 119. 5 ⋅ 8
1
5
− 8

7
⋅0⋅7 

Problem 118. x ⋅ y
1
x
− y

z
⋅0⋅z 

• 8 ⋅ 1 − 8
7

⋅0⋅7 
• y ⋅ 1 − y

z
⋅0⋅z 

• (
5⋅8⋅

1
5
− 8

)
⋅0 

• (
x⋅y⋅

1
x
− y

)
⋅0 

• commute such as • commute such as  

5 ⋅
1
5

⋅8 − 8

7
⋅0⋅7  

x ⋅
1
x

⋅y − y

z
⋅0⋅z  
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opposed to numbers may help students pause and notice the systemic 
structures, at least on simple problems. The shaking feedback in the 
game may further provide an attentional cue that combining unlike 
terms is an invalid mathematical action, prompting students to try a 
different action. Together, the qualitative findings on the visualizations 
extend the quantitative results on students’ strategy efficiency and 
provide additional evidence on how symbols may influence students’ 
strategies across problems. 

4.2. Differential effects of variable vs numbers based on algebraic 
knowledge 

Partially supporting our second hypothesis, we did find a significant 
interaction effect between symbol and algebraic knowledge. While 
students with lower vs higher algebraic knowledge were equally effi-
cient at solving complex numerical problems, students’ strategy effi-
ciency varied by their algebraic knowledge on complex variable 
problems. Specifically, students with lower algebraic knowledge were 
less efficient at solving complex variable vs numerical problems, 
whereas students with higher algebraic knowledge were more efficient 
at solving complex variable vs numerical problems. While lower vs 
higher algebraic knowledge is relative to our overall high-performing 
sample, these findings extend prior work that shows (a) students tend 
to struggle with problems presented in variables (Filloy & Rojano, 1989; 
Herscovics & Linchevski, 1994; Malisani & Spagnolo, 2009; Philipp, 
1992), and (b) middle schoolers tend to use less efficient strategies by 
taking more steps on complex variable vs numerical problems (Chan, 
Smith, Closser, Drzewiecki, & Ottmar, 2021). In particular, our findings 
suggest that students may be more susceptible to struggling with prob-
lems presented in variables when they have lower vs higher algebraic 
knowledge and when the problems are complex vs simple. 

One possible explanation is that students with lower algebraic 
knowledge may not yet have sufficient knowledge or skills to leverage 
systemic structures, especially when numbers are not available to 
perform calculations on complex problems. In contrast, students with 
higher algebraic knowledge may have sufficient knowledge or skills to 
leverage systemic structures across problems, leading to higher strategy 
efficiency when solving complex variable vs numerical problems. This 
finding extends prior work on the selective benefits of variables in 
learning of mathematical concepts (Lawson et al., 2019; Stigler et al., 
2010); it suggests that presenting problems in variables can improve 
students’ strategy efficiency in simplifying complex problems, albeit 
that this benefit may be limited to students who already have some 
foundational knowledge of algebra. This hypothesis warrants further 
investigation, but the current finding provides a starting point for future 
research on ways to leverage numbers and variables in learning and 
instruction to support students across knowledge levels. 

4.3. Other non-systemic factors influence students’ strategy efficiency 

In addition to symbols, the four problem pairs varied in the proximity 
of the terms to be combined as well as the order in which the numerical 
and variable problems within each pair were presented. Although 
proximity and order were counterbalanced between pairs, they might 
still impact students’ strategy efficiency. Therefore, in our follow-up 
exploratory analyses, we statistically accounted for these potential in-
fluences. We found that, aligning with prior research (Lee, Hornburg, 
Chan, & Ottmar, 2022; Sidney, 2020) and supporting theories of 
perceptual learning (Goldstone et al., 2017; Kellman et al., 2010), stu-
dents tended to complete problems more efficiently when the terms to 
be combined were adjacent to each other and on the second of the paired 
problems. These two factors accounted for 20 % or more of the variance 

in students’ strategy efficiency, six to ten times larger than the effects of 
symbol and algebraic knowledge, which together only accounted for 2 
or 3 % of the variance. We also tested whether the pattern of the results 
on simple and complex problems were significantly different by 
combining all problems in one model and including problem complexity 
as an additional fixed effect. Results revealed significant interactions 
between symbol, students’ algebraic knowledge, and problem 
complexity, suggesting that the effects of symbol, algebraic knowledge, 
and their interaction differed between simple and complex problems. 

Together, these exploratory analyses support our main findings on 
the important, albeit small, effects of symbols. Students’ strategy effi-
ciency may be influenced by more than just whether the problem is 
presented in variables or numbers; factors such as students’ knowledge 
level, the complexity of the problems, the order in which the problems 
were presented, and the proximity of the terms to be combined may also 
influence students’ strategy efficiency. With more problem pairs and 
more participants, future research should systematically examine 
whether and how these factors interact to influence students’ strategy 
efficiency. Understanding the ways in which these factors operate in 
tandem may inform the design of instructional materials that help stu-
dents develop efficient and flexible problem-solving skills. 

4.4. Limitations and future directions 

The current study has several limitations. First, the analytic sample 
was a subset of the students participating in a larger randomized 
controlled trial. Although 911 students started the game-based inter-
vention, only 445 students (49 %) completed all four problem pairs 
within the game designed to address our research questions on mathe-
matical symbols. This was likely because the four pairs of problems were 
embedded in the middle of the game (Problems 78 to 119 out of 252 
problems), students solved problems at their own pace, and the study 
was conducted during the 2020–2021 school year amidst many dis-
ruptions to schooling due to COVID-19 outbreaks. As one would suspect, 
the 445 students who completed these four pairs of problems embedded 
in the game (i.e., progressed to Problem 119) had a descriptively higher 
average algebraic knowledge score (M = 5.76) compared to the larger 
sample of 911 students (M = 4.78) who started the game but did not 
complete enough of the intervention to reach these problems. Although 
the analytic sample was relatively high performing compared to the 
larger sample, students’ algebraic knowledge scores in the current an-
alytic sample were not subject to the ceiling effect. Further, students’ 
algebraic knowledge scores were widely and normally distributed. 
While the analytic sample might not be representative of the students in 
the larger study, school district, state, or the country, it nonetheless 
allowed us to examine the influence of students’ algebraic knowledge as 
well as its interaction with symbols on students’ strategy efficiency. 

Second, the study was conducted in the context of a larger ran-
domized controlled trial. Given the primary aims and the constraints of 
the larger study, we only included two pairs of simple problems and two 
pairs of complex problems. Although the number of problems included 
in the analyses were small, we still observed a main effect of algebraic 
knowledge and a Symbol × Algebraic Knowledge interaction on stu-
dents’ strategy efficiency. Further, the larger study was conducted in an 
authentic classroom learning environment rather than a laboratory and 
we used the log files of students’ moment-to-moment actions during 
problem solving in a mathematical game, providing some ecological 
validity to the current findings. 

Third, the current study did not allow us to disentangle students’ 
conceptualizations of variables and why problems presented in variables 
were challenging, especially for students with lower algebraic knowl-
edge. Specifically, the variables in our problems can represent 
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generalized arithmetic relations between terms, be interpreted as un-
knowns, and be substituted with varying or multiple values. Difficulty 
grasping one or more of these abstract concepts likely contributed to 
students’ struggles with the problems presented in variables. More 
research with different types of variable problems that specifically target 
each concept is needed to identify students’ core challenges with vari-
ables and whether these challenges vary by students’ algebraic 
knowledge. 

Future studies should include a more diverse sample as well as more 
problems systematically targeting different concepts of variable and 
varying in symbols, order, proximity, complexity, systemic structures, 
and mathematical properties. Doing so will extend the findings beyond 
inverse operations and allow further investigation of how different 
factors may interact with symbols to influence students’ problem- 
solving strategies. These future directions will also contribute new 
findings on when and for whom variables support efficient problem- 
solving strategies. 

4.5. Implications for teaching and learning 

Despite the limitations, the current findings have implications for 
instructional practices that guide students’ attention to the systemic 
structures of expressions in classroom and online learning contexts. One 
practical implication is that students, especially those with lower alge-
braic knowledge, may benefit from explicit instruction or targeted 
practice on identifying systemic structures before solving complex var-
iable problems. For example, providing students with ample opportu-
nities to solve both variable and numerical problems of identical 
structure may help them notice the systemic structure. Explicit in-
struction on identifying the identical structure between variable and 
numerical problems may also help students improve their attention to 
systemic structures, comfort with variables, and strategy efficiency. This 
implication aligns with prior work showing that drawing students’ 
attention to the analogous systemic structure across problems (e.g., 
fraction vs whole number division) can improve their mathematical 
reasoning (Sidney & Alibali, 2017). Guiding students’ attention to the 
systemic structures through instruction and practice with variable 
problems that prevent impulsive calculation may potentially help 
strengthen flexibility and efficiency in problem solving among students 
with lower prior knowledge. In summary, presenting problems in vari-
ables instead of numbers as well as mapping relations between problems 
presented in variables vs numbers may be effective at helping students 
inhibit their impulse to calculate and attend to the systemic structures of 
the expressions. 

4.6. Conclusion 

Overall, this study explores the ways that variations in the symbols 
used in mathematical expressions influence students’ problem-solving 
strategies. Students’ strategy efficiency is influenced by their algebraic 
knowledge and its interaction with the symbols (i.e., numbers and var-
iables) in which the problems are presented. Other factors, such as the 
proximity of inverses/opposites in problems, overall problem 
complexity, and problem order within the game, also influence students’ 
strategy efficiency and the use of systemic structure. If these factors 
impact whether students notice systemic structures and subsequently 
their problem-solving strategies, researchers, educators, and content 
developers should consider these factors when designing studies, in-
struction, learning materials, and assessments. Further, providing stu-
dents with different variations of problem structures using a 
combination of symbols may provide students with greater opportu-
nities to notice systemic structures and improve their mathematical 
understanding through problem-solving practice. 
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Appendix A. Analyses by demographic variables 

See Tables A1 and A2. 

Table A1 
Mean and standard deviation of algebraic knowledge scores and total step count 
across the eight problems by course level, biological sex, and race/ethnicity.   

n Algebraic Knowledge Score Total Steps 

Course level    
On-Level 281 4.40 (2.11) 56.49 (21.62) 
Advanced 164 8.10 (1.68) 49.79 (19.69) 
Biological sex    
Male 239 5.87 (2.71) 53.47 (20.99) 
Female 206 5.64 (2.59) 54.65 (21.38) 
Race/ethnicity    
White 228 4.75 (2.39) 52.94 (18.34) 
Asian 133 7.97 (1.78) 51.61 (20.44) 
Hispanic 55 4.60 (2.20) 64.75 (29.93) 
Black 12 4.42 (2.23) 52.58 (11.71) 
Other 16 6.81 (2.61) 54.81 (25.25)  

Table A2 
Beta coefficients and standard errors of the coefficients in a linear 
regression model predicting students’ total steps across the eight 
problems.  

Predictors B (SE) 

Algebraic knowledge − 0.06 (0.07) 
Course level: On-level 0.25 (0.13) 
Biological sex: Female 0.05 (0.09) 
Race/ethnicity: White − 0.19 (0.26) 
Race/ethnicity: Asian − 0.06 (0.26) 
Race/ethnicity: Hispanic 0.37 (0.28) 
Race/ethnicity: Black − 0.23 (0.38) 
R2 0.06 

Note. Course level: Advanced was the reference group; Biological 
sex: Male was the reference group; Race/ethnicity: Other was the 
reference group. 
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Appendix B. Sankey diagrams 

To improve the legibility of the diagrams, the diagrams only illus-
trate up to the first 10 steps of students’ problem-solving strategies. 

For full images, please visit the project site on OSF at https://osf.io/t 
pnu2/ (see Figs. B1 to B8). 

Fig. B1. The Sankey diagram for Problem 78.  

Fig. B2. The Sankey diagram for Problem 79.  
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Fig. B3. The Sankey diagram for Problem 81.  

Fig. B4. The Sankey diagram for Problem 82.  

Fig. B5. The Sankey diagram for Problem 115.  
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Fig. B6. The Sankey diagram for Problem 116.  

Fig. B7. The Sankey diagram for Problem 118.  

Fig. B8. The sankey diagram for Problem 119.  
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