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Abstract
A regression model of predictor trade-offs is described. Each regression parameter equals the expected
change in Y obtained by trading 1 point from one predictor to a second predictor. The model applies to
predictor variables that sum to a constant T for all observations; for example, proportions summing to
T = 1.0 or percentages summing to T = 100 for each observation. If predictor variables sum to a constant
T for all observations and if a least squares solution exists, the predicted values for the criterion variable
Y will be uniquely determined, but there will be an infinite set of linear regression weights and the fa-
miliar interpretation of regression weights does not apply. However, the regression weights are deter-
mined up to an additive constant and thus differences in regression weights bv � bv� are uniquely
determined, readily estimable, and interpretable. bv � bv� is the expected increase in Y given a transfer
of 1 point from variable v* to variable v. The model is applied to multiple-choice test items that have
four response categories, one correct and three incorrect. Results indicate that the expected outcome
depends, not just on the student’s number of correct answers, but also on how the student’s incorrect
responses are distributed over the three incorrect response types.

Translational Abstract
A regression model of predictor trade-offs is described. Each regression parameter equals the
expected change in Y obtained by trading 1 point from one predictor to a second predictor. The
model applies to predictor variables that sum to a constant T for all observations; for example, pro-
portions summing to T = 1.0 or percentages summing to T = 100 for each observation. The model
is designed for the study of decisions involving trade-offs, compositional variables, and contrasts
between pairs of predictor coefficients.

Keywords: regression, compositional variables, trade-offs, selected response items, decision theory

Supplemental materials: https://doi.org/10.1037/met0000512.supp

In some research applications, a researcher may wish to use pre-
dictor variables that sum to the same constant T for each observa-
tion. However, if the predictors sum to a constant the predictor
matrix is not full column rank, and therefore the regression coeffi-
cients are not uniquely determined. Given an infinite set of predic-
tor coefficient vectors, one is hard pressed to choose any one set
for interpretation. A common solution, what we call the classical
solution, is to drop one of the predictors. However, the regression

weight for a given predictor will vary depending on which other
predictor is dropped. In what follows, we show that these parame-
ter estimates can still be meaningful.

The most common example of predictors summing to a con-
stant T are compositional variables, variables that describe the
make-up of an observation in terms of proportions or percen-
tages. For instance, the composition of a school might be
described in terms of three variables: the proportion of girls, the
proportion of boys, and the proportion of nonbinary students. Or
it might be described in terms of six variables: the percent of
American Indians, the percent of Asians, the percent of Blacks,
the percent of Hispanics, the percent of Whites, and the percent
of Other. To examine how diversity relates to school achieve-
ment, a researcher might be interested in regressing a criterion
variable (e.g., achievement test scores) onto a vector of composi-
tional predictor variables:

Yp ¼ bxTp þ aþ ep (1)

where Yp is the criterion variable (e.g., achievement test score) for
observation p (p = 1, . . . , P), b is a row vector of V (v = 1, . . . , V)
predictor weights, xp ¼ ðxp1; . . . ; xpVÞ is a row vector of V
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compositional predictor variables, and ep is a residual. For pur-
poses of hypothesis tests, the residuals ep are assumed normal, in-
dependent, and identically distributed Nð0;r2ðeÞÞ. If the predictor
variables refer to categories that are mutually exclusive and ex-
haustive, there exists a total score T such that, for every observa-
tion p, the predictor vector satisfies the constraint

Xv¼V

v¼1

xpv ¼ T (2)

For proportions, T = 1, and for percentages T = 100. This con-
straint implies that any one of the predictor variables xpv is linearly
dependent on the remaining V – 1 predictors.
Compositional variables are not the only example of variables

summing to a constant for each observation. Ipsative measures are
a second example. If measures are ipsatized, the predictor scores
of each observation have been centered around the observation’s
predictor mean so that the predictor scores of every individual sum
to .0. Ipsative measures are associated with a more person-
centered approach. Instead of comparing each person’s score to
that of other people, each person’s predictor score is interpreted
relative to the same person’s other predictor scores. In the ipsative
approach, scores are given a within person, configural interpreta-
tion, rather than a between person, normative interpretation (Davi-
son et al., 2022; Davison & Davenport, 2002; Wiernik et al.,
2020). In our example, we illustrate application to another com-
mon kind of data in psychology and education, multiple-choice
item responses.
Predictor variables that sum to a constant pose several prob-

lems. First, the variables may not have a multivariate normal dis-
tribution, although this is not a problem if errors are independently
and identically distributed Nð0;r2ðeÞÞ. Second, given the con-
straint in Equation 2, there is no unique solution for the regression
weights. As shown below, the weights and intercept are only
determined up to an additive constant k. Third, given the constraint
in Equation 2, the (P 3 V) matrix of predictors is not of full col-

umn rank, and XTX does not have an inverse. Therefore, the pa-
rameters are inestimable using any solution that requires the

inverse of XTX (e.g., ordinary least squares [OLS]). Finally, the
standard interpretation of regression weights does not apply,
because its premises violate the constraint in Equation 2. The
standard interpretation is that bv is the expected increase in Y given
a 1-point increase in predictor Xv holding the other predictor varia-
bles constant. This definition envisions two predictor vectors differ-
ing by 1 point on one variable v; for example, ðX1; . . . ;Xv; . . . ;XVÞ
and ðX1; . . . ;Xv þ 1; . . . ;XVÞ, and states that bv will be the differ-
ence in the expected value of Y for these two vectors. However,
these two vectors cannot both have the same sum T, so at least one
of them must violate the fundamental premise of the constraint
stated in Equation 2. Therefore, the standard interpretation of a
regression weight is based on a comparison that is counterfactual
given the constraint on predictors.
One approach to these problems is what we call the classical

approach because it is, in our experience, the most common. It
involves dropping one predictor variable, here called the reference
variable– say variable v*– to create a reduced (P 3 V � 1) predic-
tor matrix XV�1. If XV�1 is of full column rank, then for the

regression of Y onto XV�1, the regression weights are uniquely
determined and can be obtained using OLS regression because
XT

V�1XV�1 will have an inverse. The weights are uniquely deter-
mined for a variable v given a reference variable v*, but the set of
regression weights will vary depending on the choice of reference
variable. For each reference variable one gets a different set of
regression weights. How can one justify the choice of one set of
weights over the others; especially when each set may give a dif-
ferent impression of the relationship between the predictor varia-
bles as well as the relationship of the predictors relative to the
criterion? In what follows, we have a new derivation that leads to
a redefinition, reevaluation, and reinterpretation of parameters that
are meaningful.

The classical solution is not the only proposed solution. The
various alternatives involve one or more of the following steps:
transforming predictors (log ratios, Box Cox transformation, Box
& Cox, 1964), reducing the number of predictors to resolve the
linear dependency (e.g., isometric log ratios), and/or placing con-
straints on regression weights to resolve the linear dependency
(centered log ratios). For discussions of alternatives, see Aitchison
(1982), Aitchison and Bacon-Shone (1984), Aitchison et al.
(2000), Chen et al. (2017), Egozcue et al. (2003), Greenacre and
Grunsky (2019), Hron et al. (2012), and Smithson and Broomell
(2022). All of these alternatives suffer from a common problem:
the magnitudes of the regression coefficients are difficult, if not
impossible, to interpret for one or more of the following reasons.
First, after transformation, the predictors are not in natural units,
complicating interpretation of both the predictors and the regres-
sion coefficients. Second, after transformation one or more predic-
tors may be a composite of several predictors, again complicating
interpretation of both the predictors and the regression coefficients.
Third, there may be more than one way to reduce the number of
variables or transform the variables such that each procedure
yields different regression coefficients leading to the question
“which set of coefficients should we interpret?” For instance, the
isometric log transformation requires an ordering of the variables
and every possible ordering yields a different set of regression coeffi-
cients. For the alternatives, there is no way to interpret the magni-
tudes of regression weights consistent with the fact that the model is
defined only for predictor vectors summing to the constant T.1 Those
that involve the log transformation are undefined when the argument
of the log function is nonpositive, as happens when percentages or
proportions equal 0 or ipsative scores are negative.

In what follows, we show that coefficients in the reduced form
models have an interpretation lacking in prior approaches. The re-
mainder of this paper is concerned with three issues: the unique-
ness of estimates with one variable deleted, invariance of
coefficients over choice of deleted variable, and interpretation of
regression weights in the reduced form model with one predictor
deleted. To lay the groundwork for these issues, the next section
takes up the uniqueness properties of regression weights in the full
model of Equation 1 when predictors are subject to the constraint
in Equation 2. We refer to the regression model in Equation 1 as
the parent model. We refer to each model in which one predictor

1 In some cases the interpretation is limited to whether the predictor
matters, that is, whether the coefficient is zero or not. Magnitudes other
than zero are uninterpretable beyond saying that the predictor is associated
with an effect.
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is dropped as a child model. The children are viewed as offspring
of the parent model. The interpretation of regression weights in
the child models is based on the weights in the parent model.
The main goal of this article is to provide a method to estimate

weights relative to Equation 1 that have meaning. Note that these
weights would be inestimable in OLS regression with the constraint
in Equation 2 and when estimable there would be an infinite set of
weights where the choice of any one set is mathematically unjustifi-
able. A benefit of our approach is that we use OLS regression which
is well-known and easily implemented. Furthermore, our use of OLS
regression will provide weights in the metric of the predictors that
are consistent, unbiased, and minimum variance (Fox, 2016, pp.
109–110). A final benefit of our approach will be the new meaning
of the hypothesis test for each individual regression weight.

Uniqueness of Regression Weights in Parent and
Child Models

Theorem 1: If EðYp jxpÞ ¼ bxT
p þ a, then EðYp jxpÞ ¼ b�xT

p þ
a� if and only if there exists a constant k such that b� ¼ bþ k1
and a� ¼ a� kT for all x satisfying Equation 2.
Here 1 is a row vector of 1s. It will be shown that if

EðYp jxpÞ ¼ bxT
p þ a, then EðYp jxpÞ ¼ b�xT

p þ a� for all x satis-

fying Equation 2 and all b� ¼ bþ k1 and a� ¼ a� kT: It is shown
in the Appendix that if (b�; a�) does not have the form b� ¼ bþ k1
and a� ¼ a� kT, then there will exist at least one value of x satisfy-
ing Equation 2 for which EðYp jxpÞ ¼ bxT

p þ a 6¼ b�xT
p þ a�.

Let k be a V- length row vector all of whose elements equal k.
To show that EðYp jxpÞ ¼ bxT

p þ a ¼ b�xT
p þ a� if b� ¼ bþ k

and a� ¼ a� kT, the proof begins by adding (k 2 k) to the regres-
sion weight vector on the right side of the following equation:

EðYp jxpÞ ¼ bxT
p þ a (3a)

¼ ðbþ k � kÞxp þ a (3b)

¼ ðbþ kÞxp þ a� kxp (3c)

Because kxp ¼ k
P

vxv ¼ kT, (where T is the total of the predic-
tors which is constant) then

EðYp jxpÞ ¼ b�xT
p þ a� (3d)

where b� ¼ bþ k and a� ¼ a� kT. Thus, if EðYp jxpÞ have a lin-
ear form, there will be an infinite number of solutions for the
regression weights and intercept any two of which are related
through an additive constant k. Let S be the set of all such parame-
ter vectors ðb�; a�Þ.
If any two solutions for the regression weights b� are related by an

additive constant, the differences between the regression weights are
uniquely determined. That is, if b and b� are two solution vectors
related by an additive constant k, then for all pairs of predictors (v, v*),

bv � bv� ¼ ðbv þ kÞ � ðbv� þ kÞ ¼ b�v � b�v�: (4)

Even though there is an infinite set of solution vectors ðb�; a�Þ, for
any pair of predictors (v, v*), the difference between regression weights

is unique for all solution vectors in set S. For Equation 1, given the con-
straint in Equation 2, the regression weight vector is defined only up to
an additive constant, but differences between pairs of regression
weights are uniquely determined. Given that the difference between
any two regression weights is the same for all sets of coefficient vec-
tors, these differences aremathematically meaningful.

Differences between weights are not only uniquely determined,
they are interpretable. Because bv is the expected change in Y
given a 1-unit increase in Xv: and �bv� is the expected change in
Y given a 1-unit decrease in the reference variable Xv�, the differ-
ence bv � bv� is the expected change in Y given a transfer of 1
point from variable Xv� to Xv. The premise of this interpretation
does not violate the constraint in Equation 2. That is, if the predic-
tor variable ðX1; . . . ;Xv; . . .Xv� . . . ;XVÞ satisfies the constraint,
then transferring one point from variable Xv� to Xv will result in
the predictor vector ðX1; . . . ;Xv þ 1; . . . ;Xv� � 1; . . .XVÞ which
also satisfies the constraint.

Because the regression weights in the parent model are not
uniquely determined, it can be said that the OLS solution is not
uniquely determined. The unqualified statement that “the solution
is not uniquely determined” is true, but involves several errors of
omission because there are several aspects of the model that are
uniquely determined or nearly so. First, the regression coefficients
are almost uniquely determined in that they are determined up to
an additive constant. Second, while there is an infinite set of least
squares coefficient vectors ðb�; a�Þ, in set S, for a given predictor
vector x, all coefficient vectors in S will return the same predicted
values of Y. Thus, the predicted values Y0 are uniquely determined.
Since the predicted values are uniquely determined, the multiple
correlation R = r(Y, Y0) is likewise uniquely determined. Because
the predicted values are uniquely determined, the sum of squared
errors SSE, the sum of squares regression SSR, and the sum of
squares total SST will all be uniquely determined. While the
regression weights are not uniquely determined, many aspects of
the solution are: regression coefficient differences bv � bv�, Y0, R,
SSE, SSR, and SST. In light of these determinacies and the inter-
pretability of differences between regression weights, we turn to a
reconsideration of the meaning for regression weights in the classi-
cal approach that involves dropping one predictor.

Estimating Differences in Parent Model
Regression Weights

If expressed in summation notation, the EðYp jxpÞ has the fol-
lowing form:

EðYp jxpÞ ¼
X
v

bvxp þ a (5)

According to the Theorem, a constant k can be added to each
regression weight without altering the equality so long as there is a
compensating change in the intercept. Let k ¼ �bv�, the negative
of the regression weight for one variable in Equation 5. Then, by
adding and subtracting �bv� to each regression weight in Equation
5 and applying some algebra, Equation 5 becomes

EðYp jxpÞ ¼
X

v
ðbv � bv�Þxp þ a� ð�bv�ÞT (6a)
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¼
X

v 6¼v�ðbv � bv�Þxp þ aþ bv�T (6b)

¼
X

v6¼v�bvv�xp þ a� (6c)

where bvv� ¼ ðbv � bv�Þ; a� ¼ aþ bv�T, and the summation in
Equations 6b and 6c includes only the V � 1 predictors v = v*.
The term involving v = v* (reference variable) drops out, because
the regression coefficient on that term is ðbv� � bv�Þ. If the
reduced predictor matrix XV�1 of Equation 6c is of full column
rank, the coefficients bvv� and a� can be estimated using ordinary
least squares regression by regressing Y onto the reduced predictor
matrix XV�1. Since bvv� ¼ ðbv � bv�Þ, each of the regression
weight estimates can be interpreted as an estimate of the expected
increase in Y given a transfer of one unit from the reference vari-
able v* to variable v. Hereafter for bvv� we will refer to v and v* as
the receiving and sending variables respectively, since the inter-
pretation of bvv� is based on the expected increase in Y if one point
is sent from v* and received by variable v.
Equation 6c is here called a child of the original regression

Equation 1 or Equation 5. The parent model with V predictors has
V reduced form child models each with V – 1 predictors. Each
child model is fitted by dropping one predictor from the parent
model. Moreover, each child model involves dropping a different
predictor variable. If the predictors of the child models are of full
column rank, the regression weights within each child model are
uniquely determined estimates of (V – 1) differences ðbv � bv�Þ.
For a given set of V predictors, there are V*(V � 1) permuta-

tions of the predictors taken two at a time, because there are
V*(V � 1) differences ðbv � bv�Þ. For a given child equation, V –

1 of these quantities will be estimated by the regression coeffi-
cients bvv�. There will be V child equations each of which yields a
different set of V – 1 differences ½bvv� ¼ ðbv � bv�Þ�. The sets of
regression weight estimates for the several children are mutually
exclusive and exhaustive, so that the estimate of a difference
bvv� ¼ ðbv � bv�Þ appears in one and only one of the child equa-
tions. Taken together, the V child models each containing esti-
mates of (V – 1) differences, yield estimates of all V*(V � 1)
differences bvv� ¼ ðbv � bv�Þ.
For a given value of v*, the weights in the regression equation

will be uniquely determined if XV�1 is of full column rank. How-
ever, the regression weight for a given predictor v (bvv�Þ will vary
depending on the sending variable v* because bvv� ¼ ðbv � bv�Þ.
A given predictor will appear in several child models, (V � 1 of
the V child models to be exact) and its regression weight will vary
systematically across those child models as the reference variable
v* varies. In words, the increase in the expected value of Y, given
that one unit is transferred to variable v, depends on from which
variable v* that unit is transferred. As a result, variable v will have
a different weight in each child model in which it appears, but this
does not impair the interpretability of those weights, because the
changes are readily interpreted in terms of the varying sending
variables.
The familiar t-statistic can be used to test the hypothesis about

regression weights in a reduced model: H0 : bvv� ¼ 0. Given that
bvv� ¼ bv � bv�, that same t-statistic provides a test of the hypoth-
esis about weights in the full model: H0 : bv � bv� ¼ 0. The hy-
pothesis test addresses the question of whether transferring one
unit from v to v* has an effect on the criterion variable.

Example: Reading Achievement Test Items

Our example is from a multiple-choice reading test (online
supplementary materials). Whereas most multiple-choice tests
have two kinds of answers, correct and incorrect, each item on the
Multiple-choice Online Causal Comprehension Assessment
(MOCCA) has three types of valid responses, one correct and two
different incorrect responses. The edition of MOCCA used in this
study has 40 items. Each MOCCA item consists of a seven-sen-
tence paragraph with one sentence missing. From three alterna-
tives, the student must choose the sentence to fill in the missing
sentence that best completes the story. One answer, the causally
coherent inference (CCI), is the correct answer. One incorrect an-
swer, the paraphrase (PAR), is simply a paraphrase of earlier infor-
mation in the story that adds no new information and does not
advance or complete the story line. The second incorrect answer,
the elaboration (ELA) involves an inference that injects new infor-
mation based on background knowledge about the text, but does
not complete the story line. If a student does not complete the test,
then some items have a fourth response type labeled not attempted
(NA).

For a given respondent, let X1 be the number of CCI responses,
X2 be the number of PAR responses, X3 be the number of ELA
responses, and X4 be the number of NA responses. Because CCI,
PAR, ELA, and NA are mutually exclusive and exhaustive catego-
ries, X1 þ X2 þ X3 þ X4 ¼ 40 for each student. In this example,
we use these four predictors to predict the scale score on a subse-
quent statewide test, the SBAC English Language Arts Test
(Smarter Balanced Assessment Consortium, 2015, 2016). The
regression used here is OLS linear regression. The respondents are
285 fourth graders from a convenience sample of fourth graders in
schools scattered across the United States. Students completing
less than 10 items were excluded. Here we are interested in the
question of whether each of the three noncorrect answers (PAR,
ELA, and NA) are equally indicative of proficiency.

Let Yp be the total score that person p with predictor vector
X1;X2;X3;X4ð Þ will get on the SBAC English Language Arts Test.
In our OLS linear regression model, the parent model is

Yp ¼ b1X1 þ b2X2 þ b3X3 þ b4X4 þ a (7)

with the constraint that

X1 þ X2 þ X3 þ X4 ¼ 40 for all p:

The regression weights in Equation 7 are determined only up to
an additive constant k. There are an infinite number of regression
coefficient vectors (b1; b2; b3;b4; a) that will fit the data equally
well. Four child models with uniquely determined regression
weights are those obtained by deleting one of the four predictors:

Yp ¼ b21X2 þ b31X3 þ b41X4 þ a1 (8a)

Yp ¼ b12X1 þ b32X3 þ b42X4 þ a2 (8b)

Yp ¼ b13X1 þ b23X2 þ b43X4 þ a3 (8c)

Yp ¼ b14X1 þ b24X2 þ b34X3 þ a4 (8d)

In this notation, bvv� refers to the regression weight on variable
v in the child equation with variable v� deleted, and av� refers to
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the intercept in the child equation with predictor v� deleted. Each
coefficient bvv� equals a difference between two coefficients in the
parent equation: bvv� ¼ bv � bv�.
The regression coefficient estimates for the four models are in

Table 1. Column 1 of Table 1 contains coefficients for the model
with the CCI predictor deleted. Columns 2–4 correspond to the
models with predictor variables PAR, ELA, and NA deleted,
respectively. Each row label refers to the receiving predictor in the
model, and the column label refers to the sending (deleted) vari-
able. For each of the four models, the R2 are the same, because the
child models are four reparameterizations of the same model, the
parent model of Equation 7.
To illustrate the interpretation of the regression coefficients,

consider Column 1. The first entry is .00 in row CCI (the receiving
variable) and column CCI (the sending variable). The .00 indicates
that the increase in Yp is .00 if one response from the sending vari-
able CCI is transferred to the receiving variable CCI. All of the di-
agonal elements in Table 1 equal .00, because they represent the
expected increase in Yp obtained by transferring one response
from a predictor to itself. The second element in Column 2 is
�8.810, the increase (actually a decrease) in Yp associated with
the transfer of one response to the PAR predictor (row Paraphrase)
from the CCI (column CCI) predictor. The third element, �6.943,
the decrease in Yp associated with transferring one response to the
ELA predictor from the CCI predictor. Finally, �4.864 is the
decrease in Yp associated with transferring one response to the NA
predictor from the CCI predictor. Except for the first element, all
of the coefficients in model C are negative, suggesting that reduc-
ing the CCI predictor (correct response) by one unit decreases the
predicted Yp, but the size of the decrease varies depending on
whether the unit goes to the PAR, ELA, or NA predictor (It
appears that being correct is better than the alternatives as it leads
to a higher expected value for the criterion, the SBAC English
Language Arts Test).
The intercept under model C is 2,545.733. Given that the regres-

sion weight for the CCI predictor is .000, the intercept of
2,545.733 is the total score associated with a response vector in
which all 40 responses are CCI responses: that is, the response
vector X1 ¼ 40;X2 ¼ 0;X3 ¼ 0;X4 ¼ 0ð Þ. In general, the intercept
in a child model is equal to the predicted value for a response vec-
tor in which all responses fall in the sending predictor category.

In child models, the regression coefficient associated with a pre-
dictor will vary depending on which other predictor variable is
deleted. For instance, the CCI variable has regression weight esti-
mates of .000, 8.810, 6.943, or 4.864 in the four models of Table
1. This simply reflects the fact that the increase in Yp associated
with a one unit increase in the CCI predictor varies depending on
whether that unit comes from the PAR, ELA, or NA predictor.
Variation across the rows of Table 1 reflects the variation in Yp
associated with the different sending predictors given a fixed
receiving predictor. Likewise, variation along the columns of Ta-
ble 1 reflects the variation in Yp associated with different receiving
predictors given a fixed sending predictor.

The 4 3 4 matrix at the top of Table 1 has three interesting fea-
tures characteristic of such matrices. First, any two columns are
related by an additive constant k. That is corresponding elements
in any two columns will be related by the same constant. For
instance, if we subtract the first element in Column 1 (.000) from
the first element in Column 2 (8.810), we get 8.810. If we subtract
the second elements (�8.810 and .000) we also get 8.810. Simi-
larly, corresponding elements in any two rows will differ by an
additive constant (within rounding error).

Second, the 43 4 matrix at the top of Table 1 is a skew symmet-
ric matrix. That is, for any two variables (v, v*), bvv� ¼ �bv�v. Cor-
responding elements in the upper and lower halves of the matrix are
equal in magnitude but opposite in sign. This can be explained in
terms of the regression coefficients in the parent equation. bvv� ¼
bv � bv� whereas bv�v ¼ bv� � bv. For instance, the element in
Row 2, Column 1 is �8.810, whereas the element in Row 1, Col-
umn 2 is 8.810. The element in Row 2, Column 4 is �3.945,
whereas the element in Row 4, Column 2 is 3.945.

When there are V predictor variables, there are V*(V – 1) per-
mutations of V things taken two at a time, each permutation corre-
sponding to a different bv � bv�. From the parent model, there are
V child models, each corresponding to the deletion of a different
predictor variable. Within each of the child models, there are V – 1
coefficients estimated. Each of the V*(V � 1) permutations
appears in one and only one child model, so that there are V mod-
els each with V – 1 of the permutations. In the off-diagonal ele-
ments of the 4 3 4 matrix of Table 1, each of the 4*(4 – 1)
permutations bv � bv� appears once and only once.

The significance tests in Table 1 are tests of the null hypothesis
that H0 : bvv� ¼ bv � bv� ¼ 0. If the hypothesis cannot be
rejected, the data fail to support the statement that the transfer of 1
point from predictor v to v* changes the expected value of the cri-
terion variable in the population. If the null can be rejected, then
the statement receives support from the data.

In Model C, the regression weights are all significantly different
from zero (p , .01) and negative, indicating that the regression
weight for the correct answer CCI differs significantly from that
for the PAR, ELA, and NA. Transferring one response from the
correct response to any of the other categories is associated with a
significant decline in proficiency. But are all of the incorrect
answers created the same? The only significant difference between
incorrect responses is that between PAR and NA (see Model P or
Model NA). Transferring a point from PAR to NA (Model PAR)
leads to a significant increase in the total score and, conversely,
transferring a point from the NA to PAR (Model NA) leads to a
significant decline. NA is more indicative of proficiency than is

Table 1
Linear Regression Weights for Four Models of Proficiency
Varying in Sending Predictor Variable

Receiving
Model and sending predictor

predictor Model C Model P Model E Model NA

Correct 0.000 8.810** 6.943** 4.864**
Paraphrase �8.810** 0.000 �1.867 �3.945**
Elaboration �6.943** 1.867 0.000 �2.078
No attempt �4.864** 3.945** 2.078 0.000
Intercept 2,545.733** 2,193.342** �2,268.024* 2,351.162**
R2 0.530** 0.530** 0.530** 0.530**

Note. Model C = correct as sending predictor; Model P = paraphrase as
sending predictor; Model E = elaboration as sending predictor; Model
NA = not attempted as sending predictor.
* p , .05. ** p , .01.
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PAR (it appears that not responding is more indicative of profi-
ciency than paraphrasing).
The results above suggest that it may be overly simplistic to

think of multiple-choice responses as falling into just two catego-
ries, correct or incorrect. The results above would suggest that a
person whose 40 responses contained 35 correct answers and five
paraphrase responses would not have the same expected outcome
as someone with the same number of correct responses but five
not attempted items. Supplied response items, either multiple-
choice or rating scales, contain a set of mutually exclusive and ex-
haustive response categories, and usually there are more than just
two categories. For example, for a multiple-choice item there are
correct answers, incorrect answers, omitted items, and not reached
items. Recent research has divided responses for an item into four
categories: fast correct, slow correct, fast incorrect, and slow
incorrect (De Boeck et al., 2017; Partchev & De Boeck, 2012; Su
& Davison, 2019).2 Other research suggests four different catego-
ries based on rapid guessing: fast effortful, slow effortful, fast non-
effortful, and slow noneffortful (Rios, 2021; Wise & DeMars,
2009). There are new response formats, such as drag-and-drop or
point-and-click. For supplied response items, including rating
scales, criterion-related validity involves the study of how the
composition of the person’s test item response vector relates to the
criterion variable. The results above illustrate a more fine-grained
analysis of the criterion-related validity question. Results indicate
that the student’s outcome Y depends, not just on the number cor-
rect, but also on how incorrect responses are distributed over the
incorrect response categories. In addition to the studies listed
above, there is a literature in developmental psychology making
use of the types of errors chosen using multiple choice item for-
mats. For example, Powell (1968) found that wrong answers are
not randomly distributed and that there is additional information in
the type of wrong answers chosen.

Discussion and Conclusions

If the predictors add to a constant for all observations, then there
are V*(V � 1) uniquely defined regression weight coefficients. How-
ever, they are not the coefficients in the ordinary linear model, the
parent model. Rather they are coefficients in a family of V child mod-
els, each obtained by dropping one predictor (the sending variable)
from the parent model. These uniquely defined parameters express
the expected increase in the criterion resulting from a transfer of one
unit from the sending predictor variable to the receiving predictor
variable. The parameters quantify a type of interaction between two
predictors, but one that cannot be modeled by a cross-product term
xvxv�, because the interaction is a different kind of interaction involv-
ing a transfer of points rather than a moderating effect.
Collectively, the child models contain a large number of parameters:

V*(V – 1). However, there are only (V – 1) degrees of freedom associ-
ated with the full set of V*(V � 1) parameters. From the (V � 1) pa-
rameters in any given child model, one can estimate
the remaining (V � 1)*(V – 1) parameters from the coefficients
of the given child model. Because of the fewer degrees of freedom,
estimation may not pose the problems (for example, sample size) com-
monly associated with a large number of parameters. The large num-
ber of parameters raises concerns about the familywise error rate of
statistical tests associated with the parameters. Given the dependencies
between the parameters, much of the literature on familywise error rate

may not apply, and familywise error rates must remain a matter for
future research. The issue will need to be examined separately across
the various types of regression (for example, OLS, ridge, logit, and so
forth) to which the reduced form approach can be applied.

The reduced model of Equation 5 is a trade-off model. Its coef-
ficients are regression weight differences, bv � bv�. Of special
note is that these weight differences are relative to the parent
model; values that are inestimable via usual OLS regression.
These differences express the expected effect on Y obtained by
trading one point from the sending variable v* in exchange for one
point on the receiving variable v. The model will be of particular
interest in research areas, such as decision theory, where trade-offs
are of interest in their own right.

If the researcher is fitting a linear model and the assumptions
above do not hold; linearity with errors distributed independently
and identically N 0;r2 eð Þ

� �
, then the classical solution, fitting a

reduced form OLS model does not apply. Nonlinearities may be
accommodated by adding higher order terms or applying a general-
ized linear approach. Robust estimators may improve estimation of
parameters, but do not address the violations of assumptions for the
statistical tests (Hampel, 1971; Huber, 1973, 1981). There needs to
be at least one reduced predictor matrix XV�1 of full column rank.
Moderated versions of the child models can address the question of
whether the effect of a trade-off varies in size across subgroups.

Compositional variables are of interest in many areas of psychol-
ogy. For instance, group composition is of interest in social psychol-
ogy, industrial organizational psychology (for example, employee
teams), and education (for example, schools and classrooms). The
composition of calorie intake (that is, fats versus carbohydrates ver-
sus proteins) is of interest as related to weight loss and adherence to
diets. The composition of intervention activities is also of interest:
for instance, clinical psychology (individual versus in-person group
versus virtual group therapy) or education (reading group versus
worksheets versus independent reading). Intervention design often
involves decisions about allocating client and professional time to
various activities that constitute the ingredients of an intervention.

In a reduced form solution, the regression weights are interpret-
able: bvv� equals the expected increase in the criterion given the
transfer of 1 point from the sending variable Xv� to the receiving
variable Xv. This interpretation is more plausible for percentages
than proportions. For proportions, a transfer of 1 point is only
plausible if Xv� ¼ 1 and Xv ¼ 0: For predictor vectors, in which
the proportion Xv� 6¼ 1 or Xv 6¼ 0, transferring one point yields a
value of Xv� , 0 and a value of Xv > 1. Such values do not make
sense, because they fall outside the range of proportions. For percen-
tages, however, the premise of transferring one point is plausible in
all but extreme cases in which Xv� ¼ 0 or Xv ¼ 100. For purposes of
interpreting differences in regression weights, it seems more appro-
priate to base the regression on percentages rather than proportions,
although percentages and proportions are perfectly linearly related.

Our results lead to several conclusions. First, the regression
weights in the full model are determined only up to an additive con-
stant. However, if there is a solution, differences between regression
weights will be uniquely determined, precisely because those

2 Items are classified as fast or slow prior to any regression analysis. One
common way to do so is to classify the response as fast if the response time
is less than the median response time and slow if the response time is
greater than the median.
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weights are determined up to an additive constant. If the reduced pre-
dictor matrixXV�1 in a child model is of full column rank, the coef-
ficients in that model are uniquely determined and can be interpreted
as differences between regression weights in the parent model. The
familiar t-statistic can be used to test the hypothesis that regression
weights in the child model bvv� ¼ 0 which is tantamount to testing
the hypothesis H0 : bv � bv� ¼ 0 for pairs of regression weights in
the parent model. Covariates (beyond the compositional variables)
can be added without fundamentally changing the interpretation of
the coefficients for compositional variables, except to make the inter-
pretation conditional on the added covariates. However, issues that
complicate interpretation in regression generally or causal modeling
more specifically will carry-over into regressions based on reduced
form equations (Allison, 1999; Didelez & Stensrud, 2021).
The major advantage of this approach over virtually all of the

alternatives is that the magnitudes of regression weights are not
only interpretable, but interpretable in the metric of the original pre-
dictors, and the interpretation is based on a comparison of expected
criterion values for pairs of predictor vectors that both satisfy the
constraint of equal sums. Furthermore, predictors can take any
number on the real number line; they need not be positive. Methods
using log transformations require positive predictors or ratios of
predictors, and they yield regression weights whose magnitudes are
difficult to interpret at best, even if one ignores the constraint that
predictors sum to a constant. Reduced form models do not require
specialized software. They can be applied in OLS linear regression,
generalized linear regression, robust modeling techniques, and ran-
dom coefficient models. Reduced form models are uniquely suited
to many regression problems due to their breadth of applicability
and the interpretability of their coefficients. OLS regression is fairly
simple, very popular, and more universally understood. Further-
more, the weights in the metric of the predictors are consistent,
unbiased, and minimum variance (Fox, 2016, pp. 109–110).
In many areas of research, there are important questions involv-

ing trade-offs (for example, fat versus protein versus carbohydrate
calories; stocks versus bonds; eating out versus eating at home,
work–life balance). Many of these trade-offs involve how people
use their time or their money. Indeed, there are trade-offs between
time and money (for example, more free time versus more
income). Both people and organizations face trade-offs. Trade-off
is a fundamental topic for any decision theory. Reduced form
equations provide a statistical model for the analysis of such trade-
offs. Reduced form models provide interpretable regression coeffi-
cients for any data where the sum of predictors is a constant for all
observations, and they are particularly useful for research domains
in which trade-offs are of interest in their own right.
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Appendix

Proof of Theorem 1

The theorem above states that
Theorem 1: If EðYp jxpÞ ¼ bxT

p þ a; then EðYp jxpÞ ¼
b�xT

p þ a� for all x satisfying the constraint
Pv¼V

v¼1 xpv ¼ T if
and only if there exists a constant k such that b� ¼ bþ k1 and
a� ¼ a� kT:
In the text, it was shown that if EðYp jxpÞ ¼ bxT

p þ a, then
EðYp jxpÞ ¼ b�xT

p þ a� when there exists a constant k such that
b� ¼ bþ k1 and a� ¼ a� kT for all x satisfying the constraint.
Here, we will show that, if there is not a single constant k relat-
ing the vectors, (b; a) and (b�; a�), then there will be
at least one vector x such that EðYp jxpÞ ¼ bxT

p þ a 6¼ b�xT
pþ

a�. Let there be one predictor vector x1 ¼ ðx1; . . . ; xv0 . . . :; xv00 ;
. . . xV ) such that EðYp jx1Þ ¼ bxT

1 þ a ¼ b�xT
1 þ a�, which

means that X
v

bvxv þ a ¼
X
v

b�vxv þ a� (A1)

Here we need only consider the case were there is at least
one predictor vector such that EðYp jxpÞ ¼ bxT

p þ a ¼ b�xT
pþ

a�, because if there is not even one predictor for which
EðYp jx1Þ ¼ bxT

p þ a ¼ b�xT
p þ a�, then EðYp jxpÞ ¼ bxT

p þ a ¼
b�xT

p þ a� cannot possibly be true for all predictor vectors
satisfying the constraint.

Let x2 ¼ ðx1; . . . ; xv 0 þ 1 . . . :; xv00 � 1; . . . ; xV ). x2 and x1
differ only in their elements v0 and v00. Clearly, if x1 satisfies
the constraint, x2 will as well. Let b

�
v0 ¼ bv þ k1 and for v = v00

let b�v00 ¼ bv00 þ k2, k1 6¼ k2. Then

b�xT
2 þ a� ¼

X
v6¼v0 ;v00

b�vxv þ b�v0 ðxv0 þ 1Þ þ b�v00ðxv00 � 1Þ þ a�

(A2)

¼
X
v

b�vxv þ a� þ b�v0 � b�v00

By a similar line of reasoning

bxT
2 þ a ¼

X
v

bvxv þ aþ bv0 � bv00 (A3)

If we subtract Equation A2 from Equation A3

ðb�xT
2 þ a�Þ � ðbx2 þ aÞ ¼

X
v

b�vxv þ a� þ b�v0 � b�v00
� �

�
X
v

bvxv þ aþ bv0 � bv00
� �

Substituting the left side of Equation A1 for
P

v b
�
vxv þ a�,

bv0 þ k1 for b
�
v , and bv00 þ k2 for b

�
v00 , yields

b�xT
2 þ a�

� �
� bxT

2 þ a
� �

¼
X
v

bvxv þ aþ bv0 þ k1 � bv00 � k2
� �

�
X
v

bvxv þ aþ bv0 � bv00
� �

¼ k1 � k2 6¼ 0

Thus, one arrives at the conclusion that, for the vector x2,
b�xT

2 þ a� is not equal to bx2 þ a. There exists at least one
vector x2 for which b�xT

2 þ a� 6¼ bxT
2 þ a, and therefore the

statement EðYp jxpÞ ¼ bxT
p þ a ¼ b�xT

p þ a� for all vectors xp
satisfying the constraint cannot be true when there is no single
constant k relating (b; a) to (b�, a�).

Having shown in the text that the statement “EðYp jxpÞ ¼
bxT

p þ a ¼ b�xT
p þ a� for all vectors xp satisfying the con-

straint” is true when there is such a constant k, but that it can-
not be true when there is no such constant k, one arrives at the
conclusion in the theorem: if EðYp jxpÞ ¼ bxT

p þ a, then
EðYp jxpÞ ¼ b�xT

p þ a� for all x satisfying Equation 2 if and
only if there exists a constant k such that b� ¼ bþ k1 and
a� ¼ a� kT.
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