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Abstract
The last two decades have seen a dramatic increase in randomized controlled
trials (RCTs) conducted in community colleges. Yet, there is limited empirical
information on the design parameters necessary to plan the sample size for
RCTs in this context. We provide empirical estimates of key design pa-
rameters, discussing lessons based on the pattern of estimates across out-
comes, semesters, and studies. Nearly all RCTs in community colleges use
student random assignment within blocks (colleges or cohorts). Key design
parameters for the minimum detectable true effect (MDTE) are the within-
block outcome standard deviation ðσjSÞ and the within-block outcome var-
iance explained by baseline covariates like student characteristics ðR2jSÞ. The
main analyses use student-level data from 8 to 14 RCTs including 5,649–7,099
students (depending on the outcome) with follow-up data for 3 years. A public
database created for this paper includes parameter estimates for 30 RCTs
including 65,637 students. Enrollment, credits earned, credential attainment,
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and grade point average. The within-block standard deviation ðσjSÞ and
therefore the MDTE can be much larger in later semesters for enrollment
outcomes and cumulative credits earned. There is substantial variation across
studies in σjS for degree attainment. Baseline covariates explain less than 10%
of the variation in student outcomes. When planning the sample size for a
study, researchers should be mindful of the follow-up period, use a range of
values to calculate the MDTE for outcomes that vary across studies, and
assume a value of R2jS between 0 and 0.05.

Keywords
design parameters, statistical power, community college, postsecondary,
randomized controlled trial

Introduction

Community colleges (CCs) play a vital role in U.S. postsecondary education.
In Fall 2017, CCs served nearly six million students, representing 39% of all
U.S. undergraduates (Ginder et al., 2018, Table 3). Despite providing un-
precedented access to postsecondary education, rates of degree attainment
remain low. Among first-time, full-time, degree/certificate-seeking students
whose first postsecondary school is a 2-year public institution, only 25%
graduate within 3 years (McFarland et al., 2019, p. 199). To address these
issues, policymakers, foundations, and college administrators are beginning to
embrace the need for causal evidence of the effectiveness of postsecondary
programs, policies, and practices.

In 2002, the U.S. Department of Education created the Institute for Ed-
ucational Sciences (IES) as part of the Education Sciences Reform Act. IES
has provided unprecedented funding for educational evaluations with strong
potential to draw causal conclusions. This advance nearly coincided with
MDRC launching the first ever large scale (n = 1500) randomized controlled
trial (RCT) at a CC (Bloom & Sommo, 2005).

Thus began a transformation in higher education evaluation. Two decades
later, MDRC alone has conducted RCTs of just over 30 interventions in over
45 (mostly community) colleges throughout the United States, including
67,400 students, mostly from low-income families (Diamond et al., 2021).
Many more RCTs in higher education have been conducted by others. For
example, the What Works Clearinghouse (WWC) has published reviews of 48
postsecondary RCTs that meet their evidence standards without reservations.1

While the number of RCTs in CCs has grown dramatically over the past
20 years, the information needed to plan a high-quality RCT in this context has
not. Several types of information are important for designing an RCT that will
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produce impact findings that are reliably estimated. Among other things, it is
important to have information about the design parameters that affect the
sample size necessary so that the study can be powered to confidently detect
effects of a pre-specified size. Unfortunately, this information is scarce in the
CC context.

In this article, we provide empirical estimates of the design parameters
needed to conduct individual-level RCTs in CCs. To do so, we rely on student-
level data from the RCTs that MDRC has conducted since 2001. Design
parameters are estimated for each RCT at six timepoints (ranging from one
semester to 3 years after random assignment) for four outcomes that are
commonly considered confirmatory in community college RCTs—
enrollment/persistence, credits earned, GPA, and degree completion. The goal
is that this information will serve as a resource to researchers looking to
conduct well-powered RCTs in the postsecondary education context.

Some Relevant Context

In the last decade and a half, great strides have been made to generate
methodological tools and benchmarks to support the design and planning of
RCT evaluations in K-12 education. K-12 researchers now have available
estimates of the design parameters necessary for conducting statistical power
analyses (e.g., see: Bloom, Zhu et al., 2008; Deke et al., 2010; Dong et al.,
2016, 2021; Hedberg, 2016; Hedges & Hedberg, 2007a, 2007b, 2014; Jacob
et al., 2010; Kelcey et al., 2016; Jaciw et al., 2016; Juras, 2016; Schochet,
2008; Weiss et al., 2017; Westine et al., 2013; Xu & Nichols, 2010).

The result of these methodological advances in K-12 has been a major
improvement in the information available to enable K-12 researchers to design
RCTs that are well-powered and cost-efficient.

Unfortunately, design parameters for K-12 and postsecondary education
are not interchangeable for several reasons. First, estimates of K-12 design
parameters are largely based on cluster randomized trials (CRT), a design that
is common in K-12 but rare in CC RCTs. In CCs, student-level randomization
is the norm and the relevant design parameters are different. Second, existing
design parameters in K-12 focus on the outcomes typically targeted by K-12
interventions—test scores, attendance, and socio-emotional outcomes. In
contrast, CC RCTs typically focus on different outcomes—enrollment/
persistence, credit accumulation, GPA, and credential attainment. Finally,
and perhaps most importantly, design parameters estimated based on data
from K-12 may not apply to CC studies due to differences in context, student
characteristics, and available data. CC researchers are thus left without clear
guidance when planning RCTs.

This may explain why many postsecondary RCTs appear to be under-
powered. Consider the RCTs of the 48 postsecondary interventions listed as
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having met IES’s What Works Clearinghouse (WWC) standards without
reservations—presumably, these are some of the highest quality postsec-
ondary evaluations conducted to date. 12 out of 48 (25%) had a total sample
size of under 350 students. If we consider reported subgroup analyses, 21 out
of 48 (44%) conducted analyses on a sample of size 350 students or less.
Under reasonable assumptions, the minimum detectable effect for a binary
outcome (e.g., enrollment or degree completion) in a study with 350 sample
members is 10–15 percentage points,2 which is quite large.3 Reviews have
found that many education studies (and not just CC RCTs) are not adequately
powered (Cheung & Slavin, 2016; Spybrook et al., 2016; Torgerson et al.,
2005).

There are many possible explanations for these low-powered studies.
Researchers may not be conducting power analyses; they may be conducting
power analyses but plugging in overly optimistic design parameters; they may
have unrealistic expectations around what size intervention effects can rea-
sonably be expected; or they might represent pilot studies that were not
designed to detect intervention impacts at all or with great precision. Perhaps
the most common reason is a matter of resource constraints, including time,
money, and partnerships.

Whatever the reasons, there is much room for improvement, information,
and education. Our aim with this paper is to eliminate the second of these
reasons (plugging in overly optimistic design parameters), ensuring that
postsecondary researchers have empirically derived information at their
disposal for power calculations.

Design Parameters for Community Colleges Randomized
Controlled Trials

Multiple design parameters influence the sample size required for an RCT.
The relevant design parameters depend on the study design (e.g., cluster
randomization vs. individual randomization) and the effect estimator.4 In CC
research, a design commonly used in RCTs to date involves randomizing
individuals (college students) to experimental conditions, often within sites
(sometimes called an “individually-randomized blocked” design).5

Given this research design, the fixed-effects estimator is commonly se-
lected to estimate the average treatment effect (Miratrix et al., 2021). For
binary outcomes, many RCTs in higher education use linear probability
models (LPM) to estimate program effects.6 Logistic regression is also used.
In this paper, we focus on LPMs given convincing arguments in favor of
LPMs in the context of RCTs (Deke, 2014; Schochet, 2015).

When using a LPM, the fixed-effects estimator of the average effect of
being offered the treatment (δ) at a total of J sites (i.e., blocks) can be written
as7
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Yi ¼ α � Si þ δTi þ γ � Xi þ ei, (1)

where Yi ¼ the outcome for student i ,
Si ¼ a vector of J elements (one for each site, i.e., block, in the study)

where the jth element is equal to one if student iwas randomly assigned at site j
(typically colleges in this context) and zero otherwise,

Ti ¼ one if student i was assigned to treatment and zero otherwise,
Xi ¼ is a vector of H elements (one for each baseline covariate) where the

hth element equals the baseline covariate for student i,
ei ¼ a random error that is independent and identically distributed across

individuals.
We define the total unconditional variance of the outcome across all

students as σ2. In equation (1), VARðeiÞ≡ σ2jX ,S , which is the residual variance
of individual outcomes under the null hypothesis of no impact. The “jX ,S” in
σ2jX , S is used to specify that the residual variance is conditional on the site
indicators (S) and individual-level covariates (X ).8

The statistical precision of this impact estimator can be described by its
standard error as follows (adapted from: Bloom & Spybrook, 2017; Weiss
et al., 2017)

SEðδÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2jS

�
1� R2

jS

�
JnT

�
1� T

�
vuuut , (2)

where σ2jS is the within-site variance of the outcome, R2
jS is the proportion of

σ2jS that is predicted by the baseline covariates (X )9, J is the total number of
sites, n is the mean number of sample members per site, and T is the pro-
portion of sample members randomly assigned to the treatment group.10

Notably, σ2jX ,S ¼ σ2jSð1� R2
jSÞ. That is, the numerator within equation (2) is

the residual variance (σ2jX , S), which is the within-site outcome variance that is
not explained by baseline covariates.11

The Minimum Detectable True12 Effect, or MDTE, is the smallest true
effect for which a study would have a 1� β percent chance of detecting the
existence of an effect based on a two-tailed test of statistical significance at the
α significance level. The MDTE is equal to SEðδÞ (Equation (2)) times a
multiplier whose value depends on the desired power (1� β) and significance
level (α). Common choices for power and significance are 1� β = 80% and
α = 5%, which yields a multiplier of 2.8 when the sample size is reasonably
large.13 Thus, the MDTE can be written as (adapted from: Schochet, 2008;
Bloom, 2008)
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MDTE ¼ 2:8 * SEðδÞ ¼ 2:8 *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
jS
�
1� R2

jS
�

JnT
�
1� T

�
vuut (3)

By re-arranging the terms in equation (3), we can calculate the total sample
size (Jn) required to achieve 80% power to detect a true effect of size δ at a 5%
significance level

Jn ¼ 2:802 *
σ2
jS
�
1� R2

jS
�

δ2T
�
1� T

� : (4)

Equation (4) indicates how four factors influence the sample size necessary
in an RCT. All else equal, the sample size required to achieve 80% power at
the 5% significance level decreases as:

(1) the within-site outcome variance (σ2jS) decreases,
(2) the proportion of the within-site outcome variance explained by

covariates (R2
jS) increases,

(3) the true effect size (δ) increases, and
(4) the proportion of sample members assigned to treatment (T ) is closer

to 0.50.14

As noted by Bloom (2005), J , n, and T are “research design choices” and
can often be modified (within reason) to ensure adequate statistical precision
(e.g., by recruiting more sites to join an RCT). In contrast, σ2jS “reflects the
underlying variation in the outcome of interest, which must be taken as given”
(Bloom, 2005, p. 128). R2

jS lies somewhere in between since collecting ad-
ditional baseline datamay yield an increased R2

jS , but the underlying covariate-
outcome relationships that exist must also be taken as given. Thus, when
planning an evaluation it is common to assume values for σ2jS and R

2
jS and then

determine the number of sites, number of students per site, and the random
assignment ratio necessary to detect meaningful (or realistic) program effects.

The present paper provides a series of estimates of σjS (the within-block
standard deviation) and R2

jS , providing an empirical foundation about these
design parameters in CC studies for highly relevant outcomes, time points,
and populations. Student-level data from RCTs conducted by MDRC are used
to explore the following questions:

· What is the distribution of σjS and R2
jS estimates in student-level RCTs

of CC interventions, by outcome and by follow-up semester?
· Are there notable patterns of variation in these parameters across se-

mesters? Across studies?
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· Can R2
jS be appreciably improved with a richer set of baseline

covariates?

In the next section of this paper, we describe the data sources and outcome
measures used in our analyses as well as our approach to estimating these
design parameters. In the following section, we share results. Finally, in the
last section, we offer a discussion of recommendations and areas for future
research.

Methods

Studies and Analysis Sample, Data Sources, and Measures

Studies and Analysis Sample. The present analyses are based on 16 RCTs that
MDRC has conducted in postsecondary education. These RCTs were selected
because they collected data on student outcomes for the first six semesters
after random assignment (a common time period to consider community
college degree completion rates), thereby making it possible to examine the
pattern of variation in the design parameters across semesters of follow-up as
well as across studies.

For each of these studies, the main analytic sample includes control group
students in the study cohorts that were followed for 6 semesters. Restricting
the sample to control students ensures that the design parameters are estimated
under the null hypothesis of no effects. The number of control students in each
study is sufficiently large to estimate the design parameters such that any
precision loss does not pose a problem.15 Restricting the analytic sample to
cohorts with six semesters of follow-up ensures that, for a given outcome, any
time trend in the estimated distribution of a design parameter is more likely
attributable to real changes over time, rather than changes in the studies or
students included in the analyses.

Because data availability varies across studies, the main analytic sample is
defined separately for each outcome and by design parameter in order to
maximize the available sample for each analysis. (For analyses of R2

jS we
include one additional restriction at the study level—the ratio of observations
to potential baseline covariates must be at least 10:1 to avoid an over-specified
regression model.) Table 1 shows the number of studies and students used to
estimate the design parameters for each outcome, ranging from 8 to 14 studies
and 5649 to 7099 students. A total of 16 studies conducted in nine states are
represented in these samples.

As shown in Table 2, these 16 studies evaluated the effect of interventions
that vary in their duration (from one semester to 3 years) and key components
(e.g., advising, tutoring, and financial supports). The target population for all
studies is students enrolled in the colleges (as opposed to prospective students
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or applicants); in half of the studies, eligibility was limited to new or first year
students. Most were conducted at CCs or public universities with large
populations of students from families with low-income (or the studies targeted
students from families with low-income) and most studies include multiple
cohorts.

Reflecting national patterns in 2-year colleges, in the average study 62% of
students are female and the majority of students (71%) are younger than 25
(see Table 3). About two thirds of students in the average study are Black or
Hispanic, more than in the average 2-year college in the US. However, there is
substantial variation in the characteristics of students across the studies; for
example, the percentage of female students ranges from 0 to 86%, and the
percentage of white students ranges from 0 to 53%.

Because the data used for the present analysis are from actual RCTs, all of
which focus on students who are already enrolled, the design parameters
presented in this paper may not generalize to the outcome variation that one
would observe for all community college students in the US, nor to pro-
spective students or applicants to these colleges. However, the findings are
likely to represent the range of parameter values that researchers will en-
counter for the subset of colleges and enrolled students that agree to participate
in CC RCTs.

Data Sources and Measures. Data for the 16 studies included in the present
analysis are from The Higher Education Randomized Controlled Trials (THE-
RCT) student-level database. This database includes all the RCTs that MDRC
has conducted in postsecondary education since 2003, representing RCTs of
over 30 interventions conducted across more than 45 postsecondary insti-
tutions and 12 states with 67,400 students (Diamond et al., 2021). For details
about the individual studies, see Diamond et al. (2021). For reasons noted
earlier, this paper focuses on the subset of studies with at least six semesters of
follow-up data. However, study-level estimates of the design parameters for
the full set of studies and students in the THE-RCT database are available in a
public-use dataset created for this paper and available from the authors on

Table 1. Main Analytic Sample Sizes, by Outcome and Design Parameter.

σjS R2jS

# Studies # Students # Studies # Students

Enrollment 14 7028 8 5649
Credits earned 12 6813 8 5649
Degree completion 14 7099 9 5869

Note: 16 studies (7382 students) are represented across the samples in this table.
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Table 2. Characteristics of Studies in the Main Analytic Sample.

Study Characteristics Percentage of Studies (%)

Program features
Program content (%)a

Financial support 75
Advising 63
Tutoring 38
Learning communities 31
Success course 50
Enrollment intensity 44
Developmental education reform 25
Instruction reform 25
Financial aid reform 31
Communication campaign 50

Program length
1 semester 25
2 semesters 38
3 semesters 13
4 semesters 6
5 semesters 0
6 semesters 19

Student eligibility criteriaa

Low-income 56
Remedial needs 44
New or first year 50
Enroll full time 25
Other 81

Study design features
Number of cohorts
1 31
2 19
3 38
4 13

Study sample size
1000 or fewer 44
1001–2000 44
2001–5000 13

Note. 16 studies are represented in the main analytic sample. Studies are equally weighted.
aPercentages do not add up to 100% because programs may have more than one of these features.
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request. The values (and pattern) of design parameter estimates for the full
sample are similar to those for the analytic samples.

In all studies, data on students’ outcomes and their baseline characteristics
come from three sources: (1) college (or college system) records, which
include demographic records, placement test data, course transcripts, grade
point average (GPA), and degree completion; (2) data from the National
Student Clearinghouse (NSC), which includes information on enrollment and
degree completion from nearly 3600 colleges that combined enroll over 97%
of the nation’s college students16; and (3) a study-administered student survey
implemented at the time of random assignment, which includes more detailed
information on student characteristics that are not available from college
records.

Student Outcomes. The outcomes explored in the present analysis, sum-
marized in Table 4, are the focus of most CC interventions: enrollment (by
follow-up semester and the cumulative number of semesters enrolled during a
specified follow-up period), credits earned (by semester and cumulatively),
and degree completion. Data on the number of credits earned were obtained
from college records. Information on enrollment and degree completion are
available from college data or from the NSC, depending on the study and the
student. Therefore, to maximize data availability across studies, these

Table 3. Characteristics of Students in the Average Study in the Main Analytic
Sample.

Student Characteristics Average Across Studies (%) Range Across Studies (%)

Gender
Male 36 14–100
Female 61 0–86
Missing 2 0–14

Racial-ethnic group
Black 29 0–81
Hispanic 31 5–100
White 26 0–53
Asian 4 0–13
Other 5 0–11
Missing 4 0–17

Age
Younger than 25 68 30–100
25 or older 32 0–69
Missing 0 0–0

Note. 16 studies are represented in the main analytic sample. Studies are equally weighted.
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outcomes are derived using both data sources. When only college/system
outcome data are available for a student, these measures are defined as en-
rollment or degree completion at the college/system of random assignment.
When both college/system and NSC data are available, these outcomes are
defined as enrollment or degree completion at any college/university covered
by the two sources.17

Attrition of sample members does not present a problem in our analyses.
For enrollment, credit accumulation, and degree completion, data are
available for every student in the study, as long as the relevant information
(e.g., transcript records for credit accumulation) was collected for that study.
When the college or NSC data include no records for a given student, we treat
that student as not being enrolled, and therefore earning zero credits and not
earning a degree.

As a supplemental analysis, we also examine students’ performance in their
courses as measured by their grade point average (GPA), measured on a 4-
point scale.18 Impacts on GPA are challenging to evaluate in postsecondary
impact studies because GPA is only defined for students who are still enrolled.
This means that if an intervention has an impact on enrollment, estimated
effects on GPA could be biased (and in all cases, estimated effects on GPA do
not apply to unenrolled students). For the present analysis, comparing the
standard deviation of GPA across follow-up semesters is also challenging
because attrition from the sample increases over time. Therefore, the findings
for GPA in this paper are limited to the first follow-up semester and discussed
separately.

Student Characteristics at Baseline. Information about students’ character-
istics at baseline (and related baseline variables) come from college records
and student baseline surveys:

· College records. College records typically include demographic
characteristics like age, race and ethnicity, and gender; educational
background factors like previous credentials; and financial aid infor-
mation like Pell eligibility and Expected Family Contribution (EFC).

Table 4. Student Outcomes.

Outcome Scale Data Source By Semester Cumulative

Enrolled Binary NSC/College X
Total semesters enrolled Count NSC/College X
Total credits earned Count College X X
Earned a degree Binary NSC/College X

Somers et al. 11



· Baseline surveys. The information collected from surveys varies across
studies, but includes measures across domains such as: Financial aid
(e.g., Pell status); measures of socioeconomic status (e.g., public as-
sistance, parent education); diplomas/degrees previously earned (e.g.,
HS diploma/GED); family and household characteristics (e.g., age of
youngest child, number of children, language spoken at home);
earnings and employment; and access to transportation and educational
tools (e.g., has vehicle to commute, home computer). For a more
comprehensive list of available baseline characteristics, see the code-
book in Diamond et al. (2021).

· Placement tests. Some studies collected data on students’ performance
on placement tests, which are sometimes available from college records.
A total of 29 different placement tests across 10 studies are represented.
For the purposes of the analysis, students who took the same test more
than once are assigned their best score in the 3 years prior to random
assignment.

As discussed in the next section, empirical estimates of R2
jS are derived for

various combinations of these baseline characteristics. Because the majority
of students are new or first-year students, college outcomes from prior se-
mesters (GPA, credits earned) are not examined as baseline covariates in this
analysis.

Estimation of Design Parameters

As noted earlier, the goal of the present analysis is to produce estimates of two
key design parameters—the within-block outcome standard deviation (σjS)
and the proportion of within-block outcome variation that is explained by the
covariates (R2

jS)—for each study in the analytic sample, by outcome and by
semester of follow-up. Most studies in the dataset include multiple cohorts and
more than one college, so blocks are typically defined as college-by-cohort.

For each study, we estimate the within-block standard deviation of the
outcome, σjS, as follows

bσjS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

J
�
n� 1

� Xnj

i¼1

XJ

j¼1

�
Yij � Y j

�2s
(5a)

where J is the number of blocks, n is the average number of students per block,
Yij is the outcome for student i in block j, and Y j is the mean outcome for
students in block j. For a binary outcome, equation (5a) simplifies to (adapted
from Bloom, 1995)
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bσjS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

J
�
n� 1

� XJ

j¼1
njΠj

�
1� Πj

�vuut (5b)

whereΠ is the proportion of the study population that would have a value of 1
for the binary outcome.19 Separate estimates are obtained for each study by
outcome measure and by follow-up semester, based on the relevant analytic
sample.

For each study, we estimate the proportion of within-block outcome
variation explained by the baseline covariates, R2

jS, as follows

bR2

jS ¼ bσ2
jS � bσ2

jX ,Sbσ2jS (6)

where bσ2jS is the estimated outcome variance across individuals after ac-
counting for block indicators (S) and bσ2jX ,S is the estimated residual outcome
variance after accounting for block indicators and individual-level covariates
(X ). To estimate σ2jS , we use equation (1) without student-level covariates and
without a treatment indicator, that is: Yi ¼ α � Si þ ei. To estimate the con-
ditional outcome variance (σ2jX ,S), we add student-level covariates back into
the model, that is: Yi ¼ α � Si þ γ � X i þ ei.

Missing data in the baseline covariates (X) are imputed using the indicator
variable approach, a method recognized by the What Works Clearinghouse
(WWC) as being appropriate for student-level RCTs. This method entails
imputing missing values with a constant and creating an indicator variable for
each covariate (=1 if the value for the covariate is missing and 0 otherwise).
Both the imputed covariates and the indicators of missingness are included in
the statistical model. Accordingly, X i also includes a set of indicator variables
(one for each baseline covariate) equal to 1 if student i has missing data for the
corresponding baseline covariate and zero otherwise.

To help inform researchers’ decisions about baseline data collection, we

examine bR2

jS under different assumptions about the information available to

researchers. Two key scenarios are examined. Scenario 1 examines bR2

jS when
controlling for the set of student demographic characteristics that are typically
available from college records, a data source that can often be accessed at
low cost.20 Scenario 2 examines whether bR2

jS can be improved by controlling
for the richer set of baseline covariates that can be obtained from adminis-
tering a baseline student survey. The set of baseline covariates in this scenario
includes the set of characteristics typically available from college records and
the student characteristics available from a given study’s baseline survey.
These characteristics differ across studies, but as previously described, can
include measures of financial aid, measures of socioeconomic status,
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diplomas/degrees previously earned, family and household characteristics,
earnings and employment, and access to different types of resources. For each
of these scenarios, we estimate R2

jS for each study by outcome and by semester.
In all analyses, we control for the (imputed) baseline covariates of interest as
well the indicators of missing data for each covariate (which may also explain
outcome variation), so estimates of R2

jS reflect the explanatory power of the
covariates as well as missing data flags. Because baseline covariates are often
imputed in RCTs to maximize the sample size, estimates of R2

jS based on
imputed covariates are relevant and useful for researchers conducting power
calculations.

As a supplemental scenario, we also examine bR2

jS when placement test data
are available to use as baseline covariates. The set of baseline covariates in this
analysis includes the characteristics typically available from college records,
as well as a set of baseline variables for a student’s score on each placement
test administered in the study sites. This analysis is considered supplemental
because placement test data are only available in a subset of studies, and
studies are only included in the analysis if there is at least one test for which at
least half of students have a valid score.21 This ensures that only studies and
covariates with a reasonable chance of adding explanatory power are con-
sidered. A total of four studies (2743 students) are included in this supple-
mental analysis.

Results

In this section, we present estimates of the design parameters (σjS and R2
jS)

based on the analytic samples described in the previous section, which allows
us to examine patterns across semesters and studies based on a consistent
sample of studies and students in the control group. For researchers needing
additional or more detailed information, study-level estimates of the design
parameters discussed in this section are available in a public-use dataset
created for this paper that can be requested from the authors. The dataset
includes estimates of the design parameters for each of the studies in the THE-
RCT database, for all outcomes, by follow-up semester, by cohort and by
research group (all students, program group, control group). The database also
includes information about the estimation error for each parameter estimate.22

Empirical Estimates of the Within-block Standard Deviation (σjS)
In this section, we present estimates of the within-block standard deviation
(bσjS) for each of the main outcomes (enrollment, credits earned, and degree
completion). We consider the extent that bσjS varies across semesters of follow-
up and across RCTs, and discuss the implications of these patterns for the
MDTE. Estimates of bσjS are summarized in Table 5. The key finding is that
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bσjS , and therefore the MDTE, increases over time for cumulative semesters
enrolled and credits earned and that there can be substantial variation in
estimates of the within-block standard deviation across studies (most notably,
for enrollment in early semesters and for degree completion).

Before delving into these findings, two features of the standard deviation
are worth emphasizing. First, recall from equations (2) and (3) that as σjS
decreases so does the standard error of the impact estimator and the MDTE.
All else equal, the MDTE will change by the same proportion as the standard
deviation; for example, a 50% reduction in σjS will reduce the MDTE by 50%
as well. Therefore, to frame the discussion of the findings, Table 6 shows the
factor by which the MDTE increases from semester 1 to semester 6—and

Table 5. Distribution of Within-Block Standard Deviation (bσjS) Across Studies.
Percentile (Among Studies)

Outcome Semester 10th 25th 50th 75th 90th

Enrolled 1 0.09 0.18 0.25 0.29 0.38
2 0.35 0.39 0.42 0.47 0.50
3 0.44 0.46 0.48 0.50 0.50
4 0.46 0.48 0.49 0.50 0.50
5 0.45 0.49 0.49 0.50 0.50
6 0.43 0.46 0.49 0.50 0.50

Cum. sem. enrolled 1 0.09 0.18 0.25 0.29 0.38
2 0.38 0.47 0.56 0.61 0.71
3 0.70 0.82 0.90 0.97 1.08
4 1.04 1.16 1.24 1.32 1.40
5 1.36 1.50 1.57 1.67 1.74
6 1.66 1.81 1.89 1.98 2.01

Credits earned 1 4.0 4.9 5.7 6.2 6.6
2 5.0 5.5 6.0 6.4 6.9
3 4.3 5.5 6.0 6.6 7.2
4 4.5 4.9 5.8 6.8 7.2
5 3.6 4.5 5.1 6.3 6.7
6 3.8 4.0 5.1 5.7 6.6

Cum. cred. earned 1 4.0 4.8 5.7 6.2 6.6
2 8.4 8.7 10.3 11.1 12.0
3 11.3 13.2 14.4 16.1 17.6
4 14.2 16.7 18.4 20.8 22.6
5 16.3 19.2 21.6 25.6 26.8
6 18.6 21.2 24.8 29.6 31.4

Earned a degree 4 0.08 0.09 0.21 0.31 0.37
5 0.11 0.16 0.31 0.36 0.41
6 0.16 0.21 0.37 0.40 0.43

Note. See Exhibit 2 for the sample size for each outcome.
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between studies in the 25th and 75th percentile—based on the estimates of σjS
in Table 5. (A factor of 1 would indicate that the MDTE are the same across
time and studies; a factor of 2 would indicate that the MDTE is twice as large.)

Second, for binary outcomes (enrollment and degree completion), it is
useful to note that the shape of the relationship between the mean and standard
deviation of the outcome is an inverted parabola. The standard deviation peaks
when success rates are 50% and takes on smaller values as success rates move
away from 50% toward 0% or 100%. As a result, to detect the same effect in
percentage points (e.g., a 5-percentage point effect), a larger sample size is
necessary when success rates are near 50% compared to if they are near 10%
or 90%. Notably, this phenomenon moves very slowly as success rate move
away from 50% (e.g., from 50% to 60%) compared with changes of the same
size at more extreme levels (e.g., from 80% to 90%).

Enrollment. We consider two enrollment variables—a binary indicator of
enrollment in each semester and the cumulative number of semesters enrolled
through a given semester.

For the binary measure of enrollment in each semester of follow-up,
looking across time the values of bσjS start small, in the 0.18–0.29 range in
semester 1 (based on the 25th and 75th percentiles), and quickly increase
before maxing out near 0.50. This is because in semester 1 enrollment levels
are high—typically around 80–95%—and as noted earlier the standard de-
viation for binary outcomes is largest at 50% and smallest at 0% or 100%. As
students stop out, drop out, or graduate, enrollment levels tend to decrease to
the 40–60% range in semesters 4 and 5, resulting in a larger bσjS (and thus
larger MDTE in percentage points). Beyond semester 6 we can expect bσjS to

Table 6. Variation in the Minimum Detectable True Effect Across Time and Studies.

Outcome

Factor by Which the Minimum Detectable True
Effect Increases…

Across Time:
Semester 6 vs 1

Across Studies:
75th vs 25th Percentile

Enrolled 1.96 1.04
Cum. sem. enrolled 7.56 1.14
Credits earned 0.89 1.39
Cum. cred. earned 4.35 1.25
Earned a degree 1.76 3.44

Note. Values in the second column of the table are the ratio of the medians of bσjS at follow-up
semesters 6 and 1 (for earned a degree, the ratio is based on semesters 6 and 4). The values in the
third column are the ratios of bσjS at the 75th–25th quartiles in semester 4.
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decrease (and the MDTE to fall with it), as more students stop out, drop out, or
graduate and enrollment approaches 0%.

Looking across studies, the bσjS for enrollment in each semester varies
substantially in semesters 1 and 2 but varies much less so in semesters 3–6.
This is a result of the inverted parabolic relationship between the mean and
standard deviation of binary variables. At the extremes (near 0 and 100%
enrollment), small changes in the mean lead to big changes in the standard
deviation. Thus, when enrollment is in the 80–95% range (i.e., the rates we
tend to see in semester 1), bσjS varies a lot across studies. When enrollment is in
the 40%–75% range (i.e., the rates we tend to see in semesters 4 and 5), bσjS
takes on similar values across studies.

For cumulative semesters enrolled, looking across time the values of bσjS
increase linearly from semester 1 to 6 (see Figure 1). This is because the
distribution of cumulative semesters enrolled widens over time as the range of
possible values expands. In semester 1, students have enrolled in 0 or 1
semesters, but by semester 6, students have enrolled in 0, 1, 2, 3, 4, 5, or 6
semesters. Across studies, the distribution of the bσjS for cumulative semesters
enrolled is consistent over time, with a typical interquartile range of around
0.15.

Figure 1. Box plot of bσjS for cumulative semesters enrolled at the end of each of six
semesters. Note. The main analytic sample for this outcome includes 14 studies and
7028 students.
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For the enrollment outcomes, the increase in bσjS over time has important
implications for RCT design and interpretation. Across studies the median bσjS
for enrollment in semester 6 is 0.49, which is 1.96 times larger than the median
value in semester 1 (0.25). Hence the MDTE for semester 6 compared to
semester 1 is also 1.96 times larger. As a concrete example, for an RCTwhere
Jn = 1,0200, T = 0.50, 1� β = 0.80, α = 0.05, and R2

jS = 0.05, the MDTE
would be a 4.3 percentage point effect on enrollment in semester 1 and 8.5
percentage point effect in semester 6. Most interventions aiming to improve
persistence have larger effects in earlier semesters when precision is best. In
later semesters, when enrollment impacts are typically smaller, precision gets
worse. This is important to be aware of when planning a study and when
interpreting findings. An estimated effect of the same magnitude can be
statistically significant in semester 1 and no longer statistically significant in
later semesters.

Total Credits Earned. We consider two credits earned variables—total credits
earned in each semester and cumulative credits earned through a given
semester.23

For credits earned in each semester, bσjS tends to be in the four to seven
credit range across studies. Across time, the values of bσjS (and thus theMDTE)
are shaped like an inverted “U”, with median values ranging from a minimum
of 5.1 to a maximum of 6.0. Across studies within a given semester, the
interquartile range of bσjS tends to be between 1 and 1.7. Based on the same
assumptions described above, if σjS is in the 4–7 range (covering a large
proportion of our estimates for credits earned in each semester), the MDTE
takes on a value 0.69 to 1.21 credits earned in a semester. This represents about
17–30% of students passing one more course than they would have otherwise
(assuming four credit courses).

For cumulative credits earned, which is perhaps the most ubiquitous
measure of academic progress, the values of bσjS increase substantially from
semester 1 to 6. Like cumulative semesters enrolled, this increase is a result of
some students dropping out and others continuing to earn credits, expanding
the range of cumulative credits earned over time. The median bσjS is 5.7 in
semester 1 and it increases to 24.8 in semester 6. This implies that the MDTE
for cumulative credits earned in semester 6 is more than 4 times larger
(=24.8/5.7) than the MDTE in semester 1. An important implication is that
early statistically significant impacts on cumulative credits earned can become
statistically insignificant in later semesters of follow-up, even when their
magnitude remains constant or even increases, as in Scrivener and Weiss
(2009). This may create the false impression that effects on cumulative credits
earned “fade-out” in postsecondary studies, when the evidence shows oth-
erwise (Weiss et al., 2021).
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Degree Completion. Most evaluations of programs designed for community
college students do not seriously consider effects on degree completion until
the end of year 2 (semester 4). With respect to degree completion (a binary
outcome), bσjS increases from the end of 2 years (i.e., four semesters) to the end
of 3 years (i.e., six semesters). This increase corresponds with the increase in
graduation rates, which approach but do not cross the 50% threshold in that
timeframe.

Strikingly, for the degree completion outcome there is substantial variation
in bσjS across studies, proportionally more so than for other outcomes. For
example, at the end of 2 years the first quartile is 0.09 and the third quartile is
0.31, corresponding with cross-study variation in rates of degree completion.
This means the MDTE in some studies is almost four times larger (=0.31/0.09)
than in other studies.

Empirical Estimates of the Proportion of Outcome Variation
Explained by Covariates (R2

jS)
In this section, we present estimates of the proportion of the outcome variance

explained by covariates within blocks (bR2

jS) for each of the main outcomes

(enrollment, credits earned, and degree completion). Estimates of R2
jS were

generated for different scenarios that reflect the types of baseline covariates
that may be available to researchers. Recall that the MDTE decreases as the
proportion of outcome variation explained by the baseline covariates (R2

jS)
increases. Estimates of R2

jS are summarized in Table 7.
The key finding is that estimates of the R2

jS are quite small across all
outcomes examined here, especially when compared to the pretest-posttest
relationships often seen in the K-12 literature (e.g., Bloom et al., 2007; Hedges
& Hedberg, 2014). Values are less than 0.10, regardless of the types of
covariates included in the model. Two patterns—or rather, the lack thereof—
are notable: (1) controlling for baseline covariates collected through surveys
does not meaningfully increase the bR2

jS , and (2) the bR2

jS is stable across the first
six semesters of follow-up and does not decrease as one might expect given
that outcomes typically are harder to predict as one goes further into the future.
(This pattern of findings is illustrated in Figure 2 for cumulative credits
earned.)

When only covariates available from college demographic records are used
(Scenario 1), bR2

jS generally falls between 0.02 and 0.05 for all the outcomes
and time periods examined. There are no noticeable trends over time for any
outcome, suggesting that however little explanatory power the covariates have
is maintained over the first six semesters. There does not appear to be much
variation across interventions, either: the spread between the 10th percentile
and 90th percentile rarely exceeds 0.05.
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When a richer set of covariates from baseline surveys are also used
(Scenario 2), estimates of R2

jS are higher as expected but still consistently
small, typically between 0.05 and 0.08. This suggests that collecting addi-
tional demographic information may yield an increase in explanatory power
that is too small to meaningfully reduce the MDTE. For example, for an RCT
where Jn = 1,000, T = 0.50, 1- β = 0.80, α = 0.05, and σjS =5.69 (the median in
semester 1), the MDTE for the effect on cumulative credits earned decreases
from 0.98 to 0.96 when R2

jS increases from 0.05 to 0.10.

Table 7. Distribution of bR2jS Across Studies and by Scenario (Scenario 1/Scenario 2).

Percentile (Among Studies)

Outcome Semester 10th 25th 50th 75th 90th

Enrolled 1 0.02/0.05 0.03/0.07 0.03/0.08 0.04/0.08 0.05/0.09
2 0.03/0.05 0.03/0.06 0.04/0.07 0.04/0.08 0.05/0.09
3 0.02/0.05 0.02/0.06 0.03/0.07 0.05/0.08 0.05/0.10
4 0.01/0.05 0.02/0.05 0.03/0.06 0.04/0.07 0.04/0.09
5 0.02/0.05 0.02/0.05 0.03/0.06 0.04/0.07 0.05/0.08
6 0.02/0.04 0.02/0.05 0.03/0.06 0.04/0.07 0.04/0.09

Cum. sem. enrolled 1 0.02/0.03 0.02/0.04 0.02/0.06 0.04/0.06 0.04/0.07
2 0.02/0.05 0.02/0.06 0.03/0.06 0.03/0.07 0.04/0.08
3 0.02/0.05 0.02/0.05 0.03/0.06 0.04/0.07 0.04/0.08
4 0.02/0.05 0.02/0.05 0.03/0.05 0.04/0.07 0.05/0.09
5 0.02/0.05 0.02/0.05 0.03/0.06 0.03/0.07 0.04/0.08
6 0.02/0.04 0.02/0.06 0.03/0.06 0.04/0.07 0.04/0.09

Credits earned 1 0.02/0.05 0.03/0.07 0.03/0.08 0.04/0.09 0.05/0.09
2 0.03/0.06 0.03/0.07 0.04/0.08 0.05/0.09 0.05/0.10
3 0.03/0.06 0.03/0.07 0.04/0.08 0.05/0.09 0.06/0.10
4 0.03/0.06 0.03/0.07 0.04/0.08 0.05/0.09 0.06/0.11
5 0.02/0.06 0.03/0.06 0.04/0.08 0.05/0.09 0.06/0.11
6 0.03/0.06 0.04/0.07 0.04/0.08 0.05/0.09 0.06/0.11

Cum. cred. earned 1 0.02/0.03 0.02/0.04 0.02/0.06 0.04/0.06 0.04/0.07
2 0.02/0.05 0.02/0.06 0.03/0.06 0.04/0.07 0.04/0.08
3 0.02/0.05 0.02/0.06 0.04/0.06 0.05/0.07 0.05/0.09
4 0.02/0.06 0.02/0.06 0.04/0.06 0.05/0.07 0.05/0.10
5 0.02/0.05 0.02/0.06 0.04/0.06 0.05/0.07 0.05/0.10
6 0.02/0.05 0.02/0.06 0.04/0.07 0.05/0.07 0.05/0.10

Earned a degree 4 0.01/0.03 0.02/0.04 0.02/0.05 0.03/0.06 0.09/0.16
5 0.01/0.05 0.02/0.05 0.03/0.05 0.03/0.06 0.09/0.13
6 0.01/0.05 0.02/0.05 0.03/0.06 0.03/0.07 0.05/0.08

Note. See Table 2 for the sample size for each outcome. Scenario 1 controls for baseline
characteristics typically available from college records; Scenario 2 also controls for student
characteristics from baseline surveys.
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As a supplemental analysis (based on a smaller subset of studies), we also
examined whether controlling for placement test scores as covariates (in
addition to college demographic records) increases R2

jS. However, the gain inbR2

jS from adding placement test covariates is roughly the same as adding the
survey covariates: quite small. Overall, these findings are similar to those from
the literature on placements tests as a predictor of students’ college perfor-
mance; Belfield and Crosta (2012) find that college placement tests explain
only 6% of the variation in credits earned.

Overall, the small values of bR2

jS across the board indicate that in CC studies,
the explanatory power of the kinds of baseline covariates examined in the
present analysis may not be large enough to appreciably reduce sample size
requirements. For example, all else equal, a set of covariates that yield an R2

jS
of 0.05 would reduce the sample requirements by 5%, or 50 students in a
1000-student study, relative to no covariates. The results from this paper also
confirm that CC researchers should not use R2

jS assumptions from K-12
studies, which tend to be much larger. The main reason is likely that K-12
studies often rely on a pre-test covariate and a post-test outcome measure—
such measures are often aligned with each other, continuous, and reliable, thus
yielding high explanatory power.24

Figure 2. Box plot of R2jS for cumulative credits earned at the end of each semester, by
type of baseline covariate. Note. The main analytic sample for this outcome includes
8 studies and 5649 students.
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Design Parameters for College Grade Point Average

This section discusses the design parameters for college GPA. As discussed
earlier college GPA is not typically a primary outcome in community college
studies because it can only be measured for students who remain enrolled, so
we focus here only on parameter estimates at the end of the first semester
(Table 8).25

With respect to the within-block standard deviation, the median estimate
across studies is 1.19. Though there is variation across studies, the amount of
variation is the smallest of any outcome examined in this paper for the first
semester.

Like the other outcomes examined in this paper, the variance in college
GPA explained by baseline covariates is small—the median estimate is 0.06
(Scenario 1) and 0.09 (Scenario 2)—and controlling for placement tests does
not appreciably increase bR2

jS . These findings are similar to those from prior
studies of placement tests as predictors of college performance. Belfield and
Crosta (2012) find that college placement tests explain only 5% of the var-
iation in college GPA. Similarly, Scott-Clayton (2012) finds that placement
tests explain about 2% of the variation in students’ grades in their first college-
level English course, and 13% of the variation in students grades in their first
college-level course in Math.

Conclusion

The findings from this paper highlight several important lessons for planning
RCTs in a community college setting. Importantly, these lessons differ
substantively from the guidance for planning K-12 studies, so as intended, the
present paper’s findings fill an important gap with respect to planning well-
powered RCTs of interventions delivered to community college students.

Table 8. Distribution of bσjS and bR2jS (Scenario 1/Scenario 2) for College Grade Point
Average Across Studies, at the End of Semester 1.

Percentile (Among Studies)

Design Parameter Semester 10th 25th 50th 75th 90th

bσ jS 1 0.82 1.02 1.19 1.25 1.32bR2jS 1 0.04/0.09 0.04/0.09 0.06/0.09 0.06/0.1 0.07/0.11

Note. Estimates of the standard deviation are based on 15 studies (5171 students) from the main
analytic sample; estimates of the outcome variance explained are based on 6 studies (2843
students). Scenario 1 controls for baseline characteristics typically available from college records;
Scenario 2 also controls for student characteristics from baseline surveys.
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First, researchers should be mindful of the follow-up period when planning
their study. For cumulative semesters enrolled and credits earned, σjS (and the
MDTE) can be larger in later semesters—4.4 to 7.6 times larger in follow-up
semester 6 than semester 1 for these outcomes. This makes it especially
important for researchers to select design parameters that align with the time
period of their key research questions. Ideally, researchers should power their
study based on the latest follow-up semester given their research questions.
For studies of interventions whose effects do not increase over time, however,
doing so will likely require recruiting a larger sample of students, which may
not always be possible. If powering the study based on later semesters is not
feasible, then estimated effects that were statistically significant in early
semesters may become statistically insignificant in later semesters even if their
magnitude is the same or larger—a pattern caused by the “fuzz out” of effects
rather than their “fade out”. To disentangle these explanations for non-
significant findings in later semesters, researchers should estimate effects
in early semesters—and compare them to the magnitude of effects in later
semesters—to aid with interpretation. More generally, even if longer-term
effects “fuzz out”, there can still be value to underpowered longer-term
findings because they can contribute to knowledge-building if they are in-
cluded in meta-analyses.

Second, when planning CC RCTs, researchers should consider that there
can be substantial variation in σjS (and the MDTE) across settings, making it
tricky to pin down a value to plug in for MDTE calculations. This can be
especially true for enrollment outcomes in early semesters as well as degree
completion. For these outcomes, the MDTE is 3–4 times larger when as-
sumptions about σkS are based on the 75th quartile in the distribution
compared to the 25th percentile. This variation may be a result of the context
of the study, the population targeted, or other factors. In those circumstances, it
is probably worth choosing a range of σjS values (e.g., the 25th and 75th
percentiles from this paper) and then making study design decisions based on
factors like cost, feasibility of recruiting larger samples, and tolerance for
greater uncertainty.

Given the substantial variation in σjS across studies for some outcomes,
researchers could also consider leveraging extant data to obtain a better
estimate for their target population. For example, during the planning phase,
estimates of outcome variation could be obtained from the study colleges
based on data for current or previous students who are eligible for the in-
tervention. For binary outcomes, another source of information are publicly
available datasets; the Integrated Postsecondary Education Data System
(IPEDS), for example, includes mean levels for some binary outcomes (like
graduation rates) at the college level and for student subgroups, which can be
used to derive the standard deviation of these outcomes.26 Using publicly
available data sources is especially suitable when all eligible students will be
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participating in the study and the target population aligns with the population
examined in IPEDS.27 If the sample for a planned study will include a self-
selected group of students whose outcomes may vary from the general or
eligible population at the college—and if the study will include multiple
cohorts—another option is to update the expectedMDTE at the end of the first
study year based on parameters estimates for the first cohort, to determine
whether the planned sample size is sufficient or whether additional (or fewer)
cohorts should be recruited.

The third lesson from this paper is that the kinds of baseline covariates that
are typically available from surveys and college records are likely to explain
very little of the variation in student outcomes. When planning a study, re-
searchers should assume a very low or null value for R2

jS, in the range of 0–
0.05. Unlike K-12 studies, where the outcomes of interest (like test scores) can
also be measured at baseline, covariates in CC studies cannot be relied upon to
meaningfully reduce the MDTE. Hence, researchers’ plans for collecting
baseline data for a study should be based on considerations related to de-
scribing the sample, establishing baseline similarity between their treatment
and control groups, and defining student subgroups—as opposed to im-
proving the precision of estimated effects.

Ideally, this paper will eventually be one of many future studies providing
guidance to researchers on planning RCTs in community college settings.
Over time, the empirical literature on K-12 design parameters has grown to
include estimates from several states and for different study designs. Similarly,
as the number of CC studies increases, there will be opportunities to sup-
plement the findings from this paper with estimates from additional colleges
and sites, and to examine unanswered but important questions.

One limitation of our analysis—which future studies may address—is
whether controlling for students’ high school outcomes could meaningfully
increase the R2

jS . For example, Belfield and Crosta (2012) find that high
school GPA explains 21% and 14% of the variation in college GPA and credits
earned, respectively. Although these larger R2

jS may still not appreciably affect
the MDTE,28 the extent to which high school transcript data can improve the
precision of estimated effects on college outcomes warrants examination with
additional datasets, including studies where the target population is pro-
spective students or applicants. Similarly, another avenue to explore—
relevant to studies where the target population is continuing students—is
the explanatory power of GPA and credits earned by students in prior
semesters.

Another key question not addressed by this paper is the magnitude of
effects that CC studies should be powered to detect. For example, is an MDTE
of 5 percentage points on graduation rates achievable or should the study be
powered to detect even smaller effects? The effect of an intervention depends
on several factors including the context (the setting and target population); the
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design of the intervention and how well it is implemented; how different it is
from “business as usual”; and the amount of intervention received by students.
In the context of K-12 interventions, national and study-specific datasets have
been used to generate useful benchmarks for achievable and policy-relevant
effect sizes (Bloom, Hill et al., 2008; Hill et al., 2008; Kraft, 2020). Similar
benchmarks are needed to guide the planning of evaluations of interventions
implemented in community colleges. We plan to tackle this issue in forth-
coming research.
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Notes

1. In some cases, more than one intervention was part of a single review (e.g., in
multi-arm trials). The 48 postsecondary RCTs were found through https://ies.ed.
gov/ncee/wwc/StudyFindings (accessed 08/05/21) under topic area “Postsec-
ondary,” excluding secondary mathematics and college transition programs, where
the study sample was postsecondary students.

2. Assumptions: 80% power, a 5% significance level, a 50:50 random assignment
ratio, an R2 of 0.05 (the proportion of the outcome variance explained by baseline
student characteristics), and success rates anywhere in the range from 15 to 85%.
We assume a small R2 because student baseline characteristics typically explain
only a small proportion of the variation in community college outcomes, as will be
demonstrated in this paper.

Somers et al. 25

https://orcid.org/0000-0002-8079-2305
https://orcid.org/0000-0002-8079-2305
https://orcid.org/0000-0003-0665-3478
https://orcid.org/0000-0003-0665-3478
https://orcid.org/0000-0002-6834-0285
https://orcid.org/0000-0002-6834-0285
https://ies.ed.gov/ncee/wwc/StudyFindings
https://ies.ed.gov/ncee/wwc/StudyFindings


3. Effects of this magnitude are uncommon in MDRC’s large portfolio of community
college studies. Of the 38 community college studies conducted by MDRC that
measured impacts on enrollment in semester 2, only 2 interventions had effects of
at least 10 percentage points. Of the 15 studies that measured impacts on degree
completion, only 2 had effects of at least 10 percentage points (and in studies that
did not measure this outcome, impacts on degree completion would likely have
been smaller than 10 percentage points, based on findings for shorter-term out-
comes like credit accumulation).

4. It is important that researchers select an effect estimator that aligns with their
estimand. We assume the estimand is the effect for the average individual as
opposed to, for example, the effect for the average site. We also assume the target
of inference is the effect for the blocks or sites in the study (i.e., a finite sample)
rather than a broader population, sometimes referred to as a superpopulation. For
details on these estimands, see Miratrix et al. (2021) or Schochet (2015).

5. 38 of the 39 community college studies conducted by MDRC used this design.
This is unlike K-12 education research where multi-site cluster randomized trials
are common. A consequence of this design difference is that the specific design
parameters of importance are different. Two design parameters that are critical in
K-12—the school-level intraclass correlation and the proportion of the between
cluster outcome variance that can be explained by covariates—are not relevant for
most CC RCTs.

6. LPMs were used in all of the community college studies conducted by MDRC
(almost 40 interventions).

7. This estimator assumes a constant effect of the treatment across sites. Because
there is a single impact parameter, the least squares process gives a precision
weighted estimate of the average impact (bδÞ, where each site’s average impact is
weighted by its proportional precision (Raudenbush & Bloom, 2015). The effect
for the average individual could also be estimated by adding site-by-treatment
interactions to equation (1) and then manually calculating a precision-weighted
average treatment effect across sites.

8. For simplicity, we assume that impacts do not vary across individuals within sites
to a substantial degree.

9. Under the null hypothesis of no impact.
10. For simplicity of presentation we assume that T and n are constant across sites. The

main points hold when T and n vary across sites. In equation (2) and other
equations in this paper, Jn is equal to the total sample size for the study (N).We use
Jn to represent the total sample size because this notation is common in blocked
randomized trials, and because it can help researchers plan the number of sites they
will need to recruit to achieve their target sample size.

11. One can also think of the numerator as the outcome variance conditional on sites
and baseline characteristics (σ2jS,X ). Instead of using R2

jS to calculate this condi-
tional variance, one could make an assumption about the outcome variance within
baseline subgroups as defined by the covariate values, and pool across these
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within-group variances based on their expected sample size. In this paper,
however, we focus on equation (2) because (1) all prior studies of design pa-
rameters for education studies have calculated conditional outcome variances
using the R2, and (2) calculating the conditional variance based on within-group
variances would require additional assumptions about these variances and the
distribution of the sample across subgroups, which would in turn complicate the
task of estimating the standard error for the purposes of planning a study.

12. The MDTE is commonly referred to as the Minimum Detectable Effect (MDE).
We add true because of a commonmisunderstanding that the value of theMDTE is
the smallest estimated effect that will be statistically significant—this is incorrect.

13. The value of the multiplier quickly asymptotes as sample size increases, such that
when Jn is 70 or greater, the value rounds to 2.8.

14. Because K-12 outcomes—like test scores—are on a scale that is hard to interpret,
K-12 study planning is typically based on the minimum detectable true effect size
(MDTES) instead of the minimum detectable true effect. For this reason, equations
(3) and (4) are usually written using unconditional σ2 and R2. By doing so, σ2

drops out (it is equal to one) and R2 is the proportion of the unconditional variance
explained by the baseline covariates and the blocks.

15. Equation (3) assumes that σjS is the same for the treatment and control group. As a
supplemental analysis for this paper, we also examined σjS by research group and
we find that σjS is similar across groups (i.e., the homogeneity assumption is met).
Parameter estimates by research group are available in the public-use dataset
created for this paper available from the authors.

16. See the National Student Clearinghouse website at https://www.studentclearinghouse.
org/about/.

17. This means that enrollment and degree completion are measured differently across
studies (either at all colleges or only the college/system of RA, depending on data
availability for the study).

18. Information on GPA is from college records.
19. As shown here, the standard deviation for a binary outcome can be estimated from

its average.
20. In some of the studies in the present analysis, these characteristics were measured

using surveys rather than college data. However, these characteristics are included
in Scenario 1 (regardless of the data source) because they can usually be obtained
from college records.

21. For each of these studies, if more than one test was available in the data, only tests
taken by at least 20% of students are included as covariates.

22. The dataset also includes estimates of the unconditional standard deviation (not
controlling for blocks).

23. Total credits earned include non-degree-applicable developmental credits and
college-level credits.

24. In the literature on design parameters for K-12 studies, estimates of R2
jS also

include the explanatory power of the blocks/sites as covariates. However, across
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the studies in this paper, the blocks explain less than 5% of the variation in
outcomes, so the difference in included covariates does not explain the dis-
crepancy between the findings from this paper and those from the K-12 literature.

25. Parameter estimates for later semesters are available in the database created for this
paper, which is available from the authors.

26. The standard deviation for a binary outcome can be calculated based on average
proportion of students with the outcome of interest (see Equation (5b)).

27. If students will be recruited into the study, the standard deviation for all eligible
students could be a biased estimate of the outcome variation for the students who
will ultimately participate. Another limitation of the IPEDS is that some outcomes
are not available by semester.

28. For an RCTwhere Jn = 1,000, T = 0.50, 1- β = 0.80, α = 0.05, and σjS =5.39 (the
median in semester 1), the MDTE for the effect on cumulative credits earned
decreases from 0.93 to 0.89 when R2

js increases from 0.05 to 0.14.
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