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Abstract 

Growth mixture models (GMMs) are a popular method to identify latent classes of growth 

trajectories. One shortcoming of GMMs is nonconvergence, which often leads researchers to apply 

covariance equality constraints to simplify estimation, though this may be a dubious assumption. 

Alternative model specifications have been proposed to reduce nonconvergence without imposing 

covariance equality constraints that perform well when the correct number of classes is known, but 

research has not yet examined their use when the number of classes is unknown. Given the 

importance of selecting the number of classes, more information about class enumeration 

performance is crucial to assess the potential utility of these methods. We conduct an extensive 

simulation to explore class enumeration and classification accuracy of model specifications that are 

more robust to nonconvergence. Results show that the typical approach of applying covariance 

equality constraints performs quite poorly. Instead, we recommended covariance pattern GMMs 

because they (a) had the highest convergence rates, (b) were most likely to identify the correct 

number of classes, and (c) had the highest classification accuracy in many conditions, even with 

modest sample sizes. An analysis of empirical PTSD data is provided to show that the typical 4-Class 

solution found in many empirical PTSD studies may be an artefact of the covariance equality 

constraint method that has permeated this literature.  

 



CONSTAINTS AND CLASS ENUMERATION 1 

Nonconvergence, Covariance Constraints, and 
Class Enumeration in Growth Mixture Models 

 
Growth models are a common group of statistical methods applied to repeated measures data 

when the interest is in quantifying mean change and individual differences in growth trajectories 

(Hedeker & Gibbons, 2006; Nesselroade, 1991; Ram & Grimm, 2007). One way to model growth 

trajectory heterogeneity is to identify unobserved, latent classes of growth trajectories from the data 

(Jung & Wickrama, 2008). The goal is similar to including a moderator for growth like sex or 

treatment condition to allow different growth trajectories for different types of people. However, the 

moderator in this case is latent and not known a priori. Discrete latent classes of growth trajectories 

are determined from the data by combining latent class analysis with growth modeling in what have 

generally been deemed growth mixture models (GMMs; Muthén & Shedden, 1999; Verbeke & 

Lesaffre, 1996)  

A key aspect of latent class analysis broadly (including GMMs) revolves around identifying 

the number of latent classes underlying the data (e.g., Steinley & Brusco, 2011); however, because 

the classes are unobserved, class enumeration is a difficult process (Tofighi & Enders, 2008, p. 316). 

The difficulty of class enumeration is heightened in GMMs by the fact that nonconvergence issues 

are omnipresent (Jung & Wickrama, 2008). Diallo, Morin, & Lu (2016) note that models allowing 

the mean and covariance parameters to be completely class-specific commonly result in inadmissible 

estimates (e.g., nonpositive definite covariance matrices) or nonconvergence of optimization 

routines. A common remedy (and Mplus default parameterization) is to apply equality constraints to 

covariance parameters across classes (Wickrama et al., 2016). 

Though constraining covariance parameters is effective for reducing nonconvergence, 

observed groups often differ in their variance so it stands to reason that one should not, by default, 

assume latent groups are homoskedastic (Bauer & Curran, 2003). Previous studies have shown that 

the number of classes selected from models with constrained covariance parameters are rarely correct 
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(Diallo et al., 2016; Kreuter & Muthén, 2008) and additional aspects of the model are adversely 

affected when covariance parameters are constrained such as bias in the estimated growth trajectories 

in each class (Davies et al., 2017; Heggeseth & Jewell, 2013; Sijbrandij et al., 2020), the meaning of 

the classes (Bauer & Curran, 2004; Shiyko et al., 2012), and assignment of people to the proper class 

(Infurna & Luthar, 2016).  

Recent research has tried to address the issue of how to improve GMM convergence while 

avoiding constraining all covariance parameters to be equal across all classes. Extensions of the 

proportional covariance method of Liu and Rubin (1998) to GMMs have been one suggestion 

whereby all covariance parameters in a referent class are freely estimated (Proust-Lima, Philipps, & 

Liquet, 2017). Then, the covariance matrix in all other classes is equal to the referent class multiplied 

by a class-specific coefficient, resulting in equal correlation matrices but not equal covariance 

matrices across classes (Barnard, McCulloch, & Meng, 2000; Manly & Rayner, 1987).  

As another possible approach, McNeish and Harring (2020) note that GMMs typically follow 

the random effects tradition but that the marginal model tradition  covariance pattern models, 

specifically  may be able to help address some of the nonconvergence issues encountered with 

GMMs. The process of partitioning the covariance into within-person and between-person 

components in the random effect tradition can encumber estimation when latent classes are added 

(Hipp & Bauer, 2006). McNeish and Harring (2020) argue that estimation of the between-person 

variance provides little substantive utility in models with latent classes because the main interest is in 

quantifying differences between classes rather than quantifying differences between individuals 

within the same class. They demonstrate that modeling the marginal covariance of the repeated 

measures directly in each class is computationally simpler and improves convergence without 

requiring covariance parameter constraints across classes. Allowing the model to retain the flexibility 

to estimate all parameters as class-specific was shown to reduce the bias of the estimated class 

trajectories and improve assignment of people to the correct class, provided that the correct number 
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of classes was fit (McNeish & Harring, 2021). This flexibility is more in line with the spirit of 

GMMS in which all parameters are permitted to be class-specific.  

A looming question  however  is whether proportional GMMs or covariance pattern 

GMMs can select the correct number of classes. The goal of this paper is to extensively study class 

enumeration in a simulation whose characteristics are based on real data where nonconvergence is 

common. To outline the structure of the remainder of the paper, we first compare and contrast 

marginal and random effect traditions to growth modeling. Then, we discuss how models from each 

tradition  not just the random effects tradition  can be extended by adding latent classes. We use 

the post-traumatic stress disorder (PTSD) literature to inform conditions of a simulation study 

interested in class enumeration performance of different types of GMMs. We present an empirical 

example on PTSD symptoms to demonstrate differences in the results and interpretation of different 

methods with real data. We conclude with a discussion of practical implications, limitations, and 

future directions.   

2. Random Effects vs. Marginal Traditions for Growth Modeling  

Repeated measures data are characterized by a violation of the traditional independence 

assumption because residuals of repeated measures from the same person are more related to each 

other than they are to residuals from another person (Hedeker & Gibbons, 2006). Models for repeated 

measures data must therefore account for the dependence among repeated measures for inferences to 

be valid (Diggle, Heagerty, Liang, & Zeger, 2002). Multiple approaches can be taken to accomplish 

this, which has led to debate in the longitudinal data analysis literature about random effect versus 

marginal approaches (Zeger, Liang, & Albert, 1988) and many pedagogical papers have been written 

to guide researchers through the differences (Burton, Gurrin, & Sly, 1998; Hanley, Negassa, 

Edwardes, & Forrester, 2003; Hubbard et al., 2010; McNeish et al., 2017).  

The defining characteristic of random effects models is that a unique growth trajectory is 

formed for each person. The presence of person-specific growth trajectories partitions the covariance 
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between repeated measures from the same person into within-person and between-person sources 

(Curran, Obeidat, & Losardo, 2010). Between-person sources capture heterogeneity in the growth 

factors defining the growth trajectory and within-person sources capture the variability in the 

observed data around the person-specific trajectory. These two sources are estimated separately but 

they can be combined to form the marginal covariance of the repeated measures. In a random effects 

model, the different components of the covariance are theoretically interesting and are on equal 

ground to the regression coefficients that describe mean changes over time (Gardiner, Luo, & Roman 

2009).  

On the other hand, marginal models do not provide unique growth trajectories for each 

person in the data. Instead, they acknowledge the covariance among repeated measures by directly 

estimating elements of the covariance matrix, which is done separate from the growth factors (i.e., 

the regression coefficients are not modeled as random). The result is that covariance is not 

partitioned into between-person and within-person sources with marginal models. Rather, marginal 

models estimate the average growth trajectory while directly estimating the covariance between 

repeated measures. This approach does not provide person-specific growth trajectories; however, the 

absence of random effects makes estimation simpler while requiring fewer assumptions. Parameter 

estimates and their standard errors account for the covariance between repeated measures, but the 

covariance is not a focus and is treated as a nuisance to be accommodated to obtain valid inferences 

rather than substantive interest.  

2.1 Latent Growth Models  

 The standard latent growth model falls under the random effect tradition and can be written  

   (1) 

In the first expression,  is a  vector of responses where  is the number of observed repeated 

measures provided by person i,  is a  matrix of loadings for q the number of latent growth 
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factors, is a vector of person-specific latent growth factor scores for individual i, and is a 

vector of residuals where and is a residual covariance matrix. In the 

second expression, the person-specific latent growth factor scores are equal to a vector of 

growth factor means plus a vector of between-person random effects, .

The unconditional model-implied mean and marginal covariance structures are and 

, respectively. Note that the marginal covariance matrix ( ) is a combination of 

the between-person random effect covariance matrix ( ) and the within-person residual covariance 

matrix ( ). 

2.2 Covariance Pattern Model

The covariance pattern model is one type of marginal model for continuous outcomes 

(Jennrich & Schluchter, 1986; Schluchter, 1988) and can be written as

i i iy (2)

Note that there are no person-specific growth factors in Equation 2, only the marginal growth curve 

is captured by the parameters in such that the model-implied mean structure is also . 

There are no random effects in the model and the covariance matrix is not partitioned into different 

sources. Instead, the marginal covariance is directly patterned as a function of parameters in the 

vector, which can include autoregressive parameters, correlations, or variances such that 

. For instance, to model a marginal compound symmetric covariance matrix, 

such that .

3. Extending Growth Models with Latent Classes
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GMMs are often thought as an extension of latent growth models (McArdle & Epstein, 1987; 

Meredith & Tisak, 1990) with a discrete latent moderator (B. O. Muthén, 2002). Essentially, GMMs 

are a multiple-group growth model where the grouping variable happens to be latent and unobserved 

(Bauer & Curran, 2003; Ram & Grimm, 2009). So whereas groups are split based on a known 

variable in a multiple group growth model, GMMs probabilistically uncover the groups into which 

the data are split (Grimm et al., 2016, p. 138). 

If it is hypothesized that the data are comprised of a small number of distinct classes, the 

latent growth model from Equation 1 can be augmented with k subscripts to represent the K different 

latent classes, 

   (3) 

where  and . The parameters characterizing change and variability 

are now class-specific and indexed by k (where  for K the total number of classes as 

selected by the researcher). This unconstrained GMM implies that every class will have its own 

growth factor means ( ), between-person random effect covariance matrix ( ), and within-person 

residual covariance matrix ( ).  

The unconditional model-implied mean and covariance structures for class k are  

and , respectively. Pooling over classes, the density of  can be written as the 

mixture distribution  where  is the component normal 

probability density function for the kth class, and  is the proportion of people in the kth class where 

 and 
1

1

1 .
K

K k
k

 

3.1 Nonconvergence with Unconstrained GMMs 
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The GMM allows for between-person variability (captured by ) around the class-specific 

mean trajectory (defined by ) and within-person variability (denoted by ) around the person-

specific growth trajectory (defined by ). This helps to fully partition the variability in between-

person and within-person sources, but it also means that there are many latent variable covariance

parameters to estimate in the model.

In growth models, covariance parameters are the most difficult to estimate (Kiernan, 2018)

and allowing each class to have its own class-specific covariance parameters quickly increases the 

quantity of difficult-to-estimate parameters in the model and can amplify nonconvergence issues (Liu 

& Hancock, 2014; Pastor & Gagné, 2013). Often, an unconstrained GMM will not converge even 

when it is the exact model from which data were generated (McNeish & Harring, 2020). In other 

words, the model can sometimes be too complex to fit, even when it is the true model (Kim, 2012). 

A key problem is that the presence of so many covariance parameters across latent classes 

can create singularities in the likelihood surface whereby the likelihood spikes to infinity (Hipp & 

Bauer, 2006). If an estimation algorithm encounters one of these singularities, the algorithm will 

simply fail to converge because the gradient is undefined. Another more subtle issue with 

singularities occurs when the estimation algorithm encounters values near the singularity, which 

often result in local maxima that terminate the estimation algorithm at a solution that does not 

represent the global maximum of the likelihood surface (Biernacki, 2005; McLachlan & Peel, 2004).

A common remedy is to reduce the number of covariance parameters, typically by adopting a 

homoskedastic specification.

3.2 Homoskedastic Growth Mixture Models

Homoskedastic growth mixture models (HGMMs) remove the k subscripts from and 

such that 1 2 K and . Doing so retains the concept behind 

the unconstrained GMM in Equation 3 while reducing the number of covariance parameters. The 
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logic is that, if the number of covariance parameters make estimation difficult, then estimating fewer 

of these parameters should address the problem (Banfield & Raftery, 1993). The advantage with this 

approach is that the model retains person-specific trajectories within each class but is optimization is 

much easier (Diallo et al., 2016; Hipp & Bauer, 2006). HGMMs are thus commonly implemented in 

empirical settings to aid convergence (e.g., HGMMs are the default in the Mplus software; Infurna & 

Grimm, 2018). 

The HGMM specification has, however, also been widely criticized. Bauer and Curran 

(2003) explicitly question the choice to apply constraints across classes by stating,  

Although [constraints across classes] are statistically expedient, we do not regard these 
equality constraints as optimal from a theoretical standpoint, and in our experience, they 
are rarely found to be tenable in practice. Indeed, implementing these constraints is in some 
ways inconsistent with the spirit of the analysis, because one is forcing the majority of the 
parameter estimates to be the same over classes (permitting only mean differences in the 
within-class trajectories) (p. 346). 
 

That is, homogeneity constraints are often applied in response to nonconvergence rather than theory 

(Infurna & Grimm, 2018; Infurna & Jayawickreme, 2019). The constrained model will then attempt 

to classify individuals while satisfying the assumption that classes vary in equal amounts. To the 

extent that the covariance structure differs across classes, enumeration and classification errors will 

increase (Diallo et al., 2016; Gilthorpe et al., 2014; Heggeseth & Jewell, 2013; Infurna & Luthar, 

2016; Kooken et al., 2019).  

One case in which this is especially problematic is when responses are uniformly near the 

ceiling or floor and show minimal change (e.g., studies on substance use that contain abstainers). 

Members in such a class will have minimal variability but constraining the variance to be equal to 

other classes will result in the class necessarily expanding and 

consuming data that would be assigned elsewhere were the covariance parameters unconstrained 

across classes (Infurna & Jayawickreme, 2019). Nonetheless, when researchers face nonconvergence 

issues, there are relatively few other options to consider (though see van de Schoot et al., 2018 for a 
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discussion of Bayesian approaches), so the HGMM specification remains common in empirical 

studies.  

3.3 Proportional Growth Mixture Models 

 The number of covariance parameters can alternatively be reduced without imposing 

homogeneity of covariance structures across classes with a proportional growth mixture model 

(PGMM). PGMMs freely estimate all the covariance parameters in one referent class and then 

constrain the covariance parameters in all other classes to be proportional to the referent class 

(Barnard, McCulloch, & Meng, 2000). The covariance structure in all non-referent classes only 

requires one additional parameter that controls the proportional increase or decrease in class k is 

relative to the referent class (Banfield & Raftery, 1993). This results in identical correlation matrices 

across classes but unique dispersion in each class so that the covariance matrices are different across 

classes. This can be a parsimonious option for areas such as alcohol consumption or cigarette 

smoking where higher mean values are associated with higher variability (e.g., Maher, Ra, Leventhal, 

Hedeker, Huh, Chou, & Dunton, 2018; Pugach, Hedeker, Richmond, Sokolovsky, & Mermelstein, 

2014; Weinstein & Mermelstein, 2013).  

This approach is not popular with Mplus users presumably because it requires manually 

imposing many model constraints (one per covariance parameter, per class) but is more common in 

latent class software in R and can be implemented in the lcmm package (Proust-Lima, Philipps, & 

Liquet, 2017). In statistical notation, the PGMM mean structure is the same as Equation 3 but the 

covariance submodel changes such that  and where  is the 

estimated growth factor covariance matrix in the referent class, is the estimated residual 

covariance matrix in the referent class, and is the covariance proportion parameter for class k 

(which is fixed to 1 for the referent class). The performance of the PGMM has not been studied in as 

much depth as the HGMM in the context of nonconvergence, so less is known about its statistical 
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properties  class enumeration especially  but it remains appealing for using similar logic while 

being less restrictive.  

3.4 Latent Class Growth Models 

Another computationally simpler approach is latent class growth analysis (LCGA; Nagin, 

1999; Nagin & Tremblay, 2001). Nagin and colleagues note that interpreting N separate trajectories 

as in GMMs can be unnecessary and that N trajectories can be reduced to a handful of prototypical 

trajectories. Instead of fitting a model with continuous, normally distributed random effects to 

capture between-person variance, between-person differences are captured by discrete latent classes. 

The result is that people are classified to the discrete class whose trajectory most closely matches 

what the person-specific trajectory would have been, rather than estimating a unique trajectory for 

each person. The model does not allow for between-person differences within classes and people 

within a class are considered interchangeable, so any deviation from the class-specific trajectory is 

absorbed into the residual term (Bauer & Curran, 2004).  

The LCGA can be written as 

    (4) 

where  is a  vector of residuals such that , meaning that the residuals are 

homoskedastic and independent across time. There is no within-class variation across people and the 

only source of heterogeneity is through the latent classes, so the goal of LCGAs is therefore to 

provide a semiparametric representation of the growth trajectories (Nagin & Tremblay, 2005). With 

no random effects within classes, computational difficulties are rarely encountered (Kreuter & 

Muthén, 2007) . 

A drawback is that the covariance structure among repeated measures is quite simple 

(Fitzmaurice et al., 2012; B. O. Muthén, 2004). This is intentional because the LCGA conceptualizes 

classes differently from GMMs. LCGAs define a class as a collection of people who follow a similar 
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and distinct trajectory whereas GMMs define a class as a heterogeneous set of people that can be 

described by a single probability distribution (Nagin & Tremblay, 2005, p. 895).  Consequently, 

additional classes are often extracted with a LCGA relative to a corresponding GMM (Bauer & 

Curran, 2004; Kreuter & Muthén, 2008). This is not to say that the LCGA is incorrect, but rather that 

the solution represents a different definition of what constitutes a class . LCGAs have merit for 

their own theoretical considerations, but they do not align with the goal of GMMs and can be a 

tenuous substitute for GMMs when combating nonconvergence because LCGAs often lead to 

different solutions and interpretations than GMMs (Sijbrandij et al., 2019; Twisk & Hoekstra, 2012). 

3.5 Covariance Pattern Growth Mixture Models 

The random effect approach is dominant with GMMs but the reason is difficult to pinpoint 

and the need for random effects in these models has been questioned (Anderlucci & Viroli, 2015; 

Henderson & Rathouz, 2018). This dominance is peculiar because the interest in GMM applications 

is almost universally between-class differences rather than between-person differences captured by 

the within-class random effects (Cole & Bauer, 2016; Sterba & Bauer, 2010, 2014). This suggests 

that the between-person variability within classes is a feature to accommodate rather than a direct 

research interest (Lee & Nelder, 2004). In such cases, Heagerty and Zeger (2000) explicitly 

make inference regarding th  

Just as latent classes can be added to latent growth models to create a GMM, latent classes 

can also be added to covariance pattern models to form a covariance pattern growth mixture model 

(CPGMM) such that  

   (5) 

where . There are no random effects, so  combines within- and between-

person sources of variability in class k, whose structure is patterned by class-specific parameters, .  
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Note that the LCGA in Equation 4 is a special case of the CPGMM when  such 

that .  CPGMMs extend LCGAs by allowing for more complex covariance patterns 

among repeated measures, which adopts the computational advantages of LCGAs but applies the 

ully modeling the probability distribution of the repeated measures 

within each class (McNeish & Harring, 2020).  

In essence, the goal of CPGMMs is to arrive at the same marginal covariance in each class as 

an unconstrained GMM but to do so without having to go through the arduous step of partitioning the 

covariance. The limited research on CPGMMs has shown that they improve convergence, reduce 

bias of the class-specific growth trajectories, eliminate the need to constrain parameters across 

classes, and perform better with smaller sample sizes (McNeish & Harring, 2020, 2021). Whether 

CPGMMs can select the proper number of classes has not been comprehensively studied, which is 

why this important step in the GMM process is the focus of the current paper.  

As disadvantages, researchers are responsible for selecting the structure of the marginal 

covariance, which can be more difficult than selecting the structure of partitioned covariance 

structures. The approach is also only applicable to continuous outcomes and a different approach like 

latent class generalized estimating equations would be needed to accommodate discrete outcomes 

(Rosen, Jiang, &Tanner, 2000; Tang & Qu, 2016). Additionally, the ability to obtain person-specific 

trajectories and the ability to differentiate between-person and within-person sources of variance is 

lost. However, as reported in a literature review in Appendix A, this information is not typically 

reported in empirical studies and sacrificing this information to improve nonconvergence may be 

negligible in the context of answering relevant research questions in most cases.  

The next section provides a simulation study with conditions inspired by a review of 

empirical PTSD studies using GMMs reported in Appendix A to examine (a) how class constraints 

employed to address nonconvergence impact class enumeration and (b) whether CPGMMs, PGMMs, 
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or LCGAs are able to improve class enumeration in conditions where nonconvergence with 

traditional GMMs is prevalent. After the simulation, we model empirical data from a PTSD study to 

demonstrate how the findings from the simulation may affect interpretations and conclusions of 

empirical studies.  

4. Simulation Design 

4.1 Data Generation Models 

We use two data generation models, each with different number of latent classes. The first 

data generation model has K = 

pattern that often emerges in PTSD and substance use research (Bonanno, 2004; Sher, Jackson, & 

Steinley, 2011). The four classes are  

(1) ntains high values  

(2)  

(3) and decreases over time  

(4)  

 
The Resilient group comprised 63% of the population, the Recovery class 12%, the Chronic class 

19%, and the Delayed Onset class 6% to mirror allocations found in empirical PTSD applications of 

GMMs reviewed in Appendix A. The second data generation model has K = 3 latent classes and 

represents the first three classes of the 4-Class model but without the Delayed Onset class. In this 

model, the Resilient group comprised 60% of the population, the Recovery class 20%, and the 

Chronic class 20%.  

 Substantively, the rationale for choosing this pair of models revolves around the debate in the 

psychiatry literature about the existence of the Delayed Onset class and whether it may be a 

statistical artifact rather than substantively meaningful phenotype of PTSD (Andrew, Brewin, 

Philpott, & Stewart, 2007; Frueh, Grubaugh, Yeager, & Magruder, 2009; Infurna & Jayawickreme, 

2019; Infurna & Grimm, 2018; McNally, 2003; Spitzer, First, & Wakefield, 2007). Generating data 
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from a 3-Class model without the Delayed Onset class can help address whether such a class is 

extracted when it is not present or whether criteria used for class enumeration can accurately 

distinguish between models with and without a small Delayed Onset class.  

 Both models will feature 5 repeated measures. Time is coded as: 0 (baseline), 1, 10, 18, and 

26, which follows the timing employed in motivating the empirical data we use later in the paper. 

From the reviewed PTSD studies in Appendix A, the range for the number of repeated measures was 

3 to 7, so 5 repeated measures were chosen because it was the midpoint of the range. The number of 

repeated measures was not manipulated in the simulation.   

The data generation model is an unconstrained quadratic GMM with different covariance 

structures in each class. The generating models allow the intercept and linear slope to vary across 

individuals within classes. The quadratic slope variance was constrained to zero in the data 

generation model because quadratic variance is difficult to estimate due to scale differences (Diallo 

et al., 2014) and we did not wish to inadvertently favor models that do not feature random effects 

based on how we generated the data. Table 1 shows the model equations and covariance structures 

that were used to generate the data. Table 1 has two sets of covariance matrices that satisfy the 

manipulated simulation conditions because we also manipulate class separation (discussed shortly).  

4.2 Manipulated Conditions 

We manipulated three conditions in our simulation design. First, we generated data from 

three different sample sizes (100, 300, and 500). These conditions were selected from the distribution 

of the sample sizes observed in the review of the PTSD literature in Appendix A; the 10th percentile 

was near 100, the 35th percentile was near 300, and the median was near 500. Our focus is on 

situations where an unconstrained GMM will not converge  even if it is the true model  so our 

simulation conditions focus on the lower 50% of the sample size distribution where these issues are 

most likely to exist. 
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Second, we manipulate the separation between the latent classes. Sufficient sample size 

requirements in GMMs concern the interaction between number of people and class separation (e.g., 

Depaoli, 2013; Kim, 2012; Tein et al., 2013). If the classes are completely distinguishable, then the 

model will easily identify the number of classes and estimate the growth trajectory in each class, 

even at very small sample sizes. For example, Verbeke and Molenberghs (2009, p. 186) provide a 2-

Class example of height changes in 20 schoolgirls without issues because the classes are highly 

separated. On the other hand, samples of 1000 or more may be insufficient for estimation and class 

assignment when classes are poorly separated (Tofighi & Enders, 2008; Tueller & Lubke, 2010). 

Class separation is straightforward to define with 2-Class solutions (e.g., Mahalanobis 

distance), but it is not as straightforward to quantify with more than two classes as in the current 

simulation design. Relative entropy has been used in past studies by manipulating the population 

values of  and (Diallo et al., 2017; Tofighi & Enders, 2008). Following this precedent, our 

low separation condition featured relative entropy of 0.70 for the population model and our high 

separation condition resulted in relative entropy of 0.90. These values also mirror the 25th and 75th 

percentiles found in the PTSD review.  

Each generated dataset will be fit with four different models, (1) a HGMM where covariance 

matrices are constrained to be equal across classes, (2) a PGMM with proportional growth factor and 

residual covariance matrices, (3) a LCGA with a class-specific residual variance, and (4) a CPGMM 

with a class-specific compound symmetric marginal covariance matrix. Note that a compound 

symmetric structure is somewhat misspecified because the data generation includes random slopes, 

resulting in a non-uniform pattern of correlations among repeated measures. A compound symmetric 

structure was chosen for the CPGMM based on the sample covariance between repeated measures 

rather than being based on the data generation model to represent real-life practice more closely; the 

off-diagonal elements of the sample covariance matrix were roughly equivalent because the scale of 
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the intercept variance was larger than the linear slope variance. The mean structure was properly 

specified for each class in each model and featured both linear and quadratic effects for time. 

Because the population value for the quadratic slope variance was 0, HGMM and PGMM conditions 

did not include a quadratic slope random effect. The covariance between the intercept and linear 

slope random effect was estimated for HGMM and PGMM conditions despite being null in the 

population. 

 For data generated from the K = 4 model, we will fit HGMM, PGMM, LCGA, and CPGMM 

models with 2 through 5 latent classes. For data generated from the K = 3 model, we will fit HGMM, 

PGMM, LCGA, and CPGMM models with 2 through 4 latent classes. All four fitted models are 

misspecified to some degree because they sacrifice some information for the sake of reduced 

computational complexity. We fit the true unconstrained model only for conditions with the correct 

number of classes as a reference point for convergence rates.  

We ran 500 replications in each of the 168 conditions in the simulation design (2 data 

generation models × 3 sample sizes × 2 class separation × 4 fitted models × (3 or 4) different latent 

class solutions). Data were generated and analyzed in Mplus Version 8.3 using robust maximum 

likelihood estimation and output files were collated with a SAS macro. Given the focus on 

nonconvergence, we followed suggestions from the methodological literature (e.g., Li, Harring, & 

Macready, 2014; Liu & Hancock, 2014; Shireman et al., 2016, 2017) and altered the Mplus defaults 

related to optimization and convergence criteria. This includes, 

1. Increasing the number initial stage starts to 100 and 10 final stage optimizations  

2. Increasing the number of initial stage iterations from 10 to 100 

3. Increasing the numbers of Quasi-Newton iterations from 20 to 250 

4. Using 500 EM algorithm iterations 

5. Using an EM algorithm convergence criteria of 1E-5 

Science Framework 

page (https://osf.io/eay5v/).  
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4.3 Simulation Outcomes 

 Bias of class-specific growth trajectories has been reported in previous studies when the true 

number of classes are fit (McNeish & Harring, 2020, 2021), so we focus on convergence and class 

enumeration for different class solutions. We consider a replication nonconvergent if (a) different 

final stage optimizations were unable to replicate the same loglikelihood [e.g., suggesting the 

solution is a local maximum], (b) if the parameter estimates were inadmissible [e.g., negative 

variances], (c) one or more classes were empty, (d) the maximum number of iterations was exceeded, 

or (e) the Hessian matrix evaluated at the final parameters estimates was nonpositive definite.  

For class enumeration, we track the proportion of replications in which different models 

select the correct number of classes across conditions. To assess this, we track 9 different information 

criteria to select between different non-nested models. These include:  

1. Bayesian Information Criterion (BIC; Schwarz, 1978) 

2. Sample-size Adjusted BIC (SABIC; Sclove, 1987) 

3. Draper BIC (DBIC; Draper, 1995).  

4. Integrated Completed Likelihood BIC (ICL-BIC; Biernacki, Celeux, & Govaert, 2000) 

5. Sample-size Adjusted ICL-BIC (ICL-SABIC; Peugh & Fan, 2012) 

6. ICL-DBIC 

7. Classification Likelihood Criterion (CLC; Biernacki & Govaert, 1997) 

8. Hurvich-Tsai Akaike Information Criteria (HT-AIC; Hurvich & Tsai, 1989) 

9. Hannan-Quinn Akaike Information Criteria (HQ-AIC; Hannan & Quinn, 1979) 

Table 2 shows the equations for each of these 9 2 is different 

from the relative entropy value reported in the Mplus output that is normed to be between 0 and 1. 

The relationship between entropy (E) and relative entropy (RE) is .  

 BIC and SABIC have been reported to perform well for enumerating latent class in general 

(Nylund et al., 2007) and are output by Mplus by default. BIC is a staple information criterion that 

applies a penalty term based on the ratio of sample size to the number of estimated parameters to 
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address effects of overfitting. The penalty can become too severe when N is not much larger than the 

number of estimated parameters, so Sclove (1987) suggested the SABIC with an adjustment to N for 

smaller sample sizes. SABIC has been noted to perform particularly well with challenging data 

characteristics like poor class separation and smaller samples (Kim, 2014). DBIC is a related 

criterion that includes an additional penalty term to penalize uncertainty in structural assumptions of 

the model (e.g., normal distributional assumptions; Draper, 1995).  

ICL-BIC and ICL-SABIC are related to BIC and SABIC but include a second penalty term 

for entropy, which is a measure of separation amongst class probabilities. In its raw metric (rather 

than relative version reported by Mplus), entropy near zero indicates better separation, meaning the 

additional penalty in the ICL versions of BIC rewards models with better class 

separation. Previous studies have suggested that ICL versions of BIC maintain reasonable class 

enumeration performance for smaller samples (N =500) for SEM mixture models (Henson, Reise, & 

Kim, 2007). The ICL-DBIC is a new metric devised for this study whereby the DBIC is substituted 

for BIC in the ICL-BIC formula such that an entropy-based penalty is applied to DBIC.  

 Outside of BIC-based criteria, the CLC has an entropy penalty but does not penalize for the 

number of parameters. Henson et al. (2007) found good performance for class enumeration of CLC 

across sample sizes. HT-AIC and HQ-AIC are based on AIC which penalizes only for the number of 

parameters (but not relative to sample size) but includes adjustments that are appropriate for 

autocorrelated data and have been shown to perform better with smaller sample sizes. These criteria 

have been studied in latent profile analysis (Peugh & Fan, 2013) and in GMMs with larger samples 

when the model is correct (Peugh & Fan, 2012) but not in the common practical context of when the 

model is necessarily misspecified because the true model is too complex to converge. The Open 

Science Framework page includes a spreadsheet for calculating these different indices from values 

found in Mplus output.  
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 Information criteria will be compared across all class solutions in each condition and the 

class solution with the lowest information criteria for each replication will be considered the number 

of classes selected for that replication. To coincide with how enumeration is conducted in empirical 

settings, replications will be retained if at least one model solution converged. For instance, if the 2-, 

3-, and 4-Class solutions converge but the 5-Class solution does not, then the selected number of 

classes is based on the lowest information criteria among only the 2-, 3-, and 4-Class solutions.  

As a rough metric, we consider selecting the correct number of classes in at least 50% of 

replications to be reasonable performance. We report this metric across all replications (converged 

and non-converged) and also only for converged replications. We emphasize the results across all 

replications when discussing the results. In the text, we provide results for the percentage of 

replications selecting the correct number of classes. Tables B1 through B8 in Appendix B show the 

percentage of replications selecting each number of classes to provide more detail about conditions 

or metrics that are more likely to over-extract or under-extract latent classes. 

 Though the main interest is in class enumeration, we also track the adjusted Rand Index 

(ARI) to assess classification accuracy (Hubert & Arabie, 1985). The ARI is used to compare 

agreement between two different data partitions, adjusting for chance level of agreement (Milligan & 

Cooper, 1986; Steinley, 2004). In the case of a simulation study, the two partitions being compared 

are the population class assignments and the estimated class assignments (based on the highest 

posterior probability) such that the ARI assesses how well the estimated classes recover the 

population classes (Steinley & Brusco, 2018). The ARI is also invariant to permutations of cluster 

labels, which is useful for simulation studies where class labels may switch across different 

replications (e.g., Hullermeier & Rifqi, 2009). An ARI value of 0 indicates chance level agreement 

and a value of 1 indicates perfect agreement. The ARI has been found to perform best among 

competing methods for comparing data partitions (Steinley et al., 2016) and was calculated in the 

mclust R package (Scrucca et al., 2016). We calculate the ARI for converged replications fitting the 
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true number of classes to keep the presentation of results manageable, although it is possible to 

compute the index when the number of classes in the population and fitted model are incongruent. 

4.4 Outcomes Not Included 

 There are metrics for enumerating classes that we did not include. Though we included 

adjusted versions of AIC, AIC itself was not studied because it has been found to perform very 

poorly in previous simulation studies (Diallo et al., 2016; Li & Hser, 2011; Nylund et al., 2007; 

Yang, 2006). We also focus only on information criteria and did not include inferential statistics for 

class enumeration, most notably the bootstrapped likelihood ratio test (BLRT; McLachlan, 1987) and 

the Lo-Mendell-Rubin test (Lo, Mendell, & Rubin, 2001). Both of these tests provide a p-value for 

the likelihood ratio test comparing a model with k classes to a model with k 1 classes; models with 

different numbers of classes are non-nested, so the proper p-value is not straightforward to obtain.  

The rationale for focusing on information criteria is that inferential statistics for class 

enumeration may not be powerful enough for the sample size and class separation conditions 

included in our simulation (Dziak et al., 2014; Tekle et al., 2016). Diallo et al. (2016, 2017) also 

found that information criteria outperformed inferential tests for class enumeration when the 

covariance structure was misspecified via constraints or under-specification, which is a main focus of 

our simulation (HGMMs and PGMMs are misspecified via constraints; CPGMMs and LCGAs are 

misspecified via under-specification).  

5. Simulation Results  

5.1 Convergence Results 

 Table 3 shows the percent of replications that converged for each fitted model across 

simulation conditions. As a reference and to demonstrate how nonconvergence is rampant for models 

under these conditions, we also include the convergence rate for the unconstrained GMM when the 

number of classes is correct, which corresponds to the true data generation model. When the data 

generation included a small fourth class, the unconstrained GMM was too complex for the data, only 
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converging in 2%, 17%, and 36% of replications for N = 100, N = 300, and N = 500, respectively, 

when classes were well separated. Again, this nonconvergence occurs when the true model is being 

fit. Convergence was even worse when the unconstrained GMM was fit to the 4-Class data with low 

class separation and did not break 10%. The true unconstrained GMM fared better for the 3-Class 

data generation model, but convergence rates remained under 70% under N = 500 and high class 

separation. Put simply, with modest sample sizes, even fitting the exact model used to generate the 

data far from assures convergence.  

 HGMMs are a common strategy to address nonconvergence of unconstrained GMMs and the 

reason is understandable given the relative increase in convergence rates. Nonetheless, HGMMs are 

not a foolproof strategy for improving nonconvergence in these conditions as convergence remained 

far from 100% in most conditions. With the 3-Class high separation data generations conditions, 

HGMM convergence was slightly worse than the unconstrained GMM. We double-checked to verify 

the source of this oddity and found that HGMM failed to converge in these conditions almost 

exclusively because of local maximum and an inability to replicate the best loglikelihood from 

different final stage optimizations (as opposed to the unconstrained GMM where nonconvergence 

was more often attributable to inadmissible estimates). Convergence with PGMMs was only 

marginally better or sometimes worse than unconstrained GMMs when class separation was high. 

However, PGMMs converged more often with low rather than high class separation across 

conditions and provided a marked improvement over the unconstrained GMM.  

 Convergence rates for CPGMMs and LCGAs were notably better than HGMMs or PGMMs 

and offered vast improvements over unconstrained GMMs. Both models simplify the estimation by 

eliminating computationally difficult random effects, which made it possible to consistently obtain 

admissible estimates even when N = 100. Of course, being able to produce admissible estimates is 

necessary but not sufficient, and a more important aspect is whether these different models can 
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correctly identify the number of classes present in the data. Class enumeration results are discussed 

in detail in the subsections that follow.  

5.2 Class Enumeration: High Separation, 4-Class Data Generation 

 Table 4 shows the percentage of all replications (top) and the percentage of converged 

replications (bottom) in which different information criteria selected the correct 4-Class solution 

across sample size conditions when the classes were well-separated. The table also shows the average 

relative entropy estimate across converged replications for the given condition to assess how well the 

model estimated class separation. For the 4-Class data generation model, when factoring in 

convergence, only CPGMMs were able to select the correct number of classes in at least 50% of all 

replications and had the best performance among the four methods. 

Highlights of the CPGMM results include,  

1. HT-AIC, HQ-AIC, and DBIC identified the correct number of classes in a majority of 

replications with N = 100.  

2. BIC, ICL-SABIC, and CLC, all selected the correct number of classes in at least 75% of all 

replications with N = 300 and 90% of all replications with N = 500. 

3. DBIC was the only criteria to select the correct number of classes in at least 50% of all 

replications for all sample sizes. 

4. The relative entropy for the CPGMM was quite accurate with estimates between 0.91 and 

0.92 across conditions compared to the 0.90 population value. 

5. CPGMMs had the best ARI in each condition, indicating that CPGMMs was the best at 

assigning observations to the correct classes.  

When conditioning only on replications that converged, PGMMs were able to regularly 

detect the true number of classes. When coupled with PGMMs and conditional on convergence being 

achieved, SABIC often selected the correct four class solution across sample size conditions and 

DBIC, HT-AIC, and HQ-AIC all selected the correct number of classes in about least 85% of 
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converged replications when  300. The major drawback of PGMMs was the low convergence 

rates  the number of converged replications never exceed 21%. Although the correct number of 

classes could be reliably selected when the model converged in these conditions, convergence was 

achieved so infrequently that the overall ability to select the proper number of classes ended up being 

quite poor based on the top half of Table 4 when all replications were considered. 

HGMMs performed poorly in these conditions when compared to CPGMMs and PGMMs. 

None of the criteria were able to identify the correct number of classes in at least 50% of all 

replications at any sample size and criteria with entropy penalties fared particularly poorly when 

coupled with HGMMs. SABIC, DBIC, HT-AIC, and HQ-AIC were able to select the correct number 

of classes in more than 50% of converged replications. However, these percentages were below both 

CPGMMs and PGMMs. The relative entropy for HGMMs was inaccurate and underestimated the 

true separation of the latent classes while the ARI was much lower than CPGMMs. 

The near-perfect convergence rate with LCGAs in Table 3 did not translate into selecting the 

correct number of classes or accurately assigning observations to the correct class. The correct 4-

Class solution was typically selected only when the 5-Class solution did not converge, supporting the 

conclusion of Kreuter and Muthén (2008) that the different definition of classes within LCGAs 

typically results in additional classes compared to GMMs.  

5.3 Class Enumeration: High Separation, 3-Class Data Generation 

 Table 5 shows the class enumeration results for the 3-Class data generation model based on 

all replications (top) and only converged replications (bottom). The pattern of the results is similar to 

the 4-Class data generation model results shown in Table 4, so we will only briefly discuss the major 

points to avoid redundancy.  

CPGMMs resulted in the best performance  they converged most often, selected the correct 

number of classes in a high percentage of replications, and had the highest ARI. PGMMs continued 

to perform well provided that convergence was achieved. However, although convergence was 
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considerably higher in Table 5 than in Table 4, convergence rates continued to be much lower than 

CPGMMs (82-100% for CPGMMs; 51-60% in PGMMs). A sizeable discrepancy between the 

performance of HGMMs and the performance of CPGMMs or PGMMs remained and the 

discrepancy was wider than in Table 4. LCGAs only identified the correct number of classes when 

models with more classes failed to converge. 

5.4 Class Enumeration: Low Separation, 4-Class Data Generation 

Table 6 shows the percentage of all replications (top) and the percentage of converged 

replications (bottom) in which different information criteria selected the correct 4-Class solution 

across sample size conditions when the classes were poorly separated. As expected, class 

enumeration is much more difficult with smaller sample sizes and poorly separated classes, 

especially in the 4-Class condition when the data generation model contains a small class containing 

only 6% of the population.  

Among the competing methods, CPGMMs performed the best relative to other methods and 

had reasonably high convergence along with at least one criterion that could consistently select the 

correct number of classes, though the ARI was worse than with HGMMs or PGMMs. Though 

CPGMMs were the only method to select the correct number of classes in more than 50% of 

replications in any condition, no criteria were able to identify the correct number of classes in all 

sample sizes. This blotchy set of results does not reveal consistent patterns upon which to build 

recommendations. Unlike with high class separation, criteria with entropy penalties did not perform 

well with CPGMMs when class separation was low. CPGMMs did manage to converge more often 

than HGMMs or PGMMs in these conditions.  

With HGMMs, no criteria were able to consistently identify the correct number of classes 

with poor separation, regardless of whether considering all or only converged replications. The same 

was true of PGMMs which performed poorly when considering only converged replications and 

especially poorly when considering all replications. PGMMs had a higher ARI relative to CPGMMs, 
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though the improvement is mostly nullified by lower convergence and inability to select the correct 

number of classes with regularity. CPGMMs and PGMMs were able to estimate relative entropy 

within ±0.10 of the 0.70 population value. HGMMs overestimated the relative entropy in these 

conditions, suggesting that the class separation was much better than it truly was.  The LCGA 

defined as a probability LCGA.  

Although the class enumeration performance leaves a lot to be desired with low class 

separation, CPGMMs and PGMMs were at least able to accurately estimate relative entropy and 

report that class separation is poor, which is useful for helping researchers gauge the difficulty of 

extracting latent classes from their data. HGMMs and LCGAs perform poorly both for class 

enumeration and estimation of relative entropy (assuming the probability distribution definition of 

class), which distorts important information needed to evaluate the possibility or trustworthiness of 

fitting GMMs with modest sample sizes. Although CPGMMs performed best in relative terms, in 

absolute terms CPGMMs were not great, and the results reinforce the difficulty of fitting GMMs 

when samples are modest and separation is poor.  

5.5 Class Enumeration: Low Separation, 3-Class Data Generation 

 Table 7 shows the percentage of all replications (top) and the percentage of only converged 

replications (bottom) in which different information criteria selected the correct 3-Class solution 

across sample size conditions when the classes were poorly separated. Similar to the 4-Class low 

separation results in Table 6, all methods had difficulty identifying the correct number of classes. As 

in other conditions, CPGMMs had high convergence rates and were the only method to identify the 

correct number of classes in at least 50% of replications in the top half of the table. In the 3-Class 

low separation condition, there did appear to be some consistency that DBIC with CPGMMs had a 

reasonable ability to consistently selected the correct number of classes, although the ARI remained 
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rather low. The 3-Class data generation model results clarify that the difficulty seen in the 4-Class 

data generation condition is not completely attributable to the presence of a small class.  

 PGMMs did not select the correct number of classes when considering all replications and 

only selected the correction number of classes in more than 50% of converged replications in one 

condition. CPGMMs and PGMMs both estimated relative entropy within ±0.10 of the population 

0.70 value and accurately reflected the degree of separation among the classes in the population. The 

ARI with PGMMs was the best among methods, but poor convergence and poor enumeration with 

PGMMs in these conditions make this superior classification accuracy moot.  

With HGMMs, no information criteria were able to select the correct number of classes in at 

least 50% of all replications. The correct number of classes was selected in at least 50% of converged 

with HGMMs in a few conditions, but there were no consistent patterns. Relative entropy continued 

to be poorly estimated with HGMMs in these conditions and was never within ±0.10 of the 0.70 

population value, again making HGMMs a liability for assessing class separation and determining 

appropriateness of the analysis with modest samples. In these conditions, the LCGA almost never 

detected the correct number of classes and did not accurately estimate relative entropy. 

5.6 Simulation Result Summary 

An unconstrained GMM can simply be too complex to fit to some data, even when it is the 

true data generation model. HGMMs help convergence somewhat (though not as much as other 

methods), but rarely select the proper number of classes and assign observations to the correct class 

less often. Criteria with no entropy penalty coupled with PGMMs were able to select the correct 

number of classes when classes were highly separated, but PGMMs generally had the worst 

convergence rates of the four competing methods in the simulation. Given that a motivating reason 

for using each of the models is to address nonconvergence in unconstrained GMMs, the lower 

convergence rates of PGMMs is a vulnerability that hampers its utility.  
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CPGMMs and LCGAs greatly improve convergence, b

LCGAs differs from GMMs and  expectedly  LCGAs rarely recover the correct number of classes 

 and also performed worst at assigning observations to the 

correct class. The definition of  and CPGMMs can 

model class-specific covariance structures more easily, which is essential for proper class 

enumeration. CPGMMs were the only method that could simultaneously improve convergence and 

select the correct number of classes. When class separation was high, CPGMMs also displayed the 

highest accuracy in assigning observations to the correct class.  

Specific notable findings are summarized below.  

1. The ability to select the proper number of classes at realistic sample sizes is heavily 

dependent on class separation. Successful class enumeration is possible at modest samples, 

but only when the classes are relatively well separated (relative entropy near .90 or higher). 

Detecting the presence of small classes with modest samples did not appear to be problematic 

with CPGMMs. 

2. Permitting each class to have a unique covariance structure as with CPGMMs  and PGMMs, 

to a lesser extent  is highly beneficial, even if the covariance structure in each class is not 

exactly right. In other words, properly specifying the covariance structure is less important 

than allowing the covariance structure to be class-specific.  

3. With high class separation, CPGMMs could often select the proper number of classes and 

accurately assign observations to those classes. DBIC was the most consistent criteria across 

conditions, but DBIC did not necessarily have the single highest percentage of replications 

with the correct number of classes. HT-AIC and HQ-AIC tended to be better in the smallest 

sample condition whereas BIC, CLC, ICL-SABIC, and ICL-DBIC were better with the larger 

samples included in the simulation.  
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4. CPGMMs and PGMMs accurately estimate relative entropy values and allow for accurate 

assessment of class separation. HGMMs do not accurately estimate relative entropy and 

make it difficult to assess whether class separation is sufficient to trust the class solution.  

5. LCGA

consistent with the GMM definition. LCGA should not substituted for GMMs to avoid 

nonconvergence issues or to simplify estimation. CPGMMs follow the same approach of 

LCGA by removing random effects with similar improvement in convergence, but the 

with CPGMMs is consistent with GMMs.  

6. Criteria with entropy penalties coupled with CPGMMs were consistently among the best at 

selecting the correct number of classes when class separation was high but were universally 

poor with low class separation and consistently selected too few classes. Perhaps 

development of a different or varying penalty for entropy would help generalize the strong 

performance of entropy-based criteria (similar to the logic of BIC versus AIC).  

7. HGMMs performed quite poorly across all conditions included in the study. Even though 

HGMMs are a commonly applied approach when convergence is an issue or when defaults 

are applied indiscreetly, our results add to the existing literature showing that this method is 

quite poor and ill-advised. This method should be avoided given that CPGMMs demonstrate 

superior performance for convergence, class enumeration, and classification accuracy (in 

addition to other metrics as reported in previous research) while retaining the flexibility to 

allow parameters  especially covariance structures  to be unconstrained across classes.  

6. Empirical Example 

Empirical data come from a study on PTSD with 301 burn victims who were admitted to a 

burn center between 1997 and 2000 (van Loey et al., 2003). Participants completed the Impact of 

Event Scale (Horowitz et al., 1979) following a traumatic incident where higher scores indicate more 

severe symptoms. The first two waves were taken two and three weeks after the traumatic incident, 
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respectively. The next two waves were collected in 2-month intervals thereafter to assess PTSD 

symptoms 4 months following the incident (i.e., time is coded 0, 1, 9, 17). The data include 

additional future waves, but we do not include them to more closely match the characteristics of the 

simulation and the studies reviewed to inform the simulation conditions. The observed covariance 

matrix of the raw data is , which shows that the variances 

appear to grow over time and the covariances appear to diminish at each subsequent lag.  

We first tried to fit an unconstrained quadratic GMM such that the growth factor variances 

and time-point specific residual variances were freely estimated across each class. Written 

statistically,  

   (6) 

We fit models with between 2 and 5 latent classes in Mplus Version 8.3 with robust maximum 

likelihood estimation using the same recommended estimation options as used in the simulation (Li 

et al., 2014; Liu & Hancock, 2014; Shireman et al., 2016, 2017). As anticipated from our simulation 

results, this model was unable to converge with between 2 and 5 classes. This occurred regardless of 

whether the quadratic slope variance was estimated or constrained to 0. If the residual variances were 

modeled as homoskedastic such that , the 2-Class model converged but models 

with 3 through 5 latent classes did not.  

 Given that the unconstrained GMM did not converge, we then fit a PGMM with between 2 

and 5 classes. Consistent with the simulation results in Table 3, the PGMM did not converge for any 

class solutions with heteroskedastic or homoskedastic residuals. For each class solution, 
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nonconvergence was attributable to a nonpositive definiteness. A HGMM and CPGMM both were 

able to converge, the results of which are covered in a subsection dedicated to each model.   

6.1 Constrained Growth Mixture Model  

 Consistent with current practice, we fit a quadratic HGMM with the covariance structures 

constrained across classes (the same model as in Equation 6 except and  have no k subscripts). 

The HGMM models did not initially converge if the residuals were heteroskedastic but did converge 

with homoskedastic residuals. Table 8 shows the nine information criteria explored earlier in the 

simulation study and the relative entropy for models with 2 through 5 classes. The class separation 

appears to be rather good with relative entropy values mostly in the high 0.80s and nearly all criteria 

suggest 5 classes, except the ICL-BIC which narrowly suggests 3 classes over 5 classes. The ICL-

BIC selected the proper number of classes in 1% or fewer of replications in the simulation with 

HGMM for all high separation conditions, so it appears safe to conclude that the HGMM is 

suggesting 5 classes for these data.  

The class trajectories estimated by the HGMM are compared to the empirical data for people 

assigned to each class in Figure 1. pattern 

commonly observed in empirical HGMM analyses of PTSD data. Class 1 represents the Recovery 

class such that the curve is decreasing at the end of the observation window. Class 2 is the Resilient 

class where people start with subclinical scores (the clinical cutoff for this measure is 33) and are 

essentially flat over time. Class 3 represents the Chronic class where people begin at or near the 

clinical cutoff and increase over time. Class 4 and 5 appear to be components of the Delayed Onset 

class whereby curves are increasing at the end of the observation window. Note that the variance 

around the trajectory in each class is about the same across each class  this is imposed by the 

HGMM to reduce the number of covariance parameters to facilitate estimation. However, this 

assumption can be relaxed with a CPGMM, which is fit next and results in a rather different solution.  
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6.2 Covariance Pattern Growth Mixture Model 

 Next, we consider a quadratic CPGMM. Because the variances appear to grow and the off-

diagonal elements diminish as a function of the lag, we use an unrestricted marginal covariance 

structure that uniquely estimates all 10 covariance parameters per class to model the marginal 

covariance. The model can be written  

   (7) 

Equation 7 with 2 through 5 classes converges without any additional constraints or alterations and 

the best loglikelihood was replicated with different final stage optimizations. Fit criteria and relative 

entropy for each class are shown in the bottom half of Table 8. The relative entropy estimates were a 

little different than the HGMM, but similarly suggest that class separation is rather good and is in the 

mid-0.80s to low-0.90s. This is consistent with the simulation where the HGMM underestimated 

relative entropy when separation was high. ICL-BIC, ICL-SABIC, and ICL-DBIC suggests 3 classes 

while BIC, CLC, HT-AIC, HQ-AIC, and DBIC suggest 4 classes. SABIC was the only criteria to 

suggest 5 classes.  

 In the simulation, BIC tended to select the number of classes well when N =300; however, in 

this example, the BIC is extremely close between 3-Class and 4-Class solutions (8,678 vs 8,674), 

which suggests limited evidence in favor or either model based on guidelines in Rafferty (1995). 

From the simulation, if K = 4 with high separation (results from Table 4), it was unlikely that HT-

AIC would detect the true number of classes when N =300 (4 classes selected in 41% of replications) 

while ICL-SABIC and ICL-DBIC would select too few classes (19% and 26%, respectively, as 

reported in the Appendix Table B1). Conversely, if K = 3 with high separation (results from Table 

5), it was rather likely that that ICL-SABIC and ICL-DBIC selected the correct number of classes 
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(89% and 88%, respectively) while HT-AIC selected too many classes (70% as reported in the 

Appendix Table B5). Based on this pattern on information criteria, it seems that the CPGMM is 

suggesting that 3 classes are appropriate for this data. Also note that the CPGMM criteria are 

uniformly lower than the corresponding HGMM criteria, suggesting more parsimonious fit despite 

the CPGMMs having many more parameters when modeling unrestricted marginal covariance 

structures unique to each class.  

 The estimated class trajectories from the CPGMM are compared to the empirical data for 

people assigned to each class in Figure 2. Note that the growth trajectories are much flatter than the 

corresponding HGMM but that the real difference in the classes lies in the variability. Class 1 is an 

Erratic class composed of people who appear to have difficulty managing their symptoms. Many of 

the data points are above the clinical cutoff, and individuals bounce above and below the cutoff 

across repeated measures. This class has very high residual variance and the marginal class trajectory 

does a poor job representing the data in this class because the symptoms for people in this class are 

unpredictable. Class 2 corresponds a Subclinical class. These people appear modestly affected by the 

traumatic incident they endured and show a slight decrease in symptoms over time. The residual 

variance in this class is small but nonzero as the empirical data bounce around the marginal class 

trajectory and people show minor struggles with symptoms over time. Despite small volatility, these 

people appear to largely have their symptoms under control and do not approach the clinical cutoff. 

Class 3 is the Resilient class composed of people who show essentially no symptoms. This class has 

essentially no residual variance because everyone in this class starts at 0 and their symptoms do not 

grow over time, so the marginal class trajectory almost perfectly fits the data in this class.1 

Essentially, this class solution is defined by management of symptoms, not change in symptoms.   

6.3 Practical Implications 

 
1 
distribution and simply captures the floor effect of the scale rather than a substantively meaningful class.   
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 HGMMs are quite common in empirical studies  in the PTSD literature review in Appendix 

A, only 11% of studies (2/19) reporting application of a GMM on observed repeated measures were 

able to fit a model with the covariance structures unconstrained across classes. Of the studies that 

constrained covariance structures and applied the HGMM, 65% (11/17) reported 4 or more classes 

whereas neither of the 2 studies without constraints found 4 or more classes. The empirical example 

seemed to follow this same pattern  models that allow the covariance structure to be unique to each 

class (like CPGMMs) often come to different conclusions regarding the number of classes when 

compared to models with constrained covariance structures (like HGMMs).  

Note that the CPGMM class solution in the empirical example is strongly influenced by the 

variability, not by the mean growth trajectories. Approaches that constrain the variance to be equal 

across classes like HGMM  by design  are unable to detect classes following this type of pattern. 

Similarly, the Resilient classes that emerges with the CPGMM (Figure 2, Class 3) looks very 

different and is much smaller when compared to the HGMM Resilient class (Figure 1, Class 2) 

because a class of horizontal trajectories at 0 cannot exist by definition when variances are 

constrained across classes. Therefore, the Resilient and Subclinical classes from the CPGMM (Figure 

2, Classes 2 and 3) are merged in the HGMM (Figure 1, Class 2) to satisfy a potentially unwarranted 

between-class homoskedasticity assumption imposed to avoid nonconvergence, completely losing 

the distinction between Resilient and affected but Subclinical individuals. This finding is not unique 

to this data and has previously been noted in Infurna and Jayawickreme (2019). Furthermore, the 

ere the true model, the CPGMM would 

have been able to detect it with high probability under these data conditions. As noted earlier, the 

existence of the delayed onset PTSD subgroup found in empirical GMM analyses has been 

questioned in the psychiatry literature and similar observations regarding classes extracted from 

empirical GMM not being observed in clinical settings has also been observed in the substance use 

literature (Jacob et al., 2005).  
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Of course, the results here represent a single empirical example, and it is not possible to 

know which (or neither) solution is correct, so these results should not be reified either. Nonetheless, 

an increasing volume of simulation and methodological research continues to demonstrate the 

importance of modeling variability generally (e.g., Hedeker et al., 2012; Hoffman, 2007; Nesselroade 

& Ram, 2004; Williams et al., 2020) and the importance of giving equal consideration to the 

covariance and mean structure in GMMs (Diallo et al., 2016; Diallo et al., 2017; McNeish & Harring, 

2021). Researchers should strive to keep both structures class-specific to uphold the spirit of mixture 

modeling and to optimize the performance of their models.   

7. Discussion 

7.1 Limitations and Future Directions 

Although we believe there are many strengths to the current study, it is also important to 

recognize its limitations. First, a weakness of simulations focused on mixture modeling in general is 

that the entir

substantively meaningful classes to find, which assumes a direct application of mixture modeling. In 

reality, it is equally possible that the classes do not correspond to substantively meaningful classes 

and the classes are merely a mathematical device to approximate a complex reality (Dolan & van der 

Mass, 1998; Titterington et al., 1985), which would correspond to an indirect application of mixture 

modeling. In an indirect applic

varying degrees of approximation to the observed data where one seeks to neither underfit the data 

(i.e., take too few classes to capture the primary features) nor overfit the data (i.e., include classes 

that capitalize on chance irregularities).  

Reliably differentiating between these two types of applications empirically is not currently 

possible (Bauer & Curran, 2004). Further, Bauer (2007) has argued it may be most realistic to regard 

the majority of applications of GMMs in psychology as indirect, even if they were not originally 

motivated as such. There is then a lack of concordance between the direct application context 
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assumed in class enumeration simulations and the actual application of GMMs in empirical research.  

Nevertheless, it is reasonable to conjecture that the same models and criteria that perform well in 

direct applications will also balance under- and over-fitting in indirect applications. 

Second, our simulation results focused on the ability to select the proper number of classes. 

However, a reasonable follow-up question may be whether the growth trajectories in classes that are 

extracted from these models accurately reflect the generated class trajectories. Though we do not 

report this in the current paper, McNeish and Harring (2021) is fully dedicated to this question and 

finds that  assuming the number of classes is correct  the CPGMM class trajectories are faithfully 

recovered across converged replications whereas the HGMM class trajectories were less similar to 

the data generation model. We rely on previous studies to address this question rather than recreate 

and report such results here alongside these more novel class enumeration results.  

Third, our simulation conditions were based upon data characteristics observed 

from the PTSD literature. GMMs are applied in many content areas in which the data characteristics 

may look quite different. To the extent that characteristics differ from the PTSD literature; 

convergence and class enumeration performance noted in our simulation may not carryover to other 

adjacent areas of application. 

 Fourth, we focused on the lower half of the sample size distribution where nonconvergence 

issues tend to be most rampant. CPGMMs performed well in these conditions within our simulation 

but the disparity between CPGMMs and other methods may diminish at larger sample sizes. A future 

direction would be studying the performance of CPGMMs in large samples to determine whether the 

performance increase is limited to modest samples or whether CPGMMs may be a preferable 

approach to combine latent class analysis with growth modeling more generally.   

 Fifth, the PTSD literature tends to have a fairly small number of repeated measures, which 

was reflected in our simulation design. However, modeling the marginal covariance with a CPGMM 

can increase in difficulty when data contain more repeated measures. For instance, with 10 repeated 
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measures, it may be challenging to select a parsimonious marginal covariance structure, especially if 

the repeated measures are taken in highly unequal intervals. If an unrestricted marginal covariance is 

used with many repeated measures, this can require many parameters to be estimated.  

 Sixth, we assumed that normality assumptions were met. When normality is violated, class 

enumeration can be more difficult because it can confound classes that may be substantively 

meaningful and classes that are mathematical approximations for a complex distribution (e.g., Bauer, 

2007; Depaoli et al., 2019; Guerra-Peña & Steinley, 2016). Robustness to non-normality for more 

recently developed and less well-studied methods like CPGMMs and PGMMs is a potential future 

direction. CPGMMs may fare better than PGMMs because there are no random effects and therefore 

fewer distributional assumptions to satisfy. These methods could also be extended to skew-normal or 

t-distributions as suggested by Muthén and Asparouhov (2015) to mitigate some effects of non-

normality.  

7.2 Concluding Remarks 

Class enumeration is a critical but difficult aspect of modeling heterogeneity in growth 

trajectories with latent classes. Current approaches make an already difficult processes even more 

difficult by employing models that are unnecessary complex for the research question of interest as 

many research questions do not require within-class random effects. Modeling within-class random 

effects piles latent classes on top of latent growth trajectories and estimation algorithms can only 

extract so much latent information from a few observed repeated measures. Because of rigid 

disciplinary preferences for growth modeling with the random effects tradition, researchers often 

must choose between convergence and flexibly modeling the covariance structure in each class. 

alternatives beyond this dichotomy.  

Typically, the focus of GMMs is squarely on the latent classes and not on the person-specific 

growth trajectories. This interest can be reflected in the model by disregarding the within-class 
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random effects and instead modeling the marginal covariance in each class directly with CPGMMs. 

We found this approach to improve convergence while also permitting class-specific covariance 

structures. This combination led to higher accuracy when enumerating classes in a variety of 

conditions, especially when the classes are reasonably well separated.   
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Table 1 
Data generation equations for population model 

 
Note: The 3-class model uses the same equation for Classes 1 through 3 but omits Class 4 and 
changes the class proportions; t = 0, 1, 10, 18, 26   
 

  

Class Model Equation 
Covariance Structures, 

Low Separation 
Covariance Structures, 

High Separation 

1 
(Resilient) 

 

 

 

 

2 
(Recovering) 

 

 

 
 

3 
(Chronic) 

 

 

 

 
 

 

 

4 
(Delayed Onset) 
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Table 2
Equations for information criteria considered in the simulation

Criteria Equation
BIC

SABIC

DBIC

ICL-BIC

ICL-SABIC

ICL-DBIC

CLC

HT-AIC

HQ-AIC

Note: = loglikelihood, p = number of estimated parameters, N = sample size. Entropy is not 

the same as the relative entropy value output by Mplus; for K

the number of classes. 
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Table 4 
Percent of total replications (top) and percentage of converged replications (bottom) identifying 
the correct number of classes for the 4-class data generation model with high class separation 
(population relative entropy = 0.90) 
 

  All Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 28 90 92  1 11 35  0 5 20  21 5 2 
SABIC 43 43 28  22 30 38  6 14 21  16 5 2 
DBIC 52 77 63  11 29 43  3 13 21  17 5 2 
ICL-BIC 24 61 80  0 0 0  3 2 1  32 11 2 
ICL-SABIC 46 75 90  2 0 0  2 2 5  21 7 2 
ICL-DBIC 41 71 87  1 0 0  1 1 3  25 8 2 
CLC 45 77 91  5 1 0  1 9 12  18 6 2 
HT-AIC 50 41 19  10 30 33  2 14 21  18 5 2 
HQ-AIC 50 70 42  9 30 42  2 13 21  17 5 2 
  Only Converged Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 42 95 94  3 23 58  0 33 95  23 5 2 
SABIC 65 45 29  63 63 63  86 93 100  17 5 2 
DBIC 79 81 64  31 60 72  43 87 100  18 5 2 
ICL-BIC 36 64 82  0 0 0  43 13 5  34 11 2 
ICL-SABIC 70 79 92  6 0 0  29 13 24  23 7 2 
ICL-DBIC 62 75 89  3 0 0  14 7 14  27 8 2 
CLC 68 81 93  14 2 0  14 60 57  19 6 2 
HT-AIC 76 43 19  29 63 55  29 93 100  19 5 2 
HQ-AIC 76 74 43  26 63 70  29 87 100  18 5 2 
                
Convergence % 66 95 98  35 48 60  7 15 21  93 99 100 
Relative Entropy .92 .91 .91  .84 .80 .79  .92 .89 .89  .93 .91 .90 

Adjusted Rand Index .80 .87 .88  .57 .60 .60  .57 .75 .82  .49 .48 .48 
 
Note: CPGMM = Covariance Pattern Growth Mixture Model, HGMM = Homoskedastic Growth 
Mixture Model, PGMM = Proportional Growth Mixture Model, LCGA = Latent Class Growth 
Analysis. are the average entropy across all replications 
within the respective condition. Bold entries indicate that the information criteria identified the 
correct number of classes in at least 50% of replications.  
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Table 5 
Percent of total replications (top) and percentage of converged replications (bottom) identifying 
the correct number of classes for 3-class data generation model with high class separation 
(population relative entropy = 0.90) 
 
  All Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 61 95 88  4 7 10  11 42 59  28 1 0 
SABIC 43 35 25  26 8 14  48 50 57  28 1 0 
DBIC 68 75 54  17 13 15  37 50 59  28 1 0 
ICL-BIC 40 81 92  1 0 0  3 2 1  28 1 0 
ICL-SABIC 60 89 96  3 0 0  23 8 6  28 1 0 
ICL-DBIC 57 88 95  1 0 0  14 4 4  28 1 0 
CLC 58 87 96  6 0 0  33 16 10  28 1 0 
HT-AIC 74 30 15  19 6 11  35 50 53  28 1 0 
HQ-AIC 71 65 38  13 13 15  32 50 58  28 1 0 
  Only Converged Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 74 96 88  9 19 37  22 81 98  61 1 0 
SABIC 6 35 25  57 22 52  94 96 95  61 1 0 
DBIC 70 76 54  37 35 56  73 96 98  61 1 0 
ICL-BIC 48 82 92  2 0 0  6 4 2  61 1 0 
ICL-SABIC 54 90 96  7 0 0  45 15 10  61 1 0 
ICL-DBIC 63 89 95  2 0 0  27 8 7  61 1 0 
CLC 38 88 96  13 0 0  65 31 17  61 1 0 
HT-AIC 85 30 15  41 16 41  69 96 88  61 1 0 
HQ-AIC 78 66 38  28 35 56  63 96 97  61 1 0 
                
Convergence % 82 99 100  46 37 27  51 52 60  46 96 97 
Relative Entropy .92 .91 .91  .84 .80 .79  .92 .90 .89  .96 .95 .95 

Adjusted Rand Index .86 .89 .90  .69 .72 .70  .86 .86 .88  .69 .71 .74 
 

Note: CPGMM = Covariance Pattern Growth Mixture Model, HGMM = Homoskedastic Growth 
Mixture Model, PGMM = Proportional Growth Mixture Model, LCGA = Latent Class Growth 

s 
within the respective condition. Bold entries indicate that the information criteria identified the 
correct number of classes in at least 50% of replications.  
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Table 6 
Percent of total replications (top) and percentage of converged replications (bottom) identifying 
the correct number of classes for 4-class data generation model with low class separation 
(population relative entropy = 0.70) 
 
  All Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 0 2 18  12 8 17  0 0 0  29 1 0 
SABIC 35 48 60  30 36 33  20 12 7  12 1 0 
DBIC 12 27 57  13 30 38  3 1 1  13 1 0 
ICL-BIC 1 1 0  8 0 0  0 0 2  49 22 17 
ICL-SABIC 17 2 0  14 2 1  6 1 0  18 10 6 
ICL-DBIC 8 1 0  5 1 0  2 0 0  29 14 11 
CLC 25 6 2  25 11 2  10 4 2  14 5 3 
HT-AIC 7 52 42  11 37 26  1 17 25  15 1 0 
HQ-AIC 7 35 68  9 34 38  1 2 3  14 1 0 
  Only Converged Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 0 3 20  24 11 23  0 0 0  30 1 0 
SABIC 56 61 68  59 48 45  57 24 14  13 1 0 
DBIC 19 34 65  25 40 51  9 2 2  14 1 0 
ICL-BIC 2 10 0  16 0 0  0 0 4  51 22 17 
ICL-SABIC 27 1 0  27 3 1  17 2 0  19 10 6 
ICL-DBIC 13 1 0  10 1 0  6 0 0  30 14 11 
CLC 40 8 2  49 15 3  29 8 4  15 5 3 
HT-AIC 11 66 48  22 49 35  3 34 50  16 1 0 
HQ-AIC 11 44 77  18 45 51  3 4 6  15 1 0 
                
Convergence % 63 79 88  51 75 74  35 50 50  96 99 100 
Relative Entropy .78 .69 .66  .89 .86 .85  .80 .75 .72  .91 .88 .88 

Adjusted Rand Index .44 .45 .43  .57 .59 .59  .57 .58 .60  .32 .31 .31 
 
Note: CPGMM = Covariance Pattern Growth Mixture Model, HGMM = Homoskedastic Growth 
Mixture Model, PGMM = Proportional Growth Mixture Model, LCGA = Latent Class Growth 

within the respective condition. Bold entries indicate that the information criteria identified the 
correct number of classes in at least 50% of replications.  
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Table 7 
Percent of total replications (top) and percentage of converged replications (bottom) identifying 
the correct number of classes for 3-class data generation model with low class separation 
(population relative entropy = 0.70) 
 
  All Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 9 35 72  10 35 48  1 0 0  3 1 0 
SABIC 42 50 34  35 26 15  46 23 16  3 1 0 
DBIC 42 69 71  36 45 30  12 5 2  3 1 0 
ICL-BIC 8 1 0  7 4 1  1 0 0  6 1 0 
ICL-SABIC 25 3 1  21 8 2  14 4 2  4 1 0 
ICL-DBIC 17 1 0  16 5 1  6 2 1  4 1 0 
CLC 29 7 1  24 13 4  23 10 5  3 1 0 
HT-AIC 45 44 23  38 21 13  11 32 35  3 1 0 
HQ-AIC 36 68 54  31 42 21  7 8 5  3 1 0 
  Only Converged Replications  
  CPGMM   HGMM   PGMM   LCGA 

  100 300 500   100 300 500   100 300 500   100 300 500 

BIC 9 35 72  16 44 63  1 0 0  3 1 0 
SABIC 44 51 34  55 33 20  64 28 22  3 1 0 
DBIC 44 70 71  56 57 39  17 6 3  3 1 0 
ICL-BIC 8 1 0  11 5 1  1 0 0  6 1 0 
ICL-SABIC 26 3 1  33 10 3  19 5 3  4 1 0 
ICL-DBIC 18 1 0  25 6 1  8 2 1  4 1 0 
CLC 31 7 1  38 16 5  32 12 7  3 1 0 
HT-AIC 47 44 23  59 27 17  15 40 48  3 1 0 
HQ-AIC 38 69 54  48 53 28  10 10 7  3 1 0 
                
Convergence % 95 99 100  64 79 76  72 81 73  97 100 100 
Relative Entropy .76 .69 .66   .87 .84 .83   .80 .74 .72   .92 .90 .90 

Adjusted Rand Index .46 .47 .45  .55 .56 .56  .54 .60 .62  .39 .37 .36 
 
Note: CPGMM = Covariance Pattern Growth Mixture Model, HGMM = Homoskedastic Growth 
Mixture Model, LCGA = Latent Class Growth Analysis
are the average entropy across all replications within the respective condition. Bold entries 
indicate that the information criteria identified the correct number of classes in at least 50% of 
replications.  
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Table 8 
Information criteria for empirical PTSD data with between 2 and 5 latent classes 
 

  HGMM   
  k = 2 k = 3 k = 4 k = 5 Classes 
BIC 9,076 9,042 9,030 9,011 5 
SABIC 9,041 8,995 8,970 8,938 5 
DBIC 9,056 9,015 8,995 8,969 5 
ICL-BIC 9,159 9,128 9,156 9,133 3 
ICL-SABIC 9,124 9,080 9,095 9,060 5 
ICL-DBIC 9,139 9,100 9,121 9,090 5 
CLC 9,096 9,042 9,047 9,001 5 
HT-AIC 9,036 8,989 8,963 8,931 5 
HQ-AIC 9,051 9,009 8,988 8,960 5 
Relative Entropy .80 .87 .85 .88  

  CPGMM   
  k = 2 k = 3 k = 4 k = 5 Classes 
BIC 8,766 8,678 8,674 8,710 4 
SABIC 8,681 8,548 8,499 8,491 5 
DBIC 8,717 8,603 8,573 8,583 4 
ICL-BIC 8,806 8,753 8,808 8,890 3 
ICL-SABIC 8,720 8,623 8,634 8,672 3 
ICL-DBIC 8,756 8,677 8,707 8,764 3 
CLC 8,652 8,519 8,494 8,497 4 
HT-AIC 8,672 8,540 8,496 8,498 4 
HQ-AIC 8,706 8,587 8,552 8,557 4 
Relative Entropy  .91 .89 .84 .81   

 
Note: CPGMM = Covariance Pattern Growth Mixture Model, HGMM = Homoskedastic Growth 
Mixture Model, bold entries indicate that the information criterion was the lowest across the 
different class solutions  
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Appendix A 

Evidence from PTSD Literature to Inform Simulation Conditions 

To provide context and evidence for the nonconvergence in empirical studies and to gauge 

data characteristics seen in practice, we consider findings from the PTSD literature where GMM 

applications are commonplace. To facilitate this review, we use the work of van de Schoot et al. 

(2018) as a baseline, whose review screened 11,395 papers that satisfied keywords, ultimately 

whittling down to 34 papers containing 38 unique studies that all used the Impact of Event Scale 

(Horowitz et al., 1979). The original goal of their review was to create informative prior distributions 

for a Bayesian GMM analysis. To address the interest of the current paper, we re-reviewed these 

studies with a focus on the characteristics of the data and the modeling decisions used to arrive at the 

final model (aspects not tracked in the original review).  

The modeling decisions of these studies were telling for how researchers dealt with 

nonconvergence. First, only 2 papers (6%) reported using an unconstrained GMM with class-specific 

covariance structures whereas 9 studies (27%) reported a HGMM. Another 9 studies (27%) did not 

provide enough information in the reports to determine if there were covariance structure constraints 

across classes. Presumably, these 9 studies used a HGMM because this is the default setting in the 

Mplus software reported. An additional 14 studies (41%) used a LCGA and no studies reported using 

a PGMM, presumably because Mplus rather than R is the most popular software in this area.  A 

breakdown of the number of classes extracted in these studies by model type is provided in Table A1.  

The prevalence of model choices reflecting nonconvergence issues is less surprising when 

looking at the attributes of the data in these studies. The median sample size was 517, with the first 

and third quartiles being 207 and 835, respectively (range: 70 to 16,488). In the methodological 

literature on GMMs, 300 is a typical lower bound for sample size in simulations with complete data 

(Diallo et al., 2016; Enders & Tofighi, 2008). Additionally, 23 studies reported the relative entropy 

of the final model; the median was 0.85 with the first and third quartiles being 0.72 and 0.93, 
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respectively (range: 0.49 to 0.97). High class separation (as measured by relative entropy) can offset 

estimation difficulties with smaller sample sizes, but it appears that a number of studies may have 

relatively poor separation (loosely defined as relative entropy below 0.80; Celeux & Soromenho, 

1996).   

 
Table A1 
Class enumeration of 34 PTSD studies by model characteristics 
 

Classes  
All 

Studies 
GMM  LCGA  HGMM 

2 9% 10% 8% 0% 
3 32% 38% 23% 42% 
4 41% 43% 38% 47% 
5 12% 5% 23% 5% 
6 6% 5% 8% 5% 
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