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EDITOR’S PREFACE 

TO MATHEMATICS 

Tho mathematics as ordinarily taught in the lower 
grades of our public schools is well enough presented, 
many have found that its later presentation is open to 
just criticism on the ground that the treatment is too 
abstract and that its several parts are kept in “ water¬ 
tight compartments,” as tho geometry and algebra and 
calculus were entirely separated from arithmetic. At¬ 
tempts which have been made to combine them have, 
however, not been uniformly successful. 

In the present Text an attempt has been made to de¬ 
velop the main thoughts in elementary mathematics in 
such a way as to show the relation of its various subjects 
to what we call number as expressed in a power series, 
and thereby trace their relation to each other. 

The main purpose of mathematics is to formulate a 
concise and suggestive form of notation in which various 
problems may be so stated that we readily comprehend 
the relations expressed. By way of differentiation it is 
well to bear in mind that arithmetic concerns itself 
mainly with countable things, while geometry deals with 
uncountable things, taking note, however, jjf relative 
shape, size, position and motion. Again trigonometry 
may be said to compute where geometry constructs. 

Algebra generalizes number and makes it possible to 
present analysis in connection with geometry in alge¬ 
braic geometry. Finally calculus gives us the means of 
expressing the relations of variable quantities at any 
certain instant. 

v 



The scope of the present work does not permit us to 

pursue our study of the various divisions of the subject 

to include all that mathematical science has collected 

and classified under the various heads. Special refer¬ 

ence works on the subject may usually be consulted in 

all good libraries. Among such works may be men¬ 

tioned: Hilbert’s Foundation of Geometry; Chrystal’s 

Algebra; Hobson’s Trigonometry; Salmon’s Analytic 
Geometry, and Price’s or Williamson’s Calculus. 

But for the purposes of the ordinary subscriber the 

present Text will probably be found sufficiently com¬ 

prehensive. A warning should be sounded against at¬ 

tempting to read it too hurriedly. Mathematics appeals 

to the reasoning powers—it calls for thinking and can¬ 

not be understood by the superficial reader. It is not 

required, nor intended, that this Text should be covered 

thoroly in the time allotted to its reading in the general 

reading assignment, tho a very comprehensive grasp of 

its main portions may be obtained within that time, es¬ 

pecially if the reader makes the extra effort justified in 

this case. The subject, in order that it may be fully 

assimilated, should be carried along with the reading of 

the next Text (Physics) and indeed taken up again 

from time to time for review and further study. When 

so read, no great difficulty should be experienced by the 

diligent and deliberate students of this Text. 

A 

August, 1920. 
Maurice J. Babb. 
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CHAPTER I 

FUNDAMENTAL PRINCIPLES OF ARITHMETIC 

1. Primitive Notation.—Man did not always possess 

the means for calculating numbers and quantities that 

he has today. He did not always have a multiplication 

table; he could not always figure fractions; and even 

simple sums in addition were once more than the 

wisest man living could do. The cave-man did not 

even think in numbers. He did not say he had two 
horses; he would say he had a black horse and a white 

horse, or a large horse and a small horse, but the idea 

of counting one, two, three, etc., was wholly foreign to 

him. Even at the present day, it is said of the savage 

tribes in remote parts of Australia that they cannot 

count beyond two. 

Only slowly did man learn to distinguish three and 

four. After that, he found it necessary to count on his 

ten fingers. Time came, however, when an old chief, 

wishing to get some information about how his enemy’s 

fighting forces compared with his own, employed a 

method which, tho crude, was not unlike modern 

enumeration. He would send three or four men to 

count the opposing army. The one nearest the enemy 

would count up to ten on his fingers and then signal 

the next man, who would count the tens thus delivered 

to him. He in turn, as soon as he had ten tens, would 

signal the third man, who thus took care of the hundreds. 

We can imagine how upon their return to camp the 

“hundred” man would hold up so many fingers, then 

how the “ten” man would show in the same manner 

how many tens he had and finally how the “unit” 

(i) 
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man used his fingers to show how many he had counted 

after signaling the last ten. So, if the hundred 
man held up eight fingers, the “ten” man three and the 

“unit” man nine, the old chief would know that he 
had to prepare himself to meet an army of 839 men. 
He would count up his own men in the same way and 
if he found that he had to use a fourth man, he would 
probably not hesitate about meeting the enemy in 

battle. 

Even in those days they had discovered the important 
truth that in using numbers more attention must be 

paid to place than to size of figures or digits. Thus in 

the above number (839) we know that the figure 3 
represents more than three times the value of the larger 

figure 9, since 3 here stands for thirty (three tens) 
whereas three times nine make only £7. Similarly the 
figure 8 represents 800, a value nearly £7 times larger 

than that which 3 stands for. 

2. Representation of Numbers.—The ancients, when 

they wanted to compute, used a board upon which 

they sprinkled sand and then drew lines in the sand. 

On these lines they put pebbles or drew cross-lines to 

represent figures. The Romans used wax tablets for 

the same purpose. To this day the Chinese laundry- 

man probably depends upon this “swan pan” in making 

out your laundry bill, and in many cases is more expert 

than a bank clerk with a modern computing machine, 

as was shown in a contest some time ago at Portland, 

Oregon. 

In the 10th century the Monk Gerbert, afterwards 

Pope Sylvester II, introduced to Europe the “Hindu- 

Arabic Number System,” which he obtained thru the 

Moors in Spain. Yet the new system made very slow 
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progress, the Church not regarding it favorably. In 

1299 Florentine merchants were forbidden to use it, 

and even down to about the time of our Revolutionary 

War ancient methods were still doggedly persisted in. 

It may prove surprising to learn that as late as 1783 

the British Exchequer used notched sticks to keep its 

tax accounts. Turks and Arabs still count as they 

did one thousand years ago. 

The zero (0) is of relatively recent origin. Even 

Shakespeare would have written three hundred twenty- 

seven and five hundred six $ |(j>, but we write 327 

and 506. No one knows who originated the zero. It 

merely occupies a place where there is no number. 

The Chinese has his wire and does not* bother with 

the zero and our ancestors who ciphered on the line 

had no use for it either. But we who use no line to 

keep our numbers straight find the zero necessary. 

It is customary to set off by commas at every third 

figure any number of ten thousand and more. Thus 

we commonly write 10,000. A number of four figures, 

such as 7358, can be read at a glance without the 

assistance of a comma, which is used merely for con¬ 

venience in reading and does not affect the value of 

the numbers. In reading or writing a larger number, 

it is convenient to remember that the first comma, 

reading from right to left, sets off the thousands, the 

second comma the millions, the third comma the 

billions and the fourth comma the trillions. Thus the 

number 

216,216,216,216,216. 

reads: Two hundred sixteen trillions, two hundred 

sixteen billions, two hundred sixteen millions, two 

hundred sixteen thousand, two hundred sixteen. 
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A difference should be noted here with regard to 

the American and the British way of counting. With 

us and the French a billion is one thousand millions, 

but the British billion has one million millions. The 

British billion is therefore our trillion. 

3. The Decimal Point.—When in making calculations 

we wish to show that a figure in a number is the unit 
figure and not tens or hundreds, we frequently put a 

decimal point (.) after it. If we write 327., the 

decimal point shows that whatever figures may later 

be added to the right of it are less than the unit. Thus 

327.00 is the same as 327. But if we move the decimal 

point one place to the right (3270.0), the value of each 

figure becomes ten times larger. Moving the point 

two places to the right (32700.) is equal to multiplying 

by one hundred; three places to the right multiplies 

by one thousand, and so forth. 

For the same reason, when we move the decimal 

point one place to the left (32.7) we divide by ten; 

two places (3.27) by one hundred, and so on. 

The first number to the right of the decimal point 

represents tenths, the second hundredths, the third 

thousandths, and so on. If we write 327.25, we know 

that we have on the left of the point three hundred 

twenty-seven, and on the right two tenths and five 

hundredths, which is the same as twenty-five hundredths 

and is commonly so named. 

4. Addition.—In arithmetic, addition is the uniting of 

two or more numbers or quantities in one, called the 

sum. The sign for addition is + (plus). With 

practice, it is possible to add rapidly numbers of two, 

three and even four figures, provided, however, that 
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the numbers are arranged in columns with decimal 

point directly under decimal point. This is because, 
as we have seen, the relative place occupied by a figure 

is of first importance to a correct result. Any one who 
wishes to master even the simplest mathematical problem 
must of necessity become and remain familiar with the 

addition of numbers less than ten to numbers less than 
one hundred, and also with subtraction as performed 
with such numbers. Only constant practice will enable 
one to say instantly, even if awakened from a sound 

sleep, that 7 added to 28 is 35 and that 8 from 26 is 
18. Any possible combination of this kind should be 

solved without conscious effort. 

In adding numbers having decimals, we proceed 

precisely as when adding whole numbers, our sole care 
being to see that the decimal points are not out of 

line. If some of the numbers to be added have two 
or three decimals and others only one or even none, 

there is less likelihood of error if we put in 
the figure zero (0) so that each number has 

an equal number of decimal places. It is as 
important to indicate that there is no 
number as to say that there is one. The 
zero shows that we did not carelessly drop 
a figure. Thus if we were to add 28.675 

+ 13.56 + 19.4+21., it would be well to write down 
the numbers as shown herewith. 

The following types of problems give good exercise in addition 
and are very practical. If adding columns (vertically) and rows 
(horizontally) produce results that agree, the answers are correct. 

28.675 
13.560 
19.400 
21.000 

82.635 

8.68 4.34 6.93   19.95 
5.83 4.98 5.25   16.06 
4.83 5.81 2.87   13.51 

19.34 15.13 15.05   49.52 
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5. Subtraction.—Subtraction is the inverse of addition, 

and involves taking one number or quantity from 

another. The sign for subtraction is — (minus). In 

the example 6 — 4 = 2, which reads 6 minus 4 equals 2, 

six is called the minuend, four the subtrahend and two 

the difference. 

It is obvious that if 6+7 = 13, then 13 — 6 = 7 and 

13 — 7 = 6. The two inverses are alike. In the sub¬ 

traction of numbers the minuend is usually placed 

above and the subtrahend below, thus 634 
431 

203 

Frequently, in the ordinary process of subtraction, it is 

necessary to subtract a larger digit from a smaller. 

For example, in 631 we cannot very well take 4 
454 

177 

from 1. We say 31 = 20 + 11, and subtract our 4 

from 11, which gives us 7. Of course, when we come 

to the next operation, we must not forget that we now 

have to consider 5 from 2 (not 3). So proceeding as 

before, we say 62 = 50 + 12 and 5 from 12 leaves 7. 

That makes the last calculation 4 from 5, which is 1. 

Should we wish to prove our subtraction, we simply 

add together the subtrahend and the difference, in the 

present case 454 and 177. If this gives us 631 (the 

minuend), then we know our subtraction is correct. 

Again we must bear in mind that speed and accuracy 

go hand in hand and try to obtain such a mastery 

of these operations as will enable us to perform 

them readily and without difficulty. Subtraction 

is preferably performed much in the way of making 

change in stores, where customers and salesmen sub¬ 

tract two or three numbers as quickly as one. The 
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last example (631—454) may be worked out as follows: 

4 and how many make 11? Answer 7. Then 5 and 

the 1 to carry from the 11 make 6, and how many 

makes 13? Answer 7. Again, 4 and the 1 to carry 

from the 13 make 5 and how many make 6? Answer 1. 

So when we have to take away two numbers from a third, 

we set the figures down as shown and proceed as follows: 8 

and 3 are 11 and how many make 14? Answer 3. 

Then 1 (to carry from 14) and 1 and 4 make 6 and how 

many make 8? Answer 2. Then 2 and 6 are 8 and 

how many to make 12? Answer 4. This method of 

subtraction was introduced into this country at West 

Point and is called the Austrian Method. 

1284 
643 
218 

423 

6. Multiplication.—Multiplication is really only an 

extended form of addition. Instead of saying 2+2 = 4, 

we may say twice 2 = 4. Instead of 2+2+2 = 6, we 

may say three times 2=6. Again, 127 times 103, if 

done by addition, would require that we put down 127 

as many as 103 times and add them together; or 103 

as many as 127 times, which is the same thing. It is 

much simpler and quicker to do the operation by 

multiplication. 

The sign of multiplication is X (times) placed 

between the numbers to be multiplied. Example: 

8X5 = 40. 8 and 5 are called factors and 40 is the 

product. 8 is sometimes called the multiplicand and 5 
the multiplier. 

It is necessary in order to multiply readily and 

rapidly that we know by heart our multiplication 

table, at least up to and including 9. In the table 

given here we find at a glance the product of any two 

factors up to 9 Thus, after locating 8 in the left- 

hand column and 5 in the top row, we simply observe 
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where the “eight” row and the “five” column meet; 

here we find the product 40. 

Multiplication Table 

1 2 3 4 5 6 7 8 9 

2 4 6 8 10 12 14 16 18 

3 6 9 12 15 18 21 24 27 

4 8 12 16 20 24 28 32 36 

5 10 13 20 25 30 35 40 45 

6 12 18 24 30 36 42 48 54 

7 14 21 28 35 42 49 56 63 

8 16 24 32 40 48 56 64 72 

9 18 27 36 45 54 63 72 81 

When we multiply two numbers, say 654X328, we are really 

performing three separate operations and adding the products 

together. We first multiply 654 by 8 and put down the product; 

then we multiply the same number by 20 and put that down, 

and finally we multiply it by 300 and put that down. Adding 

these factors together (5232+13080+196200) we get 214512. 

In practice we do the same thing somewhat more rapidly as 
follows: 

654 
328 

5232 = 654X8 
13080 = 654X20 

196200 = 654X300 

214512 

7. The Decimal Point in Multiplication.—Numbers 

having decimals are multiplied just as tho they had 

none, but some care is necessary in determining where 

the decimal point is to be placed in the product. Take 

6.54 and multiply it by 32.8. Ignoring for the moment 

the decimal points, we multiply the two numbers in 

the ordinary manner and get as product, as we did 
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with the foregoing example, 214512. But one of our 

factors had one decimal and the other two. How 

many decimals is the product to have in that case? 

The common rule for placing the decimal point in a 

product of two factors is that the product will have as 

many decimals as the two factors have together, or 

more accurately stated: The number of decimal places 

in any product is the sum of the decimal places in the 

members. According to this rule, the product of our 

multiplication should have three decimals, hence it 

will be 214.512. 

The decimal point is not a place. It is there only to 

point out the unit. Places are counted to the right 

and left of the unit, not to the right or left of the point. 

If we multiply by a figure two places to the right or left of 

the unit's place, our result will have the point two places 

to the right or left of where it was in the number multi¬ 

plied. The multiplication of 6.54 by .08, where the 

8 is two places to the right of the unit, puts the decimal 

point two places to the left of where it was in the 

number multiplied, thus: 6.54 X . 08 = . 5232. This 

rule will apply where the other cannot be used. 

8. Division.—Just as subtraction is the inverse of 

addition, so division is the inverse of multiplication. 

Division involves finding how many times a certain 

number or quantity is contained in another. Thus, if 

3X4 = 12, it is readily seen that 4 goes 3 times into 12, 

and that 3 goes 4 times into that number. The sign 

for division is -5- (meaning divided by), and is used as 

follows: 12-t-4 = 3. Here 12 is the dividend, 4 the 

divisor and 3 the quotient. When the divisor is not 

contained an exact number of times in the dividend, 

as in the case of 15 7, that which is left over is called 
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the remainder. In this case the remainder is 1. The 

remainder will, of course, always be less than the divisor. 

In order to divide readily, we must know our multi¬ 

plication tables. We quickly learn that 164-2 = 8 

because we know that 2X8 = 16. Similarly, since we 

know that 9X9 = 81, we also know by that fact that 

814-9 = 9. 

The distinction sometimes made between short division and 

long division is an arbitrary one, since the process is exactly the 

same in all cases. In the example 16864-7, we notice that 7 is 

not contained in 1, the first figure, so we begin by saying 7 into 16 

goes twice and leaves a remainder of 2. Alongside this remainder 

we place the next number in the dividend (8) making the number 

28, and divide our 7 into it. This goes exactly 4 times without 

a remainder. The dividend has now only one figure left, 

namely 6. Into this the divisor 7 will not go but 

leaves a remainder of 6. The entire operation is seen 

in the example, in which the top line is the quotient, 

where the 2, representing the number of times 7 is con¬ 

tained in 16, is placed over the last figure of 16. Places 

in quotient and dividend correspond. For practical 

purposes we would call this quotient 241 instead of 240, 

the reason being that the remainder is very nearly as 

large as the divisor. In other words, had the dividend been 1687 

instead of 1686, the number 7 would have gone exactly 241 times. 

As a general rule, where the remainder is one-half or more the 

amount of the divisor, the last number in the quotient is made 

one larger. 

If we wish to make certain that our division is correct, we 

simply multiply the quotient by the divisor and add the remainder. 

This should equal the dividend. Thus 240X7+6 is found to 

equal 1686, which proves our division right. 

240 

7)1686 
14 

28 
28_ 

6 

Note: Mathematicians have agreed that in these 

operations multiplication and division shall be per¬ 

formed before addition and subtraction. 
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9. Decimal Point in Division.—Where dividend and 

divisor—either or both—have decimals, we proceed 

with our division just as tho they were whole numbers; 

but in writing the quotient, the place of the decimal 

point must be given careful attention. The following 

simple rule is commonly given: The quotient has as 

many decimals as the dividend has more than the divisor. 

Thus if the dividend has three decimal places and the 

divisor two, the quotient will have one. If dividend 

and divisor have the same number of decimal places, 

the quotient will have none. Should the divisor have 

more decimal places than the dividend, zeros are 

often added to the right of the latter so as to give it as 

many decimal places as the former. 

So just as in multiplication we add the number of decimals, in 

division we subtract one from the other. As this rule, however, 

cannot be applied conveniently in many cases of measured numbers, 

we give the following method, which is always workable: 

Suppose we have to divide 826.437 by 17.63. Evidently, 

the result will be the same if we multiply each number by 100 and 

divide 1763 into 82643.7, that is, move the 

decimal point far enough to the right to 

make the divisor a whole number and move 

the decimal point in the dividend just as 

many places and in the same direction. In the 

example, we will use a comma to denote 

the new position of the decimal point. 

The problem is worked out the same as the 

former from now on. The decimal point of 

the result always comes above the (,). 

In our quotient, we take the nearest last figure, as we did in 

short division. 

46.9 

17.63,)826.43,7 
705 2 

121 23 
105 78 

15 45 7 
15 86 7 

10. Correct Measurement.—We cannot measure any¬ 

thing with complete exactness. We measure distance to 

the nearest mile, the nearest foot, the nearest inch. 
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Watches are standardized to the nearest thousandth 

part of an inch. Still the fact remains that exact 

measurement is impossible. If two pieces of metal are 

exactly the same length at one instant they will be 

different lengths a little later on account of change 

in temperature. 

Suppose you measured the length of a table several times with 

a finely graduated rule and obtained nearly the same 

measure each time. In order to reduce the element 

of error as much as possible, you measure carefully, 

say ten times, and find the ten measurements to be as 

given herewith. 

Adding these together and dividing by the number 

of them (10) gives 36.59 to the nearest hundredth of 

an inch. The last two figures may be ignored, since 

they are less than 50. The result 36.59, is called the 

arithmetical mean of the numbers given and is accepted 

as the most probable value of the length measured. 

You will observe that in this instance we measured 

the table to three places of decimals, that is, we used five figures 

—significant figures as they are generally called. But we retain 

only four. It is usual, in making short computations, to retain 

one less figure than we measured to. In long computations, 

however, it is safer to drop the last two figures, counting half or 

more than half as a whole of the next place, bearing in mind 

that in practice it is the first figures that really count—the sig¬ 

nificant figures—rather than decimal places. 

The table, as we have computed, is 36.59 (to be read, “thirty- 

six point five nine”) inches long. Suppose we find in the same 

manner that the table is 12.83 inches wide to the nearest hundredth 

part of an inch. The area of the table top is then found by 

multiplying these two numbers and calling the result square 

inches. (The subject of area is one which is developed further in 
the chapters on geometry.) 

11. Care in Computing Measurements.—The multipli¬ 

cation of 36.59 by 12.83 is worked out ordinarily in 

one of the two following ways: 

36.596 
36.589 
36.590 
36.599 
36.590 
36.588 
36.587 
36.595 
36.594 
36.598 

365.926 
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36.59 36.59 
12.83 12.83 

365.9 10977... 
73.1 8.... 29272.... 
29.2 72... 7318. 
1.0 977. . 3659. 

469.41497.. 469.4497. . = 469. in whole numbers. 

The two examples are the same except that they 

are performed in reverse order, making the columns 

incline in contrary direction. The dots indicate some 

of the missing figures, which in any place might be 

any number from 0 to 9, that is, any one of ten figures. 

The dots following each other indicate any number 

at all up to a hundred and three dots in a row say 

that we have one chance in one thousand of guessing 

the number indicated by them. This is a curious situ¬ 

ation. How much is 7 and three numbers indicated bv 
•/ 

dots? It can be any number from 7 up to 34, according 

as the dots are 0’s or 9’s. The next two columns are 

not much better. In these circumstances the question 

naturally arises whether there was any justification 

for our putting down the figures 497. 

The steps by what is called the contracted method are 

as follows: 

36.59 36.50 
12.83 12.83 

36.00 
12.83 

30.00 
12.83 

365.9 365.9 365.9 365.9 
73.2 73.2 73.2 

29.2 29.2 
1.1 

469.4 = 469. in whole 
numbers 

The digits of the multiplication are crossed off as 

used, and the figure last crossed off in the upper number 
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is used for carrying only, as otherwise the product 

would invade a place to the right of tenths about 

which we know nothing. Thus in the second step we 

say 2X9 = 18 and as 18 is nearer to 20 than 10 we 

carry 2. This method avoids writing the useless and 

deceiving figures to the right of our line in the first 

multiplication of this problem. David Rittenhouse, 

the famous American astronomer of Revolutionary 

times, employed this method as readily as Government 

computers do today. It is both shorter and more 

accurate than the old method, and so also is the prob¬ 

lem next following. 

In division we cross off successively 

the last figures of our divisor instead 

of adding zeros. Thus the second 

division is by 365 and here again 

the 2X9 (the figure crossed off) 

gives us 2 to carry. 

12.83 

30.00,)469.5., 
365.9 

103.6 
73.2 

30.4 
29.2 

1.2 
1.1 

12. Divisibility.—There are some rules of exact division 

that should be noted, among them the following: If a 

number is divisible by another number, any number of 

times the first number is also divisible by the second number. 

For example, since 12 is divisible by 3, so is 60, which 

is 5X12, and 72 which is 6X12, etc. Again, if two 

numbers are each divisible by a number, their sum and 

difference are also divisible by that number. The num¬ 

bers 12 and 60, for example, are both divisible by 3, 

hence their sum (72) and their difference (48) are also 

divisible by 3. 

An even number is a number divisible by 2. Hence 

all numbers that end in 0, 2, 4, 6, 8 are even numbers. 
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Numbers which are not even are called odd. Thus 1, 

3, 5, 7, etc., are odd numbers. A composite number is 

one that can be divided without a remainder. All 

even numbers except 2 are composite. So are many 

odd numbers, as for example 9, which is 3X3; 15, 

which is 3X5, etc. Numbers which are not composite 

are called primes. 

13. Prime Numbers.—Eratosthenes, a citizen of an¬ 

cient Greece, wrote on a piece of parchment the odd 

numbers 1, 3, 5, 7, 2, 11, 13, Z3, 17, 19, 2Z, 23, 23. 

Then starting with 3 he punched out every third 

number, as 9, 15, 21; and starting with 5, every fifth 

number (15, 25). He found that the remaining 

numbers were prime, since all the composite numbers 

had been crossed out of the above list. Eratosthenes 

punched his numbers out with the point of his cane, 

which left his parchment so full of holes that it came 

to be called “Eratosthenes’ sieve”. Such a table of 

primes is often of great practical use and should be 

made to include all primes below one hundred. 

14. Rules of Exact Division.—Among other useful rules 

of exact division there are the following: 

Any number whose last two figures are divisible by 4, 

is itself divisible by 4. Example: 536 is divisible by 

4, since 36 is divisible by 4. 

Any number whose last three figures are divisible by 8, 

is divisible by 8. Thus, 34,664 is divisible by 8 since 

664 is divisible by 8. 

Any number the sum of whose figures (or digits) is 

divisible by 9, is itself divisible by 9. The number 

5,345,136 is divisible by 9 since adding the figures 

gives us 27, which is divisible by 9. 
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It also holds that if the sum of the digits of a number 

is divisible by 3, so also is the number. It is likewise 

clear that a number ending in 3 or o is divisible by 3. 

Certain numbers are readily seen to be divisible by 

11. Wherever we find the difference between the odd 

digits, (first, third, fifth, etc.) and the even digits, 

(second, fourth, sixth, etc.) to be either 0 or some 

multiple of 11, we can be sure that the number itself 

is divisible by 11. Thus the number 52,916,281 is 

divisible by 11 since the sum of its odd digits (28) less 

that of its even digits (6) leaves 22, which is a multiple 

of 11. 

There are also rules for divisibility by 7, but they are 

rather cumbersome for general use, hence we omit 

them. We may note, however, that a number is 

divisible by 6 if it is even and if the sum of its digits 

is divisible by 3. Similarly, divisibility by 8 does not 

prevent divisibility by 9 or 5. The numbers 6 and 9, 

being composite numbers, are both divisible by 3, 

which is called their common divisor. The numbers 8 

and 9 are also composite numbers, but they have no 

common divisor. They are called relative primes. 

16. Greatest Common Factors.—Suppose we wish to 

divide a composite number into its prime factors. 

Take as an example 2145. Since this 

5)2145 number ends in 5, we know at once that it 

3)429 is divisible by 5. This, therefore, is one 

11)143 prime factor. The quotient of the division 

13 by 5 is 429, and as 4+2+9 = 15 we know 

that 429 is divisible by 3. Here is our 

second prime factor. Dividing 429 by 3, we obtain 143. 

Again applying a rule just learned, we find that the 

sum of the odd digits (1 and 3) is the even digit 4, hence 
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we know that 143 is divisible by 11, the quotient being 

13. The prime factors of 2145 are therefore 3, 5, 11, 

13. By way of proof, multiply these numbers and 

you will get 2145. Had we been unable to recognize 

prime factors by the foregoing laws of division, we 

should have had to try in turn each of the primes from 

Eratosthenes’ sieve. 

We understand that common factors or divisors are 

factors which are common to two or more numbers. 

Thus 3 is a common factor of 12 and 15. It is also 

the greatest common factor (generally written G. C. F.) 

of these numbers. To find the greatest common 

factor of, say, 294, 378 and 462, we proceed on lines 

already indicated. We find that the number 2 is 

a common factor of these, hence 

we divide them by 2 as shown. 

Again the three quotients are divi¬ 

sible by 3, and the remainders in 

turn divisible by 7. There being 

no common factors of 7, 9 and 11, 

we then multiply the common factors found (2X3X7) 

which gives us 42 as the G. C. F. of 294, 378 and 462. 

The result may be verified by division. 

2)294 378 462 

3)147 189 231 

7)49 63 77 

7 9 11 

16. Multiples.—We see at a glance that 12 is a multiple 

of 2, 3, 4 and 6. It is a common multiple of 2, 3, 4, 6— 

in fact, the least common multiple of these numbers. 

Evidently a common multiple of two or more numbers 

contains the prime factors of each of them. When such 

a multiple is a divisor of all the multiples of these 

numbers, we call it the least common multiple, generally 

written L. C. M. 

Let us find the least common multiple of 60, 90 and 

210. 
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The least common multiple of 

60,90 and 210 must have the prime 

210 = 2X3X5X7 factors 2, 2, 3 and 5 in order to 
contain 60, it must have the 

additional prime factor 3 in order to contain 90, and 

the additional prime factor 7 in order to contain 210. 

Therefore, 2X2X3X5X3X7, or 1260 = L. C. M. of 

60, 90, and 210. 

17. Cancellation.—This is a method of shortening the 

work in computation. The principle is that multi¬ 

plying one number and dividing another by the same 

number does not change their product. Thus 6 X 20 = 

12X10. Here we have multiplied 6 by 2 and divided 

20 by 2. The result is the same—120. 

Again, multiplying both the dividend and the divisor 

by the same number does not change the quotient; 

neither does dividing the dividend and the divisor 

by the same number. 

Examples: (a) 12-i-3 = 60-^15 = 4. (b) 21-^9 = 7-r-3, etc. 

Based upon this fact we cancel or reject equal factors from dividend 

and divisor. Thus: 

4 
3 6 $ 

9X27X24X40 0X27X24X40 _ 
36X 9X15X 2 30X 2X43X 2 

4 3 

Here we proceed as follows: First we cancel the two 9’s. 

Then we note that 27 in the dividend—upper row—and 36 in the 

divisor—lower row— are each divisible by 9, the former 3 and the 

latter 4 times. So we strike out 27 and 36 and write instead 3 

and 4. Next we observe that the 4 in the divisor goes 6 times in 

24 of the dividend; therefore 4 and 24 are cancelled and 6 is 

written above 24. We see also that 15 below is divisible by 3 

above; consequently they also are cancelled and 5 is written under 

the 15. Then 5 is contained in 40 just 8 times and 2 in 8 goes 
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4 times. By this time, every number has been rejected from 

the divisor and all but 6 and 4 from the dividend. Multiplying 

these we have 24 as the answer. 

For the sake of acquiring facility in cancelling, it will be well 

to work out the following: 

9X8X18X45 = 26X18X20 
36X3X90 39X60X 2 “ f 

18. Casting Out Nines.—A simple way of checking the 

correctness of addition, subtraction, multiplication and 

division, and in fact for every exact computation, is 

called “casting out nines.” Here is an example of 

this system as applied to addition: 

Having added 16+28+47 and ob¬ 

taining 91 as the sum, we add the 

digits of the first number 1+6 = 7. 

There being no 9 to cast out, we 

place 7 in the position shown. 

Then 2+8 = 10, which is 1 more 

than 9. Casting out the 9 we 

have 1 left, which we place below the 7, as shown. 

Next 4 + 7 = 11, which is 2 more than 9. The 9 + 1 of 

the sum = 10; so also do the 7, 1 and 2 of the excess 

column. If these results give the same excess over 9, 

we are reasonably certain that the answer is correct. 

The only possible error is that the result might be 19 

A longer problem is equally simple, as 

the second example shows. As the ex¬ 

cess over 9 is 3 in either case, the result 

is probably correct. 

instead of 91. 

Excess 

269734 . 4 
528631 . 7 
429982 . 7 
534287 . 2 
886321 . 1 

2648955 . 3 

Excess 

16   7 
28 . 1 
47 ..... 2 

91   10 

In proving subtraction and the other computations, we perform 

the same operation with the excess as is done with the original 
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numbers. When we have to subtract a number from a smaller 

number, we add 9 to the smaller number before making the 

subtraction. 

Excess 

84. 3 
23. 5 

61. 7 

Here is a simple example of sub¬ 

traction, in which case before sub¬ 

tracting the 5 we added 9 to the 3 = 12. 

Then 12-5 = 7. 

The example in multiplication easily ex 

plains itself. 

The following operation in division is equally simple: 

Inasmuch as the dividend = 

the divisor times the quotient+ 

the remainder, the excess divi¬ 

dend will equal the excess 

divisor times the excess quotient 

plus the excess remainder, that 

is 3X8+7 or excess 31 = 4. 

Note: This method obviously will not check an error caused 

by a reversal of figures, as for example 587 instead of 785. 

REVIEW. 

1. Describe how the early ancients used their fingers in compu¬ 
tation. 

2. What does the zero represent? How did computers manage 
without it before it first came into use ? 

3. Give a short account of the value of the decimal point. 
4. What is the relationship between addition and multiplication? 
5. Mention the terms employed in subtraction and division. 
6. When multiplying numbers having decimal points how do you 

determine the position of the decimal point in the result? Also in 
division ? 

7. Why is accurate measurement so difficult to obtain? What is 
the best method of reducing the element of error? 

8. What are prime numbers? The greatest common factor? 
The least common multiple? 

Excess 

Excess 80 .... 8 

3 .... 48)3847 .... 4 
384 

7 .... 7 

Excess 
76 . 4 
47 . 2 

532 
304 

3572 . 8 



CHAPTER II 

FRACTIONS 

1. Proper and Improper Fractions.—If a pie were equally 

divided among four people, each would get (read one 
t! 

fourth) of the pie. Three of the people would get of 
jj 

the pie. If seven people were each to receive a -b pie 
jD 

they would need one whole pie and of another one, 
JC 

that is, 1 4- °r 4- of a pie. Thus -f- would mean 3 of the 4 

equal parts into which the pie or any other thing was 

divided. And would represent 7 such parts. 

Numbers like — were introduced into our number 
4 

system long after whole numbers came into use. Such 

numbers as -h, are called fractions. If the numer¬ 

ator, or upper figure, is less than the denominator, orlower 

figure, as in the cases just mentioned, we have 'proper 

fractions. When the numerator is greater than or 

equal to the denominator we have improper fractions. 

Thus- j- and are both improper fractions. The numer¬ 

ator and denominator are often called the terms of the 

fractions. Improper fractions are readily reduced to 

whole or mixed numbers. Thus = 1; so ^ = 3; also 
tB 

4~ = 1-4- and ~ = %4-» In the fraction-!-, the denomin- 

ator shows into how many equal parts the unit is divided, 

and the numerator, how many of these parts are brought 

into reckoning, or we may understand that 3 is to be 

divided into 5 equal parts. Other shades of meaning 

will come before us later. 

(21) 
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The following three proper fractions have the same 

denominator (5) and are arranged according to size, 

the least first 
5 5 5 

The following three improper fractions have the same 

numerator (6) and are arranged according to size, the 

greatest first: 

Supply at sight the missing terms in the following: 

3 _ 15 21 _ ? 

4 ? 24 “ 8 

16 _ 2 

24 ? 

210 _ ? 
336 8 

Suggestion: As the new denominator (24) is eight times the 

old denominator (3), so the numerator must be eight times the 

old numerator or 16. As 15 is 5X3, so the denominator must be 

5 X 4 or 20. And so on. 

A fraction is said to be in its lowest terms when its 

numerator and denominator have no common divisor. 

Thus in the example has been reduced 
336 

5 

o&r 

by successive cancellation to its lowest 

terms (-A). 
o 

J&HT _ 5 No fraction is considered simplified until 

JlthT * * * 8 it has been reduced to its lowest terms. 

For practice reduce to their lowest terms 
JdT 12 42 144 274 

8 15 5 63 ’ 288 5 300 * 

2. Mixed Numbers.—As in the whole number 5, there 

are so in 5-~ there are necessarily 

The reduction of mixed numbers to improper fractions 

is performed by multiplying the whole number by the 
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denominator and adding the numerator, the sum being 

the new numerator. The denominator remains as 

before. Thus = .»-*-»-+* = * 
2 2 2 

Similarly, 3 10 

3 

166 66+ = 

200 
etc. 

Reducing improper fractions to mixed numbers is 

the reverse process to that just considered. That is, 

we divide the numerator by the denominator and take 

the remainder as the numerator of the new fraction. 

Thus 
100 

3 
100-^3 = 33+; -+^- = 128+. 

3 ’ 4 4 

3. Common Denominator.—From what we have already 

learned, it is evident that = and that -4-= 4^-. 
5 15 3 15 

These two fractions have been reduced to a common 

denominator and we can now say that -4-+-f- = 45.+JL = 
3 5 15 15 

or 1-4 as readily as we can sav $10+$9 = $19, 
15 15 

because we are adding quantities of the same kind. It 

is, then, evident that fractions, to be added or sub¬ 

tracted, must be reduced to a common denominator, 

which is a common multiple of the denominators. In 

practice, the least common denominator (L. C. D.) is 

generally used, and this, it will be seen, is the L. C. M. 

(least common multiple) of the denominators. 

■n, i 7,3,1 7+6+4 
Examples: -^-+-^-+-^-= -§- 

124+ = 

346 -£ = 

452 ^ = 

124 

346 

452 

923 

28 

32 
10 

32 

7 

32 

13 
Sum 

32 
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For the sake of brevity, it is customary to write the 

L. C. D. only once and not under each numerator. 

rjTi 13 _ 13 ^ 65 - 39 = 26 = 13 
inus 24 4Q 120 120 60* 

From the foregoing it will be easily understood how 

subtraction of mixed numbers is done. Suppose we 

wish to subtract 984 from 
4 8 

124-|- = 123 

984-= 98 

11 

8 

6 

8 

Diff. = 25 
8 

. 3 . 3 
Since —r- is more than we take one from 

4 8 

124 and add it to 3 making 1244: O 8 
123 

11 

8 

6 . 5 
From this we subtract 98-r- and obtain 25— 

O O 

4. Multiplication of Fractions.—It is self-evident that 

qw 2_2i2_|_2=_6 
^ ^ ijr 7*77 7 We could also state it this 

way .3X2 6 
Abo 

16 

15 
16 

It is easily seen that 4 of 4 = 4 X 4 is the same as 
o u o 5 

2X-r of -f- Also 2x~r of ^-=2x^-=il- This 

could have been put in the following form: 4x4= 
o 5 

g = 4’ ls> multiplying the two numerators 

and the two denominators as shown. 

So also 
25 
24 

25 X 16 

24 X 15 
= (after cancellation) 

10 

9 

Similarly, 
125 

2 
125 X 3 

2 X 75 

Again 
63 
100 

63 X 75 7 

100 X 54 “ 8 * 
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To multiply 456— by 25 is simply to multiply 456 by 25 = 

(11,400) and add 25 X ~ 20-|-) totaling 11,420-—. 

To multiply 127— by 46 -y is equally simple. First multiply 

127 by 46 =5842 

Next by 46 = 11-4- 

Then 127 by — 84 

Final|y -t v-f- =_J- 
Which when added together make 5938-4- 

O 

6. Division of Fractions.—Since ~ means 27 of the 50 
50 

equal parts into which a unit has been divided, —-5-3 
x A 50 

evidently equals since 3 goes into 27 nine times. 
t)U 

When we wish to divide 44 by 2, however, we find 
O U 

that 27 is not divisible in whole numbers by 2. In 

that case our course is as follows: As -4- of -4- equals 

—h-, therefore of -%■ is In other words, we divide 

fractions either by dividing the numerator or by 

multiplying the denominator, which give the same 

result, since dividing the numerator divides the number 

of parts, while multiplying the denominator reduces the 

size of each part. 

In dividing -|4 by 45, we find it more convenient to 

multiply the denominator (50) by 45 than to divide 

the numerator ([27), hence 2J0 + 45 = = (after can¬ 

cellation) —~. 
roU 
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In dividing, say, 5 by we note that —h is contained 

in 1 three times, and therefore in 5 fifteen times. 

Two-thirds, then, is contained in 5 only half as many 

times. Thus 5-5- ~ = 5-x-3. We say in practice, “In¬ 

vert the divisor and proceed as in multiplication.” 

We have evidentlv inverted the divisor -f-, for we have 

multiplied 5 by The result of 5-5--|- is therefore 

2 2 

Accordingly 3 2 v 4 8 
4 “ 3 X 3 “ 9 

2 — 1 3 — % - — — 2 X ^ 4 • 

2 — 7-I_ — q — -hL - P y ^ 
Z ' l Z ‘ 2 Z X 15 15 ‘ 

Suppose we wish to know the value of We 

multiply both numerator and denominator by 4, the 

common denominator of the two fractions. This 

gives us in the numerator 19, and in the denominator 

190; hence our fraction is 19 

190 10 

Another example: 
121 100 

3 
= 33 -". Here we multiply both 

numerator and denominator by 8. 

When we have to solve a problem like this: [ f - X 
( A ~ t) (i +1) 

we restate it thus: 7--,*-^ X ^ + ^. Our reason for 
Uo — 9) 

doing so is that dividing the denominator is the same as multiplying 

the numerator. All we have to do then is to simplify these 

parentheses and complete the work as already shown. 
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In attempting to simplify the following: 
2* X 25 X * X 37* 

H X 12* X 12i x r 

we do well to note that every number below the line is divisible 

into a number above the line. After cancellation the fraction 

will look like this: 
2 X 2 X 4 X 3 

1 X 1 X 1 X 1 

48 

1 
= 48. 

As a useful exercise, check the following for accuracy by adding 

1 + l + i = ? 
both in columns and in rows: \\ + + § = ? 

? + ?+?=? 

6. Denominate Numbers.—Selecting a number at ran¬ 

dom, say 361, we know, but often forget from disuse, 

that this stands for 3 hundred 6 tens and 1 unit. The 

radix, or fundamental unit, is ten. But the quantity 

3 pecks, 6 quarts, 1 pint seems different only because 

our regular counting method is fixed. When, therefore, 

in a number or quantity the different places are named, 

we have grown to call such numbers denominate or 

named numbers. For example, 4 miles, 2 years, 2 tons 

are all denominate numbers. So are 4 meters, 2 deci¬ 

meters, 5 centimeters, etc., with this difference, that the 

latter group belongs to the metric system, where we 

come back to the single radix, ten, and the compound 

numbers can be written 4.25 meters or 42.5 decimeters 

or 425. centimeters, as we may choose. 

7. Tables of Denominate Numbers.—A knowledge of the 

tables of denominate numbers is useful and in some 

cases indispensable. The following tables are those 

more generally used in every-day work. They should 

be memorized. 
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1. LINEAR MEASURE 

12 Inches (in.) =1 Foot.ft. 
3 Feet =1 Yard.yd. 

5} Yards or 16^ Feet =1 Rod.rd. 

320 Rods =1 Mile.mi. 

2. SQUARE MEASURE 

144 Square Inches (sq. in.) = 1 Square Foot. . sq. ft. 
9 Square Feet =1 Square Yard.. sq. yd. 

30-1 Square Yards = 1 Square Rod.. .sq. rd. 
160 Square Rods =1 Acre.A. 
640 Acres = 1 Square Mile... sq. mi. 

3. CUBIC MEASURE 

1728 Cubic Inches (cu. in.) =1 Cubic Foot. . .cu. ft. 
27 Cubic Feet = 1 Cubic Yard.. .cu. yd. 

128 Cubic Feet =1 Cord.C. 

4. LIQUID MEASURE 

4 Gills (gi.) =1 Pint.pt. 
2 Pints =1 Quart.qt. 
4 Quarts =1 Gallon.gal. 

5. DRY MEASURE 

2 Pints (pt.) =1 Quart.qt. 

8 Quarts =1 Peck.pk. 

4 Pecks =1 Bushel.bu. 

6. AVOIRDUPOIS WEIGHT 

16 Ounces (oz.) =1 Pound.lb. 

100 Pounds =1 Hundredweight. cwt. 

20 Hundredweight =1 Ton.T. 

2250 Pounds = 1 Long Ton. 
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7. MEASURE OF TIME 

60 Seconds (sec.) =1 Minute.min. 

60 Minutes =1 Hour.hr. 

24 Hours = 1 Day.da. 

7 Days =1 Week.wk. 

365 Days =1 Year.yr. 

366 Days =1 Leap Year... .yr. 

100 Years =1 Century.cen. 

8. CIRCULAR OR ANGULAR MEASURE 

60 Seconds (") = 1 Minute.(') 

60 Minutes = 1 Degree.(°) 

360 Degrees = 1 Circumference Cir. 

8. Facts About the Tables.—The first three of the tables 

—Linear (or Long), Square and Cubic Measures—are 

closely allied, the second and third being merely pro¬ 

gressive developments of the first. We must, however, 

understand them in their proper order. A comparison 

of Linear and Square Measures might arouse an inquiry 

as to how it is that since 12 inches = 1 foot, 12 square 

inches do not equal 1 square foot. We quickly learn 

why, however, when we understand the relation between 

length and surface and volume. 

Suppose we take a cube measuring 1 inch each way. 

The surface of each of the six faces of the cube is 1 

sq. in. and the entire contents of the cube, the volume9 

is 1 cu. in. If twelve of these blocks were placed in 

succession in a straight row, they would extend a 

length of 1 foot, and they would cover a space of 12 

sq. in. If, following this, twelve rows be placed together, 

side by side, there would be a square array of 12X1% — 

144 blocks whose combined upper (or lower) surfaces 

would be 144 sq. in. Should eleven more such layers 
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be then laid on top of the bottom layer, making twelve 
layers in all, we would have a large block containing 
12X12X12 = 12X144 = 1728 cu. inches. 

In the illustration—Figure 1—we have a block 
containing three layers of nine smaller blocks or 27 
blocks in all. If we assume that each small block 

contains 1 cu. ft., each layer, 
then, contains 9 cu. feet, and 
the entire block contains 3X9 
cu. ft. = 27 cu. ft. = 1 cu. yd. 

Careful standards of all meas¬ 
ures are kept by the United 
States Government. There are 
more kinds of bushels in America 

Fig. i. than there are states, but the 

Government standard bushel contains 2150.42 cubic 
inches. Again, the gallon (Liquid Measure), which 
contains 231 cubic inches (Cubic Measure) will hold 

about 62-k pounds of water (Avoirdupois Measure). 

9. Exercises in Denominate Numbers.—The longitude 
of Philadelphia is 75° 09' 23.4" west of Greenwich. 
Suppose we wish to know what time it is in Greenwich 
when it is noon in Philadelphia. 

As there are 360° in the circumference of the earth and as the 

earth turns once every 24 hours, it passes over — 15° each 

hour. Hence, we divide degrees by 15 giving the number of hours, 
and as there are the same number of minutes and seconds in an 
hour as there are minutes and seconds in a degree, the same re¬ 
lation holds. Therefore, the answer is found in the following com- 

75° Q' A" 
putation: -——!— = 5 hr. 0 min. 37.56 sec. P.M., (as the 

sun crosses the Greenwich meridian first.) 
Two places differ in longitude by 85° 16' 45". By how much 

do they differ in time? 
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We work the problem as follows: We know from the pre¬ 

ceding example that the earth passes over 15° each hour, therefore 

dividing the longitude by 15 will give us the difference in time 

between the two places. Dividing 85 by 15 we obtain a quotient 

of 5 with 10 over. This 10 we might multiply by 60 and call it 

minutes, but as we should then have to divide by 15, we instead 

divide 60 by 15 = 4 and say 4 times 10 = 40, and as 15 goes into 

16 once, we have 40 + 1 = 41 minutes of time. Multiplying the 

1' left by 4 and adding the 3 which we got by dividing 45 by 15, 

we have 7 seconds of time. 

Thus 
85° 16' 45" 

15 
= 5 hr. 41 min. 7 sec. Answer. 

Suppose the sum of two angles to be 90°, one of them being 

63° 12' 15". What is the other angle. ? 

It will simplify matters if we say that 90° = 89° 59' 60" and 

work the problem out by subtraction as shown: 

89° 59' 60" 
63 12 15 

26° 47' 45" Answer. 

The angles of a triangle are together equal to 180°. Two of 

them are 48° 15' 32" and 59° 54' 15" respectively. What is the 

third? 

We could add the two together and subtract from 180®, but a 

better way is to place the numbers as in the form. We say 

15"+32" = 47" and how many make 60"? 

Form Answer 13". There is one minute to carry 

180° 00' 00" from the 60", hence l'+54'+15' = 70', and 

48° 15' 32" Row many are 120'? Answer, 50'. There is 
59^54^ __15_ now ^ to carry as 120'= 2°. Then 2°+48°+ 

71 50 13 59° = 109°, and how many make 180°. An¬ 

swer, 71°. Complete answer: 71° 50' 13". 

Reduce 15 miles per hour to feet per second. 

22 
m 

nxmv>__ 
60X00 

i 

Since there are 5280 feet in a mile and 60 

times 60 seconds in an hour, the answer is 

22 feet per second. 
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A sprinter who runs 100 yards in 10 seconds is running at what 

rate in miles per hour? 
There are 1760 yards in a mile. One hundred yards in 10 

seconds is at the rate 

of 10 yards per sec- 
20-^ miles per hour. Gnd. The work is 

as in the form. 

15 15 
10X00X00 

im 
u 
ii 

225 

11 

A policeman measures off 600 yards of road and notices that 

Mr. Smith goes over it in his car in less than a minute. Has 

Mr. Smith exceeded the speed limit of 20 miles per hour? Com¬ 

pare this with the previous problem and work it out by way of 

exercise. 

10. Operations in Compound Numbers.—Our English 

forefathers had a great many tables of compound 

numbers, as they are sometimes called. They added 

and subtracted, multiplied and divided such numbers as 

13° 10' 11" by 4° 15' 6" in practically the same way 

as the Babylonians did 4,000 years before them. 

Nowadays we do less of that sort of thing, but if we 

wished to know what part of 13° 10' 11" is 4° 15' 6", 
we would reduce both to seconds and then compare, as 

follows: 

13° 4° 
60 60 

780' 240' 
10' 15' 

790' 255' 
60 60 

47400" 15300" 
11" 6" 

47411" 15306" 
15306 . 
474ll Answer* 

11. The Metric System.—In 1799, France adopted the 

metric system. It was intended to make a meter equal 
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to Yq-q-qq oqq part of the distance from the earth’s equator 

to its pole, but a slight error was made in the original 

computation. The standard is a platinum bar one 

meter (about 39.37079 inches; approximately 1.1 

yards) in length, at 4° Centigrade, kept in the archives 

of the International Bureau of Weights and Measures, 

Paris. This system of measures is now in general use 

in every country in the world with the exception of the 

United States and a part of the British Empire, and 

both Great Britain and the United States have legalized 

it. When used at all, it should not be in connection 

with any other system. The Greek prefixes, deka-, 

hekto-, kilo-, myria-, meaning 10,100,1000,10,000, in¬ 

dicate multiples of the unit. The Latin prefixes, deci-, 

centi-, milli-, meaning -L, uJoo5 ^n(^cate decimal 

divisions of the unit. 

TABLE OF LENGTH 

The table of length is given herewith, the more 

important units being indicated by italics. 

10 Millimeters (mm.) 
10 Centimeters 
10 Decimeters 
10 Meters 
10 Dekameters 
10 Hektometers 
10 Kilometers 

= 1 Centimeter (cm.) 
= 1 Decimeter (dm.) 
= 1 Meter (m.) 
= 1 Dekameter (Dm.) 
= 1 Hektometer (Hm.) 
= 1 Kilometer (Km.) 
= 1 Myriameter (Mm.) 

TABLE OF SQUARE MEASURE 

The table of square measure starts with 

100 Square Millimeters = 1 Square Centimeter 
100 Square Centimeters = 1 Square Decimeter, etc. 

The important units are the squares of those of the 

table of length. Sometimes 100 sq. meters is called an 

are. 
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TABLE OF CUBIC MEASURE 

1000 Cubic Millimeters =1 Cubic Centimeter (cu. cm.) 
1000 Cubic Centimeters =1 Cubic Decimeter (cu.dm.) 
1000 Cubic Decimeters =1 Cubic Meter (cu.m.) 

In measuring wood, the cubic meter is called a stere 
(s.). It is subdivided by 10’s. The cubic decimeter is 
called a liter and has subdivisions and multiples of 10, 
as in the first table. When water is at its greatest 
density, 4° Centigrade, a cubic decimeter, that is, a 
liter, weighs a kilogram (kg.) = 1000 grams = 1000 cubic 
centimeters. 

It gives us a better idea of these measures if we 
know that a centimeter is about equal to the breadth 
of one’s little finger nail, that a decimeter is about the 
length of the forefinger, and a meter about the length 
from the tip of one ear to the tip of the opposite middle 

finger when the arm is extended. A liter is about -~ 

more than a liquid quart and between a liquid and a 

dry quart; a kilometer is about —■ of a mile, a hektare 

is about 2r\- acres, a kilogram is about 2.2 pounds, a 

metric ton is about a long ton, a stere is little more 
than a quarter of a cord. 

REVIEW. 

1. How are the upper and lower figures in fractions named? 
What are proper and improper fractions? 

2. How do you divide fractions? 

3. What are denominate numbers? 

4. Give a brief explanation of the relation between length, sur¬ 
face and volume. 

5. Illustrate the modern method of multiplying the following 
compound numbers: 19° 23' ll" by 7° 52' 37". 

6. What do the prefixes deka— and kilo—, and the suffixes deci— 
and milli—, indicate in the Metric System? 
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PERCENTAGE AND APPLICATION 

1. Percentage.—Per cent, from the Latin per centum, 

means on one hundred. The sign of per cent is %. 

As the legal interest in this country is generally 6% 
per annum, one pays $6 for the use of $100 for one 

year. It follows, therefore, that 6% of a number 
equals or . 06 of that number. Six per cent of $250 

is .06 of $250 or 6X$2.50 or 2-fx$6 = $15. The 

$250 is called the base; 6 is the rate per cent or, more 

commonly, the rate, and $15 is the per centage. Hence 

25%= .25=-h of a number. Also % = .50 or 50%. 

If a grocer buys bacon at 26 cents a pound and sells 
it at 52 cents a pound, he sells it for twice the cost. 

He therefore sells it for 200% of the cost. He gains 
100%. If a ball team has lost five games and won 
five games, it has won 50% of its games. If another 
team has won 6 out of 10 games, it has won 60% of 

its games and lost 40%. 

What per cent of a number is of it? Answer: —- of 100% = 

33 -j-%. 

What fraction of a number is 12-^-% of it? Answer ~' 

A man owes $3485 and settles with his creditors on a basis 

of 37~-%. What do his creditors receive? 
X 

(36) 
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As 37-^-% is $37.50 on each $100, the amount the 

creditors are paid will be - -[qq~ of $3485 or .375 of 

$3485. or -f- of $3485. Multiplying $3485 by 
O 

will give the result g = $1306— = $1306.875. 

It is better, in general, however, to work the problem 

out in decimals, as shown: 

When we know the percentage and the rate per cent, we 

can find the base or sum by dividing the percentage by the per¬ 

centage on one dollar. For example, of what sum is $74.76 just 

42%? Dividing 74.76 by .42 gives us $178 as answer. 

Similarly, $240.20 is 66-f-% of what sum? 

66-|-% or of sum = $240.20 

Thenof sum = 120.10 
3 

Therefore the sum =3 X 120.10 = $360.30 Answer: 

$3485 
.375 

17425 
24395 

10455 

$1306.875 

When we have the base and the percentage we readily 

find the rate per cent by multiplying the percentage by 

100 and dividing by the base. As for example, the 

rate per cent when base is 300 and percentage is 18 is 

= 6%. Sometimes, the problem permits of a 

simpler method, as for instance when we wish to find 

what per cent $12.50 is of $200. In this case we 

readily see that $12.50 is the same per cent of $200 

as $6.25 is of $100, that is 6.25%, the answer. 

What per cent of -y- is -|- ? We have -j- = —— (division of 

fractions) and ■— of 100% = 93-|-%. 
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What per cent of $56.875 is $3.00? 

. 05275 = 5.27% 

56.875)3.000,00 
2 84375 

15625 
11375 

4250 
3981 

269 
284 

The method in this ex¬ 
ample is always applicable, 
but the nature of the problem 
will often suggest the simpler 

methods explained previ¬ 
ously. 

2. Commercial Discount.—Commercial discount is any 
deduction made from the list price, the time price or 
the marked price of goods; the net price is the remainder. 

If but one discount is made on any price, a certain 
per cent of that price is deducted; if two or more 

discounts are made, the first discount is reckoned on 
the price, the second on the remainder, the third on the 
next remainder and so on. 

Thus, if an article is marked $0.80 and sold at a 
discount of 25%, the discount is 25% of 0.80, or $0.20 

and the selling price is $0.60. If it is sold at a discount 
of 25% and 10%, the second discount is 10% of $0.60, 

or $0.06, and the total discount is $0.26. The selling 
price after the discounts is $0.54. 

Also, the net cost of a bill of goods listed at $240 

and bought at 20% and 12~% off is found by first 

deducting 20%, or of $240. Therefore $48 is the 

first discount. Deducting this from the list price gives 

us $192. The second discount, 12-A% of $192 = $24. 
At 

Hence the net cost is $168. 

Business men generally convert two successive rates 
of discount into an equivalent single rate before they 
reckon the discount. They use the following rule: 

A single rate of discount, equivalent to two successive 
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rates, equals their sum diminished by y*0- of their product. 

Thus, a single rate of discount equivalent to 20% 

and 10% would be 20 + 10 — 2 = 28%. Prove this by 

deducting the discounts separately, as follows: 20% 

deducted from 100% = 80%, 10% of 80% = 8%, 20% + 

8% = 28%. 

In the case of three successive rates, we proceed 

according to the above rule and find the single rate 

equivalent to the first two, and thereupon combine 

this with the third. Thus, suppose the rates of dis¬ 

count were 20%, 10% and 5%, and the list price 

$100. By proceeding as above, we find the single 

rate for the first two to be 28%. Combining this 

rate with the third (5%), we find the single rate to be 

33 — 1.40 = 31.60. In the present case the net amount 

would therefore be $100 — $31.60 = $68.40. 

What single rate of discount is equivalent to 40%, 

20% and 10%? Answer 56.80%. 

3. Profit and Loss.—The cost of an article is the 

amount paid for it. The selling price is the amount 

received for it. The profit is the amount with which 

the selling price exceeds the cost and the expenses. 

The loss equals the amount with which the cost and 

expenses exceed the selling price. When there are no 

expenses, the profit equals the selling price less the 

cost, and the loss equals the cost less the selling price. 

Thus if a dealer buys shoes at $2.50 a pair and sells 

them at a profit of 20%, it is evident that the selling 

price will be $2.50+.50 = $3.00. 

If coffee sold at 40 cents a pound yields a profit of 

25% on the cost price, the latter must have been 32 

cents, since 40 cents = -|- of cost, hence ~ or 25% = 8 

cents. 



PERCENTAGE AND APPLICATION 39 

If an article was bought for 

$40 and sold for $55 the gain 

per cent is found as shown: 

Gain = $15. 

Cost = 40. 
Selling Price = $55. 

It is then merely a matter of finding what part of 

the cost ($40), the gain ($15) is. This is — of 
40 8 

100 = 37-^-%. Answer. 

4. Commission.—A large amount of business of all 
kinds is transacted by agents for the purchasing or 
selling parties, who are called the principals. 

An agent who receives into his possession the property 
of the principal, and transacts in his own name the 
business relating to such property, is called a com¬ 

mission merchant. An agent who does business in the 
name of his principal, and without receiving the 
property of the principal into his possession, is called 

a broker. 
Commission or brokerage is the sum charged by an 

agent for transacting business for a principal, and is 

usually a certain per cent of the amount involved in 
the transaction. 

Suppose an agent sells merchandise to the amount of 
$3450. He pays storage and other expenses totaling 

$35. What are the net proceeds for the principal, if 
the agent deducts a commission of 1.5%? The 
answer is found by simply adding together the ex¬ 

penses ($35) and the commission (l-A-% of $3450 = 

$51.75), the sum of which is $86.75, and deduct this 

amount from the selling price, leaving as net proceeds 

for the principal $3363.25. 

5. Simple Interest.—Interest is money paid for the 
use of money, called the principal. When the interest 
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is computed on the original principal only, it is called 

simple interest. 

The time for which interest is paid is usually reckoned 

in years and days when it exceeds a year, and in days 

only when it is less than a year; the exact number of 

days being counted. Settlements of interest accounts 

are usually made at intervals of not more than a year, 

so that in practice it seldom becomes necessary to 

reckon interest on a sum of money for a time greater 

than a year. Interest for a time less than a year is 

usually reckoned on a basis of 360 days to a year; 

that is, 12 months of 30 days each, in which case the 

interest is called common interest. Interest for a time 

less than a year reckoned on a basis of 365 days to the 

year is called exact interest. 

The following table shows the number of days from 

any day of one month to the same day of any other 

month in the same year, except when Feb. 29 inter¬ 

venes, in which case one day is added: 

If therefore we wish to ascertain the number of days 

from April 15 to September 23, we find, by referring 

to the table opposite April and under September, that 

the time from April 15 to September 15 is 153 days. 

From September 15 to 23 is 8 days, which must be 

added to the 153. The answer is therefore 161 days. 

Suppose we are to find the number of days from April 15 to 

September 6. The table shows that April 15 to September 15 is 

153 days. September 6, however, is 9 days before September 15, 

hence we subtract 9 days from 153 days, which gives 144 days as 

the correct time. 

Again, suppose we wish to know how many days there are 

between January 6 and March 6 in 1920 or any other leap year. 

The table gives 59 days; but in leap years we have a February 

29 and therefore must add one day. Hence the answer is 60 days. 
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All years whose number is divisible by 4 are leap 

years and have a February 29, except century years 

like 1900. Century years are leap years only when 

their number is divisible by 400. There will be a 

February 29 in the year 2000. There was none in 1900. 

6. General Method of Computing Interest.—Methods 

of computing interest differ somewhat in different 

localities. A commonly used method is as follows: 

Find the interest on $360 from January 6, 1920, to 

September 3, 1922, at 6% per annum. The time is 

2 years and 240 days. Counting 360 days to the year 

equals 2-|- years. Interest on $360 for 2-J- years at 

6% is therefore $360 X . 06 X -f - = $57.60. 
o 

Another way is by what is known as the Six Per 

Cent Method. At 6% the interest for one month is 

-k- cent on $1. For one day the interest is of a 
a> O 

mill = $0.000-^-. The rule generally employed is to 

call one-half of the months cents, one sixth of the 

days mills and multiply this sum by the number of 

dollars. 

As worked out this Six Per Cent Method would be as follows: 

$0.12 = the interest on $1 for 2 yrs. at 6%. 
0.04 =the interest on $1 for 240 da. at 6%. * 

$0.16 =the interest on $1 for 2 yr. 240 da. at 6%. 
360 

$57.60 = the required interest. 

If we reckon the time in years, months and days, the period 

covered is 2 years, 7 months, 28 days. 
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$0.12 =the interest on $1 for 2 yr. at 6% 
0.035 = the interest on $1 for 7 mo. at 6% 
0.0047 =the interest on $1 for 28 da. at 6% 

$0.1597 = the interest on $1 for the required time at 6%. 
360 

95820 
4791 

$57.4920 a difference of 11 cents from the former method. 

The interest on $1 for 2 months at 6% is one cent, hence it is 

obvious that the interest on $2356 for the same time and at the 

same rate will be $23.56. All that is necessary is to move the 

decimal point two places to the left. 

7. Exact Interest.—Exact interest is used by the 

United States Government, by some state govern¬ 

ments and by many trust companies. The time in 

our interest problem, when exact interest is to be 

computed, is 2-^- = years. The answer is obtained 

as follows: 

Interest for 1 yr. = 360 X .06 = $21.60; for 2 yrs. = $43.20 

|| of $21.60 = 14.20 

Total exact interest =$57.40 
Principal = 360.00 

Amount =$418.40 

Suppose we ask ourselves what principal will amount to $672 

in two years at 6%? Since $1 at 6% will amount to $1.12 in 2 

years, it follows that $672-5-1.12 will give us the principal which 

in two years will amount to $672. This amount is therefore $600. 

8. Compound Interest.—If interest, instead of being 

paid, is added to the principal at the end of each 

period as it becomes due, to form a new principal for 

the next period, the entire interest—that is, the differ- 
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ence between the final amount and the original principal 

—is the compound interest of the original principal. 

A person who placed $1000 at 4% simple interest would of 

course receive $40 a year. In five years the interest his $1000 

capital had earned for him would therefore be $200. But if he 

loaned his money at 4% compound interest for five years, his 

interest at the end of the term would be $216.65 or $16.65 more 

than in the case of simple interest. 

This simple problem is illustrated as follows: 

Principal. $1000. 
Interest for 1st yr. at 4%. 40. 

Principal for 2nd yr. 1040. 
Interest for 2nd yr. at 4%. 41.60 

Principal for 3rd yr. 1081.60 
Interest for 3rd yr. at 4%. 43.264 

Principal for 4th yr. 1124.864 
Interest for 4th yr. at 4%. 44.995 

Principal for 5th yr. 1169.869 
Interest for 5th yr. at 4%. 46.794 

Amount. 1216.653 
Original Principal. 1000.00 

Compound Interest. $ 216.65 

Had the Indians put the $24.00—the money value 

of that which Peter Minuit, the first governor of New 

Netherlands, paid them for Manhattan Island in 1626 

—at 7 per cent compounded yearly, the amount would 

today be about $8,000,000,000. This is more than the 

assessed valuation of Manhattan at the beginning of 

the war. The Indians might accordingly have bought 

back the island with all its improvements and re¬ 

occupied New York at almost any time had they had 

the proper banking facilities. 
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INTEREST 

Compound Interest Table 

Showing the amount of $1 at various rates, coumpound interest from 1 to 
20 yrs. 

Yrs. 2^% 3% 3 W7o 4% 5% 6% 

1. 1.02500 1.03000 1.03500 1.04000 1.05000 1.06000 
2. 1.05062 1.06090 1.07122 1.08160 1.10250 1.12360 
3. 1.07689 1.09272 1.10871 1.12486 1.15762 1.19101 
4. 1.10381 1.12550 1.14752 1.16985 1.21550 1.26247 
5. 1.13140 1.15927 1.18768 1.21665 1.27628 1.33822 
6. 1.15969 1.19405 1.22925 1.26531 1.34009 1.41851 
7. 1.18868 1.22987 1.27227 1.31593 1.40710 1.50363 
8. 1.21840 1.26677 1.31680 1.36856 1.47745 1.59384 
9. 1.24886 1.30477 1.36289 1.42331 1.55132 1.68947 

10. 1.28008 1.34391 1.41059 1.48024 1.62889 1.79084 
11. 1.31208 1.38423 1.45997 1.53945 1.71033 1.89829 
12. 1.34488 1.42576 1.51106 1.60103 1.79585 2.01219 
13. 1.37851 1.46853 1.56395 1.66507 1.88564 2.13292 
14. 1.41297 1.51259 1.61869 1.73167 1.97993 2.26090 
15. 1.44829 1.55796 1.67534 1.80094 2.07892 2.39655 
16. 1.48450 1.60470 1.73398 1.87298 2.18287 2.54035 
17. 1.52161 1.65284 1.79467 1.94790 2.29201 2.69277 
18. 1.55965 1.70243 1.85748 2.02581 2.40661 2.85433 
19. 1.59865 1.75350 1.92250 2.10684 2.52695 3.02560 
20. 1.63861 1.80611 1.98978 2.19112 2.65329 3.20713 

Yrs. 7% 8% 9% 10% 11% 12% 

1 1.07000 1.08000 1.09000 1.10000 1.11000 1.12000 
2. 1.14490 1.16640 1.18810 1.21000 1.23210 1.25440 
3. 1.22504 1.25971 1.29502 1.33100 1.36763 1.40490 
4. 1.31079 1.36048 1.41158 1.46410 1.51807 1.57351 
5. 1.40255 1.46932 1.53862 1.61051 1.68505 1.76234 
6. 1.50073 1.58687 1.67710 1.77156 1.87041 1.97382 
7. 1.60578 1.71382 1.82803 1.94871 2.07616 2.21068 
8. 1.71818 1.85093 1.99256 2.14358 2.30453 2.47596 
9. 1.83845 1.99900 2.17189 2.35794 2.55803 2.77307 

10. 1.96715 2.15892 2.36736 2.59374 2.83942 3.10584 
11. 2.10485 2.33163 2.58042 2.85311 3.15175 3.47854 
12. 2.25219 2.51817 2.81266 3.13842 3.49845 3.89597 
13. 2.40984 2.71962 3.06580 3.45227 3.88327 4.36349 
14. 2.57853 2.93719 3.34172 3.79749 4.31044 4.88711 
15. 2.75903 3.17216 3.64248 4.17724 4.78458 5.47356 
16. 2.95216 3.42594 3.97030 4.59497 5.31089 6.13039 
17. 3.15881 3.70001 4.32763 5.05447 5.89509 6.86604 
18. 3.37993 3.99601 4.71712 5.55991 6.54355 7.68996 
19. 3.61652 4.31570 5.14166 6.11590 7.26334 8.61276 
20. 3.86968 4.66095 5.60441 6.72750 8.06230 9.64629 
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REVIEW. 

1. Illustrate the two methods of finding the rate per cent when 

the base and percentage are given. 

2. In reckoning discount, what is the rule for converting two 

successive rates of discount into an equivalent single rate ? 

3. What do profit and loss equal in a deal without expenses? 

4. What is the difference between a commission merchant and a 

broker? How is commission or brokerage reckoned? 

5. How do you reckon time for which simple interest is paid? 

State the difference between common interest and exact interest. 

6. What is compound interest? 



CHAPTER IV 

PLANE GEOMETRY—LINES AND ANGLES 

1. Properties of Space.—In arithmetic we were 
interested chiefly in quantities or numbers, which we 

considered as made up of elements that could be reg¬ 
istered or counted and then compared with quantities 
similarly enumerated. Geometry, however, treats of 
comparisons of a broader type than those of arithmetic, 
many of its quantities not being countable at all. 

The science of geometry originated in Ancient Egypt 
where the river Nile, in its tremendous overflows, re¬ 
peatedly destroyed all land-marks and means of identi¬ 
fication over wide expanses of fertile farming country. 
New and richer land had to be apportioned to the tiller 
of the soil, to recompense him for the loss of his former 
fields. It was not possible to retain original position 
and shape, but it was necessary that the new farm be 
the same size as the old one. And so, in course of time, 
four properties of space came into recognition—prop¬ 
erties which now distinguish the Science of Geometry. 
They are size, shape, position and motion. A basket¬ 
ball, a base-ball and a grain of shot have the same shape, 

but not the same size. No two of them could lie in 
the same place at the same time. If we can imagine 
the space occupied by one of these bodies apart from 
the material object itself, we will have a geometric solid. 

We might almost call a geometric solid the ghost body 
of a material solid. A geometric solid is defined as a 
portion of space, yet space itself is a fundamental con¬ 
ception which it is impossible to limit, define or even 
fully describe. Our geometric solids have these four 

(47) 
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independent properties of size, shape, position and 
motion. Size can be changed without affecting shape, 
position or motion, and two of these geometric solids 
(being “ghosts”) could occupy the same position and 
have the same shape, size and motion at the same time. 

2. Dimensions.—When primitive man looked at 
himself he observed, at first uncomprehendingly, that 
he had what we call length, breadth and thickness. 
He saw these same three dimensions in animals, tho 
he observed that they varied greatly. When he looked 
at the sky, his eyes saw the heavens to be apparently 
a sphere no matter in what direction he turned his 
gaze. It is probable that such simple observations 
were the origin of the conception that we live in a 
world of three dimensions—length, breadth and thickness. 

Our Indians as well as the early Romans thought 
that a field twice as far around as another was twice as 
large. A certain lady wanted a box for storing winter 
clothing. She wanted it to be twice as large as her old 
one. She directed the carpenter to make it twice as 
long, twice as high and twice as wide—and on receiving 

it was greatly surprised at its unexpected capacity. The 
Indians, Romans and the good lady all thought in one 
dimension. They did not realize that if we lived in a 
one-dimensional space everybody could walk a tight 
rope. There would be no dimension to fall into except 
along the rope, tho the rope would be narrower than 
the finest spider-web. 

Again, the size of the top of a measure will not tell 
us the capacity of the measure. We need depth as 
well. There would be no danger of a skater’s falling 
on the ice in a two dimensional world. He could not 
fall down. 
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3. Geometric Elements.—Let us look at this subject 
from another point of view, taking a stone as a material 
solid to fix our idea of a geometric solid. Primitive 
man could have rubbed two stones together as is done 
today with diamonds. By such grinding he would 
obtain a 'plane surface. This surface, let us remember, 

is in space, but is not a part of the solid. It is a part 
of the boundary of the solid, but having no thickness 
it has one dimension less than the solid, tho still re¬ 
taining both position and movability. A thin piece 
of paper will help us to visualize a surface. If, now, 
the same stones were again ground together until 
there was obtained another plane surface which met 
the first, their junction would form a straight line. 

This straight line, remember, is in space. It is no 
part of the plane surfaces, but is their boundary. It 
has position and can be moved. The crease of a piece 

of folded paper will help to visualize a straight line. 

Suppose that still more plane surfaces were formed, 
some would meet in other straight lines; where 
straight lines met a point would be located. This 

point, like any straight line, is in space. It is not in 
the line, but is the boundary of the parts of the line. 
Without shape and size, it still has position and can 
be moved. By carefully examining a diamond one 
may get a good idea of these planes, lines and points. 

We can conceive a point, having position and 

ability to move, generating a line. A line is the path 

of a point. It has one dimension, length. If this line 
moves in any way except along its own dimension it 

will generate a surface, for surface is the path of a line. 

A surface has two dimensions, length and breadth, 

and if this surface moves in any way except in its own 

two dimensions, it will generate a solid. A solid is 
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the path of a surface and has three dimensions. We 
can obtain nothing more than solids, unless we are 
able to move in more than three dimensions. 

It is evident from the manner in which they were 
found, that the points of a line, the lines of a surface 
and the surfaces of a solid are all uncountable. Also 
there must be at least one point between every two dis¬ 
tinct points. These points must be in a definite order, 
and their motion from one position to another along 
the line must be thru all intermediate positions. 

When planes do not meet, they are called parallel; 

the floor and ceiling of a room are an example. Also 
when lines which are boundries of the same plane sur¬ 
face, such as the edges of a floor-board, do not meet, 
they are parallel. When lines that are not boundaries 
of the same plane surface do not meet, they are called 
skew. 

Any position of a point which generates a line could 
be thought of as the end point of the line already gen¬ 
erated, or the beginning point of the new part. Two 
fixed points limit a line and the stroke between them 
in length and position. Two nails will fix a lath. 
Three points, not all of which are in the same straight 
line, will fix a plane. Every plane must have three 
such points. Thus a stool will stand on three legs. 
Four points, not more than three of which are in the 
same plane, and not more than two in the same straight 
line, will distinguish a solid. 

4. Formal Geometry.—About 365 years B. C., one 
Euclid became the first professor of mathematics at 
the first great university—that of Alexandria in Egypt. 
He collected all the problems that had arisen as a 
by-product of the attempts of the Greeks to solve 
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three “impossible” problems. These three problems 
were (1) the duplication of a cube, that is, the making 
of a cube twice as big as a given cube; (2) the trisec¬ 
tion of an angle, that is, the division of any angle 

into three equal parts and (3) the squaring of a circle, 
that is, finding the exact area of a circle in terms of 
the radius. 

Such of these discussions as were about figures and 
could be constructed with the straight edge and the 
compass, Euclid put into a great book made up of 
13 smaller books, which he called the Elements. He 
based his arguments on a few stated assumptions and 
definitions and on this ground-work by a course of 
logical reasoning reared a structure of theorems. This 
book was not intended for persons of immature mind. 
In fact, Euclid said there was “no royal road to geom¬ 
etry”. None but the best minds of the Greeks, however, 
mastered Euclid, which was abbreviated more and more 
until the Romans repeated only a few of the theorems. 
What is commonly taught in schools today is only a 
small portion of a few of the 13 books. 

5. The Geometrician’s Tools.—We have more tools 
than Euclid and we shall approach the subject rather 
in the observational manner of his predecessors. We 
should provide ourselves with a straight edge, marked 
in inches and divided into sixteenths, and a scale giving 
millimeters. These will be used in drawing straight 
lines, making them of required length and measuring 
other straight lines. A 'pair of compasses is necessary, 

one leg furnished with a pencil for the purpose of de¬ 
scribing circles and, with the help of the ruler, for laying 
off required distances and measuring distances already 
laid off. 
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We should also have a protractor to be used in constructing 

angles for any given number of degrees, for measuring the number 

of degrees in any given angle and also for determining whether 

one angle is greater than another. 

For the more accurate construction of geometrical figures, 

the following instruments are also desirable: a pair of dividers, 

with both legs terminating in fine points, these being more ac¬ 

curate than the compasses for measuring and transferring dis¬ 

tances; a T-square, for drawing horizontals and perpendiculars; 

a bevel, for constructing angles; parallel rulers, for drawing parallel 

lines; a 30° 60° right triangle and a 45° right triangle. A pair of 

either of these triangles may take the place of the parallel rulers 

and also of the T-square. A hard pencil, preferably HHH, 

pointed like a chisel, will be serviceable. 

With regard to the method of drawing, points and ends of 

lines should be pricked with the sharp points of the dividers. 

The paper used should be rather smooth and fastened to a drawing- 

board with thumb tacks. The reader should construct the 

figures on a larger scale than those in the Text. 

6. Elementary Figures—Angles.—A straight line, a 
broken line, a curved line and an angle are illustrated 

in Fig. 2. The size of the angle 
does not depend on the length 
of the bounding lines AB and 
AC, but on the opening between 
them, that is, on the difference 
of direction of these lines. An 
angle is usually indicated by 
using one letter at the vertex— 
where the lines join, as at A— 
or as shown by three letters 

CAB. Notice that in the latter case the angle is named 
in the opposite way from that in which the hands of a 
clock move. If the point about which the lines re¬ 
volved were not also the end of the lines, a vertical angle 
A 2 would be formed. Evidently these two vertical 
angles are equal. 

Straight he. 

Fig 2. 



PLANE GEOMETRY—LINES AND ANGLES 53 

Fig. 3. 

If two angles such as CBD 

and DBA, Fig. 3, have a 

common side DB between 

c them, and if their other sides 

are in the same straight line 

AC, they are called supple¬ 

mentary adjacent angles. If 

their other sides are not in the same straight line, they 

are merely adjacent. The angle EBA, Fig. 4, is the 

sum of EBD and DBA. If the two supplementary 

adjacent angles CBD and DBA are equal, each of them 

is said to be a right angle and the lines in the figure are 

said to be perpendicular to each other. Evidently 

about B in Figs. 3 and 4 

there are four right angles. 

An angle less than a right 

angle is called an acute angle. 

c An angle greater than a right 

angle is called an obtuse angle. 

Two angles CBE and EBD, 

Fig. 4, whose sum is a right 

angle are called complementary angles. 

7. Elementary Figures—the Circle.—A circle is the 
usual closed figure described by the compass on a flat 

surface. Note in Fig. 5, 

rt the center 0, the radius, 

and the circumference, 

also that all radii of the 

circle are equal, since the 

compass legs always re¬ 

main the same distance 

apart while the circle is 

being described. When 

two radii are in line they 
Fig. 5. 
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form a diameter. The portions of the circle on each 

side of the diameter are called semi-circles, or half 
circles. Any part of the circumference is called an 
arc, as DB. A straight line joining the ends of an arc 
is called a chord. If such a line extends without the 
circle, as EF, it is called a secant 

The portion of a circle between an arc and its chord 
is called a segment. The part that is bounded by an 
arc and two radii to its extremities is a sector. (See 
Fig. 5). A semi-circle is both a segment and a sector. A 
tangent GIH is described as a line that cuts a circle 
in two coincident points—that is, two points in the 
same place. To illustrate: If the secant EF were made 

to revolve about the point where it cuts the tangent 
EiFu the point which remains on the circumference 
would get nearer and nearer to the point of revolution 
until they became coincident, when the limiting posi¬ 
tion of the secant would be the tangent EiFi. In less 
scientific language it would be said that a tangent 
touches a circle at a single point. 

Since the time of the Babylonians, at least two 
thousand years B. C., man has divided the circum¬ 
ference of a circle into 360 arc degrees, written 360°. 
If an arc contains thirty degrees, we say there are 30° 
in the angle formed by the arc and by the two radii. 
Evidently, then, a semi-circumference contains 180° 

and a right-angle 90°. A 60°-angle is accordingly-^- 

of 360°. 

Thru what angle does the minute hand of a watch move in 

twenty minutes? Thru what angle does the hour hand move in 

twenty minutes? 

8. Rigid and Non-Rigid Figures.— A triangle has three 
sides as well as three angles. If we nail three laths 
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together with three nails we have a rigid figure. We 
can’t change its shape without altering its sides, which 

would also change its angles. 
The triangle is therefore fixed 
if its three sides are fixed. It 
is also fixed whenever two 
sides and their included angle 
are fixed or whenever two angles 
and their included side are 
fixed. We can’t preserve its 

Fig. e. size unless we preserve at least 
one side. Let us ask ourselves 

whether two triangles are equal if three corresponding 
parts are the same in each, providing one of these 
parts is a side? How is this stated for right triangles? 
Can we preserve a triangle’s shape if we preserve only 
its angles? Obviously an equal triangle can be con¬ 
sidered as another position of the first triangle. 

A quadrangle has four angles. Having four sides, 
it is also called a quadrilateral, which means four-sided. 

Unlike the triangle the quadrangle is not rigid. Pivots 
at A, B, (7, and D, as in Fig. 6, would allow it to be 
changed very materially in shape. But if a diagonal 
AC were drawn between two opposite vertices, the 
figure would become rigid, as it would then be composed 
of two triangles. 

Observe that an iron bridge is composed of triangles; 
that is because the triangle is the only rigid polygon. 
(The latter is a common name for closed figures with 
three or more sides.) 

9. Sum of the Angles of Triangles.—Let us draw a line 
two inches long. Setting our compass points two 

inches apart with the ends of the line as centers, we 
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Fig. 7. 

describe short arcs intersecting as at A in Fig. 7. 

Connecting the point where the 

arcs cross with the two ends of 

our straight line we will find that 

we have made an equilateral or 

equal-sided triangle. 

Next, measure its angles with a 

protractor. How many degrees are 

there in each and in all? Is the 

triangle also equiangular? Could 

we pave a floor with tiles of this shape? If constructed 

accurately, such a triangle would have exactly 60° in 

each angle. 

It matters not what shape a triangle has, the sum of 

its angle always equals 180°. Accordingly, if we turn 

CBy Fig. 8, thru the angle at C until it falls on CA and 

then turn it thru the angle at A until it falls along AB, 

it is in the same line as if it had been turned first to the 

direction BE 'parallel to AC and then made to fall upon 

AB extended. We can see that not only is the sum of 

the angles A and C equal to the angle I?2_3, that is, 

two interior angles of a triangle always equal the 

opposite exterior angle, but since Bi and B 2_3 are 

together equal to a turn thru 180°, then A+B-\-C 

must also be equal to a turn thru 180°. 

If two angles of a triangle 

are known, so is the third. 

The angle C equals £2, Fig. 8. 

They are called alternate in¬ 

terior angles of parallel lines. 

Also A and Bz are equal and 

are called corresponding an¬ 

gles of parallel lines. 

10. Sum of the Angles of Other Figures.—A quad- 
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Fig 9. 

rilateral, Fig. 9, may be re¬ 

garded as composed of two 

triangles. The sum of its 

interior angles is, therefore, 

four right angles. The five¬ 

sided polygon called the pen¬ 

tagon,, Fig. 10, may be di¬ 

vided into three triangles— 

just two less than the number of its sides. Its interior 

angles are together equal to three times two right 

angles, that is, they equal 

six right angles or 540°. If 

the five angles were all equal, 

each would accordingly be 108°. 

It is helpful to remember 

that we can always determine 

the number of degrees in the 

interior angles of any polygon 

by multiplying 180° by two less than the number of 

its sides. 

Next convince yourself, by measuring the size and 

angles of triangles by dividers and protractors, that 

wherever two sides of a triangle are equal (such tri¬ 

angles are called isosceles) the opposite angles are also 

equal, and, conversely, where two angles are equal, 

the opposite sides are equal. 

Is this true also of equilateral triangles? Obviously 

an equal triangle can be considered also as another 

position of the same triangle. We would do well to 

give these facts some consideration and also to assure 

ourselves that where the sides of a triangle are unequal, 

the greater angle always lies opposite to the greater 

side. Thus the hypotenuse AC, Fig. 11, being opposite 

the right angle, is the longest side in the triangle. 
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Any two sides of a triangle are 

together greater than the third 

side, since, as in Fig. 11, AB > 

AD and BC > DC, then AB + 
c BC> AD + DC = AC (> is 

read “greater than”.) 

11. The Parallel Rulers.—Not only are the lines AB 
and DC of our parallel rulers parallel, as in Fig. 12, but 

by making the points A, B, C, D for any setting, we 

shall find that if one ruler is placed on A and B when 

the other contains the latter D it will also contain C. 

AD and BC will also be parallel. We call the figure 

ABC D a parallelogram. If AB and BC were equal, the 

figure would be a rhombus. When the angles of a 

parallelogram are right angles the figure is called a 

rectangle, but when they are not right angles, the 

figure is a rhomboid. When the angles of a rhombus 

are right angles, it is called a square. A square is 

therefore also an equilateral rectangle. 

Note that if the distances 

AB and BC, Fig. 12, are 

equal, the angles DAB and 

DCB will also be equal. 

Fi*-12• Likewise CAB and DAC 
and ACB and DC A, Fig. 13, are all equal. The angles A 
and Care bisected and the parallelogram divided into two 

equal triangles, no matter what 

position the rulers take. Try to 

prove this fact in other ways. 

Also notice that since the sum of 

the angles CAB and DAC is equal 

to the angle at B, the exterior angle 

of the triangle ABC, CAB is one-half of angle at B. 

Fig. 13. 
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Now turn to Fig. 14. The circle has B as the center 

and BC as a radius. It passes thru A and the sides 

of the angle A\ are chords. On account of these facts, 

Ai is called an inscribed 

angle. As angle B2 has 

as many degrees as the 

arc CF, angle Ax will 

have only half as many. 

Since C2 and Ax are 

equal, arc EA and arc 

FC are also equal, having twice as many degrees as 

angle Ax or its equal C2. Hence parallels cut off equal 

arcs on a circumference. This may be tested by 

measurement. 

Ships avoid rocks and shoals near the coast by what is called 

in navigation the horizontal danger 

angle. At A and B, Fig. 15, are 

two light-houses on shore and C is 

represented on the charts as a 

dangerous rock with a circle about 

it containing all the dangerous 

shoals. The large circle is drawn 

by trial thru A and B tangent to 

the small circle, and the angle ADB 

is measured by the protractor. 

With an instrument called a sextant, the navigation officer meas¬ 

ures the angle APB when P is his own position. As long as APB 

is less than ADP the ship is outside the large circle and therefore 

outside the smaller circle where the danger lies. 

12. Bisectors and Perpendiculars.—These tools (Fig. 12) 

are special parallel rulers—a form of linkage. With 

them we could bisect any angle very neatly, more so 

in fact than by the protractor or by folding a paper 
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on which the angle is drawn. The following is an 

example of this linkage, but does not give parallels. 

Let us mark off, with a compass or dividers, equal lengths 

AD and AE, as in Fig. 16, also, from centers D and E 
describe arcs with equal radii, these arcs meeting at F. 
Then AF is the bisector of the angle A, for the triangles 

ADF and AEF are equal, as can be seen by noting their 

symmetry and tested by folding along AF, or by observ¬ 

ing that their sides are equal. They are thus two posi¬ 

tions of the same triangle. For the purpose of bisect¬ 

ing the angle A the lines DF smdEF need not be drawn. 

Fig. 16. The longer the lines and the more nearly at right angles 

the arcs cut, the more accurate is the drawing likely to be. We 

can use this same figure, called the kite, to bisect a line or an arc. 

For if we are given either the line AB, Fig. 17, or 

the arc AB with center at D, then with I? and A as 

centers and radii equal to AD describe arcs inter¬ 

secting at C and D. A continuation of the arcs, 

as drawn in Section 9 of this chapter, would have 

produced two equal triangles, base to base, that 

is, isosceles triangles, for since the sides of these 

triangles are equal, each to each, the three sides 

Fig. 17. of the two triangles ACB and ADB are equal. 

Likewise the two triangles ACD and BCD are equal, having two 

sides and the included angle equal. AD and DB are equal, also 

the two arcs AF and FB, since the two angles ADC and BDC 
are equal. 

Would all this have been true if merely AC were equal to CB 
and AD equal to BD? Try this construction in several forms, 

measuring carefully, and notice that in all forms of the “kite” 

CD and AB are perpendicular and that the perpendicular bisector 

of a chord also bisects its arc. 

13. Drawing Tangent From External Points.—The 

“kite” may also be used for drawing a tangent from 

an external point as P in Fig. 18, to a circle whose 

center is 0. In this case OP is bisected at M and 

another circle is constructed with center M and radius 
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MP, meeting the 

first circle at T and 

S. It will be found 

that the angles 

OTP and OSP are 

right angles, being 

measured by half 

of 180°. The sym¬ 

metry of the kite 

also shows that 

these tangents PT 
and PS are equal 

and make equal angles with the line drawn from the 

point P to the center. 

An easy way to draw a tangent to a circle is to use a right 

triangle with one leg along the radius and the vertex of the right 

angle on the circumference. If the point is on the circle, the right 

angle is at the point, but if the point is without the circle, the 

triangle is so revolved that the other leg of the triangle just touches 

the point as in the figure. 

14. Points at Which Two Circles Meet.—The circum¬ 

ferences of two unequal circles never meet in more 

than two points. 

Let us cut two circles out of a piece of paper or use two coins, 

sliding them over each other. If we were to fasten the two 

paper circles with glue and fold 

them about their common [diam¬ 

eter, so that, as in Fig. 19, the 

point Q falls on the point P, on 

unfolding them it will be seen 

that the common chord is bisected 

at M. We might say that the figure 

APBQ is a kite and evidently BMQ 
and PMB are right angles. Fig. 19. 
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We note that the line of centers of two circles is the perpen¬ 

dicular bisector of their common chord. If the circles just touch, 

as in Fig. 20, will the lines 

of centers pass thru the point 

of contact? This can be tried 

by folding. Notice that when 

the circles touch, the line of 

centers 001 is equal to the 

sum of their radii and that 

they have one common in¬ 

ternal tangent, AB, and two 

common external tangents, Ti and T±T%. 
Evidently, T±A = AM = AT2, so they equal BM, etc. 

When the two circles just touch internally, there is but one 

common external tangent and the line of centers equals the differ¬ 

ence of the radii. What happens, we may ask, when the line of 

centers is greater than the sum of the radii? When it is less 

than the sum but greater than the difference? When it is less 

than the difference? 

15. Perpendicular from Outside a Line.—By referring 

to Fig. 17 of this chapter, we can draw a perpendicular 

from a point D outside a line by the following device: 

With D as the center and with a radius greater than 

the distance to the line (by distance we always mean 

perpendicular distance) an arc is constructed by cutting 

the line at A and 5. Then with A and B as centers 

we construct arcs of equal radius meeting at C, thus 

forming a kite, whose diagonals are necessarily per¬ 

pendicular. 

We could, of course, have drawn any perpendicular to the 

line and run a parallel to it thru the point by means of the parallel 

rulers or some other device. In practice, however, it is generally 

better to use the set triangles in drawing perpendiculars. 

16. Bisecting Lines with Parallel Lines.—Parallel lines 

can be used to bisect lines and in fact to divide them into 
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any number of equal parts. Suppose we wish to bisect 

AB, Fig. 21. In order to make any convenient angle 

with AB we draw AC, then 

with our dividers mark off DE 
equal to AD. Following that, 

Fig- 21 the line BE is drawn and then 

FD parallel to BE and FG parallel to AC. The two 

triangles thus formed, ADF and FGB, are equal andF 

is the middle point of AB. The construction may be 

extended to a division into three or more parts. 

17. Dividing Line with Rectangular Scale.—We can ad¬ 

vantageously use the scale made by dividing either 

or both the length and breadth of a rectangle into a 

number of equal parts. Mark the lower left-hand 

corner of the rectangle A, as in Fig. 22, and the points 

of division in either direction 1,2,3,4, etc. 

Let us suppose we want to divide the line AB into five equal 

parts. If our rectangle is transparent, we could place it over 

the line with A at the point 

A and move it about until 

B falls on the perpendicular 

from 5. Then where the 

perpendiculars from 1,2,3A 
cross the line we have the 

points of division. If the 

rectangle is not transparent, 

we can take the length of 

to 

9 

8 

7 

6 

& 
4 

3 

fe- 
/ y V 

N y X 

/ — 

Flg* viders, putting one end at 

A and seeing where the other crosses the perpendicular from 5. 
Hold the dividers in place and put a straight edge against their 

points. This reproduces the line AB and the points are found as 

before. It is well to have a smaller scale on one side of the 

rectangle, so that, lines of various lengths may be conveniently 

divided. 
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18. Concurrent Lines in Triangles.—The problem in¬ 

volving lines that meet in a triangle can be solved as 

follows: Cut from paper several triangles of different 

shapes. Take one of them and fold so as to bring 

two vertices together. The fold will form a perpen¬ 

dicular bisector of the side to which the two vertices 

belong. Do this carefully for all three sides and notice 

that the perpendicular bisectors meet in a point. Then 

measure the distance of this point from each vertex 

of the triangle. These distances should be the same. 

Next take another triangle and fold one side along 

itself so as to obtain a perpendicular from the opposite 

vertex. Do this with each of the other sides and note 

that the three altitudes meet in a point. Now fold 

still another triangle so as to obtain the bisectors of 

each of the angles. These three bisectors will meet in 

a point. Measure the perpendicualr distance from this 

point to each of the opposite sides. They should be 

equal. Continuing the experiment, mark the mid¬ 

points of each side of another triangle and make a 

fold extending from one of these points to the opposite 

vertex and similarly for all the other points. Notice 

that these three medians meet in a point. Then set 

dividers to the shortest part of each median in turn 

and step off the length of the medians. The long parts 

will be just twice the short parts in each median. 

Having reached this point we require an equilateral 

triangle, which can easily be devised from a carefully 

made square of paper, first folding it in half as if closing 

a book, then folding over without creasing one side 

from the left vertex till it just meets the middle fold. 

Mark this point on the middle fold and make a crease 

to each of the most distant corners of the square. If 

this is done carefully we will have an accurate equi- 
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lateral triangle. Now cut off the excess parts and 

attempt to go thru the preceding exercise. If the con¬ 

struction is accurate, it will be found that the bisectors 

of the angles and sides are the same, as are also the 

medians and altitudes and that they all meet at the 

center of the inscribed and circumscribed circles. 

By constructing the circumscribed circle and the in¬ 

scribed circle of an equilateral triangle it will be found 

that the radius of one is twice the radius of the other. 

It is advisable to study these figures carefully, as they 

will be referred to again and again. 

19. Symmetry.—Symmetry is largely a matter of 

balanced contrariety. Our two hands are symmetrical 

with respect to each other, but we can’t put our right- 

hand glove on our left hand. So also are parts of a 

“kite” on each side of the long diagonal; so also a 

rhombus or a square with respect to either diagonal, 

and a circle with respect to every diameter. Every 

line thru the intersections of the diagonals of a rhombus 

or a square and terminated by the boundary is bisected 

at the point mentioned. Such a point is called a center 
of symmetry, while the diagonals are called axes of 
symmetry. 

REVIEW. 

1. What are the properties of space? How many “ dimensions ” 

are there? Name them. 

2. Define “ point,” “ line,” “ surface ” and “ parallel.” 

3. Explain the use of the tools required by the geometrician. 

4. What is an angle? A circle? A segment? A sector? An 
equilateral triangle? A quadrilateral? The hypotenuse? A par¬ 

allelogram ? 

5. What do you know of the “ kite? ” 



CHAPTER V 

PLANE GEOMETRY—AREAS AND LOCI 

1. Principle of Area.—Equivalent figures are those 

which have the same size. If a rectangle contains a 

given unit of length in its length and breadth, it can be 

divided like the figure into little squares which will be 

the square unit. In Fig. 23 

| 1 | 1 | | | ] there are five rows of nine 

_squares each; hence there are 45 

_square units in the area. So for 

-all rectangles we will take the 

——— product of the number of linear 

F,g*2S* units in the length by the 

number in the breadth and call this the number of 

square units in the area. This same method is followed 

when length and breadth do not contain the exact 

linear unit. The side on which a figure stands is called 

its base; its altitude is the extreme height above that 

base. 

2. Area of Parallelogram.—Any parallelogram (a four- 

,c sided plane figure whose 

opposite sides are paral¬ 

lel) can be turned into a 

rectangle by cutting it in 

two the shorter way, that 

is, by drawing a line perpendicular to its base, 

and moving the part over as in Fig. 24. The 

parallelogram ABCD and the rectangle AiBiCiDi are 

equivalent in area and they evidently have the same 

base and altitude. Without troubling to cut the 

parallelogram, however, we can say that its area is 
(66) 
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found by multiplying the number of units in its base 

by those in its altitude and calling this the number of 

square units of area. 

3. Area of Triangles.—Any triangle can be revolved 

about the midpoint of one of its sides as a center of 

symmetry and when the two halves of that side have 

been brought into coinci¬ 

dence the whole will form a 

parallelogram, as in Fig. 25. 

As the area of a parallelo¬ 

gram was expressed by base 

times altitude, the area of the triangle which has the 

same base and altitude as this parallelogram is evidently 

expressed by A- base times altitude. This last ex¬ 

pression means either one-half the base times the 

altitude or one-half the altitude times the base or 

one-half their product. Thus, a triangle whose base 

is 8 and altitude 6 has an area of A- (8 X 6), which 

equals 4 X 6 or 8 X 3 or A-(48) =24. It is evident 

that a triangle with an altitude of 8 and a base of 6 is 

equivalent to a triangle with a base of 4 and altitude 

12, and that if the bases of two triangles are the same 

and the altitude of one is twice the altitude of the other, 

the former triangle must have twice the area of the latter. 

4. Area of the Trapezoid.—A trapezoid is a quadri- 

B lateral, two of whose sides are 

parallel. In order to get its 

area we usually divide it into 

two triangles each one of which 

has the altitude A, Fig. 26. 

When one triangle has the base 

B and the other the base Bu the Fig. 26 

area of the trapezoid is evidently 
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l-AB + ^AB, = -~-(B + Bi) or 
2 

But in advanced work the trapezoid 

is generally divided into a parallelo¬ 

gram and a triangle, as in Fig. 27. 

Here if B (Fig. 26) were 6, Bi, were 8, 

and A were 4 we could say the area of 

Fig. 27 is 6 X 4 + -|- (4 X 2) = 28 in¬ 

stead olf . 
2 

5. Area of Trapezium.—The trapezium is a quadri¬ 

lateral none of whose sides are parallel. Like all other 

polygons, it is turned into triangles 

by the following method: As tri¬ 

angles have fewer corners than any 

other figure, it is desirable to cut 

off a corner of the trapezium 

DABC, Fig. 28, and therefore the 

diagonal DB is drawn. Now draw 

CE parallel to this diagonal, meet¬ 

ing AB produced at E. Next 

draw DE. As parallels are every¬ 

where equidistant, the altitude of 

the two triangles DCB and DEB are 

equal, and as they have the same bases they are 

equivalent and we may replace DCB by DEB and the 

quadrilateral will have been reduced to the triangle 

ADE of which we could readily find the area. 

It would be well for the reader to convince himself by 

accurate measurement that these things are true, then 

to keep his data until he comes to trigonometry, when 

he can compare them with results obtained by new 

methods learned there. It is admirable practice for 

the student of mathematics to master a piece of work 
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and then pigeonhole it in his mind till he meets with 

the same problem in another setting. 

6. Equivalent Parallelograms.—There is an interesting 

method of constructing a parallelogram with a given 

base that will be equivalent 

to another given parallelo¬ 

gram—a method which will 

be brought into frequent 

use later on. The given 

parallelogram is AFEK, 
Fig. 29, and the given base of the new parallelogram is 

EG. First complete the parallelogram KEGD and 

draw the diagonal DE to meet AF produced to B. By 

drawing BC parallel to AD and extending DG to C and 

KE to H we have the diagonal of each of the parallelo¬ 

grams BHEF, EGDK, and BCDA, and therefore we 

have bisected each of them. Now since the triangle 

ABD equals the triangle CBD, and FBE equals HBE, 

and KED equals GED, if we subtract the sum of the 

last two from the first, we see that parallelogram 

AFEK is equal to parallelogram EGCH. 

Considering areas as products of two factors, show by measure¬ 

ments with dividers that in Fig. 30 FE X EK= EG X EH, where 

the lines and letters refer to both Figs. 29 

and 30. Make other such figures and 

convince yourself that if two chords of a 

circle cut each other within the circle the 

rectangle contained by the segments of the 

one is the rectangle contained by the seg¬ 

ments of the other. Is this the same as the 

following: Of all chords intersecting at a 

point within a circle, the product of the 

Fig 80 parts of one chord equals the product of 

the parts of any other chord? In other 

words, if one chord had parts of 8 and 2 inches respectively, 
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would the product of all such segments of other chords also be 
16? An attempt to answer this question will strengthen our grip 

on these problems. 

7. The Square of the Hypotenuse.—The square on the 

hypotenuse of a right triangle is equal to the sum of the 

squares on the other two sides. This is The Great Theorem 

of Pythagoras. 

The “harpedonaptae” or rope stretchers of Egypt 

four or five thousand years ago made perpendiculars to 

given lines by forming right triangles whose sides were 

as 6, 8, 10 or 3, 4, 5, as the case may be. Here 62 + 82 

= 102; that is, 36 + 64 = 100. Modern surveyors 

measure 40 feet, then 80 feet, dividing the latter into 

30 and 50. Three men stretch the tape—one at each 

end, A and B, Fig. 31, and one at the division point C. 
Their positions form a right triangle with a right angle 

as marked at A. In order not to bend and break the 

tape, the man at the point 

of division C brings together 

parts 30 feet from one end 

and 50 feet from the other 

end of the 100 foot tape, the 

whole of which he uses, 20 

feet forming a loop at C. 
The truth of the principle of the square on the 

30 

hypotenuse can be proved in thousands of ways, but 

probably less than one hundred are generally known, 

and only one need be given here. 

8. Pythagoras’ Proof.—The proof that is thought by 

some to be that by Pythagoras himself is as follows: 

Make two large squares of equal size or area, as (a) and (b), 
Fig. 32. Divide each side into a long part and a short part, the 
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corresponding parts being of the same length, as shown. Then 

draw the two figures, 

doing so with care. 

The triangles, it will 

c be noted, are all equal 

to each other. In (a) 
the inner square is 

that on the hypote¬ 

nuse AB; in (b) the 

squares are those on 

Fig- 32. the two sides CD and 

DE Taking away the 

four equal triangles from each figure, it follows that the remaining 

square on the hypotenuse is equivalent to the sum of the re¬ 

maining squares on the other two sides. Use this theorem to find 

the altitude of an equilateral triangle whose side is 10. 

9. Square Equivalent to Rectangle.—A square equiva¬ 

lent to the rectangle ABCD, Fig. 33 (a), may be con¬ 

structed as follows: Make DE equal DC, bisect AE at 

F, draw a semi-circle withF as center and AlE as diameter, 

and produce CD meeting the circle at G. Then the 

square on DG is the square required. Complete this 

figure and the proof is as in Section 6 of this chapter. 

By constructing a rectangle equivalent to a parallelo¬ 

gram this method can be used to construct a square 

equal to a parallelogram. 

Fig. 33. 

By a similar method show that the square on the tangent GD, 
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Fig. 33 (6), is equal to the product of the whole secant AD and its 
external segment CD. Draw other 

secants from D and convince your¬ 

self that the truth is probably 

general. Also show that in the 

right triangle ABC, Fig. 34, the 

square on AB equals the rectangle 

contained by AD and AC; that the 

square on BC equals the rectangle contained by AC and DC, and 

that the square on BD equals the rectangle contained by AD and 

DC. 

The following formula gives a large number of right 

triangles by substituting for n the values 1, 2, 3, 4, 5: 

(2ft + l)2 + (2ft2 + 2ft)2 = (2ft2 + 2ft + l)2 
i * 

For ft = 1, this formula becomes (3)2 + (4) 2 = (5) 2 

Forn = 2, this formula becomes (5)2+ (12) 2 = (13)2 

For w = 3, this formula becomes (7)2+ (24)2 = (25)2 

The reader should construct very accurately a number of these 

right triangles and test them with a protractor and set square. 

10. Similar Triangles.—In geometry similar means 

having the same shape. Two tri¬ 

angles are similar when the angles 

of one triangle are equal to the 

angles of the other. This is not 

a sufficient condition for other 

figures, however. Thus the two 

rectangles (a) and (6), Fig. 35, 

are not similar tho their angles 

are equal. Fig. 35 
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On a base BC of 15 mm., Fig. 36, construct a triangle with 

sides AB and AC of 20 and 25 

mm. respectively. Then con¬ 

struct another triangle, Fig. 36 

with base 30 mm., and make 

the angle B\ equal to the angle 

B and angle Ci equal to angle C. 

This will make A\ equal to A. 

Hence the two triangles are 

equiangular and similar. 

Now measure the lengths of 

the sides of the triangles, which 

will be found to be as in the 

c, 

figure. Comparing the corresponding sides about the angles in 

each figure we find the same relation in each case. Thus, 

About C, the relation is 

About j9, the relation is 

About A, the relation is 

15 _ 3° _ 3 
25 “ 50 “ 5 

15 __ 30 _ 3 

20 ~ 40 ~ 4 

20 _ 40 _ 4 

25 ~ 50 “ 5 

This comparison of the numerical values of the 

length of two sides is called ratio. The statement of 

equality of two or more ratios is called 'proportion. We 

have found, in Fig. 36, that the corresponding sides 

about equal angles are proportional. 

The reader may construct for himself other figures 

taking different numbers for the sides of his first 

triangle. If we have a triangle whose sides are 3, 5, 

7, and a similar triangle with the side corresponding to 3 

having a length of 6, we shall find that the other sides 

are 10 and 14. 

11. Demonstration of Principles of Similarity.—The 

result reached in the two foregoing sections may be 

demonstrated more generally as follows: 
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Let the triangles ABC and A\BiC\, Fig. 36, be similar triangles 

and let them be placed so that AB rests on A\B± and AC on AiCi. 

Then BC is parallel to B\C\. Suppose AB and A\Bi commensu¬ 

rable, and let AB contain n units and A\Bi contain rq units. 

Further, suppose A\B\ divided into its units and thru the points 

of division draw lines parallel to BC and B\C\, Evidently the 

divisions of A±Ci are all equal, tho not necessarily equal to those 

of A\B\, Hence 
AB _ n _ AC 

Ai#i ~ nx~ AxCx 

In like manner the proportionality of the sides about the 

other equal angles may be shown. 

In Fig. 37 the triangles ABC and 

ADE are similar. The lengths of the 

sides are given, AB being equal to 32; 

BC to 24 and AD to 75. Then the 

property of the similar triangles gives 

DE 24 

75 

DE 

32 
24 

32 
X 75 = 

225 

4 
= 56 

Find all the other lines of the figure. 

12. Range Finders.—In the Navy, range finders are 

often constructed on the following principles: A base 

line, say 300 feet, is measured 

along the deck of a vessel over 

the keel. Telescopes are placed 

at each end turning on hori¬ 

zontal circles registering 0° each 

when pointed at each other. 

When a hostile ship appears in 

sight these telescopes are train¬ 

ed on some part of it, say a 

smokestack, and the angles read and telephoned. 

The computer constructs on a 1-foot base line a similar 

triangle by making the angles C and A, Fig. 38, equal 

Fig. 38. 
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to the observed angles. Then every line of the triangle 

represents a line 300 times its length on the sea triangle, 

and the range is determined with ease. 

13. Enlarging Figures.—The proportionality of the 

sides of similar triangles may be used to reduce or 

enlarge any sort of figures to 

any scale as seen by the 

diagram. This is very useful 

in drawing maps and enlarg¬ 

ing or reducing plans. An 

instrument called the panto¬ 

graph will do the work more quickly, but only those 

that are expensive are accurate. In Fig. 39 distances 

in the larger quadrangle ABCD are double those in the 

smaller one EFGH. 

14. Comparison of Areas of Similar Triangles.—Let any 

side, say the base AB of a triangle ABC, Fig. 40 (a), 

be divided into as many parts as it contains units of 

length. Thru the 

points of division 

draw lines parallel to 

the sides and thru the 

points of intersection 

of these lines draw 

lines parallel to the 

base. The triangle is thus divided into a number of 

equal triangles each one of the same shape as the 

original triangle. Then draw another similar triangle, 

as Fig. 40 (6). The latter contains 1 + 3 + 5 = 32 

small triangles; the former contains l+3 + 5 + 7 = 

42 small triangles. As the bases of the two triangles 

are 3 and 4 and their areas are to each other as 32 to 42, 

we are led to the statement that similar triangles are 

Fig. 40. 
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to each other as the squares of their corresponding sides. 

This is the most important theorem of plane geometry. 

15. Ratio.—Two numbers, quantities or magnitudes 

are regarded as of the same kind when one of them can 

be said to be greater than, equal to, or less than the 

other. 

The ratio of a magnitude to another of the same kind 

is the number expressing how much of the second is 

contained in the first. Thus, 3 apples are of 4 

apples, so their ratio is as 3 to 4, written 3 : 4 or . 

Ratio may, however, be also a new type of number. 

Thus, the Pythagorean Theorem says that the diagonal 

of a square is \/2 when the side is 1. 

If in Fig. 41 we attempt to divide AB = 1 into AC — V% it 

will be contained once, as far as Z), with remainder DC. Now 

draw DE at right angles to AC meeting BC at E, and connect 

AE. The two triangles ADE and ABE 
are right triangles with two sides AD and 

AE equal to AE and AB. They must 

therefore be equal triangles and, indeed, 

are two positions of the same triangle. 

This makes BE = DE, which also equals 

DC, for since D is a right angle and C is 

45°, that is, half of a right angle being 

half of a “kite”, then CED is also 45° 

and we know that equal sides are opposite 

equal angles. Notice also that the orig¬ 

inal square and the figure ABED are kites. 

Arithmetic taught us that if AB and 

AC have a common factor, their difference DC must have this 

same factor. If, then, we treat the triangle EDC as we treated 

the same shaped or similar triangle ABC we shall find that EC must 

have this common factor and that we have a new triangle CFG 
similar to ABC. We might continue indefinitely obtaining such 

triangles without ever obtaining an expression for our ratio in the 

c 

F 

B 
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numbers we are used to. Such ratios as \/2 and 1 are called 

incommensurable, because they have no common measure or 

common factor. We learned in Arithmetic that most numbers 

obtained by measurement are of this class and we shall find that 

all our geometrical truths hold whether the ratios are expressed by 

commensurable or incommensurable numbers. 

16. Proportion.—Proportion is a term applied to the 

equality of ratios: Thus -|- = is a proportion, some¬ 

times written 3 :4 = 6:8or3:4::6:8. The num¬ 

bers 3 and 6 are called antecedents, the numbers 4 and 

8 are consequents. Also 3 and 8 are called extremes, 

while 4 and 6 are means. 

A proportion can be generally expressed as -y — JL 

where the letters represent four numbers, any three of 

which are given. In such a case the fourth number is 

readily determined, inasmuch as we know that the two 

ratios must be equal. If we multiply both sides of 

this proportion by bd we get ad — be, for -JpX 'ti'd = 

CC X bjdt. Hence, the product of the means equals the 

product of the extremes. Here a and d are evidently 

the extremes. 

Numbers are sometimes repeated in a proportion as 

-f- = —, which gives b2 = ac and b = \/ac. Here b 
is a mean proportional between a and c and equals the 

square root of their product. Also, c is called a third 

proportional to a and b, just as in , d is called a 

fourth proportional to a, b and c. The proportion 

-f- = — = -fr- is a continued proportion. 
0 C CL 

In any proportion the sum of the antecedents is to the sum of 

the eonsequents as any antecedent is to its consequent. This 

may be readily seen in the special case = -g- = , where 
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3+6+ 9 18 

24 
6 
8~ 

9 

12' 

As proof of this, if -y 
4+8 + 12 

= -j-, then each of these ratios equals some number = r. 

If -y- = r, then a = hr 

If —j- = r, then c = dr 

If y- = r, then e = fr 

Hence, a -j- c + e = + dr + /r = (6 + d + /)r, 

, 1 P a+c+6 CL C 6 
therefore, ------ = r = 

6+rf+/ b d f 

17. Various Forms of Proportions.—These proportions 

can be put into a variety of forms, the following of 

which are evident: 

If = -y-, then this is true upside down that is, — = — . 
' Cl CL C 

b for in both cases we Also, if then 
b d 9 c d 

have ad — be by taking the product of the means and 

the extremes. 

The following theorem, or statement, is by the 

greatest of the ancient Greek geometricians, Archi¬ 

medes : 

Theorem: If three or more parallel lines intercept 

equal segments on one transversal (a straight line inter¬ 

secting other straight lines) they intercept equal segments 

on every transversal. 

Proof: If, as in Fig. 42, we draw the helping lines 

a", b'\ c", parallel to the lines in which a, 6, c, lie, we 

form parallelograms of which a and a", etc., are oppo¬ 

site sides and are therefore 

equal; so a", b", c" are all 

equal, being equal to equal 

things a, b, c. Hence the 

triangles 1, 2,3, are equal, 

since in addition to the 

equal sides a", b"9 c", they 

CL / 

A 
*i / \ * 

<*/ fX**- 

b / i" /*V 
c/ c//3V 

Fig. 42. 
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have two like placed angles made equal by the parallel 

lines. 

Theorem: If two 'parallels cut two intersecting trans¬ 

versals, the segments intercepted on one transversal are 

proportional to the corresponding segments on the other. 

In Fig. 43, the preceding theorem shows that if , 

., CE M „ CD 
then iTT, = -sr; therefore EB N DA 

CE 

Fig. 43. 

— EB. In this particular 

figure m — 4 and n — 3. 

Here is another case of the 

same truth. Since this pro- 
CP 

portion can be written ^ = 

DA 
££ and since the sum of the 

antecedents is to the sum of the consequents as any antecedent is 

to its consequent, it follows that ^ ^ ^. 

It can be readily shown from Fig. 43 (a) and (h) 

that similar triangles, that is triangles having the same 

shape, can be distinguished by any of the following 

facts: (1) They have their corresponding angles equal, 

(ft) they have their corresponding sides proportional, 

and (3) they have the sides about any equal angles 

proportional. The third fact was noted in Section 11 

of this chapter. 

18. Dividing Triangles.—A right triangle is divided into 

similar triangles by a perpendicular from the right angle. 

We can easily prove that the smaller triangle ADB, Fig. 34, is 

similar to the whole triangle ACB because as each contains the 

angle A and a right angle, the angles B and C must be equal (the 

angles of any triangle being equal to two right angles) and therefore 

the triangles are similar, having the three angles equal. Likewise 

CDB can be proved similar to ACB. 
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Theorem: The bisector of an angle of a triangle 
divides the opposite side in the ratio of the other two sides. 

A,- 

Draw the helping line CE Eig. 44, parallel to the bisector DA, 
which meets BA (extended) 
at E. That the numbered 
angles are equal is evident. 
Now since C2 = E, the tri¬ 
angle ACE is isosceles and 
AC = AE. From Fig. 36, 

BD BA 

" V / 

we know and if DC AE 
BD BA 

we replace AE by its equal AC, we learn that ^ - Xc ’ ^ich 

is what we wished to prove. 

19. Exterior Division of a Line.—The foregoing demon¬ 
stration is applicable to Fig. 45, where the angle bi¬ 
sected is the exterior angle. Here we come upon a 

new conception of division 
of a line called external 
division, where I>0 is thought 
of as divided at D into the 
two parts BD and DC, just 
as a journey from Phila¬ 

delphia to Pittsburgh might be thought of as two 
journeys—from Philadelphia to Chicago and from Chi¬ 
cago to Pittsburgh. When a line is divided internally 

and externally in the same ratio it is said to be divided 
harmonically. Evidently the bisection of the interior 
and exterior angle at the same vertex divides the oppo¬ 
site side harmonically. The reader should draw this 
to scale and verify the accuracy of the principle by 
measuring the lines carefully with his dividers. The 
converse of this theorem, that a line from a vertex of 
a triangle which divides the opposite side and cuts parts 
proportional to these other sides is a bisector, is also 
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true and can be easily proved by reversing all the 

steps. 

20. Constructions.—It is now evident that we can add 

and subtract lines by placing them end to end. It is 

also possible to multiply and divide lines geometrically. 

This is especially desirable when the lines are incommen¬ 

surable. To multiply the lines AC and AD, Fig. 46, 

we lay off AB, equal to one unit, and produce it till it 

equals one of our lines, 

say AC, Now at any con¬ 

venient angle lay off the 

other line AD, draw BD, 

E and thru C draw CE parallel 

to BD meeting AD (pro¬ 

duced) at E. Then AE is the product of AC and AD, 

From similar triangles , then since the product 

of the means equals the product of the extremes, AE = 

AD X AC, To divide AE by AC, we construct AB = 

1, and draw BD parallel to CE. The quotient is AD, 

The first part of the construction shows us how to 

find a fourth proportional to any three lines AB, BC 

and AD. If AC = AD, we would obtain a third pro¬ 

portional to two lines. 

To construct a mean proportional to the lines AB and 

BC, we place them end to end, as in Fig. 47, and re¬ 

garding them as a diameter, 

we construct a circle. The 

length of the perpendicular 

from the circle to B is a 

mean proportional between 

AB and BC. This becomes 

clearer when we draw the 

helping (dotted) lines AD 

and DC. Then as all the right triangles are similar, 
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it follows that the two smaller right triangles have 
their sides proportional, that is, ~ ^ , which 

shows that BD is a mean proportional to AB and BC. 

21. Dividing a Line Into Mean Sections.—To divide a 
line into mean sections is to find the part which shall 
be a mean proportional to the whole line and the re¬ 
maining part. This was called by the Greeks the 
Golden Section. In all properly made books, pictures, 
sections of house walls, etc., the short side is the mean 
section of the long side. The page of this book illus¬ 
trates the principle. 

As proof of construction, make BC of Fig. 48 = and draw 

a circle. Then draw the line ADCE and draw DF parallel to EB 
and EG parallel to DB. We can show that BF is the internal 
mean section of AB, while BG is the external mean section. 

Remembering that DE = 2 (BC) = AB, and that AB is a tangent 

to the circle, we see from the figure that ^ ^ ^ ; 

hence DE or AB is a mean section of AE. Further, as AB is 

similarly divided, FB is the internal mean section of AB, and BG 
is the external. It can also be shown that AH (equal to AD) 
is also the mean section of AB and therefore equals FB. 

Theorem:—An isosceles triangle whose unequal side 
is the mean part of the equal sides, has its vertex angle 
one-half each equal angle and therefore one-tenth of four 
right angles. 
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Proof: Make AD = BC, Fig. 49, and join DC. 

BC it is the mean part of AB, then 
BD _ DA 
DA ~ BA ~ 

Since AD = 
BC 
CA' Hence 

DC is a bisector of the angle C, (see section 

18 of this chapter) and since the angle B is 

common to the triangles DBC and ABC and 

the sides ^ ^ (as BC is the mean part) 

the triangles are similar and have their angles 

equal. Therefore, Angle A = B; 

the sum of all the angles of the triangle equals 

JLiB — 180°, and A equals JL$ = J_ 0f jgo0 
2 2 5 

or -Jq of 360°. 

22. Similar Polygons.—Similar polygons are polygons 

whose corresponding sides are proportional and whose 

corresponding angles are equal. 

Theorem: Two similar polygons can be placed so as 

to be similarly situated about any chosen point. 

A 

Make OX = B\Ai and parallel to BA 
in Fig. 50. Draw XM parallel to OB, 
MN parallel to AB, NP parallel to BC, 
etc., and the polygon MNPQR is the 

polygon AiBiC±DiEi, Fig. 50 placed to 

fit the conditions of the theorem. 

In Fig. 51 is shown how to construct 

on a given side RS i, a polygon similar 

to RSTUV, by drawing parallels. First 

draw diagonals from R to T and U re¬ 

spectively, then from Si, draw a line 

SiTi parallel to ST to the point at which 

it meets the diagonal RT. From that 

point Ti draw a line T±Ui parallel to 

TU, and from U, a line UiV± parallel 

to UV, and the construction is completed. Fig. 50. 
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Since the square on AC, Fig. 52, is 

equal to the sum of the squares on AB 
and BC, and since the square on AD 
equals the sum of the squares on AC and 

DC, evidently the square on AD equals 

the sum of the squares on AB,BC and CD, 
and as similar figures are to each other as 

the squares of their homologous (like 

placed) sides, we can construct on AD as a 

side a polygon which will equal the sum of 

similar polygons constructed on AB, BC, 
and CD as corresponding sides. 

Likewise a circle whose radius is 

AD equals the three circles whose 

radii are AB, BC, and CD. 

23. Regular Polygons.— 
Regular polygons have 

their sides equal and their 

angles equal. It can easily 

be proved that regular poly¬ 

gons of the same number of 

sides are similar. It is evi¬ 

dent on drawing one, as Fig. 53, that it may be inscribed 

in a circle and is composed of as 

many isosceles triangles as it has 

sides. Evidently if we could con¬ 

struct the vertex angle of this 

isosceles triangle, we could con¬ 

struct the polygon. 

As each angle of an equiangular and 

therefore equilateral triangle is 1 * 1 of 180° = 60° = of 360c 
3 - 6 

we can construct a regular hexagon in a circle by using the radius 

as a chord. We could construct the regular triangle in the same 

circle by taking every other vertex. Polygons of twelve, twenty- 

' four, etc., sides could be constructed by bisecting arcs. 
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The square can be constructed by drawing two perpendicular 

diagonals and connecting their ends. Polygons of eight, sixteen, 

etc., sides are easily constructed by bisecting arcs. 

By constructing a mean section of the radius and using it as 

a chord we get an isosceles triangle whose vertex angle is ■— of 

360°. Hence the mean section of a radius is the side of a decagon 

(ten-sided polygon) in the same circle. Polygons of five, twenty, 

forty, etc., sides can then be constructed. 
G. 1 1 1 
bmce -— = Trwe can con- 

o 10 15 

struct a fifteen-sided polygon by 

using chord BC, Fig. 54, as a side, 

where AB is the side of a hexagon and 

AC a side of a decagon. 

The eminent mathematician Carl 

Frederick Gauss when 19 years of age 

constructed with ruler and compass a regular polygon of 17 sides 

and proved its correctness, but the proof is extremely difficult and 

need not be given here. 

These are all the types of regular polygons con- 

structible by ruler and compasses. 

The altitude of each equal isosceles triangle in a regular 

polygon is called the apothem. 

As the area of a triangle equals 

one-half the product of its base 

by its altitude, if we call the sum 

of the sides of the polygon, that 

is, the sum of the bases of these 

triangles, the perimeter, we will 

have the area of a regular poly- 

F>g-55- gon equal to A- the perimeter 
Jkf 

times its apothem. In Fig. 55 AB is the apothem. 

24. Area of a Circle.—As the number of sides of a 

regular polygon is increased and it assumes nearer and 



86 MODERN AMERICAN EDUCATION 

Fig. 56. 

nearer the form of a circle, the 

perimeter of the polygon approaches 

the circumference, and as the apo- 

them is the radius we say the area of 

a circle is one-half the circumference 

multiplied by the radius. If the 

sectors, Fig. 56, were taken from 

a circle and fitted as in Fig. 57, 

the more there were of these 

sectors the more they would resemble a parallelogram 

whose base was half the circumference and whose 

altitude was the radius. 

The perimeters of any two regu¬ 

lar polygons of the same number 

of sides must be to each other as 

their apothems, since homologous 

parts of similar figures are in pro¬ 

portion. This is also true of cir¬ 

cles. If Ci and C2 represent cir¬ 

cumferences of two circles, and Di and D2 their diam¬ 

eters, we have which from the theory of 
2 

p /~i 

proportion may be written hence the ratio 

of the circumference of the diameter is a constant, 

called in modern terms pi from the Greek letter 7r. 

Archimedes calculated the value of the ratio to be between 

8— and 3^-. It has been worked out to 707 decimals and proof 

has been furnished that its value cannot be found exactly as a 

decimal. By taking sides of inscribed and circumscribed polygons 

of 4, 8, 16, etc., we can find by long and careful tho not difficult 

computations that with a diameter equal to 1, the length of the 

perimeter of the inscribed polygon of 512 sides is 3.14137, while 

that of the circumscribed polygon is 3.14163, showing that 
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3.1416, which is generally used, is a close approximation. A 

closer value, and one easy to remember, is the fraction 

25. Loci of Points and Sets of Lines.—We have learned 

that in a plane the number of straight lines and points 

is uncountable. It is, however, a more restricted state¬ 

ment to say that a point is on a line, than to say that a 

point is in a plane. It reduces the statement from two 

dimensions, length and breadth, to one—length. Now if 

we say that the point also lies in another given straight 

line, its position is completely determined, for two 

straight lines have but one point in common. 

Reciprocally, a line in a plane gives a choice in two 

dimensions, but if the line passes thru 

a given point in the plane, we are re¬ 

stricted to the 'pencil of lines thru that 

point, as in Fig. 58. Our choice is now 

in one dimension—length. If we fur¬ 

ther know that the line passes thru a sec¬ 

ond point, it must be on a second pencil 

thru that second point. There is only 

one line common to these two pencils, for two points 

have only one straight line in common. 

Of course, two straight lines may coincide, when they 

would have all their points in common, or two points 

may coincide, when they would have each line in the 

pencil in common. In general, however, two conditions 

leave us only a finite or countable choice of points or 

lines. For example, if it is required that a point shall 

lie in a given line and at a given distance from a given 

point, it is evident there are only two points, one on 

either side of the given point, which satisfy the con¬ 

ditions. 
If instead of the condition we think of the figure 
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Fig. 59. 

\d .d id 'd 

which replaces it, we call 

this figure in one case a 

locus of 'points, and in an¬ 

other a set of lines, satisfying 

the given condition. Evi¬ 

dently the perpendicular bisector CD of the line AB, 
Fig. 59, is the locus of points equidistant from A and 

B, for we know that every point in this perpendicular 

bisector is equidistant from A and B, that every point 

equidistant (as E) is on the perpendicular bisector, or 
that every point not on the perpendicular bisector 

(as F) is not equally distant. 

It is equally true that the set of 

lines equally inclined to two given 

lines, A A, BB, Fig. 60, which are 

not parallel, consists of two sets 

of parallels, cc and dd. Each set 

is parallel to one of the bisectors 

EE and FF of the angles between 

the two lines, hence the sets are perpendicular to each 

other. It also can be shown easily that the bisectors 

of the angles between two 

~ lines form the locus of points 

_ equally distant from the two 

lines. If the two lines were 

parallel, the locus would be a 

single line parallel and mid-way between them, as 

shown in Fig. 61. 

Let us now find the set of lines which have equal 

distances from two given points. 

-If the two points are to lie on the 
same side of the lines, the sets 
are parallel to the line AB, Fig. 

F 8 62. If A and B are to lie on 
opposite sides of the lines, the lines are a pencil of 

A <1 [d F id ,d 'd ^8 

Fig. 60. 

Fig. 61. 
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-\ 

W 

-1 \ 

s' I ' 

Fig. 63. 

lines thru the mid-point of the line AB, as shown in 

Fig. 63. There are two sets of lines (dotted in Figs. 

61 and 62) to be considered, just as there are two dis- 

, tinct lines which constitute the 
\ 1 

locus of points in Fig. 60. 

26. Intersection of Loci.—We 

noticed that two conditions were 

necessary to locate or determine, 

finitely, a point or a line. The 

points which shall be at equal distances from two 

given points A and B, in Fig. 64, and also at equal 

distances from two given 

lines aa and bb, will evi¬ 

dently be where the per¬ 

pendicular bisector of AB 
meets the bisectors of the 

angles between the lines 

aa and bb. There are in 

rig. 64 general two points x, x, 

where the two loci cross each other. But the per¬ 

pendicular bisector of AB might be parallel to one of 

the bisectors of the angles between the lines aa, bb, 

hence could cut only one of them, and there would be 

one point x. If, however, the perpendicular bisector 

of AB coincided with one of the bisectors of the angles 

between the lines aa, bb, there would be an uncountable 

number of points x. 

Lines which are equally inclined to two given lines 

aa and bb. Fig. 65, and 

are at equal distances 

from two given points A 
and B, are evidently 

parallel to the bisectors 

of the angles between aa 

and bb and coincide with Fig. 65. 
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either the lines parallel to AB or the pencil thru the 

mid-point of the line AB. There are in general two 

lines, but only one is shown in the figure, the other 

being left to the ingenuity of the reader. 

27. The Circle as Locus.—A circle constructed by com¬ 

passes can evidently be considered as the locus of a 

point at a given distance from a given point. From 

Fig. 66, the locus of the mid-points of a set of parallel 

chords is a diameter AB bisecting the arcs and the 

angles at the center subtended by the 

chords. It is also perpendicular to the 

chords. Evidently equal chords are 

equally distant from the center and 

are tangent to a circle whose radius is 

their common distance from the center 

of the original circle. This second 

circle is called the envelope of the set of 

chords. If the ruler AB be fixed 

as in Fig. 67 to a center C, it 

will trace out a circle as illus¬ 

trated on a plane strewn with sand 

and illustrate an “envelope”. 

If a real-estate dealer is asked 

to purchase a lot one mile from 

a straight railroad and four 

miles from a town which is 

two miles distant from this 

railroad, he has four choices of 

location as shown at x, x, x, x in 

Fig. 68. An endless variety of 

similar problems is open to the 

ingenious reader. 

In Fig. 69 we add to the “kite” OBPA the links AQ, 

QB, RQ, all of which are made equal to OR, #hich 

Fig. 67. 

i nm-h+HlM ntunimti 11- 

—K~ 

Fig. 68. 
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itself is equal to AP 

or PB. When 0 and 

Q are fixed, Q will 

p, move on a circle and 

the angle OQiQ will 

be a right triangle 

and similar to OPPi 

P if PPi is perpendic¬ 

ular to OP. This 

makes OQi : OQ = 

OP : OPi whence 

OQi X OPi = OQ X 

OP. 

Now (OA)2 = (ON)2 + AN2 

(AP)2 = (PN)2 + AN2 

Therefore (OA)2 - (AP)2 = (ON)2 - (PN)2 = 

(ON - PN)(ON + PN) = OQ X OP. 

And since OA and AP are given lengths, OQ X OP 

is always the same and P must move so that PPi is 

perpendicular to OP and hence the moving point P 

has a straight line for its locus. All the parts of the 

figure can be measured by compasses and dividers, 

and so for the first time we are actually able to draw 

a straight line without copying. 

REVIEW 

1. What is a trapezoid? A trapezium? 

2. Give a brief description of the Great Theorem of Pythagoras. 

3. What does “similar” mean? Explain your answer. 
■ 

4. State and explain the relationship between ratio and pro¬ 

portion. 

5. What is a “ pencil of lines ”? A locus of points? 

6. How do you obtain the “ envelope ” of a set of equal chords ? 



CHAPTER VI 

SOLID GEOMETRY 

1. Lines and Planes.—We learned at the beginning of 
Plane Geometry that three points determine a plane 
and that the intersection of two planes is a straight 
line. We spoke of straight lines as boundaries of the 
parts of a plane, but when we do not wish to take 
note of the planes being cut we can refer to straight 
lines as lying in the plane. 

There is evidently an uncountable number of lines 
thru each point of a plane. A line is said to be per¬ 
pendicular to a plane if it is perpendicular to every 
one of the lines in the pencil thru the point where it 
meets the plane. This definition can be much simpli¬ 
fied, as follows: 

Theorem: If a straight line is 'perpendicular to each 

of two other straight lines at their point of intersection it 

is perpendicular to the plane of those lines. 

Let AB in Fig. 70 be perpendicular to 

CB and DB at the point B Now prove 

that AB is also perpendicular to EB or 

any other line thru B in the plane MN 
of these two lines CB and DB. 

Proof: Draw any lines in the plane 

MN cutting these three lines CB,EB, and 

BD in the points (7, E, and D. Now 

produce AB its own length to F, and join 

A and F to the three points C, E, D. 
Notice that tho the whole figure is a 

solid, it is bounded by planes. Now 

AC = FC since the right triangles ABC 
' SindFBC are equal; similarly AD = FD. This makes the triangles 

(92) 

Fig. 70. 
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ACD and FCD equal, because their three sides are equal; hence 

the two angles ACE and FCE are equal. As the two triangles 
ACE and FCE are equal, having two sides and the included angle 

equal, it follows that AE = FE. We now have the two triangles 
ABE and FBE equal because their three sides are equal; therefore, 

the angle ABE = the angle FBE. This by plane geometry makes EB 
a perpendicular since the two triangles are in the same plane. 

Now as AB is perpendicular to any lineEB, it is perpendicular to 

every line thru B, as we had to prove. 

We could prove that all perpendiculars to a given 

line at a given point lie in a plane perpendicular to 

the line at that point and that there can be but one plane 

thru a given point perpendicular to a given line. It 

is also true, as in plane geometry, that the perpendicular 

from a point to a plane is the shortest line and that 

equal oblique lines meet the plane at equal distances 

from the foot of the perpendicular. 

2. Dihedral Angles.—The angle between two intersect¬ 

ing planes is a dihedral. The intersection of the two 

planes is called the edge of the dihedral angle. This is 

measured by the plane angle formed by perpendiculars 

in each plane to the edge at the same point. Dihedral 

angles are classified as acute, right, adjacent, supple¬ 

mentary, etc., in the same manner as plane angles. 

Evidently a plane passed thru a line perpendicular to 

another plane will form a right dihedral angle and the 

planes will be perpendicular to each other. This plane 

might be the particular one determined by the per¬ 

pendicular and any other line either parallel or oblique 

to the plane. It is evident that there is but one plane 

determined by this perpendicular and the other line, 

hence only one plane perpendicular to another plane 

can be passed thru any line not perpendicular to the 

plane. The intersection of these two planes is called 
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the 'projection of the oblique line on the plane. The 

angle a line makes with its projection is the least 

angle it makes with the plane and is defined as the 

angle with the plane. 

Theorem: If a line in a plane is perpendicular to 

the projection of a line where the line and its projection 

meet, it is also perpendicular to the line. 

We want to prove that if CD in 

Fig. 71 is perpendicular to BE, the 

projection of AE, it is also perpendic¬ 

ular to AE. If we make CE — DE 
and draw the other lines of the 

figure, BC will equal^D, and because 

of this AC will equal AD. This 

makes the angles DEA and CEA 
equal and therefore right angles, 

because of the equality of the tri¬ 
angles DEA and CEA which have three sides equal. 

Theorem: Two straight lines perpendicular to the 

same plane are parallel. 

If we draw FE thru D perpendicular to BD in Fig. 72, then AD 
will be perpendicular to FE by the preceding theorem. And as 

CD was perpendicular to 

the plane it is by defi¬ 

nition perpendicular to 

FE. As all perpendicu¬ 

lars to the same line at the 

same point are in a plane, 

the three lines BD, AD, 
Fig. 72. and CD are in a plane. 

Also, as AB joins two points of this plane, it is in this same plane, 

and AB and CD are two perpendiculars to the same line and by 

plane geometry are parallel. 

3. Parallel Planes.—A line and a plane or two planes 

are said to be parallel if they will not meet when ex- 
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tended. Evidently a plane containing only one of 

two parallel lines is parallel to the other. There are 

theorems about parallel planes corresponding to these 

about parallel lines. 

Theorem: The intersections of two parallel planes 

by a third plane are parallel lines. 

Evidently AB and CD, Eig. 73, are in 

the same plane SR and cannot meet, 

since they are in the parallel planes MN 
and PQ. Hence they are parallel. 

Theorem: If two straight lines 

are intersected by three parallel 

planes, their corresponding segments 

are proportional. 

Let AB and CD, Fig. 74, be intersected by the parallel planes 

MN, PQ, RS, in the points A, E, B and 

C, F, D. 

To prove that ^ ~ draw AD cut¬ 

ting the plane PQ in G and draw AC, 
BD, EG and FG. Then EG is parallel 

to BD, and GF is parallel to AC. There- 

„ AE AG , CF AG „ Al 
lore r77T = ttt;and77; ~ 777* Consequently, 

Fig. 74. 

EB GD 

AE =Cp 
EB ~FB' 

FD GD 

Theorem: Between two straight lines not in the 

same plane, there can be one common perpendicular and 

only one. 

Let DC and AB, Fig. 75, be the two lines If AG is drawn 

parallel to DC it will, with AB, determine a plane MN, and if the 
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plane PQ is passed perpendic¬ 

ular to MN it will intersect 

MN in DiCi, Ci being on AB. 
Now draw CiC perpendicular 

to MN and it will also be 

perpendicular to AB and D\C\. 
As CCi is evidently in PQ, it 

must be perpendicular to DC, 
which is parallel to D\C\, and 

therefore is the perpendicular required. No other common per¬ 

pendicular such as EA can be drawn, for any such perpendicular 

would have to coincide with EF, which is perpendicular to M 
and does not pass thru Ci, the only point of AB in the intersection 

of the two planes. 

4. Polyhedral Angles.— The opening of three lines or 

planes which meet at a common point is called a poly¬ 

hedral angle. The corner of a room is generally a tri- 

rectangular trihedral angle—trihedral because three 

planes meet and trirectangular because the plane 

angles are right angles. 

If the faces of a polyhedral angle S-ABCD, Fig. 76, are produced 

thru the vertex S, another polyhedral angle S-A1B1C1D1 is 

formed, symmetrical with respect to S-ABCD. The face angles 

ASB, BSC, etc., are equal, respectively, to the face angles .di&Bi 

B\SCi, etc. 

Also the dihedral angles SB, etc., are equal, respectively, 

to the dihedral angles Ndj, SBi, 
etc. (The second figure shows a 

pair of vertical dihedral angles.) 

The edges of S-ABCD are 

arranged from left to right (counter 

clockwise) in the order SA, SB, 
SC, SD, but the edges of S- 
A\B\C\Di are arranged from 

right to left (clockwise) in the 

Fig- 76- order SAi, SBi, SCi, SDi—that 
is, in an order the reverse of the order of the edges in S-ABCD. 



SOLID GEOMETRY 97 

Two symmetrical polyhedral angles, therefore, have all their parts 
equal, each to each, arranged in reverse order. 

Theorem: The sum of any two face angles of a tri¬ 

hedral angle is greater than the third face angle. 

If the face angle ASC, Fig. 77, is greater than ASB or BSC it is 

sufficient to prove their sum greater than 

ASC. We will construct the angle ASD 
equal to ASB and take SD = SB and pass the 

plane ABC thru B and D; then the triangle 
ASD equals ASB and AD equals AB, and 

as AC is less than AB + BC, so, taking away 

equals, DC is less than BC. As the triangles 

DSC and BSC have two sides equal, but DC 
F S 77 less than BC, the angle DSC is less than BSC. 

Adding the equal angles ASD and ASB we have ASC less than 

ASB + BSC. 

Theorem: The sum of the face angles of any convex 

polyhedral angle is less than four right angles. 

Let S, in Fig. 78, be a convex polyhedral angle, and let all its 

edges be cut by a plane, making the section ABCDE. 
To prove that the angle ASB plus the 

angle BSC, etc., is less than four right 

angles, first from any point 0 within the 

polygon draw OA, OB, OC, OD, OE. The 

number of the triangles having the common 

vertex 0 is the same as the number having 

the common vertex S. Therefore, the sum 

of the angles of all the triangles having the 

common vertex S is equal to the sum of the 

angles of all the triangles having the common vertex 0. 
But in the trihedral angles formed at A, B, C, etc., the angle 

SAE plus the angle SAB is greater than the angle EAB, and the 

angle SB A plus the angle SBC is greater than the angle ABC, etc., 

by the previous theorem. 

Hence, the sum of the angles at the bases of the triangles whose 

common vertex is S is greater than the sum of the angles at the 

& 
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bases of the triangles whose common vertex is 0. Therefore, the 

sum of the angles at the vertex S is less than the sum of the angles 

at the vertex 0. But the sum of the angles at 0 is equal to four 

right angles. Therefore, the sum of the angles at S is less than 

four right angles. 

5. Prisms, Parallelopipeds and Other Polyhedrons.—A 

polyhedron is a solid bounded by planes and is convex 

if no face produced will again intersect the polyhedron. 

When a polyhedron has four faces it is called a 

tetrahedron; 

Fig. 79. 

one of six faces, a hexahedron; one of eight faces, an 

octahedron; one of twelve faces, a dodecahedron; one of 

twenty faces, an icosahedron. The five solids in Fig. 

79 are all the regular polyhedrons possible, since the 

sum of the faces at each vertex must be less than four 

right angles. 
A prism, illustrated in Fig. 80, is 

a polyhedron two of whose faces are 

equal polygons in parallel planes and 

whose sides are opposite sides of the 

parallelograms which form its other faces. 

When the parallelograms are rectangles 

we have a right prism whose lateral 

edges AB are perpendicular to its 

bases. When all the faces are parallelo¬ 

grams we have a parallelopipeds as 

shown in Fig. 82, and when all the faces 

are rectangles we have a rectangular 

parallelopiped Fig. 83. If these rec¬ 

tangles are squares we have a cubes Fig. 81. 



SOLID GEOMETRY 99 

Fig. 84. A right section of a prism is made as shown 

in Fig. 81 by a plane perpendicular to its edges. 

As the faces of a prism are parallelograms, the perim¬ 

eter of the right section is the sum of the altitudes of 

these parallelograms and the lateral area is equal to 

the product of this perimeter by a lateral edge. 

Theorem: An oblique prism is equivalent to a right 

prism whose base is equal to a right section of the oblique 

prism and whose altitude is equal to a lateral edge of the 

In Fig. 85 the top and bottom portions 

AB and EF are exactly equal, but the 

two upper parts AB and CD form a 

right prism and the two lower parts CD 
and EF are an oblique prism; hence the 

theorem. 

By means of this theorem we 

can prove that a plane passed thru 

two diagonally opposite edges of a 

parallelopiped divides it into two 

equivalent triangular prisms as illustrated in Fig. 8(>. 

We assumed from cubic measure 

in arithmetic that the volume of a 

rectangular parallelopiped was equal 

to the product of its three dimensions, 

Fig* 86. and it is shown in Fig. 87 that any 

parallelopiped is equivalent to a rectangular parallel¬ 

opiped with the same base and altitude. In the figure 

oblique prism. 
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B, C and D are equal and their altitudes are the same. 

Therefore the volume of each equals the base by the 

altitude. 

As the triangular prism in Fig. 86 has half the base 

and half the volume, its volume is also equal to the 

product of its base by its altitude and as all prisms 

can be divided into triangular prisms as shown in Figs. 

88 and 89, the same is true of all prisms. 

As a prism can have 

i any number of sides, 

J a cylinder can be re¬ 

garded as the limit 

of a prism when the 

number of sides is 

increased indefinitely. 

The lateral area of 

a cylinder equals the circumference multiplied by the 

altitude, and the volume equals the area of the base by 

the altitude. As the base is a circle, the formula for 

lateral area is S = %ttrh, and for volume V = irrVi, 

where r = radius of base and h = altitude. 

Fig. 88. Fig. 89. 

6. Pyramids.—A pyramid is a polyhedron of which 

one face called the base is a polygon, while the other 

faces are triangles meeting at a common vertex and whose 

bases are the sides of this polygon. If the polygon is 

regular and the perpendicular from the vertex meets 

its center, the pyramid is regular and the perpendicular 

is called the axis. The portion of a pyramid between 
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its base and a section cutting all the lateral edges is a 

truncated pyramid and when the section is parallel to 

the base this portion is called a frustrum. This frus- 

trum is evidently the difference between two pyramids. 

As the faces of a regular pyramid are isosceles triangles 

and the faces of the frustrum of a regular pyramid are 

isosceles trapezoids, the lateral area is obtained by 

multiplying half the slant height by the sum of the 

perimeters of the bases. 

Theorem: If a pyramid is cut by a plane parallel 

to the base: 

(1) The edges and altitude are divided proportionally. 

(2) The section is a polygon similar to the base. 

(3) The section is to the base as the square of the dis¬ 

tance from the vertex is to the square of the altitude of the 

pyramid. 

v vx 

Referring to Fig. 90, (1) if straight lines are intersected by 

parallel planes their corresponding segments are proportional. 

Va _Vb _Vc 
VA ~ VB ~ VC 

etc. 

(2) By similar triangles 
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Dropping parentheses, homologous sides are proportional, also 

homologous angles are equal as sides are parallel. Therefore 

polygons are similar. 

, . abc _ ab2 Va2 _ Vo2 

W ABC ~ AB2 ~ VA2 ~ TO2 

Theorem: Two triangular pyramids having equivalent 

bases and equal altitudes are equivalent. 

Let 8-ABC and Fig. 91, be two triangular pyramids 

having equivalent bases situated in the same plane, and equal 

altitudes. To prove that S-ABC equal divide the 

altitude into n equal parts, and thru the points of division pass 

planes parallel to the plane of the bases, forming the sections 

DEF, GUI, etc., D\E\F\, etc. 

In the pyramids S-ABC and inscribe prisms whose 

upper bases are the sections DEF, GUI, etc., DiE\Fi, GiHiIi, 
etc. The corresponding sections are equivalent, therefore, the 

corresponding prisms are equivalent. 

Denote the sum of the volumes of the prisms inscribed in the 

pyramids S-ABC by F, and the sum of the volumes of the corre¬ 

sponding prisms inscribed in the pyramid hy V\. 
Then V is equal to Fj. 

Now let the number of equal parts into which the altitude is 

divided be indefinitely increased. The volumes F and V± are 

always equal, and approach as limits the pyramids S-ABC and 

(Si-A]£iCi, respectively. 

Hence S-ABC is equal to S\-AiBiCi. 
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Theorem: The volume of a triangular pyramid is 

equal to one third of the product of its base by its altitude. 

Let V denote the volume, B the base, and H the altitude, 

of the triangular pyramid S-ABC, Fig. 92. To prove that 

V = -\~B X H, on the base ABC construct a prism ABC-ESD, 

having its lateral edges equal and parallel to SB. The prism is 

composed of the triangular pyramid S-ABC and the quadrangular 

pyramid S-ACDE. Thru SE and SC pass a plane SEC. This 

plane divides the quadrangular pyramid into the two triangular 

pyramids S-ACE and S-DEC, which have the same altitude and 

equal bases, as EC is a diagonal of a parallelogram. Therefore 

S-ACE is equal to S-DEC. 

The pyramid S-DEC may be regarded as having ESD for its 

base and C for its vertex, and is, therefore, equivalent to S-ABC. 
Hence, the three pyramids into which the prism ABC-ESD is 

divided are equivalent and, therefore, the pyramid S-ABC is 

equivalent to one third of the prism. But the volume of the 

prism is equal to B X H; therefore volume of pyramid is given by 

the formula V = ~~ B X II. 

As cones can be regarded as the limits of pyramids 

when the number of sides is indefinitely increased, the 

lateral area of a cone equals one-half the slant height 

by the circumference of the base, and the volume 

equals one-third the altitude by the area of the base. 

The formulas are $ = tvrl, and V = -4- TvrVi, where 
o 

S = lateral surface, V = volume, l = slant height, 

r = radius of base and h = altitude. 
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7. The Prismoidal Formula.—A prismoid has as bases 
two polygons in parallel planes, as shown in Fig. 93. 

Its lateral faces are either triangles or trapezoids whose 

bases are sides of one polygon and the opposite vertex 

or base is common to the other polygon. 

Theorem: The volume of a 'prismoid is equal to the 

product of one-sixth of its altitude into the sum of its 

bases and four times its mid-section. 

Let V denote the volume, B and b the bases, M the mid-section, 

and H the altitude, of a given prismoid. Then the formula is 

V = -\-H (B + b + 4 M). 

This formula can be used to find the volume of all the solids 

we have used in geometry. It is true not only for the prism, 

pyramid, and frustrum of a pyramid, but also for the cone and its 

frustrum, the cylinder and the sphere. The proof is indicated by 

the figure. 

Fig. 93. 

8. Similar Solids.—We learned in Plane Geometry 

that the triangle was rigid and that all polygons could 

be decomposed into triangles. In Solid Geometry the 

tetrahedron is likewise rigid and all polyhedra can be 

decomposed into tetrahedrons. Tetra means four and 

tetrahedrons have four faces, all of which, we will 
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understand, are triangles. The tetrahedron is also 
called a triangular pyramid. Any two opposite edges 
of a tetrahedron may be regarded as diagonals and 

three different quadrilaterals in space considered. 

Theorem: The volumes of two tetrahedrons, having a 
trihedral angle of the one equal to a trihedral angle of the 

other, are to each other as the products of the three edges of 
these trihedral angles. 

Let V and V\ denote the volumes of the two triangular pyramids 
S-ABC and Figs. 94 and 95, having the trihedral 
angles S and Si equal. 

V SA X SB X SC 
To prove that y- = x SlB1 xsic[> place tlie Pyramid 

S-ABC upon so that the trihedral angle S shall coincide 
with S±. Draw CD and C\D perpendicular to the plane 
and let their plane intersect SiAiBi in SiDD. 

The faces S±AB and may be taken as the bases, and 
CD, C\D as the altitudes, of the triangular pyramids C-SiAB 
and Ci—S±AiBi, respectively. 

Then 
S^B X CD SXAB 

X 
CD 

S^AiBi X C\D fiq .4 ^ iq CiD 

But s’tSi ~ ^rx^irli aS triangles that have equal 

angles are to each other as the sides about the equal angles. 

Therefore 
SiA 

X 
SiB 

Fi S1B1 

If the tetrahedrons are similar 

SB SC 

X 
SiC 
S1C1 

St A l^i SiB iDi S1C1 
whence 

SjA XSxB XSjC 
S±Ai X SiBi X S1Cl 

SA3 
SXAi3 
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And as similar polyhedrons can be decomposed into similar 

tetrahedrons, this enables us to say that similar solids are to each 

other as the cubes of their like dimensions. 

If homologous, that is, like placed lines of two similar 

polyhedrons are six and seven inches respectively, 

then the volumes are as f x ® * ** = , which is in ac- 

cordance with the teaching of arithmetic that if the 
edge of one cube is three times the edge of another its 
volume is 3 X 3 X 3 = 27 times as great. 

Two important theorems about similar figures are: 

1. Similar plane figures are to each other as the squares 

of homologous lines. 

2. Similar solid figures are to each other as the cubes 

of homologous lines. 

Bearing these theorems in mind we will consider two 

similar tetrahedrons, where planes trisect three edges, 

as in Fig. 96. 

& 

Fig. 96. 

Evidently the pyramids V-A\BiCi, 
V-A2B2C2, V-ABC are similar and are 

to each other as l3 to 23 to 33, that is, 

as 1:8: 27. Thus V-AiB±C\ is of 

V-ABC, and V-A2B2C2 is -Jr of V-ABC. 

By subtraction it is readily seen that the 

frustrum (AiB±Ci, A2B2C2) is — 

of the whole figure V — ABC, 

and that (ABC - A2B2C2) is fy “ gV = 

of the whole figure. Thus by dividing 

the edges into three equal parts we divided this volume into 

parts which were as 1 to 7 to 19. 

As the triangles A^B\Ci, A2B2C2, ABC are similar they are as 

12 to 22 to 32 or as 1 : 4 : 9, which reminds us of such expressions 

as the physical law that light varies in intensity as the square of 

its distance from the source. It is evident that these principles 

hold when the pyramids have bases other than triangles. 
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Fig. 97. 

9. Spherical Geometry.—A sphere is a solid bounded 

by a surface all points of which are equally distant 

from a point within called the center. This solid may 

be generated by the revolution of a semicircle, as ACB 

in Fig. 97, about its diameter AB as an axis. 

The point C describes a great circle of the sphere, 

that is, a circle whose plane passes thru the 

center of the sphere; all other points on 

the generating semicircle describe small 

circles. At B and A are poles of all these 

circles. In Plane Geometry we defined 

a straight line as the shortest distance 

between two points; in spherical geometry 

the arc of a great circle is the shortest distance between 

two points. This is why we sail quite a distance north 

in going to Europe. Evidently every section of a sphere 

is a circle and all points of a circle are equidistant 

from each pole. A great circle is at a quadrant’s dis¬ 

tance from its poles. 

The radius of a sphere is a straight line from the 

center to the periphery or surface of the sphere. 

The diameter of a sphere is a straight line thru its 

center and terminated by two points of its surface. 

The tangent of a sphere is- a straight line which 

touches the sphere at only one point of its surface. 

Given a material sphere to find its diameter. 

Fig. 98. Fig. 99. Fig. 100. 
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Suppose we wish to find the diameter of a ball represented by 
Fig. 98. With P as a pole and with a pair of curved compasses 

opened any distance PB, we construct a circle and mark any 

three points ABC on it. Measuring the three distances, AB, BC, 
CA with the compasses, we next construct on a piece of paper the 

triangle ABC, and by bisecting its sides, drawing perpendiculars 

and circumscribing the circle, we have Fig. 99, in which DB is 

the radius of the circle we drew. Now passing to Fig. 100 we 

first draw the line DB equal to this radius then a line PD, perpendic. 

ular to DB. With a radius equal to BP, the first opening of the 

compasses, and with a center at B, we construct an arc cutting the 

perpendicular at P. If now we draw BPi perpendicular to BP, 
PPl will be the diameter of our ball or sphere, for the angle 

PBPi being a right angle is inscribed in the generating semi¬ 

circle. By similar process it can be shown that a sphere may be 

inscribed in any tetrahedron and another sphere about it. 

10. Figures on the Surface of a Sphere.—The only fig¬ 

ures on a sphere that are considered in elementary 

geometry are those whose sides are great-circle arcs. 

The angle between any two arcs is defined as the 

angle formed by the tangents CiA, BiA, Fig. 101, to the 

arcs at this point of meeting. It is also the plane angle 

COB of the dihedral angle of the planes of these circles, 

hence arc CB (often written CB) at a quadrant’s distance 

from A measures the angle A. 
The theorems about 

equality of triangles 

and their angles corre¬ 

spond to those of plane 

geometry. 

In Fig. 102 is shown 

a spherical pyramid 0 - 

ABC, which illustrates 

the method of proof of many truths in spherical geom¬ 

etry connecting a spherical polygon with the polyhedral 

angle at the center. 

Fig. 102. 
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We see that the angle AOC has the same number of degrees 

as the arc AC, etc. Since we know that angle AOC + COB is 

greater than AOB, so AC + CB is greater than AB. Also, 

since AOC + COB + AOB is less than 360°, AC + CB + BA is less 

than 360°, and the sides of a spherical polygon contain less 

than 360°. 

If from the vertices of a spherical triangle 

as poles, arcs of great circles are described, 

eight other spherical triangles will be formed. 

The one whose vertices lie nearest to those of 

the original triangle is called the polar triangle. 
From the manner of construction either A\B\Cx 
or ABC in Fig. 103 is the polar triangle of the 

other. 

Fig. 103. 

11. Angles of Spherical Triangles.—The next of our 

theorems enables us to say that if the angles of a 

spherical triangle are equal the sides of its polar tri¬ 

angles are also equal and reciprocal. 

Theorem: In two 'polar triangles, each angle of one 

has the same measure as the supplement of that side of 

the other of which its vertex it is the pole. 

Triangles ABC and A\B\C\ of Fig. 104 are 

polar, the point A being the pole of the arc 

B\C\, etc. Let a, aj, etc., be the measures 

in degrees of the arcs BC,B\C\, etc., respect¬ 

ively, and let A, Ax, etc., be the measures in 

degrees of the angles A, A\, etc. Then, 

i A —180 —ai; 5 = 180-6!; C = 180-ci. 

A\ —180 —a; 5i = 180-6; Ci = 180-c. 

In proof of this, extend the arcs AB and 

AG to meet the arc BiC\ at D and E, respectively. Then, since 

B\ is the pole of the arc AE, the arc B{E — 90. 

Similarly, the arc CiZ) = 90°; therefore B±E + C\D — 180°, and 

BfD + DE + DCi = 180°, or DE + B^Cx = 180°. But DE is 

the measure of the angle A; therefore, 
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A + ai = 180, or 

A = 180 — a i 

Similarly for each of the other angles of the triangle. 

Theorem: The sum of the angles of a spherical 

triangle is greater than 180° and less then 540°. 

Proof: Let the triangle AiB\C\ be the polar triangle of the 

spherical triangle ABC, Figs. 104 and 105, A being the pole of the 

arc BiCi, B of the arc A±Bi and C of the arc A\Bi. 
Then A — 180° — «i, B = 180° — and 

0 = 180 - ci. 

Also A + B + C = 540° — (ai + bi + c^. 

Therefore A + B + C is less than 540°. 

But ai + bi + ci is less than 360°. 

Therefore A + B + C is greater than 180°. 

Evidently, the sum of the angles of a spherical 
polygon of n sides is greater than (n — 2) X 180°. 

The spherical excess E of a polygon is the difference 

between the sum of its angles and (n — 2) X 180°. 

(In a triangle n — 3 and n — 2 = 1). 

A lune is the portion of a spherical 

surface bounded by two semi-great 

circles as AEFB in Fig. 106. When an 

orange is peeled the spherical surface 

of one section of it is a lune, the 

section itself forming a spherical wedge. 

Both a lune and the corresponding spherical wedge 

are evidently the same part of the surface and volume 

of a sphere as the angle of the lune is of 360°. We say, 

therefore, that a lune whose angle is one degree con¬ 

tains two spherical degrees, there being 720 spherical 

degrees on a sphere. 

Theorem: Two symmetrical spherical triangles are 

equivalent. 

A 
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Let ABC, A1B1C1 of Fig. 107 be two sym¬ 

metrical spherical triangles with their homol¬ 

ogous vertices opposite each to each. To 

prove that the triangles ABC, AiB^Ci, are 

equivalent, let P be the pole of a small circle 

passing thru the points A, B, C, and let POPi 
be a diameter. Then draw the great circle 

arcs PA, PB, PC, P\A\, P±B±, P±Ci. In 

that case PA = PB = PC (Polar distances). Now P±Ai = PA, 

P±Bi = PB, P±Ci — PC, since they measure vertical central angles. 

Therefore, P\A\ = PjPi = Pi Pi and the two symmetrical 

triangles PAC and P\A\Ci are isosceles. Accordingly the triangle 

PAC = the triangle P\A\Ci as they are equal in like order as 

well as in reverse. 

Similarly, the triangle PAB = the triangle P\A\Bi, and the 

triangle PBC = the triangle PiPiPi- Now the triangle ABC is 

equivalent to the triangle PAC plus the triangle PAB plus the 

triangle PBC, and the triangle A\BiC\ is equivalent to the triangle 

PlAiC\ plus the triangle P^A^Bi plus the triangle P1P1C1. 

Therefore the triangle ABC is equivalent to the triangle A\BiC\. 
If the pole P should fall without the triangle ABC, then Pi 

would fall without the triangle A\BiCi and each triangle would 

be equivalent to the sum of two symmetrical isosceles triangles 

diminished by the third; so that the result would be the same as 

before. The discovery of a third case is left to the reader 

12. Areas of Spherical Triangles.—There is a theorem 

which says that the area of a spherical triangle, expressed 

in spherical degrees, is numerically equal to the spherical 

excess of the triangle. 

Let A, B, C, Fig. 108, denote the values of the angles of the 

spherical triangle ABC, and E the spherical excess. To prove 

that the number of spherical degrees in 

the angle ABC equals E, produce the sides 

of the triangle ABC to complete circles. 

B These circles divide the surface of the sphere 

into eight spherical triangles, of which any 

four having a common vertex as A, form the 

surface of a hemisphere. 
The triangles A\BC, AB\C\ are sym- 
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metrical and equivalent, and the triangle ABC plus the triangle 

A\BC is equivalent to lune ABA\C. Put the triangle AB\C\ for 

its equivalent, the triangle AiBC. Then the triangle ABC plus the 

triangle AB\Ci is equivalent to lune ABA\C\ also the triangle 

ABC plus the triangle AB\C is equivalent to lune BAB\C, and the 

triangle ABC plus the triangle ABC\ is equivalent to lune CAC\B. 
Add and observe that in spherical degrees the triangle ABC plus 

the triangle AB\C\ plus the triangle AB±C plus the triangle 

ABCX = 360° (half of 720°) and 

ABAiC + BAB±C + CACXB = 2(A + B + C). 
Then twice the triangle ABC + 360° = 2(A + B + C). 
Therefore the triangle ABC = A + B + C — 180° = E. 

A triangle whose angles are 100°, 110°, 120° has a 

spherical excess of (100° + 110° + 120° - 180°) = 150 

spherical degrees and contains -|||- = ~ of the surface 

of the sphere. 

Theorem: The area of the surface generated by the 

revolution of a straight line about a straight line in its 

plane, not parallel to and not intersecting it, as an axis, 

is equal to its projection on the axis, multiplied by the 

circumference of a circle, whose radius is the perpendic¬ 

ular erected at the mid-point of the line and terminating 

in the axis. 

The straight line AB in Fig. 109 is revolved about the straight 

line M in its plane, not perpendicular to 

it and not intersecting it, as an axis. The 

lines AC and BD are perpendicular to OM, 

and EO is the perpendicular erected at the 

mid-point of AB terminating in OM. 
Then area AB (that is, the area of the 

surface generated by AB) = CD X 2ttE0. 
Proof: Draw line AG perpendicular to 

BD, and line EH perpendicular to CD 
The surface generated by AB is the lateral surface of a frustrum 

of a cone of revolution, whose bases are generated by AC and BD. 
Therefore area AB = AB X 2ttEH. Triangles ABG and EOH 

are similar. Therefore, we have 
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Fig. 110. 

M=W5 whence A B XEH = AG XEO = CD X EO. 

Substituting in first equation, area AB = CD X QtvEO. 

As more chords AB, Fig. 110, are 

a, inscribed in the arc AC, the area 

generated by them will approach as a 

limit the area generated by the arc. 

This area is called a zone, its area is 

AiCi X QtR where EO becomes the 

radius. If the arc AC were a semi¬ 

circle it would be the generating 

semicircle and the area of the sphere would be X 

%7rR = 47rR2. The solid, of which a zone is the spheri¬ 

cal surface, is called a spherical segment when the 

bounding planes are parallel. There is another spheri¬ 

cal solid of which the zone is the spherical surface and 

it is generated by a sector of a circle revolving about a 

diameter. There are three in Fig. 111. 

We learned that the volume of a 

pyramid was equal to one-third the 

product of its base by its altitude. 

The sphere could be thought of as 

composed of innumerable spherical 

pyramids with their vertices at the 

center, hence its volume is R X 
j 

4ttR2 = -4- wR6. 

M 

REVIEW. 

1. What is a dihedral angle? A polyhedral angle? Give a 

familiar example of the latter. 

2. Define prism, a right prism, a parallelopiped. 

3. What is the rule for finding the lateral surface of a pyramid 

and a cone ? Give the formula for their volume. 

4. How are similar solids related to each other? 

5. Define sphere, radius of a sphere, diameter and tangent. 

6. How does a spherical triangle differ from a plane triangle? 



CHAPTER VII 

ALGEBRA—NUMBER SYSTEM 

1. New Kinds of Number.—The first numbers used by 

man in the long course of his intellectual development 

were those of elementary arithmetic, the positive 

integral numbers as they are called, namely 1, 2, 3, 4, 

5, etc. We know from arithmetic that the operation 

of addition performed on these numbers gives no new 

numbers as a result, only other numbers of the same 

set. Likewise, as multiplication is only abbreviated 

addition, this operation could give only numbers of 

the same set. The inquiring mind which found that 

3q-2 produced 5 was also led to see the fact that 

5—3 produced 2 and 5 — 2 produced 3 and that no 

new kind of number was thus obtained. 

But when some inquisitive mind wanted to perform 

such an original operation as 3 — 5, which had no 

meaning in arithmetic, he found out that he was 

attempting the opposite of the operation 5 — 3 = 2 and 

concluded that his answer should be the opposite of 

2. Now to him the opposite of having two horses was 

to owe two horses, and as his first idea of opposition was 

addition and subtraction, he used the signs of these 

operations (+) and ( —) in the new sense of quality. 

Thus man came to invent negative numbers, which are 

the opposites of positive numbers, and the number 

system became 

.. -8. -7. —6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7. +8 .. 

where every number has its opposite. Thus +2 and 

— 2 are opposites, also —5 and +5. A man who 

(114) 
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owes one dollar needs to earn two dollars before 

he can claim he has a dollar. Hence +1 is two more 

than —1, so we put 0 in between these numbers, and 

say 1 more than —1 is 0, and 1 more than 0 is +1, 

and the numbers in our revised number system, as 

in the old one, increase by 1 from left to right. The 

0 (read zero) is its own opposite, +0 and —0 are the 

same, and no sign need be written. 

2. The Quality of Positive and Negative.—These num¬ 

bers will add and subtract either way and still give 

numbers of their set. If the temperature on a winter’s 

day was 4° below zero in the morning, that is —4°, 

and 28° above zero, that is +28°, at noon, the rise in 

temperature is 32°. If the temperature falls 30° by 

midnight, the temperature then will be — 2°. 

By looking at the succession of numbers in our re¬ 

vised system, we can readily see that — 5 from 4 is 

9, for by counting the numbers after — 5 until we come 

to 4 we find there are nine of them. Similarly, to find 

what 3 — 8 equals we will have to count back 8 steps 

from 3, which brings us to — 5. Likewise —2 — 6 will 

be 6 steps backward from — 2, which will bring us to 

— 8. Notice that + and — have now two meanings, 

so to speak, the — before 2 in this instance meaning 

quality, and the — before 6 indicating the operation 

of subtraction. It will be seen, therefore, that these 

negative numbers merely extend our number system 

the other way. The idea is entirely one of opposition. 

If A and B have had business dealings, what A would 

call positive in their relationships, B would call negative 

from his point of view. What B would owe A, A 

would count in his assets and B in his liabilities. 

The idea of + and — is found in temperature, in 

electricity, in measurement above and below sea level 
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and wherever the idea of opposition is to be expressed. 

We have positive and negative latitude; positive, north 

of the equator, and negative south of the equator. 

Had civilization and the science of navigation de¬ 

veloped south of the equator, southern latitude would 

no doubt have been positive and northern negative, 

since it is a matter of habit to consider the original way 

+ and the other way —. When there is no opposition 

there is, of course, no sign. When opposition exists 

we need both signs. 

3. The Principle of Permanence.—The positive and 

negative whole numbers constitute a number set in 

which the operations of addition and subtraction 

produce no new number. The negative numbers were 

added to our number system in order to preserve this 

uniformity. This attempt to preserve uniformity is 

called the Principle of Permanence, or the Principle 

of No Exception. We shall see that multiplication, 

since it is merely abbreviated addition, does not 

produce any new numbers when performed on numbers 

of our set. 

If A owes $2 for one day’s board and remains another 

day under these conditions, he will owe $2 and then 

$2 more, owing altogether $4. If he stays one week, 

he will be owing 7 times $2 or $14, or in symbols, 

7X — 2 = —14. And as multiplication is commutative, 

we could also say — 2X7 = —14. It is probably easier 

to see that —2X7 is the opposite of 2X7, and since 

2 X 7 = 14 it follows that —2X7 = —14. 

In the army “right about face” turns a column of 

soldiers in the opposite direction from that in which 

they were standing or marching. Marching in the new 

direction would be negative if we considered the first 
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direction positive. As we have seen, — before either 

number of a product gives opposition and we would 

expect — 3X5 =—15 and 3X— 5~ —15. But just as 

two successive "right about face” orders would find 

the column marching in the original direction, so when 

each of the two numbers of a product is minus (—) the 

result is plus ( + ). An odd number of — signs in con¬ 

tinued multiplication or division will produce minus, 

just as an odd number of right-about-face orders will 

find the column marching in a direction contrary to 

the first direction; while an even number of minus 

signs, like an even number of "right about face” orders, 

will be the equivalent of the command "As you were.” 

We can further explain this point by showing that 

— 2 X — 3 = 6 since — 2 X — 3 is the opposite of either 

2X — 3 or —2X3, each of which produce —6 and the 

opposite of —6 is 6. 

It is to be noted that with this interpretation of 

signs multiplication has added no new numbers to our 

number system of positive and negative whole numbers 

together with 0. 

4. Fractions a New Kind of Number.—As subtraction 

was the inverse of addition, so is division the inverse 

of multiplication. We learned in Arithmetic that since 

3X4 = 12, then 12-7-4 = 3 and 12-^3 = 4; but there was 

no meaning to 5 + 1 or 8 -*■ 3, because no number in our 

table multiplied by 7 equals 5, neither was 3 X any 

number equal to 8. We had to introduce into our set 

the idea of fractional numbers in order to make possible 

these very desirable operations. 

There are negative fractional numbers as well as 

positive fractional numbers. Experimentation will 

show that the operations of addition, subtraction, 
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multiplication and division will produce no necessity 

for numbers other than positive and negative whole 

numbers and fractions. 

6. Power, Root and Logarithm.—When a number, say 

2, is to be multiplied by itself a number of times, we 

do not write 2X2X2 = 8, but economize time and space 

by writing 23 = 8. This is read “two to the third 

power” equals eight or “two cubed” equals eight. 

The small 3 placed to the right and partly above, 

the 2 as shown, is called an exponent and indi¬ 

cates that 2 is to be used three times as a factor. 

Since 2 is one of the 3 equal factors of 8, we call 2 the 

cube root of 8, written \/8 = 2, where the term cube root 

means one of the three equal factors. The term square 

root means one of two equal factors. Thus \/9 = 3, reads 

“square root of 9 equals 3.” Fourth root is one of the 

four equal factors. The cube root of — 8 written \/ —■ 8 

= —2, since —2X—2X—2=—8. The fifth root of 

— 243 = — 3, written \/—243 = — 3. There is also in the 

case 23 = 8 another inverse. We say, 3 is the logarithm 

of 8 to base 2, written 3 = log2 8. That is, 8 can be 

regarded as a power of 2. Looked at from this point 

of view, exponents may be logarithms. We might 

also say that 4 was the logarithm of 16 to the base 2 

since 24 = 16. We should notice that these two inverses 

are distinct, which was not the case in subtraction and 

division. 

6. Irrationals and Imaginary Numbers.—The expres¬ 

sion V2 has as yet no definite meaning for us, for we 

can find no number in our system of positive, negative 

and fractional numbers which when multiplied by 

itself will exactly produce 2. Such a number must, 

however, be somewhere in between 1 and 2. A series 
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of multiplication tests beginning with 1.4XI.4 and 

1.5 X1.5 will result in our finding the square root of 

2 lying somewhere between 1.4142 and 1.4143. The 

last two of these tests are here given in the approxi¬ 

mate form. 

1.ili% i. tm 
x. an x. ms 
1.4142 1.4143 

5657 5657 
141 141 
56 56 

3 4 
1.9999 2.0001 

We could find more places of decimals by the same 

process. Also y/3, y/5, etc., could be found by this 

same method, which is still much used by older 

mechanics. 

It will be well to memorize the fact that the square 

root of 2 is 1.414 approximately and that the square 

root of 3 is 1.732 approximately, since these figures 

occur very frequently in both mathematics and physics. 

Other such numbers of a similar nature are y/ 9, 

y/ 33, etc. None of these numbers is found in our 

number system of positive and negative whole and 

fractional numbers. These new numbers we call 

irrational, but sometimes are referred to as surds and 

radicals. 

We have already noticed that — 3X—3=+9, also 

that +3X+3=+9. That is, the square of any 

positive or negative number always is a positive 

number. This being so, what then is the meaning of 

the square root of — 4, written V — 4? This, evidently, 

has no meaning until we say that all numbers whose 

square is a negative number are imaginary numbers. 
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7. Transcendental Numbers.—We learned in Section 5 
of this chapter that 8 = 23 and found two inverses, 

2 = \/8 and 3 = log2 8. Now since 24=16, we likewise 

say 4 = log2 16. Now what do log2 9, log2 10, log2 11, 

log2 12, log2 13, log2 14, log2 15 equal? Evidently 

they are all different numbers, somewhere between 3 

and 4. They will be found to differ from any of the 

numbers we have discovered before, and in fact are 

one type of a class of numbers called transcendental. 

We shall find these numbers very useful in computation 

and shall have occasion to use them frequently. Other 

types of transcendental numbers occur in algebra, 

geometry, trigonometry and calculus. 

Let us call to mind that there were seven fundamental 

operations, namely, addition and its inverse sub¬ 

traction, multiplication and its inverse division, raising 

to a power and its two inverses root and logarithm. 

The first inverse, subtraction, gave us negative numbers; 

the second inverse, division, gave us fractions; the third 

inverse, root, gave us both irrationals and imaginaries; 

the fourth inverse gave us logarithms. Algebra treats 

of a number system composed of all these types of 

numbers. It excludes division by zero and gives no 

meaning to the logarithm of any but positive numbers. 

We are now in a position to obtain a comfortable 

acquaintance with these numbers, feeling absolutely 

certain that the principle of permanence will guide us 

safely. 

8. Constant and Variable Numbers.—Viewing numbers 

from another standpoint, we may divide them into 

constants and variables. Constant numbers never 

change their value. There are very few such numbers. 

The time between two fixed events is a constant. 
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The ratio of the circumference to the diameter of the 

circle is a constant whose exact value, however, has 

never been found, tho it has been expressed correctly 

to 707 decimal places. 

Such extended computation is, however, a curiosity rather 

than a useful result. The ratio of circumference to diameter is to 

different degrees of approximation 3, —, ——, or in decimals, 
/ 113 

3.14159. The first value is mentioned twice in the Bible, the 

second and third were known to the Chinese and Babylonians 

4000 years ago. Another member of the family of constants is 

the base of the natural system of logarithms, which is 2.718. 

The exact value of these two numbers can never be determined. 

They are types of transcendental numbers. 

A quantity which is subject to change is called a 

variable. There are many such quantities. One of 

them is time. The time following any event increases 

continuously and eternally. Such a variable is said 

to be infinite. We speak of its quality, not its quantity. 

When we say that the time following your first opening 

of this book is infinite we mean that it has the quality 

of continuously increasing for ever and ever. In¬ 

finity is not an immense number or size, but the 

quality of growing larger and larger. It is a variable 

that continuously increases. The opposite of a variable 

of that kind is an infinitesimal. The remainder of 

one’s life is an infinitesimal because it continuously 

decreases. Other variables are the speed of a train, 

the steam-pressure in a boiler, the velocity of the wind, 

the temperature of the air and the height of the 

barometer. The value of a variable at any instant is a 

constant. 

9. Functions and Limit of a Variable.—Some vari¬ 

ables depend upon other variables. The time it takes 
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to walk to the railroad station might be said to be a 

variable depending upon one’s speed. Often the speed 

at which one runs to catch a train depends upon the 

time allowed oneself. In the first instance, the time 

is said to be a function of the speed; in the second, the 

speed is a function of the time. In some cases, one 

variable is a function of several variables. Our 

ability to master mathematics is probably a function 

of our power of attention, our persistence, our innate 

ability and many other qualities which it would be 

well for us to examine carefully. 

In football there is a rule which, when broken, 

penalizes a team one-half the distance between the 

place of the transgression and the offending team’s 

own goal. If this penalty were repeatedly applied, 

could the opposing team ever score by a penalty? 

Would that team not always be just as far from the 

goal as the latest penalty had carried it? The sum of 

the successive values of this variable, -4- + 4- + 4- + 4r * 

would never quite equal 1, but the difference between 

this sum and 1 would become and remain less than any 

assigned value, no matter how small. This difference 

between the sum and 1 is evidently an infinitesimal. 

When a variable differs from a constant by an infini¬ 

tesimal, we call the constant the limit of the variable. 

REVIEW. 

1. What is meant by “negative numbers”? Give a brief ex¬ 

planation of the quality of positive and negative. 

2. Why are fractions necessary? 

3. What is an “exponent” and what does it indicate? State 

the difference between “ root ” and “ power.” 

4. Of what types of numbers does algebra treat? 

5. Give some account of “ constant ” and “ variable ” numbers. 

6. Explain the meaning of “ infinite.” 



CHAPTER VIII 

SIMPLE EQUATIONS AND FUNDAMENTAL OPERATIONS 

1. The Equation.—In algebra variables are often 

represented by x, or some other letter. Of two vari¬ 
ables one could be represented by x and the other by 
y. If these two variables were related so that 3 times 

one of the variables added to 4 times the other variable 
equaled 7, we would write the expression in algebraic 
shorthand, 3^+4y = 7. It is very evident that when 

x equals 1, y must also equal 1, because 3a?+4?/ = 7 
becomes the identity 3+4 = 7. The expression Sx+ 
4y = 7 is called an equation. The value we have given 
to x determines the value we must give to y. Thus 

if x equals 1, as we have seen, y too must equal 1. 

Now if x were equal to —5, the proper value for y 

would be — 2. 
The following is a table of a few of the values which 

x and y may have simultaneously in the equation 
3a;+4y = 7. We could never write all the values. 

If X — 1,2/ = 1 If X — — i, y- = 1 

If X — 2, y = 
1 
4 

If X = 
1 

s'- y- = 2 

If x = 3, y- 
1 

2 
If X = — 

5 
3 ’ 

= 3 

If X — 4, 2/ = 
5 
4 

If X = — 3, y- = 4 

If x = 5, y= - - 2 If X — — 
13 
3,y- = 5 

If X — 0, y- 
7 

4 
If X — 

7 
3 , y— 0 

If X — -i, y— 
5 
2 

If X = 
4 

3 , y—~ -1 

If 

If 

X — 

x = 

II 
ll 

©* 
CO 

1 
1 

13 

4 

4 

If 

If 

X — 

X — 

5 
19 

3 

i 
i 

ii 
ii 

-2 

-3 

If X — -4, y = 
19 
4 

If X — 
23 

3 , y—~ -4 

(123) 
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2. Limitations of Variables in an Equation.—It will be 

noticed that 3 times any x in the table plus 4 times 

its y always equals 7. We have called 3r+4?/ = 7 an 

equation. It is very much like a pair of scales. The 

right-hand member always has to balance with the 

left-hand member. We could have found these numbers 

either by giving value to x and “solving” for y or vice 

versa. Thus, if x equals 5, Sx will equal 15 and our 

equation becomes 15+4y = 7. Now if we subtract 15 

from each side of this balance, the two sides will still 

be equal and we will have 4y = — 8, and y = — 2, since y 

is clearly -L of 4y. Likewise if x is equal to 3, then 

3r = 9 and we have, “substituting,” 9+4?/ = 7. Sub¬ 

tracting 9 from each side of the equation leaves us 

with 4y = — 2, and y — — -|- or — In the same 

manner, if y equals 0, then 3x+4t/ = 7 becomes Sx = 7, 

whence x = It will be well to verify all the figures 
o 

for simultaneous values of x and y and to obtain others. 

Now x could have any positive or negative value, 

fractional or integral, and y would have to be de¬ 

termined to fit or we could give values to y and thus 

determine x. If x were not an exact number, neither 

would y be. 

The idea of equation is fundamental in algebra, and 

letters like x, y, z, etc., are used to represent variables 

which may have any value at a particular instant. 

These letters may also represent numbers whose value 

we wish to determine and since we do not know the 

exact numerical value for these numbers we often call 

them unknown. In any of these meanings they repre¬ 

sent any of a succession of particular numbers until we 

exactly determine what value we can assign. 
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3. The Use of the Equation.—Let us suppose that a 

certain number added to itself is equal to 250. What 

is the number? 

We can represent this undetermined number by x. Now x 
added to x is certainly 2z; therefore in algebraic shorthand we 

can say that %x = 250. Whence it follows that x equals 125. 

Note that the algebraic notation is not only shorter but more 

suggestive of the calculation involved. 

Again, suppose the expenses of a factory doubled 

each year for 3 years and that the third year they 

were $13,800. We want to know what were the ex¬ 

penses for each of the other years. 

If we knew what the expenses were the first year, the problem 

would be practically solved. Therefore we will let x represent the 

number of dollars of expenses for the first year. Since the ex¬ 

penses doubled, they could be represented by %x in the second 

year and since they again doubled they could be represented by 

4x in the third year. But the problem says that the expenses for 

the third year were $13,800, therefore 

4x = $13,800, from which it follows that 
x— $3,450 (the expenses of the first year) 

and that %x = $6,900 (the expenses for the second year.) 

Suppose a man has two daughters and one son. He 

wishes to divide $6000 among them so as to give the 

elder daughter twice as much as the younger, and the 

son as much as both the daughters. He wants to 

know how much must be given to each. 

If we knew what he must give to the younger daughter we 

would also know what he must give to the elder daughter, and 

accordingly we could easily find out what he must give to the son. 

Let x equal the number of dollars he is to give the younger daughter. 

Then certainly %x is the number of dollars he must give to the 

elder daughter and the sum of these, Sx, is therefore the number 
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of dollars the son will receive. These three numbers, x, 2x and 

Sx added together make 6x. Evidently, then, 

6z = $6000 
x — 1000 (number of dollars youngest daughter will receive.) 

2x = 2000 (number of dollars elder daughter will receive.) 
3x= 3000 (number of dollars son will receive.) 

4. Examples in Equations.—Suppose A can do a piece 

of work in 8 days, B in 10 days, and C in 24 days. 

In what time will they finish it if working together? 

Let x represent the number of days in which they can finish 

it, all working together. In 1 day they can therefore do — of 
•C 

the work, to which A will contribute ■— of the whole work, B — 
o 1U 

and C Put in the form of an equation, this will be: 

i_ = J_ 4. J_ 4. _L 
x 8 T 10 T 24 

whence 

l 15 + 12 + 5 

x ~ ' 120 
32 _ 4 
120 “ 15 

that is — = 
x 15 

Surely if these things are equal they are also equal the other side 
15 3 

up; accordingly we have x = -— = 3—~. Thus the combined labor 

3 
of these men would finish the work in 3— days. 

4 

Another example: A is twice as old as B. Twenty 

years ago he was three times as old. Find their 

present ages. 

If we knew the age of B twenty years ago we would know all 

that was necessary. So let us represent the number of years of 

B’s age twenty years ago by x. Then 3x represents the age of 

A at the same time. In twenty years each of these men will 

become twenty years older. A’s present age would therefore be 

represented in years by 3.r+20 and B’s present age by £+20. 
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The problem says A is now twice as old as B, which fact we express 
in the following equation: 

« 

3x+20 = 2(x+20) 

or 3£+20 = 2z+40 Subtracting 2x+20 from each side 

we have x = 20 

z+20 = 40 (B’s age now) 

3z+20 = 80 (A’s age now.) 

It is easy to prove these solutions by inserting the 

obtained value for x in the problems. 

5. A Different Type of Problem.—As a slightly different 

type of problem we will ask ourselves at what time 

after 2 o’clock will the hour-hand and the minute-hand 

of a clock be together? 

The minute-hand being the more prominent of the two, we 

might let x equal the number of minute spaces that the nimute-hand 

travels over before the two hands come together. Now we know 

that between 2 and 3 o’clock the minute-hand will pass entirely 

round the clock, traveling 60 minute-spaces, while the hour- 

hand will go only from figure 2 to figure 3, covering five minute- 

spaces or —- as much as the minute-hand. Therefore if x repre¬ 

sents the number of spaces the minute-hand travels before they 

get together, — will represent the number of spaces the hour- 

hand will travel in the same time. The minute-hand will there- 
A • X 1 1 
fore gain x - — = 

Since at precisely 2 o’clock they were ten minute-spaces apart 
* .. . . llx 
in the direction they were going, then it follows that-^— = 10. 

Multiplying each side by 12 we have ll£ = 120, therefore 

x= 10-yy- minute-spaces 

As this is the number of minute-spaces the minute-hand travels 

after 2 o’clock, it also represents the number of minutes after 2 

when the hands are together. 
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Again, at what time after 5 o’clock are the hands 

of a clock opposite each other? 

At 5 o’clock they are 25 minute-spaces apart in the direction in 

which they are going. To be opposite thay will have to be 30 

minute-spaces apart. The minute-hand must gain 25 minute- 

spaces to get together and 30 minute-spaces more to be opposite. 

llx 
It must gain 55 minute-spaces, so —= 55 

Dividing both sides by 11 we have — = 5 

Whence, x =60 

At 60 minutes after 5 o’clock, that is at 6 o’clock, the hands of 

the clock will be opposite, which is a matter of common knowledge. 

6. The Coefficient.—The number (3) in such an alge¬ 

braic expression as Sx is called the coefficient. It in¬ 

dicates that x is to be multiplied by that number. 

Sometimes the coefficient is not confined to number 

but includes one, two, or more letters also; for instance, 

in 3abx the coefficient might be Sab, in which case x 

is to be multiplied by Sab. It is important to note 

the difference between the coefficient and the exponent, 

as in Sx and x3. Supposing x to represent 5, then 

Sx = SX5 = 15; but xs = 5X5X5 = 125. 

7. Resemblances Between Arithmetic and Algebra.—It 
is self-evident that 397 can be considered as 300+90 + 7. 

These figures can, however, also be expressed in another 

way, 3(10)2+9(10) + 7. In algebra we could represent 

them as Sx2+9x+7, where x would not necessarily 

stand for 10 but might represent any number. 

The fundamental operations of algebra are much 

the same as those of arithmetic, tho there are a few 

necessary differences. One of them is that we do 
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not “carry” since we do not know the value of x. In 

arithmetic, of course, the radix is always 10. 

As in arithmetic we place like powers—all the x2’s, 

for instance—in one column. The rows are arranged 

in descending powers of a letter and descending alpha¬ 

betical order, or in the reverse order. Such an ex¬ 

pression as 6x2y3 — \xyz — 4#3?/+2/4+:r4 is never used 

in that form. As y is the dominant letter used and ?/4 

is the highest power of that letter, y4 may come 

first and then —4xyz followed by +6x2y2—\xzy-\-x^. 

Thus we would write it: ?/4 — ^xyz-\-Qx2y2 — 4x3i/+a:4. 

So also in the case of xG+x3 — x2-\-%x—x4— 1, we should 

write: a;6 — x 4+£3 — x2+%x— 1. Or, it is also per¬ 

missible to write it: -l+%x — x2+xs — x*-{-x&. The 

main thing is to be orderly and observe place. This 

necessity will appear still more fully in the examples of 

addition and subtraction given in the next section. 

8. Addition and Subtraction.—In the following simple 

exercises in algebraic addition and subtraction it will be 

observed that both + and — signs are used. We 

learned how to interpret and operate these in the 

sections of Chapter VII that describe our number 

set of positive and negative integers. 

Here are three examples in addition which fully 

explain themselves: 

3x2 + 9x+ 7 5z2 —6z+2 -—-a;3—|^2 —\- 

8x2+ 4x-\- 5 — 3x2-f-4a; —7 -*-#3 H— 

llx2-\-l3x-{-l% %x2 — %x — 5 -~-#3—y#2H—J~X—H 

The following are examples in subtraction, equally 

clear and simple: 



130 MODERN AMERICAN EDUCATION 

Ilx2 + I3x+12 

8a:2-f- 4a:+ 5 

3a:2-f- 9a:+ 7 

2a:2 — 2a: —5 

-3a:2+4a:-7 

5x2 — 6a:+2 

x — 

x+ 

1 
14 

1 
14 

1 

7 

There is a rule for subtraction which says: change 
the sign of the subtrahend and add. Thus in the 
second problem in subtraction this would give, changing 
signs, 3a:2 —4#+7 as the second row. It is better, 
however, to follow the regular method. In subtracting 

— 3a;2 from 2a;2 it is evident that it will take 3a;2 to 
cancel the —3a;2 and even then we shall require 2a;2 
more to get our answer, which is 5x2. 

9. Multiplication.—In algebraic multiplication we 
multiply the coefficients, and add the exponents. Thus 
x8 times x2 — xh. Likewise x2 times x = x3, and 
3a;2 X 2a; = 6a:3. The reason for this can be readily 
seen, since x2 = x times x, which is also written x.x> 

using a dot to indicate times. Then ; hence 
/y»3 /v»2 - /v» /y» /y» /y» —— ry% 5 
*4/ 1 • iv • tv • %K/ • iv tv • 

Bearing this in mind, and also that there is no 
carrying from one place to another, it will be seen 
from the following examples that algebraic multipli¬ 
cation presents no real difficulties. Thus, to multiply 
3a:2+9a:+7 with 8a;2+4a:+5 we proceed in this way: 

3a:2 + 9a:+7 Similarly: 
8a:2-f4a: 4-5 

24a:4+72a:3 + 56a:2 
12a:3 -f 36a: 2+28a: 

15a:2-f-45a:-j-35 

24a^+84a:3 +107a:2+73a:+35 

5x2 — 6a:+2 
— 3a:2 + 4a:+7 

— 15a:4 + 18a:3— 6x2 
20a:3-24a:2-}- 8a: 

__-f-35a:2 —42a:+14 
— 15a^*4 —f- 38a:3 -J— 5x2 — 34a:+ 14 

10. Division.—Division being the inverse of multipli¬ 
cation, we subtract exponents instead of adding them. 
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Thus, since 4a;4X2x2 = &r6, therefore 8#6-7-&r2 = 4;r4. 

By following, step by step, the example given herewith 

you will see that the operation is fundamentally the 

same as in arithmetic together with the application of 

certain algebraic rules already described. It will be 

observed that here also there is no carrying, a circum¬ 

stance which makes algebraic operations, once they are 

thoroly understood, actually easier than those of 

arithmetic. Let us divide — 15o;4+38^3+5x2 — 34#+- 

14 with 5x2 — 6x-\r%. We may arrange this as follows: 

— 15a;4+38a;3 + 5x2 — 34a;+14 ( 
— 15a;4 + 18a;3 — 6a;2 

20a;3 + 11a;2 — 34a; 
20a;3 — 24a;2 + 8a; 

+35x2 — 42a;+-14 
35a;2 —42a;+14 

5x2 — 6a;+2 
— 3a;2+4a;+7 (Ans.) 

Note: The quotient could 
also be placed above the 
dividend, as is customary in 
arithmetic. 

Working this by “detached coefficients”, as it is 

called, we would have, almost as in arithmetic, 

— 3+ 4+ 7 (Ans.) 
-15+38+ 5 —34+14( 5-6+2 
-15 + 18- 6 

20+11-34 
20-24+ 8 

35-42+14 
35-42+14 

11. Place and Order in Division.—We have already 

shown that like powers should stand in the same 

column, but this in some problems of division creates 

a little difficulty in the matter of place. The rules and 

explanations given in the first section of this chapter, 

however, are sufficient guide in all such cases and the 

operation of the following examples can be followed 

without difficulty . 
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Divide a5—1 by a— 1; a3+x3 by a+x, and x3 — 3xyz+ 

2/3+z3 by x+y+z. 

a5 — 1 (a—1 

a5 —a4 a4 + a3-fa2-fa+l 

a4 —a3 

a3 — l 
a3 — a2 

a2 —1 
a2 —a 

a —1 
a — 1 

a3+#3 _ 

a3-j-a2# a2 — ax-\-x2 
-a2x-\-x3 
— a2x — ax2 

ax2jrx3 
aa;2-|-£3 

x3 — 3x?/2:+2/3+23 ( x+jj/4-z 
#3+£22/+#2z x2 — xy — xz-\-y2-yz-\-z2 

— x2y — x2z — 3xyz 
— x2y — xy2 — xyz 

— x2z-\-xy2 —%xyz 
— x2z — xyz—xz2 

xy2— xyz-\-xz2-\-y3-\-z3 
xy2_+y3+y2z 

— xyz-\-xz2 — y2z-\-z3 
— xyz_—y2z — yz2 

JrXz2jiryz2-\-z3 
xz2-\-yz2-)rz3 

In the last of these three problems we not only had 

to keep the exponents of each letter in order, but also 

had to consider the alphabetical order of the letters. 

For instance, the first operation in that problem left 

us to subtract x3+x2y-\-xh from xs — Sxyz+yz. Inas¬ 

much as 3xyz and x2y are unlike, we had to bring both 

down into the remainder. Then also, y3 and x2z are 

unlike; consequently each had to be brought down, 

but as y3 could not be used immediately we left its 

bringing down till it was required, which was after the 

third operation. The reason why, in the first re- 
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mainder, we did not place 3xyz immediately after x2y 

is that the power of x2 gives it priority over 3xyz. 

REVIEW. 

1. Why are letters used in algebra? What can they represent? 

2. Name the fundamental idea in algebra and illustrate its use. 

3. What is the “ coefficient ” ? How does it differ from the 

“ exponent”? 

4. How are algebraic expressions arranged in regard to their 

power ? 

5. Give rules for algebraic subtraction and multiplication. 



CHAPTER IX 

PRODUCTS AND ROOTS 

1. Exponents.—In multiplication, as we learned in the 

previous chapter, exponents are added (a3Xa2 = 
a3+2_a5), ancj -n ^e inverse operation, division, the 

process is to subtract (a5^a2 = a5-2 = a3). When we 

have such an expression as (a3)2, it is evident that 

what is meant is a3Xu3? which equals a3+3 = a6, and 

therefore we have the rule, already established in 

Section 9 of Chapter VIII, that in raising to a power 

we multiply the exponents. In the inverse process, 

represented by \ZaQ = a* = as, we find the root by dividing 

the exponent by the index of the root. By agreement, 

the index (2) of square root is never written, but always 

understood. 

These are the fundamental laws of exponents, to 

which, however, may be added one other and its 

inverse. Thus (a263)4= (a2)4 (63)4 = a3612 and conversely 

v/a8612 = v/asv/612 = a263. That is, the power of the 

product equals the product of the powers, and the root of 

a product equals the product of the roots. In the process 

of using these principles we sometimes come upon such 

expressions as a0, a-2, a_§, and the like. As these 

expressions are obtained thru the operation of estab¬ 

lished principles, they must be explained by these same 

laws. 

Thus a°Xfl6 = a0+6 = a6. Therefore, a0 = a64-a6 = 1. 

It appears from this that any number with the expo¬ 

nent 0 is 1. 

Also a”2Xa2 = a°= 1. Now if the product of a2 

(134) 
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and a 2 is 1, evidently a 2 = -A-. Thus the expression 
CL 

~ . The rule is that any factor with a negative 

exponent can be written in the other term of the fraction 
with a positive exponent. 

Likewise alXa* = a. Hence, a1 is one of the two 

equal factors of a. Therefore, a1 is the square root of a, 
and a* and -y/a are two ways of writing the same 

thing. The first way is preferable and more suggestive. 

Also a?Xfl’Xa’Xfl‘Xfl' = fl'=a3, Thus a1 is one of 

the 5' equal factors of a3 and can be written \/a*. 

In the like manner a~l turns out to be -rpz. 
fa2 

The regular rules of operation apply to these as to 

other exponents. When we multiply, we add exponents; 

when we divide, we subtract them. When we raise to 

a power, we multiply; when we find the root, we 

divide. With exponents, multiplication calls for addi¬ 

tion ; division turns into subtraction; raising to a power 

is a matter of multiplication; finding of root is division. 

Every operation is simplified. We shall make a very 

interesting use of this simplifying power of exponents 

when we study logarithms, which are a special class 

of exponents. 

2. Special Products.—The following special products 

should be first verified by actual multiplication, then 

translated into ordinary language, then memorized, as 

they are constantly needed in algebraic computations. 

1. (a+6)2 = a2+2a&+62. 

1'. (a — b)2 = a2 — 2ab+b2. 

2. (a+6)3 = a3+3a26+3a62+63. 

2'. (a — b)3 = a8 — 3a2b+3ab2 — 63. 
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3. (a-\-b)(a — b) =a2 — b2. 

4. (a+6+c)2 = a2+62+c2+2a&+26c+2ac. 

4'. (a+6 — c)2 — a2+62+c2+2a& — 26c —%ac. 

5. (a+2)(a — 3) — a2 — a — 6. 

5'. (3a: — 5y)(2x-\-Sy) = Gx2 — xy — 15y2. 

The first reads as follows: The square of the sum of 

two quantities is the sum of their squares plus twice 

their product. 

The second reads that the cube of the sum of two 

quantities is the cube of the first plus three times the 

square of the first by the second plus three times the 

first by the square of the second plus the cube of the 

second. 

The third special product can be stated in words, as 

the sum of two quantities multiplied by their difference 

equals the difference of their squares. Thus (2a: —3y) 

(2a:+3?/) = 4a:2 — 9y2. This is useful sometimes in 

multiplying numbers; for example, 102X98 could be 

written (100+2) (100 - 2) = 10,000 - 4 = 9996. 

The fourth special product is very much like the old 

game of Virginia Reel. First, every number squares, 

then the first couple leads off and goes down the line. 

For example, (2a: — 3y+5z)2= ?. Well, first, square 

every number and we get 4a:2+9y2+25z2; then 2a: 

couples with —3?/ giving —12xy and with 5z making 

20xz; after which —3y starts down the line, as it were, 

and with 5z we get —30yz; thus (2a: — y+5z)2 = 4a:2+ 

92/2+25z2— 12a:y+20a:2;—30ya:. It is no more difficult 

when there are more terms, only it takes longer to play 

the game. 

The fifth special product comes from an examination 

of the ordinary multiplication of such numbers. The 
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first and last terms are just products of first and last 

terms; the middle term is called a cross product, as it 

comes by multiplying a by +2 and adding it to the 

product of a by —3, this giving 2a and —3a which, 

added, is — a. The cross product in 5' gives 9xy — 8xy = 

xy, hence the whole product is 6x2 — xy— I5y2. The 

work is as follows: 

a+2 
a —3 

a2 + 2a 
— 3a —6 

a?— a —6 

3. The Law of Binomial Expansion.—It will be observed 

that in the foregoing special products in both the square 

and the cube the exponents of the a’s decrease while 

those of the Vs increase. Also that the coefficient of the 

second term is the same as the exponent of the power, 

to which the binomial (a+6) is to be raised. The 

coefficient of the third term is obtained by multiplying 

the coefficient of the second term by the exponent of (a) 

in that term and dividing by the number of that term 

(which is 2). Thus in (a+6)3, the coefficient of the 

second term is 3, the same as the exponent of the power. 

The next coefficient is obtained by multiplying 3, the 

coefficient, by 2 (2 is the exponent of a in the second 

term of the expansion) and dividing this result by 2, 

getting 3. This rule will work successively, as is shown 

in the following examples: 

(a+6)4 = a4+4a36-|-6a262 + 4a63+64. Verify by multiplying 

(a+b)(a-\-b)(a+b)(a+b). 

(2*4-3 y)4 = (2*)4 4~ 4 (2*) 3 (3 y) + 6(2*)2 (3y)2 4~ 4 (2*) (3 y)3 4- (3*/)4. 

Where coefficient 6= —, coefficient 4= * 2, etc., we have 
Sc o 

finally 16*44-96*32/4-216*22/24"216*y34-8l2/4. 

3 x — 5y 
2*4-3 y 

6x2 — xy — l5y2 
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We will simplify one term 4 (fix)3 (3y) as a review of 

previous principles. This equals 4(%3x3)(3y) =4(23)(3) 

(xzy) =4f(S)(S)x3y = 9Qxsy. The completion of this ex¬ 

pansion should never be attempted in one step. 

First write the form, then simplify. Had we had 

(%x — 3y)4 the result would have been 16#4 —96x3y-{- 

216ar?/2 —216?/3+81i/4 where every alternate sign is 

minus. 

This method is applicable with all types of exponents, 

as is proved by the Binomial Theorem, generally attrib¬ 

uted to Newton. The law has two parts, as follows: 

(1) The exponents of the first term decrease while those of 

the second term decrease in the expansion, (fit) Coef¬ 

ficients are obtained in succession by multiplying a 

known coefficient by the power of the first term which ap¬ 

pears with it and dividing by the number of the term. 

Thus the expansion (a+6)n, when n is a positive integer 

= lo» + ii» 0—1& + 1) a"-262 + n(*-l)(n-3) a»-3&3+ . . 
1 1.2 1.2.o 

4. Factors.—It is obvious that in the expression 

ax-\-ay-\-ab, the value of a is common to each of the 

three terms, or, in other words, each term is divisible 

by a common factor (a). Such being the case we can 

divide each term by a and place the quotient within 

brackets, leaving the divisor outside as coefficient, 

that is, axJcay+ab = a(x-\-y+b). Likewise §xzy2-\r 

8x*yz — 10x3yz = <Hxzy2(3Jr^xy — 5x2y). 
In each of these two cases the operation performed 

is known as removing a monomial factor, or factor of one 

term. It is the most important of all the processes of 

factorization and, when possible, should be performed 

before any other process. 

Another important process is that of grouping 
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similar terms. For example, when we have such an 

expression as ax+ay-\-bx+by, we first group the terms 

that seem to belong to each other and get a(x-\-y) + 

b(x+y). It will be seen that (x+y) is a factor of each 

and that what remains is a+b. Therefore 

ax+ay + bx+by = (x+y)(a+b). 

In an expression such as x3+x2+x+l, we see first of 

all that the- first two terms are each divisible by x2, 

therefore, applying the rule of bracketing the quotients 

and placing the divisor in front as coefficient, we get 

#2(.r+l).- The common divisor of x and 1 being 1, 

we also have 1(#+1). 

Therefore 

x*+x2+xJr\ =#2(;r+l) + l(x*+l) = (^+l)(x,2 + l). 

Similarly 6,r3+3^2 — 4r — % = 3x2(%x-\-Y) — 2(&c+l) 

= {Zx+\)(3x2-Z). 

A third type of factoring is that of the perfect 

square. In the expression a2— 6a+9, we recognize 

that the first and last terms are squares of a and either 

+3 or — 3. The middle term — 6a is twice the product 

of a and —3, therefore 

a2 — 6a+9 = (a — 3)2. 

In the quantity 4ar — l%xy-\-9y2, the first and last 

terms are the squares of %x and 3?/, and the middle 

term is minus twice their product. Hence 

4>x2 — l%xy-\-9y2 = (%x — 3 y)2. 

5. Factorization of Difference of Squares and of Cubes.— 

A process of much importance is the factorization of 
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difference of squares. Thus a2 — b2 = (a — &)(a+6); 

also 9a;2 — 25&2 = (3a; — 5k)(3x-\-5lc). These results can 

easily be proved by multiplication, and the two inverse 

processes give us the rule that multiplication of the 

sum and the difference of any two quantities is equal to 

the difference of their squares, and conversely, that the 

difference of the squares of any two quantities is equal to 

the product of the sum and difference of the two quantities. 

It follows then that a2+2a6+&2—x2 can be written 

(a2+2a6+62) — x2 or (a+6)2 —a;2, which factors into 

a+6+a; and a+& — x. Also (3 x+%y)2— (%x-\-y)2 = 
(.5x+3y) (x-\-y). Since the sum of (3a;+%y) and (%x+y) 

is (5x+Sy) and their difference (x-\-y). We never 

indicate operations we can easily perform. 

The factorization of difference of cubes is made 

clearer when we consider that division and multipli¬ 

cation prove a3+63 to be equal to (a+6)(a2 — abf-b2) 

and a3 —63 to equal (a — 6)(a2+a6+62). The rule is 

that the sum or difference of two cubes equals the sum or 

difference of the numbers multiplied by the sum of their 

squares and their product with the sign changed. 

Thus 8a;3—?/6= (2a;—y2)(4tx2-\-y4:-{-%xy2), since 8a;3 

= (%x)z and y&= (y2)3. 

A little examination will show that when x*+y& is 

written (a;3)2+(?/3)2, that is, in difference of squares, 

it cannot be factored; but if we express it in difference 

of cubes, thus (a;2)3+(i/2)3, the factors are (x2+y2) 

(x* — x2y2+y*). When, however, both methods— 

difference of squares and difference of cubes—are 

possible, preference should be given to difference of 

squares. 

The reverse of the fifth type of product is of 

great value, especially in the solution of equations. 

Suppose we wish to factor a;2—x—2. We notice that 
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x2 = x times x and 2 = 2X1 and put these expressions 

down under each other as follows: 

x 2 2a; 
x 1 1# 

— x 

Then we write the cross products x 

times 2, and x times 1. These must 

add up to —x, which we place below, 

the factors then becoming (x — 2) and 

(x +1). 

As a more difficult example, let us factor 6a;2 —5a; —6. 

The factors of the first term are probably 3x and 2a; 

and of the last term 3 and 2. We will write these 

factors as before'. 

This arrangement will not do, as the 

first factor is divisible by 3 and the second 

by 2 and 6x2—5x— 6 is divisible by neither. 

Accordingly, another arrangement is necessary, so we 

will try the following: 

This shows us we must have — 9a; 

and +4a;. Hence the factors are 

(3a;+2) and (2a; —3). 

3a; 2 +4a; 
2a; 3 — 9a; 

— 5x 

3x 3 
2a; 2 

A great deal of practice on this type of problem will 

give an expertness not obtained by the ordinary 

student and will repay any effort expended. 

6. The Factor Theorem.—For the sake of brevity, any 

expression in x alone is often called /(a;), F(x) and Q(x). 

These symbols are read “f of x\ “large F of x\ and 

“Q of x” respectively. If fix) =4ar3+a;2 — 5a;+2, then 

/(2/) = 42/3+?/2-5i/+2. Also, /(2) = 4.23+22-5.2 + 2 

= 28, and/(0)=4.0 + 0-5.0+2 = 2. 

Further, when f(x) is divided by a; —a the remainder 

can be proved to be/(a). 



142 MODERN AMERICAN EDUCATION 

This remainder must be a constant since being of 

lower degree in x than the divisor, which is of the first 

degree, it cannot have any x in it. The quotient will 

be some expression in x, but as it is a different expression 

from f{x) we will use Q(x) to represent it and call the 

remainder R. Then, since the dividend equals the 

divisor multiplied by the quotient plus the remainder: 

f(x) = Q(x)(x — a)-\-R. As these two expressions are 

equal for all values of x they are equal when x equals a. 

Putting a in all places where x occurs, we get 

/(a) = Q(a) (a — a) + R, which can be written: 

/(a) = R, since a — a = 0 and 0 times anything is 0. 

It is evident that if /(a) = 0, then R — 0, the division 

is exact and x — a is a factor of fix). 

In the expression x2 — 3x+2, the last term 2 is divisible by 2 

and 1, which may be either both plus or both minus. Therefore, 

If fix) = x2-3x-\-2 

fi 1) = 12 —3+2, which is 0 and one factor is x — 1. 

f{2) =22 — 6+2 = 0, and the other factor is x — 2. 

We will also factor x3— 3x — 2, where the divisor of the last 

term is +1 or —1, +2 or —2. 

f(x) = x3 — 3x — 2. 

/(1) = 13 — 3 — 2 = — 4 (This is not 0, hence x — 1 is not a factor.) 

/(-!) = ( —1)3—3( — i)_2=-l+3-2 = 0, hence x-(-l) = 

£+1 is a factor. 

f(2) = 23 — 3(2) —2 = 8 — 6 — 2 = 0, hence x — 2 is a factor. 

f( — 2) = ( — 2)3—3( — 2)—2= — 8+6 — 2= —4, hence x—( — 2) = 

x+2 is not a factor. 

Division will now show that x3 — 3x — 2= (x+l)(a;+l)(x—2) = 

{x-\-\)2{x — 2). 
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7. Highest Common Factor.—In removing the mono¬ 

mial factor in the first case of factoring, we took out 

the highest common factor. The H. C. F. of 6x*y2, 

Sx4y3, —I0x5ys is %x3y2. The process of finding the 

factor is the same as in arithmetic, and in many cases, 

as in arithmetic, we have to factor the different ex¬ 

pressions. 

In finding the H. C. F. of x2jrx — 6 and 2x2-j-2x—12, it is 

evident that the factors of the first expression are #+3 and x — 2. 

On dividing the second expression by 2, the result is x2-j-x — 6, 

which is the same expression as the first number, as we might 

have noted at once. It is immediately obvious therefore, that 

x2-\-x — 6 is the H. C. F. of these two numbers. 

What is the H. C. F. of the expressions a2+3a —28 and 5a2 — 

20a? The factors 5 and a of the second expression can be dis¬ 

carded since they are not factors of the first. There is then left 

of the second expression, a —4, which is also a factor of the first 

expression and the H. C. F. 

In finding the H. C. F., it is always advisable to select the 

easier expression first, as, for example, in 2a4+4a3 — 2a2 — 4a and 

a3+2a2 —3. Here, the second expression seems the easier. By 

the factor theorem a —1 is a factor, since/(l) = 1+2 —3 = 0. The 

other factor of the second expression will therefore be a2+3a+3, 

which can be easily verified by division. Since the last figure (3) 

does not go into the last figure of the first expression, we need 

not consider this factor. Then discarding factor 2a from the 

first expression we have left a3+2a2 — a—2, of which a —1 is 

evidently a factor by the factor theorem. Therefore a —1 is the 

H. C. F. 

8. Least Common Multiple.—The process of finding 

the least common multiple, or L. C. M., in algebra, 

presents no new principle or operation from the corre¬ 

sponding operation in arithmetic. As in arithmetic, 

the least common multiple is the expression of lowest 

degree which is divisible by each factor without leaving 

any remainder. 
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The L. C. M. of 6xsy2, 8x4?/3, —10x5ys is 240a:5?/3. 

The L. C. M. of x2 -\-x — 6 and 2x2 + 2a; — 12 is evidently 

2a;2 + 2a;—12, which, as we have already seen, is exactly twice the 

value of x2-\-x— 6. 

We also know, from the section on the Highest Common 

Factor, that the factors of a2+3a — 28 are a+7 and a —4, while 

those of 5a2 — 20a are 5a(a — 4). Therefore the L. C. M. of 

a2+3a —28 and 5a2 — 20a = 5a(a — 4)(a+7). 

In general, the L. C. M. of two numbers equals the 

product of one number by the quotient of the other 

number by the H. C. F. Also the H. C. F. multiplied 

by the L. C. M. of two numbers equals their product. 

This, however, is true only of two numbers. 

9. Square Root.—One of the special products, as we 

learned in Section 2 of this chapter, is that (a+6)2 = 

a2-\-2ab-\-b2. The inverse operation is expressed as 

Va2-\-2ab-\-b2 = a-\-b. Every square may be con¬ 

sidered as of the form a2-\-2ab-\-b2, which can be 

more conveniently and suggestively written a2+ 

(2a+b) b. When we wish to extract the square root of 

any given quantity we begin with the first term of the 

quantity, as a2 in the present case. We readily see 

that the square root of a2 is a, which, then, is the first 

term of the required root or answer. That leaves us 

with 2ab-\-b2 to consider. To find the next term of the 

root we first divide 2ab by twice the first term of the root, 

a, which is 2a and 2ab + 2a = b. By adding b to 2a we 

get 2a+6, which forms the divisor of 2ab+b2, the 

quotient of which, 6, is the 

second term of the required root. 

This simple process is made quite 

clear in the accompanying work¬ 

out. 

a2-\-2abJrb2 
2 a 

2ab 
2ab+b2 

a+b 
a 

2a+b 

When there is no remainder the problem is finished, 
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but should there be a remainder we know that there 

is a larger square in the given expression than we are 

able to estimate at sight. We must, then, start all 

over again. 

10. Algebraic Example of Extracting Root.—The 

following example is a little more advanced than the 

foregoing one: Find the square root of 4a;4 —12a;3+ 

29a;2-30 a;+25. 

4a;4 — 12a;3+29a;2 — 30a;+25 
4a;4 

— 12a;3 
— 12a;3 + 9a;2 

20a;2 
20a;2 — 30a;+25 

2a;2 — 3a;+5 (Answer) 

4a;2 —3a; 

4a;2 — 6a;+5 

The first term 4a;4 we regard as we did a2 in the pre¬ 

ceding example, and instead of a as the first term of 

the required root we have 2a;2. Subtracting 4a;4, we 

bring down — 12a;3. Doubling the first root term, we 

have 4a;2 as the first term of the divisor. This is 

contained —3a; times in —12a;3, so —3a; is the second 

term of the root and also the second term of the divisor. 

Here 4a;2 —3a; corresponds to 2a+6 of the previous 

example. Multiplying 4a;2 —3a;, the complete divisor, 

by —3a; we have — 12a;3+9a;2, which, when sub¬ 

tracted, leaves a remainder whose first term is 20a;2. 

We have now to find the second divisor and as before 

double the root already found (2a;2 —3a;) giving 4a;2 —6a;. 

It will be seen that 4a;2, its first term, is contained 

exactly five times in 20a;2 and as this 5 is the third 

term of the root it must (as in the case of —3a;) be 

annexed to the doubled root, giving 4a;2 —6a;+5 as the 

complete divisor. Multiplying this by 5 we get 20a;2 — 

30a;+25. This when subtracted leaves no remainder 
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and there is a whole result. The process can be con¬ 

tinued indefinitely if there is a remainder. 

11. The Square Root of Numbers.—Let us now extract 

the square root of 1446.2809, thus applying to arith¬ 

metic the system we have just learned from algebra. 

First we point off in figures of two places each way from 

the decimal point, because the square of a number less 

than 10 must be a number less than 100 and the square 

of a number less than 100 must be a number less than 

10,000. That is, we generally need twice as many 

figures in the square as in the square root. 

The given square, 1446.2809, is really 1400+46+ 

.28+.0009, but in the process of working it is con¬ 

venient to use dots instead of zeros to call attention to 

place. 

The explanation is exactly as 

before. The largest square in 14 

hundred is 9 hundred, of which 

the square root is 3 tens. Sub¬ 

tracting 9 from 14 we get 5 and 

then we bring down the next 

two figures 46. Doubling 3, we 

find that 6 tens is contained in 

54 tens nine times. But as 9 times 69 = 621, we must 

use 8 instead and make it the second figure of our 

divisor and also our second root figure. Eight 

times 68 is 544, which subtracted from 546 leaves 2. 

Bringing down 28 we at once see that any third figure 

to 76 would make a divisor larger than 228, so we 

make that third figure a zero, add a zero to the desired 

root and bring down two more figures, 09. Then we 

have no difficulty in finding that 3 is the next required 

figure and also the last one. If there had been a re- 

14'46.28'09 
9. 

38.03 

5 46 .. . . 68. 
5 44 . 

2 28 09 76.0 
2 28 09 

76.03 
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mainder we could have gone on adding to the decimal 

places as long as we desired or until we were left without 

any remainder. Should we desire say 9 figures we can 

work out 5 by this method, the remaining 4 being 

obtained by contracted division, the divisor being 

double the root already found, thus saving much labor. 

12. Cube Root and Higher Roots.—Cube root can be 

worked in the same manner by the formula 

(a+6)3 = a3+3a26+3a62+63 = a3+ (Sa2+Sab-\-b2)b. 

Fourth root can be worked as square root of square 

root or by the formula: 

(a+6)4 = a4+4a36 + 6a262+4a63+64 = 

a4 + (4a3 + 6a26+4a62 + 63)6. 

In cube root of numbers we point off periods of three 

numbers and in the fourth root of numbers periods of 

four figures are pointed off. 

Higher roots can be found in similar manner, but 

it is seldom that any other than square root is worked 

out, the others generally being obtained by logarithms. 

13. Radicals.—We have already learned that the 

square root of 2, or \/%, is an irrational number, called 

a radical or surd. We know also that \/—% is an 

imaginary number. Experience has shown that it 

simplifies matters to remove all square factors from 

under the radical sign. Thus '\/18 = v/9X2 = 3V2, 

which is generally understood to be ±3\/2, that is, 

ambiguous or uncertain as to sign. Also \/—lS = 

y/9X— 2 = 3\/ — 2, likewise understood to be =h3\/ — 2. 

The minus sign cannot be removed from the radical 

any more than we can eliminate the 2. 
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Cube factors can also be removed from under cube 

root signs, as, for example, x/24, which equals ^8X3 

and hence 2\/3. As you will observe, there is no 

ambiguity of sign. Also y/—24 = y/— 8X3 = — 2\/3. 

Note that ( — 2) 3= —8, 

Everything possible should be taken from under the 

radical sign. For instance, |- = j- = zb It 

should be observed that as 9 was in the denominator, 

so also is its square root. For the same reason ~~ — 

V—r = ± = ± ~Tyj~6. 

In this example in fractions, it is evidently possible 

to arrange matters so that either the numerator or the 

denominator could be removed. In numerical work we 

generally remove the denominator from under the 

radical sign, or rationalize the denominator as it is called, 

for the reason that in computation it is desirable 

to keep the denominator (which is the divisor) an exact 

number. In calculus and other branches of mathe¬ 

matics, we often choose to rationalize the numerator. 

Applying the same method to literal expressions, we 

find that 

and that = = ^ 

It will be observed from the examples so far given 

that ambiguity of signs (expressed zb) exists only 

when square roots are removed. There is no uncer¬ 

tainty with cube root. This difference applies to all 

even and odd roots—the even roots having ambiguity 

of signs, the odd ones certainty. 

We use radical signs and fractional exponents inter¬ 

changeably. 

y/(x — y)4 = (x — y)\/(x — y); also alhl = y/a 3b5 = by/a 36. 
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The last expression could be written without hesitation by 

considering that — 1-^-. Thus (3x* — %x*) = {3x\/x2 — %\/x2) 

= (3# — 2)\/x2. Without the radical sign, our answer becomes 

(3x — 9)x*. 

Here is another illustrative example in which all possible 

square factors are first removed from both numerator and denomi¬ 

nator and the result simplified. 

(t - i) - - if-^ 
Suppose we wish to know which is the greater, ^9 

or \/5? 

First we find that v/9 = 9s=\/81. 

Also that y/5 — 5g = \/\25. Hence \/5 > ^9. 

The sign (>) means greater than. Its reverse (<) 

means less than. 

14. Multiplication and Division of Radical Expressions.— 

We can add radical expressions only when both the root 

index and the quantity under the radical sign are alike 

in all the expressions added. We can compare them, 

multiply or divide them only when the index of the root 

is the same. Two examples in addition and one in 

comparison have already been solved and we will now 

attempt to solve the following one in multiplication:— 

•\f~ X \f-f- = Y - \ S/-f- Most mathema- 
32 

ticians would leave this as it is, but if further com¬ 

putation were desired we could remove the denominator 

by multiplying by under the radical. 

It will be necessary to obtain special products, con¬ 

taining these numbers, very similar to those of Section 

2. For instance, it is often necessary to square a 
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quantity (\/3 — \/2), and this can be done just as 

easily as we wrote (a — 5)2 = a2 — 2ab+b29 i. e.,the square 

of the first minus twice the product of the first and 

second plus the square of the second, so (\/3 —\/2)2 

= 3-2\/6Jr2 = 5 — 2-\/6. Likewise since (a — b)3 = a3 

— Sa^b+Sab2— b3 we see that (\/3 — \/2)3=(\/3)3 — 

3 (■VS)2 V%+3VsW%)2 - (V§)3 = 3 V3 ~ 9 6-v/3 - 

2\/2 = 9\/3 — ll\/2‘ Also as (a+5)(a — 6) = a2—52 so 

(10+V5) (10 ~ V5) = 102- (V5)2 = 100 - 5 = 95. 

We will now perform these same operations with 

imaginary expressions. A comparison of the results 

will be interesting, but we should be careful not to 

draw hasty conclusions. 

(V^S + V2)2= -3+2VCr6+2== -l+^V^. 

(V^+VW=(V^y+3(V^)W2+ 

3Vzr3(v/2)2+(\/2)3= -3V^3- 

9V% + 6V-3 + 2-= 3\/~3 - 7 V^. 

Also (lO + V^) (10 — \A~5) = 100— (—5) = 100+5 

= 105. Be careful never to say \/—5X\/—5 = \/25 = 

d=5, for here we have two equal factors and should 

replace this expression by —5 without any radical. 

There is also the operation of division by these 
4 

numbers. If we had —=—- we would remember that 
V5 — z 

since (a+5)(a—5) = a2—52, then (V5+2)(V5 —2) = 

5 —4 = 1, which certainly is a more desirable number 

to divide by than (\/5 — 2). We then proceed as 

f°U°ws v .-4_ ~ X = 4(V5+2). (Multiplying 

both numerator and denominator by the same number 

does not change the value, as we remember we learned 

in arithmetic.) 
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If the divisor had been an imaginary number we would have 

proceeded in the same manner, that is, 

4_4_ V~5 + 2 _ 4(V^5 + 2) _ __ J_ — 

V-5-2 ~ V^-2 X V^S + g “ “5-4 “ 9 ™ 

Here is another example: 

_X_ 

■y/a — X-\- y/a-{-X 

_X_ 

«sja—x -p \Za+x 
X 

•y/a — x — \/a-j-x 

■y/a — x — Va-\-x 

x(\/a — x — -y/a-\-x) x(*/a — x — y/a-\-x) 

(a — x) — (a+#) — 2x 

= (\/a-{-x — -s/a—x), in which the result is decidedly an 

improvement. 

The mere rapid reading of this section will do only 

little good, but copying it down on paper will make 

the whole matter clearer. 

REVIEW. 

1. What are the fundamental laws of exponents? 

2. State how coefficients are obtained in Binomial Expansion. 

3. How is the difference of squares factored? 

4. Show how to make as easy as possible the process of finding 
the highest common factor. 

5. Extract the square root of 4>x4 — 20.r3 -f- 37x2 — 30x -j- 9. 

6. When can we add, multiply and divide radical expressions? 



CHAPTER X 

QUADRATICS AND SERIES 

1. Quadratics in One Unknown Quantity.—Sometimes 

our information concerning a number comes in the form 

of an equation of the second degree in the unknown, or a 

quadratic equation, which is an equation containing the 

square of the unknown quantity but no higher power. 

How are we to identify such a number? Suppose we 

have 

6x2 — x — 2 =0. Factoring this we obtain 

(Sx — 2)(&c+l) = 0. Which means either 

3x-2 =0. 

or &r+l =0. 

Hence, 3x = 2 whence x--~f or 2x= — 1 whence 

x=—JL. Then either or — -h number des- 
2 o 2 

cribed by the original equation. It is evident that the 

process can be reversed, for if 2 and 3 are the roots of 

an equation, then x — 2 and x — 3 are each equal to 0. 

Whence (x — 2)(x — 3) = 0. 
or x2 — 5x-\~6 =0. 

Solve the following equations, by factoring: 

a;2+9a;+8 = 0. Here (2+8)(2+1) = 0 whence 2=—8 or — 1 

23 —222+2 = 0. Here 2(2 —1)(2 —1) = 0 whence 2 = 0 or 1 twice. 

24 —1322 + 36 = 0. Here (22 —4)(22 —9) = 0 or 

(2 — 2) (2+2) (2 — 3) (2+3) = 0 whence 

2= + 2 or —2, or +3 or —3, generally 

written ±2, ±3. 

(152) 
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£8+6£2-f-lla;-f 6 = 0. By factor theorem —1 is a root and £+1 

a factor by division. The other factor 

is x2-\-5x+6 = (#+3) (#+2) so the roots 

are —1, — 2, —3. 

4x(x — 5)(x-j-7) = 0. Here the roots are 0, 5, — 7. 

We could prove these results by forming the equations of which 

these were the roots, thus if x= — 8 a root, #-f-8 = 0 is a factor, 

also if x — —1, a root, z-f-l = 0 is a factor. Hence (x+8)(a;+l) =0. 

Multiplying out we have #2 + 9o;-f-8 = 0 etc. 

2. Completing the Square.—Difficulty in factoring is 

often overcome by what is called completing the square. 

This operation is simply that of taking the square root 

of both sides, after the left member has been made a 

perfect square, and is illustrated by the following ex¬ 

ample, in which we have to solve the equation: 

3x2+2x = 4 

We first divide each member by the coefficient 3, so as to make 

the coefficient of x2 unity. This gives 

X‘ 
2 
3 

X = 
4 

As, according to the law of the square of the sum of two 

quantities, the middle term of the square is twice the product 

of the quantities and as the first quantity is x, then — must be 

twice the second quantity. The last term is always the square 

of the second quantity. It is in this case = -4— There- 
9 

fore, we add (—^-) 2 to each side of the equation and obtain 

X‘ 
2 

-x- 
4 

Extracting the square root, x- 

1 13 
or 

9 9 * 

— = ± v'1! 

1 ±V13 
x = 3 
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Here is the check in the original equation, as all checks should be. 

^ - i ± yi3 ^2 + 2 ^ - i ± yi3^ _ 

1=F2V1S+1S _l -2±2V13 
3 3 

12 = 4. 

The (=F) used in the check is the opposite of (±). 

When these signs occur together the j sign is 

read with the sign, thus: ±5^3 = 2 or — 2, 

according to whether we take the upper or lower sign. 

Take another case. Let us solve the equation 

5x2-\-Sx+4> = 0. 

Transpose 4 to the right member. 5x2+Sx = —4. 

Divide each member by 5. x2 — ~x= 4 

Add (-A-)2 to each member, x2 — ~x + (-^-)2 = — 3 \ 2 71 

ldb 

Extract the square root, x 3 _ dbV-71 
10 10 

X — 
3 ± 

10 

Check: 5 ( 4- 3 dr V —71 
10 )■ - »( 

4- 3 db y-71 
10 

+4 = 

4-9±6V'~71 -71 
20 

9 ± 3 V-71 
10 

4 4=0, 

Note V-7iXv-7i= —71. 

3. The General Quadratic.—The equation 

ax2+bx+c = 0 

is called the general quadratic equation, since it reduces 

to any given quadratic when proper values are given 
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to a, b and c. The solution of this general quadratic 
will therefore give us a formula from which we can 
write down the roots of any quadratic. 

Dividing each of the terms by a (exactly as in the 
operation in completing the square) after transposing c, 
we obtain 

Completing the square by adding to each side 2 

we have x*+~x+ (-^-)2 = , or 

/ ■ b \ 2 _ b2 — 4tac 
' 2a ) 4a2 

Following which, the square root is extracted 

x 
zb Vb2 — 4ac 

2 a 

and we have the formula x — 
— b ± \/b2 — 4ac 

2 a 

This important formula cannot be simplified till we 

know the numerical values of a, b and c. Every 
equation must be simplified before applying the formula 
to its solution. 

In solving the equation — -f- ~rr^ 
X X j“ !£ 

Combine the terms with x, 3a; -f 4 _ _2 
a;2+2a; 5 

Then clear fractions, &r2+4#= 15&+20. 

Simplifying so as to have the first term positive, 

2x2 —11#— 20 = 0. 

Here (a = +2, 6 = —11, c = —20.) 

Then by the formula rr= = 11 * V281. 
4 4 
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In practical work we would extract the square root 

of 281 and get the result to the required number of 

figures in one final result. 

4. Relations Between the Roots.—If we let Xi and x2 

represent the two roots of the quadratic from the 

formula, that is Xi= ~b + ~ iac 
2 a 

_ — b— Vb2 — 4ac 

then, as in adding, the radicals cancel, having opposite 

signs, the sum of these roots X\+x2 — — and their 
Q/ 

product XiX2 = (The numerators are the sum and 

difference of the same two numbers, hence the product 

is the difference of their squares.) 

Now, the equation ax2+bx+c = 0 can be written 

x2+ 0. 

It should be carefully noted that the last term is 

now , which is the product of the roots. Also that 

the coefficient of x (the second term) is opposite in 

sign from ^ the sum of the roots. 

Let us check our answers to %x2~ 11#—20 = 0. 
Hr 

If we make the coefficient of x2 one, we have x2--—10 = 0. 

Our roots were Xi = 11 V??1. and x<i = I1—- v/^81. 
4 4 

Then x± +#2 = _y'» which is the negative of the coefficient of x. 

Also #iX£2= 121~i(j281 = "ig60 = —10, the last term of our 

equation, after it has been rearranged by making the coefficient 

of x2 equal to one. This check is much easier than substituting 

and ll-~~ V281 for a; in our original equation. 
4 4 
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Care should be taken not to accept any answer that 

would have introduced the operation of division by 0 

in the original equation. Division by 0 must be rigor¬ 

ously avoided in mathematics of every kind. The only 

values x might have in our original equation that could 

bring about such an unfortunate circumstance as 

division by 0 are x = 0 and x — — 2, for the equation 

was — 4—~ = ~. As we did not get either of these 

results, there is no cause for error of this kind. 

6. Nature of Roots of Quadratics.—In the quadratic 

ax2+bxJrc = 0, we obtained by the formula the roots 

Xi = and x2 = -t’-_v/6Z-4a<;. The only dif- 
jHCL X (l 

ference between the two roots is in the radical part — 

(\/62 — 4ac). If that were 0, the roots would be equal. 

If b2 — 4ac were positive, then we could take the 

square roots in real numbers and the roots would be 

real. If it were not only positive but also a perfect 

square we could extract the root exactly and since 

there would be no radicals we could say the roots 

were rational, as well as real. If b2 — 4ac were a negative 

number the square root of it would be imaginary and 

the roots themselves would be imaginary or, as is more 

generally said, complex. In all these three cases— 

real, rational and complex—the roots would also be 

unequal. 

In the equation 2x2 — llx — 20 = 0, we have b2 — 4ac = ( — ll)2 — 

4X2( —20) =281. Since 281 is positive, the roots are real and 

unequal; and since 281 is not a perfect square, the roots are also 

irrational. 

If the equation were #2-f-(>a;-f-9 = 0, we would have b2—4ac = 

^6)2—4X9 = 0. That is, the roots would be equal, which means 

that x2 + 6x+9 is a perfect square. 

Equation x2+3:r+9 = 0 gives b2 — 4ac= (3)2— 4X9= — 27, 
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hence the roots are imaginary or complex. In the equation, 

6x2 — 5x — 6 = 0, we have b2 — 4ac = 25 + 144 = 169, a perfect square. 

Hence the roots are rational. 

It will be seen, therefore, that we can determine the 

character of the root of a quadratic without completely 

solving it. This not only helps us as a check on our 

work but is also of great importance in many other 

problems. Such problems as this will occur: For 

what values of k will the roots of the following equation 

be equal? 

x2+4>kx+4> = 0. 

Applying the quadratic formula for ax2Jrbx-\-c = 0, 

we have here a — 1, b = —4k and c= 4, hence b2 — 4ac = 

167c2 —16. In order that the roots be equal, we must 

have 16k2—16 = 0. Solving this equation for k, we get 

k=± 1. That is, when k in this equation has the 

value of 1, or — 1, the equation has equal roots. We can 

readily verify this result. When k = 1, the equation is 

x2 — 4#+4 = 0 (a perfect square) and 2 is the only root; 

when k— — 1, the equation is 

a;2+4#+4 = 0 (a perfect square), and — 2 is the only root. 

6. Higher Equations Worked Out Like Quadratics.—The 

following equations are of exceptional importance. 

They are not difficult and could be made still easier 

tho longer. Economy of work is one of the first 

principles of mathematics. 

Solve: c4 — 13c2+36 = 0. 

It should be noted that c4 is the square of c2 and that 

the expression is a quadratic in c2. Solve for c2, then 

for c. 

Solve: x6 — 3a;3 —4 = 0. Put y = a;3 and we have 
y2 — Sy — 4 = 0. 



Whence 

Hence 

Factoring 

Whence 
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y = 4 or — 1 

x3 = 4 or — 1 and 

x3 — 4 = 0 or x3 +1 = 0 

a;3 + l = (a?+l)(z2 — z+l) 

1 zbV^-3 

= 0. 

x — — 1 or 
2 

159 

We could factor #3—4 similarly; but it is easier to note that 

when rr3 = 4, x= \/4 = ^4X^1, therefore we will obtain the 

three cube roots of 1 and multiply each of them by the arith¬ 

metical cube root of 4. 

By factoring x3 — 1 = (x— l)(#2+a:-bl) =0, we get 

x= 1 or, by the formula from the second part =*= V~3 
2 

(Notice that either one of these imaginary roots of 1 is the square 

of the other. They are called co and co2. co is the Greek letter 

omega.) 

Hence x = \/4>, or \/4s LlllltlNJZll, or -\/4 ( —1—V—3) 
2 2 

(Other irrational roots are obtained in the same way from the 

roots of 1 or — 1.) 

Solve: (x2 — 3a:+l)(a:2 — 3a:+2) = 12. If y is put for x2 — 3#+l 

we have 2/(2/+1) = 12 

whence y2 +2/—12 = 0. 

2/ = 3 or —4. 

When x2 — 3a:+l = 3, x= 3 ^ VD 
2 

When x2 — 3a;-f-l = — 4, x= 3 ^ V 4 
2 

As another type of example 

1 , 1 
solve: 

T + 

Solve: 

where 

X2 + 1 

1 

+ z2 + 2 z2 + 3* 
This becomes 

^+1 y+2 

x — a 

when z2 + l is put = y, etc. 

a-2_+_o2 _ 34 I>ecomes y -1-— 
x2 + a2 1 X — a 15 ** V 

x — a j x2 + a2 1 
= y and = 

x2 + a2 x — a y 

34 

15 
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7. Approximation.—Many of the problems which 

occur in physics and geometry give rise to quadratic 

equations. In general, the roots of such quadratics 

are irrational numbers appearing in the form of radical 

expressions. For practical purposes we usually require 

rational results which give approximately the values 

of the roots. The method used in obtaining such 

approximations may be seen from the following: 

Approximate to two decimal places the roots of 

25x + 2 . , 47z +31 n 
-i—T~ T" 1 — -o~ = x + 1 2x — 3 

Simplifying, we have x2 — 30x—8 = 0. 

30 db V932 

x~ 2 _’ 

whence x— ±15\/233; 

that is x = 15 ±15.265-=30.265- or 0.265-. 

Therefore, the roots of the given equations correct 

to two places of decimals are 30.26 and 0.26. As the 

sum of these two roots is approximately 30 and their 

product approximately — 8, we can be satisfied, for the 

only numbers threatening division by 0 were x = — 1 

and x = 

The solution of homogeneous equations in two 

variables, that is, of equations all of whose terms are 

of the same degree, is as readily performed as the solu¬ 

tion of equations in one variable. The equation 

£2+to/+3i/2 = 0 is homogeneous. 

To illustrate the method, we will solve x2-\-^xy— — 3y2 by 

completing the square and by formula. 

First, complete the square by adding 4<y2 to each side, which 

gives a;2+4x?/+42/2 = ?/2 ' 

Whence £+2y=zky, and 

x — —y or —3y. 
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The solution by formula is x = _^ ... 
2 

Hence a; = 
4 y j= 2 y 

2 

£= —y or —3y. 

8. Irrational Equations.—The unknown in an equation 

sometimes occurs in expressions which are under the 

radical sign. If \/x = a, x will equal a2. Had we not 

known or noticed the original expression (\/x = a) we 

might have said \/x=±a> which is an ambiguity and 

therefore to be avoided. We consider only the posi¬ 

tive square root or principal square root in radical 

equations in elementary mathematics. 

Solve: \/x2 — 9 — 4 = 0. 

y/x2 — 9 = 4. 
x2 —9 = 16. 

x2 = 25. 
X= d=5. 

It is absolutely necessary to 

test these results, both of which 

happen to prove in the original 

equation. 

In solving V£~6+4 = 0 we get 

y/x — 6 = — 4. As this does not express a principal 

value of the radical, we need not go any farther, but working the 

problem out by way of demonstration and squaring we have 

x — 6 = 16. 

Whence # = 22. Substituting in the original equation 

we get y/2& — 6+4 = \/16+4 = 4+4^0. This equation, then, has 

no roots. 

Note.—The sign 7^ means is not equal to. 

But take another equation for solution, say 

Vx+5-V7xT4+V^+9 = 0. 

By arranging the terms so that one radical shall stand alone 

in one member, we get \/x-\-5-}-\/%x-i-9 = \Z7x-\-4<. Squaring 

x-\-5+2\/(£+5) (2a?+9) 9 = 7a+4. 

Simplifying 2* - 5 = V(2*+9)(x+5) 
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Again squaring and simplifying 2x2 — 39# — 20 = 0. 

Factoring (2a?+1) (a?—20) — 0 

giving roots 20 or —Substituting 20 for x in tbe original 

equation, we get -v/25 —\/144 + \/49, which simplified = 5 —12+7 

= 0, which is an identity. Hence 20 is a root. 

But substituting —in the given equation, we have 

Vf - V-jr + V s = wz* o. 

Hence —~ is not a solution. 

Is it a solution of \/7a;+4++#+5 — \/2x-\-0 = 0? 

Is it a solution of \/7a;+4+\/a?+5 + \/2;c+9 = 0? 

Is it a solution of \/7a?+4 —v/£+5 + v/2£+9 = 0? 

In working these last three equations, which should be done in 

full, we shall seem to get the same result in each case. But on 

attempting to verify, we arrive at some remarkable conclusions, a 

circumstance which emphasizes the uncertainty of an answer to a 

radical equation until it has been verified. 

9. Exercises in Equations.—All the methods of solving 
equations are merely the scientific narrowing down of 
the possible numbers among which the result will lie. 
The answer or root of an equation is that quantity which 

when substituted for the unknown satisfies the equation. 

Everything else in the solution is but a means toward 
this end. The eminent French mathematician, La¬ 
grange, said 4‘Algebra is generous; it often gives us 
more than we ask for.” 

Let us suppose that a man bought muslin for $3. If he had 

bought 3 yards more for the same money each yard would have 

cost him 5 cents less. How many yards did he buy? 
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Let x stand for the number of yards the man bought, then 1 

yard cost-cents. If he bought x+3 yards for the same money, 
«T 

the cost of each yard would be cents, which having a larger 

denominator than is the smaller of the two. 
x 

Hence 
300 300 

= 5 

= 1 

= 1 

= 1 

180 = x2+3x 

x2-\-3x — 180 = 0 

Whence, x = 12 or —15 

Of the two answers, x =12 is the only one that conveys any 

meaning to us. Restate the problem, making it read that if the 

man had bought 3 yards less for the same money, each yard 

would have cost him 5 cents more. And note the changes in result. 

10. Series.—An expression whose succession of terms 

is obtained by a fixed law is called a series. The 

express {x-\-y)z — x3+3x2y-\-3xy2+yz is a finite series 

because its law of formation does not give any more 

terms. The series 1, 3, 5, 7, etc., is an infinite series, 

because we can get terms forever by continuing to 

add 2. This last series is also called an arithmetical 

series, but a series such as 2, 4, 8, 16, 32, etc., is a 

geometric series, its terms being obtained by multiplying 

each by 2 to obtain the next. It is also infinite. 

In arithmetical series, there is a common difference, d. 

In geometric series, there is a common ratio, r. 

Of the following series which are arithmetical, which geometric 

and which neither? There are two of each set: 
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(1) -4, 0, 4, 8. (2) 1, -1, 1, -1, 1. (3) 1, -L, + 

(4) .3, .03., .003. (5) 20, 13, 6, -1. (6) 1, 2, 5, 26. 

In series (1) and (5) there are two values of d, namely, 4 and 

— 7. These are arithmetical series. 

In series (2) and (4) there are two values of r, namely, — 1 and 

. 1. These are geometric series. 

In series (3) we have terms that are reciprocals (-j- = the 

reciprocal of d) of the terms of an arithmetical progression. Snch 

a series is called a harmonic series. The remaining series (6) was 

obtained by squaring each term and then adding 1 to get the 

next term. It is an example of innumerable series which can 

be devised for experience and practice, regarding which it should 

be mentioned that it is easier to invent a series than to find out 

its law afterwards. The law should not be accepted as true until 

it has been tested in at least three terms. 

11. Arithmetical Progression.—If the terms of an arith¬ 

metical series are represented by a, a+cZ, a+2cZ, a+3cZ, 

a+4cZ... .the 10th term will evidently be a+9d. In 

like manner the nth term will be a+{n — V)d. If we 

call the nth term Z, the formula will be Z = a+(n—l)d. 

Thus the 8th term of the series 7, 10, 13, 16, can be 

obtained by saying Z = 7+(8 —1)3, whence Z = 28, which 

may be tested by continuing the series. 

What is the common difference when 27 is the first of 12 terms 

of an arithmetical progression and —17 the last? 

Evidently, -17 = 27+ (12 -1 )d 

Whence d— — 4 

The terms are 27, 23, 19, 15, 11, 7, 3, -1, -5, -9, -13, -17. 

Insert four arithmetical means between 7 and 20. Here n = 6 

and 20 = 7+(5d) 

The terms are 7, 9-f-, 12-r~, 14-^-, 17-^-, 20. 
o o o o 
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If we let s represent the sum of an arithmetical 

progression, and as before a = the first term, l — the last 

term, eZ = the common difference and ?i = the number 

of terms, we shall obtain the following terms as the 

two ends of the series. 

s = a+(a+<2) + (a + 2(Z) +.+(/ — — or, written backwards 
s = l-i-(l — d) -f- (l — id) -f-.-f-(a+2a) -\-(a-\-d) -\-a Adding, we get 

2s = +(a+0 +(a+0 +• • • +(a+0 4-(a~W) +(a+0* 

Hence 2s = ?i(a+Z), since n equals the number of terms; 

therefore, s = -y-(a+Z). By substituting the value of Z, 

in Z = a+(n—1) d, we get s = -~\^la+(n-l)d~^. 

Thus the number of times (s) a clock strikes in twelve 

hours is s = ~(1 +12) = 78. 

12. Geometric Progression.—The general form of the 

geometric progression is a, ar, ar2, ar3, ar11-1, the increase 

(or decrease) being by constant ratio. Hence we say 

Z = arn-1. If any three of these four letters are given 

the remaining one can easily be found. 

Suppose the twelfth term of a G. P. to be 1536 and the fourth 

term 6. What are the ratio and the series? 

Here ar11 = 1536 and ar3 = 6. Dividing the former by the 

latter we get r8 * = 256, and, therefore, r=\/256 or 2. As r = 2, 

then the fourth term must be ar3 = 8a, and as 8a = 6, therefore 

a = -7- and the series is 3, 6, etc. 
4 4 7 2 ’ 

The sum = 5 = a+ar+ar* 2 + ar3 4 * * +.+arn 1 
rs = ar+ar2 + ar3 +.+arn~1 + «rn 

subtracting, s — rs = a — arn (all the middle terms cancel) 

s = —arn- or flr° ~■- the latter being used when r is 
1—r r—1 

greater than 1. Remembering that arn~1 = Z, we note 

that arn = rZ and 
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«=!* or r-^. 

If 3 of the 5 numbers a, r, n, l, and s are known, 

these two equations for l and s will enable us to find 

the other two. 

An important application of the same formula pre¬ 

sents itself when r is less than 1, for 

s = 
a — arQ 

1 -r 
a ar11 

1 —r 
becomes 

s ^ , which means that the sum to infinity equals 

The term 
arE is an infinitesimal, for since r is less 

2 
than 1, r2 is less than r, etc. For example, if r is 

r2 = r3 = thus rn becomes smaller and smaller as 

n grows larger and so does the term in which it stands. 

13. Circulating Decimals.—Sometimes we get a deci¬ 

mal in which the figure or group of figures repeats 

itself again and again, as . 333.generally written 

. 3 (The dot over the 3 means it is repeated indefinitely.) 
• • 

Another example is .135135135. . .generally written. 135. 

The first of these numbers . 3 is evidently . 3 + . 03 + 

.003, etc., where a—.3 and r=.l. Hence s = 1 —r 
.3 

gives 
• • 

shown that .135 = 

.3 

.9 3 
135 

In the same way it can be 

also . 035 = 
35 

999 - 999. Any repetend, as 

it is called, can be replaced by a fraction whose numer¬ 

ator is the set of figures in the repetend and whose 

denominator consists of as many 9’s as there are 

figures in the repetend. Thus 
34 34 

93 
.434 -4 99 10 

430 
990 

43 

99 
This is evidently true, since the repetend 

could be written . 43 = 
43 

99 



QUADRATICS AND SERIES 167 

14. Geometric Series in Compound Interest.—One of 

the most useful applications of geometric series is in 

compound interest. Let p equal the number of 

dollars invested, r the rate per cent and t the time or 

number of interest payments. Then 

a = p (1+r) at the end of one year. (a = p plus interest) 

a = p(l+r)2 at the end of two years. 

a = p(lJrr)t at the end of t years. 

In what time will $8000 amount to $12,500, the rate being 

3-~-% compounded annually? 

Here $12,500 = $8000 (1.035) * 

Hence i|^=(X.035)< 

Hence, by trial t = 13 years. Answer. 

These problems are usually worked by a table of 

compound interest or by the use of logarithms. 

What is the present value of $2500 due in 4 years, money 

being worth 3-^-% and the interest compounded semi-annually? 

There are 8 periods for which the interest is hence the 

formula becomes $2500 = a(l. 0175)8. Multiplying the number in 

parenthesis by itself until we get the 8th power and dividing this 

into 2500 we find that a = $2176.2. 

15. Permutations.—If a man has 3 pairs of trousers, 

4 coats and 5 vests, he can wear a different combination 

of vest and trousers on 5X3 = 15 successive days. 

Any one of his 4 coats could be worn with any one of 

these 15 different ways of wearing trousers and vests. 

Hence, this rather modest outfit would allow him to 

dress in a different manner for each of 15X4 = 60 days. 

Any one of these sixty possible arrangements is called 

a permutation. 

Five of the members of a basket-ball team could be 
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arranged in 5X4X3X2X1 = 120 ways, if each man 

were tried in each of five positions. Four men could 

be stood in a straight line 4X3X2X1=24 ways, this 

expression being called factorial 4, written 4!. But 

these four men can form a ring in only 3 X 2 X1 = 6 ways, 

for the position of the first man is immaterial, the 

second man can take his place in forming a ring in 

only one way, the third man can go between them in 

just two ways, while the fourth man can do so in only 

three ways. 

Three keys can be placed upon a ring in only one way, but 

three men can arrange themselves in a ring in two ways. With 

the keys, however, we can turn the ring upside down and get 

what corresponds to each of the two ways the men can be arranged. 

In how many ways can signals be made with eight flags, 

using three at a time? 

The first flag can be chosen in 8 ways, the second in 7 and the 

third in 6. Hence the signals can be made with 8X7X6 = 336 

different arrangements, 3 flags at a time. The abbreviation for 

the number of ways 8 things can be taken 3 at a time is written 

8P3. 

In how many ways can the letters of the word Pennsylvania be 

written or arranged? 

There are twelve letters and if these were all different they 

could be arranged in 12! different ways, but there are 3 n’s and 

2a’s. All the ways in which the n’s could be arranged are just alike 

and would look like one way, and it is the same with the a’s. 

Therefore, the number of ways Pennsylvania’s twelve letters can 

be written is 
12! 

3!X2* 
There must, of course, be no canceling until 

the multiplication has been indicated, thus, 

2 
12.11.10.9.8.7.6.5.4.3.2.X 

3.2.x.2.1 
= 39,916,800 ways. 

16. Combinations.—When we are interested only in 

the group and not in the order or permutation of the 

individuals in the group, we speak of the group as a 
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combination. For example, ab is one combination of 

two of the three letters a, b and c, the other two 

possible combinations being ac and be. The abbrevi¬ 

ation for the combination of say, 6 things taken 4 at a 

time, is 6(74. As there are, in this case, four things in 

each combination and as these four things can be 

arranged in 4!, that is 4X3X2X1 = 24 ways, the 

whole number of arrangements is equal to the number 

of groups or combinations multiplied by the number 

of arrangements in each group. Hence we say, in the 

language of algebra 

6C4X4! = 6P4 
3 

Therefore 6(74 = -^ = = 15. 

In general nCrXr! = nPr. Therefore nCr = ~~. If 

both numerator and denominator are multiplied ' by 

(n — r)! we get nCr — 

Whence nC(n — r) = nCr. Thus 11(77 = 11(74, for every 

time we take a different 7 we take a different 4, also 

1 pry  11X10X9X8X7X0X0  11/^1 
110 ' 7X0X0X4X3X2X1 “1A°^ 

Thus 100(798 = 100(72= =4930. 

How many committees each consisting of 5 republicans and 4 

democrats can be chosen from 20 republicans and 16 democrats. 

The 5 republicans can be chosen in 20(75 ways, and the 4 

democrats in 16(74 ways. As any set of republicans can go with 

any set of democrats the result is 

20(75 X 16(74 = 28,217,280. 

How many arrangements of 4 consonants and 3 vowels can be 

made from 8 consonants and 5 vowels? We can choose them in 

8(74X5(73 ways. As in any combination there are 7 letters, 

these letters can be arranged in 7! ways. The answer then is 

8(74 X 5(73 X 7! = 3,528,000. 
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17. Binomial Theorem.—We are now in a position to 

prove the binomial theorem for raising binomials to 

any positive integral power. Consider the product 

(a+6)(a+6)(a+6) 

When this is multiplied out we obtain a term in a3 

made up of the products of the first term of the fac¬ 

tors, a term in a2b made up of two of the first terms 

and one of the second, a term in ab2 made up of one 

first term and two second, and a term in bz made up 

of the last three terms. The result of the multipli- 

ation is 

a3+3a26+3a&2 + 63 for 

the product of the first term can be made in only one 

way, but we can choose two first terms out of three 

first terms in 3(72 = 3(71 ways, exactly the same number 

as the ways in which we can select one last term. 

Hence there must be three (a26)’s. The same course 

of reasoning shows us that there are three (a&2)’s and 

one (63), that is, 

(a+b)s = a3+3(7la26+3(72a&2+i>3 

also (a+6)4 = a4+4(7la36+4C2a262+4(73a&3+4(74&4 

and (a+6)n = aw+n(7la(w“1)&+nC2a(n~2)&2+7iC3a(n_3)&3 

+nC4a(n_4)64 

or (a+6)n = an+ua(n~1)b+ - a(n — 2) 62+ .. . 
x • 

_|_ n(n-l) ..(n-r+1) an-r£r_|_ _ _ _ 
r\ 

Let us write the first five terms of (1+— )n 
s n ' 

They are 1 + n(7l(l)(n-1) +n(72(l) (n_2) f-—)2 + 

nC3 ( ^- ) 3 + uCi ( * ) J + • ■ ■ 
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(Note: We cease to write powers of 1; they are all equal to 1.) 

This expression equals 

n i _w_ (1) I n (ra-1) / I V , to (to —1) (n-2) f 1\3 , 

1 ' 1 (to) 1X2 \n/ ' 1X2X3 \nj 1X2 

to (to —1) (to —2) (to — 3) / 1 \4 j 
1X2X3X4 U/ ' * ' ’ 

Likewise 

(l+a)« = l + a(a) + -&=$- a*+ +^~2) a3 + etc. 

We could obtain the square root of 3, equals 3% 

equals (2 + 1)*, by this expansion, but it is simpler to 

make 1 the first term of the expansion. Thus we get 

(2+1)4= [2(1+-!-)]* = (!++• 

Let us compute the [l ~|—^ Y and multiply our result 

by \/2. First we simplify all expressions, like — 1 = 

2 

14- 

—|-, etc. Then (l+-|^ = 

+ H=±> (IV + (_1V + 
V2y“lX2V2/ ~ 1X2X3 V 2 / “ 

1+ 
1X2X3X4 

1 , 1 
22 25 27 211 

(4)4 , etc. = 

£13 J CtC. + 7 oil “ 

In reducing this expression we obtain one term from 

another by noticing that 22 into 25 goes 23 times = 8 

times and that all denominations are powers of 2. As 

the numerators follow no law, we will multiply by 

them separately. The plus terms are placed in one 

column and the minus terms in another. The first 

divisor is 22 = 4; the second is 25-^22 = 23 = 8; the third 

is 27 -v- 25 = +22 = 4, and so on, as shown in the following 

computation. 
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+ “ 
4)1.0000X1 = 1.0000 

8)0.2500 X 1 = 0.2500 

4)0.0313X 1 = 0.0313 

16)0.0078X1 = 0.0078 

4)0.0005X5 = 0.0025 

0.0001X7 = 0.0007 
1.2585 - 0.0338 = 1.2M7 

V2 = I. Hi 2 
It is more accurate to multiply 1.2247 

by the contracted method. 4899 
As we are not sure of the last 122 

figure we write \/3 = 1.732, 49 
which agrees with our previous _ _2 
value. \/S = 1.7319 

18. Convergency.—Had we tried (1+2)1, we would 

have obtained a series with ascending powers of 2 and 

the longer we worked the farther away from our answer 

we would have gone. We cannot expand to an infinite 

series by the binomial theorem unless the second term 

is less than the first. Another example where care is 

needed is the following: 

The expression-h- gives by long division 1 -\-x+x2+x3. 

When x is less than 1, say, x= ~~9 this becomes —L = 
~ 1 — 2 

4- = 2 on the left and 1 + -^—I——I—which evidently 

has a limit, 2, on the right. But, when x = 2, = zTj ~ 

— 1 on the left and on the right we have 1+2+4+8, 

etc. Certainly 1+2+4+8, etc., does not equal — 1. 

It is evident that these infinite series obtained by the 

ordinary expansions of algebra are true only under 

certain conditions. 
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Such series as l+-|-+“fwhose sum has a limit 

are called convergent series and are somewhat closely 

related to geometric series where the ratio is less than 

1. Every series whose terms increase numerically is 

divergent. Convergent series are among those whose 

terms decrease. Let the terms of a series be tu t2, 

.tn9 tn+1. We will prove that if the ratio —^ is 
tn 

less than r where r is less than 1, then the series is 

convergent. In other words, if the ratio of any term 

to its preceding term is less than some number r which 

itself is less than 1, then the series is convergent. 

Let s = £1+£2+4+.etc. 

then, factoring out tu s = £i(l+~- + 77* + 7^~ + etc.) 

or multiplying both numerator and denominator by 

the same number, we get 

s = ti(l + 77- + hXh I <2X<3X<4 1 j. \ 

tiXt2 hXt2Xh ' 

Whence s = h( 1 + 17 + + 1TX if~X17 etc<) 

As we assumed that r was greater than any of 

these fractions, etc., we can say replacing 
*1 l2 

the fractions by r, 

s is less than £i(l+r+r2+r3, etc.). 

Now l+r+r2+r3 is a geometric series with r less than 

1; hence it equals ■~^r. Therefore s is less than 

and less than some positive finite number, since ti, 

1 and r are finite number. Inasmuch as s is positive 

it must be a finite number itself and the series has a 

limit. Such a series will evidently be convergent if 

some or all of its terms are negative. 

Is the series x-~x2 + ~7r#3 “ convergent? 
j£ O 
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The second term of this series is 
1 2 
—x the third is-^-a;3 so 

the nth term is — x and the next following that is —7-r #n+1. 
n w-j-1 

ratio of this term to the preceding one is 

The 

Dividing numerator and denominator by n we get 

When n is infinite is an infinitesimal and the ratio approaches 

x. When x is less than i the series is convergent; when x is greater 

than 1 we have a divergent series. 

Some other method is necessary when x equals 1. 

We generally compare with some known series. If 
the ratio of the nth term of the two series is a finite 

number they are the same class, (both convergent or 

both divergent). Otherwise we learn nothing about 

them. The series commonly used for comparison are 

1+T+4+4~ + (divergent) 

1 — —1—3-^~ + (convergent) 

■pr + ^ — (convergent when x> 1) 

The greatest difficulty lies in writing the nth terms. 

This can be done only by trial and practice, but the 

ratio test will generally suffice for computable series. 

19. Computing Value of Series.—As another example 

of computation we will compute the value of the series 

0+ when n increases indefinitely. 

This series was found in Section 17 of the present Chapter to be 
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1 + 
n (1) . n(n — 1) / 1 \2 , n(n — 1) (w — 2) 

1 (n) + 1X2 
+ 1X2X3 (*)■+ 

n (n — 1) (n — 2) (n —3) 

1 X 2 X 3 X 4 (4) 
which reduces to 

1+1 + 
(1 --+) n (1 

2! + 
—) (1 
n 

3! 

—) (i-—) a 
w _[_ n 

2 
n ) a 

4! 

n 

When n is infinite, — approaches 0 and the series thus becomes 

1 +1 + which can be computed as follows: 

1)1.00000 
2)1.00000 
3).50000 

4) .16667 

5) .04167 

6) .00833 

7) .00139 

8) .00019 

.00002 

2.71827 

Note: Dividing one factor divides the number. 

We can divide by n3 by dividing three factors by n. 

When the denominator of a fraction is infinite, the 

limit of the fraction is 0. Hence 
n 

etc., can be 

dropped in the limit. In the computation the 

several terms are 1 over the successive factorials. 

We can get each term from the preceding one. For 

if we have divided by 2, when we divide this quotient 

by 3, we will have division by 6 = 3! etc. The whole 

example is solved by the same labor it would have 

required for the last term. The sum in this ex¬ 

ample is called e. It is the base of the natural system of logarithms 

used in the calculus and all higher mathematics and is a very im¬ 

portant and peculiar transcendental number. 

Computors often arrange series for computation 

without testing whether they are convergent or not. 

They carry out the division to several decimal places 

and if in a reasonably small number of operations they 

get 0 in all the places in the result of a term they add 

up as we have done, drop the last two figures and call 

the result the sum of the series correct to the number 

of places retained. 
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REVIEW. 

1. How is difficulty in factoring often overcome? What is the 
operation involved? 

2. What is the special value of “ the general quadratic ”? 

3. When and how are “approximations” obtained? 

4*. What is an arithmetical series? A geometric series? A har¬ 
monic series? 

5. State and illustrate the meaning of “ repetend ” as applied to 
decimals. 

6. Explain the respective meanings of “ permutation ” and 
“ combination.” 

7. When is a series called “ convergent ” ? 



CHAPTER XI 

LOGARITHMS 

1. The Invention of Logarithms.—The extensive nu¬ 

merical computations required in business, in engi¬ 

neering, and in science were greatly simplified by the 

invention of logarithms by John Napier, Baron Merchis- 

ton (1550-1617). By means of logarithms we replace 

multiplication and division by addition and sub¬ 

traction, likewise powers and roots by multiplication 

and division, thereby greatly simplifying the processes. 

Napier proceeded much as follows: Consider the powers 

of 2, both positive and negative. These exponents 

are in arithmetic progression while the results are in 

geometric progression. 

X -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 etc. A.P. 

2* 0.015625 0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 etc. G.P. 

If we wish to multiply 16 by 32 we add 4 and 5, the 

numbers above them in the A.P. line, and get 9. Look¬ 

ing under 9 we find 512 the product of 16 by 32. To 

multiply 1024 by 0.015625 we say 10 — 6 = 4. The 

number under 4 is 16, their product. 

To make this table really useful we would have to insert 

arithmetical means between the numbers in the A.P. line and 

geometric means between the numbers in G.P. line. Continuing 

this process, we can make any number appear in the G. P. line to 

as high a degree of approximation as is desired and at the same 

time can obtain the corresponding number in the A.P. line. To 

prepare such a table is very laborious. We give such a table for 

powers of 10 instead of 2, as the radix of our system of compu- 

(177) 
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tation is 10. It is not difficult to learn to use this table, nor 

others that are to a higher degree of approximation but which 

are omitted here for lack of space. 

The definition of a logarithm of a number N to a 

base by where b is a positive and greater than 1, is the 

exponent x of the power to which the base b must be 

raised to produce the number N; that is, if 

bx = N 

then x = logb N or b *b — N 

These three equations are of the highest importance 

in the treatment of logarithms and either of them im¬ 

plies the other. Thus, 25 = 32, implies log2 32 = 5. 

We note the numbers in the A.P. line are the logarithms 

of the corresponding numbers in the G.P. line, where 

the base is 2. 

2. Logarithms to the Base 10.—We will arrange the 

powers of 10 in a table somewhat similar to the powers 

of 2. 

It will be noticed that the log¬ 

arithm of all numbers between 100 

and 1000 are between 2 and 3. All 

numbers in this interval have 3 

figures and their logarithms are 2 

and some decimal. The whole 

number part of the logarithm is 

called the characteristic, the decimal 

part the mantissa. Thus the characteristic of all 

numbers of 3 figures is 2, the logarithms of all numbers 

between 10 and 100 are between 1 and 2. Thus the 

logarithms of all two-figured numbers is 1 and some 

decimal, the characteristic being 1. Evidently the 

characteristic of the logarithm of all whole numbers is 

103 = 1000 
102 = 100 
101 * 10 
10° = 1 
10-1 = .1 
10-2 = .01 
10~3 = .001 
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1 less than the number of figures in the whole number. 

The characteristic of the logarithm of 23162 is 4. 

The logarithms of all decimals are evidently negative. 

In order to facilitate computation and not change the 

mantissa for the same set of figures we write — 1 = 

9 — 10; —2 = 8 — 10; — 3 = 7 — 10 and say that 

the logarithms of all decimals shall have — 10 after 

them (or a multiple of — 10). Hence we can make 

the following rule for the characteristics of logarithms 

of decimals: take the number of 0’s before the first signifi¬ 

cant figure from g and annex — 10. Thus the loga¬ 

rithm of .68432 is 9.— 10. There are no 

0’s, so nothing from 9 leaves 9. The logarithm of 

.068432 = 8.— 10, since 1, which is the num¬ 

ber of 0’s subtracted from 9, leaves 8. We now 

have rules for finding the characteristics of logarithms 

of whole numbers and decimals. They do not depend 

at all on the figure but only on the place where the 

decimal point lies. 

In our table (pages 184-185) let us now look up the 

logarithm of 635. The characteristic is 2 (one less 

than the number of figures) and the number will be 

found in column marked N, The mantissa is found 

after 63 in the column marked 5 at the top. Thus, the 

logarithm 635 is 2.8028. The logarithm 63.5 is 1.8028, 

that of 6.35 is 0.8028, that of .635 is 9.8028 — 10, 

also that of .0635 is 8.8028 — 10. The character¬ 

istic deals only with the place. The logarithm of 

635.7 is found to be 2.8033. The correction 5 for the 

fourth figure 7 is found in the lightly printed right- 

hand side of the page under 7 and in the same line in 

which the first two figures of the number are found. 

We add this correction to 8028, the mantissa for 635, 

getting 8033 as the mantissa for 6357. 
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For the sake of practice, look up as rapidly as possible 
the logarithms of the following 15 numbers: 

log 314.5 
log .08765 

log .004627 

log 1876000. 

log 6.666 

log 5.863 

log .8989 

log .08989 

log .9899 
log 399.8 

log .8912 

log 42.89 

log .2003 

log 23.23 

log .03899 

To begin with, look up the logarithms of these numbers without 

using the fourth significant figure. Then repeat, using four 

figures. Fifteen minutes should be amply sufficient for this test. 

With a little practice the time can be reduced to 10 minutes and 

even to 2 or 3 minutes. Don’t forget to write down the charac¬ 

teristic before beginning to use the table, and don’t forget to 

write down all that it is safe to write before interpolating for the 

last figure. After practicing on these it would be well to set up 

other exercises of a similar sort. In computation, accuracy and 

speed should go hand in hand. When one can comfortably find 

the logarithms of 15 numbers in 10 minutes or less, it will be time 

enough to attempt the reverse process. 

3. Antilogarithms.—Suppose we wish to find the 
number when the logarithm is 2.8325. We need pay 
no attention to the decimal point until we get our 
figures. Looking thru the mantissas until we come to 
83 for our first two figures, we run along the rows for a 
number 8325 and soon find this number opposite 68 
in the zero column. We write the figures of our 
number 6800, as in a four-place table we always fill up 
four places. As the characteristic was 2 and as charac¬ 
teristic is one less than figures in whole number, we 
count off three figures from the beginning and write 
our number 680.0. 

Again, the logarithm of a number is 4.8224. We 
cannot find 8224 in our table, the nearest numbers 
being 8222 and 8228. The first three figures of our 
number are 664. Turning to the side table of tenths 
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we look for the difference 2 between 8224 and the 

smaller number from the table, and find the 2 under 3; 

hence our last figure is 3, the figures of our number are 

6643, and as the characteristic is 4 the number is 

66430, a number of five figures. 

Once more, the logarithm of a number is 9.7953 — 10. 

The nearest mantissa less than 7953 is 7952 and this is 

opposite 62 in the column headed 4. Hence our first 

three figures are 624. Put them down. The difference 

in the table between 52 and 53 is 1. This is under 

either 1 or 2, either of which is our last figure. Hence 

our number is .6241 or .6242, a decimal. 
. *' } 

4. Computations.—Let us say we wish to extract the 

v^2, \/S, and the \/6. We proceed as follows: log 

\/2 = -Llog2 = -L(.3010) = .1003 (since logarithms 
o o 

are exponents). In the table of mantissas we find 

that . 1003 stands for 1260. Hence the cube root of 

2 is 1.260. Likewise log 3* = -|-l0g 3 = (.4771) 

= .1590, which is the logarithm of 1.442. Log 
6s = L = 2594 = jog x 817- 

Since y/2, X \/3 = -^6 we should be able to multiply 

the \/% by \/3 and get \/6 and check as in the example. 

Suppose we wish to compute the value of 

y/(54.04)3 X (376~2)57 We first make a 

skeleton for our work. 

3 log 54.04 = 3(1. ) =' 

5 log 376.2 = 5(2. ) = 

2) 
log ( Ans.) = 

As logarithms are exponents, we multiply when we 

wish to raise to a power and divide when we wish to 

find a root. We will now fill in the skeleton. 

1.200 
i.m 
1.260 

504 
50 

_2 
1.816 
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3 log 54.04 = 3(1.7327) = 5.1981 
5 log 376.2 = 5(2.5754) = 12.8770 

2)18.0751 

log (1090500000. Ans.) = 9.0376 

We are sure of only the first four figures, called significant 

figures as in our approximate computation. The characteristic 

9 shows us that our first figure is the first of ten figures before 

the decimal place, and we give it place by supplying 0’s. Had 

this problem been y/(5.404)3 (3.762)5 our work would have been 

as follows: 

3 log 5.404 = 3(.7327) = 2.1981 
5 log 3.762 = 5(.5754) = 2.8770 

2)5.0751 

log (344.8 Ans.) = 2.5376 

5. Tables of Trigonometric Functions.—The other tables 

(pages 186-190 of this volume) are those of trigono¬ 

metric functions, both natural and logarithmic. Under 

“Value” is given the (natural) number indicating the 

ratio and beside it is the logarithm of this number. 

The angles are also given in radians. Angles below 45° 

are found on the left and increase downward, the head¬ 

ings for these being at the top. Angles greater than 45° 

are found on the right. They increase upward and 

their headings are at the bottom. 

Sin 63° 47' is found as follows: 63° is in the lower 

right-hand corner of the page. Sin 63° 40' is .8975, 

sin 63° 50' is 0.8988, the difference for 10' is 13, for 1' = 

1.3. We want the difference for 7', which is 9.1 and 

may be regarded as 9. This is added to .8975, making 

0.8984 = sin 63° 47'. The log sine is obtained in the 

same way: log sin 63° 40 = 9.9524 — 10; log sin 63° 

50 = 9.9530 — 10. We get the characteristic from the 

natural value of the sine which has no zeros after the 

point and we could have found everything required 

by looking up 0.8984 in the table of logarithms of 
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numbers; but it is easier to rely upon this table. The 

difference for one minute is .6 and for 7 minutes 4.2 

or, approximately 4. As the table is increasing we 

add 4 to 9.9524 giving 9.9528 as our log sin 63° 47'. 

All these numbers have —10 understood after them. 

The log cos 35° 35' = 9.9102. Our difference here 

was 4.5, which we may call 5, and we subtracted 

because our table was decreasing as the angle increased. 

These trigonometric ratios, sine, cosine, etc., will be 

explained in Trigonometry. 

6. Co-Logarithms.—When numbers occur in the de¬ 

nominator it is a general practice to add co-loga¬ 

rithms instead of subtracting the logarithm. We can 

then look up all our numbers in the table and having 

found them, we combine them by addition alone. The 

idea is log = log 1 — log N = 0 — log N and the 

co-logarithm can then be obtained by subtracting the 

logarithm from 10 — 10. Thus colog 635.7 can be 

found as shown in the example. 

In practice we do not proceed in this way, but just 

10 0000 — 10 notice that every number subtracts 

2.8033 from 9 except the last which sub- 

7.1967 — 10 tracts from 10. 

The logarithms in trigonometry are given to five places for 

greater accuracy. Such a table can be obtained at very reasonable 

cost from certain publishers, but is too large to be given a place 

in this volume. All problems can, however, be obtained with the 

use of our own table, but without the last figure of each number. 

REVIEW. 

1. What led to the invention of logarithms? 

2. How are the fundamental processes simplified by logarithms? 

3. Define “ characteristic ” and mantissa. 

4. Explain why the logarithms of all decimals are negative. 

5. How are trigonometric functions found from the tables ? 
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Tables of Logarithms 
Proportional Parts 

N 0 12 3 4 5 6 7 8 9 1 2 3 b 5 6 7 8 9 

10 0000 0048 0086 0128 0170 0212 0253 0294 0334 0374 b 8 12 17 21 25 29 33 37 

1 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 b 8 11 15 19 23 26 SO 3b 
2 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 3 7 10 lb 17 21 2b 28 31 
S 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 

4 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 2b 27 
5 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 lb 17 20 22 25 
6 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 3 6 8 11 13 16 18 21 2b 

7 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 
8 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 5 7 9 12 lb 16 19 21 
9 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 b 7 9 11 13 16 18 20 

20 3010 3032 3054 3075 8096 3118 3139 3160 3181 3201 2 b 6 8 11 13 15 17 19 

1 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2 b 6 8 10 12 lb 16 18 
2 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 b 6 8 10 12 lb 16 17 
8 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2 b 6 7 9 11 13 15 17 

4 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 b 5 7 9 11 12 lb 16 
5 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 b 5 7 9 10 12 lb 16 
6 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 6 7 8 10 11 13 15 

7 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3 6 6 8 9 11 12 lb 
8 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 lb 
9 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 b 6 7 9 10 12 13 

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 b 6 7 9 10 11 13 

1 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 b 5 7 8 10 11 12 
2 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 b 5 7 8 9 11 12 
8 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 b 6 7 8 9 11 12 

4 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 2 b 5 6 8 9 10 11 
5 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 6 6 7 9 10 11 
6 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 b 5 6 7 8 10 11 

7 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 b 6 6 7 8 9 11 
8 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 6 6 7 8 9 10 
9 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 1 2 3 b 5 7 8 9 10 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 b 5 6 8 9 10 

1 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 b 5 6 7 8 9 
2 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 b 5 6 7 8 9 
8 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 b 5 6 7 8 9 

4 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 b 5 6 7 8 9 
5 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 b 5 6 7 8 9 
6 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 1 2 3 b 5 6 7 7 8 

7 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 b 5 6 7 7 8 
8 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 b 5 6 7 7 8 
9 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 b b 5 6 7 8 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 b 5 6 7 8 

1 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 b 5 6 7 8 
2 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 3 S b 5 6 7 7 
3 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 b 5 6 6 7 

4 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 b 5 6 6 7 

N 0 12 3 4 5 6 7 8 9 1 2 2 b 5 6 7 8 9 
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N 0 1 2 3 4 5 6 7 8 9 1 2 3 i 5 6 7 8 9 

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 1 2 2 3 b 5 5 6 7 
6 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 1 2 2 3 b 5 6 6 7 

7 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 1 1 2 3 b 5 5 6 7 
8 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 1 1 2 3 b b 6 6 7 
9 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 b b 6 6 7 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 1 1 2 3 b b 5 6 6 

1 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 1 1 2 3 3 b 5 6 6 
2 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 1 1 2 3 3 b 5 5 6 
3 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6 

4 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 1 1 2 3 3 4 5 6 6 
5 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 1 1 2 3 3 b 5 5 6 
6 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 3 b 5 5 6 

7 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 b 5 5 6 
8 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 3 b b 5 6 
9 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 1 1 2 3 3 b b 5 6 

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 3 3 b b 5 6 

1 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 3 3 b b 5 6 
2 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 3 3 b b 5 6 
3 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 1 1 2 2 3 b b 5 5 

4 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 1 1 2 2 3 b b 5 5 
5 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 b 5 5 
6 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 b b 5 

7 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 1 1 2 2 3 3 b b 5 
8 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 1 1 2 2 3 3 b b 5 
9 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 b b 5 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 3 3 b b 5 

1 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 3 3 b b 5 
2 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 3 3 b b 5 
3 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 3 3 b b 5 

4 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 1 1 2 2 3 3 b b 5 
5 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 b b 5 
6 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 b b 5 

7 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 1 1 2 2 3 3 b b 5 
8 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 0 1 1 2 2 3 3 b b 
9 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 0 1 1 2 2 3 3 b b 

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 0 1 1 2 2 3 3 b b 

1 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 0 1 1 2 2 3 3 b b 
2 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 0 1 1 2 2 3 3 b b 
3 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 0 1 1 2 2 3 3 b b 

4 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 0 1 1 2 2 3 3 b b 
5 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 0 1 1 2 2 3 3 b b 
6 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 0 1 1 2 2 3 3 b b 

7 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 0 1 1 2 2 3 3 b b 
8 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 0 1 1 2 2 3 3 3 b 
9 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 0 1 1 2 2 3 3 3 b 

N 0 1 2 3 4 5 6 7 8 9 1 2 3 h 5 6 7 8 9 
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Trigonometric Functions 

Sine Tangent Cotangent Cosine 
Radians Degrees Value Logio Value Logio Value Logio Value Logio 

0000 0° 00' .0000' .0000 1.0000 .0000 90° 00' 
.0029 10 .0029 .4637 .0029 .4637 343.77 .5363 1.0000 .0000 50 
.0058 20 .0058 .7048 .0058 .7648 171.89 .2352 1.0000 .0000 40 
.0087 30 .0087 .9408 .0087 .9409 114.59 .0591 1.0000 .0000 30 
.0116 40 .0116 .0658 .0116 .0658 85.940 .9342 .9999 .0000 20 
.011,5 50 .0145 .1627 .0145 .1627 68.750 .8373 .9999 .0000 10 

.0175 1° 00' .0175 .2419 .0175 .2419 57.290 .7581 .9998 .9999 89° 00' 

.0201, 10 .0204 .3088 .0204 .3089 49.104 .6911 .9998 .9999 50 

.0233 20 .0233 .3668 .0233 .3669 42.964 .6331 .9997 .9999 40 

.0262 30 .0262 .4179 .0262 .4181 38.188 .5819 .9997 .9999 80 

.0291 40 .0291 .4637 .0291 .4638 34.368 .5362 .9996 .9998 20 

.0320 50 .0320 .5050 .0320 .5053 31.242 .4947 .9995 .9998 10 

.0349 2° 00' .0349 .5428 .0349 .5431 28.636 .4569 .9994 .9997 88° 00' 

.0378 10 .0378 .5776 .0378 .5779 26.432 .4221 .9993 .9997 50 

.0407 20 .0407 .6097 .0407 .6101 24.542 .3899 .9992 .9996 40 

.0436 30 .0436 .6397 .0437 .6401 22.904 .3599 .9990 .9996 30 

.0465 40 .0465 .6677 .0466 .6682 21.470 .3318 .9989 .9995 20 

.0495 50 .0494 .6940 .0495 .6945 20.206 .3055 .9988 .9995 10 

.0524 3° 00' .0523 .7188 .0524 .7194 19.081 .2806 .9986 .9994 87° 00' 

.0553 10 .0552 .7423 .0553 .7429 18.075 .2571 .9985 .9993 50 

.0582 20 .0581 .7645 .0582 .7652 17.169 .2348 .9983 .9993 40 

.0611 30 .0610 .7857 .0612 .7865 16.350 .2135 .9981 .9992 30 

.0640 40 .0640 .8059 .0641 .8067 15.605 .1933 .9980 .9991 20 

.0669 50 .0669 .8251 .0670 .8261 14.924 .1739 .9978 .9990 10 

.0698 4° 00' .0698 .8436 .0699 .8446 14.301 .1554 .9976 .9989 86° 00' 

.0727 10 .0727 .8613 .0729 .8624 13.727 .1376 .9974 .9989 50 

.0756 20 .0756 .8783 .0758 .8795 13.197 .1205 .9971 .9988 40 

.0785 30 .0785 .8946 .0787 .8960 12.706 .1040 .9969 .9987 30 

.0814 40 .0814 .9104 .0816 .9118 12.251 .0882 .9967 .9986 20 

.0844 50 .0843 .9256 .0846 .9272 11.826 .0728 .9964 .9985 10 

.0873 5° 00' .0872 .9403 .0875 .9420 11.430 .0580 .9962 .9983 85° 00' 

.0902 10 .0901 .9545 .0904 .9563 11.059 .0437 .9959 .9982 50 

.0931 20 .0929 .9682 .0934 .9701 10.712 .0299 .9957 .9981 40 

.0960 30 .0958 .9816 .0963 .9836 10.385 .0164 .9954 .9980 30 

.0989 40 .0987 .9945 .0992 .9966 10.078 .0034 .9951 .9979 20 

.1018 50 .1016 .0070 .1022 .0093 9.7882 .9907 .9948 .9977 10 

.1047 6° 00' .1045 .0192 .1051 .0216 9.5144 .9784 .9945 .9976 84° 00' 

.1076 10 .1074 .0311 .1080 .0336 9.2553 .9664 .9942 .9975 50 

.1105 20 .1103 .0426 .1110 .0453 9.0098 .9547 .9939 .9973 40 

.1134 80 .1132 .0539 .1139 .0567 8.7769 .9433 .9936 .9972 30 

.1164 40 .1161 .0648 .1169 .0678 8.5555 .9322 .9932 .9971 20 

.1193 50 .1190 .0755 .1198 .0786 8.3450 .9214 .9929 .9969 10 

.1222 7° 00' .1219 .0859 .1228 .0891 8.1443 .9109 .9925 .9968 83° 00' 

.1251 10 .1248 .0961 .1257 .0995 7.9530 .9005 .9922 .9966 50 

.1280 20 .1276 .1060 .1287 .1096 7.7704 .8904 .9918 .9964 40 

.1309 30 .1305 .1157 .1317 .1194 7.5958 .8806 .9914 .9963 30 

.1338 40 .1334 .1252 .1346 .1291 7.4287 .8709 .9911 .9961 20 

.1367 50 .1363 .1345 .1376 .1385 7.2687 .8615 .9907 .9959 10 

.1396 8° 00' .1392 .1436 .1405 .1478 7.1154 .8522 .9903 .9958 82° 00' 

.1425 10 .1421 .1525 .1435 .1569 6.9682 .8431 .9899 .9956 50 

.1454 20 .1449 .1612 .1465 .1658 6.8269 .8342 .9894 .9954 40 

.1484 30 .1478 .1697 .1495 .1745 6.6912 .8255 .9890 .9952 30 

.1513 40 .1507 .1781 .1524 .1831 6.5606 .8169 .9886 .9950 20 

.1542 50 .1536 .1863 .1554 .1915 6.4348 .8085 .9881 .9948 10 

.1571 <0
 O O
 

©
 

.1564 .1943 .1584 .1997 6.3138 .8003 .9877 .9946 81° 00' 

Value Logio Value Logio Value Logi 0 Value Logi n 
Cosine Cotangent Tangent Sine Degrees 

1.5708 
1.5679 
1.5650 
1.5621 
1.5592 
1.5563 

1.5533 
1.5501, 
1.51,75 
1.51,1,6 
1.51,17 
1.5388 

1.5359 
1.5330 
1.5301 
1.5272 
1.521,3 
1.5213 

1.5181, 
1.5155 
1.5126 
1.5097 
1.5068 
1.5039 

1.5010 
1.1,981 
1.1,952 
1.1,923 
1.1,893 
1.1,861, 

1.1,835 
1.1,806 
14777 
1.1,71,8 
14719 
14690 

14661 
14632 
14603 
14573 
1451,1, 
14515 

141,86 
141,57 
14128 
14399 
14370 
1431,1 

14312 
14283 
14251, 
14224 
14195 
14166 

14137 

Radians 
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Sine Tangent Cotangent Cosine 
Radians Degrees Value Logio Value Logio Value Logio Value Logjo 

.1571 9° 00' .1564 .1943 .1584 .1997 6.3138 .8003 .9877 .9946 81° 00' 1.4137 

.1600 10 .1593 .2022 .1614 .2078 6.1970 .7922 .9872 .9944 50 1.4108 

.1629 20 .1622 .2100 .1644 .2158 6.0844 .7842 .9868 .9942 40 1.4079 

.1658 30 .1650 .2176 .1673 .2236 5.9758 .7764 .9863 .9940 30 1.4050 

.1687 40 .1679 .2251 .1703 .2313 5.8708 .7687 .9858 .9938 20 1.4021 

.1716 50 .1708 .‘2324 .1733 .2389 5.7694 .7611 .9853 .9936 10 1.3992 

.171*5 10° 00' .1736 .2397 .1763 .2463 5.6713 .7537 .9848 .9934 80° 00' 1.3963 

.1774 10 .1765 .2468 .1793 .2536 5.5764 .7464 .9843 .9931 50 1.3934 

.1804 20 .1794 .2538 .1823 .2609 5.4845 .7391 .9838 .9929 40 1.3904 

.1883 30 .1822 .2606 .1853 .2680 5.3955 .7320 .9833 .9927 30 1.3875 

.1862 40 .1851 .2674 .1883 .2750 5.3093 .7250 .9827 .9924 20 1.3846 

.1891 50 .1880 .2740 .1914 .2819 5.2257 .7181 .9822 .9922 10 1.3817 

.1920 

o
 

o
 

0 H
 

H
 .1908 .2806 .1944 .2887 5.1446 .7113 .9816 .9919 79° 00' 1.3788 

.1949 10 .1937 .2870 .1974 .2953 5.0658 .7047 .9811 .9917 50 1.3759 

.1978 20 .1965 .2934 .2004 .3020 4.9894 .6980 .9805 .9914 40 1.3730 

.2007 30 .1994 .2997 .2035 .3085 4.9152 .6915 .9799 .9912 30 1.3701 

.2036 40 .2022 .3058 .2065 .3149 4.8430 .6851 .9793 .9909 20 1.3672 

.2065 50 .2051 .3119 .2095 .3212 4.7729 .6788 .9787 .9907 10 1.3643 

.2094 12° 00' .2079 .3179 .2126 .3275 4.7046 .6725 .9781 .9904 78° 00' 1.3614 

.2123 10 .2108 .3238 .2156 .3336 4.6382 .6664 .9775 .9901 50 1.3584 

.2153 20 .2136 .3296 .2186 .3397 4.5736 .6603 .9769 .9899 40 1.3555 

.2182 30 .2164 .3353 .2217 .3458 4.5107 .6542 .9763 .9896 30 1.3526 

.2211 40 .2193 .3410 .2247 .3517 4.4494 .6483 .9757 .9893 20 1.3497 

.2240 50 .2221 .3466 .2278 .3576 4.3897 .6424 .9750 .9890 10 1.3468 

.2269 13° 00' .2250 .3521 .2309 .3634 4.3315 .6366 .9744 .9887 77° 00' 1.3439 

.2298 10 .2278 .3575 .2339 .3691 4.2747 .6309 .9737 .9884 50 1.3410 

.2327 20 .2306 .3629 .2370 .3748 4.2193 .6252 .9730 .9881 40 1.3381 

.2356 30 .2334 .3682 .2401 .3804 4.1653 .6196 .9724 .9878 30 1.3352 

.2385 40 .2363 .3734 .2432 .3859 4.1126 .6141 .9717 .9875 20 1.3323 

.2414 50 .2391 .3786 .2462 .3914 4.0611 .6086 .9710 .9872 10 1.3294 

.2443 14° 00' .2419 .3837 .2493 .3968 4.0108 .6032 .9703 .9869 76° 00' 1.3265 

.2473 10 .2447 .3887 .2524 .4021 3.9617 .5979 .9696 .9866 50 1.3235 

.2502 20 .2476 .3937 .2555 .4074 3.9136 .5926 .9689 .9863 40 1.3206 

.2531 30 .2504 .3986 .2586 .4127 3.8667 .5873 .9681 .9859 30 1.3177 

.2560 40 .2532 .4035 .2617 .4178 3.8208 .5822 .9674 .9856 20 1.3148 
.2589 50 .2560 .4083 .2648 .4230 3.7760 .5770 .9667 .9853 10 1.3119 

.2618 15° 00' .2588 .4130 .2679 .4281 3.7321 .5719 .9659 .9849 75° 00' 1.3090 

.2647 10 .2616 .4177 .2711 .4331 3.6891 .5669 .9652 .9846 50 1.3061 

.2676 20 .2644 .4223 .2742 .4381 3.6470 .5619 .9644 .9843 40 1.3032 

.2705 30 .2672 .4269 .2773 .4430 3.6059 .5570 .9636 .9839 30 1.3003 

.2734 40 .2700 .4314 .2805 .4479 3.5656 .5521 .9628 .9836 20 1.2974 

.2763 50 .2728 .4359 .2836 .4527 3.5261 .5473 .9621 .9832 10 1.2945 

.2793 16° 00' .2756 .4403 .2867 .4575 3.4874 .5425 .9613 .9828 74° 00' 1.2915 

.2822 10 .2784 .4447 .2899 .4622 3.4495 .5378 .9605 .9825 50 1.2886 

.2851 20 .2812 .4491 .2931 .4669 3.4124 .5331 .9596 .9821 40 1.2857 

.2880 30 .2840 .4533 .2962 .4716 3.3759 .5284 .9588 .9817 30 1,2828 

.2909 40 .2868 .4576 .2994 .4762 3.3402 .5238 .9580 .9814 20 1.2799 

.2938 50 .2896 .4618 .3026 .4808 3.3052 .5192 .9572 .9810 10 1.2770 

.2967 17° 00' .2924 .4659 .3057 .4853 3.2709 .5147 .9563 .9806 73° 00' 1.2741 

.2996 10 .2952 .4700 .3089 .4898 3.2371 .5102 .9555 .9802 50 1.2712 

.3025 20 .2979 .4741 .3121 .4943 3.2041 .5057 .9546 .9798 40 1.2683 

.3054 30 .3007 .4781 .3153 .4987 3.1716 .5013 9537 .9794 30 1.2654 

.8083 40 .3035 .4821 .3185 .5031 3.1397 .4969 .9528 .9790 20 1.2625 

.3113 50 .3062 .4861 .3217 .5075 3.1084 .4925 .9520 .9786 10 1.2595 

.3142 18° 00' .3090 .4900 .3249 .5118 3.0777 .4882 .9511 .9782 72° 00' 1.2566 

Value Logio Value Logio Value Logio Value Logio Degrees Radians 
Cosine Cotangent Tangent Sine 
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.3142 18° 00' .3090 .4900 .3249 .5118 3.0777 .4882 .9511 .9782 72° 00' 1.2566 

.3171 10 .3118 .4939 .3281 .5161 3.0475 .4839 .9502 .9778 50 1.2537 

.3200 20 .3145 .4977 .3314 .5203 3.0178 .4797 .9492 .9774 40 1.2508 

.3229 30 .3173 .5015 .3346 .5245 2.9887 .4755 .9483 .9770 30 1.2479 

.3258 40 .3201 .5052 .3378 .5287 2.9600 .4713 .9474 .9765 20 1.2450 

.3287 50 .3228 .5090 .3411 .5329 2.9319 .4671 .9465 .9761 10 1.2421 

.3316 «0
 

0
 

0
 

0
 

.3256 .5126 .3443 .5370 2.9042 .4630 .9455 .9757 71° 00' 1.2392 
.3345 10 .3283 .5163 .3476 .5411 2.8770 .4589 .9446 .9752 50 1.2363 
.3374 20 .3311 .5199 .3508 .5451 2.8502 .4549 .9436 .9748 40 1.2334 
.3403 30 .3338 .5235 .3541 .5491 2.8239 .4509 .9426 .9743 30 1.2305 
.3432 40 .3365 .5270 .3574 .5531 2.7980 .4469 .9417 .9739 20 1.2275 
.3462 50 .3393 .5306 .3607 .5571 2.7725 .4429 .9407 .9734 10 1.2246 

.3491 20° 00' .3420 .5341 .3640 .5611 2.7475 .4389 .9397 .9730 70° 00' 1.2217 

.3520 10 .3448 .5375 .3673 .5650 2.7228 .4350 .9387 .9725 50 1.2188 

.3549 20 .3475 .5409 .3706 .5689 2.6985 .4311 .9377 .9721 40 1.2159 

.3578 30 .3502 .5443 .3739 .5727 2.6746 .4273 .9367 .9716 30 1.2130 

.3607 40 .3529 .5477 .3772 .5766 2.6511 .4234 .9356 .9711 20 1.2101 

.3636 50 .3557 .5510 .3805 .5804 2.6279 .4196 .9346 .9706 10 1.2072 

.3665 21° 00' .3584 .5543 .3839 .5842 2.6051 .4158 .9336 .9702 69° 00' 1.2043 

.3694 10 .3611 .5576 .3872 .5879 2.5826 .4121 .9325 .9697 50 1.2014 

.3723 20 .3638 .5609 .3906 .5917 2.5605 .4083 .9315 .9692 40 1.1985 

.3752 30 .3665 .5641 .3939 .5954 2.5386 .4046 .9304 .9687 30 1.1956 

.8782 40 .3692 .5673 .3973 .5991 2.5172 .4009 .9293 .9682 20 1.1926 

.3811 50 .3719 .5704 .4006 .6028 2.4960 .3972 .9283 .9677 10 1.1897 

.3840 22° 00' .3746 .5736 .4040 .6064 2.4751 .3936 .9272 .9672 68° 00' 1.1868 

.3869 10 .3773 .5767 .4074 .6100 2.4545 .3900 .9261 ,9667 50 1.1839 

.3898 20 .3800 .5798 .4108 .6136 2.4342 .3864 .9250 .9661 40 1.1810 

.8927 30 .3827 .5828 .4142 .6172 2.4142 .3828 .9239 .9656 30 1.1781 

.3956 40 .3854 .5859 .4176 .6208 2.3945 .3792 .9228 .9651 20 1.1752 

.3985 50 .3881 .5889 .4210 .6243 2.3750 .3757 .9216 .9646 10 1.1723 

.4014 23° 00' .3907 .5919 .4245 .6279 2.3559 .3721 .9205 .9640 67° 00' 1.1694 

.4043 10 .3934 .5948 .4279 .6314 2.3369 .3686 .9194 .9635 50 1.1665 

.4072 20 .3961 .5978 .4314 .6348 2.3183 .3652 .9182 .9629 40 1.1636 

.4102 30 .3987 .6007 .4348 .6383 2.2998 .3617 .9171 .9624 30 1.1606 

.4131 40 .4014 .6036 .4383 .6417 2.2817 .3583 .9159 .9618 20 1.1577 

.4160 50 .4041 .6065 .4417 .6452 2.2&37 .3548 .9147 .9613 10 1.1548 

.4189 24° 00' .4067 .6093 .4452 .6486 2.2460 .3514 .9135 .9607 66° 00' 1.1519 

.4218 10 .4094 .6121 .4487 .6520 2.2286 .3480 .9124 .9602 50 1.1490 

.4247 20 .4120 .6149 .4522 .6553 2.2113 .3447 .9112 .9596 40 1.1461 

.4276 30 .4147 .6177 .4557 .6587 2.1943 .3413 .9100 .9590 30 1.1432 

.4305 40 .4173 .6205 .4592 .6620 2.1775 .3380 .9088 .9584 20 1.1403 

.4334 50 .4200 .6232 .4628 .6654 2.1609 .3346 .9075 .9579 10 1.1374 

.4363 25° 00' .4226 .6259 .4663 .6687 2.1445 .3313 .9063 .9573 65° 00' 1.1345 

.4392 10 .4253 .6286 .4699 .6720 2.1283 .3280 .9051 .9567 50 1.1316 

.4422 20 .4279 .6313 .4734 .6752 2.1123 .3248 .9038 .9561 40 1.1286 

.4451 30 .4305 .6340 .4770 .6785 2.0965 .3215 .9026 .9555 30 1.1257 

.4480 40 .4331 .6366 .4806 .6817 2.0809 .3183 .9013 .9549 20 1.1228 

.4509 50 .4358 .6392 .4841 .6850 2.0655 .3150 .9001 .9543 10 1.1199 

.4538 26° 00' .4384 .6418 .4877 .6882 2.0503 .3118 .8988 .9537 

0
 

0
 

0
 

to 1.1170 
.4567 10 .4410 .6444 .4913 .6914 2.0353 .3086 .8975 .9530 50 1.1141 
.4596 20 .4436 .6470 .4950 .6946 2.0204 .3054 .8962 .9524 40 1.1112 
.4625 30 .4462 .6495 .4986 .6977 2.0057 .3023 .8949 .9518 30 1.1083 
.4654 40 .4488 .6521 .5022 .7009 1.9912 .2991 .8936 .9512 20 1.1054 
.4683 50 .4514 .6546 .5059 .7040 1.9768 .2960 .8923 .9505 10 1.1025 

.4712 27° 00' .4540 .6570 .5095 .7072 1.9626 .2928 .8910 .9499 63° 00' 1.0996 

Value Logio Value Logio Value Logio Value Logio Degrees Radians 
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Sine Tangent Cotangent Cosine 
Radians Degrees Value Logio Value Logio Value Logio Value Logio 

4712 27° 00' .4540 .6570 .5095 .7072 1.9626 .2928 .8910 .9499 63° 00' 1.0996 
4 7U 10 .4566 .6595 .5132 .7103 1.9486 .2897 .8897 .9492 50 1.0966 
4771 20 .4592 .6620 .5169 .7134 1.9347 .2866 .8884 .9486 40 1.0937 
4800 30 .4617 .6644 .5206 .7165 1.9210 .2835 .8870 .9479 30 1.0908 
4829 40 .4643 .6668 .5243 .7196 1.9074 .2804 .8857 .9473 20 1.0879 
4858 50 .4669 .6692 .5280 .7226 1.8940 .2774 .8843 .9466 10 1.0850 

4887 28° 00' .4695 .6716 .5317 .7257 1.8807 .2743 .8829 .9459 62° 00' 1.0821 
4 916 10 .4720 .6740 .5354 .7287 1.8676 .2713 .8816 .9453 50 1.0792 
49-45 20 .4746 .6763 .5392 .7317 1.8546 .2683 .8802 .9446 40 1.0763 
4 m 30 .4772 .6787 .5430 .7348 1.8418 .2652 .8788 .9439 30 1.0734 
.5003 40 .4797 .6810 .5467 .7378 1.8291 .2622 .8774 .9432 20 1.0705 
.5032 50 .4823 .6833 .5505 .7408 1.8165 .2592 .8760 .9425 10 1.0676 

.5061 29° 00' .4848 .6856 .5543 .7438 1.8040 .2562 .8746 .9418 61° 00' 1.0647 

.5091 10 .4874 .6878 .5581 .7467 1.7917 .2533 .8732 .9411 50 1.0617 

.5120 20 .4899 .6901 .5619 .7497 1.7796 .2503 .8718 .9404 40 1.0588 

.5149 30 .4924 .6923 .5658 .7526 1.7675 .2474 .8704 .9397 30 1.0559 

.5178 40 .4950 6946 .5696 .7556 1.7556 .2444 .8689 .9390 20 1.0530 

.5207 50 .4975 .6968 .5735 .7585 1.7437 .2415 .8675 .9383 10 1.0501 

.5236 30° 00' .5000 .6990 .5774 .7614 1.7321 .2386 .8660 .9375 60° 00' 1.0472 

.5256 10 .5025 .7012 .5812 .7644 1.7205 .2356 .8646 .9368 50 1.0443 

.5294 20 .5050 .7033 .5851 .7673 1.7090 .2327 .8631 .9361 40 1.0414 

.5323 30 .5075 .7055 .5890 .7701 1.6977 .2299 .8616 .9353 30 1.0385 

.5352 40 .5100 .7076 .5930 .7730 1.6864 .2270 .8601 .9346 20 1.0356 

.5381 50 .5125 .7097 .5969 .7759 1.6753 .2241 .8587 .9338 10 1.0327 

.5411 31° 00' .5150 .7118 .6009 .7788 1.6643 .2212 .8572 .9331 69° 00' 1.0297 

.5440 10 .5175 .7139 .6048 .7816 1.6534 .2184 .8557 .9323 50 1.0268 

.5469 20 .5200 .7160 .6088 .7845 1.6426 .2155 .8542 .9315 40 1.0239 

.5498 30 .5225 .7181 .6128 .7873 1.6319 .2127 .8526 .9308 30 1.0210 

.5527 40 .5250 .7201 .6168 .7902 1.6212 .2098 .8511 .9300 20 1.0181 

.5556 50 .5275 .7222 .6208 .7930 1.6107 .2070 .8496 .9292 10 1.0152 

.5585 32° 00' .5299 .7242 .6249 .7958 1.6003 .2042 .8480 .9284 58° 00' 1.0123 

.5614 10 .5324 .7262 .6289 .7986 1.5900 .2014 .8465 .9276 50 1.0094 

.5643 20 .5348 .7282 .6330 .8014 1.5798 .1986 .8450 .9268 40 1.0065 

.5672 30 .5373 .7302 .6371 .8042 1.5697 .1958 .8434 .9260 30 1.0036 

.5701 40 .5398 .7322 .6412 .8070 1.5597 .1930 .8418 .9252 20 1.0007 

.5730 50 .5422 .7342 .6453 .8097 1.5497 .1903 .8403 .9244 10 .9977 

.5760 33° 00' .5446 .7361 .6494 .8125 1.5399 .1875 .8387 .9236 57° 00' .9948 

.5789 10 .5471 .7380 .6536 .8153 1.5301 .1847 .8371 .9228 50 .9919 

.5818 20 .5495 .7400 .6577 .8180 1.5204 .1820 .8355 .9219 40 .9890 

.5847 30 .5519 .7419 .6619 .8208 1.5108 .1792 .8339 .9211 30 .9861 

.5876 40 .5544 .7438 .6661 .8235 1.5013 .1765 .8323 .9203 20 .9832 

.5905 50 .5568 .7457 .6703 .8263 1.4919 .1737 .8307 .9194 10 .9803 

.5934 34° 00' .5592 .7476 .6745 .8290 1.4826 .1710 .8290 .9186 56° 00' .9774 

.5963 10 .5616 .7494 .6787 .8317 1.4733 .1683 .8274 .9177 50 .9746 

.5992 20 .5640 .7513 .6830 .8344 1.4641 .1656 .8258 .9169 40 .9716 

.6021 30 .5664 .7531 .6873 .8371 1.4550 .1629 .8241 .9160 30 .9687 

.6050 40 .5688 .7550 .6916 .8398 1.4460 .1602 .8225 .9151 20 .9657 

.6080 50 .5712 .7568 .6959 .8425 1.4370 .1575 .8208 .9142 10 .9628 

.6109 35° 00' .5736 .7586 .7002 .8452 1.4281 .1548 .8192 .9134 55° 00' .9599 

.6138 10 .5760 .7604 .7046 .8479 1.4193 .1521 .8175 .9125 50 .9570 

.6167 20 .5783 .7622 .7089 .8506 1.4106 .1494 .8158 .9116 40 .9541 

.6196 30 .5807 .7640 .7133 .8533 1.4019 .1467 .8141 .9107 30 .9512 

.6225 40 .5831 .7657 .7177 .8559 1.3934 .1441 .8124 .9098 20 .9483 

.6254 50 .5854 .7675 .7221 .8586 1.3848 .1414 .8107 .9089 10 .9454 

.6283 36° 00' .5878 .7692 .7265 .8613 1.3764 .1387 .8090 .9080 64° 00' .9425 
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.6283 36° 00' .5878 .7692 .7265 .8613 1.3764 .1387 .8090 .9080 54° 00' .9425 

.6312 10 .5901 .7710 .7310 .8639 1.3680 .1361 .8073 .9070 50 .9396 

.6341 20 .5925 .7727 .7355 .8666 1.3597 .1334 .8056 .9061 40 .9367 

.6370 80 .5948 .7744 7400 .8692 1.3514 .1308 .8039 .9052 30 .9338 

.6400 40 .5972 .7761 .7445 .8718 1.3432 .1282 .8021 .9042 20 .9308 

.6429 50 .5995 .7778 .7490 .8745 1.3351 .1255 .8004 .9033 10 .9279 

.6458 37° 00' .6018 .7795 .7536 .8771 1.3270 .1229 .7986 .9023 53° 00' .9250 

.6487 10 .6041 .7811 .7581 .8797 1.3190 .1203 .7969 .9014 50 .9221 

.6516 20 .6065 .7828 .7627 .8824 1.3111 .1176 .7951 .9004 40 .9192 

.6545 30 .6088 .7844 .7673 .8850 1.3032 .1150 .7934 .8995 30 .9163 

.6574 40 .6111 .7861 .7720 .8876 1.2954 .1124 .7916 .8985 20 .9134 

.6603 50 .6134 .7877 .7766 .8902 1.2876 .1098 .7898 .8975 10 .9105 

.6632 38° 00' .6157 .7893 .7813 .8928 1.2799 .1072 .7880 .8965 52° 00' .9076 

.6661 10 .6180 .7910 .7860 .8954 1.2723 .1046 .7862 .8955 50 .9047 

.6690 20 .6202 .7926 .7907 .8980 1.2647 .1020 .7844 .8945 40 .9018 

.6720 30 .6225 .7941 .7954 .9006 1.2572 .0994 .7826 .8935 30 .8988 

.6749 40 .6248 .7957 .8002 .9032 1.2497 .0968 .7808 .8925 20 .8959 

.6778 50 .6271 .7973 .8050 .9058 1.2423 .0942 .7790 .8915 10 .8930 

.6807 39° 00' .6293 .7989 .8098 .9084 1.2349 .0916 .7771 .8905 51° 00' .8901 

.6836 10 .6316 .8004 .8146 .9110 1.2276 .0890 .7753 .8895 50 .8872 

.6865 20 .6338 .8020 .8195 .9135 1.2203 .0865 .7735 .8884 40 .8843 

.6894 30 .6361 .8035 .8243 .9161 1.2131 .0839 .7716 .8874 30 .8814 

.6923 40 .6383 .8050 .8292 .9187 1.2059 .0813 .7698 .8864 20 .8785 

.6952 50 .6400 .8066 .8342 .9212 1.1988 .0788 .7679 .8853 10 .8756 

.6981 40° 00' .6428 .8081 .8391 .9238 1.1918 .0762 .7660 .8843 60° 00' .8727 

.7010 10 .6450 .8096 .8441 .9264 1.1847 .0736 .7642 .8832 50 .8698 

.7039 20 .6472 .8111 .8491 .9289 1.1778 .0711 .7623 .8821 40 .8668 

.7069 SO .6494 .8125 .8541 .9315 1.1708 .0685 .7604 .8810 30 .8639 

.7098 40 .6517 .8140 .8591 .9341 1.1640 .0659 .7585 .8800 20 .8610 

.7127 50 .6539 .8155 .8642 .9366 1.1571 .0634 .7566 .8789 10 ,8581 

.7156 41° 00' .6561 .8169 .8693 .9392 1.1504 .0608 .7547 .8778 49° 00' .8552 

.7185 10 .6583 .8184 .8744 .9417 1.1436 .0583 .7528 .8767 50 .8523 

.7214 20 .6604 .8198 .8796 .9443 1.1369 .0557 .7509 .8756 40 .8494 

.7243 30 .6626 .8213 .8847 .9468 1.1303 .0532 .7490 .8745 30 .8465 

.7272 40 .6648 .8227 .8899 .9494 1.1237 .0506 .7470 .8733 20 .8436 

.7301 50 .6670 .8241 .8952 .9519 1.1171 .0481 .7451 .8722 10 .8407 

.7330 42° 00' .6691 .8255 .9004 .9544 1.1106 .0456 .7431 .8711 48° 00' .8378 

.7359 10 .6713 .8269 .9057 .9570 1.1041 .0430 .7412 .8699 50 .8348 

.7389 20 .6734 .8283 .9110 .9595 1.0977 .0405 .7392 .8688 40 .8319 

.7418 SO .6756 .8297 .9163 .9621 1.0913 .0379 .7373 .8676 30 .8290 

.7447 40 .6777 .8311 .9217 .9646 1.0850 .0354 .7353 .8665 20 .8261 

.7476 50 .6799 .8324 .9271 .9671 1.0786 .0329 .7333 .8653 10 .8232 

.7505 43° 00' .6820 .8338 .9325 .9697 1.0724 .0303 .7314 .8641 47° 00' .8203 

.7534 10 .6841 .8351 .9380 .9722 1.0661 .0278 .7294 .8629 50 .8174 

.7563 20 .6862 .8365 .9435 .9747 1.0599 .0253 .7274 .8618 40 .8145 

.7592 30 .6884 .8378 .9490 .9772 1.0538 .0228 .7254 .8606 30 .8116 

.7621 40 .6905 .8391 .9545 .9798 1.0477 .0202 .7234 .8594 20 .8087 

.7650 50 .6926 .8405 .9601 .9823 1.0416 .0177 .7214 .8582 10 .8058 

.7679 44° 00' .6947 .8418 .9657 .9848 1.0355 .0152 .7193 .8569 46° 00' .8029 

.7709 10 .6967 .8431 .9713 .9874 1.0295 .0126 .7173 .8557 50 .7999 

.7738 20 .6988 .8444 .9770 .9899 1.0235 .0101 .7153 .8545 40 .7970 

.7767 30 .7009 .8457 .9827 .9924 1.0176 .0076 .7133 .8532 SO .7941 

.7796 40 .7030 .8469 .9884 .9949 1.0117 .0051 .7112 .8520 20 .7912 

.7825 50 .7050 .8482 .9942 .9975 1.0058 .0025 .7092 .8507 10 .7883 

.7854 45° 00' .7071 .8495 1.0000 .0000 1.0000 .0000 .7071 .8495 45° 00' .7854 
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CHAPTER XII 

TRIGONOMETRY 

1. Directed Length.—The line AB means the line 

from A to B. The line BA means 

A_R the line from B to A. It is just the 

opposite of AB. We say BA = 
— AB or AB — — BA. The — sign always indicates 

opposition. 

A BCD E 

B A E D C 

In either figure AB + BC + CD + DE = AE. 

2. Measurement of Angle.—Angles are measured con¬ 

tra-clockwise, that is, opposite to the way the hands 

of a clock move. Angles measured in the opposite 

direction, that is, clockwise, are called negative angles. 

There are several ways of measuring angles. The most 

common is by means of degrees. Possibly because the 

ancient Babylonians thought the sun went around the 

earth once every 360 days, they divided a complete 

revolution into 360 degrees. This method, tho arti¬ 

ficial, is still used in most tables. In all higher mathe¬ 

matics a unit angle called the radian is used. This 

angle has an arc equal in length to the radius. 

As geometry tells us, the circumference of a circle 

is just lengths of its radius, hence there are 

radians in 360° (7r = 3.1416 approximately). From 

this we obtain: 

(191) 
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7r radians = 180° 

1 radian = 
TC 

1 degree = radians. 
180 

Accordingly, we can change degrees to radians by 

multiplying by —radians and we can change radians 
180 

to degrees by multiplying by -1^- degrees. 

1 radian = = 57.296, approximately 57.3 
TT 

1 degree = = .016898 radians, approximately .017 
180 

radians. 

Let L, Fig. 112, represent the length of an arc, R 

the length of its radius, and 0 (the Greek letter theta) 

the number of radians in the angle. We 

evidently get this number by dividing 

the length of the arc by the length of 

the radius, there being as many radians 

in the angle as there are lengths of the 

= 0. radius on the arc. Hence we say 
R 

L From this, L = R X 0, and R = o 

If a man walks a distance of 150 feet around a circular track 

whose radius is 100 feet, what angle does his final direction make 

with his original direction? Here ■— = equals the number 

of radians he has turned thru. This equals 

30 9 
m m 
m x TT 

20 

degrees = degrees = 85.944 degrees. 

Changing the decimals into minutes and seconds, we have: 

0.944 the fraction of degrees X 60 minutes = 56.64 minutes 

0.64 the fractions of minutes X 60 seconds = 38.4 seconds 

The answer is therefore 85° 56' 38" . 4. 
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3. Quadrants.—Angles may often be distinguished by 

quadrants in which they lie. The first quadrant 

extends from 0 to 90°, the second 

from 90° to 180°, etc. Thus, an 

angle of 50° is in the first quadrant, 

Fig. 113, an angle of 150° is in 

the second quadrant, an angle of 

200° is in the third quadrant, an 

angle of 300° is in the fourth 

quadrant and an angle of 400° is 

again in the first quadrant. 

Suppose we ask in what quadrant is an angle of 1000°? We 

see at once 1000° is equal to two complete revolutions (720°) and 

280° more. And since 280° is in the fourth quadrant, therefore 

1000° is also in the fourth quadrant. 

In what quadrant is — 200° ? We readily see that the position 

of — 200° is the same as that of 160° in its terminal line. And 

since 160° is in the second quadrant, so also is — 200°. 

so0 

The angle ABC, Fig. 114 (a), 

is in the first quadrant. 

The angle CBA is in the fourth 

quadrant. 

The angle DEF, Fig. 114 (5), is 

in the second quadrant. 

The angle FED is in the third 

quadrant. 

Placing these angles so that 

their initial lines are in the same 

direction, and dropping perpendic¬ 

ulars to the initial line, as in 

Fig. 115 (I), (II), (III) and (IV), where the angles 

STV are represented in the four quadrants, we call the 

perpendicular measured away from the initial line the 
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ordinate, and designate it by o. 

We call the part of the initial line 

measured away from the vertex 

to the foot of the perpendicular 

the abscissa, and designate it by 

a. The hypotenuse of the right 

triangle formed is called the 

radius, on account of its move- 

ment in generating the angle, 

and is designated by r. The 

radius is not thought of as 

having opposition in direction, 

and has no sign. The ordinate 

has an opposite direction in the 

third and fourth quadrants from 

that of the first quadrant. 

Hence we say the ordinate is 

plus in the first and second 

quadrants, and minus in the 

third and fourth quadrants. In 

like manner, the abscissa is plus 

in the first and fourth quadrants, and minus in the 

second and third. 

abscis-sa, 

V (i) 

0 

a _ 

(X) 
— 

0 

(M) 
V 

f -A a s 

4. Trigonometric Functions:—From the ratios of these 

three lines—radius, abscissa and ordinate—three pairs 

of elementary trigonometric functions can be made. 

They are (1) sine and cosine, (2) tangent and cotangent, 

(3) secant and cosecant. The ratios are as follows: 

sine 0 
ordinate 

radius 
, generally written sin 6 = 

o 

r 

cosine 0 

tangent 6 

abscissa 

radius 
, generally written cos 6 — 

a 

r 

ordinate 

abscissa 9 
generally written tan 6 = 
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cotangent 6 = 
abscissa n •, n a 

-ordinate’ generally written cot 0 = -- 

secant 6 

cosecant 0 

radius 

abscissa 9 
generally written sec 0 = -r- 

radius 

ordinate ’ 
generally written esc 6 — -~ 

5. Algebraic Signs of Functions:—As the radius has no 

sign (+ or —) the algebraic sign of the sine and cose¬ 

cant is determined by the ordinate; that of the cosine 

and secant by the abscissa, and that of the tangent 

and cotangent by both ordinate and abscissa. The 

following is evident: 

I n in IV (Quadrants) 

sin 6 + + — — 

cos 6 + — — + 

tan 6 + — + — 

cot 6 + — + — 

sec 6 + — — + 
esc 6 + + — — 

6. Seven Fundamental Formulas. —Between the fore- 

going six functions there are seven fundamental 

relationships, which should be carefully noted. 

(1) sin d X esc 6 

(2) cos 0 X sec 6 

(3) tan 0 X cot 6 

(4) tan0 = s^, 

= i. since 
0 
r X 

r 

0 

= i. since 
a 

r X 
r 

a 

= i. since 
0 

a X 
a 

0 

0 

since 
o r 

a a 

1 

1 

1 
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Recalling the Pythagorean theorem, we know that in 

all such triangles, 

o2 + a2 = r2 

Dividing this thru by r2, we have 7^- + 75- = 1. 

(5) Sin2 6 + cos2 0 = 1. 

Dividing thru by a2, we have + 1 = 77. 

(6) Tan2 6 + 1 = sec2 0 

Dividing thru by o2, we have 1 + ^ 

(7) 1 + cot2 0 = esc2 6. 

Of the six functions sin 6 and cos 6 are regarded as 

the simplest. 

A thoro acquaintance with these formulas, not only 

in the way they are given here, but in their various 

transformations, is necessary to a clear understanding 

of what follows. 

From the first of the foregoing relationships we get esc 9 = 

——-. This means that a csc 9 in the numerator can be reolaced 
sin 6 

by a sin 9 in the denominator and vice versa. 

From another we learn that cos 9 = This means that 
sec d 

a cos 9 in the numerator can be replaced by a sec 9 in the denomi¬ 

nator and vice versa. 

From another it is apparent that cos 9 = \/l — sin2 9, since 

cos2 9 — 1 — sin2 9. 
From still another that sec2 9 — tan2 0=1. 

Let us now by means of these formulas attempt to show that 

(Example 1) -sec 0 csc 0 = tan 9 + cot 9. 
N seed cscd 

We have long since learned that 
a b 

c 

Applying this formula, canceling and substituting as in the 

foregoing, we have: 
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see2# , csc20 
"r sec0 esed seed esed 

seed , csc0 

csc0 seed 

sin d , cos d 

cosfl + linT “ tan 0 + Cot 6 

Since sec 6 - £-f, ^ = sin 0, esc 0 = ~ = cos 0, 

sin0 

COS0 
= tan #. 

It is always well to reduce a complicated expression to one less 

complicated, simplifying as much as necessary. But do not clear 

of fractions across the equal mark. 

1 . 1 
(Example 2) + = 1. 

tan20 + l cot20 + l 

By consulting our seven fundamental formulas, we see that 

1.1 1.1 + + = cos2 # + sin2 0=1 
tan20 + l 1 cot20 + l sec 20 1 csc20 

X 2cos ^0 
(Example 3) siDg cosd = tan 0 — cot 0* By reading our seven 

fundamental formulas backward, we see 1 = sin2 # + cos2 #;.hence 

1—2cos20 sin20 + cos20 — 2 cos20 sin20—cos20 

sin0 cos0 

sin20 

sin0 cos0 

cos20 sin0 

sin0 cos0 

COS0 

sin0 cos0 sin0 cos0 COS0 sin0 

(simplifying) 

= tan # — cot #. 

(Example 4) = sin d tan 0. 

Here again our fundamental formulas show us that 

sin0 

sin0 + tan0 

cot0 + CSC0 

sin0 + 
COS0 

COS0 

1 Q + ^tse) (cos 0 + 1\ 

sin0 ) 

sin20 

cos 0 
= tan0 sin 0 

sin0 sin0 

These functions are numbers and may therefore be simplified 

as in arithmetic and algebra. Thus, a + 
a 

= a 0 + -r) • 

sin0 s x v _tan0 
For the same reason sin # + = sin# ( 1 H--), 1 = 

COS 0 V COS0 J ----- 
N ' sin0 

( 
a 

tan# sin# I since 1 = a X -v- = ab 

tan2 

) 
(Example 5) 1 + lJrS~CQ — sec#. (Read fundamental formulas.) 
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For 1 + 
tan20 

= 1 + 
sec20 —1 

= 1 + (sec 0 — 1) = sec 0 as 
l+sec0 sec 0 + 1 

sec2 0 — 1 = (sec 6 + l)(sec 0 — 1). 

7. Numerical Values of the Functions.—It must always 

be remembered that—as has been said—these functions 

are numbers. Let us take for ex¬ 

ample, the right triangle, Fig. 116, 

whose sides are 3, 4 and 5. Here, 

according to our definitions of func¬ 

tions, sin A is -f-, cos A is 

, esc A is sec is 
5 

5 

tan 

A is + cot A is -* ,- 4 ,- 3 

If we divide a square, Fig. 117, by a diagonal we will 

get two isosceles right triangles. We can represent 

the sides of one of these triangles as 

1, 1, \/2. Then sin 45° = -~=. = 

cos 45°; tan 45° = 1 = cot 45°; 

sec 45° = \/2 = esc 45°. 

We can form a 30° 60° right tri¬ 

angle from the equilateral triangle, 

Fig. 118, and represent its sides by 

1, 2 and \/3. Sin 30° = cos 

30 O _ V3 . tan 30° =  V3 
2 7 V3 

cot 30° = V3; sec 30° = 
2 

V3 

esc 30° = 2; or, in decimals, 

sin 30° = 0.5000, cos 30° = 0.8660, 

tan 30° = 0.5774, cot 30° = 1.732, 

sec 30° = 1.155, esc 30° = 2.000. 

It will be well to check the fore¬ 

going with the seven fundamental 

formulas. Ex. sin2 30° + cos2 30° = 2 + (—2 

= 1, etc. 
== ~T + 

3 

4 
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8. Angles Greater Than 90°.—Trigonometric tables are 

computed only for angles up to 45°. We can obtain 

the functions of any angle in terms of angles less than 

90° or, if desired, less than 45°. In Fig. 119, the 

eight right triangles whose hypotenuses are the radii 

which cut the circle at 1, 2, 3, 4, 5, 6, 7 and 8 are 

obviously equal. Both the hypotenuse and the angle 

A are equal. The angles at 2, 3, 6, 7 are equal to the 

angle A, since alternate interior angles of parallel lines 

are equal. We will denote the equal sides of each 

of these eight equal triangles by r = hypotenuse; 

l = long side and s = short side. We will also discuss 

the sign of angles in the different quadrants and 

generalize. Let us remember that the sine of an angle 

equals ord*nate_ and that the cotangent equals the 
radius 
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The reader should make tables for cos, tan, 

sec and esc. The angles are marked (90° — A), (90° 

+ A), etc. We now wish to express them in terms of 

angle A in the first triangle. 

I. sin (90° — A) ——— = eos A 
r 

cot (90 — A) =-y- = tan A 

II. sin (90°+-4) = —— = cos A 
r 

sin (180° — ^4) = = sin A 
r 

cot (90+^4) —tan A 

cot (180 —/l) =—-= —cot A 
s 

III. sin (180°4-^4) z=~~= —sin A 

sin (270° — A) =■— — — cos A 

cot (180+^4) =—- = —~ =cot A 
— s s 

cot (270 — ^4) =—J~~Y~ =tan A 

IV. sin (270°+^4) =—- = —cosA 
T 

sin (360° — A) =—- = —sin A 
r 

cot (270+^4) =~~J= —J~— ~^an ^ 

cot (360 — A) — =—-cot A 
s s 

We first express the functions of these angles in terms 

of the numbers r, l and s, then we see what function is 

represented in the first triangle by our ratio. We 

must be careful to distinguish between positive and 

negative ordinates and abscissas. It will be noticed 

that the signs are settled by the quadrants, as in Section 

5 of this Chapter. Also that when 90 or 270 (an odd 

number of times 90) is used, the function changes to 

the co-function, but that when 180 or 360 (an even 

number of times 90) is used, the same function 

occurs, that is, sin (90 — A) = cos A; but sin (180 — 

A) = sin A. 

Also that tan (270 — A) — cot A, and that tan (180 — A) — 

— tan A. The rule is: first settle the sign, then settle the function. 

Sin (75°) = sin (90° — 15°) = + cos 15°. Sin (100°) = sin 

(90° + 10) = + cos 10°. Tan 150° = tan (180° - 30°) = - tan 

30°. Cot (200°) = cot (180° + 20°) = + cot 20°. Sec (250°) = 
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sec (270° - 20°) = - esc 20°. Csc 300° = esc (270° + 30°) 

= -sec 30°. Sin 100° 10' = sin (90° + 10° 10') = cos 10° 10'. 

Csc 260° 13' 13" = csc (180° + 80° 13' 13") = - csc 80° 13' 

13". It is very desirable to become expert in this operation. 

Evidently since sin 0° = 0 and cos 0° = 1, it follows that sin 

90° = sin (90° -f- 0°) = cos 0° = 1. Similarly, sin (180°) = 

sin (180° + 0) = — sin 0° = 0. Again, sin 270° = sin (270° + 0°) 

= — cos 0° = — 1. Similarly cos 90° = cos 270° = 0. Cos 

180° = - 1. Tan 0° = 0. Tan 90° = tan (90° + 0) = cot 0° = 

— 1 0 = infinity, where infinity means that as the angle gets 
laDU 

nearer to 90°, the tangent increases indefinitely. Note that 

whereas tan 180° = 0, tan 270° = — infinity. 

9. Inverse Functions.—From the foregoing we learn 

that sin 30° = sin 150° = sin 390° = sin 510°, etc. 

Inversely we say the angle whose sine is one- 

half is 30°, 150°, 390°, 510°, etc. We abbreviate 

this sin-1 -d- or arc sin -h, which are read “angle whose 
2 2 

sine is one-half” and “arcsin i » One of the values 

of sin 1 —= + cos 1 —4: is 90°. 
V2 V2 

The expression sin (cos 1 -F-) also means: given the 

cosine of an angle to be find its sine. Sin 0 = 

\/l “ cos2 0 = Vl — -4 = V-f- = ± 4\/3. Remem¬ 

ber arcsin a, tan-1 a are angles. 

sin e 10. Value of —Referring to Fig. 120 we see that 

2 sin 6 < 20 < 2 tan 6 
e 

Fig. 120. 

Hence 1 < 

therefore 1 > 

e 
sin 6 

sin0 

< 

e 

sin 6 

cos d 

> cos d 

As cos 0° = 1, = approaches 1 as 

6 approaches 0. 
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11. The Right Triangle.—We will now take the right 

triangle ABC, Fig. 121, placing C at the vertex of the 

right angle and lettering the sides opposite the angles 

a, bf c. Here 

sin A = = cos B 

cos A = — — sin B c 

tan A = = cot B 

cot A = — = tan B a 

sec A = -J- = CSC # 

esc A = = sec B 

Note that for functions of angle A the ordinate is a, 
while for functions of angle B the ordinate is b. 

These equations show us that each function of the 

angle B (which is complementary to the angle A) is 

the co-function of the angle A. This means that 

sin 30° = cos 60°; cot 42° = tan 48°; sec 35° 15' = 

esc 54° 45'; sin 100° = cos (— 10°). 

We can also obtain from these equations nine dif¬ 

ferent expressions for a, as follows: a — c sin A = c 

cos B — b tan A — b cot B = 
cot A tan B esc A sec B 

V{o - b)(c + b). 

a ■\fcfi — b2, from a2 + b2 = c2; also c2 — 62 = (c — b)(c + 6)* 

Nine expressions for b, and nine expressions for c 
can be found in the same manner. It is very desirable 

that the reader should do this, and learn how to read 

with facility a side of a triangle in terms of two other 

parts. This is the alphabet of the subject, and must 

be mastered if further progress is to be made. 
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12. Solution of the Right Triangle.—The solution of 

any right triangle, as, for instance BCA, Fig. 121, can 

be performed as follows: 

Given: To find: 

A = 31 B = 59° 

a = 16.235 b = 27,020 

c = 31,522 

Since A + B — 90°, B = 59°. We may now write 

formulas for b and c in terms of the given parts A and 

a, and also a check formula in terms of both known 
and unknown parts. 

b = a cot A c — 
a 

sin A 
Check: 

1.0013 = cot A 

16.643 
9.986 

333 
50 

8 

27.020 = 6 

31.52 = c 

.51004)16.235 = a 
15.451 

784 
515 

269 
258 

11 
10 

b= \/(c — a) (c+a) 

c = 31.52 
a = 16.24 

c—a—10.23 
c+a = 47.70 

611.2 
107.0 
10.7 

9 
27.02 729.8 

4 4 

329 
329 47 

8 54 

sin A — 

We were given A = 31° and a — 16.235 and will 

mark the given parts on Fig. 121, finding each new 

part in terms of the given parts. Note that there is 

always an error in computation with inexact numbers, 

and if we use a computed part in a new computation, 

there will be additional error. We should therefore, 

always attempt to use original data. 
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By referring to the table of values (pages 186-190) we 
find that cot 31° = 1.6643, and sin 31° = . 51504. Per¬ 
forming the indicated operations, we get b = 27.020 

and c = 31.52; B = 59°, the complement of A. We 
check this computation by getting b in another way, 

from other parts of the triangle. The formula b = 

V(c — a) (c + a) or one similar to it should always 
appear in every right-triangle computation. We multi¬ 
ply (c — a) by (c + a) and then take the square root 
of this product. The first three figures of the square 
root are 27.0. As we have three figures we can obtain 
the next one by long division, as we did when we were 
studying square root. Now 54 goes into 80 nearly 
2 times. As the two values of b agree, we are reasonably 
certain of the accuracy of our results. 

13. Solution by Logarithms.—Now solving this same 
problem by means of logarithms and using the same 
formulas: 

b = a cot A c = 
a 

sin A 
b — y/ (c — a) (c + a) 

We draw up a skeleton form, such as the following: 

log a = l. 
log cot A = 

log 6 = 
6 = 

log (c —a) = 
log (c+a) = 

log b 

2) 

log a— 1. 
colog sin A = 

log c = 
c — 
a=16.235 

c — a — 
c+a = 

We will now repeat this skeleton, and fill out the blanks. 

log a =1.21046 
log cot ^4 = 0.22123 

log 6 = 1.43169 
6 = 27.020 

log a =1.21046 log (c — a) = 1.18432 
colog sin A = 0.28816 log (c+a) = 1.67903 

log c= 1.49862 2)2.86335 
c = 31.522 log 6=1.43168 
a= 16.235 

c —a= 15.287 
c+a = 47.757 
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14. Exercises on Right Triangles.—In Fig. 122 we have 

another right triangle BCA, some 
of the parts of which are given 
and others are to be found. 

Given: 
c = 62.134 
6 = 41.275 

To find: 

8 c-6 = 20.859 
c+6=103.409 = 103.41 

a = 
A = 
B — 

a— V(c—6)(c+6) cos A = 

log (c —6) = 1.31929 
log (c+6) =2.01456 

2)3,33385 
log a= 1.66692 

a = 46.640 

log 6 = 1.61569 
colog c = 8.20667 

log cos = A = 9.82236 

M = 48°22'17" 

Check 

tan A = 
0 

log a — 1.66692 
colog 6 = 8.38431 

log tan A = 0.05123 

M = 48°22'10" 

Looking up logs of c — 6, c + 6, 6 and c, we note that colog 6 
can be written immediately from log 6. Care is needed in getting 
the angle from log cos A, as the mantissas are decreasing as the 
angle increases. The difference of 7" in the check is well within 
the limit of accuracy. No pencil need be used except in writing 
the figures as seen here. The tangent is the best function to 
check with, if the form a — \/{c — 6)(c — 6) has been used 
previously in the computation. 

The following is still another solution of the right 

triangle, as represented by Fig. 122. 

Given: 
a = 163.89 
6 = 142.67 

To Find: 
M = 48°57' 35" 
B = 41° 02' 25" 
c = 217.29 

Here we have no direct logarithmic formula for c. 
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tan A —-T- 
b 

log a = 2.21455 

colog b — 7.84567 

log tan ^4 = 0.06022 

A = 48° 57' 35" 

c — ~—A sin A 

log a = 2.21455 

colog sin ^4 = 0.12249 

logo = 2.33704 

c = 217.29 

5 = 142.67 

c — b — 74.62 
c+6 = 359.96 

a = \Z(c—b) (c — b) 

log (c- b) = 1.87286 

log (c+6) =2.55625 

2)4.42911 

log a = 2.21456 

To subtract 48° 57' 35" from 90° to get the complement 2? note 

that 90° is 89° 59' 60". All the work done is before us. There 

is no scratch-work of any kind. In getting the cologs, the charac¬ 

teristics were taken from 9 before looking into the table, then the 

numbers which were alike in the two logarithms were subtracted 

from 9, so that only small numbers, generally of the last two 

places, had to be adjusted after interpolation. 

15. Oblique Triangles.—Oblique triangles, having three 
parts given, one of which is a side, may be worked by 
dividing them into right triangles, tho the case when 
three sides are given presents some difficulties. Gener¬ 
ally, these problems are solved by other formulas than 
the simple ones just given. We will now deduce the 
formulas needed and in doing so will obtain a number 
of other useful expressions, involving sums, differences, 
multiples and fractions of angles. 

The formula for the functions of the sum of two angles 
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is deduced as follows. Figs. 123 and 124 being lettered 
alike: 

The angle DOB is the sum of the angles x and y. 

In Fig. 123 both are acute, as is their sum, while in 

Fig. 124 both angles are acute but their sum is obtuse. 
The angle FCB, in both figures, is 90° + x. (Ordinates 

are read from the foot of the perpendicular, abscissas 
from the vertex of the angle.) 

sin („ _i_ n,\ — AB ae+eb dc+eb 
K't' ^ y) TuT — -Tin- = -7To- 

DC EB 
OB OB OB OB 1 OB 

(We have chosen to express it in terms of the sides of 
the right triangles containing the angles x and y.) 

DC 
OB 

DC 
oc X 

oc 
OB — sin x cos y. 

(OC is common to the two triangles which contain DC and OC. 
Multiplying both numerator and denominator by the same num¬ 

ber does not, as we know, change the value.) 

Likewise: 

EB EB 
X 77I- = sin (90° + x) sin y — cos x sin y. OB CB 

(CB is common to the triangles which contain EB and OB.) 

Therefore sin (x + y) = sin x cos y + cos x sin y 

In a like manner cos (x + y) — °A — 0D+DA _ od+ce 
ob OB OB 

OD , CE 
T* OB OB 

OD 
OB 

OD 
OC X 

OC 
OB 

= cos x cos y 

CE CE . . CB /aao 1 \ • • • 
~01f — X -Qjf = cos (90 + x) sin y — — sin x sin y. 

Therefore cos (x + y) — cos x cos y — — sin x sin y. 

16. Functions of Sum of Two Angles.—The preceding 
deduction proves for all cases in which the angles to 
be added are acute that the sine of the sum of two 
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angles is the sine of the first multiplied by the cosine of 

the second, plus the cosine of the first multiplied by the 

sine of the second, and that the cosine of the sum of two 

angles equals the product of their cosines minus the product 

of their sines. 

The form of the proof is perfectly general, whether the angles 

x and y are acute or obtuse. 

As an example we will show that since sin 90° = sin (60° + 

$0°) = sin 60°cos 30° + cos 60° sin 30° = ->/3 X -5^® + J- x 
2 2 2 

1 3 + -L = i. 
2 4 ' 4 

We are confirmed in our former deduction that sin 90° = 1, 

Also that cos 225° = cos (180° + 45°) = cos 180° cos 45° — sin 

180° sin 45° = - 1 X \/2 0 V2 7^9 which we 
2 2 V2 

would have known before since cos 225° = cos (180 + 45) = cos 
1 

45° = - vV 

As tan A = 
sin A 
cos A , then tan (x + y) = 

sin (x-\~y) __ sin x cos y + cos x sin y _ tan x + tan y 
cos(x+^) cos x cos y — sin x sin y 1— tan xtan y 

In the foregoing we divided each term by cos x cos y 

in order to get our result in terms of the tangent. 
In like manner, by dividing thru the expansion of 

cot (x + y) cos (ar+y) 
sin (x+y) 

by sin x sin y9 we get cot (x+y) cot x cot y — 1 
cot y + cot x 

Similar formulas for the functions of x — y may be 
written by substituting (— y) for (y) and remembering 

sin (—?/) = sin (360° — y) = — sin y, cos ( — y) = cos 
(360°— y) — cos y, tan (— y) = tan (360° — y) — 

— tan y9 cot (—?/) = cot (360° — y) = — cot y, etc. 
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The two sets of formulas may be combined as follows: 

sin (x dz y) — sin x cos y db cos x sin y 

cos (x dz y) = cos x cos y =fc sin x sin y 

tan (x±y) = Ttana;d=tany 

cot (x zb y) = 

=F tan xtan y 

cot x cot y T 1 

cot y ± cot x 

(Read either all upper signs or all lower signs.) 

17. Functions of Double Angle and Half Angle.—The 

formulas for 2x can be obtained by remembering 

sin 2x — sin (x + x) = sin x cos x + cos x sin x 

= 2 sin x cos x, since 2x = x + x 

cos 2x = cos (x + x) = cos x cos x — sin x sin x 

= cos2 x — sin2 x = 1 — 2 sin2 x — 2 cos2 x — 1 

Since sin2 x + cos2 x = 1 

tan x + tan x _ 2 tan x 

1—tan#tana; 1 — tan2 x 

COt 2x = cot x cot x ~ 1 _ cot2 x — 1 
cot x + cot x 2 cot x 

Likewise tan 2x 

These formulas should be thoroughly digested and used under 

all sorts of conditions. For instance, sin 2x = 2 sin x cos x 

enables us to write sin 6x = 2 sin Sx cos Sx, since §x is twice Sx. 

Also cos 2x = 1 — 2 sin2 x enables us to write cos x = 1 — 2 sin2 x, 
jt 

since x is twice — x. This last formula enables us to write 
2 

i i • o 1 1 cos x , 
2 sin'2 -r-x = 1 — cos x, whence sin^—a; = ---, a most 

2 2 2’ 

useful formula in trigonometry and calculus. Similarly, sin2 x = 
1— cos 2# . . o ~ 1 —cos 4 a; 
---■, also sin2 2x = ---. 

From the formula cos 2x — 2 cos2 

cos2 1 + COS X 

x — 1, we easily obtain 

2 
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Since tan2 — a; 
X 

we have tan-^-a; 

cot-^-a; 

sin2 b x ■cosx 

cos 2 1 X 

1 — COS X 

sin a; 

sin x 
1 — cos x 

or 

or 

1 + COS X 

sin x 
1 +cos x 

1 +cos£ 

sin x 

(1—cosx)2 1— cos2 a: 
or = 

1 

(x 

COS2 X (l+cosx)2 

cos2 x — sin2 x) 

(tangent = cotangent) 

18. Sums and Differences of Functions.—Another 

necessary and useful set of formulas is obtained as 

follows: 

sin (x+y) = sin x cos +y cos x sin y 
sin (x — y) = sin x cos y —cos x sin y 

sin (#+?/)+sin (x — y) —2 sin x cos y (Adding) 
sin (x+y) — sin (x — y) = 2 cos x sin y (Subtracting) 

Call x+y — A 
x — y=B 

Then x = A+B, y = > and the formula 
X X 

sin (x + y) + sin (x — y) = 2 sin x cos y becomes 

sin A + sin B = 2 sin cos ----- 
X x 

Likewise, sin (x + y) — sin (x — y) = 2 cos x sin y, 

becomes sin A — sin B = 2 cos A-tB sin A ~B 
2 2 

Similarly, from 

cos (x+y)+ cos (x — y) = 2 cos x cos y, and 

cos (x+y) — cos (x — y) — —2 sin x sin y, we have 

cos A + cos B — 2 cos - cos —p8-, and 
X X 

cos A — cos B = — 2 sin A +B~ sin A-~ - 
X X 

An example of the use of these formulas: 

sin 150° + sin 90° = 2 sin 120° cos 30° 

150 + 90 J 150-90 
(Since -^- = 120, and --- = 30) 

This gives the identity + 1 = ( ^ 
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19. The Law of Sines.—In the triangles ABC, Figs. 125 

and 126, sin B = and sin A = -f-. 
a b 

Dividing, we have ^4 = whence = -^~b 
° sin 2? b sin A sin B 

Similarly, drawing the perpendicular q from A to 

the side a, we have 

sin B = and sin C = ; Dividing we have ^4 = —» 
c o sin L c 

whence • Combining the two, we have 
sin B sin G ° 

a   b   c 

sin A sin B sin C 

20. Numerical Solution of Oblique Triangle by Law 

of Sines.—We will solve a problem by the foregoing 

formula; first referring to Fig. 127. 

Given: 

a = 628.19 
A = 68° 39' 09" 
B — 72° 16'39" 

^ _ a sin B 
sin A 

To find: 

C = 39° 04' 12" 
b = 642.47 
c = 425.10 

„ a sin C 
C = - 

sin A 

log a — 2.79809 
log sinB = 9.97889 

colog sin A — 0.03087 

log b = 2.80785 
b = 6.42.47 

log a = 2.79809 
log sin C = 9.79953 

colog sin A — 0.03087 

log c = 2.62849 
b = 425.10 

There is no check by this formula. 
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When two sides and the angle opposite 

one of them are given there are two solu¬ 

tions, as in Fig. 128, unless ruled out by 

the principle that the greater side is oppo¬ 

site the greater angle. 

21. The Law of Tangents.—From the formula ^4 = 
sin B 

-j-9 (Section 19 of this chapter) we get, by adding 1 to 

each side, and reducing to common denominator, 

sin A | i 

siiTZ? ' 1 

sin A + sin B 
sin B 

cl -f- b 

b~ 

and by subtracting 1, sind~ ^ = irJ1 

Dividing these two equations, 

A+B . A—B 
, • . ‘ d 2 cos —-— sin —-— 

a — b _ sin A — sin B _ 2 2 

a+b sin A + sin B . AB A—B 
2 sin —r— cos —-— 

a—b 

a+6 
cot 

A+B 
2 

tan 
A -B 

2 

Other forms of this formula are: 

tan 

tan 

A—B 
2 

A +B 
2 

b — c 

b+c 

tan 

tan 

B - C 
2 

B +C ’ 

2 

c — a 

c + a C +A 
tan —-— 

2 

, etc. 

22. Numerical Solution by Law of Tangents.—The 

formula of the law of tangents enables us to solve a 

triangle when two sides and the included angle are 

given. If we have the parts a, c, and B in Fig. 129, 

we can subtract B from 180° and get A + C, and 

hence —In the formula 

c — a 

c + a 

tan 

tan 

C - A 
2 

C + A 
we can obtain tan 

C-A 
'2 

from the 

2 
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three known parts and then get from the table. 

Adding C~A to C + A gives us C. Subtracting, we 
% x 

obtain A. We now know all the parts of the triangle 
except the side 6, which can be obtained from the sine 
formula in two ways, giving us a check. 

We will solve the following problem by the use of 
this formula. 

Given: To Find: 
a = 82 6 = 196.31 
c— 167 A = 24° 25' 10" 

Z? = 98° 14' C = 57°20' 50" 
C-\-A = Sl° 46' 

tan tan 
2 c + a 2 

£±A = 40° 53' 00" 
2 

log tan = 9.93738 

c — a = 85 log = 1.92942 
c+a = 2 49 colog = 7.60380 

log tan = 9.47060 
Jkf 

C - A 
2 

c + a 
2 

16° 27' 50" 

40° 53' 00" 

C = 57° 20'50" 
A = 24° 25' 10" 

a   b 
sin A sin B 

^ _ a sin B 
sin A 

log a = 1.91381 
log sin B = 9.99550 

colog sin A = 0.38364 

log 6 = 2.29295 
6 = 196.30 

sin C 

c sin B 
sin C 

log c — 2.22272 
log sin B = 9.99550 

colog sin (7 = 0.07471 

log 6 = 2.29293 
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This formula is used in surveying a triangle when we 

set up the instrument at an angle of the triangle and 

measure two sides from the instrument with the chain or 

tape. We can find all the parts with one “setup” of the 

instrument. 

23. Generalized Pythagorean Theorem.—With the same 

figures as in Section 19 of this chapter we find: 

a2 = p2 + DB2 

= p2 + (DA + c)2 (c = AB) 

= p2 + DA2 + 2DAc + c2 

a2 — b2 — 2bc cos A + c2 — cos .4^ 

This is a generalized statement of “the square on a 

hypotenuse,’’ for if A = 90° the formula becomes 

a2 = b2 + c2, since cos 90° = 0. The formula is not, 

however, adapted to logarithmic work, on account of 

its having plus and minus signs. 

24. Three-Side Formula.—We will use the preceding 

formula, together with our formula for sin to 

develop a formula used by Hero of Alexandria some 

2000 years ago. From Section 23, cos A = ~ °2 > 

hence 2 sin2 ~ = 1 — cos A — 1 — -&2- -c* ~a2 = 
2 26c 

26c— 62 — c2 + a2   a2 — (62 — 26c-f-c2)   (a-\~b —c) (a—bc) 
2 be 2 be 2 6c 

Hero did what was equivalent to calling (a + b + c) 

= 2s. Subtracting 2c from both sides of this equation, 

we get a + b — c = 2s — 2c = 2(s — c). Similarly a 

— b + c = 2(s — b), and b + c — a — 2(s — a). Can¬ 

celing out the 2’s, our formula becomes 

•2 A (s—c) (s—b) 
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From the formula 2 cos2 A — 1 + cos A, we may 

get in a similar manner 2 cos2 A = - • We may 

also obtain this formula from the fact that sin2 A 

cos2 A = 1. 

From these two formulas, by division, we obtain 

tan 2 A (s-b) (s-c) 

s (s — a) 

This can be written tan2 A, — ^bHL-cl 
2 s (s — a)* 

Calling (s~b) (*~c) = r2# (Jt can be shown that r 

is the radius of the inscribed circle.) 

tan 2 A 
(s-a) 2 5 

tan -r = 
r 

5 —a 

This formula enables us to get the half angles of a triangle. 

If their sum is within 12" of 90°, using a five-place table of loga¬ 

rithms, we consider them sufficiently accurate, and call their 

doubles the angles of our triangle. 

25. Numerical Solution by Three-Side Formula.—The 

three-side formula can be used to solve a triangle, as 

Fig. 130 when the three sides are given. 

Formulas: 
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Given: To Find: 

a = 2.51 
6 = 2.79 
c = 2.33 

25 = 7.63 
5 = 3.815 

5 — a = 1.305 
5-6 = 1.025 
5-0=1.485 

35 —25 = 3.815 = 5 

A— 57° 52' 48" 
5 = 70° 17'28" 
C— 51° 49'52" 

A+B+C= 180° 00' 08" (Check) 
colog 5= 9.41851 

log (5 — cl) = 0.11561 
log (5-6)= 0.01072 
log (5 — c) = 0.17173 

log 2r = 19.71657-20 

logr= 9.85829 
log (5 —a) = 0,11561 

log tan — = 9.74268 

4= 28° 56'24" 
2 

log r = 9.85829 log r = 9.85829 
log (5-6) = 0.01072 log (5-c) = 0.17173 

log tan 4 = 9.84757 log tan ~ = 9.68656 

4 = 35° 08' 44" 4 = 25° 54' 56" 
2 2 

This completes the types of triangles that arise in 

numerical trigonometry. Areas can be obtained by 

finding altitudes and remembering area = 3^ base X 

altitude. Here altitude on 6 is c sin A or a sin C. 

REVIEW 

1. How is the number of radians in an angle found? 

2. What is meant by the sine and cosine of an angle? How are 
these determined when the angle is greater than 90° ? 

3. What is meant by inverse functions? 

4. How could you find the height of a flag-pole? 

5. How could you find an angle of a triangle if you know the 
length of its three sides? 



CHAPTER XIII 

ALGEBRAIC GEOMETRY 

1. Graphical Representation.—If related numbers 

change so as always to remain in the same ratio, one 

is said to vary as or vary directly with the other. “Vary 

as” is another expression for “is proportional to.” 

Simple interest varies as the time. If y varies with x9 

= c or y = cx. Where c is the constant ratio of 

y to x, it is sometimes called the slope in graphs. 

If $100 is placed on interest at 2% simple interest, 

the interest, ?*, varies with the 

1 number of years, t. The 

^ spaces on the horizontal scale, 

3 Fig. 131, represent the number 

j of years; those on the vertical 

3 scale, the number of dollars 

j interest. As the interest is 

3 2% or $2 per hundred we will 

S draw the graph thru the zero 

j mark and a point one space 

to the right and two spaces 

up as in the diagram. This 

graph will pass thru points whose distance up is twice 

their distance to the right of the origin o. 

To find the interest in 5 years, we look where the 

line thru 5 on the horizontal scale passes thru the graph 

and then see what horizontal line passes thru the same 

point. It is evidently the line thru 10. 

How long will it take to get $6 interest on $100? 

By following the reverse course, we find the time 

(217) 

Fig. 131. 
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to be 3 years. This graph works very similarly to our 

multiplication table on page 8 of this volume. 

2. Plotting a Graph.—Let us construct the graph 

3x + 4y = 7. 

The horizontal scale is x and the vertical scale is y, 

Fig. 132. Simultaneous values for this expression can 

be found in Chapter VIII. We 
will plot the graph of a number 
of these values, calling x’s to the 

right of zero plus and to the 
left minus, also y s upward plus 

and y s downward minus. The 

point (x) = 1, y = 1, or (1, 1), 
as we say, means 1 to the right 
and 1 up. The point (5 — 2) 
is 5 to the right and 2 down. 

The point (— 3, 4) is 3 to the left and 4 up. It will 

be noticed that a straight line can be drawn thru all of 

these points and if we try the rest of the points we shall 

find that they fit on this same straight line. 

Now plot y = 2#, also y — 

2x + 3. We notice (Fig. 133) 

that y — 2a; + 3 is a straight 

line parallel to y = %x, with 

the corresponding points three 

above. And we further notice 

that y — 2x is the same line 

as we plotted in Fig. 131. 

Also y — 3 is a straight line 

parallel to the # —axis three 

units above it. The equation 

of the x — axis is y = o. The Fig. 133. 
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equation of the y — axis is x — o and x = 5 is a straight 

line five units to the right of the y axis. 

All of these equations are of the first degree, that is, 

the exponents of the unknowns x and y are one in all 

cases. They are all the forms we can get of the 

equation ax + by + c = o, by making the coefficients 

a, b, c, positive or negative quantities or zero. So it is 

evident that every equation of the first degree can be 

represented by a straight line and conversely every 

straight line corresponds to an equation of the first 

degree. From this point on right thru mathematics, 

geometry and algebra go hand in hand, sometimes one 

leading, sometimes the other. 

3. Principle and Use of Graphs.—As two points are all 

that is required to fix the position of a straight line, 

each of these lines could have been plotted by selecting 

two points and drawing the straight line thru them. 

The units on the two axes, as the scales are called, are 

generally the same; but sometimes it is convenient to 

have them different. This will not change the type 

of the graph but only shorten or lengthen it proportion¬ 

ally. We can call the two axes x and y if our equation is 

in x and y. If the equation is in s and t, then one of the 

axes can be s and the other t and the plotting be done 

in exactly the same manner. 

Such graphs as these are used to represent the change 

in temperature during the day, the fluctuations in 

business, the change in population of a city or country, 

the rise and fall of the temperature of an invalid, the 

routing of trains on the railroad, the path of a pro¬ 

jectile, the amount of rainfall during the year, the 

increase in products of the same or different countries, 

the profit per workman in a factory and any other 

relation that can be expressed in terms of time or any 
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other single variable. Even when such expressions 

cannot be made, we plot a number of points by actual 

observation and draw a smooth curve thru them, giving 

us a fairly accurate picture of their variations. 

4. Systems of Equations.—The equation Sx + \y — 7 
has an unlimited number of solutions, and it can be 

shown that the equation 6x + 8y = 14 has this same 

set of values. Such equations are said to be dependent, 

as one is obtained from the other by multiplying every 

term by 2. When all coefficients have the same ratio 

the equations are dependent. The equation Sx + 4y 

= 8 has no values in common with 3# + 4y — 7, but 

if we plot these two equations we find that their graphs 

are the same distance apart everywhere as in the figure. 

Such lines are parallel and therefore never meet, and 

such equations are called inconsistent equations. The 

coefficients of the x’s and y s are in proportion as in 

dependent equations, but the numbers or constant terms 

as they are called, are in a different ratio. 

The equation x + y — 2 will have only the value 

x = 1, y = 1 in common with Sx + 4y = 7, as may be 

seen by plotting Fig. 134. But we will calculate this 

in another way, as follows: 

( Sx + 4?/ = 7 
l x -f y = 2 

Sx -f" 4y — 7 
Sx + Sy — 6 (Same as x + y — 2) 

y = 1 (By subtraction) 

x + 1 = 2 (Substituting 1 for y) 

Therefore j x, — 1 ) 

(y = 1 ) 

Note:—Always put each x with its y. 
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6. Solving by Algebra.—It will be instructive to the 

reader to solve the following equations by both the 

algebraic and the graphical methods. 

\x + y = 17 ( x + 5y = 14 j 33# + 54y = —9 
}x — y — 7 (3# — 4y — 4 \ Mx — 81?/ = —294 

In these equations the coefficients of either x or y 

should be made alike and it is generally best to use the 

L. C. M. of the coefficients. In the last example we 

might multiply the first equation thru by 4 and the 

second by 3, getting 132a; in each case. We can 

eliminate either by addition or subtraction as the case 

may be and in the example we solved 3+ 42/ = ^ we 

might have said that as x + y = 2, then x equals 2 — yy 

whence 3a; + 4?/ = 7 becomes 6 — Sy + 4?/ = 7, whence 

y = 1. And since x + y — 2, y also equals 1, giving 

the same result as before. This method is called 

elimination by substitution. We might also have said 

as before that x — 2 — y and from the other equation, 

since Sx — 7 — 4>y, then in that equation x — . 

Putting these two values of x equal to each other, 

Whence 6 — Sy — 7 — 4?/ 

Hence j y = 1 
( x — 1 

We have to use our judgment to determine which 

method is the more suitable for our problem. 

Solve the following problem: 

We could find the value of 21# in each 

equation and put these values equal to each 

other. 

Also solve this problem: 

— 23 y = 2 
7x - 19y = 12 
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r 

JL _ JL = 4 
2a 36 

Multiplying the second equation thru 

by 2, we have 

Whence 1 — 
Q'lJ 9 

8 + ; by equating the two values of —. 

6 — y _ 246 + %y 
-6- “ 36" 

Sb — Sy = 24 b + 2?/ 

— & = 5?/ 

Evidently 

' - 21 6 

» = —- 

20 a 
X — 

5 

A class room has 54 desks, some of which are single and some 

double. The seating capacity of the room is 72. How many 

desks of each kind are there? 

Let x = number of single desks 

y — number of double desks 

Then j x + y = 54, the number of desks 
As ( x + 2y = 72, (The double desks seat two) 

V =18 
x = 86 (Check the result.) 

Going with the current a steamer makes 19 miles per hour, 

while against the current the speed averages 13 miles per hour. 

Find speed of current and boat. The equations are 

j x + y — 19 letting x = speed of steamer and y = speed of 
I x — y = 13 current. 

Sometimes there are three unknowns, as in the following: 

ix-\-y-\-2z~ 9 
] 2y + 2 = 7 
( Sx + 5y = 13 
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x + y 4* 2z = 9 
4y -}- 2z = 14 

x — Sy = — 5 

j 3a; — 9y — — 15 
( 3x + 5y — 13 

Uy = 28 

(y = % 
< z = 3 
( a; = 1 

The process here involved is that 

of reducing from three equations in the 

same three unknowns to two equations 

in the same two unknowns and then 

eventually to one equation in one un¬ 

known. The last equation is in x and 

y, so we will get rid of the z in the first 

two equations in order to obtain a sec¬ 

ond equation in x and y to compare 

with it. 

6. Parabola y = x* 2 * * * 6 7.—The 

diagram Fig. 135 gives the 

plot of y — x2, for when y — 1, 

x = ± 1, and when y = 4, x = 

± 2, etc. Take a piece of 

squared paper containing large 

squares whose sides are ten 

times that of the smaller squares 

and replot this curve very 

exactly. (Such paper can 

be readily purchased at any 

architectural or engineering 

supply house.) This curve will 

give us the values of the squares 

of all the numbers, whole or 

decimal, we can represent on 

the x axis by reading the proper y in each case. 

Also, we can read the square root of all the numbers 

represented by the y axis by finding the proper x, in 

just the same manner as we used our multiplication 

table. It will be well to call the side of the large 

square 1, then the side of the smaller square is .1, or 

one-tenth. 

7. Plots of Radical Quantities.—We learned in Ge- 
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ometry from the great Pythagorean theorem that the 

square on the hypotenuse of a right triangle equals the 

sum of the squares on the other two sides. By this 

theorem, if the diagonal of a unit square be drawn, it 

will be in length the \/2y since l2 + l2 = 2 where 2 is 

the square of the long side. The length of two such 

diagonals is evidently 2\/2 = \/8. An accurate pair 

of dividers set with their points two units apart will 

enable us to get the \/3 by placing one point of the 

dividers on the y axis, one unit above the x axis and 

describing an arc. This arc will cut the x axis y/3 

distance from the y axis. We can also accomplish 

this by constructing a right triangle, one of whose legs 

is 1 and the other \/2. 

Also, \/5 is the hypotenuse of a right triangle whose 

legs are 2 and 1; \/6 can be obtained from a right 

triangle whose legs are either 1 and the \/5, 2 and the 

a/3 and \/3, or from a right triangle whose hypot¬ 

enuse is 3 and one leg of which is the \/3. 

The \/ld is the hypotenuse of a triangle whose sides 

are 3 and 1. Numerous other square roots will test 

one’s ingenuity. They can be checked on the curve 

y — x2 (Fig. 135) and will show conclusively that the 

radical is just as real a 

number as any other num¬ 

ber we may use. We can 

get 2 + y/5. Fig. 136, by 

making a line whose 

length is the sum of 2 

and the y/5. To get 2 — 

\/5, we take a line two 

units in length, then 

measure from the right end with our dividers in a 
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negative direction the \/5. The length from the left 

hand of the first 

line to the divider 

point is 2 — \/~5. 

As it is to the left 

of our beginning 

point, it is negative. 

The figure also 

shows 2 Jr~--. 
fj 

8. Graphs of Quad¬ 

ratics.—It could be 

shown that x2 + 

y2 — 16 represents 

a circle of radius 4 

about an origin; and 

that x2 + y2 = 5 

represents a circle 

of radius \/5, In 

Fig. i37. the diagram, Fig. 

137, it is shown that (x + 2)2 + (y — 3)2 = 25 is a circle of 

radius 5 whose center is (2,3) and that {x + l)2 + (y + 

2)2 = 25 is the same circle with its center at the point 

( — 1, — 2). Whenever we see an equation in two 

variables of the second degree in which the coefficients 

of x2 and y2 are equal in value and sign we can be sure 

we have a circle. 

We made a careful plot of the parabola y = x2, 

Fig. 135. Other parabolas are y2 = x + y and x = y2 

+ 2y — 3. If no xy term occurs, we distinguish them 

by the fact that either x2 or y2, but not both, is present 

in the second degree. 

We will plot the graph of the equation x = y2 + 2y 
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— 3 (Fig. 138). The following sets of values satisfy 

the equation: 

x = -3, 0, -4, 5, -3, 0, 5 

y = 0,1, -1,2, -2,3, -4. 

Plotting these points 

and drawing a smooth 

curve thru them we 

have the graph of 

x = ?/2 + 2?/ — 3. 

9. The Ellipse.—In the 

equation |i + = 1, 

simultaneous values 

are 

Fig. is8. ( # = 0, 5 
( y = 4, o 

We will plot these values as in Fig. 139. Evidently 

x cannot be greater than 5 nor y greater than 4, as 

the other coordinate, as it is called, would be imaginary. 

Further, if — x is substituted for x it will not change 

the equation. Hence 

we say that the curve 

is symmetrical with 

respect to the y axis. 

It will also be found 

symmetrical with re¬ 

spect to the x axis. 

Thus we need only 

to obtain one-fourth 

of the curve. 

Clearing the equa¬ 

tion of fractions, Fig. 139. 
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16a?2 + %5y2 = 25 X 16. Whence 

%5y2 = 25 X 16 — 16a?2 

= 16 (25 - a:2) 

V2 = H (25 - a;2) 

y — ± -y \/%5 — a:2 

If re = 2, y — d= ~ V^l. 
O 

The V21 is most easily obtained from a right triangle 

whose hypotenuse is 5 and one of whose legs is 2. 

We take Gf this length, set our dividers and use it as 

the y of a point whose x is 2. 

If x = 4, y = -J-V9 = =fc ~ 

We use -y as the y of a point whose a: is 4. Taking 

our dividers we set out new y s below the a; axis the 

same length as above, for there is a —y to every -\-y. 

Likewise we set out new x’s to the left of the y axis as 

there is a —a; to every +x. A smooth curve thru 

these points gives us the ellipse. 

The equation + ^y--2 = 1 is the same 

ellipse with its center at the point (2,3) instead of the 

origin. It is evidently symmetrical with respect to a 

line drawn thru (2,3) and parallel to the axis. When¬ 

ever in a second degree equation there is no term in xy, 

if x2 and y2 are present with the same sign and different 

coefficients we have an ellipse. 

10. The Hyperbola.—In the graph of the equation 

= 1, simultaneous values are 

( X = dz5, ±6-1-, ±7, ±13 

\y — 0, ±3, ±|\/6, ±9| 
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Fig. 140. 

Evidently when 

x is less than 5 

numerically y2 is 

negative and y is 

imaginary; also as 

x increases y in¬ 

creases. The plot 

is given in the dia¬ 

gram, Fig. 140. 

Whenever in a sec¬ 

ond degree equa¬ 

tion, not containing 

an xy term, x2 and y2 are both 

present with different signs we 

have an hyperbola. Fig. 141 

shows an hyperbola referred to 

different sets of axes. 

The circle parabola, ellipse and 

hyperbola can be proved to be the 

only graphs given by second degree 

equations, except when the equation 

F;g U1 is factorable, when we have two 

straight lines. Familiarity with the 
forms of these curves will aid in plotting the graphs of quadratic 
equations. 
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11. Simultaneous Equations.—Let us graph on the 

same axes the circle x2 + y2 = 25 and the lines Sx + 4y 

— 20, Sx + 4y = 25 and 3# + 4y — 30, as shown in 

Fig. 142. The first line cuts the circumference in two 

distinct points, the second seems to be tangent to it and 

the third does not meet it. 

In considering the relative positions of such straight 

lines and curves, we take the literal simultaneous 

equations 
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Fig. 142. 

x2 + y2 = r2 
3x + 4y = k 

From the second 

equation 

y 
Jc — Sx . —• 

4 

Hence the first 

equation becomes 

Xs+- J^^[2 = r2 

Simplifying we get 

_ 3/c ± 4 \/2-5r2 — . 

The two values of x are the abscissas or x’s of the 

points of intersection of the circle and the line. As we 

learned in Algebra, Chapter VII, these values are real 

and unequal if the quantity under the radical is positive, 

real and equal if it is zero and imaginary if it is negative. 

In our graph example (Fig. 142) r — 5. Evidently, 

when k = 20 the roots are real and distinct; when k = 

25 the roots are real and coincident; when k — 30 the 

roots are imaginary. The line 3x + \y = 20 cuts the 

circle where x = y- or x = 0 and by substitution the 

y s are and 5. The two points of intersection being 

in this case and (0,5). In the case of 3x + 4y 

= 25, the points come out (3,4) for both values of x 

and as the line touches the circle in two coincident 

points it is called tangent. In the last case, 3x + 4>y 

= 30, the value of x being imaginary shows that the 

line does not cut the circle at all. As k could be 
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negative there will be similar sets of lines on the other 
side of the circle. 

This method illustrates the most common type of 
simultaneous quadratic equations. When we have an 
equation of the second degree and one of the first, 
the equations being independent, we begin by finding 
the value of x or y in the first degree equation, then 
substitute this value in the second degree equation and 
solve the resulting quadratic, giving us the two values 
of one coordinate. The other coordinate can easily be 
found by substituting in the simpler of the two 
equations. 

12. Examples in Simultaneous Equations.—The great 
importance of simultaneous quadratic equations calls 
for one or two examples of their solution. 

{/£ 2 - qj 2 —— /| m 
, u Q appear to be simultaneous 

x r y — A 
quadratics, but they are not independent, as may be seen by 

dividing equals by equals, when we get = 2, whence 

x — y — 2. This latter equation can be taken with either of the 
others. Of course, we take it with the easier one and get the 

system •! * 

every system of quadratics for independence. 

Another type of simultaneous quadratics is j _ 4^+3y2 — \ 

where all the terms but one are in the second degree in the unknown. 

Getting the numbers alike, we have | ^ ^ “ g 

subtracting the upper from the lower, we get 5x2 — 6xy + y2 = 0, 
whence, factoring 

_ qj - 
~ = 2 evidently giving x = 2, y = 0. Always test 

5x — y = 0 or x — y — 0 

Hence we make two systems, taking each of these with the 
simpler of the original equations. 
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{ 
y = 5x 
2a;2 — 3 xy + y2 

2a;2 — 15a;2 + 25a;2 

12a;2 

x 

3 

3 

3 

2 — _L_ 
12 

db 1 
X — —— 

2\/3 
±5 

2V3 
y 

3 y = x 
\ 2a;2 — 3xy + y2 

2a;2 — 3a;2 + 4a;2 

3a;2 

.2 a;^ = 

x 

y 

3 

3 

3 

1 

=L 1 
± 1 

There will always be as many answers as the product of the 

degrees of the two equations, providing the systems are inde¬ 

pendent. 

Only special forms of simultaneous quadratics admit 

of comparatively easy solutions. 

13. Special Devices.—Tho most quadratic simultan¬ 

eous equations may be solved by the two methods in 

the preceding section, there are a few special devices of 

considerable value. 

The system j 2x — 3y -f- 1) (3a; — y — 2) = 0 
x — 2y -j- 8) (5x + 6y + 1) = 0 

offers no difficulty, for evidently either of the first two factors can 

be associated with either of the second two factors, thus making 

four sets of first degree systems, as follows: 

2a; — 3y + 1 = 0 
x — 2y + 8 = 0 or 

| 2a; — 3y + 1 = 0 

or 

i 
3a; - y - 2 = 0 
x — 2y + 8 = 0 

The system 
— + 

X 

1 
y 

or 

= 5 

i 

5x + 6y + 1 = 0 

3a; — 7/ — 2 — 0 
5x + 6y -f* 1 = 0 

1_ 
X2 

J_ 
X 

becomes readily soluble when 

= 13 we put 

= a and — — b. 
y 
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The system ix2Jry2J^xJry ^ can be expressed in better 

form by adding twice the second equation to the first, this giving 

x2 + %xy -f- y2 + x + y — 12. Then let 

x -f y = b, which reduces the equation to 

b2 + b = 12 

Whence b = 3 or — 4, 

Hence x y — 3 or x + ^ = - 4 each of which can be taken 

with xy — 2. 

The system j ^ X ^2 Z ^0 can be solved by noticing 

that x4y4 is the square of x2y2 and that the first equation is in 

the form of a quadratic, which being solved gives x2y2 = 16 or 

— 17. Then xy can be found and hence x and y by substitution 

in x2 + y2 — 10. 

14. Geometry With Algebra.—We will parallel the alge¬ 

braic and graphical solution of a simple pair of simul¬ 

taneous quadratics, 

relating each equa¬ 

tion in turn to its 

graph. Let a sys¬ 

tem be 
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x2 + y2 = 25 
xy — 12 

A simple alge¬ 

braic solution is ob¬ 

tained by adding 

twice the second 

equation to the 

F'g-14S- first, getting 

x2 + 2 xy + y2 — 49 

Whence x + y = ± 7 

Likewise, subtracting twice the second equation 
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from the first and simplifying gives x — y = ±1. 

Plotting these straight lines as in Fig. 143, we see 

that they intersect in the same places that the original 

curves intersect. It will take all four systems possible 

to give the four sets of answers, but no two equations 

that are factors of the same equation should be taken 

together. The four solutions are 

x = 3, — 3, 4, — 4, 

V — 4, — 4, 3, — 3. 

Plotting these lines, we see that the lines x = 3 crosses 

the lines y = 4 at the place where the original curve 

crossed, etc., and it is now evident that these different 

systems of equations are geometrically shown equivalent 

to the original equations. 

A careful study of graphs of simultaneous quadratics 

in conjunction with their algebraic solution is necessary 

to any adequate understanding of the latter and, tho 

long and tedious at times, is well worth many hours of 

careful study by any one who desires a foundation on 

which to build. 

15. Synthetic Division.—The following problem is al¬ 

ready familiar to us and is reproduced here in order 

that the reader may more readily understand what 

follows: 

2#3 — 5x2 + Sx — 4 | x — 3 
£c3 - 6x2 2x2 + x 

x2 + 3z 
x2 — Sx 

6x — 4 
6x - 18 

14 

_ 2 - 5 + 3-4 1X - 3 

6 ^ ^_ 2 ~J“ X 4~ 0 
1 4~ 3 
x-s 

6- i 
0-18 

14 

This problem can be worked in a much shorter way. 

The first term of the divisor might easily be omitted 
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without causing confusion and it is very evident that 

we do not need anything but the first terms of each 

partial remainder. The partial products have their 

first term the same as those of the partial remainders, 

which have been crossed out. It will be noticed that 

it is unnecessary to write the quotient, for the coeffi¬ 

cients of the quotient are the first terms of the successive 

remainders. Also, since subtraction can be performed 

by changing the signs and adding we will change — 3 

into + 3. The work will then be as follows: 

2-5 + 3- 4|+3 

6 
1 

+ 3 

6 
+ 18 

14 

In this we say, in practice, 

3X2 = 6, which added to 

— 5 gives 1; 3 X 1 =3, which 

added to 3 gives 6; 3 X 6 = 

18, which added to — 4 gives 

14. 

Arranging this to take up 

less space we have 

2-5 + 3- 4 |_3 

+ 6 + 3 + 18 

2 + 1 + 6 + | 14 

The answer of 2a;3 — 5x2 + Sx — 4 divided by x — 3 

is 2a;2 + x + 6 with a remainder of 14. From the 

factor theorem, in algebra, if f(x) = 2a;3 — 5x2 + 3a; 

— 4 then /(3) = 14. This method is called synthetic 

division. 

16. Theory of Equations.—The man who said that as 

a boy he daily swam three times across the creek near 

his home was embarrassed when asked how he got 

back after the third crossing. It is just as evident 

that if /(a) and f(b) have opposite signs the function 
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must have been 0, an odd number of times between 
x = a and x = b. We may use this principle to locate 
roots and synthetic division will enable us appreciably 
to shorten our process. 

Let us obtain graphically the roots of f(x) = 2x3 
— 5x2 + Sx — 4 = 0. First we will make a table of 
simultaneous values of x and y, where y = fix). Here 
is the table: 

x 
3 
2 
1 
0 

- 1 
1 

2 

Then we proceed as follows: 

2 — 5 + 3 — 4|1 

2-3 + 0 
2-3+0 -4 

2 - 5 + 3 - 4\2 
4 - 2 + 2~ 

2-1+1 -2 

2 — 5 + 3 — 4 

+ 6 + 3 + 18 

3 

2 + 1+6 + 14 

2 - 5 + 3 - 4 

-2 + 7-10 

14 2-7 + 10 — 

2 - 5 + 3 - 4 

+ 1 — 2 + -j 

i 
_JL 

2-4 + 1 - 3i 

2 - 5 + 3 - 4 2.1 

4.2 - 1.7 + 2.8 

*Notice the change in sign, show¬ 

ing that the root is between 2 and 3. 

The root is 2 and some decimal. 

There are no larger roots than 3. 

The terms being all + they will 

become larger for successive values 

of x and there will, therefore, be no 

further change in sign. 

Now that the signs alternate, 

there will be no smaller negative 

root, for the coefficients merely in¬ 

crease. As there are two successive 

values of y — — 4 in the plot we 

must get y for x = , a value in 

between 0 in 1. 

2 .8 + 1.3 - 1.2 
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2 - 5 + 3 - 4 1 2.2 

4.4 — 1.3 + 3.7 

2 - .6 + 1.7 

2 - 5 + 3 - 4 [j+3 

4.6 - .9 + 4.8 

2 — .4 + 2.1 + .8 

and the curve ap¬ 

pears as in the 

graph, Fig. 144. 

The only real root is between 2 and 3 and 

evidently it is nearer 2 than 3. We will plot 

the part of the curve between x = 2 and x = 3 

on a larger scale and get the next figure of the 

root. This magnifying can be repeated as often as desired. 
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Fig. 145. 

As there is a change in sign in (x) 

the root is between 2.2 and 2.3. If the 

plot is magnified as in accompanying 

graph, Fig. 145 by taking units 10 times 

as large, a very good estimate of the 

next figure can be made by drawing a 

straight line and thus saving much com¬ 

putation. The root is 2.215 to three 

places. 

Sometimes more than one root will appear between 

two successive integers. The plot, Fig. 144, shows this, 

the “kink” in the curve indicating the presence of imagi¬ 

nary roots when the a; axis is not crossed. 

As another example of synthetic division we will write 2x3 — 

5x2 + Sx — 14 in powers of (x — 2). 

2 - 5 + 3 - 4 

+4-2+2 

2 

2-1 + 1 
+ 4 + 6 

+ 2 

2 + 3 + 7 

+ 4' 

2+ LI 

remainder of 7(x — 2)2’s. We can say 

We are dividing by x — 2, which goes 

2x2 — x + 1 times. That is, there are 

2z2 — x + 1 of the (x — 2)’s and a re¬ 

mainder of — 2. Dividing 2x2 — x + 1 

by {x — 2) we get %x + 3, the number of 

(x — 2)2, and the remainder is 7 of the 

(x — 2)’s. Dividing %x + 3 by (x — 2) 

we get 2, the number of the (x — 2)3 and a 
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2x3 — 5x2 + 3a; — 4 = 2(x — 2)3 + 7(a; — 2)2 + 7(x — 2) — 2. 

Expand this as a check. The roots of 2y3 + 7y2 + 7i/ — 2 = 0 

are two less than those of 2x3 — 5x2 + 3a; — 4 = 0. Here y = 

(x — 2). 

17. Relations of Roots and Coefficients.—If an equation 

has three roots a, b and c, then the equation has the 

factors x — a, x — 6, and x — c, each equal to 0. The 

equation is evidently (x — a) (x — b) {x — c) — 0. Then 

{x — a) {x — b) 

= x2 — (a + b)x + ab and multiplying this 
by (x - c)__ 
we have x3 — (a + b) x2 + abx 

— c x2 -b {ac + bc)x = abc 

x3 — {a + b -f- c)x2 + (ab + ac + bc)x — abc — 0 

We notice that as in the quadratics the coefficient of the second 

term is — (the sum of the roots) and the coefficient of the second 

term is + (the sum of the roots) taken two at a time. The 

coefficient of the fourth term has them three at a time. This law 

is generally true and could have been easily proved by means of 

combinations. It will serve as an excellent check. 

A reversal of this process would show us that if an equation has 

one root it must have as many as its degree. The fundamental 

theorem of algebra that every equation of the form f{x) = 0 has 

at least one root is too long and difficult to be given here. 

REVIEW. 

1. What is meant by plotting a graph? 

2. What are some uses of graphs? 

3. How would you recognize a parabola? 

4. When are two equations simultaneous ? When are they 
independent ? 

5. Give one of the special devices for solving simultaneous 
quadratic equations. 



CHAPTER XIV 

DIFFERENTIAL CALCULUS 

1. Fundamental Principles and Formulas.—Suppose we 

had two variables so related that a change in one 

produces a change in the other. It would be very 

desirable to know the relationship between these 

changes. For instance, does a rise in the selling price 

produce more income? To examine such a problem in 

all its bearings necessitates our establishing the re¬ 

lationship between the change of the function and the 

change of the independent variable, so that we know 

how they compare, as we take infinitesimally small 

changes in the two variables. The limit of this ratio 

is called the derivative. A speedometer on an auto¬ 

mobile indicates derivatives. This expression also 

means the rate of change of the two variables at any 

instant, such as is illustrated by the fact that tho a 

suburban train never travels 40 miles in any one hour, 

it may often develop a speed of more than 40 miles an 

hour. 

We will consider the function y = x2, already familiar 

to us, and assume an initial value of x, say 4. The 

initial value of y is evidently 16. If the increment of 

x (indicated by the symbol A, meaning increment or 

change, and written Ax), be 1 then the new value of 

a; is 5. Hence the new value of y (since y is x2) is 25 

and as the initial value of y was 16, the increment of 

y, (Ay) is 9 and = -f- =9. 

2. Ratio of Increments.—The following table should be 

computed, then studied and thought over repeatedly. 

(238) 
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It is of great importance, for it shows the behavior of 

the ratio of the increment of y to the increment of x 
as the increment of x diminishes. 

Table of Ratio of Increments. 

Initial 
value of 

X 

New 
value of x 

Increment 
Ax 

Initial 
value of 

y 

New 
value of y 

Increment 
Ay 

Ay 

Ax 

4 5.0 1.0 16 25. 9. 9. 
4 4.8 0.8 16 23.04 7.04 8.8 
4 4.6 0.6 16 21.16 5.16 8.6 
4 4.4 0.4 16 19.36 3.36 8.4 
4 4.2 0.2 16 17.64 1.64 8.2 
4 4.1 0.1 16 16.81 0.81 8.1 
4 4.01 0.01 16 16.0801 0.0801 8.01 

Note || seems to approach 8 as a limit. 

The limit — could have been obtained more 
Ax 

generally as follows: Since y = x2, if x has any initial 

value, Xu we will obtain 

2/i = xx2 

Now let x take on a change Ax, when the new x will be 

Xi + Ax, and since this will probably make a change 

in y we have a new y equal to (yi + Ay), where Ay can 

be obtained from the equation 

2/i + Ay = (xi + Ax)2 

Expanding yi + Ay — x\2 + %X\Ax + (A:r)2 

but yi — Xi2 

hence Ay = + (A.t)2 

whence ^ = %X\ + Ax 

Since these two quantities are always equal they 

have the same limit and 
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Lim I" A# 1 — 

A x — 0 LAx J 

Expressed briefly this is ~ = 2x. 

The reader should commit to memory the fact that ^ is only 

an abbreviation for the expression written above it. It is not a 

fraction, but the limit of a ratio. We should always think and say 

the full expression and, further, should remember that the #1 is 

important as it is always the derivative at a point. 

If the initial value of x be 4, as in the table, the value of 
_ A-II 

is 8. This seems to be the value that — is approaching in the 
Cl 7/ 

table. Had the initial value of x been 5, would be 10. 

All derivatives could be worked out by the following four-step 

rule: First, replace Xi by x\ + Ax giving a new value of y, 

(;yi -f- Ay); second, subtract the initial value from the new value 

to find Ay; third, divide Ay by Ax and obtain an expression for 

and fourth, find the limit of this ratio when A# varies and 

approaches the limit 0. This limit is the derivative when x — x± 

any particular value of x. 

3. Fundamental Formulas.—The following is a set of 

formulas derived in turn by this four-step method and 

used instead of it for computing derivatives. Here 

c, n, a and e represent constants, e being the base of 

the natural system of logarithms; x is the independent 

variable and u, v, w are functions of x. 

(1) ^ = 0 Thus, (116c) = 0, since there is no 

change in a constant. 

(2) £ 

<8> £«-«£ + •£ (30 = 

(4) rr ~ ~ VT~ ~ (40 4- f-) - ■=? P N ' ax v ax ax s ax \vJ v2 ax 

v2 
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(5) 
dy 

dx 

_ 

du • rx («0 
dy 

dx 

II 

dy 

du 

(6) 
d 

dx 
Un — nun~l 

dx (60 ■4- Vu ■■ 
dx 

1 3
 

^
 

>
 

<3* 

II 

(7) 
d 

dx 
sin u du 

= COS U ~r~ 
dx 

(2) The derivative of a sum is the sum of the derivatives. 

(3) The derivative of a variable product of two variables is 

the first times the derivative of the second times, etc. 

(4) The derivative of a fraction is the denominator into the 

derivative of the numerator minus the numerator into the deriv¬ 

ative of the denominator, over the denominator squared. 

(6) The derivative of the square root is the derivative of the 

thing over twice the square root of the thing. 

(8) cos u = — sin u ~ 

(9) — tan u = sec2 u ~ 

(10) ~ arcsin u = 

y/l—U2 

(11) arctan u — ~ 

1 + u2 

(12) i (loga“) = logo* g (12') TX *** = | 
u u 

(13) A («-) = a“logea f (13') ± £ 

(14) A („.) = vu*-' £ + logeM. uv £ 

Notice that in all these derivatives we always end by taking 

the derivative of the variable in respect to the independent variable. 
du 

Beginners often forget the at the end. 
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4. Examples in Fundamental Formulas.—The following 

examples show the method of applying the formulas 

given in the foregoing section: 

(1) If 5u4 + u3 = 6?/, then, taking derivatives, this is first a 

sum and formula (2) should be applied. If we are taking deriva¬ 

tives with respect to x, we will get (5u4) + (us) = ~ (6?/). 
dx 

Next, formula (3) applies and 5 (w4) -}- -~h (us) — 6 

dx 

d 

after which formula (6) applies and 20w3 
dx 

dx v dx 

+ 3«2 4^ = 6 dx dx* 

(2) If y — \/3x2 — 4x, formula (6') applies and since ^ (3a:2 — 4x) 

a A i dy 6x — 4 3x — 2 . 
— ox — 4, we have -V = —-- = —- 

%y/3x2 — 4x V3a;2 — 4x 

(3)%=^then^ 
(3x - 7) 4~ (5x + 2) ~ (5z 4-2) 4~ (3*-7) 

ax ax 

3x — 7 

by formula (4), hence 

(3x - 7)2 

dy __ (3x -7) 5 - (5x + 2) 3 

dx (3x — 7)2 

dx 

41 
(3x - 7)2 

These problems end with which is evidently 1. 

(4) Derivative of sin (3a:2 — 7) — cos (3a;2 — 7) ~ (3x2 — 7) 

= ■— 6a: cos (3a:2 — 7). Derivative of sin3 (3a:2 — 7) =3 sin2 

(3a:2 — 7) cos (3a:2 — 7) 6a:, since the derivative of sin3 u = 3 sin2 u 

(sin u) — 3 sin2 u cos u ~ • Henee the derivative of sin3 

(3a;2 — 7) = 18a: sin2 (3x2 — 7) cos (3a;2 — 7). 

6x_ 

VI - (3x2 - 7)2 

6x 
3x2 - 7* 

To differentiate a logarithm of an expression we put the expression 

in the denominator, and its derivative in the numerator. This 

type of differentiation abbreviates many otherwise long problems. 

For instance 

(5) if y — e) 3~ we can say from properties of 

(3a:2 - 7) 

3x2 - 7) 
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logarithms that log y — ■— log (3# — 7) H—log (2x + 3) 

-- log (2x — 6), hence 

dy 
_ 3 , 2 2 _ 48*2 _ 226x -f 174 

— 2(3x-7) 2(2x + 3) 3(2x-6) 6 (3x - 7) (2x-f 3) (2x - 6) » 

v dy 48x2 _ 226x +174 
whence dx — V 6(3x_7) (2x _j_3) (2x _ 6) 

(3x - 7)» (2x + 3)» (48x2 -226x-f 174)_(48x2 - 226x + 174) 

(2x - 6)* (3x - 7) (2x + 3) (2x - 6) “ 6(3x - 7)» (2x -f 3)* (2x - 6)* 

(8) Ifs=10^2-6 Jfe « 107x2-6 logl0. (7x2 - 6) = 

14# . 107za“6 logio* 10* Usually these problems are easier after 

taking logarithms of both sides. 

(7) This problem can be solved in similar way to the following 

more difficult problems y = (x + S)*-2 
dy 

Here log y = (x — 9) log (x + 3) and dx = + log (x+3) 
y 

Hence d£ = +3^x~2 [ + log ^ + 3^] 
5. Derivation of Formulas.—The reader should estab¬ 

lish a foundation for himself by repeatedly working 

out in full the derivation of these fourteen formulas. 

We will here derive three of them, each presenting 

some new combination of former ideas. 

w £<*>«>=o [sin (ui+::)-sin-,,ii 

lim [sin Mi cos Am + cos mi sin Am - - sin Mi o
 II 3
 

<1 A M 

lim [cos ui sin Au — sin u\ /I — cos Au\ 1 

Am=0 I Am V Am / J 

= cos Ml Since [J,u"0 = 1 and cos Am- 1 

Therefore (sin u) — cos u by formula (5). 

(10) If y — arc sin u 

sin y = u 
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Taking derivatives cos y ~ 

, du 
dy -j- 

— dx 
dx -- 

du 

dx (see Fig. 146). 

U* 

Ay 

A u 

UL cos y y/\ 

(12) y = loga U 

Ay = loga (w + Aw) — loga W = 

'<*• (^) - W. (i + ¥) 

(Note that when we subtract logarithms we divide numbers.) 
i « 

_ t i /1+Am\aw 1 ! (\ +Am\ 1 (\ +Am\ Aw 1 1_/’l +AuY 
= Ai los- = '°g“ (nr-J “ v log“ V-T-; 

Note that h log x = log xk. The complicated expression 
W 1 

W^en we Pu^ 71 f°r ~^T’ h60011168 (1 -\- ri)n and there¬ 

fore the limit of either is our old friend e. Hence ^ (log0w) = 

*T ^ga 

6. Other Forms of Notation.—If y = F(x)> ~ [F(:r)] is 

written Fl (x) = ~ = Dxy. 

In obtaining a geometrical significance of the 

derivative as the slope of the tangent we proceed as 
follows, referring to Fig. 

147. After reading the 

first line we read vertic¬ 

ally and then read the 

last line, which consists 

of limits of the expres¬ 

sions in the upper line. 

= slope of secant 
/AX 

• II -II 

^ = slope of tangent 

Note: The symbol = (or • IJ ) means “approaches as a 

limit/’ 

Fig. 147. 
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In Section 2 of this chapter we had Ay = 2xiAx 
+ (Ax)2, where Ax is the principal infinitesimal and 

(Ax)2 is infinitesimal in respect to Ax or, as we say, of a 
higher order. Letting (Ax)2 approach 0 as a limit, we 

have dy = 2xidx. Note that here dx has a value. 

With this understanding dy is the principal part of y 
and is called the differential of y. The diagram. Fig. 

147, also shows that the differential is what the incre¬ 

ment would be if the slope of the curve became uniform. 

We can write dy = F1 (x) dx. Thus the differential of 

any function is equal to its derivative multiplied by the 
differential of the independent variable. This distinction 

between the differentials and derivatives is funda¬ 
mental and the reader should put the fourteen formulas 

into the differential form so that he may have them for 

comparison with the formulas of integral calculus. 

There is another approach to the calculus called 

rates, where the derivative is taken in respect to the 

time, t. If velocity, v = S2t, acceleration, which is 

defined as rate of change of velocity per second per sec¬ 
ond, is obtained by taking the derivative of the velocity 

in respect to the time, thus ~ = 32. 

7. Successive Differentiation.—The expression ^ 

is written and is read “the second derivative of y 

in respect to x.” 

= *5’ t = 5*4’ % =20*3’ fiS = 60*2- 

T n . dy d2y . d3y d*y 
If V = sin x, = cos x, ^ = - sin x, ^ = - cosx, ^ = sinx. 

If y = ex, 4^ = ex, 4-f = jp = ex. Note the periodicity of the 

last two examples. 

If /(x) -represents the length of an ordinate of any 
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point on a curve, where the abscissa is x, fix) repre¬ 

sents the slope of the tangent. Where f(x) = 0 the 

curve is parallel to the x axis. Where fix) = ± the 

ordinates are growing either larger or smaller as the 

case may be, that is, the function is increasing or de¬ 

creasing. Evidently f'ix) represents the change of 

the slope of the tangent, that is, the curvature with 

respect to the x axis. 

8. Maxima and Minima.—A continuous curve is hori¬ 

zontal at three different kinds of points. In Fig. 148, 

A is a maximum, C a minimum, and B and D points of 

inflection. A motor traveling along a road would find 

a maximum at every hill crest, a minimum at every 

valley and possibly many points of inflection on the 

slopes. At A the ordinates have just stopped in¬ 

creasing and will immediately start to decrease, that is, 

~ + before, 0 at, and — after A, while at C the 
ax 

reverse is true. At B and D, 

has the same sign both be¬ 

fore and after. (Note: Maxi¬ 

mum only means greatest in 

its immediate “ neighbor¬ 

hood.5’) 

We could settle these questions from the second 

derivative and tell whether we had a maximum or 

minimum, providing the second derivative were not 

also 0. For near a maximum point is plus, then 0, 

then minus, hence it decreases and therefore ^ is — at 
axz 

maximum points and + at minimum points. If is 
dX 

0, we get and if this is + we have a point of inflec- 
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tion like that at D, if — a point of inflection like that 

at B. If 0 = 0, the theory continues for the next 

derivative as it did for ~2, etc. When successive de¬ 

rivatives are 0, the first one not 0, if even, gives a 

minimum when +, a maximum when —; if odd, a 

point of inflection like D when +, like B when —. 

9. Method of Working Problems.—As an example of 

working a problem in maxima we will take the historical 

problem “How must a straight line be divided so that 

the product of its parts is a maximum?” 

(1) Suppose 12 be the length of the line, x one part, and 12 — x 

the other. The expression to be examined f(x) = x(12 — x) — 
12z — x2 

f'(x) = 12 - 2x 

/"(*) = ~ 

Put 12 — 2z = 0, x — 6, a critical value; f"(6) — — (in fact in 

this problem any f'(x) — — ). Therefore 6 gives a maximum, 

which in this case is 6(12 — 6) = 36. No other partition of 12 

will give so large a product. We could have said that as there 

must be a maximum and as there is only one critical value 6, then 

the 6 must give the maximum. 

(2) What are the most economical dimensions for a quart 

tomato can? This means a minimum amount of tin, therefore a 

minimum amount of surface. 

Let S = %irr2 -f- 2-rrrh, where r — radius of base and h height* 

There are two variables, r and h, but as we only know how to use 

one wre must necessarily eliminate one or the other. As we know 

that the volume, V = tr2h, then h — —«, hence S = r2 + — . 

And as we wish to find the first derivative and put it equal to 0, 

the constant factor 2 will divide out. So we will drop this con¬ 

stant, as all constant factors are dropped in the beginning, and 
say 
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/ 0) = tt r2 + -y- 

f'(r) = ~ 

Putting/'(r) = 0 and restoring the value of V = tr2h we have 

27rr — irh — 0 whence 

h = 2r. 

Hence it will take less material to make a can whose height equals 

the diameter of its base than one of any other cylindrical shape. 

We do not have to examine the second derivative as we know 

there is a maximum as there is only one critical value possible. 

(3) Here is another example. It is required to measure a 

certain unknown magnitude x with precision. Suppose that n 

equally careful observations of the magnitude are made, giving 

the result ai, a<L, «3.an. The errors of these observations 

are evidently x — x — a*}, x — a%,.x — an, some of 

which are positive and some negative. It has been agreed that 

the most probable value of x is such that it renders the sum 

of the square of the errors, namely (x — a{)2 + (x — o^)2 + 

(x — a3)2 -f-.+ (x — an)2, a minimum. Let us take 

the first derivative of this expression and put it equal to 0, then 

(x — a\) + (x — CI2) + (x — *13) +.+ (* — fln) = 0. 
Simplifying we get nx = + 0,2 + +.+ an. It 
will be found interesting to compare this with measurement in 

Section 10 of Chapter 1. 

We can readily sketch Fig. 144 in Algebraic Geometry by 

means of the calculus, as shown here: 

f(x) = 2x3 — 5x2 + — 4 

f'(x) = 6x2 - 10* + 3 

f"(x) = 12x - 10 

".392 = — ,/"l .274 = + 

Hence at x = .392 there is a maximum and at x = 1.274 a 

minimum, as in the figure. 

10. Taylor’s Theorem.—We have seen that numbers 

were written in powers of 10, and we have developed 

Solving 6x2 — 10x + 3 = 0, criti¬ 
cal values are .392 and 1.274. 
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many algebraic expressions in powers of x, but many 

trigonometric functions appear in different form. Cal¬ 

culus supplies a simple and general method, known 

as Taylor’s theorem (see (1) below), for developing 

functions in power series. Let be any function of 

x developable in the form. (j>{x) = A + B(x — a) + 
C(x — a)2 + D(x — a)3+..., where a, A, B, C, etc., are 

constants and the series is convergent. By successive 

differentiation </>'(#) = B + 2C(x — a) + 3D{x — a)2+ 
= 2(7 + 2 X 3D(x — a) +.etc. 

Now since these equations and the original from 
which they were derived are true for all values of x, 
they are true when x = a. They then become 

0(a) = A 

0'(a) = 1B 

0"(a) = 1.2(7 

0"'(a) = 1.2.3D 

= 0(a) 

5 = 0'(a) 

r _ *"(a) 
°-w~ 

B = 
3! 

Whence <f>(x) = 0(a) + 4>\a)(x — a) + 0"(a) ^p-2 

+ *'"(a) ^ +.(1). 
If a = 0 Taylor’s theorem becomes Maclaurin s 

theorem, as follows: 

(2) *(*) = *(0) + (0)* + + etc. 

When x in Taylor’s theorem is replaced by (a + x) 

we have 

(3) 0(a + #) = 0(a) + (f)f{a)x + ^ ^p- + -.^p - + etc. 

Let us develop sin x, assuming it developable, using Mac- 

laurin’s theorem. 
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<j>(x) — sin x 

<f>'(x) = cos x 

<f>"(x) — — sin x 

<f)'"(x) — — cos x 

(f)(0) = 0, since sin 0° == 0 

<f)'(0) = 1, since cos 0° = 1 

<2>"(0) = 0 

</>'"(0) sb — 1 Hence 

sin x = 0 + (1)# + 
(0) xl 

*T 4- 
(-U*3 

3! + 

sin x = x Iff + 5! - — 4- 7! ^ 
Similarly 

cos x = 1 — X | x _ I 
2! ‘ 4! 6! ~ 

(2) Let us expand sin (a + x), using form (3) 

(f>(a 4~ x) = sin (a -f a;) 

$'(a 4* x) = cos (a + x) 

<£"(a + x) = — sin (a + x) 

<f>'"(a + x) — — cos (a 4- a) 

<f>(a) = sin a 

<£'(a) = cos a 

<f>"(a) = — sin a 

<t>'"(a) = — cos a 

. / , \ • t , sin ax2 cos ax3 . 
sm (a 4- #) — sin a 4- cos ax 4-^-—31— 4- 

sin ax4 . cos ax5 

4! 1 5! 

(Factoring) sin (a 4- x) = sin (a) [^1 — ~ 4~ . 

+ cos a [x - f| + £ - +.] 

Whence sin (a 4~ x) = sin a cos x 4~ cos a sin x which agrees with 

trigonometry and gives us increased confidence in these new 

forms for sine and cosine. 

Let us expand ex, using Maclaurin’s series. 

<f>(x) = ex and by successive differentiation (Section 7 of this 

chapter) the successive derivatives are all ex. 

(f)(0) — e° = 1, therefore all of the <f>(0)’s in Maclaurin’s series = 1. 

Hence ez — 1 + x + — + — + — +.(when x = 1 this is e). 

(The binomial theorem is easily seen to be a special case of 

this great theorem.) 
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11. The Value of 7r.—The following is the develop¬ 

ment of arctan x by Maclaurin’s formula: 

4>{x) = arctan x </>(0) = 0 

*'(*) = tf-'(O) = 1 

The expression offers difficulties in differentia¬ 

tion. By division, when x is less than 1, = 

1 — x2 + x4 — a;6 +.Hence 

<t>"(x) = — 2x + 4a;3 — 5x5 + . . . . </>"(0) = 0 

4>'"(x) = — 2 + 3.4a;2 — 5.6a;4 + . 

<f>'v(x) = 2.3.4a; — 4.5.6x3 + ... 

<f>v(x) = 2.3.4 — 3.4.5.6a;2 + . . 

</>"'(0) = - 2 

4>'v(0) = 0 

4>v( 0) = 4! 

4>vi(x) = - 2.3.4.5.6a; + . . . 4>vi{0) = 0 

4>vii(x) = - 2.3.4.5.6 +_ 4>vii{0) = - 6! 

Hence arctan (x) = 0 + x + 0 + -~^3- + 0 + 4!*- -|- 
o • 0 • 

, X5 X7 1 
H-«-5- "T 0 4- 6-a:7 J- — a; — — 

‘ 7! ' • * * x S 1 5 7 

Our expression for arctan x now becomes: 

TT 
1) \/3 3(V3): 

+ 
5(V3)* 

In computing the value of 7r we will carry out our results to 

seven places of decimals and reject the last two places in the results 

as undependable. Note the arrangement of the calculation; how 

each term is obtained from the previous one, the positive and 

negative terms placed in different columns, added separately, 

combined and then multiplied by 2\/3. 
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3) 1.0000000 - - 1 = 

3) .3333333 - - 3 = 

3) .1111111- - 5 = 

3) .0370370 - - 7 = 

3) .0123457 - - 9 = 

3) .0041152 - - 11 = 

3) .0013717 - - 13 = 

3 ) . 0004572 - - 15 = 

3) .0001524 - - 17 = 

3) .0000508 - - 19 = 

3) .0000169 - 21 = 

3) .0000056 - - 23 = 

3 ) . 0000019 - - 25 = 

2\/3 = 

Positive Negative 

1.0000000 

.1111111 

.0222222 

.0052910 

.0013717 

.0003741 

.0001055 

.0000305 

.0000090 

.0000027 

.0000008 

.0000002 

.0000001 

1.0237093 
.1168096 

. mmi 

2.7206991 

.1168096 

3627599 
544139 

36276 
907 

18 

3.1415920 

12. Computation of Logarithms.—Taylor’s series is 
very useful in the computation of logarithms, therefore 

let us obtain log (1 + x) by its means. (It is impossible 

to obtain log x in powers of x9 for using Maclaurin’s 

series, the only one applicable, (j>'{x) would equal — 
•C 

and <£'(0) would be infinite). 

<t>( 1) = log (1) = 0 

<*>'(!) = 1 

1-fx 

4>(1 + x) = log (1 + x) 

<t>'( 1 + x) = 1 ~\~X 

= 1 — x + x1 — xz... .when x is less than 1. 
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Hence 

<£"( 1 + x) = — 1 + 2x — Sx2 + ... 

4>f"( 1 “f- x) =2 — 2(3a?) -J- ... 

4>,v(l -f- x) — — £.3-1- ... 

*"(1) = - 1 

4>'"(1) = 2 

<*>'”(!) = - 3! 

Hence log (1 + x) = * - £ + f ~ ? + T ~ 

Putting — # for a;, we get 

log (1 — x) = - 
3*2 t»3 

x — — — ~ 
2 3 

x4 
4~ 

a;5 

V • • • • • 

(In subtracting logarithms we divide numbers) 

Subtracting, log = 2 |jc + -y- + +-] 

and is convergent when x is less than 1. 

As the series converges very slowly and is otherwise 

inapplicable for computation, we will let • 

Solving for x we get x = Evidently when M 

and N are positive, x is less than 1. Our series now 

becomes log = log M - log iV = 2 [|^ + -±- 

(KO* + X(S)5 + •••] which is a series con- 
vergent for all positive values for M and N and one in 

which it is always possible to choose M and N so as to 

make it converge rapidly. 

Put M = 2; N = 1 (Note: log 1 = 0, = -1). 

We get log 2 = 2 (- g gS + 5 g5 + 7 g7 +.] 

The computation is as follows: 
Putting M — 3; N = 2; the 

computation follows: ^ ^ 
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3)2.0000000 
9) .6666667 -I- 1 = .6666667 

9) ,0740741 4- 3 = .0246914 

9) ,0082305 4- 5 = .0016461 

9) .0009145 4- 7 = .0001306 

9) ,0001016 4- 9 = .0000113 

9) ,0000113 4- 11 = .0000010 

.0000013 4- 13 = .0000001 
.6931472 

loge,* 2 = .69315 _2 

2 log 2 = log 4 = 1.3862944 

5)2.0000000 

5) .4000000 4- 1 = .4000000 

5) .0800000 

5) .0160000 4- 3 = .0053333 

5) .0032000 

5) .0006400 4- 5 = .0001280 

5) .0001280 

5) .0000256 4- 7 = .0000036 

5) .0000051 

.0000010 9 = .0000001 

log 2 — .6931472 

log 3 1.0986122 

13. Logarithms of Other Numbers.—It is only neces¬ 

sary to compute logarithms of prime numbers. 

log 5 = log 4 + 2 £-1- + -i-p + j-p +-J = 1.60944 

log 7 = log 6+ 2 =1.94591 

log 10 = log 2 + log 5 = 2.30259 

All of the above are natural logarithms to base e — 2.7182818. 

The logarithms in our tables are to base 10. To get them, let 

n = log10 N or 10" = N and take logarithms to base e. We get 

n loge 10 = loge N, whence 

n = Tog75> whence log10.V = = .43429 log. N. 

Hence .43429 X .69315 = .3010 = logio 2. 

REVIEW. 

1. What is a derivative? Define the derivative of a fraction. 

2. Distinguish between derivatives and differentials. 

3. Describe briefly the meaning of maxima and minima. 

4. How are functions developed in power series ? 

5. Illustrate the use of Taylor’s series in computing logarithms. 



CHAPTER XV 

INTEGRAL CALCULUS 

1. Anti-Differentiation.—We have become familiar 
with the mutually inverse operations of addition and 
subtraction, multiplication and division, involution 
and evolution. Integration and differentiation are 
again inverses. It took the world at least 1800 years 
to produce a Newton able to say that anti-differen¬ 
tiation was the same as integration invented by 
Archimedes. 

We started out the Differential Calculus with 
fix) — x2 and obtained f(x) dx = 2x dx. We will now 
say inversely 

f%x dx =3 x2, in which the integral sign S is an old- 
fashioned “S” from “sum”. 

If f(x) = x2 + (7, then f(x) = %x dx and f%x dx = 
x2 + C. The differential is perfectly definite but the 
same integral may express any number of values 
differing by a constant. Our data are satisfied by any 
one of the parabolas represented by y — x2 + C, but to 
distinguish which one we must have some additional 
information as, for instance, a point, say (1,2) on the 
parabola. Substituting we get 2 = 1 + C9 hence C = 
1 and our parabola is y = x2 + 1. This is as in Fig. 
135 moved up one unit. 

2. The Formula for Falling Bodies.—It is a matter of 
physics that the acceleration of gravity is a constant, 
generally called g and equal to approximately 32 feet 
per second. This means that the change of the velocity 

(255) 
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in respect to the time t equals g, that is, = g. In 

differential notation this is dv = g dt. Hence fdv = 
fg dt — gfdt (g being a constant). As the integral 
and differential signs are inverse they cancel each other 
and we get v — gt + C, 

If t = 0, when v = 0, C is 0 also, that is v = gt. 
But v is the change of the distances in respect to 
the time; hence ~ = gt in differential form ds — gt dt 

and integrating f ds = gft dt. Hence s = ~ + C. 
At 

If t = 0, when s = 0, C is 0 also and s = gt2, the 

formula in physics where a body starts from rest. 
Notice that t dt was not a perfect differential and 

that %t dt is the differential of t2. 
For the first time in mathematics the summation 

form is the indirect and not the direct operation. It 
is always necessary to ask, as Archimedes should have 
done, what was differentiated in order that we may 
integrate. We should write ft dt = f%t dt = A-t2 

+ C. This thought is extremely fundamental. 
The only way we arrive at the primitive of a given 

function is thru our previous knowledge of what 
function differentiated will yield the given function. 
Formula (6) of Differential Calculus written in a 
differential form is 

d(un) = nun~xdu. 

We lowered the exponent by 1 and multiplied by the 
old exponent. In integral calculus we do the reverse 
of this: f xndx — -j- C and we might say that xn 

must have been found by some one in differentiating 

xn+1. Now d{xn+l) = {n + l)xn; hence as n + 1 is a 
constant and will go as readily inside as out of the inte- 
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gral sign, as it did on either side of the differential sign, 

we write 

J'xndx = —~ fin + l)xndx. 
n+ 1 

We know by our operation of differentiating xn+1 

that the expression under the integral sign is that 
differential. Its integral must be what we differ¬ 
entiated, hence f xndx — + C, 

n -+• X 

J*(axz + b)nx2dx = ~ ff{axz + b)n(Sax2dx)f which 

is now of the form fv^du = -“"-d*-1-- -f- C, whence 
3a 3a (n +1) 9 

+ inSax'dx) - + C. 

Let us examine /(l-j-,. 
47 \ 1 ax2 + b / ax2 + o 

In this the differential of the quantity in parenthesis is 

jax2+6)2', which is not the same as the quantity outside 

of the parenthesis. Multiplying out the expression, 

we get f -^rb + f where the last ex- 

pression, except for constant ( — 2a), is the same as 

the differential of We can therefore integrate 

the second part but the first part will give trouble 
unless we notice that the differential of the denominator 
is %axdx. If I represents the original integral we now 

i-hsss-k - i'°s <«■+« 
- lb feV») + 0 - k ['°S + w - sVi.+c-] 

The reader must be always on the watch for the 
numerator as the differential of the denominator, which is 
the reverse of (12') or (12). We could not integrate as 
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a power J" ~ = J'u^du = for division by 0 has 

no meaning. The —1 power is the dangerous one 
and we should be always on our guard and remember 

that j* ~ = log u + C = log u + log K = log Ku. 

3. An Example in Interest.—If P dollars be drawing 
compound interest at r per cent; in any time, At, the 

interest is PAt, which equals the change in P. If 

the interest is added on continuously we have 

dP — -j^-P dt, that is, the derivative is proportional 

to the sum itself and we would expect an exponential 

form. Separating variables we get == whence 

log P = + C. Now if P = 1 when T = 0, that is, 

if we start out with one dollar at the beginning, C will 
rt 

equal 0 and log P = whence P = e100 • If 

the initial sum had been a we would have had log a = C, 

whence log P - log a = hence log (~) = , 

hence — = e100 and P = aewo. 
a 

We might ask ourselves how long will it take a sum 
of money to double itself at 4% compound interest in 
an insurance company or any other business investing 
its money continuously. Here P = 2, a = 1 and 

r = 4 and = loge% = .69315, whence 41 — 69.315 

and t = 17.429 years. If r = 6 we have 6t = 69.315 
and t = 11.553 years, as in a building and loan associ¬ 
ation. 

4. Area Under a Curve.—Suppose we have a plot of 
y = 3#2 + 5, where we know some initial area z = 
OB AC, Fig. 149. If we give x an increment Ax — AE 
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and consider the increment 

Az = AEDB of the area z, 
equal to a rectangle AELM 
greater than the rectangle 

AEKB and less than the rec¬ 

tangle AEDH whose altitude 

AL is equal to the y of some 

point of the curve between 

B and D. Evidently as Ax 
approaches 0 this y differs 

from either AB or ED by less 

than they differ from each 

other. It can, therefore, in 

general be stated that the in¬ 

crement of the area AEDB is 

equal to the rectangle AELM 

by means of the symbolism 

dz — y dx 

where y is the ordinate of the 

curve and dx is a small Ax. Hence z = fy dx. 
In our case z = J'iSx2 + 5)dx, whence z = xz + 5x + C. 

It now remains to find the value of the constant C. 
If we wish to determine the area from the y axis, where 

x = 0, z = 0 and hence (7 = 0. When x — 3, z — 42, 

hence the area between the curve, the axes of coordi¬ 

nates and an ordinate at a; = 3, is 42. This is symboli¬ 

cally written as follows: 

J" “ (3a;2 + 5)dx = [a:3 + 5a;] “ = 42. We might as 

readily have found 

(Sx2 + 5)dx = £x3 + = 150 — 42 — 108. 
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5. Area of Circle.—Let us find area 

of circle x2 + y2 — a2, Fig. 150. 

1 = f°0ydx= Si v«2 - dx- 
We will use formula (14) page 263. 

If we substitute the limits a and 0 
Fig. 150. in this expression, JVa2 x2 will 

equal 0 in both cases. The radical will vanish when 
x = a and will vanish when x = 0. The only part 

that concerns us in this particular problem is-^-arcsin-^-* 

The remaining part vanishes for x = 0 but becomes 

arcsin 1 for x = a, which reduces to 

The area of the circle, Fig. 151, could be obtained by 

means of polar instead of rectangular 

coordinates. In trigonometry the area 

of a triangle is -L ab sin c and we 

learned in the same branch of mathe¬ 

matics that 
sin0 

Q 

9 

= 1. The elemental 
triangle whose included angle is Ad in 
the figure becomes in the limit -^-r2dQ. 
Summing up such triangles, the area = 

Fig. 151. 

G)-P d6 — irr2. Here r is a constant. 

6. Area Between Curves.—If the area between two 
curves is wanted, we have to find by simultaneous 
equations where the curves intersect. Find the area 

between the two parabolas, 

y2 — 4 -f- x and y2 = 4 — x, 
Fig. 152. Solving these equa¬ 

tions simultaneously, since y2 
is in each, 4 + x = 4 — x and 

x = 0, whence y = ± 2. 
Fig. 152. 
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Taking advantage of the fact of symmetry we find only 

the upper righthand quarter, which is obtained from 

the equation y2 = 4 — x. We therefore say 

jy dx = j** (4 — x)* dx = — £-|- (4 — a;)^]* = 

We could also have said 

16 

3 

fl xdy=fl(4 ~y2)dy = [iy ~ f]l = 
16_ 
3 

7. Length of Curve.—We learn in trigonometry that 

the projection of a line Z is Z cos 6 where 6 is the angle 

which the line makes with the x axis. If a is the 

projection, evidently l = a sec 6. In geometry is 

the slope of the curve and since sec d = Vl + tan2 6, then 

sec 6 = Vl + and if cfc is the projection of an 

element of the curve ds, then ds = Vl + 

This is evidently identical with V1+0^2 dy. 

Find the length of the circle #2 + y2 
= r2, Fig. 153. 

Differentiating = — 

ml 

Hi! 

4 kk 
lii 

m 

X 

y 

Fig. 153. 

whence since ds = \/1 + JT 

arc = J' [l 

(Substituting y2 = r2 — a:2 from the equation of the 

circle in order to get everything in terms of x.) 

Therefore arc AB = rj* o 

Hence the total length equals Qirr. Ans. 

dx r 
[rare sin X 

r r= 
J 0 

8. Volumes of Solids of Revolution.—The sphere can be 

obtained by revolving a circle about its diameter, as 
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can be readily seen by turning an egg beater fast. 

The sphere could be made up of a number of thin 

circular plates whose sizes vary from the original 

circle to a point. Each one of these plates is equivalent 

to a little cylinder, having a radius y and a thickness 

dx, where x is the axis of revolution. Each cylinder 

will have the volume iry2 dx and the volume of 

the sphere will be 2tt j*a y2dx. The 2 comes from 

the fact that the center is at the origin. The equa¬ 

tion of the circle is x2 + y2 = a2, whence volume = 

2wJ~a (a2 — x2)dx, since y2 = a2 — x2. Integrating, we 

get 2tt [a2x --f\l = 2* (-f 

9. Areas of Surfaces of Revolution.—If the sphere in 

the preceding example were to be cut into thin slices, 

each slice would be a little frustum of a cone. The 

small element of surface has for its slant height ds, 

for the original problem under volumes would have 

shown steps like the pyramids of Egypt. These steps 

would have been dy in width and dx in height, and the 

length from one projection to the next would be ds = 

Vi + m dx. And since the curved surface of a 

frustum of a cone = 2tal, where l is the slant height, 

the area of this surface will be 4x J*a y )2 ] * dx 

= (as shown above) 4ttcl dx = 47ra2. 

Notice that the y s cancel and the numerator reduces 

to the radius. 

10. Formulas of Integration.—The formulas of inte¬ 

gration most frequently used are summarized herewith: 
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(1) fa dx = ax + C 

(^) J"xndx = n + C (when n is not = 

(3) /iSr - Vi + c 
(4) fx~xdx = f ~ = log # + C 

(5) yvcte = + c 

(6) fexdx — ex + C 

(7) / riSa - t arc tan f + 0 

(8) fJh>-r. *°*S 

(9) J" -2~d*-X2 = arc sin # + C 

(10) /*sin x dx = — cos a: + C 

(11) ./cos a; dx = sin x + C 

(12) f sec2# d# = tan x + C 

(13) y*sec x tan x = sec x 

(14) y'Va2 — x2 dx — ~ arc s*n ~V + “f"V/a2 

(15) f V'A^ = Io8 (* + Vx2 ± a2) + C 

~ 1), 

Xi 

(Consult a table of integrals for any integral not 

mentioned here. Works on integral calculus are neces¬ 

sarily lengthy on account of the treatment of special 

integrals). 

REVIEW. 

1. How is integration related to differentiation? 

2. Show how interest problems may be solved by integration. 
A C ® 

3. Find the area of the circle in Section 5 from — = I xdy. 

4. Find the area of the curve y = x2, Fig. 135, below the line 
y — 10. Count the squares inside the area and test your work. 

5. Find the volume generated by revolving the portion of the 
curve determined in Question 4 about the y axis. 
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EDITOR’S PREFACE 

TO PHYSICS 

The continually widening field of application of 

scientific knowledge in the useful arts has made it neces¬ 

sary for all who desire to understand modern mechanical 

devices to be familiar with the main principles of the 

sciences. The study of Physics includes the great bulk 

of the scientific principles which have been most directly 

applied in the arts. In this Text an attempt has been 

made to present the principles of Physics in a simple and 

orderly fashion so that the reader may get clear and 

accurate ideas concerning mechanics, heat, sound, light 

and electricity which, taken together, constitute a com¬ 

plete presentation of the elements of the subject. The 

order in which these subdivisions are placed is of little 

importance except that mechanics should come first 

since this subject contains the essential principles of 

every branch of Physics. 

Altho Physics is distinctly a mathematical science, yet 

in order to render the Text as interesting as possible the 

mathematical mode of treatment has been avoided wher¬ 

ever this could be done. Nevertheless the reader will 

find it interesting as well as profitable to render himself 

expert in the solution of problems based on the formulae 

developed in the text. It is also very desirable that as 

many as possible of the simple experiments described in 

the Text should be repeated by the reader, since per¬ 

sonal experimentation is a wonderful help toward 

mastering the ideas involved. A single experiment 

thoughtfully performed has often been found more 

valuable in this respect than many pages of explanation. 

(267) 
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It is hoped that a study of these pages will give the 

reader greater ability to interpret the phenomena of 

nature which may come under his observation and to 

understand the operation of the marvelous mechanics 

of modern inventions. 

Charles B. Bazzoni. 

November, 1920. 
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PHYSICS 

INTRODUCTION 

1. The Purpose of Physics.— Physics is concerned very 

largely with the explanation of phenomena familiar to 

us all. We know, for example, that a stone will fall if 

released in mid-air, that a breeze exerts a force on the 

sail of a boat and that a kite will rise in a wind. We 

know that iron objects sink in water and that wooden 

ones float; that electricity produces light, heat and 

power and that sunlight shining thru a cloud will some¬ 

times form a rainbow in the sky. We are all acquainted 

with these and similar phenomena from our ordinary 

experience. It is probable however that our knowledge 

of these matters is superficial in that it is not so accu¬ 

rately formulated as to permit us definitely to calculate 

the magnitude of the effects to be expected from any 

given causes. It is the purpose of physics so to system¬ 

atize and correlate the accumulated facts resulting from 

the observation of natural processes that we may deduce 

therefrom generalizations or laws which, when expressed 

in mathematical form, will serve as the means for calcu¬ 

lating the exact results to be expected from causes of a 

given magnitude. 

Lord Kelvin, one of the most famous physicists of the 

nineteenth century, said: 

When you can measure what you are speaking about and 

express it in numbers, you know something about it, and when 

you cannot measure it, when you cannot express it in numbers, 

your knowledge is of a meagre and unsatisfactory kind; it may 

(277) 
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be the beginning of knowledge, but you have scarcely in your 

thoughts advanced to the stage of a science. 

This mathematical aspect of physics is the one which 

appeals to the engineer and to the scientist. Since most 

of the material advancements and many of the esthetic 

improvements of modern civilized life are developments 

of pure science or of physics applied in engineering, a 

general knowledge of physics is so essential to a proper 

understanding of the world in which we live that each of 

us, whether mathematically inclined or not, can pleasur¬ 

ably and profitably devote a certain time to the mastery 

of the fundamentals of this subject. In our Text the 

principles of physics are presented with a minimum of 

mathematics and in such a way that the reader may get 

not only the fundamental laws of the subject with the 

classified facts on which those laws are based, but also 

some conception of that scientific method of acquiring 

and interpreting facts which has led to so many marvel¬ 

ous discoveries in the past and is certain to lead to still 

more striking developments in the future. 

2. Physics Defined.—Physics is ordinarily defined as 

that branch of science which treats of matter and energy 

—or as that branch of science which deals with the action 

of force on matter. It is necessary, therefore, in the 

first place to get some idea of the exact meaning of these 

terms—matter, force and energy. Matter is defined as 

that which occupies space and has weight—it therefore 

comprises all material objects in the universe in what¬ 

ever state—gaseous, liquid or solid. The quantity of 

matter in a body is called the mass of that body. There 

is a mutual attraction in the nature of a pull or tension 

between all masses. The extent or magnitude of this 
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pull we shall study later. The earth’s pull on any body 

due to mutual attraction is known as the weight of the 

body. The weight of a body is proportional to its mass. 

If one body has twice the mass of another, it will have at 

any one place twice the weight of the other. The quan¬ 

tity of matter in a cubic unit of a body determines the 

density of that body. Thus iron, having greater density 

than cork, it follows that a cubic meter of iron has 

greater weight than a cubic meter of cork. The density 

may consequently be defined as the mass per unit volume 

of the body. 

Matter in all its forms is granular in structure. The 

granules are extremely small, however,—much smaller 

than the smallest particles that can be perceived with 

even the most powerful microscopes. These tiny gran¬ 

ules are called molecules. The molecules are known to 

be about 0.00000003 centimeters in diameter. More¬ 

over, each kind of matter has its own kind of molecule. 

For example, the molecules of salt, sugar, water, paper 

and ink are all different in kind. Molecules can be sub¬ 

divided by certain processes into still smaller particles 

called atoms. There are known to be in the universe 

only a limited number of kinds of atoms—about eighty 

kinds all told. These different kinds of atoms taken 

separately constitute the eighty “ chemical elements ” 

of which gold, tin, lead, sulphur, oxygen, nitrogen and 

hydrogen may serve us as examples. These atoms can¬ 

not be subdivided by any ordinary agencies and were, in 

fact, thought to be indivisible until within a few years. 

It is now, however, fairly well established that atoms 

contain much smaller particles, all of one kind called 

electrons. These electrons are about of the mass of 

an atom. This subject will be discussed at length later. 
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Force shows itself as a compression or tension which 
acting between two bodies tends to change their state of 
motion relative to one another. Whenever a body is 
seen to move, we know that a force is acting on it or has 
been acting on it. It is not possible for a new motion to 
be produced or for an existing motion to be changed in 
any way except thru the action of a force on the moving 
body. If the body acted upon by the force is rigidly 
supported so that it cannot move, it will nevertheless 
tend to move, the tendency being neutralized by a strain 
in the supporting members which is exactly equal to the 
acting force. It is well to keep clearly in mind that 
forces act invariably between two bodies, pushing or 
pulling on the one body equally as on the other. 

Energy is a quality acquired by matter as a result of 
the action of force on it. The acting force as above 
explained moves the body or distorts it and so puts it 
into a position or condition to exert force and to do 
work itself. For example, if a force acts on a body and 
lifts it to a certain height, the body in falling from that 
height to its original level can do work on some mechan¬ 
ism—the stored up work in the body in its elevated 
position is the energy of the body at that moment. We 
may define energy as the ability to do work, remem¬ 
bering that no body can possess energy save as a result 
of the previous action upon it of some force. 

3. Conservation of Matter and Energy.—It will be well 
to state at this point what may be called the fundamental 
theorem of physical science—the doctrine of the conser¬ 
vation of matter and energy. Matter as well as energy 
may be transformed from one state to another, but 
neither matter nor energy can be either created or 
destroyed. The sum total of matter in the universe is a 
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constant—or fixed quantity—as is also the sum total of 

energy. For example, when water is boiled away, the 

quantity of matter in the steam is exactly equal to that 

which was previously present in the water. Also when 

the body referred to in the preceding paragraph is lifted 

to a height and then allowed to fall, the energy trans¬ 

formed on the way down in working the mechanism or 

converted into heat in friction on impact at the bot¬ 

tom, must have exactly equalled and can never have 

exceeded the energy used in raising the body to the 

height in the first place. This doctrine is of universal 

application and is of the most fundamental importance. 

We shall have occasion to refer to this principle repeat¬ 

edly and to explain it in various connections. 

4. Measurements.— In physics we are usually con¬ 

cerned with studies of cause and effect. A phenomenon 

is observed to depend on certain variable factors. For 

example, the extension of a spiral spring is seen to 

depend on the magnitude of the weights suspended at 

the bottom. In order to determine the law of the phe¬ 

nomenon, it is necessary to take certain definite meas¬ 

urements linking up cause and effect. We might, for 

instance, suspend different weights from the spiral 

spring and measure the extension produced by each one. 

In this way we could readily establish a relation which 

would enable us to predict how much any suggested 

weight would extend the spring. The practical prob¬ 

lems involved in this simple investigation are merely 

problems of measurement. All problems in physics are, 

speaking generally, problems of measurement. But 

before entering into a study of these problems, it is well 

to become familiar with the svstems of units which are 
«/ 

made use of in the measurements. 



282 MODERN AMERICAN EDUCATION 

The measurements involved in the simple experiment 

described in the foregoing are of two quantities—(1) 

length and (2) mass or weight. It will be found as we 

progress further that all the measurement which we may 

find it necessary to take, of however complicated a char¬ 

acter can, if we wish, be finally reduced to measurements 

of only three quantities—length, mass and time. These 

quantities are referred to as “ fundamental quantities ” 

and in any system of measurement the units of these 

quantities are known as the three fundamental units. 

For instance, in the ordinary so-called English Gravita¬ 

tional System of Units—the unit of length is the foot; 

of mass, the pound; and of time, the second. The system 

is therefore called the F. P. S., or foot-pound-second 

system. In the French or metric system of units—the 

unit of length is the centimeter; of mass, the gram; and 

of time, the second, and the system is called the C. G. S., 

or centimeter-gram-second system. We shall have oc¬ 

casion in this book to use both the F. P. S. and the C. G. 

S. systems, as well as a third system which will be 

described in due time. 

5. The Metric System.— In pure scientific work, how¬ 

ever, the metric system is in universal use, mainly be¬ 

cause it is very much easier to work with than any other 

system. It is desirable therefore in studying physics 

that we get into the habit of thinking in terms of metric 

units. The system was originated by the French in 

1793 and is built up on a measurement of the quarter 

circumference of the earth from the equator to the north 

pole. The meter was taken to be one ten-millionth part 

of this distance. However, a slight error was made in 

the calculations so that the meter as finally marked off 

was not exactly the length intended. We must there- 
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fore define the meter as being the distance between two 

scratches on a certain platinum-iridium bar kept in 

Paris. The centimeter is of the meter—the milli¬ 

meter is of a meter. One thousand meters form a 

kilometer. 

Units of surface are based on the square centimeter 

(cm.2). Units of volume are based on the cubic centi¬ 

meter (cm.3), that is, on a cube with an edge 1 cm. long. 

One thousand cubic centimeters constitute the unit of 

liquid measure, called the liter. 

Units of mass are based on the gram, which is the 

mass of 1 cm.3 of pure water at 4° Centigrade, the tem¬ 

perature at which water is most dense—that is to say 

contains the most mass per unit volume. 

The unit of force is the earth’s pull on a gram of 

matter. This pull is called the gram of force. It is con¬ 

venient to have in mind the following relations for inter¬ 

changing English and metric units: 

1 meter — 1.1 yards=39.37 inches. 

1 inch = 2.54 cm. 

1 kilogram (1000 grams) = 2.2 pounds. 

1 pound (avoirdupois) = 454 grams. 

1 liter = 1.0567 quarts. 

1 quart — 0.9463 liters. 

These relations are accurate enough for use in all 

ordinary calculations. 

6. How Facts are Determined.—We are now in a posi¬ 

tion to consider the steps of the scientific method for 

determining accurate facts. If it is desired to study 

any particular phenomenon, as for example, the bending 

of a wooden lath, clamped at one end, under loads 

applied at the free end, we first make an experimental 
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set-up and determine from observation what factors 

affect the phenomenon, in this case, the bending. We 

can easily find that for a given material the amount of 

bending is dependent on the load applied—on the 

breadth of the lath—on its thickness and on its length. 

We must then vary these factors one at a time keeping 

the other conditions constant and make a series of meas¬ 

urements of the amount of bending corresponding to 

definite values of the quantity being varied. From a 

study of the tabulated results we can see how the bend¬ 

ing varies with each of the factors and when we have 

expressed the ratio of variation mathematically and have 

collected all the variations into a single formula, we 

have a definite generalization which we can dignify by 

the name of a law—the “ law of flexure of flat beams of 

wood supported at one end.” 

It is well for us to note carefully the exact meaning 

here given the word “law.” In this connection we can 

quote Rowland and Ames—two well-known American 

physicists: 

A law of nature is a statement of our belief concerning 

certain phenomena; it is suggested by a number of observations 

and measurements and is, in fact, a generalization of these. 

It is shown to be in accord with all observations, to within the 

range of error inherent in the experimental instruments used, 

but can never be perfectly verified. 

7. Direct and Inverse Variations.— Our study of the 

flexure of the lath would bring out two kinds of vari¬ 

ation. We would find that the flexure would vary with 

the applied load—doubling the load would double the 

flexure. If / represents the amount of flexure, and w 
the load applied, this fact can be expressed mathemati¬ 

cally as follows: / oc w where the symbol oc represents 
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the phrase “ varies with.” Under these conditions we 

see that is a constant number and, representing this 

constant by k, ~-~k* This is an example of direct 

variation. Whenever the quotient of the corresponding 

values of two variables is a constant, we know that the 

variables vary directly with one another. 

In determining the effect of changes in breadth on the 

flexure of the lath, keeping the load constant, we would 

find that doubling the breadth would reduce the flexure 

one-half. If b represents the breadth it will be seen that 

in this case the product of b and f will be a constant 

number or 

b X f — k which can be written 

/ = & X-Torfcc-T- 

This is an example of an inverse variation—f is said to 

vary inversely with b. Whenever the product of the 

corresponding values of two variables is a constant, the 

variables are known to vary inversely with one another. 

As we continue our work in physics, we shall come upon 

a great many examples of direct and inverse variations. 

8. General Classifications.— The subject-matter of 

physics is classified, as can be seen on looking thru the 

Table of Contents of this Text, into the following sub¬ 

divisions: Mechanics, Heat, Sound, Light and Elec¬ 

tricity. We are now ready to take up a consideration 

of the first of these divisions—Mechanics, which is 

concerned with the action of forces on bodies of mat¬ 

ter. It comprises two sub-divisions, (a) Statics, (b) 

Dynamics. Statics treats of the action of completely 
balanced systems of forces on bodies. When the force 

system is balanced no motion can result, altho strains 

are of course set up in the body. If, for example, you 
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hang your overcoat, weighing 7 pounds, on a wardrobe 

hook, the hook resists the downward pull of the coat with 

a force of 7 pounds, and no motion results. Dynamics 

treats of the action of unbalanced force systems on 
bodies. When the force systems are unbalanced, the 

body will always move as a result of the force action. 

To lift the coat off the hook requires a force slightly 
greater than 7 pounds—the weight of the coat. 

The bodies of matter on which the force actions take 

place may be in the solid state, the liquid state or the 
gaseous state. Matter in the solid state is distinguished 

by the possession of a definite shape and of a definite 

volume, in the liquid state it is distinguished by having 
a definite volume but not a definite shape, while in the 

gaseous state it has neither a definite volume nor a defi¬ 
nite shape, ordinarily expanding until it fills any con¬ 

tainer in which it may be placed. Gases and liquids are 

grouped together as fluids, since, being without internal 
rigidity, they flow readily. 

In our study of mechanics we will first take up the 

mechanics of liquids. This subject contains two sub¬ 

divisions, Hydro dynamics—the study of force actions 
in liquids in motion, and Hydrostatics—the study of 

force actions in liquids at rest. 

REVIEW. 

1. What is meant by the statement that the density of a body is 
the mass per unit volume? 

2. Explain the difference between force and energy. 

3. What is the doctrine of the conservation of matter and 
energy ? 

4. What are the three states in which matter is found ? 



CHAPTER I 

THE MECHANICS OF LIQUIDS 

1. Hydrostatics.— The study of force actions in mov¬ 

ing liquids is a subject of peculiar interest to the 

engineer who may wish to design water wheels or 

similar machinery. In our study of the mechanics of 

liquids we shall confine our attention to hydrostatics, 

that is to cases in which bodies of liquid are at rest. 

Here, as elsewhere, in dealing with similar phenomena, 

we must distinguish carefully between the total force 

acting on an area—as, for example, on the bottom of a 

pail containing water—and the pressure on that area. 

We shall define pressure as the force per unit area. The 
total force will be expressed in grams or in pounds—the 

pressure will be stated in grams per square centimeter 

or in pounds per square inch. 

Let us suppose that we have a completely closed ves¬ 

sel full of water. Let there be in one side of this vessel a 

movable piston B Fig. 1. If we apply a force to the 

piston, this force will be transmitted thruout the liquid 
and will act on the walls of the containing vessel. An 

experimental study of the resulting pressures would lead 

us to the following conclusion: Neglecting effects due 

to the weight of the liquid, the pressure, that is the force 

per unit area, is the same at all points on all the con¬ 

taining walls and is the same in magnitude as the 

pressure applied to the movable piston. The total force 

action in grams or pounds on any specified area of the 

containing walls is of course equal to the product of the 

(287) 
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pressure p (in grams per square 
centimeter or in pounds per 

square inch) into the area A (in 

square centimeters or square 

inches) of the specified area. 

If the specified area be made 

movable, it will move outward and will exert a force 

equal to the product pA which will be greater than the 
force applied to the piston B if the area of the movable 

piece is greater than the area of the piston. This discov¬ 
ery was first made and stated by Blaise Pascal in 1653. 

Fig. 1. 

2. Pascal's Law.— The facts brought out in the last 

paragraph can be extended by further experiment to 

give the following statements: 

(a) Pressure applied to an inclosed liquid is trans¬ 

mitted undiminished in all directions thruout the liquid. 

(b) The pressure at any point in the body of the 

liquid acts equally in all directions. 

(c) The pressure on each containing wall acts at right 

angles to the wall. 

Statement (a) is a restatement of the principle as¬ 

cribed above to Pascal. Statement (b) is necessarily 

true because if the pressure at the selected point were 

not equal in all directions then there would be an unbal¬ 

anced force in some direction which, since liquids do not 

possess any rigidity, would cause the liquid to move and 

this is contrary to the observed condition of affairs. 

Statement (c) is also of necessity true, because if the 

resultant pressure on the boundary walls were not at 

right angles to the walls, there would be a component of 

the pressure along the wall which would cause the liquid 

to move in the direction of the component, a movement 

which does not take place in fact. 
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The hydraulic press is a machine in 
which Pascal’s Principle is applied to 

obtain the enormous pressures required 
in baling hay or cotton, in forcing car 

wheels on to axles and in doing similar 

work. This press consists of two cylin¬ 
ders joined with a pipe. One of the 

cylinders A is of large area. It con¬ 

tains a piston C arranged to act on the 

material which is to be compressed in 
the way shown in Fig. 3. The other 

cylinder B contains a piston of small 
When pressure is applied i ta. l it 

to the piston, the water area U which can be luted and de¬ 
squirts out of all the 

p«LVe'infansmitted Pressed by means of a lever. When the 
m aii directions. small piston is depressed, water is 

forced thru the pipe into the large cylinder. When the 

small piston is raised, check valves prevent the water 

in the large cylinder from flowing back. During the 

down stroke the two cylinders are in free communica¬ 

tion thru the pipe. If the area of the small piston is 

-j- sq. in. and the area of the large piston is 2 sq. ft., 

that is 288 sq. in., then a force of 10 lb. applied to the 

small piston will produce a pressure of 20 lb. per sq. 

in., in which, acting on the 288 sq. in. of area of the 

large piston, will develop a force on that piston of 

5760 lb. 

Here as elsewhere in this Text 
we shall assume water to be en¬ 

tirely incompressible—that is to 
say we shall assume that its vol¬ 
ume remains unchanged what¬ 

ever pressure may be applied to 
it. Since a force of 21.5 tons Fig. S. 
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applied to a cubic inch of water reduces the volume only 

about one-tenth, this assumption is from our point of 

view quite justifiable. 

It will be noted that the rise of the large piston in the 

press is due to the extra water forced into the large 

cylinder due to the downward motion of the small 

piston. The increase in water volume in the large cylin¬ 

der is therefore equal to the decrease in water volume in 

the small cylinder and the downward travel of the small 

piston must be greater than the upward travel of the 

large piston in the same proportion that the area of the 

larger piston is greater than the area of the smaller. 

These presses are therefore very slow in action and can 

be used for work only where speed is not an essential. 

In the press described above, the small piston must 
travel a distance of 576 feet in order to raise the large 

piston just one foot. 

3. Depth and Pressure.—In the preceding discussions 

of the transmission of pressure in liquids, we have pur¬ 

posely neglected any consideration of the force effects 

due to the weight of the liquid itself. It is evident, how¬ 

ever, that very considerable pressures must exist in the 

lower layers of any liquid due merely to the weight of 

the upper layers. The existence of these pressures can 

be demonstrated by thrusting a tin cylinder with a closed 

bottom in which there is a nail hole, downward into a 

pail full of water. Water will spurt up thru the hole. 

The height of this water jet will increase as the depth 

of immersion is increased, showing that the pressure 

becomes greater with the depth. We can readily calcu¬ 

late the total force due to this cause acting on the bottom 

of a cylindrical vessel full of liquid. This total force is 

exactly the weight of the liquid. To determine this 



THE MECHANICS OF LIQUIDS 291 

weight, we multiply the area of the bottom of the vessel 

A, by the height of the liquid h, thus obtaining the 

volume of the liquid. This volume multiplied by the 

weight of a unit volume of the liquid gives the total 

weight on the bottom and therefore the total force. The 

weight of a unit volume is called the density of the 

liquid d. The formula expression for the total force 

F is therefore F = Ahd. This expression is usually 

called the Law of Gravity Pressure. If A is in cm.2, h in 

cm. and d in > then F will be in grams. The 

pressure p on the bottom, that is the force per unit 

area, will equal and we can therefore write p — lid. 

It is evident that the pressure over any horizontal 

plane in a liquid at rest must be the same at all points in 

the plane. If this were not so, the liquid would flow and 

would no longer be at rest. It can be seen furthermore 

that the free surface of a liquid must be horizontal, for 

if it were not, then the pressures at two points in the 

same horizontal plane would have different values, due 

to the greater depth of the liquid at one of the points, 

and the liquid would flow until the surface became truly 

horizontal. 

The two formulae F — Ahd and p — hd enable us to 

calculate the total force and the pressure on any hori¬ 

zontal surface at any depth in a liquid of any density. 

We must now consider how to calculate the force action 

on the vertical rectangular side of a vessel containing a 

liquid. The pressure at the surface of the liquid is zero 

because h is zero—the pressure at the bottom of the side 

is hd where h is the total depth. In going down the side 

from the top surface to the bottom, the pressure in¬ 

creases uniformly with the depth, being at any depth, 

h, equal to hd. The average value of the pressure will 
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therefore be the pressure half-way down at the depth 

and will equal -yd- If we multiply the total area of 

the side by this average value of the pressure, we shall 

have a valid expression for the total force action on the 

vertical side of a tank full of water, F . 

This same formula can be used in a slightly modified 

form to determine the force action on any regularly 
shaped portion of a vertical containing wall, merely 

multiplying the area of the portion of the wall by the 
density of the liquid and by the average depth, that is 

by the depth down to the center of area of the portion on 
which the force is to be calculated. For example let it 

be required to calculate the total force action on a square 
sluice gate 4 feet on an edge in the face of a dam—the 

upper edge of the gate being parallel to the water sur¬ 

face and 15 feet below that surface. Here A =16 ft.2, 

d — b~ and the depth to the center of area equals 17 

ft. The total force action on the gate is therefore 
16972.8 pounds. 

It can be stated from the facts given above that the 
pressure at any point in a vessel of any shape whatever 
or in any system of communicating vessels or pipes con¬ 

taining a liquid at rest is equal to the density of the liquid 

multiplied hy the depth of the point below the free sur¬ 

face of the liquid. 

This principle enables us to see that liquid poured 

into a set of communicating pipes, like that shown in 

Fig. 4, will rise to the same level in all the branches,— 

the pressure at the bottom of any branch as at A will 

equaZ hd where h is the height above A of the liquid in 
the branch where it was introduced, and this pressure 

will obviously just suffice to support in the pipe above 
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kg.- rv; 4*' 

I[a 

Fig. 4. 

A a column of liquid of the same 

height h. This fact of common 

observation is covered by the 

well - known statement that 

“ water seeks its own level.” For example if a city 

water system is supplied from a reservoir on a hill, the 

water will rise in the buildings to a height equal to that 

of the water surface in the reservoir but no higher. Of 

course, when the water is flowing thru great lengths of 

small pipes, the effective pressure, or effective “ head 

of water,” is considerably decreased by friction in the 

pipes. 

The flow of water from artesian wells is maintained 

in the same way. The head of water in these wells re¬ 

sults from the pressure due to water flowing down in¬ 

clined strata from hills or mountains which may be many 

miles distant. 

In our study of the pressure effect in liquids due to 

the weight of the latter we have not considered the simul¬ 

taneous action of external forces on the body of liquid. 

It is evident that in order to determine the total pressure 

at any point in a liquid we must add to the pressure hd 

due to the weight of the liquid above, whatever pressure, 
P, may be acting on the free surface because this pres¬ 

sure P, will be transmitted undiminished thruout the 

body of the liquid. If, for example, we wish to find the 

total pressure at the depth of a mile in the ocean, we 

must first set down the total pressure due to the weight 
of the atmosphere on the free surface of the water. 

This pressure is about 15 lb. per in.2 or 2160 lb. per ft.2 

To this we must add the pressure hd due to the weight 
of the water. The density of sea water is 63.9 pounds 

per cubic foot, whence the pressure per square foot, at 
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the depth of a mile, due to this 
cause is 5,280 (the number of 
feet in a mile) multiplied by 

63.9 or 337,392 pounds per 
square foot. The total pressure 
at the depth of a mile is there¬ 
fore 339,552 pounds or about 

169.7 tons per square foot. 

4. Archimedes’ Principle.— We shall next examine the 

force actions on a solid body immersed in a fluid at 
rest. Let us suppose that we have a cube of any ma¬ 

terial held with one of its faces horizontal below the sur¬ 
face of water as shown in Fig. 5. The pressure on the 

sides of the cube will be equal and opposite on the 

opposite pairs of faces, so that the cube will experience 

no unbalanced lateral forces. The upward pressure on 

the lower face BB' of the cube will be hid. If the area 

of the face be A, the total upward force acting on the 

bottom of the cube will be Ahid. The pressure acting 
down on the top will be hd and the total downward force 

will be Ahd. It is evident that Ahid is greater than 
A hd so that there will be an unbalanced force equal to 

A hid minus Ahd acting upward on the block. If this 
unbalanced force is greater than the weight of the block, 

the block will rise if released—if the force is less than the 

weight of the block, the block will sink if released, or if 
the unbalanced force is exactly equal to the weight of the 

block, the block will remain stationary if released. Now 

we can easily see that the term Ahid equals the weight 
of a column of water with an area A and a side BB'FE 

and that the term Ahd equals the weight of a column of 

water of area A and side CDFE. The difference of 

these two terms is clearly equal to the weight of a col- 

E F 
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umn of water of area A and side BB'CD—that is, to 

the weight of the water displaced by the cube itself. 
This same demonstration can be made, tho not so easily, 

for a body of any shape whatever so that we can say that 

any body immersed in a liquid is buoyed up by a force 

equal to the weight of the liquid displaced by it. 

This law was first formulated by Archimedes and is 

always known as the Principle of Archimedes. Archi¬ 

medes was a Greek philosopher (born 287—died 212 

B. C.) who lived in Syracuse, Sicily. 

5. Determinations of Density.— The density of a body 

has already been defined as the quantity of matter in a 

unit volume or as the mass per unit volume. Since at 

any one place on the earth’s surface the weights of 

bodies are proportional to their masses, the ordinary 

way of determining the mass of a body is to weigh it. 

The mass is then expressed in grams or pounds. To 

calculate the density, it is necessary in addition to know 

the volume of the body. If we immerse the body in 

water and determine its loss of weight in grams, we 

have, directly by Archimedes’ law, the weight in grams 

of an equal volume of water. Now in the metric system 

a gram is equal to the weight of a cubic centimeter of 

pure water at 4° Centigrade, so that the loss of weight 

in grams is seen to be numerically equal to the volume 

of the body in cubic centimeters. We can thus always 

determine the density of a body by dividing its weight 

in air by its loss of weight in water. If this work is 

carried out in metric units, the quotient will be the 

density in grams per cubic centimeter. If the work is 

carried out in pounds, the loss of weight must first be 
divided by the weight in pounds of a cubic foot of water 

(62.4 lb. per ft.3) before applying the foregoing rule. 
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The density will then come out in pounds per cubic 
foot. 

6. Specific Gravity.—The specific gravity of a body is 

defined as the ratio of the weight of the body to the 

weight of an equal volume of water. This is a mere 
number and—like all ratios—has no units. It will there¬ 

fore be the same number in whatever system of units the 
measurements are made. Since, as was just stated, the 

weight of a quantity of water in grams is numerically 

equal to its volume in cubic centimeters, it is evident that 
the specific gravity of a body is numerically equal to its 

density when the density is expressed in the metric 

system. To get the proper value of the density in the 

English system, the specific gravity must be multiplied 

by 62.4. For example any object made of a certain 

grade of cast iron weighs seven times as much as an 

equal volume of water. The specific gravity of this 

kind of cast iron is therefore 7—its density in the 
metric system is 7 grams per cubic centimeter and its 

density in the English system is 436.8 pounds per 

cubic foot. 
In all problems of design and in all calculations deal¬ 

ing with the weights or volumes of material, a knowl¬ 

edge of the density or specific gravity of the materials 

is of first importance. It is therefore worth while not 

only to know definitely what these terms mean but also 

to be familiar with some of the methods by which the 
quantities are determined. Let us now consider briefly 

the ordinary experimental method used for determining 
the densities (a) of solids that sink in water, (b) of 
solids that float in water. 

7. Densities of Solids and Liquids.—(a) If the solid 

will sink in water it is only necessary to weigh it in air— 
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Fig. 6. 

then to immerse it in water and 

determine its loss of weight. 
As already stated, the specific 

gravity = .**» . ..... An 

ordinary equal arm balance can 
be used in this work. If the in¬ 

strument is specially adapted to 
the work by raising one of the pans as in Fig. 6, it is 

frequently called a hydrostatic balance. 

(b) Fig. 6 shows the hydrostatic balance in use for 

determining the density of a solid at A which will not 

sink in water. First the solid is weighed in air. Call this 

weight IV. Then a sinker heavy enough to sink the body 

is attached, and the weight is determined when the sinker 

is in the water and the body is in the air as shown in the 

figure. Call this weight Wi grams. Then immerse both 

solids and determine the weight. Call this weight W* 

grams. The difference Wi—W\ is evidently caused by 

the buoyant effect of the water on the light solid, and by 

Archimedes’ Principle this is equal to the weight of the 

water displaced by it in grams and is numerically equal 

to the volume of the light body in cubic centimeters. 

The specific gravity or the density in the metric system 

is seen to be given by the expression 

The following table of densities will give some idea of 

the range of values for ordinary materials: 

Specific W eight 

Gravity Ib./ft.3 

Water 1. 62.4 

Seawater 1.026 63.9 

Aluminum, cast 2.56 159.8 

Iron, cast 7.23 451.0 

Tin, cast 7.29 455. 
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Specific W eight 
Gravity lb./ft* 

Brass, cast 8.4 524.4 

Copper, cast 8.6 537.3 

Lead 11.4 711.36 

Mercury 13.6 848.75 

Gold 17.7 1106.42 

Platinum 21.2 1322.8 

Ash .69 43. 

Mahogany, Spanish .85 53. 

Glass 2.7 170. 

Marble 2.7 170. 

8. Law of Flotation.—When a block of wood is placed 

on the surface of a body of water it begins to sink. 

After a certain portion of it is submerged, it will float 

and remain stationary. The fact that it remains station¬ 

ary shows that the force acting upward, equal to the 

weight of the displaced water, must exactly equal the 

weight of the block. In other words the block sinks until 

it displaces a volume of water equal in weight to its own 

weight. This statement is known as the Law of Flota¬ 
tion. It is of course merely a special form of Archi¬ 

medes’ Principle. It will be noted that the earth’s pull 

downward on the floating body is exactly neutralized by 

the push upward of the displaced water. A floating 
body is therefore without any effective weight. 

The principle of the law of Flotation is made use of 
in determining the densities of liquids by means of the 

hydrometer. The hydrometer consists of a glass bulb 

weighted so that it will float upright. The bulb has a 
long stem with graduations on it. (See Fig. 7.) When 

the instrument is placed in a liquid, it will sink until it 

displaces its own weight of the liquid. The weight of 
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the hydrometer is of course constant, conse¬ 

quently it will sink to different depths in 

liquids of different densities. The less dense 

the liquid, the deeper the instrument must sink 

in it before it will displace a volume of the 

liquid that weighs as much as the instrument 

itself. In practice these instruments are grad¬ 

uated by placing them in test solutions the 

densities of which have been determined by 

other methods. The depths to which they sink 

F‘g-7* are then marked on the stem and serve as refer¬ 

ence points. The specific gravity of gasoline and of the 

liquid in automobile storage batteries is ordinarily de¬ 

termined with instruments of this type. The readings 

on the stems of these instruments usually give the spe¬ 

cific gravities directly, but they $re sometimes gradu¬ 

ated according to an arbitrary scale to adapt them to 

some special use, consequently a new one must always be 

examined critically before being put into service. 

Before leaving this section of our subject it will be 

well to point out that the laws here developed for liquids, 

namely Pascal’s Law—the Law of Gravity Pressure— 

and Archimedes’ Principle, are all generally applicable 

to fluids; that is to gases as well as to liquids. Gases, 

however, are so easily compressible that they do not act 

in general like liquids, and it will be necessary therefore 

to consider their special properties at greater length in 

another chapter. 

REVIEW. 

1. State and explain Pascal’s Law. 

2. Describe the hydraulic press. 

3. How do you calculate the pressure at any point in a vessel 
containing a liquid at rest? 

4. Define and distinguish between specific gravity and density. 



CHAPTER II 

THE MECHANICS OF GASES 

1. Atmospheric Pressure.—In our study of force 
actions in gases we may consider air—the gas with 

which we are all most familiar—as typical of all other 

gases. The density of gases is so slight that it is difficult 

to realize that they have an appreciable weight. Yet a 

cubic foot of air weighs more than an ounce and twelve 
cubic feet weigh very nearly one pound. Consequently 

the amount of air in a room 60 ft. by 30 ft. by 15 ft. 

weighs more than one ton. At the temperature of 
freezing and under normal pressure the exact density of 

air is .001293 grams per cubic centimeter or 1.293 grams 
per liter. The liter, it will be remembered, is 1000 cubic 

centimeters, a trifle more than one quart. The specific 

gravity of air is-^-that is to say: 773 cubic feet of 

air weigh as much as 1 cubic foot of water. 

Since in point of fact we live at the bottom of a sea of 

air many miles deep, it is evident upon consideration of 
the facts just stated taken together with the principles 

of fluid pressures which we studied in Chapter I, that a 

large pressure caused by the weight of the atmosphere 

must exist all about us on the surface of the earth. The 

existence of this pressure can readily be demonstrated 

by stretching a rubber membrane over the open end of 

a glass jar as shown in Fig. 8 and then sucking out the 

air from the inside of the jar, either with the mouth or 

with a special pump. The weight of the outside air will 

immediately depress the membrane very noticeably. 

(300) 
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This pressure due to the 

weight of the air is also demon¬ 

strated in sucking lemonade 

thru a straw. You draw some 

,of the air out of the top of the 

straw by enlarging the mouth 

cavity, and the pressure of the 

atmosphere on the liquid surface 

then pushes the lemonade up 

into the mouth. Mechanical applications of this method 

of raising liquids were in wide use as long ago as the time 

of Aristotle (fourth century B. C.) long before the real 

cause of the rising was understood. The ancients ex¬ 

plained the phenomenon by the somewhat vague state¬ 

ment that 44 nature abhors a vacuum 55—a space ex¬ 

hausted of air being known as a vacuum. The famous 

philosopher Galileo (1564—1642) probably grasped 

the true reason for the rise of liquids in exhausted 

tubes altho he never specifically stated it. About 1640, 

the Duke of Tuscany, in attempting to pump water 

out of a deep well which he had dug near Florence, 

found that no pumps could be made to draw the water 

higher than about 32 feet above the water level in the 

well. When this was reported to Galileo, the phil¬ 

osopher remarked that 44 evidently nature’s horror of a 

vacuum did not extend beyond 32 feet.” He devised an 

experiment to test this matter, but died before the ex¬ 

periment was completed. 

The test was actually performed by his pupil, Torri¬ 

celli, in 1643. Torricelli reasoned that if the pressure 

of the atmospheric air was responsible for forcing liquids 

up into exhausted tubes, then, if water was pushed up 

32 feet, mercury, which is about thirteen times as heavy 
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13 

30 m. 

Fig. 9. 

as water, ought to be pushed up about 

as far or about 30 inches. So he took a tube 
40 inches long, filled it with mercury and 

holding his thumb over the open end of the 
tube, inverted it and put the open end below 
the surface of mercury in a vessel as shown in 
Fig. 9. On removing his thumb he found, 

just as he had expected, that the mercury 
level fell to about 30 inches above the surface 

in the dish. That the mercury is actually 

held up in the tube by the pressure of the 
external air and by no other means can be 

decisively demonstrated by covering the dish in Torri¬ 

celli’s apparatus with a bell jar as shown in Fig. 10 and 
then sucking the air out of the bell jar. The level of the 

mercury column will be found to fall gradually as the air 
is drawn out and the pressure thus reduced. 

2. The Barometer.— Pascal, the French philosopher, 

mentioned in Chapter I, tested this matter directly by 

carrying a mercury device, which we will call a barom¬ 

eter or pressure measurer, similar to Torricelli’s, to the 
top of a high tower in Paris. He found that the level of 

the mercury column fell somewhat. 

In following up his experiment he 
requested his brother-in-law, Perrier, 

who lived in the south of France, to 
carry a barometer to the top of the 

Puy de Dome, a high mountain. 
Perrier reported in a letter which is 
still in existence that he “ was rav¬ 
ished with admiration and astonish¬ 
ment ” on finding that for an ascent 
of 1000 meters, the mercury sank in 

Fig. 10. J 
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the tube about 8 centimeters. More accurate 

figures, subsequently determined, show that 

the change in the mercury level is one centi¬ 

meter for every 120 meters of ascent. 
The pressure of the atmosphere as de¬ 

termined with a barometer at any place fluctu¬ 

ates from hour to hour. At sea-level the range 
of heights lies between 28 and 32 inches. The 

average height taken over a long period at sea 
level in 45° north latitude has been found to be 

76 centimeters. This is called the “normal 

endhrof height of the barometer ” and the correspond- 

Fig. ii. ing air pressure is called “ normal atmospheric 
pressure.” The value of this pressure in grams per 

square centimeter can readily be calculated from the 

formula p — hd} since the downward pressure of the 

mercury volume must exactly equal the upward pressure 

transmitted to its bottom from the free surface on which 

the air is pressing. The density of mercury is 13.596 

grams per cm.3 The pressure at the bottom of a mer¬ 
cury column 76 cm. high is therefore 76 X 13.596 = 

1033.3 grams per cm.2 This is equal to 14.7 lb. per 

square inch. 

There are two types of barometers in general use, the 

mercury barometer (Fig. 11), 
which is in all essential features 

the same as Torricelli’s original 
apparatus, and the aneroid ba¬ 

rometer (Fig. 12). The aneroid 
barometer contains a partially 
exhausted flat box T), the lid of 

which acts upon a pointer B 

moving over a dial, by means of a 
Fig. 12. 
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series of wheels and levers which 
veiy much magnify the slight 
movements of the lid in and out 

under the variations of the air 
pressure. These instruments 
can be made as small as a watch 

and may be carried in the pocket. 
They are very useful in enabling 
mountain climbers or aviators to 
know the heights which they 
have reached. If the pointer is 

provided with a pen or pencil which traces a mark on a 

paper carried by a drum rotated by clockwork, we have 
the “ recording barograph,” which gives a permanent 
record of the changes in air pressures over any period. 
These devices when used in air planes are called “ alti¬ 

meters.” They are used to test the performance of the 

planes as well as of the pilots. 

3. Weather Predictions.— The connection existing be¬ 

tween changes in the barometer height and changes in 
the weather is of interest and importance to everybody. 

Weather predictions are based very largely on measure¬ 

ments of the atmospheric pressure taken simultaneously 
over large areas, as for instance at all the stations of 
the U. S. Weather Bureau thruout the country. These 
readings are telegraphed to headquarters at the same 
hour each day, and when the values are plotted on a 
map and continuous lines (called isobars) are drawn 

connecting all the points where the pressure is the same 

—one line for each pressure—a figure results something 

like that shown in Fig. 13. Stormy areas generally go 
with areas of low pressure which lie at the bottom of 

more or less circular depressions in the atmosphere. 
i 
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The winds blow around these circular depressions so as 
to form “ whirlpools ” or “ cyclones.” 

These cyclonic centers of low pressure move along 
pathways fairly well known as the result of long ob¬ 
servation and known to lie generally from southwest to 
northeast. If a cyclonic area is observed in the south¬ 
western part of the United States and its path and 
velocity are determined or accurately guessed by the 
weather bureau officials, then the time of its arrival in 
other parts of the country can be foretold. The indi¬ 
vidual observer who has a household barometer can 
detect the approach of one of these storm centers by 
observing the fall of his barometer. Rises in pressure 
are on the other hand indicative of coming fair weather. 
Predictions made in this way naturally apply only to 
large general storms and not to local weather changes—■ 
small showers and so on. 

4. Internal and External Pressure.— It is known to all 
that air is very compressible and that when compressed 
it will exert a great pressure. We know, for instance, 
that a large amount of air can be pumped into an auto¬ 
mobile tire and that as a result of this the tire becomes 
very hard so that it is difficult to make a dent in it. If 
the pressure is released by depressing the valve stem, 
the air will rush out until the inside air pressure equals 
the air pressure outside. It will be noted that when the 
outward pressure of the air inside a hollow container is 
the same as the inward pressure of the air outside, there 
is no resultant force acting on the wall of the container, 
hence there is no tendency to rupture or displace the 
wall. The ordinary atmospheric pressure of 14.7 lb. per 
square inch is very nearly equal to one ton per square 
foot. If we take the area of the human body to be about 
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10 square feet, which is below the average, then it is seen 

that a total force of about 10 tons is acting continuously 

on the exterior of every one of us. The reason we don’t 

experience any discomfort from this pressure is that all 

the internal cavities and fluids of the body contain air 

which presses out with an equal pressure. 

6. Boyle’s Law of Pressure and Density.— The first ac¬ 

curate investigations of the relation existing between the 

volume of a mass of inclosed gas and the pressure ap¬ 

plied to it were made in 1662 by Robert Boyle (1627- 

1691) an Irish physicist. The same relation was worked 

out by the Frenchman, Mariotte, fourteen years later 

and is known in France as “ Mariotte’s Law.” In this 

country, however, we refer to it always as “ Boyle’s 

Law.” 

The facts discovered by Boyle can be stated as 

follows: 

The temperature remaining fixed, the volume of an 

inclosed mass of gas varies inversely with the pressure 
applied to it. 

It will be noted that in accordance with this law 

doubling the pressure reduces the volume of the inclosed 

gas to one-half. Since the total quantity of matter in 

the inclosed gas is the same under all conditions, the 

quantity of matter per unit volume (or density) must 

become twice as great when the volume is reduced to one- 

half. It is therefore plain that doubling the pressure 

will double the density and that tripling the pressure 

will triple the density and so on—an example of a direct 

variation. 

In consequence of these facts Boyle’s Law is fre¬ 

quently stated in the following form: The temperature 

remaining fixed, the density of an inclosed mass of gas 
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is directly proportional to the 
pressure acting on it. 

We are now in a position to 

understand the difference be¬ 

tween the law connecting depth 

of immersion and pressure in 

liquids, and the law connecting 

depth and pressure in air or any 

other gas. At any point below 

the surface of a body of gas there will be, just as in 

liquids, a pressure due to the weight of the gas above; 

this pressure will be equal in all directions and will act 

at right angles to the walls of any containing vessels but 

it will not be directly proportional to the depth of im¬ 

mersion as is the case in liquids. This is because the 

density of gases increases with the pressure so that the 

pressure effect multiplies itself progressively as we 

descend to greater depths in a gas. The exact law con¬ 

necting the gravity pressure in a body of gas with the 

depth of immersion in the gas is complicated and need 

not be stated here, but the general character of the rela¬ 

tion can be studied out by reference to Fig. 14. 

6. Height of the Atmosphere.— It is interesting to note 
that if the density of the air remained the same at all 
heights and was equal to the density observed at sea 
level, then the total height of the atmosphere as calcu¬ 
lated from the barometric height at sea level would be 
just about five miles. The peaks of the Himalayas 
would rise above it. This height to which the air would 
extend if it were incompressible like water is called the 
height of the homogeneous atmosphere. 

Many explorations of the upper atmosphere have 
been made by aeronauts in balloons and air-planes and 
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also by the use of small test balloons carrying recording 

instruments provided with parachutes. These test bal¬ 

loons which are only two or three feet in diameter are 

partly filled with hydrogen and rise for the same reason 

that a cork rises in water, until they burst on account of 

the expansion of the inclosed hydrogen. The instru¬ 

ments descend safely to the ground in a small basket 

borne by a parachute. 

The greatest height ever reached by men in a balloon 

is a little more than seven miles. At that elevation the 

height of the barometer is only 7 inches and the tempera¬ 

ture is 60° Fahrenheit below zero. The greatest 

height ever reached by a test balloon is 18.95 miles. 

This height was reached in September, 1910, by a bal¬ 

loon sent up from the U. S. government observatory at 

Mount Weather, Virginia. 

Fig. 14 gives definite figures collected by the methods 

described in the foregoing. It shows the air pressures 

and densities at different heights. It will be noted that 

at a height of 35 miles the air density is only ^ 

of that at sea level, so that at such heights there is prac¬ 

tically no air. Nevertheless, it will be understood that 

there is no definite upper limit to the atmosphere—the 

air merely getting thinner and thinner as the distance 

from the earth becomes greater. The final limit beyond 

which there is absolutely no air is estimated at anywhere 

between 100 and 500 miles. These estimates are based 

largely on the height at which meteors or “ shooting 

stars ” first become visible. These meteors are small 

solid masses which, moving with enormous speed, enter 

the earth’s atmosphere and are heated to incandescence 

by the friction of the air. 

If a boring miles deep could be made in the earth, the 
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density of the air as we descended the hole would in' 

crease just as rapidly as we have seen it decrease as we 

ascend above the earth’s surface. At a depth of 35 miles 

it would consequently be 1000 times as dense as at the 

surface of the earth so that wood and water would float 

in it. 

7. The Balloon.—The physical principles which we 

have considered in the previous discussion enable us now 

to study the construction and mode of operation of a 

number of appliances of great practical importance. 

We have already spoken of the ascents of balloons to 

great heights. A balloon is merely a gas-tight bag of 

varnished silk or of rubberized fabric which is inflated 

with some gas less dense than air. When inflated, it is 

buoyed up in accordance with Archimedes’ Principle, 

by a force equal to the weight of the air displaced. If 

this force is greater than the weight of the balloon¬ 

casing, net and basket plus the weight of the gas in the 

balloon, the balloon will tend to rise. Since air weighs 

1.29 kg. per m.3 and hydrogen, the lightest known gas, 

weighs only .09 kg. per m.3, a total buoyant force of 1.20 

kg. per m.3 of displacement can be obtained by using 

hydrogen. Illuminating gas which ordinarily weighs 

about .75 kg. per m.3 gives a buoyance of only about .54 

kg. per m.3, but since it is very much cheaper than 

hydrogen, it is used in nearly all ordinary cases. 

Military balloons of which large numbers were used 

in the recent war were however filled with hydrogen to 

make them ascend more rapidly. German Zeppelins 

which were large cigar-shaped balloons provided with a 

rigid metallic frame-work containing a number, usually 

15 to 20, separate small gas bags inside the sheathing, 

were also filled with hydrogen. Since this gas is very 
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inflammable, it is for that reason not 

well suited to military use, but it was 

the best that could be had at the time. 

In the last year of the war, helium gas 

was prepared for the first time in large 

bulk by extracting it from natural gas 

in Texas. Helium is entirely non- 

inflammable and, having a density of 

0.18 kg. per m.3 gives a buoyant effect 

of 1.06 kg. per cubic meter of displace¬ 

ment, which makes it comparable with 

that of hydrogen. It is probable that 

in the future, balloons—at any rate those used for mili¬ 

tary purposes—will be inflated with helium. 

r-e 

W 
Fig. 15. 

8. The Siphon.— The siphon is a bent tube open at 

both ends with one arm longer than the other, filled with 

liquid and placed in an inverted position with the shorter 

arm in a vessel containing liquid as shown in Fig. 15. 

The liquid will flow out of the longer arm until the level 

of liquid in the vessel falls to the end of the shorter arm. 

This device is very useful for transferring liquids from 

one vessel to another without disturbing the vessels. 

Either the lower or the upper layers of liquid can be 

drawn out as desired. The cause which maintains this 

flow can be understood by computing the pressures at 

a and b. At a the pressure equals the atmospheric 

pressure transmitted from the free surface outside minus 

the weight per cm.2 of the column of liquid ac. At b the 

pressure equals the atmospheric pressure minus the 

weight per cm.2 of the column of water db. It is evident 

that the net pressure at b is less than at a by an amount 

equal to the weight of the column of liquid eb, conse¬ 

quently the liquid is pushed around over the bend pro- 
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vided the bend is not at a 

height greater than the baromet¬ 

ric height for the particular 

liquid above the surface in the 

vessel. Water for example can¬ 

not he siphoned over a bend 

higher than about 32 feet. It is 

evident that the flow will cease 

when the level in the two vessels 

becomes the same because then 

the weight of the column of liquid eb, which constitutes 

the driving force, will be 0. The tube must be com¬ 

pletely filled with liquid before it is put in position. A 

study of the explanation given will show that it is not 

essential that the arms of the pipe be unequal in length: 

it is necessary only that the level of liquid around the de¬ 

livery arm be lower than the level around the intake arm. 

9. The Air Pump.—Fig. 16 shows a simple air pump 

for pumping the air out of the receiving vessel R. 

When the piston is raised, the air in the receiver expands 

thru the valve A and fills the cylinder, the external air 

being prevented from entering by the valve B. The 

valves are conical plugs accurately ground into circular 

seats. The air passes thru freely in one direction but 

any flow in the other direction is cut off by the move¬ 

ment of the plug into its seat. When the piston is de¬ 

pressed, valve A closes and the air in the cylinder is 

pushed out thru B. This operation is repeated as often 

as desired, a certain fraction of the air remaining in the 

receiver being removed on every up stroke. It will be 

observed that it is impossible to remove all the air by 

the use of this device. In order to get the very high 

vacuum, that is to say, the very low pressure, used in 
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Fig. 17. 

such things as electric light bulbs, very 

special and complicated forms of pumps 

must be used. 

10. The Lift Pump for Water.—This 

pump, Fig. 17, which is the common type 

of water pump used over wells and cis¬ 

terns, is essentially similar to the air pump 

in construction. When the piston is 

lifted, the air pressure in the cylinder D 
is reduced and the atmospheric pressure 

on the water in the cistern C pushes the 

water up into the cylinder. When the piston descends, 

valve A prevents the water from running back into the 

cistern and valve B opens and allows the water to flow 

thru to the top of the piston. On the next up-stroke 

valve B closes and the water is lifted to the level of the 

spout out of which it runs. Of course no pump of this 

type can lift water from a well in which the surface of 

the water is more than about 32 feet below the cylinder, 

for 32 feet is the greatest height to which the pressure of 

the air can push the water. 

11. The Force Pump for Water. 
—If the well is deeper than 32 

feet, the pump is modified as 

shown in Fig. 18. The cylinder 

itself is put down in the well 

within ten or fifteen feet of the 

water surface and the piston is 

driven by a long rod. The 

action of the pump is easily 

understood from the figure. On 

the down stroke the water is 

forced out thru valve B, valve A 
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being closed, and up the pipe to a height limited only by 

the power available for pushing the piston and by the 

strength of the cylinder and pipes. In order to make 

the water delivery of a pump of this type steady instead 

of pulsating with every stroke, an “ air dome ” D is in¬ 

troduced as shown in the figure. The air compressed in 

the dome during the down stroke of the piston expands 

during the up stroke and thus maintains the water flow. 

12. The Diving Bell.— The diving bell is a rigid bell¬ 

shaped casing which sinks in water by its own weight. 

It is used to protect workmen in underwater construc¬ 

tions as of bridges, piers, etc. Air is pumped into the 

bell thru a hose entering the top. A constant escape of 

air over the edge of the bell is maintained. The pressure 

of the air in the bell must of course equal the pressure of 

the water outside. To work at a depth of 100 feet, an 

air pressure of three atmospheres will therefore be ne¬ 

cessary. These high pressures seriously affect the com¬ 

fort and health of the workmen. In practice, work is 

seldom carried out at depths greater than 60 feet, altho 

80 feet is regarded as safe. In working on the bridge 

over the Mississippi at St. Louis, however, the bells were 

sent down 110 feet without mishaps. The diving suit 

is made of rubber with a metal helmet and heavily 

weighted shoes. In the most modern outfits the diver 

carries his air supply, under a pressure of 40 atmos¬ 

pheres, in a tank on his back. This air is admitted into 

his suit as needed. In order to keep the water out of the 

suit, the air pressure inside must roughly equal the water 

pressure outside. When the diver wishes to rise, he 

admits enough air to the suit to make himself float. 

Cases are on record where divers have descended to 

depths of slightly over 200 feet. 
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13. The Air Brake.—-The air 

brake has had more to do with 

the development of high speed 

transportation than any other 

single device. The essential 

parts of the Westinghouse air 

brake system are shown in Fig. 19. By means of a 

pump on the locomotive an air pressure of about 90 
pounds to the square inch is maintained in the train 

pipe, which passes along from one end of the train to 

the other. As long as this pressure is maintained, the 

“ triple valve ” remains set so that the reservoir R under 

the car communicates directly with the train pipe, and 

the brake cylinder C is shut off from any pressure. If 

the pressure in the train pipe is diminished either pur¬ 

posely by the engineer or thru an accident to the pipe, 

the triple valve sets itself so that air from the reservoir 

enters the brake cylinder and, forcing the piston over, 

sets the brakes. When a suitable pressure is re¬ 

established in the train pipe, the triple valve resets 

itself in such a way that the air is released from the 

brake cylinder and the spring then pushes the brakes 

back away from the wheels. The construction of the 

triple valve itself is complicated and need not be dis¬ 

cussed here. 

Fig. 19. 

REVIEW. 

1. Describe the mercury barometer. 

2. State Boyle’s Law. 

3. Under what conditions would wood float in air? 

4f. Describe and explain the operation of the siphon. 

5. How do air brakes work? 



CHAPTER III 

THE MOLECULAR THEORY OF MATTER 

1. Molecules.— In this chapter we shall discuss a num¬ 

ber of phenomena connected with gases and liquids, yet 

of an entirely different type from those we have been 

considering so far. These phenomena include among 

others those of diffusion, evaporation, dew and cloud 

formations, soap bubbles, oil films and the drying 

actions of blotting and towels. This list seems to cover 

a number of very dissimilar actions, yet the explanation 

of all is based on one set of facts, namely those of the 

Molecular Theory of Matter. 

This theory has already been referred to in the intro¬ 

duction where we said that all forms of matter, that is, 

all objects and materials, have a very fine granular con¬ 

stitution, the granules being called molecules. These 

molecules, which are supposed to be constantly moving 

about in a perfectly irregular way, are entirely too small 

to be perceived by even the most powerful microscope. 

In fact, they are so small that it would be necessary to 

put more than 1,000 of them side by side before a speck 

would be formed sufficiently large to be seen with a 

microscope. The number of them contained in a cubic 

centimeter of air, at ordinary air pressure, is about 27 

billion billion (27 X 1018). 

These molecules are not closely packed together. 

Even in dense solids there are spaces in which the mole¬ 

cules can move about, while in gases only a very small 

fraction of the total volume is made up of the molecules 

(315) 
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—so that the spaces between are, compared with the size 

of the molecules, very large. It is because of this that 

gases have such small densities. The water that we get 

from the condensation of a mass of steam occupies only 

—7— of the volume of the steam, and when air is re- 
1600 

duced to a liquid, the liquid has only of the volume 

of the air. These figures serve to show how small a part 

of the total volume of a gas is taken up by the material 

particles which compose it. 

It must not be thought however that the space thru 

which the molecules of a gas at ordinary pressures move 

before striking other molecules is large as judged by our 

ordinary ideas of largeness. In air at 76 cm. pressure 

the average distance moved by a molecule between col¬ 

lisions, that is its “ free path,” is only about one ten- 

thousandth of a millimeter (.0001 mm.). But even this 

distance is more than fifty times the diameter of one of 

the molecules. 

2. Molecular Motion.— Since molecules are so small 

that they cannot be observed directly, it is of course clear 

that our knowledge of their existence depends entirely 

on indirect evidence. There are many facts of ordinary 

observation which indicate that matter must be made up 

of fine moving particles with spaces between. Consider 

for example sugar dissolving in water or the odor of 

flowers diffusing itself thru a room. Or let us take two 

bottles, one filled with gaseous carbon dioxide and the 

other with hydrogen. If we invert the bottle containing 

hydrogen and place it mouth to mouth on top of the 

dioxide bottle and leave the bottles in that position for 

a few hours, we shall find at the end of that time that 

both bottles are filled with a uniform mixture of the two 

gases. As the carbon dioxide in the lower bottle is 
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twenty-two times as heavy as the hydrogen in the upper 

bottle, it is very difficult to explain this diffusion except 

as the result of motions of very fine particles of the two 

gases—in other words as the result of molecular motion. 

Another indication that gas molecules are in rapid 

motion is found in the fact that gases are capable of 

indefinite expansion; that is to say, no matter how much 

we increase the space in which a body of gas is contained, 

the gas instantly expands and fills the whole space. 

This is what happens when the piston is raised in the 

cylinder of the air pump described in the last chapter. 

The velocities with which the molecules of various 

gases move have been measured and have been found to 

be very high. Air molecules under ordinary conditions 

travel 445 meters in a second and hydrogen molecules 

travel 1700 meters (just about one mile) in a second. 

The velocity of a rifle bullet is somewhat less than half 

that of a hydrogen molecule. It is evident that when a 

gas is contained in a closed vessel the molecules striking 

with these enormous speeds against the walls will exert 

a considerable force on the walls. The total amount of 

this force will be proportional to the number of mole¬ 

cules striking—doubling the number of molecules will 

double the force and so on. From this consideration we 

see at once that if we put into a closed vessel containing 

a gas a sufficient number of extra molecules to double 

the number of molecules in it, thus doubling the density, 

the pressures acting on the walls of the vessel will be 

doubled. It is evident that in all cases the pressure 

exerted by the inclosed gas will be directly proportional 

to its density, which is exactly the statement we made 

for Boyle’s Law in the preceding chapter. 

We shall now consider a very striking illustration of 

these principles. A cylindrical cup of unglazed porous 
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earthenware is plugged at the open end with a cork thru 

which a glass tube passes. The end of the glass tube 

dips below the surface of some colored water in a dish 

and a large glass bell jar, left open at the bottom, is 

inverted over the porous cylinder. Illuminating gas, 

which always contains a large amount of hydrogen, is 

allowed to flow up from a tube into the bell jar. Bub¬ 

bles immediately begin to issue from the end of the glass 

tube showing an increase of pressure inside the porous 

cylinder. If now the bell jar is removed, the colored 

water will rise inside the glass tube showing that the 

pressure inside the cylinder has become less than it was 

before. 

The reasons for these pressure changes are these: 

In the first stage of the experiment, there is the same 

number of molecules per cubic centimeter of hydrogen 

outside the porous cup as there are molecules per cubic 

centimeter of air inside the cylinder. But the hydro¬ 

gen molecules move four times as fast as the air mole¬ 

cules; there will consequently be four times as many 

impacts of hydrogen molecules on the outside of the 

porous cup in one second as there are impacts of air 

molecules on the inside; and since a certain propor¬ 

tion of these molecules pass thru the pores of the 

cup, there will be roughly four times as many mole¬ 

cules entering the cup as leaving it in the same 

time. The pressure will therefore rise and this rise 

is evidenced by the escape of bubbles from the end of 

the tube. 

In the second stage, of the experiment, after the bell 

jar is removed, there will be hydrogen and air inside the 

cylinder and air outside. Under these reversed condi¬ 

tions there will be more molecules escaping in a second 

than enter in the same time and the pressure inside will 
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therefore fall so that the colored liquid will rise in the 
tube. 

3. Effect of Heat on Rate of Motion.—Let us now con¬ 

sider briefly the effect of heat on the motion of the 

molecules. If we take a glass bulb containing air with 

a long LT-shaped tube containing mercury, attached to 

it and heat the air in the bulb, we shall find that the 

mercury is at once depressed in the leg of the tube next 

to the bulb, showing an increase in pressure due to 

the heating. This increase is very easily explained by 

the molecular theory. According to a clause of that 

theory not previously stated, the effect of applying heat 

to any body is to increase the rate of motion of the mole¬ 

cules—in the case of solids this causes the solid to ex¬ 

pand—in the case of liquids, it causes some of the mole¬ 

cules to fly out of the liquid, thus producing evapor¬ 

ation, and in the case of gases, it increases the volume 

or—if there is resistance to expansion—the pressure of 

the gas. We must keep this important development of 

the molecular theory clearly before us, namely, that heat 

applied to matter in any of its forms makes the mole¬ 

cules move faster. The simple experiment with the 

glass bulb described in the foregoing illustrates this 

effect in a gas. For our present purposes however we 

are more interested in this same effect in liquids. 

4. Evaporation and Condensation.— If water is left in 

an open dish, we know that the dish will in time become 

quite dry. This results from what we call “ evapora¬ 

tion.” The process is easily explained by supposing 

that the molecules of the liquid in their natural motions, 

in which some move much faster than others, shoot 

off one by one into the air until all are gone. It is 

clear that applying heat to the liquid ought to increase 
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the rate of evaporation since the heat will increase the 

speed of movement of the molecules, so that more of 

them will fly out in a given time. And it is common ex¬ 

perience that this increase in rate of evaporation with 

rise in temperature does take place. Further, the dish 

becomes dry only if it is left in the open where currents 

of air move over it. For in that case the water molecules 

are carried away as they emerge from the water surface 

and before they can by any chance return to that surface. 

If now we cover the dish with a bell jar, the conditions 

will be very different. The molecules which fly out will 

then move about in the closed space inside the bell jar 

and many of them will strike into the liquid surface 

again and stay there. The molecules moving about 

above the surface of the liquid constitute the “ vapor ” 

of the liquid. A vapor is different from a gas only be¬ 

cause it can easily be reduced again to the liquid form. 

In fact a vapor is a gas near its point of liquefaction. 

As the number of molecules flying about in the vapor 

increase, the number returning to the liquid will also 

increase until finally as many will return in a second as 

emerge in the same time. When this stage is reached, 

no further net loss will take place from the liquid. The 

vapor over the liquid is then said to be “ saturated,” its 

density, which depends upon the number of molecules of 

the liquid in it in each unit volume, does not change with 

time if the temperature is steady. If however the 

temperature of the liquid be raised, the molecules in the 

liquid move faster, more come out in a unit time, more 

will be moving about in the space above and finally more 

will return in a unit time. In the new state of balance 

between the numbers coming off and the numbers re¬ 

turning there will he more molecules in a unit volume 

of the vapor than there were before—in other words the 
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density of the saturated vapor will be increased as a 

result of the increased temperature of the liquid. 

We have then, these facts: When a liquid evaporates 

into a closed space, the evaporation goes on until a 

saturated vapor is formed in which the number of mole¬ 

cules returning to the liquid per second equals the num¬ 

ber coming off from the liquid in the same time. The 

density of this saturated vapor depends on the tempera¬ 

ture, being higher for high temperatures than for low. 

What will happen when a dish of water is placed in a 

closed space containing saturated water vapor depends 

on the relative temperatures of the water and the vapor. 

If the water is warmer than the vapor, some of the water 

will evaporate into the space and the density of the 

vapor will increase until it is saturated at the higher 

temperature, that is until the number of molecules 

coming out of the liquid in a unit of time equals the 

number entering it. When this point is reached, the 

temperature of both liquid and vapor will be the same. 

If, on the other hand, the vapor is warmer than the 

liquid, some water will condense out of the vapor and 

join the water surface; and when water and vapor have 

come to the same temperature, the vapor will be satu¬ 

rated at that temperature, that is, as we have seen, the 

number of molecules going into a unit area of the water 

surface will be equal to the number coming out in the 

same time. Finally, if we take a volume of water vapor 

which is not saturated at the temperature of its sur¬ 

roundings and steadily lower its temperature, we will 

soon bring it to a saturated state. If we lower the 

temperature still further, water will begin to condense 

out of the vapor on to the walls of the container at such 

a rate that for any given temperature the vapor will 

always be saturated. 
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6. Clouds, Rain, Dew, etc.— The facts here brought out 

enable us to explain a great many ordinary happenings 

in nature. On account of the wide distribution of water 

the atmosphere always contains a large amount of water 

vapor which in the immediate neighborhood of large 

bodies of water is likely to be saturated or nearly so. 

Water vapor saturated at 32° F.—the melting point of 

ice—exerts a pressure equal to the weight of a column of 

mercury of unit cross section 4.6 millimeters high. At 

70° F. the pressure of the water vapor is equal to that ex¬ 

erted by a mercury column 18.5 millimeters high, while 

at 104° F., its pressure equals that of about 55. millime¬ 

ters of mercury. A cubic meter of saturated water 

vapor contains 4.8 grams of water at 32° and about 

50.6 grams at 104°. These figures show that if a cubic 

meter (1,000,000 cubic centimeters) of air saturated at 

104° F.—a temperature which might be attained on the 

surface of a quiet pool in hot summer sunlight—be low¬ 

ered to 32° about 45 grams of water will be precipitated 

from it. This change in temperature might easily be 

brought about by a vertical rise of a few thousand feet. 

This rise would naturally result in accordance with 

Archimedes’ principle from the lowered density of the 

superheated air over the pool. The condensed water 

would form a multitude of small globules which would 

produce a cloud. If these drops grew by further con¬ 

densation to a sufficient weight they would fall as rain. 

The vapor remaining over the surface of the pool when 

the sun went down would cool and precipitate its water 

content to form a low-lying mist or fog. If the vapor 

spread over the country-side and came in contact with 

the cool grass after sundown, the water would precipi¬ 

tate as dew. If the upper atmosphere was sufficiently 

cold, the moisture deposited in the cloud would form in 
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the process of condensation into very beautiful minute 

crystals and would come down as snow rather than as 

rain. Under certain special conditions in the atmos¬ 

phere in which layers of rain and snow clouds alternated, 

hail stones would fall consisting of concentric layers of 

snow and ice. 

6. Evaporation and Temperature.— If we put one ther¬ 

mometer into some ether in a deep narrow tube and 

another into ether in a wide shallow dish, we find the 

temperature in the shallow dish to be somewhat lower 

than in the tube. This is what we might expect since 

the evaporation from the broad exposed surface is neces¬ 

sarily more lively than from the surface in the narrow 

tube. Evaporation from a liquid surface always lowers 

the temperature of the liquid. The molecular theory 

indicates that this effect should be expected, since in 

evaporation the molecules which fly out are always those 

with velocities somewhat above the average, so that the 

average velocity of those left behind is less than it was 

before, which means that the temperature is lower. If 

the rate of evaporation from the surface is high, the 

cooling effect may be very marked. Drinking water is 

kept cool in hot countries by putting it in goat-skins 

which are somewhat porous and hanging the skins up in 

a current of air where evaporation can take place freely 

from the moist surface. The surface of the human body 

moistened with perspiration is cooled in a similar way 

by a current of dry air. It will be seen that this cooling 

effect cannot take place if the current of air contains 

saturated water vapor, for under these conditions no 

evaporation can take place. The effect of high tempera¬ 

tures on the human system therefore depends to a great 

extent on the amount of moisture in the air, or as we say, 



324 MODERN AMERICAN EDUCATION 

on the humidity of the air. In the summer time we can 

bear high temperatures much more comfortably when 

the air is relatively dry than when it is moist. From this 

point of view, it is important to know the relation be¬ 

tween the amount of moisture actually in the air and the 

total amount which it can take up at the particular 

temperature, because on this relation will depend the 

rate of evaporation from water in contact with the air. 

This ratio is called the Relative Humidity. It is usually 

stated in weather reports during hot weather and is quite 

as important as the temperature in determining the 

effect on us of the hot weather. 

7. Determining the Relative Humidity.—The relative 

humidity can be determined in this way. Ice is added 

to water contained in a brightly polished nickle-plated 

can and stirred round with a thermometer. When the 

temperature of the water vapor around the can is re¬ 

duced to its saturation temperature, moisture will begin 

to form on the polished sides of the metal vessel where it 

can be detected as a thin film. At this instant the ther¬ 

mometer is read and the temperature at which the water 

vapor in the air is saturated thus determined. This is 

known as the dewpoint. Suppose this temperature is 

found to be 15° Centigrade. We now look up the 

pressure of saturated water vapor at 15° in a table such 

as can be found in any scientific reference book. We 

find this pressure to be equal to that of 12.7 millimeters 

of mercury. This represents the pressure of the water 

vapor actually in the air at the time the measurement is 

made. On a second thermometer we now read the 

temperature of the air. Suppose this temperature to be 

25°. In the same table we find that saturated water 

vapor at 25° will exert a pressure of 23.5 millimeters of 
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mercury. It is therefore plain that the air contains at 

this time ■— or a little more than one-half as much 

vapor as it can hold. The relative humidity in this 

case is .54 or 54%. On very uncomfortable and exhaust¬ 

ing days in summer the relative humidity lies between 

80% and 90%. For the best and most healthful con¬ 
ditions it should lie between 50% and 60%. 

8. Evaporation in a Vacuum.—Before leaving this sec¬ 

tion of our subject one other important and rather pecu¬ 

liar point must be referred to. Experiments show that 

the amount of a liquid which will evaporate into a closed 

space of a given volume is the same when that space is 

a vacuum as when it is filled with air. The evaporation 

takes place jnore slowly in the second case on account 

of the great number of collisions between the water 

molecules and the air molecules but the total amount of 

liquid evaporated is the same in both cases. At first 

sight this seems rather peculiar. The reason for it lies 

in the fact already referred to that the spaces between 

the molecules of gases constitute by far the greater part 

of the volume of a gas. The experimental facts above 

stated show further that if a space contains a number of 

different vapors each of these vapors will exert the same 

pressure as if it were alone in the space and the total 

piessure will equal the sum of the pressures of the 

different vapors. When the pressure of the atmosphere 

is measured, the value includes the pressure of the water 

vapor in the air as well as the pressure of the air itself. 

Moreover, the phenomena described above are not de¬ 

pendent on any absorptive power possessed by air simi¬ 

lar to that of a sponge for water. They take place in the 

absence of air more rapidly and completely than in its 
presence. 
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9. Molecular Forces in Liquids.— So far in this chapter 

we have been studying mainly molecular motions in 

matter in the gaseous state. These motions, for the most 

part, show a tendency of the molecules to fly away from 

one another. But there are also certain forces acting 

between molecules of certain kinds tending to hold them 

together. The single fact that gases are indefinitely ex¬ 

pansible indicates that the attractive forces between the 

molecules of gases are very small if there are any at all. 

The molecules of solids on the other hand hang to¬ 

gether very tenaciously. Thus it requires a weight of 

about eight tons to pull in two a steel rod 1 centimeter 

in diameter. 

In liquids we have an intermediate condition. Altho 

liquids hang together so that they can be poured from 

one vessel to another in a continuous stream, yet they 

apparently possess very little longitudinal strength. 

We are for this reason likely to underestimate the 

strength of the molecular forces in liquids. However 

if we take a sheet of glass with an area of one square 

foot and after providing it with a handle by waxing a 

block of wood to its center let it down horizontally on to 

a surface of water so that the water wets it, we shall be 

surprised to find it necessary to exert a very consider¬ 

able force to pull the plate free from the water surface 

again. Since, after removal, the plate will have a film 

of water adhering to it—that is, will be wet,—it is clear 

that the force used was expended actually in tearing 

the liquid apart—that is in overcoming the molecular 

attractive forces in the liquid. 

Let us consider the way in which these attractive 

forces act at different places in a body of liquid as at 

P and Q Fig. 20. At P the molecules will be pulled 
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equally in all directions—there will conse¬ 

quently be no resultant force acting to 

affect the motion of the molecules in any 

way. At Q however or at any other point 

in the liquid surface, the forces will be 

unbalanced with a resultant force directed inward. 

These unbalanced forces produce an effect in the sur¬ 

face film exactly like that which would be produced if 

the surface were elastic and contractile. The mass of 

liquid has a tendency to draw itself together into the 

most compact possible shape, that is into the shape 

which has the least surface for the greatest volume. 

This shape is that of a sphere. The liquid in the vessel 

does not take the shape of a sphere because the forces 

due to its weight are much greater than the forces ex¬ 

erted by its surface film. If we could in any way nullify 

the force of gravity we ought to expect the liquid to take 

a spherical form. 

We can produce this effect in the case of lubricating 

oil by making up a solution of alcohol and water of the 

same density as the oil and then introducing a large drop 

of the oil below the surface of the alcohol-water mixture 

thru a glass tube. The oil will immediately take up a 

perfectly spherical form. Since in these conditions the 

buoyant effect on the oil drop is exactly equal to its 

weight, the influence of gravity is nullified and the ob¬ 

served form of the globule is due entirely to the action 

of the tension in the liquid surface. Whenever the force 

due to gravity acting on the mass of liquid is small as is 

the case with very small drops, the shape taken up will 

be more or less spherical—for example small droplets of 

mercury scattered on a table are almost exactly spherical 

as are also very fine droplets of water. This contractile 
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tendency of liquid surfaces can be measured and when 

so measured is called the “ surface tension ” of the liquid. 

It is different for different liquids. Thus, the surface 

tensions of alcohol and of kerosene are about one-third 

the surface tension of water. 

The existence of this contractile tendency in liquid 

films is illustrated in blowing soap bubbles from a pipe. 

If the inside air pressure is released while the bubble is 

still attached to the pipe, the bubble will immediately 

contract into a flat sheet over the end of the pipe. 

10. Cohesion and Adhesion.— When the finger is 

dipped into water and then withdrawn, it is found to be 

wet, but when withdrawn from mercury, it remains per¬ 

fectly dry. Whether or not a liquid wets the finger de¬ 

pends therefore on whether the attractive force of the 

material for itself—the so-called cohesive force of the 

liquid—is greater or less than the attractive force of the 

liquid for the skin of the finger—the so-called adhesive 
force. These terms, cohesive and adhesive, are of gen¬ 

eral application—the term cohesive being applied to at¬ 

tractive forces between molecules of the same kind and 

the term adhesive to forces between molecules of differ¬ 

ent kinds. Whenever a solid is dipped into a liquid and 

comes out wet, it is evident that the adhesive forces are 

greater than the cohesive, while if the solid comes out 

dry, the cohesive forces must be superior to the adhesive 

ones. 

Let us consider somewhat further the force actions in 

the surface of a body of water where it meets the wall of 

a glass containing vessel. Since the effects due to grav¬ 

ity are very small compared with the effects due to 

cohesion and adhesion in all cases where the mass of 

liquid considered is small, we shall in this discussion 
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leave out of consideration the 

weight of the water, being con¬ 

cerned only with a very small 

quantity of the liquid where its 

Fis*21* surface touches the glass. 

The conditions are represented in Fig. 21. Fi shows 

the direction of the force on the water molecules due to 

the attraction of the glass. F2 shows the force acting on 

the same molecules due to the bulk of the water. Since 

in water the cohesive force is less than the adhesive force 

for glass, F2 is represented by a line shorter than Fi. 
The resultant force acting can be represented by Fs in 

magnitude and direction. That this is true will be defi¬ 

nitely proven in the next chapter—just now we will take 

the statement without proof. 

We must now recall a proof given in the chapter on 

hydrostatics that the free surface of a liquid is always 

horizontal. This proof can be extended and stated in 

this form: that the surface of a liquid is always per¬ 

pendicular to the line of the resultant force acting on 

it; if the force of gravity is the only force acting, the 

surface will be horizontal since a horizontal surface is 

defined as one perpendicular to a plumb line. Ap¬ 

plying this principle to the case under consideration 

it is plain that the water surface should be curved up 

at its line of contact with the glass walls in order to 

be perpendicular to F3 as shown at A. It is in actual 

fact, so curved. 

Consider now Fig. 22, in which are 

shown the conditions existing when 

mercury is contained in glass. Here 

Fi the adhesive force is small, F2 the 

cohesive force is large and Fs the re- Fig. 22, 
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sultant is consequently directed inwards. According to 
the rule just given the liquid surface in this case should 
be curved downward where it meets the glass. This is 
in fact found to be true. 

11. Capillary Elevation and Depression.— Since the liq¬ 
uid surfaces here considered have a tendency to con¬ 
tract as if they were elastic, it is clear that a small lift¬ 
ing force ought to be exerted on the water in Fig. 21 
and a small depressing force ought to act on the mercury 
in Fig. 22. The existence of these forces can be ren¬ 
dered evident by reducing the weight of liquid acted on 
by cutting down the diameters of the vessels. It is 
necessary to make the diameters very small before the 
effect becomes marked—the vessel must, in fact, be re¬ 
duced to a fine tube. Such tubes are called capillary 
or hair-like tubes. When one of these tubes is dipped 
into water, the water at once rises to a greater or less 
height depending on the internal diameter of the tube. 
This is known as “ capillary elevation.” On the other 
hand, when the tube is dipped into mercury the mer¬ 
cury surface inside the tube will stand lower than the 
surface outside by an amount depending on the diam¬ 
eter of the tube. This is known as “ capillary depres¬ 
sion.” These effects, which are of considerable practical 
importance, are easily explained by the principles 
which we have just now been discussing. 

When the tube is dipped into a liquid which wets it, 
the liquid surface inside the tube will be concave up¬ 
wards as shown in Fig. 23. The surface will im¬ 
mediately contract in order to flatten itself and as soon 
as it is flat it will at once rise again around the edges 
and so on, thus rising in the tube and drawing after it a 
column of the liquid until the weight of that column 
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exactly balances the contractile 
tendency of the surface. When 

the tube is dipped into a liquid 

jf which does not wet it, the liquid 
surface inside will be convex up¬ 

wards and in contracting' will 
push the liquid down until the 

upward pressure due to the dif¬ 
ference of level inside and out equals the contractile 
force of the surface (B, Fig. 23). 

There are many familiar illustrations of capillary 
effects. The flow of oil upward thru a wick is due to this 

effect as is also the complete wetting of a towel in case 
one corner is left in a dish of water. 

Fig. 23. 

These same principles enable us to explain how cer¬ 
tain kinds of insects walk or skate over the surface of 

water. The water does not wet the feet of the insect 

which therefore make small depressions in the surface in 
which the surface film is concave upward. The con¬ 

tractile forces in these depressions suffice to hold the in¬ 

sect up. A striking experiment showing the same effect 
can be made with a sewing needle. If a needle is laid 

carefully on a water surface it will remain floating on the 

surface in spite of the fact that it is eight times as dense 

as the water. The water does not wet the needle and the 

water surface around the needle is therefore concave up¬ 

ward as in Fig. 24. Since the contractile tendency of the 

film in the depression is greater than the weight of the 

needle, the needle cannot sink. If the film is ruptured in 
any way, the needle will of course go thru and sink di¬ 
rectly to the bottom. 

Fig. 24. 

12. Molecular Forces in Solids.— 

We close this chapter with a 
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brief study of the action of molecular forces in solids. 

In solids the cohesive forces are very great. We have 

already noted that it takes a force of about eight tons 
to pull in two a steel rod one centimeter in diameter. 

The tenacity or tensile strength of a substance is meas¬ 
ured by the force necessary to pull in two a rod of it 

of a certain cross area. Tensile strength is usually meas¬ 
ured in kilograms per square millimeter. In these 
units the tensile strength of lead is about 2; of steel 

piano wire about 200; of brass wire about 38; of hard 
drawn copper about 45; of oak about 8; of catgut about 

42; and of quartz fibers about 100. 
If we take a wire of any material and apply loads to 

it, considerably less than the load necessary to break it, 

we find that stretches or elongations are produced 
by the different loads which are proportional to the loads 

—that is doubling the load doubles the stretch and so on. 

We also find that when the load is removed, the wire 
will contract to the length which it had before stretch¬ 

ing. This tendency of the body to return to its original 
volume and shape after being distorted is known as 

elasticity. If, however, the applied load exceeds a cer¬ 
tain definite amount, the wire when released will remain 

permanently stretched. This definite limiting tension is 
known as the limit of perfect elasticity for the substance. 
It is very different in different materials. A highly 

elastic substance is one which returns rapidly and 
accurately to its former shape and size after being 

stretched. From this definition it is plain that sub¬ 
stances like steel, glass and ivory have much higher 

elasticities, than elastic rubber bands and such things 
which, altho they can be stretched to a great length, 
return to their original states only very slowly and im¬ 

perfectly. Billiard balls are consequently made of ivory 
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rather than of rubber and vehicle springs are ordinarily 
made of steel. 

13. Hooke’s Law of Elasticity.—Robert Hooke (1635- 
1703) first showed by accurate experiments that if the 
limits of perfect elasticity are not exceeded, the de¬ 

formations produced in elastic bodies are proportional 
to the loads applied. The full statement of Hooke’s 

Law, as it is called, is as follows: “ Within the limits of 

perfect elasticity, elastic deformations of any kind, 

twists, bends or stretches, are directly proportional to 
the forces producing them.” This law has many im¬ 

portant applications in physics which will be referred 
to as they arise in the course of our studies. Hooke 

first published this law as an anagram at the end of 

a book which he issued in 1676. The anagram read 

veiiosstttnuu. He gave the translation, “ Ut tensio ut 

vis,” some two years later. This Latin phrase means 

The extension is proportional to the force acting.” 

Hooke’s exact expression of his law in English is “ The 

power of any spring is in the same proportion with the 

tension thereof that is, if one power stretch or bend 
it one space, two will bend it two and three will bend it 
three, and so forward.” 

We have now completed our discussion of the forces 
acting between the molecules of solids, liquids and gases. 

We must next turn our attention to the study of forces 
acting between large bodies—that is to say between 
bodies large in comparison to molecules. 

REVIEW. 
1. State the molecular theory of matter. 

2. Why does evaporation from a liquid surface always lower 
the temperature of the liquid? 

3. Define (a) cohesion and (b) adhesion. 
4. State Hooke’s Law. 



CHAPTER IV 

COMPOSITION AND RESOLUTION OF FORCES 

1. Force Units.—It will be remembered that in the In¬ 

troduction, we defined a force as an action in the nature 

of a push or a pull between two bodies which tended to 

change the motions of the bodies. The unit of force that 
we shall make use of in this chapter has the same name as 

the unit of mass. It is necessary therefore to take par¬ 
ticular care to avoid confusion of the two units. The 

unit of mass in the metric system is the gram, that being 

the mass of a cubic centimeter of pure water at 4° Centi¬ 
grade—the unit of force is the earth’s pull on a gram of 

mass. It is called the gram of force. While the mass of 

a gram is, of course, definitely the same at all times and 
places, experiment shows that the earth’s pull on a gram 

of mass varies as we move from the equator toward the 
poles and also as we ascend a high mountain. In other 

words, the gram of force is not constant—it varies. At 
the equator it is about 5 parts in 1000 less than it is at 
the north pole. This is due partly to the rotation of the 

earth and partly to the flattening of the earth at the 

poles, both factors affecting the earth’s pull on a body in 
ways which will be explained later. 

In the English system, the unit of mass is the pound 
and the unit of force is the earth’s pull on a pound of 

mass. This pull, called the pound force, varies of course 
from place to place, the same as does the gram force. 
There are other fundamental force units besides the 

gram force and the pound force, but for the present we 

(334) 
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shall make use of only these two. In order to avoid con¬ 
fusion with the units of mass we shall make a practice 
of using the expressions “ gram force ” and “ pound 
force ” in speaking of force units. 

2. Measurement and Comparison of Forces.—A usual 
way of comparing the relative values or magnitudes of 
forces is to allow them to act successively on a coiled 
spiral spring as in a spring balance. According to 
Hooke’s Law a double force will produce a double ex¬ 
tension and so proportionately. A spring can easily be 
calibrated, that is graduated, in successive units, by 
hanging known weights to it and marking off the exten¬ 
sions on a fixed scale. When so graduated it can be used 
directly for the measurement and comparison of forces. 

A force, being in the nature of a push or pull, has 
always a definite direction and sense—a definite magni¬ 
tude in grams force or pounds force—and, when acting 
on a body, a definite point of application. We can 
always represent a force by a straight line drawn in a 
definite direction (with an arrow head on it to show its 
sense) and of a definite length proportional to the mag¬ 
nitude of the force in grams force or pounds force. The 
beginning of this line shows the point of application of 
the force. The word “ sense ” is somewhat unusual in 
this connection and ought therefore to be explained. A 
railroad track laid north and south has a definite direc¬ 
tion, north-south, but no sense. The motion of a train 
running on the track has a direction north-south no mat¬ 
ter which way the train is moving. If the train is going 
north, the motion is in a northerly sense, while if it is 
going south, the motion is in a southerly sense. It is 
clear that in representing the motion of the train by a 
line, the direction of the line represents the direction 
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Fig. 25. 

of the motion but an arrow head 

is needed on the line to indicate 

its sense. 

3. Resultants and Equilibrants. 

—Let us now consider the ex¬ 

perimental arrangement shown in 

Fig. 25. Three spiral springs, 

A, B and C, graduated in grams 

force are attached to a small 

plate P by three strings. From 

the other ends of the springs, 

strings are taken under the clamps D, E and F, so 

that after certain forces have been applied to the springs, 

the strings can be clamped and things kept station¬ 

ary. Let the angle of PD with Y be 30° and of PE 

with Y be 60°. Let PF lie along the line YY\ Then 

when C reads 100 grams force, B must read 50 grams 

force and A 86.5 grams force in order for P to remain 

stationary. It is evident that the effect produced by 

forces A and B acting together could be produced by a 

single force alone, say G, of 100 units acting along PY 

directly opposite to force C for in that case P would 

still remain stationary, G and C being equal and di¬ 

rectly opposed, the resultant force acting on P clearly 

being zero. Force G can be called the resultant of 

forces A and B—a resultant of two forces being de¬ 

fined as the single force which will produce the same 

effect on a body as is produced by the action of the two 

forces together. Again, if A and B were acting on P, 
and C did not act, P would move. The force C there¬ 

fore neutralizes the combined effect of A and B and pre¬ 

vents the motion of P. C is consequently called the 

equilibrant of A and B—the equilibrant of a force or 
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forces being the single force 
which will just prevent the mo¬ 

tion which the given forces tend 

to produce. The equilibrant of 
a system of forces is always 

equal and opposite to the result¬ 
ant of the same system. 

We can represent the forces in 
this experiment by lines and thus 

make a “ graphic construction.” 
Fig. 26 represents such a con¬ 

struction. To make this drawing, put in the reference 
lines IT’ and FF1 then lay down PE 50 units long 

(say 50 millimeters, representing a gram force by a mil¬ 
limeter of line) at an angle of 60° to the right of YY\ 

This angle can be measured with a protractor. Then 
draw PD 86.5 units long at an angle of 30° on the other 

side of YY\ Finally put PF 100 units long on the line 

YY1 and put in arrow heads as shown. If now a paral¬ 

lelogram is constructed on PD and PE as sides, it will 

be found that PY is the diagonal of that parallelogram 

and furthermore that PY measures exactly 100 units in 

length. The diagonal of the parallelogram constructed 

on the lines representing forces A and B as sides there¬ 

fore represents the resultant of A and B. We see fur¬ 

ther that the line PY1, equal in length and opposite in 

sense to this diagonal, represents the equilibrant of A 
and B. 

A general proposition, true for any two forces lying 

at any angle whatever, can be stated as follows: To find 

the single force which will produce the same effect as two 

given forces, that is to find the resultant of two forces, 

lay the forces out graphically representing them by lines 

r 

Jr 
V' 
Fig. 26. 
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of the proper lengths in the proper directions; then con¬ 

struct a parallelogram on these two lines as sides. The 

diagonal of this parallelogram will represent the result¬ 

ant of the two forces both in magnitude and in direction. 

4. Components.— Let us now suppose that PF is a 
girder in a bridge truss and that it sustains a pull of 100 
tons force. Let us suppose further that this pull is to 
be neutralized or in other words supported by two gird¬ 

ers along PD and PE. In order to know what size 
girders will be required on PD and PE it will be neces¬ 

sary to calculate the magnitude of the pulls along these 
girders due to the given pull of 100 tons force on PF. 

It is in the first place evident that a force equal to that 

in PF and directly opposite to it in direction would serve 
the necessary purpose of support. This would be the 
force G referred to in the last paragraph. The problem 

therefore reduces itself to this: To find the two forces 
acting along PD and PE which will produce the same 

effect as force G along PY1. This is known as deter¬ 

mining the components of the single force G along the 

two given lines PD and PE. How to make the solution 

graphically is clear from what has already been said 

about the parallelogram of forces. On the line repre¬ 

senting the single force G as a diagonal construct a 

parallelogram with two sides in the two given directions 
PD and PE. The lengths of these sides after the 

parallelogram is finished give the magnitudes of the re¬ 

quired components. The application of this simple rule 

to the problem in hand shows that the component along 
PD must be 86.5 tons—while that along PE must be 50 

tons. This problem is of course the inverse of that 
treated in the preceding paragraph. 

We have now developed two graphical methods, the 
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first for finding the resultant of 

any two given forces acting at 

one and the same point in given 

directions, the second for find¬ 

ing the components of any 
given force along two given lines. These methods can 

be applied to the solution of many different problems. 
Let us consider two or three specific cases. 

5. Force Actions: Horizontal Plane—First take the 
case of a car M (Fig. 27) being shoved along a level 

track by a man pushing on the handle AP. Suppose 

that a compressible graduated spring S in the handle 

shows the applied force to be 100 pounds force. It 

is evident that only a part of this force is effective in 
moving the car along the track, since a certain propor¬ 

tion of it merely pushes the car down on the track with¬ 

out tending to move it. It is of course of practical im¬ 

portance to know what is the value of the force effective 

in moving the car: that is to know the component of the 

force AP along the direction of the track CD. We can 

calculate this component and at the same time find the 

component pushing the car down on to the track by ap¬ 

plying our parallelogram rule. This is done in Fig. 28. 

Draw AXPX 100 units long at the proper angle, that is 
parallel to AP in Fig. 27. Draw CD1 parallel to CD 

and put in P E1 perpendicular to C D1. These two 

lines CXDX and PXEX are in the direction of the two 

components that we wish to determine—one along the 

track, the other perpendicular 
to it. Now, according to our 

rule, complete the parallelo¬ 

gram on the diagonal AXPX. 

The sides of the parallelo- 
Fig. 28. 
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Fig- *9. 

gram KP1 and LP1 when meas¬ 

ured in the same scale of units 
used in laying out AXPX = 100 
units give the effective forces 

acting in the two directions— 

that is to say the components of the single force 
AXPX in the two directions. With the conditions shown 

in Fig. 27 a force of 92.5 pounds is available out of the 

man’s push of 100 pounds force to move the car along 

the track. 

6. Force Actions: Inclined Plane.— Next consider the 

case of a barrel P weighing 200 pounds being rolled up 

a plank 9 feet long into a wagon the bed of which is 3 

feet above the ground, Fig. 29. The question is to find 

the force which must be applied parallel to the plank in 

order to keep the barrel from rolling down. The active 

force is the weight of the barrel 200 pounds force acting 
vertically down toward the center of the earth along the 

line PM. This force can easily be resolved into two 

components one PL, giving the force along the plank 

tending to make the barrel roll down, and one PK per¬ 

pendicular to the plank which produces no effect except¬ 

ing to press on the plank itself. In order to keep the 

barrel from rolling down it is merely necessary to apply 

a force along the plank equal and opposite to the com¬ 

ponent PL. To make the solu¬ 

tion which is represented in 
Fig. 30 first draw PXMX parallel 
to PM and 200 units long— 

then put in the lines PXLX and 

PXKX parallel respectively to PL 
and PK. Next apply the paral- 

Fig. go. lelogram rule as before, con- 
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structing the parallelogram PAMB on PXMX as a 

diagonal. The lengths of the sides PXA and PXB when 

measured on the same scale used to measure PXMX will 

give the component forces sought. We thus find that 
66.6 pounds force must be applied along the line PL in 

order to prevent the 200 pound barrel from rolling 

down. It will be noted that the length and height of the 

plank enable us to plot the angles a and b in Fig. 30 and 

thus affect the solution which would be different for dif¬ 

ferent lengths or heights. It is suggested that the reader 

determine by the same method the force which must be 
applied parallel to the ground, that is along the line PT 
Fig. 29, to hold the barrel stationary. 

7. Newton’s Three Laws.—We shall next turn our at¬ 

tention to a series of remarkable fundamental general¬ 

izations or laws dealing with force and motion made by 

the famous Sir Isaac Newton (1642-1727). 

8. Inertia.—The first of these laws deals with a tend¬ 

ency of matter with which we are all familiar. We know 

that if a person steps from a rapidly moving car to the 

ground he is likely to be thrown down. We also know 

that passengers in a stationary car feel a very distinct 

jerk if the car starts suddenly into motion. These and 

many similar familiar facts show that when bodies are 

in motion they tend to continue to move, and that when 

they are at rest they tend to remain at rest. Newton 

perceived that this tendency was a general property 

possessed by all matter. He called it inertia. Inertia 

is accurately defined as that property possessed by all 

matter of resisting any change in its state of motion, 

either attempts to stop it if moving or to start it if at 

rest, or attempts in any way to change either the amount 

or direction of its motion. It is always found necessary 
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to apply a force to a body in order to change its state of 

motion. Newton’s first law covers this fact. Stated in 

Newton’s own words the law reads: 

Every body perseveres in its state of rest, or of uni¬ 
form motion in a right (straight) line unless it is com¬ 

pelled to change that state by forces impressed thereon. 

The statement that all matter possesses inertia is of 
course equivalent to Newton’s first law provided inertia 
is adequately defined. It will be seen that in accordance 

with this law a body once started into motion will con¬ 

tinue to move forever in a straight line unless some force 
acts to stop it. These conditions cannot be reproduced 
on the earth because it is impossible to get rid entirely 

of frictional forces in any machinery. There is always 
therefore some force acting to stop any motion which we 
may start. The planets, however, moving thru empty 

space apparently meet with no resisting forces, and 

thruout the centuries during which observations have 

been made, no lessening of the speeds of the planets has 
ever been detected. 

9. Momentum.—Newton’s second law treats of the 

“ amount or quantity of motion ” possessed by bodies. 
It is necessary to get a clear idea of what this term 

“ quantity of motion ” means as Newton used it. It is 
clear that the effect produced on a body by the applica¬ 
tion of a force depends both on the magnitude of the 
force and on the mass of the body. A vigorous kick 

applied to a football full of air will give it a motion with 
considerable speed, but a kick with the same force ap¬ 
plied to a football full of sand would scarcely move it— 

the speed imparted would be very slight. The “ quan¬ 

tity of motion ” possessed by the football after the kick 

may be measured in both cases by taking the product of 
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the mass of the ball into its velocity or “ rate of motion.” 
If for “ quantity of motion ” we use, as is customary, the 

single word “ momentum ” we can say that the mo¬ 

mentum of any body at any given instant may be 

measured by the product of the numbers representing 

the mass of the body and its velocity at that instant. 

A velocity is a speed or rate of motion of a body in a 

certain direction. The idea of velocity is familiar to all 

in connection with moving trains and other objects. We 

measure velocity by the number of space units passed 
over in unit time, as, for instance, in miles per hour or 

feet per second or centimeters per second. We define 

quantity of motion or momentum, then, as follows: 

Momentum = Mass X Velocity. 

If the mass is in grams and the velocity in centimeters 

per second, the momentum will be in metric units of 

momentum. There is no generally accepted name for 
this unit. 

Before saying anything further about Newton’s 

second law, we can by making use of the idea of mo¬ 

mentum give a new form to Newton’s first law. A 

body not acted upon by any external force must accord¬ 

ing to that law move in a straight line with unchanging 

speed—that is with “ constant velocity.” If the velocity 

is constant, the momentum must be constant, whence we 

can say for the first law “ A moving body not acted 

upon by external forces has a constant momentum.” 

If now a moving body is acted upon by an external 

force, its momentum will be changed. The “ time rate 
of change ” of the momentum, that is the change in mo¬ 

mentum in unit time, is found by dividing the total 

change in momentum produced by the force by the 

number of seconds during which the force acted. If the 
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original momentum of the body was mvi and the mo¬ 

mentum after t seconds was mv2 then the time rate of 

change of the momentum was —my2~77--1—. This pre¬ 

pares us for the statement of Newton’s second law of 

motion which is: 

The time rate of change of momentum is proportional 

to the force acting and takes place in the direction in 

which the force acts. 

This means that if a certain force produces a certain 

change in the momentum of a body in one second, a 
double force will produce a double change in the mo¬ 

mentum in the same time and so on. 

This can be put as a formula / oc ■~mV2~flVl- where f 
V 

represents the acting force. If mv is set down equal to 

the change in momentum then we can write / oc -. 

The brief note on proportions given in the Introduction 
shows us that we can write this last expression in the 

form — k, or f = k where A: is a constant. If 

now we define the unit of force as that force which is ap¬ 
plied to a unit of mass for a unit of time will produce a 

change in velocity of one unit, then the constant k will 

reduce to 1, so that as long as we use this unit of force we 

are justified in putting down / = In the metric 

system the force which will in one second produce a 

change in velocity of 1 cm. per second in a mass of one 

gram is called the dyne. In the English system the 

force which will in one second produce a change in ve¬ 
locity of 1 ft. per second in a mass of one pound is called 

the poundal. So far we have been using as units of force 

the gram force and the pound force. Experiments 

show that a gram force acting for one second on a gram 

mass gives it a velocity of 980 cm. per second and that a 
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pound force acting for one second on a pound mass, 

gives it a velocity of 32.16 feet per second. It is evident 

from this that the gram force equals 980 dynes and that 
the pound force equals 32.16 poundals. 

Keeping these facts in mind the formula f = or 

the equivalent expression f — m (~2~Vl ) may be used 

to solve a great variety of problems. For instance, what 
force is necessary to impart to a mass of 20 grams a 

change in velocity of 10 cm. per second in each second? 

Here —'2~Vl-, which is the change in velocity in one 

second, is equal to 10—m equals 20—whence f = 

m ( —■2~t’1 ) = 20 X 10 = 200 dynes. In grams force the 
• 200 

answer is grams force. The reader when using this 

formula should bear carefully in mind that when the 

values given for the mass in grams are directly substi¬ 

tuted for m in the formula, the force will come out in 
dynes. 

10. Action and Reaction.— Newton’s third law of mo¬ 

tion deals with an aspect of force action to which we 
have already referred. It will be remembered that we 

have stated that a force is always in the nature of a push 

or pull between two bodies, acting on both bodies. Take 

the case of an elastic band fastened to two blocks, 

pulling them together, it is plain that no force can be 

exerted on the one block that is not equally exerted on 

the other. If the band is cut loose from the one block 

it will instantly cease pulling on the other. So for a 

spiral spring pushing two blocks apart. The spring 

must push equally on both blocks and in opposite 

directions. So with a bullet fired out of a gun where 

the expanding gases must push both on the gun and 
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on the bullet. It is so with all force actions. New¬ 

ton expressed this general fact in his third law by 
saying: 

To every action there is an equal and opposite 

reaction. 

The foregoing statement will be more useful to us if 

we put it in a slightly different form. Since every force 
action is exerted equally on two bodies, it follows that 
whenever a body acquires momentum, some other body 

must acquire an equal and opposite momentum. This 

principle is rigidly true, but it is not always easy to see 
the application of it. When an apple falls from a tree 
a momentum is imparted to the apple but not appar¬ 

ently to any other body. In this case the other body is 
the earth, the mass of which is so great compared with 

that of the apple that altho the momentum given to the 
earth equals that given the apple, the resulting velocity 

of the earth’s motion is entirely imperceptible. Simi¬ 

larly, when a man leaps off a ferry boat, he imparts 

to the boat a backward momentum, miVi, equal to his 

forward momentum, mv, but the mass of the boat is so 
much greater than the mass of the man that the boat 
apparently does not move. If, however, the same man 
leaps ashore out of a light canoe, the canoe will glide 

back with considerable speed—so much so that the man 
is likely to fall short in his jump. In this case the mass 

of the man is probably greater than that of the canoe. 
The mathematical expression of this law which can be 
made use of in solving problems is: 

m 1V1 = m-v2 where mi and m2 are the masses of the 

two bodies between which the force acts and Vi and Vz 

are the resulting changes in velocity of the first and 
second bodies respectively. 
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11. Attraction of Bodies.— Having now completed our 

brief study of Newton’s three laws of motion we next 
turn to the consideration of another law of the greatest 

importance put forward by this same philosopher. 

Newton collected a great mass of data on the motions of 

the planets from which he reached the conclusion that 

forces must act between the heavenly bodies which vary 

inversely with the square of the distances between their 

centers and directly with the product of their masses. 

This principle was extended to apply also to bodies on 
the earth giving us the final form of the law: 

Any two bodies in the universe attract each other with 

a force which is proportional directly to the product of 

their masses and inversely to the square of the distance 
between their centers. 

Using the facts about proportion brought out in the 

Introduction, we can write for this law f cc —where f 

is the force of attraction, m and m± the masses of the 

two bodies and d the distance between their centers. 

When we say the force varies inversely with the square 

of the distance we mean this: If the distance is doubled, 

the attraction becomes one-fourth; if the distance is 

trebled, the attraction becomes one-ninth and so on. 

This law forms the basis of many astronomical calcula¬ 

tions and also applies to problems dealing with the 

weight of bodies on or near the earth’s surface. It is of 

course clear that the attraction referred to in the law 

when applied to bodies near the earth’s surface is the 

weight of the body or the “ earth’s pull,” previously 

spoken of. The law indicates that the weight of a body 

must decrease when it is lifted above the earth’s surface. 

The radius of the earth is about 4000 miles. If we could 

lift a body to a height of 4000 miles above the earth’s 
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surface and thus double its distance from the earth’s cen¬ 

ter, its weight, that is the earth’s pull on it, would drop 

to one-fourth of the weight it had on the surface. For 

all ordinary heights, however, this effect is very small. 
A kilogram mass on top of a mountain four miles high is 
pulled down by a force of 998 grams force, which is only 

two grams less than at sea level. In all our work, there¬ 
fore, we shall regard the earth’s pull on a body, that is 

the weight of the body, to be constant and unchangeable 

for any ordinary variations in height at any one place on 

the earth’s surface. 

12. Accelerated Motion: Falling Bodies.— If a body is 

held at a height above the earth’s surface, a force due to 

the earth’s pull will act upon it. If the body is released, 

it will move (in this case fall freely) under the influence 

of that force which will remain constant during the time 

of fall. The force being constant will, according to 

Newton’s second law, produce equal changes in velocity 

in equal times. In other words the velocity will steadily 

increase. Such a motion in which the velocity increases 

uniformly is called uniformly accelerated motion. This 

type of motion results whenever a constant force acts on 

an unimpeded body. All freely falling bodies move with 

uniformly accelerated motion. The change in velocity 

in a unit time is known as the acceleration of the motion. 

In any particular case this can be calculated by dividing 

the total change in velocity by the time during which the 

change took place, that is from the expression - V2~Vl 
V 

which is seen to equal the acceleration a. 

It is interesting to note that by making use of this new 

symbol we can put the expression for Newton’s second 

law, / = —'V?~V1\ into the more compact form f —ma. 
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It is worth our time to consider at some length the case 

of freely falling bodies. In the first place we must note 

that according to the Law of Universal Gravitation the 
earth’s pull on a body must vary directly with the mass 

of the body—if the mass is doubled the earth’s pull is 

also doubled, and so on. It follows from this that the 

quotient must be a constant and therefore the ac- 

celeration a is a constant since — a. This means 
m 

that the acceleration of all freely falling bodies is the 

same, irrespective of the weight of the bodies, so that if a 

great variety of objects of different materials, shapes 
and sizes be released at the same instant from the top of 

a tower all will reach the ground at the same instant. In 

practice this will not actually be true because of the re¬ 

sistance of the air which would impede the fall of the 

bodies of large area more than it would the small com¬ 

pact bodies. If the experiment were carried out in a 

vacuum or with bodies to all of which the air offered the 

same resistance, the time of fall would be found to be 

exactly the same for all of them. This fact was first 

experimentally demonstrated by Galileo about 1590. 

Prior to his time it was universally taught that “ bodies 

fall with velocities proportional to their weights.” 

Galileo made a series of experimental studies of 
falling bodies from which he deduced certain mathe¬ 

matical expressions for calculating the velocity gained 
and the space passed over in any given time. We can 

readily deduce these formulas for ourselves from the fol¬ 
lowing considerations. 

First, the acceleration, a, is the gain in velocity in one 
second. The total gain in velocity in t seconds is clearly 

equal to at. We can therefore write for uniformly ac¬ 

celerated motion v = at where v is the gain in velocity 
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in time t. Second, velocity is defined as the space cov¬ 

ered in one second. It is clear that if the velocity v is 

uniform, the space s covered in t seconds is given by the 

formula s = vt. If, however, the velocity is not uni¬ 

form, the space can still be determined if we know the 

average velocity during the time t. If we represent this 

average velocity by a then s — a t. In the case of 

uniformly accelerated motion where the body starts to 

fall from a position of rest, we have the velocity at the 

beginning of the time t equal to zero while at the end of 

the time it equals at. The average velocity during the 

time t is then or From this expression for 

the average velocity we can write s — a t = —X t = 

-j- at\ This formula s = at2 enables us to calcu¬ 

late the space covered in any given time by a freely 

falling body that starts from rest. In problems it is 

frequently desired to determine the final velocity of 

the falling body from the space covered. We can get a 

direct formula expression between these quantities by 

substituting in s — -j- at2 the value of t given by v = at. 
M 2 

This gives s = -1—v— or v2 — 2 as. These three 

formulae, v — at, s = at2, and v2 — 2as are usually 

grouped together as the “ three formulae of uniformly 

accelerated motion.” When applied especially to 

falling bodies, the symbol g is generally used instead 

of a {g representing the constant acceleration due to 

gravity). We have in that case v — gt, ^ and 

v2 — 2gs, the three formulas for freely falling bodies 

starting to fall from a state of rest. 

As has been stated previously in another connection, 

g, the change in velocity of a freely falling body in one 
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second, has been found by experiment to equal 980 cm. 

per sec. in each second in metric units, or 32.16 feet per 

second in each second in English units. These constants 

are usually written merely in the interest of brevity, 

980 cm. per sec. per sec. or 980 cm. per sec.2 and 32.16 
ft. per sec. per sec. or 32.16 feet per sec2. 

13. Equilibrium.—We will conclude this chapter with 

a brief study of the so-called States of Equilibrium of 

solid bodies. A cone balanced on its point is said to be in 

unstable equilibrium—the slightest touch will overturn 

it. The same cone resting on its base is said to be in 

stable equilibrium—if disturbed it returns to its original 

position. If the cone is lying on its side, it is said 

to be in neutral equilibrium—wherever it may be rolled 

there it will remain with no tendency to go further or to 

return. The explanation of these states is based upon a 

knowledge of the position of the center of gravity of the 

body. We can regard any body as being made up of a 

great number of small parts. The total pull of the earth 

on the body is then regarded as the resultant of the pulls 

of the earth on all the little component parts of the body. 

If we can find the point of application of this resultant 

pull on the body and then apply an equal upward force, 

this force will neutralize all of the little component 

forces and the body will remain stationary and balanced 

by the single upward force. With any given body we 

can in fact always find such a point by suitable experi¬ 

ments. This point which we can define as the point of 

application of the resultant of all of the parallel gravi¬ 

tational forces acting on the parts of the body, we call 

the center of gravity of the body. With symmetrical 

bodies the position of the center of gravity can be told by 

inspection—in a square or rectangle for instance it lies 
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at the intersection of the diag¬ 
onals, in a circle it is at the cen¬ 

ter, in a cube or sphere it is also 
at the center and so on. 

Now the stability of a body 

depends on the work which must 

be done to overturn it—the 

amount of this work depends on the height thru which 

the center of gravity must be lifted in order to upset the 
body. Consider the two bodies shown in Fig. 31. In 
order to overturn body No. 1 around the corner A, the 

center of gravity must be swung along the arc shown 

and lifted thru the height li. In order to overturn body 
No. 2 around the corner A1, the center of gravity need 

only be lifted thru the less height h1. If these bodies are 
of equal weight, the stability of No. 2 is seen to be much 
less than that of No. 1. 

We can now use these ideas to explain the States of 

Equilibrium. If any slight displacement of a body 

raises its center of gravity, then the body is in stable 

equilibrium, if a slight displacement lowers the center of 
gravity then the equilibrium is unstable. Finally if a 

slight displacement neither raises nor lowers the center 
of gravity, the equilibrium is neutral. We can readily 

apply these statements to the case of the cone resting 

successively on its base, point and side. 

REVIEW. 

1. What is (a) the equilibrant of a force? (b) the resultant 

of a number of forces? 

2. Define (a) inertia, (b) momentum, (c) reaction. 

3. What is meant by the statement that the earth’s pull on a 

body varies directly with the mass of the body? 

4. Distinguish between stable and unstable states of equilibrium. 

Fig. si. 



CHAPTER V 

WORK, ENERGY AND MACHINES 

1. Work.— In the present chapter we shall consider the 

conditions under which forces can do work and learn 

how to measure the amount of work done as well as the 

rate of doing work in different kinds of simple machines. 

In every action that involves movement a certain 

amount of work is done. In driving a nail or pushing a 

sled, a sufficient force must be applied to overcome what¬ 

ever resistance may exist—the cohesion of the wood in 

the case of the nail and the friction of the runners in the 

case of the sled—and this force must act over a certain 

distance. Under such conditions work is done. The 

mere action of a force, however, without any motion 

being produced will never do any work. For instance, 

a column in a building may sustain a weight of many 

tons during a period of years, yet no work is done by the 

column. From the point of view of physics, work is 

done only when a force actually produces motion. The 

work done in any instance is measured by the product 

of the force acting multiplied into the distance over 

which it acts. If the force is represented by f and the 

distance acted over by s then the work done (W) is 

given by the expression W — f$. 

The fundamental unit of force is, as was shown in the 

preceding chapter, the dyne, this being the force which 

if applied steadily to a gram mass will change its veloc¬ 

ity one centimeter per second in each second. If this 

force acts over a distance of one metric space unit—that 

(353) 
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is over one centimeter—the work done is one metric unit 

of work called a dyne-centimeter or an erg. 

The dyne, being only of a gram force, is a very 

small unit—consequently the erg is also a small unit— 

too small in fact for practical use. In practice, physi¬ 

cists more commonly use as a unit ten million ergs. This 

larger unit is called a joule. Engineers however 

usually employ the pound force or the gram force 
rather than the dyne, so that the engineering unit of 

work is the pound force acting thru one foot which is 
known as the foot-pound or else the kilogram acting 

thru one meter which is known as the kilogrammeter. 
Of course these engineering units change slightly as we 

go from place to place on the earth’s surface, since the 

values of the pound force and of the gram force are 
slightly variable. 

If then in any instance, we wish to calculate the 

amount of work done by a force we merely multiply the 

value of the force in dynes, grams force, or pounds 
force into the distance in centimeters or feet thru which 

the force acts. The work done in raising 1,000 pounds 

one foot is 1,000 foot pounds; the work done in raising 

1 pound 1,000 feet is also 1,000 foot pounds, as is the 
work done in raising 100 pounds thru 10 feet, and so on 

for other combinations. If the product fs is the same, 

the amount of work done is the same. 

We must note especially that, possibly contrary to 

our preconceived ideas of work, the amount of work 

done in any operation has nothing whatever to do with 

the time taken to do the work. If a safe weighing two 
tons is lifted 30 feet to the second story of a building, 

the work done is fs or 4,000 X 30 foot-pounds, whether 

the safe is lifted in one second, one hour or one year by 
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a steadily applied force. It would take more power to 
lift the safe in one second than it would to lift it in one 
hour, but the total amount of work done would be the 
same. 

2. Power.— This now brings us to the idea of power. 
The power used in any operation is measured by the 
amount of work done in a unit of time. Power is there¬ 
fore defined in scientific terms as the time-rate of doing 
work. If we divide the total work done by the time 
taken to do it, we get the power used. Representing 

power by P we have P If the safe were 

lifted thru the 30 feet in one second, the power expended 

would be -4-?.°Q.x 30 foot-pounds per second. If it were 

lifted in one hour the power expended would be 

^63°fQQt-pounds per second. It is useful to have 

special units of power larger than the foot-pound per 
second or the erg per second. James Watt (1736-1819) 
the inventor of the steam engine, made certain experi¬ 
ments from which he concluded that an average horse 
could do work at the rate of 33,000 foot-pounds per 
minute or 550 foot-pounds per second. He called this 
unit the horse-power. This unit, frequently abbreviated 
H. P., is still in general use. To determine the H. P. 
used in any operation, divide the foot-pounds done per 
second by 550. The H. P. used to raise our safe in one 

second is seen to be 4?°^ * — 21.8 H. P., while the 

H. P. used to raise it in one hour comes out 

60^x* 6o*x^55o"~ the metric system the unit 
of power used in practice is not the erg per second, 
which is too small for convenience, but ten million ergs 
per second, that is, one joule per second. This unit is 
called a watt. It is well to remember that a H. P. equals 
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746 watts. In rating the power of large electrical ma¬ 

chines, the kilowatt is used. This is, as the prefix indi¬ 

cates, one thousand watts equal to about one and one 

third H. P. 

We shall now apply these ideas in a few simple 

problems: 

(1) A hod carrier weighing 150 pounds carries a hod 

and mortar weighing 75 pounds up a ladder 25 feet high 

once every 20 minutes. How much work does he do in 

eight hours ? 

The total weight carried up the ladder each time is 

150 pounds plus 75 pounds or 225 pounds. The height 

of the ladder is 25 feet. The work done on each trip 

(W — fs) is seen to be 225 X 25 = 5625 foot-pounds. 

This work is done three times an hour or 24 times in the 

eight hours. The total work done is therefore 

2625 X 24 — 135,000 foot-pounds. 

(2) How long will it take a 3 H. P. engine to lift 

5000 bushels of wheat 50 feet? (A bushel of wheat 

weighs 60 pounds.) 

A 3 H. P. engine can do 3 X 550 foot-pounds of work 

per second. The total number of foot-pounds of work 

to be done is 5000 X 60 X 50 foot-pounds. The number 

of seconds which the engine will need in order to do this 

work will be 6.°.*-5() or 9090.9 seconds or 150 + 
O /\ oou 

minutes. This result can be obtained of course by sub¬ 

stituting directly in the formula P = — or t — 

3. Energy: Potential and Kinetic.— A very important 

principle of physics comes out at this point by observing 

that whenever work is done on a body, that body in turn 

becomes endowed with the ability to do work. For in¬ 

stance, after the laborer mentioned in the last paragraph 
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had carried his hod to the top of the ladder, the hod itself, 

if attached to a rope passing over a pulley and allowed 

to fall, could elevate a somewhat lesser weight at the 

other end of the rope and thus do work. Any body 

lifted to a height can, if allowed to fall back to its 

original level, do an amount of work roughly equal to 

the work done on it in lifting it. 

So with a cannon ball fired from a cannon. A certain 

amount of work is done on the ball in setting it in mo¬ 

tion. This work is stored up in the ball. When the ball 

strikes a target, it will do on the target an amount of 

work—destructive in this case—roughly equal to the 

work done on the ball in setting it in motion. So when 

a spring is wound up or compressed, and so in fact in all 

cases where force acting on a body moves or distorts it, 

that is to say, does work on it. The work stored up in a 

body which determines the ability of that body to do 

work is called the energy of the body. 

The examples mentioned in the foregoing illustrate 

two different types of energy. The elevated weight 

possesses energy because of its position, while the mov¬ 

ing cannon ball possesses energy because of its motion. 

The first type of energy, energy of position, is called 

potential energy; the second type, energy of motion, is 

called kinetic energy. It is important to note that the 

amount of energy of either kind possessed by a body 

depends upon the work done on the body in giving it its 

elevation or its motion. The energy of a body, being 

stored-up work, is measured in the same units that work 

is measured in. It is clear that the energy possessed by 

a body can never be greater than the work done on the 

body in giving it its energy. If there are no losses of 

energy such as those due to friction, which convert some 
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of the applied work into useless heat, the energy of the 

body ought to equal exactly the work done on it in all 

cases whether the energy is potential or kinetic in form. 

In practice, however, friction always enters into oper¬ 

ations, wherefore, as we said above, the work done by 

the hod in falling would only roughly equal the work 

done in elevating it; this on account of the friction in the 

pulley. So with the cannon ball: the air resistance uses 

up some of the energy before the ball strikes the target, 

so that the work done on the target is not exactly equal 

to that done on the ball in giving it its motion. 

In order to get these ideas definitely expressed, let us 

suppose that a ball of m pounds mass is lifted to the top 

of a tower s feet high. The work done on the ball will 

be m pounds force (the earth’s pull on m pounds mass 

which must be overcome in lifting the ball) acting thru 

s feet, or ms foot-pounds. The potential energy of the 

ball—its stored-up work—when at the top of the tower 

will be exactly equal to the work done on it in raising it. 

Putting P. E. for potential energy, we have therefore 

P. E. — ms. If now the ball is allowed to fall to the 

ground, it will gain velocity as it falls and therefore gain 

kinetic energy, but at the same time lose potential 

energy on account of its lessened elevation. When half¬ 

way down, its energy will be half potential and half 

kinetic and when it strikes the ground its potential en¬ 

ergy will be zero—all its energy will be kinetic. If we 

neglect the friction of the air, the kinetic energy of the 

ball at the instant it strikes the ground will be exactly 

equal to its potential energy when it was at the top of the 

tower and exactly equal to the work originally done on 

the ball in lifting it to the top of the tower. If we write 

K. E. for kinetic energy, we have therefore K. E. = P. 

E. — ms. 
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Since kinetic energy has to do with motion, it will be 

much more convenient to have a formula for it which 

involves the velocity with which the body is moving 

when it hits the ground. We get this velocity from the 

formula given in the preceding chapter: v2 = 2 gs where 

g is the constant acceleration due to gravitation. From 

this s = ^ which substituted in K. E. = ms gives K. 

E.  l 
2 g This formula enables us to calculate 

the kinetic energy in foot-pounds of a body of mass m 
pounds moving with a velocity of v feet per second. In 

working in English units g always equals 32.16 feet 

per sec.2 

For an example, find the kinetic energy of a ball with 

a mass of 200 pounds moving at the rate of 20 feet per 

second. K. E. in foot-pounds = X (20)2. 

Working in metric units with g = 980 cm. per sec.2, if 

the mass is expressed in grams, and the velocity in centi¬ 

meters per second this formula gives the K. E. in gram- 

centimeters. If the answer is wanted in dyne-centime¬ 

ters that is in ergs, the value in gram-centimeters must 

be multiplied by 980, since 980 dynes equal 1 gram 

force. This is equivalent to writing g X K. E. = 

-^-—-V2 for the original equation, whence it is seen that 
g 

K.E. = 4- mv2 will give the answer directly in ergs if % 
we substitute the mass in grams and the velocity in centi¬ 

meters per second. 

In applying these formulae for potential and kinetic 

energy in the solution of problems we should take great 

care to keep the various units properly related in ac¬ 

cordance with the ideas brought out in the last para¬ 

graph. If in a problem the weight of the body is ex¬ 

pressed in pounds or grams, this same number can be 
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used to represent the mass and when substituted for m 

in K. E. = -y v2 will give the K. E. in foot-pounds 

or gram centimeters, but if substituted for m in K. 

E.= -j-mv2 the answers for K. E. will be in foot 

poundals or dyne-centimeters (ergs). 

Our discussion of the energy transformations in lift¬ 
ing the ball to the top of the tower and then dropping it, 
puts us in a position to understand better the funda¬ 
mental theorem of the conservation of energy which we 
first stated in the Introduction. This theorem says that 
energy can be transformed from one state to another 
but can neither be created nor destroyed, the sum total 
of the energy in the universe being a constant. This 
theorem together with that of the conservation of matter 
forms the corner stone of the entire structure of the 
physical sciences. The energy expended in lifting the 
ball to the top of the tower was exactly equal to the 
potential energy of the ball after it was raised; in 
falling, this potential energy was converted exactly into 
an equal amount of kinetic energy possessed by the ball 
at the instant it struck the ground; and on striking the 
ground this energy was again transformed into energy 
of molecular motion, both the ground and the ball being 
slightly warmed. 

In this last form, altho still a kind of kinetic energy, 
the energy is no longer available for doing external work 
and so apparently—altho only apparently—disappears. 
In any mechanical operation whatever if we carefully 
sum up the energy absorbed or put into the contrivance 
and the energy liberated or put out by the contrivance 
in the same time, we shall always find these two sums 
exactly equal. Of course in practice a large part of the 
output may be in the form of heat energy in the bear- 
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ings, axles and similar parts of the contrivance, or it may¬ 

be frittered away in overcoming air resistance or in some 

other way so that at a first glance the output energy 
may seem much less than the input energy. 

4. The Six Simple Machines.— A machine is a mechan¬ 

ical device for transforming or transferring energy. 

Machines are frequently defined as devices for doing 

work advantageously. All machines of however com¬ 

plicated a construction can be analyzed into a combina¬ 

tion of one or more of the so-called “ six simple ma¬ 

chines.” These are (1) the lever, (2) the pulley, (3) 

the inclined plane, (4) the wheel and axle, (5) the 

screw and (6) the wedge. As the wedge is simply a 

pair of inclined planes placed base to base, these six 

machines are readily reduced to five. These five we can 

group into two classes: (a) the lever, the pulley and the 

wheel and axle, all of which operate on the same 

principle, and (b) the inclined plane and the screw, 
which are essentially similar to each other. 

These simple machines, and all others, operate under 

the one general law stated in the last paragraph but 

one: the energy absorbed in the mechanism must equal 

the energy liberated in it in the same time. Some of the 

liberated energy will be available to do external work; 

the rest of it will be used up in overcoming the various 

frictional resistances—those of the bearings, that of the 

air and so on. This can be stated in the following form: 

The work put into a machine is equal to the work done 

on the machine to make it go—that is to overcome the 

friction—plus the work obtained from the machine and 
available to do external work. 

The work put into the machine can be represented by 

the products Fs—the applied force multiplied by the 
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distance it moves—the work ob¬ 

tained available to do external 

work by F1s1—the force deliv- 

Fig. 32. ered multiplied by the distance 

thru which it moves. If the energy used up in friction 

is represented by R then the general law of machines can 

be stated Fs = F1s1 + R. 

If we consider an ideal or perfect machine to be one 

in which the frictional resistance is zero, then for ideal 

machines Fs = F1s1. It is, of course, impossible to make 

such an ideal machine. Consideration of this law shows 

why it is impossible to make a “ perpetual motion ma¬ 

chine ”—that is one which will go on forever without 

being continuously supplied with new energy. It is 

clear that the best that an ideal machine can do with all 

friction eliminated is to deliver an amount of energy 

equal to that put into it and that an actual machine must, 

on account of frictional losses, always deliver less energy 

than is supplied to it. 

Let us now apply this general law of machines to 

the five simple machines, neglecting any consideration 

of frictional losses. 

5. The Lever.—A lever is merely a rigid bar arranged 

to rotate around some fixed point. This fixed point is 

called the “ fulcrum ” of the lever. In Fig. 32 let the 

fulcrum of the lever AB be at o. Suppose a force F to 

be exerted at A as shown, since o is fixed a force say F1 
will be developed at B. If F .acts thru the distance S 

represented by the arc aa1, then F1 will act thru the 

distance S1 represented by the arc bb1. Since the ver¬ 

tical angles at o are equal, the arcs aa1 and bb1 are pro¬ 

portional to their radii OA and OB, that is to say 

Now by the general law of machines aaL 

~W OB.' 
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F F X aa1 = F1 X bb1 or -4=J*i 
05 
(M. 

aaJ 

OB can be called the re¬ 

sistance arm and OA the effort 

arm of the lever. 

Using these terms, we can 

state as the special law of the 

lever that the force delivered 

bears the same relation to the 

force applied as the length of 

the effort arm bears to the length 

of the resistance arm. Ac¬ 

cordingly, if the length of the 

effort arm is four times as great 

as the length of the resistance 

arm, then the force delivered will be four times as great 

as the force applied. This ratio of the force delivered to 

the force applied is known as the mechanical advantage 
of a machine. It will be noted that in the case of a lever 

the mechanical advantage is given directly by comparing 

the length of the effort arm with the length of the re¬ 
sistance arm. 

6. The Wheel and Axle.— The lever is very widely used 

in the form of crowbars and similar appliances. It is 

clear that the travel of the force is very limited when 

using a lever since the end pushed on very soon comes 

flat on the ground. The principle of the lever is applied 

in the wheel and aocle, when it is desired to make the re¬ 

sistance move over a considerable distance. Reference 

to Fig. 33 will show the relation of the pulley to the 

wheel and axle—the fulcrum is the shaft of the wheel 

at o, the effort arm is b and the resistance arm is a. The 

mechanical advantage of the device—that is the ratio of 
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the force delivered to the force ap¬ 

plied—is the ratio of the length of 

the effort arm to the length of the 

resistance arm—that is the ratio of 

the radius of the wheel to the radius 

of the axle. The windlass used to 

lift a bucket out of a well is a type 

of wheel and axle. 

Fig. 84. 

7. The Pulley.— The single pul¬ 
ley is merely an equal-armed lever. 

If fixed as in Fig. 34 its mechanical 

advantage is clearly one. The value 

of such a pulley is merely in chang¬ 

ing the direction of application of 

the force acting—it is frequently 

more convenient to pull down than 

to pull up. The single movable pul¬ 
ley (Fig. 35) however, has a me¬ 

chanical advantage of two, the ful¬ 

crum of the lever being at o and the 

effort arm OF being twice the re¬ 

sistance arm OF1. It will be noted 

that since this pulley hangs in a loop of the 

rope, if the end of the rope at F is pulled up 

two feet, the pulley in the loop and therefore 

the load F1 will be lifted only one foot. This 

consideration also shows the mechanical ad¬ 

vantage to be two, for since by the general law 

FS = FW then F1 S that is, the mechan- 
F s1 

ical advantage can always be determined by 

comparing the distance moved by the applied 

force with the distance moved by the resist¬ 

ing force. 
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In order to determine the 

mechanical advantage of a sys¬ 
tem of fixed and movable pul¬ 
leys such as is shown in Fig. 36 

consider these facts: The lower 

block and the resisting weight 

are supported by four strands 
of rope. If one foot of rope is pulled past the point A 
this shortening of the system will be distributed among 

the four supporting strands so that the lower block will 

be lifted only — of a foot; and so in general thru what¬ 

ever distance the applied force moves, the resisting force 

moves only — as far. This means that the mechanical 

advantage is four and that a given applied force at F 
will balance four times that force at F1. 

In any system of fixed and movable pulley, then, the 

mechanical advantage is equal to the number of strands 

of rope supporting the weight. This number of strands, 

it will be noted, is exclusive of the one to which the force 

is applied, for this strand does not directly support 
the weight. 

8. The Inclined Plane.—We have already studied the 
inclined plane in connection with the composition and 

resolution of forces. It is very easy to get an expression 

for the mechanical advantage of this contrivance by a 

direct application of our general law of machines. Ne¬ 

glecting friction, it is seen that the work done by the 

applied force in moving the body D (Fig. 37) from the 

bottom of the plane to the top is FI where l is the length 

of the plane. The work done against the resisting force, 

which is F1, the weight of the body, is F'h where h is the 

vertical height thru which the body is lifted. Now FI 
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must equal Fxh, since we ne¬ 
glect friction; whence we see 

that that is the mechan- 

ical advantage equals -the 

length of the plane over the 

height of the plane—provided 

that the line of action of the 
force is parallel to the surface 

of the plane. 

9. The Screw.— The screw may properly be regarded 

as an inclined plane wrapped round a cylinder. The 

plane is the thread; the distance between two turns of 
the thread is called the pitch of the screw. When the 

screw turns in a nut, the screw advances a distance 

equal to the pitch for each revolution of the head. 
This fact enables us to determine the mechanical ad¬ 
vantage of a screw, because when the applied force acts 

at the end of a lever of length l as in Fig. 38 it will 

travel a distance equal to 2 tt l while the screw advances 
a distance equal to the pitch d. The mechanical advan¬ 

tage is seen to be that is ~ = -~p-. 

We have now formula expressions for finding the 

mechanical advantages of each of the five types of sim¬ 

ple machines. It will be noticed that where the resisting 

force to be overcome is greater than the applied force, 

the distance thru which the resisting force is pushed is 

smaller than the distance thru which the applied force 

must move, so that in all cases FS = F1S1—the work put 

in equals the work given out, friction being neglected. 

10. Friction.— But in actual practice friction plays so 

large a part that it can never be neglected. It follows 

that the work output of a machine is always consider- 

I*-L -H 



WORK, ENERGY AND MACHINES 367 

ably less than the work input. In practice the ratio of 

these two quantities—the work put in and the work de¬ 

livered—is called the efficiency of the machine. A per¬ 

fect machine would have an efficiency of unity or of 

100%. Actual machines have efficiencies of all values 

from a few per cent up to 90% or thereabouts. As an 

example, systems of pulleys frequently show an effi¬ 

ciency of about 40%. The efficiency of screws is very 

low and of simple levers high. 

The friction which causes these losses is due to the 

resistance which bodies offer to being pushed over one 

another. This resistance is largely due to small irregu¬ 

larities in the two opposed surfaces. It is much reduced 

by the use of an oil film which holds the two surfaces 

apart so that they do not actually touch. Altho in ma¬ 

chines friction involves a loss of energy, yet in very 

many applications friction is distinctly advantageous. 

For instance, without friction, nails would not remain 

in wood, automobiles could not propel themselves along 

roads, men could not walk from place to place. 

We know that friction between two surfaces develops 

heat. This is because the rubbing imparts extra motion 

to the molecules, making them move faster. As we have 

already learned, the latter process means that the tem¬ 

perature must rise. The physicist Joule (1818-1889) 

first showed that when one unit of mechanical energy is 

dissipated in friction, a certain definite fixed equivalent 

of heat is produced. The significance of these facts will 

be shown in the next chapter which will deal with the 

general subject of Heat. 

REVIEW. 

1. Define erg, joule, kilogrammeter. 

2. Distinguish between potential and kinetic energy. 

3. Is perpetual motion impossible? Why? 

4. What are the five types of simple machines? 



CHAPTER YI 

HEAT 

1. Heat and Energy.—In this chapter we shall discuss 

heat from the point of view of physics. Already in our 

work we have met with one or two scientific ideas about 
heat which will serve as an introduction to the subject. 

It will be remembered that in the chapter on the Mole¬ 

cular Theory it was said that the application of heat to 

a body causes the molecules of the body to move faster 

and that this results in a rise in the temperature of the 

body. Again in the chapter on Machines, it was shown 
that friction produces heat. It was also shown that this 

development of heat was accompanied by a certain ap¬ 

parent loss of energy. 

In the light of the Theorem of the Conservation of 

Energy, according to which no energy can ever be lost, 

it seems logical to conclude that the heat developed in 

the friction in a machine is a form of energy. It would 

seem further that the development of this energy must 

be dependent on the rate of motion of the molecules of 
the body. We might therefore surmise that the heat of 

a body is connected with the energy of motion of its 

molecules, or, in general, that heat is a form of energy, 
namely, the kinetic energy of molecular motion. All 

the experimental evidence of physics points toward this 

same conclusion, so that we may in fact say with com¬ 

plete confidence that heat is the kinetic energy of mole- 
cular motion. 

This view of the nature of heat was first suggested 

(368) 
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about 1798, by Benjamin Thompson, Count Rum- 

ford, a very able and interesting native of Massa¬ 

chusetts. Rumford performed some fairly conclusive 

experiments covering this point, but the matter was 

finally settled by James Prescott Joule in work, the 

first of which was published in 1842. Prior to the 

introduction of this Mechanical Theory of Heat, heat 

was supposed to be a weightless fluid called “ caloric.” 

A hot body was supposed to have more “ caloric ” 

than a colder one and the fluid was supposed to flow 

from the hotter to the colder body. This theory of 

“ caloric ” will indeed explain most of the phenomena 

of heat excepting those connected with the development 

of heat by friction. 

2. Temperature.—We all have more or less clear ideas 

of what is meant by “ temperature.” When a body feels 

hot we say it has a high temperature; when it feels cold 

we say it has a low temperature. We know that if we 

put an iron in a flame and thus impart heat to it, it will 

come to a higher temperature. Temperature, then, is a 

word which we use to denote the degree of hotness or 

coldness of a body. It is important to notice that 

“ cold ” is merely the absence of heat. The more heat 

we remove from a body the colder it gets and the colder 

it feels. 

The judgments of temperature which we form by the 

sense of feeling with the hand alone are very deceptive— 

depending both on the immediately previous heat treat¬ 

ment of the hand and on the rate at which the body felt 

of carries heat away from the hand. For example, if 

the hand has just been dipped into hot water, tepid 

water will feel cold. Also a piece of cold iron which 

allows the heat to escape from the hand very rapidly 
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same real temperature. As it is of great 
practical importance to be able to compare 

the temperatures of different bodies, it is 

clearly very desirable to have some accurate 

device for making these comparisons. Such 

devices, of which there are a great variety, are 

called “ thermometers.” 

3. The Thermometer.— Galileo, in 1592, 

devised the first thermometer. Its construc¬ 

tion is shown in Fig. 39. Galileo had ob¬ 
served the fact which we have noted in Chap¬ 

ter III, that the pressure exerted by a gas changes 
with its temperature, altho he did not know the true 

cause of this change. When a hot body is brought in 

contact with the air bulb at the top of the device in Fig. 

39, the pressure of the air will increase and the surface 
of the liquid in the narrow tube will be forced down a 

certain distance until the pressure inside equals the 

pressure outside, minus that caused by the head of 

liquid in the tube. The hotter the body, the lower the 

liquid will be forced. Two bodies which force the liquid 

down equal amounts are taken to be equally hot, that is 
to have the same temperature. 

Liquids—and solids also—expand when heated for 

the same reason that gases expand, that is, because of 

the increased rates of motion of the molecules. The 

air thermometer of Galileo was awkward to handle 

and had a small range unless the tube was made 

very long. About the year 1700, the more convenient 

mercury thermometer was invented to replace the 
air thermometer. Nearly all present-day thermom¬ 

eters are of glass containing either mercury or alco- 
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hol, the latter liquid, when used, being colored red or 
blue. 

In order to understand exactly what the scale marked 

on one of these thermometers represents, it is best to 

study the mode of manufacturing a mercury thermom¬ 

eter. First, a piece of “ thermometer tubing ” is taken 

and a bulb is blown at one end. The bore of this tubing, 

that is the internal diameter of it, is very small—about 

the diameter of the very finest sewing needles. The 

front of the tube is made in such a shape that it acts as a 

magnifying glass and makes the liquid column, when 

viewed from in front, look much wider than it really is. 

The bulb is filled with mercury and the whole heated to 

a temperature higher than the highest temperature at 

which the thermometer is subsequently to be used. At 

this temperature, the tube is sealed at the top where the 

mercury is running out. If the thermometer at any sub¬ 

sequent time is heated to this same temperature it will, 
of course, burst. 

The next step is to calibrate the thermometer, that is, 

to put the scale on it. After the mercury has shrunk 

back into the tube, leaving a vacuum above it, the bulb 

is put into a vessel containing melting ice. Now it has 

been found that the temperature of melting pure ice 

under ordinary pressure is always the same, so that it 

can and does serve as a fixed point in temperature. All 

thermometers no matter where manufactured have the 

melting point of ice as one fixed point on their scales. 

After the mercury has become stationary above the ice, 

a scratch is made on the glass to show the exact level. 

The thermometer is then taken out and next immersed 

in steam from boiling water in such a way that the bulb 

and stem are both surrounded with steam which is es- 
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caping freely into the air and is therefore under atmos¬ 

pheric pressure. If the atmospheric pressure is normal, 

that is 76 centimeters, the temperature of free steam 

from boiling water is always the same, so that it serves 

as a second fixed point in temperature. All thermom¬ 
eters have this second fixed point marked on their scales. 

The final level of the mercury is indicated by a scratch 

on the glass as before. The thermometer now has two 

definitely fixed points. If at any subsequent time the 

mercury stands at the lower scratch, then the tempera¬ 

ture of the bulb must be the same as that of melting ice— 
if it stands at the upper scratch, the temperature of the 

bulb must be the same as that of free steam under 

normal pressure. It is assumed that under the influence 
of rising temperature, the mercury in the bulb will ex¬ 

pand uniformly from the one fixed point to the other, 

so that to compare intermediate temperatures, it is only 
necessary to assign numerical values to the fixed points, 

and then to divide the intermediate space into a con¬ 
venient number of equal parts. 

4. Centigrade and Fahrenheit.— There are in common 

use two different systems of subdividing the thermom¬ 

eter scale. The first of these, the scientific or Centigrade 

scale, was devised by Celsius of Upsala, Sweden, in 

1742, and is frequently called the Celsius scale. In that 

scale the lower fixed point is marked 0 and the upper 

fixed point 100. There are 100 intermediate divisions 

called degrees Centigrade. A temperature of 40 de¬ 

grees Centigrade is written 40° C. This scale is in uni¬ 

versal use for scientific purposes, thruout the world and 

for domestic purposes in most parts of western Europe. 

The second scale, which is the one in common household 

use thruout the United States and England, is the 
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Fahrenheit scale. This was devised by Fahrenheit of 

Danzig, Germany, in 1714. The lower fixed point is 

marked 32 and the upper fixed point 212. There are 

180 equal intermediate divisions called degrees Fahren¬ 

heit. Forty degrees on this scale is written 40° F. 

It is important to be able to transform readings on 

one of these scales into the corresponding readings on 

the other. It is easy to see how this can be done. Since 

the fixed points on all thermometers are the same, we 

have 100 Centigrade degrees representing the same 

change in temperature as 180 Fahrenheit degrees. One 

degree Centigrade is therefore clearly equal to ~~ of a 

degree Fahrenheit, that is -|~° F., and conversely one de¬ 

gree Fahrenheit must equal -A° C. Now, if we wish to 

convert a reading of 40° C. into Fahrenheit—we note 

that the reading means 40 Centigrade degrees above the 

lower fixed point which is marked 0 in this scale. This 

corresponds to 40 X -J- = 72° F. above the lower fixed 

point. But on the Fahrenheit scale the lower fixed point 
is marked 32°, hence the actual reading on the Fahren¬ 

heit scale corresponding to 40° C. will be 72° plus 32° = 

104° F. If we represent the Centigrade reading by C 
and the Fahrenheit reading by F this result can be ex¬ 

pressed in the following formula: F = C + 32. If 

now, we wish to convert 40° F. into the corresponding 

Centigrade reading, we must first find how many Fahr¬ 

enheit degrees above the lower fixed point this reading 

represents. Since the lower fixed point on this scale is 
marked 32°, it is obvious that 40 — 32 = 8 is the number 

we seek. 8° F. above the lower fixed point equals 8 X ~ 

= 4.4° C. above the same point. As this point on the 

Centigrade scale is 0°, the final Centigrade reading cor- 
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responding to 40° F. is seen to be 4.4° C. The formula 

expression for this calculation is C — (F — 32) —. 

5. Measuring High and Low Temperatures.— The ther¬ 
mometer filled with mercury is, speaking generally, 

more reliable than any other thermometer containing 

liquid because of the great uniformity of the expansion 

of mercury over ordinary ranges of temperature. Mer¬ 

cury however freezes at 39° C. below Centigrade zero 

and boils at 360° C. For temperatures below —39° C. 
thermometers containing alcohol can be used since the 

freezing point of alcohol is —130° C. For temperatures 

above 360° C., the mercury thermometer can still be used 
if the space over the mercury is filled with nitrogen gas. 

The pressure of this gas prevents the mercury from 

boiling, so that such thermometers can be used up to 

700° C., which is nearly that of red hot iron. In 

ordinary mercury thermometers, the space over the 

mercury is a vacuum except for the presence of mer¬ 

cury vapor. 

For the measurement of the highest temperatures, 

such as those in furnaces and pottery kilns, electrical 

devices are used or certain optical arrangements in 

which the temperature is measured by the brightness 

of the interior of the furnace. Such high temperature 

measurers are called pyrometers. The highest known 

temperature is that of the sun, estimated at 5700° C. 

The highest terrestrial temperature is that of the electric 
arc, about 3500° C. 

In scientific work when very accurate temperature 

measurements are wanted over either high, low or 

medium ranges, the standard gas thermometer is always 

used. In this instrument (Fig. 40) the bulb A contains 

hydrogen gas. Mercury is introduced into the pipe as 
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b shown by the black line and the space over 

c the mercury in the closed tube B is made a 

t> vacuum. The pipe contains a flexible 

rubber link at the bottom. The bulb A is 

put in melting ice and the pipe B moved up 

or down until the mercury level is brought 

to a fixed mark a. The pressure of the hy¬ 

drogen at this temperature is found to bal¬ 

ance the mercury column a to b. b is then 

marked as the “ lower fixed point.” When 

A is in steam, the pressure after the level of 

mercury on the left is again brought to a 
will be found to balance a longer column say ac. This 

makes c the “ upper fixed point.” The scale is usually 

divided into Centigrade degrees, the lower fixed point 

being marked 0° and the upper fixed point 100°. 

In reading a temperature with this thermometer, tube 

B is always to be moved until the lower mercury level 

stands at a before a reading is made. The most evident 

advantage of this hydrogen thermometer lies in its great 

accuracy at very low temperatures. Extreme low tem¬ 

peratures are nearly always measured by its use. 

The lowest temperatures which have been measured 

are listed here. In 1845 Faraday evaporated a mixture 

of ether and solid carbon dioxide in a vacuum and at¬ 

tained a temperature of —110° C. In 1880, when air 

was first liquefied, it was found to have a temperature of 

180° C. In 1900 Dewar, by evaporating liquid hydro¬ 

gen, reached —260° C., and finally in 1911 Kammerlingh 

Onnes, of Leyden, Holland, by evaporating liquid 

helium obtained a temperature of —271.3° C. There is 

strong reason to believe, as we shall see later, that the 

lowest possible temperature is —273° C. This tempera- 
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ture is known as the “ absolute zero.” It is the tem¬ 

perature at which the molecules of matter cease to move, 

so that they have no kinetic energy and therefore the 

body has no heat to lose and cannot get colder. This 

matter is discussed at greater length later in this 

chapter. 

6. Transference of Heat: Conduction.—We all know 

that a hot body placed in contact with a colder body will 

warm the colder body. Let us now consider the various 

ways in which heat can be transferred from one body to 

another and from one place to another. 

If we take a number of equally long wires of different 

metals, as silver, copper and iron and after twisting all 

the wires together at one end and spreading the other 

ends out fanlike, heat the twisted ends in a flame, we 

shall find that the far ends of the wires all become hot in 

time but that certain of the wires get hot at the far end 

much more quickly than others. The silver wire would 

become hot thruout the most quickly—the iron wire the 

least quickly. In this experiment heat is evidently 

transferred along the wire by direct molecular con¬ 

tact. The rapidly moving molecules at the hot end 

strike on the adjacent molecules and thus transmit 

their increased motion thruout the wire. This mode of 

transferring heat which is effective only from one part 

to another of the same body or from one body to 

another in contact with it, is called transference by 

conduction. 

As our experiment showed, the rate at which heat is 

conducted is very different for different materials, that 

is to say, different materials have very different con¬ 

ductivities for heat. Accurate experiments show that if 

the conductivity of silver is rated as 100, that of copper 
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is 74, while that of iron is only 12, and that of glass only 

about .046. This means that for rods of equal cross 

areas and equal lengths, with equal differences of tem¬ 

perature between their ends, a silver rod will transfer 

100 units of heat in the same time that an iron rod trans¬ 

fers 12 and a glass rod transfers .046 of one unit. Silver 

is the best conductor known. All liquids have low 

conductivities—that of water being about —^ of the 

conductivity of silver. Gases have still lower con¬ 

ductivities, the conductivity of air being about that 

of water. 

If we wish to keep our bodies warm in cold winter 

air we must cover them with poor conductors of heat. 

Most of the warmest coverings, as fur, feathers, wool 

and so on, owe their low conductivity to the large 

amounts of air imprisoned in them, still air being one 

of the poorest known conductors. Snow and ice also 

have low conductivities (about .21 on the scale used 
above) so that a blanket of snow over the ground will 

protect the roots of trees and plants from freezing. Ice 

houses, such as are used by Eskimos, are also warm 

in that they retain the heat of fires built within. In our 

climate, houses for storing ice are made with double 

walls and the interspace filled with sawdust. The saw¬ 

dust imprisons air and prevents its free circulation, so 

that a wall thus constructed keeps the summer heat 

away from the ice. 

7. Convection.—The importance of preventing circu¬ 

lation of the air in the interspace of the icehouse wall can 

be better understood when we study the transference of 

heat bv what is known as convection. Consider the air 
%/ 

in a closed room with a hot stove at one side. The air 
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around the stove is heated and therefore expands, be¬ 

coming less dense than the rest of the air in the room. 

The air around the stove must then rise, being pushed 

up by the denser air in accordance with Archimedes’ 

principle. The cooler air from along the floor now 

comes in around the stove, is heated, expands and rises 

in its turn. We have thus a constantly ascending col¬ 

umn of heated air over the stove. This strikes the ceil¬ 

ing, flows along it and down the other wall, cooling as it 

goes and finally comes back to the stove again across the 

floor. We have thus maintained in the room steady con¬ 

vection currents which transfer the heat from the stove 

into all parts of the room. 

The heat from all forms of internal heating apparatus 

like stoves, hot water and steam radiators and hot air 

registers is distributed thru our rooms by convection. 

It will be noted that in this mode of heat transference, 

an entire mass of the heated material is transferred, 

containing the heat in it. Convection is therefore 

essentiallv different from conduction in which the •/ 
molecular motions, the energy of which constitutes 

heat, are transferred from molecule to molecule thru- 

out the body. 

Convection is responsible for the production of 

winds and ocean currents. The air in the tropics 

becoming heated, is pushed up by colder air rushing in 

from higher latitudes and this, coupled with the rota¬ 

tion of the earth, causes the steady air movements 

known as the “ trade winds.” All winds, speaking 

generally, are caused by convection currents between 

areas of unequal heating. In the same way, most ocean 

currents result from the unequal heating of the ocean 

between the tropical and arctic zones. Convection is 
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Fig. 42. 

Hot water 

also responsible for the oper¬ 

ation of household hot water 

boilers and similar appliances. 

Fig. 41 represents a hot air 

heating system—Fig. 42 a hot 

water system and Fig. 43 a 

kitchen boiler. The arrow heads 

show the circulation of the fluid 

in the system. Taken in con¬ 

nection with the explanations of 

convection already given, the 

arrows serve to show exactly 

how each arrangement operates. 

In the hot air system shown the 

same air is used over and over 

again, which is not desirable. 

In the best hot air systems, 

fresh cold air is taken in from 

outdoors thru a “ cold air box.” 

This air after being heated and 

circulated in the upper rooms 

leaks out thru the ordinary 

ventilating channels and is con¬ 

tinuously replaced with fresh 
heated air. 

8. Radiation.—The third and 

last method of heat transference 
is by radiation. We shall be 

better able to understand radi¬ 

ation after we have studied the 

subject of light. We can never¬ 

theless present a brief explan¬ 

ation here. All the universe is 
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supposed to be filled with a weightless or nearly weight¬ 
less fluid called the ether, which surrounds and pene¬ 
trates all matter. When molecules move very rapidly, 
thev make a disturbance in this ether which travels out- 
ward from the body as a water wave travels out when a 
stone is thrown into a pond of water. When this dis¬ 
turbance results from the heat motion of the molecules, 
the resulting train of waves is known as radiant heat. 
When these waves strike some other body of matter they 
set the molecules of that body into more rapid motion, 
just as the water wave in the pond disturbs the pebbles 
on the shore when it arrives there. The second body 
will thereby be warmed. 

This mode of transferring heat is known as radiation. 
It is of importance because all the heat which comes to 
us from the sun is carried by this method. It is of course 
clear that heat from the sun cannot come to us either by 
conduction or convection. It is interesting to note that 
the waves of radiant heat travel with enormous speeds— 
their velocity being approximately 186,000 miles per 
second—the same as that of light. These waves may 
pass thru a body without warming it. Many materials 
are very transparent to the waves. Ordinary window 
glass for instance is. The sun’s heat will therefore pass 
freely thru the lids of glass hot beds and will be absorbed 
by the earth inside. The heat after absorption cannot 
get out thru the glass, whence the efficiency of these de¬ 
vices in forcing the growth of plants. 

Again, radiant heat like light travels in straight lines 
and can therefore be shut off by a screen. The pecu¬ 
liarly burning heat which can be felt on the face from an 
open fire is radiant heat. It is a matter of common ex¬ 
perience that this heat can be cut off completely by a 
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piece of paper or similar ma¬ 
terial held in front of the face. 

9. Effects of Heat on Matter.— 
We have now completed our 
study of the modes of heat trans¬ 

ference, which may be summed up by saying that heat 
is transferred by conduction, convection and radiation. 
We turn next to the effects produced in matter by heat. 
The most evident of these effects is expansion. 

We have already spoken of the expansion produced 

by heat. On the basis of our theory of heat we would 

naturally expect expansion to result from heating, since 

the increased molecular motions will cause the molecules 

to strike harder blows on one another and thus drive 

themselves farther apart. The expansion of solids 

under the influence of heat can be measured by making 

the material up in the form of a rod and measuring its 

length first at the temperature of melting ice and then 

at the temperature of steam. This measurement can be 

made by a simple lever device such as is shown in Fig. 

44. If we divide the increase in length by the number 

of degrees rise in temperature and by the original 

length, we shall get the increase in length per degree for 

each unit of length. This quantity is called the “ co¬ 

efficient of linear expansion ” of the material. It is of 

importance because knowing the length of a bar of the 

material at any temperature and this coefficient, we can 

calculate its length at any other temperature. 

For instance: What is the increase in length of a line 
of copper wire 10 kilometers long when the temperature 
rises from 0° C. to 25° C.? Experiments have shown 
the coefficient of linear expansion of copper to be 
.000017—that is the gain in length per centimeter 
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length for each degree rise is 

.000017 cm. The gain in length 

per unit length for a 25° rise 

will be 25 X .000017 or .000425 

cm., and the gain in length in 

10 kilometers which equal 10 X 

1000 meters or 10 X 1000 X 100 

centimeters will be 425 centi¬ 

meters. 

10. Coefficients of Expansion—Solids.— Different sub¬ 

stances have very different coefficients of expansion as 

can be seen from this list of coefficients: 

Brass .000018 Glass .000009 

Iron .000012 Tin .000022 

Steel .000011 Zinc .000029 

Numerous practical applications are made of this prop¬ 

erty of unequal expansion. If a bar made up by rivet¬ 

ing together thin strips of, say, brass and steel is heated, 

the brass will expand more than the steel so that the 

bar will bend. The balance wheels of watches are com¬ 

pensated so that their periods of vibration will be inde¬ 

pendent of the temperature in a manner suggested by 

the bending of this compound bar. Increase in tem¬ 

perature increases the radius of an ordinary balance 

wheel which makes the wheel vibrate more slowly so that 

the watch loses time. The rim of a compensated wheel is 

made up of a compound strip cut into sections as shown 

in Fig. 45. The inner metal has the smaller coefficient 

of expansion, so that as the temperature rises, the ends 

of the sections are bent in and the effective radius of 

the wheel thus reduced just enough to compensate for 

the general expansion. The period is thus kept con¬ 

stant. It is of course evident that the wheel needs to 

Fig. 45. 
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be carefully adjusted if it is to be entirely 

accurate. 

Fig. 46 shows another application of un¬ 

equal expansion, this time to make a com¬ 

pensated pendulum for a clock—that is to 

say a pendulum the length of which will not 

change with the temperature. An ordinary 

metallic pendulum becomes longer when it 

warms up so that the clock loses in hot 

weather. In this compensated pendulum 

the rods of one material are arranged so that 

their expansions let the pendulum down 

while the rods of the other material raise it. The lengths 

are so selected that the bob is not moved either up or 

down by the temperature change. The materials ordi¬ 

narily used are steel and copper. 

The thermostats which are used in houses to regulate 

the heating apparatus when the temperature goes too 

high or too low, are made on the same principle, the 

movement of the compound strip in this case closing an 

electrical circuit which produces the necessary alteration 

in the furnace draughts. 

11. Expansion of Liquids.— The expansion of liquids is 

of considerable importance in connection with their use 

in thermometers. The coefficient of expansion of a 

liquid can be determined just as was that of a solid by 

heating the liquid in a narrow tube and then making 

the necessary allowance for the expansion of the tube. 

When this is done the coefficients for liquids are found to 

be greater than for solids. For example, the coefficient 

of alcohol is .001, of ether .0015 and of water .0002. 

These coefficients are volume coefficients: that is they 

represent the increase in volume of a unit volume for a 
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rise in temperature of one degree. It is evident that a 

linear coefficient would be of no use in dealing with 

liquids which do not permanently retain any particular 

shape. 

Experiments show further that the expansion of 

liquids is irregular—that is to say, the coefficient of ex¬ 

pansion is generally different if measured over differ¬ 

ent ranges of temperature except in the case of mercury 

which exhibits great regularity of expansion. It is on 

account of this regularity that mercury is so widely used 

in thermometers. 

The change in volume of water with change in tem¬ 

perature is so peculiar that it deserves special attention. 

When the temperature of pure water is steadily reduced 

from 100° C., the water contracts until 4° C. is reached— 

after that as the temperature falls from 4° C. to 0° C. the 

water will be found to expand. It is evident from this 

that water has its greatest density at 4° C. This seem¬ 

ingly unimportant fact has important consequences in 

nature in affecting the way in which bodies of water 

freeze. 

The water in a lake cools from the surface. As the 

surface water becomes cooled, it will sink to the bottom 

being replaced by warmer water from underneath. 

This circulation goes on until the temperature of all the 

water becomes 4° C. When the surface layers cool 

below this temperature they become less dense than 

before. There is consequently no tendency for them to 

sink and the surface layer remains in place until it 

freezes. The freezing of the water underneath then 

takes place from the under surface of the ice. If the 

water contracted continuously until it reached its freez¬ 

ing point the lake would begin to freeze from the bottom 
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instead of from the top and would finally freeze solid. 

All living things in the water would be killed and it is 

unlikely that any except the most shallow lakes would 

thaw completely in the summer. 

12. Expansion of Gases.— Let us next consider the vol¬ 

ume changes in gases under change in temperature. 

Since gases are so easily compressible, it is very neces¬ 

sary in studying their rates of expansion to arrange that 

the pressure acting on the gas experimented on shall at 

all times be kept the same. If this is done, then coeffi¬ 

cients of volume expansion can be obtained for gases 

just as for liquids and solids. The volume coefficient of 

expansion of a gas is the change in volume of a unit of 

volume at 0° C., for one degree change in temperature, 

the pressure remaining fixed, just as the coefficient of 

linear expansion of a solid is the change in length of a 

unit length for one degree change in temperature. 

The Frenchman, Gay-Lussac, in 1802, determined 

the coefficients of volume expansion of a large number 

of gases, using all necessary precautions to maintain a 

constant pressure. He made the discovery that all gases 

have the same coefficient of volume expansion. The 

value of this universal coefficient is .00367 or —. This 
273 

is known as Gay-Lussac’s Law. 

Charles, another Frenchman, had already, in 1787, 

made use of the hydrogen thermometer (Fig. 40) to 

determine the pressure coefficients of a long series of 

gases. The pressure coefficient is defined as the change 

in pressure of a fixed volume of gas per unit of the 

pressure at 0° C. for each degree change in temperature. 

Charles found that the pressure coefficients of all gases 

are the same. The value of this coefficient is .00367 or 
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-~j. This is called Charles’ Law. It will be noted that 

this law was discovered before the law of Gay-Lussac. 

Knowing Boyle’s law (that at constant temperature the 

volume of a mass of gas is inversely proportional to the 

pressure) Gay-Lussac’s law can be deduced from the 

law of Charles. Consequently these two laws are fre¬ 

quently stated as one. The statement is then called the 

Law of Charles and Gay-Lussac. 

13. Law of Charles and Gay-Lussac.— Let us consider 

somewhat in detail the meaning of these laws. Charles’ 

Law says that the pressure coefficient of all gases is 

which, as we have already implied, means that if 

the volume is fixed, then for every degree Centigrade 

rise in temperature, the pressure of an inclosed mass of 

gas increases of the pressure that it exerted at 

0° C. If therefore we raise the temperature to + 273° 

C. the pressure will be doubled. On the other hand if we 

lower the temperature to 273° C. below 0° C., then the 
pressure will be zero. Since the pressure is zero, the 

molecular motions must have ceased entirely. If the 

molecular motions have ceased, then their kinetic energy 

must be zero and the gas can contain absolutely no heat 
energy. Again, since the gas has no heat energy, no 

heat can be taken from it and consequently it is impos¬ 

sible for the gas to get any colder. This temperature, 

—273° C. is therefore known as the Absolute Zero—the 

temperature at which bodies contain no heat. It will be 

remembered that Kammerlingh Onnes, in 1911, pro¬ 

duced a temperature of —271.3° C. by evaporating 

liquid helium. No way is known to get a lower tempera¬ 

ture than this so that the absolute zero has as yet never 

been reached. 



HEAT 387 

Gay-Lussac’s Law, interpreted in the same way, indi¬ 

cates that the volume of all gases at —273° C. is zero. 

This means really that the molecular motions having 

ceased, the intermolecular spaces will be reduced to zero 

—the total volume occupied by the gas being then 

merely the sum of the volumes of the solid molecules. It 

should be noted that in practice all known gases become 

liquids before the absolute zero is reached, and having 

become liquids, they no longer follow these two gas laws. 

It results therefore that the deductions made from these 

laws as to conditions at —273° C. can never be definitely 

tested. 

14. The Absolute Scale of Temperature.— Since —273° 

C. is the temperature at which molecular motions cease 

and at which matter contains no heat, this temperature is 

clearly the proper zero point at which to start a tem¬ 

perature scale. The scale beginning at this zero is 

known as the Absolute Scale of Temperature. It is 

very widely used in scientific work. The degrees on this 

scale are Centigrade degrees so that 0° C. corresponds to 

273° absolute, or 273° A., as it is written. In order to 

change any Centigrade reading to the absolute scale, it 

is only necessary therefore to add 273 to the Centigrade 

reading or, as a formula: A = C + 273. 

The use of this scale of temperature makes it possible 

for us to restate the Laws of Charles and Gay-Lussac in 

more compact form. If the pressure exerted by a vol¬ 

ume of gas is 273 units at 0° C. (that is 273° A.), it will 

be, by Charles’ Law, 0 units at 0° A., 50 units at 50° A. 

and so on—the pressure in other words, if the volume re¬ 

mains fixed, being directly proportional to the absolute 

temperature. If the temperature expressed on the ab¬ 

solute scale is doubled, the pressure will be doubled and 
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so on. If we write T for the absolute temperature of the 
p rn 

gas, then we can put P cc T or -=a = -A where Pi and 
** * 2 

P2 represent different pressures corresponding to the 

temperatures Ti and T2. This follows from the facts 

stated in the Introduction, because if P oc T then y- = a 

C is the temperature at which molecular motions cease 

constant number, say k; so ^A. = k and -^2 — k and so 
i 1 1 2 

forth, whence we see that -C1 = ir and this can be Writ¬ 
'll 1 2 

ten ~ ten p2 r2. 
Following exactly similar reasoning, the law of Gay- 

Lussac can be stated: the volume of a gas is directly pro¬ 

portional to the absolute temperature if the pressure re¬ 

mains fixed. This statement expressed as a formula is 

V cc T or y- = & and -p =-p or . 

We now have the two laws stated as two proportions: 

~ and the first of which is true for vari- 

ations of P and T if V remains constant, while the 

second is true for variations of V and T if P remains 

constant. Now since both the pressure P, and the vol¬ 

ume V of a gas are directly proportional to the absolute 

temperature T, their product PV will also be directly 

proportional to the absolute temperature. Wherefore 

we can write PV a T or y = a constant number, say R; 

so = and -yp — R and so on; whence we can 

write —A-A = .foTg or = Lx m which Pi Fi and Ti 

refer to the pressure, volume and temperature (ab¬ 

solute) before any change takes place and P2 V2 and 

T2 refer to conditions after the change. 

This last equation is usually referred to as the General 

Gas Law. It is of practical importance in that by the 

use of it we can solve any problem dealing with volume, 
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temperature and pressure changes in a given mass of 

gas. For example, suppose that at 20° C. and 740 mm. 

pressure, the volume of a mass of gas is 500 cubic centi¬ 

meters. Find the volume that this same mass of gas 

would have at 0° C. and 760 mm. pressure. 

Pi = 740 P2 = 760 

Pi = 500 Tz — 273° A since = -f1 

Ti = 273 + 20 = 293° A V* = X 222 

we have * ^°° - -f|j- whence 273 (740 X 500) = 293 

(760 X X) and X = 453.6 cm.3 

REVIEW. 

1. State the mechanical theory of heat. 

2. Convert 50° Centigrade into Fahrenheit. 

3. Distinguish between conduction, convection and radiation. 

4. What is meant by coefficient of expansion? 

5. Why is it that a body of water freezes from the top and not 
uniformly thruout? 



CHAPTER VII 

QUANTITY OF HEAT, CHANGE OF STATE AND HEAT 
ENGINES 

1. Quantity of Heat.—Having completed our study of 

the expansion effects produced in solids, liquids and 

gases by heat—we next turn to a consideration of 

changes in the states of matter—solid, liquid or gaseous 

—produced by heat. In order to discuss this matter in¬ 

telligently, it will be necessary first to have some definite 

ideas on the subject of quantity of heat. So far we have 

been talking about temperature and the effects produced 

by changes in temperature without paying attention to 

the quantities or amounts of heat required to bring about 

the different changes. 

We all know that with a fixed flame it takes much 

longer to raise a gallon of water to its boiling tempera¬ 

ture than it does to raise a pint of water to the same 

temperature. If we consider heat as the kinetic energy 

of the moving molecules, it is evident that the gallon of 

water at 100° C. contains much more heat energy, that is 

to say, a much greater quantity of heat, than the pint of 

water at the same temperature. The former contains, 

in fact, eight times as much heat as the latter, since there 

are eight pints in a gallon. It is clear then that the 

amount of heat required to produce a certain tempera¬ 

ture change in water depends on the mass of water 

heated. The amount also naturally depends on the 

number of degrees of temperature thru which the water 

is raised. Thus it takes ~ as much heat to raise a mass 
o 

of water thru 10° C. as it does to raise the same mass 

thru 50° C. 
(390) 
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If now in place of the pint of water we put over the 

fixed flame a piece of copper of the same mass as the 

pint of water, we shall find that the copper will rise to 

100° C. in just aboutof the time taken by the water. 

This brings out the fact that different substances re¬ 

quire different amounts of heat in changing their tem¬ 

peratures over the same range even when equal masses 

are used. 

In order to measure and compare the amounts of heat 

taken up by different bodies heated under different con¬ 

ditions, we must have a unit of heat quantity. It has 

been found convenient to take as the unit of heat quan¬ 

tity the amount of heat absorbed by one gram of water 

when its temperature is raised one degree Centigrade. 

This unit is called the gram-calorie or for short the 

calorie. The same amount of water when lowered one 

degree in temperature will of course give out this same 

quantity of heat so that the gram-calorie can be defined 

as the quantity of heat taken in or given out when the 

temperature of one gram of water is raised or lowered 

one degree Centigrade. From this definition it is plain 

that it takes 100 calories to raise 1 gram of water from 

0° to 100° C., 500 calories to raise 5 grams over the same 

temperature range, and so on. 

If, instead of using the flame to heat the water, we de¬ 

velop the heat necessary to raise its temperature thru 

one degree by friction—as for instance by rotating in the 

water a paddle driven by a falling weight—we can find 

out how many foot-pounds or ergs of work are necessaiy 

to develop one calorie of heat. This has been done with 

elaborate precautions to avoid losses of energy and it 

has been found that 42 million ergs of mechanical energy 

are required to develop one gram-calorie of heat. This 
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quantity is called the Mechanical Equivalent of Heat. 
Using English units, we may say that it takes 778 foot¬ 

pounds of work to raise one pound of water thru one 

degree Fahrenheit. 

2. Specific Heat.—Very accurate experiments have 
been made to find out the number of calories required to 

raise one gram of other substances than water thru one 

degree Centigrade. It takes, as we have already indi¬ 

cated, ~ (-09) calories to raise one gram of copper 

one degree; i (.03) calories to raise one gram of 

mercury one degree, and so on. The number of gram 

calories required to raise one gram of any substance thru 

one degree Centigrade is known as the Specific Heat of 
that substance. We list here the specific heats of a few 
important substances. 

Aluminum .218 
Brass .094 

Copper .095 

Glass .2 
Ice 

Iron .113 
Lead .0315 

Mercury .033 

Silver .0568 
.504 Zinc .0935 
Water 1.00 

Let us represent specific heat by Sp. h. It is clear 
from the definition of specific heat that the number of 
calories given out or absorbed by a mass m grams of a 
substance in falling or rising thru one degree Centigrade 
must equal m X Sp. h. calories and that the total quan¬ 
tity of heat given out or absorbed by the mass m grams 
in falling or rising from ti° to t2° must equal m X Sp. 

h. X (t2°-ti°) or the mass times the specific heat times 
the change in temperature. 

We can easily understand the method usually em¬ 
ployed in finding specific heats. We know that if a hot 
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body be brought into contact with a colder one, heat will 

be conducted from the hot body to the cold one until both 

bodies have the same temperature thruout. The hot 

body loses a certain amount of heat energy and the cold 

body gains a certain amount. Now, by the general 

principle of the conservation of energy, these two 

amounts of heat, that is the heat lost by the hot body and 

that gained by the cold body, must be equal, if none of 

the heat goes into some third body. Speaking in terms 

of calories, we can say that whenever two bodies with 

different temperatures are brought together, the num¬ 

ber of calories lost by the hot body equals the number of 

calories gained by the cold body after both have come to 

the same temperature provided there is no loss to a 

third body. 

Suppose now we take a weighed piece of copper of 

mass Mc which has been held in free steam so long that 

we know its temperature to be 100° C. thruout and put 

it into a weighed quantity of water of mass Mw which 

has a thermometer dipping into it. Let the vessel con¬ 

taining the water be so arranged that no heat can escape 

from it. After a minute or two copper and water will 

have come to the same temperature which can be read on 

the thermometer. Then we know that the number of 

calories lost by the copper in falling from 100° C. to the 

temperature of the mixture must equal the number of 

calories gained by the water in rising from its original 

temperature to the temperature of the mixture. The 

number of calories gained by the water can readily be 

calculated by multiplying its mass into its specific heat 

into its rise in temperature, and the number of calories 

lost by the copper can be represented by the product of 

the mass of the copper into its specific heat into its fall 

in temperature. If we represent the original tempera- 



394- MODERN AMERICAN EDUCATION 

ture of the copper by TC9 of the water by TW9 and the 

final temperature of the mixture by Tm, we can write 

the equation: 

calories gained by water = calories lost by copper. 
Mw Sph.hy, (Tm-Tw) =MC Sp.h.c (Tc-Tm) 

In this equation all the quantities are known from the 

experiment except the specific heat of the copper which 

we wish to find. We therefore write the equation 

Sp.h. c — in which of course Sp.h. w 
M-c \1 c~± m) 

equals one. (Tm-Tw) is the rise in temperature of 

the water and (Tc-Tw) is the fall in temperature of 

the copper. 

3. The Calorimeter.—The method just described for 

measuring heat quantities is known as the 4 4 Method of 

Mixtures.” The work must be carried out, as we have 

said, in a vessel from which no heat can escape. A ves¬ 

sel constructed to meet these conditions is known as a 

calorimeter. Ordinary calorimeters are constructed of 

two cylindrical polished metal cans, one smaller than 

the other, made so that the smaller one, hanging freely 

from an asbestos or wooden cover, fits inside the larger, 

leaving an ample air space all around. The mixture is 

made in the small inner can which is provided with a lid 

with a hole in it thru which a thermometer and stirring 

rod can be passed. The layer of still air around the 

inner can prevents any large loss of heat by conduction 

or convection while the polish on the can very much re¬ 

duces the loss from radiation since the radiant heat 

waves of which we spoke in a recent paragraph are, to a 

large extent, reflected from polished metal surfaces 

without being absorbed. 

A better arrangement is one in which the space be- 
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tween the cans is a vacuum, since then there can be no 

loss at all by either conduction or convection except thru 

the cover. The ordinary thermos bottle is made in this 

way. It consists of a double walled glass container with 

the air exhausted from between the walls. The inner 

walls are silvered like mirrors to reduce the loss from 

radiation as much as possible. It is impossible to con¬ 

struct any calorimeter in which the heat losses by con¬ 

vection, conduction and radiation shall be exactly zero, 

but one can be made from which the rate of loss is so slow 

that no account need be taken of it in ordinary experi¬ 

ments extending over a few minutes. 

Let us here consider a single problem. (1) What will 

be the temperature of the mixture resulting from mix¬ 

ing 100 g. of water at 90° with 200 g. of water at 10° ? 

If T m represents the temperature of the mixture we 

have: heat in calories lost by hot water = heat in calories 
gained by cold water. 

200 (Tm-10°) = 100 (90°-Tm) 

Multiplying out and solving for Tm we find Tm — 

36-f-°. In this problem no account is taken of the heat 
o 

capacity of the calorimeter. 

4. Changes in State.—We are now ready to study the 

changes in state produced by heat. If, on a cold day, 

we take some ice from outdoors, that ice will have the 
temperature of its surroundings. Suppose that tem¬ 

perature to be —10° C. If we heat the ice in a vessel con¬ 

taining a thermometer, we shall find that the tempera¬ 

ture will rise to 0° C. at which temperature the ice will 

begin to melt. No matter how much we increase the rate 

of heating, we will now find it impossible, if we stir the 

mixture vigorously, to raise the temperature of the mix- 
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ture higher than 0° C., until all the ice is melted. As 

soon as the ice is all gone, the temperature of the water 

will begin to rise. During the time that the ice was melt¬ 

ing, a large amount of heat apparently disappeared, 

since no temperature change resulted from its absorp¬ 

tion. In other words there was no increase in the kinetic 

energies of the molecules of the mixture due to the ab¬ 

sorption of this heat. Since, however, energy cannot be 

destroyed, it seems fair to suppose that the heat which 

disappeared is in the mixture in the form of potential 

molecular energy. 

It is clear that the molecules of liquids are much more 

free to move about and to separate than are the mole¬ 

cules of solids. The molecules of a substance in the 

liquid state are therefore probably farther apart than 

they are in the same substance in the solid state. It must 

take energy to bring about this separation and, in our 

experiment, the necessary energy was just that which 

apparently disappeared in the heating. We therefore 

suppose that the energy is present in the liquid in the 

form of energy of separation of the molecules, that is, in 

the form of potential energy. 

It necessarily takes a certain definite amount of heat 

energy to bring about this separation in a given amount 

of matter—that is to melt the given amount changing it 

from a solid to a liquid. If now we lower the tempera¬ 

ture and allow the liquid to return to the solid state, we 

may expect that the energy previously absorbed and 

stored as potential energy will be liberated and reappear 

as heat energy, since when the liquid becomes a solid, its 

molecules fall closer together again. This liberation of 

heat on solidifying is in fact found to take place and 

accurate experiments have shown that the number of 

calories given out in solidifying is exactly equal to the 



QUANTITY OF HEAT, ETC. 397 

number of calories taken up by the same mass in 

melting. 

5 Heat of Fusion.— The number of calories taken to 

melt a gram of any substance without raising its tem¬ 

perature is called the heat of fusion of the substance. It 

is very different for different substances, but always 

exactly the same for the same substance. We can easily 

find the value of the heat of fusion of ice by the method 

of mixtures. Suppose that when we put 150 grams of 

ice at 0° C. into 500 grams of water at 80°, the tempera¬ 

ture when the last of the ice melted was 43.1°. The 

heat given out by the water has in that case been 

500 X (80 — 43.1) = 18,450 calories. 

Some of this heat was used to melt the ice and the rest 

of it was used to raise the temperature of the water re¬ 

sulting from the melting of the ice from 0° to 43.1°. If 

we represent the heat of fusion of ice—that is the num¬ 

ber of calories required to melt one gram of ice without 

raising its temperature—by L then in this case the heat 

required to melt the ice has been 150 X L calories. The 

heat required to raise the ice water from 0° to 43.1° has 

been 43.1 X 150 = 6465 calories. We have then 

18,450 = 6465 + 150 L. Whence L = -18450 ~ 6465 = 
150 

79.9 calories per gram. The most accurate measure¬ 

ments have shown that the heat of fusion of ice is very 

close to 80 calories per gram. This means of course that 

it takes 80 calories to melt 1 gram of ice without raising 

its temperature and that when one gram of water 
freezes, it will give out 80 calories of heat. 

This last effect of heat liberation in the freezing of 

water is made use of by farmers who place large tubs 

of water in their vegetable cellars to protect the vege¬ 

tables from freezing. The vegetables freeze slightly 
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below 0° and the water freezing first gives out enough 

heat in some cases to save the vegetables from freezing. 

6. Melting Point.— The temperature at which the 

melting of a solid or the freezing of a liquid begins is 

found to be absolutely fixed and definite for all sub¬ 

stances of a crystalline structure like ice. This tempera¬ 

ture is called the melting point of the substance. With 

these crystalline substances the melting point tempera¬ 

ture and the solidifying temperature are found to be the 

same and, as with ice, from the instant at which melting 

or solidification begins until it is entirely completed, the 

temperature of the substance remains constant. Glass, 

tar and waxlike or “ amorphous ” substances generally 

do not show any such definite melting points. When 

heated they get progressively softer and softer and 

gradually more and more liquid. 

We have indicated that the general nature of the 

change that takes place when a body melts involves a 

separation of the molecules. We would therefore ex¬ 

pect the body to expand when melting and to contract 

when solidifying. As a matter of fact most, but not all, 

substances do actually behave in this way. There are 

several important exceptions, however, among which 

is water. We can explain this by saying that the 

molecules of ice are arranged in such a way that they 

take up more room than when they are in the liquid 

state and consequently water expands on freezing. 

The amount of expansion of water on freezing is 

very considerable, the increase being about rj~ of the 

original volume. 

This expansion has important practical consequences 

among which is the fact that as ice forms in water it 

floats on the top instead of sinking to the bottom. The 



QUANTITY OF HEAT, ETC. 399 

bursting of milk bottles and of water pipes in winter is 

caused by this expansion. The force exerted by freez¬ 

ing water is very great. Even heavy steel vessels can 

be burst asunder in this way. The breaking down of 

cliffs and rocks is caused largely by water freezing in the 

cracks. 

Cast iron behaves like water in that it expands on 

solidifying. Hence its extensive use when it is desired 

to make a sharp casting in a mould. It is evident that 

the substance in the mould must expand on solidifying 

if the detail in the mould is to be brought out. Lead and 

most other metals contract on solidifying in accordance 

with the general rule. In the casting of type, lead 

alloyed with copper and antimony is used (type metal). 

The effect of the antimony in the lead is to produce an 

alloy that expands on solidifying. If sharp impressions 

are desired on ordinary metals, they must be obtained 

by stamping as in the case of gold, silver and copper 

money. 

Since water in order to solidify must expand, we 

might expect that if we applied pressure to it so as to 

keep it from expanding, it would not freeze—and on the 

other hand, we might expect that if we applied pressure 

to liquid lead which must contract on freezing it would 

freeze more readily. These expectations are indeed 

realized in fact. Applying pressure to ice lowers its 

freezing point. This fact has some important practical 

applications. When a skater moves over ice, his skate 

blade exerts a considerable pressure on the ice under it. 

This pressure, except in the coldest weather, lowers the 

freezing point of the ice to a sufficient extent to melt the 

ice under the blade into a film of water over which the 

blade glides. This explains the ease of movement of a 
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skater over ice. The film of water refreezes instantly 

when the pressure is removed from it. 

7. Vaporization.— We shall next consider the second 
change in state which heat can produce—the change 

from the liquid to the gaseous state. If we take a mass 

of water and heat it steadily, it will rise to 100° C. and 

then begin to boil, giving off bubbles of vapor from the 

bottom and interior of the water generally. If we have 

a thermometer in the water, we shall find that it is im¬ 
possible to raise the temperature of the water above 

100°. The application of additional heat does not raise 

the temperature—it only makes the water boil faster. 

As was the case with the melting ice, the heat energy 

which apparently disappears is, in fact, stored up in the 

steam as potential energy of molecular separation. If 

the steam is subsequently condensed, exactly the same 

amount of energy, the same number of calories, will be 

given out by each gram of steam in condensing, as was 

absorbed in the original boiling away of that gram of 

water. The number of calories of heat energy required 

to vaporize one gram of a liquid without any increase in 

temperature is called the heat of vaporization of the 
liquid. The heat of condensation of the vapor has ex¬ 

actly the same value as the heat of vaporization of the 

liquid, being defined as the number of calories of heat 
energy given out by one gram of the vapor when con¬ 

densing without change in temperature. Different 

liquids have different heats of vaporization, but for any 

one liquid, the heat of vaporization is always exactly 
the same. 

We can apply the method of mixtures to determine 

the value of the heat of vaporization of water. Sup¬ 

pose that when 17.6 grams of steam at 100° are con- 
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densed in 500 grams of water at 18°, the final tempera¬ 

ture is found to be 39°. The amount of steam condensed 

(17.6 grams) can of course be found very easily by 

weighing the calorimeter cup before and after the steam 

has been condensed in it. The total amount of heat 

taken up by the water in the calorimeter has been 500 X 

(39 — 18) = 10,500 calories. This heat has come first 

from that given out when the steam condensed, and sec¬ 

ond from the hot water resulting from the condensed 

steam in falling from 100° to 39°. If we represent by 

Ls the heat of vaporization of water, that is the number 

of calories of heat given out by one gram of steam in 

condensing without change of temperature, then the 

heat given out by all the steam in condensing is clearly 

17.6 X Ls calories. Finally the heat given out by the 

water resulting from the condensed steam in falling 

from 100° to 39° is 17.6 X (100 — 39) = 1073.6 cal. 

Consequently we have 10,500 = 17.6 Ls + 1073.6 

whence Ls — 536 cal. per gram. Accurate experiments 

have shown the heat of vaporization of water and the 

heat of condensation of steam actually to be very close 
to 536 calories per gram. 

8. Boiling Point of Water.— The temperature at which 

what we ordinarily call the “ boiling ” of a liquid begins 

—that is the temperature at which bubbles of vapor 

begin to form in the interior of the liquid—is called the 

boiling point of the liquid. This point is definitely fixed 

for any given liquid except in so far as it, like the freez¬ 

ing point, is affected by changes in pressure. The effect 

of pressure on the boiling point is however much more 

marked than it is on the freezing point. We have de¬ 

fined the boiling point as the temperature at which 

bubbles begin to form in the interior of the liquid. The 
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bubbles contain saturated vapor of the liquid. It is clear 

that a bubble cannot exist in the interior of the liquid 

unless the pressure exerted by the saturated vapor in it 

is at least equal to the pressure of the air on the surface 

of the liquid. On the other hand, bubbles will begin to 

form thruout the liquid as soon as the pressure of its 

saturated vapor equals the pressure on the liquid sur¬ 

face. We can, then, give a more useful definition of the 

boiling point in this form: the boiling point is the tem¬ 

perature at which the pressure of the saturated vapor 

equals the external pressure. 

We now see how easily and thru what wide limits the 

boiling point of a liquid can be varied. Any slight 

change in the pressure on the liquid surface affects the 

boiling point considerably. On top of Mt. Blanc in the 

Alps water boils at 84° C. In general a change in eleva¬ 

tion upwards of 960 feet causes a drop of 1° C. in the 
boiling point of water. The boiling point in Denver, 

Colorado, is about 95° C. On the other hand under a 

pressure of 100 pounds to the square inch in a steam 

boiler water boils at 155° C. 

It will be noticed that in evaporation, which takes 

place at all temperatures, the vapor forms only over 

the surface of the liquid, being made up of molecules 

whose velocities are relatively excessive; but in boiling, 

the vapor forms thruout the volume of the liquid. 

We can apply a number of the facts which we have 

just been studying in the following simple problem: 

Given 100 grams of ice at —10° C. Find how much 

heat is required to convert this ice into steam at 125° C., 

if the specific heat of ice is .5 calories per gram and the 

specific heat of steam is .46 calories per gram. To bring 

the ice to 0° C. will take 100 X .5 X 10 = 500 calories. 
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To melt the ice without changing its temperature will 

take 100 X 80 = 800 calories. To raise the resulting 

water from 0° to 100° C. will take 100 X 100 X 1 = 10,- 

000 calories. To convert the water at 100° into steam at 

the same temperature will take 100 X 536 = 53,600 

calories. To raise the resulting steam from 100° to 125° 

will take 100 X .46 X 25 = 1150 calories. The total 

heat used is therefore 500 + 800 + 10,000 + 53,600 + 

1150 = 66,050 calories. It will be noted that by far the 

greater part of the energy of the steam enters it in the 
operation of vaporization. 

9. Absorption and Liberation of Heat.—It is easily 

seen that when a solid is dissolved in a liquid and a solu¬ 

tion is formed, a change of state has taken place in which 

a solid goes into a liquid form. We might therefore 

expect to find in the act of solution certain liberations 

or absorptions of heat similar to those observed during 

fusion. As a matter of fact heat effects are observed 

when a solid dissolves in a liquid. Sometimes, as is the 

case when common salt is dissolved in water, the tem¬ 

perature of the solution falls, showing an absorption of 

heat in other cases, as when lye dissolves in water, the 

temperature rises, indicating a liberation of heat. 

Solutions are found to have lower freezing points than 

the liquids used in making them. It is possible to get a 

solution of ordinary salt in water, the freezing point of 

which is 22 C. The action of the freezing mixture 

used in ice cream freezers is based on this fact. Suppose 

we have a salt solution of such strength that it freezes at 

“10° C., and we throw pieces of ice into it. The ice will 

melt in the solution. Each gram that melts will absorb 

80 calories of heat from the solution and thus lower its 

temperature. If we continue to throw ice in, the process 
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of heat abstraction will be continued until the tempera¬ 

ture of the mixture falls to its freezing point, in this case 

—10° C. If a container with pure water in it is dipped 

into this mixture, the water will be frozen. 

We are here making use of the heat of fusion to get a 

lower temperature. A much more rapid effect can be 

produced by making use of the absorption of heat which 
accompanies vaporization. If liquid ammonia is allowed 

to expand freely out of a valve, it will vaporize into 

gaseous ammonia and in so doing will absorb very 
rapidly a large amount of heat. If the expansion takes 

place in a pipe surrounded with salt solution, the heat 

will be taken out of the salt solution, the temperature of 

which will be lowered. This is exactly what is done in 

artificial ice plants where gaseous ammonia is liquefied 
by applying to it a pressure of about 150 pounds to the 

square inch and then allowed to expand into the gaseous 

form at a pressure of about 30 pounds per square inch 

in a system of pipes contained in tanks of brine, the tem¬ 

perature of which is thereby reduced to about —10° C. 

Pure water held in oblong vessels in the brine is thus 
frozen. The expanded gas is carried back to the press¬ 

ure pump and reliquefied. The heat which is liberated 
on liquefaction is carried away by cooling the pipes con¬ 

taining the liquid ammonia before allowing it to expand 

into the pipes in the brine tanks. Cold storage plants 

work on exactly the same principles, but the cooled brine 

is pumped thru systems of pipes into the various rooms 
of the storage house. 

Before leaving the subject of heat we must briefly 

consider a few of the most important industrial uses 

made of heat energy in steam and gas engines. All the 

usable energy on the earth had its original source in 
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the heat energy of the sun. 

Coal, for instance, contains 
energy extracted from the 

sun’s rays in the forests of the 

Carboniferous Age. Water 
power depends on the fall of 

water originally raised by the sun thru evaporation from 

the sui face of the ocean, followed by elevation thru 

convection currents and precipitation as rain. The 

stored-up heat energy in fuels as in coal and gasoline is 

rendered available for our use in certain engines, the 

essential construction of which we shall now consider. 

10. Reciprocating Steam Engine.—First let us examine 

the form of reciprocating steam engine invented by 

James Watt, of Glasgow, about the year 1768. Water 

is boiled in the boiler B, Fig. 47. The steam is collected 

under its own pressure in the steam dome D. A pipe 

leads from this dome to the valve chest A over the cylin¬ 

der C. This chest has two pipes K and L, one leading to 

either end of the cylinder as shown, and a third pipe E 
communicating with the outside air. A sliding valve Vy 
with the general shape shown, moves back and forth in 

the chest in such a way that at one end of its travel K is 

connected with E, while L is open into the chest and thru 

the chest into the steam dome, and at the other end L and 

E are connected and K put into connection with the 

steam dome. With conditions as shown in Fig. 47, steam 
from the dome will enter the space M and push the 

piston across to the other end of the cylinder. This, by 

means of the crank Q, will turn the shaft S one-half 

revolution, and in so doing will turn B one-half revolu¬ 

tion and pull the valve V to the other end of the steam 

chest, thus connecting L and E, so that the steam in the 
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end of the cylinder may blow out, and at the same time 

connecting K and V so that live steam may enter the 

other end, N, of the cylinder. This live steam will push 

the piston back towards M and the continuous repetition 

of this operation will result in a continuous rotation of 

the wheel TV. 
In practice the steam is allowed to escape directly into 

the air only in cases where simplicity is a primary object, 

as in most steam locomotives. In stationary steam 

plants, the steam is nearly always discharged into a con¬ 

denser in which the pressure is not more than one pound 

to the square inch. This of course adds 14 pounds to the 

effective pressure of the steam on the piston and thus 

improves the efficiency. Such engines are called con¬ 

densing engines while those of the simpler type, which 

exhaust into the air are called non-condensing engines. 

In very large, steadily running engines such as are 

used on steam ships, the steam usually is conducted from 

the first cylinder into a second cylinder and thence into 

a third and even into a fourth cylinder before being 

taken into the condenser. Each of these successive 

cylinders is larger in cross area than the preceding one 

and in each the steam expands farther than in the pre¬ 

ceding one and thus gives up more energy and develops 

a higher efficiency. Such engines are called compound 

engines and are referred to as double, triple or quad¬ 
ruple expansion engines. 

11. Steam Turbine.—All the engines described above 

are “ reciprocating ” in that they contain as the essential 

driving feature a piston which reciprocates, that is, 

moves back and forth. Several types of rotatory steam 

engines are in use which offer many advantages over the 

reciprocating type. These rotatory engines are called 
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steam turbines. The live 

steam is directed thru nozzles 

onto curved vanes of metal set 

in the rim of a wheel. The 

steam drives the wheel around, 

more or less as wind drives a 
windmill. In practice, the 

steam after striking a row of 

vanes on one wheel is redi¬ 
rected by a set of stationary guide vanes to strike the 

vanes of a second wheel mounted on the same shaft, thus 

making use of a larger amount of the energy of the 
steam. Frequently the steam strikes on 14 to 16 rows 

of movable vanes before passing into the condenser. 

This type of engine occupies about of the floor space 

taken by a reciprocating engine of the same power. 

Many of the largest ocean liners and battleships have 

engines of this type and most of the modern city electric 

light plants also use turbines. Many of these turbines 
develop as high as 25,000 H. P. (See Fig. 48.) 

12. Gas Engine.— The steam engine is an expansion 

engine but the gas engine such as is used in automobiles 

is an explosion engine. Practically all automobile 

engines are piston engines and operate on what is 

known as a four stroke cycle—that is a cycle in which 

there are four strokes of the piston to each power im¬ 
pulse. The cylinder has only one closed end. In or 

near this end, the head, there are two valves which are 

driven by cams on a driving shaft so that they open and 

close at the proper times. 

On the first stroke of the cycle (Fig. 49) the piston 

moves to the left with the intake valve open. An ex¬ 

plosive mixture of air and gas is thus drawn into the 
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cylinder. This is the intake 

stroke. On the second stroke of 
the cycle both intake and ex¬ 

haust valves are closed and the 
piston, returning, compresses 

the mixture against the head of 
the cylinder. This is the com¬ 

pression stroke. At the end of 

this stroke an electric spark 
passes in the compressed gas, 

exploding it. This explosion 

drives the piston back on the third stroke of the cycle. 

This is the explosion or power-stroke. Both valves still 

remain closed. On the fourth stroke the piston returns 

with the exhaust valve open and pushes out the burned 

gases. This is the exhaust stroke. The next following 
stroke is again an intake stroke and the cycle is then re¬ 

peated. If there is only one cylinder, the engine must 
have a heavy fly wheel to carry it thru the three strokes 

where power is used up, to the one-stroke where power 
is developed. 

The efficiency of a heat engine is defined as the ratio 
between the heat energy transformed into useful work 

and the total heat energy absorbed. On account of the 

fact that some heat must be thrown out at the exhaust, 

no heat engine can operate at very high efficiency. An 

ideal engine with no avoidable losses, if using steam at 

190° C. and delivering water in the condenser at 40° C., 
would have an efficiency of 32%. In the very best types 

of triple expansion engines the actual efficiency attained 

is only 17% or thereabouts. In ordinary locomotives the 

efficiencies are about 6% to 8%. Gas engines, on ac¬ 

count of working at much higher temperatures than 

steam engines, have higher efficiencies. Large gas 

Fig. 49. 
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engines sometimes reach an efficiency of 37%, while the 

smaller ones used in motor cars frequently have efficien¬ 
cies around 25% to 28%. 

REVIEW. 

1. What is a calorie? 

2. What effect has pressure upon (a) the freezing point of ice, 
(b) the boiling point of water? 

3. What is meant by the statement that all usable energy on the 
earth has its source in the heat energy of the sun? 

4. What is a condensing steam engine ? A compound engine ? 

5. Distinguish between an expansion engine and an explosion 
engine. 



CHAPTER VIII 

SOUND—ITS NATURE AND PROPAGATION 

1. Common Source.— We are already familiar by ex¬ 

perience with many facts concerning sound, hence the 

study of the science of sound which we are about to take 

up is certain to prove both interesting and useful. We 

shall consider first the exact nature of sound together 

with the modes by which sounds are produced. 

Whatever sound we may hear, if we trace it to its 

source, we shall always find that it comes from some 

object in a state of rapid vibration. This vibration can 

usually be detected either by looking at the sounding 

body or by feeling it. For instance, when a bell is ring¬ 

ing, the rapid trembling movement of its edges can read¬ 
ily be felt against the finger. So with a tuning fork the 

prongs of which can be seen to tremble or vibrate as long 

as it is producing a sound. Again the trembling of a 
string in a piano can easily be observed when the string 

is sounding. If this trembling is stopped, either in the 

case of the string, the fork or the bell, the sound in¬ 

stantly ceases. 

A body can be caused to give out sound either by 

being struck or else by being rubbed over some other 

body—the striking or rubbing serving to set up the 

necessary trembling motion. The bell for instance is 

struck sharply by the clapper, the tuning fork is rapped 

against a wooden or rubber block, and the piano string 

is hit with a felt-covered hammer driven by the piano 

key. As an example of rubbing, consider the string of 

(410) 
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the violin which is made to sound by rubbing it with a 

rosined bow; or take the case of the brakes on a street 

car, which squeak sharply when set. 
If the sound is to continue for any length of time after 

the blow on the body ceases, it is evident that the body 

must be an elastic one, that is, as we have previously 

stated, one which after being distorted tends to return 

to its original shape. On its first return, it will, on ac¬ 

count of its inertia, overshoot its true position a bit and 

will continue to vibrate back and forth for some little 

time before it stops in its original place. During this 

vibration the sound continues to be made. This is the 

case with the tuning fork and other objects that we have 

just spoken of. If the body that is struck is not elastic, 

one short sound only—the sound of the blow—will be 

produced. This is the case if a block of lead is struck 

with a hammer, or if a piece of soft putty is thrown on 

the ground. Again if the body, as for instance the tun¬ 

ing fork, instead of being sharply struck is pushed to one 

side and made to come back slowly to its original posi¬ 

tion, no sound at all is produced. It seems, then, that 

for the production of sounds the body must move 

rapidly. 
We can, consequently, in summing up, say that sus¬ 

tained sounds are produced by rapidly vibrating elastic 

bodies. Such bodies can be stimulated to produce 

sounds by being struck or rubbed. A single sound—not 

sustained—like an explosion—can be produced by any 

body making a single very rapid movement. A bullet 

flying thru the air produces for example a single very 

sharp, cracking sound. 

2. Transmission of Sound.—Having now established 

that sounds arise from rapidly moving bodies, the next 
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point is to find out how the disturbances produced by 

the motion of the body get from the source to the ear 

which perceives the sound. This point can easily be 

settled by experiment. If we put an electric bell 

which is ringing continuously on a thick pad of cot¬ 

ton wool under the receiver of an air pump and 

slowly exhaust the air, we find that, as the air be¬ 

comes less and less dense, the sound of the bell becomes 

fainter and fainter—until, when a good vacuum is 

reached, absolutely no sound at all can be heard, 

altho the hammer can be seen to be moving as vigor¬ 

ously as ever. If now the air is readmitted, the sound 

begins to come again reaching its original intensity 

when all the air has gone back into the receiver. It is 

clearly evident from this that the disturbance pro¬ 

duced by the moving gong has been carried to the ear 

thru the air. 

Our studies of air as a gas have shown us that when 

air is compressed, it tends to expand again to its 

original volume—that is to say that air is distinctly 

elastic. This being the case, we might expect the 

vibrating bell to produce a similar vibration in the 

elastic air around it, which vibration, entering the ear 

might produce that effect on the nerves of the ear 

which we call a sensation of sound. This is exactly 

what does happen. It is clear that the same effects 

will be produced when any other medium than air 

surrounds the bell provided only that the new medium 

be sufficiently elastic. If, for example, when swim¬ 

ming, the head is held below the water, sounds can be 

heard with great distinctness coming thru the water. 

Submarine boats have frequently been detected by 

listening for the sounds of their engines under the 
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Os 

Fig. 50. 

water. Similarly the sounds of train 

f wheels are transmitted over great distances 

! thru the steel rails of the track. We can 

say in general, then, that the disturbance 

produced by a very rapidly moving body 

can be transmitted thru, or to use more 

scientific language, can be propagated in, 

any elastic medium which may surround or 

be in contact with the moving body. 

3. The Tuning Fork.—Now let us con¬ 

sider somewhat in detail how the sound 

disturbance is transmitted thru the air. 

After being disturbed, a tuning fork (Fig. 50), which 

is made of highly elastic steel, vibrates back and forth 

with great regularity of motion. Suppose that the 

fork is surrounded by air and that the end of the prong 

(we will pay attention to only one of the prongs) 

is at a. Let the prong move across from a to b in a 

very short length of time, say —of a second. In this 

short time the air in front of the prong has not time 

to flow around the prong to the other side. It is 

caught by the prong and sharply compressed. As soon 

as the prong starts back from b toward a this com¬ 

pressed air will expand and in expanding will com¬ 

press the air all around it, thus producing a spherical 

shell-like compression. This compression is produced 

because the air inside expands so quickly that the air 

outside does not have time to flow away. The spher¬ 

ical shell of compression will in turn expand and com¬ 

press the air just beyond itself and so on, the result 

being that a spherical shell of compression spreads out 

from the end of the prong as a center at a high rate 

of speed. When this compression enters the ear it 
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affects the ear drum and thus produces a sensation of 

sound. 

Returning to the tuning fork, let us note what hap¬ 

pens when the prong goes from b to a. This movement 

takes place so quickly that something of a hole is left in 

the air behind the prong—that is to say, the pressure in 

the space behind the prong as it moves from b to a is 

much reduced. Such a space with a reduced pressure in 

it is called a “ rarefaction ”—as being the opposite of 

a “ compression ” or space containing an excess press¬ 

ure. The air immediately around this rarefaction will 

expand into the “ hole ” forming a spherical shell of 

reduced pressure, that is a spherical rarefaction, around 

it. The air just outside this spherical rarefaction will in 

turn expand into it and so on, the net effect being the 

spreading out of a spherical rarefaction from the end of 

the prong as a center at the same rate that the condensa¬ 

tion spread out. It will be noticed that this rarefaction 

follows immediately behind the compression and that a 

second compression caused by the prong moving from a 
to ft a second time will immediately follow the rarefac¬ 

tion, and so as long as the fork continues to vibrate, a 

compression will travel out each time the prong comes 

from a to b, and between every two compressions will be 

a rarefaction produced by the prong going from b to a. 

If the prong moves across 200 times a second, then in 

each second 200 spherical compressions will follow each 

other out into the air. 

These rapidly alternating compressions and rarefac¬ 

tions striking on the ear drum produce a definite con¬ 

tinued sensation of a sound which a musician would 

recognize as being close to the G sharp, next below 

the middle C of a piano. Such a succession of con- 
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densations and rarefactions is called a train of sound 
waves. 

One condensation taken together with the one rare¬ 
faction immediately following it is said to make up a 
“ single wave ” of the sound, and the distance from one 
condensation to the one next following is called the 
“ wave length ” of the sound. Waves of this kind made 
up of compressions and rarefactions are called com- 
pressional waves, or, since the motion of the particles of 
the medium brought about by the wave is back and forth 
along the line of propagation, longitudinal waves. 

4. Speed of Sound Waves.— The rate at which waves of 

this sort spread out in air has been measured by noting 

with a stop watch the interval between the arrival of the 

flash and of the sound of a cannon fired at a known 

distance. When there are no disturbances due to wind 

or other motions of the air and the air is dry and at 0° C. 

temperature, the sound has been found to travel 331.3 

meters in a second. This is equal to 1087 feet per second 

(about 12 miles in a minute) at 0° C., or to 1126 feet per 

second at 20° C., which is an average outdoor tempera¬ 

ture for warm weather. The speed has been measured 

also in water where it was found to be 1400 meters in a 

second and in iron, where it was found to be 5100 meters 

per second. In general, sound travels about 4 times as 

fast in liquids as in air and about 12 times as fast in 

highly elastic solids as in air. 

It will be noticed that the rate of transmission of the 
wave depends on the temperature. The effect of tem¬ 
perature in the case of air is a very important one. We 
have said the speed in air at 0° C. to be 331.3 meters per 
second. For each rise of 1° C. the velocity increases 60 

centimeters, that is .6 meter per second. From this we 
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can calculate that for each rise of 1° F., the velocity must 

increase 1.1 feet per second. This change is so large 

that it must always be taken into account in calculations 

involving the speed of sound. 

Returning to our tuning fork, we now know that one 

second after the prong makes its first movement from a 

to b, the first compression will have traveled (at 20° C.) 

1126 feet away from the fork. In this space between the 

fork and the 1126 foot mark, there will be 200 compres¬ 

sions alternating with 200 rarefactions, that is to say, 

there will be 200 waves in the space. If we represent the 

number of waves given out in a second, which is known 

as the f requency of the sound, by n, the distance traveled 

by the wave in one second, that is the velocity of the 

wave, by v and the length of a single wave (from one 

condensation to the next condensation) by l it is clear 

that v — nl or l = —. This must be so because the total 
n 

wave train produced in a second covers v feet and con¬ 

tains in it n waves. The length of one of these waves 

must consequently be 

5. Reflection of Sound.— Let us now suppose that this 

train of waves from the fork strikes against a solid wall. 

When the air against the wall is compressed, it cannot 

expand forward being checked by the wall. In that case 

the necessary expansion will take place backward, and 

the first compression, followed in turn by the rarefaction 

and by the following waves, will travel back away from 

the wall at the same rate that it came up. This is known 

as reflection of sound. Reflection always takes place 

when a wave strikes on the boundary of a medium of 

different density from that in which it has been travel¬ 

ing. When we are speaking in a closed room, our 
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auditors hear not only the original sound produced in 

our throats but also the sounds reflected from the walls. 

It is because of this that it is so much easier to hear and 

to make ourselves heard in a closed room than in the 

open air. The reflections, of course, follow the original 

sound and thereby prolong it. In a poorly designed, 

large hall the reflections of one word may become con¬ 

fused with the sound of the next word spoken. In such 

halls, which are said to have “ poor acoustic properties,” 

it is very difficult to understand what a speaker says. 

These effects are always more marked when the hall is 

empty than when the seats are filled with people, for the 

people form a large number of irregular reflecting and 

absorbing surfaces which absorb and disperse the energy 

of the reflected waves. 

The ear is so constructed that it cannot distinguish or 

separate clearly two sounds which follow each other at 

an interval of less than of a second. If therefore a 

reflected sound comes back to the ear within of a 

second of the time the original sound arrived at the ear, 

the two sounds will be heard as one; but if the reflection 

returns second or longer after the original sound, it 

will be heard as a separate and distinct sound. This 

explains the production of the echoes frequently heard 

among the hills or in very large buildings. To get an 

echo we must have a large reflecting surface 55 feet or 

farther from the listener, if the sound be produced near 

the listener. This distance is necessary because if the 

total space covered by the sound is less than 110 feet, the 

reflection will get back within second and will not 

be clearly perceived. 

If there are a number of reflecting surfaces, or if the 
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sound is reflected back and forth several times, as be¬ 

tween two hills, then a number of successive echoes 

called multiple echoes may be heard. If the reflecting 

surface happens to be regular and more or less spherical, 

such as the interior of a dome, the reflected compressions 

may be bent into such a form that each one converges on 

some point near the center of the dome. A person sta¬ 

tioned at this point will hear clearly sounds which are 
much too faint for persons nearer the source to perceive. 

This is due to the concentration of the energy by the con¬ 

verging reflection. So-called “ whispering galleries ” 

work on this principle. 

6. Law of Inverse Squares.—We have noted that the 

sound wave is propagated outward from the source at 

the rate roughly of 1100 feet per second in the form of 

concentric spherical shells. It is evident that the total 

energy contained in the original first compression made 
by the fork is at the end of a second distributed over the 

surface of a sphere with a radius of about 1100 feet. 
The total amount of energy which would enter the ear 

of a listener, let us say thru a tube of 1 sq. cm. area, at 
this distance is seen to be exceedingly small. As the 

listener came closer and closer to the source, the amount 

of energy which would enter his ear thru the square 

centimeter of area would become larger in proportion as 

the areas of the spheres around the source on which his 
ear lay became smaller. For example, when the area of 

this sphere was reduced to one-half, the amount of 

energy on a unit area of the sphere would clearly be 

doubled, since the total energy on all the spheres is the 

same. The sound would therefore become louder or 

more intense as the listener approached the source and 

this increase in intensity would not be directly with the 



SOUND—ITS NATURE AND PROPAGATION 419 

decrease in distance, but directly with the decrease in 

area of the spheres of which the distances are radii. 

If the first distance from the source is ri and the 

second distance from the source is r2j the area of the 

sound compression at n will be 47m2, its area at r22 will 

be 47rr22. Now the intensity, say h at Vis will be to the in¬ 

tensity I2 at 7*2 in the inverse proportion of these areas, 

that is, hi hi : Airr*, or 7^ 55 —that is to say, 

the intensities are inversely proportional to the squares 

of the distances from the source. We are here taking 

the intensity of the sound at any distance to be measured 

by the total amount of energy in each square centimeter 

of its wave front at that distance. This law connecting 

the intensity of a disturbance with the distance from the 

source is a general law of very wide application. It ap¬ 

plies to every case where a disturbance passes out thru 

an elastic medium in the form of waves. It is called the 

Law of Inverse Squares. If the distance from the 

source is doubled, the intensity is reduced to -h; if the 

distance is trebled the intensity is reduced to -L and so 

on. This law has its direct applications in light and in 

magnetism and electricity as well as in sound. It will 

be noted that the law applies accurately only when the 

wave can spread out unimpeded in all directions so as to 

have a spherical form. If the wave is confined by a tube 

or other device, it may travel for relatively great 

distances with small loss in intensity. This effect is il¬ 

lustrated in speaking tubes and megaphones. 

The intensity of the sound at the source depends of 

course on the total amount of energy put into each com¬ 

pression. This will also affect the intensity at any given 

distance. As the energy of the compression equals the 
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work done on it in making it, this energy is clearly pro¬ 

portional, in the case of the tuning fork, to the distance 

the prong of the fork moves back and forth, that is to 

the amplitude of motion of the fork. We can say, there¬ 

fore, that the intensity of a sound as perceived by a 

listener depends on two things, (1) on his distance from 

the source of the sound, and (2) on the amplitude of 

vibration of the source. 

7. Pitch.—We have said that a musician would recog¬ 

nize the sound of this fork about which we have been 

talking so much as close to the note G sharp in the 

musical scale. If we took a fork of such size and ma¬ 

terial that it vibrated 256 times a second instead of 200 

times, the musician would say that the sound produced 

was middle C in the scale. This difference in the ap¬ 

parent “ height ” of sounds, depending on the number of 

waves sent out in a second, is referred to as difference in 

pitch. We can of course all distinguish differences in 

pitch and we all know what is meant by the term 

“ pitch.” The thing to be noted here is that differences 

in the pitches of sounds are due entirely to differences 

in the rates of vibration of the sources of the sounds— 

that high-pitched sounds come from bodies which are 

vibrating very rapidly, while low-pitched sounds come 

from bodies vibrating less rapidly. 

It has been found by experiment that the speed of 

sounds is entirely independent of their pitches. It fol¬ 

lows that after two forks of frequencies of 100 and 200 

respectively have been sounding for one second, the first 

compression from both forks will be 1126 feet away 

from its starting point and in this space there will be 100 

waves from the one fork—each wave having a length of 

11.26 feet—and 200 waves from the other fork—each of 
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these waves having a length of 5.55+ feet. It is plain 

from this that the waves of high-pitched sounds are 
shorter than those of low-pitched sounds. 

The pitch that we judge a sound to have when we hear 

it, depends on the number of waves per second which 

actually enter the ear. If 256 waves enter the ear in a 

second, we say that is “ middle C if 512 waves enter 

in a second we say that is an octave above middle C. 

The number of waves entering the ear is necessarily 

the same as that given off by the fork in the same time 

only when both fork and observer are stationary. For 

suppose the fork while sounding with a frequency of 

200, moves forward 100 feet in one second. Suppose 

the temperature to be such that the velocity of sound is 

1100 feet in a second. Then at the end of the second of 

time the first compression will be 1100 feet away from 

the original position of the fork. But the fork will have 

moved up 100 feet so that the 200th compression is only 

1000 feet behind the first one. Into this 1000 feet we 

have crowded 200 waves. The length of each of these 

waves is clearly only 5 feet instead of the length of 5.5 

feet which each wave would have had if the fork had not 

moved. An ear at the 1100 foot mark will therefore be 

struck by 5 foot waves and will get exactly the impres¬ 

sion of pitch that would be received from a stationary 

fork with a frequency of 220 instead of the true fre¬ 

quency of 200. 

Exactly similar reasoning will show that if the fork 

moves away from the observer, the apparent pitch will 

drop. The statement that the apparent pitch of a sound 

depends in this way on the relative motion of the source 

and the observer is known as Doppler's Principle. A 

sharp rise in pitch due to this effect can be perceived by 
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a passenger in a train when passed 

by a locomotive sounding its whistle 

while running in the opposite direc¬ 

tion on the other track. The relative 

speed is in this case possibly very 

high—perhaps 120 miles per hour or 

more—and the effect is distinct. 

This principle applies to any form 

of wave motion—to light, for exam¬ 

ple, as well as to sound. It is inter¬ 

esting to know that it is by a direct 

application of this principle, when 

referring to light, that the speeds of the various stars 

are determined. 

8. Musical Sounds and “Noise”.—We have now shown 

that the pitch of a sound depends on the number of vi¬ 

brations made by the sounding body in a second and 

therefore on the length of the wave produced in the air 

by the sounding body. A great many sounds have, how¬ 

ever, no definite pitch. When a load of bricks is dumped 

on a hard pavement, we find it impossible to assign any 

pitch to the resulting sound. We say that such a sound 

is merely a “ noise.” We can get a clearer idea of this 

matter by the use of an instrument known as a “ siren.” 

This is a metal disk 12 or 15 inches in diameter which 

has three concentric rows of holes punched in the edge 

as shown in Fig. 51. The outer row has 40 holes equally 

spaced around the edge—the next row has 30 holes very 

irregularly spaced—the third row has 30 holes regularly 

spaced. This disk can be rotated at a high rate of speed. 

A glass nozzle is supplied thru which a stream of air can 

be directed against any one of the rows of holes. When 

the jet is directed against the first row—the one with 
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40 regularly spaced holes—40 puffs of air come thru for 

each revolution of the disk. When the disk is speeded 

up, these puffs blend into a pleasant sound with a defi¬ 

nite musical pitch. If now the nozzle is changed to the 

third row so that we get 30 regularly spaced puffs of air 

for each revolution—the sound has still a definite 

musical pitch but this pitch is much lower than before, 

just as we would expect. If finally we set the nozzle on 

the second row, where the thirty holes are arranged ir¬ 

regularly, the total number of puffs for each revolution 

is the same, yet the sound given is unpleasant and pro¬ 

duces no impression whatever of definite pitch. It is an 

irregular noise. 

This experiment furnishes us with the means of dis¬ 

tinguishing musical sounds from noises. If a sound has 

a definite pitch, that is, if its wave train has a definite 

wave length, then it is called a musical sound. The 

effect of such sounds on the ear is generally pleasant 

unless the pitch is very high. If the sound has no defi¬ 

nite pitch, if its wave train is made up of waves all of 

different lengths, it is called a noise. Noises are gen¬ 
erally annoying in effect and irritating. 

The human ear has a limited range of perception. If 

the pitch of a sound lies above a certain limit, or below a 

certain limit, the sound becomes inaudible. The range 

of perception is not the same for all ears and varies with 

age, being narrower for older people. Most persons can 

distinguish sounds arising from frequencies between 30 

vibrations per second and 40,000 vibrations per second, 

altho it is difficult to judge accurately of pitches with 

frequencies over 4000 per second. Some people can 

hear sounds due to frequencies of only 16, while others 

can hear sounds as high as 50,000. The ordinary 7-~ 
Q 
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octave piano has a range from its lowest note to its high¬ 

est of 27.5 vibrations per second to 4220 vibrations per 

second. 

REVIEW. 

1. Describe the compressions and rarefactions produced by a 
vibrating tuning fork. 

2. How are echoes produced? 

3. State and explain Doppler’s Principle. 

4. Distinguish between a musical sound and a “ noise.” 



CHAPTER IX 

MUSICAL SCALES AND INSTRUMENTS 

1. The Musical Scale.—We shall now study the rela¬ 

tion in pitch existing among the notes of the so-called 

musical scale. This scale is a sequence of notes picked 

out on the general principle that they harmonize or 

sound well together. We can begin our study by the 

use of a new metal disk on the siren of Fig. 51. This 

disk has four rows of regularly spaced holes. The outer 

row has 48 holes, the next row 36 holes, the next 30 and 

the last 24. If when this disk is rotating steadily, we 

puff air thru the four rows of holes in succession, we 

shall find that the easily recognizable sequence do, mi, 

sol, do1 is produced. This sequence can of course be im¬ 

mediately recognized by a person with any musical 

training. If now the disk is made to go faster, the 

pitches of all the notes will rise but the character of 

the sequence will remain the same. It will still be do, mi, 

sol, do1. This experiment brings out two important 

facts (1) that the sequence do, mi, sol, do1 is produced by 

notes whose frequencies are in the ratio of 4, 5, 6, and 8; 

and (2) that the sequence depends not on the absolute 

pitches of the notes but on the existence of these par¬ 

ticular ratios among the pitches. 

The complete natural musical scale is built up of eight 

notes, the vibration numbers of which are found to bear 

certain definite ratios to one another. This scale can 

have its beginning note on any pitch. It is only neces¬ 

sary that the succeeding notes of the scale shall have 

(425) 
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vibration numbers bearing the proper ratios to this be¬ 

ginning note and therefore to each other. The ratios 

of the frequencies of the successive notes in the major 

diatonic scale, which is the one most commonly used in 

musical work, are, referring each note to the beginning 

note: 

No. 1 C. No. 2 D. No. 8 E. No. 4 F. No. 5 G. No. 6 A. No. 7 B. No. 8. C. 

1 9 
8 

5 
* i 1 | sB 2 

The letters usually applied to these notes to specify 

them are shown at the top of the diagram. The signifi¬ 

cance of this series of ratios can best be brought out by 

an example. Suppose we select a pitch of 256 vibra¬ 

tions per second for C. What will be the proper pitches 

for the other notes of the major diatonic scale built up 

on this C? 

D = ® X 256 = 288 G = ~ x 256 = 384 
o jL 

E = 4- X 256 = 320 A = 4- X 256 = 426-|- 4 o o 

F = -L X 256 = 34lA- B = X 256 = 480 
3 3 8 

C = 2 X 256 = 512. 

2. Intervals and Chords.—It will be understood that 

the notes comprising the scale were selected originally 

because they, of all notes tried, sounded best together in 

various combinations. Years after the scale was built 

up, investigation showed that the ratios existing between 

the successive notes, all referred to the first note, were 

those listed above. Further tests show that the two 

notes which sound best of all together to persons with 

good musical ears are those whose frequencies have the 

simplest ratio, namely, the octave 1 to 2. The next 

smoothest sounding combination is that of C and G 

where the ratio is again a very simple one, 2 to 3. This 
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interval, being between the first and fifth notes of the 

scale, is called a fifth. Other smooth sounding pairs are 

G and C1, the ratio of which is 3 to 4, called a fourth, and 

C and E with the ratio 4 to 5, called a third. It will be 

noticed that the smooth combinations are invariably 

those with simple ratios between their frequencies. 

Turning now to combinations of three notes, it is 

found that C E G sounded together give a remarkably 

pleasing effect. These notes have frequencies in the ra¬ 

tios 4.5.6. Any three notes having these ratios (4.5.6.) 

among their frequencies are said to compose a major 

chord. The major diatonic scale is built up of three ma¬ 

jor chords, (1) C E G, called the tonic chord furnishing 

as it does the beginning note of the scale, (2) GBD1 

called the dominant chord passing over into the next oc¬ 

tave, and (3) FAC, called the subdominant chord. It 

will be seen that these three chords taken together give 
all the notes of the major scale. 

We have said that by the use of the ratios 1,— > A, 
. . 8 4 

etc., a major scale can be built up on any pitch as a base. 

We have already calculated the pitches for the succes¬ 

sive notes built up on C = 256 as a base. If now we take 

D — 288 from this C scale and build up a major scale on 

that (D = 288) as a base, we get the following values: 

Ratios 1 i 
5 
¥ 1 3 

* 1 ¥ 2 

Scale of 
D = 288 

D 
288 

E 
312 

F 
350 

G 
384 

A 
432 

B 
480 

Cl 
540 

Di 
576 

Scale of 
C = 256 

C 
256 

D 
288 

E 
320 

F 
Sili 

G 
384 

A 
426| 

B 
480 

Cl 
512 

Dl 

Ratios 1 
* 

s 
4 1 1 i ¥ 2 
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It will be seen that altho some of the frequency values 
for the higher notes coincide in the two scales, most of 

them do not coincide. This means that if we wish to con¬ 

struct an instrument like a piano which will play ac¬ 

curately in both scales, we must put in 11 keys instead 

of 7 to cover from D to C1. If the piano were made 

to play accurately in all the scales which can be built 

up on the successive notes, some 80 keys would be re¬ 

quired in each octave. The difficulty of playing on 

such an instrument would be enormous. In all instru¬ 

ments of the piano type therefore a compromise scale is 
used, known as the evenly tempered scale. In this scale 

the interval of the octave (1 to 2) is divided into 12 equal 

intervals, represented by the intervals between the eight 

white and five black keys of the piano. This scale is not 

an accurate major diatonic scale, since the ratios are not 

those listed above but the differences from the true scale 

are so small that very few persons can detect them. The 
comparison with the scale of C is shown below: 

C D E F G A B Cl 
True 256 288 320 341| 384 426| 480 512 Vibrations per sec. 
Tempered 256 287.4 322.7 341.7 383.8 430.7 483.5 512 

44 44 44 

The general relation existing between true and tem¬ 

pered scales can be more clearly brought out by ex¬ 

pressing the frequency ratios of the successive notes 

referred to the first note in both scales in decimal frac¬ 

tions as below: 

C D E F G A B Cl 
True Scale 1.000 1.125 1.250 1.333 1.500 1.667 1.875 2.000 
Tempered Scale 1.000 1.122 1.260 1.335 1.498 1.682 1.888 2.000 

The agreement is seen to be very close. It will be 

remembered that the full tempered scale has 13 notes in 
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an octave with 12 equal intervals called semi-tones be¬ 

tween them. As the intervals are all equal, a tempered 

scale can be run up from any key by taking an ad¬ 
ditional semi-tone for each successive note. Pianos can 

therefore be readily played in any key. It will be noted 

that an instrument like a violin having no keys or 
fixed frets can be played in a true scale or in a tempered 

scale, at choice, by a person having a sufficiently ac¬ 

curate ear. 

If a single instrument is playing alone it makes very 

little difference in the general effect, except in “ bril¬ 

liance,” whatever may be the absolute pitch of the note 

on which the scale used begins. When a number of in¬ 

struments are playing together in an orchestra, it is 

however of foremost importance that the absolute 

pitches of the notes in the scales used should be identical 

for all the instruments. Otherwise very unpleasant dis- 
4 

cords will be produced. Certain standard pitches, 

usuallv for the first C next above the middle C on a * 
piano, called C", have therefore been adopted by various 

musical associations. The C" used in scientific work is 

the one that we have been referring to so far. This 

scientific C" = 512 vibrations per second. The French 

Standard “Diapason Normal” of 1859 C" = 522, is 

however coming into almost universal use among organ 

and piano manufacturers in Europe and America. 
Other standard pitches in use are Concert Pitch (C" = 

546), Society of Arts (C" = 528), Tonic Sol-fa (C" = 

507) and the Philharmonic (C" = 540). The tendency 

has been to raise the standard pitch with the passage of 

years in order to make the music more “ brilliant.” In 

the times of Handel (1750) A had a frequency of 422.5 

where at the present day 460 is often used. An old A 
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fork, of date about 1650, found in Paris, has a frequency 
of only 374 vibrations per second. 

3. Resonance.—We may now turn to the subject of 
musical instruments and similar devices for producing 
sustained sounds. We shall first consider the organ 
pipe but before entering directly on the study of it, cer¬ 
tain preliminary experiments must be described. We 
have already explained how a sound wave is reflected 
when it strikes a medium of density different from that 
in which it was previously traveling. We might easily 
imagine that when the source is sounding continuously, 
these reflected waves on their return could, under certain 
conditions, interfere with the waves still coming off from 
the source. The result of this interference might be 
either re-enforcement where two compressions came in 
the same place, or a reduction when a reflected rarefac¬ 
tion coincided with a condensation freshly given off by 
the fork. The actual occurrence of this effect of inter¬ 
ference can be shown by the following experiments. 

Take a tall glass cylinder. Hold over its mouth a 
vibrating tuning fork. The fork being held in the hand 
will produce only a weak sound. Slowly pour water 
into the cylinder thus reducing the length of the air col¬ 
umn in the tube. Finally, as the length becomes less, a 
point will be reached at which the sound of the fork is 
very strongly re-enforced so that it can be heard all over 
a large room. This re-enforcing effect is called reso¬ 
nance. It is caused, as we indicated in the last para¬ 
graph, by the combination of the waves reflected from 
the water in the tube with those just being given off by 
the fork. The length of air column necessary to produce 
this effect will be found to be shorter, the higher the pitch 
of the fork used. If a fork making 256 vibrations per 
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Fig. 52. 

the pitch of the 

second is used with the air at such a 

temperature that the velocity of sound 
is 1126 feet per second, then measure¬ 

ment will show the necessary length 

of air column to be about 1.1 feet. 

The wave length of this sound is 

or about 4.4 feet. The length of air 

column necessary to produce resonance 

in this case is seen to be ~ of the length 

of one wave. Further experiments 

would show that no matter what may be 

fork, the length of air column necessary 

to produce an effect of resonance is always of the 

wave length of the sound of the fork. A little analysis 

of the conditions in the cylinder will enable us to see why 
this must be so. 

One prong of the vibrating fork is shown in Fig. 52. 

A complete wave consisting of one compression followed 

by one rarefaction is given off by the fork in moving 

‘from b to a and back again to b. Now as the prong 

starts down from b it produces a compression which 

travels down the tube, is reflected at the bottom and, if 

it is to produce resonance, must get back to the fork in 

time to combine with the next upward moving compres¬ 

sion produced by the prong. This compression is pro¬ 

duced when the prong starts back from a toward b. It 

is therefore clear that the compression must travel to the 

bottom of the tube and back again while the prong, 

moving from b to a, is making one-half a complete vi¬ 

bration and is producing half a wave. The distance to 

the bottom of the tube must therefore be the length 

of the wave. 
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.. b 
=» c 

a 

Fig. 53. 

Resonance will also be produced if 

the reflected compression gets back 

in time to combine with any subse¬ 

quent upward moving compression, 

not necessarily the first one. It can 

be seen from the figure that upward 

moving compressions are given off 

after ~ vibration, after -J- vibra¬ 

tion, -J-, and so on. If therefore 

the tube is -—■> or any odd 

number of quarter wave lengths deep, 

resonance will result. 

If, now, instead of using the glass cylinder we use a 

telescopic tin tube, open at both ends, we shall find that 

the open tube, if of proper length, will re-enforce the 

sound of the fork just as the closed tube did, with this 

difference, however, that the open tube must be twice as 

long as the closed tube in order to produce the effect. 

It is found in general that an open tube will produce 

resonance when its length is one-half the length of one 

wave of the sound entering it. 

In order to understand what goes on in the open tube, 

a new fact must be brought out. When the downward 

moving compression made by the fork moving from b to 

a (Fig. 53) arrives at the open bottom of the tube, in¬ 

stead of coming against a solid wall and being thrown 

back, as in the closed tube, it expands out into free air at 

less pressure than in the tube itself. The particles in the 

compression therefore “ overshoot ” and leave behind at 

the bottom of the tube a space of reduced pressure—a 

new rarefaction, which will be propagated up the tube 

just like any other rarefaction. Each compression is 
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therefore reflected as a rarefaction. This always takes 

place when a sound wave enters a medium of less density 

than that of the medium in which it has been moving. 

We can easily see that in order for resonance to take 

place, the reflected upward moving rarefaction must get 

back in exact time to combine with a subsequent upward 

moving rarefaction just produced by the fork. The first 

subsequent upward moving rarefaction will be pro¬ 

duced behind the fork when it next starts down from b 

toward a, that is at the end of one full vibration—suc¬ 

ceeding ones will move upward after 2, 3, 4 and any 

number of full vibrations. The sound must therefore 

travel down the tube to the bottom and back again to the 

top while the fork is giving off some whole number of 

waves. The length of the tube must consequently be a 

corresponding number of half wave lengths— 

—. — and so on—in order to produce resonance. 
2 * 2 x 

4. Beats.— These experiments with the open and the 

closed tubes show cases of sound wave interference 

which result in re-enforcing the original sound. An ex¬ 

periment will now be described in which two sets of 

sound waves interfere in such a way as to diminish or 

destroy the total sound effect. 

Let us set side by side two tuning forks, one 

with a frequency of 256 vibrations per second, the 

other with a frequency of 250 vibrations per second. 

If we sound these two forks together we hear a sound 

of a distinctly pulsating character, becoming alter¬ 

nately louder and then weaker than the sound of a 

single fork. This pulsating effect is due to alternate 

destruction and re-enforcement in the two trains of 

sound waves. This pulsating is called the “ beating 9> 
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of two sounds and the individual pulses are called 

“ beats'9 

To explain beating, let us suppose that two com¬ 

pressions, one from each fork, start out together. At 

the end of one second they will still be together, 1126 

feet away from the forks. In the space between the 

1126 foot mark and the forks there will be 256 waves 

from the one fork and 250 waves from the other. In 

order to examine these waves let us suppose that they 

remain stationary. At the 1126 foot mark two con¬ 

densations are together so that there we have a re¬ 

enforcing effect. As we move back from the 1126 foot 

mark toward the forks, we shall find that the waves in the 

train of shorter waves lose distance as measured against 

the longer waves. Since there are 256 short waves in the 

same space as 250 long ones, each short wave must be 

as long as each long one, and, in each wave length, 

must lose of a long wave length. It follows from 

this that after we have gone back 42long wave 

lengths, the short waves will have lost one entire long 

wave length on the long ones, two condensations will 

again be together and there will be again re-enforce¬ 

ment. Half-way between, however—21 ~~ long wave 

lengths from the 1126 foot mark—the short waves will 

have lost one-half a long wave length so that at that 

point a condensation of a long wave and a rarefaction of 

a short wave will be exactly coincident and there will be 

a destruction of the sound effect. 

It will be noted that the points of re-enforcement 

being 42-|-long wave lengths apart, there must be six of 

these re-enforcements in the 1126 feet. If now the ob- 
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server remains stationary and the waves move 

past his ear, he will hear six beats in one second. 

In general, as this explanation indicates, the 

number of beats in a second between sounds from 

two sources is equal to the difference in the fre¬ 

quency numbers of the sources. 

The subject of beating is of importance 
because it has been found that discords between 

sounds are due entirely to this cause. If the 

number of beats lies between 5 and 50 in each 

second, the effect on the ear is distinctly unpleas¬ 

ant. The most discordant effect is produced by about 
30 beats per second. For instance the notes B and the 

C next to it, which differ by 32 in their frequency num¬ 

bers and therefore produce 32 beats each second, are the 

most discordant on the piano. If the beats exceed about 

70 per second, the ear does not detect them and the two 
sounds seem to blend and produce harmony. 

wj 

Fig. 54. 

5, Organ Pipes—Open and Closed. — Church organs 

contain pipes some of which are open and some closed 

at the upper end. These pipes are arranged so that a 

plate or jet of air can be blown across a up at their 

lower ends. When this jet of air is properly blown so 

as to strike just inside the lip of a closed pipe, a con¬ 

densation is produced which goes up the tube—is 

reflected at the top, just as in our experiment with 

the glass cylinder, and on its return pushes the jet of 

air out of the hole in the pipe below the lip. (Fig. 

54.) This produces a rarefaction which travels up 

the pipe and on its return pulls the air jet back in. The 

jet thus vibrates at a rate determined only by the length 

of the pipe. This rate is such that the note given by 

the pipe has a wave length four times that of the pipe. 
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If the pipe is an open one, it acts in an exactly similar 

way except that, as pointed out before, condensations 

will be reflected from the end in the form of rarefactions 

and the note given will have a wave length twice that of 

the pipe. 

It follows from these statements that if an open pipe 

be closed with a plug, the wave length of the note that it 

emits will be doubled, and the second note will therefore 

be an octave below the first. 

In our studies on resonance in a closed cylinder, we 

found that a tube will resonate to a note if it is— > 
4 4 

4- or any odd number of quarter wave lengths 

deep. This means that a tube of given depth can reso¬ 

nate to any of a whole series of notes of which the lowest 
or fundamental note has a wave length of 4 Z, if l is the 

length of the pipe, the next higher a wave length of 

l, the next a wave length of ~ l and so on. The 

frequencies or pitches of these notes will clearly be in the 

ratios 1.3.5.7.9 and so on. The upper notes are called 

“ overtones,” being specified as first, second and third 
overtones and so on in order. 

If the pipe is an open one, it will resonate to a note if 

it is--* -J- or any number of half wave lengths deep. 

A given open pipe will therefore resonate to a series of 
notes of which the fundamental has a wave length twice 

the length of the pipe; the first overtone has a wave 

length equal to that of the pipe; the second overtone has 

a wave length ~ that of the pipe, and so on. The 

pitches of these overtones will be in the ratio 1.2.3.4 
and so on. Open and closed organ pipes can, when 

properly blown, be made to give some of these over¬ 

tones louder than the fundamentals. The blowing 
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must, however, be violent and does not occur in ordinary 
playing. 

6. Wind Instruments.—Nearly all wind musical in¬ 

struments operate on the general principles brought out 

in the last few paragraphs. They can be classified as 

(1) vibrating air jet instruments, (2) vibrating reed in¬ 

struments, (3) vibrating lip instruments. The instru¬ 

ments of class (1) are like the pipe organ. In these in¬ 

struments the rate of vibration of an air jet is controlled 

by the resonance of pipes of different lengths. The in¬ 

struments of class (2) may be subdivided into two 

groups, in the first of which we have the clarinet, oboe, 

bassoon, etc., while in the second we have the mouth 

organ and accordion. In the clarinet type there is a 

reed, which is practically without rigidity, at the 

mouth end of the instrument. This reed acts under 

the resonance of the different lengths of pipe opened 

up by the various stops, just as does the air jet in 

the organ pipe. In the mouth organ, there is a metal¬ 

lic reed with a definite natural period which is set into 

motion by the blast of air but is not otherwise affected 

by it. These instruments do not need any resonating 

air columns. The instruments of class 3 include the 

cornet, trombone, bugle, etc. Here the lips act like 

the flexible reed in the clarinet, the pitch of the note 

emitted depending on the length of the attached pipe. 

In the cornet, this length is altered by throwing in 

or out various links in the tube by means of piston 

keys. In the trombone, the length is altered by slid¬ 

ing a telescopic tube in and out. In these instru¬ 

ments a number of overtones can be blown for each 

pipe length by properly adjusting the lips and the 

the air pressure. In the bugle the length of the pipe 
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w 

E^3 

Fig. 55. 

cannot be changed so that this 

instrument can produce only 
about six notes—its funda¬ 

mental with perhaps five over¬ 

tones. 

7. Stringed Instruments.—We shall next briefly study 

the emission of sounds from vibrating strings—strings 

being the essential parts of all instruments of the type 

of piano, harp and violin. The factors which affect the 

pitches of the sounds given by strings can best be 

studied by the use of the sonometer (Fig. 55). This is 

merely a sounding box provided with two fixed bridges 

A and B at the ends and a movable bridge, C} between. 

The wires or strings under investigation can be stretched 

across the two fixed bridges and can be subjected to any 
desired tension by hanging weights W on the end as 

shown. The effective lengths of the strings can be 
changed by use of the movable bridge. 

Let us take two strings of the same material and 
diameter, subjected to the same tension and adjust 

the movable bridge so that the length of the one string 
is half that of the other. If now we pluck these strings, 

the shorter one will give a note an octave higher than 
that of the longer one. In other words, it is making 

twice as many vibrations per second as is the longer 
string. We would find in general, if we extended this 

experiment, that other factors being kept constant, the 

vibration numbers of strings are inversely proportional 

to their lengths. If now we keep the length, materials 
and diameter constant, and alter the tension, we shall 

find that to raise the pitch one octave, that is, to double 
the rate of vibration of the string, we must put on 

four times the tension. In general, other factors re- 
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Fig. 56. 

maining constant, the vibration 
numbers of strings of equal 
lengths are directly proportional 
to the square roots of the 
tensions. 

We shall call these statements 
the two laws of vibrating strings. 

The factors of length and ten¬ 

sion covered by the laws are the 

only ones which can be altered 

in a given string. The pitch 
also depends on the material of the string and on its 
diameter. 

If we grasp the string of the sonometer exactly at the 

middle, pull it to one side and then release it, it will vi¬ 

brate as a whole as shown in a Fig. 56. It will then give 

out the lowest-pitched note of which it is capable; this 

note is called the fundamental. If we-touch it at the 

center and pluck it at one quarter of its length from 

the end, we can make it vibrate as shown at b. Little 

paper riders, placed at h and l will be thrown off but a 

rider put at m will remain in place. This stationary 

point is called a node. The points of greatest movement 

are called loops. As we might expect, since the string 

is here vibrating in two parts, each part half the original 

length, the pitch of the sound given out is the octave of 

the fundamental. This is the first overtone. If now we 

touch the string at one-third its length from the end and 

pluck it at one-sixth its length from the end, we may, 

with skill, be able to get the form of vibration shown 

at c Fig. 56. Paper riders will remain at m and n but 

nowhere else. The sound emitted is the second over¬ 
tone. Its vibration number is three times that of the 
fundamental. 
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A string can, similarly, be made to vibrate in any 

number of equal parts and can therefore give a funda¬ 

mental note and a series of overtones with frequency 
ratios of 1,2,3,4,5, etc., to the fundamental. Overtones 

which are multiples of the fundamental are called 
harmonics. Even harmonics comprise the 2nd, 4th, 6th, 

8th, etc., overtones. Odd harmonics comprise the 1st, 
3rd, 5th, 7th, etc. It will be noted that strings and open 

pipes give all the harmonics, odd and even, but that 
closed pipes give only odd harmonics. 

When a string is plucked at random, it ordinarily 

will give a complex note, including its fundamental 

and a number of harmonics. The harmonics which 

have nodes at the point where the string is plucked, 

are of course absent, since the point plucked cannot 

possibly be at rest. Since the lower overtones of 

strings are ones which blend very smoothly with the 

fundamental, a plucked string gives a pleasing sound. 

The seventh overtone is the first one that produces 

unpleasant effects. This overtone is suppressed in the 

piano by arranging the hammers so that they strike the 

strings about one seventh of the length of the string 

from one end. 

Stringed musical instruments can be classified into 

three groups: Group I, those in which the string is 

struck, as in the piano. Group II, those in which the 

string is plucked as in the guitar, mandolin, harp, etc. 

Group III, those in which the string is rubbed or bowed 

as in the violin, viola, violincello, etc. Since a skilled 

player can, by adjusting his method of bowing, alter the 

relative prominence of the overtones in sounds of the 

same pitch given by instruments of Group III, these in¬ 

struments are the most expressive of all. 
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Fig. 57. 

have shown that the 

8. Quality and Overtones.—We 

know that sounds of the same 

pitch and intensity, if arising 

from different instruments, usu¬ 
ally sound different to the ear— 

the difference being one of what 

we call quality. Experiments 
quality of a sound of definite 

pitch is dependent on the nature and relative promi¬ 

nence of the overtones present in it. If the sound has 

few or weak overtones, such a sound for instance as we 

get from a gently blown organ pipe, the quality is soft 

and mellow. If the lower overtones are present up to 

the sixth, the quality is full and rich. If high overtones, 

the seventh and above, are prominent, the quality is 

harsh and metallic or tinlike. The tuning fork when 

struck with a soft mallet gives a very pure fundamental 

tone without harmonic overtones. It is because of this 

purity of tone that tuning forks are so widely used in 
scientific and musical work. 

The ordinary sounds of the human voice or of 

musical instruments are, then, of complex structure, 
the actual wave in the air being the resultant obtained 

by adding to the fundamental sound a number of over¬ 

tones. If several sounds are passing thru the air at 

the same time, the wave in the air will be the resultant 

obtained by adding together all the component waves. 

These compound waves may be analyzed into their 
components in any one of a number of ways. A 

simple device for showing the compound nature of 

most sounds is the manometric flame (Fig. 57). In 

this a trumpet communicates with one compartment 
of a cylindrical box divided into two compartments by 

means of a stretched rubber diaphragm D. Illuminat- 
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ing gas enters the other com¬ 
partment thru a tube and es¬ 
capes thru a jet as shown. 

When the jet is lighted, the 

flame burns steadily as long as 
the pressure in the compartment A is steady. A con¬ 

densation entering the trumpet increases the pressure 

in A and causes the flame to rise. A rarefaction enter¬ 
ing will on the other hand cause the flame to drop. If 

the image of the flame is reflected from a cubical rotat¬ 
ing mirror successive pictures of it will be obtained 

which, resembling Fig. 58, will serve to indicate the suc¬ 
cessive pulses of the compound wave. This device really 

shows the form of the resultant sound wave and does not 

actually analyze it into its components. 

The various overtones present in a compound wave 

can be picked out by the use of a set of “ resonators ” 
which are vessels of such graduated sizes that each one 

of them resonates strongly to notes of a single pitch. 
When a compound sound falls on a set of such resonat¬ 

ors, each strong overtone will set its particular resonator 
into vibration. This vibration can be detected by means 

of manometric flames attached to each resonator. This 
method of analysis was developed by the German scien¬ 
tist von Helmholtz (1821-1894). The resonators (Fig. 

59) are frequently called Helmholtz’s resonators. After 
an analysis has been made by this 

method, the quality of the origi¬ 

nal sound can be fairly well re¬ 

produced by blending the notes 
of a number of tuning forks, giv¬ 
ing the same pitches as the reso¬ 

nators excited in the analysis. 
Fig. 59. J 

Fig. 58. 
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9. The Phonograph—The phonograph is an instru¬ 
ment for recording and reproducing sounds. In making 

the original record the sound is allowed to fall on a flex¬ 

ible diaphragm provided, on the under side, with a sharp 

needle-like point. This point runs in a groove on a soft 
wax or composition sheet which is being rotated by 

clock work. The successive compressions and rarefac¬ 
tions of the sound wave produce corresponding move¬ 

ments of the diaphragm and its needle, which result in 

the formation of indentations of varying shape and 

depth in the groove on the composition sheet. If this 

disk, after hardening, is rotated at the same speed as 

before, under another diaphragm provided with a needle 

of somewhat different shape, which runs in the indenta¬ 
tions in the grooves, the second diaphragm will repro¬ 

duce the movements of the first with a fair degree of 

accuracy and a sound similar to the original sound will 

be given off. There are many different types of phono¬ 
graphs, but all work on this general principle. 

REVIEW. 

1. What are the pitch ratios of the Major Diatonic Scale? 

2. Explain why the wave length of a note given by an open 
organ pipe is twice that of the pipe, while in a closed pipe the wave 
length is four times the length of the pipe. 

3. Explain the production of overtones in organ pipes. 

4. Is there sound when there is no ear to hear it? 



CHAPTER X 

LIGHT—ITS NATURE AND PROPAGATION 

1. Nature of Light.— Our knowledge of the external 

world is gained entirely from the impressions received 

from our various senses. A reliable impression comes 

from the sense of touch when some part of our body is 

in direct contact with the object observed. Equally im¬ 

portant, altho frequently subject to strange illusions, 
are the impressions obtained thru the sense of sight. In 

the latter case there is no obvious connection between 
the observer and the object observed. Since placing the 

hand over the eyes cuts off all sight sensations, it is evi¬ 

dent that the eyes are the organs of sight. 

The problem of what it is that, passing between the 

object and the eye, renders the object visible has occu¬ 

pied the attention of philosophers for many centuries. 

The ancients supposed that something, in the nature 

perhaps of immaterial tentacles, extended from the eye 

to the object, but it seems more logical to suppose that 

this something emanates from the object and enters the 
eye, there stimulating the optic nerve. This something 

we call “ light.” The absence of any stimulation of the 

optic nerve such as we have in a completely closed black 

room indicates the complete absence of light, which we 

specify as “ darkness.” 

We know that some objects, such as flames, phos¬ 

phorus or the incandescent filaments of electric lamps, 

can be seen in a black room. Such objects, in order to 

be seen, must emit light, and are therefore called self- 

(444) 
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(u 

t 

luminous bodies. We know that 

all objects which are not self- 

luminous can be seen only when 

light from some luminous source 

falls on them. For instance, in 

the day time we see the furniture 

in the room by the direct or in¬ 
direct light from the sun; at night we see it only when 

light from some lamp or similar source is falling on it. 

V.'.o 

Fig. 60. 

The light emitted from the self-luminous source is evi¬ 

dently reflected from the non-luminous bodies and 

thence, passing to the eye, produces the sensation of 
sight. 

2. Propagation of Light.—Without at present saying 
anything more definite about the nature of light, a num¬ 

ber of important facts can be brought out touching on 

the way in which light is transmitted or propagated from 

a source. In the first place it is evident that if light 

emanates from a source and travels to the eye, it must 

travel at some definite measurable rate. This rate must 

be very high since there is no perceptible delay in the 

receipt of such sensations as the flash of a distant gun, 

altho there is a very long delay in the receipt of the 

associated sound. The rate of speed is, as a matter of 

fact, so high that for many centuries it was supposed 
that light was instantaneously transmitted. 

The first measurement of the rate was made in 1675 

by Roemer, a Danish astronomer. Roemer had accur¬ 

ately calculated the rate of revolution of one of the 

moons of Jupiter so that he could foretell the exact in¬ 

stant in the future at which it would next enter the 

shadow of Jupiter and thereby become eclipsed. He 

made these calculations for the distance from Jupiter to 
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the earth when the earth was at Ei (Fig. 60) in its orbit 

and Jupiter was at Ji. Six months later when the earth 

had moved to E2 and Jupiter to J2, he found that the 

eclipse was 16 minutes 36 seconds behind the calculated 

time. He ascribed this delay to the time taken by the 

light to travel across the earth’s orbit from Ei to E2. 
Now this distance was known to be 186.000,000 miles 

whence we can easily calculate that the light must have 
traveled about 186,000 miles in each second. This is 

equivalent to about 300,000 kilometers per second. 

Subsequent measurements have confirmed this value— 

the best determination giving 299,860 kilometers per 
second. This enormous speed is sufficient to carry 

light around the equator of the earth times in one 

second. 

It is interesting to note in this connection that the 

fixed stars are so distant that it takes 4.4 years for the 

light from the nearest one to get to us. The light from 
the Polar Star takes 45 years to travel to the earth while 

many of the stars are several hundreds of light years 

away from us. 

The rate above given is the rate at which light travels 

in the space between the earth and the sun where there 

exists a very perfect vacuum. It has been found that 

when the light enters any other medium, such as air or 

water, its rate is reduced. The reduction on entering 

air is very slight, being in the ratio of 1 to 1.003, so that 

in our work we can neglect any consideration of this 
reduction. In water, however, the velocity is only 

about of what it is in free space. These changes 

in velocity have important consequences as we shall 

see later. 
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3. Reflection.— If we allow a beam of light from the 

sun to enter a darkened room thru a small hole in the 

window shutter, we can trace the beam by the illumin¬ 

ated dust particles in its path. The path is seen to be a 

straight line. If we hold a screen in the path the beam 

is completely cut off at that point. If the screen is of 

white rough paper, light will be reflected or diffused 

from it into all parts of the room rendering objects in 

the room visible, but if the screen is a polished metal 

mirror, the direction of the beam will be altered by re¬ 

flection without any spreading out. The difference in 

the character of the reflection in the two cases is due to 

the difference in the character of the two surfaces. The 

rough surface is made up of a great many small sur¬ 

faces, all at different angles with one another, from 

which the beam is reflected, so that some light is thrown 

off in every direction. No matter at what angle we look 

at the rough surface we can see it, because some light is 

certain to be diffused in the direction of our eyes. 

When, on the other hand, the beam strikes the smooth 

metal mirror, it meets a surface all parts of which are in 

one plane, so that the whole beam is reflected in one 

direction. If we look at the surface from any other 

direction it will be, if absolutely clean, entirely invisible 

since there is no light reflected in the other directions. 

If we look along the reflected beam into the mirror we 

see, since the beam is unaltered by the reflection, not the 

surface of the mirror but the source of the light, just as 

if we had looked along the original beam before it was 

reflected. This brings out the fact that we cannot see 

the shape and surface of a body unless it reflects light 

diffusely. If a body reflects light regularly like a mirror 

or not at all like a perfectly transparent body or like an 
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absolutely black body, then we 

cannot see it except as it stands 
out against a background of 

diffusely reflecting materials. 

This fact is made use of in many 

tricks of the stage magician and 

is also illustrated by the diffi¬ 

culty of perceiving the very 

large mirrors which are fre¬ 

quently set at the ends of stores to increase their ap¬ 
parent size. 

If we set an angular scale beside the mirror so that we 
can compare the angles which the incident beam of light 

and the reflected beam form with the face of the mirror, 

we at once discover that a very simple relation exists 

between these angles. If the mirror is flat, the angles 
A and B, Fig. 61, are found to be in all cases equal. If 

we erect a perpendicular, or normal as it is frequently 
called, at O, the angles I and R, called respectively the 

angles of incidence and of reflection, are also equal. 

The law of regular reflection is usually expressed by 

saying that the angle of incidence equals the angle of 
reflection and lies in the same plane. Now the angle of 

incidence is the angle between the incident ray and the 
normal to the surface at the point of incidence, and the 

angle of reflection is the angle between the reflected ray 

and the normal to the surface at the point of incidence. 

To say that these angles are in the same plane means 
that the incident ray, the reflected ray and the normal 

must lie in the same plane. This law is true in the case 

of a single ray of light whether the mirror is flat or not. 

4. Shadows.—Since light travels in straight lines, it fol¬ 

lows that if a screen which does not transmit light—that 
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Fig. 62 (a and b). 

is an opaque screen—is introduced 

into a beam of light, none of the light 

can get into the space behind the 

screen. This space which, if not il¬ 

luminated from other sources, will be 

in complete darkness, is called a 

“ shadow/’ Let us study briefly the character of the 

shadows produced by objects when illuminated by 

sources of different sizes. 

First, suppose the source is very small—a “ point 

source.” Let the opaque object be a circular disk larger 

than the source. The conditions in this case are shown 

in Fig. 62a. The light is completely excluded from the 

space This space of complete darkness is 

called the umbra of the shadow. In this case the shadow 

is all umbra, and is in shape a truncated cone. 

Next, let the source be a disc of finite size but smaller 

than the opaque disc BB\ These conditions are shown 

in Fig. 62b. The light is completely excluded from the 

space A1B1BA which, being in complete darkness, con¬ 

stitutes the umbra, in shape a truncated cone as before. 

Outside the umbra, however, there is a region ABC- 

A1B1C1 from which part of the source is visible. At A 

only the beginning of one edge of the source can be seen 

while at C the entire source can be seen. The intensity 

of the shadow therefore becomes less in passing out from 

A until it entirely disappears at C. This region of par¬ 

tial illumination is known as the 

penumbra. 

Next let source and screen be discs 

of the same size as Fig. 62c. The 

shapes of umbra and penumbra in this 

case are clearly shown in the figure. 
F:g. 62 (c and d). ® 



450 MODERN AMERICAN EDUCATION 

-"''I ?\ . 

11 

Fig. 03. 

Finally, let the source be 

larger than the screen as in Fig. 
62d. Here the umbra is a cone 

around and beyond which the 

penumbra, relatively much 
larger, extends. The shadow thrown by the earth in the 

light of the sun is an illustration of this last case. The 
moon is a cold sphere which we see by the light of the 

sun reflected from it. When the moon, in revolving 
around the earth, passes into the earth’s shadow we can 

no longer see it and it is said to be “ eclipsed.” The 
distance of the moon from the earth is such that it is near 

the conical point of the umbra and therefore frequently 
misses the shadow on its way around. If this were not 
so the moon would be eclipsed every 28 days. 

Shadows and eclipses offer excellent illustrations of 

the straight line (or rectilinear) propagation of light. 
Another illustration is afforded by the device known as 

the pinhole camera. This is a light tight box in the front 

wall of which is a pin hole (Fig. 63). If a candle is 

placed in front of the hole, the screen at the back of the 
box will be illuminated by the candle—but as a study of 
the figure will show, A1 will be illuminated only by light 
from the tip of the flame, and B1 only by light from the 

base, and so all points on the source will illuminate only 
a corresponding small area on the screen. This il¬ 

luminated area will therefore have the shape, color and 
movement of the source, and will in fact constitute an 

“ image ” of it. If we look in thru the hole P in the top 
of the box, we can see this image very plainly. As the 

illustration shows, the image will be upside down with 

reference to the object. 
If in place of the screen we put a photographic plate 
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at the back of the box, a picture can be taken of the 

image, but the process will be slow on account of the 

small amount of light that can enter the pin hole. The 

image will be formed on the screen no matter what may 

be the latter’s distance from the hole, but the greater 

the distance the larger the image will be and the more 

faint, since the same amount of light is spread over a 
greater surface. 

6. The Wave Theory of Light.— We have now found 

out that light, traveling with a speed of 186,000 miles 

per second, is emitted from a luminous source in all di¬ 

rections in straight lines. We know that it is reflected 

by certain surfaces either diffusely or regularly. In the 

history of modern science there have been two principal 

theories as to the nature of light. The first of these 

theories was known as the “ corpuscular theory.” Light 

was supposed to consist of streams of extremely minute 

material particles, called “ corpuscles,” which were 

emitted by luminous bodies and traveled out at the rate 

of 186,000 miles per second in straight lines. This 

theory is capable of explaining most of the phenomena 

of light except those of interference and diffraction of 

which we shall speak later. The second theory was the 

“ wave theory ” of light which was first completely ex¬ 

pressed by the Dutch physicist, Huygens (1629-1695). 

Under this theory light is supposed to be a wave motion, 

similar to that of sound, the waves being given off from 

luminous bodies. In order to explain the transmission 

of these waves thru empty space, Huygens assumed all 

space to be filled with a weightless elastic material called 

“ ether ” which had the property of transmitting light 

waves and is therefore frequently called the 44 luminifer¬ 

ous ether.” This theory was examined and rejected by 
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the famous Sir Isaac Newton because at first it did not 

seem to account for the straight line propagation of 

light. This difficulty was subsequently overcome, and 

since about 1800, when it was found that no other theory 

could offer a satisfactory explanation of the “ interfer¬ 

ence ” of light, the wave theory has become more and 

more firmly established until at present it is universally 

accepted as true. 

6. Phenomenon of Interference.— Since the phenome¬ 

non of interference was the one which finally determined 

the adoption of the wave theory, it is worth while to 

consider an experiment illustrating it. Two long nar¬ 

row strips of plate glass are clamped together with a 

sheet of paper between them at one end. This leaves a 

very flat wedge of air between the two plates. An alco¬ 

hol or non-luminous gas flame, such as is given by a 

Welsbach burner without a mantle, is now touched with 

a piece of paper moistened with common salt solution. 

The salt volatilizes in the flame and gives it an intense 

yellow color. When we view the reflection of this flame 

in the glass plates, we see that the surface is crossed by 

a long series of distinct yellow and black lines. The 

formation of these lines can be explained on the basis of 

the wave theory as due to the interference of light waves, 

but cannot be explained at all on the basis of the cor¬ 

puscular theory. When the yellow light strikes the glass 

it is reflected from all four surfaces but in our explana¬ 

tion we shall consider only the reflection from the back 

surface of the front glass and the front surface of the 

back glass, that is to say, from the two surfaces bound¬ 

ing the wedge of air between the plates. 

Let AB and CD (Fig. 64) represent these faces of 

the plates. Let the full lines represent waves reflected 
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from CD and the dotted lines 
waves reflected from AB. These 

waves are drawn in to repre- 

' sent light waves with crests and 

« troughs such as can be produced 
in a rope by shaking it. The 

motion of the particles in this 
type of wave are at right angles to the line in which the 

wave is moving, whence such waves are called transverse 

waves. it is well to remember at this point that in sound 

waves the particles move back and forth along the line 

of motion of the wave, whence sound waves are called 

longitudinal waves. Altho light and sound are both 

wave motions, they are seen to be composed of different 
types of waves. 

Referring again to the figure; along line 1 the wave c 

is seen to meet the wave a in such a way that at every 

point a crest on one wave is opposed by an equal trough 

on the other. The result of combining the two waves in 

this way will be to destroy both. On looking at the glass 

along 1 we therefore see a black line. Along 2, on the 

other hand, the crest of wave a combines with the crest 

of wave Cj producing a re-enforced wave which will 

appear a bright line to the eye. At 3 we find again 

destruction and at 4 re-enforcement and so on, thus ac¬ 

counting for the observed black and yellow lines. 

Assuming “ one wave ” to be built up of one crest 

and the next following trough, it is easy to see that if 

destruction takes place along any hne as 1, it must take 

place again along another line, as 3, where the path of 

the light thru the air wedge and back again is exactly 

one wave length longer than at 1, because then the con¬ 

ditions of interference at 3 will exactly reproduce those 
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at 1. If, therefore, we measure 
the distance between the black 

and yellow lines and the length 

and thickness of the wedge, we 
j can calculate the wave length of 

the yellow light and figure out 

the rate of vibration of the par¬ 
ticles in the flame which give out waves of this length. 

If this were carefully done, it would be found that each 

wave of the yellow light is only .00059 millimeters in 

length. Since light travels at the rate of 300,000 kilo¬ 
meters per second, the number of vibrations per second 

corresponding to this wave length (Z = —, just as with 
Tt 

sound) is enormous, being about 500,000,000,000,000 

per second. 

7. Refraction.—We may now apply this wave theory 

to the explanation of a few phenomena. Take the case 

of a coin lying at the bottom of a vessel of water as 
shown in Fig. 65. The light reflected from the coin by 

which we see it, spreads out in spherical waves concentric 

on the coin. When these waves leave the water, they 

immediately begin to move at a rate -J- as fast as before. 

This results in a bulging up of the wave with an in¬ 

creased curvature as shown in the figure. When this 

wave enters the eye at E or E1, it will appear to the eye 

as if the object were at C1 rather than at C the true posi¬ 

tion. The vessel of water therefore appears more shal¬ 

low than it really is. 

If instead of considering the whole wave we take a 

very small portion of the wave front—or, as we shall 

call it, a “ ray ”—the conditions will be as shown in Fig. 

66. It will be noticed that on emerging the ray coming 
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up to the surface obliquely is bent 
away from the perpendicular to 
the surface, while the ray coming 
straight out normal to the surface 
is not bent at all. It is evident 
that a change in the curvature of 

a light wave must take place every time that it enters 
or leaves a medium in which its speed is different from 
the speed it had before. A ray of light will conse¬ 
quently always be bent to one side or the other on 
entering or leaving such a medium, unless it enters or 
leaves on a perpendicular to the surface. This bend¬ 
ing of light rays on passing from one medium to an¬ 
other is called refraction. 

The conditions when the light 
passes from a medium where its 
speed is higher to one where its 
speed is lower are shown in Figs. 

Fig 67. 67 and 68, where the upper 
medium is taken to be glass and the lower air. It will be 
noted that the ray of light on entering the glass is bent 
toward the perpendicular to the surface. The amount 
of bending is seen to depend on the change which takes 
place in the curvature of the wave which in turn de¬ 
pends on the relation of the speeds in the two media. 
Knowing the relation of the speeds, it is possible to 
figure out the direction and amount of the bending. 
These speed relations are usually expressed with refer¬ 

ence to the speed in air. The 
ratio of the speed in air to the 
speed in any other medium is 
called the index of refraction of 
that medium. 
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The indices (plural of index) of refraction of a few 

substances are shown in the following table: 

Water 1.33 (-J-) Crown Glass 1.53 (~|-) 

Flint Glass 1.67 (-|--) Diamond 2.47 (-^~) 

In studying the refraction that takes place in any 

particular case, it is more convenient to deal with beams 

of light, that is, with small areas of wave fronts, rather 

than with whole waves. Let us note the refraction 
which occurs when a beam of 

light passes thru a block or 

plate of glass with flat parallel 
sides. (Fig. 69.) The beam 

comes down along the line AB. 

When it strikes the glass, the 
wave fronts are retarded on the Fig. 69. 

edge that enters first, so that the beam is bent into some 

direction BC, toward the perpendicular NNu The 
amount of this bending depends on the amount of the 

retardation and is consequently greater the higher the 
index of refraction of the glass. When the beam ar¬ 

rives at C, the edge of the wave emerging first will be 
accelerated by the same amount that it was previously 
retarded, and the emergent ray CD will swing round 

parallel to AB but displaced to one side as shown. The 

bending on emergence is away from the perpen¬ 

dicular N2N3. 
Next take the case of a glass prism, Fig. 70. Here 

again the beam of light is bent toward the perpendicular 

/\C/N* NNi when entering, and away 
from the perpendicular N2Ns 

\ w^en emerging. Again, as al¬ 
ways, the direction of the bend- Air 

Fig. 70, 
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Fig. 71. 

the base of the prism. 

ing can be foretold by noting 

whether the edge of the beam 

which first enters the new 

medium is retarded or acceler¬ 

ated. It will be noted that a 

beam when passing thru a 

prism of the sort shown here 

must always be bent around 

8. The Critical Angle.—Lastly let us consider the more 

complicated case of light coming up from a source at the 

bottom of a pond of water. (Fig. 71.) Here it will be 

necessary to take into account the reflection of the light 

from the under side of the water surface. It must be un¬ 

derstood that whenever light enters a medium in which 

its speed is changed, it is—just as is the case with sound 

—always in part reflected in accordance with the law of 

regular reflection which we have already considered. 

The part of the ray which is not reflected passes on and 

is refracted. Whenever we look obliquely thru a win¬ 

dow pane, we can always see reflections of objects on our 

side of the window as well as the objects on the other side 

of the window, seen thru the glass. Bearing this fact in 
mind, it will be seen (Fig. 71) that the ray passing from 

s to a is partly reflected along Ri—the rest of the ray 

passing thru the surface is bent along the line aFu 
The ray coming up to b is also partly reflected and 

partly refracted. The refracted part bF2 will be bent 

more than was the ray aFu That this must be so is 

evident from a consideration of the emerging wave front 

of the beam which, coming up more obliquely, will have 

its lower edge longer in the retarding medium after the 

upper edge enters the accelerating medium, and will 
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thus swing farther around before emerging completely. 

Therefore, the greater the obliquity of the incidence, the 

greater will be the amount of bending away from the 

perpendicular on emergence. It is evident from the 

figure that an angle of incidence as ScNs must finally 
be reached for which the refracted ray will be so far bent 

that it will pass along the surface as it does at cFz. If 
the angle of incidence is still further increased to SdNi 

no refracted ray can get out into the air. The entire 

beam is then reflected along dRu This is known as 

total reflection. The angle of incidence ScNz at which 
the refracted ray passes along the surface without 

actually emerging is known as the critical angle. When¬ 

ever a beam of light enters a medium in which its speed 
is increased, it will be totally reflected if the angle of its 

incidence on the second medium is greater than the 

critical angle. It will be remembered that the angle of 

incidence is the angle between the incident ray and the 

normal to the surface at the point of incidence. The 

critical angle for water is 48.5°, for crown glass it is 
42.5°, and for diamond it is 23.7°. If an eye were at S 

it would, on looking along Sb, see the sky; on looking 

along Sc the shore, and on looking along Sd a reflection 

of the bottom of the pond. When swimming in clear 

still water, it is easy to verify these conclusions. Since, 

when a beam of light enters a medium in which its speed 
is reduced it is bent toward the perpendicular, it is evi¬ 

dent that under these conditions, total reflection can 
never result. 

9. Intensity and Distance.—We shall next consider the 
variation in intensity of illumination with distance from 

the source of light. Here, as with sound waves, we shall 

define intensity as the amount of energy on each unit of 
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surface, say, on each square centimeter of one of the con¬ 

centric spherical wave fronts. Now it is evident that 

exactly the same reasoning applies here as applied in the 

case of the sound waves. The total energy on one of the 

expanding spherical wave fronts remains constantly the 

same. The amount per unit area, the intensity of il¬ 

lumination, must therefore vary inversely with the 

change in area of the wave front. Since the areas of 

spheres vary with the squares of the radii, the intensity 

varies inversely with the square of the radius of the 

wave front—that is inversely with the square of the 

distance of the point at which the intensity is meas¬ 

ured from the source. This is again the Law of In¬ 

verse Squares. The amount of light energy falling on 

a unit area of a screen, that is the intensity of illumina¬ 

tion on the screen, will be reduced to one-fourth, if 

the distance of the screen from the source is doubled 
and so on. 

It is of course plain that the illumination on a surface 

varies not only with the distance of the surface from the 

source but also with the amount of light given out by 

the source in a unit time. The total amount of light 

emitted by a source in unit time is called the illuminating 

power of the source. The unit of illuminating power is 

the light given by a so-called standard candle which is a 

sperm candle of an inch in diameter burning at the 

rate of 120 grains or 7.78 grams per hour. The illumi¬ 

nation produced on a surface by a source at a given dis¬ 

tance must naturally vary directly with the illuminating 

power of the source. If we represent the illumination on 
the surface by I, the distance from source to surface by d 

and the illuminating power of the source by Pthen we 

have I cc P and I cc ——that is, I <* 
d* ag 
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OC — then Ix : I2 : : 
d 2 

Since I 

means and extremes, 44 
<h2 * d2* 
= d12 d2a 1 • 

and, multiplying 

Now if two 

sources are placed at such distances di and d2 from a sur¬ 

face that they appear to illuminate it equally, then 

11 = I2 and, cancelling these equals out, our equation 

reads = -44- or 44- = 44-. That is to say: the candle- dt 2 d22 P2 rf2; 
powers of two sources of light are directly proportional 

to the squares of their respective distances from a sur¬ 

face which they illuminate equally. 

This last relation is made use of in important prac¬ 

tical measurements of the illuminating powers of sources 

of light. 

10. The Photometer.—The photometer is an instru¬ 

ment making use of this principle for comparing the 

candle-powers of two sources. There are many differ¬ 

ent types of photometers making use of different devices 

for determining when the test surface is equally il¬ 

luminated by both sources. The most common type is 
the Bunsen or “grease-spot” photometer (Fig. 72). 

The screen S in this instrument is a piece of paper with a 

grease spot in the center of it. As any one can easily 
find out by making a test, a grease spot on a piece of 

paper is distinctly visible only when unequally illumi¬ 

nated on the two sides. If the illumination on the far 

side is the stronger the spot appears darker. When the 

illumination is equal on both sides it is very difficult to 
see the spot from either side. This screen is placed on a 

carrier moving on a graduated scale near the middle. 

At one end of the scale a standard candle C is placed 
<. on a similar carrier while at the 

Jf other end is placed the lamp L, 

the candlepower of which is to 
Fig. 72. 
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be measured. The lamps and screen are moved until the 

grease spot becomes invisible or nearly so. Then if dx 
is the distance of the lamp being measured and ds the 

distance of the candle from the screen Ps : Px :: ds2 : 

dx2. Since Ps = one, Pz = 

The candle-power of an ordinary open gas flame 

burning 5 cubic feet of gas per hour is 16 to 20, depend¬ 

ing on the kind of gas used. A Welsbach lamp with a 

mantel burns about 3 cubic feet per hour, and has a 

candle-power ranging between 50 and 100. The 

ordinary arc lamp has a candle-power of only about 500, 

but its light is not equally distributed, so that in the areas 

of greatest illumination the effect is equivalent to that 

of 1000 or even 1200 candles. 

REVIEW. 

1. What is the rate of speed at which light travels thru space? 

2. Explain the wave theory of light. 

3. Distinguish between angles of incidence and of reflection. 



CHAPTER XI 

THE FORMATION OF IMAGES AND OPTICAL 
INSTRUMENTS 

1. Virtual and Real Images.—Our work on light has so 
far been concerned mainly with the nature and propa¬ 

gation of light. We shall now turn our attention to the 
important subject of image formation. 

Whenever an object appears to be in a position other 

than that which it really occupies, the false or seeming 

object is called an image. We are all familiar with the 

images seen in ordinary mirrors. An object viewed in a 
plane mirror appears to be behind the mirror. Since the 

mirror itself is opaque it is clear that no rays of light 

from the object can possibly pass thru the points where 

the image appears to be. Such an image is called a 

virtual image. A virtual image cannot be thrown on a 
screen placed in the position where the image appears to 

be or elsewhere. If an ordinary burning glass is held in 

sunlight, an image of the sun is formed a little distance 

from the glass on the side away from the sun and this 

image can be thrown on a paper screen. The rays of 

light from the sun actually pass thru this image as can 
be perceived by allowing the image to fall on the tip of 

the finger. Such an image is known as a real image. 

Real images can always be thrown on a screen, placed 

in the proper position. It is important to distinguish 
clearly between real and virtual images. 

The formation of images depends primarily on the 

tendency of the eye to see objects along the line on which 

the light rays from the object actually enter the eye. 

(462) 
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We have already referred to 

this tendency in connection with 

refraction and reflection in a ves¬ 

sel of water. It is evident there¬ 

fore that images can be formed 

only when the rays of light from the object are changed 

in direction by reflection or refraction between the ob¬ 

ject and the eye. The object then appears to be in a 

position where it actually is not; consequently we have 

an image. 

2. Image Formation by Reflection.—We shall study 

first the formation of images by reflection. In explain¬ 

ing the mode of formation of the various images, we 

shall use instead of the spherical wave fronts, which 

when drawn on paper are confusing to the eye, restricted 

portions of the wave fronts or “ rays ” of light coming 

out from the object. These rays when reflected from a 

mirror will follow, of course, the general law of reflec¬ 

tion according to which the angle of incidence equals the 

angle of reflection and lies in the same plane with it. 

Take first the case of reflection from a plane, in other 

words a flat, mirror. In Fig. 73 let MMx represent the 

mirror and OOi the object. The ray of light coming out 

from O along the line ON will be reflected back on itself 

along the line NNx because the angle of incidence being 

zero0, the angle of reflection must also be zero0. An¬ 

other ray as OP meeting the mirror obliquely will be re¬ 

flected so that the angle a equals the angle ax, that is 

along the line PPi. If now both of these rays, NNx and 

PPi, enter the eye, the eye will see an image of the point 

of the object along both these lines, that is, where the 

lines intersect at I behind the mirror. It can be seen 

from the figure that angle a equals a2, equals angle aa. 
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C/ass 

Fig. 74. 

equals angle ax, whence the two 

triangles PNI and PNO, shown 
shaded in the figure, are equal 

and NI must equal NO. Simi¬ 

lar constructions could be made 
for all other points on the object 

OOi. If so made, the image will be found to be along 

the line Ih. 
The general simple rule brought out by our construc¬ 

tion is that the image of any point seen in a plane mirror 

is on the 'perpendicular from the point to the mirror and 
as far hack of the mirror as the object is in front of it. 

When this rule is applied to find the image of the lower 
end of the object Ox and thus outline the whole object, it 
is only necessary to draw the line OiNxh perpendicular 

to MMx and to measure off Nxh equal to OiNi. It can 
be seen from this that the image of an object in a plane 

mirror must be the same size as the object; it must be 

erect, that is, with the same end up as the object, and as 

far back of the mirror as the object is in front of it. The 
image is of course always virtual. If we set up a sheet 

of clear plate glass as shown in Fig. 74, place a bottle 

behind the glass and a candle as far in front of the 
glass as the bottle is behind it, then if we look down 
along the line EPy the candle will appear to be burning 

inside the bottle. This arrangement or a similar one is 

frequently made use of in producing illusions on the 
stage. A stage ghost, for instance, can be made to 

appear among the actors by causing the audience to 

view the actors thru a large sheet of clear plate glass, 

the edges of which are concealed. The “ ghost ” is 
actually off stage at the side—his image of course ap¬ 

pearing along a perpendicular from his body to the 
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Fig. 75. 

mirror and as far behind the mirror as he is in front 
of it. 

3. Convex Spherical Mirror.—Next let us study the for¬ 

mation of images in a convex spherical mirror, that is to 

say, in a mirror which is a portion of the outside surface 

of a sphere. Here again we make a construction apply¬ 

ing the same law of reflection, only remembering that 

the normal or perpendicular to this spherical surface at 

any point is a radius of the sphere drawn outwards from 

its center. Fig. 75 represents the construction. The ray 

ON is reflected back upon itself, since it is purposely 

drawn perpendicular to the surface of the mirror. The 

ray OP is reflected at P so that the angle bi equals the 

angle b. If these two rays enter an eye, the eye will see 

the image of the object where the rays intersect, namely, 

at /. In a similar way, the image of Oi will appear at Ji. 

It will be seen that when the object is moved up toward 

the mirror, the image will also approach the mirror, be¬ 

coming larger altho it can never become larger than the 

object. If the object is moved away from the mirror, 

the image also moves away toward C, becoming smaller. 

However, no matter how distant the object may be, the 

image can never get beyond C, the center of curvature 
of the mirror. 

It is also evident from the construction that the image 
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Fig. 76. 

will be at all times right side up 

or erect and always virtual, since 
there is no light back of the mir¬ 

ror where the image appears to 
be. We can say then that an 

image seen in a convex mirror 
always lies between the mirror and its center of curva¬ 

ture and that it is always virtual, erect and smaller than 
the object. Mirrors of this type are very extensively 
used on the windshields and mudguards of automobiles, 

to give the driver a general view behind him. Such 
mirrors since they disperse the light which falls on them 

can never form real images. They are frequently called 
“ dispersing mirrors.” 

4. Concave Spherical Mirror.—Next we must consider 

concave spherical mirrors, those which constitute part of 

the interior surface of a sphere. Altho exactly the same 
principles as before are used in locating the images pro¬ 

duced by this type of mirror, the conditions are some¬ 
what more complicated. Since the concave mirror pro¬ 

duces, as we shall see, real images, it is of more practical 

importance than is the convex mirror. Consider such a 
mirror as shown in Fig. 76. Any ray striking this 

mirror will be reflected so that the angle of reflection ax 
with the normal drawn out thru the center of curvature 
of the mirror at C equals the angle of incidence a. 

When the incident ray is parallel, as shown at KL, to 

the so-called axis of the mirror CP, joining the center of 

curvature with the center of the face of the mirror, then 

it can be proved that making a± equal to a, the reflected 
ray will cut the axis exactly half-way between C and P. 
This point F, halfway between C and P, is called the 

principal focus of the mirror. 
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Any and all rays drawn par- 

Fig. 77. 

a. 

— allel to the axis will after re¬ 

flection pass thru F. Since any 

small section of a spherical wave 

front from a very distant source 

is practically flat or plane, all the rays which can be 

drawn to make up this wave will be parallel to one an¬ 

other. When a plane-faced wave of this sort, such for 

instance as comes from the sun, falls on a concave mir¬ 

ror, it, after reflection, all passes thru the focus where 

there will be a very considerable concentration of light 

and heat. On the other hand, if a source of light is 

placed at F, the light from it that strikes the mirror will 

after reflection be thrown forward in a parallel beam 

along the axis. This principle is made use of in cheap 

reflectors for small lamps. 

If we call the fact that any ray drawn parallel to the 

axis will, after reflection, pass thru the focus, the first 

principle of image construction in concave mirrors, we 

can readily derive a second principle by observing that 

light coming up to the mirror along a radius is reflected 

back upon itself. We can state this second principle in 

this way: any ray drawn thru the center of curvature 

will after reflection be thrown back on itself. The suc¬ 

cessive application of these two principles will enable us 

to locate the image of any point on an object in front of 

a concave mirror, by drawing only two rays, for the 

image will lie where these rays intersect. 

It is necessary however, to distinguish three cases: (1) 

When the object is outside the center of curvature; (2) 

when it is between the center of curvature and the focus; 

(3) when it is between the focus and the face of the 

mirror. Fig. 77 represents the first case, 78 the second 
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case, and 79 the third case. In 

each case the image I of the 

point O on the object is located 

by drawing its two rays, one 

parallel to the axis passing after 

reflection thru the focus; the other thru the center of 

curvature passing after reflection back on itself. The 

image h of the point Oi could be located by an exactly 

similar procedure. 

A critical study of these constructions shows that in 

cases a and b, the light from the object after reflection 

actually passes thru the place where the image appears 

to be, so that these images are both real. In both these 

cases, the images are inverted} that is, up-side down, the 

image in case a being smaller than the object and be¬ 

tween C and F, while in case b, it is larger than the 

object and beyond C. In case c, the light is seen to 

be dispersed, that is, rendered divergent, after reflection. 

If these diverging rays enter the eye, the eye will form a 

virtual image behind the mirror, which will be erect and 

larger than the object for all positions of the object 

between F and P. 

5. Image Formation by Refraction.—We shall next 
study the formation of images by refraction. The only 

refracted images that we shall consider are those formed 

by glass lenses. Lenses are of two general types, either 

convex, that is, thicker in the center than at the edges, 

or concave—thicker at the edges than in the center. 

^ (Fig. 80a and b.) When a 

; plane-faced wave passes thru a 

; convex lens, the center is re- 

} tarded more than the edges so 

that the wave emerges as a con- 
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verging wave. Such lenses are 

therefore called converging 

lenses and correspond in an op¬ 
tical way to concave mirrors. 

When a plane wave passes thru 
a concave lens, the edges are re¬ 

tarded more than the center so that the wave comes out 

as a diverging wave and such lenses are called diverging 
lenses and correspond generally to convex mirrors. 

It is evident that since concave lenses cause the inci¬ 

dent light to diverge, they can never form real images. 

We shall therefore first study convex lenses, since they 
are the more important. We can see from Fig. 80a that 

after a plane-fronted wave has been rendered convergent 

by passing thru a convex lens, it must converge toward 
and pass thru some point on the axis of the lens. This 

point on the axis thru which a plane-faced wave with its 

face perpendicular to the axis passes after refraction, is 
called the principal focus of the lens. Speaking in terms 

of rays of light, the principal focus is seen to be the point 
on the axis of the lens thru which all rays which were 

parallel to the axis before refraction will pass after re¬ 

fraction. Let us call this distance from the principal 

focus to the center of the lens /. Now, in mathematics, 

the “ curvature ” of any arc is defined as the reciprocal 

of its radius—for example, the curvature of an arc 

drawn with a radius of 8 centimeters is -4-. It follows 
o 

that the curvature of the converging wave coming out 

of the lens is We can therefore say that the curva¬ 

ture which a lens impresses on an incident plane wave is 

y-. Now it is also a fact that no matter what may be 

the curvature of the incident wave, the lens will always 

convex. concave 

Fig. 80. 
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change that curvature by 

A' the amount 

This 

Fig. 81. 

/ ’ 

is a very im¬ 

portant principle, useful 
in calculating the position of images. Consider, for 
example, the waves issuing from the source S at a 
distance Do from the center of the lens C (Fig. 81). 

Let these waves converge after passing thru the lens 
to the point Si at distance Di. Si will be the image 

of S. Now the curvature which the wave has after 

passing thru the lens, that is is the difference be¬ 

tween the curvature impressed by the lens, that is — 

and that which the wave had when it entered the 

lens, ov -w • It is more usual to write 
I/o JLPi J JJ o 

this relation ~ . This formula is used 

to calculate the distance of an image formed by an 

object at a known distance from a lens of known focal 

length. 

The focal length of a lens can always be found by 
holding it up in the sunlight. The image of the sun 

forms at the principal focus. It can be seen from the 

figure (Fig. 81) that if the source of light is put at Si, 

the image must appear at S, as the conditions are ex¬ 

actly reversed. Such pairs of points, of which there are 

an indefinite number along the axis, are called conju¬ 
gate foci. 

6. Construction of Images: (a) Convex Lenses.—If we 

wish to find the position of the images by construction, 
we have two principles to guide us, just as we had with 

mirrors. The first principle has already been stated. It 
is that all rays parallel to the principal axis of the lens 

will after refraction pass thru the principal focus of the 
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lens. The second principle is 

that any ray which passes thru 
the optical center c of a lens 

passes on undeviated, since 

whatever bending takes place at 
the first surface will be reserved at the second surface. 

Figs. 82 and 83 show the application of these prin¬ 

ciples. For purposes of simplicity the lenses, LLi, are 

represented by straight lines. In case A, the object is 

nearer the lens than the principal focal distance. The 

light is seen to be divergent after passing thru the lens. 

No real image can be formed. An eye would form a 

virtual image at Ih which image is erect, larger than the 

object and on the same side of the lens with it. In case 
BJ the object is a long way outside the focal distance. 

The image is seen to be real, inverted, smaller than the 

object and nearer the lens than the object. We can 

easily reason out the changes in size and position of this 

inverted real image with change in position of the object. 

If the object is at a very great distance, the image will be 

at the focus and will be very small. As the object is 

moved up toward the lens, the image will move out 

away from the focus and will become larger until finally 

both object and image are the same size. This will 

happen when both object and image are at a distance 

from the center of the lens equal to twice the focal 

length of the lens. If now the object is brought still 

closer to the lens, the image will move rapidly away and 

become larger until when the object is at the focus, the 

o 

Fig. 83. 

L image is at infinity. If the ob¬ 

ject is taken inside the focus, we 

have case A again and the only 

image formed is a virtual one. 
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During all these changes in 

position of object and image, it 

will be seen that the extremities 

of object and image must lie be¬ 

tween the lines OxCh and OCI 
so that object and image form corresponding sides of a 

pair of similar triangles. Since all corresponding di¬ 

mensions of similar triangles are in the same ratio, it is 

seen that OOi, the height or size of the object, must be to 

IIi, the size of the image, as the distance of the object Do 
from the center of the lens is to the distance of the image 

Di from the same point. This can be written Si : So :: 
Di : Do or Si Do — Di So. This formula enables us to 

calculate the size of an image formed from an object of a 

given size, if we know or can calculate from the formula 

~ - + ~ the distances of object and image. 

(b) Concave Lenses.—We have already pointed out 

that concave lenses cause rays of light which pass thru 
them to diverge, so that no real images can be formed. 

In such lenses a ray parallel to the axis before refraction 
will after refraction proceed as if it came from that focus 

which is on the same side of the lens as the object—the 
focus being defined as the point on the axis from which 

an incident plane wave seems to proceed after refraction. 
Fig. 84 shows how these ideas are applied in construct¬ 
ing the virtual image given by a concave lens. This 

image is always erect and smaller than the object. It 
must be noted that the curvature of a wave passing thru 

a concave lens is increased by an amount so that 

the formula for the distance of object and image reads 
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7. Summary on Images Formed by Mirrors and Lenses. 

—We may sum up the information that we have gained 

in this section on images in the following form in which 
we group mirrors and lenses together: 

(1) Virtual images are always erect. They are 

formed (a) by convex lenses and by concave mirrors, if 

the distance of the object from the lens or mirror is less 

than the focal length. Under these conditions the im¬ 

ages are always larger than the objects. The resulting 

curvature of the wave front equals the initial curvature 

minus the curvature X given by the lens or mirror, that 

is Wi = TTo ~ ~T' (k) By concave lenses and by convex 

mirrors under all conditions. These virtual images are 
always smaller than the objects. The curvature of the 

final wave equals the curvature of the incident wave 

plus the curvature X given by the lens or mirror, that is 

X = X + X 
Di Do S * 

(2) Real images are always inverted. They are 

formed by convex lenses and concave mirrors if the 

distance of the object from the lens or mirror is 

greater than the focal length. If the distance of the 

object is greater than twice the focal length, the image 

is smaller than the object—otherwise it is always larger 

than the object. The curvature of the final wave equals 

the curvature given by the lens or mirror, X, minus the 

curvature of the incident wave—that is 
Di 

l 

f 
i 

Do 

(3) Size of images. The formula S,-: So :: D* : Do 
gives the relation in size of object and image for all 

lenses and mirrors and all types of images. 

8. Optical Instruments—the Camera.—We shall now 

describe a few optical instruments in which lenses are 

used. The first of these is the photographic camera. 
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This consists of a light-tight box in the front wall of 
which is a convex lens pro¬ 

vided with a shutter that can 
be opened and closed. (Fig. 
85.) At the back of the box 
is an arrangement for holding 
a photographic plate. This 

plate is at a distance from the lens slightly more than 
the focal length. When the shutter is opened, an in¬ 
verted, diminished, real image of whatever is in front 

of the lens is formed on the plate. If the distances from 

lens to plate and lens to object are not in accordance 

with the relation + ~ the image will not be 

sharp—it will not be in focus. This can be corrected by 

moving the lens slightly. The light affects the emulsion 

on the photographic plate, so that after proper chemical 
treatment, the image is permanently fixed on the plate. 

The human eye is very similar to the photographic 

camera. In front is a transparent lens, the crystalline 
lens, partly covered with an adjustable diaphragm, the 

iris. On the inner face of the back wall of the eye is the 

retina, a screen corresponding to the photographic plate. 
The fibers of the optic nerve spread out over this screen. 
The distance from the lens to the screen being fixed, 

such focusing of images as is necessary is brought about 
by an alteration in the curvature of the crystalline lens 
produced by a circular muscle around it. This change 

in the lens is referred to as the “ accommodation ” for 

objects at different distances. 
The normal eye can bring parallel rays to a focus on 

the retina without strain. If the eyeball is too long, the 

rays will focus in front of the retina except when the 

object is very close to the eye. Such an eye is said to be 
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short-sighted or myopic. If an eyeglass is used in front 

of the eye consisting of a di¬ 

verging (concave) lens of the 

proper focal length, the image 

may be made to fall on the 

retina. If the eye ball is too 

short from front to back, the images formed by the lens 

of the eye will fall back of the retina. The eye is then 

far-sighted or hypermetropic. This defect can be cor¬ 

rected by the use of a converging (convex) lens in front 

of the eye of such focal length that it will bring the 

image on the retina. 

9. Magnifying Glass.— The magnifying glass in its 

simplest form is a single convex lens (Fig. 86). When 

in use one side is brought close to the eye and the object 

to be examined is placed at a little less than the focal 

distance on the other side. The image will then be 

virtual, erect and larger than the object. Since the 

image will appear most distinct when it is apparently 25 

centimeters from the eye, the object has to be placed 

at such a distance from the lens that its virtual image 

is 25 centimeters from the eye. Since magnifying 

glasses are always of short focal length (2 to 5 centi¬ 

meters) the distance of the object from the lens is 

roughly equal to the principal focal distance /. The 

distance of the image being 25 centimeters, we have 

Si :So :: 25 :/ or -f1 = This ratio is approxi- 
J 

mately the magnifying power of the lens. The formula 

furnishes a simple means of measuring magnifying 

powers when the focal length of a lens is known. 

10. Telescope and Compound Microscope.—These in¬ 

struments are essentially alike consisting of two con¬ 

verging lenses called respectively the objective lens Lo 
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and the eyepiece lens Lc. In both instruments the ob¬ 

jective receives the light from the object and forms a 

real image Ir which is received within the focal length of 

the eyepiece and magnified just as was the object in the 

magnifying glass of the last paragraph, forming a vir¬ 

tual image Iv. The figures (Figs. 87 and 88) show how 

the images are formed. Since the objects viewed with 

the telescope are always distant, the real image formed 

by the objective is very small and is practically at the 

principal focus. Objects viewed with the microscope 

are on the other hand always close up to the objective, 

close to the outer focal point of the lens. The image 

formed is therefore some distance beyond the inner 

focal point of the lens and is considerably larger than 

the object. 

The telescope spoken of in the foregoing is the 

astronomical telescope. As can be seen from the dia¬ 

grams, the final image is inverted with reference to the 

object. This inversion is not objectionable when 

studying stars, but when the telescope is used for ter¬ 

restrial objects, the final image must be erect. In 

terrestrial telescopes the image 

is therefore made erect by in¬ 

troducing an extra converging 

lens between the objective and 

the eyepiece. 
v/- 
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Fig. 89. 

11. Opera Glass.—The opera glass or Galileo's Tele¬ 

scope has a converging objective like the microscope and 

telescope but before the converging rays form the real 

inverted diminished image, they pass thru a diverging 

(concave) lens and are rendered divergent. When 

these divergent rays enter the eye, the eye forms a 

virtual enlarged image which is erect with reference to 

the object (Fig. 89). This arrangement gives an erect 

image with only two lenses and with a comparatively 

short tube, so that in simplicity and size it is well adapted 

for general indoor use. & 

12. Prism Binocular.—The prism binocular generally 

used for military and field purposes is essentially an 

astronomical telescope in which the length of the tube is 

reduced by total internal reflection of the light between 

two pairs of prisms as shown in Fig. 90. The effective 

_£oj-length of the tube is therefore 

' L*« * ^ three times its real length which 

— gives us a useful combination of 

power with compactness. 

J- 

p - 

T7 

_ BE 
Fig. 90. 

REVIEW. 

1. Define real and virtual images. 

2. What is the principal focus of a lens ? 

3. What are conjugate foci? 

4. How is the magnifying power of a simple magnifying glass 
determined ? 



CHAPTER XII 

COLOR AND WAVE LENGTH OF LIGHT 

1. Dispersion of Light.—We now enter upon an en¬ 

tirely new phase of our subject—that of color effects. 

If a beam of sunlight admitted into a darkened room 

thru a hole in the window shutter is allowed to pass thru 

a triangular prism of glass, the beam will be refracted 

and bent around the base of the prism as our previous 

study would lead us to expect, but instead of a spot of 
light appearing on the wall after the bending, a band 

consisting of a whole series or “ spectrum ” of brilliant 

colors ranging from violet to red, like those in the rain¬ 

bow, will be produced. This phenomenon is known as 

the “ dispersion ” of light. The blue light is bent the 

most and the red light the least of all the colors. This 

experiment shows first that sunlight is composite, con¬ 

taining light of many different colors, and second, that 

the amount of bending that a beam of light undergoes 

when refracted, depends on the color of the light. 

Experiments similar to the one described in Chapter 

X where the wave-length of yellow light was determined 

from measurements of the bands or 44 fringes ” produced 
by the interference of two reflected wave trains, have 

been used to find the wave lengths of the colored lights 

in the spectrum band given by a prism. The results for 

the wave length at the center of each specified colored 

region are: 

Red .000068 cm. Yellow .000058 cm. 

Green .000052 cm. Blue .000046 cm. 

Violet .000042 cm. 

(478): 
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We may now conclude that the refractibility or re- 
fTangibility of light depends on the wave length of the 

light: the shorter the wave length, the more refrangible 

the light—that is the farther the light will be bent when 

refracted by a given prism. The impression of color 

produced on the retina depends on the wave length of 

the light incident on it. Waves with a length of 

.000052 cm. will, for instance, produce a sensation of 

green in the normal eye. Color in light is thus seen 

to be analogous to pitch in sound. The sensation of 

green may however also be produced by a composite 

light beam containing a number of different colors 

blended—that is, containing a number of different 

wave lengths. We shall refer to this last matter 
again. 

2. Colors of Opaque Objects.—The spectrum band 

produced by white or sunlight passed thru a prism is 

seen to be continuous, that is, to contain all wave lengths 

between roughly .00008 cm. and .00004 cm. This means 

that white light contains in it all the visible colors. If 

now an opaque body placed in sunlight appears red, it is 

evident that the light diffusely reflected from it must 

produce a sensation of red on the retina. Now when a 

beam of light falls on a body, it must be in certain pro¬ 

portions, absorbed, reflected and transmitted. In 

opaque bodies the amount transmitted is negligible, so 

that what is not reflected must be absorbed. It is evi¬ 

dent that the opaque body which appears red in white 

light must have absorbed from the white light such con¬ 

stituents that the remainder, when reflected, produces a 

sensation of red on the retina. In general, then, the 

color displayed by an opaque body in white light de¬ 
pends on the selective absorption of its surface. 
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Suppose that the light diffused by this opaque red 
object is pure red—not a mixture producing the general 
sensation of red. Then the body must absorb all other 
colors, but red. If therefore such a body is illuminated 
with green, yellow, blue or light of any color other than 
red, it will absorb all the incident light and reflect 
nothing, and will appear black. The apparent color of 
an opaque object is consequently seen to depend in an 
important way on the color constitution of the light il¬ 
luminating it. It is for this reason that ribbons and 
dresses frequently appear very different in color under 
artificial light from what they do in daylight. The 
mercury vapor or Cooper-Hewitt lamp so frequently 
used in photographic studios is entirely deficient in red 
light. The blood showing thru the skin of a person 
viewed under this flame, therefore, seems black or grey, 
producing a ghastly effect with which most of us are 
familiar. 

It should be noted in this connection that a body 
which appears white in daylight, reflects all colors 
equally. Such a body viewed in a colored light will 
seem to be the color of the light—red in red light, green 
in green light and so on. A black body on the other 
hand is one which reflects no colors. It therefore looks 
black in light of any color as well as in white light. 

3. Complementary Colors.—When an opaque body 
viewed in white light appears colored, it is reflecting to 
the eye certain wave lengths which produce the color 
sensation and it is absorbing certain other wave lengths 
which if they were emitted would produce a second 
different color sensation. These two sets of waves strik¬ 
ing the retina at the same time would of course be, and 
produce the effect of, white light. Such pairs of colors 
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—such pairs of groups of wave lengths, which if received 

simultaneously on the retina would produce the effect of 

white light, are called “ complementary ” colors. What¬ 

ever wave lengths are subtracted from white light to 

produce one color sensation, the remaining wave lengths 

will produce the sensation of the complementary color. 

It is evident that there is an indefinite number of pairs 

of complementary colors. Among these are yellow and 

blue—green and crimson—red and bluish green— 

orange and greenish blue—violet and greenish yellow. 

The complement of any color, as, for example, green, 

can be found experimentally as follows. Stare fixedly 

for 20 or 30 seconds at a green spot, inch in diameter, 

in the center of a white card. Then transfer the fixed 

gaze to a sheet of white paper. A crimson spot will ap¬ 

pear in the center of the white sheet. The explanation of 

this fact is that the area of the retina on which the green 

image fell became fatigued by the green sensation dur¬ 

ing the time of staring at the green spot. When waves 

of all lengths from the white paper fall on the retina, 

there is no response or only a weaker response to the 

waves producing the green sensation, so that the effect 

registered is that of white light minus the green—in 

other words the complement of green, which is crimson. 

4. Mixed Colors and Mixed Pigments.—If one looks at 

a rapidly rotating paper disk, colored in two sectors 

with any pair of complementary colors, the disk will 

appear white or grayish white because the two color 

impressions will follow one another so rapidly on the 

retina that they will blend into a single sensation. Any 

combination of colors desired may be arranged on the 

disk and on being mixed by rapid rotation, a sensation 

of some resultant color will be produced. 
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The rotating disk actually “ mixes colors ” in that it 

superposes on the retina the effects of the different 

groups of waves belonging to the individual colors on the 

disc and thus produces a composite effect. This is quite 

a different thing from mixing pigments or paints on a 

paper. If yellow light is added to blue light of the 

proper shade, white light is produced, but if yellow paint 

is mixed with blue paint, green paint results. This is 

because the yellow paint removes the blue and violet 

from white light by absorption and the blue paint re¬ 
moves the red and yellow so that only green is left in the 

light reflected. The color of a mixture of pigments 

depends, then, on the light which escapes absorption by 

the constituents of the mixture. 

The apparent color of transparent objects depends on 
the light which they transmit—the remainder of the 

incident light being absorbed or reflected. Red glass, 

for instance, looks red by transmitted light because it 

absorbs all the other constituents of white light. It 

looks red by reflected light because of the fraction of the 

light which penetrates a small distance into the glass 

and then comes out again. If the light incident on the 
glass contains no red waves, the glass appears black both 
by transmitted and by reflected light. 

5. The Spectroscope.— In order to find out the wave 

lengths contained in the light given by different sources, 

an instrument known as a spectroscope is employed. 

This instrument consists of three parts, a collimator, a 

prism and a telescope, all mounted on one base. The 

collimator is a tube which has at one end a narrow slit 

and at the other end a convex lens. The slit is at the 

focus of the lens so that when the slit is illuminated with 

the light to be examined, a parallel beam is delivered 
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from the lens. This beam is directed on the prism which 

refracts it and disperses it into a spectrum. This 

spectrum enters the telescope which is optically an 

ordinary astronomical telescope where a real image of 

the slit for each color coming thru the slit is formed, and 

these slit images are magnified by the eyepiece. 

If the light incident on the slit is white, the slit images 

lap each other side by side, so that a continuous gradu¬ 

ated band of color is produced. Such a spectrum is 

called a continuous spectrum. Spectra of this sort are 

produced by white hot solids and liquids. If the inci¬ 

dent light lacks certain wave lengths the spectrum will 

be broken up into colored bands or lines and is then 

called a bright line spectrum. Incandescent gases and 

vapors produce such spectra which are very character¬ 

istic of the materials contained in the gas or vapor—so 

characteristic, in fact, that one of the most delicate 

methods of chemical analysis is based on a study of the 

bright line spectra produced by the substance to be 

analyzed when volatilized in a flame. 

Lastly, if white light is passed thru a material which 

absorbs some wave lengths from it, before it enters the 

slit, then a continuous spectrum is produced with black 

lines across it, wherever absorption has taken place. 

Such a spectrum is called a dark line or absorption 
spectrum. 

An examination of the spectrum produced by sun¬ 

light shows it to belong to the class of absorption 

spectra. It is crossed by many hundred fine black lines 

called, after the man who first carefully studied them, 

the Fraunhofer lines. Most of these lines are formed 

by the absorption of certain wave lengths from the 

white light from the sun’s incandescent surface as this 
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light passes out thru the some- 

b what cooler outer atmosphere 
of the sun. It is from study 
of these lines that the materials 

* which make up the atmosphere 
Fig. 9i. of the sun have been deter¬ 

mined. Some of the Fraunhofer lines are produced by 

absorption in the earth’s atmosphere. 

6. The Rainbow.—The rainbow is a spectrum of sun¬ 
light frequently seen in Nature. The rainbow can be 

seen only when the sun is not more than about 40° above 
the horizon, when the observer has his back to the sun 
and drops of rain are falling before him. If (Fig. 91) a 
light ray enters a rain drop at a it is refracted to b where 

it is reflected to c and passes out along the line cd. On 

its path thru the rain drop, the ray is dispersed and a 

spectrum formed. The angle of the red ray in this 

spectrum with a line AB, parallel to the incident rays 

from the sun, will be 42°; the angle of the violet rays 40°. 
If now a man stands at P on the ground (Fig. 92) 

looking up at a screen of rain drops, the drops at an 

angle of 42° in an arc around a line drawn thru his eye 
toward the sun will appear red—those at an angle of 40° 
will appear violet and intermediate drops will appear of 

intermediate colors—thus forming a rainbow. This 
kind of bow is called a primary 

rainbow. A spectrum can also 

be formed from a spherical drop 
by two internal reflections, as 
shown in the upper two drops in 
Fig. 92. The red rays in this 

case are thrown out at an angle 
of 51° and the violet rays at an 

Fig. 92. 
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Fig. 93. 

bow will be fainter than 

often seen. 

angle of 54°, with the line AB. 

The resulting rainbow, called a 

secondary bow, will therefore 

appear above or outside the 

primary bow and will have its 

colors reversed in order as 

shown. On account of the 

double internal reflection, this 

the primary bow and is not so 

7. Chromatic Aberration.— Before leaving this section 

of our subject, there is one other matter of practical im¬ 

portance, which must be referred to; that of the so-called 

chromatic aberration ” of lenses. Since a convex lens 

is, in a way, similar to a pair of prisms set base to 

base, it is evident that light passed thru such a lens 

must be dispersed so that the images formed will be 

diffused and colored. Since the blue light from the 

source is bent more than the red light, it is evident 

that the blue light will focus nearer the lens than will 

the red. This is the phenomenon known as chromatic 
aberration. 

It would be impossible to correct this difficulty if the 

dispersive powers and the refractive powers of all ma¬ 

terials were related in the same proportion. It is found, 

however, that some glasses have much higher dispersive 

powers than others of nearly the same refractive power. 

For example, crown glass has a dispersive power of .21 

and a refractive index of 1.5 while flint glass with a re¬ 

fractive index of 1.6 has a dispersive power of .45—more 

than twice that of crown glass. If therefore we com¬ 

bine a convex lens of crown glass with a thinner concave 

lens of flint glass, as shown in Fig. 93, we can produce in 
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the first lens, both bending and dispersion and in the 

second lens almost completely overcome the dispersion 
without completely overcoming the bending. Such a 

combination is called an achromatic lens. The images 

formed by achromatic lenses are sharp and without 

colors due to aberration. Such lenses are used in all 
good optical instruments. 

8. Long and Short Waves—the Radiation Spectrum.— 

There are limits to the sensitivity of the eye to color, just 

as there are limits to the sensitivity of the ear to pitch. 

Ether waves shorter than those of the extreme violet 

(about .00003 cm. long) and longer than those of the ex¬ 

treme red (about .00008 cm. long) have no effect on the 

retina. There is however a long series of such ether 

waves which can be detected by other effects which they 
produce. All ether waves, including those of light, are 

grouped together under the head of “ radiation ” and the 
series of these radiations arranged according to wave 

length is called the “ radiation spectrum.” The rate 

of propagation of all these waves is the same— 
namely 186,000 miles per second. Longer than the 

red of the solar spectrum, we have a series of in¬ 
visible radiations, ranging to wave lengths of .03 centi¬ 

meter and longer—more than 400 times as long as the 

longest red waves. This is called the infra-red portion 

of the spectrum. These waves, when absorbed in 
matter, are very effective in producing heat motion of 

the molecules and are therefore frequently called “ heat 
rays.” However, all lengths of radiation will produce 

heat effects when absorbed, so this name is somewhat 

misleading. 

Still longer than infra-red rays, ranging from .3 

centimeters to many kilometers in length, are the elec- 



COLOR AND WAVE LENGTH OF LIGHT 487 

trical or Hertzian waves. These waves are produced by 

electrical discharges and are detected by their electrical 

effects. Their position in the radiation spectrum was 

first established by Heinrich Hertz, of Germany, in 

1888. These are the waves used in transmitting wireless 

telegraph and wireless telephone messages. 

On the other end of the solar spectrum, shorter than 

the violet, we have the ultra violet region in which the 

radiations have wave lengths which have been measured 

down to .000003 cm.—about one-eighth of the shortest 

violet rays. The most important work in this portion of 

the spectrum has been done by Professor Lyman, of 
Harvard University. 

Still shorter than the ultra violet radiation are the 

waves given out by certain materials when struck by 

discharges of “ electrons ”—which are rapidly moving 

negative charges of electricity, about which we shall hear 
more in the next chapter. These waves include the 

different series of X-rays. They have, in very recent 

years, been measured down to .000000006 cm. The 

shorter of these rays pass readily thru most ordinary 

bodies—such as the human flesh, wood, fabric, etc. All 

short wave lengths, including the ultra violet as well as 

the X-rays, are very active chemically and are readily 

detected thru their influence on the photographic plate. 

Excellent pictures can be taken with them by specially 

prepared cameras. These rays are consequently fre¬ 

quently called chemical or photographic rays. 

It will be noted that visible light constitutes only a 

very small portion of the entire radiation spectrum. 

This spectrum comprising as it does, the X-rays, the 

chemical and photographic rays, the so-called heat rays, 

and the electrical rays of wireless telegraphy, has numer-. 
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ous applications of the greatest importance in modern 

life. 

REVIEW. 

1. On what does the color displayed by an opaque body in white 
light depend? 

2. What are complementary colors? 
3. Explain chromatic aberration. 
4. What are Hertzian waves? 



CHAPTER XIII 

STATIC ELECTRICITY 

1. Electrification.—Electricity has done more than any 

other one agency to bring about those great changes in 

conditions of living which make our age differ from pre¬ 
ceding ages. 

Electricity may exist in a stationary state, collected 

on a body, or in a continuously moving state, passing 

along a wire or similar conductor. It is in the first case 

known as static electricity, and in the second as current 

electricity. These two types are identical—static elec¬ 

tricity in motion constituting current electricity. Elec¬ 

tricity in motion has many more important applications 

than has electricity at rest. We shall consider briefly 

the phenomena of static electricity before passing on to 

the subject of current electricity and the associated facts 
of magnetism. 

If a hard rubber fountain pen be rubbed briskly on 

the sleeve of a woolen coat it will acquire the power of 

attracting and picking up small pieces of paper and 

other light objects. A stick of sealing wax rubbed with 

flannel or a piece of glass rubbed with silk will acquire 

the same power. A body possessing this power is said to 

be electrified. Electrification by rubbing was first ob¬ 

served by Thales, a Greek philosopher (600 B. C.), in 

dealing with amber. That the same effects are pro¬ 

duced by rubbing many different substances was dis¬ 

covered by Dr. William Gilbert (1540-1603), physician 
to Queen Elizabeth of England. 

(489) 
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Fig. 94. 

2. Positive and Negative Elec¬ 
tricity.—Several interesting facts 

about electrified bodies can be 

brought out by the use of a pith- 

ball suspended from a silk 

thread as shown in Fig. 94. 

Pith is selected because it is very 

light in weight. If a bar of seal¬ 

ing wax is rubbed with flannel 

and brought near the pith-ball, 

it will at first attract the ball 

until the two touch—then a defi¬ 

nite repulsion will be observed. If now a glass rod 

rubbed with silk be brought up to the ball, the ball re¬ 
pelled by the wax will be attracted by the glass. The 

character of the electrification on the glass and on the 

wax is thus seen to be different. All electrified bodies 

brought near the pith-ball can be classified into two 

groups, depending on whether they attract it like the 
glass or repel it like the wax. To distinguish these two 

types of electrification one, that on the glass, is called 
positive electrification and the other, that on the wax, is 
called negative electrification. An electrified body is 

said to be charged with positive electricity or with nega¬ 
tive electricity according to the character of the effects 
—that is, whether it attracts or repels the negatively 

charged pith-ball. 

If two electrified bars of wax are suspended from silk 

threads and brought near together, they will repel one 

another; but if a suspended electrified glass rod is 

brought near one of the bars of wax a definite attraction 

will take place. It will, in fact, be found in all cases that 

bodies electrified with the same kind of electricity repel 
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each other and that bodies 

electrified with opposite or dis¬ 

similar kinds attract one an¬ 
other. Further, the strength of 

these attractions and repulsions 

depends on the quantity of 

electricity on the bodies, and it 

varies inversely with the square 

of the distance between the 

bodies, just as does the inten¬ 
sity of sound and light. 

The forces change in magni¬ 
tude if the medium between the charged bodies is 

changed—if, for instance, sealing wax be substituted 

for air. When the force actions are increased in any 

medium above their value in air for the same charges and 

distance, the medium is said to have a lower “ specific 

inductive capacity ” than air. The specific inductive 

capacity of air is taken to be one. In this Text we shall 
consider the medium always to be air. 

These laws of attraction and repulsion are made use 

of in the gold leaf electroscope, a device for detecting 

the presence of electrical charges and for indicating 

their kind. It consists of a wire with a ball or disc at the 

upper end and a hook supporting a doubled strip of gold 

leaf at the lower end (Fig. 95). The wire is held in 

the cork of a bottle as shown in the figure. If the wire 

is charged by touching it with a rubbed bar of wax, the 

two pieces of gold leaf will repel one another and di¬ 

verge, thus indicating the presence of a charge. The 

leaves will in this case be electrified with negative elec¬ 

tricity. If now, a rod, positively electrified, be brought 

near the disc without touching it, the leaves will at first 
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fall together; but if one negatively electrified be brought 

near, the leaves will diverge farther. Thus we are en¬ 

abled to identify the kind of electricity on a given body. 

3. Electrons.—Various theories have been advanced to 

explain the facts of electrification. We shall concern 
ouxselves only with the so-called “ electron theory,” 

which is the one generally accepted today. According 

to this theory, the atoms of all kinds of matter are built 

up of charges of positive and of negative electricity. 

The central portion of the atom, called the nucleus, 

which constitutes most of its mass, is positively charged. 

Surrounding it are numerous small negatively charged 

electrons, each of which has roughly •—L the mass of a 

hydrogen atom. In an uncharged atom the total nega¬ 
tive charge on the electrons exactly equals the positive 

charge on the nucleus. 
The electrons of all forms of matter are identical in 

character. They usually are supposed to be in motion 

with respect to the nucleus, revolving around it, but the 

nuclei themselves are supposed to remain fixed in posi¬ 

tion in the body of which they are constituents. In some 

kinds of matter, called insulators or dielectrics, the 

electrons seem firmly bound to the positive centers; in 

other kinds of matter, called conductors, they move 

about more or less freely from atom to atom. Glass, 

rubber and sealing wax are good insulators; brass 

and other metals good conductors. When a body is 

uncharged with electricity the sum of all the negative 

charges of the electrons exactly equals the sum of all 

the positive charges on the atomic centers, so that there 

are no resultant effects. If a body has a larger number 

of electrons on it than is necessary to equal the positive 

charges, it will exhibit negative electrification; if it has 
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a less number it will exhibit positive electrification. If 

a negatively charged body is connected with an un¬ 

charged or with a positively charged body by a wire of 

a material thru which electrons can pass, that is by a 

conducting wire, the excess electrons will pass along the 

wire to the positively charged body until the number of 

electrons in unit volume is the same on both bodies. 

This flow of electrons constitutes an electric current. 
0 

Electrons, being negative charges, repel one another 
but are attracted to the positive centers. 

4. Frictional Electricity.— All the observed facts of 

electrical science can be explained, generally with com¬ 

plete success, on the basis of this theory. Electrification 

by friction is explained in the following way: When two 

bodies are rubbed together there will be a redistribution 
of electrons and some will be moved from the one body 

to the other. This will leave a positive charge on the one 

body and an equal negative charge on the other. It can 

be shown experimentally that when glass is rubbed with 

silk, the silk acquires a negative charge equal to the 

positive charge on the glass, and so generally the rubber 

gains always a charge opposite to that of the object 

rubbed. As the rubber usually is held in the hand, the 

charge on it leaks away to the ground, over the hand and 

body, and so cannot be detected unless special precau¬ 

tions are taken. Glass being a good insulator does not 

afford a free path for electrons, so that a charge pro¬ 

duced on one end of a glass bar will remain there, even 

when the other end is held in the hand. So also with 

sealing wax and other insulators. If, however, a metal 

bar be held in the hand and rubbed, the electrons flow 

freely along it from or to the hand and thus no final 

electrical effect can be developed. If the metallic bar 
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be supported on insulators, then a frictional charge can 
be produced on it. This charge will instantly distribute 

itself evenly over the conducting metal and will not stay 
on the rubbed area as it does when insulators are rubbed. 

5. Distribution of Electrons.—In studying electrical ef¬ 

fects, it is important to remember that the positively 

charged atomic centers remain fixed, while the negative 

electrons move. The distribution of charge on a body 

therefore depends on the distribution of the electrons. 

Since these repel one another, it is evident that when the 

charged body is a conductor, that is, a body on which the 

electrons move about freely, the excess electrons will be 

found as far apart as they can get, that is, they will be 

on the surface of the body. The free electricity on a 

charged conductor is then on the surface of the body and 
not in the interior. Therefore, when an electrical charge 
is communicated to a conductor, it distributes itself over 

the surface. The density of the distribution is, however, 
not uniform unless the curvature of the surface is at all 
points the same. Where the curvature is greater, there 

the density is also greater. The density of charge will 

consequently be greatest at sharp points on the surface. 

If the density becomes great enough, the charge will 

leak off into the air which, ordinarily an excellent in¬ 

sulator, is made a conductor thru the extraction of 

electrons from its atoms by the attraction or repulsion 

of the charge on the point. 

When the air is in this conducting state, containing 

free electrons, it is said to be “ ionized.” On account of 

this action, it is difficult to keep a charge on a body which 

has sharp points or angles. The protective action of 
lightning rods depends on this fact. When two bodies 

charged, one positively and the other negatively, are 



STATIC ELECTRICITY 495 

brought near together, the densities of charge will in¬ 

crease very rapidly on the parts of the bodies which are 

closest together, until the air is ionized, when the elec¬ 

trons will pass across from the negative to the positive 

body. This passage will be accompanied by a spark and 

a cracking sound. During thunder storms heavy elec¬ 

trical charges are developed in the clouds, which affect 

the distribution of electrons on the surface of the earth 

beneath in such a way as to develop great densities of 

charge, especially on pointed objects such as church 

towers or trees. If this density becomes great enough, 
a discharge—a lightning stroke—takes place with an as¬ 

sociated crash of thunder. If the church tower be pro¬ 

vided with a number of sharp points connected with the 

ground by conducting rods these may sufficiently reduce 

the density of charge by continuously discharging it 

into the air and so eliminate the chance of lightning 

striking. This device was introduced by Benjamin 

Franklin (1706-1790), who was first (1752) to show 

that lightning is essentially an electric spark. 

It must be noted that lightning rods are not in¬ 

tended to conduct the lightning to the ground but 

merely to discharge the electricity from the areas to 

which they are connected. When properly installed 

they serve a useful purpose; but as they not infre¬ 

quently have failed to protect the buildings to which 

they have been attached from discharges of certain kinds 

and intensities, they have, in recent years, fallen some¬ 

what into disrepute. 

6. Potential.—If when two charged bodies are con¬ 

nected by a conducting wire a discharge of electrons 

passes from one body to the other, a “ difference of 

electrical potential ” is said to exist between the two 
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bodies. It is the custom to refer to the potential of the 

body with the excess of electrons as a negative potential 

with reference to the other body. Its potential is said to 

be lower than that of the positively charged body. Since 

it seems natural to think of the discharge as passing 

from the high potential to the low potential, it is custom¬ 

ary to say that discharges do so pass, but it must be re¬ 

membered that according to the electron theory the flow 

of electrons must always be in fact from the negative to 
the positive, that is, from the “ low ” to the “ high ” 

potential. 

A body is said to be at zero potential when it is at the 
same potential as the earth, so that when connected to 

the earth no electron flow takes place in either direction. 

If it has more electrons on it than meet the above con¬ 

dition, it is said to have a negative potential—to be at a 

lower potential than the earth; if it has less electrons 

than necessary to give it zero potential, it is said to be at 
a positive potential—higher than the earth. 

7. The Voltaic Cell.—If we can maintain two plates or 

other conductors steadily at different potentials, after 

having connected them with a conducting wire, we can 

keep up a steady flow of electrons from the negative 

plate to the positive plate. This flow will constitute a 

current of electricity. There are several ways in which 
this steady difference of potential can be maintained. 

The first to be discovered was the chemical method. 

If two conducting plates are placed in a liquid which 

attacks one of them chemically but does not affect the 

other, the plate which is attacked will have the lower 

potential. This was first observed by Galvani, an Ital¬ 

ian anatomist, in 1786, but Volta, another Italian, was 

the first to apply the idea successfully to a current gen- 
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erator. This he did in 1800, producing the device now 

known as the Voltaic or galvanic cell. 

The cells can be made up of a great variety of ma¬ 

terials. A typical combination consists of a strip of 

copper and a strip of zinc immersed in dilute sulphuric 

or hvdrochloric acid. The acid dissolves the zinc but not •/ 
the copper. The zinc is always at a lower potential than 

the copper. If the plates are connected outside the 

liquid with a metallic wire, a current flows which is said 

to pass from the copper to the zinc, altho as we have 

already pointed out, the electrons actually flow from the 

zinc to the copper. 

The current flowing in the wire develops certain ef¬ 

fects which are not developed by stationary electric 

charges. Chief among these is the magnetic effect. 
Oersted (1777-1851), a Danish physicist, discovered, in 

1820, that if a wire bearing a current is placed above 

and along the line of a compass needle, the needle will 

be strongly deflected toward a position at right angles 

to the wire; and in 1828 Joseph Henry (1797-1878), an 

American, found that a current-bearing wire wound 

round an ordinary iron bar converts the bar into a pow¬ 

erful magnet. Currents of electricity can therefore be 

easily detected by the magnetic effects which they pro¬ 

duce. Before continuing our study of electric currents 

we must take up, briefly, the properties of magnets. 

REVIEW. 

1. State the electron theory. 

2. How does a lightning rod protect a building against being 
struck by lightning? 

3. What is meant by a difference of electrical potential be¬ 
tween two bodies? 



CHAPTER XIV 

MAGNETISM—OHM'S LAW 

1. Magnets.— Magnets are either natural or artificial. 

Natural magnets are fragments of a certain iron ore 

known as magnetite. Artificial magnets are pieces of 

iron or steel which have been rendered magnetic either 

by stroking with a natural magnet or by passing an 

electric current thru a coil wound about them as de¬ 

scribed in a preceding paragraph. 

Magnets are distinguished by possessing the power 

to attract and pick up pieces of iron or steel, and by their 

tendency to swing into a north and south direction when 

freely suspended. Natural magnets have been used for 

many centuries as compasses or lodestones (leading 

stones). The compass was first used in Europe about 

1190, but was apparently known in China before that 

date. The end which points north is called the north¬ 

seeking pole or the north pole; the end which points 
south is called the south-seeking or south pole. If two 

suspended magnets are brought near together, the 

two north poles or the two south poles repel each 

other and the unlike poles attract each other. The 
magnitude of these attractions and repulsions will 
vary inversely with the square of the distance between 

the poles. 

A pole which repels an equal opposite pole placed at 

a distance of 1 centimeter in air, with a force of one 

dyne, is said to have a strength of one unit and is called 

a “ unit pole.” If the surrounding medium is not air, 

(498) 
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the force effects will in general be different from those 

in air, even if all other conditions remain the same. 

This fact is covered by saying that different media 

have different permeabilities to magnetic forces. In 

our work all the poles talked about are assumed to be 
in air. 

If a piece of soft iron be held near the pole of a mag¬ 

net, it becomes a magnet by induction—the end of the 

soft iron nearest the inducing pole becoming a pole of 

the opposite kind. The resulting attraction draws the 

two together. If the soft iron be removed from the 

neighborhood of the inducing magnet, it at once loses 

nearly all its magnetism. We say that its retentivity for 

magnetism is low. Steel, on the other hand, altho harder 

to magnetize, has a high retentivity and if once made 
magnetic remains so. 

If a magnet be heated red hot or be hammered or 

twisted, it loses its magnetism. If a long bar magnet be 

broken into short pieces, each piece will be a magnet with 

a north and a south pole. These, and other known facts, 

indicate that magnetism has to do with the arrangement 

of the molecules inside the magnet. The theory of 

magnetism generally accepted today is that the mole¬ 
cules of magnetic substances are themselves small mag¬ 

nets. In an unmagnetic bar these tiny magnets are 

arranged at haphazard so that opposite poles neutral¬ 

ize each other thruout the bar. If such a bar be 

brought near a magnet, the external magnetic forces 

swing the little magnets around into line with all the 

north poles in one direction, so that the bar then 

possesses polarity, one end being a north pole, the 

other end a south pole. When all the little magnets are 

in line, the maximum strength of magnetization will be 
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reached. Such a point can be reached with all bars, 

and, magnetized thus to their limit, they are said to be 

saturated. 

2. Magnetic Field of Force.— The space around a mag¬ 

net thru which its force effects can be perceived is called 

the field of force of the magnet. The magnitude and 

direction of the force at any point in this field can be 

investigated by imagining that we have at that point 

a “ free north pole,” that is to say, an isolated north 

pole without any associated south pole. From the 

very nature of magnetism, as already explained, it is 

impossible actually to have such a “ free pole,” since 

for every north pole there must be a corresponding 

south pole; but it will help us if we imagine that we 

have one. 

If the free north pole is released at any point, it will 

move along some curve under the repulsion of the 

north pole of the magnet and the attraction of the 

south pole until finally it reaches the south pole of the 

magnet. The path which it traces is known as a line 
of force. 

It is evident that there is an indefinite number of lines 

of force in any field of force. The direction of the 

“ line ” at any point indicates the direction of the result¬ 

ant magnetic force at that point. If a small compass 

needle, that is, a short bar magnet pivoted on a sharp 

point, be placed at a point in a field, it will turn until its 

length lies along the line of force at that point. The 

needle will not move endwise since the pulls on its 

two poles are equal and opposite. If iron filings are 

scattered on a sheet of glass under which a magnet lies, 

each small filing will become a magnet by induction and 

will turn along the lines of force at the point where it 
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Fig. 96. 

fell, just as a compass needle 

would. A regular figure, like 
Fig. 96, will result, showing the 

lines of force in all parts of the 
field. 

3. Terrestrial Magnetism.— 
That a suspended magnet turns 

always into a north and south 
line indicates that the earth is surrounded by a magnetic 

field. As a matter of fact, the magnetic effects around 

the earth are the same, speaking generally, as if a long 

bar magnet were thrust thru the earth with one pole 

coming to the surface in Boothia Felix, Canada, latitude 

70° 5 N., longitude 98° 46' W. A freely suspended 

needle carried to that place, called the north magnetic 

pole of the earth, will point vertically up and down. 

This pole was discovered in 1831 by Sir James Ross, 

The geographic north pole—the end of the earth’s 

axis—is of course at latitude 90°. A compass needle 

between the north geographic and the north magnetic 

poles will point to the north magnetic pole, that is, to the 

geographic south. So, generally, a compass needle 

points, not to the true or geographic north pole, but to 

the magnetic north pole. In the near neighborhood of 

the magnetic pole it may point north, south, east or 

west, depending on its position relative to the magnetic 

pole. In parts of the earth distant from the pole, the 

deviation of the compass needle from the true north is 

not so marked; but, except on a line drawn thru the 

geographic and magnetic poles, there is always some 

deviation to the east or west. This deviation is known 

as the declination of the compass. It is of the highest 

importance for mariners to know this declination, which 
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is not constant at any one 

place but changes slowly over 

a period of years, as if the 

magnetic pole were moving 

slowly in a closed curve. 

The lines of force in the 

earth’s field are of course di¬ 

rected towards the poles. They 

will be, in general, parallel to 

the earth’s surface only at the 

Fig. 97. magnetic equator. Elsewhere 

they strike down into the earth. A freely suspended 

compass needle will always lie along the line of force 

at the point and will therefore always point down¬ 

wards toward the earth excepting on the magnetic 

equator. This inclination is known as the dip of the 

compass. At Washington this dip is about 70°. As 

already stated it is 90° at the magnetic poles. The 

ordinary compass needle is so supported on its pivot 

that the dip is corrected for; the directing influence 

coming from the horizontal component of the earth’s 

magnetic force. 

4. Oersted’s Discovery.—We are now in a position 
better to understand the significance of Oersted’s dis¬ 

covery, that a compass needle placed near a wire 

bearing a current of electricity is deflected toward a 

position at right angles to the wire. It is evident that 
the wire must be surrounded by a magnetic field of 

force, the lines of which lie more or less at right angles 

to the wire. They are, in fact, in the form of con¬ 

centric circles about the wire (Fig. 97). Their direc¬ 
tion, that is, the direction in which a free north pole 

would move around the wire, if released near it, can be 
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told by the following Right 

Hand Rule: Take the con¬ 

ductor in the right hand, as 

shown in Fig. 98, with the thumb 

Fig. os. pointing in the direction of the 
current flow—that is from the positive to the negative 

plate of the driving cell—then the fingers of the hand 

bent around the wire will lie in the direction of the lines 
in the magnetic field of the current. 

5. Galvanometers.— The intensity of the magnetic 

force at any point near a wire, which is defined as the 

number of dynes of force acting on a free unit magnetic 

pole at that point, is directly proportional to the cur¬ 

rent strength, that is, to the amount of electricity 
passing thru any cross section of the wire in one second. 

The current can therefore be measured by measuring 
the intensity of the magnetic field produced by it. A 

device designed to make such measurements is called a 
galvanometer. 

Galvanometers are of two general types. The first, 

the suspended needle type, has a stationary coil of rela¬ 

tively large diameter, generally 5 to 12 inches, thru 

which the current to be measured is passed. At the 

center of the coil a magnetic needle is suspended which 

is deflected from its normal north and south position 

by the field produced by the current. The second, 

the suspended coil type, has a small rectangular coil 

thru which the current is passed. This is suspended 

by a fairly stiff wire in the strong field between the 

poles of a permanent magnet. The magnetic field 

set up by the current passing thru the coil reacts with 

the field of the permanent magnet, and the coil turns, 

being subsequently brought back to its original posi- 
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tion by the elasticity of the sus¬ 
pending wire. 

The tangent galvanometer, 
Fig. 99, is of the suspended 

needle type. The large station¬ 

ary coil is set always with its 

plane north and south, so that 

the lines of the field produced by 

the current flowing in it will be 
east and west at the center of the 

coil. At the center there will be 
a resultant magnetic field built up of two components— 
the earth’s field north and south, and the field due to the 

current east and west. The small compass needle at the 

center of the coil will turn always so as to lie along the 
lines of the resultant field. The amount of the deflection 

is taken as the measure of the current strength. 

The unit of current is called the ampere. An ampere 

flowing in a tangent galvanometer coil of three turns of 

10 centimeters radius will deflect the needle 45 degrees 

at a place where the horizontal component of the earth’s 

field is the same as at Washington, D. C. The ampere 

is accurately defined as the current which flowing in a 

coil of one turn with a radius of 1 centimeter, will 

produce a magnetic force action of .2ir dynes on a 
unit pole placed at the center of the coil. A gal¬ 

vanometer provided with a scale which reads directly 

in amperes is called an ammeter. Ammeters are 
usually of the suspended coil type, as these instru¬ 

ments are more robust and less subject to disturbance 

by outside fields than are suspended needle instruments. 

6. Electrometers.— The difference of potential devel¬ 

oped between the two plates of a galvanic cell, before 

Fig. 99. 
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they are connected with a wire, 

depends, speaking very roughly, 

on the relative rates of solution 
of the two plates in the liquid. 

Cells made up of different ma¬ 

terials develop consequently va¬ 

rious differences of potential, 

which are dependent in any case 

only on the materials used and 
not at all on the size of the plates 

or on the distance between them. 
We can compare the potential differences of different 

cells by connecting the plates to an instrument known 

as an electrometer. One type of this instrument is 

shown diagrammatically in Fig. 100. The paddle¬ 

shaped metal piece B is arranged so as to turn freely 

on an axis thru its center. It is held in a definite po¬ 

sition by weights hung at W and W\ A and A1 are 

conductors bent so as to inclose B partly. If P and P1 

are connected to the plates of a galvanic cell, the paddle 

will, on account of the electro-static attractions, be 
drawn further into the curved pieces A and A1 by an 

amount depending on the potential applied. This 

movement is read on the scale S. 

The unit of potential difference is called the volt. It 

is defined as - - of the potential difference developed 

between the plates of a special kind of galvanic cell 

known as the Weston normal cell. The positive plate 

of this cell is of mercury in a paste of mercurous 

sulphate—the negative plate of cadmium amalgam 

in a saturated solution of cadmium sulphate (Fig. 

101). As indicated in our definition for the volt, 

this cell develops a potential difference of 1.0183 
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Mercurous 
' Sulphate 

Cadmium 
’ Sulphate 

Cadmium, 
Ama/gam. 

Fig. 101. 

volts. This particular kind of 

cell is selected as a standard 

because it is easy to repro¬ 

duce accurately and is very 

constant in developing al¬ 

ways the same difference of 

potential. 

7. Electro-Motive Force.— The capacity of a cell or 

other generator of currents of electricity to produce a 

difference of potential between its terminals, is called its 

“ electro-motive force ” or, for short, e. m. f. Accord¬ 

ing to the electron theory the two plates are at different 

potentials because one of them has more electrons per 

unit of volume than the other. If we connect the two 

plates, electrons will begin to flow from one plate to the 

other, and unless the electrons withdrawn from the 

negative plate are replaced from inside the cell, as fast 

as they are drawn off outside, the difference of potential 

between the plates will evidently become less. 

It is clear then, that the potential difference between 

the plates of a cell is not necessarily the same when a 

current is being drawn from the cell, as it is when the 

plates are not connected with each other—or, in electrical 

phraseology, are “ on open circuit.” The potential 

difference developed by a cell on open circuit measures 

the e. m. f. of the cell; and this depends, as we have 

already said, only on the materials of the cell. When 

the cell is on closed circuit—that is, when its plates are 

connected with each other thru any conductors—the 

potential difference between the plates depends on the 

relative ratio of withdrawal and of replacement of 

electrons on the negative plate. If the rate of with¬ 

drawal be small compared with the rate of replacement, 
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as is usually the case in actual practice, the change in 

potential difference at the plates, due to the current flow, 

is small or even negligible. 

8. Voltmeters.— If a galvanometer be made with long 

coils of fine wire so that a negligible amount of current 

flows thru it when it is connected to the plates of a gal¬ 

vanic cell, its deflections may be used to compare the 

electro-motive forces of the cells, since whatever small 

current does get thru must be proportional to the po¬ 

tentials applied to the ends of the coil. An instrument 

so constructed and provided with a scale reading in volts, 

is called a voltmeter. In industry potential differences 

and e. m. f.’s are nearly always measured with such 

instruments. 

9. Conductivity and Resistivity.— If we take equal 

lengths, say 20 or 30 feet, of wires of the same diameters 

but of different materials, as for example of copper and 

of German silver, wind first one and then the other 

around the frame of a tangent galvanometer and con¬ 

nect them successively to the plates of a galvanic cell, 

we shall find that only aboutas much current flows 

thru the German silver wire as flows thru the copper. 

This indicates that a given potential difference is capable 

of forcing far more current thru a copper conductor than 

thru an exactly similar one of German silver. German 

silver is therefore said to offer a higher resistance to the 

flow of electricity than does copper—its electrical con¬ 

ductivity is said to be lower. Silver has the highest con¬ 

ductivity of any substance known and therefore the 

lowest resistivity. The ratio of the resistance of a given 

piece of a wire of any material to the resistance of an 

exactly similar piece of silver wire is known as the spe- 
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cific resistance of the material. The specific resistances 

of a number of common conducting materials are given 

below: 

Silver 1.00 

Copper 1.11 

Aluminum 1.87 

Mercury 

Iron 6.00 

Platinum 7.20 

German Silver 15.20 

63.1 

The specific resistance of a wire can be measured by 

measuring the current flow produced in it by a given 

difference of potential as described at the beginning of 

this paragraph. Similar experiments carried out with 

wires of any one material but of different lengths and 

cross areas would show the total resistance of any con¬ 

ductor to be directly proportional to its length and in¬ 

versely proportional to the area of its cross section. The 

unit of resistance is the resistance of a column of mer¬ 

cury 106.3 centimeters long and 1 square millimeter in 

cross section at 0° C. This unit is called an ohm in honor 

of the German physicist Georg Simon Ohm (1787- 

1854). A piece of No. 30 copper wire (diameter .01 

inch) 9.7 feet long has, at 20° C., a resistance of almost 

exactly one ohm. A more common size of copper wire, 

No. 16 (diameter .0508 inches) runs about 249.5 feet to 

one ohm resistance. 

If, as is very convenient, we express the resistivity S 
of a material as the number of ohms resistance between 

opposite faces of a cube of the material, one centimeter 

long on each edge, then we can write for the total resist¬ 

ance It of any given conductor of length l and cross 

area a. R = S^-. The resistance of a conductor de- 
a 

pends on one other factor in addition to the factors in¬ 

volved in this formula, namely the temperature. The 

resistance of all metals increases with rise in tempera- 
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ture; the resistance of carbon and of liquid conductors 

decreases with rise in temperature. 

10. Ohm’s Law.— In 1826 Ohm first formulated the 

law showing the relation between the current delivered 

thru a given circuit, the resistance of the circuit and the 

value of the e. m. f. driving the current. Ohm's Law 
states that the current C furnished by different galvanic 

cells is directly proportional to the electro-motive force 

E existing in the circuit and inversely proportional to 

the resistance R of the circuit thru which the current 

flows. This may be written C ~ --that is, the current 

flow expressed for instance in amperes in any circuit 

equals the e. m. f. expressed in volts in the circuit di¬ 

vided by the resistance expressed in ohms of the circuit 

itself. This is a simple law but has the widest and most 

important applications. In applying the formula it is 
important to notice that the R represents the total re¬ 

sistance in the closed path or circuit traversed by the 

current so that when this circuit includes a galvanic cell, 

the resistance of the liquid between the plates—called 

the “ internal resistance ” of the cell—must be added to 

the external resistances due to the connecting wires or 

other conductors before substituting for R. This fact 

is sometimes emphasized by writing the formula 

r =_E_or C — - E 
R (external) -f- r (internal) R + r. * 

Ohm’s Law may also be applied to any part of a 

circuit as, for instance, to a single coil or wire in a cir¬ 

cuit. The total difference of potential or drop in poten¬ 

tial between the ends of the external circuit as between 

A and B, Fig. 102, equals the difference of potential 

between the plates of the cell. This total drop is made 

up of the drop from A to C plus that from C to D plus 
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Fig. 102. 

that from D to E plus that 

from E to B. The amount of 

potential difference (for short, 

p. d.) between C and 2), for 

example, depends on the re¬ 

sistance between these points, 

being greater, the greater the 

resistance. This p. d. is also 

greater, the greater the current flow because of the 

larger electron densities involved in the larger current, 

all p. d.’s being primarily due to differences in electron 

concentrations. We have then p. d. — R. Cwhich can 

be written C = or we can say, the current flowing in 

the section of the circuit considered, measured in am¬ 

peres, equals the potential difference between the ends of 

the section in volts divided by the resistance of the sec¬ 

tion in ohms,—that is C — where p. d. represents the 

potential difference between the ends of the section. 

This is clearly a slightly modified form of Ohm’s Law. 

Ohm’s Law may therefore be used to measure the 

resistance of a coil of wire. The coil marked X in Fig. 

103 is connected with a galvanic cell B and an ammeter 

A in such a way (as shown in the figure) that the cur¬ 

rent flows thru the coil and then thru the ammeter, which 

indicates the strength of the cur¬ 

rent in amperes. The voltmeter 

V, connected across the ends of 

the coil indicates the drop in po¬ 

tential between the ends of the 

coil in volts. The voltmeter 

must have a very high resistance 

so that we may neglect the cur- 

Fig 103 rent which flows thru it because 
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c o 

the ammeter shows the total cur¬ 
rent coming out of the battery, 

part of which goes thru X and 

part thru V. Under these con¬ 

ditions, neglecting the current flow thru V as being* —k_ 

or a less part of that thru X, if the ammeter shows 2.5 

amperes and the voltmeter shows 4 volts, then the resist¬ 

ance of X is 1.6 ohms, since R =2lJL = _L= i.6. There 
C 2.5 

are several other methods of measuring resistance 

which are in common use, but the one here described is 
the simplest. 

11. Series and Parallel Connections.— If the conduct¬ 

ors making up the external circuit are connected end 

to end as in Fig. 102, so that all the current delivered 

from the cell flows thru the conductors one after the 

other, the conductors are said to be connected in series. 

When so connected the total resistance from A to B 
clearly equals the sum of the individual resistances of the 
parts from A to C, C to D, D to E and E to B. 
Representing the total resistance by Rt we can write 

Rt ~ Ri + R2 + Rs and so on. If the conductors are 
connected as in Fig 104, they are said to be connected in 

parallel. In this case, since the current has three paths 

to follow from C to D, the total resistance from C to D 
must be less than the resistance of any one of the con¬ 

ductors taken separately. If the three wires are exactly 

similar, the total resistance will equal that of one 

conductor, or Rt =~ Rlf and if there are n conductors 

all alike, R t = R1; since the conductivity of the 

three wires taken together is three times that of a 

single wire. If the wires are not all alike, the total con¬ 

ductivity C t must always equal the sum of the individ- 
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_ual conductivities of the differ¬ 

ent branches; that is Ct — Ci + 

C2 + C3 + C± and so on. Now, 

by definition, the conductivity of a wire is the reciprocal 

of its resistance, or C — whence we can write for re- 

$ 

Fig. 105. 

sistances in parallel that 
Rt R\ 

+ -fr- + and so on. 
R R 

12. Shunts.—A wire connected like s in Fig. 105 

around a resistance R so as to take part of the current 

which would otherwise flow thru R, is said to be a shunt 

to R. Under these conditions the current flowing from 

A will divide thru R and S in inverse proportion to the 

resistance of R and S. If the resistance of R is 1 ohm 

and that of S 9 ohms, then the current in R will be 9 

times that in /S', so that S takes of the total current 

and R takes Shunts are used around ammeter 

coils when currents are to be measured which are larger 

than those which the instrument is graduated to read. 

REVIEW. 

1. Describe a typical galvanic cell. 

2. How are the phenomena of magnetism explained? 

3. What is the cause of the declination of the compass needle? 
Of its dip? 

4. How is a compass needle affected by being placed near a 
wire bearing a current of electricity? 

5. Define conductivity and resistivity. 

6. State Ohm’s Law. 



CHAPTER XV 

ELECTRIC CURRENTS—THEIR EFFECTS 

1. Heat Effects: Joule’s Law.— We shall now turn to 

a somewhat detailed consideration of the effects of 

electric currents as applied to a great variety of in¬ 

dustrial purposes. We shall consider, in turn, the 

heating effects, the chemical effects and the magnetic 
effects of currents. 

When a current passes thru a wire, the electron mo¬ 

tions produce an increase in the heat content of the wire 

and consequently its temperature rises. The amount of 

heat developed can be measured in calories by putting 

the wire into a calorimeter and applying the methods 

described in the chapter on Heat. It is found that the 

amount of heat developed is proportional to the resist¬ 

ance of the wire, to the square of the current strength 

and to the time the current flows. Putting Wn for the 

heat energy developed we have then WuozRC2T, or 

when the proper units are used, Wu — RC2T. If the 

current is expressed in amperes, the resistance in ohms 

and the time in seconds, the heat energy will come out 

in joules. It will be remembered that a joule equals 10 

million ergs of energy (that is 10 million dyne- 

centimeters) and that 4.2 joules are equivalent to one 

calorie of heat energy; consequently one joule is equiva¬ 

lent to .24 of a calorie. 

The expression WQ = RC2T is known as Joule's 

Law, having first been announced by the English 

physicist James Prescott Joule (1818-1889). Since 

(513) 
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Tjl 

by Ohm’s Law R = ^ Joule’s Law may be written 

WB =~ C2T — ECT, which shows that the number 

of joules of energy developed in a circuit in one second 

equals the product of the amperes flowing by the po¬ 

tential drop in volts thru the circuit. It will be remem¬ 

bered that a joule per second is a unit of power called a 

watt, so that in any circuit the watts of power expended 

equal the product of the amperes in the circuit into the 

volts drop, that is, watts = volts X amperes. The watt 

is therefore frequently referred to as the volt-ampere; 
and the kilowatt, which is the unit in which the power 

or time rate of doing work of large electrical generators 

is expressed, is often called the kilovoltampere or KVA. 

In considering the energy of an electric current, it is 

useful to have in mind an analogy based on the flow of 

water thru a pipe. When a current has a strength of 

one ampere, it transfers a certain definite number of 

electrons, a certain definite quantity of electricity, past 

any point in the circuit in one second. The quantity car¬ 

ried past any point in each second, by a current of one 

ampere, is called a coulomb. This is the unit of quantity 
of electricity. If we represent quantity of electricity by 

Q, it is evident that Q — CT, wherefore, Joule’s Law 

WB — ECT may be put into the third form, WH = 

EQ. We can interpret this formula by saying that a 

coulomb of electricity, in passing from one point in a cir¬ 

cuit to another point when a potential drop of one volt 

exists between the points, develops one joule of energy. 

This is analogous to saying that the energy developed by 

one pound of water moving in a pipe thru a drop of one 

foot is one foot pound. These formulas: WB = RC2T, 

Wn = ECT and Wn — EQ enable us to calculate the 

energy developed in the form of heat in any circuit. 
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2. Electric Heaters.— The 

heating effect is made use of di¬ 

rectly in street car heaters, in 

electric smoothing irons, bread 

toasters, stoves and similar de¬ 

vices. All such devices contain 

coils of high resistance wire 

which become very hot when a 

current is passed thru them. 

Fi«-106- Special alloys which will not 

burn up or deteriorate from use have been developed 

for these coils. They are known by various trade names, 

as Nichrome, Advance, Reliance and so on, and gen¬ 

erally are alloys of iron, nickel and chromium. 

3. Filament and Arc Lamps.—The heating effect is 

made use of indirectly in various forms of electric lamps, 

which are of two general types—incandescent filament 

lamps and arc lamps. The filaments of incandescent 

lamps were formerly always made of carbon produced 

by carbonizing cotton. Such lamps, capable of giving 

16 candle-power, take .5 ampere on a 110 volt circuit, 

using 55 watts, or about 3.4 watts for each candle- 

power. In recent years the filaments have been made 

almost exclusively of tungsten, which has the highest 

melting point of any metal known (3270° C.) and can be 

heated safely to a higher temperature than any other 

metal. The higher the temperature at which a filament 

is run the greater is the proportion of energy given out 

as light compared with the amount developed as heat— 

that is, developed in the form of radiation too long to 

affect the retina of the eye. Tungsten filament lamps 

are consequently much more efficient than carbon lamps 

because they can be run at a higher temperature. 
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Fig. 107. 

Mazda tungsten lamps take 

from 1 to 1.25 watts per candle. 
The filament of any incandes¬ 

cent lamp will burn up instantly 
if air or oxygen be present, and 
consequently they are inclosed 

in bulbs which either are com¬ 
pletely evacuated or else contain 

some inert gas like nitrogen. 
The ordinary arc lamp contains two carbon rods C 

and Ci, in Fig. 107, in the electrical circuit. To light the 

lamp these rods must be brought together and then 

drawn slightly apart. The heat developed at the loose 

contact vaporizes the carbon and a luminous discharge, 

which is known as the arc, is carried between the carbons 

in this vapor. The temperature developed at the end of 

the + carbon is estimated at 3800° C.—the highest tem¬ 
perature attainable by man. The arc lamp, having the 

highest temperature, is the most efficient form of 
electric lamp. 

Lamps with solid carbon rods take about 10 amperes 

at 50 volts pressure and give about 1200 candle-power 
in the direction of maximum illumination. When the 

carbons are hollow and filled with a suitable mixture of 

lime, magnesia and similar substances, we have the so- 

called “ flaming arc ” with which efficiencies of .27 watt 

per candle-power are reached. Ordinary street arc 

lamps have automatic arrangements for drawing the 

carbons apart and maintaining them at the proper 

distance. These devices are usually somewhat unsteady 

in operation and cause the light to jump and flicker. 

4. The Cooper-Hewitt Lamp.—The mercury vapor arc 

lamp, or Cooper-Hewitt lamp, consists of a long glass 
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tube with bulbs at either end containing mercury. The 

arc is started by tipping the lamp so that a thin stream 

of mercury runs from one end to the other. When this 

stream breaks, the mercury is vaporized and the vapor 

becomes incandescent and fills the entire tube. This 

lamp has a very high efficiency of .3 watt per candle. 

The light which it gives is entirely without red rays, so 

that objects seen under it generally appear to have un¬ 

natural colors. On account of the large proportion of 

blue and photographic rays emitted, this lamp has wide 
use in commercial photography. 

5. Electrolysis.—The chemical effects of the electric 
current depend upon the fact that most chemically active 

substances when dissolved in a liquid dissociate into ions, 
each molecule, in itself as a whole uncharged, separating 

into one positively charged ion and one negatively 

charged ion. Thus the sulphuric acid molecule when 

dissolved in water forms + ions of hydrogen and — ions 

of SO4; copper sulphate molecules give 4~ ions of copper 

and ions of SO4, and so for other molecules. Ions of 
hydrogen and of the metals are + charged, other ions 
are — charged. 

If plates, one positively and the other negatively 

charged by connection with a galvanic cell, are put into 

such a solution, the positive ions will be drawn to the 

negative plate and the negative ions to the positive plate, 

so that the constituents of the dissolved substance will be 

separated. This process of separation is called electrol¬ 

ysis, The charged plates put into the solution are 

called electrodes, the one positively charged being called 

the anode and the one negatively charged the cathode. 

When plates of platinum—a substance in no way 

affected by sulphuric acid—are put into dilute sulphuric 
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acid and connected to a galvanic cell, hydrogen gas 

begins to collect on the negative plate at once. The SO4 

ions which travel to the positive plate give up their 
charges to it and then react chemically with the water, 

forming sulphuric acid again and liberating oxygen. 

This oxygen appears on the positive plate in the form of 

bubbles. Secondary chemical reactions, like this one, 

frequently go on at the electrodes of an electrolytic cell, 

so that the substances deposited on the plate are not 

necessarily the same as the ions contained in the liquid. 

If silver nitrate be dissolved in water, + silver ions and 

— NOs ions are formed. If now the charged platinum 
plates are introduced, silver will be deposited on the 

negative plate. This is the process of electroplating 

used in plating table ware and other articles—except 

that in practice some cheaper metal, not platinum, is 

used as the base for the silver deposit. 

In 1834, Faraday found that a given current of elec¬ 

tricity flowing for a given time deposits the same amount 

of a given element, no matter what may be the nature of 

the solution containing the element. One ampere flow¬ 

ing for one hour, for example, will in that period always 

deposit 4.025 grams of silver, 1.181 grams of copper and 

1.203 grams of zinc from solutions of any compounds of 
these metals. The quantity of metal deposited in a 

given cell depending as it does on the current strength 

and on the time that the current flows, is accordingly 
governed by the quantity of electricity (Q = CT) that 

passes thru the cell. One coulomb will always deposit 

a certain definite amount of any given metal. This fact 

is used in the legal definition of the coulomb and the 

ampere. The coulomb is the quantity of electricity 
required to deposit .001118 grams of silver; the ampere 
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is the current which will deposit.001118 grams of silver 

in one second, 

6. Polarization: Galvanic Cells.—The mode here de¬ 

scribed of transferring an electric current thru a liquid 

by the movement of oppositely directed streams of posi¬ 

tive and of negative ions, is the one by which the current 

passes across from one plate to the other in a galvanic 

cell. When two plates are placed in a liquid and one dis¬ 

solves faster than the other, the former becomes nega¬ 

tively charged. The negative plate of a galvanic cell is 

thus always the plate dissolved or “ eaten ” by the solu¬ 

tion. In zinc—sulphuric acid—copper cells, the zinc 

plate is consequently the negative one. As soon as the 

plate is negatively charged, the + ions in the solution are 

drawn to it and the negative ions are driven to the other 

plate. The negative plate thus attracts the + hydrogen 

ions in the solution and becomes coated with a film of 

hydrogen gas. This cuts down the e. m. f. of the cell by 

substituting a plate of hydrogen for the zinc. The effect 

is known as polarization. 

Different types of galvanic cells have been devised to 

reduce this effect as far as possible, usually by putting 

into the solution some substance, called a depolarizer, 

which combines with the hydrogen chemically. Man¬ 

ganese dioxide and potassium permanganate are often 

used for this purpose. The ordinary “ doorbell bat¬ 

tery ” is a galvanic cell consisting of plates of zinc and 

of carbon in a solution of sal-ammoniac (ammonium 

chloride) which attacks the zinc but not the carbon. 

No depolarizer is used, as current is never taken con¬ 

tinuously for any great length of time and the hydro¬ 

gen gradually disappears from the zinc after standing. 

The ordinary “ dry cell ” contains a moist paste of sal- 
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ammoniac and other materials 
between the outer zinc can and 

the inner carbon rod. When 

this paste dries up the cell ceases 
to develop an e. m. f. It is 

therefore not strictly a dry cell 

but only a moist cell. A de¬ 
polarizer, manganese dioxide, is 

always used in these cells, since 

they are often required to deliver 
current more or less steadily. 

7. The Storage Battery.—These chemical effects are 
used in electroplating, which we have already de¬ 

scribed, and in the storage battery. If plates of lead 

are put into dilute sulphuric acid, they are not affected 

by the acid. If these plates are charged + and — by 

connecting them to a number of galvanic cells, hydro¬ 

gen will be released at the negative plate and oxygen 

at the positive. The hydrogen will not affect the 

negative plate, but the oxygen will convert the surface 

of the positive plate into lead oxide. If now the charg¬ 

ing battery be removed, we have two dissimilar plates, 

one lead and the other lead oxide, in a chemically active 

solution; that is, we have a galvanic cell out of which 
current may be drawn. During the withdrawal of the 

current, the lead oxide breaks down and disappears en¬ 
tirely when the cell is discharged. The cell can then be 

recharged and used again. In practice the plates of 
storage cells are given certain special forms and are 

pasted over with certain mixtures of lead salts in order 
to increase their capacity f or taking large charges. These 

cells when made of lead plates give an e. m. f. of about 2 

volts. The plates are large and close together so that 

Fig. 108. 
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very large currents may be drawn for short periods of 

time. Ordinarily such cells give back on discharge about 

75 per cent of the energy put into them on charging. 

8. The Solenoid.—We have already discussed several 
facts concerning the magnetic effects of currents. It 

will be remembered that a current-bearing conductor is 

surrounded by lines of magnetic force in the form of 

concentric circles about the wire. The direction of the 

lines, that is the direction in which a free north pole 

would move along them, is given by the Right Hand 

Rule. If the wire be bent into a coil, as in the tangent 

galvanometer, the concentric lines of magnetic force will 
pass into the plane of the coil from one side and pass out 

at the other. The effect, as far as the external field is 

concerned, is exactly as if the coil were a thin magnet in 

the form of a disc. If the wire be wound into a long 

cylindrical coil or helix—or “ solenoid,” as it is called,— 

by wrapping it around a wooden rod, the effect will be as 

if a number of magnetic discs were set face to face. The 

lines of force will enter one end of the solenoid and come 

out at the other, just as in a bar magnet. Such a 

solenoid, if suspended free to rotate, will act exactly 
like a compass needle. 

9. The Electromagnet.— If a piece of soft iron be sub¬ 

stituted for the wooden rod inside the solenoid, its mole¬ 

cules will be affected by the field of the solenoid and it 

will become an induced magnet. Such an arrangement 

of a soft iron bar inside a solenoid is called an electro¬ 

magnet. As soft iron has a low retentivity, it ceases to 

be a magnet almost completely when the current in 

the solenoid is interrupted. Up to the limit of 

saturation, the strength of an electromagnet depends on 
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Fig. 109. 

the strength of the inducing field 
in the solenoid, which clearly de¬ 

pends on the strength of the cur¬ 
rent in amperes and on the num¬ 

ber of turns of wire per unit 
length. Two magnets which 

have equal numbers of “ ampere 

turns ” per centimeter will, 

speaking generally, have equal 
Bt- strengths—the “ ampere turns ” 

being the product of the number 
of turns of wire into the amperes flowing in the coil. 

Electromagnets, when properly designed to carry 

heavy currents, can be made to lift very heavy loads of 

iron. Attached to cranes or derricks, they are widely 

used in foundries and similar places for picking up pig 

iron or castings. The most important use of the electro¬ 

magnet, however, is in devices like the electric bell and 
the electric telegraph. The electric bell (Fig. 109) con¬ 

tains a horseshoe-shaped electromagnet with an iron bar 

or “ armature ” B supported across its poles by a spring 
S. When the button P is pushed down, the current 

from the cells Bt passes thru the coils of the magnet 

which, being thus rendered strongly magnetic, attracts 

the armature B and strikes the clapper K against the 

gong. When B moves over, the circuit is broken at C, 

which causes the magnet to lose its magnetism and B 

swings back under the influence of the spring S, closing 
the circuit at C again. The 

operation is then repeated, a 

rapid series of blows being 

struck on the rim of the gong as 

long as P is depressed. £krtfi Sarth 

Fig. 110. 
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10. The Electric Telegraph.—The electromagnetic tele¬ 
graph was invented about 1837 by Samuel F. B. Morse 

(1791-1872). It is, as shown in Fig. 110, an extremely 

simple application of the electromagnet. In order to 

save wire, a single line is used, the circuit being com¬ 

pleted thru the earth. When the key at station A is de¬ 

pressed, the current from the battery Bt flows thru the 

coil C of the “ sounder ” at B and renders its core mag¬ 

netic. The armature above it, which is pulled up against 

the upper stop of the clip K by the spring S, when no 

current is flowing, is drawn down against the lower stop 

when the current flows. It remains down as long as the 

key at A is closed. 

Messages are sent in the well-known Morse code, 

which is built up of different combinations of “ dots ” 

and “ dashes,” representing the letters of the alphabet. 

A “ dot ” is sent when the armature remains down for a 

time, roughly half as long as that taken to send a 

“ dash.” An operator with a trained ear distinguishes 

dots and dashes by the interval between the click of the 

bar on the bottom stop and its return click on the upper 

stop. With telegraph lines many miles in length, the 

currents become so weakened by resistance that special 

sensitive “ relays ” must be used at the receiving station 

to detect the incoming signals. These are so lightly 

constructed that they do not make enough noise to be 

read by ear. Their armatures are therefore provided 

with extra contacts, which close local circuits containing 

local batteries, and 46 sounders ” that make loud clicks. 

The first commercial telegraph line was between Balti¬ 

more and Washington and was opened by Morse on 

May 24,1844. Many improvements have been made on 

the device here described, as a result of which several 
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messages can now be sent over the same wire in opposite 

directions at the same time. 

11. Induced Currents.— We now come to a new and 

most important division of our subject—that of induced 

currents. If we thrust a bar magnet thru a coil of many 

turns of wire connected to a sensitive galvanometer, a 
momentary current is produced in the coil as evidenced 

by a deflection of the galvanometer needle. If the 

magnet be rapidly withdrawn, the needle will be de¬ 

flected in the opposite direction. If, however, magnet 

and coil are kept stationary with reference to one an¬ 

other, no current flows thru the galvanometer. If the 
bar be held stationary and the coil be moved over it, cur¬ 

rents will again be produced. Currents produced in this 

way are called induced currents. The experiments 

described can be extended to show that an induced 
current is produced in a closed circuit whenever there 
is any change in the number of lines of magnetic 

force passing thru it, however the change be produced, 
whether by movement of the coil relative to a magnet, 

by movement of a magnet relative to the coil, or by 

altering the magnetic field of an adjacent solenoid by 

varying the current flow in it. The discovery of these 

facts, made by the Englishman, Michael Faraday 

(1791-1867), in 1831, was one of the most far-reaching 

discoveries in the history of science. The most im¬ 

portant modern developments of electricity are based 

on it. 

The induced current produces its own magnetic field 
which, interacting with the moving inducing field, al¬ 

ways tends to stop the motion of the inducing coil or 
magnet. This fact was first formulated by the physicist 
Lenz in 1834 and is known as Lenz’s Law. The law is 
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merely a statement of 

the general principle of 

the conservation of en¬ 
ergy in a new form; be¬ 

cause if Lenz’s law were 

not true, then we could 

develop electrical en¬ 
ergy without expending 

an equivalent amount 
of mechanical energy—which is impossible according to 
the general principle. 

We can always tell by the application of this law the 

direction of the induced current which will be produced 

by any given relative motion of a field and a conductor. 

The best simple rule for predicting the direction of the 

induced current is, however, Fleming's Right-Hand 

Rule. “ Point the forefinger of the right hand in the 

direction of the lines of force and the thumb held at right 

angles to the forefinger in the direction of motion of the 

conductor—then the middle finger held at right angles 

to both forefinger and thumb will point in the direction 
of the induced current.” (Fig. 111.) It is evident from 

these rules that if the direction of cutting the lines by 

the conductor be reversed, the direction of the induced 

current will also be reversed. 

If the circuit in which the number of magnetic lines 

is changed is not a closed circuit, no induced current can 

flow; but a corresponding induced e. m. f. will be pro¬ 

duced between the ends of the circuit. The value of this 

induced e. m. /. has been found to depend only on the 

number of lines of magnetic force cut per second by the 

conductor. Knowing this e. m. f., the value of the cur¬ 

rent induced, in case the circuit is closed, can be calcu- 
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lated from Ohm’s Law, when the 

resistance of the circuit is given. 

If, as is customary, we represent 
a magnetic field of unit strength 
—that is, a field in which at 

every point the force action on a 
unit pole is one dyne—by saying 

that it has one line per square centimeter, then a field of 
100 units has 100 lines per square centimeter, and so on. 

If a conductor be moved thru a field in such a way that it 
cuts 100 million of these lines in each second, there will 

be induced between its ends an e. m. f. of one volt. 

Battery 

Fig. 112. 

12. The Induction Coil.— One of the simplest devices 

producing induced currents is the induction coil. This 

consists of two coils of wire wound around the same 

core. The inner coil, called the primary coil, is of a few 

turns of coarse wire wound on an iron core; the outer 

or secondary coil consists of many turns of fine wire. 
The primary is connected (see Fig. 112) to a set of 

galvanic cells thru a “ make-and-break piece ” operated 

much like an electric bell by the magnetic attraction of 
the iron core. The vibrations of the weight W opening 
and closing the circuit at K, interrupt the primary cir¬ 

cuit many times a second. When the circuit is closed, 

the current flows thru the primary and builds up a mag¬ 

netic field around it; when the circuit is broken, this 
magnetic field collapses on the primary. While the field 

is building up, its lines pass outward thru the wires of 
the secondary coil and induce a current in it in one direc¬ 

tion; while the field is collapsing, its lines cut the wires 

of the secondary oppositely and induce a current in the 

opposite direction. On account of the large number of 
turns—several thousands usually—in the secondary, the 
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value of the induced e. m. f. is very high, sufficient to 

produce long sparks between the secondary terminals. 

An interrupted low voltage direct or unidirectional 

current in the primary here produces a high voltage 

alternating current in the secondary—that is a high 

voltage current that flows first in one direction and 

then in the other. The number of watts of energy in the 

secondary circuit cannot be greater than, and in practice 

is never so great as, the number of watts in the primary 

circuit; that is Volts , X Amperes , “ 
secondary ■*- secondary <. 

(equals or is less than) Volts . X Amperes 
v 1 ' primary r primary. 

Since the voltage of the secondary current is so very 

much higher than that of the primary, its amperage must 

be correspondingly lower than that of the primary. 

The current output of the secondary of these coils is 

never very large. 

13. The Dynamo.— We now know that when a wire is 

moved in a magnetic field so as to cut the lines of force 

in the field, an e. m. f. is induced between its ends. It is 

evident that if we could keep the wire moving across the 

field continuously, we would have a mechanical source 

of potential difference corresponding to a galvanic cell. 

This is what is done, as nearly as possible, in the dynamo. 

The dynamo consists of a large electromagnet NS, 

Fig. 113, called the “ field magnet,” in the strong field 

between the poles of which a rectangular coil called the 

“ armature ” is rotated on a shaft. The two ends of the 

coil are brought out to a pair of insulated rings Ri and 

R2 mounted on the shaft, as shown in the figure. With 

the coil rotating in the direction indicated by the arrow¬ 

head a, branch A is ascending thru the field and branch 

B is descending. The induced e. m. f.’s in these branches 
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<L 

Fig. 113. 

will be in the directions shown by the arrows on the coil, 

so that a current tends to flow out thru contact d and in 

thru contact e; that is to say, d is at a higher potential 

than e. The value of this e. m. fdepending as it does 
on the number of lines cut per unit of time, will be a 

maximum when the coil is cutting the field at right 
angles—that is, when it is horizontal in the figure—and 

will decrease to zero when the coil is vertical, because 

then for an instant the wire will be sliding along between 
the lines without cutting them. 

After the coil passes the vertical position, A will begin 

to cut the field downward and B upward; the e. m. f. in 
the coil will therefore be reversed and e will be at a 

higher potential than d. This e. m. f. will increase to a 

maximum value when the coil is horizontal, and then 
decrease to zero—reverse in direction—increase to a 

maximum and so on. During one complete revolution 
of the coil from a position where it is vertical with A at 

the top until A takes the same position again after turn¬ 
ing thru 360°, the potential of d passes thru the changes 

shown by the curve of Fig. 114, where positive poten¬ 

tials are drawn above the line A A1 and negative poten¬ 
tials are drawn below. The 

y current driven by this e. m. f. 

thru any external resistance, 
as R, Fig. 113, will alternate 

Fig. 114. 
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in direction, flowing first one 

_ way for one-half a revolution, 

and then the other way for the 
s other half. 

14. Alternating Current: the 
Transformer.—A dynamo built 

on this plan, delivering an alter¬ 
nating current, is called an alternator or alternating cur¬ 

rent generator. Currents of this type alternating 60 

times a second are extensively used on electric lighting 

circuits. The voltages of such currents can easily be 

made higher or lower with little energy loss by the use of 

instruments known as transformers, Fig. 115. These 

consist of an iron core with two coils of wire wound on 

it; one a primary coil P in which the entering current 

flows, the other a secondary coil S out of which the deliv¬ 

ered current is drawn. The action is the same as in an 

induction coil, excepting that no make-and-break piece 

is necessary. If the primary coil has fewer turns than 

the secondary, the output voltage will be higher than the 

input and the instrument is called a step-up trans¬ 

former. If the secondary has fewer turns than the 

primary, the output voltage will be lower than the input 
and we have a step-down transformer. 

In transmitting electrical power over long distances, 
it is economical to use very high voltages of 20,000 

or 30,000 in order to cut down the loss due to heat¬ 

ing in the line and to step it down with transform¬ 

ers to a suitable, usable voltage, ordinarily 110, near 

the place where it is to be employed. The best trans¬ 

formers have efficiencies as high as 98%—that is, they 
deliver 98 watts of energy out of each 100 watts put 
into them. 

iron 
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Fig. 116. 

15. Direct Current.— There are some purposes for 
which alternating currents cannot be used. If unidi¬ 

rectional or direct current is wanted, the shaft of the 
dynamo is provided with a device known as a commu¬ 

tator, instead of the two collecting rings characteristic 

of an alternator. The two ends of the coil are rigidly 

connected to the two halves of a split ring, which rotates 
with the coil as shown in Fig. 116. A pair of fixed 

brushes fast to the frame of the machine slide on this 
split ring. With the rotation taking place in the direc¬ 
tion shown, the current will be flowing toward the 
observer, that is “ out,” in the wire which is descending 

thru the field, and “ in ” in the wire ascending in the 
field. The brushes and ring are so arranged that brush 

d is always in contact with the descending wire and 
brush e with the ascending wire. The current conse¬ 

quently flows constantly out of d. The variation in 
the potential of d for one revolution of 360° is shown 
in Fig. 117. The curve representing the current in 

the external resistance will of course be of the same 
form. The current is unidi¬ 
rectional but it is not steady. 

To get steadiness it is neces- 

-potentiar sary to use a large number ot 
turns of wire instead of one and 

+ potential 

Fig. 117. 
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Fig. 118. 

a commutator with a corre¬ 
sponding number of pairs of 

segments. A dynamo built with 

a commutator is called a direct 
current generator. 

16. Direct Current Motor.— The direct current gener¬ 

ator of Fig. 116 can be used as a motor; that is, if cur¬ 

rent is passed thru the coil from outside, the coil will 

rotate and will turn the shaft and do mechanical work. 

A conductor bearing a current in a magnetic field is 

acted on by a force due to the interaction of its own field 

with the other field. The direction of this force action is 

best remembered by what is known as the Left-Hand 

Rule or Motor Rule. “ Point the forefinger of the left 
hand in the direction of the lines of force and the middle 

finger held at right angles to the forefinger, in the di¬ 

rection of the current sent thru the conductor, then the 

thumb held at right angles to both fingers will indicate 

the direction in which the conductor tends to move.” 

The application of this rule to the coil in Fig. 116 will 

show that if current enters from an outside source thru 

brush e, A will be forced down and B up until the coil 

becomes vertical. At that instant the brushes slip across 

the gap in the commutator and the motion of the 

coil will be continued in the same direction, the brush 

e being always in contact with the wire descending 

thru the magnetic field. The motor here described 

is a direct current motor. Motors differing in con¬ 

struction from these are also made to operate on alter¬ 
nating current supply. 

17. The Telephone.—The telephone is another im¬ 

portant device using induced currents. The simple 

telephone (Fig. 118) consists of a permanent bar mag- 
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net with a coil of fine wire 

around one end. Close to this 

same end is mounted an iron 

* Fis-119' diaphragm or disc D. One end 

of the coil is connected to the earth and the other to the 

line extending to the second station, at which there is an 

exactly similar instrument, similarly connected. When 

one speaks against the diaphragm, the vibrations in the 

air cause the diaphragm to vibrate. The vibrations of 

the diaphragm shift the magnetic lines of the field of 

the permanent magnet and induce corresponding e. m. 

f.’s in the coil wound round it. The resulting currents 

flowing in the coil of the distant telephone produce 

alterations in the strength of the magnet of that tele¬ 

phone, which cause the distant diaphragm to vibrate 

exactly or almost exactly as did the near diaphragm. 

Sound waves are thus produced by the distant dia¬ 

phragm very similar to those which fall on the near 

diaphragm, and so speech is transmitted. 

This type of telephone was invented in 1875 by 
Alexander Graham Bell and Elisha Gray. That sim¬ 
ple device has been modified so as to work over long 
distances by introducing the microphone transmitter T 

in connection with a small transformer SP, as shown in 
Fig. 119. The microphone transmitter contains back of 
a diaphragm a loose contact with granules of carbon in 
it. The vibrations of the diaphragm cause variations in 
the resistance of the loose contact and thus vary the cur¬ 
rent from the battery B, passing thru the primary coil 
of the transformer T. The high voltage current devel¬ 
oped in the secondary of the transformer is transmitted 
over the line and actuates the diaphragm of the receiver, 
which is still of the simple type described in the last 
paragraph. 
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REVIEW. 

1. Define the coulomb. 

2. Describe electrolysis. 

3. How are induced currents produced? 

4. Explain in general terms the principles of the dynamo. 

5. Distinguish between direct and alternating currents. 
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INDEX 
MATHEMATICS 

A 

Abscissa, 194. 
Acceleration of gravity, 255-256. 
Addition: algebraic, 129; of deci¬ 

mals, 5; of fractions, 23; of 
lines, 81; of mixed numbers, 23; 
of numbers, 4-5; of radicals, 
149. 

Algebra compared with arithmetic, 
128-129. 

Algebraic: addition, 129; division, 
130-133; multiplication, 130; 
signs of trigonometric functions, 
195; subtraction, 130. 

Altitude, defined, 66. 
Angle: acute, 53; between two arcs, 

108; bisection of, 60; dihedral, 
93; face, 97; horizontal danger, 
59; inscribed, 59; obtuse, 53; 
plane, 93; polyhedral, 96; with 
the plane, 94; right, 53; tri¬ 
hedral, 96. 

Angles: adjacent, 53; alternate 
interior, 56; complementary, 
53; corresponding, of parallel 
lines, 56; equal, 58; measure¬ 
ment of, 29, 52, 191-192; 
negative, 191; opposite, 57; of 
spherical triangles, 109-110; 
supplementary adjacent, 53; 
symmetrical polyhedral, 97. 

Antecedents in proportion, 77. 
Antilogarithms, 180-181. 
Apothem, 85. 
Approximate computation, 11-14. 
Approximation, 160. 
Arcs: defined, 54; equal, 59; 

measurement of, 54. 
Archimedes: 78, 86, 255; theorem of, 

78. 
Are, defined, 33. 
Area: of circle, 85-86, 260; of cone, 

103; between curves, 260-261; 
under a curve, 258-259; of 
frustrum of cone, 112; of 
parallelogram, 66-67; of poly¬ 
gon, 85; principle of, 66; of 
prism, 99; of pyramid, 101; of 
sphere, 113; of spherical tri¬ 
angle, 111-112; of surfaces of 

revolution, 262; of trapezium, 
68; of trapezoid, 67-68; of 
triangle, 67. 

Areas of similar triangles, 75-76. 
Arithmetical: mean, 12; progression, 

163-165. 
Arithmetical series. See Arith¬ 

metical progression. 
Austrian method of subtraction, 7. 
Axis of pyramid, 100. 
Axes of symmetry, 65. 

B 

Base: of a geometric figure, 66; of 
logarithms, 118; in percentage, 
35, 36. 

Binomial expansion, law of, 137- 
138. 

Binomial theorem, 138, 170-171, 
250. 

Bisection: of an angle, 60; of an 
arc, 60; of a line, 60, 62-63. 

Bisector of angle of triangle, 80. 
Brokerage, 39. 

C 

Cancellation, 18-19. 
Casting out nines, 19-20. 
Centers, lines of, 62. 
Characteristic of a logarithm, 178- 

179. 
Chord, defined, 54. 
Circle: arc of, 54; area of, 85-86; 

center of, 53; circumference of, 
53; circumscribed, 65; defi¬ 
nition of, 53; diameter of, 53- 
54; as envelope of set of 
chords, 90; inscribed, 65; as 
locus, 90-91; radius of, 53; 
sector of, 54; segment of, 54; 
tangent of, 54. 

Circulating decimals, 166. 
Circumference: of a circle, 53; 

degrees in, 54; radians in, 191. 
Coefficient, 128. 
Co-logarithms, 183. 
Combinations, 168-169. 
Commercial discount, 37-38. 
Commission, 39. 



INDEX 535 

Completing the square, 153. 
Compound interest: 43-44; geo¬ 

metric series in, 167; by in¬ 
tegration, 258; table, 45. 

Computation: approximate, 11-14; 
logarithmic, 181-182; of loga¬ 
rithms, 252-254; primitive, 2. 

Concurrent lines, 64. 
Cone: lateral area of, 103; frustrum 

of—see Frustrum; volume of, 
103. 

Consequents, in proportion, 77. 
Constant: of integration, 256; num¬ 

bers, 120-121. 
Continued proportion, 77. 
Contracted methods of multipli¬ 

cation and division, 13-14. 
Convergency, 172-174. 
Coordinates, 226. 
Cosecant, 195. 
Cosine, 194. 
Cost, 38. 
Cotangent, 195. 
Counting: primitive ideas of, 1-2; 

American system contrasted 
with British, 4. 

Critical value, 247. 
Cube: the, 98; volume of, 30. 
Cube root, 147. 
Curvature, 245. 

.D 

Days: table of, for computing 
interest, 41. 

Decimal point, use of, 4. 
Decimals: addition of, 5; circu¬ 

lating, 166; division of, 11; 
logarithms of, 179; multipli¬ 
cation of, 8-9. 

Degree, 192. 
Denominator: defined, 21; least 

common, 23-24; rationalizing 
the, 148. 

Derivative: the, 238; computation 
of, 240-241; as quotient of 
differentials, 245. 

Diameter: of a circle, 53-54; of a 
sphere, 107-108. 

Difference, 6. 
Differential: the, 245; contrasted 

with derivative, 245; inverse of 
integral, 255; of independent 
variable, 245. 

Differentiation: fundamental formu¬ 
las of, 240-244; 249-251; suc¬ 
cessive, 245-246. 

Dihedral angle, 93. 
Dimensions, world of three, 48. 
Discount, 37-38. 

Divergency,173-174. 
Dividend, 9. 
Division: algebraic, 130-133; of 

decimals, 11; of fractions, 25- 
27; of lines, 63, 80, 81, 82; con¬ 
tracted method of, 14; of 
mixed numbers, 26; of radicals, 
150-151; rules of exact, 14-16; 
of numbers, 9-10; synthetic, 
233- 234. 

Divisor: 9; common, 16. 
Dodecahedron, 98. 

E 

Elimination, 221. 
Ellipse, 226-227. 
Envelope of set of chords, 90. 
Equality of triangles, 55. 
Equation: defined, 123; root of, 

defined, 162; use of, 125-128. 
Equations: consistent, 220; of first 

degree, solution of, 218-223; of 
second degree—see Quadratic 
equations; higher, 158-159; de¬ 
pendent, 220; homogeneous, 
160-161; inconsistent, 220; in¬ 
dependent, 220; irrational, 161— 
162; in one unknown, 125-128, 
152-164, 234-237; in more than 
one unknown, 217-233; re¬ 
lation of coefficients and roots, 
237; systems of, 220-223; con¬ 
stant terms of, 220; theory of, 
234- 237. See also Simulta¬ 
neous equations. 

Equilateral: polygon, 68; rectangle, 
58; triangle, 56, 64-65. 

Equivalence: of pyramids, 102; of 
solids, 99-100; of spherical 
triangles, 110-111. 

Eratosthenes’ sieve, 15, 17. 
Euclid: 50-51; Elements of, 51. 
Exact division, rules of, 14-16. 
Exact interest, 40, 43. 
Exponents: defined, 118; difference 

between coefficients and, 128; 
laws of, 134-135. 

External division of a line, 80-81. 
Extremes in proportion, 77—see 

also Means. 

F 

Face angles, 97. 
Factor, greatest common, 16-17, 

143. 
Factors: in multiplication, 7; prime, 

16, 17, 18. 
Factor theorem, 141-142. 
Factoring, 138-141, 152-153. 
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Figures: non-rigid, 54-55; rigid, 54- 
55, 104; similar—see Similar. 
See also Equality, Equivalence. 

Finite series, 163. 
Formula: for arithmetical progres¬ 

sion, 165; for cube root, 147; 
for geometric progression, 165- 
166; for lateral area of cone, 
103; for lateral area of cylinder, 
100; the prismoidal, 104; for 
right triangles, 72; for solving 
quadratic equations, 154-155; 
for square root, 144; three-side, 
214-216; for volume of cone, 
103; for volume of cylinder, 
100; for volume of pyramid, 
103. 

Formulas: of differentiation, 240- 
244, 249-251; of integration, 
263; fundamental trigono¬ 
metric, 195-197; trigonometric, 
207-215. 

Four-step rule, 240. 
Fractions: addition of, 23; defined, 

21; division of, 25-27; im¬ 
proper, 21, 22, 23; in lowest 
terms, 22; multiplication of, 
24-25; as new kind of numbers, 
117-118; proper, 21, 22; sub¬ 
traction of, 24; terms of, 21. 

Frustrum: 101; of a cone, surface 
of, 112. 

Functions: of a variable, 121-122; 
trigonometric—see T r i g o n o- 
metric. 

Fundamental operations, 120. 

G 

Gain. See Profit. 
Gauss, Carl Frederick, 85. 
Geometric progression: 163-164, 

165-166; in compound interest, 
167. 

Geometric series. See Geometric 
progression. 

Geometric solid, defined, 47. 
Geometry: compared with arith¬ 

metic, 47; origin of, 47; tools 
needed in the study of, 51-52. 

Gerbert, Monk, 2. 
“Golden Section,” 82. 
Graph: plotting a, 218-219; prin¬ 

ciple of, 219; use of, 219-220. 
Graphical representation: 217; the 

circle, 225, 229, 232; the ellipse, 
226-227; the hyperbola, 227- 
228; the parabola, 223; of 
adicals, 224-225; of roots, 

235-236; of equations — see 
Graphical solution. 

Graphical solution: of equations of 
first degree, 218-220; of quad¬ 
ratics (equations of second 
degree), 225-229, 232. 

Great circle of a sphere, 107. 
Greatest common factor, 16-17,143. 
Grouping similar terms, 138-139. 

H 

Harmonic: division of a line, 80; 
series, 164. 

Hero of Alexandria, 214. 
Hexahedron, 98. 
Highest common factor, 16-17, 143. 
Hindu-Arabic number system, 2-3. 
Homologous: lines, 106; tetrahe¬ 

drons, 105-106. 
Hyperbola, 227-228. 
Hypotenuse: defined, 57; the square 

on the, 70-71. 

I 

Icosahedron, 98. 
Improper fractions: 21, 22; reduc¬ 

ing, to mixed numbers, 23. 
Infinite series, 163. 
Integral contrasted with differential, 

255. 
Integration, 255; computing area 

by, 258-261, 262; computing 
interest by, 258; computing 
length by, 261; computing 
volume by, 261-262; funda¬ 
mental formulas of, 263. 

Interest: common, 40; compound, 
43-44, 167, 258; table of com¬ 
pound, 45; exact, 40, 43; 
general method of computing, 
42; rate of legal, 35; simple, 40; 
six per cent method of com¬ 
puting, 42-43; table of days for 
computing, 41. 

Isosceles triangle, 57, 82-83. 

K 

Kite, the, 60-61, 62, 65, 76. 

L 

Lagrange, Joseph Louis, 162. 
Least common denominator, 23-24. 
Least common multiple, 17-18, 23, 

143-144. 
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Length: 29; of curve by integration, 
261; table of, 33. See also 
Measure, linear. 

Limit of variable, 122, 124. 
Line: bisection of, 60, 62-63; de¬ 

fined, 49; division of, into 
equal parts, 63; division of, 
into mean sections, 82; ex¬ 
ternal division of, 80; internal 
division of, 80; harmonic divis¬ 
ion of, 80; oblique, projection 
of, 93-94; perpendicular to 
plane, 92-93; straight, 49, 90- 
9i. 

Lines: addition of, 81; division of, 
81; multiplication of, 81; 
parallel—see Parallel; pencil of, 
87-89; perpendicular, 53; per¬ 
pendicular to plane, 94; dis¬ 
tinction between planes and, 
92; sets of, 87-89; subtraction 
of, 81; skew, 50. 

Linkage, 59-60. 
List price, 37. 
Liter, 34. 
Loci: intersection of, 89-90; of 

points, 87-89. 
Locus, circle as, 90-91. 
Logarithms: defined, 118; com¬ 

putation of, 252-254; of deci¬ 
mals, 179; invention of, 177; 
tables of, 184-185. 

Long division, 10. 
Longitude and time, 30. 
Loss,, 38. 
Lune, 110. 

M 

Maclaurin’s theorem, 249, 250-251. 
Mantissa, 178. 
Marked price. See List price. 
Maxima and minima, 246-248. 
Mean proportional, 77, 81-82. 
Mean section, 82. 
Means: arithmetical, 12, 164; in 

proportion, 77—see also Ex¬ 
tremes. 

Measure: angular, 29; circular, 29; 
cubic, 28; dry, 28; linear, 28; 
liquid, 28; of time, 29; square, 
28. See also Measures, Metric 
System, Weight. 

Measures, standard, 30, 33. 
Measurement, impossibility of ex¬ 

act, 11-12. 
Medians of a triangle, 64. 
Merchiston, Baron, 177. 
Metric system, 27, 32-34. 
Minuend, 6. 

Minus sign, explanation of, 117. 
See also Negative quality. 

Mixed numbers: 21; addition of, 23; 
division of, 26; multiplication 
of, 25; reducing to improper 
fractions, 22-23; subtraction 
of, 24. 

Monomial factor, removal of, 138. 
Multiples, least common, 17-18, 23, 

143-144. 

Multiplicand, 7. 

Multiplication: algebraic, 130; of 
decimals, 8-9; factors in, 7; of 
fractions, 24-25; of lines, 81; 
by logarithms, 181-182; of 
mixed numbers, 25; contracted 
method of, 13; of numbers, 
7-8; of radicals, 149-150; table, 
8. 

Multiplier, 7. 

N 

Napier, John, 177. 

Negative: angles, 191; direction, 
191; quality, explanation of, 
115—116—see also Minus sign; 
numbers, see Numbers. 

Net price, 37. 
Newton, Sir Isaac, 138, 255. 
Nines, casting out, 19-20. 
Non-rigid figures, 54-55. 
Notation: primitive, 1-2; value of 

place in, 2. 
Numbers: composite, 15; com¬ 

pound, 32; constant, 120-121; 
denominate, 27-32; even, 14; 
imaginary, 119; irrational, 118- 
119—see also Radicals; mixed, 
21, 22-23, 24, 25, 26; negative, 
114-115; odd, 15; positive 
integral, 114; prime, 15; trans¬ 
cendental, 120; unknown, 124; 
variable, 120-121—see also 
Variable, Variation; whole, 21. 

Number system: Hindu-Arabic, 2-3; 
use of zero in, 3. See also 
Notation. 

Numerator: defined, 21; rational¬ 
izing the, 148. 

O 

Oblique: line, projection on the 
plane, 93-94; prism, 99; tri¬ 
angle, 206-207, 211-212. 

Octahedron, 98. 
Ordinate, 193-194. 
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P 

Pantograph, the, 75. 

Parabola, 223. 
Parallel: lines, 56, 59, 62-63, 78-79, 

94, 95; planes, 50, 94-95; 
rulers, 58. 

Parallelograms: 58; area of, 66; 
equivalent, 69. 

Parallelopiped: 98; volume of, 99. 
Pencil of lines, 87-89. 
Pentagon, 57. 
Percentage, 35. 
Perimeter, 85. 
Permutations, 167-168. 
Perpendicular: the, 62; bisector, 

60, 62, 64; lines, 94; to a plane, 
92- 93. 

Pi (ir): 86; value of, 251-252. 
Place, 2, 5, 7. 11, 14, 129, 131-132, 

146, 179, 249-254. 
Plane: angle, 93; angle with the, 94; 

lines perpendicular to, 94; 
projection of oblique line on, 
93- 94; surface, 49. 

Planes: distinction between lines 
and, 92; intersection of, 95; 
parallel, 50, 94-95. 

Plus sign, explanation of, 117. See 
also Positive quality. 

Points: defined, 49; of inflection, 
246, 247; loci of. 87-89. 

Polar triangle, 109. 
Polygon: 55; area of, 85; perimeter 

of, 85. 
Polygons: constructing, 84-85; 

regular, 84-85; similar, 83-84. 
Polyhedral angles, 96. 
Polyhedron, 98. 
Positive quality, explanation of, 

115-116. See also Plus sign. 
Power: defined, 118; series, 249. See 

also Place. 
Price, 37, 38. 
Prime: factors, 16, 17, 18; numbers, 

15; relative, 16. 
Principal, 39. 
Principle of permanence or no ex¬ 

ception, 116-117, 120. 
Prism: 98-100; area of, 99; volume 

of, 100. 
Prismoids, 104. 
Product: in multiplication, 7; 

special, 135-137. 
Profit, 38. 
Progressions, 164-166. 
Proportion, 73, 77-79. 
Proportional: line-segments, 95; 

mean, 77, 81-82. 

Pyramids: defined, 100; equivalent, 
102; triangular, 102-103, 105; 
truncated, 100-101. 

Pythagorean theorem, 70-71, 76, 
214, 224. 

Q 

Quadrant, 193. 
Quadratic equations: defined, 152; 

formula for solution of, 154- 
155; graphical solution of, 
225-229, 232; nature of roots 
of, 157-158; relation between 
roots of, 156-157; solution of, 
152-156, 225-233. 

Quadrilateral (= Quadrangle), 55, 
56-57. 

Quotient, defined, 9. 

R 

Radian, 191. 
Radical expressions. See Radicals. 
Radicals: 118-119, 147-151; graphi¬ 

cal representation of, 224-225. 
Radius: of a circle, 53; of a sphere, 

107. 
Radix, 27. 
Range finders, principle of, 74. 
Rate: of change, 245; in percentage, 

35, 36-37. 
Rates, 245. 

Ratio: 73, 76-77; commensurable 
and incommensurable, 77. 

Ratio of increments, 238-239. 
Reciprocals, defined, 164. 
Rectangular scale, use of, 63. 
Rectangle, 58. 
Regular polygons, 84-85. 
Relative primes, 16. 
Remainder, 9-10. 
Removal of monomial factor, 138. 
Repetend, 166. 
Rhomboid, 58. 
Rhombus, 58, 65. 
Right: prism, 99; triangle, 202-206. 
Rigid figures, 54-55, 104. 
Rittenhouse, David, 14. 
Root of an equation. See Equations. 
Root: cube—see Cube; square—see 

Square. 
Roots: defined, 118; complex, 157; 

equal, 157; graphical repre¬ 
sentation of, 235-236; ir¬ 
rational, 157; of quadratics, 
156-158; rational, 157; real, 
157; unequal, 157. 
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S 

Secant, 54, 195. 
Sector, 54. 
Segment: 54; spherical, 113. 
Selling price, 38. 
Semicircle, 54. 
Series: 163-166, 167, 172-175; 

power, 249. 
Sets of lines, 87-89. 
Short division, 10. 
Significant figures, 12. 
Signs: algebraic, of trigonometric 

functions—see Trigonometric; 
minus, 117; plus, 117; pre¬ 
cedence of, 10. 

Similar: figures, ratio of, 106; 
polygons, 83-84; solids, 104- 
106; terms, grouping, 138-139; 
triangles, 72-76, 79. See alsQ 
Equality, Equivalence. 

Simple interest, 40. 
Simultaneous equations, 220-223, 

228-234. 
Sine: 194; law of, 211-212. 
Six per cent method of computing 

interest, 42-43. 
Slope: in graphs, 217; of tangent, 

244. 
Solids: defined, 49—50; of three 

dimensions, 50; similar, 104- 
106. 

Solution: of equations—see 
Equations; of oblique triangle, 
206-207, 211-212, 215-216; of 
right triangle, 203-206. 

Space, properties of, 47-48. 
Special products: 135-137; of radi¬ 

cal expressions, 149-150. 
Sphere: area of, 113; defined, 107; 

diameter of, 107-108; great 
circle of, 107; radius of, 107; 
small circle of, 107; tangent of, 
107; volume of, 113. 

Spherical: excess, 111-112; segment, 
113; triangles, 108, 109-112; 
wedge, 110. 

Square: defined, 58; equivalent to 
parallelogram, 71; equivalent 
to rectangle, 71. 

Square root: 144-147, 153; of 
three, 171-172. 

Stere, defined, 34. 
Straight line: independent con¬ 

struction of, 90-91; defined, 49. 
Subtraction: algebraic, 130; Austrian 

method of, 7; of fractions, 24; 
of lines, 81; of mixed numbers, 
24; of numbers, 6-7; proof, 6. 

Subtrahend, 6. 
Sum, 4. 
Surds. See Radicals. 
Surface: 29; plane, 49. See also 

Area. 
Swan pan, 2. 
Sylvester II, Pope, 2. 
Symmetry, 65. 
Synthetic division, 233-234. 

T 

Tangent: 54; common external, 62; 
common internal, 62; how to 
draw a, 60-61; law of, 212-214; 
of a sphere, 107; trigonometric, 
194. 

Taylor’s theorem, 248-250. 
Terms: constant, of an equation, 

220; grouping similar, 138-139. 
Tetrahedron, 98, 104-105. 
Theorem: binomial—see Binomial; 

the factor, 141-142; of Pytha¬ 
goras—see Pythagorean. 

Theory of equations, 234-237. 
Time price—See List price. 
Transversal, 78, 79. 
Trapezium, area of, 68. 

Trapezoid, area of, 67-68. 
Triangular: prism, volume of, 100; 

pyramid, 102-103, 105. 
Triangle: the, 54-55; area of, 67; 

concurrent lines in a, 64; ex¬ 
terior angle of, 56; equilateral, 
56, 64-65; hypotenuse of, 57; 
interior angle of, 56; isosceles, 
57, 82-83; oblique, 206-207, 
211-212; polar, 109; right, 
202-206; similar, 72-76, 79; 
spherical, 108, 109-112. 

Trigonometric functions; 194-195; 
algebraic signs of, 195; of 
angles greater than 90°, 199- 
201; differentiation of, 249- 
251; of double angle and half 
angle, 209-210; inverse, 201; 
relations between, 195-197; 
of the sum of two angles, 207- 
209; sums and differences of, 
210; tables of, 186-190; ex¬ 
planation of tables of, 182-183. 

Trigonometric ratios, 183. 
Trihedral angle, 96. 
Truncated pyramid, 100-101. 

U 

Unknown quantities, defined, 124. 
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V 

Variable: functions of, 121-122; 
infinite, 121; infinitesimal, 121; 
lifnit of, 122, 124; quantities, 
defined, 120-121. 

Variation, direct, 217. 
Velocity, 255-256. 
Volume: defined, 29; of cone, 103; 

of cube, 30; of parallelopiped, 
99; of prism, 100; of prismoid, 
104; of revolution, integration 

of, 261-262; of sphere, 113; of 
triangular prism, 100; of tri¬ 
angular pyramid, 103. 

W 

Weight, avoirdupois, table of, 28. 

Z 

Zero: origin of, 3; use of, 3. 
Zone, 113. 

PHYSICS 
A 

Absolute: temperature, 387-388; 
zero, 376, 386, 387. 

Adhesion, 328. 
Air: brake, 314; compressibility of, 

305; density of, 300; specific 
gravity of, 300. 

Altimeters, 304. 
Ammeter, 504. 
Ampere, 504, 518-519. 
Aneroid barometer, 303-304. 
Angle: critical, 458; of incidence, 

448; of reflection, 448. 
Anode, 517. 
Archimedes’ Principle, 294-295, 

297, 298, 299, 309, 322, 378. 
Atmosphere: height of, 307-308; 

pressure of, 293, 300-303, 305- 
306. See also Weather pre¬ 
dictions, Barometer. 

Atom, 279, 492. 
Attraction and repulsion, laws of, 

490-491. 

B 

Balloon, 307, 308, 309-310. 
Barograph, recording, 304. 
Barometer: aneroid, 303-304; mer¬ 

curial, 303; normal height of, 
302-303; Torricelli’s, 301-302. 
See also Atmosphere, pressure 
of; Weather predictions. 

Beats, 433-435. 
Bell, Alexander Graham, invention 

of, 532. 
Boiling point, 401-402. 
Boyle’s Law, 306-307, 317, 386. 

C 

Caloric, 369. 
Calorie, 391. 

Calorimeter, 394-395. 

Camera, 450-451, 473-474. 
Candle power, 460-461. 
Capillary action, 330-331. 
Cathode, 517. 

Centigrade scale, 372-374. 
C. G. S. system (centimeter—gram 

—second), 282. See also Metric. 
Charles’ Law, 385-386, 387. 
Chemical: elements, 279; rays, 487. 
Chromatic aberration, 485-486. 
Coefficient of expansion: of gases, 

385-386; linear, 381-382; of 
liquids, 383-384. 

Cohesion, 328. 
Clouds, formation of, 322. 
Cohesion, 332. 
Cold storage plants, principle of, 

404. 

Colors: complementary, 480-481; 
mixed, 481—482; of opaque 
bodies, 479-480; and wave 
lengths, 478-479. 

Cooper-Hewitt lamp, 480, 516-517. 
Compass: 498; declination of, 501; 

dip of, 502. 

Compensated: balance wheels, 382- 
383; pendulum, 383. 

Compression in sound waves, 413- 
415. 

Commutator, 530-531. 
Condensation: 321-323; heat of, 

400-401. 
Conduction of heat, 376-377. 
Conductivity, 507. 
Conjugate foci, 470. 
Connections: parallel, 511-512; in 

series, 511. 
Conservation, doctrine of, 280-281, 

360, 368, 393. 
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Convection, 377-379. 
Coulomb, 514, 518. 
Critical angle, 458. 
Currents: alternating, 529; direct, 

530-531; induced, 524-527. 
Currents of the ocean, cause of, 378. 
Cyclones, 305. 

D 

Density: defined, 279, 295; con¬ 
trasted with specific gravity, 
296; methods of determining, 
295, 296-299; law of pressure 
and density of gases, 306-307; 
relation of, to weight and 
pressure in liquids, 291-292; 
table of, 297-298. 

Depolarizer, 519. 
Depth, relation of pressure to, 

290-292. 
Dew, formation of, 322. 
Dewar’s experiment, 375. 
Dewpoint, 324. 
Discords, cause of, 435. 
Diving bell, 313. 
Doctrine of conservation, 280-281, 

360, 368, 393. 
Doppler’s Principle, 421-422. 
Dynamics, defined, 286. 
Dynamo, 527-531. 
Dyne, 344, 353. 

E 

Echoes, 417-418. 
Elasticity, 332-333. 
Elements, chemical, 279. 
Electric: bell, 522; heaters, 515; 

light bulbs, 515-516; telegraph, 
523-524. 

Electric currents: defined, 493, 496; 
magnetic effects of, 497, 502- 
504, 521-524; unit of, 504. 

Electrical potential, 495-496. 
Electricity: current, 489; frictional, 

explained by electron theory, 
493-494; negative, 490, 492- 
493; positive, 490, 492-493; 
static, 489; unit of quantity of, 
514. 

Electrification: nature of, 489; 
kinds of, 490, 492-493. 

Electrodes, 517. 
Electrolysis, 517-519. 
Electromagnet, 521-522. 
Electrometer, 504-505. 
E. M. F. (electro-motive force), 

506-507. 

Electrons: 279, 487, 492-493; dis¬ 
tribution of, 494-495; theory 
of, 492-494. 

Electroplating, 518. 

Electroscope, 491-492. 
Elements, chemical, 279. 
Energy: 278, 280, 356-361: con¬ 

servation of, 280-281, 360, 368, 
393; kinetic, 357-360, 368; 
potential, 357-358. 

English system of units, 282, 283. 
Equilibrium: neutral, 351-352; 

stable, 351-352; unstable, 351- 
352. 

Erg, 354. 
Ether, 379-380, 451. 

Evaporation: effect of heat on, 
319-320; effect on temperature 
323-324; explained by molec¬ 
ular motion, 319-321; in a 
vacuum, 325. 

Expansion: of gases, 385; of liquids, 
383-385; of solids, 381-383; 
coefficient of gas-, 385-386; 
coefficient of linear, 381-382; 
coefficient of liquid, 383-384. 

Eye: defects of, 474-475; as optical 
instrument, 474-475. 

P 

Fahrenheit scale, 372-374. 
Falling bodies, laws of, 348-351. 
Faraday, Michael, discoveries of, 

375, 518, 524. 
Films, tension of surface, 326-328, 

331. 
Fleming’s Right Hand Rule, 525. 
Flotation, Law of, 298. 
Focus, principal, 466. 
Fog, formation of, 322. 
Foot-pound, 354. 
F. P. S. system (foot-pound-second) 

282. 
Force: 278; components of, 338- 

341; equilibrant of, 336-337; 
defined, 280; measurement of, 
335; parallelogram of, 337, 338, 
339, 340-341; resultant of, 327; 
329, 330, 336, 337; units of, 
283, 334-335, 344-345, 353. 

Franklin, Benjamin, 495. 
Fraunhofer lines, 483-484. 
French system of units. See Metric 

system. 
Friction, 357-358, 361-362, 366- 

367. 
Fundamental note, 436, 439. 
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G 

Galileo’s: experiments with falling 
bodies, 349; telescope, 477; 
thermometer, 370. 

Galvani, discovery of, 496. 
Galvanic cells, 497, 519-520. 
Galvanometers, 503-504. 
Gas: engine, 407-409; use of 

illuminating, in balloons, 309; 
general law, 388-389. 

Gases: compressibility of, 299, 385; 
expansion of, 385; mechanics 
of, 306-307. 

Gay-Lussac’s Law, 385-386, 387, 
388. 

Gilbert, Dr. William, discovery of, 
489. 

Gram: calorie, 391; force, 283, 334; 
mass, 283, 334. 

Gravitation, Law of Universal, 347- 
348. 

Gravity, center of, 351-352. 
Gravity Pressure, Law of, 291, 299. 

Gray, Elisha, invention of, 532. 

H 

Hail stones, formation of, 323. 
Harmonics, 440. 
Heat: absorption of, 395-396, 397, 

403-404; of condensation, 400- 
401; conduction of, 376-377; 
energy in fuels, 405; of fusion, 
397-398; induced by friction, 
367; liberation of, 396, 397, 
403-404; mechanical equivalent 
of, 391-392; molecular motion 
increased by, 319; nature of, 
368; quantity of, 390; radiant, 
380-381; specific, 392-394; 
transference of, 376-381. 

Heat engines: 404-409; efficiency of, 
408-409. 

Heating systems, 379. 
Helium, use of, in balloons, 310. 
Helmholtz’s resonators, 442. 
Henry, Joseph, discovery of, 497. 
Hertzian waves, 487. 
Hooke’s Law, 833, 335. 
Horse-power, 355. 
Humidity, 324-325. 
Huygens, theory of, 451. 
Hydraulic press, 289-290. 
Hydrodynamics, defined, 286. 
Hydrogen, use of, in balloons, 809- 

310. 

Hydrometer, 298-299. 
Hydrostatic balance, 297. 
Hydrostatics, defined, 286, 287. 

I 

Ice, manufacture of, 404. 
Illuminating power, 495. 

Illumination, intensity of, 458-459, 
Images: by concave lenses, 469,472; 

by concave spherical mirror, 
466-468; by convex lenses, 
469-471; by convex spherical 
mirror, 465-466; by plane 
mirror, 463-465; by refraction, 
468-472; real, 462, 473; virtual, 
462, 473. 

Incidence, angle of, 448. 
Index of refraction, 455. 
Induction coil, 526-527. 
Inertia, 341-342. 
Infra-red rays, 486. 
Instruments: stringed, 438-440; 

wind, 437-438. 

Insulators, 492. 
Intervals, musical, 426-427. 
Inverse Squares, Law of, 418-420, 

459. 
Ionization, 494-495. 
Ions, 517. 
Isobars, 304. 

J 

Joule, James Prescott, 367, 369, 513. 
Joule’s Law, 513-514. 
Joule, a unit of work, 354, 

K 

Kilogrammeter, 354. 
Kilovoltampere, 514. 
Kilowatt, 356. 

L 

Lamp: arc, 515-516; carbon fila¬ 
ment, 515; Cooper-Hewitt, 480, 
516-517; tungsten filament, 
515-516. 

Law, defined, 284. 
Left Hand Rule, 531. 
Length: 282; units of, 282, 283. 

Lens: achromatic, 486; chromatic 
aberration of, 485-486; con¬ 
cave, 468, 469, 472; convex, 
468, 469-472; magnifying 
power of, 475; principal focus 
of, 469. 

Lenz’s Law, 524-525. 
Lever, 362-363. 
Loops of vibrating strings, 439. 
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Light: absorption of, 479-480; dis¬ 
persion of, 478-479; intensity 
of, 458-459; interference of, 
452-453; nature of, 444-445; 
rectilinear (straight line) prop¬ 
agation of, 450; reflection of, 
447-448; refraction of, 454- 
457; speed of, 380, 445-446; 
wave length of, 454, 478-479; 
wave theory of, 451-452. 

Lightning rods, principle of, 495. 
Liquids: expansion of, 383-385; 

free surface of, 291, 329; 
mechanics of, 287-295. See 
also Pressure. 

Luminous bodies, 444-445, 451. 

M 

Machines: efficiency of, 367; de¬ 
fined, 361; general law of, 361. 

Magnetic: effects of electric cur¬ 
rents, 497, 502-504, 521-524; 
field of force, 500-501; lines of 
force, 500, 502. 

Magnetism: by induction, 499, 500; 
terrestrial, 501-502; theory of, 
499-500. 

Magnets: artificial, 498; natural, 
498; saturated, 500. 

Magnifying: glass, 475; power of a 
lens, 475. 

Manometric flame, 441-442. 
Mariotte’s Law, 306-307. 
Mass: 278-279, 282; units of, 282, 

283, 334-335. 

Matter: composition of, 279; con¬ 
servation of, 280-281; defined, 
278; gaseous, 286; liquid, 286; 
solid, 286. 

Measurement: fundamental 
quantities of, 282; problems of, 
281-282; systems of, 282-283. 
See also Units. 

Mechanical advantage, 363, 364, 
365, 366. 

Mechanics, defined, 285. 
Melting point, 398. 
Mercury: barometer, 303; thermom¬ 

eter, 370-372, 374. 
Method of mixtures, 394-395, 400- 

401. 
Metric system, 282-283. 
Microscope, compound, 475-476. 
Mirror: concave spherical, 466-468; 

convex spherical, 465-466; 
plane, 463-465. 

Mist, formation of, 322. 

Molecular: forces in gases, 315-325; 
forces in liquids, 326-331; 
forces in solids, 331-333; 
motion, 316-317, 319, 368; 
theory, 315-333. 

Molecules: 279; size of, 315; velocity 
of, 317, 319. 

Momentum, 342-345, 346. 
Morse, Samuel F. B., invention of, 

523. 
Morse Code, 523. 
Motion: accelerated, 348-351; per¬ 

petual, 362; quantity of—see 
Momentum; uniform, 341-342. 

Motor, direct current, 531. 
Motor Rule. See Left Hand Rule. 
Musical: chords, 427; instruments 

—see Instruments; intervals, 
426-427; scale, 425-426, 427- 
429. 

N 

Newton’s Law of Attraction, 847- 
348 

Newton’s Laws of Motion, 341-346. 
Nodes of vibrating strings, 439. 
Noise, 422-423. 
Nucleus of the atom, 492. 

O 

Oersted’s discovery, 497, 502-503. 
Ohm’s Law, 509-510, 526. 
Ohm, a unit of resistance, 508. 
Onnes, Kammerlingh, experiment 

of, 375, 386. 
Opaque bodies, colors of, 479-480. 
Opera glass, 477. 
Optical instruments, 473-477. 
Organ pipes, 430, 435-437. 
Overtones, 436, 439-440, 441, 442. 

P 
Parallelogram of forces, 337, 338, 

339, 340-341. 
Pascal’s experiment, 302. 
Pascal’s Law, 287-288, 299. 
Penumbra, 449. 
Perrier’s experiment, 302-303. 
Phonograph, principle of, 443. 
Photographic rays, 487. 
Photometer, 460-461. 
Physics: defined, 278; value of, 

277-278. 
Pigments, mixed, 482. 
Pitch, 429-430. 
Plane: horizontal, 339-340; inclined, 

340-341, 365-366. 
Polarization, 519. 
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Potential difference: 504-506; unit 
of, 505. 

Poundal, 344. 
Pound force, 334-335. 
Power: 355-356; units of, 355-356. 
Pressure: of compressed air, 305; 

defined, 287; and density, law 
of—see Boyle’s Law; and den¬ 
sity, relation between, 306-307; 
effect of, on boiling point, 401- 
402; effect of, on freezing 
point, 390-400; external, 305- 
306; gravity, 290-291, 307; 
internal, 305-306; transmission 
of, in liquids, 287-288; relation 
between volume and, 306. 

Prism binocular, 477. 
Pulley, 364-365. 
Pump: air, 311-312; force, 312-313; 

lift, 312. 
Pyrometer, 374. 

R 

Radiation, 379-381. 
Radiation spectrum, 486-487. 
Rain, formation of, 322. 
Rainbow, 484-485. 
Rarefaction in sound waves, 414- 

415. 
Reaction, 345-346. 
Real images, 462, 473. 
Reflection: angle of, 448; images 

formed by, 463-468; Law of 
Regular, 448; of light, 447-448; 
of sound, 416-418; total, 458. 

Refraction: images formed by, 468- 
472; index of, 455; of light, 
454-457. 

Regular Reflection, Law of, 448. 
Resistance, specific: 507-508; unit 

of, 508. 
Resistivity, 507. See also Resistance 

specific. 
Resonance, 430-433. 
Right Hand Rule: 503; Fleming’s, 

525. 
Roemer’s experiment, 445-446. 
Ross, Sir James, discovery of, 501. 
Rumford, Count, experiments of, 

369. ^ 

S 

Saturation of vapor, 320-321. 
Scales, musical, 425-426, 427-429. 
Scientific method for determining 

facts, 284. 
Screw, 366. 
Shadows, 448-450. 
Shunts, 512. 

Siphon, 310-311. 
Siren, 422-423, 425. 
Snow, formation of, 322-323. 
Solenoid, 521. 
Solids, expansion of, 381-383. 
Solutions, 403-404. 
Sonometer, 438. 
Sound: frequency of, 416; inter¬ 

ference of, 430; intensity of, 
418-420; musical, 422-424; 
origin of, 410-411; pitch of, 
420-422; quality of, 441; re¬ 
flection of, 416-418; trans¬ 
mission of, 411-413, 415-416; 
speed of, 415-416; vibrations 
of, 410-411; waves, 415-416. 

Specific: gravity, 296, 297-298— 
see also Density; heat, 392-394; 
resistance, 507-508. 

Spectroscope, 482-484. 
Spectrum: radiation, 486-487; solar, 

478, 483, 484. 
Standard candle, 459. 
State, changes of: liquids to gases, 

400-403; solids to liquids, 
395-400, 403. 

Statics, defined, 285. 
Steam engine: rotatory (steam 

turbine), 406-407; recipro¬ 
cating, 405-406. 

Storage battery, 520-521. 
Surface: free, 291, 329; tension, 

326-328, 331; units of, 283. 

T 

Telephone, principle of, 531-532. 
Telescope, 475-476. 
Temperature: absolute scale of, 

387-388; absolute zero—see Ab¬ 
solute zero; Centigrade—see 
Centigrade; effect of evapora- 

. tion on, 323-324; Fahrenheit— 
see Fahrenheit; meaning of, 
369- 370; effect of, on sound 
transmission, 415-416. 

Tensile strength, 332. 
Thales, 489. 
Thermometer: alcohol, 371, 374; 

Centigrade, 372-374; Fahren¬ 
heit, 372-374; Galileo’s, 370; 
hydrogen, 374-375; mercury, 
370- 372, 374; standard gas, 
374-375. 

Thermos bottle, principle of, 395. 
Thermostats, 383. 
Time: 282; units of, 282. 
Torricelli, experiment of, 301-302. 
Total reflection, 458. 
Transformer, 529. 



INDEX 545 

U 

Ultra violet rays, 487. 
Umbra, 449. 
Units: of electric current, 504; of 

force, 283, 334-335, 344-345, 
353; of heat quantity, 391; of 
length, 282, 283; of mass, 282, 
283, 334-335; of measurement. 
282; of momentum, 343; of 
potential difference, 505; of 
power, 355-356; of quantity of 
electricity, 514; of resistance, 
508; of surface, 283; of time, 
282; of velocity, 343; of volume, 
283; of work, 354. 

V 

Vacuum: 301; evaporation in, 325; 
sounds in, 412; transmission of 
light in, 446. 

Vapor: 320; saturation of, 320-321. 
Vaporization: 400-401, 404; heat of, 

400-401. 
Variation: direct, 284—285; inverse, 

284-285. 
Velocity: 343, 348, 349-350; units 

of, 343. 
Vibrating strings, laws of, 438-439. 
Virtual images, 462, 473. 
Volt, 505. 
Volta, discovery of, 496-497. 

Voltaic cell, 496-497. 
Volt-ampere, 514. 
Voltmeter, 507. 
Volume: relation between pressure 

and, 306; units of, 283. 

Water: behavior near freezing point, 
384—385, 398—399; compres¬ 
sibility of, 289—290; maximum 
density of, 283, 384. 

Watt, James, work of, 355, 405. 
Watt, a unit of power, 355. 
Wave theory of light, 451-452. 
Weather predictions, 304-305. See 

also Atmosphere, pressure of; 
Barometer. 

Wedge, 361. 
Weight, 278, 279, 282. 
Weston normal cell, 505. 
Wheel and axle, 363-364. 
Winds, cause of, 378. 
Work: 353; units of, 354. 

X 

X-rays, 487. 

z 
Zeppelins, 309. 
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