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I 
PREFACE 

This text presents a course in elementary mathematics adapted to 

the needs of students in the freshman year of an ordinary college or 

technical school course, and of students in the first year of a junior 

college. The material of the text includes the essential and vital 

features of the work commonly covered in the past in separate courses 

in college algebra, trigonometry, and analytical geometry. 

The fundamental idea of the development is to emphasize the fact 

that mathematics cannot be artificially divided into compartments 

with separate labels, as we have been in the habit of doing, and to 

show the essential unity and harmony and interplay between the two 

great fields into which mathematics may properly be divided; viz., 
analysis and geometry. 

A further fundamental feature of this work is the insistence upon 

illustrations drawn from fields with which the ordinary student has 

real experience. The authors believe that an illustration taken from 

life adds to the cultural value of the course in mathematics in which 

this illustration is discussed. Mathematics is essentially a mental 

discipline, but it is also a powerful tool of science, playing a won¬ 

derful part in the development of civilization. Both of these facts 

are continually emphasized in this text and from different points of 

approach. 

The student who has in any sense mastered the material which is 

presented will at the same time, and without great effort, have 

acquired a real appreciation of the mathematical problems of physics, 

of engineering, of the science of statistics, and of science in general. 

A distinctly new feature of the work is the introduction of series of 

“ timing exercises ” in' types of problems in which the student may be 

expected to develop an almost mechanical ability. The time which 

is given in the problems is wholly tentative; it is hoped, in the 

interest of definite and scientific knowledge concerning what may be 

expected of a freshman, that institutions using this text will keep a 

somewhat detailed record of the time actually made by groups of 

their students. The authors invite the cooperation of teachers of ele- 

iii 



IV PREFACE 

mentary college mathematics in tli6 attempt to secure this val liable 

information. The authors will make every effort to put information 

thus secured at the service of the public interested. 

In general, the diagrams are carefully drawn on paper with sub¬ 

divisions of twentieths of an inch. It is expected that this kind of 

paper will be used as far as possible in the graphical work, as students 

will be found to acquire rapidly the ability to use intelligently this 

type of coordinate paper. Considerable attention should be paid by 

the teacher to the intelligent reading and interpretation of the dia¬ 

grams which appear in the text, as the student will in this way gain 

power to handle his own diagrams, and appreciation of the vital 

importance of the method. The photographic illustrations should 

also be used in a somewhat similar manner. 

The material can be covered without systematic omissions in a 

course which devotes five hours per week for one year to the study of 

mathematics. In a four-hour course there are certain omissions 

which can be made by the teacher at his own discretion; the three 

chapters on solid analytical geometry are not commonly presented in 

the ordinary four-hour course; the chapter on “ Poles and Polars ” 

may also be omitted. The exercises are so numerous that any teacher 

can make a selection, which can be varied, if desired, in succeeding 

years. 
No attempt has been made to introduce the terminology of the 

calculus as it is found that there is ample material in the more ele¬ 

mentary field which should be covered before the student embarks 

upon what may properly be called higher mathematics. However, 

the fundamental idea of the derivative is presented and utilized with¬ 

out the new terminology. 

The authors are greatly indebted to a large number of their col¬ 

leagues who have been most generous in furnishing real illustrations 

in various fields. Professor N. H. Williams of the Department of 

Physics at the University of Michigan has given very pertinent and 

valuable comment on numerous sections, in addition to furnishing 

the beautiful oscillograms of alternating currents. Professor W. J. 

Hussey of the Detroit Observatory furnished the temperature and ba¬ 

rometer chart, and has given generously of his time in the discussion of 

astronomical problems adapted to an elementary text. Professors J. 

J. Cox, H. E. Riggs, A. F. Greiner, II. II. Higbie, J. C. Parker, Leon 

J. Makielski, E. M. Bragg, H. W. King, and L. M. Gram of the De¬ 

partment of Engineering, University of Michigan, have given valu- 
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able advice and suggestions. The diagram illustrating the use of the 

ellipse in determining the proper amounts of sand and gravel to use 

from given pits to obtain the best results was furnished by Professor 

Cox. To Professor Greiner we are indebted for the cut of the six 

cylinders of an automobile engine, and for criticising the piston- 

rod motion. To Mr. Makielski, the well-known artist, we are 

indebted for the drawing of a box which is reproduced. Professor 

James W. Glover of the Actuarial and Statistical Department, Uni¬ 

versity of Michigan, has read and corrected the material relating to 

his field. To Professor C. L. Meader of the Department of Lin¬ 

guistics, and to Professors Pillsbury and Shepard of the Department 

of Psychology, University of Michigan, we are indebted for the tuning- 

fork records and for the vowel and consonant records. To Professor 

F. G. Novy of the Hygienic Laboratory we are indebted for certain 

information concerning bacterial growth. Captain Peter Field, Coast 

Artillery, U.S.A., has indicated to us certain simple problems con-- 

nected with artillery work. To Mr. H. J. Ivarpinski we owe the 

photographs of the Rialto and the Colosseum. To the Albert Kahn 

Company of Detroit we are indebted for information concerning de¬ 

tails of the Hill Auditorium, and to the Tyrrell Engineering Company 

of Detroit for permission to reproduce a number of photographs of 

bridges. We render to these gentlemen and to our colleagues who 

have been generous in giving time and thought to our inquiries our 

sincere appreciation for their friendly cooperation. In every field 

which we touch, we assume full responsibility for all errors, and we 

shall be grateful to teachers who will assist in removing the in¬ 

evitable blemishes in a book of this size and character. 

The proof has been carefully read by Professor E. Y. Huntington 

of Harvard University and by Professor C. K. Moore of the University 

of Cincinnati. Many blemishes have been removed and many impor¬ 

tant additions and changes have been made on their advice. Pro¬ 

fessor J. W. Bradshaw of the University of Michigan and Professor 

J. D. Bond of the Texas Agricultural College have read the galley 

proof and given numerous and excellent suggestions. Professor 

W. W. Beman of the University of Michigan has read the page proof 

and has made numerous vital corrections and suggestions. Professor 

J. L. Markley has given advice on the early chapters. To all of 

these gentlemen we acknowledge our real indebtedness. 

In putting the work through the press, the responsible editorship 

has been placed in the hands of Professor Karpinski, as the exigencies 
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of time and space — Texas to Michigan to New York to Boston — 

would have delayed the book for a full year with a divided responsi¬ 

bility. Certain chapters, including the chapter on the applications 

of the conic sections, the chapters on the sine curve, on the growth 

curve and on complex numbers, the treatment of solid analytics, 

the tables and most of the problems, are due entirely to Professor 

Karpinski. 

The drawings have been made at the University of Michigan, chiefly 

by Mr. E. T. Cranch, an engineer now in the service, U.S.A. Most 

of the photographs are by Miss F. J. Dunbar of the University of 

Michigan Lantern Slide Shop, and a few are by Mr. G. R. Swain. 
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UNIFIED MATHEMATICS 

CHAPTER I 

NUMBERS OF ALGEBRA 

-5 -4 -3 -2 -1 0 +1 +2 -1-3 +4 45 
-i-1-1-1-1-1-->-1-1-1-1- 

1. Representation of points on a line. —With any given unit 

of length and a fixed point of reference, called the origin, the 

points upon a given line are located by numbers. The unit of 

length and parts thereof are laid off in both directions from the 

origin to locate further points. To each point corresponds one 

number (a symbol) and only one, and to each number corre¬ 

sponds one and only one point. Wre call this a one-to-one corre¬ 

spondence. To any point upon the line of reference corresponds 

evidently another point symmetrically placed with respect to 

the origin. This symmetry is indicated in the symbols by 

using the same set of symbols twice, distinguishing by two 

“ quality” signs -f and —. All points on one side of 0 have the 

-f- sign prefixed to the symbols designating them, while the 

corresponding points on the other side take the same symbols, 

prefixing the negative sign. Thus -fa and — a represent sym¬ 

metrically placed points on the scalar line. The line of refer¬ 

ence is now called a directed line. Of two numbers represented 

by points on this line, the one represented by that one of the 

two points which lies to the right hand is called the greater. 

Such a line is the line on an ordinary thermometer ; to each 

number, then, there corresponds further a certain temper¬ 

ature. Thousands of physical and material interpretations of 

1 



2 UNIFIED MATHEMATICS 

the points upon such a line and the corresponding numbers 

are possible. 

This scalar line, as the above is termed, is not necessarily a 

straight line. Thus the equator is a scalar line as it is repre¬ 

sented upon any globe, with the zero at the intersection with 

the meridian of Greenwich, and distances given in degrees, 

each representing part of the equatorial circumference of 

the earth ; + and — are represented on this line by E. and W. 

PROBLEMS 

1. Interpret a scalar line as representing distance upon the 

main line of the Michigan Central Railroad from Detroit, 

east and west. 

2. What is the significance of points to the left of the origin 

when the line represents your bank account ? 

3. Interpret the line as representing weights. 

4. Interpret the line as the prime meridian. What length 

is represented by 1° (circumference of earth is 25,000 miles) ? 

5. Interpret the scale as representing percentage of fat in 

foods. 

6. Represent the Fahrenheit scale on one side of such a 

line and the Centigrade upon the other, making the zero and 

the 100° of the Centigrade scale fall upon the 32° and 212° of 

the Fahrenheit; note that for a convenient total length 20° 

Fahrenheit may be taken as corresponding to 1 centimeter or 

to one half an inch. 
» 

2. Real numbers; positive integers. — The symbols repre¬ 

senting the points upon a line, as above, are called real num¬ 

bers. Elementary algebra is largely a study of such numbers, 

combined according to certain rules. The rules of the game 

of algebra, as we may term it, can be studied entirely apart 

from any physical application, but the study is of funda¬ 

mental importance because of the part which algebraic num¬ 

bers play in the sciences. However, a knowledge of the laws 
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of algebra, apart from the applications, is necessary to enable 

one to apply the numbers effectively to physical problems. 

The real numbers are sub-divided into positive and negative 

numbers ; another classification is into rational and irrational 

numbers, the rational numbers being further sub-divided into 

integers and fractions. Numbers are represented by the letters 

a, b, c, ••• x, ?/, z, etc. 

Integers were undoubtedly conceived long before man began 

to write. The idea of an integer involves the notion of a 

group of individual objects, and of one-to-one correspondence. 

The idea or notion which is common to all groups of objects 

which can be placed in one-to-one correspondence with the 

objects of a given group is called the number of the given 

group of objects. Thus the pennies OOOOO can be placed 

in one-to-one correspondence with some segments of our line, 

or with- the group of symbols which correspond to these 

OOOOO 
I 1 1 2 ] 3 1 4 1 5 1 

segments, or with the individuals of any one of infinitely 

many other groups, of number Jive, which have the one com¬ 

mon property that they can be placed in one-to-one correspond¬ 

ence with each other. The definition is recent; the idea is 

old. One-to-one correspondence appears frequently in physical 

problems, as in the one-to-one correspondence between degrees 

Centigrade and degrees Fahrenheit above. 

Integers can be used to represent segments of our line of 

reference, from 0 as reference point, with some length as 

unit of measure (or as individual of the group). The ex¬ 

tremity farthest from 0 is marked with the integer corre¬ 

sponding to the number of the segments between that point 

and 0. Evidently certain groups of segments include as sub¬ 

groups other groups of segments. The number of the includ¬ 

ing group is called greater than the number of any included 

group; the included group is smaller, and its number is less 

than the number of the including group. Thus the group 
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called eight, 8, has the smaller sub-groups, 1, 2, 3, 4, 5, 6, 

and 7. 

1 l I 2 I 3 I 4 1 5 1 6 1 7 1 8 1 

3. Positive integers; fundamental laws, definitions, assumptions, 

and theorems. — Given two positive integers, a and 6, the single 

group composed of the individuals from two distinct groups 

of objects, represented by a and b respectively, is represented 

by another number x, the sum of a and b, which latter we term 

summands. The process of finding such a number is called 

addition, and is indicated by writing the sign + between the 

two given numbers a and b. By the sum of three numbers is 

meant the number obtained by adding the third to the sum of 

the first two, and similarly for more numbers than three. The 

following are assumptions and theorems concerning integers. 

I. x = a + b, given two integers, the sum exists. 

II. a + b = b + a, addition is commutative, i.e. the order of 

addition is immaterial. 

III. a + b + c = (a + £>) -f- c = a + (b -f- c); the associative law 

for addition. 

IV. x + b = a. Given the sum a and one of the summands, 

the other summand exists: x is the number which added to b 

gives a. This defines the operation of subtraction, which is 

represented by the sign —, to be placed between the sum and 

the given summand, as in a — b = x. 
By definition, (a — b)-\-b = a, and for the present this has 

meaning only when b is less than a; a is termed minuend, b is 

termed subtrahend, and a — b is the remainder. 
Thus, given x + 2 = 7, x is evidently 5, as one remembers that in the 

operation of addition 5 added to 2 gives 7. Given x + 2 = 2, or x -j- 2 = 1, 
we have, at this stage of development, no number x which satisfies the 
given condition. 

V. If a 4- c = b + c, a = b, and conversely. 

The converse is equivalent to the axiom, if equals be added 
to equals the sums are equal. 
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VI. x = a ■ b. Suppose that each individual of a group of 

a objects consists of b individuals of another type, e.g. 4 rows, 

each of 7 dots, then the single group 

consisting of all the second type of. 

individuals involved is called the prod-. 

uct of a and b. The operation is called. 

multiplication and is represented by 

the sign x between a and b, or by a 

period (slightly elevated) between a and b, or by simple juxta¬ 

position of the two numbers, a and b, called factors; a is 

termed multiplier, and b is multiplicand. 

VII. a • b = b • a, the commutative law for multiplication, 

evident from the figure. 

VIII. a • b • c = (a • b) • c = a (b • c), the associative law for 

multiplication. 

IX. a(b + c) = ab -f- c&c, multiplication is distributive with 

respect to addition. This corresponds precisely to our ordi¬ 

nary method of multiplication. 
t 

X. b • x = a. Given the product a, and one factor b, x is de¬ 

fined by this relation as the number which multiplied by b gives 

a. This operation is limited when dealing with integers to num¬ 

bers a and b, which are so related that a is one of the products 

obtained by multiplying b by an integer. 

The process of finding x is called division, and is represented 

by the sign or by placing a over b, b • - = a; b is termed 

the divisor, a is the dividend, and x is termed the quotient. 

These laws concerning positive integers constitute simply a 

restatement of facts with which the student is familiar. The 

four fundamental operations to this point have been confined 

to the field of positive integers ; evidently the operation of 

division when b is the divisor applies only to those positive 

integers which are multiples of b. Similarly the operation of 

subtraction of b from a is limited to integers so related that 
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a >6. We extend our field of numbers by removing these 

limitations. Thus if you wish to have a number x which 

multiplied by 8 gives 5 you do not find it among the positive 

integers j you may then decide to create such a number, calling 

it -§, the two symbols indicating the definition and genesis of 

the new number. Such extensions of the number field are 

briefly indicated in the next section. 

4. Rational numbers ; zero, fractions, and negative integers. — 

These fundamental equalities and definitions from I to X are 

now extended by removing all limitations (except one, as noted 

below) upon the numbers, a, b, c, and x. Note that only the 

operations of addition, subtraction, multiplication, and division 

are included at this point. 

Extension of IV. x + b = a, when b — a defines zero, 

written 0. By definition then, 0 + a = a. & -f- 5 = 0, defines 

a negative number which is written — b. The negative here 

is a sign of quality; by definition — b is the result of subtract¬ 

ing b from 0, and — b + b = 0. 
x + b = a, when b > a, defines the negative number a — b, 

which is the negative of b — a. 

Subtracting a negative number can now be shown to be 

equivalent to adding a positive number, and similarly the other 

rules of elementary algebra relating to the addition and sub¬ 

traction of positive and negative quantities. That the product 

of two numbers with like signs is positive and the product of 

two numbers with unlike signs is negative follows from the 

above development. 

• A negative number — a is placed in our line of reference 

symmetrically to the corresponding positive number a, with 

respect to the origin; of two negatives, the one toward the 

right is called the greater. 

Extension of X. b • ^ = a, for all values of b except 0. 

This extension of a 

b 
to mean a number which multiplied by 
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b gives a introduces new numbers of the type rational frac« 
b 

tions in whicli a and b are positive or negative integers. 

Integers are included in this definition if b is a factor of a or 

if b is equal to one. Division by 0 is explicitly excluded. 

A rational number is any number which can be expressed as 

the quotient of two integers, the denominator not to be zero. 

All of our rules for operating with fractions follow from the 

definition of - and from the preceding development. Thus 
b 

—= — — = ——. Further, by definition, 
— bbb 

a 

b 
, when both are positive if ad > be ; 

a c 
- = —, when both are positive if ad = be; and 
b cl 

a c 
- < -, when both are positive if ad < be. 
b d 

Positive fractions can thus be arranged in a determined order 

upon our line of reference ; the value of the fraction determines 

the position and a graphical method of locating - on the 

scalar line is indicated in the next section; negative fractions 

are placed symmetrically to the corresponding positive frac¬ 

tions, with respect to the origin. 

Of any two rational numbers a and b, a is greater than b 

(a > b) if a — b is positive; for when a — b is positive, a posi¬ 

tive length* must be added to b to give a, and consequently a 

must lie to the right of b. If on the line of reference two 

points aq and x2 are taken (fixed points), x2 — aq gives the dis¬ 

tance from the first point to the second; this expression is 

positive if x2 > aq, and negative if x2 < aq. 

That there is a distinction between -J- and — used as signs 

of operation, as with positive integers in the preceding section, 
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and + and — used as quality signs is apparent. Thus — b 

may indicate that b is to be subtracted from some preceding 

number, or — b may indicate that the distance b is taken on 

the negative side of the origin. The fact that a +(—5), the 

addition to a of negative b, gives the same result as subtract¬ 

ing b from a, or a — b, is readily shown by the graphical 

method of section 9 below. This type of relationship obviates 

any need for careful distinction between the two possible mean¬ 

ings of these signs and makes separate symbols not necessary. 

When no sign is used with a number symbol the + sign is 

understood. 

EXERCISES 

_3 3 
1. Explain the distinction between and — between 

3 , -3 
and -- 

-7 

_5 _a 
2. Write ———- in the three forms corresponding to -- 

3 — x b 
a A a 

-, and- 
b’ -b 

3. Is — 3 > — 2 ? Which is greater, 0 or — 3 ? Explain. 

4. What is the difference between 4 and —3? 4 and 3? 

4 and 11 ? 

5. What fundamental law is assumed in the common process 

of multiplication, e. g. as in 325 by 239 and also x—7 by x—2? 

Is there a corresponding assumption in division ? 

6. Which is greater, \ or — J ? Is -j-J greater or less than 

|| ? Explain. 

7. What is the product of 0 by 7; by — 8; by 3; by -fj? If 

a product is zero, what limitation is imposed upon the factors ? 

5. Representation of a rational number, -• On cross-section 
’ b 

paper any rational fraction can be represented, using ruler and 

compass. Using 5 divisions to represent unity, each division 
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represents £ of a unit. To represent one measures off 13 

units, OA, on the line of reference, and 7 units, OB, on a 

second line through the origin (for convenience, use cross-sec- 

\ to f of 13 represented on horizontal line of reference. 

tion paper). Connect the ends, AB, and through the point U, 

one unit from 0 on the second line, draw a line parallel to AB. 

The intersection point on the reference line represents the 

fraction -XT3-. Similarly any fraction ^ can be represented. 

The series of parallels to AB through the first 7 unit points 

on the vertical axis will cut off (plane geometry theorem) 7 

equal parts of 13 on the horizontal axis. 

Graphical division 

^ to expressed decimally. 
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On cross-section paper a somewhat better method of indicate 

ing any quotient ^ is to move out on the line of reference b 

units and up 1 unit; connecting this point with the origin 0 

gives a straight line which can be used to read the desired 

quotients. Thus, since OB = 7 units, BC = 1, and OA — 13, 

it follows that = —or “ = whence AP equals —. 
BC OB 1 < i 

Q £ 

To obtain —, you find the point 8.5 units from 0, and the 

8 5 
vertical distance to the oblique line represents or 1.2. 

6. Irrational numbers. x* = 2 is a simple and familiar illus¬ 

tration of a relation which is not satisfied by any rational 

number, -, with a and b integers; geometrically, the diagonal 

^ of a square with side unity 

is not represented by any 

rational number. If you wish 

the length of this diagonal 

for any practical purpose, you 

or --1— or -1—l or —— 
8 o > ^ i o o> 1 2> 

1—1— or 14 14 2 The ear- 
1 0 0 0 ’ U1 10000* xXctl 

penter uses 1 foot 5 inches, 

or 1-j^- feet, in the diagonal 

for every foot of side, with 

an error of H of . one per 

cent. The series of rational 

use 

or 

.2 .4 .6 .8 1 1.2 1.4 

Graphical representation of V2 

numbers 1, ||, |||, ||||, ||||f, which can be indefinitely ex¬ 

tended always increasing, and the series, always decreasing, 

2, if, ||f; if-ff, tdwI> with a constantly decreasing difference 

of limit 0 between corresponding terms, together define the 

irrational number called the square root of 2. No rational 

number satisfies the relation; no number - is at the end of 
b 

either series, but either series determines n definite point on 
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our line, and algebraically defines our number, which we will 
call the square root of 2. 

Proof of the irrationality of V2.— Assume that V2 a 

rational fraction in lowest terms, with p and q integers. Both 
p and q cannot be even numbers, either p is odd or q is odd. 
If p is odd, squaring and clearing of fractions, 2 q2 = p2; but 
p is odd and you have an even number equal to an odd 
number. Hence p cannot be an odd number. Now assume 
that p is even and that q is odd, and further let p = 2 m. 
Then 2 q2 = 4 m2, q2 = 2 m2, and again we have an odd num- 

ber equal to an even number. Our assumption that V2 = - 

leads to an absurdity, that an odd number equals an even 
number. 

Describe about the origin with a radius 10 a circle, and 
using a protractor measure an angle of 20 degrees. The 
length of the perpendicular and 
the part cut off: by the perpen¬ 
dicular from the end of this 
line are definite and precise 
points which can be computed 
to any degree of accuracy de¬ 
sired. No rational numbers rep¬ 
resent these lengths, which are 
trigonometric irrationalities. A 
series of constantly increasing 
rational numbers can be found, 
such that there is no greatest 
of the series, to represent lines 
which are always shorter than the given line; and another 
series of terms constantly decreasing, but approaching to the 
terms of the first series, can be found. No largest number 
can be found in the first series and no smallest in the second; 
both sequences together define, we may say, an irrational 
number. 

A trigonometric irrational 
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EXERCISES 

1. Write 6 terms of the decreasing series defining V2; V3. 

Arrange in order of magnitude 6 numbers with squares greater than 2. 

2. How is the series for defining the length of the circum¬ 

ference of a circle obtained ? What assumption is made ? 

3. Find by actual multiplication six numbers between 60 

and 63 whose squares are less than 3910. 

4. Inscribe a square and an equilateral triangle in the 

circle of radius 10; find the sides. 

7. Constants and variables. — Every fixed point on the line 

of reference is at a fixed distance from the point of reference, 

0; the distance is constant. We can think of a point as mov¬ 

ing on the line OX in either direction. The distance from 0 

then varies and we speak of the distance as a variable. Thus, 

also, the price of wheat during a term of years or in different 

parts of the world is a variable ; the weight of an animal at 

different ages is a variable. We think of the variable quantity 

as taking a series of values under diverse conditions. We can 

represent the variable distance of a point from 0 on our line 

by the single letter x, which may then in the various possible 

positions on the line be thought of as positive, or negative, or 

zero, as rational or irrational. This letter x represents then a 

variable quantity and is essentially a number, subject to all 

the operations on algebraic quantities as noted above. In gen¬ 

eral, we designate the variable point by the single letter P; 

the distance from 0 is OP, of which the length and direction 

from 0 are indicated by the number or variable x. A point on 

the line XfX is represented by a single letter x, called the 

abscissa of the point. The fixed points on the line are fre¬ 

quently represented by the letters a, b, c, d, or by xlf x.2, 

xs, •••, each of which may represent any point upon the line. 

8. Historical note. — Modern algebra with the systematic 

employment of literal coefficients, letters to represent general 

constants, was introduced by the great French mathematician 
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and statesman, Francois Viete (1540-1603); Viete used the 

consonants to represent known quantities and vowels to re¬ 

present unknowns, using capitals for both. The use of the 

symbols of operation in equations dates also from about the 

same time; our equality sign was introduced by Robert 

Recorde, an English physician and mathematician, whose 

“ Whetstone of Witte,” 1557, is the hrst treatise in the Eng¬ 

lish language on algebra. The + and — symbols are due to 

a German, Widmann, and date from 1489. 

9. Geometrical equivalents of the four fundamental operations, 

a. Addition. — The operation of addition of xx and x2 is repre¬ 

sented graphically by placing the length OP2 upon the line 

0 
Xr\~X2 

T> 

—>P! “ 1 P3 

r.K *l + *2 
O A *2 P3F 

b  Xi 
1 X2 —±i^ 

O-P3 = OP\ -f- P\P% — OP\ + OP2 — X\ + £2. 

from the point P1 in the direction of OP2. Physically, 

addition is the result in general of two different causes. 

Thus a weight of 3 pounds + a weight of 5 pounds; a vertical 

velocity due to the action of gravity (on a falling body) + a 

vertical velocity due to some other force ; a transportation 

(translation) from one point to another + another translation 

in the same direction; two successive rotations of a wheel 

about its axis ; these are familiar examples of addition. 

b. Subtraction. OPx + A A = OP2; PXP2 = OP2 - OP^ 

Whatever the relative positions on the line OX of Px and P2, 

with respect to the position of 0, OPx + PXP2 = OP2, all of 

these representing directed line segments. In words, the 

equality PLP2 = OP2 — OP\ states that the distance from any 

point Pi on a directed line to a second point on the line is 

given by the abscissa of the second point minus the abscissa of 
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the first, with respect to any third point 0, on the line, as 

origin. 
If we represent the distance from Pl to P2 by the letter d, 

we have xx + d = x2, or d = x2 — xv. Subtraction is represented 

by the distance from the first point to the second point, which 

DISTANCE BETWEEN TWO POINTS ON A SCALAR LINE 

Fundamental property of any three points on a directed line 

equals 0P2 — OPx. Since in physical problems the distance 

represents the change in numerical value of physical quantities, 

graphical subtraction is more frequently noted than addition. 

We say the temperature has risen 10. degrees or fallen 10 

degrees, having in mind the original and the final reading; 

when we say that an iron bar has expanded an inch, the 

initial and the final length and the change in length are im¬ 

portant. 

The formula, 
d=x2 — xl, 

gives the distance PiP2 from the point Pl9 abscissa xL, to the 

point P2, abscissa x2; the algebraic sign gives the direction. 

The formula gives then the change in value of a variable x in 

passing from the value xx to the value x2. 

c. Multiplication and division. — Graphical multiplication 

and division upon cross-section paper, involving theorems con¬ 

cerning similar triangles, are indicated by the diagrams on 

page 9. 
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PROBLEMS 

1. What is the distance from 2 to 8 on a scalar line ? 

2. On a thermometer what is the change from —3° to +25° ? 

from — 10° to + 30° ? from + 30° to — 10° ? from — 10° to 

— 20° ? 

3. Use the formula, d == x2 — xh to find the distance from 

— 2 to +8 on a scalar line, noting that x2 = 8, and aq = — 2; 

from — 2 to — 8; from — 11.3 to -f 24.7. 

4. Represent the square root of 2 geometrically, taking 10 

quarter-inches as 1. Represent the square root of 3 on coordi¬ 

nate paper, using the same scale. Represent the square root 

of 5, 6, 7, and 8. 

5. Draw a semicircle on a diameter of 10 half-inches. Note 

that the perpendicular at any point on this diameter is, by 

plane geometry, a mean proportional between the segments 

of the diameter. Read the mean proportional between 1 and 

9, as the vertical line drawn at the point on the diameter 4 

units out from the center. Read the mean proportional between 

2 and 8, similarly ; between 3 and 7 ; between 4 and 6. 

6. Regard the preceding circle as having a radius 10 quar¬ 

ter-inches. Find approximately, from it, Vl9, a/36, v/51, 

v/04, V75, V84, V91, V96, V99, and VlOO. These are the 

vertical lengths at the points dividing the diameter in the 

ratio 19 to 1; 18 to 2; 17 to 3; — 10 to 10. 

7. Take a circle of diameter 12 half-inches ; from it ap¬ 

proximate VH, V20, V27, V32, V35, and V36. Note 

that V20=2 V5, V27 = 3V3, and V32 = 4v/2; from these 

approximate V2, V3, and V5. See diagram on page 72. 

8. On the preceding circle check the geometrical fact that 

either side of a right triangle is a mean proportional between 

the whole hypotenuse and the adjacent segment of the hypote¬ 

nuse cut off the perpendicular from the vertex of the right 

angle. 



CHAPTER II 

FORMULAS OF ALGEBRA AND GEOMETRY WITH 

ARITHMETICAL APPLICATIONS 

1. Algebraical formulas, products, and factors.— 

(x -f a)2 = x2 -f- 2 ax + a2. 

(x — a)2 = x2 — 2 ax + a2. 

(x + a) (x — a) = x2 — a2. 

(x -f a)(x + b) = x2 + (a + b)x + ab. 

(ax + b)(cx + d) — acx2 + (ad + bc)x -f bd. 

mx + nx = (m + n)x. 

x* - i/3 = (x - y)(x2+ xy + y2). 

xs + s/3 = (x + y)(x2 -xy+ y2). 

These formulas may readily be derived by actual multipli¬ 

cation. They should be read and used both from left to right 

and from right to left. In the problems drill is given on the 

use of these formulas both in obtaining products and in the 

reverse operation of factoring. 

The student would do well to state all of these formulas in 

words. 

Thus, the square of a binomial equals the square of the first 

term plus the square of the second term plus twice the product 

of the first by the second. 

PROBLEMS 

1. Expand the following: 

(3 x-a)2, (Sv — 2 a)2, (3 a; + 4 a)2, (a; - 10)2, (10 + 2y)2, 

(x + i)2, (x + J)2, (x — -J)2, (2 m ~f 3 n)2, ( — 2 m — 3 ft)2. 

16 



APPLICATIONS OF ALGEBRA TO ARITHMETIC 17 

2. Perform the operations indicated : 

(3#+2a)(3sc—2a); (&•—2) (a2 d-2 sc d-4); (2 sc d-3) (4 sc2—6sc-f-9); 

(a~f)(a+&)’ (-« + *)(-«-*); 

(sc + a -f b)(x + a — 6); (10 -f- a)(10 + 6); (20 + a)(20 + b). 

3. Factor the following : 

a. x1 — 4 a; + 4. 

b. 4 x2 — 4 x + 1. 

c. x2 -b x -f- i. 

e. 8 x2 — 32. 

4. Factor the following : 

a. sc2 -f- 8 sc 15. 

b. x2 d~ 8 x d~ i • 

c. sc2 — 8 x d- 7. 

d. 4 sc2 d-16 x -f-15. 

e. 4 sc2 d-16 sc d- 7. 

5. Factor: 

а. sc3 — 8 2/3. 

б. sc3 — 64 xy2. 

c. 27-8 y\ 

d. 8m3-f ft3. 

e. 100 — 49 ft2. 

f 27 xs — 48 x. 

g. v3 — 8. 

h. 8 sc3 ■+■ 1. 

i. ax d- ic. 

J. asc — sc. 

/. 4 sc2 — 9. 

g. x2 — 3 x -f 2. 

/i. ?/2 — 10 -h 16. 
i. v2 — 3 v — 4. 

j. 6 a?2 d- 29 sc d- 35. 

/. p2 — v2t2. 
g. x2-2 y2. 

h. m2 — 4 m?i — 21 ft2. 

i. (sc yy — z2- 
j. mx — my + nx — ny. 

6. Complete the following expressions, involving the 

squares of binomials: 

a. (sc2 — 4 x d- ) = (sc — )2. 

b. (f + x.'/ ) = (?/ + )2- 
c. (x2 — f x + ) =(.('— )2. 

d. (<2-i<+ ) =(«- )2- 
e. 3(x2 — 4 x + )=3(x )2 = 3 x2 — 12 x + . 

/. 5(j/2-f?/ + )=5(?/- )2= 5»/2 — 4?/ + . 

0. 3«2 + 7<+ =3(«2 + i«+ )=3(« + J)2. 
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2. Division of polynomials. — An expression of the form 

a0xn + aiX'1-1 + a2xn~2 + ••• cin_ xx + an 

wherein n is a positive integer, a0 is not zero, and a0, a1? a2 ••• an 

are real numbers is called a rational integral function of degree 

n in x, or a polynomial of degree n in x. For convenience the 

symbols f(x), Q(x), F(x), ••• are used to represent such poly¬ 

nomials. 

Given a polynomial in x and x — a, the process of finding a 

second polynomial which when multiplied by x — a gives the 

first, or the first with the exception of a remainder, is called 

division; the polynomial found is called the quotient. 

Illustrative Problem. — Divide 3 x3 — 2 x2 + 7 x — 5 by x — 2. 

3 cc2 + 4 x + 15_ 

x — 2)3 x3 - 2 x2 + 7 x - 5 

3 x3 — 6 x2 

+ 4x2 

+ 4 x2 — 8 x 

+ 15 x 
-|- 15 x — 30 

+ 25 

3 x3 — 2 x2 + 7 x — 5 = (x — 2) (3 x2 + 4 x + 15) + 25. 

The three bars, =, are used to indicate that the expression is an iden¬ 

tity, true for all values of x and thus placing no limitation upon x. 

PROBLEMS 

In each problem express the result of the division in the 

form of an identity, as in the problem above. 

1. Divide 3 xz + 8 x2 — Q> x — 5 by x — 1; byaj-f-2. 

2. Divide 2 x3 — 8 x2 + 3 x — 5 by x — 2 ; by x -f-1. 

3. Divide x3 — 2,000,000 by x — 120 ; by x — 126. 

4. Divide 3842 by 27, and express the result as a numerical 

identity. 

5. Divide 3 x4 — 6 x2 -f 10 x — 7 by x — 1. 
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6. Divide — 10 x2 — 8 by x1 — 2. 

7. Divide 6 t3 — 2£-flby2£-fl. 

3. Remainder theorem and factor theorem. — When a poly¬ 

nomial in x is divided by x — a, the division can be continued 

until the remainder is a constant. If f(x) represents the 

polynomial, Q(x) the quotient, and R the remainder, we have 

the identity, 
f(x) = (x — a) Q(x) + R. 

Substituting a for x in this identity, we have 

f(a) — (a — a) Q(a) -f R, 

or, R =/(a). 

In words, the remainder obtained by dividing a polynomial 

in x by x — a is the same polynomial in a, i.e. the dividend 

with a substituted for x. This is the remainder theorem. 

Illustration. 

3 x3 — 2 x2 + 7 x — 5 = (x — 2) (3 x2 + 4 x + 15) + 25 ; 

substituting 2 for x, we have 

3.23 - 2.22 + 7.2 - 5 = 25, 

since 2 — 2 = 0; the remainder 25 could have been obtained without 

actual division by x — 2, by simply substituting 2 for x in 

3 x3 — 2 x2 + 7 cc — 5. 

If/(a)=0, a is called a root of f(x)= 0, or a zero of f(x). 

In this case the remainder when /(a?) is divided by a; — a 

equals zero, or x — a is a factor of f(x). 

f(x) = (x — a) Q (x), when f(a) = 0. 
* 

This is called the factor theorem. 

Illustrations. 

3 x3 — 2 x2 + 7 x — 30 =0, when x = 2 ; x — 2 is a factor. 

2x2 — 7x + 5 = 0, when x = 1 ; x — 1 is a factor. 

2&2-f-7x-f-5 = 0, when ^==—1; x + 1 is a factor, 
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The common ‘ ‘ check by nines11 may readily be proved by the re¬ 

mainder theorem : 

When 12,738, which may be written 

1 X 104 + 2 x 103 + 7 x 102 + 3 x 10 + 8, 

in powers of 10, is divided by 10 — 1, the remainder is equal to the origi¬ 

nal expression with 1 put for 10. Hence the remainder when 12,738 is 

divided by 9 is 1 + 2 + 7 + 3 + 8, or 21, or 3 (since 21 divided by 9 gives 

3 as remainder, or 2 + 1). 

Thus, a x 10n -f b x 10n_1 + c x 10n-2 + ••• g x 10 + h divided by 10 

— 1 gives a + b + c + • • • + gf + /t as remainder. 

Division by 11, 10 -f- 1, gives as remainder the sum of the odd coeffi¬ 

cients less the sum of the even coefficients, counting from units’ place ; 

a sum to 11 can, of course, be dropped as it occurs, or 11 can be added 

to make the remainder a positive number. 

PROBLEMS 

1. By substituting + 1 and — 1, respectively, in the follow¬ 

ing expressions determine those in which either x — 1 or x -f-1 

is a factor ; factor where possible. 

a. 2 x2 — 6 x -f 4. 

b. 3 x2 + 5 x + 2. 

c. 5x2 + 6 a; — 11. 

cl. 5x2 — 5 x. 

e. x3 — 1. 

/. 3x2 — 5x — 2. 

g. 2 x3 — 7 x2 — 8 x — 1. 

h. 2 x3 -|- 7 x2 — 4 x — 9. 

2. For what value of a is x3 — 3x2 — 7 x — a exactly divisible 

by x — 1 ? by x — 2 ? 

3. For what value of a will ax* — 7x2 — 3x — a be exactly 

divisible by x + 1 ? 

4. Show that xn — yn is always divisible by x — y when n is 

an integer. 

5. For what integral values of n is x -f- y a factor of xn-\-yn? 

6. Form the equation in x in which 3 and 4 are the roots, 

employing the factor theorem. 

Note. If 3 is a root, x ~ 3 is a factor. 

7. Form the equation whose roots are —3, 4, and 1. 
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8. What is the remainder when each of the following num¬ 

bers is divided by 9 ? by 11 ? 

a. 327. c. 951. e. 8217. g. 1001. 

b. 847. d. 3276. /. 12,321. h. 3003. 

4. Arithmetical application of algebraic formulas. — Algebraic 

formulas and methods can frequently be applied to arithmeti¬ 

cal problems with a great saving of labor; practice with nu¬ 

merical examples is absolutely essential for success. 

The four formulas of elementary algebra which enjoy the 

widest use are undoubtedly : 

(x + a)2 = x1 -j- 2 ax -j- a2. 

(x — a)2 = x2 — 2 ax -f- a2. 

(x -f a)(x — a) = x2 — a2. 

(x -f- a)(x -f- b) = x2 -f (a + b)x -f ab. 

(ix -f a)(x -f b) gives a simple rule for the product of two 

“-teens,” e.g. 19 x 17. 

Thus, (10 + a)(10 + b) = 102 + (a + 6)10-(-a6, or = 10(10 + a + 6) +ab. 

Put into words, this formula states that the product of two 

numbers between 10 and 20 is equal to the whole of one plus 

the units of the other; this sum is to be multiplied by 10; to 

this product is to be added the product of the units. 

Rule. — To find the product of two “ -teens,” add the whole 

of one to the units of the other and annex a zero; to this number 

add the product of the units. 
19 

17 

260 

63 

323 

If x is taken as 20, 30, 40, 50, •••, the corresponding rule for 

the product of two two-place numbers having the same tens’ 

digit is to add to the one of two numbers the units of the 

other; the sum is to be multiplied by the tens’ digit, and a 



22 UNIFIED MATHEMATICS 

zero annexed to the product; to this number add the product 

of the units. 

Thus, (37 x 35) = 30 x 42 + 35 = 1260 + 35 
= 1295. 

Such products are most easily found, evidently, if the two 

units’ digits sum to 10. 
87 x 83 = 8 x 9 x 100 + 21 

= 7221. 

64 x 66 = 6 x 7 x 100 + 24 
= 4224. 

In mental work with numbers work from left to right, and 

not from right to left, dealing first with the numbers of greater 

significance. 

(;x + a.)2 and (x — a)2 are particularly useful in the computa¬ 

tion of squares of numbers of three places beginning with 1 

or 9. 
(10.7)2 = 100 + 2 x 10 x .7 + .49 

= 114.49. 
(11.3)2 = 121 + 6.6 + .09 = 127.69, 

or = 100 + 26 + 1.69 = 127.69. 

(1.57)2 = 2.25 + .21 + .0049, 

where .21 is obtained as 1.5 x .14 by the rule for the product of two 
4 4 —“1)00113. ^ ^ 

(.97)2 = (1.00 - .03)2 - 1 _ .06 + .0009 

= .9409. 

(8.70)2 =(10- 1.3)2 = 100 - 26 + 1.69 = 75.69. 
• * * / • ■ i , 

' , ■ \ \ 

Frequently it is more convenient to use these formulas re¬ 

arranged as follows : 

(x + a)2 = x(x + a + a) + a2. 
(x — a)2 = x(x — a — a) + a2. 

Thus, - (84)2 = 100(100 - 16 - 16) + 162 

= 100(84 - 16)+ 162 

= 6800 + 256 = 7056. 

(25.7) 2 = 20(25.7 + 5.7) + (5.7)2 

= 628 + 32.49 

= 660.49. 

(25.7) 2= 25(25.7 + .7) + .49 = 25(26.4) + .49 

= 660.0 (since 25 = -i|V) .49. 
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The square of any number between 25 and 75 is obtained 

from (x -f- a)2, as follows: 

(50 ± a)2 = 2500 ± 100 a + a2 = 100 x (25 ± a) + a2. 

Thus, (37)2 = 2500 - 1300 + 169 

= 1369. 

Rule. — To find the square of any number between 25 and 

75; find the difference between the given number and 50; add, if 

the given number is greater than 50, or subtract, if the given 

number is less than 50, this difference from 25 and annex to this 

two zeros. Add to this number the square of the difference. 

Thus, (65)2 = (25 + 15) x 100 + 152 

= 4225. 

For numbers between 75 and 150 the squares may be ob¬ 

tained as 100(100 — a — a) +- a2 or (100) (100 +- a■ + a) +- a2, 

noting that 100 — a or 100 -f a is your given number whose 

square is sought. 

Thus, 1122 = 12,400 + 144. 

13.72 = 174.OO + 3.72 = 174.00 + 13.20 + .49 = 187.69. 

Frequently, of course, only three or four significant figures 

are desired, and the methods mentioned give the significant 

figures first. 

(a? + a) (& — 0) may also be used for squares, thus : 

x2 = (x + a) (x — a) + a2. 

(87)2 =(87 + 13)(87 - 13)+ 132. 

(2.33)2 =(2.33 + .17)(2.33 - .17)+ .172 

— 5.4 + .0289. 

(41.7)2 =(41.7 + 8.3)(41.7 - 8.3) + (8.3)2 

= 50 x 33.4 + 8.32 

= 1670 + 68.89 

= 1738.89. 

(41.72)2 = 1738.89 +(.04) (41.7) + .0004 

= 1738.89 + 1.6684 = 1741 to units, or 1740.6 to tenths. 
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PROBLEMS 

1. Multiply mentally 19 x 18, 17 X 15, 18 x 14. 

2. Use the rule given above to give the table of 18’s from 

18 x 11 to 18 x 19. 

3. Multiply mentally 12 x 13, 35 x 34, 45 x 45, 82 x 88, 

91 x 99. 

4. Multiply mentally 27 x 25, 34 x 32, 54 x 58, 92 x 98. 

5. What is the product of 44 x 36 or (40 + 4) x (40 — 4), 

58 x 62, 44 x 37 or (40 + 4) x (40 - 3) ? 

6. What are the first three figures of (H4)2, (107)2, (131)2, 

and (118)2? Note (114)2 is 12,800 -f-142, and the first three 

figures 129; in (116)2 to 13,200 you must add (16)2, which in¬ 

creases the first 13,200 to 13,400. 

7. From the preceding answers in 6 write the first three 

figures of (1.14)2, (.107)2, (1.31)*, (1180)2. 

8. Write the squares of 9.7, 88, 940, 8.7, and 9.2. 

9. Approximately how much greater is (9.71)2 than (9.7)2? 

(88.2)2 than (88)2? (941)2 than (940)2? (8.75)2 than (8.7)2? 

(9.26)2 than (9.2)2 ? 

Note that (88.2)2 differs from (88)2 first by .4 x 88, or by 

a little more than 35 units ; the .04 is usually negligible. 

10. Square 43, 47, 52, 63, and 62 by using the difference 

between these numbers and 50 according to the rule. 

11. Using the preceding answers, square 4.3, .47, .052, 630, 

and 6.2. 

Note.—Use common sense rules to determine the position of the 

decimal point. 

12. Using the formulas for (50 ± a)2, (x ± a)2, (100 ± a)2, 

write the following 25 squares. Time yourself on writing 

simply the answers ; the exercise should be completed in 6 

minutes. 
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II 
eo |t>- 
lO

 172 = 242 = II 
c? ICO 
Ico 62s = 

632 = 422 = 392 = 522 = 672 = 

872 = 632 = ‘ 592 = tT2 = 822 = 

II 
ICO 
Ith 10.82 = 212 = 662 = 1.92 = 

982 = l62 = 922 = 552 = 492 = 

13. Using the results of the preceding exercise, compute to 

tour significant figures the following squares, timing yourself. 

57.12 = 17.32 = 24.52 = 33.12 = 62.42 = 

63.22 = 42.52 = 39.72 = 52.92 = 67.12 = 

87.42 = 63.32 = 59.22 = 71.82 = 82.92= 

43.52 = 10.822 = 21.4s = 66.72 = 1.92s= 

98.62 = 16.62 = 92.62 = 55.32= 49.82 = 

14. Employing the formula for (x + a) (x 4- 5) write the 

following 

minutes. 

products; the exercise should be completed in 6 

16 x 19 22 x 24 32 x 38 51x52 66 x 64 

15 x 14 23 x 26 43 x 42 33 x 31 88 x 82 

13 x 18 24 x 29 46 x 44 27 x 24 97 x 93 

17 x 12 28 x 28 54 x 59 24 x 22 57 x 53 

16 x 18 36 x 33 82 x 87 17 x 13 79 x 71 

5. Extraction of roots.—In extraction of square root, the 

method of successive approximation should frequently be 

employed. 

Thus, V179.63 > 13 and < 14. 
V169 + 10.63 = 13 + a, wherein a must he a number such that 

2 a x 13 equals approximately 10.6. A glance shows that .4 x 13 equals 

5.2, which doubled gives 10.4. Hence, (13.4)2 = 169 + 10.4 + .16. 

(13.4)2 = 179.56, or 179.63 - .07. 
(13.4 + a)2 = 179.56 + 2 a x 13.4 + a2. 

a now is less than .01 ; hence, <x2 is less than .0001 ; a is to be a number 

of hundredths or thousandths, evidently, so that 2a x 13.4 is approxi¬ 

mately .07 ; a is roughly .003, slightly too large. 
(13.403)2 = 179.56 + .0804 + .000009 

= 179.640409. 
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mation of Vx2 ± a, wherein a is small as compared with x2. 

The process illustrated follows this rule, but suggests thinking 

multiplication instead of division. Thus in the square root of 

300, as V172-f-11, approximately is to be added to 17; 

however it is easier to think 34 x a = 11, whence a = .3, or 

not quite .33; trying .32 (since the a2 term is to be added) 

gives 17.32 of which the square is 

289 -f-10.88 (or .32 x 34) + (.32)2 = 299.9829. 

Similarly, V3000 = V3025—25 == V552 — 25 = 55 —a, wherein 

a must be a number such that 2 x 55 x a will give approxi¬ 

mately 25 ; a is evidently .2 to one decimal place or .23 to 

two; 54.77 is correct to four significant figures as given. 

6. Approximate roots. — Another method of approximating 

square root is to divide the given number by the first approxi¬ 

mation, then to use the arithmetic mean of the two numbers 

as a second approximation. Thus, 179.63-r-13 = 13.82 ; taking 

13 + 13.82 

2 
as the approximate root gives 13.41 as a second 

approximation. 179.63 -r-13.41 gives 13.3952 and the average 

13.4026 is within .0001 of the correct value. 

Similarly the cube root may be obtained. Thus in 179.63, 

5 is the first approximation. 52 = 25 ; 179.63 -5- 25 = 7.2 

nearly. Taking the average of 5, 5, and 7.2 gives 5.7 as second 

approximation ; (5.7)2= 32.49 ; 179.63 -r- 32.49 = 5.529 ; the 

average of 5.7, 5.7, and 5.529 gives 5.643, which is correct 

within .001. 

PROBLEMS 

1. What is the approximate square root of 1.26 ? 128 ? 

2. Is the square root of 1.35 nearer to 1.16 or to 1.17 ? 

Note. (1.16)2 = 1.32 + .0256 and (1.17)2 = 1.34 + .0289. 
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3. Find the square roots of the following numbers, employ- 

ing the approximation x ± —, as the square root of x2 ± a: 
2 x 

a. 102. 

b. 108. 

c. 125. 

d. 83. 

e. 80. 

f 48. 

g. 51. 

li. 130. 

i. 146. 

j. 173. 

k. 200. 

I 230. 

4. By successive approximations find Vl.26 to four decimal 

places and compare with ordinary process of extraction of 

root. 

Hint. — Use 1.12 as first approximation. 

5. Find the approximation to one decimal place of the 

square roots of 65, 63, 8.30, 8.76, and 27.32. 

Hint. — Regard 8.30 as (3 — x)2, whence x must be roughly .12. 

6. Write the square roots of the following numbers, correct 

to 2 decimal places. Time yourself. 

9.9 35 65 140 200 

16.8 34 68 150 300 

17.2 37.2 78 125 10.4 

25.8 39.4 85 108 20.8 

28 48 90 112 30.6 

7. What is the remainder when x2 — 102 is divided by 

x — 10 ? by x — 10.1 ? 

8. What is the remainder when oft — 1060 is divided by 

x — 10 ? by x — 10.2 ? by x — 10.3 ? 

9. Expand (x + hf ; if h is small as compared with x, how 

do the four quantities involved in (x + h)3 compare in value ? 

What would be an approximate value for the cube root of 

cc3 -f- a* wherein a is small compared with oft ? 

10. Find the approximate cube root of 1060; similarly the 

approximate cube root of 940. 
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7. Percentage of error. — When any measurement of physi¬ 

cal objects is given, the measurement has a certain limit of 

accuracy, determined in part by the instruments and methods 

of measurement and in part by the very nature of the thing 

measured. In measuring the distance to the sun from the 

earth, at some fixed time, the measurement may be given as 

93,000,000 miles ± 1,000,000 miles, or 93,000,000 miles, within 

a million miles ; the thickness of a watch spring may be meas¬ 

ured as .014 inch with a possible error of one thousandth of 

an inch, or .014 ± .001 inch. However, from the point of 

view of the physicist and mathematician, the distance to the 

sun is more accurately given than the thickness of the watch 

spring, for the percentage of error — ratio of possible error to 

measured value—in the case of the sun’s distance is slightly 

more than 1 % of the distance, while in the other case it is 

more than 7 % of the thickness of the spring. 

Every number which represents a measurement involves 

this type of error. Obviously, in any computations with such 

numbers, results are significant only within limits determined 

by the percentage of error. 

8. Significant figures. — The significant figures in any num¬ 

ber representing a measurement are those which are given by 

the measurement, and do not include those initial or terminal 

zeros which are determined by the unit in which the measure¬ 

ment is made. The terminal zeros in 93,000,000 are not sig¬ 

nificant figures, as the unit of measurement here is evidently a 

million miles; as the measurement can be made to one further 

place, the distance may be written, in “ standard form,” 9.3 x 
107 miles or 9.30 x 107 miles in which only significant digits 

appear in the first factor combined with powers of 10. In the 

thickness .014 inch, the initial zero is not a significant figure, as 

it is apparent that the measurements are made in thousandths 

of an inch; in “ standard form,” this is 1.4 x 10“2 inches. 

9. Measurement computations. Products. — If the length of 

a Tectangle is measured with an error of less than 1 % of its 
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true value, and if the breadth is given absolutely, the true 

area will be given with the same percentage of error as the 

length. But if the breadth is also only approximately meas¬ 

ured, the possible error in the area obtained as the product 

will be greater than if only one 

factor involves a possible error. 

The graph represents the right- 

hand end of a rectangle whose 

length and breadth are measured 

as 21.5 cm. and 12.2 cm. respec¬ 

tively, where it is understood 

that the measurement only pre¬ 

tends to give these dimensions 

to within one millimeter, one 

tenth of one centimeter. The 

meaning of these figures then is 

that the length lies between 

21.4 cm. and 21.6 cm., and the 

breadth between 12.1 cm. and 

12.3 cm. The first is an error of 

less than i of 1 % and the sec¬ 

ond of less than 1 %. The un¬ 

certainty in area due to the pos¬ 

sible error in length is indicated 

by the areas at the right end 

with dimensions .1 cm. by 12.1 

cm. or .1 cm. by 12.3 cm.; the 

uncertainty in area due to the 

breadth measurement is of di¬ 

mensions .1 cm. by 21.4 cm. or .1 cm. by 21.6 cm. The area 

uncertainty is then at most .1 cm. by (21.6 + 12.2) cm. or 3.39 

sq. cm. of area. This error may evidently affect the third 

figure in our computation of the area and hence in the product 

the figures beyond the third place are not significant, and give 

no real information concerning the actual area in question. 

Note that the area as the product of 12.2 by 21.5 is 262.30 

r: 
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cm. by 12.2 cm. 
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sq. cm., but the inaccuracy of measurement of the length 

means that there is an uncertainty of area at the right-hand 

end amounting to ± 1.22 sq. cm. (cm2.), and similarly at the 

top an uncertainty of ± 2.16 cm2.; the total uncertainty of 

area amounts to more than 3 cm2., and should be given as 

± 3.38 cm2., or ± 3.4 cm2. Commonly, of course, the measure¬ 

ments 12.2 cm. and 21.5 cm. mean that the area has been 

measured to one half of the last unit given; thus this area 

actually falls between rectangles of dimensions 12.25 by 21.55 

and 12.15 by 21.45; even in this case the area uncertainty 

is greater, by precisely similar reasoning, than ±1.5 cm2., 

and is approximately 1.7 cm2. To give 262.30 as the area 

of this measured rectangle is giving nonsense in the last two 

places ; it should be given as 262 or 262.3 ± 1.7 cm2. 

Let k and k' represent measured quantities given with pos¬ 

sible errors of i % and e °j0 respectively, e and i being assumed 

as smaller than unity (in common practice); the absolute 

values of these measured quantities lie between 

and k 1 — 
100, and between k'( 1 + and k'f 1-^-Y 

looy V 100/ 

The true product lies, then, between kk'f 1 + —~ -e 4- ———) 

V 100 looooy 
f £ I g ^Tg \ 

and 1—Jqq' 10000 a ^ ot^er worc*s> ^ie true product 

may vary by 
i ± e 

from the computed product; le 
is 

100 x 10000 
disregarded, if i and e are less than 1, since the fraction is less 

than 1 % of 1 % of kk’. In the graph the product le 

10000 
Xkk' 

is represented by one of the small corner squares with dimen¬ 

sions .1 cm. by .1 cm. 

Illustrative example. — The product of 987 by 163 wherein each num¬ 

ber is correct to within \ a unit need be computed only to the fourth 

significant figure as the percentage error may be as great as ^ of 1 % + Ts3 

of 1 since \ in 987 parts is approximately or 2V of 1 and \ in 
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163 is greater than TG3WS or T37 of 1 °fo. The error in the product may be 

as great as + T^) Gf 1 % or -fo of 1 °Jo ; but ^ of 1 °Jo of any number 

certainly affects the fourth place and probably affects the third place in 

the number. Hence there is no point whatever in carrying this compu¬ 

tation beyond four places, 

987 987 

163 163 

98700 987 begin with 100 x 987. 

59220 592 take 6 x 98, carrying however the 4 from 6x7. 

2961 29 take 3x9, carrying the 2 of 3 x 8. 

160881 160800 

163 987 + f 987 - i 

987 163 + | 163 - \ 
1467 160881 + i(987 + 163) + \ 160, 881 - 1(987 + 163) + \ 
130 = 161456^ = 160306^ 

160800 ans. 

The product of 987 x 163 is 160,881 ; 9871 x 1631 gives 161,456^ ; 

9861 x 1621 gives 160,306^ ; the actual area, if these represent dimensions 

of a rectangle measured to three significant figures lies between 160,306|- 

and 161,4561. In practice we take the product 987 x 163 to four signifi¬ 

cant figures, which gives the area slightly more accurately than our 

measurements justify. 

10. Abbreviated multiplication of decimals. — The abbreviated 

process of multiplication applies particularly well to decimal 

fractions, but the method can be extended to integers quite as 

well. To find .9873 x .1346 correct to four decimal places. 

.9873 

.1846 
9873 begin with the highest digit of the multiplier ; first x fourth 

decimal place gives fifth decimal place. 

7898 continue with 8x7 (second x third place), carrying the 2 from 

8x3. 
395 take 4x8 (third x second place) carrying 3 from 4x7, or 28, 

which is more than 2 units in the fifth place. 

_59 6 x 9, or 54, + 5 carried from the 6x8. 

18225 It assists in the process to cross out the last upper digit as it is 

used ; thus here 3 would be crossed out first, then 7, then 8, and 

finally 9. 
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If a check is desired, multiply again, reversing the order of the 

factors; thus: 

.1846 

.9873 

16614 begin with 9x6. 

1477 take 8x4, adding 5 from the 8x6 product. 

129 ' take 7x8, adding 3 from the 7x4 product. 

5 take 3x1, adding 2 from the 3x8 product. 

.18225 Read this as .1823 to four places. 

Obviously, if these were integers, you could proceed in the same way, 

writing the final product with four zeros, as 18,230,000. 

A similar abbreviation can be effected in division by drop¬ 

ping each time the last figure of the divisor used, and using 

the remaining part of the original divisor as new divisor. 

Thus, to divide .18225 by .9873 or by .1846 you proceed as 

follows: 
.1846 

. 9m) .18225 

9873 

8352' 

7898 

454 

395 

59 

59 

.9873 

.1846).18225 

16614 

1611 

1477 

134 

129 

5 

5 

Here 9873 is used as the first divisor ; then 987 is used, hut to the partial 

product, 8 x 987, is added the tens’ digit of 8 x 3, the digit just crossed 

out ; then 98 is taken as divisor and to the product is added the tens’ digit 

of 4 x 7 (28 is taken as giving a tens’ digit of 3) ; then 9 is used and 5 

carried over from 6x8. 

11. Percentage effect of errors in divisor. — If a divisor is 

known to be too large or too small by a definite percentage of 

itself, the quotient will be respectively smaller or larger than 

the correct quotient, for small per cents, by approximately the 

same per cent. 
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By division, -— = 1 — % -f- i2 — i3 -f- i* — .... 
1 + i 

--7 = 1 + i + *-2 + ?3 + P + •••• 
1 — i 

For values of i less than .05, i2 is less than .0025, or \ of 

1 % ; i3, i4, and i5 are less than .000125, .00000625, and 

.0000003125, respectively. Hence an error of from 1 % to 

5 % of excess in the divisor means an error of deficiency vary¬ 

ing also from 1 % to 5 %, within \ of 1 %, or from .99 % to 

4.75%, or from .9901% to 4.7625% in the quotient. For 

values of i between | of 1 % and 1 %, an error of deficiency 

in the divisor means the same error of excess in the quotient, 

within yi-Q- of this error. The meaning in physical measure¬ 

ments of these results is that when the divisor is correct only 

to the third significant figure, with a possible error of ^ to 1 

unit in the third place, the quotient will be correct to about 

the same degree of accuracy. 

For three-place numbers the divisor may vary from 100 to 

999. The possible error of i unit, ± -i, means that 100 must 

be replaced by (100 ± .5) or 100(1 ± .005) and 999 by 999 ± .5, 

or approximately 999(1 -f .0005) ; the quotient will vary from 

1 — .005 to 1 — .0005 times the obtained quotient. Hence the 

quotient obtained is valuable at most to the fourth place, and 

frequently not beyond the third place. 

76,430 -- 180 = 424.6. 

Illustration. — Given that 76,430 is divided by 180; wliat variation 
in the quotient would a change of 1 in the divisor 

produce ? 
Suppose that instead of 180, 179 should have been used. What is the 

error in the quotient ? 180 — 1 •— 180(1 — .006), the error in the divisor 
is more than .5 °/o and less than .6 °]o of the divisor; the error in the 

quotient is no more than 2.5 and no less than 2.1, since 1 °Jo of 424.6 is 

4.246 and .6 °Jo and .5 °Jo are respectively 2.5 and 2.1 ; the quotient may 
be taken as 427.1, whereas 426.9 is obtained by actual division. Even an 

error of 1 a unit in the divisor 180 affects the third place in the quotient. 

In obtaining .5 °!o and .6 °fo of 424.6, there is no point in carrying the 
work beyond two places ; the values show that the error is between 2.1 
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and 2.5, and further places add nothing to the accuracy. The fraction 

Hoi or i]l case of \ unit error of Hoi might just as well be used 
as per cents. This gives in the latter case Hit °t 424.0, or + 1.2 as cor¬ 
rection, giving 425.8 as quotient; the actual quotient is 425.794. 

Do not carry divisions and multiplications beyond the degree of accu¬ 

racy warranted by the data. 

Illustrative examples.—You can multiply 3.14159 by 140.8 and 
obtain the result numerically correct to six decimal places. But if the 
140.8 represents the diameter of a circle, measured correctly to the tenth 

of an inch (or of a foot, or of a meter) the product of 140.8 by 3.14159 
gives a valuable result only to the first decimal place; the circumference 
cannot be computed correctly to any further percentage of accuracy 

than that with which the diameter is measured. The area can be com¬ 
puted here with any meaning only to four significant figures ; in fact an 

error of i .05 inch in the diameter makes a possible error of ± 10 
square inches in the area. It is convenient to write the products from 
left to right, dropping work beyond the second decimal place. 

140.8 

422.4 

20.1 

442.5 circumference 

140.8 
3.14159 the .00059 is of no use as it 

422.4 does not figure in the product. 

14.1 

5.6 
_1 

442.2 circumference 

For most practical purposes 3^ is sufficiently accurate, as in finding 
this area, nr2 : 

70.4 
70.4 

4928 
28 

4956 only 4 places to be retained. 

4956 

__§i 
14868 

708 
15576 area. 

4956 
3.14159 

14868 
496 

198 

15567 area. 
Area as found to correspond to data, 15570. 
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PROBLEMS 

1. The distance of the earth from the sun varies between 

91.4 x 106 miles and 94.4 x 106 miles. The length of the 

earth’s orbit lies between circles having these lengths as radii. 

Between what values does this orbit lie ? What is the ap¬ 

proximate orbital speed of the earth in miles per hour ? 

2. The mean distance of the earth from the sun is 

92.9 x 106 miles. Compute the circumference and the mean 

speed and compare by percentages with the preceding. 

3. Compute the speed of a point on the earth due to the 

rotation, taking that at latitude 45° the radius of the circle of 

latitude is 3050 miles. Compare the rotational speed with the 

revolutional speed. 

4. What effect on the computed velocity would it have to 

take 365.25 instead of 365 ? How would you correct your 

division for 365.25 as divisor after having obtained the quo¬ 

tient, dividing by 365 ? what change would using 365.26 in¬ 

stead of 365.25 effect in the computed velocity? 

5. The distance of the moon from the earth varies between 

221,000 and 260,000 miles, mean 238,000 ; discuss the length 

of the path of the moon and the velocity of the moon which 

has a periodic time of 27.32 days. 

6. A man whose salary is $ 3000 pays $ 480 for rent. 

What per cent is this of his salary ? Suppose that he earns 

$275 in addition to his salary, what per cent is the rent paid 

of his income ? Compute only to tenths of one per cent. 

7. If a man with an income $ 3275 pays $ 1100 per annum 

for food, $ 630 for clothes, $ 240 for life insurance, $ 200 for 

“ higher life,” and saves the balance, compute his budget by 

per cents. 

8. Given that a pendulum of length l cm. makes one beat, 

one oscillation, in t seconds, connected by the relation, 

find the length l to two decimal places when t = 1. 
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9. What effect on l does a change from 980 to 981 pro¬ 
duce ? What decimal place in l would be affected ? 

10. What error would the use of 3^- instead of 3.14159 
introduce ? 

11. The number n of vibrations of a pendulum of length 
99.39 cm. is 86400, when g = 980.96; g is the acceleration 
due to gravity, and the formula for the number of vibra¬ 
tions is given by the formula, 

86400 q »=—\y 
or for the seconds’ pendulum, when l = 99.39, g = 980.96, it 
is n — 86,400. Suppose that at the top of a mountain {g di¬ 
minishes) this pendulum of length 99.39 loses 86 beats per 
day, what is the approximate percentage of loss in n ? The 
percentage of loss in g is approximately double this since 

VI — i = 1-. What is the approximate loss in g ? 
2 8 

Take 86 as j1^ of 1 % of 86,400. 

12. Given g = 980, l = 50, compute n in the formula of 
problem 11. What maximum effect on n would a change 
from l = 50 to / = 50.5 cm. produce ? 

13. Compute the weight of a table top, hardwood, dimen¬ 
sions correct to .05 foot, top 48.1 x 36.4 x 2.1 inches. Weight 
of wood 48 pounds per cubic foot. 

14. If a table top similar to the above weighs 97 pounds, 
compute the weight per cubic foot of the wood. 

15. If water weighs 62.4 pounds per cubic foot, compute 
the specific gravity of each of the preceding woods. 

g _ wt. of cubic foot of wood 

- wt. of cubic foot of water 

16. The path of the earth is approximately a circle of radius 
92.9 x 106 miles, of which the center is approximately 1-J mil¬ 
lion miles from the sun. Compute this circumference and 
compare with the results in problems 1 and 2. 



APPLICATIONS OF ALGEBRA TO ARITHMETIC 37 

17. Factor the following, using wherever possible the factor 

theorem to determine factors : 

a. cc3 — 7 x1 4-10 x. d. x4 — 8 x1 — 20. 

b. 3 y1 — 5 y + 2. e. v& — 7 v3 + 8. 

c. 3 y2 — 12. /. xy4 + #h/. 

18. Give the approximate square root of the following: 

a. 36.6. /. 98. 

b. 35.4. g. 1.04. 

c. 104. h. 1.12. 

d. 96. i. 4.08. 

e. 126. j. 9.12. 

19. Complete the following : 

(x-2 y)( 

(*-2 y)( 
(x-2y)( 

(x-2y)( 

(x-2y)( 

(x-2 y)( 

) = x2 — 4 ?/2. 

) = — 4 #?/ + 4 ?/2. 

) = x3 — 8 ?/3. 

) = x2 - 6 x?/ + 8 y2. 

) = a;2 + 10 xy — 24 ?/2. 

) = 3 a;2 — 10 a;?/ + 8 ?/2. 



CHAPTER III 

EXPONENTS AND LOGARITHMS 

1. Exponent laws. — For convenience the product of a by 
itself, a x a, is represented by a2, a x a x a by a3, and a • a 

• a • a to m factors by am. In this notation m is called the ex¬ 

ponent and a the base. The following laws evidently hold: 

I. am • an = am+n. 

Qm 
II. — = am~n, when m > n. 

an 

III. (am)n = anun. 

IV. (a • b)m = am • brn. 

In the definition as given, m represents the number of 

factors and is assumed to be a positive integer. However, it 

is found possible to define am for all real values (fractional, 

negative, zero, irrational) of m so as to have the resulting 

numbers combine according to the four laws given above. 

Thus, a0 • am = a0+m = am, if Law I is to continue to hold ; 

hence, a0 must be defined to equal 1, since multiplying a 

number, am, it gives that number. To be justified in using a 

zero exponent with this meaning the other exponent laws must 

be shown to hold when either m or n is zero, but in II only 

n could be zero at this point. 

For a negative integer, — n, if Law I is to hold, a~n must be 

defined as such a number that an • ccn = a~n+n = a0 = 1; hence 

we define a~n as the reciprocal of an, arn = —• All the laws 
an 

I to IV can be shown to hold under this extension of the 

meaning of an. 
38 
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p 

Similarly, aq, if Law III is to hold, must represent a num- 
p 

ber which raised to the gth power equals av; aq is thus 

defined as the gth root of the pth power of a. Taking this defi- 
V 

nition of aq, Laws I to IV can be shown to hold with this 

extension in possible values of m and n; p and q are assumed 

to be integers. 
p mp 

For fractional exponents a fifth law is introduced, aq — amq. 

For irrational values of n, an is defined by a limiting pro¬ 

cess. Thus, a 2 is defined as the limit of the series a1-4, a141, 

a1414 •••, wherein the successive rational exponents define the 

square root of 2. 

The operations of elementary algebra with radicals are 

made subject to the exponent laws. 

Thus, 2V3 = 2 • 3* = (2:)* • 3* = (22 • 3)* = 12* = V12, 

by successive application of V, III, and IY. 

The operation of raising to a power indicated by am, with 

m integral, is called involution. The inverse operation of 

finding x when xm is given equal to a is called evolution. 

PROBLEMS 

1. Write as ordinary numbers, without exponents : 

102, 10-2, 100*, 100*, 100'*, 1000*, 
2. Find the approximate numerical value : 

10*, 10t, 10t, 10"*, 10"*, 5*, 2*, 5*, 5“3. 

3. Write the following expressions in the form, 10n: 

VlO, vGO, 
Vio 

(- 1 :Y, 1, 107 105 

10o. 

Wio/ 
4. Which of the exponent laws are applied in simplifying 

the following expressions : 

V200, -v/2000, 
V3 
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5. What exponent must be applied to 10, as a base, to give 

1000 ? to give .001 ? to give 1 ? 

6. Simplify the following expressions : 

(103)5, (103)(105) ; 1^, 23 • 53; tylP. 

2. Logarithms. — A logarithm is an exponent. 

The relation x = am may be written m = logax. 

m is the exponent which applied to a gives x; 

7n is the logarithm of x to the base a. 

3. Fundamental laws of logarithms. 

a. Logarithm of a product. 

If x = am and y = an, 

x ■ y = am • an = am+n. 

loga (® • V) = m + n = logax + logay. 

In the language of logarithms and translated into ordinary 

language this theorem is as follows: 

I. loga(*-z/)=logrt* + logtty; 

in words, the logarithm of a product is the sum of the logarithms 

of the factors. 

b. Logarithm of a quotient. 

x am x 
- = — = loga - = m — n = loga x - loga y. 
y an y 

II. loga-= logax- loga#; 
y 

in words, the logarithm of a quotient is the logarithm of the 

dividend minus the logarithm of the divisor. 

c. Logarithm of a power. 

If x = am, xn = (am)n = amn ; loga xn = m • n = n loga x. 

III. loga x'1 = n loga ; 

the logarithm of a poiver of a number is the index of the power 

times the logarithm of the number. 
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Since our exponent laws hold for all values of m and n, these 

theorems hold for all values of m and n. 

x and y are assumed to be positive numbers and for compu¬ 

tation purposes 10 is commonly taken as the base. 

We assume that as the logarithm increases the number 

increases. This can be readily proved from the fact that 

10w • 10n = 10,B+n ; no matter how small the n is, as a positive 

quantity, 10n is greater than 1. For w any positive fraction, 

10n represents the gth root of the pth power of 10, wherein 
9 
p and q are integers. Now 10p will be an integer 10, or greater 

than 10, and the gth root of this integer will be a number 

greater than 1 as it will be a number which raised to the gth 

power equals 10, 100, 1000, or some greater number. It could 

not be less than 1, as every positive integral power of a number 

less than 1 is also less than 1. 

4. Logarithms, characteristic and mantissa. — Any two-place 

number lies between 10 and 100; the logarithm will lie be¬ 

tween 1 and 2. Any four-place number lies between 1000 

and 10,000; the logarithm will lie between 3 and 4, since as 

the number increases the logarithm increases. The fraction 

.07 is greater than .01 and less than .1; the logarithm is then 

greater than — 2 and less than — 1. 

The logarithm of any number between 1 and 10 is a fraction, 

expressed commonly as a decimal between 0 and 1. 

The logarithm of any given number which is expressed in 

decimal notation can be expressed as an integer, positive or 

negative, called the characteristic, plus the positive decimal 

fraction, the mantissa, which is the logarithm of that number 

between 1 and 10, having the same succession of digits as the 

given number. Initial zeros are not included in the succession. 

Let k represent any number between 1 and 10, written in 

our ordinary decimal notation ; then 10n-&, n any positive or 

negative integer, can represent any number written in decimal 

notation. 
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Exponential 

Form 

Column of 

Numbers 

Column of 

Numbers : 
Column of 

Log arithms 

A 

10-12 — .000000000001 log .000000000001 = - 12 

10-5 — .00001 log .00001 = - 5 

10-4 — .0001 log .0001 = - 4 

10-3 = .001 log .001 = - 3 

10-2 = .01 log .01 = -2 

io-i — .1 
* 

log .1 = - 1 

100 = 1 log 1 = 0 

101 = 10 log 10 = 1 

102 — 100 log 100 = 2 

103 1000 log 1000 = 3 

104 = 10000 log 10000 = 4 

105 — 100000 log 100000 = 5 

1012 — 1000000000000 log 1000000000000 = 12 

These positive numbers, middle columns, are arranged 

vertically in order of magnitude; the exponents (left) or 

logarithms (right) also are arranged vertically in order, in¬ 

creasing from — 12 (or from — oo indicated by dots above) to 

— 5, to — 4, to — 3, ••• to 0, to 1, ••• to 12, ••• to oo. As the num¬ 

ber increases the logarithm increases. Placing any number, 

not an integral power of 10, in its proper place as to magnitude 

on such a diagram, the logarithm has for integral part the 

logarithm of the preceding number in the table. Thus, 75.64 

falls between 10 and 100 and its logarithm will be l4 ; .07564 

falls between .01 and .1 and its logarithm will be — 2+, mean¬ 

ing — 2 plus some positive fraction. 
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log 10" k — log 10" + log k = n log 10 -f log k = n-f log k. 

n is the characteristic ; log k is the mantissa. 

Thus, log 3.16229 = .50000, since 3.16229 is the approximate 

square root of 10. 

log 31622.9 = log (10)4(3.16229) = log 104 + log 3.16229 

= 4 + log 3.16229 

= 4.50000. 

log .000316229 = log (10)~4(3.16229) = log (10)~4 + log 3.16229 

= - 4 + .50000 

= 4.50000, only the 4 is negative 

= 6.50000 — 10, since — 4 equals 6 — 10 

= 16.5000 - 20 

= 26.50000 - 30, 

The minus sign over the 4 indicates that only the charac¬ 

teristic is negative; the alternate forms for writing a negative 

characteristic are frequently found convenient to use, particu¬ 

larly in extracting roots and with the trigonometric functions. 

Rule. — The logarithm of any number greater than unity has 

as characteristic a jmsitive integer (0 included) which is 1 less 

than the number of digits to the lejt of the decimal point. 

The logarithm of any decimal fraction has as characteristic 

the negative of a positive integer (0 not included) which is 1 

greater than the number of zeros between the decimal point and 

the first significant digit (i.e. digit other than 0) to the right of 

the decimal point. 

5. Computation of logarithms. — Logarithms are actually cal¬ 

culated by a series derived from formulas obtained in higher 

mathematics. However, a simple although laborious method 

of computing logarithms approximately may make the signifi¬ 

cance of the logarithm somewhat clearer. 
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210 = 1024, 

Evidently, 106 < 220 < 107, since 1,048,576 is greater than 

1,000,000 and less than 10,000,000. 

Extracting the twentieth root, 

106 < 220 < 107 

10^ < 2 < 10 

10-30 < 2 < 1035. 

gives 

or 

Hence, 2 is greater than 10 with an exponent .30, and less 

than 10 with an exponent .35. 

240 = (1,048,576)2 < 1,100,000,000,000 

> 1,000,000,000,000; 
280 < 1.21 x 1024 (240 by 240) and greater than 1 x 1024. 

Whence 2100 < 1.33 x 1030 and greater than 1 x 1030, whence 

1030 < 2100 < 1031, whence 

10-30 < 2 < 10", or log10 2 = .30+. 

Similarly, 320 is 3,486,784,401, or greater than 109 and less 

than 1010; hence, log 3 lies between .45 and .50, the computa¬ 

tion of 320 is easily made by using 34 = 81 and 320 = (81)5, mul¬ 

tiplying each time by 81 instead of by 3; the partial product 

by the 1 does not need to be rewritten. 

6. Tables of logarithms. — The exponents or logarithms to 

the base 10 of all numbers up to 100,000 have been computed 

by methods of higher mathematics; these logarithms are 

arranged in tabular form in the natural order of the corre¬ 

sponding numbers, so as to be convenient for computation 

purposes. Our tables give the mantissas of the logarithms of 

all numbers between 100 and 999; by the insertion of the 

proper characteristic the logarithms of all numbers having 

one, two, or three significant figures, i.e. disregarding initial 

and terminal zeros, are given by our tables. 
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EXERCISES ON TABLE OF LOGARITHMS, PP. 498-499 

1. Find the logarithms of the following numbers, writing 

first the proper characteristic, following the rules given on 

page 45, before employing ■ the table. 

a. log 234 e. log 6.06 = i. log .00032 = 

b. log 46900 = f log 1000 = ./• log .999 = 

c. log 2.91 — 

9- log .543 k. log .001 = 

d. log 8450 = h. log .00902 = 1 log 3 = 

2. Find numbers corresponding to the following logarithms 

a. log = 0.0414 9- log 9.7396 - 10 

b. log = 2.3096 h. log = 6.9996 - 10 

c. log = 4.8500 i. log 8.9031 - 10 

d. log = 6.6425 j- log — 5.8904 - 10 

e. log = : 3.0000 k. log — 9.0086 - 10 

/• log = 1.3010 1 log — 7.3010 - 10 

3. Given log 2 = .3010, write the equivalent statement in 

exponential form. 

4. Given 10699 = 5, write the equivalent statement in terms 

of logarithms. 

5. Given 10-699 = 5, and 10x = 2, multiply and find the value 
of x. 

7. Logarithms. Interpolation. — The process employed in 

extending the use of a table of logarithms of numbers with 

three significant figures, so as to give logarithms of numbers 

having four significant figures, is called interpolation. The 

method applies to increase in a similar manner the scope of 

any table of logarithms so as to give the logarithms of num¬ 

bers having at least one more significant figure beyond those 

of the numbers in the tables. 

The numerical process employed in interpolation may be 

illustrated graphically. 
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Given a trapezoid with bases a and b, and altitude h, we wish to divide 

the altitude into 10 equal parts and to find the lengths of the dividing 

Graphical Interpolation between 75 and 96 (2.3075 
and 2.3096), nine values interpolated 

lines parallel to the bases. 
Evidently each of these 
lines differs from the pre¬ 

ceding line by one-tentli 
of the difference, b — a 

= d, between the bases. 
The upper line b may 

represent the logarithm 
of some number, e.g. of 
204 ; the lower line may 
represent the logarithm 
of a number smaller by 
one unit, e.g. of 203; 

d = b — a represents 
then the difference of the 
logarithms. We assume 
then that the nine inter¬ 
vening lines represent 
approximately the loga¬ 
rithms of 203.1, 203.2, 
. . . up to 203.9. 

N 0 1 2 3 4 5 6 7 8 9 
20 3010 3032 3054 3075 3096 3118 3139 3160 1 3181 3201 
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 

This section of a logarithm table gives the logarithms of all 

numbers with three significant figures, having the succession 

of digits beginning 20 or 21. Note that the differences begin 

at 22 in the first line and drop to 19 in the second. 

These logarithms lie between 2.3075 and 
2.3096 ; they increase steadily ; we assume that 
they increase by uniform amounts, which we see 
in the table is roughly true for numbers from 200 

to 219. The uniform increase of these logarithms 

of 203.1 to 203.9 is ^ of the difference between 
the logarithms of 203 and 204, i.e. 2.1 of the 

units in the last place of our logarithms. It 

log 203 = 2.3075 

log 203.1 = ] 

log 203.2= ! 

to — 

log 203.9 = j 

log 204 = 2.3096 
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would not be correct to increase the number of places in our logarithms 

as our process is only an approximation not correct to further places even 
as our logarithms are only approximations to four decimal places. The 

logarithm of two is to five places .30103, to ten places .3010299957, to 
twenty places .30102999566398119521. 

log 203.0 = 2.3075 

203.1 = 2.3077 

203.2 = 2.3079 

203.3 = 2.3081 

203.4 = 2.3083 

203.5 = 2.3086 

203.6 = 2.3088 

203.7 = 2.3090 

203.8 = 2.3092 

203.9 = 2.3094 

204.0 = 2.3096 

log .203 = 1.3075 

.2031 = 1.3077 

.2032 = 1.3079 

.2033 = 1.3081 

.2034 = 1.3083 

.2035 = 1.3086 

.2036 = 1.3088 

.2037 = 1.3090 

.2038 = 1.3092 

.2039 = 1.3094 

.2040 = 1.3096 

A four-place table of numbers, with logarithms to live 

places, gives simply: 

0 1 2 3 4 5 6 7 8 9 

203 
204 

30750 

30963 
30771 
30984 

30792 

31006 

30814 

31027 
30835 

31048 

30856 

31069 
30878 
31091 

30899 

31112 

30920 

31133 

30942 
31154 

The appropriate characteristic must be inserted by the com¬ 

puter. A careful examination will show that our interpolation 

gives an incorrect four-place result for 203.4, with an error of 

half a unit. This type of error is inevitable, using four-place 

tables. In general, such errors tend to equalize each other; 

where absolute accuracy to four places is necessary, five- or 

even six-place tables must be used. Even with four-place tables 

it is evident that with a difference, called the tabular difference, 

of 21 to 24 the normal difference will be 2 units and 1 to 4 

extra units will have to be distributed in the addition. 

In the illustration above it may be noted that log 203.4 as 

2.30835 does not inform us, strictly, as to whether log 203.4 to 

four places is 2.3083 or 2.3084; the latter is the case here 
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since if log 203.4 is found to further places than five the fifth 

decimal place is actually a 5. Whenever the five-place loga¬ 

rithm is a terminal 5 which has been obtained by increasing 

a 4 to 5 the four-place logarithm would not be increased by 

one unit; thus, log 2007 to 5 places is 3.30255, to 6 places 

log 2007 is 3.302547, and hence to four places log 2007 is 

3.3025. In some tables of logarithms a terminal 5 due to an 

increase, as in log 2007 = 3.30255, is marked with a super¬ 

imposed negative sign or other mark. 

In physical problems, measurement to three places permits 

of computation to three places only; the fourth place by inter¬ 

polation assures accuracy, in general, of the third place. 

The reverse process is to find the number, given the loga¬ 

rithm ; thus, to find the number whose logarithm is 2.3088, we 

see that 
Diff. 21 

the table gives log 203 = 2.3075 1 2.1 
and log 204 = 2.3096 2 4.2 

The tabular difference is 21 3 6.3 
The given logarithm is 2.3088 4 8.4 
The difference between it and the 5 10.5 

smaller logarithm nearest to it is 13 6 12.6 

7 14.7 
8 16.8 
9 18.9 

The table of tenths of the tabular difference, which is fre¬ 

quently given in tables of logarithms, shows that 13 is nearest 

to .6 x 21. The number is 203.6. Had the given logarithm 

been 2.3087, we would find as the number again 203.6, since 

the actual difference is 12, which also is nearer to .6 of 21 than 

to .5 of 21. Note that in the table, and in the difference 

table, the logarithm or part of the logarithm lies always to the 

right; the number, or part of the number, lies to the left or 

above. 

8. Historical note.—Fundamentally the notion of logarithms 

is intimately connected, as we have shown, with the notion of 
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exponents. The one-to-one correspondence between exponents 

and a series of successive powers of a given number was noted 

Exponents - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 10 

Numbers i 
1 6 

l 
j 

i 
4 

1 
J 1 2 4 8 16 32 64 128 256 512 1024 

Figure from Stifel’s Arithmetica Integra, 1544 

many years before logarithms were developed, in many arith¬ 

metical textbooks of the fifteenth and sixteenth centuries. 

A German mathematician, Stifel (1486-1567), published a 

work entitled Arithmetica Integra, 1544, in which these “ ex- 

ponentes,” as he termed them, were extended to the left. 

Stifel spoke of the great possible use of such series for compu¬ 

tation in which addition would replace multiplication, and sub¬ 

traction replace division; but he developed the idea no further. 

In 1614 John Napier, Baron of Merchiston, a Scotchman, 

revolutionized computation processes by the composition of 

logarithmic tables, based on the idea of the comparison of two 

series essentially of the kind indicated above. The adoption 

of 10 as the base of a logarithmic series was due to a friend of 

Napier, Henry Briggs, who published in 1617 the decimal 

logarithms of the first thousand numbers. 

In recent years the widespread adoption of computing 

machines which carry multiplications and divisions to fifteen 

and twenty places is somewhat replacing logarithms in the 

offices of great insurance companies and, to some extent, in 

observatories. 

Logarithms. Illustrative Problems. 

place logarithms: 
9 AO 1QV 

a. 203 x 137; b. —c. ‘ 
137 2.03 

I. Eind by four- 

d. (203)3. 

a. log 203 = 2.3075 
log 137 = 2.1367 

log product = 4.4442 
product = 27810 

By interpolation since 2, the difference 

found, is in tenths nearest to .1 of 16, the tab¬ 

ular difference. 

I 
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b. log 2.03 = 0.3075 log 2.03 = 10.3075 - 10 
log 137 = 2.1367_ log 137 = 2.1367 

log quotient = 2.1708 log quotient = 8.1708 — 10 
quotient = .01482 

The 2 is obtained by interpolation since 

5, the difference found, is nearest to .2 of 
29, the tabular difference. 

c. log 137 = 2.1367 <1. log 203 = 2.3075 
log 2.03 = .3075 

log quotient = 1.8292 log (203)3 = 6.9225 
3 

Quotient is 67.48, since the differ- (203)3 = 8,366,000 

ence 5 is in tenths nearest to .8 of 6, 
the tabular difference. 

If these numbers represent physical constants, obtained by 

measurement, our computations would be slightly more ac¬ 

curate than the measurements warrant. Even in prices, in 

general, these results would be sufficiently accurate for pur¬ 

poses of business. Thus 137 pounds of cheese at 20.3 ^ per pound 

would be found to be worth $ 27.81; 137 tons of mine-run 

coal at $ 2.03 per ton is worth $ 278.10, with a possible error 

of 10^; 1370 tons of coal at $2.03 would be $2781 with a 

possible error of 50^, which is negligible in business of this 

magnitude. 

II. Find by logarithms, four-place, to four places : 

a. log 203.8 = 2.3092 
+ log 137.5 = 2,1383 
log product = 4.4470 

b. log 20.38 = 1.3092 
- log 13750 = 4.1383 

log quotient = 3.1709 
product = 27.790 or 7.1709 - 10 

quotient = .001482 

By interpolation the given differ¬ 

ence of 6(.1709— .1703) is nearest 
in tenths to .2 of the tabular dif- 

c. log 203.8 = 2.3092 

3 
log (203.8)3 = 6.9276 

(203.8)3 = 8,464,000 
ference, 29(.1732 - .1703). 
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d. log (.02038)* = | log .02038 

log .02038 = 2.3092 8.3092 — 10 
or 

5 6.9276 24.9276 - 30 

The division by 5 causes trouble because of the negative characteristic. 

To avoid the difficulty, write 6.9276 as 44.8276 — 50. Dividing this by 5 

gives 8.9855 — 10 or 2.9855. 

(.02038)* = .09672. 

EXERCISES 

1. Using a watch with a second hand, time yourself on 

looking up the logarithms of the following 20 numbers ; as a 

preliminary exercise look up the logarithms of these numbers 

without using the fourth significant figures, not requiring 

interpolating. 

log 314.6 = log 14.32 - 
log 813.2 = log 1876000 = 
log 5.462 = log 81930 = 

log .003468 = log .08764 = 

log .3085 = log 3.250 = 

log 769.9 = log .7263 = 

log 67870 = log 200.4 = 

log 368.60 = log 399.8 = 

log 53.85 = log 210.4 = 

log 19.26 = log .03899 = 

Twenty minutes should be the maximum time on this list; practice 

until you can do all 20 with interpolations within 15 minutes or even 10 

minutes ; all 20 characteristics should be written before you begin to use 

the tables. 

2. Find by four-place tables the logarithms of the following 

numbers, interpolating: 326, .08342, 10,050, .008766, 5499, 

3.482 x 106, 37.04, 290.40, .9647, 38.55, .06948, 3001, 2.777 x 

10"6, 784.4, 6,934,000, 5.341, 70.98, .1237, 8462, 3740. 

Time yourself ; the 20 should not take more than 12 minutes. 
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3. Find the numbers corresponding to the following loga¬ 

rithms — no interpolation is necessary. Take the time of 

looking up the numbers and writing these in a prepared form 

as answers; the time should not exceed 8 minutes. 

log = 3.8414 log = 1.0492 

log = 0.9996 log = 5.9063 

log = 2.6866 log = 2.9557 

log = 1.7482 log = 3.1732 

log = 6.3010 log = 6.2672 

log = 8.0086 - 10 log = 5.7832 

log = 4.2856 log = 1.1761 

log = 1.8837 log = 9.5024 - 10 

log = 9.3201 - 10 log = 2.4786 

log = 2.7789 log = 3.1673 

The time includes only looking up the logarithm and writing it down; 

it should not include copying the problem. A piece of blank paper may 

be placed alongside of each column and the logarithms written upon the 

paper; by folding the paper lengthwise the two columns may be placed 

upon the same sheet. Practice with timing. 

4. Find the numbers corresponding to the following loga¬ 

rithms, interpolating wherever necessary; time yourself, in 

looking up numbers, first writing the given logs in column 

form, and not counting that time. The 20 should not take 

more than 15 minutes ; 10 minutes is slightly better than 

average time. 

log = 3.5861 log = 8.5418 - 10 

log = 5.6427 log = 2.0923 

log = 1.4436 log = 2.9844 

log = 4.7320 log = 3.3080 

log = 6.9428 log = 1.218 

log = 2.4415 log = 7.8419 - 10 

log = 6.4893 - 10 log = 0.4630 

log = 5.8662 log = 1.7848 

log = 1.5729 log = 0.9618 

log = 2.9990 log = 1.7276 
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5. By chaining, the sides of a rectangular field are found to 

measure 413.2 feet and 618.4 feet. Find the area in square feet 

and in acres. What effect upon the computed area does an 

error .1 of a foot in measurement make ? Consider this 

fact in making the computation, not assuming that these 

lengths are more accurately given than to .1 of one foot. 

6. Use Hero’s formula, A = Vs(s — a) (s — b)(s — c), 

wherein a, b, c are the sides and (a + b + c) _ to compute 
2 

the area of a triangle whose sides are 413.2 feet, 618.4 feet, 

and 753.2 feet. Discuss errors as before. Do all the prelimi¬ 

nary computation of s, s — a, s — b, s — c before looking up 

any logarithms. 

7. Time yourself on finding the 20 numbers corresponding 

to the following logarithms: 

2.1120 1.2480 1.9462 2.7455 4.3925 

1.6150 5.4151 0.5132 0.0420 6.4105 

8.9312 -10 3.5674 3.3808 1.2222 2.9213 

4.8990 1.1174 7.8973 - 10 1.3660 2.0621 

8. Perform the following computations, using logarithms: 

a. 54.04 x 376.2 ; b- ||g; o. (54.04)2(3.762); 

d. a/54.04: e. V54.04 x 376.2. 

9. Find the volume in gallons of a cylindrical can, 18 inches 

in diameter and 30 inches high. (1 gallon = 231 cubic inches.) 

10. Show that the capacity of a cylindrical can in gallons 

can be written as ^ of 1 °]o of d2h + 2 °Jo of the ^ of 1 % of d2h, 

or as 1.02 x 0.00^ X d2h, given d and h in inches. 

11. Find the volume in cubic feet of a silo 16 feet in diame¬ 

ter and 32 feet high. Compute for 15.9, 15.95, 16.05, and 16.1 

feet in diameter. If the measurements are correctly given 

within .1 of one foot, how accurately can the volume be given, 

with a 16-foot diameter ? 
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12. Find approximate value of 250, 2 50, 2'0, and 2 ** by 

logarithms. 

13. Extract the cube roots of 2, 3, 4, 5, 6, 7, and 8 by 

logarithms. Multiply the value of '2* by the value of 3$, and 

compare with your value of 6i. 

14. Given a pendulum of length l centimeters and time of 

oscillation t seconds, you have the following formula connect¬ 

ing l, and t: 
t = 

Given t = 1, compute l; given l = 60, compute t; given that 

t = 1 but that instead of 980 you have 981, compute l. 

15-30. Solve the problems at the end of Chapter II using 

logarithms. 

9. Compound interest. — When interest is added to the prin¬ 

cipal at the end of stated intervals forming a new principal 

which is to continue to draw interest, the total increase in 

the original principal which accumulates by this process con¬ 

tinued for two or more intervals is called the compound inter¬ 

est on the original principal. 

Let P represent the principal, i the interest rate per inter¬ 

val, and n the number of intervals, and S the amount at the 

end of n intervals. Given interest compounded at rate i per 

annum for n years. 

At the end of 1 year you have P + iP = P(1 + i). 

At the end of 2 years you have 

P(1 + i) + iP( 1 + i) = P( 1 + i)\ 

At the end of 3 years you have 

P(1 + if + iP(l + i) 2 = P(1 + i) 3. 

JI-J—• 
V980 

At the end of n years you have S = P( 1 + i)\ 
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Or you may say that since the interest for 1 year in¬ 

creases the principal P to (1 + i)P, then in 1 further year this 

new principal P( 1 + i) will be increased in the same ratio, 

giving P(1 -f i) X (1 + €) or P(l + i)'2, and for each further year 

the factor (i + o is introduced. Hence the amount at the end 

of n years is P( 1 + i)n. 

If interest is compounded at the end of every three months, 

or every six months, you substitute for i, - or and for 
4 2’ 

n, 

4 n or 2 n, since the number of intervals of three months in n 

years is 4 n and of six months is 2 n. 

The formula S = P 1 H- — ) is used for an interest rate 
\ m J 

given as j per annum, but compounded m times per annum, 

at rate for each interval, 
m 

Problems in compound interest lend themselves to solution 

by logarithms. 

Given, S = P(1 +i)\ 

log S = log P + log (1 + i)n. 

log S = log P+w log (1 -f i). 

log P = log S — n log (1 -f i). 

log S — log P 
n = 

log (1 + i) 

log(l + Q = log<S-logP- 

Note that it is better not to use these as formulas, memoriz¬ 

ing them, but rather to go back to the fundamental relation, 

S = P(1 + i)n. Note also that the formula holds for other 

than integral values of n; thus at 6 % per annum the interest 

on the amount P for six months or eight months is defined as 

P(1 + .06)^ — P or P(1 -f- .06)#— p? respectively. Hence for 

years the amount would be P(l + i)n(l-H')^ =P(l + *)”+^- 
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PROBLEMS 

1. Find the amount of $ 1000 at interest 4 °]0 annually, 

compounded for 20 years. Find the amount when compounded 

semiannually at a nominal rate of 4 % per annum, i.e. 2 °/0 

semi-annually. 

2. In how many years will money double itself at 4 %, 

5 %, 6 °]o interest, compounded annually ? 

3. Given that at the end of 20 years $ 1000 amounts to 

$ 1480, what is its approximate rate of interest ? 

4. Given that at 5 % interest, compounded annually, $ 1000 

amounts to $ 1480, what is the approximate number of years ? 

5. Find the compound amount of $ 1400 at 5 % interest, 

compounded semi-annually, for 10 years, 11 years, 12 years, 

up to 20 years. 

6. If $ 100 is left to accumulate at 3 interest, com¬ 

pounded annually, what will it amount to in 100 years ? Solve 

by logarithms. What amount put at 3 % interest will amount 

in 100 years to $ 1,000,000 ? What is the present equivalent 

of $ 1000 to be paid at the end of 100 years, money worth 3 %, 

compounded annually ? 

7. Solve problem 6 for 4%, 5%, and 6% interest, com¬ 

pounded annually. For 6 % per year, compounded semi¬ 

annually, for 50 years. 

8. Benjamin Franklin, who died in 1790, left 1000 pounds 

to “ the town of Boston ” and the same to the city of Phila¬ 

delphia. His will directed that this amount should be loaned 

at interest to young artisans, and thus accumulated for 100 

years until the principal should have increased to 130,000 

pounds. He directed further that at that time the major por¬ 

tion of this amount should be expended for some public im¬ 

provement and the residue left to accumulate, similarly, for 

another hundred years. What rate of interest did Franklin 

assume that his money would earn ? In Boston the amount, 
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$ 5000 approximately, accumulated to about $ 400,000. Find 

the average rate of interest earned annually. Assuming that 

$ 5000 was kept aside in 1891, as directed, what will this 

amount to in 1991, compounded at 4 % annually ? 

9. Find the amount at the end of 200 years of $ 5000, 

interest at 4 %, 5 %, and 6 %, compounded annually. 

10. If a business doubles its capital, out of earnings, in 

12 years, what rate of interest on capital invested does this 

represent per year ? If in 20 years the capital is doubled, find 

the rate of interest earned. 

11. The United States has increased in population from 7.2 

million in 1810 to 101.1 million in 1910; tind the approximate 

rate of increase per year, and for each ten-year period. Com¬ 

pare with the figures on page 65. 

12. The city of New York increased in population from 

120,000 to 4,769,000 in the interval from 1810 to 1910. Com¬ 

pute the average annual rate of increase, using the formula, 

120,000(1 + i)100 = 4,769,000. Compute the average ten-year 

increase and compare with the actual statistics on page 66. 



CHAPTER IV 

GRAPHICAL REPRESENTATION OF FUNCTIONS 

1. Functional relationships. Expressions of the form 3 x + 5, 

ax + b are called linear or first degree functions of the variable 

x; in elementary algebra such expressions have been combined 

according to the fundamental operations and subject to the 

laws given in a preceding chapter. Further, some atten¬ 

tion is given in elementary algebra to expressions of the 

form ax2 + bx + c, the general quadratic function of x, and 

expressions involving higher powers of x. The expression 

axn + bxn~l + ••• is called an algebraic function of x of the 

nth degree when n is a positive integer and the coefficients 

a, b, ••• are constants. This represents of course a number for 

any value of x. 

F(;x), G(x)j A(a?), ••• are methods of representing 

functional relationships ; F(x), (read F of x or F function of a;), 

means that this expression assumes various values as x varies, 

these values being determined by some law. In the equation, 

y == 3 x + 5, y is explicitly given as a function of x; y is here 

a linear function of x. In the equation, y = x2 -f- 4 x — 5, y is 

an explicit function of x ; as x varies, so does y. In x2-\- y2= 25, 

as x takes on different values so does y, but one must solve for 

the corresponding values of y. Here y is called an implicit 

function of x. 

When two variable quantities are so related that the varia¬ 

tion of one of these depends upon the variation of the other, 

either is said to be a function of the other. Thus the pro¬ 

duction of wheat in the United States from 1900 to 1915 is a 

variable quantity depending upon the year of production. 

The height of a given tree is a function of its age; to each 

number expressing in any convenient unit of time the age of 

58 
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the tree corresponds a given number expressing the height 

of the tree. Similarly the weight of a tree is a function of 

the age of the tree. This type of relationship cannot be ex¬ 

pressed algebraically. It may be exhibited by the two series 

of numbers, or it may be expressed graphically. 

ujXuwj 

2. Graphical representation of statistics. — Since two variable 

quantities are to be represented, two sets of numbers must be 

indicated; this could be done by placing the two sets upon 

two lines straight or curved, drawn parallel to each other. 

This is the form used upon grocers’ scales wherein the vari¬ 

ables of weight and corresponding price are placed upon con¬ 

centric circular arcs; corresponding numbers are cut by the 

pointer. 

Series of corresponding numbers graphically represented 

It is commonly more convenient to place the two scales for 

representing the two variable quantities upon two lines per¬ 

pendicular to each other. Upon the following figure the tem¬ 

perature and barometric pressure are indicated by the diagram 

for the week, March 4-11, 1918, at Ann Arbor, Michigan. 
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Temperature and barometric chart: by moving pointer 

The sharp break in barometer curve corresponds to a violent rainstorm. 

The horizontal displacement of any point on either graph, located by 

the vertical rulings, indicates the time of the observation ; the correspond¬ 

ing temperature or pressure is indicated by the vertical displacement. 

ILLUSTRATIVE EXERCISES 

1. Production and price of wheat in the U. S. from 1895 to 

1916 are given in statistical form and graphically. 

Year 

Production Exports Price 

Year 

Production Exports Price 

Millions of Bushels Cents Millions of Bushels Cents 

1895 467 126 50.9 1907 634 163 87.4 

1896 428 145 72.6 1908 665 114 92.8 

1897 530 217 80.8 1909 737 87 98.6 

1898 675 222 58.2 1910 635 69 88.3 

1899 547 186 58.4 1911 621 80 87.4 

1900 522 216 61.9 1912 730 143 76.0 

1901 748 235 62.4 1913 763 146 79.9 
1902 670 203 63.0 1914 891 332 98.6 
1903 638 121 69:5 1915 1,026 243 91.9 
1904 552 44 92.4 1916 640 160.3 
1905 693 98 74.8 1917 
1906 735 148 66.7 

Statistics from the Yearbook of the U.S. Department of Agriculture 
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Graphical representation of wheat production (continuous line) and price 

(broken line) in the United States, 1895-1917 

Note that the graphical form of these statistics brings out several points 

of interest. In the first place the maximum price paid for wheat in the 

interval is immediately found, and so also the minimum price of 51^ 
(50.9f) in 1895. Further, the diagram shows very pointedly that a 

large production under normal circumstances is accompanied by a fall in 

price, and an immediate diminution of production. In 1917, under war 

conditions, both production and price increased greatly. 

2. The weight of water per cubic foot, or 60 pints, is 62.4 
pounds. For cylindrical vessels filled to a height of 12 inches 
the weight for an area 144 square inches in the base would be 
62.4 pounds; for 72 square inches in the base the weight of 
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water would be 31.2 pounds ; for 0 square inches the weight is 

0 pounds. On coordinate paper represent square inches of 

base on the horizontal line, taking 1 major division to repre¬ 

sent 10 square inches, and represent weight on the vertical 

line. 

Weight of water in cylindrical vessels with varying base when filled to a 

height of 12 inches or 10 inches 

Note that the weight of 12 inches of water in a vessel with a base con¬ 
taining 50 square inches is 21.5 pounds, and conversely if a cylindrical 

vessel contains 21.5 pounds in 12 inches of height, the base contains 50 
square inches, and similarly, of course, for other values. 

PROBLEMS 

1. Plot the temperature, as vertical lengths, and the time, 

by hours, as horizontal lengths, for 24 hours. 

2. Plot the contents in pints of cylindrical vessels 12 

inches in height, with varying bases ; take that with base 144 

square inches, the capacity is 60 pints; with 72 square inches 
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in the base, 30 pints ; with 0 base, 0 pints. The straight line 

joining these points can be used, to give the base in square 

inches of any cylindrical vessel whose capacity for a height of 

12 inches is known. What would be the base of a vessel that 

contains 10 quarts when hlled to the height of 12 inches? 

3. Plot cubic inches against pints, taking 1728 cubic inches 

as 60 pints. 

Increase in Volume with Temperature Increase 

As liquids are heated the volume changes, generally increasing ; thus 
water increases in volume when heated except between 0 and + 4° C. 

Given 1000 cu. cm. of water at 4° C. and 1000 cu. cm. of mercury at 0° C., 
the volume at other temperatures is given by the following table : 

Temperature Volume of Water Volume of Mercury 

0° 1000.13 1000.00 

1° 1000.06 1000.2 

4° 1000.00 1000.9 

8° 1000.13 1001.4 

10° 1000.27 1001.8 

15° 1000.87 1002.7 

20° 1001.77 1003.6 

25° 1002.94 1004.5 

30° 1004.35 1005.4 

35° 1005.98 1006.3 

o O
 1007.82 1007.2 

4. Plot the increase above 1000 cu. cm., or decrease, in cu. 

cm. in volume of the water, using 1 half-inch for 5° on hori¬ 

zontal axis and 1 half-inch for 1 cu. cm. on the vertical axis. 

Note that by adding 1000 to the given readings, actual volumes 

can be read. 

5. Plot the same curve for the increase in volume of the 

mercury. It is evident that the increases in volume of the 

mercury are approximately proportional to the increases in 

temperature. 
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Statistics on Weight and Height 

From an investigation of the statistics giving characteristics of a group 

of over 200,000 men and 130,000 women, the following facts are obtained 

on average height. The facts are given for groups of 1000. 

Height 

Frequency or No. in 
Group 

Weight (to Nearest 
Integer in 5 or 0) of 

Men ; Ages 35-39 ; 
Height 1U" 

Frequency or 

Number in 

Group 
Men Women 

4' 9lf 0 1 125 4 

4' 10' 0 4 130 14 

4' 11" 0 10 135 33 

5' 0" 2 40 140 60 

5' 1" 2 55 145 78 

5' 2" 5 107 150 114 

5' 3" 12 135 155 95 

5' 4" 30 184 160 106 

5' 5" 55 167 165 90 

5' 6" 99 134 170 87 

5' 7" 127 83 175 72 

5' 8" 169 48 180 59 

5' 9" 145 18 185 48 

5' 10" 147 8 190 37 

5' 11" 104 3 195 25 

6' 0" 66 1 200 32 

6' 1" • 22 0 205 12 

6' 2" 11 0 > 210 14 

6' 3" 3 0 215 4 

6' 4" 1 0 220 8 

225 3 

230 1 

In any such group the number of individuals having any given char¬ 

acteristic is called the frequency corresponding to the given characteristic. 

6. Plot the frequency curve of heights of men and women, 

taking i inch as corresponding to 1 inch of height on the 

horizontal axis and taking T inch vertical for 30 individuals. 

This curve represents very nearly what is termed a normal 

symmetrical distribution. 
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7. Plot the frequency curve for weights of men between 

35 and 39. 

Agricultural Statistics 

In the Yearbook of the Department of Agriculture statistics of produc¬ 

tion and prices of standard crops and farm products are given, covering a 

period frequently of 50 years. Use this Yearbook to obtain the data for 

the following curves : 

8. Plot the curve showing the production of corn in the 

United States from 1866 to the present time. Use 200,000,000 

bushels as a vertical unit, taking i inch as the unit; take one 

year as y1^ of an inch. 

9. Plot prices on the diagram of 8, using a right-hand scale. 

10. Plot similarly statistics for the amount and price of 

sugar produced in the United States. 

11. Plot the average price in the United States of eggs by 

months for the current year ; plot butter prices similarly. 

Population Statistics 

The population statistics of the United States by 10-year intervals as 

given by the Statistical Atlas of the U. S. Bureau of Census are: 

Date 
u. s. 

(Millions) 
New York 
(Thousands) 

Texas 

(Thousands) 

1790 3.9 340 

1800 5.3 589 

1810 7.2 959 

1820 9.6 1,373 

1830 12.9 1,919 

1840 17.1 2,429 

1850 23.2 3,097 213 

1860 31.4 3,881 604 

1870 38.6 4,383 819 

1880 50.2 5,083 1,592 

1890 63.0 6,003 2,236 

1900 77.3 7,263 3,049 

1910 101.1 9,114 3,897 

1920 117.0 10,942 4,734 
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12. Plot the curve of population of the United States. 

13. Plot the population curve for Michigan, and estimate 

the population for the 5-year periods. 

Date 
Michigan 

(Thousands) 
Date 

New York City 

(Thousands) 
Date 

Michigan 

(Thousands) 
New York City 

(Thousands) 

1837 175 1790 49 1864 804 

1800 79 1870 1,184 1,478 

1810 120 1874 1,334 

1820 152 1880 1,637 1,912 

1830 242 1884 1,854 

1890 2,094 2,507 

1840 212 391 1894 2,242 

1900 2,421 3,437 

1845 303 1904 2,530 

1910 2,810 4,769 

1850 398 696 1920 3,205 5,621 

1854 507 

1860 749 1,175 

14. Plot the population curve of New York City. What 

has been the average rate of increase for 10-year intervals and 

for yearly intervals, approximately, since 1810 ? Note that 

this requires the solution of the equations 120(1 -f- i)10 = 4769, 

and 120(1 -f- i)100 = 4769 ; solve by taking the logarithm of 

both sides. 

15. Discuss the increase of the population of the United 

States from 1820 to 1920 as in problem 14 the population of 

New York City is discussed. 

3. Graphical representation of algebraic functions. — To repre¬ 

sent a point on a given line only one number is necessary with 

a point of reference and some unit of length. To every num¬ 

ber corresponds one point and only one and conversely to 

every point corresponds one number and only one number. 
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The distance cut off from 0, the origin, by any point on this 

line may be called the abscissa of the point; a moving point 

upon this line may be designated by the variable x, which is 

then thought of as assuming different values, corresponding to 

the different positions of the point upon the line. 

*1 i I i i i i i i i i i i i i i i 
-7-6-5-4-3-2-1 O 1 2 3 4 5 6 7 8 9 

If another scalar line, OY, be taken intersecting OX at 

90°, the two lines may be conveniently used to represent the 

position of any point in the plane of the two lines. The two 

lines of reference are called commonly the cr-axis and the y- 
axis respectively. 

The position of a point on the earth’s surface is given by a 

pair of numbers representing in degrees longitude and lati¬ 

tude ; the -f- and — of our numbers are replaced by E. and W. 

in longitude, and by N. and S. in latitude. If we agree to give 

longitude first, then + and — could, in both terms, replace 

the letters, and position 

on the earth’s surface of 

any point can be given 

by a pair of numbers. 

The system of represent¬ 

ing points in a plane is 

not essentially different. 

Given any point in the 

plane as P, a perpen¬ 

dicular is dropped to the 

horizontal line. The dis¬ 

tance cut off on this 

horizontal line is called 

the abscissa or ^coordi¬ 

nate of P; the distance 

cut off on the vertical 

line OF by a perpen¬ 

dicular from P to 0 Y is called the ordinate or y-coordinate 

of the point P and it is evidently equal to the J_ PM dropped 
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to the axis OX. The two numbers together, abscissa given 

first, serve to locate the point; thus a point Pl 7 units to the 

right of 0 Y and 5 units above OX is located on our diagram. 

To this point corresponds the pair of numbers (7, 5) (read 

“ seven, live ”) and to the pair of numbers (7, 5) corresponds 

point Px. The point P4 symmetrical to Pl with respect to 

OX, is (7, — 5) the negative ordinate indicating that the point 

is below the cc-axis. P2 (— 7,5) and P3 (—7, —5) are located 

upon the diagram. 

A moving (or a variable) point P in the plane is designated 
by (a?, y), which is read “a?, y” (not “x and y”), and the 
coordinates, abscissa and ordinate, of P are a different pair 
of numbers for each position of the point, i.e. x and y are 
variable. 

Every point represents a pair of numbers, and consequently 

a series of points will represent a series of pairs of numbers. 

In the statistical diagrams the pairs of numbers are numbers 

functionally related. In an algebraic function, y = 3 x 4- 5, 

we have involved a relationship corresponding to a mass of 

statistical information, and the pairs of numbers can be repre¬ 

sented upon a diagram just as before. Corresponding num¬ 

bers, a pair of numbers, are obtained by giving a value to x 
and computing the value of y. The points are seen to lie 

upon a straight line, which we shall see includes all points and 

only those points whose coordinates, abscissa and ordinate, 

when substituted for x and y, respectively, satisfy our given 

equation. This line is called the graph of the function, 3 a?+5, 

or the locus of the equation, y = 3 a;+ 5; the operation of 

locating the points and connecting them is termed plotting 

the graph. 

To represent on cross-section paper any equation in two 

variables x and y, t and s, u and v, or by whatever letters 

designated, two intersecting scales as axes of reference OX 
and OY, OT and OS, or OU and OV are taken, and pairs of 

values which satisfy the functional relationship are plotted as 

above. 
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4. Historical note. — The invention, or more properly the 

discovery, of analytical geometry was made in the early part 

of the seventeenth century. The first work directly on the 

subject was published by Rene Descartes in 1637, La Geome- 
trie, a work small in compass but great in its effect upon the 

development of mathematics and science. Almost simultane¬ 

ously another Frenchman, Pierre Fermat, also discovered the 

methods independently of Descartes. 

The idea of coordinates, called Cartesian after Cartesius 

(Latin form of Descartes) was not new; in fact, as we have 

noted, this idea is found in the latitude and longitude of Hip¬ 

parchus (200 b.c.). The idea of coordinates for drawing simi¬ 

lar figures was known even to the early Egyptians, and this 

idea was used for surveying purposes by Heron of Alexandria 

(c. 100 b.c.). The idea of fundamental properties of any curve 

as related to its axis or axes or to tangent lines and diameters 

was also not new. The new point was to combine these ideas, 

referring several curves and straight lines to axes geomet¬ 

rically independent of the curves, using letters to represent 

constant and variable distances associated with the curves 

and lines involved ; the graphical representation of negative 

quantities is a vital part of the analytical geometry. These 

developments were made both by Descartes and by Fermat. 

Modern mathematics begins with this analytical geometry 

and with the calculus which was developed within a century 

after Descartes by Newton and probably independently by 

Leibniz. 

5. Industrial applications. — At the present time the graphical 

representation of statistics is playing an increasingly important 

role in many industrial enterprises. Curves derived from ob¬ 

servations, empirical curves, are expressed in graphical form 

for convenience of reference and, frequently, for interpolation 

between observed values. The normal distribution curve is 

employed not only by statisticians but also in the production 

departments in many factories in the classification of their 

products. 
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ILLUSTRATIVE EXAMPLES 

To plot a function of x, give x values, find the correspondiyig 

values of y, or conversely, and plot the points. Connect by a 

smooth curve passing through all the points in succession 

moving continuously from left to right. 

Points on 

the Curve 

x y 
-6 +7 

Graph ofp = x2 + 4x — 5 

1. Plot the graph of 

the function cc2+4a?—5, 

i.e. plot the locus of the 

equation, y=x2 + 4 x—5. 

Give to x the values from 

0 to 3 and from 0 to — 6 ; 

beyond these values in 

either direction the values 

of y evidently become very 

large. The curve is evi¬ 

dently symmetrical with re¬ 

spect to a line parallel to 

the axis and 2 units to the 

left. 

The points where this 

curve crosses the x-axis rep¬ 

resent solutions of the equa¬ 

tion x2 -f 4x — 5 = 0. 

2. Plot s = 201 -f- 50. 

Points Points 

0 50 1 70 
1 70 1.1 72 
2 90 1.2 74 
3 110 1.3 76 
4 130 1.4 78 
5 150 1.5 80 
6 170 1.6 82 
7 190 1.7 84 
8 210 1.8 86 
9 230 1.9 88 

10 250 2 90 

Upper graph, s = 20 t + 50 from t = 0 to t = 10, upper and left-hand scales 

Lower graph, s = 201 -f 50 from t = 1 to t = 2, lower and right-hand scales 
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The lower and right-hand scales would be used if you were interested 

in the behavior of the function in the interval from t — 1 to t = 2. By 

the tenfold enlargement you can read values to the third significant 
figure. 

This may represent the motion of a body which starting at a point 

•50 feet from the given point of reference moves away from that point 

in a straight line at the rate of 20 feet per second. The units might be 

miles and hours, so that the speed would be given as 20 miles per hour ; 
this may represent then the motion of a train. 

3. Plot y = x3 — 2 x2 — 18 a; + 24. 
The values of y are so large that the figure occupies too much space 

vertically. To obviate this difficulty one square on the axis of y is taken 

to represent ten units of y and one square on the x-axis is taken to 
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Graph of y = x3 - 2 x2 - 18 x + 24 

represent one unit of x. This serves to compress or telescope the curve, 
but the essential peculiarities are preserved. In particular the points 

at which the curve crosses the x-axis, the values of x which make 

X3 _ 2x2 — 18 x + 24 = 0, remain unchanged. These values, the roots 

of x3 — 2x2 — 18 x + 24 = 0, are seen to be - 4, 1.3, approximately, and 

4.8 approximately. 
In general an algebraic equation of this type is not likely to have a 

rational root, such as the — 4 above. 
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4. Plot x2 -f- y2 — 36 = 0. 

Graph of x2 + y2 — 36 = 0 

In drawing the graph of this function of x (implicit), it is important 
to note that there are two values of y corresponding to each value of x, 

and that these two values are symmetrically distributed with respect to 
the x-axis. .Similarly this curve is symmetrical with respect to the x-axis, 
since any value of y gives two corresponding values of x, numerically 

equal hut opposite in algebraic sign. The points when located are con¬ 
nected by a smooth curve which is here a circle. 

To this diagram reference has been made in problem 7, page 17. As a 
circle of radius 6 the ordinates at x = 1, 2, 3, 4, and 5, respectively, give 
graphically the square roots of 35, 32, 27, 20, and 11. 

The more complete discussion of equations of this type is given in 
Chapter XIV. 
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5. Plot y — x~ for x — 0) .1, .2, • ••, 1.0, 1.1, 1.2, 1.3. 

Note that precisely the same curve is obtained if units 0, 1, 2, 3, ••• 15 
are taken instead of tenths on the x-axis and tens in the place of tenths 

on the vertical axis, as indicated on the lower and right-hand scales. 

This line if drawn somewhat carefully can he used to read! squares of 

numbers of two places to two or three places. Thus (.85)2 = .72 ; (.96)2 
= .92 ; (.73)2 = .54. Square roots can also he read from this curve by 
noting the horizontal length, corresponding to any given vertical length. 

The square root of 20 is read as 4.45, of 30 as 5.50, of 40 as 6.35, of 50 as 

7.05, of 60 as 7.75, of 70 as 8.38, of 80 as 8.95, of 90 as 9.5 ; the square 
root of 630 must read as 6.3 down between 2 and 3 on the horizontal 

scale, evidently about 25. 
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y = Xs 

X y 
0 l 

.2 .008 

.4 .064 

.6 .216 

.8 .512 

.9 .729 
1 1. 

1.2 1.728 
1.4 2.744 
1.6 4.096 
1.8 5.832 
2. 8 
3 27 
4 64 
5 125 
6 216 

7 343 

8 512 
9 729 

10 1000 

The portion of the cubical parabola, 

V = z3, 
given by positive values of x from 0 to 10. 

The cubes of numbers from 0 to 10 can be read quite accurately to 
two significant figures, with an approach to the third. 

Thus (8.4)3 is read on the 1 to 100 scale curve as 595, instead of 593 ; 

(h4)3 is read on the 1 to 10 scale curve as 85.0 instead of 85.2 ; (1.8)3 is 
read on the 1 to 1 scale curve as 6.00 instead of 5.83. 
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PROBLEMS 

1. Plot y = x?, from x=l too; = 5, using one half inch on 

the vertical axis to represent 10. 

2. Plot y = x?, from x = 1 to x = 10, using one half inch on 

the vertical axis to represent 100. See graph, above. 

3. Plot y = x3, from x = 0 to x = 1 by tenths, using 10 half¬ 

inches for 1 unit on each axis. 

4. Read from the above curves the following cubes, to 2 

significant figures : 

3.23, 4.73, .823, 1.53, .643, .583, 7.13, 9.23. 

5. Plot the graph of s == 200 t — 16 t2, from t — 1 to t = 12. 

This represents the height at time £ of a ball thrown upward 

with a velocity of 200 feet per second. 

6. Plot the graph of s = 1000 — 200 t — 16 £2, from t = 1 to 

t — 4; this represents the height above the earth of a ball 

thrown down from the top of the Eiffel tower with a velocity 

of 200 feet per second. 

7. Plot the graph of x2 -f- y- = 100 using \ inch as 1 unit on 

each axis. Find from the graph ten pairs of numbers whose 

squares summed equal 100. 

8. The area of a circle is given by the formula A = irr*; 

plot the graph of the function A from r = 0 to r = 10 inches ; 

use 3.14 for 7r. 

9. The capacity in gallons of a cylindrical can of height 10 

inches having a diameter of d inches is given, within y1^ of 

1 %, by the formula : 

@= 3V ' + Tinnr *(?2- 
Plot the graph for d— 1 to 20 and interpret as gallons per 

inch of height. How could you find from the graph the ca¬ 

pacity of a can having a diameter of 8 inches and a height of 

9 inches ? Check by cubic inches, using 231 cubic inches to 

the gallon. 



CHAPTER V 

THE LINEAR AND QUADRATIC FUNCTIONS OF ONE 

VARIABLE 

1. Theorem.—Any equation of the first degree in two vari¬ 

ables (x and y) has for its graph a straight line. 

Proof — The general equation of the hrst degree may be 

written Ax -f- By + C = 0. This equation can always be put 

in one of the four forms: 

x = k, if B = 0, or if B = 0 and C= 0 ; 
y = k, if A = 0, or if A = 0 and C= 0; 
y = mx, if 0=0, 

or y = mx -f- k. 

x = k represents a straight 

line parallel to the y-axis, at 

a distance k units from it; on 

such a line the abscissa of any 

point is constant. The coordi¬ 

nates of any point on the line 

satisfy the equation, and any 

point whose coordinates satisfy 

the equation lies upon the line. 

Thus, x = — 2 or ^ + 2 = 0 repre¬ 

sents a straight line, parallel to 

and 2 units to the left of the 

y-axis. Similarly, y = k repre¬ 

sents a straight line parallel to 

the cc-axis and at a distance of _ . . , _ 
Graph of x + 2 = 0 

k units from it. arid Graph of x - k = 0 
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y = mx. Assume different points which satisfy this rela¬ 

tion ; the origin lies upon the locus ; (aq, yx) and (x2, y2) satisfy, 

if yi = maq, y2 = mx2. 

Any two points (aq, yx), (aq, y2) 

which satisfy this equation can be 

shown to lie upon the straight line 

connecting either one with the 

origin, which evidently satisfies 

the equation. 

Consider first m to he positive; 

the point (aq, yx) may be taken in' 

the first quadrant. 

Since yl = maq, and y2 = maq, 

y±=y*=m. 
Xx x2 

The right triangle containing aq 

and yx as the sides is similar to 

the right triangle with x2 and y2 

as sides, since — = —• Hence 
Xi x2 

the corresponding angles at 0 are equal and the points 

(aq, yQ and (x2, y2) lie upon a straight line through the origin. 

Note. — If y2 and x2 are negative, —2 is in truth to be replaced by -—-- 
x2 — X<i 

since only positive quantities are involved in plane geometry. 

Conversely any point (aq y) which lies upon the given line 

drawn satisfies the given equation. For, by similar triangles, 

^ = m, whence y = mx. 
x zq 

When m is negative, the argument is slightly changed, since i 

any point (aq, yQ which satisfies the equation must have coordi¬ 

nates opposite in sign; then -or — — equals — m. 
— aq X} 

The value m represents the rate of change of y compared with 

the rate of change of a; of a point (ar, y) moving on the line. 

Graph of y = mx 
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In the equation y = mx + k for any values of x, the corre¬ 

sponding values of y are greater by k than the corresponding 

ordinates of y = mx. Construct any three such ordinates of 

y = mx -f- k. Since these exten¬ 

sions are parallel and equal in 

length, parallelograms are formed ; 

the inclined sides of these paral¬ 

lelograms are parallel to the line 

y = mx and consequently to each 

other. Since any two of these 

parallel lines have a point in com¬ 

mon, they coincide and form one 

straight line (by plane geometry). 

The value m is called the slope of 

the line y = mx -f k, and evidently 

varies as the angle which the line 

makes with the #-axis varies. The 

angle which a line makes with the 

a>axis is termed the slope angle of 

the line. 

Conclusion. — Since every equa¬ 

tion of the first degree, 

Ax + By + C = 0, 

can be put into one of four forms, mentioned, every equation 

of the first degree represents a straight line. 

Conversely, every straight line is represented by an equa¬ 

tion of the first degree; if the line is parallel to one of the 

axes, the form of the equation is evidently x = k or y = k; 

if the line passes through the origin, the form is y = mx; and 

every point on the line can be shown to satisfy this equation, 

for let (ajj, yx) be any fixed point on the line and (x, y) any 

point whatever on the line, then 

— = - ? by similar triangles, whence 
Xi x 

V 
- = m, a fixed value, and y = mx. 
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Any other line will be parallel to a line through the origin, 

and its points will satisfy an equation of the form 

y = mx 4- k. 

On the line y = mx + k, if at any point the value of x is 

increased by one unit, the value of y, the function of x, is 

increased by m units; on this line everywhere y increases m 

times as fast as x; the ratio of the increase of y to the 

unit increase of x, m, gives on the straight line the rate 

of change of the function y as compared with the rate of 

change of x. 

2. Intersection of graphs. — 

Plot 2 a; + 3 y — 26 = 0, 

x -f- y — 5 = 0. 

Every point on the first line is such that its coordinates 

(x, y) when substituted in 2 x + 3 y — 26 = 0, satisfy the 

equation; there are an 

infinite number of such 

points, e.g. (0, -Vs-), (1, 8), 

(2, ¥), (13, 0), (V» 1), 
(-1, if), By substi¬ 

tuting 0 or 1 or 2 or — 1, 

— 2, •••, for x and solving 

for y, or conversely, points 

are obtained whose coor¬ 

dinates satisfy the given 

equation; similarly every 

point on the second line 

is such that its coordinates 

satisfy the equation, 

x + y-5 = 0; 

the point of intersection 

satisfies both equations, and its coordinates can be obtained by 

solving the two equations as simultaneous. Lhe aigument is 
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entirely similar for the points of intersection of any two loci, 

representing algebraic equations ; the points of intersection 

satisfy both equations, and give a graphical method of ap¬ 

proximating the solutions of the equations regarded as simul¬ 

taneous. 

To review this demonstration, answer the questions below, 

and read the discussion. 

What is true concerning the coordinates of every point on 

the first line ? on the second line ? What is true concerning 

the point of intersection so far as the two given equations are 

concerned? The drawing shows that (— 11, 16) satisfies both 

the equations, and substitution shows that this is precisely 

correct. In general the graphical solution is only approxi¬ 

mate, the degree of accuracy depending upon the accuracy of 

the drawing and the scale used. 

The point of intersection of two straight lines represents graph¬ 

ically the solution obtained by solving the two equations as 

simultaneous. 

Intersections of y — 3 x, and x2 -f- y2 = 25. 

The graphical presentation shows very plainly that the 

solution is, approximately, 

and 

x = 1.6 

y = 4.8. 
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Graphical Solution of Simultaneous Equations 

Intersections of y = x2, y = 3 x + 5. 

The graph shows that there are two solutions ; in the one, 

x — — 1.2, y — -f 1.4, 

and in the other, x = 4.2, 2/ = 17.8. 

These are approximate values. 

Plot carefully the graphs of the preceding problems, check¬ 

ing on the work presented by the graphs. 

Plot carefully these two lines and verify the statements 

made: 
2 x + 3 y — 26 = 0, J Graphically, parallel; 

2 a? + 3 y ~ 8 = 0.} algebraically, no solution. 

The point of intersection of tivo graphs represents graphically 

the solution of the two equations regarded as simultaneous. 
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PROBLEMS 
1. Solve 

y — 3x — 5 = 0, 

3 x 2 x — 7 = 0, 

both graphically and algebraically. 

2. Plot the graphs of 

y — 3x — 5 = 0, 

3y -{■ 2 x — 7 = 0, 

x -b y — 2 = 0. 

Do these three lines appear to meet in one point on your 

diagram? Have these three equations a common solution? 

Substitute the solution of the first pair (obtained in problem 1) 

in the third equation. Later it will be shown that a point 

whose coordinates when substituted in a first-degree expression 

give a small numerical value is near the straight line repre¬ 

sented by the equation formed by putting that expression 

equal to zero. 

3. Plot 15 points whose coordinates satisfy the equation 

2y + 3x — 11 = 0. 

4. Plot the lines x = 3 and y = 4; what point is repre¬ 

sented by these equations? Note that the Cartesian system 

(x, y) of representing points implies each point as the inter¬ 

section of two lines. 

5. Solve 
2 y + 3 x — 5 = 0, 

3y — 4x — 8 = 0, 

both graphically and algebraically. 

3. Intercepts. — Any given line or curve cuts off on the co¬ 

ordinate axes distances that are called the intercepts of the 

line or curve. The ^-intercept is obtained analytically by sub- 
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stituting y = 0 and solving, i.e. by solving as simultaneous the 

equations of the a;-axis and the given line; the y-intercept is 

obtained by substituting x = 0. 

The x-intercept of 2 x -f- 3 y — 26 = 0 is 13, obtaining by 

substituting y = 0 in 2 x -f- 3 y — 26 = 0 ; the y-intercept is 

+ -2g6-; of x2 + y2 = 25, the ^-intercepts are ± 5, the y-inter- 

cepts are also ± 5. 

Note that the problem of finding the intercepts of a given 

graph is a special case of the problem to find the intersections 

of two given curves; the ^-intercept designates the inter¬ 

section of the given curve with the cr-axis, y = 0, and similarly 

the y-intercept refers to the intersection with x = 0. 

Rule. — To find the ^intercept, put y = 0, and solve; 

similarly for the y-intercept. 

4. Pencil of lines. — The straight lines which pass through 

a common point constitute what is termed a pencil of lines. 

If the common point is determined as the intersection of two 

given lines, we may write the equation of the pencil of lines 

in terms of the two expressions which put equal to zero repre¬ 

sent the given lines. 

The pencil of lines through the intersection of 

y — 3 x — 5 = 0 (fi) 

3 y + 2 cc + 7 = 0 (l2) 

is given by the linear equation, k being assumed constant, 

(3) y — 3x — 5 + k(3y + 2x -I- 0 = 0. (4) 

Evidently any point on the first line, lA, makes y — 3x — 5 = 0, 

and any point on the second line, l2, makes 3y-f2£t?-|-7 = 0; 

the point of intersection substituted in our equation (3) gives 

0 -f k • 0 or 0, hence the point of intersection of l± and l2 

satisfies equation (3) for all values of k. 

By giving k successive values Z3 can be made to pass through 

any point of the plane. Thus to pass through (1, 5) sub¬ 

stitute (1, 5) in 4 and solve for k, giving 

5 _ 3 _ 5 + fc( 15 +2 + 7) = 0, 
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or 24 k — 3, k = -J-. The line y — 3 x — 5 -f i(3 y -\- 2 £ 7) = 0, 

or 8y—24 a;—40-b3y + 2;r+7 = 0 reduces to 11 y—22cc—33 = 0, 

or y — 2 a; — 3 = 0 when simplified. 

In solving as simultaneous the two equations y — 3x—5 = 0, 

and 3y -f- 2 a? + 7 = 0, the particular lines parallel to the axes 

of reference and passing through the point of intersection of 

lj and l2 are sought. Thus, after multiplying the upper 

expression by — 3 and adding, you get the line l3 with k = — J. 

y — 3 x — 5 — ^(3 y + 2 a; -4- 7) = 0 

gives — 11 x — 22 = 0, or x = — 2. 

To eliminate .x we multiply the upper expression by 2 and 

the lower by 3 and add ; this gives, 11 y -f-11 = 0, or y = — 1. 

The same line given by 11 y + 11 = 0 is obtained from line 

l3 with k = \ ; i.e.: 

y — 3 x — 5 + f (3 y -2x + 7)= 0 

gives 11 y + 11 = 0, or y -f 1 = 0. 

The point of intersection of the two lines, (— 2, — 1), is 

given as the intersection of x = — 2 and y = — 1. 

PROBLEMS 

1. Write the equation of the family of lines through the 

intersection of the two lines : 

y — 3 x — 5 = 0, 

3y + 2x- 7 = 0. 

Determine k so that this line shall pass throught the point 

(0, 0); through (1, 5). 

2. Find the cc-intercept and the ^-intercept of the line, 

3 y + 2 x - 7 = 0. 

Draw the graph of this line. 

3. Write the equation of the family of lines passing through 

the point of intersection of the lines, 

y- 4 = 0, 

x — 3 = 0. and 
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Draw the graph of y — 4 + k(x — 3) = 0, for k = 0, for k=1, 

for k = — 1, for k = 3. 

4. Plot the three lines below, and obtain their three points 

of intersection graphically and algebraically : 

y — x — 5 = 0, 

3y + 2« — 10 = 0, 

y — 3 x 4- 15 = 0. 

Does the drawing on coordinate paper give an indication of 

the area of the triangle formed ? 

5. Write the equation, 3y + 2a — 10 = 0, in the form, 

y = mx + k ; what is the value of m ? 

6. The weight of a cylindrical vessel of water when filled 

to a height of 10 inches is 6.8 pounds, when filled to a height 

of 6 inches it is 4.4 pounds ; plot the two points (6, 4.4) and 

(10, 6.8). The straight line joining these two points gives the 

weight of the vessel when filled to any height from 0 to 10. 

The equation may be written w = k • h -f- c, where w and h are 

the variable weight and height, k and c are constants. This 

equation is the simple statement of the fact that the weight of 

the water and the container for any height h is the weight of 

the vessel (c) plus h, the height, times the weight of the water 

which fills the container to a height of one inch. Note the 

significance of the intercepts. 

02 4: 

7. The equation, w = —:— v, may be used to express the 
1728 

relation between the volume in cubic inches and the weight in 

pounds of a given mass of water. Plot this carefully and find 

approximately the weights of 100 cubic inches, 500 cubic inches, 

and 700 cubic inches of water. Find the volume of 15 pounds 

of water ; the volume of 25 pounds ; of 30 pounds. 

8. The volume of mercury at any temperature between 0 

and 40° C. is given by the equation V— k(l + at), wherein 

a = .00018 ; for k — 1000 cu. cm. this becomes V = 1000 4- .181. 
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Plot this equation taking the horizontal axis as at 1000. This 
is equivalent to plotting the increase in volume, I = .181. 
Plot for 0 to 40° C. and find the increase in volume when 1000 
cu. cm. of mercury at 0° C. are heated to 27° C. 

9. Find the equation of the straight line through (— 3, 5) 
and through the intersection of 3 x — y — 7 = 0 and 

5 x + 12 y - 17 = 0. 

10. Plot degrees Fahrenheit as abscissas and degrees Centi¬ 
grade as ordinates, connecting (32° F., 0° C.) to (212° F., 100° C.), 
by a straight line. Find the equation of this straight line. 
Find the Centigrade reading corresponding to 0° Fahrenheit, 
to 100° F. Discuss the meaning of the slope of the line. 

11. Find the intercepts of the line 9 y — 5 x = — 160. Com¬ 
pare with your result in the preceding problem. 

12. Plot the graph of s = 16 t2, for values of t from t = 0 to 
t = 5, using one inch for 1 second on the horizontal axis, and 
1 inch for 100 feet on the vertical axis. Find value of s when 
t = 4.3 from the graph. Check by computation. 

13. Plot carefully x2 -by2 = 64, and y = 3 x — 5. From the 
graph get the approximate solution. 

14. Show graphically how to change a system of marks from 
a scale of 100 to a scale of 75; from 75 to 100. 

15. Sound travels at the rate of 1089 feet per second in air 
at 32° F. (or 0° C.) ; at the rate of 1130 feet per second in air 

1 Q f 
at 70° F. The formula, v = 1054 +—— gives very closely the 

velocity in feet per second at temperature t° Fahrenheit. 
Plot the graph of the function, plotting the excess above 1000 
feet as ordinates and temperature Fahrenheit up to 80° F. as 
abscissas. At what temperature is the velocity 1100 feet per 
second? How would you adapt these figures to the Centigrade 
scale for temperature beginning 0° C.? v = 1089 -f 2 t is the 
resulting equation. 
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16. The velocity after t seconds of a bullet shot straight 

upwards at 800 feet per second is given by the equation 

v = 800 — 32 t. Plot the graph, taking 100 feet as i inch 

on the vertical axis, and 5 seconds as \ inch on the horizontal 

axis; negative values of v mean that the bullet is descending. 

17. Plot v = 600 + 32 t, and interpret as downward velocity 

of an object thrown downwards from a height. 

18. Time yourself on plotting the following 10 lines ; five 

may be plotted with respect to one set of axes : 

a. 3 x + 1 y — 12 = 0. 

b. 3 y = 2 x — 5. 

c. x — y — 8 = 0. 

d. 7a? + 3?/ — 18 = 0. 
e. 2 y + x -f 10 = 0. 

/. 5 x + 12 y —10 = 0. 

9- 

h. 
i. 

^_2/_ i 
3 5 

y = ix~i‘ 
x= \y-i- 

j. 3 x — 7 y = 0. 

19. Time yourself (a) on finding the slope of each of the 

ten lines in problem 18; (b) on finding the ^-intercept of 

each line; (c) on finding the ordinate of the point whose 

abscissa is 2; (d) on finding to one decimal place the ordinate 

of the point on each line whose abscissa is 2.4; (e) on putting 

these lines in slope form. 

20. Plot, using values correct to 1 decimal place, the follow¬ 

ing lines : 
a. 3.1 x + 4.5 y — 12 = 0. 

b. 3.2 y = 2.6 x— 5.7. 

c. .9# — 4.8 y — 8.3 = 0. 

5. The quadratic equation in one variable. — Any equation of 

the form ax -(- b = 0 is called a linear, or first-degree equa¬ 

tion, in the variable x; the solution is given by x = -; the 

graph of the function, y = ax -f &, is a straight line of slope a, 

with the y intercept equal to b, and with the x intercept lepie- 

senting the solution of the equation, ax + b = 0. 

Any equation of the form ax2 -j- bx + c = 0 is called a quad- 
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ratio equation in x; a, b, and c are to be regarded as con¬ 

stants. The graphical solution of one equation of this type 

has been presented (page 70) and the algebraic solution is 

given in elementary algebra, but will be given here a rapid 

review. 
Algebraical solution of 2 a2 -f 8 a- + 7 = 0 and of the general 

equation, ax2 + bx + c = 0 ; 

2 x2 4- 8 x + 7 =0, 

x2 -F 4 x = — 

ax2 4- bx + c = 0, 

x2 + 4 x + 4 = 
9 . 6 

a;2 + -x + 
a 

b2 c 

4 a2 a 

(x 4 2)2 = .5. 
b2 — 4 ac 

4 a2 

a; + 2 = ± .71 (or .707 to 3 places), 

a; = -1.29 or -2.71, 

. b ±Vb2 — 4ac 
a? 4-= — 

a 2 a 

x = 
— b ±-y/b2 — 4: ac 

2 a 

The necessary third term to complete the square is obtained 

by comparison with (x ± k)2 = x2 ± 2 kx 4- k2. 

Graphically the equation y = 2z?-\-8x-{-7 represents a curve 

which intersects the avaxis, y = 0, in the two points whose 

abscissas satisfy the equation, 2x24-8x4-7 = 0. y = 2 a:2 4-8 a; 4 8 

represents a curve which is tangent to the a>axis, correspond¬ 

ing to the fact that the roots of the equation, 2 a?2 4 8 x 4-8 = 0, 

are equal to each other. The equation y = 2 x? 4- 8 x 4- H repre¬ 

sents a curve which does not cut the cc-axis, corresponding to 

the fact that the quadratic 2 x2 4- 8 x 4-11 = 0 has for solu- 

— 4 ± a/ — 6 
tions, x = 

2 
values corresponding to no points on 

the a^-axis, i. e., to imaginary values of x. Plot the graphs in¬ 

dicated. 
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The quadratic equation is solved algebraically by reducing 

the problem to the solution of two first-degree equations: 

b -f- V&2 — 4 ac 
x 

9 a 2 a 

and x H-= — 
— V&2 — 4 ac 

2a 2 a 

The quantity b2 — 4 ac which appears under the radical sign is 

called the discriminant of the quadratic. The nature of the 

roots of the quadratic equation is determined by this dis¬ 

criminant, when a, b, c represent real quantities, i.e., a, b, and 

c having values which can be represented by points upon a 

scalar line. When 

b2 — 4 ac > 0, i.e. positive, the two roots are real and un¬ 

equal, when 

b2 — 4 ac = 0, the roots are real and equal, and when 

b2 — 4 ac < 0, i.e. negative, the roots are imaginary. 

Further, the condition that the roots of the quadratic should be 

equal given by b2 — 4 ac = 0, may be obtained by inspection, 

or by actually setting the two roots equal to each other and 

then be written afx 

Graphically these conditions correspond to the fact that the 

curve y — ax2 -f- bx + c cuts the a>axis in two points, is tan¬ 

gent to the a>axis, or does not intersect it at all, according as 

b2 — 4 ac is greater than, equal to, or less than 0. 

Frequently the two roots of the quadratic ax2 + bx -f- c = 0 

are designated by xx and x2. 

simplifying ; ax2-\- bx + c may 

Thus 
— b 4- V&2 — 4 ac 

2 a 
) 

and x0 = 
— b — Vb2 — 4 ac 

:a 

The sum and the product of the roots, xx + x2. and xxx2, are 
J) Q 

given, respectively, by-and -|—. The expressions x1 + x2 
Ct/ (X 

and xxx2 are representative symmetric functions of the roots of 
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a quadratic function of one variable, being expressions which re¬ 

main unchanged when x1 and x2 are interchanged. 

6. Historical note. — The solution of linear equations was 

known four thousand years ago to ancient Egyptians. The / 

equation x + - = 19, was proposed and solved in the work of an 

Egyptian writer named Ahmes; the problem reads, with “ ahau” 

representing “ heap ” or “ unknown,” “ ahau and its seventh, 

it makes 19.” In other ancient Egyptian documents problems 

leading to pure quadratics are found. The Greeks were able 

to give as early as 450 n.c. a geometrical solution of any quad¬ 

ratic having positive roots ; the numerical application appears 

in Greece somewhat later. In India numerical quadratics 

were solved in the fifth and sixth centuries a.d. The first 

systematic treatise combining clearly analytical statement with 

geometrical illustration is given by an Arab, Mohammed ibn 

Musa al-Khowarizmi, about 825 a.d. His work continued in 

use for centuries. The complete quadratic with general, 

literal coefficients, did not come, of course, until after the in¬ 

troduction of literal coefficients by Viete late in the sixteenth 

century. 

7. Graphical solution of the general quadratic equation. — The 

general quadratic equation ax2 + bx + c = 0 can be solved 

graphically by means of one fixed curved line, y =x2, and a 

variable straight line. The intersection of 

y — x2 

and ay -f- bx + c = 0 

gives the solution of the equation ax2 + bx + c = 0, for the 

solution is obtained algebraically by substituting for ?/ its 

value x2 in ay + bx + c = 0, giving ax2 -j- bx + c = 0. 

The graphical solution of the quadratics, 2 x2 — 6 x— 5 = 0, 

2 x2 — 6 x = 0, 2cc2-6^-f-| = 0, and 2 x2 — 6 x + 10 = 0, 
is presented upon the diagram; the student is urged to 

solve these equations algebraically and to trace the correspond- 
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Graphical solution of quadratics 

2x2—Gx — 5 = 0; 2x2 — 6x = 0; 

y = A 
2 y — Q> x — 5 = 0. 

Two real solutions. 

y = A 
2 y — G x — 0. 

Two real solutions. 

x2 — G x + § = 0; 2x2 — 6x+10 = 0 

y = x2, 

2y — 6 x + -| = 0. 

Two coincident solutions. 

y = 

4=y — 6x + 10 = 0. 

Two imaginary solutions 
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ence between the algebraic and graphical solutions. Two 

sets of real and different roots are indicated by two of these 

straight lines on our diagram; one set of equal roots is in¬ 

dicated ; one pair of imaginary roots is indicated by the line 

which does not meet the curve. 

8. The quadratic function. — The expression, ax2 4 bx 4 c, 

assumes different values when different values are assigned 

to the variable x. The variation in value of the function, 

ax1 + bx 4- c, for given values of a, b, and c, is most easily 

given by drawing the graph of 

y = ax'- + bx -p c. 

The maximum or minimum value of the function, ax2 4- bx 4- c, 

for any real value of x, may be found by solving, ax2 + bx+c=y, 

and determining whether there is any greatest or least value 

which you have for real values of x. 

Thus, y — 2 x2 — 6 x — 5, 

2 x2 — 6 x — (5 + y) = 0, 

„ _.6± V36 -f 8(5 4 y) _ 6 ± V76 + 8y 
—-— - — -• 

4 4 
I 

If y is less than — -7gfi, the values of x become imaginary ; consequently 

— -7/ is the minimum value which y can have. 

If ax’- 4- bx 4- c = 0 has real roots, and a is positive, the func¬ 

tion ax1 4- bx + c is negative for values of x between the two 

roots and positive for all other values; if the equation has 

imaginary roots, a being positive, ax2 4 bx 4 c is positive for 

all real values of x. 

a(x — X\)(x — x2) is positive for values of x greater than both X\ and 

x2, negative for values of x between xx and x2, and zero for x — xx or 

x — x<i; X\ and x2 are supposed to be real, and a positive. 

% 
ax2 + bx 4 c .= a —421 4«2 J 

is positive, a being positive, when 4ac > b2. 
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9. Summary. ax'- + bx -f- c = 0. 

v _ — b -f Vfr- — 4 ac „ — b — Vbl — 4 ac 

2 a 2 2a 
, >> c 

Xi + X2 = -~, XiX2 = ~ 
a a 

Given a, b, and c, real numbers, the condition: 

b2 — 4 ac > 0, gives real and unequal roots. 

If a, 6, and c are rational, and b2 — 4 ac a perfect square, then the 

roots are also rational. 

b2 — 4 ac — 0, roots are real and equal. 

b2 — 4 ac < 0, roots are imaginary. 

PROBLEMS 

1. Solve by completing the square : 

a. x1 — 4:X — 5 = 0; b. 2x2 + 3x — 5 = 0; c. 3x2—4x—9=0. 

2: Solve by formula: 

a. 3 x2—4x — 9 = 0; b. lx2 — 3x —10=0; c. 3 y2-\-2y—5 = 0. 

3. Time yourself in solving the following 10 quadratics, 

writing the roots in simplest form but not approximating the 

square root. 

a. 2 x2 4- 3 x — 5 = 0. /. 9 x2 = 20 x + 10. 

b. 3^-2z + 7 = 0. g. 7t2 = 2±t-5. 

c. 5 y2 + 12 x -b 3 = 0. 

d. y2 — 3 y — 7 = 0. 

e. 2 v2 — 10 y — 35 = 0. 

h. t2 + 4:t = l. 

i. 9 h2 = 16 — 24 v. 

j. 8 u + 5 = 3 u2. 

4. Time yourself in finding to one decimal place the roots 

in the above 10 equations. 

5, Find the nature of the roots, without completely solving, 

in the following equations : 

a. x2 + 3 x — 5 = 0. c. x2 + 3 x — 40 = 0. 

6. x2 + 3x-8 = 0. d. x2 — 3 x -f- 40 = 0. 

e. x2 — 3 x 4- f = 0. 

/. 4 x2 — 12 x -f 9 = 0. 
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6. The velocity of a freely falling body is given by the 

formula, v = 321, when falling from rest; or v = 321 + k, 

where k represents the velocity at the instant when t = 0, or k 

is the velocity at the instant when you begin to measure the 

time. Plot for values of t from 0 to 10. 

7. A bullet shot straight up into the air at a velocity of 

1000 feet per second has its height above the earth given by 

the equation h = 10001 — 1612. Plot this equation for values 

of t increasing by intervals of 5 seconds from t — 0 to t = 70. 

If the bullet is shot at an angle in such a way that the vertical 

velocity when leaving the gun is 1000 feet per second, the 

given equation continues to hold for the height of the bullet 

above the earth. The resistance of the air (considerable at the 

velocity mentioned) is neglected in these equations. 

8. Plot the graph of y = 3 x — 7 ; give to x the integral 

values from — 2 to +5 and find the values corresponding of y. 

9. A freely falling body falls from rest in t seconds a dis¬ 

tance s, given by s = 16 V-; plot points given by corresponding 

values, using horizontal axis as £-axis, and vertical axis for 

distance; Take values of t from 0 to 10, and as s will vary 

from 0 to 1600 take 1 cm. to represent 100 on the s-axis. 

10. For what values of x are the following expressions : 

a. (x — 3) (x — 5); b. (x -f 1) (x — 4); c. 2 x2 + 3 x — 5; 

d. 4 x2 — 12 x + 9; e. 4 x2 — 8 x -1- 9; /. 3 xz -f 2 x — 7. 

11. Given h = 8001 — 16 £2, find t when h = 100, 1000, 

10,000, 12,000 respectively. This- equation represents the 

height to which a bullet would rise when shot vertically up¬ 

wards at a velocity of 800 feet per second, neglecting air- 

resistance. Interpret your results. This bullet has a velocity 

at time t, v = 800 —32 £; find the velocity at the various 

heights mentioned. 

12. Solve 1612 — 8001 + h = 0 for t, regarding h as a con¬ 

stant. See preceding problem and find maximum value h can 

have. 
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13. In solving 1612 — 8001 -f- h = 0, two roots are obtained ; 

find the sum of these roots and the product. Interpret the 

sum, i.e. give the physical meaning. 

14. Discuss the changes in value of 3a?2-f2cc — 5 as x 

changes from — 10 to — -f, to 0, to 1, to 2, to 10, to “ positive 

infinity.” 

15. Determine the nature of the roots : 

a. 4t2 — 161 — 160 = 0. c. 3 v2 -fi 16 v -f- 20 == 0. 

b. 7«2 +16*-160 = 0. d. 3 v2 -f 16 u + 25 = 0. 

16. Plot the graphs of the functions in 15. 

17. Solve the equations of 15 graphically, using the inter¬ 

section with y = t2 or y = v2 (one half-inch may be taken for 

10 units on the vertical axis). 

18. Find the sum and the product of the roots in the 

problems of 14 and 15. 

19. Solve [x + y ~ by substitution. 
[y = 3a;+ 5, 

f s — 10 ^ • 
20. Solve \ ’by substitution. Draw graphs. 

[ s = 31 - 5, 

21. Solve .112 — 501 — 30 = 0, to 2 places of decimals. 

22. Solve t2 — 50 £ — .0001 = 0, to 2 places of decimals. 

23. Find the maximum or minimum values of the following 

quadratic functions: 

a. x2 — 4x + 4. c. x2 — 4x + 6. 

b. 2 x2 + 8 x + 5. d. x2 + 4. 

24. For what values of x is x2 — 6 x — 16 positive ? 

10. Equations reducible to quadratics. —The solution of 

ax2 -j- bx -1- c = 0 

is a value of the variable x, which when it is substituted in 

ax2 + bx + c, makes the expression 0 ; similarly this solution 

gives a value of the variable v, or t, or p, or t2, oi U, oi 3t 1, 

or 712 + 2 t — 3, which makes the expression of the same form 
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in that variable zero ; viz., a value which makes av2 + hv + c 

equal zero when the value is put for v, or a(t2)2 + bt2 -f c, equal 

zero when the value is put for t2, or a(3 t2 — l)2 -f- 6(3 t2 — 1) + c 

equal zero when the value is put for 312 — 1. Equations 

which can be put in the form ax2 -f- 6x + c = 0 are called 

equations in quadratic form, the term being applied, in gen¬ 

eral, to expressions which are not quadratics directly in the 

principal variable. Thus, in any expression involving x, x2, x3, 

xA, x5, or x6, the value of the expression depends primarily upon 

the principal variable, x ; an expression like 3 x* — 2 x2 — 7, 

involving the variable x2, its square, and constants as coeffi¬ 

cients, is said to be in quadratic form, and it is a quadratic in 

the variable x2, but a quartic in x. 

9. Illustrative exercises. 

1. Solve 3 t4 — 5 t2 •— 7 = 0. 

As a quadratic in £2, the formula for the solution of a quadratic gives 

<2 = ^ V25 + 84 = 5 ±V1Q9’ whence 
6 6 

, J5± VT09. 
± ' 6 

There are four values represented here, of which two are imaginary. 

2. Solve x3 = 1, or xz — 1 = 0, and x3 — 8 = 0 ; these illus¬ 

trate a type of equation reducible to a quadratic by factoring. 

x3 — 1 = (x — 1) (x2 -f x + 1) = 0. 
x—1=0, x = 1 

x2 + x + 1 = 0, x _-l±Vl-4_ - 1 ± V- 3 

These values ——-———-———- and 1 are called the cube 
2 2 

roots of unity ; note that V— 3 is defined as a quantity whose square is 

— 3 ; the systematic discussion of such numbers is deferred until a later 

chapter. Squaring either of the two imaginary cube roots of unity gives 

the other ; these roots may then be designated as 1, w, w2. The cube 

roots of 8 are 2, 2 w, and 2 w2; of 7 are 73, 73 w, and 7^ w2, wherein 73 

denotes the real cube root of 7. 
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PROBLEMS 

1. Solve for P, and then for t. P — 7 P — 8 = 0. 

2. Solve and check by substitution: 

ar4 + 3 ar2 — 5 = 0. 

3. 2 x% — 7 aA — 5 = 0. 

4' (X+D +(x+l)~1==0- 
Note that this expression when cleared of fractions gives 

£4 + iC3 + X2 + X + 1 = 0, 
a factor of x5 — 1 = 0 ; the imaginary roots of x which are obtained by 

solving are the other four fifth-roots of unity. 

5. (3 a;2 - 5)2 + 2(3 a;2 - 5) - 7 = 0. 

6. v -f = 10. 

t . P-1 
7. 

*2-l 
+ 

t 
= 2. 

8. Find the value of x2, and of x in 

0. x + 3 x2 — 7 

9. Find the value of x^, in 

x — 3 op — 7 =0, 
and compare with the preceding. The real test of a value 

found as a root is obtained by substituting the value in the 

given expressions. Squaring may introduce a new root; thus 

squaring x = 2, gives x2 = 4, or is equivalent to multiplying 

x — 2 = 0, member by member by x -f 2. 

10. 3 x -f- Va: + 5 = 7. 11. 3 x — Vaj + 5 = 7. 

10. Limiting values of a, 6, c. — As c approaches more and 

more nearly to zero as compared with a and b, it is evident 

that some value of x also near to zero will satisfy the equation 

ax2 + bx + c = 0 ; this value will be of the same sign as c if b is 

negative, and opposite in sign to c if b is positive. This may 
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be obtained by taking the approximate value of V52 — 4 ac as 

b _ if*0 (see page 24), giving — - and as the approxi- 
2 b " bah 

mate values of the two roots when c (or a) is small in compari¬ 

son with b. 

Thus, 

x = 

3 x2 — 2 x — .000001 = 0, 

2 ± V4 + .000012 
6 

2 ± 2.000003 4.000003 .000003 
- or — 

6 

= f or — .0000005. 

6 6 

Similarly in 1000 x2 — 3000 x — 1 = 0, one solution will be small, 

approximately g-W. When c = 0, the roots of ax2 + bx+ c = 0 

are the roots of ax2-\-bx = 0, giving x(ax-\-b')= 0; whence 

#=0 and x = —~. When both 5 and c approach zero, both 
a 

roots of the quadratic ax2 + bx -J- c = 0 approach zero. 

When a approaches zero in comparison with b and c, one 

root of the quadratic becomes very large and the other ap- 

c 
proaches —Thus in the quadratic 

a2- 1000^- 3000 = 0, 

_ 1000 ± V1000000 + 12000 1000 ± 1006 _ 1003 Qr 

2 2 
3. 

/1000 ± 1005.982 ,, , i • • i aao oqi 
f---- are the more exact values, giving 1002.991 

or — 2.991.^ \ 

As a approaches nearer and nearer to zero one root becomes 

larger and larger without limit. Thus if above we had 

.001 a2 - 1000 x -3000 = 0 

x = 
1000 ± V1000000 + 12 1000 ± 1000.006 

.002 .002 

= 1000001.5 or — 3 (more exactly 2.999991 as before). 
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Both roots become large if both a and b become small as com¬ 

pared with c. 

PROBLEMS 

Find first approximate values, and verify by solving the 

quadratic: 

1. 3 x2 — 7 x — .0001 = 0. 

2. 5 x2 — 7 x — .1 = 0. 

3. 5 x2 — .007 x — .001 = 0. 

4. 4000 = 30001 — 16 t2; one root is the number of seconds 

for a bullet to rise 4000 feet, initial velocity 3000 feet per 

second, air resistance neglected; what does the other root 

represent ? 

5. .01 x- — 300 x — 500 = 0. 

6. .00312 -f- 21 — 42 = 0 ; this gives a more exact equation for 

the temperature at which the velocity of sound in air becomes 

40 feet greater than it is at 0° C. 

7. 1000000 a2 - 3000000 x - 5 = 0. 

REVIEW PROBLEMS 

1. Plot the graph of y = 3 x — 5. 

2. Plot the graphs of the following functions : 

a. y = x2 — 4 x + 5. 

b. y = x2 — 4 x -f- 4. 

c. y = x2 — 4 x. 

d. y = x2 — 4 x — 2. 

3. For what values of # is y equal to 0 in the four functions 

of the preceding question ? The graphical solution is desired. 

4. Plot 15 points from x = — .5 to a;=+8 and join by a 

smooth curve representing 

y = 2 x? + 6 x2 — 10 a? — 8 ; 

for what values of x is y equal to zero ? 
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5. s = 201.4- 50 — 16t2. This equation represents the mo¬ 

tion of a body thrown from a height of 50 feet straight up into 

the air with a velocity of 20 feet per second. Plot the graph 

and locate the position of the body at the end of 1 second; at 

the end of 5 seconds. 

6. Plot the graph of s = 8001 — 1612, for values of t from 

0 to 50 ; note that it is desirable to get the values of s first for 

intermediate values and to choose the ?/-scale accordingly. 

This equation represents approximately the height after t sec¬ 

onds of a bullet shot straight into the air with a velocity of 

. „ . 800 feet per second. 
£-axis and ?/-axis on the paper 

7. Plot the era/nh of 
—fll 

\T_ VipfwppTi d — 10 
-|2 Af\. y — * UC u W Cull u/ — JLsj child. 

4 

-rV> ‘>0- 
d — 20, taking the scales so 

as to enable you to read vol- 
-2 00 umes as correctly as possible 

within these limits. Plot 
zX 80 

only values above 100 on the 

-1 60 cLUCL to DH6 1 OI 

-1 a 
12 on the x-scale. 1ms gives 

the volume in cubic units per 

-1 20 :r 
umii ui iit^igiiu oi cviiiidiiudi 

-1 00 
containers which have radii 

+: 2 1 A i “1 -1Jz h varviner from 12 to 20 units. r M r n tJ o 
L ± T A 1 i 1 • i -j , 
-i i i i j ii /\Tvniv r.ms r,n ra.ns a,iin no 

Shifted lines of reference silos. 

8. Plot the graph of t2 = this gives the time of beat of 

a pendulum l centimeters long where gravity is 980 cm. per sec. 

per sec. 

9. Plot the graph of y = x2, for values of x from 0 to 8. 

10. Plot the graphs of the following linear functions : 

a. y = 3x — 5. c. v = 10 + 8 t. e. s = 100 — 40 t. 

b. y = 3x. d. s = 6 — 31. f. y = — 2 x +10. 



CHAPTER VI 

STRAIGHT LINE AND TWO-POINT FORMULAS 

1. Slope-intercept formula : y — mx k. 

The equation y == mx -+- k, into which form the equation of 

any straight line can be put, is called the slope-intercept form 

of the equation of a line ; m represents the slope of the line and 

k is the intercept on the y-axis. The equation of a line parallel 

to the y-axis, x = k, cannot be placed precisely in this form, as 

the ^/-intercept is infinite. 

2. Point-slope formula : y — y1== m(x — aq). 

As it is frequently desired to find the equation of a line of 

given slope and passing through a given point, a separate 

equation in terms of the slope and coordinates of the given 

point is desirable. Let the equation of the line be conceived 

as in the form, y = mx -f k; since (aq, yx) is on the line, 

y1==maq-f k\ subtracting gives y — yx = m(x — aq), the equa¬ 

tion of the straight line in terms of m, the given slope, and 

(aq, 2/i) the coordinates of the given point. 

3. Two-point formula: y ~ = —-— • 
x — jq Xo — Xi » 

The equation of the straight line through (aq, y\)(x2, y2) is 

also easily derived from the slope-intercept form. 

As before y\ = maq + k, 

2/2 = mx2 + k, 
whence y2 — H\ = m(x2 — aq), 

and m = y2 ~ --1, giving m, the slope 
aq — aq 

of the line, in terms of aq, 2/u aq? and 2/2* 
101 



102 UNIFIED MATHEMATICS 

Hence, y — yx — ^—— (x — aq) is the equation of the line 
x2 — Xi 

in a form involving only the given constants. 

The expression, m = ~ yi, represents the slope of a line 
x2 — X\ 

joining (aq, yx) to (aq, y2). Similarly y ~ yi represents the slope 

of the line joining any point (x, y) to (a?!, yi). The preceding 

equation of the line in the form 

of two slopes. 

y-y 1 _ - y\ 
x — aq x2 — aq 

is an equality 

The formula m = -— should be memorized. 
x2 — x1 

This formula gives the rate of increase of y in the interval 

from (aq, yx) to (x2f y2) as compared with the increase of x in 

the same interval; it compares the change in y in the interval 

with the change in x in the same interval. 

If oq = x2, the line joining (aq, yx) to (x2, y2) should be given 

directly as a; = xh parallel to the a>axis, and similarly if yx — y2. 

PROBLEMS 

1. Find the equation of the line of slope 3 and y-intercept 5 ; 

with m=3, k= — 5; m= —3, k=S ; m=0# fc=4 m=5, k=0. 

2. Put the following equations into slope-intercept form: 

a. 3y — 2 a; + 5 = 0. d. y — 3a? — 7 = 0. 
b. 3a;-f-2y — 7 = 0. e. y + 5 = 0. 

c. x + 2 y = 0. f. x + 3 = 0. 

3. Write the equation of the straight line through (—2, 5) 

and (1, 4) ; through (3, — 5) and (2, 1). Find intercepts on 

both axes and the slope in each case. 

4. Write the equation of the straight line through (1, 5) 

having the slope 3. Find the x and y intercepts. 

5. Find the equation of the straight line through (a, 0) and 

(0, 6), i.e. the line having intercepts a and b, respectively, 



STRAIGHT LINE AND TWO-POINT FORMULAS 103 

and put this equation into the form - + ^ = 1. This is called 
a b 

the intercept form of the equation of a straight line. 

6. Given 9 C — 5 F — 160, the formula connecting centi¬ 

grade and Fahrenheit readings of temperature, find the slope 

and the x and y intercepts. Find the slope of the line join¬ 

ing (32, 0) to (212, 100). What is the rate of change of C in 

the interval as compared with the change in F? What physi¬ 

cal meaning have the intercepts ? 

7. Given that 1000 cu. cm. of mercury at 0° C. increases to 

1007.2 cu. cm. at 40° C., find the rate of change of volume per 

degree of temperature, and finally per cu. cm. Note that it is 

not necessarily true that this rate found for an interval of 

40° C. should be the uniform rate everywhere in the interval. 

Write the equation representing the volume in terms of 

temperature, assuming that the relation is linear, i.e. that the 

increase in volume is proportional to the temperature. 

Mercury expands differently at different temperatures, but the 

variation is slight in the interval from 0° to 40°, not varying 

by more than -J of 1 °}0 from .00018 cu. cm. per degree for 1 cu. cm. 

8. Join (0, 0) to (100, 39.37) and interpret for converting 

centimeters to inches and inches to centimeters; what is the 

meaning of the slope? Find the value in inches of 18 cm., 

39 cm., 47 cm. Note that 100 cm. = 39.37 inches. 

9. 59.8 pints of water weigh approximately 62.4 lb. Draw 

the graph connecting (0, 0) to (59.8, 62.4) which will give the 

approximate weight of any given number of pints of water. 

How could you read the weight of quarts or gallons? LTse 

i inch for 10 units on both scales, in plotting. 

10. Find the equations of the straight lines joining the 

following pairs of points, timing yourself: 

a. (3, 5) to (- 2, 7). 

b. (3, 5) to (2, -7). 

c. (0, 8) to (7, 0). 

d. (0, 8) to (7, — 6). 

e. (0, 8) to (0, 5). 

/. (1, -3) to (-1,-5). 

g. (1, - 3) to (1, 6). 

h. (-1, -3) to (-3, -5). 
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i. (- 1, - 3) to (3, 3). m. (-.3, 5) to (7, - 2). 

j. (8, - 3) to (- 3, 2). n. (2, 2) to (- 2, - 2). 

fc. (—3, 5) to (7, 0). o. (100, 60) to (0, 0). 

I. (- 3, 5) to (- 7, -2). 

11. Find the equations of the following lines : 

a. of slope 3, ^-intercept 5. d. of slope —1, through (2,2). 

b. of slope 3, ^-intercept 5. e. of slope + 4, through (2,2). 

c. of slope — 2, ^/-intercept 0. /. having intercepts of 7 and 

5 on the x- and y-axes 

respectively. 

4. Distance between two points : d = V(*2 — jq)2 + (y2 — iq)2. 

d2 = PXP22 = PiM22 + M2P2\ 

Since P\M2 = % — xu an(l Af2P2 = V2~ Vu 

d = V(a?2 - aq)2 + (y2 - yj2. 

Whatever the positions of Px and P2, parallels to the x- and 

y-axes through Px and P2 form a rectangle (a straight line if 

aq = x2 or yx = y2) whose 

sides are in absolute value 

| x2 — X! | and | y2 — yx | ; 

the bars indicate that 

only the numerical- value 

is considered. As a posi¬ 

tive distance P\M2, if 

x1 > x2, would have to be 

written aq — aq 

or — (aq —aq). 

But since the numerical 

value of the expression 

(x2 — aq)2 is the same as 

the value of .(aq — aq)2 we may use in every case (aq — aq) for 

P\M2 in the above expression for d wherein only the square of 

P\M2 enters. 

Distance between two points 

d2 = (x2 - xO2 + (y2 - yxy. 

d = PXP2 = V(aq -- aq)2 + (y2 - yxy. 
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The distance from any point (aq, to any point (x2, y2) is 

given by this formula; this distance is taken in general as a 

positive quantity. 1 

This formula may be used to derive the equation of the 

straight line joining Pfa, yr) to P2{x2, y2) for any point P(x, y) 

on the line is such that PPX + PXP2 = PP2; and for no point 

not on the line is this relation true. 

5. Point of division formula x _ ^i-*2 ~l~ k2Xi # _ kxy2 -f- k>y x 

A + ko kX + k2 

A A A A A A A A A 
PpP2 + P2P3 = P±PS. 

For any three points Px, P2, and P3 on a directed line we 

have PiP2 + P2P3 = P1P3; if P lies between P1 and P3, all 

three segments have the same algebraic sign but otherwise 

positive and negative segments are involved. 

OPi -f- P\P2 = OP2 is then, similarly, the fundamental rela¬ 

tion true for any three points on a directed line, whence 

1\P2 = OP2 — OP1 = x o — xv 

In words the distance on the cr-axis (or any other line parallel 

to the x-axis) from any point whose abscissa is xx to any point 

whose abscissa is x2, is given by x2 — aq. Similarly with 

respect to points on the 

?/-axis, or two points on a 

line parallel to the y-axis, 

the distance from the 

point whose ordinate is yx 

to the point whose ordi¬ 

nate is y2 is y2 — yx. 

To find the coordinates 

of the point P3 which 

divides the line joining 

P]P2 into two segments 

which bear to each other 

the ratio —, 
V 

Point of division formula 

P\Pj _ A # -A 1 ^1,3 _ BXB3 _ A. 
P3P2 A H3A2 B3B2 A 

note that 
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PiP* 
1\1\ 

h 
— • 

k2 
By drawing lines through Plf P2, and P3 parallel 

to the axes, similar triangles are formed, or the proposition of 

plane geometry that a series of parallels cut off on trans¬ 

versals proportional parts may be directly used. 

PXM?> _ A A,3 Xo X, h 

Whence 
M3M2 H3H2 x2 x3 k2 

x3 = 

, h . Xx -f- — x2 
k\X2 + k2xx k2 

*1 + k2 1+- 
ko 

*1 + rx2 

1 + r 

k\ -|- k2 
1 + h 1 +r 

wherein r = -1 h 
k2 

Similarly, = ^1; whence ^-—1 = — ■ 
-B3B2 ^2 2/2 2/3 ^2 

1 
2/1 h— 

_ Ky2 + *2z/i _ ’ k2 ~ _yx + ry2 
Vs — ——~;-—;—— > wherein r = A 

^2 

If -AOs, y3) divides the line PiP2 externally in the ratio 

—, or r, the segments must be regarded as of opposite signs and 
k2 

L k 
consequently, the ratio —■, or r, is negative. Either kx or k2 can 

ko 
be regarded as negative; shifting the sign from k2 to k± is 

equivalent to changing the sign of the numerator and denom¬ 

inator in the value of x3 and y3, no change is necessary in our 

above derivation of the values of £c3 and y3. 

By eliminating kx and k2 between the two equations, 

x _ kjX2 -f- k2Xi 

k\ + k2 

v _ k\y2 + k2jfi 

k, + k2 ’ 

the equation of the straight line joining Px and P2 is ob¬ 

tained. 
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Mid-Point: 

Place 

This mid-point formula is of such frequent use that it 

should be separately memorized; the truth of it is obvious 

from the figure. 

PROBLEMS 

1. Find the mid-point, the points of trisection, and the point 

dividing the segment externally in the ratio, —2:5, in each of 

the following line segments : 

a. (-3,4) to (6,7). b. (3, -2) to (-5,4). c. (0, 0) to (9,12). 
% 

Locate the points in each of these line segments both graph¬ 

ically and analytically ; find the length of each segment. 

2. Find the length and slope of the line joining (8, — 3) to 

(- 2). 

3. Plot the graph of 5 y + 2 # — 5 = 0. 

4. Plot p = 5 l + 50. 

5. Find the equation of the straight line joining M(— 2, 5) 

to .5(3, 7). Find slope of this line. Find length of AB. 

Find the point of trisection nearest A. Find a point on BA 

extended that divides the segment BA externally in the ratio 

1:2. 

6. Given that the velocity of sound at 0° C. is 1090 feet 

per second, and at 30° C. is 1150 feet per second, find the 

velocity at 20° C., assuming that the relation is linear; the 

point dividing the line joining (0, 1090) and (30, 1150) in 

the ratio 2 :1 will give the velocity as the ordinate. At what 

temperature will the velocity be 1100 ft. per second ? What 

are the velocity and temperature at the middle point of the 

range given? 

kx = k2, or place r = 1, 

*l+*2 

2 ’ 

„ _ J/t 4- y2 
V~ 2 ' 
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7. The resistance of wire increases uniformly with the 

temperature, r = r0(l -j- at), the rate of increase depending 

upon the material of the wire ; r0 is the resistance at 0° C. and 

a is a constant. If a given piece of wire has a resistance of 

200 ohms at 10° C. and of 208.4 at 30° C., find the resistance at 

the middle point [of (10, 200) and (30, 208.4)]. Find the equa¬ 

tion for r in terms of t. Find the value of r when t — 0; 

interpret; find the value of t when r = 0. The theory is that 

at a temperature of absolute zero (—273° C. or thereabouts) 

the resistance would be zero. Ans. r = 195.8 -f- .42 t. 

8. The resistance of copper wire of fixed diameter varies 

with the length. If the resistance of 1450 feet of a given 

spool is 184 ohms, and the resistance of 0 feet is 0 ohms, find 

the equation for r in terms of l. Plot (0, 0) and (1450, 184). 

What would be the resistance of 5280 feet of this wire ? 

9. Between (—1, 5) and (8, 37) insert 9 points dividing 

the line into ten equal parts, using the formulas 

x _ kix2 + k2X\ __ kxy2 4- A‘2?/i 

+ ^2 &i ~b A*2 5 

rearranged as follows : 

x = _k2X\ ~b Aqaq -f- — lt\X\_^ | 

A'i -f- A-2 -J- A-2 
(x2 - a?j), 

and similarly 
y = y 1 + -r V , (}h — 2/j). 

~h A^2 
Note that -j- k2 is constant, 10, and Aq changes for the nine 

points from 1 to 9. Use this method in problems 10, 11, and 

14-17 below. 

10. Between (21, .3584) and (22, .3740) insert 5 values di¬ 

viding the interval into 6 equal parts. 

11. Between (10, .3611) and (20, .3638) insert 9 values di¬ 

viding the line joining these points into ten equal parts. 

12. Find the point Ps dividing the line joining Px(—1, 5) 

to P2(8, 37) externally in the ratio 1 to 7; externally in the 
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ratio j\; externally in the ratio Note that either k1 or k2 

must be made negative, or r taken as negative. 

13. Find the point dividing (21, .3584) to (22, .3746) ex¬ 

ternally in the ratio i, |, 

14. log 1 = 0; log 2 = .301; find 9 values dividing (1, 0) 

and (2, .301) into ten equal parts. Compare with the loga¬ 

rithms of 1.1, 1.2, 1.3, 1.4, ••• 1.9. See problem 9 above. 

15. log 200 = 2.3010 ; log 210 = 2.3222 ; insert 9 values be¬ 

tween (200, 2.3010) and (210, 2.3222), comparing with the 

logarithms of 201, 202, ••• 209. 
\ 

16. log 200 = 2.3010 and log 201 = 2.3032 ; insert 9 values 

between (200, 2.3010) and (201, 2.3032) and interpret. 

17. Given y = 32x — 17; find the corresponding values of 

y when x = 10 and x = 20. Find the points dividing this 

line in the ratio i, |-, What points of division are 

obtained ? 

18. Given Px( — 1, 5) and P2(8, 37); on the line joining 

these two points find the point whose abscissa is 3, without 

finding the equation of the line. Find the point whose ab¬ 

scissa is 7. Find the point whose ordinate is 16. Find the 

point whose ordinate is 0. Find the point whose abscissa 

is +14. 
, _ I ^ 

19. Eliminate r between the two equations x =-—- 
1 -hr 

5 4_ 37 r 
and y = —T-. These two equations constitute what are 

1 + T 

known as parametric forms of the equation of the straight 

line joining (— 1, 5) to (8, 37). 

20. Write the equations of the line joining (3, —2) to 

(15, 28) in parametric form. Find 6 points on this line. 

21. Prove analytically that: a. The medians of any tri¬ 

angle meet in a point, trisecting each median, b. The diago¬ 

nals of any parallelogram bisect each other. 



CHAPTER VII 

TRIGONOMETRIC FUNCTIONS 

1. Angles and angular measurement. — The angle made by 

any line OP with the horizontal line OX is regarded as 

generated by a moving line, an arm or ray, starting from the 

position OX and turning about the point 0 as a pivot, moving 

always in the same plane. This 

moving ray if rotated in the sense 

contrary to that in which the 

hands of a clock move, counter¬ 

clockwise, is regarded as gener¬ 

ating a positive angle ; clockwise 

rotation generates a negative 

angle. A natural unit of angular 

magnitude is the complete rota¬ 

tion which brings the moving arm 

back to its original position. This 

measure is used in giving the 

speed of rotation, e.g. the angular 

speed of rotating shafts and wheels is measured in revolutions 

per minute or per second. The angle generated when the 

moving ray is in the same straight line with its original posi¬ 

tion, but extending in the opposite direction, is called a straight 

angle ; half of this angle is the right angle, which was probably 

the earliest measure of angles used. Thus our terms acute and 

obtuse relate to the right angle. If the angle is conceived as 

given by the relative position of two lines non-directed, it is 

evident that only angles less than a straight angle would be 

discussed. 

Angle generated by rotation 

110 
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In the ancient development of geometry the right angle, so 
necessary in building, was fundamental; in Greece up to 
about 150 b.c. the right angle was used as the unit of measure. 
The artificial division of the complete rotation into 360 equal 
angular units called degrees is due to the Babylonians, who 
made this subdivision as early as 1000 b.c. The Babylonians 
used 60 as a unit of higher order much as we use ten, and it is 
probable that they divided another natural angular unit, one 
sixth of a perigon, given by the easy construction of a regular 
hexagon, into 60 equal parts called degrees ; each degree was 
divided by them into 60 minutes (partes minutiae primae, in 
Latin, whence “ minutes ”) and the minute into 60 seconds 
(partes minutiae secundae). 

Another natural system of measuring angles is of funda¬ 
mental importance in mathematical work. This is the circular 
system, in which the unit angle, called a radian, is the angle 
measured at the center of a circle by an arc whose length 
is the radius. The radius can be laid off on the circle 
2 7r, 6f or 6.2832, times, and since equal angles at the center 
are intercepted by equal arcs on the circumference, this angle 
can be placed 2 7r times around the center, or approximately 
6^ times in a complete revolution. Just as 1° is used for 1 
degree, so lr is used for 1 radian, and similarly for other 
numerical values; when no angle sign is used radians are 
understood. 

2 7r- = 360°. 

7Tr = 180°. 

- = 60°. 
3 

- = 30°. 
6 

— = 90°. 
9 

- = 45°. 
4 

The student should accustom himself to expressing angles 
in radians, particularly the angles of 30°, 45°, 60°, and 90°, and 
those which depend directly upon them. 

Thus 150° = — • 135° = —; or, with many writers, simply ^ desig- 
6 4 4 

nates 135° in radians. 

3 7T 
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A natural system of measurement of angular magnitude 

The arc AR equals the radius OA ; arc A'R' = OA'; arc A"R" = 0An. 

Radian system of measuring angles 

In these circles it is true that 
AB A'B1 A"B" 

It is 
OB OB' OB" 

evident that if the circumference of one of these circles is 

divided into any number of equal parts, then lines from 0 to 

these points of division will divide, when extended, the other 

circles into the same number of equal parts. The angle at 

the center is measured, we may say, by the intercepted arc; 
ar 

or 0 = —, wherein a stands for the length of the arc and r for 
r 
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the radius. The length of the arc is given by the formula, 

a = rO, when 0 is measured in radians ; the area A of the cor¬ 

responding sector of angle 0 is A=\ r20. Since 3.141593r=180°, 
1 80° 

lr = ——— = 57.29578°, 1° = .0174533 radian. 
3.141593 

2. Quadrants. — 
The two lines OX and OY divide the plane into four quad¬ 

rants, numbered as indicated on the preceding diagram, I to 

IV; we will commonly designate a quadrant by its numeral. 

In trigonometric work we conceive angles as placed with the 

vertex at 0, one arm falling upon the OX axis to the right, and 

the other arm falling in one of the four quadrants, or upon one 

of the axes. We think of the angle, in effect, as generated by 

an arm rotating about 0 from the initial position OX. Under 

this assumption it is evident that the terminal arm of an angle 

may fall in any quadrant either by a positive rotation or by a 

corresponding negative rotation, the difference between the 

two angles being 360°. Rotations of greater than one revolu¬ 

tion reproduce in order the positions on the diagram produced 

by rotations of less than one revolution, e.g. angles of 30°, 

— 330°, +390°,+ 750°, — 690°, and in general terms, n x 360° 

4- 30° where n is any integer, are represented by the same 

figure. In radians we may say that ar and (2 mr + ar) are 

represented by the same diagram for all integral values of n. 

PROBLEMS 

1. Using 3| for 7r,. compute the value of lr in degrees. 

What is the percentage error ? 

2. Using 3^- for 7r, compute the value c 

Percentage error ? 

1 straight angle ; f of one right angle ; 3r; - 7rr; —; 

O 7r 

1° in radians. 

7rr K —r *) 7T 
; *-r; 

6 ’ 
7Tr 7Tr 3 7rr 

’ 3’ T 4 ’ 
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4. Give the value in radians of 1 revolution ; 180°; 45°; 

135°; 60°; 120° ; 225° ; 3 right angles ; 390° ; 765°. 

5. What is the percentage error in using 57.3° as the value 

of 1 radian ? 

6. What error in seconds is introduced by using 57.3* for 

1 radian in finding the value of 3 radians? 3r = 171.9° ; an 

error of 1 % would be approximately 1.7°. 

7. A bicycle rider pedals at the rate of 20 miles per hour; 

how many revolutions does the rear wheel, diameter 28 inches, 

make per minute ? The rear sprocket wheel, diameter 4 inches, 

makes the same number of revolutions as the rear wheel; how 

many revolutions does the front sprocket wheel, diameter 

10 inches, make ? Changing gear shifts the chain to a smaller 

rear sprocket; what speed will be attained at the same rate of 

pedaling by shifting to a 3-inch rear sprocket ? 

8. Place the following angles in their proper quadrants : 

150°, 240°, 760°, - 840°, 19^, — , - — Give the cor- 
3 4 3 

responding positive angles less than 2 -nr. 

9. In the circle of radius 10 what is the length of the arc 

of an angle at the center of 60° ? What is the difference 

between an arc of 60° and an angle of 60° ? . What is the 

length of the arc of 30°, 45°, —, 

10. What is the angle at the center in radians and degrees, 

in a circle of radius 100, subtended by an arc of length 100 ? 

50? 30? 100 7r ? Find the areas of the corresponding sectors 

of the circle. 

11. *In the artillery service angles are measured in “mils”$ 

a “ mil ” is defined as of a complete revolution. Coim 

pute the value in radians of one mil. 

12. On the “ mariner’s compass ” the complete revolution is 

divided into 32 parts, called “ points ” of the compass ; com¬ 

pare the “ points,” with degrees, “ mils,” and radians. 
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13. Compute the value of the “ mil ” in minutes and give 

approximate formulas for converting “ mils ” into. minutes 

and conversely. 

14. At what rate per second in degrees, and in radians, do 

the hands of a clock turn ? 

15. A grindstone of diameter 18 inches is turning 246 times 

per minute. Compute the linear velocity of a point on the 

rim. 

16. In grinding certain tools the linear velocity of the 

grinding surface should not exceed 6000 feet per second. 

Find the maximum number of revolutions per second of a 

10-inch (diameter) emery wheel and of a 5-inch wheel. 

17. Find the angular velocity in revolutions and in radians 

of an Ohio grindstone, 2 feet in diameter, which should have a 

circumferential speed of 2500 feet per minute. 

18. The path of the earth is approximately a circle with 

radius 93,000,000 miles; find the distance traveled in 1 day. 

What percentage of error would be introduced by using 365 

instead of 365^ days ? Show that the fact that we give r as 

93,000,000 implies that the position of the point on the earth 

would not affect our computation. 

3. Polar coordinates and angular variables. — Any point P 

in the plane may be located by giving its distance from a 

fixed point O, called the pole, and the angle which a line from 

the pole to the point P makes with a fixed line OIi, called the 

polar axis. In general terms the polar coordinates of any 

point, of a variable point, are designated by r and 6, radius 

vector and vectorial angle. (See p. 116.) 

r will be assumed to be a positive quantity, and 6 may 

be assumed as the angle generated by the rotation of the 

vector OP from an initial position on OR. A negative angle 

is generated with the polar axis by a line which turns from the 

polar axis, about O, in the clockwise direction. Thus the 

Z.ROP is taken as 4-30°; this same figure may also be con- 
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»C o rr1 
iC CO O lO O lO O lOO° o o o o © e* o 

CO <N (M HHOOiOOiOO'OOuOO 
_i __i _i_i "ts rr rr i 

lC O iO lO 
CO 

Polar coordinate paper 

Location f(10’ 30°)’ (10’ 150°)’ (10’ _15°0)’ and (1°’ _3°0)’ 
/ / _r \ / ft  r\ / ft  r\ / _r \ 

of 
(10’ ?)’ 

10, 5 7Tr 

¥ 
10, ■J)7Tr 

6 
and 10, — 7T 

6 

ceived as representing — 330°. Angles which differ by multi¬ 

ples of 360°, generated by lines rotating from an initial posi¬ 

tion upon the polar axis, are represented by the same diagram ; 

two such angles are commonly called “ congruentv angles. 

Each rotation of 360° brings a line back to its starting place. 

PROBLEMS 

1. Locate the points (3, 30°), (6, 90°), (4, 45°), (8, 135°), 

(3, 270°), (6, - 90°), (5, 180°), and (2, 390°). 

2. Locate the points 

(¥2, 7rr), and (3, 3?rr). 

U, 20, (6, 0), (3, 

3. What is common to all points on OR ? 

4. What curve is represented by r = 10 ? 

_ r 

5. What curve is represented by 0 = 30° or 6 — — ? 
6 
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4. Trigonometric functions — sine and cosine. — Assume an 

ic-axis to coincide with, the polar axis, and a y-axis to be drawn 

perpendicular to 

the polar axis at 

the pole. When 

6 is any fixed 

angle, the coordi¬ 

nates (x, y) in 

rectangular coor¬ 

dinates and (r, 0) 

in polar coordi¬ 

nates, of points 

upon the ray 

making the angle 

6 with OX, are 

connected by the 
6 = ZXOP ; sind =y-± = & = Ul = ^ ; Cos 0 =-• 

ri r2 r3 r r 

following relations : 

?/ 7/ 7/ 7/ 

— = — = — = for points upon the ray, 
r! r2 v3 r 

and 
r2 r3 r 

and = = 
/Y» /y» /yi /v» 

p ct/O • - 3 

#2 -f- y2 = r2, for any point (x, y) in the plane. 

We may say that •- is a constant for any given angle 0; 
r 

this constant changes as 6 changes. It is evidently a function 

of 0. Since r remains positive, this function is positive for 

all angles 6 represented in the upper quadrants ; negative for 

angles in quadrants III and IV. This constant is -J- for 6 = 30° 

^or V2 Qr j07 for 0 _ 45°; |V3 or .866 for 0 = 60°, 1 for 

9 = 90°, .866 for 9 = 120°, .707 for 6 = 135°, I for 5 = 150°, and 0 

for 0 = 180°, all by elementary geometry. When 6 is an angle 

which lies in quadrant III or IV, i.e. values of 0 between + 180° 
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and + 360°, this function of 0 becomes negative. This function 

of 6 is called the sine of 0, or sin 6. 

sin 0 =-■ 
r 

a X 
COS 0 = - • 

Polar coordinates, r and 0 
Rectangular coordinates, x and y 

sin 0 = -• 
r 

Similarly the ratio - 
r 

is a constant, whose 

value depends entirelv 

upon the position of the 

moving ray; this func¬ 

tion of 0 we detine as 

cosine 6. 

The consideration of the changes in value of these functions of 

0, sin 0, and cos 0, as 0 changes, is facilitated by thinking of the 

moving ray as fixed in length. 

For positive values of 0 less than 90°, 0 in I or, in symbolic 

language, 0 < 6 < 90°, it is evident that the complementary 

angle to any angle 0 gives a tri¬ 

angle similar to the triangle in¬ 

volving 0. In this second tri¬ 

angle the ordinate and abscissa 

correspond respectively to the ab¬ 

scissa and ordinate in the original 

triangle, whence L-®. Now 
r r 

— = sin (90° — (9), and - = cos 0; 
r r 
hence cos 0 = sin (90° — 0), or, in 

words, the cosine of any angle 

0 (0 < 0 < 90°) is the sine of the 

complement of 0. This explains 

the name, cosine 0, which is simply the u complement’s sine.” 
0(y ^ ?/ 

Further, — = ^, whence cos (90° — 6) — sin 0. 
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Either one of the triangles may be regarded as the origi¬ 

nal, the complementary angle will be found in the other; 

the demonstration, as given, applies in either case. The 

above figure serves, then, to demonstrate the two formulas, 

sin (90° — 6) = cos 0 and cos (90° — 0) = sin 6, for any positive 

acute angle 0. Later these formulas will be shown to hold for 

all angles 0, without restriction as to magnitude or sign. 

The formula cos (90° — 0) = sin 0 may be derived from 

sin (90° — 0) = cos 0 by substituting for 0 the value 90° — O', and 

finally replacing O' by 0. Since 0 may vary from 0 to 90°, 

90° — 0 varies between the same limits. 

sin (90° — 0) = cos 0, 

cos (90° — 0) = sin 0. 

5. Historical note. — The function sin 0 is Hindu in its 

origin, dating back probably to the fourth century a.d. The 

Hindus called the sine “ ardha-jiva,” meaning half-chord. In 

the eighth century a.d. the Arabs becoming familiar with Hindu 

astronomy and trigonometry, as used in astronomical work, 

transliterated the word “jiva” or “jiba” into “geib” ; the 

word in Arabic means curve and in the twelfth century Euro¬ 

pean translators into Latin of Arabic works of science trans¬ 

lated this word as “ sinus.” Into English the word comes by 

transliteration again, the sound and not the sense being pre¬ 

served. 

Plane trigonometry is possible using the chords instead of 

the half-chords ; this system was developed by the Creeks, but 

it leads to much more complicated formulas and methods. 

6. Tangent and the reciprocal functions. — The quotient —— 

varies as 0 varies ; this is then a function of 0. This function 

is called the tangent. By definition, 

tan 0 = 
sin 9 

cos 0 
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The reciprocals of sin 6, cos 6, and tan 0 are also functions of 

6; to these the names cosecant 0, secant 0, and cotangent 6 

have been given. The six fundamental definitions follow: 

tan 0 

r 

sin 0 _ y 
cos 0 x 

cosecant 0, or esc 0 =- 
sin 0 

secant 6, or sec 0 == —, 
cos 0 

cotangent 0, or cot 0 = —. 
& ' tan 0 

PROBLEMS 

1. Given sin 6 = .29, find cos 0 using the formula 

sin2 6 + cos2 0 = 1. The negative value has a meaning. 

2. In what quadrants is sin0 positive? in what quadrants 

is cos 0 positive ? 

3. Given sin 0 = .29, in what quadrants may 0 lie ? 

4. In what quadrants is tan 0 positive ? 

5. As a rotating arm of length 10, moving about 0 from 

OX, turns through 90°, discuss the changes in value of the y of 

the end of the moving arm; consider r as 10 and discuss the 

change in value of sin 0 as the angle generated increases from 

0° to 90° to 180°. What change in sin 0 as 0 increases beyond 

180°? 

6. Discuss similarly the changes in values of cos 0 as 0 

varies from 0° to 90°; from 90° to 180°. 

7. Discuss the possible values of tan 0. Take x = 1, -J-, .1, 

.01, .001 and compute y in a circle of radius 10. Discuss the 

values of tan 0. When x = .000001, y = 9.99999999999995 

what is the approximate value of tan 0 ? 

8. Given tan 0 = 3, find sec 0 from the formula 

sec2 6 = 1 + tan2 0. 

Compute both the positive and the negative values of cos 0# 

9. Express in terms of the sine of the complementary 

angle : cos 48°, cos 84°, cos 5G°, cos 48° 10', cos 90°. 
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10. Express in terms of the cosine of the complementary 

angle sin 48°, sin 84°, sin 56°, sin 48° 10', sin 90°. 

11. Complete the following table: 

cos 45° = .7071 = sin 45° 

cos 46° = .6947 = sin 44° 

cos 47° — .6820 = sin 

cos 48° == .6691 = sin 

cos 49° = .6561 = sin 

cos 50° = .6428 = sin 

Reverse the table, beginning sin 40° = 

sin 41° = 

12. Complete the following table : 

sin 35° = .5736 = cos 

sin 35° 10' = .5760 = cos 

sin 35° 20' = .5783 = cos 

sin 35° 30' = .5807 = cos 

sin 35° 40' = .5831 = cos 

sin 35° 50' = .5854 = cos 

sin 36° = .5878 — cos 

Notice that the sines of 35° + some minutes are cosines of 

angles 54° -f some minutes; the cosines of 35° + minutes are 

sines of the complements, 54° + minutes. In our tables you 

have written at the left of the table 35° and 54° at the right; 

sin at the top and cos at the bottom. 

1 sin cos 

0 .5736 .8192 60 

10 .5760 .8175 50 

20 .5783 .8158 40 

30 .5807 .8141 30 

40 .5831 .8124 20 

50 .5854 .8107 10 

60 .5878 .8090 0 
i cos sin i 

54° 
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7. Fundamental formulas. — Since x2 + y2 = r2, for any point 

on this circle of radius r, 

Note that although x or y or both may be negative, the rela¬ 

tion continues to hold since ( — x)2 = x2, and (—y)2 =z y2. 

Whence, by substitution, cos2 0 + sin2 0 = 1, for all values of 0. 

By division by cos2 0, 

^ sin2 0 _ 1 

cos20 cos2 0’ 

or 1 + tan2 0 = sec2 0, for all values of 0. 

Similarly, 1 -f cot2 0 = esc2 0. 

sin2 0 + cos2 0 = 1. 

1 + tan2 0 = sec2 0. 
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These formulas are of fundamental importance. They 

should be memorized. 

8. Functions of 0°, 30 , 45°, 60°, and related angles. — By 

plane geometry the values of these functions can be precisely 

determined for the angles which can be geometrically con¬ 

structed with ruler and compass. The 

most important of these angles are 30°, 

45°, 60°, and 72°; the values are evident 

for 0 and 90° (as limits). 

sin 45° = -h = — = .707. 
V2 2 

cos 45° = -h = — = .707. 
V2 2 

tan 45° = 1 = cot 45°. 

Functions of 45° 

One half a unit 
square. 

sin 60° = 
V3 

GO
 

c
 o
 

2/ .2 

o 

\UV/ 

. 

Functions of 60° 

Equilateral triangle. 

V3 
= .866. 

2 
= cos 30°. 

cos 60° = \ 
= sin 30°. 

tan 60° = V3 
= cot 30°. 

tan 30° = — 
V3 

= cot 60°. 

1 V3 

2, o 1 (it 1 

30* 

1 

2" 
1 

Functions of 30° 

Equilateral triangle. 

— K .oh. 
V3 3 

These diagrams should be memorized as half of a unit 

square for 45°, and half of an equilateral triangle placed ver¬ 

tically for the functions of 60° and directly related angles, 

and the same placed horizontally for the functions of 30° and 

related angles (—30°, 150°, 210°). 

sin0° = 0. sin 90° = 1. 

cos 0° = 1. cos 90° = 0. 

tan 0° = 0. tan 90° — go . 
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The meaning of the expression tan 90° = oo (infinity) is that 

as the angle 0 approaches nearer to 90° the tangent becomes 

larger than any quantity we may assign, however large; 

strictly at 90° the tangent function has no meaning, as a divi¬ 

sion by zero is involved. The expression tan 90° = co is not, 

then, an equality, like tan 60° = V3. 

Construction of the regular decagon 

OM divides OA in “ extreme and mean ” ratio. 

Algebraical method by solving, x2 = 10 (10 — x). 

The method of constructing a decagon combined with the 

solution of a quadratic equation enables us to find the sine of 

18°. The radius of the circle is divided in extreme and mean 

ratio to obtain the side of the inscribed decagon : 10(10—x)=x2, 

in a circle of radius 10. Whence, 

x2 10 x — 100 = 0, 

x = -5 ± V125 = - 5 ± 11.1803 = - 16.180 or + 6.1803, 

of which we take the positive value. One half of this value 

is the value of y in the triangle of reference for 18° when 

t = 10. Hence the sine of 18° is 

3.090 
= .3090. 

10 
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9. The Greek method, using chords. — By the methods of plane 

geometry, using chords instead of half-chords, the sine of half an angle 

and the sine of the sum and the difference of the two given angles can be 

computed. One theorem involved, in addition to the Pythagorean 

theorem, is not given in many geometries. It is called Ptolemy’s the¬ 
orem, as it is fundamental in the method of computing chords de¬ 

veloped by Ptolemy, a- Greek writer of the second century a.i>., whose 

text-book on astronomy, the Almagest, continued in active use for fifteen 
hundred years. The theorem is that in an inscribed quadrilateral the 
product of the diagonals is equal to the sum of the products of the oppo¬ 
site sides. 

From the chord of 60° one can compute the chord of 30° ; thus the 
sine of 15° is obtained. From 36° and 30° the sine of 3° can be obtained 
by using half the chord of the difference of two given arcs ; from this the 

sine of li°, f°, |°, TV, *°, -6y\ T2V, *t*°, ... can be computed. The 
sine of 1° cannot be obtained by this process, nor can the sine of r° ; 

these are found by other methods, giving approximations as accurate as 
desired for any practical purposes. 

10. Origin of the tangent and cotangent functions. — In the 

study of astronomy the angle of inclination to the horizon of 

Arabic shadow function 

The shadow varies as the cotangent of the angle of inclination of the sun. 

the sun and of other heavenly bodies is important. The ratio 

of the length of the shadow to the length of the vertical object 



12G UNIFIED MATHEMATICS 

casting the shadow gives the cotangent of the angle of in« 

clination of the sun. This function of the angle appeared 

before the tangent function in the works of the Arabic as¬ 

tronomer, Al-Battani, of the tenth century a.d., and it wa? 

called the shadow and later, right shadow or second shadow. 

The tangent function, being the ratio of the length of the 

shadow cast on a vertical wall to the length of a stick placed 

horizontally out from the wall, was called later the first 

shadow. The Arabs took the length of the stick as 12. 

Variation of sine and cosine as 6 varies. 

11. Variation. — As 0 varies the trigonometric functions 

also vary; it is desirable to fix in mind the changes of the 

three principal functions, viz. sin 0, cos 6, and tan 0, as 6 

changes by rotation of the moving arm. 

Taking r = 10, it is an easy matter to follow on the graph 
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the changes in the x and y of the end of the moving ray. As 

the moving ray starts from OX, an angle of 0°, the y or ordi¬ 

nate is zero. So we have that the sine, begins at zero for 
r 

0°; as 0 increases the y increases, reaching a maximum of 10 

when 6 is 90° and the maximum value then of sin 0 is or 1. 

As 6 increases beyond 90°, the ordinate begins to decrease, 

arriving finally at 0 when the moving arm is on OX'. For 

angles greater than 180° up to 270° the ordinate decreases, 

finally reaching a minimum or lowest value of — 10; the cor¬ 

responding minimum of sin 6 is — 1; from 270° on to 360°, 

completing a revolution, the sine increases from — 1 up to 0. 

For angles greater than 360°, or for negative angles, the 

moving ray would move through no new positions; for any 

such angle the trigonometric functions are equal to the func¬ 

tions of the corresponding positive angle having the same 

position. 

The limits -f-1 and — 1 of the sine function and cosine 

function are evident, of course, in the figure. In any position 

of the moving ray x and y are the sides of a right triangle of 

which r is the hypotenuse, except that on the axes x or y 

equals r; hence the quotients ^ and ^ are either numerically 

less than 1 or at most equal to 1. 

Note particularly on the diagram the sines of 30°, 45°, and 
K 7 1 8 7 

60°, as 7b, approximately and ; the values, .500, 0.707, 

and 0.866 may well be memorized. On the diagram it is a 

simple matter to read the sines of 10°, 20°, 30°, 40°, 50°, 60°, 

70°, 80°, and 90° as the corresponding ordinates divided by 10, 

correct to two decimal places. The cosines of these angles are 

read as the corresponding abscissas divided by 10. 

The tangent as - is not in a form to give the numerical value 
x 

without computation; however, by drawing the tangent line 

to the circle at A and producing r to cut the tangent line at 
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A rn .. A nr 

T you have "; whence -= tan a. and so the value of 
OA x’ 10 

the tangent of the angle can be read as the ordinate at A di¬ 

vided by 10. 

tan 30°= — = — = .58; 
V3 10 

tan 45° = = 1; 

tan 60° = — = — = 1.73. 
1 10 

When the angle increases 

beyond 90° the position of the 

terminal arm fixes the sign 

of each function; the sine is 

positive when the arm is in 

the upper quadrants, I and 

II, and negative in the lower, 

and the cosine positive to the 

right, I and IV, and negative in II and III. The tangent is 

positive in I and III, and negative in II and IV; when posi¬ 

tive the corresponding vertical lengths are cut off above A on 

the tangent at A, and when negative, in II and IV, the corre¬ 

sponding vertical lengths are cut off below A on the tangent. 

If the radius is taken as unity, the ordinate, abscissa, and 

tangent length represent numerically and in algebraic sign the 

sine, cosine, and tangent values of the corresponding angle. 

However it is usually more convenient to take a radius of 10, 

25, 50, or 100 and to interpret the trigonometric functions as 

ratios, as indeed they are. 

12. Related angles. — From our definitions it is evident that 

sin 0 has the same value for two angles, symmetrically placed 

with reference to the y-axis, 0 and 180° — 0; cos 6 has the 

same value for two angles symmetrically placed with respect 

to the &-axis, 0 and — 0, or 9 and 360° — 0; tan 0 has the same 

The tangent read as a length 

AT — 10 tan a. 
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?alue for two angles which differ by 180°, 0 and 180° + 6. All 

functions are the same for angles which differ by 360°, or by 

any integral (positive or negative) multiple of 360°, for the 

terminal arms of such angles will coincide when the angles are 

placed in position to determine the trigonometric functions. 

The trigonometric functions of 360° — 0, 180° — 0, 180° + 6, 

90° -J- 0, 90° — 0, and — 0, in terms of the functions of 0 are of 

particular importance in later work. In the figure the vectors 

6, — 6, 180° — 0, 180° + 6. Related angles 

Read the corresponding functions on the diagram. 

OP„ OP2, OPs, and OP, are the terminal arms of related 

angles in quadrants I, II, III, and IV. The vector OP, de¬ 

termines, we may say, a positive acute angle XOPand, 

further, any angles which differ from the positive acute angle 

by any integral multiple of 360°; OP2 represents the terminal 

arm of 180°- 0, OP3 of 180°+ 0, and OP, of 360°-0, or of - 0. 

If 0 is the angle represented in quadrant 1,180° — 0 is the 

angle here represented in II; and conversely, if 0 is in II, 

180°— 6 is in I; if 6 is the angle in III, 180°— 6 is the angle in 

IV, and conversely. Evidently if 6 in I is 30°, 180° — 0 is 150°, 

represented in II, and if 0 = 150°, 180° — 6 = 30° ; further, if 0 is 

— 330° in I, differing from 30° by — 360°, 180° — 0 will be 

180°—(— 330°) or 510° which is in II, 360° + 150°, differing 

from 180°— 30° by 360°. The ordinates in I and II are equal 
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and of the same sign, and similarly the ordinates in III and IV 

are algebraically equal ; r is the same in all. Hence for all 

angles 0, 
sin (180° - 0) = sin 0. 

The abscissas in I and II are numerically equal but opposite 

in sign, similarly in III and IV; the vectors are the same and 

positive. 

Hence cos (180° — 0) = — cos 0. 

By definition, tan (180° — 6) = s*n -0 for all angles. 
J ; cos (180° -0) h 

By substitution, 

tan (180= - 0) = si,l,!S": "■ = Sine = - tan 0 ; 
v ' cos (180° - 6) - cos e 

this formula also holds for all angles 0, since every formula in¬ 

volved has been shown to hold for all angles 0. 

If 0 is an angle in I, 180° 0 is in III; the corresponding 

positions are represented for any such angles by our figure. 

If 0 is represented by the vector in II, 180° -f 6 is represented 

by the vector in IV. The ordinate in III equals numerically 

the ordinate in I, but is opposite in sign; similarly the ab¬ 

scissas of I and III; similarly the ordinates and abscissas, 

respectively, of II and IV are equal in value and opposite in 

sign. 

Hence sin (180° + 0)= — sin 0, 

and cos (180° + 0)= — cos 0. 

These equalities hold for all angles 0. 

By definition, tan (180°-f0) = ,s^n(^§Q._+j) 
/ ’ v J cos(180°+<9) 

which holds for all angles 0. 

In precisely the same way 

— sin 0 

— cos 9 
= tan 0, 

and 

sin (— 0)= — sin 0, 

cos (—0)= cos 0, 

tan (— 0) = — t-an 0, for all values of 6. 
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0, 90° + 0. Related ang'.es wh'ch differ by 90J 

Our second figure can be used to show that 

sin (90° -{- 6) = cos 0, 

cos (90° + 6) = — sin 0, 
* 

for all values of 6. If 6 is the angle represented in I, 90° + 6 

is the angle here represented in II; if 6 is in II, 90° + 0 is rep¬ 

resented in III; if 6* is in any quadrant, 90°-f- 6 is in the quadrant 

following in the counter-clockwise sense. Now the ordinate in 

any quadrant here equals numerically and algebraically the 

preceding abscissa ; thus y2 = xx; y3 = x.2; y4 = x3; yx = o?4. 

For any angle 0, sin (90° -f 0) = cos 0. 

Similarly cos (90° + 0) = — sin 0, 

tan (90° + 0) = 
sin (90° -f 0) 

cos(90° 4-1) 

— cot 0. 

cos 0 

— sin# 
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The following relations have now been established for all 

angles 0: 

sin (180° — 0) = sin 0, 

cos (180° — 0) = — cos 0, 

tan (180° — 0)= — tan 0, 

sin (180° + 0) = — sin 0, 

cos (180° + 0) = — cos 0, 

tan (180° + 0) = tan 0, 

sin (— 0)= — sin 0, 

cos (—0)= cos 0, 

tan (— 0)= — tan 0. 
The formulas, 

sin (90° — 0)= cos 0, 

cos (90° — 0) = sin 0, 

and tan (90° — 0)= cot 0, 

have been established for acute angles. However, the preced¬ 

ing formulas for 90° + 6 which we have established for all 

values of 0, positive and negative, can be used to prove that 

these formulas for 90° — 6 hold for all values of 0. 

Thus sin (90° — #) can be considered as sin (90° -f-(— 0)), 

and as the formulas for 90° 4- 0 hold for all values of 0, we 

have: 

sin (90° -f-(— 0))= cos (— 0)= cos 0, 

and cos (90° + (— 6)) = — sin ( — 0) = — ( — sin 0) = + sin 6. 

Hence sin (90° — 0) = cos 0, 

and cos (90° — 0) = sin 6, for all values of 6. 

Further tan (90° — 0) = 

again for all values of 0. 

sin (90: — 0) _ cos 0 

cos (90° — 0) sin 0 

The student will do well to remember the diagrams and to 

connect the formulas with these. It is necessary to recollect 

only the representation for an acute angle 0; it is more desir¬ 

able to connect the formulas with the diagrams than merely to 

memorize the formulas. 
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PROBLEMS 

1. Find the sine, cosine, and tangent of 210°. The triangle 

is the same as 

placed in III. 

that used for the functions of 30°, but it is 

2. sin 150° = ; cos 150° = ; tan 150° = 

3. sin 315° = ; cos — 45° == II 
o lO

 1 ci 

4. sin 225° = ; sin 495° = ; tan 750° = 

5. Express the following in terms of functions of positive 

angles less than 45° : 

a. sin 170°= b. sin 130° = 

c. cos 170°= d. cos 130° = 

e. sin 220° = /. tan — 40° = 

6. Express in terms of functions of x: 

a. sin (x — 90°) = 

Hint. — Use first sin ( — 6) = — sin 6. 
b. sin (270° -f- x) = 

Hint. — Express first as 

(180° + 6); i.e. sin (180° + 90° + x) = — sin (90° -f x) = •••. 

c. cos (x — 270°)= d. tan (360° — x)~ 

7. Draw one quadrant of a circle of radius 10 half-inches ; 

construct the angles of 30°, 45°, and 60° and read their values. 

Bisect the angle of 30° and so obtain the values of the func¬ 

tions of 15°. Make a table of values of sines, cosines, and tan¬ 

gents, advancing by 15°. Note that the chord of 30° may 

readily be computed ; one half of this chord divided by the 

radius gives the sine of 15°. Find the sine of 7^° similarly. 

From the table of sines of acute angles from 0 to 90° by 

15° intervals, give the sines of the related obtuse angles up 

to 180°. 

8. Given tan 0 = 3, find sec 0 and cos 0what is the signifi¬ 

cance of the double sign in the answer? 
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9. Express in terms of functions of positive angles less than 

45°: 

a. sin 100°. 

b. cos 100°. 

c. tan 100°. 

d. sin 200°. 

e. tan 200°. 

/. sin 300°. 

g. cos (—60°). 

h. cos (—160°). 

i. tan (-420°). 

j. sin 750° 50'. 

k. cos 1030° 40'. 

I tan 218° 10'. 

13. Angles constructed from given functions. — Given 

sin 0 = 

construct both values of 0 (in I and II). The problem is 

in geometrical language to construct a right triangle with the 

hypotenuse and one side given, since sin 0 = 
r 

Take r as 7 and y as 4 ; since sin 0 = , 7 is to be one side of 
r 

our angle; with 7 as a radius and O as center describe a semi¬ 

circle above the a?-axis ; y = 4 is a line parallel to the axis of x, 

cutting the circle, x2 + y2 = 49, in two points. Find the inter¬ 

sections ax and a2; geometrically the angle is found. Using 

the Pythagorean theorem x2 -f- 42 = 72, and = 33, x = ± 5.75. 

The positive value of x is to the right and the negative to the 
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left; to the first corresponds the acute angle 0, and to the 

other 0 with the terminal arm in II. 

In II, sin 0=4. 
7 

K 
cos 6 = - — = - .82. 

In I, sin 0=4 = .57. 
K 7K 

cos 0 = = .82. 
7 

tan 0 = —i— = .70. 
5.75 

= - .70. 

This problem should also be solved using the formula 

tan 0 = — 
4 

5.75 

sin2 0 + cos2 0 = 1. 

Given tan 0 = 1.4, find the other 

functions of 0 and discuss the two 

solutions. 

tan $ = _ V. 
COS 0 X 

0 can be in I or III. 

Take y as 1.4, x as 1 (or y as 

14, x = 10, or other values as con¬ 

venient) ; evidently x as — 1 and 

y as — 1.4 gives 0 in III. 
Graphical solution of tan 6 = 1.4 

Since x2 + y2 = r2, r2 = 1 -f- 1.96 = 2.96. 

r = 1.72+ 

In I, sin 0 = or - ^ - V2.96 = .81 (or .814 to 
1.^2 V24)6 2.96 V 

three places). 

cos 0 = — = .581+. 
1.72 

In III, sin 0 = - .814, 

cos 0 = — .581. 

This problem should be solved also by using the formula 

1 -b tan2 0 = sec2 0. 
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EXERCISES 

1. Use 10 of the larger units on a sheet of cross-section 
paper and find by construction the sines of the angles 0°, 10°, 
20°, 30°, ••• 180°. Compare with the table. Note that the 
values for 10° and 170°, 20° and 160°, 30° and 150° ••• corre¬ 
spond. Use the formula cos 0 = sin (90° — 0) to find the 
cosines of 0°, 10°, 20°, — 90°. Note that in the second quadrant 
the cosines become negative. 

2. Construct an angle of 60°, using 10 as side of the equi¬ 
lateral triangle used. Find cos 60°, sin 60°, tan 60° to 2 places. 

3. Find the sine of 150°, 210°, 330°. 
Use half the equilateral triangle, placed horizontally with vertex of 30° 

angle placed at the origin. 

4. Find the sine and cosine of 120°, 135°, 225°, — 30°. 

5. Find the tangent of 120°, 135°, 225°, — 30°, from the 
data of the preceding problem ; find tan 120°, tan 135°, tan 225°, 
tan (— 30°) from the geometrical figure. 

6. By construction of a square, side 10 units, find approxi¬ 
mate values of the functions of 45°. Find the values using the 
Pythagorean theorem. 

7. Construct an angle of 30°, and find values of the 
functions. 

« 

8. Construct angles of 15° and T-J-0, and find the values of 
the functions. 

9. Given sin 0 = yV, find cos 0 and tan 0 ; indicate both 
solutions. 

10. Given cos 0 = .432, compute sin 0 and tan 0 to 3 places, 
6 in I. 

11. Given tan 0 = 4.32, compute sin 0 and cos 0 for 0 in III. 

12. Given tan 6 = construct 0 geometrically. 

13. Construct 0 geometrically, given sin 0 = ^. 

14. Given sin 0 = —■ find cos 0, 0 in IV. 

15. Given sin 0 = .43, find cos 6, 0 in III. 
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16. Given tan# = — .43, construct 0 in II, and find values 

of sin 6 and cos 0 from the figure. 

14. The inverse functions. — If we are given the sine s of an 

angle and desire to speak of the angle we can say “ the angle 

whose sine is s ” and we can abbreviate this expression in 

writing to arc sin s or to sin-1 s. Similarly the angle whose 

cosine is m is written arc cos m, or cos-1 m. Note that in sin-1 s, 

cos-1 m, and tan-1 k, the — 1 is not at all a negative expo¬ 

nent ; these expressions for angles are read anti-sine s, anti¬ 

cosine m, and anti-tangent k, or sometimes, inverse sine s, etc., 

respectively. 

In what follows we shall use mainly the symbols arc sin, 

arc cos, arc tan, arc esc, arc sec, and arc cot, although the 

other symbols are also in common use. Whether the “ arc” or 

“ — 1 ” symbols are used the student is strongly advised to 

read “ arc tan t ” or “ tan-11 ” always as “ the angle whose tan¬ 

gent is t,v and similarly expressions like arc cos x, arc sin i, and 

sin-1 k. 
A given angle has only one sine, but a given number is the 

sine of many different angles. A similar remark applies to 

the other five functions. To illustrate: sin 30° is 0.5 and no 

other value. But arc sin 0.5, the angle whose sine is 0.5, may 

be 30° or - 330° or 390° or 750° or 150° or 510° or 870° or any 

angle differing from 30° or 150° by an integral multiple of 360°. 

The sine of any one of these various angles is 0.5; 

sin (k 360° + 30°) = .5 and sin (k 360° H- 150°) = .5, 

where k is any integer. 

PROBLEMS 

1. Given arc cos \ =0, construct 6 both in the first and in 

the fourth quadrant. Note that the problem is precisely the 

same as though the requirement were to construct 6 when 

given that cos # = i ; or to construct arc cos 

2. Between what values must k lie to have any solution for 

0 = arc cos k ? 
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3. Given that the angle, arc sin i, is obtuse, construct the 

angle. 

4. Construct the following angles of the first quadrant: arc 

sin-f, arc tan (+ 2), arc cos T7Y, arc sin .43. Give the approxi¬ 

mate value of the other two principal functions in each case. 

5. Give five solutions of each of the following : 

arc cos i- = ; arc tan 1 = ; arc sin 0 = ; arc cos 1 = 

6. If arc sin .438 = 26°, what is arc cos .438 ? 

7. What is the value of arc sin — .438? Give four answers. 

Give the general formula representing angles 6 which satisfy 

6 = arc sin (— .438). What is arc cos — .438 ? 

8. On the following diagram, regarding the circle as having 

a radius of 100, read the numerical value to two decimal 

places, of the sine, cosine, and tangent of each angle repre¬ 

sented. Each minor division represents 4 units. 



CHAPTER VIII 

TABLES AND APPLICATIONS 

1. Tables. — The tables of the trigonometric functions are 

computed by processes dependent upon formulas derived in 

the higher mathematics. We have shown the graphical 

method of finding sine, cosine, and tangent, which serves also 

to bring out the fact that the sines of angles from 0 to 45° are 

at the same time cosines of the complementary angles ; simi¬ 

larly since tan (90° — x) = cot x, it follows that the tangents of 

angles from 0 to 45° are cotangents of the complementary 

angles, from 90° down to 45°. Since tables are given of both 

sine and cosine it is necessary to give values of both functions 

only up to 45°, and similarly with tangent and cotangent. 

Thus sin 26° 10' is found in the table of sines which reads 

down with 26° at the left, and below 10' as given at the top; 

if the cos 63° 50' is sought we look for 63° at the right of the 

table of sines with the minutes to be read below; and we find 

that the cosine table is the same as the table of sines, but 

reading up; this brings us to precisely the same place in 

the tables as sin 26° 10', the complementary angle; similarly 

sin 63° 50' is sought in the row marked 63 at the left of the 

table and leads to the value which read as a cosine represents 

cos 26° 10'. 

For angles greater than 90° the formulas which we have 

given for related angles are applied. Probably the simplest 

formulas to apply to obtain the functions of obtuse angles are 

the formulas, 
sin (90° -j- x) = cos x, 

cos (90° + x) = — sin x. 
139 

and 
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Thus sin 128° 35' = cos 38° 35'; 

cos 128° 35' = - sin 38° 35'. 

It is well to note that subtracting 90° from angles greater 

than 100° and less than 200° simply increases the tens’ digit 

of the angular measure by one, dropping the hundreds’ digit. 

The formulas for 180° 4- «, and for 360° — a or — a, are 

used for angles in III or IV. 

Since computation is largely effected by means of logarithms, 

it becomes desirable to have separate tables of the logarithms 

of the trigonometric functions. The sines and cosines of all 

angles are numerically less than 1 and so are tangents of 

angles less than 45°; hence the logarithms of these numbers 

will have negative characteristics. In the logarithms of the 

trigonometric functions, — 10 is to be annexed to the logarithm 

as given in the table for sines, cosines, and tangents up to 45°. 

Thus log sin 30° is 9.6990 — 10 ; log sin 56° 10' = 9.9194 — 10 ; 

log tan 34° 10' = 9.8317 - 10 ; but log tan 56° 10' = .1737. 

2. Interpolation. — The insertion, by interpolation, of the 

natural and logarithmic functions of angles lying between 

those expressly given in the tables follows precisely the same 

lines as in the corresponding problem in the logarithms of 

numbers. Our tables give these functions for angles increas¬ 

ing by multiples of 10 minutes ; interpolation enables us to 

compute the functions of angles to minutes; in using tables 

giving the functions to minutes interpolation enables us to 

compute to tenths of a minute. Note that the assumption is 

always that if angles are read to minutes you compute only to 

minutes; the tables used should correspond, to the precision 

of measurement of the given data. Four-place tables are, 

in general, sufficiently accurate for measurements which are 

made to four places in numbers, and to minutes in angular 

measurement. 

Illustrative problems. 1. Find by interpolation (a) sin 36° 15', 

(6) log sin 36° 16', (c) log cos 36° 18', and (d) log tan 36° 14'. 
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Tabular Values- — Compare with your tables 

angle sin log sin cos log cos log tan 
36° 10' .5901 9 7710 .8073 9.9070 9.8639 53° 50' 
36° 20' .5925 9.7727 .8056 9.9061 9.8666 53° 40' 

cos log cos sin log sin log cot • angle 

The values to four decimal places of the functions of angles 

between 36° 10' and 36° 20' evidently lie between the values 

which are here given. Thus sin 36° 10' is .5901 and sin 36° 20' 

is .5925, an increase of 24 units of the fourth place; this 24 

is called the tabular difference. To the ten equal steps of in¬ 

crease from 36° 10' to 36° 20', by minutes, correspond ten in¬ 

creases approximately equal to each other, in the sines of these 

angles, making a total increase in ten steps of 24 units of the 

fourth place. The tenths of 24 are respectively, 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

2.4 4.8 7.2 9.6 12 14.4 16.8 19.2 21.6 

In adding, as our logarithms are given only to four places, 

we add rejecting tenths, and retaining in the last place the 

nearest unit. Thus for tenths of 24 we use always 2, 5, 7, 10, 

12, 14, 17, 19, and 22. The interpolation does not always give 

the correct result to four places, although in the values of the 

sine the error is always less than 1 unit of the fourth place. 

In the above values of sin 36° 11' to 36° 19' as given by the 

addition 2, 5, 7, 10, 12, 14, 17, 19, and 22 units of the fourth 

place to .5901 the first value .5903 should be, to 4 places, 

.5904; the error is less here than of 1 % of the value taken. 

1. a. sin 36° 15' = .5901 + ^ of .0024 = .5913. 

Method: Tabular difference is 24; to .5701 add .5 of 24 

units of the fourth place. 

b. log sin 36° 16' = 9.7710 - 10 + T%(.0017) = 9.7720 —10. 

Tabular difference is 17; 10.2 is replaced by 10, and this is 

added in the third and fourth decimal places to 9.7710. 
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o. log cos 36° 18' = 9.9070 - 10 - T\(.0009) = 9.9063 - 10. 

Tabular difference is 9 ; cosine and log cosine are decreasing 

functions; 7 units of the fourth place must be subtracted. 

d. log tan 36° 14' = 9.8639 -10 + T\(.0027) = 9.8650 - 10. 

Tabular difference is 27; 10.8 is replaced by 11. 

2. Find to minutes, by interpolating, the angle when given 

(a) sin a = .5919, (5) log sin a = 9.7717, and (c) log cot a = 

9.8650 ; find a in each case. 

3. (a) sin a = .5919; tabular difference is 24; given differ¬ 

ence .5901 to .5919 is 18 units of the fourth place. Among the 

tenths of 24 find the nearest to 18 ; 16.8 and 19.2, respectively 

.7 and .8 of 24, are equally near and the even number of 

tenths is commonly taken, in such cases, by computers. 

sin a = .5919 ; a = 36° 18'. 

(ib) log sin a = 9.7717 ; a = 36° 10' -b T?r of 10' (to minutes). 

a = 36° 14'. 

Tabular difference is 17; 7 is nearest to .4 of 17. 

(c) log cot a = 9.8650 ; a = 53° 40' + yt °f 

Tabular difference is 27, a decrease; given decrease is 16; 

among the tenths of 27 the nearest to 16 is 6 ; hence a = 53° 46'. 

Had log cot a been given as 9.8651 — 10 or 9.8649 —10, the 

angle a would again be given as 53° 46'. 

PROBLEMS 

1. Find the 20 natural trigonometric functions following, 

without interpolation; time yourself; limit 6 minutes. 

a. sin 36° 10'. 

b. tan 63° 20'. 

c. cos 34° 10'. 

d. cot 80° 00'. 

e. sin 59° 30'. 

/. cos 48° 50'. 

g. tan 70° 30'. 

h. sin 28° 50'. 

i. tan 16° 20'. 

j. cos 8° 40'. 

k. sin 157° 10'. 

l. cos 214° 10'. 
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m. cot 141° 00'. Q- tan — 64° 20 

ft. tan 329° 30'. r. sin 384° 00'. 

0. cos 136° 50'. s. cot 756° 00'. 

p. cos - 28° 10'. t. sin 242° 40'. 

2. Find the logarithms of the above 20 trigonometric func¬ 

tions, timing yourself. Limit 7 minutes. 

3. Find the following 20 logarithms, interpolating; time 

yourself. Limit 12 minutes. 

a. log sin 36° 14'. /• log cos 48° 57'. k. log sin 152° 15'. 

b. log tan 63° 29'. 9- log tan 70° 33'. 1. log cos 214° 26'. 

c. log cos 34° 14'. h. log sin 28° 51'. m. log cot 141° 05'. 

d. log cot 80° 06'. i. log tan 16° 22'. ft. log tan 329° 33'. 

e. log sin 59° 32'. j- log cos 8° 48'. 0. log cos 136° 57'. 

p. log cos - 28° 11'. 

i 9- log tan - 64° 26' 

r. log sin 384° 03'. 

s. log cot 756° 08'. 

t. log sin 242° 44'. 

4. Find the angles less than 90° corresponding to the follow¬ 

ing 20 logarithms ; no interpolation ; time 6 minutes. 

a. log sin a = 9.6878 — 10 

b. log cos a = 9.9954 — 10 

c. log tan a = 9.4898 — 10 

d. log cot cc = .5102 

e. log cos a = 9.8241 — 10 

/. log tan a = 9.7873 — 10 

g. log sin a = 9.3179 — 10 

h. log tan a = .2155 

i. log cos a = 8.9816 — 10 

j. log cot a = 9.9341 — 10 

k. log sin a = 9.9499 — 10 

l. log cos a = 9.8081 — 10 

m. log cot a = .8904 

ft. log tan a = 8.9420 — 10 

o. log cos a = 9.9640 — 10 

p. log cos a = 9.9757 — 10 

q. log tan a= .5720 

r. log sin a = 8.9403 — 10 

s. log cot a = .0152 

t. log sin a = 9.9977 — 10 

angle which would satisfy the 

sin a = 9.6990—10, 
5. Give in each case another 

above relationship, in problem 4 j e. q. if log 

a = 30° or 150°. 
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; interpolate ; time yourself. 

a. log sin a = 9.6881 — 10 

b. log cos a = 9.9955 — 10 

c. log tan a = 9.4861 — 10 

d. log cot a = .5104 

e. log cos a = 9.8228 — 10 

/. log tan a = 9.7879 — 10 

g. log sin a = 9.3200 — 10 

h. log tan a = .2144 

i. log cos a — 8.9912 — 10 

j. log cot a = 9.9358 — 10 

Ji. log sin a = 9.9502 — 10 

/. log cos a = 9.8092 — 10 

m. log cot a = .8955 

n. log tan a = 8.9492 — 10 

o. log cos a = 9.9645 — 10 

p. log cos a = 9.9753 — 10 

q. log tan a = .5699 

r. log sin a = 8.9404 — 10 

s. log cot a = .0137 

t. log sin a = 9.9978 — 10 

3. Angles near 0° and 90°. 

— For angles near zero, 

from 0° to 2°, the cosines 

vary only from 1.0000 to 

.9994; the cosine function 

to 4 places cannot then be 

used for determination of 

the angle to minutes. Simi¬ 

larly, of course, the sines 

of angles from 88° to 90° 

vary between the same 

Angle 10° in a circle of radius 5 inches limits. For ordinary pur- 

PM = .868 in.; arc P.4 = .873 in.; poses it will suffice to 
AT — .882 in. avoid the use of the cosine 

6. Find the following 20 angles 
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in the interval from 0° to 2° or 3° or 4°; the method of avoid¬ 

ance is explained below. 

In computing graphically the values of sin 9 and tan 9 even 

with a radius of 10 cm., or of 5 inches, the difference between 

tan 9 and sin 9 becomes too small to read accurately when 9 

is less than — (i.e. 7£°; .131r). For 10° which is .1745 radian, 

sin .1745r is .1736 and tan 9 is .1763; for 5° or .0873r, 

sin 0=„O872 and tan 9 is .0875'; for 1° or .01745', sin<9=.01745 

and tan 9 is .01746 or 5 places are necessary to exhibit any 

difference between 9, sin 9, and tan 9. 

Evidently, triangular area OAP < sector OAF < area OA T, 

but the area of the triangle 

OAP=\OAx MP 
= \ r x r sin 9 
= i- r2 sin 0. 

The area of the sector OAP = \ r20, since 9 is measured in 

radians, and the area OAT = i r2 tan 9. 
Whence, by substituting, 

i r2 sin 9 < \r29 < |-r2 tan 9. 

sin 9 cos 9 

n 
Whence, as 9 diminishes, -—-, lying between 1 and a num- 

sm 9 
ber approaching 1, can be made as near to 1 as we please. By 

methods of plane geometry, using 30°, 15°, 7-J0, 3|°, together 



146 UNIFIED MATHEMATICS 

with 72°, 60°, 12°, 6°, and 3° it can be established that cos-f° 

differs from 1 by less than yiy of 1 % ; cos |° = .99991; for 

any angle 0, less than |°, 0 will exceed sin 0 by less than y±-y of 

1 % and tan 0 will exceed 6 by less than of 1 %. Similarly 

the discrepancy between sin 0 and tan 0 for 0, any angle 

less than 3|°, is less than i of 1 %, and 

for any angle up to 8° the difference is 

less than 1 % of either value. 

On the earth’s surface ordinary dis¬ 

tances are regarded as straight lines. 

However for many purposes the deviation 

from a straight line is of importance; 

thus particularly with projectiles of long 

range, the deviation is of vital importance. 

In the figure given if PA represents an 

arc on the earth’s surface, PT may be 

regarded as the altitude of a balloon, 

aeroplane, or top of a mountain, and TA 
gives the distance of the horizon. Z TO A 
is equal to the dip of the horizon. AM 
is the drop in the distance twice PM, 

i.e. from T an observer would note, on 

the. ocean, the complete disappearance of a 

ship of height AM when the ship is at Q. 
By algebraic process, A T = V2 rh + h2; 

when h is measured in feet, r in miles, 

and TA in miles, this gives for values of 

h less than 15 miles, AT = \/~, correct to 1 of 1 %. Check 

using 3960 miles as r. 

Arc PAQ on the 
earth’s surface 

TA, horizon dis¬ 
tance. 

PT, height of ob¬ 
server. 

PROBLEMS 

1. Given that an observer is at a height of 1000 feet, com¬ 

pute the distance to the horizon, r = 3960 miles. What is 

the dip of the horizon? Note that the tangent of the dip- 

angle is the horizon distance divided by the radius. 
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2. Find the angle subtended at the center of the earth by 

an arc of length 1 mile, 10 miles, 20 miles. 

3. What is 1° of latitude in miles ? 

4. Degrees of longitude vary in length from degrees on a 

great circle of the earth at the equator to 0 at the poles. 

Find the radius of the small circles on which degrees of longi¬ 

tude are measured, for 40° north latitude. Where else on the 

Circle of 40° N. latitude 

earth’s surface would degrees of longitude be the same ? From 

35° to 45° N. latitude discuss the percentage variation in 

degrees of longitude, as compared with degrees of longitude 

at 40° N. latitude. 

5. How far below the arc of 1 mile on the earth does the 

corresponding chord fall at the lowest point ? Find the same 

distance in inches for arcs of 2 miles, 8 miles, 10 miles, 16 

miles, 20 miles. 

6. What part of the height of a mountain, measured o.u 

the altitude, is not visible from a point 20 miles distant ? 

7. From what distance can the top of a mountain 10,000 

feet high be seen ? 

8. What distance from shore is a ship whose masts, 

55 feet high, are just disappearing from view? 
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9. Using the figure in the text, find an approximation for * 

TA in miles when li is small and measured in feet. 

2 

for values of h less than 5 x 5280, 

neglected. 

can be 

10. Find the “dip”’of the horizon and the distance from 

the balloon for h = 100, 500, and 1000 feet. 

11. Find the distance from the point below the balloon on 

the earth's surface to the points on the horizon viewed by 

the observer in the balloon. 

12. According to the approximate formula of Huyghens 

the length of a circular arc, a, is connected with the chord, c, 

of the arc and the chord, h, of half the arc, by the formula 

a = ft—o - c. Compute the actual length. 



CHAPTER IX 

APPLICATIONS OF TRIGONOMETRIC FUNCTIONS 

1. Parallel and perpendicular lines.—Tlie slope of the line 

joining (xh yx) to (x2, y2), 

m _ 2/2 - Vi = QP2 
x2 — xl Px Q' 

evidently represents the tangent of the angle which the line 

joining these two points makes with the positive ray of the 

a>axis, i.e. the angle from the a-axis to this line. We have 

taken P2(x2, y2) to the 

right of P\(xn 2/r)? but 

obviously interchanging 

P2(x2, y2) and Px(xh yx) 

simply changes sign of 

both numerator and de¬ 

nominator of the fraction 

representing the slope m ; 

Q is in each figure the 

point (x2, 1/i), and PXQ 

and QP2 have like signs 

if P\P2 or P2P\ makes a 

positive acute angle with 

the positive ray of the 

a’-axis ; and Pj Q and QP2 

have unlike signs in the m = y2 ~ yi 

contrary case when PXP2 

or P2PX makes a negative acute angle with OX. It is to be 

noted that shifting the y-axis, parallel to itself, either to the 

right or to the left does not affect the value of x2 — a*b since 
149 

A 
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whatever the position of 0, AXA2 — PXQ = OA2 — OAx = x.2 — xt; 

similarly no change is made in the value of the slope by 

shifting the .r-axis parallel to itself, up or down. 

Given y = mxx + k, any straight line, mx represents the 

tangent of the angle which this line makes with the positive 

ray of the :r-axis. Any parallel line has the same slope ; 

m2 = mx for two parallel lines. Any perpendicular line has 

the slope angle 

ct2 = 90° + ; tan a* = tan (90° + «i) = — cot cq = , 
tan cq 

whence m2 = — —. Of two parallel lines the slopes are equal, 

and of two perpendicular lines the slope of the one is the 

negative reciprocal of the slope of the other, i.e. 

m2= —— or, by solving, m1 == —— • 
ml m2 

Given y = mx -f 6, any family of parallel lines of slope m. 

y = — — x + k represents the family of perpendicular lines, 
m 

Illustrative problem. — Given 3 x + 4 y — 7 = 0, find the slope, the 

parallel line through the origin, the family of perpendicular lines, and 

the perpendicular line through (— 1, 5). 

4 y = — 3 x + 7. 

y = — | x 4- £, m= tan d = — f, 6 = — 36° 52'. 

y = — f x is the parallel line through the origin. 

Derive this both from y = mx + b and y — yx — m(x — x{). 

1 4 
The perpendicular line has the slope, m2—-= + - • 

mx 3 

y = | x -f k. is the family of perpendicular lines. 

y — 5 = |(x-fl)is the perpendicular line through (—1, 5). 

EXERCISES 

1. Write the equations of the sides of the triangles used in 

finding the functions of 30°, 45°, and 60°. 
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Acceleration down a plane, 

g sin oc 

2. Gravity imparts to a falling body a vertical velocity of 

32 t feet per second, with t seconds as time during which the 

body has fallen ; on a smooth in¬ 

clined plane gravity imparts a ve¬ 

locity of 32 t • sin a where a is the 

angle of inclination of the plane. 

Find the velocity imparted at the 

end of 1 second to a body sliding 

(without friction, assumed) on an 

inclined plane of slope 10°, 20°, 

30°, 40°, 50°, ... to 90°. 

3. In a freely falling body 

s = 16 £2 5 while on a plane s = 16 t2 • sin a ; find s for t — 10, 

a = 30°, 45°, and 60°. 

4. To pull the body up the plane requires a force of 

W sin a -j- k W • cos a, where A; is a constant dependent upon 

the friction. Find the force to pull a weight of 1000 lb. up 

an incline of 30°, k = i. 

5. Find the slope of the line joining (—3, 7) to (5, 9); 

find the middle point of this line; find the equation of the 

perpendicular bisector of the segment. 

6. Write the equation of the line through (—3, 5) making 

an angle tan-1 yy (m = y\-) with the cc-axis, and write the 

equation of the perpendicular from (1, 8) to this line. 

7. Find the foot of the perpendicular line found in prob¬ 

lem 6 and then find the distance between (1, 8) and the origi¬ 

nal line, using the distance formula. 

8. Find the slope angles in degrees and minutes of the 

following lines : (a) 6 y _ 12 * _ 7 = 0> 

(6) 12 y + 5 x — 3 = 0, 

(c) x — y — 5 = 0, 

(d) 3 x — y — 8 = 0. 

9. Find lines through (1, 5) parallel and perpendicular to 

each of the lines in the preceding exercise. 
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10. Find the perpendicular bisectors of the sides of the 

triangle formed by the three lines given by the equations, 

5 y—12 x— i =0, 12 y-j-5 £C—3 = 0, and x-\-y — 5 = 0. Find the 

area of this triangle graphically and analytically. 

2. Projections of vectors. — OP has been designated by r, for 

radius vector of the point P. The line OP has magnitude, given 

by r, and direction, given by the angle 6. We may use this 

system of representation to repre¬ 

sent velocities, forces, and other 

physical quantities. As a velocity 

this vector may be resolved into 

two component velocities, repre¬ 

sented by OA and OB. OA repre¬ 

sents the velocity in the x direction, 

x = r cos 0; OB represents the y 

velocity, r sin 0, the vertical com¬ 

ponent of the velocity of a body 

moving with velocity represented by 

OP. The projection of any vector 

upon a directed line is defined as 

the directed distance between the perpendiculars dropt from 

the extremities of the given vector upon the line; it is given 

by v cos a wherein v represents the vector and a is the 

angle between the positive rays of the two lines. Since 
cos (— a) = cos a, we do 

not need to distinguish 

between the two lines, 

i.e. the angle can be 

taken as obtained by ro¬ 

tation from the given 

line to the given vector, 

or vice versa. 

It is a fundamental as¬ 

sumption that any two vector quantities which may be repre¬ 

sented acting together at the same point may be replaced by 

Components of a vector 

OA represents the x com¬ 

ponent of OP. 

OB represents the y com¬ 

ponent of OP. 

OP is the resultant of OA 
and OB. 



APPLICATIONS OF TRIGONOMETRIC FUNCTIONS 153 

a single vector which is the diagonal of the parallelogram 

formed by the two given vectors. The process is called 

vector addition. This assumes that in space, for example, an 

imparted velocity S. E. of 50 miles per hour increased by a 

velocity N. E. of 30 miles per hour produces the same displace¬ 

ment whether the two forces which produce the velocities act 

together for one hour, or whether both act in succession each 

for an hour. 

The projection of a broken directed line upon a given 

directed line is the same as the projection of the straight line 

joining the ends of the 

broken line. 

This follows from the 

fact that on a directed 

line 

M,M2 +M2Mz = M,M3, 

whatever the relative po¬ 

sitions of Mi, M2, and 

Mv The directed length 

MxM2 is the projection of 

PiPo, M2Mt is the pro¬ 

jection of P2P3, MXMZ is 

the projection of P\PV 

The physical interpreta¬ 

tion is simply that the 

total component in the 

x direction (or any other) imparted by two (or more) vectors 

is the algebraic sum of the two (or more) x components of 

these vectors, taken separately. 

When the velocity is given as v, vx and vy are commonly 

used to designate the x and y components of the velocity; 

evidently, also & = V* + V2, 
vx — v cos 6. 

vy = v sin 6. 

Projection of a broken line on a directed 

line 
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PROBLEMS 

1. A bullet, muzzle velocity of 3000 feet per second, leaves 

the gun elevated at an angle of 10°. The position, neglecting 

air resistance, is determined at the end of t seconds by the two 

equations : y = o)0001 sin 10° _ 16 

x = 30001 cos 10°. 

Find t when y = 0 ; when y = 5 ; explain the two values in 

each case. Find x for both values of t which make y = 0. 

2. The velocity is a vector resolved into components 

v.r = v cos a and v„ = v sin a. Find vr and v„ when a = 10°, 

20°, 30°, 45°, 60°. 

3. A ship sails S. E. for 2 hours at 8 miles per hour and 

E. N. E. (221° off East) for 2 hours at 6 miles per hour. 

Find the x and y of the resultant position. 

4. The propeller imparts to a steamer a velocity of 8 miles 

per hour S. E. (— 45°) and the wind imparts a velocity of 

E. N. E. (+ 22-i0) of 6 miles per hour. Find the position at 

the end of 1 hour. 

5. A boy runs east on the deck of a steamer at the rate of 

20 feet per second ; the steamer moves south at the rate of 15 

miles per hour. Find the actual direction in which the boy is 

moving and his total velocity. 

6. Find the velocity in miles per hour of a point on the 

earth’s surface due to the rotation of the earth on its axis; 

find the velocity per second due to the revolution about the 

sun ; compare, and note that the resultant can never be greater 

than the sum nor less than the difference of the two. Take 

values only to 3 significant figures; 3960 mi. = r; 93,000,000 

miles as distance from sun. 

7. The United States rifle, model 1917, has a muzzle velocity 

of 2700 feet per second. Find the horizontal velocity of the 

bullet when the angle of elevation is 1°, 10°, 20°, 30°, and 45° 

respectively. 
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3. Normal form of a linear equation. — The slope-intercept, 

point-slope, and two-point formulas correspond to the fact 

that a straight line is determined when one point on the line 

[(0, A?) or (x1} yt) respectively] and the direction of the line are 

given, or when two points are given. A straight line may be 

determined in many other ways ; one method which gives a 

further useful form of the equation of the straight line deter¬ 

mines the line in terms 

of the length and direc¬ 

tion of the perpendicular 

from the origin upon the 

line. 

Thus if a perpendicu¬ 

lar from the origin upon 

a given line is 5 units 

long, and makes an angle 

of 120° with the a>axis 

(positive ray) geometri¬ 

cally we construct the 

line by constructing the 

ray of 120° and upon it taking a length of 5 units. At the 

extremity of this line of 5 units length a perpendicular is 

drawn which is the required line. The point N is readily 

found to be (5 cos 120°, 5 sin 120°) and the slope is —~ — 
v ’ . tan 120 ’ 

therefore the equation of the line to be found is 

A line determined by the normal to it 

from the origin 

Normal length, 5 ; a = 120°. 

y -5 sin 120° = 
- 1 

tan 120c 
(x — 5 cos 120°). 

sin 190° 
tan 120° = — .w, _; substituting, clearing of fractions, trans¬ 

posing 
cos 120° 

x cos 120° -f- y sin 120° — 5 (sin2120°+ cos2120°)= 0, 

x cos 120° -b y sin 120° — 5 = 0, since sin2 a + cos2 a = 1, 

1 . V3 r A ~2a + —2/-5=0. 
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In general, given the normal ON to the line from the origin, 

of length p, and making angle a with OX, the extremity N is 

(jj cos a, p sin a) ; the slope is 

and the equation becomes 
_ cos a 

sin a' 

x cos a + y sin a — p =■ 0, 

p is taken as a positive quantity 

just as r has been taken. Evi¬ 

dently if p = 0, 

x cos a + y sin a = 0 

represents a parallel line through 

the origin. Evidently also for 

parallel lines on opposite sides of 

the origin the angles a and a' differ by 180° ; i.e. a' = 180° + «, 

whence sin «' = - sin «. 

cos a' = — cos a. 

x cos (t + y sin (t — p = 0 

Normal form. 

The projection on ON 1 [ the projection on ON 

of OM + MP j 6qUalS \ of OP 

4. Normal form derived by projection. — We have shown that 

the projection of any broken line upon any given line is the 
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same as the projection upon the given line of the vector join¬ 

ing the ends of the broken line. Let P(x, y) be any point 

on the line whose equation.is sought; drop PM the perpen¬ 

dicular from P to the a>axis; the projection of the broken 

line OM + MP on the normal ON is equal to the projection of 

OP on ON. Now OM = x makes the angle a, by hypothesis, 

with ON, and MP makes the angle a — 90° ; hence the projec¬ 

tion of OM on ON is x cos a (OA, negative in the figure 

since a is obtuse) and of MP on ON (AN in the figure) is 

y cos (a — 90°) ; the projection of OP on ON is ON itself, or p\ 

further y cos (a — 90°) = y cos (90° — a) = y sin «. Then, since 

projecting on the line ON, 

projection of OM + projection of MP — projection of OP, 

we have 

x cos a + y sin a = p, whence x cos a + y sin a — p = 0. 

5. To put the equation of a straight line in normal form. — 

Let the given equation be3a? — 4y + 7 = 0, and let 

x cos a 4- y sin a — p = 0 be the same equation in normal form. 

If these two equations represent the same line, these lines 

must have the same slope and the same y (or x) intercept. 

— cos a _ 3 7 _ p 

sin a 4 ’ 4 sin a 

-3 . 
cos a =-sin a. 

4 

cos2 a = T9^ sin2 a. 

Rut cos2 a = 1 — sin2 a, 

whence 1 — sin2 a = T96 sin2 a ; -f-f- sin2 a = 1; sin a = ± |. 

p — q- i sin a, whence since p is to be positive, sin a must be 

taken as positive. Hence sin a = + 4, P ~ i > cos a = “ i ’ 
and thus the normal form is — fx + fy — -J = 0. This equa¬ 

tion is obtained by dividing each member of the original 

equation by — 5. 
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In general to put Ax + By + 0=0 in the normal form, 

x cos a + y sin a — p = 0, one must multiply through by some 

quantity k, so that JcA= cos a, TcB = sin a, and kC = —p', 

kG——p shows that 1c must be chosen opposite in sign to 0; 

squaring both members of the first two equations and adding 

gives k2 (A2 + B2)= 1, whence k = ±— , of which the 

sign is taken as opposite to 0. VA2 + B2 

Bule. _ To pUt an equation Ax + By+C= 0 in normal form 

divide through by = ± VA2 + B2, with the sign taken opposite to 

that of the constant term. 

6. To find the perpendicular distance from a point to a line. — 

In solving this problem one considers the various forms of the 
straight line 

which may be 

employed. Evi¬ 

dently the normal 

form is most 

hopeful for use, 

since it involves 

the perpendicular 

distance of the 

given line from 

the origin. 

Through the 

point P1 (a+ yx) 

draw a line paral¬ 

lel to the given 

line; evidently 

the difference be¬ 

tween the nor¬ 

mals to the two 

lines gives the 

Three possibilities must be considered: 1. Px, on 

Distance of a point from a line 

distance. 

the opposite side of the given line from the origin; 2. / i) 
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on the same side of line as 0, the origin, but such that the 

normal angle is the same, i.e. so that the parallel line through 

Px{xx, yx) falls on the same side of 0 as the given line, P\ on 

the figure; 3. Px, on the same side as the origin, but the 

normal angle increased (or diminished) by 180°, designated by 

P"x on the figure. 

Let x cos a + y sin a — p = 0 be the equation of the line. 

1. x cos a + y sin a — (aq cos a -f- yL sin a) = 0 is the parallel 

line through Px(xh yx), since this equation is evidently in 

normal form and the line passes through (aq, yx). 

ON2 = x1 cos a + yx sin a. 

d= ON2- ON=xx cos a -f- yx sin a — p. 

The perpendicular distance is obtained then by writing the 

equation in normal form and substituting for (aq, yi) the 

coordinates of the given point. Evidently if Px(x, y) is on 

the line, this gives also the correct distance, which is then zero. 

2. x cos a + y sin a — (xx cos a+yi sin a) is the equation of the 

parallel line ; again, ON*2 = cos a + yx sin a. 

d= ON- ON'2: whence -d= ON'2 - ON 

= xx cos a + yx sin a — p. 

The same rule holds, but the distance in this case is negative. 

Evidently the rule holds if ON’2 is 0. 

3. a' = 180 + a ; cos a' = — cos a, sin a'= — sin a. 

To write the equation of the parallel line in normal form, the 

coefficients of x and y must both be the negatives of the coeffi¬ 

cients of x and y in the given equation. 

x(— cos a) -f y (— sin a) — (—x1 cos a — yx sin a) =0 is the 

equation of the parallel line in normal form. 

ON"2 = — (a?i cos u + yx sin a), 

d = ON"2 + ON = — xx cos 6C — yx sin a + p, 

— d = xx cos a yx sin a — p. or 
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Rule. — To obtain the distance from a point to a line write 

the equation in normal form, substituting therein for x and y the 

coordinates of the given point. The resulting number gives the 

distance as positive if the point and, the origin lie upon opposite 

sides of the given line, as negative if Pi and 0 are upon the same 

side of the given line. 

x cos a + y sin a — p represents the perpendicular distance 

then from P{x, y) to the line x cos a - y sin a — p — 0. For 

all points on one side of this line the expression is positive, 

and on the other side, crossing the line to the origin side, the 

expression is negative. 

A line which passes through the origin, p = 0, will be said 

to have its equation in normal form when sin a is taken as 

positive, i.e. when the coefficient of y is made positive. Points 

on this line make x cos a -f- y sin a = 0 ; points above the line 

make the expression x cos a 4- y sin a positive, and points be¬ 

low the line make it negative. 

— 3 4 
Thus 3x — 4 ?/ = 0 is written —- x + - y = 0, or 

5 5' 

— 3 x -f- 4 y _ q 
5 ~ ’ 

to be in normal form. The perpendicular distance from any 

point to such a line will be positive for points above the 

line, and negative for points below the line. 

7. Bisector of the angle between two lines. — Geometrically 

the bisector of an angle is the locus of the points equidistant 

from the two sides of the angle; analytically we express the 

condition that two distances should be equal to each other. 

Let the equations be given in normal form, as 

x cos cq + y sin eq — pl = 0 and x cos a2 T V sin a2— p2 = 0. 

Let P(x,y) represent any point on either bisector of the 

given angle; analytically 

x cos <jq -f y sin ax — pi = ± (x cos a2 + y sin a2 — p2). 
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Bisector A, in the opening which includes the origin, is ob¬ 
tained by taking the -f sign since both perpendiculars are of 
the same sign for points on A. Bisector B is obtained by 
taking the negative sign since 
any point on B is on the 
same side as the origin with 
respect to one of the lines, 
and on the opposite side with 
respect to the other; hence 
if PMl comes out negative, 
PM2 will be positive (by the 
formula) and the equality 
will be obtained by putting 
PMX = - PM2. 

Just as the two axes divide 
the plane into 4 quadrants in 
which the distances to these 
axes are + +, — +, — —, 
and + — respectively, so any two lines in the plane divide 
the plane into 4 sections in which the perpendicular distances, 

Bisec.ors of the angles between two 

lines given normal form 

as given by our formula, to these lines are + 
and — + respectively. The + and — — sections are 
separated by the + — and — + sections respectively, as it is 
evident that you pass from + -f- to + — by crossing the 

second line. 
The bisector of the -f- + and — — opening is given by 

equating the left-hand members of the equations of the two 
lines in normal form; the bisector of the + —, — + opening 
is obtained by equating the one to the negative of the other 

left-hand member. 
If one of the lines passes through the origin, or if both 

do, then the above-mentioned convention is necessary to es¬ 
tablish the part of the plane in which the left-hand member of 
the equation of the line is positive. It is customary to make 
sin a positive, which makes the portion of the plane above the 
line the positive side, i.e. the coordinates of any point above 



162 UNIFIED MATHEMATICS 

the line when substituted in the given equation give a positive 

value, and of any point below the line give a negative value. 

PROBLEMS 

1. If a line makes an angle of 30° with the a>axis what 

angle does the normal to the line make with the a’-axis ? 

2. What is the slope of the line, y = 2 x + 5 ? What is the 

slope angle ? What is the slope of the normal to this line ? 

What is the angle which this normal makes with the a>axis ? 

Find from the tangent of the angle made by the normal with 

the a;-axis the sine and cosine of the same angle. Write the 

equation in normal form and interpret the constants. 

3. Given a and p, as below, slope angle of the normal and 

length of the normal from the origin to the line, hnd the 

equations of the lines, and draw the lines: 

a. a = 30°, p = 5. 

b. a — ■ - 30°, p = 5. 

c. a = 150°, p = 5. 

d. a = 210°, p = 5. 

e. a — 137°, p = 5. 

f a = 137°, p = 10. 

9• a = - - 63°, p = 10. 

h. a = 223° 15', p = 8. 

4. If a remains equal to 40° and p varies, what series of 

lines will be obtained ? if p remains equal to 5, and a varies, 

what series of lines will be obtained ? 

5. Write the following equations in normal form: 

a. 3 x — 4 y — 5 = 0. 

b. 5x + 12 y -f- 7 = 0. 

c. 5% -f 12 y — 7 = 0. 

d. 3 x — 5 y — 4 = 0. 

e. y = 2 x — 14. 

/. Sy- 7 x + 52 = 0. • 
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6. Find the distances of the points (1, 5), (2, 3), (0, 5), 

(0, — 5), (—2, — 3), and (—3, 7) from each of the lines in 

the preceding problem. 

7. What is the distance of the point (x, y) from the line 

3 x —4 y — 5 = 0? Under what circumstances does the formula 

give a negative value for this distance ? What is the distance 

of any point (x, y) from 5cc + 12?/-|-8:=0? What does 

equating these two expressions, i.e. the left-hand members of 

each normal form, give ? Interpret on the diagram. What is 

obtained by setting one of these expressions equal to the 

negative of the other? 

8. Find the bisectors of the angles between the following 

pairs of lines: 

a. 3 a; -f- 4 ?/ — 5 = 0 and 12 x — 5 y — 10 = 0. 

b. y — 2 x — 5 = 0 and 2« + y + 7 = 0. 

c. y — 2 x — 5 = 0 and 3 y + x — 8=0. 

cl. y — 2 x = 0 and 3 y x — 8 = 0. 

e. y — 2 x = 0 and 3 y + x — 0. 

9. Find the distance of the points (1, — 3), (3, 0), (3, — 7), 

and (0, — 8) from each of the lines in the preceding problem. 

10. Find the distance between the following pairs of paral¬ 

lel lines: 

a. y = 2 x — 7, 

y = 2 x -f- 3. 

b. 4 y — 3 x = 5, 

4 y — 3 x — 16 = 0. 

c. 4 y — 3 x = 0, 

4y — 3 x — 16 — 0. 

d. x + 2 y — 7 = 0, 

2£c + 4?/-f-17 = 0. 

e. 7.2 x + 8.3 y —15 = 0, 

7.2 3 + 8.3 y- 8 = 0. 
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11. In problem 8 show that each bisector obtained is one 

of the pencil of lines through the point of intersection of the 

given two lines. 

12. Find the area of the triangle having as vertices the 

following points: 

a. (3, 4), (0, 0), and (0, 8). 

b. (3, 4), (0, 0), and (10, 2). 

c. (1, 1), (4, 5), and (7, - 3). 

13. Find the area of the triangle formed by the three lines: 

3 cc + 4 y — 5 = 0, 

12 x _ 5 y - 10 = 0, 

and 4 x — 3 y — 7 = 0. 

14. What is the distance of any point (x, y) from the point 

(0, 0) ? What is the distance of any point (as, y) from the 

line x — 5 = 0 ? Equate these two expressions for distance 

and simplify. The resulting equation has for its graph all 

points which are equally distant from the point (0, 0) and the 

line x — 5 = 0. 

15. Find the locus of all points which are equidistant from 

the point (0, 0) and the line y — 8 = 0. Let (x, y) represent 

any point satisfying the given condition. 

16. Find the locus of all points at a distance 10 from the 

point (0, 0); from (1, — 3). Find the locus of all points at a 

distance 10 from the line 3 x — 4y — 7 = 0; at a distance — 10; 

explain graphically. 

17. Find the locus of all points equally distant from 

3 x — 4y — 5=0 and from (1, — 5). 

18. In problem 12 find the equations of the three bisectors 

of the angles of the triangle formed ; find the perpendiculars 

from the vertices to the opposite sides ; find the perpendicu¬ 

lar bisectors of the sides ; show that in each instance you 

have three lines which have a point in common. 
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19. What points, when the coordinates are substituted for 

x and y, make the expression 4 y — 3 x — 5 positive ? What 

points make this expression zero? What points make this 

expression negative ? Locate three points of each type, plot 

and discuss. 

20. Substitute in the expression x2 -f y2 — 25 for x and y 

the coordinates of the points (0, 3), (± 3, 2), (± 1, 4). Plot 

these points. Substitute (0, ± 5), (± 3, ± 4), (± 4, ± 3), and 

(±5, 0). Plot. Substitute also (0, 8), (±7, 0), (5, 3), and 

(±4, 6). Note that the graph of x2 y2 — 25 = 0 separates 

the plane into two parts; in the one part inside this curve are 

all points whose coordinates substituted for x and y, respec¬ 

tively, make the expression x2 + y2 — 25 negative, and in the 

part outside lie all points which make this expression positive. 

21. Prove that the perpendicular bisectors of the sides of 

any triangle meet in a point; the vertices may be assumed as 

(»i, Vi), 2/2) and (x3, y3) or as (0, 0), (xlf 0), and (x2, y2). 

22. Prove that the bisectors of the angles.of any triangle 

meet in a point. 

23. Given the three vertices of a parallelogram, how do you 

find the fourth vertex? Apply to (1, 5), (6, — 1), and (3, 2). 

24. How do you find a line parallel to a given line at a given 

distance from it ? 



CHAPTER X 

ARITHMETICAL SERIES AND ARITHMETICAL 

INTERPOLATION 

1. Definition of an arithmetical series. — In the table of natu¬ 

ral sines the values of the sines of 21° to 22° are given as 

follows, 

sin 21° sin 21° 10' sin 21° 20' sin 21° 30' sin 21° 40' . sin 21° 50' sin 22° 

.3584 .3611 .3638 .3665 .3692 .3719 .3746 

It is to be noted that each value differs from the preceding by 

.0027, and each angle differs from the preceding by 10'. 

Either of these sequences of numbers with a constant differ¬ 

ence between each number and the preceding is termed an 

arithmetical series ; the continuation of the lower series by the 

successive addition of .0027 gives indefinitely further values 

of the arithmetical series, but gives only 5 following sines. 

Of the series of numbers giving to four decimal places the 

values of the sines of angles which increase by intervals of 10' 

it happens, for reasons which will be further discussed below, 

that twelve values beginning with the sine of 21° coincide with 

the first twelve terms -of an arithmetical series ; the sine 

series must not be confused with the arithmetical series, as it 

is only arithmetical in limited intervals and then only when 

approximate values are used. Thus if five place values of the 

sines of the angles above were given the series would no 

longer be arithmetical. 

The type form of arithmetical series is 

a a+d a + 2d a + Sd .... a + 9d .... a+(n - 2)d a+(n — \}d 

1st term 2d 3d 4th .... 10th .... (n — l)tli term ?ith term 

each term is d greater than the preceding term of the 

series. 

166 
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ln = a + (n — 1 )d ; by ln we designate the nth term of such 

a series. It is evident from the definition that the tenth 

term in such a series is a -f 9 d, since the common difference 

d appeared first in the second term and one further d was 

added in each subsequent term. 

2. Last or nth term, and sum. — Strictly we should prove by 

a process called mathematical induction, that the formula, 

ln = a + (n - 1 )d, 

always represents the nth term. Evidently for n — 1 this 

does represent our first term; for n — 2 the expression does 

represent our second term ; for n = 3 the expression a + 2 d 

does represent our third term; let us suppose that for n this 

does represent our nth term, then our (n -}- l)th term, which is 

d greater, must be ln 4- d = a + (w — l)d 4- d = a + nd ; now 

the formula gives ln+1 = a + (n + 1 — l)d = a -f- nd; hence 

if this formula is correct for the nth term, the formula is cor¬ 

rect for the next, the (n + l)th term. However, we know that 

the formula is correct for the third term, hence it is, by our 

theorem just stated, true for the next, the fourth term; since 

it is true for the fourth it is, by the theorem, true for the fifth ; 

so for every subsequent term. 

Frequently the sum to n terms, sn, of such a series is desired. 

To obtain a simple expression for sn, we proceed as follows : 

sn = ct -f- (gl -f- d) + (<x 4~ 2 d) 4" ••• ct 4~ 9 d 4~ ••• cl -\- {n — l)d 
i 

or ln; reversing the series gives, 

sn — K + Qn — d) 4- (/„ — 2 d) 4- — ln — 9 d 4- ••• ln — (n — l)d; 

adding, 

2 sn = (a 4- ln) 4- (a 4- ln) 4- (« 4- ln) + ••• (a + l) + • • • (a 4- K) '•> 

Fundamental formulas : 

K = a + (n ~ 

Sn=l(a + ln)‘ 
A 
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3. Practical importance. — Arithmetical series are of great 

importance because of their occurrence in practical problems, 

and because they are fundamental in the applications of 

mathematics to statistical problems. In physical problems 

involving time, the time is commonly measured at the end of 

equal intervals, giving an arithmetical series for the time; in 

the tables of logarithms our numbers increase arithmetically, 

and so in the tables of trigonometric functions the angles 

increase arithmetically. Refinement of measurement is com¬ 

monly made by subdividing the unit of measurement into 

smaller equal intervals, giving new arithmetical series. 

PROBLEMS 

1. Find the tenth and the twentieth terms of the series, 

1, 3, 5, 7, •••; find the (n -f- l)th term. 

2. Find the sum to 10 and to 20 terms of the series 

1,3, 5,-... 

3. Show by mathematical induction that the sum of the first 

71 odd numbers is n2, by showing that if the sum is nr then the 

sum of the first (n + 1) odd numbers is (n -f l)2. 

4. Solve l = a + (w — 1 )d, for cl; solve for a; solve for n. 

5. Given l = 235, d = 7, n = 40, find a. 

6. Given l = 235, = 7, a = 5, find d, 

7. Given d — 7, a = 5, n = 40, find l. 

8. One hundred men increase uniformly in height from 5.01 

feet to 6 feet by .01 of a foot, find the total height; if their 

weights increase uniformly by half-pounds from 110 pounds, 

find the total weight of the group, and the average weight. 

9. On an inclined plane, angle of 30°, a ball rolls approxi¬ 

mately 8 feet in 1 second, 24 feet in the second second, 40 feet 

in the next, and in every second 16 feet more than in the pre¬ 

ceding second. Find the distance a ball travels in 5 seconds; 

in 10 seconds. This formulation neglects the energy-loss due 

to rolling. 
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10. On a hill inclined at 30° a bob-sled moves approximately 

according to the law of the rolling ball in the preceding 

problem. Eind the length of time to cover 1000 feet. Find 

the distance covered in the last second of the slide. Find 

the average velocity during the slide, and the average velocity 

during the last second. Reduce velocity to miles per hour. 

Note.—Average velocity is simply the space covered divided by the 
time required. 

_1 _2_ _3_ _4 
105 1 05 1 05 1TT5 up to 

10 
the or- 

4. Graphical representation. — The arithmetical series is 

represented graphically by the straight line, and conversely 

any straight line represents an arith¬ 

metical series. For this reason the 

interpolation processes explained 

above under logarithms and under 

trigonometric functions are some¬ 

times termed “ straight-line interpola¬ 

tions ” ; the process is correct in those 

small intervals in which the curve 

representing the function is approxi¬ 

mately a straight line. 

For the integral values of x, from 

0, 1, 2, 3, ••• up to n — 1, the ordi¬ 

nates of the line 

y = dx + a 

represent graphically the terms of 

the type arithmetical series, a, a + d, 

a + 2 d, • •; for values of x from 0, 
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dinates represent the terms of an 

arithmetical series with first term a 
d 

and the common difference 
10 

To 

The ordinates of y = dx + a 

at x = 0, 1, 2, 3, — repre¬ 

sent terms of an arithmet¬ 

ical series 

any series of equal increases or increments given to x there 

correspond a series of equal increments given to the ordinates j 
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this depends upon the theorem of plane geometry that if a 

series of parallel lines cut oft' equal parts on one transversal 

they do on every transversal, and 

this theorem is equally true for 

any straight line in the plane. 

5. Interpolations in sines and 

other functions. — The value of the 

sines of the angles are given by 

the corresponding ordinates in a 

circle of radius unity, or the or¬ 

dinates divided by 100 in a circle 

of radius 100, or the ordinates di¬ 

vided by 1000 in a circle of radius 

1000. 

On our diagram, with radius 

100 the straight line joining the 

end of the ordinate corresponding 

to 20° to the end of the ordinate 

at 30° does not differ materially 

from the circular arc connecting 

these points. Were we to plot 

these angles in a circle of radius 

1000 the points of intersection 

would appear as in the second part 

of the diagram, lettered AB, and 

constituting a tenfold linear en¬ 

largement of AB. 

If the sines of the angles were 

given by intervals of ten degrees, interpolation by tenths would 

give the sines by degrees; the circle with radius 100 mm. (or 

100 twentieths of an inch) permits the sine and cosine to be 

read to two places accurately, and this rather low degree of 

refinement corresponds to a table of sines given by intervals 

of ten degrees ; interpolation would give substantially correct 

values to two decimal places, e.g. for the sines of 21°, 22°, 

Graphical representation of the 

sum of an arithmetical series 

— V. a + l Sn = n 
2 
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Arc of 20° to 30° in circles with radii 50, 100, and 1000 fortieths of an inch 

The marks on the long chord indicate the points given by interpolating 

between sin 20° and sin 30°, and between cos 20° and cos 30°. Even on 
the arc with 25 inch radius nine interpolated points on the chord and cor¬ 

responding points on the arc, between 21° and 22°, coincide. 
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• •• 29° by interpolating between sin 20° = .34 and sin 30° = .50. 

The arc of 10° on this circle differs slightly but appreciably to 

the eye from the chord of 10°, but the interpolated points on 

the chord are not easily distinguished from the ten points 

on the curve. 

Angles given by degrees permit interpolation by intervals of 

6' or by intervals of 10', with substantially correct values to 

the third place if the values are given only to three places ; 

values given to four places give by interpolation values 

substantially correct to the fourth place. On our circle with 

radius 1000 the sine and cosine can be read to three decimal 

places ; interpolation between the values of sin 20° and sin 30° 

give points markedly different from the true points on the 

curve. These points are indicated by checks on the chord of 

10°. Interpolating five points (for 10', 20', 30', 40', 50') on the 

chord from the 20° point to the 21° point gives points not 

readily to be distinguished from the correct points on the arc. 

On this diagram it is not possible to distinguish the sub¬ 

divisions for minutes on the arcs from the corresponding 

points on the chords of central angles of 10'. 

With the proper changes, noting particularly that as 0 in¬ 

creases cosine 6 decreases, the argument given holds for inter¬ 

polated values for cos 0. 

Interpolation of the tangent values is similar, except in the 

neighborhood of 90° where the tangent changes very rapidly; 

in a separate table are given by minutes, the tangents of angles 

from 88° to 90°. 

The graph of the function y = log10 x, or 10y = x, is a con¬ 

tinuous curve which for small arcs approximates a straight 

line. Similarly the graphs of the functions y = sin x, and of 

y=sin x, log cos x, log tan x and log cot x approximate straight 

lines within small intervals, and so are subject to our ordinary 

process of interpolation. 

6. Arithmetical means. — If two numbers a and b are given, 

the arithmetical mean between the two is the number x which 
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makes a, x, b three consecutive terms of an arithmetical series; 

to insert n arithmetical means it is necessary that a, the n 

means, and b form n -f- 2 consecutive terms of an arithmetical 

series. Ordinary interpolation is the insertion between two 

tabular values of some particular one of 9 arithmetical means. 

If a, x, b form an arithmetical series, 

b — x = x, — a, 

whence x = a ft • 
o 

If a, a + df a 4- 2 d, a 3 d, ••• a +(w — 1 )d, a -f- wci, & form 
• • hi _ /'y 

an arithmetical series, b = a +(n + l)cZ; whence d —-. 
71 -j- 1 ' 

The sum of n terms of the series a, a-f d, a 4-2d, ••• 

a 4- (n — l)d, is 

S»=|(a + U; 

the average value of these n numbers is 

n(a 4- ln) = a + ln 
2 • 7i 2 ’ 

termed the arithmetical mean of the n numbers ; the sum of 

an arithmetical series is seen to be the “ average value ” mul¬ 

tiplied by the number of terms. Similarly of any collection 

whatever of ti quantities, the arithmetical mean is regarded as 

the total sum divided by the number of quantities. In statisti¬ 

cal work the latter mean, total sum divided by the number of 

given quantities, is called the “ weighted mean.” 

PROBLEMS 

1. Between .3584 and .3746 insert 5 arithmetical means; 

if .3584 = sin 21° and .3746 = sin 22°, what do these means 

represent? Between .3746 and .3584 insert 5 arithmetical 

means ; interpret as cosines. 

2. Given sin 21° = .3584 and sin 21° 10' = .3611, find 9 

intermediate values; interpret. 
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3. Given sin 0° = 0, sin 30° = .5000, what value would 

arithmetical interpolation give for sin 21° ? What is the 

error ? 

4. Given sin 20° = .3420 and sin 30° — .5000; find to 4 

places sin 21°. How many terms in the arithmetical series 

which is implied ? 

5. What is the sum of the first ten integers ? 

6. If cards are marked 1 to 190, what is the total sum? 

What is the average value of the total group of numbers ? 

7. How many years of life have been lived by a group of 

30 individuals, aged 21, 22, 23, ... 50 years ? 

8. Falling from rest a body falls approximately 16 feet in 

the first second, and 48 in the second, and in each succeeding 

second 32 feet more than in the one which precedes. What 

distance will the body fall in 10 seconds ? How long will it 

take such a body to fall 1000 feet ? 

9. If it takes a lead ball 8 seconds to fall to the earth from 

a balloon, what is the height of the balloon ? 

10. How long will it take a ball to reach the earth if 

dropped from the top of the Washington monument, 550 feet 

high ? 

11. Draw figures to show that between x = o and x = 4, 

the graph of xy — 1 approximates a straight line. 

12. Write the equation of a straight line representing for 

integral values of x, from 0 to 10, the arithmetical series with 

a = 10, d = — 3. Represent the series also by the series of 

rectangles, each of width 1. In summing the arithmetical 

series we reversed the series and added; show the geometrical 

equivalent on the figure, page 170, with the rectangles. 

13. Given that the first term of an arithmetical progression 

is 8 and the last term 100, what equation must n and d satisfy ? 

If d = 2, what is n ? If d = 3, what is n ? Interpret. 
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14. Show that in an arithmetical series of n terms (a, 

a + d, •••) the average value is ^ the sum of the first and last 

term. Note that the average value of the terms is the total 

sum divided by the number of terms. This average value is 

termed the arithmetical mean of the n terms. 

15. Find the average value of the following 10 heights, and 

the arithmetical mean: 
40 6 feet 126 5 feet 9^ inches 
64 5 feet 11| inches 138 5 feet 9 inches 
86 5 feet 11 inches 120 5 feet 8^ inches 
92 5 feet 10| inches 112 5 feet 8 inches 

142 5 feet 10 inches 80 5 feet inches 

16. If there are 1000 men measured and they are grouped 

in height as above, find the average height of these men. 

Note that the easiest way to find this average is to take the 

variation above and below some one of the “ middle ” values, 

e.g. with reference to 5 feet 9 inches as origin, 6 feet is re¬ 

garded as 3 inches and this group has a total of 120 inches 

excess above 5 feet 9 inches per individual; 5 feet 7-J inches is 

regarded — 1\ inches and the total group of 80 has a total 

deficiency of 120 inches, or — 120 inches; the two neutralize 

each other. Whatever total remains is divided by 1000 and 

added, algebraically, to the 5 feet 9 inches. 

17. Draw the graph of l = a + (n — l)d\ assuming a and d 

as constants. 

18. Historical problem. — In the Egyptian manual men¬ 

tioned above, occurs the following problem: If 100 loaves of 

bread are divided according to the terms of an arithmetical 

series among 5 people so that \ of what the first three receive 

equals what the last two receive, find the number received by 

each person. Solve the problem. The Egyptian reckoner 

assumes that the last person receives 1 loaf, and without any 

explanation, that the second receives 6^ loaves, and so on in 

arithmetical progression; the sum he finds to be 60, and to 

arrive at the correct values all numbers are increased in the 

ratio of 100 to 60. Compare with your solution. 



CHAPTER XI 

GEOMETRICAL SERIES AND APPLICATIONS TO 

ANNUITIES 

1. Geometrical series. — A series of terms in which each term is 

obtained from the preceding by multiplying by a fixed number 

is called a geometrical series ; by definition the ratio of each 

term to the preceding is a constant. Designating this ratio 

by r, and the first term by a, the type series becomes : 

a, ar, ar2, ar3, . arn~l. 

ln = cirn~l. 

The sum of such a series to n terms is obtained as follows: 

Let sn = a + ar ar2 + ar3 + ... + arn~l. 

rsn — ar + ar2 + an* -f- ... + arn~l + cirn. 

sn — r>'sn = a — arn. 

sn(l — r) = a — arn. 

_a — arn _ a __ arn _ arn — a 

1 — r 1 — r 1 — r r — 1 

2. Sum to infinity, r< 1. — When r is numerically less than 

1, the terms of a geometrical series become smaller and 

smaller without limit. The sum of n terms differs from the 

fixed quantity, -——, by the quantity-, which decreases 
1 — r 1 — r 

* • • » (I Qj (\Vn 
as n increases ; this difference between -and-— 

1—7* 1 — r 1 — r 

can be made smaller than any assigned quantity however 

small by taking n sufficiently large ; the value —~— is termed 
1 — r 

176 
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the “ sum to infinity ” of the series or, more strictly, the 

“ limit ” of the sum of the series as the number of terms in¬ 

creases indefinitely. 

A simple and familiar illustration of a geometrical “ sum to 

infinity ” is found in the recurring decimals of elementary arith¬ 

metic. Thus .33333 ..., or .3, is the series Ty +Tf^ + ro3^ + — 

with r = tXq, a = y3Q-; .17 represents the series Ty¥ + ttoVo 

4_ 17_I 
I 1000000' with r — ioo» 

_1_7_ 
1 0 0 ’ 

1 7 
1 0 0 — 
_9_3_ 
10 0 

17 

99' 

Another illustration of an infinite geometrical series is found 

in the total distance traversed in passing from one point to 

another by passing first through i of the distance, then through 

half of the remaining distance, and successively in each sub¬ 

sequent movement through half of the distance which remains 

to the goal. One of the famous paradoxes of Zeno is to the 

effect that the hare cannot overtake the tortoise since the hare 

must first cover one half the distance intervening between their 

original positions, then one half of the remaining distance, 

then one half the remaining distance, and in each subsequent 

interval of time one half of the distance which remains; conse¬ 

quently the hare cannot overtake the tortoise as by this 

i i i rr 
A 8 Mi 4 M2 2 Ms 1 M^hB 

Hare ' Tortoise 

process there is always distance intervening, and in the mean¬ 

time, further, the tortoise has advanced. If each of these 

intervals of space of the infinite series traversed required the 

same length of time, or any finite portion of time, the argu¬ 

ment would be sound, but you have here two infinite series 

each with a finite sum. As each space interval becomes 

smaller, the time required to traverse that space becomes 

smaller. The total distance evidently is the sum of 8 + 4 + - 

+ 1 + \ + ... which has the sum 16, both by the formula and 

by the figure; to cover the whole distance requires 1 hr. and 

this takes the hare up to B. The fallacy in Zeno’s argument 

lies in restricting the discussion to limited intervals of space 
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r 

and time preceding the instant and place at which the tortoise 

is overtaken. 

3. Geometrical means. — If a, x, b form a geometrical series 

- = -, whence x2 = ab, x = -\/ab. 
x a 

If a, ar, ar2, ar3, ar4, ••• arn~x, arn, b form a geometrical series, 

evidently 
b = arn • r = arn+1, 

i 

fb\n+l 
whence r = i - J , and the series is 

1 2 n n+l 

PROBLEMS 

1. Sum to twenty terms the series 2, 4, 8, 16, •••. 

In the following series give the sum to twenty terms, and 

where possible give the sum “ to infinity.” 

2. 3, - 6, + 12, - 24, + 48, .... 

3* 6, g-, 
4. .1717171717 .*., or .i7 (repeating decimal). 

5. .01717171717 -, or .Oif. 

6. 3.16161616 .... 

7. 5, 15, 45, 135, .... 

8. 4, 10, 28, 82, 244, ••• the nth term being 1 + 3”. 

9. 3, 7, 11, 15, 19, .... 

10. 3, - 7, - 17, - 27, .... 

11. v, v2, v3, v4, .... Sum to n terms. 

12. 1, r, r2, r3, r4, •*•. 

13. (1 + i), (1 + i)2, (1 + iy, (1 + £)4, .... Sum to n terms. 

14. The number of direct ancestors which an individual has 

is represented by the series, 2, 4, 8, 16, .... Find the total num¬ 

ber in the preceding 10 and in the preceding 20 generations. 
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15. According to Gal ton’s law of heredity the parents con¬ 

tribute to the hereditary make-up of an individual \ of what is 

contributed by all the ancestors; the grandparents contribute 

\; the great-grandparents, of whom there are eight, contribute 

-J ; and so on ; find the total contribution. Find the individual 

contribution of a single individual four generations back. 

16. Insert three geometric means between 2 and 17 ; com¬ 

pute to one decimal place. 

17. Insert one, two, and three geometric means between 

1 and 2. 

18. One of the so-called “ three famous problems of an¬ 

tiquity ” is to construct, using only ruler and compass, a cube 

which is double the volume of a given cube. This problem was 

very soon reduced to the insertion of two geometric means 

between a and 2 a ; insert two geometric means between a 

and 2 a and show that this gives the algebraic value of the 

side of a cube of double the volume; the geometrical solution 

has been demonstrated to be impossible if ruler and compass 

are the only instruments of construction. 

19. In the population statistics on page 65 find the population 

of the United States in 1810 and 1910; between these two 

numbers insert 9 geometric means; find r; this represents the 

approximate decennial rate of increase in the population at 

1810 which would give the final actual population in 1910. 

Compare with the actual census figures at the end of each ten 

years. 

20. How would you find the regular annual rate of increase 

in the population of the United States, in other words the fixed 

annual percentage increase in population which would change 

the population from 7.2 millions in 1810 to 101.1 millions in 

1910 ? 

21. The plunger chamber of an air pump is approximately 

jL of the total air capacity; at each stroke of the air in the 

receiver is removed j after 10, 15, and 20 strokes find the 
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proportionate amount of air remaining in the receiver ; approx¬ 

imately how many strokes must be made to remove 99% of 

the original air ? 

4. Graphical representation — Geometrical series. — On the 

straight line y = rx of slope angle a, with tan a = r, if x = a, 

ar} ar2, ar3, ••• the successive abscissas represent the terms of 

Graphical summation of the geometrical series, r < 1 

Note that the “ sum to infinity,” r < 1, is represented. 

the geometrical series ; by means of the 45° line through the 

origin these successive abscissas are readily constructed. 

However, a more favorable construction for a graphical treat- 
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ment of the series regards each term of the series a, ar, ar2, 

ar\ ••• as an addition' to the preceding abscissa; the succes¬ 

sive additions to the ordinates, increments of the ordinates, 

will be ar2, ar3, ar4, •••. By drawing the line, 

y — x — a 

at an angle of 45° with the x-axis, the successive abscissas are 

readily constructed; by drawing through the point Pi(a, ar) a 

line parallel to the x-axis it intersects the 45° line drawn 

through (a, 0) at a point M2 such that 1\M2 = P\AX, since 

Z P1A1M2 = 45°; a parallel to the y-axis through M2 intersects 

the line y = rx at a point P2 such that M2P2 = r • P±M2 = ar2, 

and A2P2 = ar + ar2. Similarly, if Pn represents the nth 

point found on our line, y — rx, 

MnPn = arn, OAn = sn = a + ar + ar2 + — arn~l, 

= tan a = r, whence P„A,= rs„; AnM„ = srn — arn; AtA„ 
OA„ 
= sn — a; but A1An = AnMn, since the slope of the line 

AxM2Md is 1. 
sn — a = rsn — arn, 

*n(l — r) = a — arn, 

a — arn 
sn = - 1 — r 

If r< 1, as in our figure 1, a <45°, and the two lines inter¬ 

sect at K to the right of the origin; and the points of intersec¬ 

tion M2, M'S, ••• Mn ••• will fall below K on the line BK. The 

abscissa of K represents the “ sum to infinity ” of our series, as 

it is evident that the series of triangles could be continued 

indefinitely -in the opening OKA. Evidently also, solving 

y = x — a, y — rx, 

rx = x — a, 

a 

1 — r 
x — 
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Graphical summation of the geometrical series, r > 1 

For r > 1, the figure is quite similar; the two lines, y= rx 

and y = x— a, diverge ; tan a = r, a> 45°. 

Evidently, AnMn = AjAn, 

AnPn = ™„, 

AnMn = rsn - arn, 

whence 

as before 

OAn = s. 

AxAn = s-a, 

sn — a = rsn — arn. 

sB(l — r) = a — arn, 
a — arn 

*» = or 
1 — r 



GEOMETRICAL SERIES AND ANNUITIES 183 

5. Historical note. — Arithmetical and geometrical series 

are found in the oldest mathematical documents known, both 

in the remains of ancient Egypt and of ancient Babylon. The 

system of numbers used by the Babylonians as early as 2000- 

3000 b.c. was sexagesimal, increasing by powers of 60 in 

geometrical series. Further an early Babylonian clay tablet 

gives the portion of the moon’s surface illuminated on each of 

fifteen successive nights from new moon to full moon by a 

geometric and an arithmetical series. The moon’s surface is 

conceived as divided into 240 parts; on the first five nights 

5, 10, 20, 40, and 80 parts, respectively, are illuminated and 

on the following ten nights, 96, 112, 128, 144, ••• and on 

in arithmetical progression to 240. 

The Egyptian manual of mathematics of 1700 b.c. (or there¬ 

abouts), includes two rather complicated problems on arith¬ 

metical series, involving also the insertion of means, and one 

problem involving the summation of a geometric series. 

The equivalent of a general formula for summation of a 

geometrical series was first established rigorously by the 

Greeks, and appears in Euclid’s Elements, Book IX, prop. 36. 

The first summation “ to infinity ” of a decreasing geometrical 

progression was effected by the great Archimedes (287-212 

b.c.) who employed the formula in finding the area of a seg¬ 

ment of a parabola. 

In a great part of the later development of mathematics 

such series have played a prominent role, in some measure 

because of their own intrinsic importance and in some measure 

as fundamental in the discussion of other types of series. 

6. Annuity formulas, a. Accumulated value of an annuity.— 

The geometrical series plays a large role in the theory of 

investments and insurance. We have shown (p. 54) that at 

rate i per year, compounded annually, 1 will amount in n years 

to (1+ i)n; if 1 is invested at rate i at the end of each year, i.e. 

annually, for n years, these payments constitute an annuity of 

1 for n intervals, at i per annum. The total accumulated 
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value %], at the end of n years of such an annuity, is the sum 

of the geometrical series 

(1 + i)n-\ (1 + i)n~2, (1 + 0B"3, (1 + f)n'4, - (1 + %), 1, 

since the first payment made at the end of the first year ac¬ 

cumulates for (n — 1) years, the second for (n — 2) years, •••, 

and the nth payment of 1 is made at the end of the n years. 

The sum, called the amount of the annuity, 

„ _(i + 0”-i 
i — : > 

i 

represents the accumulated value of an annuity of 1 per inter¬ 

val for n years or intervals at a rate of i per year or interval. 

b. The annuity which will accumulate to 1. — Very evidently 

K per annum will produce at the end of n years 
(1 + jy _ l 

AY = K the annuity which in n years will 
i 

amount to 1 is evidently the value of K which makes Ksn = 1; 
-| • 

this value is — =- 
(1 + i)n ~ 1 

c. Present value of an annuity of 1.—The accumulated 

value of 1 to he paid at the end of n years at i per year 

is (1 -j- i)n; AT will accumulate at the rate i in n years to 

AT(1 + i)n; this means that AT dollars (or units) in hand ac¬ 

cumulates to A^(l + i)n dollars, and that AT( 1 -f if dollars 

to he paid n years hence is worth AT dollars now, money at 

rate i per year. Hence the present value of 1 to he paid n 

years hence is a value of AT which makes A^(l + i)n = 1, or 

K = ——--— vn, wherein v — —-— The present value of 
(1 ~b if 1 + i 

an annuity of 1 per annum for n years when money is worth 

i per annum is the sum of the geometrical series, 

Vj V2, V3, V4, Vh, V6, V7, •••V". 

The first term v is the present value of the first payment of 1 

which is to be made 1 year from date; the second term is the 
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present value of the second payment of 1 to be made in 2 

years; ••• ; vn is the present value of the final payment of 1 to 

be made n years hence. 

V — vn+l 1 — vn 1 —vn 
an | — ~~Z -— -j-=-.- 

1 — V 1 _ l 1 

V 

d. The annuity which 1 will purchase. — The present value of 

K per annum for n years is Ka^ = K—:—; the annuity 
% 

which is worth 1 at the present time is evidently a value K 
1 i 

which makes Ka^ — 1, whence K= — =-• This is the 
a}T| 1 — vn 

annuity which 1 will purchase. 

e. Summary of interest functions. —• 

These six functions, 

rn — (1 + t)n, accumulation of 1, 

vn = (1 4- f)~n, discount value, 

1 
, accumulated annuity value, 

a _i—(1 + 0' 

i 

1 — vr 
present value of annuity, 

an\ 

-, annuity to accumulate to 1, 
(l + i)n — 1 

-- ' ^ the annuity which 1 will purchase, 

are of fundamental importance in the valuation of bonds, and 

in all problems where stipulated payments are to be made at 

stipulated intervals, and also in the theory of interest. 

If interest is to be compounded semiannually and pay¬ 

ments are made semiannually, the interval can be considered 

as 6 months and the rate of interest as one half the stated 

rate; similarly the interval can be considered as 3 months and 

the rate of interest as one fourth the stated interest if interest 
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is compounded quarterly and payments made quarterly. 

Other types of problems with payments falling between in¬ 

terest periods are beyond the scope of this work. 

PROBLEMS 

1. Compute the value of for 6%, 5%, 4%, using loga¬ 

rithms to obtain (1 -f- .06)20, (1 + -05)20, and (1 + .04)20. What 

percentage of error is introduced using four-place tables ? Dis¬ 

cuss the effect in Ending the accumulated value of an annuity 

of $ 100 per year for 20 years. Check by the tables given at 

the back of this book. 

2. Compute a—p and discuss as in 1. 

3. Find by logarithms from your values of and a^- the 

annuity which will accumulate to 1 in 20 years, and the 

annuity which 1 in hand will purchase. 

4. If payments of $50 per year are made semiannually 

and interest is compounded semiannually, find the accumu¬ 

lated value of this annuity at the end of 20 years for a 

nominal interest rate of 6%, 5%, and 4% respectively, per 

annum (3 %, 2b %, and 2 % per interval). Use the tables. 

5. What annual payments continued for 10 years are equal 

to $1000 cash in hand? 

6. What annual payments continued for 10 years are equiv¬ 

alent to $ 1000 to be paid at the end of 10 years? to $ 1000 to 

be paid at the end of 20 years? 

7. Prove srT| = (1 -f- i)na^; and ci^ = vn • Discuss. 

8. Show algebraically that-— = i. 
air\ s—| 

Note. — The difference between 1 in hand and 1 to be paid in n years 
is simply the earning power of the 1 in hand for this period of n years ; 
if money is worth 6 °Jo per year,.l in hand will earn every year for n 

years .06 in addition to preserving itself ; 1 in n years is worth simply 1 

then ; — is the annuity for n years which 1 in hand purchases, and — is 
a-, 1 s—, 

n I n | 
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the annuity equivalent to 1 to be paid in n years ; the difference is the 

annual earning of the 1 in hand, i. 

9. Give the arithmetical series represented by the ordinates 

of y = 3 x + 7, for integral values of a from 0 to 10. What is 

the sum of this series ? Between 1 and 2 interpolate 9 values, 

at equal intervals, and state corresponding series; what corre¬ 

sponds to the tabular difference ? 

10. Discuss as in problem 9 the corresponding ordinates of 

2y = — 3 a? + 7. 

11. Sum to 20 terms the series 7, 5, 3, 1, — 1, •••. 

12. Write the 20tli term of 7, 5, 3, 1,-1, .... 

13. Write the tenth term of 7, 5, -2T5-, -L2^5-, .... 

14. Eind the arithmetical and the geometrical means be¬ 

tween 7 and 5. 

15. Historical problem. — It is related that an Indian 

prince who wished to reward the inventor of the game of 

chess suggested to the inventor that he should name the 

reward he desired. The scholar replied that he would take 

1 grain of wheat for the first square of the board, 2 for 

the second, 4 for the third, 8 for the fourth, 16 for the fifth, 

and so on in geometrical progression to cover the 64 squares. 

The prince agreed but found, on the computation, that the 

value exceeded that of his realm. Taking 10,000 ^ains as 

approximately a pint, make a rough calculation of the amount 

involved. 

16. Historical problem. — In textbooks of the sixteenth 

century the following problem frequently appears. A black¬ 

smith being asked his price for shoeing a horse replied that 

for the first nail he would charge one fourth of one cent (use 

this in place of fafthing, or pfennig), i cent for the second 

nail, 1 cent for the third, 2 for the fourth, and so on for the 

thirty-two nails. Compute the price. 
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7. Annuity applications. — Brief tables of the annuity func¬ 

tions are given at the back of this book; somewhat larger 

tables will be found in the Bulletin No. 136 of the U. S. 

Bureau of Agriculture, which includes also a more extensive 

treatment of the subject of bonds and annuities by Professor 

James W. Glover. 

a. Common annuity. — To find the purchase price of an 

annuity of k dollars per interval for n intervals when the current 

rate is i per interval is obviously a direct application of the 

a^| table, as the purchase price is simply the present value of 

the series of payments. If the first payment of the annuity is 

to be made r intervals hence, a deferred annuity for n intervals, 

the price may be considered as the difference between an 

annuity for r — 1 intervals and an annuity for n -f- r — 1 inter¬ 

vals. an+r_y| gives a payment every interval for n -j- r — 1 

intervals, the first made at one interval from the present time ; 

af-r] gives a payment every interval for (r — 1) intervals, the 

first as before, and the last (r — 1) intervals from the present 

time; the difference is the value of the deferred annuity of n 

payments, first payment to be made at the end of r intervals. 

Some large banks, trust companies, and insurance companies 

do this type of business. Frequently a purchaser desires an 

annuity to be paid annually terminating with the death of the 

purchaser; this involves then a life contingency, and the dis¬ 

cussion and solution of this problem require new methods and 

new tables. 

b. Farm loans. — To extinguish or amortize a debt by n 

annual payments of fixed amount is the type of problem which 

arises under the recent Farm Loan Act. Thus a farmer 

borrowing $ 10,000 at the bank at 5 % interest may desire to 

make such a payment as to extinguish the debt in 30 years, 

money being worth 5 % annually. The problem may be 

solved by considering the annuity which $ 10,000 will purchase 

at 5 % interest for 30 years or $ 10,000 x .06505, giving 

$ 650.50. The problem may also be solved by considering the 

interest as paid each year, $ 500, in addition to which an 
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annual payment must be made to accumulate at 5 % to $ 10,000 

at the end of 30 years. This annual payment is found to be 

$ 150.50. The value found, $ 650.50, may be checked, as below, 

by using the table. Or another check is to find the value 

at the end of 30 years of the $ 10,000 or $ 10,000 (1 + .05)30 and 

compare this with the value of $ 650.50 x %> 

Suppose, on the other hand, that the borrower desires to 

pay approximately $ 600 per year, applying the extra amount 

each year to the debt. The annuity which 1 will purchase, — > 
an\ 

is the function involved. The question here may then be put, 

For what period of years at 5 % interest will $ 10,000 purchase 

an annuity of $600 per annum? We will consider only ap¬ 

proximate solutions, taken from the tables. 

The tables show that at 5 % interest $ 10,000 will purchase 

an annuity of $ 10,000 x — = $ 10,000 X .06043 for 36 years, 

or $ 604.30 annually for 36 years; $ 10,000 will purchase an 

annuity of $ 598.40 for 37 years. 36 years would be taken, 

and this period of 36 years is provided for, as an amortization 

term, by the government. By paying every year $ 100 more 

than the interest, at the end of 36 years the accumulated 

value of this annuity, the excess $ 100 over the interest, would 

be worth at 5 % : $ 100 x = $ 100 x 95.8363 = $ 9,583.63, 

leading $416.37 due at the end of 36 years. This amount 

with interest at 5 % should be the next and final payment. 

c. Sinking funds. — If a city issues bonds to be redeemed 20 

or 30 or 40 or n years hence, it is commonly desirable to pro¬ 

vide for the repayment of the bonds by an annual (interval) 

payment allowed to accumulate at i per annum (per interval). 

Similarly in business a manufacturing concern using an ex¬ 

pensive piece of machinery which has a probable lifetime of 

20, 30, or 40 years must provide for the eventual replacement 

of this machine by an annual payment, out of earnings, into a 

sinking fund. In this type of problem the function involved 

is the annuity which will accumulate to 1 in n years. Thus 
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to provide for replacement of a $ 10,000 piece of machinery 

in 30 years money at 5 % requires an annual payment of 

$ 10,000 x -i- or $ 10,000 x--- which equals $ 150.50 
S30\ (1 + O'0 - 1 

per annum. 

d. Bonds at premium and discount. — If a city issues bonds 

at 5 % when money is worth in the money market 4 %, the 

bonds will sell at higher than face value, since they pay on 

each $ 100 an annuity of $ 5.00 per year for the term of the 

bond, when investors are demanding only $ 4.00 per annum 

with security of capital. This higher price is, on the basis of 

money at 4 %, the present value of an annuity of $ 1.00 per 

annum for the term of the bond or 1 x aTl at 4 %. The dif¬ 

ference between the par value or face value of a bond and the 

price offered by investors is called the premium (or discount, 

when the price offered is less) on the bond. 

If a city issues bonds at 5 % when investors are demanding 

6 %, a bond for $ 100 will sell at a discount of 1 x at 6 %, 

since the investor receives from these bonds not $ 6.00 per 

annum but only $ 5.00 per annum. Evidently the longer the 

bond has to run the greater would be the discount. 

In general terms the premium on a bond of face value (7, 

paying a dividend rate g, bought to yield j per annum is 

P = C\g — j)an-{ at j per annum. 

PROBLEMS 

1. If a father sets aside annually $ 100 per year as a fund 

for his son when the latter becomes of age, to what will the 

fund amount at the end of 21 years, the money accumulating 

at 4 (Jo interest ? 

2. If a farm mortgage of $10,000 draws 5 % interest and 

the farmer pays annually $ 600, what is the accumulated value 

at the end of 21 years of the excess payments of $100 per 

annum, accumulated at 5 % ? 
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3. What annual payment will accumulate at 5 % in 30 years 

to $ 10,000 ? What annual payment would have to be made 

on a $10,000 mortgage, to extinguish the debt in 30 years, 

money worth 6 % ? 

4. Find in the tables the annuity for 30 years which 

$10,000 will purchase. 

5. What semiannual payment will accumulate in 30 

years (60 payments) to $ 10,000, interest being 5 % com¬ 

pounded semiannually ? 

6. Find the cost of an annuity of $ 10,000 per year to run 

for 10 years, 20 years, and 30 years, respectively, money being 

worth 4 

7. If a city issues $10,000 in bonds, what amount must 

be set aside annually to accumulate at 4 % interest to redeem 

the bonds at the end of 20 years ? 

8. Find the cost of an annuity of $500 per annum for 10 

years, the first payment to be made 10 years hence, 20 years 

hence, and 30 years hence, respectively. 

9. What premium can you afford to pay on a $ 10,000 

bond drawing 5 % to run 20 years, if money is worth 4 % ? 

What discount should you receive if money is worth 6 % ? 

10. What is the present value of $10,000 to be paid 20 

years hence, money at 5 % ? 

11. Which is the better offer for a piece of property, money 

being worth 5 %, a rental of $ 600 per year for 20 years, or a 

price of $ 10,000 ? A rental of $ 600 per year for 10 years, 

and $700 per year for the following 10 years, or $12,500? 

Assume no (Range in the price of the real estate in 20 years. 

12. AVhat sum at 4 % interest should a railroad set aside 

each year to replace engines worth $ 35,000, which have an 

estimated life of 25 years? to replace buildings worth 

$ 1,000,000 which have an estimated life of 100 years ? 
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13. If a man invests $100 each year for 20 years, what 

annuity, for 20 years, can he purchase at the end of the first 

20 years, money at 5 % interest ? 

14. If a man agrees to take $ 1000 a year for five years for 

a house originally offered at $ 5000, what is the discount when 

money is worth 5 % ? 

15. At 5 % interest what annual payment for five years is 

equivalent to $ 5000 Cash in hand ? 

16. Answer questions 14 and 15, assuming that the first 

$ 1000 is to be paid immediately. 



CHAPTER XII 

BINOMIAL SERIES AND APPLICATIONS 

1. Binomial series. — The expressions (1 + i)4, (1+ ... 
can be developed in powers of i by means of the binomial 

expansion, 

(a+ x)n = a11 + - • an~xx + n(n _ ^ an~2x1+ n^n—2). an~3^ 
1 1*2 1 * 2 • 3 

... n(n-l)(n-2) - to (r-1) 

1.2.3 • 4 - 1) 

In particular, if a = 1, 

factors 
a ri—r+l^r—1 + 

/i , \n i . n , n(n— 1) 9 . n(n — l)(n — (1 + x)n= 1 H x + - v  1 • x2 H—^^—- 
V } 1 1-2 1-2.3 

^.(n — l)(n — 2)(ft — 3) to (r — 1) factors 

H 1.2 • 3 • 4 ... (r - 1) 

‘Q-.a? 

xr~x+ 

This formula expresses a rule for the formation of successive 

terms of the expansion of (a + x)n or (1 -f x)n ; the first term 

contains a with the exponent n of the binomial; the second 

term has as coefficient the exponent, or index, of the binomial, 

x appears to the first power, and the exponent of a decreases 

by 1; the coefficient of the third term has two factors in 

numerator and denominator, in the numerator ft (ft — 1) and 

in the denominator 1*2; a appears with exponent 1 less 

than in the preceding term, and x with exponent 1 greater; 

each following term can be obtained from the preceding by 

introducing one further factor in numerator and denominator 

and at the same time decreasing the power of a by one and 

increasing that of x by one; the further factor in the new 

numerator is one less than the last one introduced there, and 

193 
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the further factor in the new denominator is one greater than 

the last one of the preceding denominator; the coefficient of 

the term in xn"l contains in the numerator (r— 1) integral factors 

from n down, and in the denominator (r — 1) integral factors 

from 1 up; x appears with exponent r — 1 and a with the 

exponent which added to r — 1 makes n, i.e. n — r +1. 

Illustrations of the binomial expansion. 

a. (a + x)s = a3 -f- - a2x + ax2 + ^ ^ - - x? 
K J 1 1-2 1-2-3 

= a3 + 3 a2x + 3 ax2 + cc3. 

1st 2d 3d 

b. (a -j- #)15 = a15 -f- — aHx + ^ al3x2 -\- •••. 
v ' 1 1.2 

10th Term 

15 • 14 • 13 • 12 • 11 • 10 • 9 • 8 • 7 
1-2.3-4-5-6.7-8-9 

a6x9 -|- 

Note that it is well in writing the tenth term to begin with 

x9; then a enters to the sixth power as in every term of this 

expansion the exponents of a and x together make 15; the 

denominator contains 9 factors, 1, 2, 3, ••• 9; the numerator 

contains 9 factors, which should be counted as they are writ¬ 

ten ; finally cancellation should be made, giving 

5 •7 • 11 • 13 a6x9. 

c. {a — 15 .t)15 = a 
15 14 , 15 • 14 13 2 
—- a 4x -\-aux2- 
1 1-2 

10th Term 

5 • 7 • 11 • 13 a6#9 + .... 

15 • 14 • 13 

1-2-3 
anj? 

d. (1 + £c)15 = 1 + 15 x + x2 + 15 ‘14 ‘ a3 + 
v y 1-2 1-2-3 

15 • 14 • 13 • 12 

1 • 2 • 3 • 4 

10th 

B* + ... 5 • 7 • 11 • 13 a9. 

Note that the powers of a in each term can be dropped, as 

every power of one equals one. 
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e. Compute to 4 decimal places (1 + .04)15. 

(1 + ,04)15 = 1 + 15(.04) +l^li4(.04)2 +15, (.04)3 + 
1.2 1.2*3 

15 • 14 • 13 • 12 ( 04)4 + 15-U.13.12vll(0d)6 + 

1.2 • 3 • 4 

.00 second 

1 • 2 • 3 • 4 • 5 

*7 ( 

.0291 

.12 
4.20 * 5).00349 fifth 

_.04 .00070 

3).1680 third term 11 

.0560 

.04 

.0077 

_.04 

.00031 sixth 

1.00000 first term 

.60000 second term 

.16800 third term 

.02912 fourth term 

.00349 fifth term 

.00031 sixth term 

1.80092 Ans. 

.002240 

.02240 10 times 

672 3 times 

.02912 fourth term, to be multiplied by .12 

Note here the method of computation given at the left; each 

term is obtained from the preceding term; three new factors 

of which one is .04 enter into each succeeding term, two in the 

numerator and one in the denominator ; these three factors after 

the second term (.60) are ^ - or 7 X .04, then 
13 x .04 

12 x .04 
then --:- or 

2 ' 3 ’ 

.12; then ^ X ,Q-, which might well be 
4 5 

treated as .008 X 11; then the factor ^ * ■* — would give the 

seventh term from the sixth, making about 2 in the fifth deci¬ 

mal place. 

The expansion of 

m(w-- 1) 9 | n(n ~ 1)(?l ~ 2)^ + ... 
1.2 1 • 2 • 3 

(1 + x)n = 1 + nx -f 

may be written as follows : 

(n — l)x T - (n — 2)« rn , (n — 3)x j, 
~2-/2“i--3 /3^ 4 4 (1 -(- x)n = 1 + nx + 

+ (n^)xTi + 
o 
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in which T2, Tb, ••• designate the second, third, fourth, — 

terms respectively. This type of representation, in which 

each term is obtained from the preceding, is frequently of use 

in statistical work and in computation. 

f Write the sixth and sixteenth terms of (1 + x)17o 

6th Term 

17.16-15.14.13 
- x 6 . 

16th Term 

17 • 16 ... 
.xlb. 

1*2* 3 • 4 • 5 1*2 ... 

q. What decimal place is affected by the sixth term of 

(1.06)17 ? 

17-16.15-14.13 

1-2.3-4-5 
(.06)5; (.06)3= .000216; (.06)4 = .00001296 ; 

(.06)5 = .00000078-; multiply .00000078 by 4, this by 7, this 

by 13, and then by 17, rejecting any beyond 3 significant fig¬ 

ures ; this gives .00000312, .0000218, .000286, and finally .00476. 

Note that the computation of six terms of (1 + .06)17 involves not 

very much more numerical labor than this determination. 

h. Write six terms of (a— 3 a;)12. 

a12 — 12 a11 (3 x) + ——a10(3 x)2 - 

+ 

1.2 
12.11-10-9 

1-2.3-4 
a8 (3 x)A 

12 • 11 • 10 

1-2-3 

12-11-10.9.8 

1.2.34.5 

a9 (3 xy 

a7 (3 x)5. 

ci 12 - 36 aux + 2 • 33.11 ci10x2 - 22.33.5 • 11 a¥ + 5 • 36 • 11 a¥ 

- 23 • 37 • 11 aV. 

It is not necessary or desirable to perform the multiplica¬ 

tion in such an expression as 22-33-5-ll; such terms, if 

desired numerically, are usually obtained progressively from 

preceding terms as in example (e) above. 

PROBLEMS 

1. Expand to 6 terms, (a 4- ^)6> (a + ft)14) (a 4- 2 af)10* 
(a — 3 a;)9. 
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2. Write 5 terms in simplest form (prime factors) of 

(1 + xy, (1 + x)“, (1 + 2 x)'°, (1 - 3 x)\ 

3. Compute to 4 decimal places (14- .05)°, (1 -f- .05)14, 
(1 + .05)10, (1 - .05)9. 

4. Compute to 2 decimal places the value at the end of 

10 years of $ 100 placed at interest at 6 % compounded annu¬ 

ally ; use 100 X (1 -f- .06)10. How could you use the result 

obtained to find the value at the end of 20 years ? 

5. From problem 3 give the amount at the end of 6, 14, 

and 10 years, respectively, of $ 256 at 5 % interest, com¬ 

pounded annually. 

6. Find the value at the end of 6, 14, and 10 years respec¬ 

tively of an annuity of 1 per annum, paid at the end of each 
n _i_ iY _ i 

year, interest at 5 %. Use the formula —-L-f- and 

the preceding results. 

7. Compute the values in 3, 4, and 5 by logarithms and 

compare. 

8. Given 210 = 1024, find to 1 decimal place (2 + .01)10. 

Arts. 1076.4. 

Find also (2.1)10 to one decimal place, and check by logs. 

9. Find (12.3)3 to five significant figures. 

10. Find the amount at the end of 20 years of $ 100 placed 

at interest, 3 %, compounded semiannually. 

11. Write the 8th term of (1 — 3 a?)17 and of (1 -f- a?)29. 

12. How many terms in (1 — 3 a;)17? Write the middle 

;erms. 

13. Write in simplest form the coefficient of x6 in (1 — 2 a?)25. 

14. Write the series for (1 -f- a?)5, (1 + a?)6, (l-f-af)7, and 

(1 + x)s. What is the sum of the coefficients ? 

(Note. — Substitute 1 for x.) 

15. What is the sum of the coefficients in (1 + x)19? 

16. Write 7 terms of (1 + VV)10 and of (1 -f^F)12. 
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2. Proof of (a + x)n = an -f ^ an ' x -f-— an 2x2 -r ~ l) nn-2 

12 

rrn Term to a Total of (r — 1) Factors 

n(n- l)(n- 2) , , , _ n(n- l)(n-2) - „-r+i , ... 
12 3 ^ 1 2-3 4 ... (r — 1) 

The proof of this expansion for positive integral values of n 

is effected by the process called mathematical induction. 

Evidently (a + a;)2 = «2 + 2 ax + x2, follows the rule ; 

also (a + it*)3 = a3 + 3 a2x + 3 ax2 -f- a;3, follows the rule. 

By the rule, 

/ , \4 4i4 , ,4-3 „ '4.3-2 o , 4 • 3 • 2 • 1 4 
(a + a;)4 = a4 + - H-a-a?2 H-ax3 + ^~ 
v y 1 1-2 1-2.3 1 • 2 • 3 • 4 

= a4 + 4 a?x + 6 a2x2 -f 4 ax3 + x4; 

by actual multiplication we find the same series, showing that 

the rule as given holds for n = 4. 

Assume 

(a + x)n = an + 7ian~1x + an~2x2 + ••• 

n (n _ i)(n _ 2) ... (n - r + 3) +2 2 

1-2.3... (r-2) 

rrn Term 

«,(« - 1)(« - 2) ... (n-r + 2) ■+1 

+ 1.2 • 3 (r — 1) ’ 

multiply by a + x = a + a; 

(a + cr)n+1 = an+1 +(?i + l)an-1aj + —J^ana,’2 + 

The New ?tii Term 

/n(n — 1 )(w — 2) (w — r + 3)(« — r + 2) 

V 1 • 2 • 3 ••• (r — 2)(r — 1) 

n(» - 1)(» - 2) - (n-r + 3)V r+, , 

1-2-8... (r-2) ) 
* 
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Note that these two coefficients of the new rth term have 

the first (r — 2) factors of numerator and denominator the 

same; multiply the denominator and numerator of the second 

term by r — 1 and then add the numerators, taking out the 

common factors, giving 

New rTH Term Common Remaining Remaining 

Factors Factor of Factor of 

First Term Second Term 

f [»(»-!)•- («-r+3)] [(»-r + 2) + (r-1)] 1 
1 1 • 2 • 3 • 4 • 5 — (r — 1) I 

The new rth term may be written, then, 

(n + l)(»)(n - !)(» - 2) - (»-’• + 3) „(»+i)-r+i^-i. 

1.2.3.4-0-1)- ’ 

the rth term of (a + a?)n+1 is formed according to the rule with 

(n + 1) substituted throughout for n; the numerator contains 

(r — 1) factors beginning with (n -f- 1), and the denominator 

contains the same number of factors beginning with 1. 

Hence if this expansion assumed for (a + x)n is correct for 

any value n, it is correct for a value one greater, n-\-1. The 

theorem is true, by trial, for n = 4; hence it is true for n = 5; 

since it is true for n = 5 it is also true for n ■= 6; ••• and so 

for every integral value of n. 

3. Binomial series ; any exponent. — The equation, 

a+»)-i+f *+ *2+ 

+ n (n -l)(n-2)(n-S) ^ 

1.2.3-4 
+ 

can be shown by methods of the higher mathematics to hold 

for all values of n when — 1 < x <C 1. This means that a 

series for (1 + afp can be obtained by substituting n = \ in 

the above formula. Similarly (l-f-ar)~3 and (1 + a,’)-7, (1 +*) 2 

or (1 + x)^ can be developed in powers of x, when |a?| < 1, by 
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substituting for n the values — 3, and — 7, and the like in the 

above formula. These series are of frequent use in statistical 

work. Thus if money is worth 6 % per annum the interest 

for one half year is not 3 % of 1, since this rate continued for 

the full year would give at the end of one year in addition to 

the 6 % of 1, the interest on the 3 % of 1 for one half year; 

the interest on 1 for one half year is taken to be 

j = (1 + .06)* - 1, 

and this rate of interest per half year accumulates at the end 

of two half years a principal of one to (1.06), or is equivalent 

to 6 % per year. Similarly the effective rate of 6 % per 

annum means that the interest for one fourth of a year will 

not be .015 times the principal, but rather (1 -f .06)* — 1, 

since this is the rate of interest for one quarter of a year 

which continued for four quarters will accumulate a principal 

of 1 to 1.06, since [(1 + .06)*]4 = 1.06. 

In our illustrative problems we will assume that the 

terms that follow any given term in the expansion of an ex¬ 

pression like (1 + a?)* are together less than the last term 

given; the general proof of the convergence of these series 

is reserved for the calculus; however, it is evident here that 

each new factor, when x is less than 1, diminishes in value and 

finally the terms are in turn respectively less than the terms 

of a geometrical series with ratio x; thus, below in the ex¬ 

pansion of (1 + .06)2, fieyond any given term the terms are 

respectively less, term by term, than the terms of a geometri¬ 

cal series with ratio .06; the sum of all terms beyond the 

fourth term is certainly less than —-, wherein a is the fourth 
• 04: 

term, since the corresponding geometrical series even to an 

infinite number of terms has only this sum, -=- 
. ’ 1 - r .94 

Note particularly that the expansion of (1 -f- x)n for values 

of n other than positive integers leads to a series which has 

no termination, i.e. to an infinite series; this series is valid 



BINOMIAL SERIES AND APPLICATIONS 201 

and lias meaning only when \x\ < 1; similarly any infinite 
•SC 

series given by (a + x)n has meaning only when — < 1. In 
a 

our further discussion this limitation will be consistently 

assumed. 

As an illustration of the possible absurdity from the point 

of view of finite series of the infinite series given by (1 + x)n, 

let us take the fraction ——— which may be written (1 — xY1, 
1 — x 

and developed by the binomial theorem as, 

l + x+x2-{-'Y + Y-\-xh-\- •••. 

For values of x numerically less than unity this series is valid, 

but if you put x equal to 3, or — 5, or other value greater than 

unity, you obtain an absurdity. 

4. Illustrative problems. — a. Compute (1 + .06)2 to 5 deci¬ 

mal places. 

(1 + xY = l + l - X + K& ~ . x2 + KI - 1)(I - 2) . X3 + ... 
^ 7 2 1-2 1.2.3 

(1 + .00)* = 1 + K-06)- | (.06)2 + Ti_ (.06)3 + ... 

= 1 + .03 - .00045 + .0000135 + ... 

= 1.02956. 
i 

If the value of (1.06)2 were desired to eight decimal places, progressive 

computation would be desirable, appearing as follows : 

Ti = l 
r2 = K-06) T\ = .03 

rs = -§ 

3 

1 / .06 

Ta = - 

2 

.06 

2' 3 

T2 = - .00045 

r3 = + .0000135 

5 

2 

7 

2 

.06 - .000000506 

— r5 = + .000000021 
5 

4).0000135 

.000003375 

__5 

.000016875 

.03 

.00000050625 

.042 

1012 
_2024 

.00000002125 

1.030013521 

- .000450507 

~T029563014 

T7 = - 5 . ^ = - .000000001 
2 6 
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The letters Ti, T2, T3, T4, ••• represent the first, second, third, fourth, 

and succeeding terms ; each term is obtained from the preceding, intro¬ 

ducing the new factors. 

b. Write six terms of the series for (1 + x)2 and for (1 — x) 

1-1 i_i_3 i _ i _ 3 _ 5 

2* 2 
r, -I-:r,~ 4- 

2 

1 12 2 
(1 + x)2 = 1 +-x H-H— x2 + 

2 , 2 2 
x3 + ■ 

2 2 
2 ~ ‘ 1-2-3 1 1-2-3-4 

1 _ 1 _ 3 _5 _ 7 

2*2*2' 

x4 

+ 
‘2 

x3 -J" • • • 
1-2-3.4.5 

= 1 + \x -\x- T2-\x- T3 — f x . T4- tjjX- T5 — .... 

Alternate terms after the second are positive and negative. 

-1 -3 1 -1 -3 -5 

2 * " 

(i - xy = 1 — 2 x + ix+Aj-ZX2_?..._ 2_ « X3 -f 
2 

2 1*2.3 1 * 2 * 3 • 4 

1 _i -3 -5 -7 

2 ’ 2 * 2 ' 2 

x4 

1 • 2 • 3 • 4 • 5 
-x5 + 

= 1 — A X — | X2 — X3 — Tf g X4 

— 1 — £x 4* 1x • To + I X • ?3 + f x • h 4 nX* U -f «... 

Every term after the first is negative. 

c. Compute V.98 to 5 places. 

(1 - .02)^ = 1 - £(.02) + (.02)2 - iKriD- (.02)3 + ... 

= 1 - .01 - .00005 - .0000005 - ... 

= .9899495 or .98995 to 5 places. 

d. Compute the cube root of (1012) to 6 significant figures. 

(1012)* = (1000)3(1 + .012)^ = 10(1 + .012)*. 

(1 + .012)* = 1 + i(.012) + i^^ (.012)2 (.oi2)3+ ... 

= 1 + .004 - .000016 + .0000001 - ... 1 

= 1.003984. 

(1012)* = 10 x 1.003984 = 10.03984. 

3 . 1 

e. Compute (1.05)2 to 4 places; treat this as 1.05 x (1.05)2 ; 

.05 may be taken as 2V Check by logarithms. 

tO|
>—
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/. Compute the square roots of 26 and 30 to 4 places. 

\/26 = 26^ = (25 + 1)* = 5(1 + ^)3 = 5(1 + .04)^ 

= 5(1 + .02 - .0002 + .000004) 

= 5(1.019804)= 5.09902. 

30^ = (25 + 5)2 = 5(1 + .2)2 = 5(1 + .1 - .005 + .0005 - .0000625) 

= 5(1.0954375)= 5.47718. 

Check roughly, using logarithms. 

g. Compute (1.05) 7 to 5 significant figures. 

(1.05)-7 = 1 - 7(.05)+—7C~ 8). (.05)2 + ~ 7(~ 8)C— 9) (.05)3 
1-2 1•2 • 3 

— 7( — 8)(—9)(—10) , 05y -7(-8)(-9)(- 10)(- 11) 

1.2.3.4 ' 1-2.3-4-5 J 

= 1 - .35 + .07 - .0105 + .0013125 - .0001444 + .0000144 = .71068. 

5. Historical note. — The binomial theorem as applied to 

(a 4- b)2 and (a + 5)3 was well known to Euclid (320 b.c.) and 

other early Greek mathematicians. The great Arabic mathe¬ 

matician and poet Omar al Khayyam (died 1123 a.d.) extended 

the rule to other positive integers. In China there appeared 

in 1303 a work containing the binomial coefficients arranged 

in triangular form, the so-called Pascal (1623-1662) triangle 

of coefficients. 

1 
1 1 

12 1 
13 3 1 

1 4 6 4 1 

15 10 10 5 1 

1 6 15 20 15 6 1 

11111111 
1 2 3 4 5 6 7 

13 6 10 15 21 

1 4 10 20 35 

1 5 15 35 

1 6 21 
1 7 

1 

12 1 
13 3 1 

1 4 6 4 1 

1 5 10 10 51 

1 6 15 20 15 6 1 

Pascal’s Triangle 

of Coefficients, 

Printed 1665. 

Chinese Form of Tri¬ 

angle of Coeffi¬ 

cients. 

Stifel’s (1486-1567) 

Triangle of Coeffi¬ 

cients, 1544. 

The general rule for any exponent — was first discovered 
n 

by Sir Isaac Newton, and made known in a letter of date Oct. 
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24, 1676, to a friend named Oldenburg. It is of interest to 

note that Newton wrote each coefficient in terms of the coeffi¬ 

cient immediately preceding, following the lines indicated in 

our numerical problems above. The complete proof for the 

general case, any real or complex imaginary number, was finally 

effected by a brilliant Norwegian mathematician, Abel (1802- 

1829), in 1826. 

PROBLEMS 

1. Find the coefficients of the first five terms of (1 +F)2 

and (1 — a?)1 and use them in the next two problems. 

2. Compute to 3 significant figures the square roots of 27, 

28, and 29 as 5(1 + .08)b 5(1 -f- .12)^, and 5(1 + .16)+ respec¬ 

tively. 

3. Compute the square roots of the first eleven integers, 

to 5 places, taking V2 as T+ (196 + 4)^ = -J-J (1 + TV)+ V3 as 

2(1 - #, V5 as 2(1 + i)*,_ V6_as (4 + 2)* = 2(1 + .5)*, 

V7 as i(25 + 3)i, V8 as 2V2, Vll as 1(100 - 1)&. Check 

the first four significant figures by logarithms. 

4. Write 5 terms of (1 + x)*, and of (1 — #. 

5. Use these to compute the values of -y/7 and \/9, as 

2(1-# and 2(1 + #. 

6. From the cube root of 9 find the cube root of 3. 

7. Find the cube root of 6. 

8. Using the cube roots of 6 and 3, find the cube root of 2. 

9. Compute (1 + .05)* to 5 places. 

10. Write 5 terms of (2 — 3+#. 

11. Write the 6th term of (2 — 3 a;)-7. 
, -i 

12. Find the value to 4 significant figures of ——- . py 

expanding (1 — .02) 2. Vl - .02 
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13. Expand in powers of i to 4 terms and What 
1 4- i 1 — i 

is the approximate percentage error in using (1 — i) and 

(i + o as multipliers, respectively, instead of —-—- and 

when i = .01, .05, .005, and .5, respectively ? 
1 -f- i 1 — i 

.7 

14. Find the fifth root of 35 correct to 2 decimal places. 

What is the shortest way ? Compute the root to 5 places. 

What method can you use ? 

15. Write the term containing x6 in the expansion of 

(l-3x)_i. 

16. Write the first five terms of (10 -f .3)8; of (10.3)6; of 

(10.3)-6 and give the value to 4 significant figures. 

17. Time yourself on writing and simplifying 10 terms of 
12 1 

the following five expansions : (1 -fi x)J, (1 — afp, (1 — 2 x)~% 

(1 — -| Fp, (1 — 3 x)~&. 

18. Compute correctly to 4 significant figures, using the 

formulas for —-— and —-— Time yourself on the exercise. 
1 + i 1 -- i 

18 27 54 62 68 

.98’ 1.02’ 1.03’ .99’ 1.05* 

19. Compute the following to three significant figures, tim¬ 

ing yourself: 

(1.06)*, (1.06)A, (1.05)*, (1.06)*, (1.10)*, (1.06)"*. 



CHAPTER XIII 

RIGHT TRIANGLES 

1. Right triangles. — To apply our trigonometric work to the 

numerical solution of right triangles place the triangle under 

consideration in quadrant I in proper position to be able to read 

the trigonometric functions of one acute angle. 

x = r cos a = rsin p 

y = r sin a = r cos p 

tan a = - = cot p 
x 

x 

Fundamental formulas of the right 

triangle 

cot a = = tan B 
y 

x2 + y' = r- 

ct -f p = 90°. 
x 

The equation x = r cos a may be written cos a — - or 

x 
, as occasion demands ; similar transformations are to r = 

cos a 

be effected upon the other equations given. 

Given a with x, y, or r; or (3 with x,, y, or r; or two of the 

lengths ; these formulas enable us to solve the right triangle 

completely for the remaining three parts. 

The student is advised to draw the figure to scale on coordi¬ 

nate paper, using a protractor to lay off correctly to degrees the 

angles given, before attempting to apply any formulas ; then 

write the required equations directly from a consideration of 

the figure, and not by attempting to memorize the solutions 

for the different types of problems. The lengths as given 

graphically serve as a check upon the values obtained. 

206 
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2, Right triangles. Type I. — Given hypotenuse and one 

angle, i.e. a and r, or (3 and r. 

A guy wire 168 feet long reaches to the top of a tall chimney, 

making an angle of 37° with the ground. Find the height of 

the chimney and the distance 

from the supporting peg to 

the foot of the chimney. 

Solution. — First draw the fig¬ 

ure, as indicated, using | inch to 

represent 30 units. 

y = 168 sin 37° 

x = 168 cos 37° 

Check, y — x tan 37° Hypotenuse and one angle given 

Using natural functions there are here three problems in multiplication. 

The logarithmic solution is as follows : 

log 168 = 2.2253 

log sin 37° = 9.7795- 10 

log y = 2.0048 

y = 101.1. 

log 168 = 2.2253 

log cos 37° = 9.9023 - 10 

log x — ~ 2.1276 

x = 134.2. 

Check, log x = 2.1276 

log tan 37° = 9.8771 - 10 

log y = 2.0047. 

Angle and side given 

Compare with preceding value of log y ; a dis¬ 

agreement in the fourth place is permissible. It 

would not affect the fourth significant figure of 

y in this case ; nor would the measurements of 

height of chimney and length of guy wire be 

made with greater accuracy than to one tenth of 

a foot, x2 y2 = 1682 could be used as a check. 

3. Right triangles. Type II. — Given 

one leg and an angle. 

If a telegraph pole is 34 feet high, and 

the supporting wire makes an angle of 62° 

with the ground, find the length of the 

wire and the distance from the foot of the 

supporting peg to the foot of the pole. 
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The corresponding formulas are as follows : 

x = 34 cot 62° Check, x = r cos 62° 

sin 62° 

log 34 = 1.5315 

log cot 62° = 9,7257 - 10 

logx = 1.2572 

x = 18.08. 

or 342 = r2 — x2 

= (r — x)(r + x) 
log 34 = 11.5315- 10 

— log sin 62° = 9.9459 — 10 

log r = 1.5856 

r = 38.51. 

Check, log r— 1.5856 

4- log cos 62° = 9.6716 - 10 

logx = 1.2572, checks. 

4. Right triangles. Type III. — Given a leg and the hy¬ 

potenuse. 

Let the side a = 341 and c, the hypotenuse, equal 725. 
Evidently, sin « = 

b = 725 cos a. Check, b = 341 cot a. . 

log 341 = 12.5328 - 10 log 725 = 2.8603 

log 725 = 2.8603 log cos a = 9.9457 — 10 

log b = 2.8060 

b = 639.7. 

Check, log 341 = 2.5328 

log cot a = .2731 

log b = 2.8059. 

Compare with above value 

logb =2.8060 as a check; 

the error of 1 here is in¬ 

evitable with 4-place log¬ 

arithms. 

Note that on the small 

graph only two places are 

accurately representable. 

5. Right triangles. Type IV. — Given the two legs. 

Entirely similar except that the initial formula is for tan a instead of 
sin a. 

Note that commonly in lettering right triangles x and y or a and b are 

log sin a = 9.6725 — 10 

a = 28° 4'. 

Hypotenuse and one side given 

Graphical solution gives a rough check 

to two significant figures. 
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used for the legs, r or c for the hypotenuse, a and /S for the angles at A and 
If, opposite a and b respectively. 

In Type III if a and c are nearly equal we may avoid the use of the 

sine of the angle near to 90° by computing the other side using the 
formula 

&2 = c2 — a2 = (c — a) (c + a). 
Thus if a = 718, c = 725, 52 = (725 - 718)(725 + 718) 

= 7(1443) = 10101. 
b = 100.5, 

either by inspection as in this case, or from a table of squares, or by 
logarithms. 

PROBLEMS 

Solve the following right triangles by logarithms: 

1. Given r = 240, a = 30° 10'. 

2. Given a = 368, a = 30° 14'. 

3. Given a = 368, r = 579. 

4. Given a = 368, b =275. 

5. Solve for the missing parts the following ten problems, 

using logarithms; time yourself; the exercise should be com¬ 

pleted within 30 minutes. 

a. Given r = 186, a = 84.3. e. Given a = 930, a = 24°. 

b. Given a = .394, b = .654. f Given b = 184, a =55° 15'. 

c. Given a = 2.89, /3=68° 24'. g. Given r = .0936, b = .0418. 

d. Given b = 706, a = 70° 10'. li. Given b = 3.24, (2 = 86° 14'. 

i. Given b = 878, a = 48° 19'. 

j. Given r = 8.4 x 106, /3 = 34° 16'. 

6. Area. — In computations of functions involving measured 

and computed values, measured values are taken, as far as 

possible, in preference to computed values. The computed 

value involves not only the inaccuracies or errors of measure¬ 

ment, but also the errors of computation, the inevitable errors 

of computation with approximate numbers as well as the 

avoidable errors. Among the following formulas for the area 

of a right triangle the student should select, in accordance with 
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tlie principle mentioned, the formula to be used in each prob¬ 

lem involving a right triangle. 

A = \ab — \o? cot a = ift2 tan « = |c2 sin a cos a. 

7. Applications. — In the application of the solution of 
right triangles to practical problems we find that the difficulty 

is frequently a matter of ter¬ 

minology rather than of prin¬ 

ciple. The student is urged 

to acquire some real famili¬ 

arity with the industrial and 

scientific application of the 

principles explained. 

The terms “ elevation,” 

“ depression,” “ dip,” “ de¬ 

parture,” and “ bearing,” all refer to angles. Thus in the figure 

ABC, if AC is in the direction of the sun or if C represents the 

top of a mountain viewed from A, then angle BAG is termed the 

angle of “ elevation ” of C as viewed from A; if the observer 

is at C, on a mountain or in an airship, HCA is the angle of 

“ depression ” ; if A represents the horizon as viewed from C, 

then HCA is called the “ dip ” of the horizon. If CA repre¬ 

sents a vertical section of a vein of coal, the angle HCA or 

BAC is called the “ dip ” of the vein ; in navigation if AB 

represents east, then angle BAC represents the “ departure ” 

north of the line AC, whereas 

in surveying the angular de¬ 

flection from north or south is 

given as the “ bearing.” 

Frequently some function 

of an angle is given from 

which the angle must be de¬ 

termined. The pitch of a roof 

is given as the height divided 

by the span, whence the corresponding slope angle of the roof 

is 0, given by 

Common terms relating to angles 

Dip—depression—elevation—bias 
— departure. 
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tan 0 — 
s 

where h is the height and 2 s is the total span. 
The slope of a railroad is commonly given as so many (h) 

feet of rise in 100 feet horizontally; this gives the slope angle 

0 from tan 6 = = li of 
100 ' 

A spiral thread winds about a cylinder advancing a height 
h, called the u lead,J; in one complete turn 5 the circumference 

Full size representation of a one-inch cylindrical screw 

The “ lead ” is -A of an inch. 

of the cylinder is the base and the “ lead ” is the altitude of 
a right triangle which may be regarded as wrapt about the 
cylinder to give the spiral. The angle a made with h by the 
spiral line is called the angle of the spiral; evidently 
i ‘2tvT tan a = ■—- • 

Circumference, .4C, and length of one spiral, AB, of the above one-inch 

cylindrical screw 
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PROBLEMS 

1. A standpipe subtends an angle of 4° at the eye of an 

observer; if its height is 280 feet above the level of the eye, 

hnd its distance from the observer. 

2. If the diameter of the standpipe in 1 subtends an angle 

of 15' at the eye, what is the diameter in feet ? Suppose that 

the angle at the eye lies between 10' and 20', what range of 

diameter would these values give ? 

3. The shadow of a flagstaff 60 feet high is 48 feet long. 

Find the angular elevation of the sun. 

4. Using trigonometric functions, find the height of a 

building which at the same time casts a shadow 87 feet long. 

5. Find the lengths of the circle of latitude and the circle 

of longitude through your home 

city. 

6. When the sun is directly 

over the equator, the latitude of 

any place on the earth’s surface 

from which the sun is visible is 

the angle between the zenith line 

(the vertical) and the line to the 

sun, when the sun is on the me¬ 

ridian. Find the length in feet 

of the shadow of a pole 100 feet 

high, at noon, latitude 40° N., and 

also for latitude 42° 18' N. 

7. Compute the diameter of a circle circumscribed about 

an equilateral triangle of side 40. 

8. hind in a circle of radius 486 cm. the chords of angles 

of 30°, 60°, 45°, 90°, 120°, 72°, 68°. 

9. For any angle a, find the chord and the chord of half 

the angle in terms of the radius r. Apply the latter formula 

to obtain the results of problem 8. 

r\ \ c X 
4- - 

— 
1: 

o E 

Zenith distance representing 

latitude 

Sun on celestial equator, di¬ 

rection OE. OP is zenith 

direction of P. 
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10. A pendulum of length 34 inches swings between two 

points 10 inches apart; compute the arc of the swing. If this 

is a seconds pendulum, passing the vertical once every sec¬ 

ond, what is the velocity of the pendulum bob? Find the 

chord of this arc, and the difference between the chord and the 

arc. 

11. A circular arch over a doorway is to be 4 feet wide and 

20 inches high; compute the radius. Compute for heights 

of 10 to 24 inches by 2-inch intervals. 

12. Given the radius 10 feet and the span 4 feet of a 

circular arch. Compute the height. Compute for spans of 

2 feet to 20 feet, by 2-foot intervals. 

13. Adapt the preceding results to a radius of 8 feet. How 

closely would interpolation give correct results ? discuss by 

considering the problem graphically, 

14. In a circle of radius 100 inches, compute to one decimal 

place the lengths of sides and the perimeters of regular in¬ 

scribed polygons of 3, 4, 5, 6, 7, 8, 9,10,11, and 12 sides. Time 

yourself on the exercise. State the general formulas involved. 

15. Compute perimeters of regular circumscribed polygons 

of 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 sides in a circle of radius 

100. Time yourself on the numerical work; 30 minutes is 

ample time. 

16. Compute the perimeter of a regular inscribed polygon 

of 96 sides, and of a regular circumscribed polygon of 96 

sides, radius 100. How does the circumference compare with 

these two values ? Archimedes computed these lengths by 

plane geometry methods and so found 7r to lie between 3-^- and 

3|f. Check his result. 

17. Frequently arches of bridges are circular segments; 

find the radius of the circular arch of the famous Rialto in 

Venice (see illustration, page 225). The width of the arch is 

95 feet and the height is 25 feet. Draw the graph of the arch 

to scale. 
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18. One of the largest masonry bridges in the IT. S. is the 

Rocky River bridge at Cleveland; the height of the circular 

arch is 80 feet and the span is 280 feet. Find the correspond¬ 

ing radius. 

19. Find the angle of the spiral represented in the above 

diagram of the one-inch cylindrical screw. 

20. Find the angle of a cylindrical screw of diameter i inch 

which advances ^ of an inch in one complete turn. 

21. A • twelve-inch gun has a muzzle velocity of approxi¬ 

mately 2500 feet per second (f.s.). The velocity is tested'by 

Determination of velocity ov a projectile 

One screen is at the muzz! of the gun. 

electrical means ; screens are placed at a known distance apart 

and the projectile in passing through the screens breaks 

successively two electrical circuits which serve to give the 

time of flight of the projectile to thousandths of a second 

in passing through the known distance. The apparatus may 

also be used to determine the angle of elevation of the larger 

guns. In the figure TAT represents the axis of trunnions of 

a twelve-inch gun ; AM along the axis of the barrel is 25 feet; 

MS is 180 feet; the one screen is over the muzzle and the 

other screen is at a height of 94 feet above the axis of trun¬ 

nions. Determine the angle of elevation of the gun and 

reduce to “ mils.” Find the horizontal distance MQ between 
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muzzle and screen and the vertical distance between muzzle 

and screen, QS • find the time of flight of the projectile, 

assuming 2500 f.s. as velocity; find “ horizontal velocity/’ vx, 
and “ vertical velocity,” vy, by dividing MQ and QS re¬ 

spectively by this time of flight. The vertical velocity v 
divided by 32.2 gives approximately the time in seconds that 

the projectile will continue to rise ; find this time; the position 

of the projectile after this interval of time is given approxi¬ 

mately by the product of horizontal velocity, v c, multiplied by 

the time, as horizontal distance from the gun, and by vertical 

component of velocity multiplied by the same value of t less 

16.1 multiplied by t2, as ordinate. The equations are 

x = vxt, 
y = vyt — 16.R2. 

What error is possible in the angle measured if the height of S 
is given only within one foot ? The aim is directed at a point 

two feet below the top of the screen, as, in general, there is a 

slight “jump” due apparently to the explosion. Estimate 

the jump in degrees and minutes, and in “ mils ” if the pro¬ 

jectile hits the top of the screen. 

22. When two screens are used with a large gun the dis¬ 

tance between screens is sometimes measured by taking equal 

Distances of screens from muzzle, M, determined by right triangles 

Two screens spaced 100 feet apart (horizontally). 

distances MH and ME at right angles to the line MSiSo and 

measuring the angles MHSi, MHS2, ME Si, and MES2- Note 

that the screens are 20 to 100 feet in the air on tall standards, 
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making it inconvenient to measure the distance with a steel 

tape. Assuming that the distances ME and MH are taken as 

20 feet and that the angles MHS1 = ME Si = 70° 10', and that 

angle MHS2 = MES2 — 82° 34', compute the distance MSi, 

M/S2, and SLS2- If the screen -S'! is at an elevation of 34 feet 

and the screen S2 is at an elevation of 83 feet, compute the 

angle of elevation of the gun, and the height of the muzzle 

above the plane of its axis if the muzzle is 25 feet long from 

the axis. 

Note that the relative positions of the screens are usually 

determined by two observers in towers whose distance apart 

is fixed; these observers record positions of muzzle and each 

of the screens. 

23. If a stick of length 12 units casts shadows of lengths 4, 

6, 8, 10, 12, 15, 18, 30, and 40 units respectively, determine the 

angle of inclination of the sun. For angles of inclination of 

10° to 20° by degrees, determine the corresponding shadow 

length to tenths of one unit. This type of table was the first 

appearance of the cotangent function as direct shadow; it 

appeared as early as 900 a.d. in the works of the great Arabic 

astronomer Al-Battani. 

24. The pitch of a roof is given 

by the vertical height h, from 

the point C to M, on the diagram, 

divided by the span, 2 s ; thus -J- 

pitch is a 45° slope. Find the 

slope angle of a roof of -J pitch, 

of -J pitch. If 2 s is given as 48 feet, find the length of the 

rafters in each of the roofs mentioned. 

25. In a roof of span 62 feet find to the tenth of an inch 

the lengths of the rafters if the roof is inclined at 30°, 40°, 42°, 

45°, 53°, and 60°. In each case determine the effect upon the 

length of the rafter of an error of one degree. 

26. Find the pitch and the angle of inclination of the roof 

represented in the diagram above. 
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8. Railroad curves. — In so far as possible the track of a rail¬ 

road is laid out in straight lines. Wherever the direction of 

the track is changed a curved line of track is introduced lead- 

simple curve at a turnout on a railroad track 

ing from the one straight track to a second; these straight 

portions of track must be tangent to the curve which joins 

them, and so they are commonly designated simply as tangents. 
Let AV and VB in the figure represent two such tangents, 

meeting at a point V, called the vertex ; the exterior angle 

XVB is called the deflection 
angle, and is usually designated 

by I. A single circular arc, 

radius B, which joins two tan¬ 

gents is called a simple curve and 

is designated in American rail¬ 

road practice by the number of de¬ 

grees D at the center of the circle 

subtended by'a chord whose length is 100 feet, the length of 

one chain used in surveying. On a simple curve the lengths 

Chord 100 feet; arc approxi¬ 

mately 100 feet 
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of two consecutive tangents, from intersection point to the 

circle, i.e. AV and VB, are equal; this length is called T. 
The angle D is commonly given only in degrees and half¬ 

degrees. 

Relation between D and R. Let PB on the figure represent 

a chord of length 100 feet; drop the perpendicular from A, the 

center of the circular arc of radius R, bisecting PB. Evi¬ 

dently sin 
D 
2 

50 

R’ 
whence R = Now for any angle 

up to 4° the sine differs numerically from the angle expressed 

in radians by less than .1 of 1 % of itself; hence you may 

replace sin — by — • 
2 2 

-A— the value of — in radians, with an 
180’ 2 

error of less than .1 of 1 % when D is any angle up to 8°. 

Note that the error is less than 5 feet in 5000; the circular 

measure of the angle is larger than the sine so that the error 

will be a deficiency. 

R = 18000 

it D 

gives the radius. 

Relation between I, R, and T. On our figure in the right 

triangle OAV the angle AVO is 90° — and the angle AOB is 
2 

evidently equal to the deflection angle I. 

whence 

tan ^90° — - 

R = T cot 
2’ 

_OA = R 
AV T1 

and T = R tan - • 
2 

Evidently the radius R can be expressed in terms of the 

“ degree” D of the curve, giving new formulas involving 

T, and I. 
Elevation of outer rail. In turning a curve a railroad train 

tends to leave the track, due to the tendency of any moving 

body to continue its motion in. a straight line. To keep the 

train on the track the flanges alone are not sufficient, but the 
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outer edge must be elevated. The formula for ordinary speeds, 

giving number of inches of elevation, is e = , wherein g is 
o2 li 

the gage of the track in feet, v the velocity of the train in feet 

per second, and H the radius of curvature in feet. 

PROBLEMS 

1. What radii have railroad curves of 8°, 7°, 6°, 5°, 4°, 3°, 

2°, and 1°, respectively ? 

2. If a railroad curve is built with the radius of 2640 feet, 

compute D in degrees. 

3. On a circular track of 100 miles’ circumference what 

would be the number of degrees ? 

4. On English and continental railroads the curvature is 

usually given by the length of the radius ; find the number of 

degrees, American Z), corresponding to radii of 8000, 5000, 

4000, 3000, 2000, 1000, 800, 600, and 400 feet, respectively. 

Do not compute beyond minutes. Find D for radii of 300 

meters, 1000 meters. 

5. Compute e, elevation of outer rail, for g = 4 feet 8.5 

inches, standard gage on American railroads, when v = 60 

miles per hour, and R = 800, 1000, 2000, 4000, and 5000 re¬ 

spectively. Compute for a one-degree and for a two-degree 

curve. 

6. Given that two portions of straight track diverge at 

22° 14', and that the tangent distance is to be 300 feet, com¬ 

pute li; find R for T, the tangent distance, equal to 200, 250, 

and 350. Find the corresponding values of D. How could 

you determine the length of T, approximately 300, so that 

D will come out in degrees and half-degrees ? 

7. Compute R when T = 400, 500, and 600, respectively, 

the deflection angle being 60° ; similarly when I = 30°. 

8. Compute e for g = 4 feet 8.5 inches (4.71 feet), standard 

gage, v = 60 miles per hour, and curves of 1°, 2°, 5°, 6°, and 8°> 

respectively. 



CHAPTER XIV 

THE CIRCLE 
1. Formulas.— 

• V * 

x1 -f- y1 — r2. \x — h — v cos 0, Parametric equa- 

(x — h)2-+- (y — k)2 = r2. [ y — k = r sin 0. tions of the circle. 

OMx 2 + MxPxi = 0PX 2, 0M2 2 + M2P2 2 = OP2 2, Oilf32 + ilf3P32 = OP32, 

Oif42 + khP*2 = 0P4 2. 

Xi2 + yi2 = r2 ; X22 + 2/22 = r2 ; x32 + = r2; x42 + ?y42 = r2; x2 + y* = r2. 

For any point P(a?, ?/) on a circle of radius 10, center the 

origin, we have the relation, 

x*2 + y2 = 100, 

220 
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which is the equation then of a circle of radius 10 and center 

at the origin (0, 0). This equation is obtained directly from 

the distance formula ; x2 + y2 = 100 expresses the fact that the 

distance of the point (x, y) from the point (0, 0) is 10; any 

point (x, y) which satisfies this equation is at a distance 10 

from (0, 0) and any point at a distance of 10 units from O 
(0, 0) satisfies this equation. The locus of this equation, then, 

is the circle of radius 10 and center (0, 0). 

The formula may readily be verified on the figure ; take 

P any point on the circle, drop PM a perpendicular to the 

a;-axis. Then OM2 -{- MP2 = OP2, in any one of the four tri¬ 

angles, representing any possible position of P. Herein OM 
and MP must be regarded initially as positive quantities, since 

the formulas of plane geometry were applied only to positive 

lengths. However OM, as a positive length = x, where the 

negative sign is taken for points in II and III and MP=y, 

where the negative sign is taken in III and IY, whence sub¬ 

stituting in OM2 + MP2 = OP2 you have x2 + y2 = 102. For a 

circle of radius r the equation x2 + y2 = r2 is satisfied by any 

point P(x, y) which is upon the circle, for OP will equal r, and 

every point which satisfies the equation evidently lies on the 

circle. Hence, by definition, the locus of x2 -f- y2 = r2 is the 

circle of center (0, 0) and of radius r, for every point on 

the circle satisfies this equation and every point which satis¬ 

fies the equation lies upon the circle. These two conditions 

must be fulfilled in order that any given curve may be desig¬ 

nated as the locus of a given equation. In other words, the 

given curve must include all points whose coordinates satisfy 

the equation and must exclude all whose coordinates do not 

satisfy the given relation. 

Similarly the two equations : 

x — 10 cos 0, 
y = 10 sin 0, 

give for every value of 0, called a parameter, the coordinates 

of a point which lies upon the circle. The locus of this pair 
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of equations is the circle of radius 10. Thus the ten values of 
0=0°, 30°, 45°, 60°, 90°, 120°, 150°, 180°, 210°, and 330°, give 

the ten points, (10, 0), (5V3, 5), (5V2, 5 V2), (5, 5V3), 
(0, 10),_(- 5, 5V3), (- 5V3, 5), (- 10, 0), (- 5V3, - 5), and 

( + 5V3, — 5), which lie upon the circle. Intermediate values 

Circle of radius 10 ; units are eighths of an inch 

x2 + y2 = 100, or 
x = 10 cos d. 
y — 10 sin 6. 

can readily be obtained using the tables of sines and cosines. 

The two equations together constitute the equations of the 

circle in parametric form, a type of equation of particular im¬ 

portance in applied mathematics. 

If desired, we may eliminate 6 as follows: squaring and 

adding gives 

or 

x- -f if = 100 (cos2 0 + sin2 0), 
x2 A- y2 = 100 (since sin2 0 -f cos2 6 = 1), 
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a relation independent of 0. But for many purposes it is more 

convenient to keep the equations in parametric form. 

For the distance from any point C (h, k) to a point P (x, y) we 

have found the formula d = V(a? — li)2 + (y — k)2; all points 

(x, y) which satisfy this equation for a given value of d, and 

for (Ji, k) a fixed point, lie upon a circle of which (Ji, k) is the 

center and d is the radius ; no point not on the circle satisfies 

this equation. 

(;x — h2) + (y — k)2 = r2 is then the equation of a circle of 

center (h, k) and radius r. Any equation which can be put 

into this form represents a circle, for it expresses the fact 

that the distance from any point (x, y) whose coordinates 

satisfy the given equation, to the fixed point (Ji, k) is constant 

and equal to r. 

In parametric form, the two equations representing the 

circle with center (7q k) and radius r are written: 

x — h — r cos 0. 
y — k = r sin 6. 

If 0 is given values the corresponding values of x and y 
determine points upon the circle (a; — h)2 +- (y — k)2 = r2. 

Illustrative problem. — Find the equation of the circle 

of radius 5; center (3, — 7). 

By the distance formula, taking (x, y) as any point on the circle, 

(£-3)2+0 + 7)2 = 25, 

or X2 _ 6 x + y2 + 14 y - 33 = 0. 

In parametric form the equations of this circle are, 

£ — 3 = 5 cos 6. 
y + 7 = 5 sin 9. 

2. Reduction to standard form. — Any equation of the type, 

a2 + y1 + 2 Gx + 2 Fy + C = 0, 

or Ax2 +- Ay2 + 2 Gx + 2 Fy -+ C = 0, 

represents a circle. The center and radius are determined by 

completing the square, as in the illustrative problem below. 

If the expression for the radius is zero, the circle reduces to a 

point j if it is negative the circle is imaginary. 
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Illustrative problem. — Find the center and radius of the circle, 

2 x2 2 y2 6 x — 7 y — 15 =0. 

This equation represents a circle since it can be put into the form of a 

circle, as indicated herewith : 

2(*2 + 3*) +2(y2-|y) = 15. 

2(3)2 + 3 X + f) + 2(2/2 _ | y + 49) = 15 + I + -V-. 

. 2(X + |)2+2 (y_ 1)2 = 205. 

(X + l)2 + (y - 1)2 = -W (or 12.81). 
V205 

This equation states that the point (x, y) is at the distance —-— from 

the point ( - f, 1); this equation represents a circle with the center 

(— 1) and radius or !_h^2 or 3 gg< 
4 4 

PROBLEMS 

Find the equations of the following circles: 

1. Center (3, — 4), radius o. 3. Center (— 4, 0), radius 4. 

2. Center (0, 0), radius 10. 4. Center (—6, 6), radius 6. 

5. Center (—6, — 8), radius 10. 

6. Draw the circle of radius 10, center (0, 0) and estimate 

carefully its area on the coordinate paper. 

Find the centers and radii of the following circles ; time 

yourself; the eight problems should be completed numerically 

within 12 minutes. 

7. x2 4- y2 —12 x + 12 y 4- 36 = 0. 

8. x2 + y2 — 12 x + 12 y — 36 = 0. 

9. x2 -f y2 — 39 = 0. 

10. x2 — 10 x 4- y2 — 39 = 0. 

11. 2 x2 + 2 y2 - 6 x - 8 y - 19 = 0. 

12. 2 x2 + 2 y2 - 5 x + 7 y - 15 = 0. 

13. 3 x2 4- 3 y2 — 15 x + 17 y + 9 = 0. 

14. x2 + 6 x 4- y2 — 10 = 0. 

15. Draw the graphs of the preceding 8 circles, using only 

one or two sheets of graph paper; time yourself, keeping a 

record of the time. 
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16. Given x = 5 cos 0, 

y = 5 sin 0, 

locate 16 points on the curve, using the values sin 0° = 0, 

sin 30° = .5, sin 45° = .707, sin 60° = .866 for these and related 

angles. 

17. Given cc = 5 + 5cos$, 

y = — 3 + 5 sin 6, 

locate 16 points on this circle. 

18. When 0= 37°, 43°, 62°, 80°, and 85° find x and y in the 

preceding problems. 

19. Through what point on the circle x2 + y2 — 25 does the 

radius which makes an angle arc tan 2 with OX, pass ? 

The Rialto in Venice 

A famous circular arch, 95 feet wide by 25 feet high. 

3. To find the intersection of a line with a circle. Tangents. — 

The intersections of the circle, x2 y1 = 100, with any line 

as y = x -b 5, are represented by the solutions of the two equa¬ 

tions regarded as simultaneous. Six problems are given here. 

1. a;2 4-y2 = 100, 2. x2 -j- y2 — 100, 

y — x. y = x + 5. 
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x1 2 3 + y2 = 100,- 5. x2 + y2 = 100, 

y = * +16. 

00 1 II ^5 

x2 + y2 = 100, 6. »2 + y2 = 100, 
y = x +- 16. y = x k. 

Solving, by substitution in each of the six eases indicated 

above: 

Graphical solution, determining intersections of the circle, x2 + y2=100, 

with various lines of slope 1 

1. gives 2 x2 = 100, x2 = 50, x = ± v50 = ± 7.07, y = ± 7.07 ; 

2. gives 2 x2 + 10 x + 25 = 100, x2 + 5 x — 37.5 = 0 ; 

x = - 2.5 ± V6.25 + 37.5 = - 2.5 ± 6.61 

= + 4.11 or - 9.11, 

y = 9.11 or — 4.11; 

3. gives x2 + 10x = 0, x = 0 or — 10 (by factoring, simplest), 

y = 10 or 0 ; 
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4. gives 2 x2 + 32 x+156 = 0, x2 + 16 x + 78 = 0, 
x = -8+ v/64 - 78 

= - 8 + V- 14 

= imaginary values, not any scalar values of x; 

5. gives 2 x2 — 16 x — 36 = 0, x2 — 8 x — 18 = 0, x = 4 ± V34 

= 4 ± 5.83 
= 9.83, or - 1.83, 

y = 1.83 or — 9.83 ; 
6. gives 2 x2 + 2 k • x + (A;2 — 100) = 0, 

_ - k±VW- 2(fc2 - 100) 
2 

= --±i V200 - W. 
2 2 

Very evidently the solutions of 1 to 5 are all included under 

the solution 6, as special cases. 

Geometrically the lines of slope 1 are divided by the circle 

into three classes, viz. (a) those which cut the circle in two 

distinct points ; (6) those which do not cut the circle; and (c) 

those which are tangent to the circle, or cut the circle in two 

coincident points. 

Evidently lines in 1, 2, 3, and 5 belong to the first class ; the 

line in 4 to the second class. To determine the tangents one 

must find the value of k for which 200 — k2 = 0, as only when 

200 — k2 = 0 are two points whose abscissas are given by 

— ^ + - V200 — k2 and — - — - V200 — k2 coincident. In this 
2 2 2 2 

case, k = ± 14.14, the lines y = x ± 14.14 are tangent to the 

circle x2 + y2 = 100. The abscissa of the point of tangency is 
k 

T 7.07, since it equals- 

Rule. — To find the tangent with given slope to a given circle 

write the equation of the family of lines of the given slope, 

y = mx + k, and solve for the points of intersection with the circle; 

get the condition that the two points of intersection should be coin¬ 

cident. This gives the value of k for which the line y = mx -f k 

is tangent to the given circle. 

Note. —The method will apply to any curve of the second degree. 
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4. Circles satisfying given conditions. — To End the equation 

of a circle which satisfies given conditions it is necessary to use 

the analytic formulas which we have derived combined with 

the geometric properties of a circle. In general call (h, k) or 

(x, y) the center of the circle and r the radius ; sketch the lines 

and points which are given and indicate roughly the probable 

position of the desired circle ; solve the problem geometrically 

if possible, or indicate the solution, and express the geometrical 

facts in algebraical language by using the preceding formulas. 
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Circle through three points 

Determination of center by perpendicular bi¬ 

sectors of chords. 

5. Illustrative 

problems. — Find 

the equation of the 

circle through A 

(1, 2), B (0, 8), and 

O (7, - 1), (1) using 

the distance formula, 

(2) using the per¬ 

pendicular bisector 

of the line joining 

two points, (3) using 

the general equation 

(,x — 7/,)2 k)2 = r2 

which may represent 

any circle, and (4) 

using the general 

equation 

Ax2 + Ay2 + 2 Gx 

* + 2 Fy + C = 0. 

(1) Call the center P(h, Jfc), then PA-PB, PB = PC', and PA = PC. 

The distance from A to P equals the distance from B to P, whence by 

the distance formula, 

l. V(h - 1)2 + (fc - 2)2 rr: V(A - 0)2 + (fc - 8)2 ; 
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Similarly, 

11. V(ft- l)2-f (ft- 2)2 = v'(ft - 7)2 + (ft + l)2 
expresses analytically the fact that PA = PC ; and 

HI. V'(F-1))2 + (ft"-8)2 = V(ft - 7)2 + (ft + l)2 

that PB= PC. 

Since equation III is derivable from I and II, it adds nothing new ; 

any two of these equations are sufficient to determine (ft, ft) the center. 

Squaring in each and combining terms we obtain from I, 

12 ft — 2 ft — 59 = 0, 

a straight line which is the locus of all points equidistant from A and B ; 

and from II, . , 0 , A 
4ft — 2ft — 15 = 0. 

Solving, we obtain the one point which is equidistant from A, B, and (7, 
ft = 6.77. 

ft = 6.05. 

r - V(6,77 - l)2 + (6.05 - 2)2 = v'(33.29 + 16.40) = V49.69 

= 7.05. 

The circle is (x - 6.77)2 + (y - 6.05)2 _ (7.05)2. 

(2) The center of the circle is the intersection of the perpen¬ 

dicular bisectors of the sides; finding the slopes of the sides, 

the inid-points, the slope of the perpendicular to each side, the 

equations of the perpendicular bisectors of AB and AC are 

found (point-slope) to be 

12 y — 2 x — 59 = 0. 

4 x — 2 y — 15 = 0. 

Examination shows that these are precisely in x and y the equations 

obtained in our first solution in ft and ft and from this point the solution 

proceeds as in (1). The student should explain the reason for this. 

(3) I. (x — h)2 + (y — k)2 = r2 

is the equation of any circle, center (ft, ft), radius r. 

Substituting in this equation (1, 2), (0, 8), and (7, — 1), gives, 

II. (1 — ft)2 -f- (2 — ft)2 = r2. 
III. (0 - ft)2 + (8 - ft)2 = r2. 

IV. (7 - ft)2 + (- 1 - ft)2 = I-2, 

y. HI _ II - 2 ft + 12 ft - 59 = 0. 
VI. II — IV — 48 + 12 ft + 3 — 6 ft = 0 

gr 4 ft — 2 ft — 15 = 0. 
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V and VI are seen to be in h and k precisely the equations solved in 

method (1), and in method (2) for x and y as variables. 

(4) I. Ax2 + Ay2 + 2 Gx + 2 Fy + C = 0. 

Substitute in this equation (1, 2), (0, 8), and (7, — 1) and solve for 

the values of (7, F, and C in terms of A. 

H. A + ±A + 2G + 4F+C=0. 

III. 64 A + 16 F + 0=0. 

IV. 49A + A + 14 0- 2E+0 = 0. 

V. II - III — 59 A + 2 G — 12 F = 0. 

VI. II-IV - 45 A A 12 G + 6 F = 0 

or — 15 A — 4 G + 2 F = 0. 

G F 
These are the same equations in —— and — —, regarded as the un 

A A 
knowns, as appeared above in h and k. 

6. Tangency conditions. — If a circle is to be tangent to a 

given line the distance formula (normal form) from a point to 

a line may be used; if a circle to be found is to be tangent to 

a given circle, then the radius sought, plus or minus the given 

radius, must be equal numerically to the distance from center 

to center, according as the circles are tangent externally or 

internally. 

7. Circle through the intersection of two circles. — 

I. x2 + y2 + 10 a? = 0, a circle of radius 5, center ( — 5, 0). 

II. x2 + y2 — 49 = 0, a circle of radius 7, center (0, 0). 

III. (x2 -f y2 -{- 10 a?) + k(x2 -f y2 — 49) = 0. 

The third equation is satisfied by the points of intersection 

of curves I and II, for all values of k (see page 83). For all 

constant values of k, III may be written 

(1 + k)x2 -f (1 + k)y2 + 10 x — 49 k = 0, 

and the form shows that this represents a circle. To deter¬ 

mine the circle through the intersections of I and II, and any 

other given point substitute the coordinates in III, and solve 
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for k; since a circle is determined by the three points, it is 

easily seen that every circle through the two points of inter¬ 

section of the given circle is included in the family of circles, 

(1 4- k)x2 +(1 + k)y2 -f 10 x — 49 k = 0. The method of deter¬ 

mining k to have the circle pass through some other given 

Common chord of two circles or radical axis 

point is precisely the same as in the similar problem with 

straight lines (page 83). 

For k = — 1, this equation reduces to the linear equation 

representing the common chord of the family of circles; 

whether two given circles intersect or not, this line, whose 

equation is obtained by eliminating x2 + y2 between the two 

given equations, is called the radical axis of the two circles. 

8. Geometrical property of the radical axis. — 

(x — h)2 +(y — k)2 is the square of the distance from (x, y) 

to the center of any circle ; (x — h)2 + (y — k)2 — r2 is the 

square of the length of the tangent to the circle from any 

point outside the circle of center (h, k), radius r. 

x2 _j_ 2/2 q_ 2 Gx + 2 Fy + C is the square of the length of the 
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tangent from any point (x, y) to the circle whose equation is 

x2 + y2 + 2 Gx -f 2 Fy 4- (7=0, since the left-hand member is 

identical with the left-hand member when written in this 

form : 
(* + Gy + (y + Ff - {CP + F2 — C)= 0. 

Note that if any secant PAB is drawn through P(x, y) then 

PA • PB = PT2 5 hence the expression 

x2 + y2 + 2 ^ + 2^ + 0 

gives the product of the two distances along any straight line 

from the point P{x, y) on the line to the circle. There is a 

Distances from a point to a circle 

On any secant through P, PAB, PA x PB is constant. 

PAx PB = pry = {X - hy + (y - k)2 - r2. 

correspondence to the normal form of a straight line, since the 

left-hand member there also represents a distance. 

x- + y2 + 2 Gxx + 2F& + Ct = a? + y2 + 2 G2x + 2 F2y + C2 

is an equation which is satisfied by any point from which tan¬ 

gents drawn to the two circles 

x2 + y2 + 2 Gxx + 2 Fxy + Cx = 0, 

a2 + y2 + 2 G2x + 2 F2y+C2 = 0, 
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are equal in length. Hence, the radical axis is the locus of 

points from which the tangents drawn to the two circles are 

equal in length. 

9. Radical center of three circles. — Given three circles, each 

of the three pairs of circles which may be formed from the 

Radical axes and radical centers 

Radical center of the three circles, 1,2, and 3. 

Radical center of the three circles, 1, 2, and 3'. 

three has a radical axis; the three radical axes pass through a 

common point, as may be easily shown by Sec. 4, Chapter V. 

a. x2 + y2 + 2 Gxx -f 2 Fxy -f Gx = 0. 

b. x2 + y2 + 2 G2x -f 2 F2y + C2 = 0. 

c. x2 -f- y2 + 2 Gzx 4~ 2 F3y 4- Cs= 0. 

d. (<a-c) 2(Gl- G2)x + 2(F, - F2)y + C±- 02 = 0 
radical axis of a and b. 

e. (b — c) 2(Ct2 — G$)x 4" 2(2^ — F%)y 4" G2 — C3 = 0 
radical axis of b and c. 
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/ (d 4 e) or (a - c) 2(G1-G3)x+2(F1-Fs)y+C1-C,=0. 

Since d 4 e = 0 gives a straight line through the intersec¬ 

tion of d and e, and since d 4 e = 0 gives the radical axis of a 
and c, the latter line passes through the intersection of the 

two former radical axes. 

10. Limiting forms of the circle equation. — 

(x — h)2 4(y — k)2 = r2 represents a real circle when r2 is 

positive. 

(x — h)2 4 (y — k)2 — 0 represents a point circle; the only 

real point which satisfies this equation is the point (h, k). 

(x — h)2 + (y — k)2 = — r2, r a real quantity, represents an 

imaginary circle; no real point satisfies this equation, since 

every real value of x and y makes (x — h)2 positive and (y—k)2 
positive. 

PROBLEMS ON THE CIRCLE 

1. Find the center and give radius to 1 decimal place of 

each of the following circles ; plot; find the three radical axes 

and the radical center. 

a. x2 + y2 + 6 x — 8 y — 16 = 0. 

b. 3 x2 -f- 3 y2 — 8 x + 15 y — 7 = 0. 

Hint. 3 (x2 — | x ) 4 3 (y2 + 5 y ) = 7 ; complete squares inside 
parentheses and note that 3 times the quantity added within each of the 
parentheses must he added on the right. 

c. x2 4 y2 — 6 x — 8 = 0. 

2. Plot the following two circles and determine their 

common chord ; what is its length ? 

a. x2 4 y2 — 10 x — 100 = 0. 

b. x2 + y2 4-10 y- 100 = 0. 

3. Write the equation of the family of circles 

a. With center on x-axis, passing through the origin. 

b. With center on y-axis, passing through the origin. 

c. Passing through the origin. 
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d. With center on 3 x — 4 y — 5 = 0, radius 5. 

Note. 3 h — 4k — 5 = 0. 

4. What limitation is imposed upon the coefficients A, G, 

F, and C in Ax2 + Ay*- + 2 Gx + 2 Fy + G = 0, 

a. if the circle passes through (0, 0) ? (1, 1) ? 

b. if the circle has its center on the axis of x ? y-axis ? 

c. if the circle is tangent to the £-axis ? ?/-axis? tangent to 

z—3=0? 

d. if the circle is tangent to£ — y — 5 = 0? 

5. Find the equations of the circles through the following 

three points : 

a. (0, 0), (6, 0), (0, 8). 

b. (1,5), (-3, 1), (7, -3). 

c. (0, 0), (8, 2), (15, — 3) ; use two different methods. 

6. Find circle tangent to 3 x -f- 4 y — 25 = 0, and passing 

through (2, 3) and (5, 1). Note the two solutions. 

7. 

circles 

Find the radical axis of each of the three pairs of 

x1 -f- y2 — 6 x — 8 y — 10 = 0, 

4- y2 — 20 x -|- 50 = 0, 

2 £2 + 2 y1 -f 8 x 4- 6 y — 25 = 0. 

Find the radical center. Plot. 

8. Find the tangents of slope 2 to the first circle in 7; find 

the normal and the point of tangency. 

9. Find the circle of radius 5 tangent to the line whose 

equation is 4 x — 3 y — 9 = 0 at (3, 1). 

10. Find for what value of r the line 4x — 3 y — 9 = 0 is 

tangent to x2 + y2 — r2 = 0. Two methods. Find the point of 

tangency. 

11. Find to one decimal place the points of intersection of 

the circle x2 4- y2 — 20 x + 50 = 0 with the line y = 2 x — 12. 

Plot. 
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12. Use the trigonometric functions to find points of inter¬ 
section of 

j x2 -f y1 = loo, 
\y = 2 x. 

Note that tan 0 = 2, where 6 is the slope-angle of the line. 

13. Use trigonometric functions to find k, when y — 2 x -J- k 
is tangent to the circle x2 -\-y2 — 100. Draw figure ; note that 
tan 6 = — \ where 9 is the slope-angle of the normal. 

-p,-i , ,-i . ■ f a? = 3 + 10 cos 0, 
14. Flot the circle < ~ ^ 

[ y = — 5 + 10 sm 0. 

_ . . [ x = 8 sin 0, 
15. Plot the circle < 0 „ 

[ y = 8 cos 8. 
Note that 6 is here the angle made with the ?/-axis by any radius. 

16. Find the equation of the complete circle of the circular 
arch of the Rialto, referred to the horizontal water^ line and 
the axis of symmetry of the arc as axes. The arch is 95 feet 
wide by 25 feet high. 

17. Find the equation of the circle of which the arch of the 
Rocky River Bridge, 280 feet by 80 feet, is an arc, referred to 
a tangent at the highest point of the arc as x-axis and the 
perpendicular at the point of tangency as y-axis. Determine 
the lengths of vertical chords between the arc and the #-axis, 
spaced at intervals of forty feet. 

18. Prove that the radical axis of any two circles is perpen¬ 
dicular to their line of centers. 

19. If a circle is tangent to a given line and to a given circle, 
what conditions must the coordinates (h, k) of its center 
satisfy ? 



CHAPTER XV 

ADDITION FORMULAS 

1. Functions of the sum and difference of two angles. — The 

formulas for (a -f b)2 and (a — b)2 are illustrations of addition 

formulas frequently of fundamental importance in mathe¬ 

matical work. Thus 10* • lO = 10*+2/ is an addition formula 

leading to the whole theory of logarithms, which revolutionized 

computation processes. The question arises as to addition 

formulas in the case of the trigonometric functions after the 

functions have been defined. Just as the exponent formula 

10x+y = 10* • 10y, which was first proved for positive integers, 

is extended to hold for all values of x and y, so the formulas 

which are established 

for sin (a -f ft) and 

cos (a + ft) when a 

and ft are acute 

angles will be found 

to hold for all real 

values of a and ft. 

2. Geometrical der¬ 

ivation of sin (a-|-p) 

and cos (a + P); a 

and p acute and 

a + p < 90°. — Given 

a and ft, two acute 

angles whose sum is 

less than 90°, to find 

sin (a + (3) and cos(<*-f ft) in terms of sin a, cos a, sin ft, and 

cos ft. 

237 
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On the figure let a and (3 be two positive acute angles whose 

sum is less than 90°, taken, for convenience, distinctly differ¬ 

ent from each other. Let OP make the angle a with OX, and 

OB make the angle. (3 with OP, and thus a + /3 with OX. 
From B drop perpendiculars BA to OP and BN to OX; from 

A on OP drop a perpendicular AM to OX; from A draw a 

parallel to OX cutting BN at R. 
On the figure, noting that OB is taken as r, we have the 

following evident relations : 

AB = r sin (3; RB = AB cos a 
= r cos a sin (3; 

OA = r cos (3 ; AM = OA sin a 
= r sin a cos (3 ; 

NM = RA — AB sin a 

= r sin a sin (3; 

OM= OA cos a=r cos a cos (3. 

sm (« + /?) =-=-—-- 
r r 

r sin a cos,3 H- r cos a sin (3 

r 

sin (« + (3) — sin a cos (3 + cos a sin (3. 

Similarly, cos (a + (3) = = 
r 

OM-NM 
r 

_ r cos a cos (3 — r sin a sin (3 — , 
r 

whence cos (u -f ft) = cos a cos j8 — sin a sin (3. 

Having established these formulas geometrically for a + (3 
when 0 < a < 90°, 0 < (3 < 90°, and a + (3 < 90°, it now 

remains to establish that these formulas hold for all angles 

a and (3, including negative angles. This extension is made 

by employing the theorems of Section 12, Chapter VII. 
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3. Generalization for any two acute angles. — 

sin (a + (3) = sin a cos (3 cos a sin /?, 

cos (« + /3) = cos a cos (3 — sin a sin (3. 

First we will show that when a and (3 are any two acute 

angles the two formulas established above when a + (3 < 90° 

continue to hold. The extension to any acute angles requires 

that we prove these formulas to be true further (a) when 

a + (3 = 90°, and (b) when a + (3 < 90°. 

Proof, (a) If a -f (3 = 90°, /3 = 90° — a, whence 

sin (3 — sin (90° — a) = cos a ; cos (3 — cos (90 — a) = sin a. 

The two formulas then give, by substitution, 

sin (a + /3) = sin 90° = sin2 a + cos2 a = 1, 

cos (a + /?) = cos 90° = cos a sin a — sin a cos a — 0. 

The sine of 90° is 1, and the cosine of 90° is 0; hence our 

formulas continue to hold even when a -f- (3 = 90°. 

(b) a + (3 > 90°. Take the complements of a and (3 to be 

respectively x and y, whence x = 90° — a and y = 90° — (3. 

Evidently x -f y will be less than 90°, by the same amount that 

a + (3 exceeds 90°. Further, since x — 90° — a and y = 90° — (3, 

sin x = cos a, sin y — cos (3, 

cos x = sin a, and cos y = sin (3. 

Now, sin (a + (3) = sin (90° — x + 90° — y) 

= sin (180° — x + y) = sin (x + y), since 

sin (180° — 0) = sin 6. 

Since x + y < 90°, sin (x + y)= si11 x cos V ■+* cos x sin 2/? as 
established above; making the substitutions for sin x, cos y, 

cos x, and sin y, we have sin (a -f- (3) = cos a sin (3 + sin a cos (3. 

Q. E. D. 

Similarly, 

cos (a -p (3) = cos (180° — x H- y) = — cos (x -f- y), since 

cos (180° — 6)-— cos 9, for any angle 6. But x and y are 

acute angles, whose sum is less than 90°; 
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therefore cos (x 4- y) = 4- cos x cos y — sin x sin y 

= -f- sin a sin (3 — cos a cos (3. 

Now cos (a 4-/?)= — cos (x 4- y), 

or cos (a -f /3) — cos a cos /3 — sin a sin /3. q. e. d. 

4. Extension of the formulas for sin (a 4- (3) and cos (a + (3) to 

all angles without restriction. — To show that these formulas 

hold for all angles it is necessary now to show that if either a 

or (3 is increased by 90° the formulas continue to hold pro¬ 

vided that they hold for a and (3. 

Thus given 

sin (a 4- (3) = sin a cos (3 4- cos a sin (3, 

cos (a 4- (3) = cos a cos (3 — sin a sin (3, 

we wish to show that sin (u 4- y) and cos (« 4- y) are given by 

similar formulas, when y = (3 4- 90°. 

sin (a 4- y) = sin (a 4- (3 4- 90°) = cos (a 4- (3), 

= cos a cos (3 — sin a sin (3, 

but sin y = cos /3 and cos y — — sin (3, whence substituting, 

sin (a -hy)= cos a sin y 4- sin a cos y. q. e. d. 

Similarly for cos (a -(- y), we find cos a cos y — sin a sin y ; 

since a and (3 enter symmetrically in the above formulas this 

proof establishes that a also could be increased or, by an 

entirely analogous procedure, decreased by 90°, with the same 

formulas for the new values. 

This establishes the formulas for any two angles a and (3 

whatever. For since the formulas have been proved above to 

hold for any two acute angles a and (3, the formulas hold for 

any obtuse angle and any acute angle since y, the obtuse angle, 

may be regarded as 90° + /3. This establishes the formulas for 

any angle in I and any angle in II; now increase a by 90°, 

thus establishing the formula for any two obtuse angles. 

Continuing in this way a can be any angle in any quadrant, I 

to IV, and /3 also an angle in any quadrant whatever, and the 

formulas continue to be true. 
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After these formulas are established for all positive angles 

up to 360°, another method of procedure to establish the 

formulas for all positive and negative angles is to note that 

any integral multiple of 360°, k *360° with k a positive or 

negative integer, can be added to any angle without changing 

the functions of the angle involved in our formulas. Thus if 

— (3 is any negative angle, numerically less than 360°, the 

functions of «-(-(—(3) are the same as the functions of 

a -f (360° — (3) which is the sum of two positive angles ; but 

the functions of 360° — (3 are the same as those of — (3 and 

after application of the formula the 360° can be dropped. In 

other words in these formulas any integral multiple of 360° 

can be added at pleasure and also dropped at pleasure, and in 

this way the formulas are established for all angles. 

Illustrative problem. — Given sin « = .45, cos (3 = .68, find 

sin (cc + (3) and cos (a(3). 

sin a = .45 ; a can be in I or II since sin (180° — «) = sin a. 

cos « = ± Vl — .452 = ± VT975 = ± .893. 

cos [3 = .68 ; (3 can be in I or IV since cos (— (3) = cos (3. 

sin (3 = ± Vl - .682 = V(.32)(1.68) - ± .16 x V2l 

= ± .16 x 4.58 = ± .733. 

sin a = .45 determines either cos (3 = .68 determines either 
ai or a> Pi or P > 

There are strictly four problems, solved as follows: 

a in I, (3 in I. a in I, (3 in IV. 
sin a — .45. 

cos a — + .893. 

cos (3 = 4- -68. 
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sin p = -f -733. 

sin (a + p) 

= sin a cos P + cos a sin p. 

sin (« + p) 

= .45 x .68 4- .893 x .733 
= .306 + .655 = .961. 

cos (a + P) 

= .893 x .68 - .45 x .733 
= .607 - .330 = .277. 

sin p = — .733. 

sin (a + P) 

= .45 x .68 - .893 x .733. 
( sin (a 4- p) 

= .306 - .655 = - .349. 
cos (a 4- p) 

= cos a cos p — sin a sin p. 

cos (a 4- p) 

= .893 x .68 4- .45 x .733 
= .607 4- .330 = .937. 

The two columns represent two solutions which have the three 

central values, sin a, cos a, and cos p, in common. 

The student is expected to complete the solution, beginning 

as follows: 

a in II, p in 1. a in II, p in IV. 
sin a = .45. 

cos p = .68. 

cos a = — .893. 

sin p = + .733. sin p = — .7S3. 

In general work only one case, indicating which solution is 

given. 

5. Historical note. — The formulas for sin(«4- P) and 

cos («4-/3) are closely allied to Ptolemy’s theorem (c. 150 a.d.) 

that in any inscribed quadrilateral the product of the diagonals 

is equal to the sum of the products of the opposite sides. If a, 

b, c, and d are the sides, in order around the quadrilateral, and 

e and / the diagonals, ef= ac 4- bd ; in the Greek trigonometry 

employing chords this theorem plays the same role that the 

formulas for sin (a 4- p) and cos (a 4- P) play in the trigonometry 

employing sines and cosines. A great French mathematician, 

Viete (1540-1603), the first to use generalized coefficients in 

algebraic equations, was the first to give these formulas, as 

sin (2 a 4- p) and cos (2 a 4- p) in terms of a 4- p and a ; the 
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modern form appeared in 1748 in the work of the Swiss mathe¬ 

matician Euler. 

PROBLEMS 

1. Given « = 30°, /3 = 45°, find sin (a+ (3) and cos (a+ (3). 
Check by tables. 

2. Given a — 60°, (3 = 45°, find sin 105°, and cos 105°. Check 

by the preceding problem, and explain the check. 

3. Given sin a = |, and sin/? = T5g, find sin(« + /?), when a 
and (3 are both acute ; find sin (a + f3) when a and (3 are both 

obtuse ; when a is obtuse, (3 acute. 

4. Given a and (3 acute angles, sin a = .351, cos (3 = .652, 

find sin (« -f- /3) by the formula and check with the tables. 

5. Given sin 18° = .3090, cos 18° = .9511, find sin 36°. 

6. Given sin 18° = .3090, find sin 78°. 

7. Using the results of problem 1 for sin 75° and cos 75° 

with the data of problem 5, find sin 93° and cos 93° ; thus find 

sin 3° and cos 3°. 

8. What are sin(45° + a) and cos(45° -f a) in terms of a? 

9. Find sin (60° + a) in terms of sin a and cos a. 

6. The formulas for sin (a — p) and cos (a — P). —• If (3 is a 

negative angle, a — (3 comes directly under the a -f- (3 formula 

as «-)-( - ft; if (3 is any positive angle greater than 360°, /3 
can be reduced to less than 360° by subtracting 360° (or some 

multiple of 360°) without affecting the functions of a — (3 or of 

(3; if (3 is positive and less than 360°, the functions of a — (3 
will be the same as the functions of a + (360° — (3), since this 

simply adds one complete revolution to a — (3. Hence 

sin (a — (3) = 

sin (a -1- 360° — (3)= sin a cos (300° —(3) + cos a sin (3G0° — (3) 
= sin a cos (— /?)+ cos a sin (— (3). 

cos (a — (3) = cos a cos (360° — (3) — sin a sin (360° — (3) 
= cos a cos (— (3) — sin a sin (— /?). 
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Substituting in these formulas, cos (— (3) = cos (3, and 

sin (— (3}— — sin (3 we obtain the subtraction formulas : 

sin (a — (3) — sin a cos /3 — cos a sin (3, 
cos (a — ft) = cos a cos (3 -f- sin a sin (3. 

7. Tangent formulas. — 

tan (« + j3) = tan« + tang_ 
1 — tan a tan (3 

tan (« — /3) = 
tan a — tan (3 

1 -f- tan a tan (3 

Since sin (a + /3) = sin a cos (3 -f cos a sin (3, 

and cos (a + /3) = cos a cos (3 — sin a sin (3, 

for all angles a and (3, without restriction, it follows that 

tan (a + (3) = sin (« + /?)_ sin a cos (3 + cos a sin (3 
cos (a + (3) cos a cos /3 — sin a sin (31 

for all angles a and (3. 

Dividing numerator and denominator of the right-hand ex¬ 

pression by cos a cos (3, we have 

Similarly, 

tan (« + /?) = 

tan (« — (3) = 

tan a + tan (3 
1 — tan a tan (3 

tan a — tan (3 
1 -+- tan a tan (3 

8. Functions of double an angle. — The formulas for sin («-f-(3), 
cos (a + (3), and tan (a -}- (3) hold if (3 = a, whence 

sin (2 cc) = sin (a + a) = sin a cos a 4- cos a sin a = 2 sin a cos a, 
sin (2 a) = 2 sin a cos a. 

Similarly, cos (2 a) = cos2 a — sin2 a = 2 cos2 a — 1 = 1 — 2 sin2 a. 

By division and simplification, or directly from tan (a + (3), 

tan (2 a) = 2 tan a 
- • 

1 — tan2 a 

Note that whether a be regarded as positive or negative, i.e. 
as obtained by positive or negative rotation, as -f- «, or 

+ « — 360°, 2 cc has the same terminal line as 2 a — 720°. 
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PROBLEMS 

Note. — See the preceding list of problems, and use numerical values 

as there computed. 

1. Given a = 45°, (3 = 30°, find sin (« — /3) and cos (a — j3), 

checking by the tables. 

2. Given a = 60°, (3 = 45°, find sin (a — (3) and compare 

with problem 1. Find tan (a -f (3), tan (a — j8), and tan 2 a. 

3. Given sin a = J and sin (3 =j^, hnd sin (a — (3) when 

a and /3 are acute; find sin (a — (3) when a and (3 are both 

obtuse. Explain the result; find sin (a — (3) and cos (a — (3) 

when a is obtuse and (3 is acute. Interpret. Find 

tan (a — (3), tan (a 4- (3), and tan 2 a for a and (3 in I. 

4. Given a and (3 acute, sin a = .351 and cos (3 — .652, find 

• sin (a — (3) and check by the tables. Find tan (a — (3). 

5. Given sin 18° = .3090, cos 18° = .9511, and sin 15° from 

problem 1, find sin 3° and cos 3°. 

6. Find sin 42° as sin (60° — 18°). 

7. Express sin (60° — a) and cos (60° — a) in terms of func¬ 

tions of a. 

8. Find the value of sin (60° + a)— sin (60° — a). 

9. Find the value of cos (45° + «)+ cos (45° — a). 
10. Show that sin (a -f (3) sin (a — /3)= sin2 a — sin2 (3. 

11. Find a value of cos (a -f (3) cos (« — f3), similar to the 

preceding. 

12. Given tan a = 1.4, find tan 2 a. 

13. Given cos 2a — .63, find sin a and cos a; are there two 

solutions ? 

14. Given that one line cuts the a?-axis at an angle a such 

that tan a = 3, and another line cuts the cr-axis at an angle (3 

such that tan (3 = find the tangent of the angle between the 

two lines by assuming that they intersect on the &-axis. 

Check by using the tables to find the slope angles of these 

lines. 
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9. The tangent of the angle between two lines. — Givehi any 

two lines as y==3x — 5, y= — x— 7, it is evident by plane 

geometry that the angle between them is the same as the angle 

between y = 3 x, y — —x, 
lines parallel to these 

given lines through the 

origin. The word “ be¬ 

tween ” implies no dis¬ 

tinction as to priority of 

either line: thus the 
/ 

angle may be taken as 

either a positive or nega¬ 

tive acute angle, or the 

corresponding supple¬ 

mentary angle. Thus if 

the lines were inclined 

to each other at 30°, 

the angle might be con¬ 

sidered as + 30°, — 30°, 

+ 150°, or -150°; the 

tangent of the angle 

would then have the 

Angle between two lines 

Parallel lines through the origin make 

the same angle. 

/ ^ 
value given by the expression ± —-, 

To distinguish between the two lines we may say that we 

wish the angle from the line of slope -f- 3 to the line of slope 

— 1, or in the general case, from 

the line of slope m2 to the line of 

slope m1; by analogy with our 

use in defining the angle which 

a line makes with the sc-axis, when 

we say the angle which the line 

y = — x makes with y — 3 x we 

mean the angle obtained by re- Angle between two lines 

volving the line whose slope is — el - <?2, 0i > d2. 
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3 so as to make it coincide with the line whose slope is — 1. 

Calling the angle whose tangent is 3 (written tan-1 3 or arc 

tan 3, meaning the angle whose tangent is 3) and the angle 

whose tangent is —1, we find that the angle from the 02 
line to the 01 line is = 0L — 02. 

tan <f> = tan (6l — 02) = 
tan 0l — tan 02 

1 + tan Oi tan 02 
mY — m2 

- - —i • 

1 -f W&iWi2 

If the two lines are parallel the angle is 0, hence tan <j> = 0, 
and — m2 = 0, or mx = m2, as anticipated ; if the lines are 

perpendicular tan <f> becomes infinitely large, and for finite 

values of m1 and m2 (excluding lines parallel to the axes), the 

denominator 1 + mxmo = 0, or m2 =-—, i.e. the slope of a 

perpendicular is the negative reciprocal of the slope of the 

given line. When one line is parallel to the y-axis, its slope 

m2 (or m,x) is infinite, but the angle between the two lines can 

be obtained by dividing numerator and denominator of tan <f> 

i 

by m2 (or mA giving tan <f> = - or —— when m2 ap- 
1 , m i 
-h mi 
m2 

proaches infinity, for the tangent 

of the angle made by a given line 

with the y-axis. 

tan cf) = mi ~ m2. gives the an- 
1 + mxm2 

gle from the m2 line to the mx 
line. 

If 02 > 0U cf> is negative, but 

the formula = 0X — 02 still holds. 

10. Functions of half an angle. 

all values of a. 

Substitute x for 2 a, and - for a. 
U 

cos (2 a) = cos2 u — sin2 a for 
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Half-angle relations 

„ X • 0 X 
cos x — cos2-sin2 -• 

9 9 

19 , • 9 

= COS2 - + Sill2 
2 2 

1 -f- cos a? = 2 cos2 x, 
9 ’ 

whence 

cos | = ± V 1(1 + cos a?). 

Similarly, 

tan - = ± \f~ 
2 

sin _ = ± V-J(l — cos x). 

— COS X 

1 + COS X 

/(I — cos a?)(l — cos x) 
* 1 — cos2 a? 

+ if x is in I or II, and — if a? is in III or IV; the formula 

, X 1 — COS X ■ • 1 • , 
tan - =-;- is one m which 

2 sin x 

the sin x takes care of the algebraic sign; and so also 

by rationalization. 

, x sin x -i 
tan - =-, both 

2 1 4- cos x 

Note that if x is regarded as a positive angle, less than 360°, 

sin — is + ; but the same position of the terminal line 

is obtained by x ± 360°; x and x 4-180° have sine and 
2 

cosine opposite in sign, but tan ± 180°^ = tan ~ • Since 

cos (— x) = cos (a?) it must be stated whether x is in I or IV, or 

in II or III; i.e. cos x alone does not locate the angle x. 

If x in I is regarded as a positive angle, ^ is + acute, and 

sin | and cos x are positive ;• if x in I is regarded as a negative 

reflex angle, is negative obtuse, and sin - and cos ~ are both 
x x 
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negative; in either ease tan 
x 
2 

is positive. Similarly if x is 

taken in II, III, or IV, the formula takes care of all positions, 

proper account being taken of the algebraic sign of the radicals. 

PROBLEMS 

Find the angle between the following lines: 

1. y — 3 x — 5, and y = — x — 7. 

2. y = 3 x — 5, and y = x — 7. 

3. 2 y — 3 x — 7 = 0, and 3yH-4a?—5 = 0. 

4. 3 y = 5 x — 5, and y = 8 x —r 10. 

5. 3y — 5x — 5, x = 5. 

6. 3 y = 5 x — 7, y = 5. 

7. In the preceding 6 problems, find the tangent of the angle 

made by the first line with the second line, i.e. the tangent of 

the angle obtained by rotating the second line until it coin¬ 

cides with the first. Why is it that the sense of this rotation 

is immaterial ? 

8. In the above problems check by finding from the tables 

the trigonometric angles involved. 

9. Find the pencil of parallel lines making an angle of 30° 

with each of the lines in problem 1; find the one of the family 

through (—3, 5). 

10. Find the pencil of lines making an angle of 45° with 

each of the lines in problem 3; find the particular one 

through the origin. * 

11. Find the pencil of lines making an angle of 90° with 

each of the lines in problem 4. 

12. Given sin 30° = .5000, cos 30° = .8660, and tan 30° = .5774, 

find sin 15°, cos 15°, and tan 15°. 

13. Find sin7|°, cos 7-J°, tan 7£°, using half-angle formulas. 

14. Given sin 45° = cos 45° = .7071, find sin 22-|°, cos 22i°, 

and tan 22-1°. 
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15. Use sin (« — (3) formula to obtain sin 7^-° and cos 7-i°, 

from the functions of 30° and 221°. Compare with problem 13. 

16. Given sin 18° = .3090 and cos 18° = .9511, find sin 12° 

and cos 12°. 

17. From the functions of 12°, compute the functions of 6°, 

and then the functions of 3° and of 11°, using half-angle 

formulas. 

18. Compute sin l-i0 and cos 1|° by the difference formulas- 

taking 1±° as 7|°— 6°. 

19. Compute the functions of from the functions of 1°. 

20. Find by interpolation sin 1° and cos 1° from the com¬ 

puted values of the functions of |° and 1-|°. Compare with 

the tabular values. 

21. Make a table of values of the sine, from 0 to 45° in¬ 

creasing by 1A° intervals. 



CHAPTER XVI 

TRIGONOMETRIC FORMULAS FOR OBLIQUE 

TRIANGLES 

1. General statement. — Employing elementary theorems of 

plane geometry it is possible to construct any triangle when 

given the three sides, or two sides and an angle, or one of the 

three sides together with two of the angles; in trigonometry 

the corresponding problem is the numerical solution, not sim¬ 

ply the graphical, of the types of triangles mentioned. The 

trigonometric solution which has been given of the different 

types of right triangles, with unknown parts, can be applied 

to effect the trigonometric solution of any oblique triangle; 

but in general, these methods do not give convenient formulas 

for computation. As the general triangle is fundamental in 

surveying (note the term “triangulation”), in astronomical 

work, and in many problems in physics, more convenient 

formulas than those given by right triangles are a practical 

necessity. 

In general the laws and formulas of plane trigonometry 

connect directly with proposi¬ 

tions of plane geometry; the 

effort is to express the inter¬ 

dependence of the angles and 

sides in the form of equations 

involving the trigonometric func¬ 

tions of the angles. 

The vertices of any triangle 

being lettered A, B, C, it is con¬ 

venient to designate the corresponding angles at these ver¬ 

tices by a, /3, and y, respectively, or by A, B, and C, if no 

251 
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confusion of meaning is possible; the sides opposite A, B, and 

C are designated by a, b, and c, respectively. 

2. Cosine law. — If the two sides of a triangle are given, the 

third or variable side, opposite the angle a, between the two 

a2 = b'2 + c2 — 2 be cos a 

given sides, evidently changes as a changes. Let b and c 

remain fixed. Let M be the foot of the perpendicular from 

C upon AB; then AM = b cos ce, for any angle a when the 

direction AB is taken as positive. Further in every position 

MB = AB — AM = c — b cos a, 

for in every position AM + MB = AB. 

The altitude MC = h = b sin a. 

Hence, BC2 = MW -f MC1 

= (c — b cos a)2 + (b sin a)2 

= c2 — 2 be cos a + 62(cos2 a + sin2 a). 

a2 = b2 + c2 — 2 be cos a. 

All limitations upon a are removed by 

the different types of figures. Hence 

for any angle a, 

a2 = b2 -f c2 — 2 be cos a 

gives the length of the side a, opposite 

a, in terms of the other two sides and a. 
Since a and a may represent any side 

and the opposite angle of any given tri¬ 

angle, b and c being the other two sides, our formula may be 

stated as follows: 

M falling outside B 

Formula unchanged 
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The square of any side of a triangle is equal to the sum of the 

squares of the other two sides less tivice their product into the 

cosine of the including angle. 

Or, The cosine of any angle equals the difference between the 

sum of the squares of the two including sides and the square of 

the side opposite, divided by tivice the product of the including 

sides. 

If a, b, and c are the sides of any triangle, with a, /3, and y 

the corresponding opposite angles, we have the following 

relationships : a*=V + c>-2bc cos «, 

b2 = c2 + a2 — 2 ac cos (3, 

or 

c2 = a2 + b2 — 2 ab cos y ; 

cos a = 

cos (3 = 

b2 + c2 — a2 

2Yc 
c2 + a2 — b2 

2 ac 

cos y = 
a2 + b2 — c2 

2 ab 

3. Cyclic interchange. — Any formula which has been de¬ 

rived, without imposing any limitations upon a, b, c, a, (3, or y, 

connecting a, b, c, and trigono¬ 

metric functions of the angles a, 

(3, and y, will continue to hold if 

a and b and, at the same time a 

and f3, are interchanged; or if j ^ 
are changed to j^, to | , and 

such changes effect fc , fa 
to ; 

iy 
simply a re-lettering of the figure. cyclic interchange 

The change of a into b, b into c, 

and c into a is called a cyclic interchange of the letters a, b, 

and c. Note that cyclic interchange gives the second formula 

from the hrstj and the third from the second. 
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In the figures, a in the first is chosen as an acute angle, but 

this limitation is removed by deriving the same formulas for 

a a right angle and for a an obtuse angle; c is taken as 

longer than 6, but interchanging b and c in our derived for¬ 

mula leaves the formula unchanged; assuming b and c equal 

would involve no change whatever in our proof; and if b 

is assumed greater than c, a fourth figure can be drawn in 

which M falls beyond B on AB produced; but the formula 

a2 = b2 + c2 — 2 be cos a remains the same, as the student may 

easily verify. 

PROBLEMS 

In the following problems use .866, .707, and .500 for the cosines of 30°, 

45°, and 60°, respectively. 

1. Given b = 140, c = 230, a = 60°, compute a. Refer back 

to the section on extraction of square root, page 23. 

2. Compute a when a = 30° and 45°, 90°, 120°, 135°, 180°, 

when b = 140, c = 230. 

3. Given a = 155, c = 234, /3 — 35°, compute b. What 

changes in b are effected by changes of ± 10' in /3 ? 

4. Given a = 155, c = 234, compute /3 when b = 172. What 

is the maximum change in /3 which an error of ± 1- unit in a, 

b, and c could introduce, /3 being computed to minutes? Take 

1551, 2341 with 1741; take 1541, and 2341, with 172i. Note 

that (155i)2 and (1541)2 differ from (155)2 by about 155; 

similarly with the other values ; if the squares are found by 

logarithms it is well to look up log 155.5 and log 154.5 at the 

same time as log 155, etc. 

5. In problem 1, find cos /3, and then /3, taking for a the 

value obtained there. 

6. In problem 1, find cos y and y, using the computed value 

of a. Check by summing /3 and y with the given angle. 

7. Given a — 200, 6 = 150, c = 300, find a. What change 

in a would a change of ± 1 in a effect ? Suppose that a, 6, 
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and c are given only to two significant figures, i.e. a is between 

195 and 205, b is between 145 and 155, c is between 295 and 

305, compute a and discuss limiting values. 

8. Compute the third side in the following 5 problems, using 

logarithms for squaring ; time yourself in the exercise. Fifty 

minutes should be ample time for the 5 problems ; devise a 

convenient form and use it in each example. 

a. Given a = 366, b — 677, y = 15° 10'. 

b. Given a = 423, c = 288, /3 = 35° 15'. 

c. Given b = 627, c = 816, a = 100° 41'. 

d. Given a = 635, c = 341, /3 = 67° 38'. 

e. Given c = 184, b = 295, a = 130° 54'. 

4. Sine law. — A circle may be circumscribed about any 

triangle ; let the radius be designated by R. The figure shows 

i t 

sin a sin P sin y 

that if A is an acute angle, sin a = ; if a is 90°, this 
R 2 R 

formula is still true, as a equals 2 R, and the formula gives 

sin 90° = 1; if a is obtuse, the figure gives sin (180° — a) = 

whence sin a = 
a 

a 

Yr 

2 R 
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Therefore without any limitation whatever upon a, 

sm a = 
2 R' 

interchange of letters gives 

b 

and 

Whence 

sin (3 = 

sin y = 

2R’ 

c 

2R' 

a 
= 2 R. 

Sine law: a obtuse 

sin a sin (3 sin y 

This formula states that in any 

triangle the ratio of the side op¬ 

posite any angle to the sine of that angle is constant, and this 

ratio is numerically equal to the diameter of the circumscribed 
circle. 

Further, = s^11 @ 0r the ratio of the sine of any 
a b c J 

angle to the side opposite is constant. 

Note that if 2 R is regarded as the chord of 180° of the 

circle in which the triangle ABC is inscribed, the proposition 

states, in effect, that in any circle any chord is proportional 

to the sine of the inscribed angle which intercepts the arc of 
the chord. 

The formula may be stated: 

sin a _ sin (3 _ sin y _ sin 90° _ sin 30° __ sin k° 

a b c 2 R R chord (2 &°) ’ 

all of the chords being chords of the circle circumscribed about 

the triangle. The ratio of the sine of any central angle in a 

circle to the chord of double the angle can readily be shown to 

be constant, -i- • 
’ 2 R 

5. The sine law historically. — The sine lhw was discovered 

by an Arabic (Persian, by birth) mathematician, Nasir al-Din, 
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at-Tusi, who lived 1201-1274 a.d. To him we owe the first 

systematic treatise on plane trigonometry, an achievement made 

possible by the combination of the Greek trigonometry using 

chords with the Hindu trigonometry employing sines. To 

Europeans the sine law was communicated by the great Ger¬ 

man mathematician and astronomer, Regiomontanus, in his 

work on trigonometry, De Triangulis, the first published sys¬ 

tematic treatise ; it was published at Nuremberg in 1539, many 

years after the death of Regiomontanus, who lived 1436-1476. 

PROBLEMS 

1. Given a — 150, b = 200, a = 30°, find sin (3 using natural 

functions. 

2. Given a = 150, a = 30°, (3 = 45°, find b, using natural 

functions. 

3. Given a = 150.4, b = 214.3, a = 31° 10', find sin (3 employ¬ 

ing logarithms. 

4. Given a = 150.4, <* = 31° 10', (3 = 44° 16', find b by loga¬ 

rithmic computation. 

5. In the formula, a2 = b2 -f- c2 — 2 be cos a, substitute the 

values as given in problem 1 and solve for c. Note that there 

are two solutions. What is the explanation ? 

6. Time yourself in solving the following set of 6 problems, 

applying the sine law; make a type form of solution and use 

it in each problem. Thirty minutes should be sufficient for 

the 6 problems. 

a. Given a = 366, b — 677, a = 15° 10'. Find sin (3 and (3. 

b. Given a = 423, c = 288, y = 35° 15'. Find sin a and a. 

c. Given a = 627, a = 100° 11', (3 = 43° 15'. Find b. 

d. Given b = 816, /3 = 67° 18', y = 34° 9'. Find c. 

e. Given c = 635, (3 = 130° 14', a = 20° 12'. Find b. 

/. Given b = 284, a = 40° 10', (3 = 35° 15'. Find c. 
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6. Half-angle formulas. — As the circumscribed circle has 

yielded a formula of great value trigonometrically the in¬ 

scribed circle may be examined trigonometrically with the hope 

of a similar result. 

The bisectors of 

the' three angles of 

the triangle m£et in 

a point which is the 

center of the in¬ 

scribed circle; let 

this circle be drawn 

and let L, M, N, be 

the points of tan- 

gency, then 

AM = AN, 

BL = BNi 

CL = CM,\ 

being tangents from an exterior point. Evidently the six 

segments mentioned make the perimeter, 2 s, of our triangle; 

2s = a + & + c; adding above we have that 

AM +BL + CL = AN+ BN+ CM= s, 

but BL + CL = a, and BN -f- AN — c; 

whence AM = s — a, CM = s — c, and similarly 

BN = BL = s — b 

ON = OL = OM = r. 

' V \ V "1 /)• 

tanoa =-; tan B —-: tan-7 =-. 
2 s-a 2h s-b 27 s — c 

7. Area.—In the preceding section the area of the given 

triangle is easily determined in terms of r and s, for the area 

equals the sum of the three triangles on a, b, and c as bases, 

each having the altitude r. .*. A = 1 r(a -f b + c) = rs. 
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However, if the three sides are given, this formula does not 

enable us to determine r without using a further formula to 

determine A. 

A — \ be sin a = i cie sin /3 — ^ab sin y. 

This type of formula for the area is applicable when two sides 

and the included angle of a triangle are given or found. 

be sin a can be combined with cos a= ——- in such 
2 2 be 

a way as to eliminate a, giving A in terms of the three sides. 

A2 = \ b2c2 sin2 a = \ b2c2 (1 — cos2 a) 

= \ b2c2 (1 — cos a)(l -f cos a) 

_ b2e2f -* b2 -f- c2 — a2\ /L b2 + c2 — a2\ 

“T\ 2be A + ) 

_ b2c?fa2 -b2-\-2be — c2\ fb2-\- 2 be + c2 — a2\ 

2be ]{ 2bc ‘ J 

_ b2c2[a2 — (b — c)2][(6 + c)2 — a2] 

~~ 16 b2c2 

. _ (a—b 4- c)(a + b — c)(b 4- c — a) (6 + c + a) 

2 • 2 . 2 • 2 

But a + b + c = s, and a ~ 6 tc = a + b +.c-b=s-b, etc. 
2 2 2 

The above formula for A2 may be written, 

A2 = s(s — a)(s — b) (s — c) 

A = Vs(s — a)(s — b)(s — c). 

Further A = rs, whence r = — = \j———— • 
s * s 

This value of r is employed with the half-angle tangent 

formulas of the preceding article to determine the angles of a 

triangle when the three sides are given. 
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8. Newton’s check formula. — A formula which involves all 

of the sides and all of the angles of an oblique triangle is 

particularly desirable as a check formula to be used upon the 

results obtained by direct application of the sine law or in a solu¬ 

tion obtained by right triangles. Such a fornpila was devised 

by Sir Isaac Newton and appeared in his Arithmetica universalis 

of 1707; our proof follows the lines of that by Newton. 

Let ABC be any triangle; 

from C draw the bisector CE of the angle ACB or y; 

extend BC to F, making CF= CA — b ; 

AF is parallel to CE, by plane geometry; 

angle CFA — angle BCE — | y. 

Now angle BAF — « + \ y = 90° —— /3), 

since |ct + i|8 + }y = 90°. 

Applying the sine law to the triangle BAF, we have the 

desired formula: 
a + b _ cos .V(q — (3 ) 

c sin 4- y 
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By drawing the bisector of the exterior angle, and drawing 
a parallel from A, a second useful check formula is obtained: 

a — b _ sin — g) 

c cos 1 Y 

Noting that i y = 90° — |(a + /?), division of the second 
equation by the Newtonian, member for member, gives 

a — b_ tan j (a — ft) # 

a + b tan |(a + p) ’ 

this symmetrical formula is known as the tangent law. 
Cyclical interchange gives in each one of the above two 

corresponding formulas. 

9. Historical note. — The formula A = Vs(s — a)(s — b)(s — c) 
was first given by Hero of Alexandria, first century a.d., 

a teacher of mathematics and mechanics in what was probably 
a kind of technical school at Alexandria in Egypt; it is called 
Hero’s formula. 

An extension of this formula is given by Bhaskara, a Hindu 
mathematician of about 1000 a.d. Bhaskara’s formula gives 
the area of any quadrilateral which is inscribable in a circle, 
i.e. with the opposite angles supplementary, as 

A — V(s — a)(s — b)(s — c)(s — d). 

The triangle may be regarded as a special case with d = 0. 

10. Reflection and refraction of light. — Rays of light, like rays 
of heat and sound and elec¬ 
tric rays of various types,. 
travel in straight lines from 
the source. Rays of light 
emanating from the sun 
travel in nearly parallel 
rays, since the point of con¬ 
vergence, the source at the 
sun, is at SO great a dis- Reflected ray travels shortest path 

tance from the earth. A ray of light which meets a polished 
plane surface, a mirror, is reflected at an angle which is such 
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as to make the total path from the source (L) to the reflect¬ 

ing surface and then to a second position (R) the shortest 

possible. LSR is the shortest distance from L to S to R if 

the angle of incidence i, made by the original ray with the 

normal, to the surface at S where the ray strikes, is equal to 

the angle of reflection r. Evidently LSR = LSR'; the straight 

line joining L to R', a point symmetrically situated to R with 

respect to the polished surface, is shorter than any other line, 

for any other broken line LS'R = LS'R' is greater than the 

straight line LSR' and hence greater than LSR. 

If the ray of light meets, not a polished surface but some 

transparent medium, other than that in which the ray is 

traveling, the ray of light is not continued in the same 

straight line in which it starts but it is broken, or refracted, 

continuing on its path in a straight line which makes a differ¬ 

ent angle with the normal than does the original, incident ray. 

It is found by physical ex¬ 

periments that the angle of 

refraction, the angle of the 

refracted ray with the nor¬ 

mal, bears a simple relation 

to the angle of incidence, 

= wherein k depends 
sinr 

upon the nature of the two 

media through which the 

light is passing. Thus for a ray of light passing from air, a 

1 rarer light medium, to the denser water the value of k is f, 

sin i _ 4 

sin r 3 

A student who thoughtfully examines this formula will be 

reminded of the sine law, which does indeed give a very simple 

construction for the refracted ray when the constant k is known. 

Let two concentric circles be drawn whose radii bear to 

each other the ratio, J, of the index of refraction. In the 
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figure the ratio is taken |, the index of refraction for light 

from air to water. Extend LO, the incident ray, to L\ cutting 

the circle of smaller radius. From L' drop a line parallel to 

the normal N'O to cut the larger circle in R. Connecting R 

LO is the incident ray; OR is the refracted ray 

with 0 gives the refracted ray. In the triangle OL'R, the 

Z OL'R = 180° — i, and the Z ORL' = Z r, of refraction; by 

the sine law 

sin (180° — i) _ sin i _ 4 

sin r sin r 3 

From water to air the index is f, it being found that if the 

refracted ray is replaced by an original ray, this new ray 

in the second medium will be refracted along OL, the path of 

the incident ray with which we started. 

The construction for the refracted ray in air for a ray of 

light emanating from the water, RO, is entirely similar to the 

preceding. RO is extended to R1 on the larger circle. From 
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IV a parallel IV L is drawn to the normal to cut the smaller 

circle. OL is the refracted ray. 

Evidently if sin r = J sin i, sin r is 

always less than f. If a ray of light 

starts from any point within the arc 

A'T wherein T is the intersection of 

the vertical tangent to the smaller 

circle with the larger circle it cannot 

be refracted into the air at 0, and the 

whole light is reflected at 0. This 

property of the light rays is utilized 

in certain spectroscopic work. Thus in 

the case of a glass prism, index of re¬ 

fraction if light strikes the plane sur¬ 

face at an angle of incidence greater than 

41° 48', since sin 41° 48' = .6666, or -|, 

all the light will be reflected ; this type 

of prism is used in projecting lanterns. 

PROBLEMS 

1. Given a = 9, b = 14, c = 19, And the area of the triangle, 

using Hero’s formula. 

2. Given a = 9, b = 14, c = 19, find a, using the cosine law. 

3. Given a = 9, b = 14, c = 19, find the area by the formula 

A — \ be sin a. 

4. Given a = 9.34, b = 14.31, c = 19.27, find the area by 

Hero’s formula, using logarithms. 

5. Given a = 9.34, b — 14.31, c = 19.27, find a by the cosine 

law, and then find the area using the formula involving sin a. 

6. In the two triangles above find r, the radius of the in¬ 

scribed circle, using r • s = A. 

7. In the two angles above find tan -J- «, tan i /?, and tan y, 

using the half-angle formulas. Find the angle sum in each 

case. 

Glass reversing prism 
Index of refraction f 

Angle of incidence,45°. 
For any angle i greater 
than a, sin a = the 

beam is reflected. 
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8. Draw circles with radii two inches and three inches and 

show how to construct the refracted rays of light passing from 

air into glass at angles of incidence of 30°, 45°, and 60°. 

9. For what angle will a ray of light passing from glass 

into water be reflected, and not refracted ? The index of re¬ 

fraction of light passing from glass into water is |-. Draw the 

figure. 

10. Find the angle of refraction of rays of light passing from 

air into water, k — 1.33, when the angles of incidence are 

31° 15', 37° 18', 44° 25', 67° 10', 83° 15'. For which of these 

angles is the course of the ray changed by the greatest amount ? 

11. Suppose the rays in problem 10 to pass from air into 

glass, solve for the angles of refraction. 

12. Construct two of the figures in both problems 10 and 

11, and check graphically the results obtained above. 



CHAPTER XVII 

SOLUTION OF TRIANGLES 

1. Solution of triangles given two angles and one side: cap 

type.—With surveying instruments the simplest method of 

locating the distances from two fixed points to a third inacces¬ 

sible point is to determine the length AB and the angles a and 

(3, at A and B respectively, wherein A and B are two points 

from which C is visible. Using the sine law, 

a _ b _ c 

sin a sin (3 sin y 

we select the equation 
a 

sin a sin y 

or 
sin /3 sin y 

, since in each of these only one unknown 

a 
, not in¬ quantity appears. The third equation 

sin a sin (3' 

dependent of the other two, is used as a partial check upon 

the computed values. As a more complete check use Newton’s 

formula, « + 5 _ cos |(« - ft) _ 

Sill iy 

This form of triangle appears in the classical problem, whose 

solution by plane geometry is ascribed to one of the seven wise 

men of Greece, Thales of Miletus, sixth century b.c. The prob¬ 

lem is familiar to the surveyors, being used in determining 

distances across a stream, or to an inaccessible point. The 

astronomer has the same problem in locating the distance of 

fixed stars using two observations, at different points in the 

earth’s orbit, of the angle made by lines from the earth to the 

266 ' 



SOLUTION OF TRIANGLES 267 

star and to the sun; for simplicity, the two points of observa¬ 

tion may be considered as taken at the extremities of the 

diameter of the earth’s path. 

In locating batteries by the sound waves this type of 

triangle is employed; two or three observers at different 

points can locate an enemy battery by this method within a 

radius of fifty feet or thereabouts. 

2. Type form of solution : cap type. — The form of the solu¬ 

tion is important; follow the given form closely. 

Given a = 65° 11', (3 — 38° 24', c = 175 feet. Find a and b. 
a C i-r. 

, which a = C Sm - (written from the formula 
Sill y 

should not be set down). 

cheek b =a sin & 
sin y sin a ’ 

A It- lc2 sin a sin 6 A— -be sm a =- 
2 2 sin y 

a = 65° 11' 

(3 = 38° 24' 

y = 76° 25' 

sm« sm 

Two angles and a side given 

log c = 2.2430 

-f- log sin a = 9.9580 — 10 

12.2010 - 10 
— log sin y = 9.9876 — 10 

log a = 2.2134 

a = 163.4 

log a — 2.2134 

-j- log sin (3 = 9.7932 — 10 

124)066 - 10 

— log sin a = 9.9580 — 10 

log b = 2.0486 - 10 

But log b = 2.0486 by above 

computation, which checks. 

log c - 2.2430 

+ log sin (3= 9.7932 - 10 
12.0362 - 10 

— log sin y = 9.9876 — 10 
log b = 24)486 

b = 111.8 

log c2 = 4.4860 
-f log sin a = 9.9580 — 10 
+ log sin (3 — 9.7932 — 10 

14.2372 - 10 

— log sin y = 9.9876 — 10 

log 2 A = 4.2496 
2^1= 17,760 

A = 8880 
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The check which we have used is only partial as an error in 

y or sin y would be carried through the work without showing 

up in the check. The Newtonian formula gives a real check 

upon the computation. 

Check. a -\-b _ cos — /3) 
c sin 1 y 

a,-f-5 = 275.2 log (a + 5) =2.4396 

log c = 2.2430 

.1966 

a — /3 = 26° 47' 

y = 76° 25' 

log cos a — /?)= 9.9880 

log sin iy = 9.7914 

.1966 which checks. 

Notes. —The whole form of solution is placed on paper before the 

logarithms are inserted. Place the given angles in vertical column and 

obtain the third angle by noting the angle which added to the given 

angles makes 180° ; thus, here note first that to complete 11' and 24' to 

1° takes 25'. Add this 1° to the 8° and 5°, the units of our given angles, 

making 14° ; complete by 6°, which is written in its proper place, to 20°. 

Carry the 2 tens, to the tens, making 11 tens, or 110°, requiring 7 tens 

(written in the proper place) to complete to 180°. 

Look up logc, i.e., log 175, writing this immediately in all places 

where it occurs ; for the area, it is simpler to calculate 2 A and divide by 

two than to divide by subtracting log 2 in the work. log c2 = 2 log c, 

which is set down in its place. Finish, as far as possible, with the logs 

of numbers before taking up the logs of trigonometric functions, 

log sin 65° 11', log sin 38° 24', and log sin 76° 25' should be found in the 

order in which they occur in the tables, to avoid useless thumbing back 

and forth ; any value found should be immediately inserted wherever 

it occurs in the form. 

PROBLEMS 

1. Prove the sine law by using perpendiculars dropped from 

a vertex to the opposite side. 

2. Givem c = 350.4, a = 36° 14', (3 = 100° 24', find b and a, 
by the sine law. 

3. Given a = .03504, a = 36° 14', /3 = 100° 24', find b and c, 

by the sine law. 
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4. Solve completely the following 5 triangles; take the 

time of your solutions; write the complete form of solution 

for each problem, in turn, before inserting any logarithms. 

The live problems should be completed within one hour and 

20 minutes using the rough check by the sine law. As a 

separate exercise check all by Newton’s formula, timing 

yourself. 

a. a = 627 a = 
b. b = 816 ft= 
c. c = 635 ft= 
d. b = 284 a — 
e. a = 366 a = 

100° 11' £ = 43° 15' 

67°18' y = 34° 09' 

130°14' a = 20° 12' 

40° 10' /3 = 35° 15' 

15° 10' /3 = 95° 14' 

3. Given two sides and the angle opposite one: aba type. — 

Given b, a, and a to construct the triangle geometrically. AC 
is laid off of length b and the line AX is drawn so as to make 

Z CAX = a. Since a must lie opposite to a, a is taken as 

Given two sides and the angle opposite one 

The side opposite the given angle must always be greater than, or equal 

to, the corresponding altitude. 

radius and with C as center an arc is swung to cut the side 

AX. Since the shortest distance from C to AX is the length 

of the perpendicular CM, if a is given less than this perpen¬ 

dicular there is no solution. If a is given equal to the per¬ 

pendicular there is one solution; if a is greater than the 

perpendicular the arc cuts AX in two points, but unless a < b 
the one point of intersection to the left of A will not repre¬ 

sent a solution. The perpendicular is of length b sin a; if a 
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is equal to or. greater than 90°, there will be one solution if 

a > b, and none if a _< 6, for the greater angle lies opposite 

the greater side. By plane geometry then, we have the fol¬ 

lowing scheme, indicating whether one solution, two solutions, 

or no solutions are possible. 

a > 90°, a < b, no solution. 

a > 90°, a > b, one solution. 

a < 90°, a < b sin a, no solution. 

a < 90°, a = b sin a, one solution. 

a < 90°, b sin a < a < b, two solutions. 

a < 90°, a > b, one solution. 

Trigonometrically, by our formulas, we would arrive at 

these facts, but a student who is not able to observe the 

geometrical relationships is not likely to be able to interpret 

the trigonometric formulas. When the sine of an angle is 

given, the angle may be either in I or II, a or 180° — a if a is 

either angle which satisfies the relationship. Then, 

sin (3 _sin a 
b a 

, gives sin (3 = 
b sin a # 

a 

if a < b sin a, sin (3 will be greater than 1 and there is no 

angle satisfying the relationship; if a > b, a > (3 (greater 

angle, greater side opposite), and only the acute angle (3 can 

be taken; if a < b, both values of (3 can be taken. 

PROBLEMS 

1. Given cc = 30°, a = 150, b = 60, 70, 75, 100, 150, 180, and 

200 respectively; draw the figures and determine the number 

of solutions in each case. Solve for (3 in each case where it 

is possible. 

2. Given a = 90°, a = 150, b = 75, 100, 150, 200. Discuss. 

3. Given a = 150, b = 75 ; « = 20°, 30°, 45°, 60°, 80°, 90°, 

120°, 150°. Discuss the solutions, geometrically and trigono¬ 

metrically. 
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4. Solve the following eight problems, having one or two 

solutions, and time yourself. Use the following form of solu¬ 

tion. The eight problems should be completed within one 

hour. 

a. Given a = 366, b = 677, a = 15° 10'; solve for ft0 

b • sin a 
a 

or simply (3 = 

b. Given a = 
c. Given b = 
cl. Given b = 

e. Given a = 

/. Given b = 

g. Given a = 
h. Given b - 

sm (3 = 

log b — 
+ log sin a = 

— log a = 

log sin /3 = 

pi = 
ft = 

, if there is only one solution. 

423, c = 288, y = 35° 15'; find a. 
376, c = 804, y = 68° 20'; find /?. 

650, a = 830, a = 98° 56'; find (3. 
67.2, c = 40.4, y = 24° 49'; find a. 

.0188, c = .0196, y = 100° 14'; find (3. 
504.2, c = 1763, a = 12° 39'; find y. 
3,245,000, c = 2,488,000, (3 = 80° 28'; find y. 

4. Type form : aba type with two solutions. — 

Form of solution when two solutions are found. 

Given a = 187, b = 235, a = 37° 15'. 

sin jg — 
b sin a 

a 

a sm 7 
c =-- 

sin a 
check, c 

_ b sin 7 

sin /3 

Or Newton’s check formula, 

b + a _ cos U/3 — a) . 

c sin l 7 

log b = 2.3711 

-1- log sin a = 9.7820 — 10 

12.1531 - 10 

— log a — 2.2718 

log sin (3 = 9.8813 — 10 
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ft = 49° 33' 

a = 37° 15' 

7i = 93° 12' 

log a = 2.2718 

-f log sin 7! =: 9.9993 — 10 

12.2711 - 10 

— log sin a = 9.7820 — 10 

log Ci = 2.4891 

Ci= 308.4 

log 5= 2.3711 

+ log sin 71 = 9.9993 — 10 

12.3704- 10 

— log sin (3\ = 9.8813 — 10 

log Ci = 2.4891 

Compare with values for log Ci (and 

2 Ax — ab sin 71 

log a = 2.2718 

+ log b = 2.3711 

+ log sin 71 = 9.9993 — 10 

log 2 A\ = 4.6422 

2 Ai = 43870 

Ai = 21935 

p2 = 130° 27' 

a = 37° 15' 

72 = 12° 18' 

log a = 2.2718 

+ log sin 72 = 9.3284 — 10 

11.6002- 10 

— log sin a = 9.7820 — 10 

log c2 = 1.8182 

c2 = 65.8 

log b= 2.3711 

+ log sin 72 — 9.3284 — 10 

11.6995 - 10 

— log sin p2 = 9.8813 — 10 

log c2 = 1.8182 

ig C2) found above. 

2 42 = ab sin y2 
log a = 2.2718 

log b = 2.3711 

log sin 72 = 9.3284 — 10 

log 2 A2 = 3.9713 

2 42 = 9360 

A2 = 4680 

5. Given two sides and the included angle: type aby. — The 

method of solution here given is the solution by right triangles, 

since that involves no new formula and no greater amount of 

computation than the common solution employing a new tan¬ 

gent formula; the tangent formula is given in Section 8 of the 

preceding chapter. 

Solution by right triangles. 

Given a = 280, 7 = 35°, 

b = 240, a = 

P = 

h = a sin 35°, 

x = a cos 35°, 

z — b — a cos 35°. 

tan a = - 
a sin 35° 

b — a cos 35° 

a sin 7 , 

sin a 
check, c = 

b sin 7 

sin p 
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2 A = ab sin 7 

log a = 2.4472 

+ log sin 35° = 9.7586 - 10 

log h = 2.2058 

- log 2 = 1.0253 

log tan u = 1.1805 

a = 80° 13' 

/S = 58° 47' 

log a = 2.4472 

+ log sin 7 = 9.7586 — 10 

2.2058 - 10 

— log sin a = 9.9990 — 10 

log c = 2.2068 

c = 161.0 

log b = 2.3802 

+ log a = 2.4472 

+ log sin 7 = 9.7586 — 10 

log 2 A = 4.5860 

2 4 = 38550 

A = 19270 

log a = 2.4472 

+ log cos35° = 9.9134 - 10 

log x = 2.3606 

x = 229.4 

z = 10.6 

Check. log b = 2.3802 

+ log sin 7 = 9.7586 

12.1388 

— log sin 0 = 9.9321 

log c = 2.2067 

This problem also occurs frequently in surveying. It 

permits the determination of the direction and length of a 

tunnel through a mountain by means of the location of some 

point from which both ends of the 

proposed tunnel are visible. The dis¬ 

tance and direction from a given point 

to a second point, past some barrier, 

are determined by this method. Thus 

the distance from B to O through 

woods can be found, if some point can 

be located from which both C and B 
are visible. The distance and direc¬ 

tion to invisible points are constantly 

needed in artillery fire; another method of finding distance 

and direction of the target is that of finding an observation 

point from which both the gun and the target, invisible at 

the gun, are visible to an observer. 
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PROBLEMS 

Using the form of solution above, solve for the side opposite the given 

angle. 

1. Given a = 3846, b = 4977, y = 38° 10'. Find c. 

2. Given b = 4.832, c = 8.973, a = 108° 56'. Find a. 

3. Given a — .0485, c = .0682, {3 = 58° 38'. Find b. 

4. Using the form of solution given above, find the side 

opposite the given angle in the following five problems; time 

yourself, and compare with the time for the same five problems 

solved by the cosine law (page 255). 

a. Given a = 366, 5 = 677, y = 15°10'. 

b. Given a = 423, c = 288, /3 = 35° 15'. 

c. Given b = 627, 

d. Given a = 635, 

e. Given c = 184, 

c = 816, a = 100° 41'. 

c = 341, p = 67° 38'. 

b = 295, « = 130° 54'. 

6. Discussion of checks and methods. — The procedure by 

logarithms as with physical measurements involves numerous 

approximations. That two values of log c, in the check and in 

the solution, or by two different methods of solution, do not 

agree precisely is a frequent result of correct computation. 

However, the disagreement will be within certain well-defined 

limits, depending entirely upon the range (number of places) 

of the logarithm tables which are used both for numbers and 

for angles ; the tabular difference should be noted, mentally, 

and any discrepancy between check and computation should 

be examined as to its effect upon the value of the computed 

quantity. Thus no error in our computation (page 273) accounts 

for the difference between log c = 2.2068, and log c = 2.2067, 

nor does this here affect the value of c. However the 

angle of 86° 13' is so near to 90° that the tangent grows very 

rapidly; the tabular difference here is large, and might easily 

affect our result, through the inevitable inaccuracy of ordinary 

interpolation in this neighborhood. 
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7. To determine the angles of a triangle when the three sides 
are given : abc type. — 

1 v 
tan - a =- 

2 a — a 
1 v 

tan -8 = —-— 
2 s — b 
1 V 

tan - 7 =- 
2 a — c 

a = 
b = 
c = 

2 a = 
a = 

a — a — 
a — b = 
a — c = 

Check by noting sum of a — a, 

a — 5, s — c which equals s. 

log r = 

- log (a - a) =_ 
log tan | « = 

£a = 
« = 

s _ a + 6 + c 

2 

yl — Va(a — a) (s — b)(s — c) = r- s 
Check. a = 

7 =_ 

« + /3 4- 7 = 

log (s - a) = 

+ log (a — 6) = 

+ log (a - c) =_ 
— log a = 

log r2 = 

log r = 

log r = 

— log (a - 6) =_ 

log tan i p - 

13 = 

log r = 

log a = 

log A — 

A = 

log r = 
- log (a - c) =__ 

log tan 17 = 

17 = 
7 = 

Complete the solution of a problem of this type, form as 

above, taking a = 4320, b = 6840, and c = 8630. 

TIMING EXERCISES 

1. Employing the form of solution as above, solve the follow¬ 

ing four problems for the angles a, /3, and y, timing yourself; 

write down the complete form necessary for the solution of 

each problem before using the logarithm table. 

a. Given a = 320, b = 640, c = 580. 

b. Given a = 44.8, 5 = 76.2, c = 70.4. 

c. Given a = 4.49, 5 = 8.87, c = 9.13. 

cl. Given a = .0624, 5 = .0688, c = .0731. 
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2. Solve the following four problems for a, /3, and y, taking 

note of the time required. 

a. Given a = 320.4, b = 640.6, c = 580.4. 

b. Given a = 3482, 5 = 7461, c = 5395. 

e. Given a = 1.835, b = 2.346, c = 3.045. 

cl. Given a = 1.43 x 10-6, b = 2.34 x 10~6, c = 2.87 X 10-6. 

3. How would the solution of problem 2 d be changed if a, 

b, and c were given as 1.43, 2.34, and 2.87, respectively ? 

PROBLEMS 

Type problems. Solve for the other parts ; make a note of the time 

required for the solution of each problem. 

a b c a P 7 
1. 8294 6788 33° 15' 

2. 8294 6788 33° 15' 

3. 8294 6788 33° 15' 

4. 8294 6788 9645 

5. 8206 33° 15' 67° 25' 

6. 8206 33° 15' 67° 25' 

7. 8206 6009 133° 15' 

8. 356 235 64° 10' 

9. .03267 .05431 63° 40' 

10. 83 x 106, 67 x 106, 54 x 10°. 

11. Given two forces of magnitude 384 and 276 acting at an 

angle of 38° with each other. Find the angle which the re¬ 

sultant makes with the larger force and the magnitude of 

the resultant. Note that the 

problem is simplified by re¬ 

garding the line of the larger 

force as an axis of reference ; 

the second force adds to this 

a component 276 cos 38°; the 

vertical component is 276 sin 38°; tan d> = —^-. 
384-f-276 cos 38° ’ 

the magnitude of the resultant, ?•, is by the sine law, 
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whence 

sin (180° - 38°) sin ’ 

276 sin 38° 

sin cf> 

or r = V(276 sin 38°)2 + (384 + 276 cos 38°)2, 

as hypotenuse of a right triangle ; or 

r = V(276)2 + (384)2 - 2 x 384 x 276 x cos 38°, 

by the cosine law. 

12. Given two forces of magnitude 684 and 450, acting at an 

angle of 64°. Find the resultant in magnitude and direction, 

graphically and trigonometrically. 

13. From an aeroplane moving horizontally at rate of 120 

miles per hour (176 feet per second) a bullet is shot at right 

angles to the path of the aeroplane with a velocity of 2800 

feet per second. What is the resultant velocity in magnitude 

and direction ? 

14. A cylindrical trough of horizontal length 20 feet and 

with the ends semicircles of radius 2 feet each, contains how 

many gallons of water for 1 foot in depth, for 11 feet, for 2 

feet ? 

15. A typical oil tank is 30 feet long and has a diameter of 

8 feet. Compute the volume in barrels (see page 94) for each 

foot of depth. Do not carry beyond tenths of a barrel. 

16. What angle does y = 2 x +12 make with the aj-axis ? 

What angle does Sy — 4x — 20 = 0 make with the a>axis ? 

Find the area and the other angle of this triangle, formed by 

the two lines and the a?-axis, by trigonometrical methods. 

Find the angle between the two lines by the formula, 

tan <f> = m* ~m2 and check. Find the area by analytical 
1 + myrio 

methods to check upon the trigonometrical solution. 
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plane 

17. Iii the figure AB represents the move- 

ment in 30 seconds of an aeroplane moving 

parallel to OX at rate of 120 miles per hour; 

Z AOX is measured as 83° 30' and Z BOX is 

measured as 74° 48'; find the distance OB 
and the position of the aeroplane at the end 

of the next 30 seconds if it continues on its 

present course. 

18. In problem 17 discuss the percentage 

effect of an error of 1° in angle AOX and in 

angle AOB, respectively. 

19. Given that observers A and B at the ends 

of a battleship 340 feet long observe an object 

O at angles of 106° 30' and 72° 48' respectively 

with the line AB. Find BO and AO. Solve 

this problem also graphically. 

7 s. 

m 2:=3 

5 

5 

20. A and B are observation stations on the shore, 10 miles 

apart and may be assumed to be on an east and west line; R, 
the battery, is three miles east 

of A and one mile south. Given 

that a battleship P is observed 

from A at an angle of 68° 12' 

and from B at an angle of 

59° 02' with AB • find the coor¬ 

dinates of P; find the range 

from P and the angle made by 

RP with the east and west line; 

find the distance using the for¬ 

mula for the distance between 

two points. This problem is 

solved in actual practice graph¬ 

ically on large plotting boards. Using \ inch to the mile, how 

closely could you approximate the distance ? 

P(3 m 5AeZ7i8t9UQg 

A 

Shore battery observations 

21. In the preceding problem, suppose that the observa¬ 

tions reported at the end of 1 minute are from A, 68° 08', and 
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from B, 59° 12', locate the direction of movement of the 

ship. 

22. If the battleship of the two preceding problems is 

600 feet long and broadside to A, what angle does it subtend 

at A ? 

23. When guns are tested at Sandy Hook or other proving 

grounds, the actual range for any angle of elevation of the 

gun is obtained by coincident observation of ; ^ splash of 

the shell by several observers located in toweis along a line 

roughly parallel to the line of fire of the projectile. The 

shell is loaded with a slight charge of high explosive in order 

to give a splash of some magnitude. For convenience in our 

figure, we have assumed the towers on a north and south line 

spaced as indicated; the height of the tower is regarded as 

negligible. Given that observers at A, B, C, D, and E observe 

the angle of the splash with the north and south line, the 

azimuth angle, as 2° 20', 21° 24', 27° 16', 41° 35', and 68° 54', 

find the distance and direction of S, the splash, from G, the 

gun, which is 400 yards due east of A. Note that any two 

observers give the position of S; the substantial agreement 

of three observers is taken as sufficient. Compare the solu¬ 

tions. Determine the coordinates of S with respect to a 

horizontal axis through BCDE and a vertical axis through 

AG. Assuming that the gun was pointed south the deflection, 
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to the east here, is termed the drift; it is due to wind and 

other causes ; determine this angle. 

It is not essential that the towers be in a straight line; the 

distance and direction of lines between adjacent towers is 

carefully measured. A large plotting board is used to obtain 

a graphical solution. 

24. Employing the general form of solution, adapted to each 

case, solve the following triangles for the unknown sides or 

angles, making note of the time required: 

a. Given a = 44.82, b = 76.24, c = 70.48. 

b. Given a = 366.5, b = 677.9, y = 15° 11'. 

c. Given b = 376.3, c = 804.8, y = 68° 27'. 

d. Given b — 816.4, P = 67° 17', y = 34° 9'. 

e. Given a = 915.5, 7 = 90°, « = 32° 3'. 



London Bridge 

Five pure elliptical arches ; central one 152 feet by 37 feet 10 inches, 

and the others 140 feet by 37 feet 2 inches. 

CHAPTER XVIII 

THE ELLIPSE 

1. Parametric equations of an ellipse. — The parametric 

equations of the circle, with center at the origin 

x = r cos 0, 
y = r sin 0, 

and of the circle with center at (h, Jc) 

x — h = r cos 0, 
y — k = r sin 0, 

if modified to read, 
x = i\ cos 0, 
y = r2 sin 0, 

and 
x — h = ?*! cos 0, 
y — k = r2 sin 0, 

respectively, give a curve which is closely related to the circle. 

This curve is called the ellipse; i\ and r2 are called the major 

and minor semi-axes of the ellipse, and the circles obtained 

281 
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with radii rx and r2 are called the major and minor auxiliary 

circles of the ellipse, assuming i\ greater than r2. 

An ellipse with its major and minor auxiliary circles 

X — Y\ COS 6 . , , . , 
. gives the larger circle. 

y — rx sm 0 
x — rx cos 6 

x = r2 cos 6 
y = r2 sin 6 

. n gives the ellipse. 
y = r2 sin 0 

P, Q, and i? are called corresponding points 

gives the smaller circle. 

Eliminating $ between the two parametric equations of the 

ellipse gives 

— + — = cos2 6 + sin2 0 = 1. . 
T]2 9*22 

Writing, as is customary, a and b for and r2 this equation 

becomes 
o»2 ^/2 
-+2_=i. 
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If the ellipse had the center (h, k) and the two values a and b 
corresponding to and r2, the equation of the ellipse would 

be written 
(x — h) — a cos 0, 
(y — k)= b sin 0, 

in parametric form ; and 

(x - hy | ii -fc)2 ^ j 
a2 ' b2 ’ 

in so-called standard form. If we assume, as we have above, 

that a is the radius of the larger circle, we would have for an 

ellipse placed vertically, 
x — h = b cos 0, 

y — k = a sin 0, 

or 
(cc — h)'2 

6‘2 
+ (y - fc)s 

at 

as the equation of an ellipse whose major axis is vertical. 

Note particularly that the terminal side of the angle 0 does 

not pass, in general, through the point on the ellipse which 

corresponds to that angle, but the angle 0 is made by a line 

passing through the corresponding points on the major and 

minor auxiliary circles. 

PROBLEMS 

1. Construct the ellipse 

x = 10 cos 0, 
y = 6 sin 6, 

by finding the points on the ellipse given by 0 = 0°, 30°, 45°, 

60°, 90°, and the corresponding points in the other quadrants. 

2. Construct the ellipse 

x = 10 cos 0, 
y = 6 sin 0, 

using corresponding points on the major and minor auxiliary 

circles to locate points on the ellipse. 
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3. How does the ellipse 

x— 3 = 10 cos 6, 

y + 2 = 6 sin 0, 

differ from the preceding ellipse ? 

4. Locate 10 points on the ellipse 

x — 3 = 6 cos 0, 

y + 2 = 10 sin 0, 
and draw the curve. 

5. Prove that a is the largest value and b the smallest of a 

line from 0 to any point on the ellipse. This gives the reason 

for the names, major and minor axes. 

6. Show that every chord of the ellipse through 0 is bi¬ 

sected ; 0 is the center of the curve. 

7. The five arches of the London Bridge are of true elliptical 

shape; the central arch has the width 152 feet (=2a) and 

the height 37 feet 10 inches (= b). Find the equation and 

plot 12 points on this arch; b may be taken as 38 feet. The 

adjacent arches are of length 140 feet and height 37 feet 2 

inches. Write the equations. In each case take the major 

axis as a>axis and minor axis as y-axis. 

2. Properties of the ellipse. — The equations 

x = a cos 6, 

y — b sin 6, 

wherein a > b, can represent any ellipse whatever, when the 

axes of the ellipse are taken as the axes of reference. The 

geometrical peculiarities of this ellipse will be characteristic 

of all ellipses, provided, of course, that no limitation is placed 

upon a and b (except that a may be taken as greater than b). 
Each ordinate of the ellipse 

x — a cos 0, 

y = b sin 0, 
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is a constant proportional part of the corresponding ordinate 

in the major auxiliary circle, 

x = a cos 0, 

y = a sin 6. 

An ellipse with its major and minor auxiliary circles 

x = r-L cos 0 . ., . x = r2 cos 9 . .. , 
. „ gives the larger circle. . „ gives the smaller circle. 

y = n sin 6 ° y = r2 sm d 
x = Vi cos 6 . 

gives the ellipse. 
y = r2 sm 0 

P, Q, and B are called corresponding points. 

Take any point (a cos 0, b sin 0) on the ellipse, the 

corresponding ordinate in the circle is yc = asin0; but 

ye — b sin 0 — - (a sin 0) = ^ • yc. Conversely, if the ordinate of 
a a 

any point on a given curve is always a constant proportional 
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part of the ordinate of a corresponding point on a given 
circle, for equal values of the abscissa, the curve is an ellipse; 
the ratio need not be less than unity as the figure clearly 
indicates, a vertical ellipse being represented when the ratio 
is greater than unity. This property of this ellipse is equally 
true of any ellipse, replacing the terms ordinate and abscissa, 

where given or implied, 
by perpendiculars to the 
major and minor axes, re¬ 
spectively, of the curve. 

If the major auxiliary 
circle is rotated about 
OX as an axis through 

an angle a, cos a = -, the 
a 

projection upon the plane 
of the original position 
will be the ellipse 

x = a cos 0, 
y = b sin 0; 

evidently the x of any 
point on the projected 
curve may be taken as the 
x of a point on the project¬ 
ing circle, or x = a cos 0. 
The ordinate on the pro¬ 
jected curve is in a con¬ 

stant ratio, cos a = -, to 
a 

the ordinate on the circle. 
Further any plane section of a cylinder with circular base is 
an ellipse, for with the same abscissas, the ordinates of the 

curve of section bear a constant ratio —^— to the correspond- 
cos a 

ing ordinates on the circular base. 

Elliptical section of a circular cylinder 
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Let the plane cut the axis of the cylinder in 0, and let 

BOX, on the diagram, be the intersection of the cutting 

plane with the plane of the circular section through 0 (paral¬ 

lel to the base of the cylinder). Note that angle PMQ is 

constant. 

Similarly if a circular cone is cut by a plane cutting all the 

elements of the cone, the section formed is an ellipse; the 

geometrical proof is rather too complicated to give here but an 

analytical proof is indicated in Chapter XXXII, Section 6. 

The ancient Greeks studied the properties of the ellipse entirely 

from the point of view of the curve as a plane section of a 

cone. The Greek theoretical work concerning the properties 

of conic sections made it possible for Kepler to discover that 

the path of the earth about the sun is an ellipse, and for 

Newton to formulate the law of gravitation. 

The properties mentioned are intimately connected with the 

applications of the ellipse in engineering problems. 

From the property of the ordinates it follows that the area 

of an ellipse is - • ttcl2 = irah. A = irah. 
a 

The proof is strictly by a “ limit process,” and may be made 

reasonably evident by dividing the semi-axis into 25, 50, 100, ••• 

equal parts and drawing two series of rectangles on these 

equal subdivisions about the corresponding ordinates to fall 

entirely within (or entirely without) the ellipse and the circle, 

respectively. As the subdivisions are increased in number the 

one series of rectangles has the area of the quarter-ellipse as a 

limit; it differs from this area never by an area as great as the 

rectangle of height b and base one subdivision; so also the 

sum of the second series of rectangles has the quarter-circle 

as a limit, never differing from it by an area as great as the 

rectangle of height a and base one subdivision ; but the sum 

of the series of smaller rectangles always equals - times the 
a 

sum of the series of larger rectangles since the bases are equal 
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and the altitude of any one of the smaller is - times the alti- 
a 

tude of the corresponding one of the larger; evidently, then, 

the limits of these sums are in the same ratio. In the dia¬ 

gram above the ruling of the paper divides the semi-major 

axis into 25 parts, and gives the rectangles. 

The Colosseum in Rome 

A famous elliptical structure, 615 feet by 510 feet, by 159 feet high ; 
the arena is an ellipse 281 by 177 feet. 

A rectangle of dimensions 2 a and 2 b may be circumscribed 

about the ellipse. The sides of this rectangle are tangents at 

the vertices of the ellipse; the middle lines parallel to the 

sides are the axes of the ellipse; the horizontal sides of this 

rectangle cut the major auxiliary circle in points which cor¬ 

respond to four symmetrically located points on the ellipse; 

sin 6 = ± -, cos 6 = ± \/l — — = ± ^ , whence 
a * a2 a 

x= ± Vfl2- b2, y — ± —, are the coordinates of these points on 
a _ 

this ellipse. The points on the major axes (±Va2 — b2, 0) 

are the foci of the ellipse, and enjoy special properties with 
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respect to points on the ellipse. The sun is at one focus of 

the path of the earth. 

3. Standard definition of the ellipse. — The locus of a point 

which moves so that its distance from a fixed point called the 

focus is in a constant ratio, e, less than 1, to its distance from 

a fixed line called the 

directrix, is an ellipse. 

Let the fixed point be 

F and D'D the fixed line. 

Through F drop a per¬ 

pendicular to the direc¬ 

trix D'D meeting it in 

R and use this line as 

a>axis. By definition, 

then, the ellipse will be the locus of a point which moves so 

that PF = e • PZ, wherein PZ is the perpendicular from P to 

the directrix. Two points of our curve will be found to lie 

upon the cr-axis ; the two points are the points A and A! which 

divide the segment FR internally and externally in the ratio e 
(taken as-| on our figure). Take the middle point of A!A as 

the origin, designating A'A, which is a fixed length dependent 

upon FR and e, by 2 a. Then OA — OA' = a. 

A 0 A' 

PF — e • PZ defines the ellipse 

The constant e is called the eccentricity. 

AF=e-AR. 
A'F = e • A'R. 

AF+ A'F = e(AR + A'R). 
2 a = e(AR + OA' + OR). 

= e{OA + AR -f- OR) 
= 2 e • OR, whence 

OR — -- 
e 

A'F- AF = e(A'R - AR). 
2 OF= 2 ae. 

OF — ae. 

F is (— ae, 0) and D'D is x + - = 0; 
v e 
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PF = e • PZ, taking P as (a?, y), gives in analytical language, or 

formulas, 

V (x + «e)2 + (y — 0)2 = + a. 

Let 

whence 

x2 -f- (t2a2 + y2 = e2x2 -p a2. 

x2(l - e2) + y2 = a2(l - e2). 

a: 
—„ + 

r = 1. 
a2 a2(l — e2) 

b2 = a2(l - e2), 

, r 
a2 &2 

= 1. 

But this equation is satisfied by every point 

a? = a cos 0, 

y = b sin 

determined as we have indicated above, and conversely; our 

two definitions are equivalent to each other. 

The form of equation (1) shows that the curve is symmetrical 

with respect to the two lines which we have chosen as axes ; 

i.e. since x and — x give precisely the same equation to deter¬ 

mine y, the curve is symmetrical with respect to the y-axis; 

similarly since y and — y give precisely the same values for x, 
the curve is symmetrical with respect to the a?-axis. The 

coordinate axes are axes of symmetry of the curve. 

By symmetry with respect to the y-axis we mean that if the 

right half of the curve is folded over on the y-axis as an axis, 

i.e. revolved about it as an axis (or axle) through an angle 

of 180°, the two sides will coincide throughout. Hence 

corresponding to F1 and D'D, there is another focus F2 and a 

corresponding directrix D2D'2, enjoying precisely the same 

properties with regard to the curve as Fx and D'D« 
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By symmetry, 1\F, = P2P2, 1\Z! = 1\Z 

and since PXFX = e • P,Zb P2F2 = e • P2Z, 

Similarly, P2PX = PjPo, P2ZX = 2) 

and, since P2F1 — e • P2Z1} P,F2 — e • PXZ2. 

Symmetry of the ellipse with respect to its axes 

4. Sum of the focal distances constant. — Taking any point 

Pi(iCi, yi) on the ellipse, the focal distances PXPX and PiP2 are 

equal to a — exx and a + exx, respectively. 

a 
For P1F1 = e • PXZ — e -■) = ex1 — a, which is a negative 

distance since P1 and 0 are upon the same side of the line 
. a 

xi H— 
e 

D'D. Similarly PXP2 — e • P\Z2 — e •-= — (exl + a). As 

positive values PXPX and PiP2 are a — exh and a + ex1; these 

may also be derived by the formula for the distance between 

two points, noting that (xlf yx) is on the curve; 

PF1 4- PF2 = a — exx + a p exl = 2 a. 
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5. Right focal chord. — When x — ae, 

1 

a2 b2 

y2 = &2(1 _ e2^_ b_, si11Ce b2 = a2( 1 — e2), 

, b2 ■ ■ 2 b2 
V = ±-, giving- 

a a 
as right focal chord. 

Jj2 
The value y = — is the value of y obtained in the parametric 

a 
I) ^2 

form when sin 0 = - , y = 6 sin 6 = — • 
a a 

L 
ae. x — a cos 0 = ± a\f 1-= ± Va2 — b2 = ± 

* a2 

showing that the focus as we have now defined it coincides 

with the focus as first defined. 
2 2 

6. Standard forms of the ellipse. — The equation — + = 1 
/y 2 n2 

may be interpreted geometrically, 

CM2 MP2 = 1 

CA2 CB2~ ’ 

l> 
L> 

i 

! 
/ Y 1 A 

5i- 

—r 

in which CM and MP represent the distances cut off from the 

center on the major and minor axes of the ellipse by the per- 
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pendiculars to the axes from any point on the ellipse; CA and 

CB are the lengths of the semi-major and semi-minor axes. 

Given a horizontal ellipse with center at (h, k) and axes a 
and b, the relation 

CM' MB2 
= 1 

CA CB2 
becomes 

(a? — hf , 0/ — k)2 _ 1 
° + b2 

since 
a1 

CM = x — h and MP = y — k. 

Similarly a vertical ellipse with center (Ji, k) and axes a and 

b, respectively, has the equation 

(y — k)2 (x — h)2 1 
^= si 

° b2 
since 

ae 

CM is here y — k and MP is x — h. 

Type forms : ^ ~ ~ = 1 ; k^~ + (x-hY = 1. 
” 1 b2 a- b‘l a1 

b2 = a2( 1 — e2); 

[ horizontal 

vertical 
foci of ^ ————— ellipse on the line { 

\y — k = 0 

[ x — li = 0 

at a distance ae = Va2 — b2, from the center (h, k) ; 

right focal chords extending a distance — f veitically 
a [horizontally 

from the foci on either side of the mai or axis I ^ ^ — ^ 
J [a;—7i = 0. 

7. Limiting forms of the ellipse equations. — 

(x ~ ft)_ (y ~ fcL = l represents an ellipse. 
a2 62 

(x —• 7t):2 0/ — Q2 _ q represents a point ellipse or two 
a2 b2 

imaginary straight lines through (Ji, k); the only real point 

which satisfies this equation is the point (h, k). 
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(.? - h)2 t (y - k)> _ 

(// 62 
= — 1 represents an imaginary ellipse; 

only imaginary values of x and y can make the sum of the two 

squares on the left equal to — 1. 

The equation of any ellipse with axes parallel to the coordi¬ 

nate axes may he written, 

{x — x, 
a1 

u)_ _|_ ill—Ell = jc wherei 
b2 

ein 

ka2 and kb2 represent the squares of the semi-axes. As k 
approaches zero the ellipse diminishes in size, and when k = 0 

the equation represents the point (xx, y:); when k becomes 

negative the ellipse becomes imaginary. 

8. Illustrative problems.— 

a. Plot the ellipse 4 x2 + 16 x + 9 y2 — 18 y — 75 = 0. 

First write in form to complete the squares, 

4(x2 + 4 x ) + 9(y2 — 2 y ) = 75. 

Complete squares : 

4(x2 + 4x + 4) + 9(y2 - 2 y + 1) = 75 + 16 + 9. 

4(x + 2)2 + 9(y - l)2 = 100. 

Write in standard form : 
(% + 2)2 (y- !)»_, 

25 1 0 0 
9 

OC— 2, 1) ; = 25; 6* = ^; ae =-(25 - ^ =-(1|5 = 
9 

62 100 20 

11.2 

3 

a 45 9 

Plot the center, extremities of major and minor axes ; foci; extremities 

of right focal chords ; at least one further point, obtained from the 

original equation and selected so as to give a point approximately midway 

between the extremity of a focal chord and the corresponding extremity 

of the minor axis ; by symmetry three other points are obtained. In this 

case x = 0 gives desirable further points. 

9 ± V81 + 675 

y 9 
= 1 ± 1V756 
= 1 ± K27.5) 
= 1 ± 3.0(3 
= 4.06 or - 2.06. 
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b. Plot the elliptical arch of a bridge, arch 125 feet wide and 

37 feet high. Plot points for every 10 feet of the span; and 

compute to tL of 1 foot. 

Elliptical arch, 125 foot span by 37 feet high 

Scale, 1 inch to 40 feet. Horizontal measurements are from the middle 

of a quarter-inch square. 

%2 ■ y2 = 1 
(62.5)2 372 

a2 = (62.5)2 . 52 - 372 • ae - y/(62.5)2 - ST2 ; 

Z/2 = 372( 1 
\ 62.52/ 

62 

a 

372 

62.5 * 

Here compute 372 and , and multiply the latter by x2 = 100, 

400, 900, 1600, 2500, and 3600 ; extract the square root of the difference ; 

use four-place logarithms. 

log 37 = 1.5682 

log 62.5 = 1-7959 
log quot. = 9.7723 — 10 

log quot.2 = 9.5446 - 10 
\ 2 
) = .3504 

y'w2 = 1369 - 35.04 ; y1Q = 4- 36.51 

2/2o2 = 1369 - 140.16 ; 2/20 = + 34.93 

2/302 - 1369 - 315.36 ; 2/30 = + 32.46 

2/402 = 1369 - 560.64 ; 2/40 = + 28.43 

2/502 = 1369 - 876.0 ; 2/50 = + 22.20 

2/eo2 = 1369 - 1261.44 ; 2/eo = + 10.37 
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Exercise.—Draw the major auxiliary circle on half-inch 

coordinate paper, and compute corresponding ordinates in the 
Q/T 

preceding arch as A— of the ordinates on the circle; e.g. for 
62.5 

x = 10, find y graphically on the circle and multiply by 
37 

62.5 

PROBLEMS 

1. Plot the ellipse 9 x2 + 36 x + y2 — 6y = 0; what are the 

coordinates of the foci ? 

2. Plot one quarter of the ellipse a2 . V2 =1 
1472 592 

3. Plot an elliptical arch, width 233 feet, height 73 feet, 

plotting at least 10 points spaced at 20-foot intervals from the 

center. These are the dimensions of the arch of the Walnut 

Lane Bridge in Philadelphia; the arch is approximately an 

ellipse. 

4. Plot the upper half of an ellipse, giving a vertical ellip¬ 

tical arch 13 feet 1\ inches high, and 9 feet 2\ inches wide. 

This represents the upper portion of an elliptical sewer used 

in the city of Philadelphia. 

5. What limitation is there upon the values of A and B if 

the equation, Ax2 + By2 + 2 Gx + 2 Fy + C = 0, is to represent 

an ellipse ? 

6. Put the following equations in standard form, complet¬ 

ing the square first and reducing to standard form by division. 

Time yourself. 

a. 4 x2 -f 9 y2 — 8 x + 36 y = 0. 

b. 3 a?2 + 24 x + y1 — 6 y — 43 = 0. 

c. 5 x2 — 17 x + 10 y2 — 100 = 0. 

d. 5 ^+ 122/2— H7 = 0. 

e. 3 x2 — 24 x + 4 y2 + 16 y — 52 = 0. 

7. Plot the preceding five ellipses, choosing an appropriate 

scale. Plot the extremities of major and minor axes, the 
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extremities of the right focal chords, and one other point 

obtained by computation, together with the three points sym¬ 

metrical to the computed point. 
• 

8. Determine a2 and b2 to one decimal place, in the follow¬ 

ing three ellipses: 

a. 17 x2 + 43 y2 = 397 • 

b. 5 x2 — 17 x + 10 y2 — 35 y = 0. 

c. 7(x - 2)2 + 3(y - 3)2 = 39. 

9. In the three ellipses immediately preceding determine 
2 O' 

ae, —, and - to one decimal place. 
a e 

10. In each ellipse of problem 8 determine x when y = 2. 

11. Using the data of problems 8, 9, and 10, plot the three 

ellipses of problem 8. 

12. In the ellipse = 1, find the foci. What is the 

distance of the point whose abscissa is + 3 from each focus ? 

of the point whose abscissa is 4, 5, 6, 7, ? 

13. Put the following equations in standard form and dis¬ 

cuss the curves: 

a. x2 — 6 x + y2 -f- 8 y — 10 = 0. 

b. x2 — 6 x + 4 y2 -f 8 y -p 11 = 0. 

c. x2 — 6 x + 4 y2 8 y + 13 = 0. 

d. x2 — 6 x + 4 y2 + 8 y T 14 = 0. 

e. x2 — Q> x 4: y2 % y -\- k = §. 

14. The path of the earth about the sun is an ellipse with 

eccentricity .01677; this may be taken as in the following 

computations. If the major axis of the earth’s orbit is 185.8 

million miles, determine the focal distance, i.e. from the sun to 

the center of the path; determine also the minor axis. If a 

scale of one-half inch to fifteen million miles is taken, at what 

distance will the point representing the sun be from the center 



298 UNIFIED MATHEMATICS 

of the path ? What will he the difference in length between 

major and minor axes? 

The path of the earth about the sun 

The distance of the sun from the center of the ellipse is represented 
by A of an inch, on this diagram. 

9. Tangent to ellipse of given slope. — (See page 225.) To 

find the tangent of slope 2, y = 2 x + k is solved as simultaneous 

with the ellipse equation. An equation whose roots are the 

abscissas of the two points of intersection is found and the con¬ 

dition is used that the two points of intersection be coincident. 

af , t _ i 

a2 b2 ’ 
y = 2 x + k. 

b2x2 -f a2 (4 x2 + 4 kx -f k2) — a2b2 = 0. 

x2 (b2 + 4 a2) + 4 a2kx + o?k2 — a2b2 = 0. 

= - 2 a2k ± V4 a4fc2 - (J/2 + 4 a2)(a2k2-aW) 

X " b2 + 4 a2_ 

— 2 ci2k ± Va2bA + 4 a4b2 — a2b2k2 

b2 + 4o2 
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Put b2 4 4 a2 - k2 = 0. 

k2 = b2 -f- 4 a2, 

k = ± V62 4- 4 a2, 

y = 2 x ± Vfr2 + 4 a2 

are the two tangents of slope 2. 

Similarly the tangent of slope m is obtained by solving 

a) 
(2) y = mx -f- k 

as simultaneous, and writing the condition for equal roots. 

Clearing (1) of fractions, 

b2x2 + a2?/2 — a2b2 = 0; 

substituting from (2), 

b2x2 -f- a2 (m2x2 -f- 2 kmx 4- k2') — a2b2 

= (b2 + o^m2') x2 4- 2 ka2mx + (a2k2 — a2b2) — 0. 

< _ — ka2m ± -\Zk2a4m2 — (b2 4 a2m2)(a2k2 — a2b2) 

b2 4- a2m2 

Putting the discriminant equal to zero, 

k2 = b2 4- a2m2. 

k — ± V b2 4- a2m2, whence 

y = mx ± Va2m2 4- fr2 

are the two tangents of slope m to 

This method of obtaining the tangent applies to any curve 

given by an equation of the second degree. 

10. Focal properties of the ellipse. — The perpendicular from 

the focus (ae, 0) on any tangent of slope m meets it in the 

point, whose coordinates are found by solving the equations of 

these lines as simultaneous. 
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The equations, y = mx + Va2m2 -f- b2, of the tangent, 

and y — 0 = — — (x — ae), of the perpendicular, 
m 

may he written 

y — mx = V«2m2 + b2. 

m?/ + ce = ae. 

The perpendicular from the focus upon any tangent to an ellipse meets 

it on the major auxiliary circle 

The point of intersection satisfies both these equations; 

further it satisfies the equation obtained by squaring and add¬ 

ing both members of each of these equations : 

(1 -j- m2)y2 + (1 + m2)x2 = a2m2 + b2 + a2e2 

= a2m2 + b2 + a2 — b2 

= a2(l + m2). 

x2 -f- y2 = a2; 

hence the point of intersection of the perpendicular from the 

focus on any tangent lies on the major auxiliary circle. 

Note that the above demonstration applies equally well to 

the perpendicular from the other focus (— ae, 0) and equally 

well to the other tangent of slope m, y = mx — Va2m2 + b2. 
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11. Tangent to an ellipse at a point P\(xx, yx) on the ellipse. — 

The method outlined is general, being applicable to any alge¬ 

braic curve. The point Px(xx, yx) on the curve, considered as 

fixed during the discussion, is 

joined to a neighboring point 

P2(xi -f h, yx -f- k) on the curve, 

which second point is then made 

to approach (xx, yx) along the curve. 

The slope of the chord joining Px 

k 

- is the slope of the chord PiP2 
h 

to P2, -, is found not to change 
h 

indefinitely, but is found to ap¬ 

proach a definite limiting value as 

h and k approach zero, i.e. as P2 

approaches Px along the curve. 

This limiting position of the chord 

is the tangent at Px; this line can be shown in the case of 

the ellipse (or any curve given by an equation of the second 

degree) to cut the curve in two coincident points at (xh yx) 

and in no other point. 

The method is applied in parallel columns 

to a general problem and to a particular problem. 

Tangent to the ellipse, 

+£-i 
x2 2 

a* b2 

at Px(xx, yx) 

x ii +r = i 
25 4 

at Px(3, |) on the ellipse. 

Take the second point 

P2(xx + h, yx + k) on curve P2(3 + !>, i + k) on curve 

Substituting, 

b2(xi + h)2 -f- a2(yx -f k)2 — a2b2 = 0. 
4(3 + h)2 + 25(| + k)2 - 100 = 0. 

b2xx2 -f- 2 b2hxx + b2h2 + a2y\ -b 2 a2kyx + a2k2 - a2b2 = 0. 

But b2xx -f- a2yx2 — a’b2 — 0. 

3G -b 24 h-b 4 h2 + 04 + 80 k + 25 k2 — 100 = 0. 
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Subtracting (and canceling) 

2 WliXy 4- b2h2 +2 o?kyx + aW = 0. 24 ft+4 /i2+80 k -{-25 k2=0. 

.-. k(a2k+2 a%)=-h(2 (Wxi + Wh). 7c(80 + 25 k)=-h(.24+4 7i). 

A; _ 2 fr2^ + bVi k _ 24 + 4 li 

h 2 + ci2k h 80 -f 25 k 

The chord PAP2 is given by: 

y~y V~\ = 

Since P2 is 011 the curve, the chord equation may be written: 

y-y i = - 
2 + 7>27t , v 

--(a? — xA 
2 a2^ + a2A:v 

24 + 4 7i 

80 + 25 & 
(® - 3). 

Let P2 approach Px along the curve; h and k both approach 

0, i.e. can be made just as small as you please. Thus if h is 

made .01 in our numerical prob¬ 

lem, k will be about — .003, which 

can be obtained by solving the 

quadratic 

25 A;2 + 80 k + 24 h -f 4 h2 = 0, 

for k. It is evident that the con¬ 

stant here may be regarded as 

24 h -f h2 and that as h = 0, this 

constant approaches zero, and one 

root of k approaches zero. 

Note that the second value of 

k approaches — 2 yh and corre¬ 

sponds to the fact that the given value of x, xl -f h, is the 

abscissa of two points, on the upper and lower parts of the 

curve, respectively. 

Since h and k both approach zero, 

24 4- 4 7i =24 

and 

- 80 + 25 k = - 80 

TT 

* 7) 

7> J A aL. 

‘i-i fr); 
i iZ: 

Jc 

rr 
P-1 V .. = -J 

j ■ ■ 
1, 

1 c 

"1 I-— 
t 

-t- :: 
I 

4J- 

4. —\ t-- 

t 
“TT 
— 

U—u 

1--- 

r -1—U 4-L 

- is the slope of the chord PiP> 
h 

2 b2xx + b2h = 2 b2xx 

and 

2 a}y! 4- a2k = 2 a2yl 
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and the slope of the chord approaches more and more nearly, 

and as near as you may please to make it, by taking h (and 
thus k) small enough, 

— 2 b2xx 24 

2«22/i “80* 

Hence the chord approaches a limiting position, given by 

y-y i = - 
2 b2xx 

2a2y1 
24 

80 
(x - 3), 

which may be written 

b2xxx 4- a2yxy = a2yx2 -f b2xx2 

— a2b2. 

b2xxx + a2yxy — a2b2 = 0 

or m + W=t. 
a2 b2 

y- 1.6 = - .3(0? - 3) 

or y — 1.6 = — .S(x — 3). 

10 y + 3 x — 25 = 0. 

40 ?/ + 12 & — 100 = 0. 

By precisely this method, step for step, the tangent to 

Ax2 + By2 + 2 Gx + 2 Fy -(-(7=0, is found to be 

Axxx -f- Byxy -f- G(x -f- ^i) 4- F(jy 4- yx) 4" G = 0. 

PROBLEMS 

1. Find the tangents of slope 4-2 and of slope — 3 to each 

of the ellipses in problem 6 of the preceding set of problems ; 

the five problems, tangents of slope 4- 2, should take not to 

exceed 30 minutes ; note that after substituting 2 x -f- k for y it 

is better procedure, surer and quicker, to combine terms by in¬ 

spection rather than to expand each binomial before combining. 

This means to pick out the terms containing x2, for example, 

and write the sum of these coefficients directly. 

2. Draw at least three of the tangents of slope 4- 2 in the 

preceding exercise, and three of slope — 3, each to its conic 

as previously drawn. Find the point of tangency algebraically 

and graphically. 
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3. Without plotting the ellipse itself plot 12 tangents of 

slope 0, 1, 2, 3, 4, 5, 6, and 10, and of slope — i, — 1, — 3, and 

- 6 to the ellipse 9 x2 + 25 y2 = 900 ; note that these give a 

fair outline of the ellipse. 

4. In each of the ellipses of problem 8, page 297, find the 

tangents at the point whose ordinate is 2, employing the 

results of problem 10 of the same set, and using the formula, 

Axxx + Byxy + G (x + xj + F(y + yj) + C= 0. 

5. Derive by the method outlined in section 11 of this 

chapter the tangent to the ellipse 9 x2 + 25 y2 = 900 at the 

point (8, 3.6) which is on the curve; at (— 6, 4.8) on the curve. 

6. In the ellipse 9 x2 -f 25 y2 = 900, verify that the perpen¬ 

dicular from the focus upon any tangent to the ellipse meets 

it on the major auxiliary circle. Note that the converse is also 

true. This gives a method for drawing the tangent to an 

ellipse from a point outside the ellipse; explain. 

12. The tangent to an ellipse at a point on the ellipse con¬ 

structed from the tangent to the auxiliary circle. — Let (aq, yj) 

be any point on the ellipse ; the tangent is M — p • the 
a2 b2 

^2 

x-intercept, x{, of this tangent is —, obtained by solving 
xL 

X-X + — =1 as simultaneous with y = 0. Evidently x{ = — 
a2 b2 ' x± 

depends only upon xx and a, not involving b or yv Hence this 

value would be unchanged if b were taken equal to a. The 

tangent to the major auxiliary circle x2 -\-y2 = a2 at (xlf y2) on 

the circle is xxx + y2y = a2, and the intercept of this tangent 

on the ic-axis is also —. This gives the following rule for 
x1 

drawing a tangent to an ellipse at any point on the ellipse : 

Construct the major auxiliary circle to the given ellipse; find 

the point P2 on the circle having the abscissa of the given point;. 

at the point P., construct the tangent to the circle, cutting the 
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x-axis at T; the line joining T to 1\ on the ellipse is the tangent 

to the ellipse. 

Tangent to an ellipse constructed from the tangent to the auxiliary circle a 

the corresponding point 

Note that even if b is greater than a, this construction gives 

the tangent, but the circle x2-\-y2—a2 is then the minor 

auxiliary circle of the given ellipse. 

13. The tangent to an ellipse bisects the angle between the. 

focal radii to the point of tangency. — Let + 1 be the 
a2 b2 

fa2 
tangent at (xh yf) which intersects the cc-axis at T 0 

OT = -; F.T=- + ae = -(a + ex1). 
xl xl xl 

h\ / —-ae — —(a — exf). 
Xi x1 

Hence, 
F2T_ a + exi _ PxF2 

FXT a — exx P\FX 
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1\T bisects the exterior angle of the triangle F2PXF 

since it divides the opposite side into segments proportional 

to the adjacent sides. The normal bisects the interior angle 

between the two focal radii; if the normal be drawn, each focal 

radius makes the same angle with it. 

Tangent to an ellipse constructed from the focal radii to the point of 

tangency 

Any ray of light or sound striking a reflecting surface is 

reflected in the plane of the normal to the surface and the 

original ray in such a way as to make the angle of incidence 

(i.e. between normal and original ray) equal to the angle of 

reflection. Hence rays starting from F1 in our figure con¬ 

verge at F2. This is the principle of “ whispering galleries,”. 

in which the rays of sound starting from a point F1 converge 

at another point F2, making audible at F2 whispers at Fx; at 

intermediate points the conversation, may not be audible as 

there is no reenforcement by convergence. 

PROBLEMS 

1. In the ellipse 9 x2 + 25 if — 900, give the two graphical 

methods for drawing the tangent at the point (6, 4.8) on the 
ellipse. 



THE ELLIPSE 307 

2. In the ellipse 25 x2 + 9 y2 = 900, give the graphical 

methods for drawing a tangent at the point (—4.8, 6) on the 

ellipse. 

3. Construct the three ellipses : 

100 + 36 

a2 , y?- 
100 100 

= 1. 

= 1. 

x2 y2 

ioo^iii 
Draw the tangent to each of these ellipses at the point 

whose abscissa is + 6; find the equation of each of these 

tangents and prove that they intersect on the aj-axis. 

4. Find the equations of the two focal radii to the point 

(6, 4.8) on the ellipse ——f- = 1; find the bisectors of the 
100 36 

angles between these focal radii; find the bisector of the angle 

which does not include the origin, and prove that it coincides 

with the tangent at (6, 4.8) to the ellipse. 

5. If an elliptical arch is to be in the form of the upper 

half of an ellipse, find the equation and plot ten points, given 

that the width of the arch is to be 100 feet and the height is to 

be 40 feet. 

6. If the preceding arch is to have the dimensions as given, 

but is to be constructed as the upper quarter of a vertical 

ellipse, find the equation of the curve. Note that you have a 

point (50, 40) which is to satisfy the equation of the curve 

which can be written with only the denominator of x2 as un¬ 

known. Compare this arch with the preceding one as to beauty 

of design. 

7. Find the lengths of the ten vertical chords of the arch 

in problem 5, dropped from the tangent at the top of the arch 

and equally spaced horizontally. 
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8. By the method of article 13, find the tangent to the 

curve given by the equation, xy = 15, at the point (3, 5) on the 

curve. 

9. By the method of article 9, find the tangent of slope — 2 

to the curve given by the equation, xy = 15. 

10. Write the equations of the three ellipses of problem 8, 

page 297, in parametric form. 
2 y2 

11. In the ellipse,-1—= 1, find where lines from 

(50, 30) inclined to the horizontal axis at angles of 15°, 30°, 

45°, and 60° respectively, cut the ellipse. Find the lengths of 

these lines from (50, 30). See problem 5. 

12. If in the ellipse of problem 6, supporting chords are 

drawn diagonally between parallel vertical chords, computed in 

problem 7, each from the upper point of the right-hand chord 

to the lower point of the left-hand chord (on the right side of 

the ellipse), compute the lengths of these chords. 



From Tyrrell’s Artistic Bridge Design 

Alexander III Bridge in Paris 

A parabolic arch ; span, 107.6 m.; rise, 6.75 m.; width, 40 m. 

CHAPTER XIX 

THE PARABOLA 

1. Definition. — The ellipse lias been 

defined (page 289) as the locus of a 

point which moves so that its distance 

from a fixed point, the focus, is in a 

constant ratio less than one to its dis¬ 

tance from a fixed line, the directrix. 

If this constant ratio is taken equal to 

one, the curve generated by the mov¬ 

ing point is called a parabola. 

PF = e • PZ, e < 1, defines an ellipse. 

PF = PZ defines a parabola. 

PF = e • PZ, e > 1, defines a hyperbola. 

2. Equation of the parabola.— 

Through the focus draw the perpendic¬ 

ular FQ to the directrix ; take this line 

as £-axis. Take FQ, which is constant, 

as 2 a. On the axis chosen only one 
309 

F, the focus; ZZ', the di¬ 
rectrix 

A point equidistant 

from Fand ZZ' moves on 

a parabola* 
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point is found which is on the given curve; the mid-point 

0, dividing the segment QF in the ratio 1 to 1, is such that its 

distance from F, the focus, equals its distance from the 

directrix. Through 0 take a perpendicular to OX as the 

y-axis. Evidently F is the point (a, 0), and the directrix is 

the line x 4- a = 0. 

Take P (x, y) any point which is on the given curve, i.e. any 

point equally distant from F and from the line, giving 

PF = PZ. 

PF = V(cc — a)2 4- y2, distance between two points. 

PZ — x -f- a, distance from a point to a line. 

Note x a gives the distance as negative; but it is not 

necessary to take account of the sign as in the simplification 

this expression is squared. 

Equating, PF = PZ, gives 

V (x — a)2 -f y2 — x + a. 

x2 — 2 ax 4- a2 4- y2 = x2 + 2 ax 4- a2. 

y2 = 4 ax. 

3. Right focal chord. — When x = a, y = ± 2 a, giving the 

total length of the right focal chord as 4 a ; the coefficient of 

x in y'1 — 4 ax represents the length of the right focal chord. 

4. Geometrical properties. — The curve is symmetrical with 

respect to the x-axis, for, assigning any value to x, you find for 

y two values ± V4 ax ; numerically equal but opposite in sign, 

or lying symmetrically placed with respect to the OX-line, 

which consequently is here the axis of the curve. 

The y-axis, x = 0, is tangent to this curve since, solving, 

y2 = 4 ax, 

x = 0, as simultaneous, 

gives y2 = 0; y equals zero twice, or the two points of inter¬ 

section of x = 0 with y2 = 4 ax are coincident. The point 
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(0, 0) is the point on the axis of symmetry, y — 0, which 
corresponds to itself ; this point is called the vertex. The 
line y — 0 cuts the curve in only one finite point, given by 
y — 0, and x = 0 ; the other point of intersection of y = 0 
with the curve is at an infinite distance. 

Given a as positive, negative values of x lead to imaginary 
values of y. Hence all points on the curve lie to the right of 
the tangent at the vertex. As x increase's without limit, y 

increases also without limit. This curve extends, we may 
say, to infinity. In plotting a parabola, the vertex, the ex¬ 
tremities of the right focal chord, and at least two other 
points, should be plotted. 

The quantity y2 — 4 ax is evidently negative for points in¬ 
side the curve, zero for points on the curve, and positive for 
points outside the curve. 

5. Finite points and the infinitely distant point on the parabola. 
— To plot carefully y2 = 8 x, note that 4 a = 8, whence a = 2 ; 
indicate the vertex and, 2 units to the right, the focus; 4 
units (2 a) above and below the focus locate the extremities 
of the right focal chord which has the length 4 a; take values 
of x at appropriate distances from the vertex and focus to 
give the portion of the parabola desired ; in y2 = 8 x, x = 0, 1, 
2, 3, 4, 6, and 8 give sufficient points to plot the curve for our 
purposes. 

The parabola y2 = 8 x is intersected by the line y — x at 
(0, 0) and at (8, 8) ; y = \ x cuts this parabola at x = 0 and at 
x = 32 5 y = .1 x cuts at x = 800, y = 80. These values are 
obtained by solving the equation y2 = 8 x as simultaneous with 
each of the linear equations. 

Solving, 
y = .01 x 

y2 = 8 x 

gives .0001 x2 = 8 x, x = 0 or x = 80,000. If one centimeter is 
taken as 1 unit, y = .01 x cuts the parabola y2 = 8 x at the 
vertex and at a distance of 80,000 cm., nearly ^ mile, from the 
vertex. As the line y = mx moves nearer and nearer to the 
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A line parallel to the axis of a parabola cuts it in a point infinitely distant 

axis y — 0, the second point of intersection moves off farther 

and farther, without limit. This is the meaning of the ex¬ 

pression that the axis of the parabola, and by similar reason¬ 

ing any line parallel to the axis, “ cuts the curve at an infinite 

distance.” 

The methods given above for plotting y2 = 8 x apply to any 

parabola y2 = 4 ax. 

PROBLEMS 

Plot the following parabolas carefully: 

1. y2 = 4 x, from x = 0 to x = 8. 

2. y2 = x, from x = 0 to x = 10. 

3. y2 = 12 x, from x = 0 to x = 12. 

4. y2 = Tx-g x, from x = 0 to x = 100. 
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5. s = 16 t2, or t2 — -Jg s, taking OS as the horizontal axis 

and taking \ inch to represent 10 units of s (distance in feet) 

and \ inch to represent 1 unit of t (time in seconds). This 

gives the distance fallen from rest in time t by a freely fall¬ 

ing body. 

6. Eind the intersections of y = x, y = ±x, and y =-fox 

with the curves of problems 1, 2, and 3. 

7. Solve s = 800 t with s = 16 t2; s = 800 t is the space cov¬ 

ered by a body moving with uniform velocity 800 units per 

second. What is the physical meaning of the values obtained 

for the point of intersection ? 

8. A mass rotated on a cord exerts a force of tension on 

the cord, F = ——- • Given m = 1 pound, and r = 10 feet; 
r 

draw the graph for velocities of 1 to 100 feet per second, taking 

F on the horizontal axis. Compute the corresponding number 

of revolutions per minute for v = 10, 20, 50, and 100 feet per 

second. What is the relation between 

v and n, where n is the number of 

revolutions per minute ? Indicate on 

the vertical scale a second scale giv¬ 

ing n. 

6. Geometrical interpretation of 

y2 = 4 ax. 

The equation y2 — 4 ax may be inter¬ 

preted geometrically as follows: 

MP2 = 4 a • VM, 

the square of the perpendicular from 

any point on a parabola to the axis is 

equal to the rectangle formed by the 

length cut off on the axis from the ver¬ 

tex by the perpendicular, with a constant line of length 4 a, 

the length of the right focal chord. 
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7. Standard and limiting forms. — Given that the axis of a 

parabola is parallel to one of the coordinate axes, the relation, 

MP2 = 4 a• VM 

leads to 2 (or 4) stand¬ 

ard forms of the 

parabola. 

Thus in the upper 

figure a parabola is 

drawn, having V (—2, 

5) as vertex, 4 a = 4, 

axis parallel to the 

as-axis and opening 

to the right; the re¬ 

lation 

MP2 =4 a - VM 

leads to 

(y - 5)2 = 4(a? + 2). 

Were U the point 

(h, k), VM would be 

x — h since it is the 

distance from a point 

whose abscissa is h to 

a point whose ab¬ 

scissa is x; similarly MP is y — k; now when the curve 

opens to the right VM is positive; hence the equation is 

(;y — k)2= 4 a{x — 7i), with a positive. Were the axis parallel 

to the a;-axis, but the curve opening to the left, the equation 

would be: 

(y — k)2 = 4 a(x — h), with a negative. 

Similarly the curve on our figure which opens down is given 

by the equation (x — 3)2 = — 8(y — 2). 

In the general case, (x — h)2 = 4 a (y — k) has V(h, k) as 

vertex ; the axis is x — h = 0 and is parallel to the y-axis ; 

A horizontal and a vertical parabola 
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the curve opens up when a is positive and. down when a is 

negative. 

(y — kf = 4 a(x 

(x — h)2 = 4 a (y 

Standard forms of the parabola equation 

As a approaches 0 in ?/2 = 4 ax, the parabola approaches 

more and more nearly to coincidence with the x-axis ; two 

coincident straight lines constitute a limiting form of the 

parabola. As a becomes larger, the parabola approaches the 

y-axis. 

8. Tangent of slope m. 

y2 = 4 ax. 

y = mx -f- k. 

m-x2 -f 2 Umx -f- 7c2 — 4 ax = 0. 

(2 a — km) ± V(2 a — km)2 — m2k2 
x — ) 

whence, since A = 0, 
7 a 
K — —• 

m 

y = rnx + — is the tangent of slope m to y2 = 4 ax; 
m 

a 2 as 

m2 m 
is the point of tangency. 

9. Tangent from an external point. — For any given point 

(xj, yi) outside the curve two values of m will be found for 

which y = mx -f- — will pass through (x1? yx) ; hence there 
m 
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are, in general, two tangents which pass through a given point „ 

outside the curve. X]rti2 — yxm + a = 0, 

w=Jft±AlziS. 
2 xx 

For points inside the curve, y? — 4 axl is negative, and there 

are no tangents. 

10. Tangent at a point (jrx, yx) on the parabola. — By the 

method of article 9 of the preceding chapter the tangent to 

the parabola, y2 = 4 aX) at (xx, yx) 

on the curve is found to be 

yxy = 2 a(x + xx). 

Similarly the tangent to 

By2 + 2 Gx +2 Fy + C = 0 
is found to be 

By<y + G(x A- ®i) + F(y + yx) + C = 0 ; 

and with the x2 term present, Axxx replaces in the above ex¬ 

pression the term Byxy. 

11. Illustrative example. — Put in standard form and plot 

carefully 4 y2-12 y + 6 x-11 = 0, 

4(?/2 — 3 y )= — 6 a? -f- 11. 

%2-32/ + f) = 
— 6 a? + 11 + 9 = — 6 a? + 20, 

completing the square inside the 

parenthesis. 

= -6(x--L°-). 

(y -f)2 = -*(»-¥)• 
f); type a-; axis ?/-§=0; 

4 a = — f; a — — -|. 

Plot V, F, RFC, and the further point where y = ; 

'(|.-t)2 = 4 = -f(x-^); 
/y»   1 0     _8_ • ry*   2 
X 3 — 3 > X 3# 
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Draw a smooth curve tangent to x = -L0-, at F(1g°, f) through 

the points which are plotted; here it would be well to find 

from the original equation the intercepts on the axes. 

PROBLEMS 

Put in standard form and plot: 

1. 4y2 — 12 2/4- 6x—11 =0. 5. (?/-3)2 = 8x-f 11. 

2. 4x2 — 12x — 6y —11 = 0. 6. 2/2=6x4-ll. 

3. 4 x2 — 12 x -f 6 y —11 = 0. 7. 2/2 = rViC* 

4. y2 — 6 y — .8 x — 5 = 0. 

8. Solve graphically, to 1 decimal place, 

x2 2/2 = 25 

?/2 = 8 x, by drawing both graphs to the same axes. 

Put in standard form and plot the equations obtained in the 

two following problems : 

9. The formula for the height of a bullet shot vertically 

upward with a velocity of 800 feet per second, s = 8001 — 16t2. 

10. The formula for the time of beat, in seconds, of a pendu- 

lum is t2 — — • Z, taking g = 980 and l measured in centimeters ; 
g2 

taking g = 32, l must be measured in feet. 

Compute corresponding values of t and l by logarithms, cor¬ 

rect to 3 significant figures. Would the diagram be changed 

if g is taken as 982 instead of 980 ? At sea level on the equator 

g = 978.1 cm./sec.2; at Washington, 980.0; at New York, 980.2; 

at London, 981.2 ; or in feet/sec.2 32.09, 32.15, 32.16, and 32.19, 

respectively. 

11. The Hell-Gate steel arch bridge in New York is one of 

the largest arch bridges in the world. See the illustration, 

p. 353. The lower arc of the arch is a parabola, 977.5 feet as 

span and 220 feet as height of the arch, Write the equation 

of the arc, taking as x-axis the tangent at the vertex of the 

parabola and as y-axis the axis of the parabola. Compute 

4 a to 1 decimal place. The roadway is 130 feet above the 
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base of the arch ; compute the length of the roadway between 

the parabolic arcs. There are 23 panels or openings, spaced 

42.5 feet apart at the centers ; compute the vertical lengths to 

the roadway from the arc of the parabola, also to one decimal 

place. Compute the approximate length of the parabolic arch it¬ 

self by computing the lengths of the twenty-three chords on the 

parabola ; note that only 12 computations are necessary ; do not 

carry beyond tenths of a foot, as hundredths would have little 

significance. Locate the focus and the directrix of this parabola. 

12. Engineers use the following method for constructing a 

parabolic arch; show that it is correct. Suppose that it is 

desired to construct a parabolic arch of width 100 feet and 

height 30 feet; a rectangle 50 by 30 is drawn and the right- 

hand side is divided into 10 (or n) equal parts which are joined 

to the upper left-hand vertex of the rectangle (and parabola) 

by radiating lines ; the upper horizontal side is also divided 

into 10 (or n) equal parts and ordinates are drawn at these 

points ; corresponding lines intersect at points on the parabolic 

arch desired. Of the lines drawn the second (or rth) ordinate 

to the right of the vertex corresponds to the second (or rth) 

radiating line drawn from the vertex to the second (or rth) 

point of division from the top, on the right-hand side. 

13. If an ordinary automobile headlight reflector is cut by 

a plane through its axis the section is a parabola having the 

light center as focus. If the dimensions of the headlight are 

10 inches in diameter by 8 inches deep, locate the focus. 

14. Locate the focus of a parabolic reflector, 6 inches in 

diameter and 4 inches deep ; 5 inches deep; 6 inches deep. 

15. The cable of a suspension bridge whose total weight is 

uniformly distributed over the length of the bridge takes the 

form of a parabola. Assuming that the cable of the Brooklyn 

bridge is a parabola, which it is approximately, find the equa¬ 

tion in simplest form; the width between cable suspension 

points is about 1500 feet and the vertex of the curve is 140 feet, 

approximately, below the suspension points. 
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16. The Kornhaus Bridge over the Aar at Berne, Switzer¬ 

land, has for central arch a parabola; the span is 384 feet and 

the height of the arch is 104 feet. If there are vertical 

columns spaced 24 feet apart, determine the length of these 

columns, assuming that the roadbed is 30 feet above the vertex 

of the parabola. If the floor of the roadbed is on a 2.7 per 

cent grade, determine the difference in elevation between the 

center of the bridge and the ends. 

17. The parabolic reflector at the Detroit Observatory, 

University of Michigan, has a diameter, which corresponds to 

arch span, of 37.5 inches; the focal length of the mirror is 

19.1 feet, from vertex to focus. Determine the height of the 

arch (or the depth of the reflector); determine the equation 

of the parabolic curve. The rays from a sun or star which 

strike this surface parallel to the axis of the parabola converge 

at the focus. What is the slope of this mirror at the upper 

point of the mirror ? At the point whose abscissa is i inch ? 

18. To draw a tangent to a parabola from an external point 

you can proceed as follows : take the external point as center, 

the focal distance as radius, and describe an arc cutting the 

directrix; from the point of intersection draw a line parallel 

to the axis; the intersection point with the parabola is the 

point of tangency. Prove this method. 

19. Find the tangents of slope -f J and — .3 to each of the 

parabolas in exercises 1 to 7; time yourself. 

20. Find the tangent to each of the parabolas in exercises 

1 to 7 at the point on each parabola whose abscissa is + 2 ; 

the exercise should be completed within thirty minutes. Show 

the geometrical method of working one of these problems. 

21. Find the tangents to the parabola in problem 1 from 

the point (2, 10) outside the parabola. Describe a geometrical 

method of working this problem after the graph of the parab¬ 

ola is drawn. 

22. Plot to scale with the dimensions given the fundamental 

parabola of the Alexander III Bridge. 



CHAPTER XX 

THE HYPERBOLA 

1. Definition and derivation of the equation. — (See ellipse, 

page 289, and parabola, page 309.) 

PF = e • PZ, e > 1. 

Take FX perpendicular to D’D as the a?-axis, intersecting 

the given directrix at Q. 

Let A and A' divide the segment QF internally and ex¬ 

ternally in the ratio e (f- in the figure). The mid-point of 

320 
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AA!, 0 is taken as the origin and the perpendicular through 

this point to X’X as the y-axis, OA = OA’ = a. 

Precisely as in the ellipse, 

AF = e • AQ, 

A'F=e-A’Q; 

whence AF + A'F = e • (AA.'). 

AF+OA'+ OF =2 ae, 

2 OF = 2 ae, 

OF = ae, 

and, by subtraction, OQ = -• 
e 

U is (ae, 0); D'D is x— - = 0. 
e 

The relation PF = e • PZ gives the equation, 

V(aJ — «^)2 + y2 = e • 

a?2 + «262 + y2 = e2a?2 + a2. 

£c2(1 — e2) + ?y2 = a2(l — e2). 

Up to this point the work is practically identical with the 

work in the case of the ellipse; here, however, 1 — e2 is nega¬ 

tive, since e > 1. Hence we write this equation, 

a?2(e2 — 1) — y2 = a2(e2 — 1). 

x2 y2 _ | 

a2 a2(e2 — 1) 

Let b2 = a2(e2 — 1). 

x2 y2 _ ^ 

a2~~b2~ 

x2 t/2 
2. Geometrical properties of the hyperbola, — — — = 1.— 

a2 b2 

Since y and — y lead to the same values of x, the curve is 

symmetrical with respect to the cc-axis ; since x and — x lead 

to the same values of y, the curve is symmetrical with respect 
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to the y-axis. Hence the intersection of the two axes is the 

center of the curve. 

Solving for y, y = ± - x/x2 — a2; 
a 

this expression shows that the curve is symmetrical with 

respect to the cc-axis, for any value of x gives two values of y 

equal in value but opposite in sign. Since any value of x 

Symmetry of the hyperbola 

numerically less than a gives imaginary values of y, the curve 

lies wholly outside the region bounded by x -f- a — 0 and 

x — a = 0. When x = ± a, y = 0 ; these are self-corresponding 

points on the horizontal axis of symmetry; these points are 

called the vertices. When y = 0, x is imaginary ; the vertical 

axis of symmetry does not intersect the curve. 

Solving for x, x = ± - Vy2 + b2; the curve is symmetrical 
b 

with respect to the y-axis ; every real value of y gives two 

corresponding real values of x, symmetrically placed with 
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respect to tlie ?/-axis; the vertical axis of symmetry does not 

cut the curve in real points. As y increases in value, without 

limit, so do the two corresponding values of x increase in 

value, numerically without limit. 

Since there is this vertical axis of symmetry it is evident, 

precisely as in the ellipse, that there is a second focus, 

F2(— ae, 0), and a corresponding directrix, x + —= 0. 
e 

The axis which cuts the curve is called the principal axis; 

the other axis is called the conjugate axis. The lines x=±a 

are tangent to the curve at the vertices. See page 310. 

3. Right focal chords.—The foci are the points (ae, 0) and 

(— ae, 0); when x= ± ae, y = ± - V a2e2 — a2 = ±& Ve2 — 1; 
a 

52 
but since b2 = a2(e2 — 1), these values of y equal ± —; each 

a 

2 h2 
right focal chord is of length -, and is constructed by 

a 
erecting at the focus lines perpendicular to the principal, or 

b2 
transverse, axis of length — on each side of the axis. 

a 
The foci are at a distance ± ae from the center; now 

b2 = a2(e2 — 1) gives ae — Va2 + b2, which is the length of the 

diagonal of a rectangle of sides a and b. 

4. Finite and infinitely distant points on the hyperbola. — 

Given to plot the hyperbola ~^ = 1, note that a2 = 16, 

b2 = 49; 49 = 16(e2 — 1), whence e2 - 1 = U, <?2 = ff, and 

ae = V49 + 16 = V65 ; — = -p* 
a 4 

It will be found convenient to draw the rectangle having 

O as center and extending 4 units to the right and left of O 

and 7 units above and below. The half-diagonal of this 
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rectangle has the length V65, and may be used to locate on 

the principal axis the two foci. 

y2 j#2 

Asymptotes and one branch of the hyperbola-— = 1 
16 49 

'p2 rp2 
%KJ %kj 33 a2 

The line y = x cuts the curve at  --— = 1, ',tJ ^ = 1; 
16 49 ’ 16 x 49 

X = ± = ± -8 v 3:j = ± 4 88. 
V33 33 

The line y = mx cuts the curve in two points, whose ab¬ 

scissas are given by 

x2 m2x2 o 49 x 16 , 28 
—-7— = 1, or x2 =-— : x = ± — — • 
16 49 49 — 16 m2 V49 — 16 m2 
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As 16 m2 approaches nearer and nearer to 49 these two 

points of intersection move farther and farther off; when 

49 — 16 m2 = 0, m = ± J, the two points of intersection of each 

of these lines with the hyperbola move off to an infinite dis¬ 

tance ; the lines y = -J- x and y = — J x are called asymptotes of 

this hyperbola, intersecting the curve in two coincident points 

both at an infinite distance. 

In the hyperbola —— — = 1, the two lines y = ~x and y 
a* b2 a 

y = - - * 
a 
^ , or - — •- = 0 and — + •- = 0 are asymptotes ; note 

a a 

that f — — U\ (— -±.U\ gives the left-hand member of the equa- 
\a bJ \a bj 

tion of the hyperbola, when the right hand is unity. 

5. Illustrative problems. — Plot the hyperbola 

x2 y2 _ -j 

16~49~ * 

The rectangle of sides 8 and 14, parallel to x- and y-axes respectively, 

is plotted with its center at the origin. As noted above, the diagonals 

of this rectangle give the distance from the center on the transverse axis, 

here horizontal, of the foci ; the diagonals extended are the asymptotes, 

and to these lines the curve approaches more and more nearly as the 

curve recedes towards infinity. The right focal chords have the total 

length -; plot — vertically above and below the foci. Take x = 6, 
a 4 

this gives another point between vertex and right focal chord ; 

^- = —- 1 ; y = ± 7 VL25 =db 7(1.12) =± 7.84; 
49 16 ’ ^ } 

take x = 10, y =± 7 v/A25 = ± 7(2.29) =± 16.03. 

Plot also the symmetrical points. 

PROBLEMS 

1. Plot the hyperbola ^ ^ = 1. 

2. Plot the hyperbola = 1. 

This type of hyperbola, a = b, is called an equilateral or rec¬ 

tangular hyperbola. Why ? 



326 UNIFIED MATHEMATICS 

3. Plot the hyperbola 
x- 

37 
111— 1 
59 

computing values re¬ 

quired to one decimal place. 

• 7/2 
4. The equation of the hyperbola — — 2- = 1 may be put in 

a2 62 

parametric form, x = a sec 0 

y — b tan 0 

Noting that sec 0 is -, find by using logarithms five 
cos 0 

points on each of the above hyperbolas. Check on the graphs 

drawn. What is the geometrical significance of 0 ? 

5. Find the equations of the asymptotes of each of the pre¬ 

ceding hyperbolas and find to V the angle of inclination to 

the horizontal axis. 

6. Compare the right-hand branch of the hyperbola 

— — —■ — 1, with the parabola y1 = 51 (x — 4); this parabola 
lb 9 lb 

has the same vertex and passes through the extremities of the 

right focal chord. Prove this. Do these curves coincide in 

other points ? 

Focal distances to Pi (xi, y\) on the hyperbola 
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6. Difference of the focal distances constant.—Designate the 

right focus by Fx and the corresponding directrix by 1)D', 

and the left focus by F2, having D2D'2 as the corresponding 

directrix. Then the focal distances PFl and PF2 are ex1 — a . 

and exl +• a, respectively ; the difference, PF2 — PFl = 2 a, 

is constant. 

The hyperbola may be defined as a curve generated by a 

point which moves so that the difference of its distances from 

two fixed points is constant. 

7. Standard forms of the equation of the hyperbola. — 

Q — ft)2 _ Cv — fc)2 _ I 
a2 b2 ’ 

(y-k)2 Qx-h)2_1 

a2 b2 

Precisely as in the ellipse, article 6, Chapter 18, the equation 

of the hyperbola — — |r = 1, may be interpreted 
a2 b2 

OM MPi = 1. 
OA OB* 

Eor any hyperbola whose axes of symmetry are parallel to the 

coordinate axes we obtain, from this relation, the equations 

(x — h)2 (y — ky = 1, 
d2 b2 ' and 

for a horizontal hyperbola, 

(y-k)2 (x-h)2_ 

b2 

for a vertical hyperbola. 

Horizontal hyperbola Vertical hyperbola 
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8. Conjugate hyperbolas and limiting forms of the hyperbola 

equation. — Given any hyperbola, 

7/2 

a2 b2 

rtf 2 1/2 

the lines -- = 0 
a2 

represent the asymptotes ; the equation 

a2 &2 

represents a vertical hyperbola about the same rectangle and 

having the same asymptotes. Any two hyperbolas so related 

are called conjugate hyperbolas. 

Illustration. 

(x - 3Y _ (y + 2)2 = ! and P - 3)2 _ (y + 2f 
16 49 ' 16 49 

1 are con¬ 

jugate hyperbolas ; the second is written in standard form 

(y + — (x—o) __ q wherein the focal distances ± ae from 
49 16 

CL 
the center, and the distances ± - of the directrices from the 

center (3, — 2) are obtained, regarding a2 as 49 and b2 as 16. 

The asymptotes of these conjugate hyperbolas are given by 

the equation - = 0, or by the equivalent i 
16 49 

separate factors, 

^=1? -2-+? = o and - 
4 7 4 

in 

x z + = o. 
7 

The equation &—^^= 0, representing two real 
b2 a* 

straight lines, is a limiting form of the hyperbola equation, 

(x — h)2 (y + k)2 A i b 
--—1— w ^ --L = m. As m approaches zero, - remains con- 

a2 a 

stant and the hyperbola approaches more and more nearly the 

two straight lines 
x h y — k _ 

= 0 and 
a 

x — h . y — k A 
-1- — = 0. 

a b 
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9. The equilateral or rectangu¬ 

lar hyperbola. — The hyperbola 
y2 

— — — = 1 is called an equilat- 
a* a2 
eral hyperbola since b = a ; it is 

also called a rectangular hyper¬ 

bola as the asymptotes are at 

right angles to each other. 

Since b2 = a2(e2 — 1), the value 

of e in an equilateral hyperbola 

is V2 or 1.414; for e >V2, 

62 > a2; for e < V2, b2 < a2. 
The equilateral or rectangular 

hyperbola 

10. Illustrative problem. — Put the equation 

4 cc2 + 16 cc - 9 y2 - 18 y - 75 = 0 

in standard form and plot the curve. 

4(x2 + 4x )-9(y2 + 2y )=75 

4(x2 + 4*4-4)- 9(?/2 + 2y + 1)= 75 + 16-9 

4(x + 2)2 — 9(2/ + l)2 = 82 

Q + 2)2 O + I)2 _ j 
20.5 9.11 

The center is at (—2, — 1) ; the hyperbola is of horizontal type ; 

a2 = 20.5 and a — 4.53 ; 62 = 9.11 and b = 3.02 ; 

ae = V20.5 + 9.11 = V29.61 = 5.44 • — = — ; 
a 4.53 

further convenient points 

are given by x = 5 ; substi¬ 

tuting in the original is 

easiest, giving 

9 y2 + 18 y - 105 = 0 ; 

y2 + 2 2/ —-5- = 0 ; 

y=- 1 ± Vr+T|5 

= — 1 ± K10-08) 

= - 1 ± 3.56. 
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PROBLEMS 

1. Put the equation 

4 x2 + 16 x — 9 y2 — 18 y + 107 = 0, 

in standard form and plot. 

2. Plot one quarter of the hyperbola 

x2 y2 _ i 

1472 - 592“ 

3. Plot a hyperbolic arch, width 200 feet, height 60 feet, 

as part of a rectangular hyperbola. Assume the equation 

y2 — x2 = a2, and note that (100, a + 60) is on the curve. 

4. What limitation is there upon the values of A and B, 

if the equation Ax2 + By2 -f-2 Gx + 2Fy + 0 = 0 represents a 

hyperbola ? 

5. Any equation of the form Xy _ jC} 

or (axx + bjy + cx) (a2x + b2y + c2) = 7c, 

has for its locus a hyperbola; the lines obtained by equating 

the left-hand member to zero are the asymptotes. Plot the 

hyperbolas xy = 10 and (x — 3 y)(x — 4 y) = 50. 

6. Put the following equations in standard form, completing 

the square first and reducing to standard form by division. 

a. 4 x2 — 9 y2 — 8 x + 36 y = 0. 

b. 3 x2 + 24 x — y2 + 6 y — 43 = 0. 

c. 5 x2 — 17 x —10 y2 -J- 100 = 0. 

d. 5 x2- 12 y2 — 117 = 0. 

e. 3 x2 — 24 x — 4y2 — 16 y — 52 = 0. 

7. Plot the preceding five hyperbolas, choosing an appro¬ 

priate scale. Plot the extremities of the conjugate axes; 

plot the rectangle and its diagonals; plot the extremities of 

the right focal chords; plot at least one further point, 

properly chosen to give the form of the curve, and its 

symmetrical points with respect to the axes. It is desirable 

to plot at least two of these curves completely; the remaining 

curves need be sketched only in the first quadrant. 
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8. Determine a2 and b2 to one decimal place in the follow¬ 

ing three hyperbolas: 

a. 17 a2 - 43 y2 = 397. 

b. 5 x2 - 17 x - 10 y2 - 35 y = 0. 

c. 7(x — 2)2 — 3(y — 3)2 = 39. 

9. In the three hyperbolas immediately preceding deter¬ 

mine ae, —, and - to one decimal place. 
a e 

10. In each hyperbola of problem 8 determine x when y — 2. 

11. Using the data of the three preceding problems, plot 

the three hyperbolas of problem 8. 

12. In the hyperbola 
x2 

64 

n2 i i. 
= 1, find the coordinates of the 

36 

foci. What is the distance of the point whose abscissa is 12 

from each of the foci ? of the points whose abscissas are 10,11, 

15 ? State the general form for this distance. 

13. Put the following equations in standard form and discuss 

the curves represented by these equations : 

a. x2 — 6 x — y2 — 6 y = 0. 

b. x2— 0>x — 4y2— 8y-f-7=0. 

(x — 3)2 (y + 2)2_0 

25 36 
c. 



CHAPTER XXI 

TANGENTS AND NORMALS TO SECOND DEGREE 

CURVES 

1. The general quadratic in x and y. — The general equation 

of the second degree in x and y is written, 

Ax2 -f 2 Hxy + By2 4-2 Ox + 2 Fy + C= 0. 

The equations of the circle, parabola, ellipse, and hyperbola 

are special types of this general equation. Since none of 

these standard forms, representing curves of the second degree 

with axes of symmetry parallel to the coordinate axes, have 

an xy term, we find it convenient to discuss the general 

equation, with H = 0, or 

Ax2 + By2 + 2 Gx + 2 Fy +(7=0. 

This represents one of the curves — circle, ellipse, parabola, 

or hyperbola — mentioned above, or some limiting form of the 

same, including pairs of lines and imaginary types. It can be 

shown that 

Ax2 + 2 Hxy + By2 + 2 Gx + 2 Fy + C = 0 

represents no new curve; simply one of the above-mentioned 

types turned at an angle to the coordinate axes. 

2. General equation of the second degree represents a conic 

section. — Given a right circular cone, it can be shown by the 

geometrical methods of Euclidean geometry, that the section 

which is made with the surface of the cone by any plane is 

one of the curves above mentioned; thus a plane parallel to 

the base cuts the cone in a circle, or in a point circle if through 

the vertex. 

332 
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The cone is conceived as the whole surface determined by 

the straight line elements of the cone produced to infinity. 

A plane which runs parallel to only one of the elements cuts 

the cone in a parabola, or in two coincident lines if the plane 

passes through an element and a tangent to the circular base 

of the cone. 

A plane which cuts all the elements in finite points cuts 

the cone in an ellipse; this is a point ellipse when the plane 

passes through the vertex of the cone. 

A plane which cuts the cone parallel to the plane of two 

elements cuts it in a hyperbola; if the plane passes through 

the vertex the hyperbola reduces to two straight lines. 

3. Historical note on conic sections. — The fundamental prop¬ 

erties of conic sections were discovered by Greek mathema¬ 

ticians nearly two thousand years before the invention of 

analytical geometry which was perfected by Descartes and 

Fermat, French mathematicians of the seventeenth century. 

A treatise on conics was written by Euclid (c. 320 b.c.), but it 

was entirely superseded a century later by a treatise by Apol¬ 

lonius (c. 250 b.c.) of Perga, whose treatise included most of 

the fundamental properties which we discuss. The proper¬ 

ties of the parabola connected directly with focus and directrix 

are not included in the eight books (chapters) on conic sec¬ 

tions by Apollonius, nor was the directrix of the central conics 

employed by him. Pappus of Alexandria (c. 300 a.d.), almost 

the last of the Greek mathematicians of any note, included 

these in his Mathematical Collections. 

The Greek mathematicians were interested in these curves 

for the pure geometrical reasoning involved. That the paths 

of the planets were conics they did not know; nor did they 

know any practical applications of these conics. However, 

the fact that Greek mathematicians had studied these prop¬ 

erties made it possible for John Kepler and Isaac Newton 

to establish the laws of movement of the planets in the uni¬ 

verse in which we live. The men mentioned and Nicolas 
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Copernicus, who reasserted the heliocentric theory of the uni¬ 

verse, were all thoroughly versed in the pure geometry of the 

Greeks; their new theories were built directly upon this 

foundation of pure geometry. 

4. Tangent of slope m to a second degree curve. — Any line 

y = mx + k cuts a curve given by an equation of the second 

degree in two real points, or in two imaginary points, or in 

two coincident points. The abscissas of the points of inter¬ 

section are given by the quadratic in x obtained by substitut¬ 

ing y = mx + k in the equation of the curve ; the two equations 

are solved as simultaneous equations. The condition for tan- 

gency is that the two points of intersection of the line with 

the curve shall be coincident; this will be the case when the 

two roots of the quadratic in x, i.e. the two values of the 

abscissas of the points of intersection, are equal. 

When the intersections of a line with a quadratic curve are 

given by a linear, instead of a quadratic, equation, the mean¬ 

ing is that one point of intersection has moved off to an in¬ 

finite distance. As the coefficient of the square term of a 

quadratic approaches zero one root becomes larger and larger 

without limit; see page 98. 

Parabola, y2 = 4 ax, 

y = mx -f- k. 

Solving, x = -(fo»-2g)±V4a(q-w^ 
m2 

For equal roots, or coincident points, k = —. 
m 

A. y — mx -\— is tangent to y2 = 4 ax at 
m 

Ellipse, — -f- •— = 1, and the line y = mx + k. 
ct2 b2 

Solving. 
— a2km ± Va2b2 (a2m2 4- b2 — k2) 

b2 -j- a2m2 
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B. y = mx ± Va2m2 + b2 is tangent to the ellipse 

x2 | V2 _ i at x __ T «2m Va2m2 + b2 _± b2 

ci“ b2 a2m~ + b- -yj-(- b2 

For every value of m there are two real tangents to an 

ellipse. Similarly 

c. y = mx ± Va2m2 — b2 

is tangent to the hyperbola, 

1 at +_?>—, 
a2 b2 Va2m2 - b2 

For values of | m | > there are two real tangents to a 
a 

hyperbola; for | m | < - the tangents are imaginary; for 
Cl/ 

m = ± -, there is only one tangent and its point of tangency 
a 

is at an infinite distance, or, as noted before, the lines y = ± - x 
a 

are asymptotes of the curve. 

The method of this article is employed in deriving tangents; 

the equations given under A, B, and C above are used mainly 

in proving geometrical properties of these curves. Note that 

if these equations are used as formulas, they apply only to 

curves of the type given; y = mx + — gives the tangent only 
m 

to a parabola of the form y2 = 4 ax (a may be positive or nega¬ 

tive). Similarly, y-—mx ±^a2m2+ b2 gives the tangent of 

slope m only to the ellipse, 

o o 

— 4-^ = 1, (a2 may be less than b2). 
a2 b2 
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PROBLEMS 

Find tangents of slope 2 and of slope — 3 to the following 
three curves. Follow the method of article 4. 

1. x2 + y2 — 10 x = 0; find the points of tangency. 

2. 3y2 — 4x — 6y = 0 ; find also the normal of slope — ^. 

3. x2 -{-3 y2 — 4x — 6y = 0; find the diameter joining the 

two points of tangency. 

4. xy — 25 = 0. Find the tangents of slope — 2, and the 

points of tangency. Find the tangent of slope to. For what 
values of to are the tangents imaginary ? Plot 10 points on 

this curve. Where do all points of this curve lie ? Find the 
intersections of y = .01 x -f- 5 with this curve. 

5. Find the tangents at the extremities of the right focal 
chord of y2 = 8 x; where do they intersect ? Similarly in 
y2 = 4 ax. Is this true of any parabola ? Explain. 

6. Find the tangents at the extremities of either right 

focal chord of 

where do they intersect ? Similarly with 

Where do these tangents intersect ? What change is necessary 
to prove this property for the hyperbola ? Explain. 

7. Find the perpendicular from the focus of y2 = 8 x to the 
tangent of slope 2 ; where do they intersect ? Similarly for 
the tangent of slope to. State what you have found as a 
property of any parabola. 

focus to the tangent of slope 2 ; find the point of intersection; 
note that it is a point on the circle, x2 + y2 = 25. Prove that 
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the same is true of the perpendicular from the focus upon 

any tangent of slope ra. Prove that in the ellipse 

x2 ?/2 _ ^ 

a2+b2~ ’ 

the perpendicular from the focus upon any tangent meets it 

on the major auxiliary circle. 

9. Follow the directions of problem 8 with the hyperbola, 1 

and 

16 

x2 

yz _ 

9 
= 1. 

--r=1, 
TO ' ai b2 

making necessary changes. 

10. Find the angle between y = 5x — 7 and the parabola 

y2 — 8 x. 

The angle between a straight line and a curve is defined to 

be the angle between the straight line and a tangent to the 

curve at the point of intersection. 

Note. — Solve for the points of intersection ; write the equation of 

tangent at each point of tangency ; find the angle between each tangent 

and the line y — 5x—7. See article 8, chapter 15. Check by finding 

the slope angle of the lines y = 5 x — 7 and of the tangent lines. 

11. Find the angle between y = 2 x — 5 and x2 -f y2 = 100, 

at each point of intersection. Check as in problem 10. 

5. Tangent at a point (xh yx) on a curve given by an algebraic 

equation. — On any curve a line joining a point P1 to a point 

P2 is called a secant; obviously this secant cuts the curve in 

two distinct points. If P2 approaches Pl along the curve, the 

secant changes, approaching more and more nearly, in general, 

a definite limiting line. The limiting position of the secant is 

called the tangent to the curve at Pv 

The analytical method of obtaining this limiting line is as 

follows : 

Take Pl (aq, ?q) any point on the curve; 
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Take P2 as (xx -f- h, yx -f k) also on the curve; the chord PXP2 

has the equation y 
k / >. 

2/i = h (z ~ «i). 

Find the value of - conditioned by the fact that P2 and Pl 
h 

both lie on the curve, by substituting (xx, y:) and (aq + h, yl + k) 

in the given equation and subtracting, member for mem¬ 

ber. 
k 

This value of - will be found, in general, to have a definite 
h 

limiting value as k and h approach zero; this limiting value is 

the slope of the tangent. 

The method outlined applies to any curve given by an 

algebraic equation. 

y* 2 = 4 ax:, Pi(xh yx) on curve ; P2(sc, + h, yx -f- k) on curve ; 

y-yi = j(x- ®i), chord joining P^. 
h 

(2/1 + A:)2 = 4 a(xx -f h), or yx2 + 2 kyx -f A:2 = 4 axx + 4 ah, 

since P2 is on curve. 

yx2 == 4 axx, since Px is on curve. 

k 4 a 

h 2 yx -f k 

2 kyx q- A>2 = 4 ah, by subtraction. 

gives the slope of the chord joining Px to P2. 

k 
Let li approach 0, k also approaches 0, but - always equals 

h 
4 a 

and this value approaches more and more nearly to 
2 2/1 + A* 

or — as a limit: this limit is the slope of the tangent. 
2 2/1 yi 

y — y1 = — (a; — a^) is the tangent to 
2/i 

y2 = 4 ax at (aq, yx) on curve. 
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This equation may be simplified, 

V\V ~ lh2 = -ax — 2 axh 

V\V = 2 ax + yd — 2 axx; but yx2 = 4 a#, whence 

2/i2/ = 2 a{x 4- #i), which is the tangent equation. 

By precisely this method, the tangent to 

a*2 /2 

a2 + fi = 1’at(a!l’2/l) 

on curve has been found, in section 11, chapter 18, to be 

a2 + 62 

The tangent to 

^ - f* = 1, at (»!, J/j) on curve is - M- = 1. 
a2 o2 a2 b2 

The tangent to 

Ax2 4- By2 4- 2 Gx 4- 2 Fy 4- C = 0, at (a?!, 2/1) on curve is 

Maqa? 4" By^y 4- G(x 4- #1) 4 4- 2/1) 4- G = 0. 

The tangent to 

Mo?2 4- 2 Hxy 4- By2 + 2 6r# +- 2 Fy 4- 0 = 0, at (#1,2/1) on curve is 

M#i# 4- LT(#iy 4- 2/i#) + Byiy 4- G{x + aq) + ^(2/ + 2/1) 4 0=0. 

All the preceding are embraced in the last formula, as 

special cases. The final form should be remembered and used 

as a formula. 

The above special forms for the equations of the tangents to 

conics given by equations in standard form may be used to 

derive tangential properties of these curves. Some of these 

properties are touched upon in the problems below and will 

recur in the next chapter. 
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6. Tangential properties of the parabola. — 

?/2=:4 ax, any parabola Vl\ 

Uiy = 2 a(x + xx), tangent at Pi(a?1, t^) on curve, cutting the 

axis at T7, the directrix at Q, the vertex tangent at S. 

y — yi — — — (x — xA, normal PiN, cutting the axis at JSf. 
2 a 

Tangential properties of the parabola 

T and N are obtained as the x-intercept of tangent and 

normal, respectively; 

T is (— xb 0); N is (xj + 2 a, 0). 

Hence VT = VM, the tangent cuts off from the vertex on 

the axis the same distance that the perpendicular from the 

point of tangency on the axis cuts off from the vertex. This 

gives a simple method of drawing a tangent to a parabola: 

drop the perpendicular P1M to the axis; extend the axis from 

the vertex, making VT — VM\ the length of the intercept; 

T is the tangent. 
P1F=PlZ = xl + a. 

TF = xl -f a = FJSf. 
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Hence Z FTPX — Z FI\T, base angles of an isosceles A. 

Now Z FTP1 = Z TPXZ, alternate interior angles of 

parallel lines, etc. Z FPXT = Z TPXZ, i.e. the tangent 

bisects the angle between a focal chord and a line parallel to 

the axis; the normal PXN bisects the supplementary angle 

FPxli, making Z FPXN = Z NPXR. 

Further S is the mid-point of TPX (since VSY is parallel to 

PXM and bisects the side TM). 

FS is perpendicular to TPX; the perpendicular from the 

focus to any tangent meets it on the vertex tangent. 

QF being drawn, A QFPX = A QZPX. 

Hence QFPX is a right angle. 

Extend PXF to cut the parabola at P2; draw P2Z2 to the 

directrix, and PoQ. 
A PnZoQ = A P2FQ. 

Hence P2Q bisects the angle Z2P2F and is the tangent. 

Further Z P^QPx is a right angle, since it is half of the 

straight angle about Q. 

Summary of tangential properties of the parabola 

1. The tangent bisects the angle between the focal radius 

and a line parallel to the axis ; the normal bisects the in¬ 

scribed angle between the focal radius and a line parallel to 

the axis through the point of tangency. 

2. The perpendicular from the focus of any parabola on any 

tangent meets it on the vertex tangent. 

3. Tangents at the extremity of a focal chord meet on the 

directrix, and at right angles. 

4. The focal chord is perpendicular to the line joining the 

focus to the intersection on the directrix of the tangents at 

the extremities of the focal chord. 
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7. Tangential properties of the ellipse and hyperbola.— 

xi 

a2 

7/2 # 
+ A — X, any ellipse, 

b2 

rfil 7 /2 
--— = 1, any hyperbola. 
ci2 A2 

^ , M = i EH: _ M. _ i 
a2 62 ’ a2 62 ' 

tangent at (ajj, on curve, cutting the principal axis in the 

point T. 

Tangential properties of the hyperbola 

The tangent bisects the angle between focal radii to the point of tangency. 

y - 2/1 = + ^ (* - *i); y — yi = — (x — x0> 
b% b2xL 

giving the normal at x1} yl on curve. 

T is ( —, 0 ]; N is (fxh 0). 
.a;. 

In the ellipse, In the hyperbola, 

a1 a‘ 
FXT = — — ae; F1N= ae — e?xx. FlT= ae-; F1N= e2xx — ae. 

xl xx 

a2 ^ -»-r . o ™ m . a2 F2 T= ae H—-; F2N= ae -p e2xx. F2T = ae-\—; F«N= e2xx-p ae. 
xx “ xx 
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The lengths FxN and F2N are seen to he proportional to the 

lengths PiFl and PiF2. 

P\Fi F• a — ex, ae — e2x, 

P\F> F2N a + ex1 ae + e2xx 

Similarly 

a2 _Qjg 

= ZZ, since ^-e-S = ?!_ 
P\F2 F2T a + ext a2 

1 —I- ae 
Xy 

If a line from the vertex of a triangle divides the opposite 

side into segments proportional to the adjacent sides, the line 

bisects the angle of the triangle; hence the tangent and 

normal at any point on the ellipse and hyperbola bisect inter¬ 

nally and externally the angle between the two focal radii to 

the point. 

Another method of constructing the tangent is to construct 

a2 

Xi 

In the ellipse the major auxiliary circle x2 + y2 — a2 is 

drawn and the tangent at Pz(xh y2) on this circle xxx -f y2y = a2 
q2 

has the intercept —; draw the tangent at (xh y2) to the circle, 
xl 

cutting the X-axis at T; connect T with P1 on the ellipse. 

In the hyperbola xx > a, so that this construction cannot be 

used; from M(xh 0) on the X-axis a tangent to the circle 

x2 -f y2 =. a2 intersects it at a point U whose abscissa is —, since 

OT=a 

a x1 

Summary of tangential 'properties of the ellipse, hyperbola, and 

pjarabola, regarding the parabola as having a second focus at 

an infinite distance on its axis of symmetry. 

1. The tangent to an ellipse, hyperbola, or parabola bisects 

the angle between the focal radii to the point of tangency. 

2. The perpendicular from the focus upon any tangent 

meets it on the circle having the center of the conic as center, 
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and passing through the principal vertices. In the parabola 

this circle has an infinite radius and so reduces to the tangent 

line at the vertex of the parabola. 

3. Tangents at the extremities of a focal chord meet on the 

directrix. 

4. The focal chord is perpendicular to the line joining the 

focus to the intersection on the directrix of tangents at the 

extremities of the given focal chord. 

PROBLEMS 

1. Find the tangent to the curve xy = 25 at the point (5, 5) 

by the method of article 5. 

2. Find the tangent to x2 = Sy at the point (5, \5-) by the 

method of article 5. 

3. Find the tangents to the curves in problems 1-3 of the 

preceding set of problems at a point (x1} yx) on each curve by 

the general formula. 

4. Find the tangent to the curve x2 = 8 y at a point 

(aji, ?/i) on the curve; note that (x1} yx) satisfies the equation 

of the given curve; find a second equation which the point 

(x1, yi) must satisfy if the tangent obtained is to pass through 

(5, 3) which is not on the curve; solve the two equations as 

simultaneous and thus obtain the point of tangency of a tan¬ 

gent from (5, 3) to the given curve. 

5. Find tangent and normal to the curve x2—10x—8y—5 = 0, 

at the point whose abscissa is 2; find the tangent of slope — 2 

to this curve. 

6. What tangential property of parabolic curves makes 

them useful in reflectors ? Explain. Prove the property. 

7. Write the equation of a hyperbola having the foci and 

xL 
vertices of the ellipse — -fi ~ = 1 as vertices and foci, respec- 

zo y 
tively; find where these curves intersect; write the equation 

of a tangent to each of the curves at one of the points of inter¬ 

section ; discuss these lines. 
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8. Write the equation of the tangent at a point (xh to 

each of the following curves; use the general formula; time 

yourself. 

a. 4a;2 — 6a; + 9y2 + 5y = 0. 

b. 4a;2 — 6x— 9y2 — 5y = 0. 

c. 4 x2 — 6 x — 5 y = 0. 

d. 4 a;2 + 6 xy + 9 y2 — 6 x — 5 y = 0. 

?/2 
+ ^- = 1; it is not necessary to clear of fractions as e. 

16 25 

W and Ax can be thought of as co-efficients of x1 and y2. 

/. a;2 — 6a;—4y2 — 8y + 7 = 0. 

9. Find the tangents to the first three curves in the pre¬ 

ceding exercise at the points where these curves cut the 

a;-axis. 

10. Find one point on each of the curves of the eighth 

problem and write the equation of the tangent at that point. 



From Tyrrell, History of Bridge Engineering 

Elliptical arch bridge at Hyde Park on the Hudson 

The span is 75 feet and the rise is 14.7 feet. Note that the reflection 
completes the ellipse. 

CHAPTER XXII 

APPLICATIONS OF CONIC SECTIONS 

1. General. — Numerous applications of the conic sections, 

viz., circle, ellipse, parabola, and hyperbola, have been indi¬ 

cated in the problems given under the discussion of each curve. 

In general it is the tangential properties of the curves and 

the further geometrical peculiarities of these curves that make 

them so widely and so variously useful. The fact that simple 

geometrical properties are connected with curves given by 

algebraic equations of the first and second degrees in two 

variables seems to imply a certain harmony in the universe of 

algebra and geometry. 

2. Laws of the universe. — In 1529 the Polish astronomer- 

mathematician, Copernicus (1473-1543), rediscovered and 

restated the fact, known to ancient Greeks, that the sun is 

the center of the universe in which we live; he conceived the 

346 
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planets to move about the sun in circular orbits. About a 

century later the great German astronomer, Kepler (1571- 

1630), was able to establish the following laws of the universe : 

1. The orbits of the planets are ellipses with the sun at one 

focus. 

2. Equal areas are swept out in equal times, by radii from 

the sun to the moving planet. 

3. The square of the time of revolution' of any planet is 

proportional to the cube of its mean distance from the sun; 

T2 d 3 • 
i.e. —- = —, if Tx and T2 are the periodic times of two planets, 

T<f d2 

and di and d2 the diameters of their respective orbits. 

Kepler’s work was made possible by that of all his pred¬ 

ecessors, particularly the Greek mathematicians who had so 

thoroughly discussed the properties of the conic sections, and 

further by the work of the Dane, Tycho Brahe (1546-1601), 

whose refined observations gave the necessary data. 

Newton (1642-1727) completed the work of systematizing 

the laws of motion in the universe in which we live, showing 

that the attraction of any two bodies for each other is in¬ 

versely proportional to the square of their distance apart and 

directly proportional to their masses. Newton showed further 

that this assumption leads to the elliptical motion in the case 

of the sun and any planet. 

The paths of comets which pass but once are known to be 

parabolas, or possibly hyperbolas with eccentricity close to 1. 

3. Projectiles. — The first approximation to the path of a 

projectile is a parabola. Indeed for low velocities, below 

1000 feet per second, the path is almost parabolic even with air 

resistance. The parametric equations of the path of a projec¬ 

tile shot horizontally with a velocity of 1000 feet per second, 

neglecting air resistance, are, in terms of t, the number of 

seconds of flight, as follows : 

x = 10001, 

y = -1612. 



348 UNIFIED MATHEMATICS 

When a projectile is shot at an angle a with the horizonal, 

we have shown that there is a horizontal component of veloc¬ 

ity, v cos a, and 

a vertical compo¬ 

nent of velocity, 

v sin a. The equa¬ 

tions of the path 

of this projectile 

shot from the 

ground as ce-axis 

are as follows: 

x = v0 cos a • t, 

y = v0 sin a • t 

-16*2. 

Problem. — 

Find the path of a 

projectile thrown 

with a velocity 

of 50 feet per 

second horizon¬ 

tally from the 

top of a tower 

1000 feet high. 

Path of projectile shot horizontally from a tower 
1000 feet high; initial velocity of 50 feet per 

second 

X = 501, 

2/ = -16*2, 

constitute the parametric equations of the path, the axes being 

taken through the top of the tower. Giving to t values 

*= 1, 2, 3, ••• 8, these equations determine the position of the 

projectile after t seconds. 

^ = 0, 1, 2, 3, 4, 5, 6, 7, 8 determines the following points 

upon the parabola: 

(0, 0) (50, - 16) (100, - 64) (150, -144) (200, - 256) 

(250, - 400) (300, - 576) (350, - 784) and (400, -1024). 
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Since x = 501, y = - 1(5t2, y = - 16 . QlV, for all values of t. 

= —156.25 y is the equation of the parabola in standard 

form; the coordinates (xu yx) of any point obtained by sub¬ 

stituting a given value for t in the parametric equations above 

will satisfy this equation since t2 = | '«v 
,50j 

JL 
16 

On any ordinary coordinate paper the curve x2 = — 156.25 y 

can be plotted only as x2 — — 156 y. 

The drawing shows very plainly tliat the projectile reaches 

the earth when t = 7.9 seconds, approximately ; solving 

- 1000 = - 1612 (y = - 1612, y = — 1000), 

gives t2 = 62.5, 

t = 7.91- 

The motion of a falling body is a special case of the equa¬ 

tions above, y — —1612 gives the space in feet covered in time 

t seconds by a freely falling body, falling from rest. 

4. Illustrative problem. — For a bullet shot at an angle of 

30° with a velocity of 1000 feet per second the equations are: 

x = 866 t, 

y — 5001 — 1612. 

This bullet will, on a level plain, remain in the air until y — 0 ; solving 
gives the value for the time of flight. The range is given by inserting the 
value of t so found to find x. 

The velocity of 1000 feet is equiva¬ 

lent to two separate velocities, one 

vertical of 500 feet per second, one 

horizontal of 866 feet per second. 
These are x and y components of the 

velocity. If no other force acted on 
this projectile, the path would be a 
straight line, given by 

x - 8661, 

y = 500 t. 

But since gravity acts, diminishing the vertical velocity, the total y is 

given by = 500 i - 1612, 

V O" \ V * 
II <\T 

*3 

a 
n 

- 
-jO 

4“ - 

«C ' 

r> S3; 
Vertical and horizontal compo¬ 

nents of a given velocity 
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the — 16 £2 being due to the effect of gravity. The fall in 1 second due 

to gravity is independent of the upward motion. 

The path is given by 
x = 866 t, 
y = 500 i — 16 £2. 

When y — 0, the projectile is on the ground, the x-axis. 

t(500 — 16 t) = 0, t = 0, or t = ; the first value, t = 0, means 
16 

simply that the projectile is shot from the ground, t — = 31J, is the 
16 

number of seconds the projectile is in the air. Finding x when t — 311 
gives the horizontal distance, or the range. Eliminating t gives the 
Cartesian form of the equation of the parabola 

x = 866 t, or t = -—whence 
866 

y — 500 —-16 
866 

(x - 13530)2 = - 468700 - 3906). 

The numerical work is somewhat tedious in such a problem, and it 
is indeed in most practical problems. The labor can be materially 

shortened by remembering that since the initial velocity is probably 

correct only to the second significant figure, correct here to hundreds 
of feet, and since y is taken as 32, instead of 32.2, an error of defect in 
the division of f of 1 the error by excess in the quotient will be also 

| of 1 °/o. 

X/ \ ” 
•— , which reduces to 
866y 

PROBLEMS 

1. Of the planets Mercury is nearest to the sun. The mean 

distance of Mercury (= a) is 36 million miles; e = .2056; 

compute the equation of the orbit referred to the principal 

diameter as axis ; find the distance of the sun from the center 

of the path. 

2. Venus is the planet which is second in order of distance 

from the sun; the mean distance is 67.27 million miles; e = 

.0068, compute the equation and constants as in the preceding 

problem. 
j 

3. Compute the orbit of Mars and focal distance; mean 

distance is 141.7 million miles ; e = .0933. 
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4. Knowing that the earth has a time of revolution of 

365.256 (use 365.3) days and that its mean distance is 92.9 

million miles, compute by Kepler’s third law the times of 

revolution of the planets in the three preceding problems. 

5. Discuss the maximum and minimum speed of the earth, 

assuming that the angular velocity is constant; note that the 

focal distance is 1.5 million miles, and the variation will 

depend upon the different lengths of the radius. 

6. Assuming that the big gun which bombarded Paris had a 

range of 75 miles when pointed at an angle of 45°, find the 

initial velocity from the equations, 

> x = .707 vt} 

y = .707 vt — 16.112. 

Insert in these equations x = 75 times 5280 and y = 0 and 

solve for v and t; the values obtained are the theoretical 

initial velocity in feet per second and the time of flight in sec¬ 

onds, neglecting air resistance. 

7. A body falls a distance of 10,000 feet; find the time of 

fall. 
* 

8. A body is thrown up vertically with a velocity of 100 

feet per second ; discuss the motion. 

5. Reflectors. — The fact that the tangent to a parabola 

bisects the angle between a focal radius and a line parallel to 

the axis leads to diverse uses of the parabola. Rays of light 

from the sun or from a star meet a parabolic mirrored surface 

whose axis is directed towards the sun or star in rays parallel 

to the axis of the parabolic surface ; these rays converge at the 

focus of the parabola and are by this means intensified. 

In an automobile reflector and in searchlights the conditions 

are reversed ; rays emanating from the central light at the 

focus are reflected in rays parallel to the axis. 

A ray of light directed towards one focus of a hyperbolic 

surface striking the surface is reflected towards the other 
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focus, since the tangent bisects the angle between the focal 

radii. This property is used by astronomers to re-focus the 

rays of light from the parabolic mirror at a point which does 

not lie between the parabolic mirror and the sun or star. An 

elliptical mirror beyond Fx might be used for the same purpose. 

Parabolic and hyperbolic reflectors at the Detroit Observatory 

The curvature of the large parabolic mirror is greatly exaggerated on 
the diagram. 

The parabolic mirror here pictured, is in use at the Detroit 

Observatory, Ann Arbor; the diameter of the mirror is 37.5 

inches; the focal length is 19 feet; the focal length of the 

hyperbolic mirror used is 5 feet; the second focus of the hy¬ 

perbola is 2 feet behind the vertex of the parabola and at this 

point, F2, the rays are directed into a spectroscope. 

Sound rays are entirely similar to light rays so far as reflect¬ 

ing properties are concerned. In an auditorium it is desired 

that the sound waves should be thrown out from the reflecting 

walls about the stage in parallel lines to all parts of the build¬ 

ing ; the reflecting surfaces have parabolic sections with the 

focus at the center of the stage. 

This is the case in the Hill Auditorium at Ann Arbor, 

Michigan; axial sections Of the hall made by planes are para¬ 

bolic in form, having the focus at the center of the stage. 
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6. Architectural uses of conics.—The intimate connection 

between beauty of form and numerical relations is undoubtedly 

illustrated by the “ golden section.” The most satisfactory 

dimensions of a rectangle from an artistic standpoint are such, 

Hell Gate bridge, over the East River, New York City 

The largest parabolic arch in the world, in one of the most beautiful 

bridges of the world ; the arch has a span of 977.5 feet, height 220 feet. 

so it is accepted by those qualified to judge, that the longer 

dimension is, approximately, to the shorter as the shorter is to 

the difference between the two. In other words, if the width 

is given, the desired height is found by the “ golden section,” 

i.e. by dividing the line in extreme and mean ratio. Thus 

for width 40, the height x is found by solving the equation, 

40 _ x 

x 40 — x ’ 

this gives a quadratic equation for x. Note that if a square 

is cut off at one end of this rectangle a similar rectangle 

remains ; so also if the square on the longer side is added to the 

rectangle a larger rectangle similar to the original one is 

formed. 
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We have found a certain connection apparently existing be¬ 

tween simplicity of form and simplicity of algebraic equation. 

Thus the straight line is represented by the simplest algebraic 

equation in two variables, the first degree equation; the circle 

which is the simplest curved line to construct is represented 

by a particularly simple type of quadratic equation; to other 

The Williamsburg bridge over the East River, New York 

Longest suspension bridge in the world ; the parabolic arc of each 
18-inch cable is 1600 feet in span by 180 feet in depth, width 118 feet; 

weight of the whole 1600-foot span is 8000 tons. Largest traffic of any 
bridge in the world. 

types of quadratic equations in two variables correspond only 

three further curves, viz., ellipse, parabola, and hyperbola. 

That these second-degree curves, the conic sections, are 

artistically satisfactory is evident from the extended use 

which has been made of these forms by artists, ancient and 

modern. 

In the construction of arches it is found that beauty of 

geometric form is intimately connected with simplicity of 
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algebraic equation. The parabola and the ellipse have wide 

uses in construction not only because of beauty of form, but 

also because of purely mechanical adaptation to the stresses 

and strains caused by the weight of arch structures. A 

recognized authority1 on bridge building, states that “ arches 

must be perfect curves,” and warns against the use of false 

ellipses. 

The fact that in many of the greatest bridges of the world 

the pure ellipse and parabola appear so frequently is an indica¬ 

tion of the wide acceptance of the theory that elliptical and 

parabolic arches are beautiful in form. The great Hell Gate 

Bridge of New York has for the main arch a true parabola 

(see problem 11, p. 317); London Bridge has five elliptical 

arches as the fundamental part of the sub-structure. Even 

the hyperbola has been used, but that only rarely. Let it be 

noted that partly because of the greater ease in design the 

circular arch is much more common, and the approximation 

to ellipse or parabola by using several circular arcs with dif¬ 

ferent centers is also common. 

No less than four distinct and different uses of the parabolic 

arc are found in the construction of bridges and trusses. The 

suspension bridge with a parabolic cable is one type; the 

parabolic arch with vertex below the roadway of the bridge 

is a second use; the parabolic arch intersecting the roadway 

is the third type; and the parabolic arch entirely above the 

roadbed, as a truss, is a fourth type. 

Elliptical arches and less frequently parabolic are commonly 

used in the design of large foyers of theaters and in other 

large halls. 

Parabolic and pure elliptic arch forms are used, although 

not as frequently as circular and horseshoe forms, in the 

design of sewers. Even complete perfect ellipses have been 

used (see problem 6, p. 356). 

1 Mr. G. II. Tyrrell, of Evanston, Illinois, Artistic Bridge Design, 

Chicago, 1912. 
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PROBLEMS 

1. Solve the quadratic in the preceding article and check 

by drawing a diagram. 

2. Find the width, x, of a rectangle whose height is 40, such 

that 40 is the “ golden section ” of the width, giving beauty of 

form of the rectangle. 

3. The Panther-Hollow Bridge, Pittsburg, has a parabolic 

arch, 360 feet in span with a rise of 45 feet. Draw the parab¬ 

ola. Assuming that the vertical chords are spaced every 

twenty feet and rise 15 feet above the vertex, find their 

lengths. 

4. In the preceding problem the smaller arches leading to 

the bridge itself are probably elliptical. The width of these 

arches is 28 feet and the height of the arch proper about 8 

feet. Draw these arches. 

5. A parabolic sewer arch used in Harrisburg, Pa. (designed 

by J. H. Fuertes) has dimensions of 6 feet in width by 4 

feet high. Construct ten points. 

6. A vertical elliptical sewer in Chicago, Western Avenue 

sewer, constructed 1910, has dimensions 12 x 14 feet. Draw 

the figure. 

7. Draw an elliptical and a parabolic arch, width 100 feet, 

height 30 feet; compare. 

8. Draw to scale the parabolic arc of the Williamsburg sus¬ 

pension bridge, 1600 feet in span by 180 feet in depth. Find 

the equation in simplest form, choosing proper axes. Find 

the lengths of four vertical chords from cable to the tangent 

at the vertex of the arc. 

7. Elliptical gears. — On machines such as shapers, planers, 

punches, and the like the actual movement during the opera¬ 

tion of shaping, planing, or punching is desired to be slow and 
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steady, and the return motion is desired to he much more 

rapid. Circular gears give a uniform motion, but elliptical 

gears permit the combination of slow effective movement with 

quick return. The two ellipses are of the same size and are 

Two positions of elliptical gears, mounted on corresponding foci 

Note that the right-liand ellipse swings through a large angle, in this po¬ 
sition, as compared with the left-hand one. 

mounted at the corresponding foci. In every position then 

the two ellipses will be in contact since the sum of the focal 

distances in either ellipse equals 2 a, always, and this also 

equals the distance between the two fixed foci which are 

on the axes of rotation. 

PROBLEMS 

1. Draw three positions of two elliptical gears, each being 

an ellipse 6 inches by 10 inches. Determine maximum and 

minimum radii. When the ellipse is turned 5 times a minute, 

what is the fastest linear speed of a point on either ellipse t 

Note that it is given by using as radius the maximum radius, 

FP in our figure. Find the slowest speed. 



358 UNIFIED MATHEMATICS 

2. In the Sandwich hay-press of our illustration the diame¬ 

ters of the ellipse of the elliptical gears are 21y5g inches and 

Elliptical gears on a hay press; the slow pressure stroke 

18^ inches ; plot the graph and discuss maximum and mini¬ 

mum linear speed, given that the angular velocity is twenty to 

twenty-two revolutions per minute. 

Elliptical gears on a hay press; quick return motion 

8. Applications in mechanics and physics. — The applications 

of the conics in mechanics and physics are very frequent. 

Thus the equation giving the period of a pendulum, 
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(see page 317) is the equation of a parabola, when g is taken as 

constant. Similarly the velocity of water flowing from a tube 

or over a dam depends upon the height or head of water abov^ 

the level of the tube or dam ; the relation is v2 = 64.4 h, where 

It is measured in feet; this also is a parabolic relation. 

The bending-moment at any given section of a beam sup¬ 

ported at both ends and uniformly loaded varies at different 

points on the beam, being greatest at the middle. These mo¬ 

ments are computed graphically in the case of a bridge, being 

given by a so-called parabola of moments. This parabola for 

a bridge of length l, uniformly loaded with a weight of w per 

foot, is given by the equation, 

M = wl2 — i w • x2, 

wherein x is the distance from the center of the bridge. The 

parabola is plotted across the length l of the bridge, with the 

vertical ordinate at the mid-point representing the maximum 

moment. 

Thus if a bridge is 100 feet wide and uniformly loaded 

2 tons per foot, the moment at any point x distance from the 

center of the bridge is given by the formula 

2 x 107 
M = -*■ — 1000 a2 

8 

= | X 107 -1000 a2. 

Draw the corresponding parabola, choosing appropriate units. 

When a rotating wheel is stopped by the application of 

some force which reduces the velocity uniformly per second, 

the equations giving the number of revolutions before the 

wheel comes to rest correspond closely to the equations of 

motion of a body moving under the acceleration of gravity. 

0 = (j)Qt — i Jet2, 
t 

0 represents numerically the angle covered in time t seconds, 

the body having an initial rotational speed of oo0 revolutions 

per second and the velocity being retarded every second by 

k revolutions per second. Here again we have an equation be- 



360 UNIFIED MATHEMATICS 

tween 0 and t represented by a parabola. The time in which 

this body comes to rest is obtained by dividing the initial 

velocity by the uniform decrease in velocity per second, i.e. 

by the acceleration (or retardation). 

The relation between pressure and volume of a perfect gas, 

temperature being constant, is given by the equation : 

p • V = k ; 

in words the volume is inversely proportional to the pressure. 

Plotting points gives points on a hyperbola of which the p-axis 

and the u-axis are the asymptotes. 

Such illustrations could be multiplied, but many relations 

of this character, e.g. the ellipsoid of inertia, require consider¬ 

able technical explanation wHich would go beyond the limits 

of this work. 

9. Quadratic function. — The graph of the quadratic function, 

ax2 -f- bx + c, is the locus of the equation, 

y = ax2 -f- bx -j- c. 

Jy "j~ 

b2 — 4 ac 

4 a 

V + 
b2 — 4 ac 

4 a 
JO —|— 

la a\ 

b2 — 4 ac\ 

4a ) 

The graph of y — ax2 + bx -f- c is a parabola ; x -f- — = 0 is 
2 a 

the axis. If a is positive the parabola opens up; the vertex 

is V[— — -—~ ; if />2 — 4 ac is negative, the vertex is 
V 2a 4a j 

above the a?-axis and no real value of x makes y = 0, since the 

graph does not cut the axis. If a is negative, the parabola opens 
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down; if b2 — 4 ac is negative, the vertex is below the x-axis 
and again the graph does not cut the a^axis. If b2 — 4 ac = 0 
the graph is tangent to the a?-axis. Evidently b2 — 4 ac < 0 
is the condition that ax2 + bx + c = 0 should have imaginary 
roots; b2 — 4 ac = 0 is the condition for equal roots; and 
b2 — 4 ac > 0 is the condition for real roots. 

PROBLEMS 

Plot to the same axes the graphs of the functions in prob¬ 
lems 1, 2, and 3. Discuss. 

1. y = 5 x2-j-2 x — 7. 

2. y = 5 x2 -f- 2 x + 7. 

3. y = 5 x2 + 2 x + -J-. 

4. If a wheel is rotating at the rate of 800 revolutions per 
second, and a force acting continuously reduces the speed each 
second by 40 revolutions per second, find the time in which it 
will stop, and the number of revolutions made during the 
retarded motion. Use the formula given in article 8. 

5. Given that 10 cubic centimeters of air are subjected to 
pressure, at a pressure of 1 atmosphere the volume is 10, 
hence pv = 10 is the equation connecting volume and pressure. 
Plot the graph of this for values of p from \ atmosphere to 5 
atmospheres’ pressure. 

6. Plot the parabola of moments for the Hell Gate Bridge, 
assuming a uniform loading of 2 tons per foot. Do not 
reduce tons to pounds, but use ton-feet as units of moment. 
The equation is M = 4902 — x2, taking 980 as the length of the 
bridge. 

7. Plot the parabola of moments of the Panther-Hollow 
Bridge in problem 3 of the preceding exercise, assuming 2 
tons per foot as loading. The equation is M — 1802 — x2. 

8. Find the equation of a parabola whose focal length is 
19 feet. Draw the graph to appropriate scale. This is the 
parabola which, revolved about its axis, gives the parabolic 



362 UNIFIED MATHEMATICS 

reflector, previously mentioned, which is in use at the Detroit 

Observatory. (See page 352.) 

Find the equation of a hyperbola which has the same focus 

as this parabola, the axis of the parabola as transverse axis, and 

the second focus on the axis at a distance of 2 feet on the other 

side of the vertex. This is the hyperbola which, revolved 

about its axis, gives the hyperbolic mirror mentioned. 

The parabolic mirror has a diameter of 37 inches. Find the 

abscissa for the ordinate 
18.5 

12 ’ 

thus finding the depth of the 

mirror. 

9. Plot the parabola y2 = 70.02 x. This is the parabola 

which is fundamental in the construction of the Hill Audito¬ 

rium. (See page 352.) The plane of the floor cuts the side 

walls in this curve ; so also the intersection of the ceiling and a 

plane passed vertically through the main aisle of the hall. 

In the plans the computations of ordinates for given abscissas 

are made to the thirty-second of an inch. Compute the focal 

ordinate. This is the radius of the circular arch over the 

stage. Compute the ordinates for x = 21, 26, 31, 51, and 71, 

and express in feet and inches. 

10. The Italian amphitheaters are, in general, elliptical. 

The Colosseum in Rome (see illustration, page 288) is an 

ellipse with axes of 615 and 510 feet. Draw the graph to scale. 

On the same diagram and with the same center and axes of 

reference draw the arena, of which the dimensions are 281 

feet by 177 feet, to the same scale. Note that the minor axis 

of the arena is almost the “ golden section” of the major axis, 

i.e. 177 is approximately a mean proportional between 281 

and 281 less 177. Find the mean and compare. 

11. The bridge at Hyde Park (see illustration, page 346) is 

elliptical, with a span of 75 feet and an arch height of 14.7 

feet. Draw this elliptical arch to scale. 



CHAPTER XXIII 

POLES, POLARS, AND DIAMETERS 

1. Definition. — The straight line 

Axxx + Byxy 4 G{x + xx) + F(y -f yx) 4 C = 0 

is called the polar of Px (xx, yx) with respect to the conic 

Ax2 + By2 + 2 Gx + 2Fy + C = 0. 

The point (a^, is called the pole of the line. 

2. Fundamental property of polar lines. — If the polar of 

Pi (®i> Vi) with respect to the given conic passes through 

P2(x2, y2), then reciprocally the polar of P2(x2, y2) will pass 

through Px(xx, yx). 

This fundam’ental property of polar lines enables one to 

prove complicated geometrical theorems for conics with a 

minimum of machinery. The proof of the theorem is itself 

simple, for substituting in the polar of Px(xx, yx), the co¬ 

ordinates (x2, y2)> we have that 

Axxx2 + Byxy2 + G(x2 4- ocx) 4 F(y2 4 Vi) + C = 0, 

if the polar of Px passes through P2. However the polar of 

P2 is, by definition, 

Ax2x 4 By2y 4 0(x 4 4>) 4 4 y2) 4 C = 0, 

and substituting (xx, yx) gives precisely the preceding expres¬ 

sion, which is of value 0; hence Px (xx, yx) is on the polar of 

ACb, 2/2). 

3. Geometric properties of the polar. — If Px(xh yx) lies on the 

curve, the polar is the tangent at that point. (See the preced¬ 

ing chapter.) 

363 
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If Px (a?!, 7/i) lies outside of the conic, the polar is the chord 

of contact of tangents from Pv 

Let P2(x2, y2) he the point of tangency of a tangent drawn 

from P, ; 

by definition, the polar of P2 is the tangent at P2(x2, y2); 

by construction, the polar of P2 passes through Pl; 

The polar of any point outside a conic is the chord of contact 

by the fundamental reciprocal property, since the polar of P2 

passes through P1} the polar of P1 will pass through P2. 

Similarly, calling P3(a?3, y3) the other point of tangency, the 

polar of P1 (a?!, yx) will pass through P3. 

Since the polar of P1 is a straight line and since it passes 

through the two points of tangency, it is the chord of con¬ 

tact joining these two points. 

If Pi(xlf yi) lies inside, or outside, or on the conic, the polar 

is the locus of the intersection P (V, yr) of tangents drawn at 

the extremities of any chord passing through Pj. 

Let P (pc', y') be the intersection of tangents at the extremities 

of any secant; 
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then, by the construction, the secant drawn is the chord of 

contact of R (V, y') ; 

by construction, the polar of R (x', yf) passes through Pi(£c1, y^ ; 

hence, by the fundamental reciprocal property, the polar of Px 

will pass through R (a?', yf); 

but the polar of Px is a straight line; 

hence the locus of R (xf, y') is a straight line, the polar of 

Pi On 2/i)* 

By pure Euclidean geometry it is rather complicated to 

prove that the locus of the intersection of tangents at the ex¬ 

tremities of all chords of a circle passing through a fixed 

point is a straight line. The above proves this property for 

every conic. 

4. Diameter: definition and derivation. — The locus of the 

midpoints of a series of parallel chords in any conic is called 

a diameter of the conic. 

The method, applicable to any equation of the second degree, 

is given for a special case. Find the diameter bisecting chords 

of slope 3 in the ellipse (Jx,+25 y2 = 900. 

Let y = 3 x -b k 

represent any line of slope 3. Solve, as simultaneous, with 

9 x2 + 25 y2 = 900, which represents 
the conic. 

Substituting, 

234 x2 + 150 kx + k2 - 900 = 0 

is an equation whose roots are the abscissas, xl and x>2, of the 

two points of intersection. 

Solving, _ 
- 150 k + V(150 k)2 - 4(234)(k2 - 900) 

" ‘ 468 

- 150 k - V(150 W ~ 4(234)(^~900) 
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For the midpoint (x', y') of the chord, 

j _ xx + ^ = — 25/g. 

2 78 ’ 
£C 

the midpoint lies on the chord 

y — 3x + 
hence, 

y' = 3x' + k=--75Jc + k = 
J 78 

3 k k 

78 “26* 

The middle point of any chord, 

y = 3 x -f- k, 
is given by 

ry* 1   . 2 5 Is* 

Any diameter of a parabola is parallel to the axis of the parabola 

constitute parametric equations of the locus of the midpoint. 

Eliminating k by solving for k and substituting (or by division 

here), we see that for every value of k the coordinates of the 

middle point satisfy the equation 
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Hence the middle point is on the straight line 

y — 2^5x' 

By precisely similar reasoning, the diameter bisecting chords 

of slope m in the conic, given by 

Ax2-b By2 + 2 Gx -f- 2 Fy + C= 0 

is Ax -J- mBy -f- G + mF = 0. 

Applying this to the simplest standard forms of ellipse and 

hyperbola, we see that every diameter of a central conic passes 

through the center; applying to the parabola, y2 = 4:ax, we 

obtain my — 2 a = 0. This shows that the diameter of any 

parabola is parallel to the axis of the parabola, for when a 

parabola is rotated or moved to any other position any diame¬ 

ter moves with the curve, preserving its position relative to 

the axis of the curve. 

5. Reciprocal property of diameters in central conics. — In the 

conic 9 x2 -f- 25 y2 — 900 = 0 above, the diameter bisecting 

Conjugate diameters; each bisects all chords parallel to the other 

chords of slope 3 has the slope — Now the diameter 

bisecting chords of slope — ^ has the slope 3, for by substi- 
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tution in the general formula, we have 9 x — jj(25) y = 0, or 

y = 3 x. 

Each of these diameters bisects chords parallel to the other. 

These are called conjugate diameters. In precisely similar 

manner this property can be established in any ellipse or 

hyperbola for the diameter bisecting chords of slope m. Do 

this for the diameter of the general conic above. 

PROBLEMS 

1. What is the equation of the chord of contact (polar) of 

(10, 0) with respect to 9 x2 + 25 y2 = 225 ? Solve this with the 

curve. This gives the points of tangency of tangents from 

(10, 0). Write the equation of the tangent at each of these 

points. This process illustrates an analytic method for finding 

a tangent from an external point to any conic, 

Ax2 + By2 4 2 Gx 4- 2 Fy 4 (7=0. Explain. 

2. Find the equations of the tangents to the following conics 

from the points given; follow the method of problem 1; time 

yourself. 

a. y2 — 8 x = 0, from (— 2, 6). 

b. y2 — 8 x — 6 y — 10 = 0, from (— 3, 5). 

c. x2 + y1 — 10 x + 8 y — 59 = 0, from (18, 6). 

cl. .x2 — 4 y2 — 10 x 4 8 y — 59 = 0, from (10, 5). 

e. x2 4- y2 — 25 = 0, from (1, 8) and from (2, 8). 

rX? '{P* 
3. Prove in the ellipse — 4 — = 1 that if the diameter is 

1 a2 b2 

drawn through (a^, ?q), the tangents at the extremities of this 

diameter are parallel to the polar of P1(aJi, y^). Call the 

points on the diameter (x2, y2) and (x3, y3), and note that they 

lie on the ellipse. Write the equations of the different lines 

mentioned. 

4. Prove the property mentioned in the preceding problem 

for the hyperbola :-= 1 and for the parabola y2 — 4 ax = 0. 
a2 b2 
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5. In problem 2, write the equations of the diameters bisect¬ 

ing chords of slope 2 and of slope — i, using the general 

formula for diameter. 

6. In problem 5 write the equations of the conjugate di¬ 

ameters in the central conics. 

7. Draw the circle x2 + y2 — 36 = 0 ; draw 5 secants 

through the point (4, 3); draw the tangents at the two inter¬ 

section points of each secant with the curve. The 5 points 

of intersection, one from each pair of tangents, should lie in 

a straight line. What theorem proves this ? 

8. Prove that the tangential parallelogram circumscribed 

at the ends of conjugate diameters of an ellipse b2x2-\-a2y2=a2b2 

has a constant area. First show that the one end of the 

diameter conjugate to the diameter through P\(xx, yx) is 

pi —^1, bxi\. qnq {.pe eqUation of the tangent at P1 (aq, yA; 
V b a J 

find the distance between (0, 0) and (aq, yx) ; find the equation 

of OP\; find the perpendicular distance from P2 to OPx; by 

multiplication show that the area of this quarter of the given 

parallelogram is constant. 

9. Taking F\(aq, yx) and P2(x2, y2)> which, by the preceding 

extremities of 

a pair of conjugate diameters in the ellipse b2x2 -fi a2y2 = a2b2, 

show that the sum of the squares of OPi and OP2 equals 

a2 + fr2* 

Hint. — Reduce tlie expressions for OPi2 and OP22 to common de¬ 
nominator, and use the fact that PRaq, y{) is on the given ellipse. 

2 2 
10. In the hyperbola ^ — '^=1, the conjugate diameter to 

the diameter through P\(x^ yx) on the hyperbola does not 

cut the curve itself. Prove this. 

The extremities of the conjugate diameter are taken as 

the points in which the conjugate diameter intersects the 
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^1* 7/^ • • • • 

conjugate hyperbola ~ — -L=—b With this definition the 
ci2 b2 

property of problem 8 can be proved to be true for the hyper¬ 

bola. State the method. What modification would you expect 

so far as the property of problem 9 is concerned ? 

11. Prove that the polars of all points on a diameter of any 

conic are parallel, comparing with problems 3 and 4 above. 

12. Show that tangents at the extremities of a series of 

parallel chords in any conic intersect on the corresponding 

diameter. 

13. Prove that any point on a diameter of the ellipse 
2 y2 

—f- — = 1 and the intersection of the polar of the point with 
a2 b2 

the diameter divide the diameter length internally and ex¬ 

ternally in the same ratio. 

Hint. —Take (xi, y{) and (— Xi, — y{) on the curve as the extremities 

of the diameter ; take the point of the diameter as the point ( 
V 1 — r 

Vi r//M which divides the diameter externally in the ratio r; find the 
1 — r ) 

intersection point of the polar of this point with y = and note that it 

is the same as the point which divides the line joining (xi, y{) to (— X], — y{) 
internally in the ratio r. The property holds for any conic. 

If through any point a secant to a conic is drawn, the point 

and the intersection of the polar of the point with the secant 

divide the chord of the conic formed by the secant internally 

and externally in the same ratio. The proof is somewhat 

more complicated than that of the preceding special case. 

14. Show that the tangential parallelogram to any central 

conic formed by the tangents at the extremities of a pair of 

conjugate diameters has its sides bisected by the points of 

tangency. An ellipse can be rather neatly inscribed in any 

parallelogram by drawing the ellipse tangent to the sides of 

the parallelogram at the midpoints. 



CHAPTER XXIV 

ALGEBRAIC TRANSFORMATIONS AND 

SUBSTITUTIONS 

1. Transformation of coordinates. — For varied reasons it is 

sometimes found desirable to change the location of the 

coordinate axes with respect to a curve which is given by an 

equation involving variables. Usually this shifting of the axes 

is for the purpose of simplifying the discussion of the geo¬ 

metrical properties of the curve in question. Thus the ellipse 

~ = 1, but the has been given in the form k.-L _p \1L 
a2 b2 

geometrical properties of the same curve are discussed with 

reference to the center (k, k) as origin, giving the equation 

xl 

a2 
+£=i. 

The axes may be subjected to a translation, giving new axes 

O'X' and O' T’ parallel to the old axes ; or the axes may be 

turned through an angle a, giving new axes OX’ and OY’ 

about the old origin ; the two motions can be combined, execut¬ 

ing first the translation, usually, and then the rotation; it is 

possible also to shift to new axes inclined at an oblique angle 

to each other, but the formulas involved are too complicated 

for an elementary work. 

2. Translation of axes. — Suppose the cc-axis fixed and the 

y-axis moved parallel to itself to a new origin O' at distance 

00' = h, from 0. Take P(x, y) as the coordinates of any 

point with reference to the original axes. Evidently, as the 

£-axis is unchanged, the y of this and every other point remains 

d71 
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the same. Let M be the foot of the perpendicular from P to 

the x-axis ; then by our fundamental property of the distances 

between three points on a directed line 

0M= 00' + O'M. 

But OM = x, 00' = h, 

the distance either posi¬ 

tive or negative 00'; 

while O'M = x' by defini¬ 

tion. Hence, whatever 

the position of P(x, y), 

we have, 

x = x' + h. 

Similarly, if the x-axis is shifted parallel to itself by an 
amount k, 

y = y' + k. 
The two equations 

x = x' -f- h, 

y = y' + k, 

transform any equation given with respect to any axes, to a 

set of parallel axes having the point (h, k) as origin. 

3. Algebraic substitution in functions of one variable. 

Theorem. — Substitution of x' + h for x in any algebraic equa¬ 

tion of type a0xn -}- cqx”-1 -+- ••• an_xx -f an = 0, n an integer, gives 

a new equation whose roots are h less than the roots of the old. 

The proof of this theorem depends directly upon the pre¬ 

ceding article. The substitution x — x' -f- h moves the y-axis 

h units, reducing the abscissas of all points by h if h is positive 

and increasing them by — h if h is negative. 

Illustration. —If the graph of y = x3 — 2x2 — 18 x + 24 is plotted, 

the substitution y = y and x = xr -f 4 simply shifts the y-axis 4 units to 

the right, thus decreasing the numerical value of each root by 4. 

The new equation is 

y = (x> + 4)3 - 2(x + 4)2 _ 18(x' + 4) -(- 24 = x'* + 10 ®'2 + 14 x’ - 16. 

Translation of axes 
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Now whatever number substituted for x makes x3 — 2 x2 — 18 x + 24 = 0, 

it is evident that 4 less substituted for x' will make 

(x1 + 4)3- 2(x' + 4)2- 18 (x' + 4)4- 24 = 0. 

Graphically, of course, as we have indicated, the y-axis has been pushed 

4 units towards the right, and the abscissa of each point of intersection 

of the curve with the x-axis has been reduced by 4. 

Similarly, in the general equation above, when x' -f- h is sub¬ 

stituted for x, whatever number a satisfies the original equa¬ 

tion in x, a — h will satisfy the new equation in x'. 

Substitution of x' + h for x in any algebraic equation forms 

a new equation in x' whose roots are h less than the roots of the 

given equation. 

This type of substitution is used to facilitate the computa¬ 

tion of roots of numerical algebraic equations. 

A simple method of constructing the new equation in nu¬ 

merical equations will be explained below, in section 11 of the 

next chapter. 
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PROBLEMS 

1. Show that the formulas of transformation given trans¬ 

form the equations of ellipse and hyperbola having (h, k) as 

center to the simpler form without first-degree terms. 

2. Transform the equation (ij — 3)2 = 8(aj + 2) to the point 

(3, — 2) as new origin, new axes parallel to the old. 

3. By translation of axes transform the equation 

x2 — 4 xy — 6 x + 8 y — 10 — 0 

into a new equation in which the first-degree terms are lacking. 

4. Find the equation of the line 3y — 4 a? + 6 = 0, referred 

to parallel axes through the point (3, 2). 

5. Compare the slope of a straight line referred to ne|v 

axes by translation, with the slope referred to the old axes. 

Compare intercepts. Compare the slope of a tangent at a 

fixed point on any curve with respect to new and with respect 

to old axes. 

6. Given the expression for the volume of 1000 cu. cm. of 

mercury at 0° C. when heated to t° C., v = 1000 + .0018 t (see 

page 63), transform to parallel axes with the point (t = 0, 

v = 1000) as new origin; find the new equation in v' and t. 

Does v' represent volume ? 

7. Given v = 1054 4-i^, 
12 ’ 

the velocity in feet per second of 

sound in air at t° centigrade, transform to parallel axes with 

(32°, 1054) as new origin; discuss the equation. 

8. The equation x? — 2 x2 — 18 x + 24 = 0 (page 373) was 

found to have a root between x = 4 and x = 5 ; transform 

y = xs — 2 x2 — 18 x 4- 24 = 0 

to parallel axes through (0, 4) and the new equation in x' will 

have a root between 0 and 1. Compute this root to tenths by 

substitution. 

9. The equation x3 — 2 x2 — 18 x + 24 = 0 has a further 

root between 1 and 2. Compute this root to one decimal place 

by the process explained in the preceding problem. 
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1<. Find the roots of 2 a;3 + 6 x2 — 10 x — 8 = 0, as in prob¬ 

lems 8 and 9 by considering the graph of the equation 

y = 2 a,-3 + 6 x2 — 10 x — 8, when referred to new axes. (See 

problem 4, page 99.) 

11. Transform the following equations to parallel axes, 

having (h, k) as the new origin; determine (h, k) so that the 

terms of the first degree shall disappear. 

a. 5 x2 -f- 4 xy — y2 — 8 x — 5 y — 10 = 0. 

b. 5 x2 + 4 xy + y2 — 8 x — 5 y — 10 = 0. 

c. xy — 7 x — 10 y — 5 = 0. 

d. 4 x2 — 6 x — y2 — 8 y — 10 = 0. 

12. Transform the following equations to parallel axes 

iiaving (h, k) as origin. Can you determine (h, k) so that the 

terms of the first degree shall disappear ? Why not ? (See 

problem 13.) 

a. 4 x2 — 6 x — 8 y — 10 = 0. 

b. 4 x2 -f- 4 xy + y2 — 8 x — 5 y — 10 = 0. 

13. Show that if an equation of the second degree contains 

no first-degree terms, the origin is the center of the curve by 

showing that if (aq, y^) is any point on the curve ( — a?!, — yj 

is also on the curve. 

4. Rotation of axes. — The formulas for sin (a + /3) and 

cos (a + j8) give very neatly the relations which exist between 

the coordinates (x, y) of a point referred to the old axes and 

the coordinates (a?', y') referred to the new axes. Take P(x, y) 

any point referred to the original axes ; let a be the angle of 

rotation through which the axes are turned ; let (3 be the angle 

which the line OP makes with the xf or new x -axis. By 

section 4, chapter 15, for all values of a and (3, 

cos (a -f (3) = cos a cos (3 — sin a sin (3, 

OP cos (a + (3) = OP cos a cos (3 — OP sin a sin (3. 
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But OP cos (a 4- /3) = x; OP cos (3 = x'; OP sin (3 = y' 

hence, . , . 
x = x cos a — y sin a. 

Further, sin (a -f /?) = sin a cos (3 + cos a sin (3. 

Multiplying by OP, and substituting, 

y = xr sin a + yf cos a. 

These same relations might also have been obtained by pro¬ 

jection ; they hold for every position of the point P. 

x — x' cos a — y' sin a, 

y = x' sin a + y' cos a, 

effects the rotation through the angle a, and refers any equation 

m two variables to new axes inclined at an angle a to the old 

axes. 

5. Every second-degree equation in two variables represents a 

conic section. Proof. — To prove this theorem we need only to 

show that the equation 

(1) Ax2 + 2 Hxy -f- By2 + 2 Gx + 2 Fy + C = 0 

can, by rotation of axes, be transformed to an equation of the 

type (2) Ax2 + By2 + 2 Gx + 2 Fy + C = 0. 

Every equation of this latter type represents, as we have 

shown, either circle, ellipse, parabola, or hyperbola or seme 

limiting form of one of these curves. 

Substituting, . . . 
x—x' cos a — y sin a, 

y = x' sin a -f- y' cos a, 

the equation Ax2 -f 2 Hxy -f By2 + 2 Gx + 2 Fy + C — 0 

becomes 

A(x' cos a — yf sin a)2+2 H(x' cos a — yr sin a)(xf sin u+y' cos a) 

+ B(x' sin a + y' cos a)2 + 2 G(x' cos a — y' sin a) 

-f 2 F(x' sin a + y' cos a) 4- (7=0. 
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Collecting terms, we have, 

(A cos2 a + B sin2 a -\- 2 II cos a sin a)x'2 
-(- (.A sin2 a -\- B cos2 a — 2 II cos a sin a)y'2 

-4- [ — 2 A cos a sin a + 2 H(cos2 a — sin2 a) -f- 2 B cos a sin 
+ (2 G cos a -f- 2 F sin a)x' + (2 F cos a — 2 G sin a)?/' +0=0. 

Let MV2 + 2 H'x'y' + B'y'2 + 2 O V + 2 F7'/ + O = 0 

represent this equation. 

We wish to show that it is always possible to find an angle 

% a for which H' becomes 0. 
2 H 

Setting Hr = 0, leads to the equation tan 2 a = ———, 

noting that cos2 a — sin2 a = cos 2 a and 2 sin a cos a = sin 2 a. 

Since LT, A, and B are real numbers and since the tangent of 

an angle can have any value from negative to positive in¬ 

finity, it follows that there is always some angle 2 a for which 
O TT 

tan 2 a — -£■——. There are in fact always two positive angles, 

less than 360°, 2 a and 2 a + 180°, which satisfy the given re¬ 

lationship. By turning through a, or a + 90°, one half of 

either of these angles, the equation Ax2-]-2 Hxy-\-By2-\- ••• = 0, 

reduces to an equation of the type A'x'2 + B'y'2 + — = 0, 

with the coefficient of the x'y' term equal to 0. The angle 

a of turning can always be selected as a positive acute 

angle, since if tan 2 a is positive, 2 a may be taken as an acute 

angle, and if tan 2 a is negative, 2 a may be taken as an obtuse 

angle of which the half-angle a will be acute. 

Illustrative problem. — What angle of rotation will remove 

the xy term from 3 x2 + 6 xy — 5 y2 = 100 ? 

tan 2 a— 

cos 2« = 

sin « = 

2 H _ 6 

A-B~ 8’ 

|; cos a = y/\(l + cos2a) = 

VJ(T — cos 2 a) = —• 
vlO 

3 

\/io’ 
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We select a acute, as noted, hence the positive values of the radical are 
taken. The formulas of transformation become, 

* = -~zx'-~z.y' = —(3 x' — v/'), 
VlO VlO VlO 

y = -4= ®' + -4r y' = —(*' + 3 7/')• 
VlO VlO VlO 

Substituting, we have, 

x3o(3x' - y'y + /5(3x' - t/')(*' + 3t/0- M*' + '3 V)2 = 100. 

In combining terms, do not write the expansion but preferably combine 

like terms by inspection. 

Here the coefficient of x'2 is f & + {§ — /o 5 °f x'v' tlie coefficient is 

— xf + it — f §, or 0, which checks ; for t/'2 we have Our 

equation becomes, 
4x'2 - 6t/'2 = 100, 

X12 _ 7/'2 _ ^ 

25 “ 10.67“ 

This curve is plotted with reference to the new axes, inclined at an angle 

a, tan a = i, to the x-axis. The coordinates of a point (x', y') on this 

curve, considered with respect to the new axes, satisfy the new equation 
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yf2 

■-—— = 1 ; when considered with reference to the old axes as (x, y), 
25 16.67 v 

the coordinates satisfy the original equation. Thus the coordinates of the 

intersection with the original x-axis (5.8, 0) satisfy the original equation ; 

this point with reference to the new axes has the coordinates 

x' = x cos a + y sin a = x’^, 
Vio 

y' = — x sin a + y cos a — ~ ^, 
VlO 

or (5.5, — 1.8). The values for (x', y1) in terms of (x, y) can be con¬ 

ceived as obtained by rotating through the angle — a. 

PROBLEMS 

1. Find, the equation of the curve xy —7x-f-3y — 15=0 

when referred to axes making an angle of 45° with the given 

axes. Note that a is 45°; sin a = cos a = —; rationalize 
V2 

denominators after substituting. Plot the new axes at the 

angle indicated and plot the graph of the new equation, obtained 

by substitution, with reference to the new axes. 

2. Find the equation of the curve 

9 x2 -f- 24 xy + 16 y2 — 6 x — 15 y = 0 

with reference to axes making an angle arctan | with the old 

axes. Note that sin a = f and cos <* = -§-; in substituting take 

the fraction J as a factor in the value of both x and y and, 

after substituting, combine terms by inspection without writ¬ 

ing each expansion separately. 

3. Find the equation of the curve 

59 x2 — 24 xy 00 y2 + 72 x — 396 y -p 444 = 0, 

when referred to new axes such that the new x-axis makes an 

angle whose tangent is f with the old axis of abscissas. 

4. In the equation 4xy — 8x-f-10y + 7 = 0 make the gen¬ 

eral substitutions which effect the turning of the axes through 

an angle a, and determine a so that the coefficient of the x'iy’ 

term shall disappear. 



380 UNIFIED MATHEMATICS 

6. Nature of the conic Ax2-\-2Hxy -f- By2 + 2 Gx + 2 Fy -f C— 0. 

A central conic is one which has a point which is such that 

every chord passing through this point is bisected. If this 

point be taken as origin of coordinates, it follows that if (x', y') 

is on the curve (— xf, — y') is also on the curve. A substitu¬ 

tion, x = x' + h and y = y' + k, which causes the terms of the 

first degree in our equation of the second degree to disappear 

gives the equation Ax'2 + 2 Hx'y' + By'2 + C' = 0. Now what¬ 

ever point (V, y') satisfies this equation (—x', — y') will also 

satisfy the equation, and hence the new origin is the center of 

this conic. 

The substitution oc — oc + h and y = y' + k gives two linear 

expressions in h and k as coefficients of the new x' term and y' 

term, and these are set equal to zero and solved for h and k to 

determine the center. 

2Ah+2Hk-\-2G=0 

and 2IIh + 2Bk + 2F = 0 

are the two equations which determine the center. 

If the two equations which serve to locate the center repre¬ 

sent two parallel lines in h and k, the conic has no center and 

is a parabola. This condition is that — ■_= — or that 
II B' 

II2 — AB = 0. When II2—AB — 0, the terms Ax2 + 2 Hxy + By2 

form the square of a linear expression in x and y. 

Further it is shown below that if H2 — AB < 0, the conic is 

an ellipse, and if H2 — AB > 0, the conic is a hyperbola. The 

conditions determining the nature of the general conic are as 

follows; TT- , „ „ 
H2 — AB < 0, ellipse, 

H2 — AB — 0, parabola, 

II2 — AB > 0, hyperbola. 

These are the conditions that there should be no points on 

the curve at infinity, one point at infinity, and two directions 

giving infinite points. They may be derived by substituting 
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y = mx -j- k and determining values of m for which the quad¬ 

ratic has infinite roots ; it follows that for these values of m 

the line y — mx -f k will meet the curve in points infinitely 

distant. For the ellipse the values of m will be imaginary, 

and H2 — AB < 0; for the parabola the two values of m will 

coincide, and H2 — AB = 0 ; for the hyperbola the two values 

of m will be real and different, representing the slopes of the 

two asymptotes, and H2 — AB> 0. 

A second and independent proof is given in the next article. 

There it is shown that the product A'B' is positive when 

H2 — AB is negative; but when A' and B' are of the same 

sign the product is positive and the curve in x'2 and y'2, not 

involving x'y', is an ellipse. Similarly the product A'B' is 

negative when H2 — AB is positive, and the curve represented 

by the transformed equation is a hyperbola. 

7. Central conics ; abbreviated process of transformation. — 

Substitution method. — Determine the center ; transform to 

parallel axes with the center as new origin; determine a and 

substitute ; plot with reference to the final axes. 

Abbreviated method. — Determine the center (h, k); trans¬ 

form to (h, k) as new origin; determine A' and B' by solving 

as simultaneous the equations, 

A' + B' = A + B, 

- A'B' — H2 — AB; 

select the pair of values of A' and B' such that A’ — B' will have 

the same sign as H; plot the new equation with reference to 

new axes having the origin at the center determined and the 

axes inclined at an angle a with the old axes, a being such that 

tan 2 a — 
2 H 

A-B 

Derivation of A! + B' = A + B; — A'B' = H2 — AB. 

A' = A cos2 a -f B sin2 a + 2 H cos a sin a. 

B' = A sin2 a + B cos2 a — 2 H cos a sin a. 

By addition, A' + B' = A + B. 
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The proof that — A'B' = IP — AB is somewhat long but 

not difficult. To the product — A'B' add 

IP2 = [2 H (cos2 a — sin2 a) — 2 (A — B) sin a cos «]2, 

which does not alter the value since H' is taken to equal 0. 

The expressions will combine to H2 — AB. The student would 

do well to verify at least one of the coefficients. 

Since a is chosen as a positive acute angle, A' — B' has the 

same sign as H, for A' — B' 
= (A—B) cos 2 a + 2 H sin 2 a 

=2 H (A " B cos 2 a + sin 2 a\ 
V 2 H ) 

Now sin 2 a is. positive, and cos 2 a has the same sign as 

2 II 

A-B 
and hence the product of cos 2 a by 

A — B . • 
-- is positive ; 

2 H 
hence A’ — B’ is the product of 2 H by the sum of two positive 

quantities and so is positive if H is positive and negative if H 

is negative. 

The equations A’ + B' = A + B 

-A'B’ = H2 - AB 

enable us to determine A' and B' by solving these as simulta¬ 

neous equations. Two solutions are found, and the solution 

is selected which makes A' — B' have the same sign as H. 

Only the new constant term, when transforming to (h, k) as 

new origin, offers any extended computation. This constant 

term 
Ah2 + 2 Hhk + Bk2 + 2 Oh + 2 Fk + G 1 

may be written 

h(Ah + Ilk + G)+k(Hh + Bk + F) + Gh + Fk + C, 

which reduces to Gli + Fk + C, since the other two expressions 

within parentheses were set equal to zero to determine the 

center. 

Illustrative pro! lem. — Find center, axes, and plot the conic, 

3 x1 -p G xy -f 5 y2 — 12 x — 18 y — 24 = 0. 
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Substituting (x' + h, y' + k) and selecting the coefficients of x' and y', 
to set equal to zero, 

6/i+6fc — 12 = 0, 

• 6 h + 10 k - 18 = 0. 

Solving, k- f, h = + 

The ellipse 3 x2 + 6 xy + 5 y2 — 12 x — 18 y — 24 = 0 

or 3 x'2 + 6 x'y' -f 5 y'2 - — = 0, or 7.16 x"2 + .84 y"2 = 40.5 
2 

C', the new constant, Gli -+• Fk + C = — 6 • \ — 9 • f — 24 = — Aj1-. The 

new («', y') equation is 

8 x'2 + 6 x'y' + 5 y'2 — — = 0. Note that tan 2 u = —— = — 3. 
y 2 - 2 

A' + B' = 8, 

— A'B' = 9 — 15 = — 6. 

Solving by substitution, 

— A'(8 —A') = — 6, 

A'2 - 8 A' + 6 = 0 ; A' = 4 ± vTO. 

B' = 4 T VIb. 

A' — ii' has the same sign as H ; hence the upper algebraic signs are 

taken, A' — 7.16, B' = .84. 
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Our final equation is 

7.16 x"2 + .84 y" 2 = 40.5 

x"z y"t _ 1 

5.66 + 48.3 

xy”z 1 
(2.38)2 + (6.95)2“ 

Some computation is unavoidable, and, in general, in practical applica¬ 

tions the results are rarely expressible in small and convenient integers. 

PROBLEMS 

1. Find the center, axes, and plot the conic, 

5 x2 — 6 xy + 3 y2 + 12 x — 6 y — 30 = 0. 

2. Plot the following conics by turning the axes through 

an angle a, tan 2 a — 
2 H 

A-B 
, so as to eliminate the xy term, 

and thus obtain an equation to plot which can be put in stand¬ 

ard form. 

a. 4 x2 + 4 xy + y2 — 6 x + 8 y — 12 = 0. 

b. x2 — 4 xy + y1 + 2 x — 10 y — 11 = 0. 

c. 41 a?2-f- 24 xy + 34 y2 — 26 aN- 32 y — 171 = 0. 

d. 4 xy — 3 y2 — 7 x — 10 y — 15 = 0. 

3. Apply the abbreviated method explained in section 6 to 

the central conics in the preceding problem; compare the 

numerical work involved by the two methods. 

4. Find five points on the first and second conics in prob¬ 

lem 2 by giving values to x and computing the corresponding 

values of y. 

5. Find the intercepts with the coordinate axes of each of 

the conics in problem 2 and verify your graphical construction 

by these points. 

6. In each of the conics of problem 2 find the points of 

intersection with the line y = mx + b ; determine the values 

of m for which one of the points of intersection should be at 

an infinite distance. In the case of the hyperbolas real 
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values of m will be found; substitute in turn each of these 

values for m and determine for what value of b the second 

point of intersection will move off to an infinite distance. 

This determines the two asymptotes. Explain. 

7. Apply the abbreviated method to the discussion of the 

following central conics, having the origin as center: 

a. x2 4- 2 xy + 4 y2 = 16. 

b. 4 x2 — 6 xy — 3 y2 = 10. 

c. 2 x2 — 4 xy — y2 = — 9. 

d. 5 x2 — 3 xy + y2 = 24. 

8. In the hyperbolas of problem 2, use the results of prob¬ 

lem 6 to show that the directions of the asymptotes are given 

by the factors of the terms of the second degree. 

8. The hyperbola as related to its asymptotes. — The equation 

of the hyperbola in simplest form, 

^2_y2==l 
a2 b2 ’ 

may also be written, 

(bx — ay) (bx + ay) 
whence. 

a2b2, 

bx — ay bx -f- ay _ a2b2 

Vu2 -f b2 Va2 -f b2 «2 + b2 

Since bx — ay = 0 and bx -f ay = 0 represent the asymptotes 

of this hyperbola, the final form states that the product of the 

perpendicular distances of any point on the hyperbola from 

the two asymptotes is constant. The converse proposition is 

also true, viz., if a point moves so that the product of its 

distances from two intersecting lines is a constant, the point 

moves on a hyperbola of which the two lines are the asymp¬ 

totes. The proof of the converse is simply that the bisectors 

of the angles between the two given lines could be selected as 

axes of coordinates and, in consequence, the two lines would 

have as equations, expressions of the form y — mx = 0 and 

y + mx = 0. Any point which moves so that the product of its 
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distances from these two lines is a constant would satisfy the 
equation y _ mx y mx _ ^ . 

vrr m2 vr+ m2 

but this equation represents a hyperbola, and consequently 
the given locus is a hyperbola. 

It follows from the above argument that the equation of 
any hyperbola differs by a constant from the product of the 
first-degree expressions which, put equal to zero, represent its 
asymptotes. The terms of the second degree in the hyperbola 
can be factored always into real linear factors in x and y (not 
necessarily rational so far as the coefficients are concerned) 
which as lines have the slopes of the asymptotes. (See problem 
8 of the preceding list, and compare article 6.) A particularly 
simple type of hyperbola equation occurs quite frequently in 
practical problems and this type will be taken to illustrate the 
method which is, however, general. 

Illustrative example. — Plot the curve 

This equation may be written 

y{ 1 — x)=x. 

The only term of the second degree is xy. Placing the factors equal to 
zero, we have x = 0 and y = 0. The asymptotes are parallel to our co¬ 
ordinate axes. The equation can be written in the form 

. (x — h) (y — k) = c. 

By inspection we note that the equation may be written 

(y + i)(z- i) = — l. 

The asymptotes are given by y -f- 1 = 0 and x — 1 = 0. 

The intersection point is the center of the given curve ; further points 
should be plotted by substitution of values in the original equation. 

d This equation in i and d, i =-, represents the relation between a 
1 — d 

given rate of discount for any interval and the corresponding rate of in¬ 
terest. If a bank in lending money takes out interest in advance, giving 
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to the individual not the face of the loan but that amount less the interest 
upon that amount for the given interval for which the note is to run, the 

bank is said to discount the note. The rate of interest which the indi¬ 

vidual pays is obviously greater than the rate d which is used as the dis- 
count rate ; the relation is 

1 -d 

In plotting the graph of this curve you would be interested only in values 

of i and d between .01 and .10, and you would confine your attention to 
the first quadrant, taking 1 inch to represent .01 on both axes. 

PROBLEMS 

1. Plot the curve p • ^ = 1000; show that it represents a 

hyperbola having the axes as asymptotes. This equation rep¬ 

resents the relation between the pressure and volume of a 

quantity of gas which at a pressure of 1 atmosphere has a 

volume of 1000 cubic units, the temperature being kept 

constant. 

2. Discuss the nature of the following curves, without 

making any transformation of axes ; in the hyperbolas give 

.the slopes of the asymptotes, and in the parabolas the slope of 

the axis. 
a. 4 x2 — y2 — 8 y = 0. 

b. 4 x2 — 8 y — 10 = 0. 

c. 4 x2 — 4 xy — y2 — 100 = 0. 

d. 4 x2 — 4 xy + y2 = 100 y. 

e. 4 x2 — 4 xy + y2 = 100. 

/. 4 x2 — 4 xy + 4 y1 = 100. 

g. 4 x2 — 4 xy — 10 x — 25. 

h. 4 xy — 7 x -f 10 y — 5 = 0. 

i. xy = 15. 

j. 4 x2 4- 4 y2 = 81. 

Tc. 3 x2 — 12 x — 2 y2 — 10 y — 15 = 0. 

1. 3 cc2 — 12 x + 2 y2 — 10 y — 15 = 0. 
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3. Transform to new axes so as to simplify the following 

equations to plot; select the appropriate method of substi¬ 

tution adapted to each equation. 

a. x2 + 12 xy 4- 4 y2 — 4 x — 24 y — 10 = 0. 

b. x2 3 xy — 3 y2 — 10 x — 15 y + 24 = 0. 

c. 4 x2 — 4 xy -j- 7 y2 — 10 y + 4 x — 25 = 0. 

d. 4 a?2 — 12 scy + 9 y2 — 6 x — 10 = 0. 

e. 2 x2 + xy + 2 y2 — 6 x + 6 y — 15 = 0. 

f x2 -f- 4 xy — 2 y2 — 8 cr 4- 20 y — 30 = 0. 

</. x2 — 3 xy — 7 x = 0. 

7i. 2 cc2 — 6 x + 5 y2 — 20 y — 10 = 0. 

4. Given that an aeroplane covers a distance of one hun¬ 

dred miles in t hours, its velocity in miles per hour is ^55, 
t 

i.e. v = given that on different occasions the aeroplane 
t 

covers 100 miles in 48 minutes (.8 hours), 1 hour, 1 hour 6 

minutes, li hours, 1 hour and 24 minutes, 100 minutes, and 

2 hours, respectively, find the velocities and plot a curve giving 

the relation between v and t. Choose units so that you can 

read from the curve between the extreme values the velocity 

within 2 miles per hour when the time of flight for 100 miles 

is given. Note that the curve is a hyperbola. 

5. Given that an aeroplane covers on one trial 100 miles in 

48 minutes, on another trial 125 miles in 61 minutes, and 156 

miles in 71 minutes on a third trial, how could you compare 

graphically the corresponding velocities ? 

6. The air in an organ pipe vibrates in a manner some¬ 

what similar to the motion of a pendulum ; the number of 

such vibrations of the air in one second depends upon the 

length of the pipe and upon the velocity of sound in air; the 

formula n = ~, v in feet per sec. and l in feet, gives quiff 
w 6 
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closely the number of vibrations. Plot the curve n = -^'— , for 

values of l from 1 to 20 feet, choosing appropriate units. The 

curve gives the corresponding number of vibrations for pipes 

of different lengths. (See section 3, chapter 26.) 

7. Discuss fully the equation 

x2 — 2 xy + y2 — 10 y = 0. 

8. The curve of transition on a railroad track in passing 

from one straight track to another is sometimes taken as para¬ 

bolic, because of the fact that the slope changes uniformly 

Parabolic transition curve on a railroad track 

The parabolic arc is used for vertical as well as for horizontal 

transition curves. 

with uniform increases of the horizontal length taken parallel 

to the tangent at the vertex of the parabola. Assuming that 

the track A V changes its direction by 60° to VB and that the 

transition points A and B from the straight line to the 

parabolas are taken on each track 500 feet from the point of 

intersection of the two directions, find the equation of the 

parabola. Note that the axis VY is inclined at an angle of 

120° to the extension of AV\ note that E, the vertex of the 
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parabola, is midway between V and the point where the chord 

AB cuts the axis, since the tangent to a parabola cuts off from 

the vertex on the axis a distance equal to the distance cut off 

from the vertex on the axis by the perpendicular to the axis 

from the point of tangency. Find the equation of the curve 

with respect to the axis of the parabola as y-axis and the line 

through V at an angle of 30° with AV as • x-axis; then 

transform to AV as cc'-axis and a perpendicular to AV at V 

as y'-axis by turning through an angle of — 30°, using the 

fundamental formulas for rotation of axes. 

9. Assuming that a railroad track changes its direction by 

40°, 30°, 20°, and 10° respectively, find the equations of the 

parabolic transition curves with transition points (A and B, as 

in figure) 500 feet from the intersection point of the two 

straight tracks. 

10. In going over a hill the form of curve to which the 

track bed is rounded is often made parabolic. When the grade 

is the same on both sides of the highest point, the problem is 

precisely that of finding a parabolic arch. Assuming that in 

a horizontal distance of 5000 feet the hill rises 100 feet, find 

the equation of the parabola having the vertex at the highest 

point and passing through the point 100 feet lower at a hori¬ 

zontal distance of 5000 feet; find the four intermediate ordi¬ 

nates at distances 1000 feet apart. 

11. An iron wire of diameter .2 cm. and length l cm., 

subjected to a tension T caused by a weight W grams, when 

caused to vibrate through its whole length has the number of 

vibrations determined by the equation 

„=J_ /980 W 

2 l V 077 x 5 
r =980 IK 

When the weight is fixed and the length is variable, this gives 

a hyperbolic relation between n and l. For W = 500 grams the 

equation is approximately n = 
1030 

Plot and discuss. 
I 
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12. In the preceding problem suppose that l is fixed at 100 

centimeters and that W varies between 100 grams and 2000 

grams. What is the type of relationship ? What would be 

the curve obtained by plotting to w- and u-axes ? 

13. The deck of any large vessel slopes from both bow and 

stern downwards towards amidships. The vertical section of 

the deck from bow to stern consists of two parabolas, having a 

common vertex at the middle of the ship. Plot the parabolas 

which are used for a vessel 400 feet long, having the highest 

point at the bow 8 feet above the vertex, and at the stern the 

deck 4 feet above the vertex. Use a different scale for y than 

for x, — at least twice as large. 

14. Name the following curves, giving such facts as you 

can by inspection : 

a. 3£c + 2y—5 = 0. k. (3 x-\-2 y — 5)(x—3): 

b. 3£c2 + 2y — 5 = 0. 1 3 x2 + 3 y2 = 0. 

c. 3 ^2 + 2 if - 5 = 0. m. xy — 7 & + 6 y — 18 

d. 3 x2 — 5 x = 0. n. p(3 — v) = 6. 

e. 3 x2 — 5 xy — 5 x = 10. 0. (i + i)(i-rf)=i. 

/• 3x2 + 3y2 = 25. p. - + - = 5. 

3 x2—6 xy-\- 3 y2—5 x’=0. 
x y 

TT l T 
h. 3 x2— 6 xy + 3 y2— 5 = 0. Q- 

~ V-7 
• 

i. 3 a2 + 2 y2 4- 5 = 0. 
r. V-331.7 Jl + f 

i- (3x+2y-5)(x-3)=0. * 273 

15. The highway over the Michigan Central R.R. tracks 

and over the Huron River, on the Whitmore Lake road near 

Ann Arbor, is rounded off (in profile) to a parabolic arc, rising 

2.40 feet in a span of 240 feet. Show that the grade leading 

up to the arc should be a 4 % grade. Draw the arc to scale. 



CHAPTER XXV 

SOLUTION OF NUMERICAL ALGEBRAIC EQUATIONS 

1. Solutions of algebraic equations. — By a solution of an 

equation of the type a0xn + ape”-1 + a2xn~2 + ••• an_iX + an = 0, 

wherein n is a positive integer and a0, ax, a2 ••• are constants, 

we understand a value which, substituted for x, reduces the left- 

hand member to zero. That such a solution always exists is 

proved by methods of higher mathematics. The theorem that 

every such rational integral algebraic equation has a root is 

called the fundamental theorem of algebra; it was first proved 

about a century ago by Gauss. The solution may be a real 

number or a complex number, and any constant coefficient may 

be real or complex; the latter involves the square root of a 

negative quantity and so is not representable as the abscissa 

of any point on our axis of positive and negative real 

numbers. 

Certain types of algebraic equations are solvable in terms 

of the general constants which enter as coefficients. Thus 

ax -f- b = 0 is solvable in terms of a and b, and ax2 + bx -f c = 0 

is solvable in terms of a, b, and c. It has been shown that the 

general cubic in one variable and the general biquadratic, or 

fourth degree equation, are solvable in this way, but the 

general equations of higher degree than the fourth are not 

solvable in this sense. 

The approximate numerical solution of the real roots of 

rational integral equations with numerical coefficients is readily 

obtained and we have indicated in Chapter II and again in the 

preceding chapter, section 3, problems 8-10, the general 

method by which such solutions are obtained by substitution. 

392 
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Simplifications for purposes of computation will be explained 

in this chapter. 

2. Continuity. — The height of an individual is a continuous 

function of the age of the individual; by this we mean that 

in passing from one height to another the individual passes 

through every intermediate height. A graph representing age 

as abscissas and heights as ordinates will be a continuously 

TT 
- 

k ' 's 

s. A \ s- 
- 4 's 

A “s. O V V \ 
4— 
L -L- -LL 

LL 

Four continuous graphs. One discontinuous 

Continuity in passing from a positive to a negative value. 

connected curve. Upon this curve corresponding to any 

selected age, aL, a period of time, there will be one and only 

one corresponding height, hh and corresponding to any second 

age, a2, a second ordinate, h2, representing height. The curve 

joining the two points (a]? h^) to (a2, h2) will be continuous and 

every intermediate height between the two given will be 

found to be represented by the ordinate corresponding to some 

age intermediate between the two given ages. 

The rational integral function of x, 

a0xn + aiXn~l + — + dn_]X + an, 

in which n is any positive integer, is continuous between 

any two values of x, and will be represented by a continuous 

curve. This has been assumed in drawing the graph of 

y = cc3 — 2 x2 — 18 x + 24, and in other graphs. The proof in¬ 

volves discussion somewhat too detailed and mathematically 

refined for an elementary course. 

The symbol f(x) will be used throughout the remainder of 

this chapter to represent a rational integral function of x of 

the type mentioned above. 
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3. Graph of y = f[x) by location of points. 

Give to x the appropriate values, find the corresponding values 

of y, and plot the points, connecting by a smooth curve. (See 

pages 70-71.) 

Apply the remainder theorem, and employ synthetic 

division to determine values of the function corresponding to 

given values of x. 

4. Remainder theorem and synthetic division. (See page 25.) 

When f(x) is divided by x — a, the remainder obtained by con¬ 

tinuing the division until the remainder does not contain x is 

equal to the original expression with a put for x. 

To divide f{x) by x — a, employing synthetic division, 

a. Arrange f(x) in descending powers of x and write the 

coefficients horizontally, including zero coefficients for missing 

powers below the highest power which occurs. 

b. Write +a under x—a, the divisor, placed at the left. 

Under the coefficients of fix) as written leave space for a 

second horizontal row and draw a horizontal line. 

c. Under the coefficient of the highest power of x, below 

the horizontal line drawn, place this coefficient again. Mul¬ 

tiply by -f- a and add to the following coefficient to the right. 

Place the sum below the line, vertically under the second 

coefficient; use this number below the line as multiplier of 

+ a, and add the product to the third coefficient and continue 

this process until you have placed numbers under every coeffi¬ 

cient (and the constant term) of the upper row. The final 

number which appears is the remainder and should be cut off 

by a vertical separator; the numbers under the horizontal line 

are coefficients in order from left to right of the quotient 

when/(a?) is divided by x—a. 

Throughout this discussion a may be either positive or 

negative. 
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Illustrative Problem. — Divide x3 — 2 x2 — 18 x + 24 by x — 3, and 

use the remainder theorem to determine the value of this function of x 

when x = 3. x3 - 2 x2 - 18 x + 24 

x — 3) 1 — 2 -18+24 

+ 3) +3 +3-45 

1 + 1 - 15 (— 21 

x2 + x — 15 is the quotient .and — 21 is remainder; — 21 is the value of 

x3 — 2 x2 — 18 x + 24 when 3 is substituted for x. Since 

x3 — 2 x2 — 18 x + 24= (x2 + x — 15) (x — 3) — 21, 

we have, substituting 3, 

33 _ 2 - 32 - 18 - 3 + 24 = (32 + 3 — 15)(3 — 3) — 21 

= 0 - 21. 

PROBLEMS 

1. Locate ten points upon the graph of y =2 x3-f-3x2— 9x — 7. 
► 

Take the ten points between x = — 4 and x = + 4, including 

-b and — b; use the synthetic division method of finding the 

value of y except for x = 0, x = 1, and x = — 1. Plot the 

points and draw a smooth curve connecting them ; choose the 

y scale so as to keep the points on the paper. Locate the zeros 

of the function on the graph. 

2. Plot the graph of the function 2 x3 +- 3 x2 — 7 between — 3 

and +3. 

3. Plot the graph of the function 2 x3 — 9 x — 7. Note 

where the graph crosses the axis of x, thus locating the roots 

of the equation 2 x3 — 9 x — 7 = 0. Factor 2 x3 — 9 x — 7, 

dividing by the factor corresponding to the rational root which 

you have found; solve the resulting quadratic, and compare 

with the values found by the graph. 

4. Plot the graph of the function x4 — 2 x3 +3 x2 —18 x+21; 

select the appropriate interval to give the points of intersection 

with the cc-axis. 

5. Plot the graph of y = x4 — 3 x2 — 21; locate the zeros of 

the function on the graph. Solve as an equation in quadratic 

form x4 — 3 x2 — 21 = 0 and compare the solutions obtained 

with the roots located graphically. 
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6. Plot the graph of the function 4 x3 — 3 x 4- .5 in the in¬ 

terval from — 1 to + 1; substitute for x the values — 1, — .8, 

— .5, — .3, — .1, 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, and 1, finding 

the values in general, by the division method applying the re¬ 

mainder theorem. The roots of this equation represent the 

values of sin 10°, sin 50°, and sin — 70°. (See section 10, below.) 

7. Locate one root between 0 and .1 of the equation 

4 x3 —3 x + .05234 = 0, 

by substituting for x the values 0, .01, .02, .03, up to .1. The 

value .05234 is the sine of three degrees which we obtained in 

problem 5, page 245. One root of this equation gives the sine 

of 1°. 

5. Number of roots. — A value of oq, for which/(%) = 0, is a 

root of f(x) = 0. The remainder theorem applies and conse¬ 

quently (x — a}) is a factor of /(a?) since the remainder when 

f(x) is divided by x — ax will be zero. Nothing in our argu¬ 

ment requires that a1 be a real number. Hence, dividing /(x) by 

(x — Ui), a new equation of degree one less will be obtained. 

This equation, by the fundamental theorem of algebra, also has 

a root, a2, giving a quotient of degree n — 1. The number of 

such factors corresponds to the degree of the equation, n. 

Every rational integral equation of the ntli degree has n roots, 

and no more. For no further value of x could make the product, 

a(x — af)(x — a2)(x — a3) ■■■ (x— an), equal zero without making 

one of the factors zero and thus coinciding with one of the roots 

given. 

6. Graphical location of real roots. — Any real root of a rational 

integral function of x equated to zero is a value of x which 

makes the ordinate in y = f (x) equal to zero. The points in 

which the graph of the function of x crosses, or touches, the 

cc-axis correspond to real roots of the equation, f (x) = 0, or 

zeros of the function. 

Our assumption of continuity enables us to formulate the 

following theorem : 
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Between any two values x = a and x = b, for which the two 

corresponding values of f (x) are opposite in sign, there lies at 

least one real root of the equation f(x) = 0. 

Four graphs passing continuously from y = - to y = — ; one graph with a 
2 3 

discontinuity 

Thus to change continuously from + \ to — R or from any positive 
value to any negative value, the function must pass through all values in¬ 

termediate, including 0. At this point where the function of x is 0, the 

graph of y = f(x) crosses the axis. 

Illustrative problem. — Locate the roots of 

xs — 2 x2 — 18x4- 24 = 0. 

Plot the graph of y = x3 — 2 x2 — 18 x -f 24 by location of points. Give 

to x values from — 5 to 4 5, find the corresponding values of y, and plot 

the points, connecting by a smooth curve. (See page 71.) Between x = l 

and x = 2, f (x) changes from -f 5 to — 12 ; there is a root between x = 1 

and x = 2 ; between x = 4 and x = 5 there is a root, as/(4) is — 16 and 

/(5) is 4 9 ; at x = — 4 there is a root, as/(— 4) is 0. 

7. Slope of y —f{x).— The (h, 7c) method of finding the 

tangent at a point (xx, y-f on a curve applies, as we have 

stated in Chapter 18, section 11, to the graph of a rational in¬ 

tegral function of x. 

Thus in y = x3 - 2x2 - 18 x 4- 24, let (xlf tfi) be any point 

on the curve and (xx -f h, yx + k) a second point. It is desired 

to find the slope of the graph at (xl5 yx) 

yx = xx3 — 2xj2 — 18xx 4- 24, 

and yl 4- 7c =(xx + hf - 2(xj 4- hf - 18(x1+1)4-24, since (xl5 yx) 
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and (xx + h, yx + k) are on the curve. Subtracting the upper 

from the lower equation, member for member, we have, 

k — h(S a?f2 — 4 a?! — 18) + h2(3 xx — 2) + h3, 

- = 3 - 4 xL - 18 + 7i(3 xl-2) + h\ 
h 

Let h approach zero; the terms on the right containing h and 

h2 will also approach zero, as the coefficients are constants. 

Limit - = 3 a?!2 — 4 a?x — 18, as h = 0. 
h ’ 

When ^ = 1, the slope of the curve is — 19 ; when xx = 3, 

the slope is — 3 ; when xx = 4, the slope is + 14. 

A double root of any equation corresponds to a point at 

which the function is zero and the slope of the curve, ob-. 

tained by the (h, k) method, is zero. 

8. Slope and maximum and minimum points.— When the 

slope is zero, the curve is for the instant parallel to the a?-axis. 

This is a necessary condition for a maximum or minimum 

point, i.e. a point at which the value of the function attains a 

greatest or a least value in some interval which includes the 

point. 

This may be accepted by the student as graphically evident. 

A formal proof depends on the methods of the calculus, and 

rests essentially on the method used in finding the slope. 

PROBLEMS 

See the preceding list of problems. 

1. Find the slope at any point (xu yx) of each of the follow¬ 

ing curves and locate the maximum and minimum points 

on the curve by setting the slope equal to 0 and solving for xx: 

a. y = 2 xs + 3 a?2 — 9 x — 7. 

b. y = 2 a?3 + 3 x2 — 7. 

c. y — x^ — 3 a?2 — 21. 

cl. y = 2 a?3 — 9 x — 7. 

e. y = 4 x3 — 3 x + .5. 

f. y — 4 a?3 — 3 a? -f- .05234. 
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2. Find the slope at any point (x1} y^) on 

y — x^ — 2 + 3 a,’2 — 18 a? + 21. 

This gives the slope m as m — 4 aq3 — 6 aq2 + 6 aq — 18. Plot 

the graph of y = 4 a?3 — 6 a;2 + 6 a? — 18, and note that the zeros 

of this function are the values of aq for which the slope of the 

curve y = x* — 2 ar5 + 3 x2 — 18 x + 21 is 0. These are values 

of x for which the original function has maximum and 

minimum values. 

9. Historical note. — The solution early in the sixteenth cen¬ 

tury of the cubic and biquadratic was the undisputed achieve¬ 

ment of a group of Italian mathematicians. Fiori, Tartaglia, 

and Cardan were involved in the solution of the cubic, while 

Ferrari, pupil of Cardan, solved the quartic. Not until the 

beginning of the nineteenth century was it shown that the 

general equations of higher degree are not solvable, this being 

the work of a brilliant young Norwegian named Abel. 

10. The cubic applied to angle trisection. — By higher mathe¬ 

matics it has been demonstrated that geometrical problems 

which can be solved by ruler and compass correspond alge¬ 

braically to problems whose solution can be effected by linear 

and quadratic equations and equations reducible to quadratics, 

i.e. by equations of which the roots will involve only quad¬ 

ratic irrationalities (square roots, and square roots of expres¬ 

sions involving only rational quantities and square roots). 

The trisection of an angle is a type of geometrical problem 

whose solution cannot be effected with ruler and compass; it 

is possible to reduce the trisection of an angle to an algebraical 

problem, the solution of the cubic equation. 

Let the given angle which is to be trisected be denoted, for 

convenience, by 3 a. Since this angle is given, the value of its 

sine is known. If the angle is given by a geometrical drawing, 

the ratio of the perpendicular h dropped from a point at a 

distance r from the vertex on one side to the second side to r, 
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i.e. gives the sine of the angle. Let the value of the sine of 
r 

the given angle be k. 

Given sin 3 a — k, find sin a. 

sin 3 a = sin (2 a + a) = sin 2 a cos a + cos 2 a sin a 

= 2 sin a cos2 a + (cos2 a — sin2 a) sin a 

sin 3 a = 3 sin a — 4 sin3 a. 

k = 3 sin a — 4 sin3 a. 

This equation is a cubic in the unknown sin a ; for convenience 

it may be written k = 3 x — 4 x3, substituting x for sin a. 

There are, in fact, three solutions of the cubic and these 

three solutions correspond to the fact that k is the sine not 

only of 3 a, but also of 180° — 3 a, and n • 360° + 3 a, and 

(2 n + 1) 180° -3 a. 

Thus the cubic which would give the sine of 10°, trisecting 

the angle of 30°, is .5 = 3 x — 4 cc3, or 4 a;3 — 3 x + .5 = 0. The 

same cubic would be obtained if it were desired to trisect the 

angle of 150°, or of 390°, or 750°, •••. There are an infinite 

number of angles which have this same sine, .5, but there will 

be only three different values involved when the sine of the 

third part of each of these angles is found. In the equation 

4 ar3 — 3 x + .5 = 0, the roots represent sin 10°, sin 50°, and 

sin 250°. (See problem 6, page 396.) 

11. Closer approximation to located roots. — The method will 

be shown by a numerical illustration. 

The equation 

(1) x3 — 2 a?2 — 18 x + 24 = 0, 

of which the graph is given on page 71, evidently has a root 

between 4 and 5. To form the new equation whose roots are 
4 

4 less than the given equation, substitute x' + 4 for x, giving 

(2) (xf + 4)3 - 2(x/ + 4)2 - 13(x'+ 4) + 24 = 0. 

Assume that this gives 

(3) x’3 + Bx'2 + Cxf + D== 0, in which B, C, and I) can be 

obtained by expanding and combining terms in (2). The left- 
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hand members of equation (.3) and equation (2) are then identi¬ 

cal. Evidently, if x — 4 is substituted for x' in (2), it will give 

the original equation, and consequently, if x — 4 is substituted 

in (3), it will give the original equation. Substituting, we have 

(4) (x — 4)3 + B(x — 4)2 + C(x — 4) 4- IJ = 0, which is identi¬ 

cal with the original equation. 

If the left-hand member of this equation, i.e. the original, 

is divided by x — 4, the remainder is D and the quotient is 

(x — 4)2 4- B(x — 4) -f- C; if this quotient is divided by (x — 4), 

the remainder is C; if the quotient of the preceding division 

is divided by x — 4, the remainder is B. 

x — 4) x3 — 2 x2 — 18 x 4- 24 

^-——————-—~ The continued division by 

1 + 2 ^ a;-4 is effected by the 

—^——— synthetic process, explained 

1 ^ ^ in section 4, above. 
+ 4 

l(-plO B 

(5) x's -f-10 x'2 -f 14 x’ — 16 = 0 is then the equation whose 

roots are 4 less than the roots of the original equation. This 

should be verified by substitution and expansion. The 

original equation has a root between 4 and 5. Hence this 

equation has a root between 0 and 1. By trial of tenths, .1, 

.2, .9, this equation is found to have a root between .7 and 

.8. Hence the original equation has a root between 4.7 and 4.8. 

Eorm the new equation whose roots are .7 less than the 

roots of (5). 
7)1 +10 +14 -16 (.7 

-f .7) + .74- 7.49'+15.043 

1 4-10.7 4- 21.49(— .957 

4- .7 + 7.98 

1 4-11.4(4-29.47 

+ .7 

1(4-12.1 

z3 + 12.1 z2 4- 29.47 z - .957 = 0. (6) 
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Equation (5) has a root between .7 and .8; hence equation 

(6) has a root between 0 and .1. 

By trial of hundredths, trying .02, .03, .04 ••• it is found that 

this equation has a root .03+, between .03 and .04 and 

evidently nearer .03. 

Hence our original equation has a root 4.73b 

In this way we can compute any real numerical root of a 

rational integral algebraical equation to any desired number 

of significant figures. 

Illustrative Problems. — 1. Find the cube root of 

1,624,276 to four significant figures. 

x3 — 1,624,276 = 0. By trial, substituting 100, 200, ••• for x, this is 
found to have a root between 100 and 200. 

x - 100) 
100) 

x' - 10) 
10) 

x"- 7) 

7) 

1 + 0 + 0 - 1,624,276 

+ 100 + 10000 - 1,000,000 
1 + 100 + 10000 (- 624,276 

+ 100 + 20000 
1 + 200 i :+ 30000 

+ 100 
1 + 300 + 30000 - 624,276 

+ 10 + 3100 - 331,000 
1 + 310 + 33100 (- 293,276 

+ 10 + 3200 
1 + 320 i c+ 36300 

+ 10 
1 + 330 + 36300 - 293,276 

+ 7 4- 2359 + 270,613 
1 + 337 + 38659 (- 22,663 

+ 7 + 2408 
1 + 344 ( :+ 41067 

+ 7 
1 + 351 + 41067 - 22,663 

By derivation, the roots 
are 100 less than the roots of 
(1) ; hence a root between 0 
and 100. By trial, substitut¬ 

ing, root between 10 and 20. 

By derivation, has a root 
between 0 and 10. By trial, 
a root between 7 and 8. 

By derivation, root between 
0 and 1. By trial, between 

.5 and .6, and nearer to .5. 

Hence the root of the original is 117.5, which may be partially checked 
by four-place logarithms. 
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2. Compute one negative root of 

2 x4 10 $ — 8 x2 — 11 x + 19 = 0. 

Negative root between — 1 and — 2. 

x + 2) 2 + 10 - 8 - 11 +19 
_ 2) - 4 - 12 +40 - 58 

2 + 6 - 20 +29 (-39 

- 4 - 4 +48 
2+2 -24 (+77 
-4 +4 

•2-2 (-20 
- 4 

x — .6) 
+ .6) 

2_ 6 - 20 + 77 - 39 

+ 1.2 - 2.88 - 13.728 + 37.9632 
2 + 4.8 - 22.88 + 63.272 

+ 1.2 - 2.16 -15.024 

2 — 3.6 - 25.04 (+ 48.248 
+ 1.2 - 1.44 

- (1.0368 

2- 2.4 (-26.48 

+ 1.2 

2 - 1.2 - 26.48 + 48.248 - 1.0368 

Root between 0 and 
1. By trial, be¬ 

tween .6 and .7. 

By derivation has a 
root betwen 0 and 

.1. By trial, be¬ 

tween .02 and .03. 

The original equation has a root — 2 + .62+, or — 1.38~, i.e. between 

- 1.38 and - 1.37. 

PROBLEMS 

See the two preceding sets of problems and use the results 

obtained. 

1. Compute to three significant figures the largest positive 

root of the following equations, 

a. 2 x? -j- 3 x2 — 9 x — 7 = 0. 

b. 2 x* -f- 3 x2 — 7 = 0. 

c. 2 xz — 9 x — 7 = 0. 

d. xA — 2 a?3 + 3 x2 — 18 x -f 21 = 0. 

2. Compute by the process indicated the positive root of 

#2 _ 3 x — 21 = 0 to three decimal places ; compute the same 

by solving as a quadratic, and compare as to efficiency the two 

inethods. 
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3. Solve the equation 4 x* — 3x + .5= 0, computing the 

smallest positive root to four decimal places. This is the 

value of sin 10°; check by your table of sines. 

4. In problem 5, page 245, you have computed the sine of 

3° to four decimal places. Write the cubic which will give the 

sine of 1°; compute the smallest positive root, and discuss to 

what decimal place it could be carried with propriety when 

the sine of three degrees is given to four decimal places. 

j xy — 1, and 

I y = \(x2-l$). 
5. Plot the graphs of the two equations <| 

Note that the points of intersection give the solutions of the 

two equations regarded as simultaneous ; but solving the two 

equations as simultaneous equations, we are led by substitution 

to the cubic x • \ (x2 — 16) = 1, or x3 —16 x — 4 = 0. Solve the 

cubic and compare with the solutions obtained graphically. 

6. Historical problem. The great Archimedes proposed the 

problem to cut a sphere by a plane in such a way that the 

two segments of the sphere should have to each other a given 

ratio. Archimedes showed that the solution could be obtained 

as the intersection of a hyperbola and a parabola. If the 

diameter of the sphere is taken as 10 and k as the ratio of the 

larger to the smaller segment, this problem leads to the cubic 

x3 - 300x + 2000^—*2 = 0 
k+ 1 

in which x represents the distance of the plane from the center 

of the sphere. Solve to two decimal places when k = 2. The 

plane at a distance x from the center then trisects the sphere. 

7. In the preceding problem show that the solution may be 

obtained as the intersection of a hyperbola and a parabola. 

8. A famous problem of antiquity is the problem to dupli¬ 

cate a given cube, i.e. to solve geometrically xz = 2 a3, a being 

the side of the given cube. Long before analytical geometry 

was invented it was known that the solution could be given as 

the intersection of the parabola x2 = ay with the parabola 
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?/2 = 2 ax. Construct the graphical solution when a is taken 

as 10. 

The problem piay also be solved by the intersection of either 

of the two given parabolas with the hyperbola xy = 2 a2. Verify. 

If two means, x and y, are inserted between a, and 2 a, i.e. 

- = - = then x is the solution of the equation x? = 2 a3. 
x y 2 a 

This method reduced the problem of the duplication of the 

cube to the problem of inserting between two given numbers, 

or lines, two geometric means. 

9. The volume of a spherical segment, greater than a hemi¬ 

sphere, of height x + r, is given by the expression 

V = ^ (2 r3 -f 3 r2x — x?); 
3 

the volume of a sphere is |-7rr3. Find the segment of a sphere 

of water of radius 10 which will be equal in weight to a 

sphere of wood, radius 10, which wood is only .6 as heavy as 

water. This leads to the cubic equation 

.6(| Trr3) = ~(2 r3 + 3 r2x - x>), 
3 

or x? — 3 r2x -f .4 r3 = 0, 

and r x is the depth to which the sphere of wood will sink 

when it is placed in water. Compute this depth when r = 10. 

10. Ice is only .92 as heavy as water. Use the equations of 

the preceding problem, substituting .92 for .6, to find the depth 

to which a spherical iceberg of radius 100 feet, if one were 

possible, would sink in water. 
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CHAPTER XXVI 

WAVE MOTION 

1. General. — In nature there are two types of recurrent 

motion, somewhat closely connected mathematically, in which 

repetition of motion occurs at regular intervals. 

One type of this motion, in cycles as we may say, repeats 

the motion in one place, and is in a sense stationary. The 

tuning fork in motion moves through the same space again 

and again; a similar movement is the motion of a vibrating 

string. Of this stationary type may be mentioned the heart¬ 

beats, the pulse, the respiration, the tides, and the rotation 

of a wheel about its axis. 

The second type of recurrent motion transmits or carries 

the vibratory impulse over an extent of space as well as time. 

The waves of the sea are of this character. Sound waves, 

electrical vibrations or waves, and radiant energy vibrations 

are transmitted by a process similar to that by which the 

waves of the sea are carried. 

Both of these types of motion are representable mathe¬ 

matically by equations involving a sequence of trigonometric 

functions. To the fundamental and basic function involved, 

y — sin x, we will direct our attention in the next section and 

to simple applications in other sections of this chapter. 

2. The sine curve. — As a radius vector of unit length ro¬ 

tates in a plane with uniform velocity about a center, the sine 

of the angle 0 fluctuates between 1 and — 1. The variation of 

sine 6 may be represented by the movement on the y-axis 

of the projection of the vector, and this movement of the 

407 
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Graph of y = sin 0 ; a pure sinusoid 

The length AA1 equals the circumference of the circle ; the amplitude, 
vertical distance between highest and lowest points, equals the diameter 

of the circle. 

Graph of y = sin 2 0; a sinusoidal curve 

The frequency is double that represented in the preceding graph. 

y = sin0 + sin 2 0; obtained by addition of corresponding ordinates in 

the two preceding curves 

This type of curve is obtained from a tuning fork having an octave 
overtone. 
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projection is termed simple harmonic motion, frequently 

abbreviated S. H. M. Precisely the same type of movement 

is given by the projection of the moving vector on the a>axis, 

x = cos 0, or on any line in the plane of the motion, 

Z = COS (0 — e), 

wherein e is the slope angle of the line and z is the projection 

of the radius. 

If the vector completes one revolution, 2 nr, or 360°, in 1 

second, the period of the motion is called 1 second, and the 

frequency, or the number of repetitions of the complete move¬ 

ment or cycle in a second, is 1 per second. If the complete 

revolution is effected in i second, the period is i second and 

the frequency 2 per second. The graphs of y = sin 0 and of 

y = sin 2 0 represent under these conditions the progress of the 

ordinate for uniform changes in 0, i.e. for uniform changes 

in the time, since the rotation is with constant angular ve¬ 

locity. For convenience the angle is conceived as measured 

in radians and the radius is taken on the cc-axis as the unit to 

represent one radian; the abscissa then corresponds either to 

the angle measured in radians or to the length of arc traversed 

by the end of the moving vector. In plotting y = sin 0, values 

of 0 from 0 to 360° or from 0 to 2 7rr are plotted on the horizon¬ 

tal or 0-axis. Note particularly the points for which 0=0, 

30°, 45°, 60°, 90°, 180°, ... 360° ; or 

0, 
77“ 7r 7r 

— 5 

6’ 4’ 3’ 2 

TT 77- r 9 r 
-,  , 7T .." ij 7T 
O ' O 7 

Note that A A' on our diagram represents one complete cycle 

or period. For many purposes it is desirable to take t, the 

time (in seconds, usually), as the variable. The same graph 

then represents y = sin 2 7rt, wherein AA' is taken equal to 1 and 

the horizontal axis is the £-axis. The same curve represents 

y = sin 20 7rt, if A A' is taken as of 1 unit of time. The 

upper curve in our diagram is a pure sinusoid, the distance AA' 

representing the circumference of the circle of which the 

maximum ordinate is the radius. 
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The two curves plotted should be carefully studied; the 

lower curve has double the frequency of the upper and one 

half the period. The swing, amplitude as it is termed, is the 

same; the amplitude is the algebraic difference between the 

maximum and minimum values of 

the function. 

Any curve representing 

y = a sin 0 or a sin £0 

or a sin (£0 -f- e) 

is called a sinusoid. We shall find 

that the graphs of y — a cos 6, 

y — a cos kO, and y = a cos (kO + e) 

differ from the preceding only in 

position. 

For most purposes it is conven¬ 

ient to plot time in complete units 

on the ordinary coordinate paper, 

the unit depending on the period 

of time in question. For a com¬ 

plete rotation in one minute ten 

seconds might be taken as one 

unit on the horizontal axis with 

the radius as vertical unit, and the 

curve would differ very slightly 

from our curve. The highest and 

lowest points would fall then at 

15 and 45 respectively; 0, 5, 7.5, 

10, 15, 20, and 30 seconds corre¬ 

spond then to 0, 30°, 45°, 60°, 90°, 

120°, and 180° respectively. 

Physicists and engineers com¬ 

monly draw the sinusoidal curves 

which are of frequent occurrence entirely from graphical 

considerations. The circle with the desired amplitude is 
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drawn; the angle between the axes is bisected and re¬ 
bisected (as often as desired); an appropriate length for a 
complete cycle is taken on the horizontal axis, and this is 
divided into just as many parts, usually 16, as the circum¬ 
ference of the circle is divided by the axes and the bisecting 
lines which were drawn. At each point on the horizontal axis 
an ordinate is drawn and from each corresponding point on 
the circle a horizontal line is drawn to intersect the correspond¬ 
ing ordinate. Corresponding points have the same numbers 
if on the circle intersection points are numbered from the 
right-hand intersection with the horizontal axis counter-clock¬ 
wise and numbered on the line from the left-hand end of the 
horizontal length taken to represent the time of one cycle, as 
indicated on our diagram. The two upper figures, page 408, 
were drawn by this method. The student is urged to make both 
the graphical construction and the construction by using the 
numerical values of the sines from the tables. Compare also 
the work under Section 11, Chapter VII. 

PROBLEMS 

1. Plot the curves y = sin 0° and y — sin 3 0° on the same 
sheet of coordinate paper; take 1 inch as radius and on the 
horizontal axis take 1 inch to represent 60°. For a pure 
sinusoid, y = sin x, one unit on x should be the length of the 
radius ; then 3.14+ radians represents 180°, the second point 
in which the curve y — sin x cuts the axis of abscissas. 

2. Plot y = sin 2 irt; note that t = y1^, T2y, ••• corresponds to 
36° and multiples ; take one unit for t as 6 times the radius 
chosen. 

3. How could you interpret the curve of the preceding exer¬ 
cise as y = sin 4 irt ? 

4. Plot 10 points of y = sin (0 — 30°). This curve is similar 
to the preceding; it is 30° behind, we may say, the regular 
sine curve; the “lag” is 30°; the two curves y — sin 0 and 
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y = sin (0 — 30°) are said to be out of phase, the phase angle 

of the second being — 30°. The “ phase angle ” is of particu¬ 

lar importance in the theory and practice of alternating cur¬ 

rents. 

5. Plot the curve E = 110 sin 0. Note that if the horizon¬ 

tal scale be taken so that 1 inch represents 60° and the vertical 

scale such that 1 inch represents 110, the curve is precisely 

the first curve of problem 1. This curve represents the vari¬ 

able electromotive force (e. m. f.) developed by a generator 

which generates a maximum e. m. f. of 110 volts. To plot 

the curve no knowledge of electricity is necessary, but com¬ 

plete interpretation requires technical knowledge. 

3. Sound waves. — If a tuning fork for note lower C is set 

to vibrating, the free bar makes 129 complete, back-and-forth, 

vibrations in one second. By attaching a fine point to the end 

of the bar and moving under this bar at a uniform rate, as it 

vibrates, a smoke-blackened paper, a sinusoidal curve is traced 

on the paper. Our curve is traced by a bar vibrating 50 times 

in 1 second. 

The curve y = sin (50 X 2 irt) 

Tuning fork vibrations recorded on smoked paper. 

In 1 second 50 complete vibrations are made; the vertical 

distance between the top and the bottom of the arcs repre¬ 

sents the distance moved by any point on the moving bar; 

the motion is simple harmonic (S. H. M.). The period is 

second; the frequency is 50; the amplitude is about -gL- inch. 

If the smoked paper were moved with uniform velocity under 

the vibrating bar in such a way as to cover 50 times the cir¬ 

cumference of a circle with radius -fa of an inch, or 50 x 2 ir X fa 

inch per second, the curve traced would be almost a perfect 

sinusoid of the type y = sin 0. The points move of course on 
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arcs of curves, but the variation from a straight line is ex¬ 

tremely slight. 

Corresponding to each movement of the vibrating rod there 

is a movement of the air. As the bar moves to the right it 

compresses the layer of air to its right and that compression 

is immediately communicated to the layer of air to the right; 

as the bar moves back and to the left, the pressure on the ad- 

a 

ou 

r 

e 

a 

Vibration records produced by the voice 

“ a ” as in “ ate ” ou ” as in ‘1 about ” in “ relay ” ; “ e ” 

in “be”; and “a” in “father.” The tuning fork record, frequency 

50 per second, gives the vibration frequencies. 

jacent air is released and a rarefaction takes place. In 4^- of 1 

second you have the air adjacent to the rod compressed, back 

to normal, and rarefied; during this time the neighboring air 

is affected and the compression is communicated a distance 

which is the wave ieyigtli of this given sound wave. In 1 second 

this disturbance is transmitted 1100 feet at 44° Eahrenheit. 

The wave length for this sound wave then is ij-jp- = 22 feet. 

The wave length is commonly designated by A. If v is the 

velocity, and t the time of one vibration, A = vt. 
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The notes of the key of C on the natural scale have the fol¬ 

lowing vibration frequencies: 

e d e f g a be' 

256 288 320 341.3 384 426.7 480 512 

The intensity or loudness corresponds in the rod to the 

length of swing of the vibrating rod; as this amplitude de¬ 

creases, the intensity of the sound decreases. ' For small am¬ 

plitudes the vibratory motion gives a convenient way of 

measuring small intervals of time. 

Thus on the above diagram if the tone of the note lower C, 

y = sin 2561rt, were represented, each complete wave would 

represent yi-g- of 1 second; each half or each arch would rep¬ 

resent 2tq- of 1 second. Tuning bars, with periods -gL- and 

of 1 second are run electrically for timing purposes. 

The curve y = sin 0 + sin 2 0 represents the combination in 

sound of two tones which differ by an octave. Precisely the 

type of curve which is represented by our diagram can be 

produced mechanically by the record of a vibrating tuning 

fork1 which sounds not only the principal note but also the 

octave overtone, due to the fact that the bar vibrates about the 

middle point at the same time that it vibrates about the end. 

Vibrating strings also have multiple vibration, overtones and 

other tones. Harmony is the result, in general, when the 

vibrating instrument gives vibrations which are connected 

with the fundamental vibration by simple numerical relations, 

like that of the overtone. 

Thus the notes of the major chord, key of C, c, e, g, c, on 

the piano, have the vibration frequencies in the ratios 4 to 5 

to 6 to 8. 

4. Helical spring. — Similar to the vibrations of the air are 

those of a spiral wire spring which oscillates back and forth 

when a weight is suspended by the spring; the successive 

compressions and elongations of the wire correspond quite 

1 See Miller, The Science of Musical Sounds, p. 188, for photograph. 
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closely to the condensations and rarefactions of the air. The 

position of the weight at any instant can be given by an 

equation entirely similar to the equation above of note C. 

Thus if the time of one complete vibration is 1 second, and 

the maximum displacement is 4 inches, the equation is 

y = 4 sin 4 7rtr. 

This gives the elevation above and below the point at which 

the weight comes to rest. Perfect elasticity of the spring is 

assumed. 

5. Light waves. — Light waves have a much higher velocity 

than sound waves, 300 x 106 meters per second. The different 

wave lengths correspond to different colors, just as different 

wave lengths in sound waves correspond to different tones. 

The wave length of the light from burning sodium (I)2 of the 

spectrum) is 0.5890 x 10“6 meters per second, and for other 

colors varies for the visible spectrum between .39 and 

.75 x 10-6 meters. The vibration frequency of the sodium 

light is the number of these waves which occur in one second 

of time, hence since these waves cover 300 x 106 meters in one 

second the frequency n is such that 

n • A = v, or n • 0.589 x 10“6 = 300 x 106, 

whence n = = 509 x 1012 vibrations per second. 
.589 x 10-6 

Radiant energy is of the same general nature with longer 

waves. Light waves differ from the sound waves in having 

transverse vibrations, not longitudinal. 

6. Electricity. — In electricity, particularly in the discussion 

of alternating currents, the sine curve plays a prominent role. 

The equations e = 156 sin 0, 

i — 4 sin 0, 

and p = ei = 624 sin2 0 — 624(-|- — cos 2 6) 

= 312 - 312 cos 2 (9, 
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represent respectively the electromotive force, e, measured in 

volts, and the current, i, measured in amperes, and the power, 

p, measured in watts 

of an ordinary electric 

current. 

In general, current 

and electromotive 

force are “ out of 

phase ”; the equa¬ 

tions when the cur¬ 

rent lags 30° behind 

the electromotive 

force are, 

Sinusoids traced by electrical means e — gjn 

Oscillogram of an alternating current in which { — 4 sin (0 — 30° 
current and e. m.f. are “ in phase.” 

On the two diagrams 

we have represented by a photographic process the magnitude 

of the current and electromotive force of an alternating cur¬ 

rent. The current is represented by the curve with the 

smaller amplitude. 

In the first illus¬ 

tration current and 

e. m. f. are “ in 

phase,” and under 

these conditions a 

maximum of power 

is developed ; in the 

second illustration 

current and e. m. f. 

are “ out of phase,” 

the- current lagging 

behind the e. m. f. 

The power at any instant delivered by an alternating current 

is given by the product of the current and the e .m. f. at that 

instant. Employing the formulas, 

Oscillogram showing current curve (lower) lag¬ 

ging 90° behind e. m. f. curve 
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cos (a — /3)= cos a cos /3 -f sin a sin /3, 

cos (a -f /3) = cos u cos /3 — sin a sin (3, whence 

cos (a — (3) — cos (« + /?)= 2 sin a sin /3, 

show that p = i e sin 0 sin (0 — 30°) may be reduced to 

— [cos 30° - cos 2(6 - 15°)]. 
2 

Plot the curve showing the power at any instant, when 

e = 156 cos 6 and i = 4 cos (0 — 30°). 

Note that this power curve is also a sinusoidal curve but placed 

with reference to a horizontal line which runs 270 units above 

the cc-axis. 

PROBLEMS 

1. Plot the curves y = sin 256 7r tr and y = sin 512 7r tr, 

using inch for 1 on the vertical axis and 6 half-inches for t-L 

of 1 second on the t or horizontal axis. Treat the equations 

as y = sin 2 7rtr, and y = sin 4 7rtr, respectively, substituting for 

t, 0, .1, .2, .3, —, .9, and 1 instead of y1^- of yig-, T2y of yiy, •••. 

Note that the unit Ti-§ taken as 1 on the horizontal axis, disposes of the 

difficulty of the awkward fractions. 

2. What is the frequency of the vibrations in the curves 

of the preceding example ? What are the corresponding wave 

lengths ? 

3. How would y = cos 2 7rtr differ from the curve for 

y = sin 2 7r£r? Write 10 values of y — cos 2 7rtr for t = 0, 
1 1 1 1 _5_ 1 ... 1 
8’ 6y T’ 8’ 12’ 2’ 

Note that these angles correspond to 0°, 30°, 45°, 60°, ••• respectively. 

4. Use the equation cos 6 = sin (90° + 0) to show that 

y — sin 0 lags 90° behind y = cos 0. 

5. Draw the graphs of y = cos 6 and y = cos 2 0; divide the 

arc of the circle into 24 equal parts and take the distance rep¬ 

resenting 2 7rr as divisible by 24. 
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and compare with 

y = sin 0. Discuss the corresponding motion of the moving 

point on the vertical axis. 

7. The limits of hearing are for vibrations of 16 per second 

and 40,000 per second. What are the corresponding wave 

lengths ? 

8. Plot on the same diagram the two curves, 

e = 156 sin 0, 

i = 4 sin (0 - 30°). 

9. In problem 8 find the value of e for each 30° to 360°. 

This completes a “ cycle ” of values. The time of this move¬ 

ment in a 60-cycle system is -J-g- of 1 second. What is the 

value of t for the angles given, and also for 0 = 45°, 135°, 225°, 

and 315° ? 

10. On the curve, on the same axes as the preceding, 

z = 4 sin (0 — 30°), read the values of 0 for the angles 30°, 45°, 

60°, 90°, •••to 360°. These may represent current in the cir¬ 

cuit of problems 5 and 6; the current lags 30° behind the 

e. m. f. What interval of time is represented by the 30° lag ? 

11. Plot to the same axes the curves, i =± 4 sin (0 -J- 40°), 

e — 156 sin 0. 

The curve of i here leads the curve of e by 40°. 

In the case of i, what are convenient values of 0 to plot 

without using tables ? 

12. Assuming that it takes ^ of 1 second for one com¬ 

plete cycle of i or e in problem 8, find the time difference 

represented by the 40° angular difference. Find angles ap- 

proximately conesponding to yyg-, Tim Tinn Tiro’ -yuir of 
1 second. 

7. Sine curve; circle; ellipse; cylinder. — If a circular cyl¬ 

inder, such as the one in our diagram, is cut by any plane, the 

6. Draw the graph of y — sin ^ + 0^ 
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intersection is an ellipse. 

Thus, the plane through 

AOB in our diagram, in¬ 

clined at an angle of 45° 

cuts the cylinder in an 

ellipse whose equation is 

ff2 t y2 =1 

a- 2 a2 

The circular base and any 

parallel section has the 

equation 

*+£=i. 
a2 a2 

Taking the portion of the 

cylindrical surface be¬ 

tween the elliptical curve 

and the circular curve 

through the same center 

and unrolling it gives a 

pure sinusoid, 

y = a sin 0. 

In the figure PQ = QM} 

since the cylinder is cut 

at an angle of 45°. But 

QM, the ordinate on the 

circle, equals a sin 0 and the arc AQ, which will be the ab¬ 

scissa, is aO. 

Hence the curve, when 

rolled out, is 

y — a sin 6 

and will give a complete 

A plane intersecting all the elements of 

a circular cylinder cuts the surface 
in an ellipse 

Sinusoid developed by means of 
cylinder 

a 

arch of the sinusoid if 

upper and lower portions 

of the surface are given. 
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Experimentally the student can develop this curve by roll¬ 

ing a sheet of paper about a cylinder and cutting out with a 

sharp knife the required portions. 

Piston-rod diagram 

AB, tlie stroke ; HC, connecting rod ; 0(7, crank arm. 

8. Piston-rod motion. — The common piston-rod motion of 

engines furnishes abundant trigonometric material, much of 

which is of sufficiently elementary character so that by the 

application of simple formulas problems of interest to the 

engineer can be solved. 

The essential features for our purposes are the piston head 

H, the connecting rod HO of length 1, the crank arm OC of 

length r, and the stroke AB, which is the distance through 

which the piston head II moves. Were the connecting rod 

infinite in extent, the motion of II would be simple harmonic 

motion when C is rotating with uniform velocity about 0. 

In modern engines the ratio of l to r varies from 3 to 1, low, 

to 4.8 to 1, which is approximately that of a Ford engine. It 

is desired to find for each position of the piston head the 

angle a of the connecting rod, the angle 0 of the crank shaft, 

and also the effective pressure, called the tangential compo¬ 

nent, of the connecting rod to turn the crank shaft. 

In the first place, when l:r — 4.8:1, the angle a never 

exceeds arc sin- 
4.8 

Determine this angle in degrees. As the 

pressure P at II is horizontal, only a portion, Pcosa, of this 
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pressure is communicated to the connecting rod. Discuss the 

variation in pressure due to the inclination of the connecting 

rod and note that it is relatively small. Of course the pressure 

of the gas in the cylinder chamber is not uniform and this 

Connecting rods and crank arms in six-cylinder automobile engine: 

ratio l: r = 3 :1 

variation is much more serious than the variation due to the 

angle of a connecting rod. 

Find also the maximum vertical pressure P sin a on the 

cross-head support. 

Show that the length of the stroke AB is equal to the 

diameter of the crank circle. 

The position of the piston head is indicated in decimal parts 

of the total stroke 2 r, as measured from A. In our diagram 

the piston head is at .75 of the stroke. To determine a and 0 

when the position of the piston head is given we solve a 

triangle in which the three sides are known. Thus on our 

diagram 00' = 4.8; HO = 4.3; i7(7=4.8; and OC=l. Solve 

this triangle and determine the angles a and 6. Commonly a 

diagram is drawn in which the angles 0 of the crank arm are 

plotted as abscissas and the piston displacements are plotted 

as ordinates. 
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PROBLEMS 

1. Given <9 = 0, 10°, 20°, 30°, 60°, 90°, 120°, 150°, and 180°, 

find the corresponding values of a and the positions of H as 

decimal parts of the stroke. Plot angles as abscissas and 

piston displacements as ordinates. How could you complete 

this to 360°? Could you go on beyond 360°? Take l: r — 4.8 :1. 

2. Assuming that the piston rod transmits a uniform pres¬ 

sure of 200 lb., find the effective turning pressure when 

0 = 30°, 60°, and 90°. Resolve the force at C into two com¬ 

ponents, one normal to the crank shaft and the other along 

the crank shaft. The component normal to the crank shaft, the 

tangential component, is effective, i.e. does the work. The 

radial pressure is also computed and is used to determine 

friction loss. Find the values of the radial pressure corre¬ 

sponding to above tangential pressure. 

Compute in this case for the given angles the pressure on 

the cross-head support by the connecting rod due to the com¬ 

ponent, P sin a. 

Connecting rod, crank arm, and cylinder on A. T. & S. F. locomotive 1444 

The stroke is 30 inches and connecting rod 60 inches. 

3. Draw the graph illustrating relative positions of the 

piston head and the connecting rod when the crank-pin is at 

the lowest point, in the locomotive illustrated above. 

4. Find the number of strokes of the piston per minute 

when the train moves 60 miles per hour, given that the driving 

wheels are 57 inches in diameter. 



CHAPTER XXVII 

LAWS OF GROWTH 

1. Compound interest function. —- The function S — P( 1+ i)n 

is of fundamental importance in other fields than in finance. 

Thus the growth of timber of a large forest tract may be ex¬ 

pressed as a function of this kind, the assumption being that 

in a large tract the rate of growth may be taken as uniform 

from year to year. In the case of bacteria growing under 

ideal conditions in a culture, i.e. with unlimited food supplied, 

the increase in the number of bacteria per second is propor¬ 

tional to the number of bacteria present at the beginning of 

that second. Any function in which the rate of change or 

rate of growth at any instant t is directly -proportional to the 

value of the function at the instant t obeys what has been 

termed the “ law of organic growth,” and may be expressed by 

the equation, 
y = cekt, 

wherein c and k are constants determined by the physical facts 

involved, and e is a constant of nature analogous to 7r. The 

constant k is the proportionality constant and is negative when 

the quantity in question decreases ; c is commonly positive; 

e = 2.178 .... 

The values of the function of x, cekx, increase according to 

the terms of a geometrical progression as the variable x increases 

in arithmetical progression. 

2. w and e. — A function can be found by methods of the 

calculus which is such that the rate of growth of the function 

423 
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at any instant t, or x, exactly equals the value of the function at 

that instant. This function is given by the equation, 

y = e* or y = ex. 

The constant e is represented by the series 

e = 1+ T + Li + Li + Li**', 

wherein [3, called factorial 3, represents 3x2x1, and 

[4 = 4x3x2xl, and, in general, [w, n being a positive in¬ 

teger, represents the total product of all the integers from n 

down to 1. The sum of this series to 5 decimal places is 

2.71828 ; to 10 places, = 2.7182818285. 

The curve represented by the 

equation 
y = e 

is such that at any point on this 

curve the slope equals in nu¬ 

merical value the ordinate at 

that point. 

The graph of y — e~x is such 

that the slope at any point is 

the negative of the ordinate at 

that point. 

The graph of y = ekx is such 

that the slope at any point is k 

Graphs of y = ex and y = 10x 

times the corresponding value of the function at that point. 

Values of the function y = ex may be determined by loga¬ 

rithms. 
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Thus to find the points on y = ex, for which 

x = — 2, — 1, 0, .1, .2, .5, .8, 1, 2, and .3 respectively, 

we take first log y = x log e; since log e = .4343 

V
I 1 II 8 log y — — .8686, y = .135 

= 9.1314-10 

X = — 1, log y = — .4343, y = .368 

= 9.5657 - 10 

x— 0, log y = 0, y = 1 
X = .1, log y — .0424, y — 1.103 

x = .2, log y = .0869, y = 1.222 
x = .5, log y — -2171, y = 1.649 

x = .8, logy= .3474, y = 2.225 

x = 1, log y = .4343, y = 2.718 

V) II 8 log y = .8686, y = 7.390 

x = 3, log y = 1.3029, y = 20.09 

Similarly, if y = ce kx, log y = log c + kx log e, and these values 

are obtained by logarithms. 

The limit of the expression 

as n approaches infinity gives the value, e. When n is taken 

as a large positive integer, it can readily he shown that this 

expression 

has a value differing but slightly from e. 

e and 7r may be called fundamental constants of nature; in 

mathematical work as applied to statistics and to physical 

problems of varied kinds these constants often appear. 

3. Natural logarithms. — The first logarithms as computed 

by Napier were not calculated to any base, but were founded 
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upon the comparison between an arithmetical and a correspond¬ 

ing geometrical progression. However, a base of the Napierian 

logarithms can be established, and it is approximately 1. 
e 

. L 
I 4 

I 
V 

l-c )( 
L) 

-- 

( 
s-4 

2 3 r ]; r 

Graph of y = logex 

The ordinates represent the “natural logarithms” 

of the numbers represented by the abscissas. 

■tS: ::::::::: From the mathematical point of view, and 

:::± indeed for many applications of mathe- 

::::::::::::::: matics to physical problems, the base e is 

zz~l ::::::::: preferable to 10 as the base of a system of 

logarithms. Logarithms to the base e are 

11 II I Hi called natural logarithms. 

4. Application. — The most immediate application of a 

function in which the growth is proportional to the function 

itself is to the air. The decrease in the pressure of the air 

at the distance h above the earth’s surface is proportional 
to h. 

h 

The expression P— 760 e 7990 gives the numerical value of 

the pressure in millimeters of mercury for h measured in 

meters. The negative exponent indicates that the pressure 
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decreases as h increases. In inches as units of length of the 

mercury column, h in feet, 

P = 29.92 26200, 

This is known as Halley’s Law. 

The growth of bean plants within limited intervals and the 

growth of children, again between quite restricted limits, 

follow approximately the law of organic growth. Radium in 

decomposing follows the same law, the rate of decrease at any 

instant being proportional to the quantity. In the case of 

vibrating bodies, like a pendulum, the rate of decrease of the 

amplitude follows this law; similarly in the case of a noise 

dying down and in certain electrical phenomena, the rate of 

decrease is proportional at any instant to the value of the 

function at the instant. 

PROBLEMS 

1. By experiment it has been found that 1000 of the so- 

called “hay bacteria” double their number, under favorable 

conditions, in 20 minutes. Find the rate of growth per 

minute. Take n — 1000 ekt, 

and determine k by substituting n = 2000, t = 20, and solving 

for k. Determine the number that would grow from 1000 

bacteria in 1 hour; in 1 day. 

2. The cholera bacteria have been found, under favorable 

conditions, to double their number in 30 minutes. Determine 

the rate of growth per minute, and the number that would 

grow in one day from 1000. 

Note. The favorable conditions cannot be continued for such a period. 

3. Assuming that 

P = 760 e_sooo 

find the value of h which will reduce the pressure of the air by 

1 mm. Take the logarithm of both sides and note that 
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h 

8000 
log10 e must reduce log 760 to log 759. Find at what 

height the mercury column is reduced 1 cm. At what height 

would the pressure he reduced to 660 ? Are these heights 

ever attained ? 
/ 

4. Find the barometric pressure when 

li = 1000, 5000, 10,000, and 15,000 feet, assuming 

P — 29.92, when h = 0, in which P is the numerical value 

of the pressure in inches of mercury and the height is h feet. 

Find the height for which the pressure decreases ^ of 1 inch. 

5. Show that if the height of the elevation is measured in 

miles, the pressure in inches is given approximately by the 

formula _ h 
P = 29.92 e 5. 

Note that 26,000 is nearly 5 x 5280. The constant 26,200, above, is 

taken for simplicity instead of 26,240. 

6. To what change in height does the maximum variation 

of the barometer recorded on the photograph, page 60, 

correspond ? 

7. Compute by the progressive method of Section 4, 

Chapter XII, the value of e, from the series, 

= l + l + ii + Li + d + ii + ii + Li + Li + *** 
by summing 8 terms to 8 decimal places. 

8. Plot on the same diagram and compare the two graphs, of 

y = ex and y = 10*. 

9. Plot the curve y = e-x2, taking ^ inch as .1 on the hori¬ 

zontal and on the vertical axes. This curve represents what 

is termed the normal distribution curve, which is of funda¬ 

mental importance in all statistical work. In general, large 

groups of individuals may be distributed as to ability in any 

given quality over the area under such a curve ; the middle ab¬ 

scissa at x = 0 represents average ability, and deviation to one 

side or the other represents, on one side, ability above the aver- 
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age and, on the other, ability below the average. The total 

number of all individuals considered is represented by the 

area between the curve and the ai-axis. 

An interesting graphical illustration of a normal distribu¬ 

tion curve is the crowd at a football game when a great 

bleacher is not filled. The central aisles are all filled to a 

height representing the middle ordinate and from this out in 

either direction, the ordinates drop off, frequently in strikingly 

symmetrical manner, and corresponding quite closely to the 

normal distribution curve. 

5. The curve of healing of a wound. — Closely allied to the 

formulas expressing the law of organic growth, y — ekt, and the 

law of “ organic decay,” y — e~kt, is a recently discovered 

law which connects algebraically by an equation and graph¬ 

ically by a curve, the surface-area of a wound, with time 

Sq.cm. Scar --- Wound *-*~—* 

Area 

30 15 

20 10 

10 5 

Day 0 4 8 12 16 20 24 28 32 36 40 44 
May 15 19 23 27 31Je.4 8 12 16 20 24 28J7.2 6 ,10 14 18 20 

Progress of healing of a surface wound of the right leg, patient’s age 31 years 

The observed curve oscillates about the smoother, calculated curve. 

expressed in days, measured from the time when the wound is 

aseptic or sterile. When this aseptic condition is reached, 

by washing and flushing continually with antiseptic solutions, 

two observations at an interval commonly of four days give 

the “index of the individual,” and this index, and the two 

measurements of area of the wound-surface, enable the physi¬ 

cian-scientist to determine the normal progress of the wound- 

surface, the expected decrease in area, for this wound-surface 

of this individual. The area of the wound is traced carefully 
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on transparent paper, and then computed by using a mathe¬ 

matical machine, called a planimeter, which measures areas. 

The areas of the wound are plotted as ordinates with the 

respective times of observation measured in days as abscissas. 

After each observation and computation of area the point so 

_ Observed 8 16 24 32 • 40 
?/ Calculated 8 16 24 32 40 44 

Sept. 23 Oct. 1 9 17 25 Nov. 2 8 12 

Progress of a surface wound of the right knee 

Two infections in the course of healing are indicated. 

obtained is plotted to the same axes as the graph which gives 

the ideal or prophetic curve of healing. Two such ideal 

curves and also the actual observed curves are represented in 

our diagrams. 

When the observed area is found markedly greater than 

that determined by the ideal curve, the indication is that 

there is still infection in the wound. This is the case de¬ 

picted, as will be noted, in the smaller diagram. A rather 

surprising and unexplained situation occurs frequently when 

the wound-surface heals more rapidly than the ideal curve 

would indicate; in this event secondary ulcers develop which 

bring the curve back to normal. This is the type which is 

represented by our larger diagram. 

This application of mathematics to medicine is largely due 

to Dr. Alexis Carrel of the Rockefeller Institute of Medical 

Research. He noted that the larger the wound-surface, the 

more rapidly it healed, and that the rate of healing seemed to 

be proportional to the area. This proportionality constant is 
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not the same for all values of the surface or we would have 

an equation of the form, 
S = JStf-*1, 

in which Si is the area at the time that the wound is rendered 

sterile and observations to be plotted really begin. 

The actual formulas, as developed by Dr. P. Lecomte du 

Noiiy of Base Hospital 21, Compiegne, France, are 

6 Si ’ 

giving the characteristic constant of the wound. 

Si is the measure of the area, first observation; 

second measurement taken after 4 days. 

(2) S. = «„_,[! - <(4 + V'4 »)], 

S2 is a 

wherein Sn is the area after 4 n days ; similarly, Sn_i is the area 

after 4(n — 1) days, etc.; each ordinate is obtained from the 

preceding; i is the constant as determined above. 

Recent experiments by Dr. du hTouy show that there is a 

normal value of i dependent upon the age of the individual 

and the size of the wound, and that the individual index as 

determined by two observations will doubtless reveal facts 

concerning the general health of the individual. 

The data given are taken from the Journal of Experimental 

Medicine, reprints kindly furnished by Major George A. 

Stewart of the Rockefeller Institute. The diagrams are 

reproduced from the issue of Feb. 1, 1918, pp. 171 and 172, 

article by Dr. T. Tuffier and R. Desmarres, Auxiliary Hospital 

75, Paris. 

6. Damped vibrations.—The combination by multiplication 

of ordinates in the two functions, y = e-V and y = sin Jc2t, which 

we have seen to be fundamental in the mathematical interpre¬ 

tation of many phenomena of nature, gives a formula which 

also has wide application. 

The formula 
y = sin k2t, 
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expresses the law by which the decrease in intensity of the 

vibrations defined by y = sin k2t may be determined, under 

certain conditions. 

Damped vibration curve by multiplication of ordinates 

Thus a pendulum swinging in the air, when the friction is 

proportional to the velocity, has this form of equation as the 

equation of motion. We have indicated on our diagram the 

and y = — e~l 

and the damped vi¬ 

bration curve 

y = e~l sin 2 7rt. 

The student should 

check the values, re- 

. drawing all the curves 

on double the scale of 

the illustration in the 

text. 

A beautiful damped vibration curve is obtained by the 

discharge of an electrical condenser. In our illustration the 
equation 

curves 

y = sin 

V = 

?+2trt 

Damped vibration produced electrically by the 
discharge of a condenser 

y — e 2' siny2 -rrt + F 
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represents quite closely the curve, using the maximum ordi¬ 

nate as unity, i.e. when t = 0, and on the horizontal axis the 

measure of the time in • seconds of one complete vibration is 

taken as unity; in the electrical occurrence represented by 

this photograph, and the corresponding light phenomenon 

which produced the photograph, the action took place in about 

4ij of one second, and of one second is approximately the 

time of one vibration on this curve. 

PROBLEMS 

1. Plot the following curves, in the order given: 

y = sin 2 -ntr, 

taking two half-inches to represent t = 1 on the horizontal 

axis and 6.2 half-inches to represent unity on the vertical axis ; 

use the graphical method. 
_t 

y = e \ 

taking 6.2 half-inches to represent unity on the vertical axis, 

and two half-inches to represent one second on the horizontal 

axis. _* . o . 
y = e 2 sin Zirt, 

by multiplication of ordinates. 

Note that by taking five half-inches to represent unity on the vertical 

axis each half-inch represents .2 and each twentieth of an inch represents 

.02. These facts are to be used when you multiply ordinates to obtain the 

third of these curves. For the values of the powers of e consult the table 

at the back of the book. 

2. Given that an automobile wheel which is revolving freely 

at the rate of 400 revolutions per minute is allowed to come to 

rest by the action of the friction and air resistance ; assuming 

that the subsequent velocities per minute are given at the end 

of t minutes by the equation 

v == 400 e io, 

to determine these velocities, plot the graph of the func¬ 

tion. At what time will the number of revolutions be 
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reduced to approximately 200 per minute ? to 100 ? to 50 ? 

to 3? It may be assumed that at 3 revolutions per minute 

the law no longer holds and that the wheel will stop at about 

that time. 

3. Given that the horizontal displacement of a second 

pendulum is 4 inches, and that the horizontal displacement is 

given by the equation 
x = 4 cos 2 7rt, 

and that the amplitudes are decreased according to the “ law 

of organic decay,” the position being given at any instant by 

the equation * = 4 <TiS cos 2 . 

Find the displacement of the pendulum after 10 seconds ; after 

100 seconds; after one hour. When does the pendulum have 

a displacement of only 1 inch ? of 4 inch ? of yL inch ? 

This type of retardation is found when the friction is 

proportional to the velocity. 

4. Given that a fly-wheel revolving freely with a velocity of 

500 revolutions per minute is allowed to come to rest. If 

the velocity at the end of t seconds is given by the equation 

—i. 
v = 500 e io, 

find the velocity at the end of 10 seconds; at the end of 100 

seconds ; at the end of 30 seconds. When will the velocity be 

reduced to 1 revolution per minute ? 

With a heavy oil as lubricator heavy fly-wheels follow 

approximately this law. 



CHAPTER XXVIII 

POLAR COORDINATES 

(See Section 3, Chapter VII) 

1. Uses. — For many purposes the representation of func¬ 

tions by the system of polar coordinates is desirable. Thus, 

effective pressure on the crank head by the piston head varies 

for every angle. It is convenient to give this pressure- 

diagram in polar coordinates ; on every radius is plotted a 

length representing graphically the effective turning pressure 

on the crank for that angle. 

2. Plotting in polar coordinates. — The coordinates of points 

which satisfy an equation given in polar coordinates are 

obtained precisely as in rectangular coordinates. An equation 

in polar coordinates involves r and 0, radius vector and 

vectorial angle ; by substituting in the given equation particular 

values of one of the variables and solving for the correspond¬ 

ing values of the other points on the curve are obtained. 

8 r 

0° 0 

1—
i 

O
 o
 

3.42 

15° 5.00 

20° 6.43 

25° 7.66 

0 O
 

C
O

 8.66 

35° 9.40 

o
 o
 

9.85 

45° 10 

xf
r 

O
 o
 

9.85 

Illustrative problem. — Plot the curve 

r = 10 sin 2 0. 

Note that when 0 = 10°, r = 10 sin 20° =3.42, which 

length is plotted on the 10° line. Complete the work, show¬ 

ing how the second loop and other loops are obtained, by 

giving to 8 values increasing by 5° intervals up to 360°. Note 

that no further computation is needed. Follow the progress 

of the curve on the diagram given on the next page. 

435 
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The formulas for transformation from rectangular coordi¬ 

nates to polar coordinates should be noted: 

x = r cos 6, 

y = r sin 0. 

The formulas for transformation from polar to rectangular 

coordinates are : - 
r = V«2 + y2, 
6 = arctan 1, 

x 

sin 0 — — ^— , 

V#2 + y1 

cos 0 = — x ■ -♦ 
V v2 + y2 
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PROBLEMS 

1. Plot the curve r — 10 sin 0. Prove that this is a circle. 

Take any point on the circle, as (r, 0), and show that the co¬ 

ordinates satisfy the equation. 

2. Plot the following curves : 

(a) r sin 6 — 5. 

(b) r cos 6 = 10. 

(c) r sin (6 — 30°) = 10. 

(d) r = 10 sin 3 0. 

(e) r = 10—10 cos 6. 

if) »’ = 5. 

3. Plot the curve r = 2 a tan 6 sec 6; transform to rec¬ 

tangular coordinates. This curve is a “ cissoid ” and can he 

used in the “ duplication of the cube ” problem. 

4. Plot the curve r = 10 sec 0 + 5. This is a “ conchoid of 

Nicomedes,” and can be used to effect the solution of the 

problem to trisect any angle. 

5. Plot the polar diagram of effective pressures on the 

crank for different angles of 6; use the data of problem 2 in 

the problems given under piston-rod motion. 

6. Plot the curve r — 10 — 10 cos 6. This curve is called 

a “ cardioid ” because of its shape. 

7. Plot the curve r = 10 — 5 cos 6. This is called a 

“ limaQon of Pascal.” 

8. Plot r = 10 — 20 cos 6, another type of limagon. 

9. Show that the polar equation of any conic is 

2 m 
r==i-2’ 1 — e cos 6 

wherein 2 m is one half of the right focal chord. 

10. Plot the parabola 
10 

r =-. 
1 — cos 6 
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11. Plot the hyperbola 
10 

1 — 2 cos 6' 

For what values of 0 is r infinite in value? What directions 

do these values give ? Are these lines from the origin then 

the asymptotes ? 

12. Plot the spiral of Archimedes given by 

r — 10 0. 

13. Plot the hyperbolic spiral given by 

14. Plot r = sin 20. 

15. Plot r = sin 0 + sin 2 0, and compare the polar with the 

Cartesian (x, y) representation. 



CHAPTER XXIX 

COMPLEX NUMBERS 

1. Object. — In the study of the number field, indicated in 

our first chapter, we found that in the extraction of square roots 

we were limited to positive numbers. Again in solving quad¬ 

ratic equations, and in the discussion of the roots of algebraic 

equations, we found that no number of the kind we had con¬ 

sidered could occur as the even root of a negative quantity. 

We can extend the number field, removing the limitation that 

square roots and even roots must be taken of positive quan¬ 

tities only, by creating another class of numbers, complex 

numbers. These numbers, after the fundamental operations 

with them have been properly defined, apply to our algebraic 

equations, x and the constants being complex numbers. In 

the extended number field it is possible to prove that every 

rational integral equation has a root and that such an equation 

of the ?ith degree has n roots. 

2. Complex numbers. — We define V— 1, designated by i, as 

a number which, multiplied by itself, equals — 1; this re¬ 

quires, then, an extension of the meaning of multiplication 

and a reexamination of the fundamental processes as applied 

to the old numbers with this newly found number and other 

new numbers which follow directly from it. This discussion 

is given graphically in the next section. The square root 

of any other negative number, —a, is regarded as VuV — 1, 
or Va • i. Such a number, e.g. V — 7, is called a pure imag¬ 

inary. To add a pure imaginary to a real number both must 

be written and the combination is called a complex number. 

439 
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Thus, x 4- yi and a -f bi, or — 3 + 2 V — 1 and V»5 — V3 i, 

are complex numbers. 

Addition and multiplication are explained graphically in 

sections 6 and 7 below. 

3. Graphical representation. — Our real numbers can all be 

conceived graphically, as well as analytically, as derived from 

the unit 1. Thus, integers are obtained by the repetition of 

the unit; fractions are obtained by 

the subdivision of the unit; and nega¬ 

tive numbers are obtained from the 

negative unit, which in turn is ob¬ 

tained by reversing the direction of 

the positive unit. Analytically the 

imaginary unit repeated as a factor 

gives — 1; graphically then we would 

desire an operation which repeated 

gives a reversal of direction. How 

is the reversing from +1 to — 1 

effected ? Evidently by turning the 

positive unit through an angle of 180° or —180°. The 

or i, can be regarded then as represented by the 

middle position of this rotating unit, and the upper position is 

regarded as + i and the lower as — i. This vertical line is 

taken as the axis of pure imaginaries. Thus, V — 4, or 2 i, 
is represented two units up on this axis and — V — 2 is repre¬ 

sented V2 units down on this axis. 

A complex number, x + yi, may now be uniquely represented 

by the point (x, y) in the complex plane, in which the y-axis 

coincides with the vertical axis of pure imaginaries. 

The fundamentally important facts concerning these num¬ 

bers are: 

1. Complex numbers are combined according to the laws of the 

real numbers (which we have discussed in the first chapter), 

noting that i2 = — 1. 

The imaginary unit ob¬ 

tained graphically 
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2. The combination of any two or more complex numbers, by 

the operations of addition, subtraction, multiplication, division 

(except by zero), involution, and evolution (with certain excep¬ 
tions), always produces a complex number. 

Representation of three complex numbers 

Two complex numbers of the form x + yi and x — yi, sym¬ 

metrically placed with respect to the axis of reals, are called 

conjugate complex numbers. Their sum and their product are 

real numbers. 

4. Complex roots in pairs. — In any rational integral algebraic 

equation with real coefficients, if a + bi is a root of the equa¬ 

tion, then a — bi is also a root of the equation. The proof 

depends upon the fact that when a -b bi is substituted in 

a0xn + apcre-1 + a2xn~2 + • • • an> 

the resulting expression is of the form P-j- Qi, in which P and 

Q being real numbers, P involves powers of a and the even 

powers of bi, and Q is obtained from expressions involving 

odd powers of bi. Now if 

P + Qi= 0, 

then P = 0 and Q = 0; otherwise you have a real number 

equal to a pure imaginary. Substituting a — bi for x in 
» 

aQxn + axxn-1 + — an 
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changes the signs of the terms involving the odd powers of i, 

and does not change the sign of the even powers. Hence 

a — bi substituted gives 

P-Qi; 

but P = 0 and Q = 0, hence P— Qi = 0. Therefore a — bi is 

also a root of the equation if a + bi is a root. Complex roots 

go in pairs. 

Illustrative problem.—1. Find the product of 2+V — 3 by 
3 — V — 2 and put the product in the x + yi form. 

Graphical representation of the product of 2 + V3 i by 3 — V2 i 

(2 + V3 i)(3 - V2 i) = 6 + 3V3 i-2V2i-V6 i2 * * * * * 8, 
but i2 = — 1, giving as product, 

6 +V6 +(3V3 - 2V2)L Ans. 

6+V6=a; 3V3 — 2V2 = &. 

2. Divide 3+V—3 by 5 —2V —3 and express the 

quotient in x + yi form. 

3 + _ 3 4- V3 i __ (3 + V3 i)(5 + 2U3 i) _ 15 + 6 i2 + 11V3 i 

5-2V^3 5-2V3 i (5 - 2V3 i)(5 + 2V3 i) 25 - 12 i2 

_ 9 + 11 v3 i _ _9_ 11 y/3 i 
37 ~37+ 37 

8. Factor x2 + y2 into complex factors, linear in x and y. 

x2 + y1 = (x + iy) (x — iy). 
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PROBLEMS 

1. Write the conjugate complex numbers : 

a. 3 + a/ — 2. d. 1 + i. 

b. —4 — 2 i. e. -V=7. 
c. — 3—a/2 —V—2. /• 3, 

2. Rationalize the denominator in the following expressions 

by using the conjugate complex number as multiplier, reduc¬ 

ing the quotient obtained in this way to the form a + hi. 

a. 

b. 

c. 

5-V-2 
■ • 

3+V^2 

5 

— 4 — 2 i 

3+V2+2V^2 
■--- • 

3 V2 V^2 

1 + i‘ 

V5 
-V^r 

5 — V^3 
- • 

3 

3. Write the following expressions in the form a + bi: 

a. i + i2 -f- ft -f- l4. 

b. t’5 + 3?;6-f 3 i7 + 4i8. 

c. i10 + i20. 

d. 2i + 3i2 + 4i3. 

e. 
9 9 

■-b- ^ O „• ' Q 3 + 2 i 3-2 i 

f 2 _ 2 
J' O I o • 3 + 2 * 3 - 2 i 

4. Locate the points represented by the complex numbers 

in problem 1. 

1 a/3 1 a/3^ 
5. Square — - + —~ i; square — --— i. These are roots 

of x4 — 1 = 0. Multiply — 1 by — i — What is 
Li Li £ 

the cube of — 1 + i ? 
2 2 

1 * 1 I X 
6. Square ~ 1 and —J. Give an equation with real 

V2 V2 
coefficients which these numbers satisfy. What are the 

square roots of i ? 
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5. Vectors. Polar representation of complex numbers. — The 

complex number x -f yi may be regarded either as determined 

by the point P(x, y) or by the vector OP, which by its length 

and direction determines the position of P. The angle which 

OP as a ray makes with the cc-axis is called 0, the amplitude or 

angle, and the length OP is called r, the modulus of the com¬ 

plex number. In other words, the polar coordinates of P are 

(r, 0); 

r = V x2 + y2) 

cos 6 = -, and sin 0 = -. 
r r 

The complex number may be writ¬ 

ten in the form 

r(cos 0 + i sin 0), 

which is termed the polar form. 

Modulus and amplitude of - 
a complex number The modulus, 1 01 \ x2-\- y~, is a 

positive number representing the 

length of the vector or the distance of the point x + iy from 

the origin. This modulus is sometimes called the stretching 

factor or the tensor; see section 7. 

6. Addition of vectors. — When the complex number is repre¬ 

sented by a vector, the sum of two complex numbers will be 

represented by the diagonal of the parallelogram formed by 

the two vectors; see Chapter IX, section 2. The student 

should verify the fact by a diagram. 

7. Product of complex numbers. — Given two complex num¬ 

bers, either in polar form or in rectangular form, the product 

of the two numbers is also a complex number; further the 

modulus of the product is the product of the moduli, and the 

amplitude or angle of the product is the sum of the amplitudes 

of the factors. 
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Let 

?'i(cos Oi + i sin 0Y); xx + yf, mocl Vaq2 + yx2, ampl 0X = tan-1 ^ 
xi 

and 

r2(cos 62 + i sin 02); x2 + y-2i, mod Vx22 + yfi ampl 02 — tan-1 — 
x2 

be two complex numbers. Their product is 

r^fcos 6i cos 02 — sin 0l sin 02 -j- {(sin 0l cos 02 + cos 6r sin <92)] 

X\X2 - yxy2 + i(®i2/2 -f x2yx), mod Va^2 + yilyf + x^yf + x22yf 

ampl 0$ = tan-1 ,l ]^2 x‘2-^. 
®i®2 ~ 2/i2/2 

The polar product may be written 

Ur2[cos (0l + $2) + i sin (<9i + 02)], 

showing that the product of the moduli i\ and r2 is the modulus 

rxr2 of the product and the amplitude is 0X + the sum of the 

amplitudes. It is left as an exercise for the student to show 

that the analytical expressions for modulus and amplitude 

establish the same facts. 

When any complex number is used as a multiplier, the 

modulus of the product is the modulus of the multiplicand 

stretched in the ratio of the modulus of the multiplier to 

unity. For this reason the modulus is sometimes termed the 

stretching factor. 

8. De Moivre’s theorem. — Evidently, if 0X and. 02 are set 

equal to 0, our product formula may be written: 

(1) [r(cos 0 + i sin 0)]2 = r2(cos 2 0 -f i sin 2 0). 

Evidently by mathematical induction, by simple introduction 

of one further factor r(cos 6 4- i sin 6) at a time, it can be 

shown that 

(2) [r(cos 0 -f- i sin 0)]n = rn(cos nO + i sin nO). 

This theorem, which holds for all values of n, is called lie 

Moivre’s theorem. We have proved it only for n an integer. 

Taking the wth root of each member of equation (2), we have 
1 1 

(rn)M (cos nO + i sin nO)n = r{cos 0 -f i sin 6). 
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Let rn = k and nO = O', which, as no limitation was imposed on 

0, imposes no limitation as to value on O', and we have 

[&(cos O' + i sin 0')~]~l = k~'(cos — + i sin —\ 
V n n) 

i.e. our formula holds for a fractional exponent of the form -. 
n 

By raising to the mth power both sides, it can be shown to 

hold for any fractional exponent. 

For n = — 1, fr(cos 0 -f i sin 0)"|_1=--- 
’ L v n r(cos 0 + i sin 0) 

cos 0 — i sin 0 

■ ~ r(cos2 0 + sin2 0) 

= ?'-1(cos 0 — i sin 0), 
whence 

[r(cos 0 -\-i sin 0)~\~l = r_1[cos (— 0)-\-i sin (— 0], 

which establishes the formula when n = — 1. By raising both 

sides to the nth power, n any rational number, the theorem is 

established for all rational exponents. 

The theorem can be established also for irrational values 

of n. 

PROBLEMS 

1. Write the following complex numbers and their conju¬ 

gates in polar form, giving modulus and amplitude: 

a. + ^ f- 
2 2 g. i- 

b. — 4 —2i 
c. -3-V2-V^2. 7i- 23‘ 

d. 1 + i. . 1 V3 . 

e. 3 + V^2. *' + 2 2~ 

2. Show that (cos 30° -f i sin 30°)2 = cos 60° + i sin 60°, by 

multiplication. 

3. Show that (cos 30° -f i sin 30°)3 = i, i.e. cos 90° -}- i sin 90°. 

4. Show that ---= cos ( — 30°) -f- i sin (— 30)°. 
cos 30° + i sin 30° V ; V ; 



COMPLEX NUMBERS 447 

5. Show that (cos 60° -f- i sin 60°)* = cos 30° + i sin 30°. 

6. What is the value of (cos 30° + i sin 30°)^ hy De Moivre’s 

theorem ? 

7. Plot, using 2 inches as 1 unit, cos 15° + i sin 15°, 

cos 30° + i sin 30°, cos 45° + i sin 45°. 

0 -dt . ,, • , „ 360° , . . 360° 
8. Plot the point B, cos —— + ^ sin —; connect by a 

chord with the point A, cos 0° + i sin 0° ; take this length as a 

chord, successively seven times on the unit circle about O. This 

chord is the side of a regular inscribed polygon of seven sides. 

9. Roots of unity.—Plotting the solutions of the following 

equations on the complex number diagram, 

(See Section 3, above), 

x — 1 = 0 gives one point, 1; 

x2 — 1 = 0 gives two points, 1 and — 1; 

1 V3 
x* — 1 = 0 gives three points, 1, — - + —p- h 

U A 

1 V3. 
2 2 1 9 

xA — 1 = 0 gives four points, 1, — 1, i and — i; 

x6 — 1 = 0 gives six points, 

i _! l + ^_l_^J+i + ^Land + l 
’ o “ o ’ o 2 9 9 9 

V3 
2 2 ' 2 7 2 

ic8 — 1 = 0, or (x4 — l)(a4 + 1) = 0, gives eight points, which 

may be obtained by methods of quadratic equations. For 

xA + 1 = + 2 x2 4- 1 — 2 x2 = ([x2 -f -1)2 — (V2 Xs)2 

= (x2 4-1 — V2 x){x2 4-1 4- V2 x), 

whence, x2—^/2x 4-1 = 0, £ = 
V2±V-2 V2 V2 

and xi 4- V2 x 4-1 = 0, x — 
V2±V-2 V2 V2 . 

2 2 2 
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cc8—1 = 0 gives eight points, 1, — 1, i, — i, —- _i_ i, —^-^ 
V2 V2 V2 V2 

1,1. -i 1 
H-— i, and — -1. 

V2 ' V2 ' V2 V2 

a?5 — 1 = 0 gives five points ; see the solution obtained in 

problem 4, page 97. The solutions are 

i V5 + 1 Vio - 2v'5 . V5 + 1 , Vio - 2V5 . 
’-g-g-h g-r-g-h 

-1+V5 Vio + 2V5 ~1 + 'n/5 + V'10 + 2a/5 i and l. 

Plotting these points on the complex diagram gives the ver¬ 

tices of a regular pentagon. 

Graphically representing these points we have the following- 

diagrams : 

Graphical solutions of x3—1 = 0, xl — 1 = 0, x6 — 1 = 0, x12 — 1 = 0, x8 — 1 = 0, 

and x5 1—0 
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The roots of any equation of the form 

xn — 1 = 0, n integral, 

are, aside from -f- 1 or — 1, complex numbers. Since any real 

number less than 1 when multiplied by itself gives a number 

less than 1 and since any real number greater than 1 multiplied 

by itself gives a number greater than 1, it follows that the 

roots other than 1 or — 1 are complex. Further, the modulus 

of each of these complex roots is a real number which, taken n 

times as a factor, produces 1; hence the modulus of any ?ith 

root of unity is 1. We need then .to know only the real part of 

any root of unity to plot it, since the root itself, having a 

modulus 1, lies on the unit circle, x1 -f- y2 = 1. 

The nth roots of unity can be obtained graphically by finding 

the angles which repeated n times give 360° or integral 

multiples of 360°. 

Thus for the twelfth roots of unity these angles are 0°, 30°, 

60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, and 330°. 

Writing the corresponding complex numbers in polar form we 

have the twelve twelfth roots of unity. If we went farther, 

taking 360°, 390°, 420°, —, we would simply repeat values 

already obtained. The twelfth roots of unity are, then, 

i, 
V3 
2 

,4.4, "V 3 . . -L , v ’> • V w I JL . -4 

~j— i, — H-t. z.-(—-i,-f- — z, — 4, 
* o ■ o ' o ' ' o' n ' n 1 O 7 7 

4 
9 

V3 „. 
9 

V3 1 . 
9 ' 9 

I_V3 +1 —V3; a _|_ V3_ 1 . 
2 2 2 2 2 2 2 2 

as on the figure. 

10. Historical note. — Just as negative numbers were gener¬ 

ally accepted only after a graphical scheme of representation 

of these numbers was introduced by Descartes, so imaginary 

numbers were neglected and even rejected by mathematicians 

until a graphical system of representation was found. 

In 1797 a Norwegian, Caspar Wessel, presented the scheme 

of representation of complex numbers to the Danish Academy, 

but public recognition of his work is only recent. A French- 



450 UNIFIED MATHEMATICS 

man, J. R. Argand, discovered the same system independently 

in 1806 and it appears that the German J. C. F. Gauss in 1831 

again independently rediscovered this graphical method. The 

latter made extensive use of the diagram and since then these 

numbers play a vital role in the development of algebra. 

Quite recently the practical importance of these numbers has 

been more generally recognized by physicists and engineers. 

Applications have been made to problems in electricity, to the 

steam turbine by Steinmetz, and to numerous other vector 

problems. 

The term imaginary is a misnomer, as our development 

shows. So far as actuality is concerned, 3 + V— 3 exists as a 

number quite as much as 3 or V3 ; all numbers are the product 

of intelligence reacting on the experiences of life, and in 

this sense all numbers are imaginary, the product of the imagi¬ 

nation. 

11. Mathematical unity. — The complex numbers are fittingly 

chosen to conclude our treatment of plane analytic geometry, 

elementary algebra, and elementary trigonometry since, as the 

observant student will have noticed, we have here involved 

the fundamental principles of these subjects as well as theo¬ 

rems of plane geometry. 

We might note that while regular polygons of seven and 

nine sides cannot be constructed with ruler and compass, since 

the solutions of these equations lead to cubics which cannot be 

solved in terms of quadratic irrationalities, there are other 

polygons having a prime number of sides which can be so con¬ 

structed. Gauss, when only 19 years old, showed that the 

polygon of 17 sides, and, in general, the polygon of sides 

22" -f 1 in number, when this number is prime, can be con¬ 

structed with ruler and compass. The corresponding alge¬ 

braic fact is that xm — 1 = 0, when m is a prime number equal 

to 22” -f 1, is solvable by the methods of quadratics, and the 

roots can be expressed in functions involving only square 

roots. 
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PROBLEMS 

1. Solve x3 — 1 = 0 and plot the points on the polar diagram. 

2. Solve similarly x3 + 1 = 0 and plot. 

3. Solve x5 -f- 1 = 0. Using the results given for x5 — 1 = 0, 

write all the solutions of xw — 1 = 0. 

4. Derive the formulas for cos 2 0 and sin 2 0, using De 

Moivre’s theorem. 

Hint, cos 2 d + i sin 2 6 = (cos 9 -f i sin d)2. Square the right-hand 

member and then equate cos 2 0 to the real part and put sin 2 d equal to 

the coefficient of i. 

5. Derive formulas for cos 3 0 and sin 3 0 by the process 

of problem 4. 

6. Show on the diagram how to obtain the twelfth roots of 

unity. What equation do these numbers satisfy ? 

7. Show geometrically and algebraically how you can obtain 

the solutions of the equation 

x2A — 1 = 0 

from the complex diagram. Use also the formulas for sini0 

and cos b 0 to obtain sin 15° -and cos 15° from sin 30° and 

cos 30°. 

8. Solve £c8 — 1 = 0, and plot the points on the complex 

diagram. 

9. Solve xu — 1 = 0. What angles are involved ? 



CHAPTER XXX 

SOLID ANALYTIC GEOMETRY: POINTS AND LINES 

1. The third and fourth dimensions. — We have found that on 

a line the position of any point may be given by a single 

number, x, which locates the point with reference to one fixed 

point on the line. The single number, commonly x, represents 

distance, in terms of some unit of length, from the point of 

reference, and direction by means of a + or — sign. In a 

plane the position of any point may be given by a pair of 

numbers which locate the point with reference to two fixed 

lines in the plane. The two numbers, x and y commonly, 

represent the distances in determined order, in terms of some 

unit of length, from each of the two given lines of reference, 

and direction as before. By analogy, continuing with the 

proper changes, it is obvious that in space the position of any 

point may be given by a set of three numbers which locate the 

point with reference to three fixed planes in space. The three 

numbers, x, y, and z commonly, represent the distances in 

determined order, in terms of some unit of length, from the 

three given planes of reference, and the direction in each case 

is determined by the algebraic sign of the number. If the 

analogy could be continued we could state that the position 

of any point in a four-dimensional space would probably be 

given by a set of four numbers which locate the point with 

reference to four given “ three-dimensional ” spaces. The four 

numbers, x, y, z, and iv commonly, would then represent the 

“ distances ” in determined order, in terms of some unit of 

length, from each of the spaces of reference. Without a pre¬ 

cise definition of what we mean by “ distance ” of a point in 

452 
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“four-dimensional space” from a “three-dimensional space5’ 

these analogies must be regarded as purely fanciful, and devoid 

of physical significance. 

Location of a Point 

Upon or in a With reference, to By means of 

line, one point, one variable, 
one dimensional. zero dimensional. X. 

plane, two lines, two variables, 
two dimensional one dimensional. 0, V)• 

space (ordinary), three planes, three variables, 
three dimensional. two dimensional. (x, y, z). 

hyperspace, four three-spaces, four variables, 
four dimensional. three dimensional. (x, y, z, w). 

n-space, n (n — 1)-spaces, n variables, 
n dimensional. (w — 1) dimensional. (xb x2, xa, ••• xn). 

2. Space coordinates. — The position of a point in ordinary 

space is determined by location with respect to three inter¬ 

secting planes, called the coordi¬ 

nate planes. Just as our lines of 

reference were chosen perpen¬ 

dicular to each other, for conven¬ 

ience, in plane analytics, so here 

the planes of reference are taken 

mutually perpendicular, like the 

three sides of a box or like the 

front wall, the floor, and the left- 

hand wall of a room. The three 

lines of intersection of these 

planes with each other in pairs 

are called the axes of coordinates, 

designated as x-axis, y-axis, and z-axis; the three planes are 

named xy-, xz-, and yz-planes respectively; the point common 

to the three planes and to the axes is called the origin. 
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The numbers x, ?/, and z represent respectively distances 

from the yz-, xz-, and ^/-planes; direction is determined as 

indicated by the arrowheads upon the diagram. No general 

agreement has been reached as to which axis to use as the 

vertical axis. The system shown is called a riglit-lmnded 

system, since the 90° rotation 

of the positive ray of the 

a>axis into the positive y ray 

advances a right-handed screw 

along the 2-axis, and similarly 

with the other axes, by cyclical 

interchange in x, y, z order. 

The positive directions of 

these three axes can be repre¬ 

sented by the thumb, first 

finger, and second finger of 

the right hand. 

To determine the coordi¬ 

nates of any point P in space, 

planes are drawn or conceived 

through the point parallel to the coordinate planes; the dis¬ 

tances OL, OM, and ON cut off on the axes are given with 

0(0, 0, 0); L(3.5, 0, 0); M(0, 3,0); 
N(0, 0, 2); 0(3.5, 0, 2); R(3.5, 8, 0); 

S(0, 3,2); P(3.5, 3,2) 

proper sign as the coordinates (x, y, z) of the point P. 

Space is divided by the coordinate planes into eight divi¬ 

sions, called octants. The signs of the coordinates of any point 

within an octant are given in xyz order to distinguish the 

octants. Thus the + — — octant is at the right, below, and 
back. 

To every point in space corresponds one set of coordinates 

and only one, and, conversely, to every set of three numbers 

corresponds one and only one point in space. When a point 

is given by its coordinates, the position is determined on the 

diagram by passing a plane through the ic-axis at the x of the 

point, parallel to the yz-plane; on the intersection of this 

plane with the xy-plane indicate the y coordinate. The third 

coordinate must be represented in perspective, and the direc- 
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tion and length of these units in perspective are taken paral¬ 

lel and equal to the units represented on the third axis. 

V 

Drawing by L. Makielski. 

An artist’s conception of a rectangular solid in space 

3. Fundamental propositions of solid geometry. — The follow¬ 

ing propositions of solid geometry have constant application 

in our further work. The student would do well to review 

these propositions in any elementary work on solid geometry 

and further to verify the reasonableness of these propositions 

on our figures. 

a. Two planes intersect in a straight line. 

b. If a line is perpendicular to each of two intersecting 

lines, it is perpendicular to the plane of the two lines, i.e. it 

is perpendicular to every line in the plane of the two given 

lines. 

Thus, PQ on the diagram below is perpendicular to QL, to 

QM, to QD, and to every line in the xz-plane which passes 

through Q. A line in the az-plane which does not pass through 

Q does not intersect PQ, but the angle which it makes with 

PQ is defined as the angle which any parallel to it which does 

intersect PQ makes with PQ. This will then be a right angle. 

c. The angles between two pairs of parallel lines are equal 

or supplementary. 

d. If two planes are perpendicular to a third, their inter¬ 

section line is perpendicular to the third. 
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e. The dihedral angle between two planes is measured by 

the plane angle formed by two lines, one in each plane, both 

perpendicular to the edge of the dihedral angle. 

/. If a line (PQ) is perpen- 

The dihedral angle, between two 
planes, is measured by the 

angle between two lines 

dicular to a plane (xz) and from the foot of the perpendicular 

a second perpendicular (QL or QD) is drawn to any line 

(OX or NL) in the plane (zx), then the line connecting any 

point (P) on the first perpendicular to the intersection point 

(L or D) is perpendicular to the line (OX or NL) in the plane. 

Note. — We will refer to these propositions as 3 a, 3 6, 3 c, 3d, 3 e, 

and 3 /. 

4. Vectorial repre¬ 

sentation. — For 

some purposes it is 

convenient to think 

of three numbers (x, 

y, z) as representing 

the vector from the 

origin to the point. 

The length OP of 

the vector is called 

Point P(X, y, z) or P(r, a, |3, -y) r, and the vectorial 
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angles which this vector makes with the x-, y-, and z-axes are 

termed direction angles and are represented by the letters, 

a, /3, and y, respectively. 

By proposition 3/, the triangles FLO, FQO, and PNO are 

right triangles. Hence 

x = r cos a, y = r cos (3, z — r cos y. 

Further, the square on the diagonal OP(= r) of our rectangu¬ 

lar prism is the sum of OQ2 and QP2, and OQ2 = ON2 -f- NQ2, 

whence 
r2 = r2 cos2 a + r2 cos2 (3 + r2 cos2 y, 

or cos2 a -f- cos2 (3 + cos2 y = 1. 

Evidently, also, 
r2 == x2 -p y2 4- z2. 

5. Parametric equations of a line. — The equations 

x = r cos a, y = r cos /3, z = r cos y, 

when a, /3, and y are fixed and r is a variable parameter, serve 

as the equations of the straight line OF. Cos a, cos (3, and 

cos y are called direction cosines of this line. 

Evidently any point E(a, b, c) on the line OF produced in 

either direction satisfies this relationship, if r is taken as the 

distance from 0 to E. If E is on the other side of the origin 

from P, then the direction angles of the vector OE are supple¬ 

mentary to a, /3, and y and have cosines opposite in sign to 

cos a, cos /3, cos y. In this case r is taken as negative and it is 

evident that with this interpretation the coordinates of the 

point E satisfy the given equations. 

A line which does not pass through 0 has the same direction 

cosines as the line parallel to it through 0, positive directions 

on both being the same. If such a line passes through 

P(xh yh z^ in space, the corresponding parametric equations 

are 

x — Xi = r cos a, y — y1 = r cos (3, z — zx — r cos y. 
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In plane analytics tlie corresponding formulas for straight 

lines are 

x = r cos a, y = r cos (3, where cos (3 = sin a 

an x — xl = r cos a, y — yl = r cos (3. 

The student should check these formulas and show their rela¬ 

tions to the ordinary equations used. 

6. Distance formulas and spheres. — 

r2 = x2 -f- y2 + z2 

is the square of the distance from (x, y, z) to (0, 0, 0). 

x2 y2 z2 = r2 

is an equation which is satisfied by every point on a sphere. 

The sphere : (x — h)2 + (y — k)2 + (z — l)2 = r2 

r = V(x2 — xx)2 + (y2 - v/i)2 + (z2 — zy)2 

is the distance between two points (aq, y1} zx) and (x2, y2, z2). 

(x — h)2 + (y — Zc)2 + (2! — l)2 

represents the square of the distance from (x, y, z) to (h, l) 

and hence, (* _ hy + (?/ _ ky + (2 _ qs _ ri 

is the equation of a sphere whose center is (h, k, l) and whose 

radius is r. 
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7. Point of division. 

X — ^2^1 4~ ^1^2 ^ ^2?/l ~f~ ^lj/2 _ ^*2^1 ~f~ ^'l^2 

Aq -|- /l‘2 A:^ A/’2 Zq 4“ 5 

PiP3 _ Q\Qz _ Ms _ X3 - Xi _ y3 ~ yi _ Z3 - Zi _ *1 

P3P2 Q0Q2 L3L2 x-2 — x3 1/2 — 2/3 Z2 —■ z3 ^2 

Step for step, and letter for letter, the proof follows that 

given for the point of division in a plane; the only change is 

that the 2-term is added. 

Thus, since 55 = —, it follows that 55 _ etc. 
-552 &2 55 &2 

PROBLEMS 

1. "What does the equation x — S or x — 3 = 0 represent on 

a line, the cc-axis, i.e. when you are considering points on a 

line ? What does this equation represent in plane analytics ? 

What does this equation represent in space analytics ? 

2. What does the equation x2 = 9 represent in one dimen¬ 

sional analytics ? How are these two points located with 

reference to the origin ? What does the equation x2 4- y2 = 9 
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represent in the xy-plane ? How are the points, which lie on 

this locus, located with reference to the origin ? What does 

the equation x2 + y2 + z2 — 9 probably represent in xyz- 

coordinates ? 

3. Where do all lines lie which make an angle of + 30° 

with the cc-axis ? Where do all lines lie which make an angle 

of +70° with the y-axis ? Where does a line lie which has 

the angle a equal to 30° and the angle /3 equal to 70° ? Deter¬ 

mine the angle y, using the relation cos2 a -f- cos2 /3 + cos2 y = 1. 

Given that a = 30° and (3 — 60°, what is the value of y ? If 

a — 30°, (3 = 45°, what is the value of y ? 

4. Write the equations, in parametric form, of a line 

through the origin which has the direction angles a = 30°, 

^ = 70°, and the third angle as determined in the preceding 

problem. Write the equations when these angles are 30°, 60°, 

and 90°. 

5. Write the equations of lines parallel to the two lines 

of the preceding problem and passing through the point 

(-2, 3, -7). 

6. Write the equation of the sphere whose radius is 10 and 

whose center is the point (2, — 3, 4). Find three other points 

on this sphere. 

7. Find the coordinates of the points of trisection of the 

line joining A{ — 2, 3, — 7) to B(2, — 3, — 4). If the line AB 

is extended through B by its own length, what are the coordi¬ 

nates of the point so determined ? 

8. Given that the parametric equations of a line are 

x = 3r, y = — 2 r, z = — 5 r, 

find 10 points upon the line by giving to r values from — 4 to 

+ 5. Determine the direction cosines of this line. Determine 

from your trigonomefric tables the angles a, (3, and y. 

9. Given the parametric equations of a line 

x — 3 = 3 r, y + 5 = — 2 r, and z — 7 = — 5 r, 

find 10 points on the locus; determine the direction cosines 

and the angles a, ft, and y. 
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8. Angle between two lines. — We have had occasion to note 
that the angle between two non-intersecting, or skew, lines in 
space is defined as the angle be¬ 
tween two intersecting lines which 
are respectively parallel to these 
given lines. For convenience 
these parallels may be taken 
through 0. 

The angle 6 between two lines 
having direction cosines (oq, fii, yi) 
and (a2, /?2, y2). respectively is ob¬ 
tained as follows: 

Take any two points Pl and 
P2, one on each line, having vector distances r} and r2. 
Evidently 

P1P2 = ?q2 + r22 — 2 rp-2 cos 0. 
But 

PJ>.r = (x2 - aq)2 + (y2 - 2/02 + (z2 - zxy. 

The angle between two lines in 
space 

Equating the two values and canceling, noting that 

rF = aq2 -|- yy -f sq2, and r22 = aq2 + y22 + z22, 
this gives 

cos q_X\X2 ~h y\y<i + %\Z2 

rlr2 

Xi = rv COS tq, ?/! == 1\ COS fil, Zi = 1\ COS ylf 

Now 

and 
x2 = r2 cos «2, y2 = r2 cos (32, z2 = r2 cos y2. 

Substituting, 

cos 0 == cos cq cos a2 + cos /3L cos /32 -f cos yx cos y2, 

a relation which is independent, as it must be, of the particular 
points Px and P2 chosen. 

The corresponding formula in the plane for the angle be¬ 
tween two lines is 
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The adaptation and the proof are left to the student as an 

exercise. Compare with formula on page 247. 

Frequently the direction cosines of a line in space are repre¬ 

sented by l, m, n or lx, m1? etc. The condition that two 

lines be perpendicular is evidently lxl2 4 wqm2 4 nxn2 = 0, and 

the condition for parallel lines is that lx = l2, mx — m2, and 

nx — n2. It can be shown by using vectors that the relation 

lxl2 4 4 nxn2 = 1, combined with lx2 -|- mx2 4- nx2 = 1 and 

l22 -f m22 4 n22 = 1 reduces to lx = ?2, mx = m2, and Wi = n2. 

9. First-degree equation.—We now show that the equation 

(а) Ax 4 By 4 Cz 4 D = 0 

represents a plane. A plane is, by. definition, a surface which 

is such that the straight line joining any two points in the 

surface lies wholly on the surface, i.e. any other point on the 

line is also on the surface. 

Let Pi(xlt yx, zx) and P2(x2, y2, z2) be any two points which 

satisfy equation (a). 

(б) .*. Axi 4 Byx 4 Czx 4 D = 0. 

(c) Ax2 4 By 2 4 C#2 4 D = 0. 

Let P3(x3, y3, z3) be any other point on the line joining 

P(xi, yx, zx) to P2(x2, V2? Zz) and let this point divide PXP2 into 

segments such that . 
P3P2 k2 

Then, x3, y3, and z3 may be written 

^ _k2xx 4 kxx2 
jfc1 + fc2 ’ 

k2yx 4 kxy2 % _ k2zx 4 kxz2. 

kx 4 k~2 kx 4 k2 

Substituting these values in the left-hand member of equa¬ 

tion (a), we have 

k2X\ 4 kxx2 g k2yx 4 kxy2 ^ k2zx 4 kxz2 _j_ ^ 

k\ 4 ^2 k\ 4" k2 kx -j- k2 

which may be written, by rearrangement of terms, 

—(fix'] 4 Byx 4 Ozy4/1) 4 
#1 4 K 2 r£y 4 k2 

(Ax2 4 By2 4 Czo 4 Li); 
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but this expression, by (b) and (c) above, is zero; hence the 

point P3(x3, 2/3, Z3), any point on the straight line joining P1 to 

P2> which points are on the locus of (a), is also on this locus. 

.-. Ax + By + Cz + D = 0 represents a plane. 

The converse proposition is demonstrated in section 5 of the 

next chapter. 

A plane to pass through three given points is determined by 

substitution of the three points in equation (a) and solving for 

three of the constants, e.g. A, B, and C, in terms of the 

fourth. If the fourth constant chosen happens to be zero, 

another selection must be made. 

Illustrative problem. — Find the plane through (4, 4, 4), 

(3, 0, - 5), and (0, - 3, - 7). 

Let Ax + By 4- Cz 4 I) = 0 represents the equation of the plane. 

Substituting, 
x 3 (1) 4 J. + 4 £ + 4 C + L> = 0. 

.(2) 34 — 5 C + 1) = 0. 

x 4 (3) - 3 B - 7 <7 4 I) = 0. 

Since it happens that only A, (7, and D occur in (2), eliminate B 
between (1) and (3) by multiplying (1) by 3 and (3) by 4 and adding, 

obtaining 
(4) 12 A- 16 (7+ 7 B = 0. 

- 4 (2) 34 - 5 (7+ B = 0. 

Eliminate A between (4) and (2) by multiplying (3) by — 4 and add¬ 

ing to (4). This gives 
(5) 4 G + 3 B = 0 ; C = — f I). 

Substituting in (2) the value of C found gives 

34 + Y jj + i) = 0, A =-If B. 

Substituting value of (7 in (3) gives 

-35 + ^D+D = 0; B = f|D. 

The equation of the plane may be written, 

- If Dx+ ff By -\Bz + B- 0, or 

— 19 x 4- 25 y — 9 z 4- 12 = 0. Ans. 
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PROBLEMS 

1. Find the angle between the two lines of problem 5 of 

the preceding list of problems. 

2. Find the direction cosines proportional to 3, —2, and —5 ; 

find those proportional to 2,3, and —4 ; find the angle between 

two lines having these direction cosines that you have found. 

3. Find the equation of a plane whose intercepts on the 

axes are, respectively, 3, — 5, and 7. 

4. Find the equation of a plane through the points (3, 0, 5), 

(-2, 11, 7), and (0, 11, 7). 

5. The parametric equations of any line through (3, 0, 5) 

can be written 

x — 3 = r cos a, y — 0 = r cos /3, z — 5 = r cos y. 

If this line is to pass through (—2, 11, 7), these coordinates 

must satisfy these equations. Make the substitutions, re¬ 

spectively ; square and add the corresponding numbers and 

thus obtain the value of r, giving the distance of the point 

(3, 0, 5) from (—2, 11, 7). Find then the values of cos a, 

cos /3, and cos y. 
6. If a rectangular box with sides parallel to the coordinate 

planes has the line joining (3, 0, 5) to (— 2, 11, 7) as a principal 

diagonal, find the lengths of the sides, the length of the 

diagonal, and so find the direction cosines of the line joining 

the two points. 

7. Discuss the loci of the following equations and find three 

points on each locus : 

a. 3 x + 11 = 0. 

b. x2 — 9 = 0. 
c. z — 5 = 0. 

d. x — y — 5 = 0. 

e. z — 2 y + 10 = 0. 
/. x T 2 y -f- 3 z — 8 = 0. 

8. Where do points lie which are common to the loci of the 

two following equations : x = 3, and y = 5 ? 

x — 3 = 0 and z — 2 y + 10 = 0 ? 



CHAPTER XXXI 

SOLID ANALYTICS; FIRST-DEGREE EQUATIONS AND 
EQUATIONS IN TWO VARIABLES 

1. Locus of an equation in three variables. — Any equation 

involving three variables has for its locus a surface which 

may, in special forms of the equation, reduce to one or more 

lines or points. We obtain points on such a surface by giving 

values to two coordinates, e.g., x and y, and solving for the 

third, e.g., z. Thus we have found that any first-degree equa¬ 

tion represents a plane. 

Note, x2 + y2 -f z2 — 0 represents only a point (0, 0, 0), or a point 

sphere. 

x2 + y2 = 0 represents the z-axis since everywhere on this axis x = 0 

and y — 0. 

2. Intersections of loci. — (See Chapter V, Section 2.) Any 

point which satisfies two equations involving three variables 

lies, in general, upon a curve which is common to the two 

surfaces represented. 

When three equations are regarded as simultaneous, points 

of intersection of the three surfaces are obtained. Under 

special relations between the three given equations, these 

points may lie upon a line, but, in general, three simultaneous 

rational integral algebraic equations determine a finite num¬ 

ber of points of intersection. 

Just as a family of lines through the intersection of two 

given lines is obtained in Chapter V, Section 4, in the form 

C 4- kU = 0, so the equation fx(x, y, z) + kf2(x, y, z) = 0 
40,5 
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represents a family of surfaces which pass through the inter¬ 

section curves of the two given surfaces. 

Thus, x2 + y2 + z2 = 25 represents a sphere of radius 5 ; x2 = 9 repre¬ 

sents two planes parallel to the yz-plane ; the equation 

x2 _j_ y2 + Z2 _ 25 - k(x2 - 9) = 0 

represents for all values of k a surface through the intersections of the 

sphere and the plane. For k = — 1, this surface reduces to a cylinder, 

y2 -j- z2 — 16 — 0. 

3. Cylindrical surfaces. — Any equation in two variables, as 

x and y, represents in space a cylinder whose axis is parallel 

to the axis designated by the third variable. 

Cylindrical surfaces: 

Elliptic Hyperbolic Parabolic 

The curves indicated on these surfaces are cubic space curves. 

If an equation f(x, y) = 0 is given in x and y, any point 

(%i, 2/1) which satisfies the equation will lie upon the curve in 

the r?/-plane given by f(x, y)= 0. Considered as a point in 

space, the point (xh yh 0) satisfies the equation, and further 

it is evident that (xh yh z), irrespective of the value of z, will 

also satisfy f(x, y) = 0, since the ^-coordinate does not enter 

at all. 
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Thus, (3, 4, 0) satisfies the equation 

x2 + 7/ _ 25 = 0 

and also the points (3, 4, 1) or (3, 4, - 10) or (3, 4, 8,) will satisfy the 
equation 

x2 + y2 _ 25 = 0. 

Hut all points (x1} yu z), for varying values of 2 only, lie on a 

parallel to the 2-axis through (aq, yx) and hence all points on 

the surface generated by a straight line moving parallel to the 

2-axis and touching the curve f(x, y) = 0, in the xy-plane, lie 

upon a cylinder. The curve f(x, y) = 0 is called the directrix 

of the cylinder and the moving line is called the generator or 

element of the cylindrical surface. Similarly, when an equa¬ 

tion is given in x and z or in y and z, a cylinder is represented. 

A plane given by a first-degree equation in two variables, 

or one variable, is a special case of the preceding. 

4. Straight line as the intersection of two planes. — Just as the 

equation ^^ represents in the plane the straight 
2/2 -2/i ®2 — xi 

line joining P1(a?1, y^) to P2(x2, y2), so the three equations, 

x — x1_y — y1 

X2 ~X1 2/2 - 2/1 

z — zx 

Z2 — Z1 

represent in space the 

straight line joining 

Pi(xi, Vu.Zi) 

to P2(x2,2/2, %)• 

There are three equal¬ 

ities which are ob¬ 

tained by leaving out 

in turn each of the 

fractions, but there 

are only two inde¬ 

pendent equations, as 
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the third equality would follow always from the first two 

which were given. 

These formulas can be obtained directly from the properties 

of similar triangles, or from the parametric equations of 

section 5 of the preceding chapter. The latter method brings 

out the important fact that the values x2 — aq, y2 — Vi, and 

z2 — zi are proportional to the direction cosines of the given 

line, and the values themselves of these cosines can be 

obtained, using the fact that the sum of the three squares is 

equal to unity. The derivation of the theorems mentioned is 

left as an exercise to the student. 

The parametric forms of the equations of a straight line may 

be written, 
x — aq _ y — yl _ z — z, 

cos a 
or 

COS /3 COS y 

i-t 

- = r. 

x — aq _ y — yx _ z — zl _r 

k cos a k cos /3 k cos y k 

Further, any equations which can be put in one of the two 

forms above represent a straight line, and the denominators of 

the fractions are proportional to the direction cosines of the 

line. 

The equations of the straight line in the form 

a? —aq _ y - yl = z — zl 

a b c 

wherein a, b, and c are necessarily proportional to the direction 

cosines of the line, are called the standard or symmetrical 

equations of the line. 

In general, any curve in space is given as the intersection of 

two surfaces by the equations of the two surfaces. In particu¬ 

lar, the straight line is given by the equations of any two 

planes which pass through the line. Of the infinite number 

of planes, the pencil of planes, which pass through a given 

line, the three planes, called projecting planes of the line, 

which are parallel to the coordinate axes are of particular 
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importance. These equations will evidently be first-degree 

equations in two variables. In the standard form the equality 

of any two members gives one of the projecting planes through 

the given line. 

Illustrative problem. — Find the direction cosines of the 

straight line determined by the two planes 

(a) x -f y — 3 2 — 5 = 0. 

(b) 3 x — y — 5 z — 11 = 0. 

Find the projecting planes parallel to the coordinate axes (or perpen¬ 
dicular to the coordinate planes) ; find the points where this line pierces 

the coordinate planes. 

Any plane through the line of intersection is given by 

(c) x + y — 3 z — 5 + k(S x — y — 5 z — 11)= 0. 

Giving to k the value — f, which is equivalent to multiplying (a) by 5, 

and (b) by — 3 and adding, and simplifying you have, 

5 x + 5 y — 15 z — 25 — 9 x + 3 y + 15 2 + 33 = 0, or 
i , 

(d) — 4x + Sy + 8= 0, as the plane of projection on the xy-plane. 

Eliminating 2/, k = 1, gives, 
(e) 4x — 8 z — 16 = 0orx — 2 z — 4 = 0, the plane of projection on 

the xz-plane. 
Eliminating x, k = — L gives, 
(/) — 42/ + 4z + 4 = 0, which might have been obtained from (d) 

and (e), the plane of projection on the 2/2-plane. 

Solving for x, in (d) and (e), 

x = 2(2/ + 1) and 

x = 2(2 -f- 2). 
x = 2(2/ + 1)= 2 (2 + 2). 

x — 0 _ y + 1 _ 2 + 2 _ 

2 ~ 1 _ 1 

The denominators 2, 1, and 1 are proportional to the direction cosines of 

this line. Hence 
cos a = 2 222, cos (3 — 1 m and cos 7 = 1 m, 

giving, 
COS2 « 4- COS2 8 4- COS2 7 = 4 2722 + m2 + 2?2/2= 1 ; 6 772-2= 1 ; TO = ±-- . 

Vfi 
Either sign may be taken, but for convenience, make cos a positive. 

9 11 
cos a = -A-, cos (3 = , cos 7 = —=, the direction cosines. 

V6 y/6 V6 



470 UNIFIED MATHEMATICS 

To find where this line pierces any coordinate plane, as z = 0, solve 
the equation of the coordinate plane as simultaneous with the two given 
planes which determine the line. 

This gives here (4, 1, 0) as the piercing point with the scy-plane. 
Similarly we find the intersection with any plane. 

A parallel line to our given line through a given point would he de= 
tennined by two planes through the given point parallel to the two given 
planes which determine the line. Why ? Determine the parallel line 
through (1, — 5, 6). 

5. Normal form of the equation of a plane. — (See Section 3, 

Chapter IX.) In the plane*, the equation x cos a+y sin a— p=0, 

which may be written x cos ct-\-y cos /3 — p = 0, represents 

the equation of a straight line in normal form, which line is 

such that the perpendicular from the origin upon it has the 

length p and makes the angles a and (3 with a?-axis and y-axis. 

Similarly, in space, the equation 

x cos a -f- y cos (3 -f- z cos y — p = 0 

represents a plane which is such that the perpendicular from 

the origin upon it has the length p and makes the angles a, 

(3, and y with the 

x-axis, y-axis, and 

2-axis respectively. 

Evidently, if a 

plane is given and 

a perpendicular ON 

of length p, having 

direction cosines a, 

(3, and y, is dropt 

from the origin to 

this plane, the point 

N is (p cos a, p cos (3, 

ON of length p; ON' of length 2 p p COS y) and the 
Direction angles of ONN : a, p, y extension of the per¬ 

pendicular by the length p gives the point N' (2 p cos a, 

2 p cos (3, 2 p cosy). Any point P(x, y, z) which is equidis¬ 

tant from 0(0, 0, 0) and N' (2 p cos a, 2 p cos (3, 2 p cosy) 
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lies on our plane. Writing and equating these distances, we 

have, 

x2 + y2 + z2 = (x — 2 p cos a)2 + (y — 2 p cos ft)2 + (z — 2 p cos ft)2. 

Whence, 

(4p cos ct)x + (4 p cos ft)y -f (4 p cos y)z 

== 4p2(cos2 a + cos2 ft -f cos2 y). 

giving finally 

x cos a + y cos |S + Z COS y —p = 0 

as the equation. 

In the plane the distance from any point (oq, yft to a line is 

obtained by writing the equation of the line in normal form and 

substituting therein for x and y, xL and yx. In space the dis¬ 

tance of a point (aq, ylt zft from a plane is obtained by writing the 

equation of the plane in normal form and substituting therein 

these coordinates of the point for x, y, and z, respectively. 

To reduce a linear equation to normal form, you divide the 

equation through, after transposing all terms to the left-hand 

member, by the square root of the sum of the squares of the 

coefficients of x, y, and z, choosing the sign opposite to the sign 

of the constant term. The proof is not similar to the proof 

of the corresponding theorem in plane analytics. 

Parallel planes are represented by linear equations having 

the corresponding coefficients, of x, y, and z, equal or propor¬ 

tional. 

PROBLEMS 

1. Put the following equations in normal form and deter¬ 

mine the distance of each plane from the origin: 

a. 2 x — 3y+4z — 11=0. 

b. x + y -f- z — 5 = 0. 

c. 2 x — 3 y — 11 = 0. d. z — 7 = 0. 

Determine the direction cosines and the direction angles of 

the normals to each of the above planes. 
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2. Find the equations in standard form of a line from 

(1, 2, 5) perpendicular to the first plane in problem 1; 

through (0, 0, 0) perpendicular to the second plane in problem 

1; through (—2, —.3,4) perpendicular to the third plane in 

problem 1. Determine in each of these three problems the 

intersection of the perpendicular with the plane. 

3. Find the piercing points with the coordinate planes of 

the following lines: 

a. 2a-32/ + 4z-ll = 0 and x — y + z — 5 — 0. 

b. 2 x — 3 y -f 4 2 — 11 = 0 and z — 7 = 0. 

c. 2 x — 3 y — 11 = 0 and 2 — 7 = 0. 

4. Put the three lines of problem 3 in standard form. 

Note that in the second and third cases, since the given line 

lies in a plane parallel to the ary-plane, the line makes an angle 

of 90° with the 2-axis, i.e. cos y = 0. The equations of the sec¬ 

ond and third lines in standard form would have a zero de¬ 

nominator, and so it is better to put these equations in the form 

given in the third of these problems. The values of cos a and 

cos /3 are determined here from the equation 2 x — 3 y — 11 = 0, 

2 3 
giving cos a = —— and cos = —— • 

V13 V13 

5. Find the equations of the straight lines through the 

two points : a. (3? 5, _ 2) and (0, 0, 7). 

b. (3, 5, - 2) and (0, 0, 0). 

c. (3, 5, — 2) and (— 3, 5, +2). 

6. Find the angle between the lines 

£c + 4_ y _2 — 3 

2 -3 
and 

x — 2 y 2 — 1 
_2 ~ 5~ 7 

7. Do the two lines in problem 6 intersect ? How can you 

determine whether any two given lines intersect? Note that 

the problem is entirely analogous to the problem in plane 

analytics as to whether three given lines intersect, and is 

solved in the same manner. Write the equations of two 

intersecting lines. 
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8. Determine the curve in which the sphere 

x2 y2 -\- z2 — 400 = 0 

is intersected by the plane y — 9 = 0. Note that substituting 

y = 9 is equivalent to writing 

+ y2 + Z2 - 25 — (y + 9){y - 9) = 0, 

Sphere cut by a plane 

which gives, of course, a new surface passing through the 

intersection curve of the first two surfaces. 

9. Find the intersection of the sphere x2 + y2 + z2 — 100 = 0 

and the cylinder x2 -f y2 — 36 = 0. 

10. Upon what cylinder, parallel to one of the coordinate 

axes, does the intersection of the plane x = 5 with the surface 

x2 -f 4 y2 = 25 z lie ? 

11. Find the intersection of the line 

x — 1 = 2 r, y — 2 = 3 r, z + 3 = — 5 r 

with the sphere x2 + y2 + z2 — 100 = 0 by substituting these 

values in the equation of the sphere and solving for r. Note 

that since the right-hand coefficients, 2, 3, and — 5, are not the 
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direction cosines of this line, but only proportional to them, 

the values of r obtained are not the distances from (1, 2, — 3) 

to the points of intersection with the sphere, but are propor¬ 

tional to these distances. The points of intersection are 

obtained by substituting the values of r found back in the 

equations of the line and solving for (x, y, z). 



Hyperboloid of one sheet Hyperboloid of two sheets 

CHAPTER XXXII 

SOLID ANALYTICS: QUADRIC SURFACES 

1. General equation. — In plane coordinates, any equation of 

the second degree represents a conic section. Similarly, in 

space coordinates, any equation of the second degree repre¬ 

sents a quadric surface. The types of quadric surfaces, 

limited in number, are closely allied to the types of conic sec¬ 

tions. In plane analytics, it is shown that the general equation 

of the second degree, containing the “ cross-term ” xy, intro¬ 

duces no new curves, only the same curves, represented by 

the different types of equations in which no xy-term appears. 

It is likewise true in space that the general equation contain¬ 

ing any or all of the “ cross-terms,” yz, xz, and xy, presents 

no surfaces different from those which may be represented 

by the general equation containing no cross-term. 

Methods of transformation of coordinates quite similar to 

those discussed in Chapter XXIV apply to space coordinates, 

but the limitations of a first course preclude any discussion of 

the methods and results. 

Any surface given by an equation of the second degree is 

475 
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cut by any plane in some form (including, of course, limiting 

forms) of conic section. The coordinate planes very evidently 

cut any quadric surface in a conic, since the curve of inter¬ 

section in the coordinate plane is given by an equation of the 

second degree in the two variables of that plane. The trans¬ 

formations mentioned above are desirable for the general proof, 

but another method is indicated below. 

Sphere 

Ellipsoids: 

Prolate Oblate General 

Spheroid Spheroid Ellipsoid 

2. Ellipsoids. — The equation of a sphere has been given as 

(x — h)2 + (y — k)2 + (z — l)2 = r2. 

An ellipsoid is given by the equation 

(x-h)2 (;y-k)2 (z-l)2_1 

a2 b2 c2 

This surface is related to the three spheres, 

(;x — h)2 + (y — k)2 + (z — l)2 = a2, 

(x — h)2 + (y — k)2 + (z — l)2 = b2, 

(x — h)2 + (y — k)2 + (z — l)2 = c2, 

very much as the ellipse is related to its auxiliary circles. 

The parametric equations of the above ellipsoid are 

x — h = a cos a, 

y — k — b cos /?, 

Z — l = C COS y. 
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The elimination of a, /3, and y, employing 

cos2 a + cos2 /3 + cos2 y = 1, 

gives the equation of the ellipsoid in the standard form above. 

The quantities a, b, and c represent the semi-axes of the 

ellipsoid. If two of these denominators are equal to each 

Ellipsoid of revolution, with x-axis as axis of revolution 

other, the ellipsoid is an ellipsoid of revolution about an axis 

parallel to the axis corresponding to the term with the odd 

denominator. 

Thus, ^L + Vl + ^=i 
25 16 16 

X2 o/2 
is an ellipsoid of revolution, obtained by revolving the curve = 1 
about the z-axis. ^ ^ 

The derivation of the formula of the ellipsoid of revolution 

is as follows, PN-2 + NM2 = PM2, but QM = PM, radii of 

the circle QPR about M, with lettering as indicated on diagram 

given above. Now for all points on this circle the ^-coordinate 

is the same, 

y* + z* = PM* = QM* = 16^1 - ||\ 

which is a relation true for every point on the circle obtained 
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• fXj 
by rotating the point Q on the ellipse — + — = 1 about its 

25 16 
axis. But Q is any point on the ellipse, and hence P may be 

any point on the surface obtained by revolving the ellipse 

about its axis. 

Hence, for every point on this surface, 

x2' 

or 
* + ** = I6 I"26> 

x2 y2 z2 _ 

25 + 16 + 16~ : 

Any ellipsoid of revolution obtained by revolving an ellipse 

about its major axis is called a prolate spheroid, and is shaped 

like a football; an oblate spheroid is obtained by rotating an 

ellipse about its minor axis, and is shaped like a circular 

cushion or the earth. 

PROBLEMS 

1. Find the equation of the sphere having the center at the 

origin and passing through the point (—2, 5, 6). Give the 

seven points which lie on this sphere and are symmetrically 

situated to the given point with respect to the coordinate 

planes. 

2. Find the equation of the preceding sphere if the center 

is at (3, — 2,12). Find by using conditions of symmetry with 

respect to planes through the center parallel to the coordinate 

planes seven further points on this sphere. 

3. Write the equation of the ellipsoid having the center at 

the origin and semi-axes equal to 2, 3, and 5 respectively (x, y, 

and order). Find three points on this ellipsoid. Write the 

equations of three circles which lie on this surface. Write the 

equations of the traces on the coordinate planes, i.e. the inter¬ 

sections with these planes. Draw the graph. 

4. If a football is 10 inches long with a diameter of 8 

inches, write the equation of the surface, assuming it to be an 

ellipsoid. Draw the graph to scale. 
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5. Assuming that an air cushion 18 inches in diameter and 

6 inches high is an ellipsoid, write the equation of the surface. 

Draw the graph to scale. 

6. Find the six principal foci of the ellipsoid in problem 3. 

These are the foci of the traces on the coordinate planes. 

3. Hyperboloids. — By rotating the hyperbola 

x2 _ y2 _ ^ 

a2 b2 

about either axis, a hyperboloid of revolution is obtained. 

Rotation about the principal axis, the cr-axis here, gives a 

surface of two separated parts, called a hyperboloid of revolution 

of two sheets. The equation is, 

±-y±-z±=i. 
a2 b2 b2 

The method of derivation, which we outline, is general, and 

being applied to the surface obtained by revolving any curve, 

y =f(x) about the cc-axis, will give the equation of the surface 

in the form y2 + z2 = [/(^)]2. 

/y»2 0/2 oil • 
Given-— = 1, revolved about the cc-axis. 

a2 b2 

Hyperboloid of two sheets, of revolution. 

The curves are slightly distorted. 
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Any point P(x, y, z) on this surface is obtained by the rotation 

of a point Q(x, y, 0) about the x-axis. 

The point Q generates a circle in a plane parallel to the yz- 

plane, in which x has everywhere the value given by OM. 

The equation of this 

x/ 

cv 

Hyperboloid of two sheets 

?/-axis as principal axis. 

circle is 

y1 + z2 = r2 = PM = QM . 

This radius r is evidently 

a function of x, being 

defined by the original 

equation given; hence, 

r2 = (ordinate on the hy¬ 

perbola)2 = b2(^ — 1^* 

Hence the point P{x, y, z) 

satisfies the equation 

or, by rearrangement of 

terms, 

X‘ y2 z2^ 
7 0 7 0 - a2 b2 b2 

the hyperboloid of revolu¬ 

tion of two sheets. 

Note that precisely this 

surface would have been 

obtained by revolving 

--= 1 in the a?z-pla,ne about the x-axis. 
b2 

Similarly, the hyperboloid of revolution of one sheet is obtained 

by revolving a hyperbola about its conjugate axis. The pre¬ 

ceding hyperbola revolved about the y-axis gives 
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a-2 
--t + ?! 

2 b2 ' " 
= 1. 

a a- 

The student will note that the axis of rotation in each case 

is given by the odd term. 

Corresponding to these 

surfaces of revolution are 

the general hyperboloids, 

x2 y2 _ z2 _ ^ 

cv b2 cl 

hyperboloid of two sheets, 

and 
x2 y2 z2 _ 1 
~ ~ B 
a2 b2 

Hyperboloid of revolution, one sheet 

v/-axis as principal axis. 

hyperboloid of one sheet, 

which represent in each 

case a surface having a 

principal axis parallel to 

the axis of the odd term, 

e.g. the first has the #-axis 

as principal axis and the 

second has the y-axis as 

principal axis. Chang¬ 

ing the principal axis to another of the coordinate axes inter¬ 

changes two of the algebraic signs in the equation. 

4. Paraboloids. — By revolving the parabola y2 = 4 ax about 

its axis the surface y2 + z2 = 4 ax is obtained. 

This is called a paraboloid of revolution, or a circular parabo¬ 

loid, and is the type of surface which is fundamental in 

theater and auditorium construction. The derivation of the 

equation is left as an exercise for the student. 

The elliptic paraboloid is given by the equation 

^ + ^ = 4 
a£ b2 

and sections parallel to the a^y-plane are ellipses. 
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Elliptic paraboloid Hyperbolic paraboloid 

Elliptic paraboloid of revolution 

The corresponding 

standard forms with 

y-axis and with &-axis, 

respectively, as princi¬ 

pal axis are, 

x2 * nJ A 

cr C2 

and 4- — = 4 x. 
b2 c2 

The equation 

a2 b2 

gives the most compli¬ 

cated of the quadratic 

surfaces, the hyperbolic 

paraboloid, a saddle- 

shaped surface which 
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is here represented by a photograph of a model of such a 

surface. 

The hyperbolic paraboloid may be generated by the motion 

of a given parabola, x2 — 4 a2z = 0, moving parallel to the xz- 

plane and having its vertex moving on the parabola 

y2 — —4 b2z. 

5. Cones. — If any straight line is revolved about another 

straight line in its plane as an axis, a cone of revolution is 

generated. Limit¬ 

ing forms are the 

cylinder, when the 

revolving line is par¬ 

allel to the axis, a 

plane when the re¬ 

volving line is per¬ 

pendicular to the 

axis, and a straight 

line when the revolv¬ 

ing line coincides 

with its axis. 

Let y = -x revolve about OX. The cone of revolution gen¬ 
et 

erated has the equation 

^ ^ = 0 
d2 b2 b2 

The cone is itself a limiting form of the hyperboloids, as 

will be noted below. 
The general equation of the cone, whose axis is the y-axis 

and whose vertex is the origin, is 

6. Conic sections. — The method which we will here outline 

to prove that every plane section of a cone may be given by 



484 UNIFIED MATHEMATICS 

Conic sections: Ellipse Parabola Hyperbola 

an equation of the second degree applies to a cone having an 

ellipse, parabola, or hyperbola as a base as well as to the cir¬ 

cular base, which is taken for convenience. 
/y»2 <7 <2 g2 

Given the cone '-—-= 0. 
a2 b2 If- 

Evidently, any one of the planes given by x=k cuts this 

Cone cut in an ellipse by a plane 

cone in a circular section, with a point as limiting case when 

x = 0. 
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The planes y = k and z — k cut this cone in hyperbolas. 

When y — 0 or z = 0, the hyperbola “ degenerates ” into two 

straight lines intersecting at the vertex. 

The plane y = mx + k cuts the cone in a curve, which we 

will refer in this plane to the line y = mx -f- k, intersection of 

the :ry-plane and the cutting plane, and the line y = k, the 

intersection of the yz-plane and the cutting plane, as axes 

([x' and zr) of coordinates. From any point P(x, y, z) on the 

curve of intersection, drop a perpendicular PM to the xy- 

plane* The intersection curve satisfies the equation 

x2 _ {mx + k)2 _ z2 _ q 

a2 ~ b2 b2~ ’ 

or b2x2 — a2(mx + k)2 — a2z2 = 0. 

Evidently, PM = z — z', since PM is drawn in one of two per¬ 

pendicular planes, and perpendicular to the other. 

The elliptic section depicted in its own plane 

Further, BM = x’ = ccVl + m2, whence x = — 
^/1 m2 

stituting, we have, 

b2x'2 

1 + m2 

q2mV2_2a2km x - aW - aV» = 0, 
1 + m2 vl 4- m2 

Sub- 

or 

(b2 _ a2m2)x’2 — a2z '2(1 + m2) — 2 a2km Vl + m2x — a2k2(l + m2) = 0. 
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But this is an equation of the second degree in x' and z'. Fur¬ 

ther, the coefficient of x'2 is (b2 — a2m2) and of z'2 is — a2(l-pm2); 

hence the curve is an ellipse if m2 > —, a parabola if m2 = —, 
b2 ,“2 «2 

and a hyperbola if m2 < — • 
a2 

When the cutting plane has the form y — mx -f- nz -\-k, the 
proof is more complicated but not essentially different. 

Every section of a cone may be represented by an equation of 
the second degree in two variables. 

Ellipse, parabola, hyperbola, and two straight lines as intersections of a 

cone by a plane 

PROBLEMS 

1. Name and discuss the following surfaces : 

a. x2 -f- y2 + z2 — 100 = 0. 
b. a?2 + 2 y2 + 3 z2 — 100 =0. 

c. a2 + 2y2-4z2-100 =0. 
d. x2 + 2 y2 -100 =0. 
e. x2 -f- 2 y2 — 4 z2 =0. 

f x2 — 2y2 — 4:Z2 — 100 =0. 
g. x2 — 100 = 0. 

h. x2 — 2 y2 — 100 z = 0. 
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i. x2 — 2 y2 = 0. 

j. x? + 2 y2 = 0. 

7c. x2 -f- 2 y2 -f- 4 z2 = 0. 

1. a?2 -f- 2 y2 -f- 4 z2 -f-100 =0. 

2. How would the addition of a term, 10 x, affect the locus 

of each of the preceding twelve expressions ? Discuss the 

change in each locus produced by changing the sign of x2 in 

each expression from -f to —. 

3. Find the equation of the cone obtained by revolving the 

line in the a?y-plane y — 4 x — 10 about the a?-axis ; about the 

y-axis ; about the z-axis. 

4. Find the equation of the paraboloid obtained by revolv¬ 

ing the parabola z2 = 8 x about the a>axis ; find the equation of 

the surface obtained by revolving this surface about the 

z-axis. Why has the latter surface not received particular 

discussion ? 

5. Find the equation of the cone obtained by revolving the 

line y = 4 x — 10 about the line y = 6. Note that this differs 

from the problems which we have considered in the text only 

by a change of origin, or a transformation of the type 

x = x' -f- hj y = y’ + 7c, z = z' + L 

6. Find the locus of a point which is equidistant from the 

point (4, 0, 0) and from the plane x + 4 = 0. What is the 

surface ? 

7. Find the locus of a point the sum of whose distances 

from the points (4, 0, 0) and (— 4, 0, 0 ) is constant and equal 

to 10. What is the surface ? 

8. Find the locus of a point the difference of whose distances 

from two points (4, 0, 0) and (—4, 0, 0) is constant and equal 

to 6. 

9- How would you find in space coordinates the distance 

from a point to a line ? Apply to finding the distance from 

(1, 3, — 5) to the line = U.—~ = z —. 
v 7 3 —1 4 
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7. Limiting forms. — The limiting forms corresponding to 

the ellipsoid are given by equations of the type 

x2 , y2 

a2 b2 

or (g; — A)2 (y-fc)2 Q-Z)2_0 

" b2 c2 a4 

the first of which represents the point 0 (0, 0, 0) and the 

second the point (Ji, k, l). 

The method of approaching this limit is best indicated by 

writing the equation as 

£ + £ + £ = *. 
a1 b2 

As k approaches 0, the semi-axes VA;a2, -y/kb2, and -y/kc2 ap¬ 

proach 0 as a limit. 

In a similar way the hyperboloid equations approach, as 

limits, the equations representing cones asymptotic to the 

given hyperboloids. 

The limiting forms of the paraboloids are equations in two 

variables, and reduce to two planes, or to cylinders. 

The limiting forms of equations in two variables represent¬ 

ing cylinders correspond, with proper and more or less evident 

changes, to the limiting forms of the corresponding equations 

in plane analytics. 

Thus, any equation of the second degree f(x, y, z) = 0, 

whether in one or two or three variables, of which the left- 

hand member can be factored into two real linear factors in 

the variables, represents two planes which constitute also a 

type of quadric surface. 

8. Applications. — The applications of the conic sections 

which have been given in plane analytics are strictly applica¬ 

tions of surfaces, or solids having these surfaces as boundaries. 

Thus, a bridge having a parabolic arch uses a solid having a 

parabolic cylinder as1 bounding surface. 
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The equation of the paraboloid in the Hill Auditorium, with 

the foot as unit of length, is y2 4- 22 = 70.02 x; the skylight in 

the ceiling of the Hill Auditorium is bounded by an elliptical 

cylinder, 
3/2 ?/2 

-— 4- — = U dimensions in feet. 
762 502 

Any of the automobile reflectors are paraboloids, in general, of 

revolution. Hyperboloids are used as revolving cones in the 

manufacture of iron pipes ; these pipes are passed between 

two revolving cones whose axes are inclined at 90° to 

straighten the pipes. 

9. Circular sections. — Given the ellipsoid represented by 

* + £ + £ = i, 
«2 62 C2 

the question arises as to what planes cut this surface in 

circular sections. 

The method which we have given above, under section 7, 

for determining the nature of the curve cut out of the cone by 

the plane y — mx 4- k applies to this problem. In the ellipsoid 

above planes y = k cut the surface in ellipses. The develop- 

ment as given shows that any plane y = mx cuts this surface 

in a curve given by the intersection, also, of the surface, 

x2 m2x2 z2 1 
-1--- 
a2 b2 c2 

and the given plane, or a curve, 

x 12 

+ 
m2x'2 z 12 

a2(l + m2) 62(1 + m2) c 
+ ^r = l, 

Iv — nxx . f v — 0 
and the line A 

z --=0 1^=0 

reference, both lying in the plane of the section. 

can be written, 

as axes of 

This curve 

C2(&2 _ a2m2)^2 + a2b2(l + m2)z'2 = ci2b2c2(l + m2). 
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Equating the coefficients of .c'2 and z'- gives 

, 62(a2 - c2) 

" a2(c2 - 62) ’ 

m = 
b Va2 — c2 

±- • 
«Vc2 - fr2 

The two planes, y = ± b^J a2 — c2 

a^Jc2 — b2 

x, and all planes parallel to 

them, cut this surface in circular sections. For these to be real 

planes c must be intermediate in value between a and b. If c 
is not intermediate between a and b, then planes either of the 

form y = mz or y = nx will make real circular sections. 

The method applies to elliptic cylinders, to elliptic cones, 

and to hyperboloids, as well as to the ellipsoid. 

A simpler method, assuming c as the intermediate value, is to 
j»2 2/2 

find in the ellipse —|- = 1 a diameter of length 2 c; this 
a2 b2 

diameter with the z-axis determines the plane of a circular 

section. 

10. Tangent planes and tangent lines. — The formula 

Axxx + Byxy + G(x + xx) + F(y + yx) + C = 0, 

which gives the tangent to 

Ax2 + By2 + 2 Gx + 2Fy + C = 0, 

at the point Pi{xx, y^) on the curve applies in space analytics, 

with the addition of the corresponding z2 and z terms, to 

give the tangent plane to the quadric- surface at a point 

jPi(a?i, yx, Zi) on the surface. 

The tangent plane at P\(x±, y^ zx) to the surface 

Ax2 + By2 + Cz2 + 2 Gx + 2 Fy + 2 Ez + IC= 0 

is given by the equation, 

AxiX -f- Byiy -f- OzjZ -|- G(x + aq) -f- F(jj -f- 2/i) ~f" -h ^i) + F = 0. 
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When the point Px(xh yl9 z^) is not on the quadric surface, 

this equation represents not the tangent plane but the polar 

plane of the point (x1} yh zx) with respect to the surface. For 

any point outside of the surface, tangent planes to the surface 

have their points of tangency situated upon a plane, the polar 

plane of the point Px(xx, yl9 z{). A more complete discussion of 

the polar plane would reveal many other points of similarity 

between the polar plane as related to its quadric surface and the 

polar line as related to its conic. 

The intersection of a tangent plane at a point Px(xx, yx, zx) 

on the surface with any other plane through Px gives a tan¬ 

gent line to the surface at Px. 

11. Ruled surfaces. Generating lines. — Any surface which 

can be generated by the motion of a straight line moving 

according to some law is termed a ruled surface. Evidently, 

by its method of generation, such a surface has straight-line 

elements, called rectilinear generators, which lie wholly upon 

the surface. 

Certain of the quadric surfaces are ruled surfaces. Evi¬ 

dently all the cylinders, the cones, and the pairs of planes 

belong in this class. The ellipsoid, being confined to a finite 

portion of space, does not have right-line elements lying 

wholly upon the surface; nor do the elliptic paraboloid and 

the hyperboloid of two sheets have right-line elements. 

The hyperbolic paraboloid and the hyperboloid of one 

sheet do have rectilinear generators. We will find the equa¬ 

tion of the families of lines which lie wholly upon one of the 

surfaces in question; the method will apply to the other ruled 

quadric surfaces. 

Any point upon the hyperboloid 

x2 _ y2 z2 _ ^ 

very evidently satisfies the equation 

x2 y2 _ ^ _ z2 
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which may be written, 

This indicates that any point which satisfies the pair of linear 

equations = 

a b V cj 

a b k\ cj 

will satisfy the equation of our surface since it will make the 

product represented by the left-hand member of our equation, 

18,17,16,1514 13 12 11 10 9 8 7 6 5 4 3,2 

The right-line generators on this hyperboloid of revolution are formed by 

connecting corresponding points on two circular sections 

An elliptic section is also indicated. 

in the second form above, equal to the product of the factors, 

representing the right-hand member. Put every point which 
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9 

satisfies the pair of equations for any given value of k lies 

upon a straight line, the intersection of the two planes given 

by the linear equations. Hence, every point upon this line 

lies upon the given surface for any value of k. 

It can be shown that no two lines of this family of lines, 

i.e. no two lines given by two values of k, intersect. 

Another family of lines also lies upon this surface. The 

equations of this second family of lines, with the parameter 

k, are as follows : 

Every member of this family of lines can be shown to inter¬ 

sect every member of the preceding family and no member 

of its own family. 

PROBLEMS 

1. Find the equations of the rectilinear generators of the 

following surfaces: 
a. x2 — y2 — z2 = 0. 

b. x2 -f- y2 — z2 — 16. 

c. x2 — y2 — 4 z = 0. 

d. x2 — y2 = 0. 

2. Find the circular sections of the following surfaces: 

a. 
xz r - = 1. 
25 16 9 

b. 
X2 y2 1

^
 

II p
 

25 16 9 

c. X2 + 4 y2 = 9 z. 

d. X2 + 4 y2 = 9. 

e. 
X2 

+^- 
36 

Z<1 — i 
100 16 
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3. Write the equations of the tangent planes to each of the 

surfaces in the preceding problem at the point (x1} yl5 zx) in each 

case upon the given surface. 

4. In problem 1 a, above, take Zq = 1 and k2 = 2 and show 

that these two lines of the same family of rectilinear generators 

do not intersect. Write the second family of rectilinear gen¬ 

erators of the same surface and show that, taking k = 1 (any 

other value would do), this line does intersect a given line 

(Zq = 1) of the first set. How could you make this proof 

general ? 
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Constants with their logarithms. 

Number 

Ease of natural logarithms . . . 

Modulus of common logarithms . 

Circumference of a circle in degrees . 

Circumference of a circle in minutes 

Circumference of a circle in seconds 

Radian expressed in degrees . . . 

Radian expressed in minutes . 

Radian expressed in seconds . 

Ratio of a circumference to diameter 

. e = 2.71828183 

. u = 0.43429448 

. = 360 

. = 21600 

. = 1296000 

. = 57.29578 

. = 3437.7468 

. = 206264.806 

. tr = 3.14159265 

7r = 3.14159265358979323846264338328 

Volumes and Weights 

Cubic inches in 1 gallon (US.). . . = 231 

Gallons in 1 cubic foot.=7.48 

Cubic inches in 1 bushel.=: 2150.4 

Pounds per cubic foot of water (4°C.) . = 62.43 

Pounds per cubic foot of air (0° C.) . . = 0.0807 

Cubic feet in 1 cubic meter . . . = 35.32 

Cubic meters in 1 cubic yard . . . . =0.76 

Cubic inches in 1 liter.=61.03 

Liters in 1 gallon (U. S.).= 3.786 

Pounds in 1 kilogram.= 2.2 or 2.205 

Metric ton in pounds.= 2205 

Volume of sphere, 17rr3 .= 4.1888 r3 

4.1888 

Lengths and Areas 

Inches in 1 meter (by Act of Congress) = 39.37 

Peet in 1 rod, 16.5 ; yards in 1 rod . . =5.5 

Square feet in 1 acre.— 43560 

160 square rods = 1 acre ; 640 acres = 1 square mile ; 

3.281 feet = 1.094 yards = 1 meter. 

Logarithm 

0.4342945 

9.6377843-10 

2.5563025 

4.3344538 

6.1126050 

1.7581226 

3.5362739 

5.3144251 

0.4971499 

2.3636 

.8739 

3.3325 

1.7954 

8.9069-10 

1.5480 

9.8808-10 

1.7855 

.5783 

.3434 

3.3434 

.6221 

1.5952 

4.6391 
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Squares and cubes of integers, 1 to 100. 

Square roots and cube roots of 1 to 100. Reciprocals of 1 to 100. 

H 
Pi 
< 
p 

w 
m 

a P 
m O 

n n2 n3 

1 1 1 
2 4 8 
3 9 27 
4 16 64 
5 25 125 
6 36 216 
7 49 343 
8 64 512 
9 81 729 

10 100 1,000 
11 121 1,331 
12 144 1,728 
13 169 2,197 
14 196 2,744 
15 225 3,375 
16 256 4,096 
17 289 4,913 
18 324 5,832 
19 361 6.859 
20 400 8,000 
21 441 9,261 
22 484 10,648 
23 529 12,167 
24 576 13,824 
25 625 15,625 
26 676 17,576 
27 729 19,683 
28 784 21,952 
29 841 24,389 
30 900 27,000 
31 961 29,791 
32 1,024 32,768 
33 1,089 35,937 
34 1,156 39,304 
35 1,225 42,875 
36 1,296 46,656 
37 1,369 50,653 
38 1,444 54,872 
39 1,521 59,319 
40 1,600 64,000 
41 1,681 68,921 
42 1,764 74,088 
43 1,849 79,507 
44 1,936 85,184 
45 2,025 91,125 
46 2,116 97,336 
47 2,209 103,823 
48 2,304 110,592 
49 2,401 117,649 
50 2,500 125,000 

H 
PS t. 
< £ 

ft p M «* 
H 
PS •< H 

w 
PS 

H R ft j 
ffl O 
P O 

O O 
» O 

P3 « 
P 
O 
m 

ffl 
P 
O 

p 0 

ggPh 

PI O 
P O 
OP4 5 0 Ph PS 

Vn 3/- vn 1 

71 
n n2 ft3 Vn 

3 /— v n 11 

1.000 1.000 1.0000 51 2,601 132,651 7.141 3.708 
71 

.0196 
1.414 1.260 .5000 52 2,704 140,608 7.211 3.733 .0192 
1.732 1.442 .3333 53 2,809 148,877 7.280 3.756 .0189 
2.000 1.587 .2500 54 2,916 157,464 7.348 3.780 .0185 
2.236 1.710 .2000 55 3,025 166,375 7.416 3.803 .0182 
2.449 1.817 .1667 56 3,136 175,616 7.483 3.826 .0179 
2.646 1.913 .1429 57 3,249 185,193 7.550 3.849 .0175 
2.828 2.000 .1250 58 3,364 195,112 7.616 3.871 .0172 
3.000 2.080 .1111 59 3,481 205,379 7.681 3.893 .0170 
3.162 2.154 .1000 60 3,600 216,000 7.746 3.915 .0167 
3.317 2.224 .0909 61 3,721 226,981 7.810 3.936 .0164 
3.464 2.289 .0833 62 3,844 238,328 7.874 3.958 .0161 
3.606 2.351 .0769 63 3,969 250,047 7.937 3.979 .0159 
3.742 2.410 .0714 64 4,096 262,144 8.000 4.000 .0156 
3.873 2.466 .0667 65 4,225 274,625 8.062 4.021 .0154 
4.000 2.520 .0625 66 4,356 287,496 8.124 4.041 .0152 
4.123 2.571 .0588 67 4,489 300,763 8.185 4.062 .0149 
4.243 2.621 .0556 68 4,624 314,432 8.246 4.082 .0147 
4,359 2.668 .0526 69 4,761 328,509 8.307 4.102 .0145 
4.472 2.714 .0500 70 4,900 343,000 8.367 4.121 .0143 
4.583 2.759 .0476 71 5,041 357,911 8.426 4.141 .0141 
4,690 2.802 .0455 72 5,184 373,248 8.485 4.160 .0139 
4.796 2.844 .0436 73 5,329 389,017 8.544 4.179 .0137 
4.899 2.884 .0417 74 5,476 405,224 8.602 4.198 .0135 
5.000 2.924 .0400 75 5,625 421,875 8.660 4.217 .0133 
5.099 2.962 .0385 76 5,776 438,976 8.718 4.236 .0132 
5.196 3.000 .0370 77 5,929 456,533 8.775 4.254 .0130 
5.292 3.037 .0357 78 6,084 474,552 8.832 4.273 .0128 
5.385 3.072 .0345 79 6,241 493,039 8.888 4.291 .0127 
5.477 3.107 .0333 80 6,400 512,000 8.944 4.309 .0125 
5,568 3.141 .0323 81 6,561 531,441 9.000 4.327 .0123 
5.657 3.175 .0313 82 6,724 551,368 9.055 4.344 .0122 
5.745 3.208 .0303 83 6,889 571,787 9.110 4.362 .0120 
5.831 3.240 .0294 84 7,056 592,704 9.165 4.380 .0119 
5.916 3.271 .0286 85 7,225 614,125 9.220 4.397 .0118 
6.000 3.302 .0278 86 7,396 636,056 9.274 4.414 .0116 
6.083 3.332 .0270 87 7,569 658,503 9.327 4.431 .0115 
6.164 3.362 .0263 88 7,744 681,472 9.381 4.448 .0114 
6.245 3.391 .0256 89 7,921 704,969 9.434 4.465 .0112 
6.325 3.420 .0250 90 8,100 729,000 9.487 4.481 .0111 
6.403 3.448 .0244 91 8,281 753,571 9.539 4.498 .0110 
6,481 3.476 .0238 92 8,464 778,688 9.592 4.514 .0109 
6.557 3.503 .0233 93 8,649 804,357 9.644 4.531 .0108 
6.633 3.530 .0227 94 8,836 830,584 9.695 4.547 .0106 
6.708 3.557 .0222 95 9,025 857,375 9.747 4.563 .0105 

6.782 3.583 .0217 96 9,216 884,736 9.798 4.579 .0104 
6.856 3.609 .0213 97 9,409 912,673 9.849 4.595 .0103 
6.928 3.634 .0208 98 9,604 941,192 9.899 4.610 .0102 
7.000 3.659 .0204 99 9,801 970,299 9.950 4.626 .0101 
7.071 3.684 .0200 100 10,000 1,000,000 10.000 4.642 .0100 

3r- 1 „ ..o -.0 _ /- _«/r 1 
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Logarithms of numbers from 100 to 549. 

0 1 2 3 4 

0000 0043 0086 0128 0170 
0414 0453 0492 0531 0569 
0792 0828 0864 0899 0934 
1139 1173 1206 1239 1271 
1461 1492 1523 1553 1584 

1761 1790 1818 1847 1875 
2041 2068 2095 2122 2148 
2304 2330 2355 2380 2405 
2553 2577 2601 2625 2648 
2788 2810 2833 2856 2878 

3010 3032 3054 3075 3096 
3222 3243 3263 3284 3304 
3424 3444 3464 3483 3502 
3617 3636 3655 3674 3692 
3802 3820 3838 3856 3874 

3979 3997 4014 4031 4048 
4150 4166 4183 4200 4216 
4314 4330 4346 4362 4378 
4472 4487 4502 4518 4533 
4624 4639 4654 4669 4683 

4771 4786 4800 4814 4829 
4914 4928 4942 4955 4969 
5051 5065 5079 5092 5105 
5185 5198 5211 5224 5237 
5315 5328 5340 5353 5366 

0 1 2 3 4 

5441 5453 5465 5478 5490 
5563 5575 5587 5599 5611 
5682 5694 5705 5717 5729 
5798 5809 5821 5832 5843 
5911 5922 5933 5944 5955 

6021 6031 6042 6053 6064 
6128 6138 6149 6160 6170 
6232 6243 6253 6263 6274 
6335 6345 6355 6365 6375 
6435 6444 6454 6464 6474 

6532 6542 6551 6561 6571 
6628 6637 6646 6656 6665 
6721 6730 6739 6749 6758 
6812 6821 6830 6839 6848 
6902 6911 6920 6928 6937 

6990 6998 7007 7016 7024 
7076 7084 7093 7101 7110 
7160 7168 7177 7185 7193 
7243 7251 7259 7267 7275 
7324 7332 7340 7348 7356 

0 1 2 3 4 

5 6 7 8 9 

0212 0253 0294 0334 0374 
0607 0645 0682 0719 0755 
0969 1004 1038 1072 1106 
1303 1335 1367 1399 1430 
1614 1644 1673 1703 1732 

1903 1931 1959 1987 2014 
2175 2201 2227 2253 2279 
2430 2455 2480 2504 2529 
2672 2695 2718 2742 2765 
2900 2923 2945 2967 2989 

3118 3139 3160 3181 3201 
3324 3345 3365 3385 3404 
3522 3541 3560 3579 3598 
3711 3729 3747 3766 3784 
3892 3909 3927 3945 3962 

4065 4082 4099 4116 4133 
4232 4249 4265 4281 4298 
4393 4409 4425 4440 4456 
4548 4564 4579 4594 4609 
4698 4713 4728 4742 4757 

4843 4857 4871 4886 4900 
4983 4997 5011 5024 5038 
5119 5132 5145 5159 5172 
5250 5263 5276 5289 5302 
5378 5391 5403 5416 5428 

5 6 7 8 9 

5502 5514 5527 5539 5551 
5623 5635 5647 5658 5670 
5740 5752 5763 5775 5786 
5855 5866 5877 5888 5899 
5966 5977 5988 5999 6010 

6075 6085 6096 6107 6117 
6180 6191 6201 6212 6222 
6284 6294 6304 6314 6325 
6385 6395 6405 6415 6425 
6484 6493 6503 6513 6522 

6580 6590 6599 6609 6618 
6675 6684 6693 6702 6712 
6767 6776 6785 6794 6803 
6857 6866 6875 6884 6893 
6946 6955 6964 6972 6981 

7033 7042 7050 7059 7067 
7118 7126 7135 7143 7152 
7202 7210 7218 7226 7235 
7284 7292 7300 7308 7316 
7364 7372 7380 7388 7396 

5 6 7 8 9 

To avoid inter¬ 
polation in the 
first ten lines, 
use tables on the 
following pages. 

22 
1 2.2 
2 4.4 
3 6.6 
4 8.8 
5 11.0 
6 13.2 
7 15.4 
8 17.6 
9 19.8 

21 20 19 
1 2.1 2.0 1.9 
2 4.2 4.0 3.8 
3 6.3 6.0 5.7 
4 8.4 8.0 7.6 
5 10.5 10.0 9.5 
6 12.6 12.0 11.4 
7 14.7 14.0 13.3 
8 16.8 16.0 15.2 
9 18.9 18.0 17.1 

18 17 16 
1 1.8 1.7 1.6 
2 3.6 3.4 3.2 
3 5.4 5.1 4.8 
4 7.2 6.8 6.4 
5 9.0 8.5 8.0 
6 10.8 10.2 9.6 
7 12.6 11.9 11.2 
8 14.4 13.6 12.8 
9 16.2 15.3 14.4 

15 14 13 
1 1.5 1.4 1.3 
2 3.0 2.8 2.6 
3 4.5 4.2 . 3.9 
4 6.0 5.6 5.2 
5 7.5 7.0 6.5 
6 9.0 8.4 7.8 
7 10.5 9.8 9.1 
8 12.0 11.2 10.4 
9 13.5 12.6 11.7 

11 12 
1 1.1 1 1.2 
2 2.2 2 2.4 
3 3.3 3 3.6 
4 4.4 4 4.8 
5 5.5 5 6.0 
6 6.6 6 7.2 
7 7.7 7 8.4 
8 8.8 8 9.6 
9 9.9 9 10.8 
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TABLES 499 

Logarithms of numbers from 550 to 999. 

0 1 2 3 4 5 6 7 8 9 

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 
63 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 
73 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 

0 1 2 3 4 5 6 7 8 9 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 
83 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 
93 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 

0 1 2 3 4 5 6 7 8 9 
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100 
101 
102 
103 
104 

105 
106 
107 
108 
109 

110 
111 
112 
113 
114 

115 
116 
117 
118 
119 

120 
121 
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130 
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140 
141 
142 
143 
144 

145 
146 
147 
148 
149 

UNIFIED MATHEMATICS 

Logarithms of numbers between 1000 and 1499. 

0 1 2 3 4 5 6 7 8 9 

0000 0004 0009 0013 0017 0022 0026 0030 0035 0039 
0043 0048 0052 0056 0060 0065 0069 0073 0077 0082 
0086 0090 0095 0099 0103 0107 0111 0116 0120 0124 
0128 0133 0137 0141 0145 0149 0154 0158 0162 0166 
0170 0175 0179 0183 0187 0191 0195 0199 0204 0208 

0212 0216 0220 0224 0228 0233 0237 0241 0245 0249 
0253 0257 0261 0265 0269 0273 0278 0282 0286 0290 
0294 0298 0302 0306 ' 0310 0314 0318 0322 0326 0330 
0334 0338 0342 0346 0350 0354 0358 0362 0366 0370 
0374 0378 0382 0386 0390 0394 0398 0402 0406 0410 

0414 0418 0422 0426 0430 0434 0438 0441 0445 0449 
0453 0457 0461 0465 0469 0473 0477 0481 0484 0488 
0492 0496 0500 0504 0508 0512 0515 0519 0523 0527 
0531 0535 0538 0542 0546 0550 0554 0558 0561 0565 
0569 0573 0577 0580 0584 0588 0592 0596 0599 0603 

0607 0611 0615 0618 0622 0626 0630 0633 0637 0641 
0645 0648 0652 0656 0660 0663 0667 0671 0674 0678 
0682 0686 0689 0693 0697 0700 0704 0708 0711 0715 
0719 0722 0726 0730 0734 0737 0741 0745 0748 0752 
0755 0759 0763 0766 0770 0774 0777 0781 0785 0788 

0792 0795 0799 0803 0806 0810 0813 0817 0821 0824 
0828 0831 0835 0839 0842 0846 0849 0853 0856 0860 
0864 0867 0871 0874 0878 0881 0885 0888 0892 0896 
0899 0903 0906 0910 0913 0917 0920 0924 0927 0931 
0934 0938 0941 0945 0948 0952 0955 0959 0962 0966 

0 1 2 3 4 5 6 7 8 9 

0969 0973 0976 0980 0983 0986 0990 0993 0997 1000 
1004 1007 1011 1014 1017 1021 1024 1028 1031 1035 
1038 1041 1045 1048 1052 1055 1059 1062 1065 1069 
1072 1075 1079 1082 1086 1089 1092 1096 1099 1103 
1106 1109 1113 1116 1119 1123 1126 1129 1133 1136 

1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 
1173 1176 1179 1183 1186 1189 1193 1196 1199 1202 
1206 1209 1212 1216 1219 1222 1225 1229 1232 1235 
1239 1242 1245 1248 1252 1255 1258 1261 1265 1268 
1271 1274 1278 1281 1284 1287 1290 1294 1297 1300 

1303 1307 1310 1313 1316 1319 1323 1326 1329 1332 
1335 1339 1342 1345 1348 1351 1355 1358 1361 1364 
1367 1370 1374 1377 1380 1383 1386 1389 1392 1396 
1399 1402 1405 1408 1411 1414 1418 1421 1424 1427 
1430 1433 1436 1440 1443 1446 1449 1452 1455 1458 

1461 1464 1467 1471 1474 1477 1480 1483 1486 1489 
1492 1495 1498 1501 1504 1508 1511 1514 1517 1520 
1523 1526 1529 1532 1535 1538 1541 1544 1547 1550 
1553 1556 1559 1562 1565 1569 1572 1575 1578 1581 
1584 1587 1590 1593 1596 1599 1602 1605 1608 1611 

1614 1617 1620 1623 1626 1629 1632 1635 1638 1641 
1644 1647 1649 1652 1655 1658 1661 1664 1667 1670 
1673 1676 1679 1682 1685 1688 1691 1694 1697 1700 
1703 1706 1708 1711 1714 1717 1720 1723 1726 1729 
1732 1735 1738 1741 1744 1746 1749 1752 1755 1758 

9 1 2 3 4 5 6 7 8 9 



TABLES 501 

Logarithms of numbers between 1500 and 1999. 

0 1 2 3 

150 1761 1764 1767 1770 
151 1790 1793 1796 1798 
152 1818 1821 1824 1827 
153 1847 1850 1853 1855 
154 1875 1878 1881 1884 

155 1903 1906 1909 1912 
156 1931 1934 1937 1940 
157 1959 1962 1965 1967 
158 1987 1989 1992 1995 
159 2014 2017 2019 2022 

160 2041 2044 2047 2049 
161 2068 2071 2074 2076 
163 2095 2098 2101 2103 
163 2122 2125 2127 2130 
164 2148 2151 2154 2156 

165 2175 2177 2180 2183 
166 2201 2204 2206 2209 
167 2227 2230 2232 2235 
168 2253 2256 2258 2261 
169 2279 2281 2284 2287 

170 2304 2307 2310 2312 
171 2330 2333 2335 2338 
172 2355 2358 2360 2363 
173 2380 2383 2385 2388 
174 2405 2408 2410 2413 

0 1 2 3 

175 2430 2433 2435 2438 
176 2455 2458 2460 2463 
177 2480 2482 2485 2487 
178 2504 2507 2509 2512 
179 2529 2531 2533 2536 

180 2553 2555 2558 2560 
181 2577 2579 2582 2584 
182 2601 2603 2605 2608 
183 2625 2627 2629 2632 
184 2648 2651 2653 2655 

185 2672 2674 2676 2679 
186 2695 2697 2700 2702 
187 2718 2721 2723 2725 
188 2742 2744 2746 2749 
189 2765 2767 2769 2772 

190 2788 2790 2792 2794 
191 2810 2813 2815 2817 
192 2833 2835 2838 2840 
193 2856 2858 2860 2862 
194 2878 2880 2882 2885 

195 2900 2903 2905 2907 
196 2923 2925 2927 2929 
197 2945 2947 2949 2951 
198 2967 2969 2971 2973 
199 2989 2991 2993 2995 

4 5 6 7 8 9 
1772 1775 1778 1781 1784 1787 
1801. 1804 1807 1810 1813 1816 
1830 1833 1836 1838 1841 1844 
1858 1861 1864 1867 1870 1872 
1886 1889 1892 1895 1898 1901 

1915 1917 1920 1923 1926 1928 
1942 1945 1948 1951 1953 1956 
1970 1973 1976 1978 1981 1984 
1998 2000 2003 2006 2009 2011 
2025 2028 2030 2033 2036 2038 

2052 2055 2057 2060 2063 2066 
2079 2082 2084 2087 2090 2092 
2-106 2109 2111 2114 2117 2119 
2133 2135 2138 2140 2143 2146 
2159 2162 2164 2167 2170 2172 

2185 2188 2191 2193 2196 2198 
2212 2214 2217 2219 2222 2225 
2238 2240 2243 2245 2248 2251 
2263 2266 2269 2271 2274 2276 
2289 2292 2294 2297 2299 2302 

2315 2317 2320 2322 2325 2327 
2340 2343 2345 2348 2350 2353 
2365 2368 2370 2373 2375 2378 
2390 2393 2395 2398 2400 2403 
2415 2418 2420 2423 2425 2428 

4 5 6 7 8 9 

2440 2443 2445 2448 2450 2453 
2465 2467 2470 2472 2475 2477 
2490 2492 2494 2497 2499 2502 
2514 2516 2519 2521 2524 2526 
2538 2541 2543 2545 2548 2550 

2562 2565 2567 2570 2572 2574 
2586 2589 2591 2594 2596 2598 
2610 2613 2615 2617 2620 2622 
2634 2636 2639 2641 2643 2646 
2658 2660 2662 2665 2667 2669 

2681 2683 2686 2688 2690 2693 
2704 2707 2709 2711 2714 2716 
2728 2730 2732 2735 2737 2739 
2751 2753 2755 2758 2760 2762 
2774 2776 2778 2781 2783 2785 

2797 2799 2801 2804 2806 2808 
2819 2822 2824 2826 2828 2831 
2842 2844 2847 2849 2851 2853 
2865 2867 2869 2871 2874 2876 
2887 2889 2891 2894 2896 2898 

2909 2911 2914 2916 2918 2920 
2931 2934 2936 2938 2940 2942 
2953 2956 2958 2960 2962 2964 
2975 2978 2980 2982 2984 2986 
2997 2999 3002 3004 3006 3008 

4 5 6 7 8 9 2 



502 UNIFIED MATHEMATICS 

Log sin A° from 0° to 45°* 

A6 0' 10' 20' 30' 

0 7.4637 7648 9408 
1 8.2419 3088 3668 4179 
2 5428 5776 6097 6397 
3 7188 7423 7645 7857 
4 8436 8613 8783 8946 

5 9403 9545 9682 9816 
6 9.0192 0311 0426 0539 
7 0859 0961 1060 1157 
8 1436 1525 1612 1697 
9 1943 2022 2100 2176 

10 9.2397 2468 2538 2606 
11 2806 2870 2934 2997 
12 3179 3238 3296 3353 
13 3521 3575 3629 3682 
14 3837 3887 3937 3986 

15 4130 4177 4223 4269 
16 4403 4447 4491 4533 
17 4659 4700 4741 4781 
18 4900 4939 4977 5015 
19 5126 5163 5199 5235 

20 9.5341 5375 5409 5443 
21 5543 5576 5609 5641 
22 5736 5767 5798 5828 
23 5919 5948 5978 6007 
24 6093 6121 6149 6177 

30' 

25 6259 6286 6313 6340 
26 6418 6444 6470 6495 
27 6570 6595 6620 6644 
28 6716 6740 6763 6787 
29 6856 6878 6901 6923 

30 9.6990 7012 7033 7055 
31 7118 7139 7160 7181 
32 7242 7262 7282 7302 
33 7361 7380 7400 7419 
34 7476 7494 7513 7531 

35 7586 7604 7622 7640 
36 7692 7710 7727 7744 
37 7795 7811 7828 7844 
38 7893 7910 7926 •7941 
39 7989 8004 8020 8035 

40 9.8081 8096 8111 8125 41 8169 8184 8198 8213 
42 8255 8269 8283 8297 43 8338 8351 8365 8378 44 8418 8431 8444 8457 

A° 60' 50' 40' 30' 

40' 50' 60' A° d. 

*0658 *1627 *2419 89° 
4637 5050 5428 88° 
6677 6940 7188 87° 
8059 8251 8436 86° 
9104 9256 9403 85° 

9945 *0070 *0192 84° 
0648 0755 0859 83° 
1252 1345 1436 82° 91 
1781 1863 1943 81° 80 
2251 2324 2397 80° 73 

2674 2740 2806 79° 68 
3058 3119 3179 78° 62 
3410 3466 3521 77° 57 
3734 3786 3837 76° 53 
4035 4083 4130 75° 49 

4314 4359 4403 74° 46 
4576 4618 4659 73° 43 
4821 4861 4900 72° 40 
5052 5090 5126 71° 38 
5270 5306 5341 70° 36 

5477 5510 5543 69° 34 
5673 5704 5736 68° 32 
5859 5889 5919 67° 31 
6036 6065 6093 66° 29 
6205 6232 6259 65° 28 

6366 6392 6418 64° 27 
6521 6546 6570 63° 25 
6668 6692 6716 62° 24 
6810 6833 6856 61° 23 
6946 6968 6990 60° 22 

7076 7097 7118 59° 21 
7201 7222 7242 58° 21 
7322 7342 7361 57° 20 
7438 7457 7476 50° 19 
7550 7568 7586 55° 18 

7657 7675 7692 54° 18 
7761 7-778 7795 53° 17 
7861 7877 7893 52° 16 
7957 7973 7989 51° 16 
8050 8066 8081 50° 15 

8140 8155 8169 49° 15 
8227 8241 8255 48° 14 
8311 8324 8338 47° 14 
8391 8405 8418 46° 13 
8469 8482 8495 45° 13 

20' 10' 0' A0 d. 

Do not interpolate, but 
use the special table 
which gives these values 
by minutes. 

F P. 

92 90 88 86 84 
1 9.2 9.0 8.8 8.6 8.4 
2 18.4 18.0 17.6 17.2 16.8 
3 27.6 27.0 26.4 25.8 25.2 
4 36.8 36.0 35.2 34.4 33.6 
5 46.0 45.0 44.0 43.0 42.0 
6 55.2 54.0 52.8 51.6 50.4 
7 64.4 63.0 61.6 60.2 58.8 
8 73.6 72.0 70.4 68.8 67.2 
9 82.8 81.0 79.2 77.4 75.6 

82 80 78 76 74 
1 8.2 8.0 7.8 7.6 7.4 
2 16.4 16.0 15.6 15.2 14.8 
3 24.6 24.0 23.4 22.8 22.2 
4 32.8 32.0 31.2 30.4 29.6 
5 41.0 40.0 39.0 38.0 37.0 
6 49.2 48.0 46.8 45.6 44.4 
7 57.4 56.0 54.6 53.2 51.8 
8 65.6 64.0 62.4 60.8 59.2 
9 73.8 72.0 70.2 68.4 66.6 

72 70 68 66 64 
1 7.2 7.0 6.8 6.6 6.4 
2 14.4 14.0 13.6 13.2 12.8 
3 21.6 21.0 20.4 19.8 19.2 
4 28.8 28.0 27.2 26.4 25.6 
5 36.0 35.0 34.0 33.0 32.0 
6 43.2 42.0 40.8 39.6 38.4 
7 50.4 49.0 47.6 46.2 44.8 
8 57.6 56.0 54.4 52.8 51.2 
9 64.8 63.0 61.2 59.4 57.6 

62 60 58 56 54 
1 6.2 6.0 5.8 5.6 5.4 
2 12.4 12.0 11.6 11.2 10.8 
3 18.6 18.0 17.4 16.8 16.2 
4 24.8 24.0 23.2 22.4 21.6 
5 31.0 30.0 29.0 28.0 27.0 
6 37.2 36.0 34.8 33.6 32.4 
7 43.4 42.0 40.6 39.2 37.8 
8 49.6 48.0 46.4 44.8 43.2 
9 55.8 54.0 52.2 50.4 48.6 

52 50 48 46 44 
1 5.2 5.0 4.8 4.6 4.4 
2 10.4 10.0 9.6 9.2 8.8 
3 15.6 15.0 14.4 13.8 13.2 
4 20.8 20.0 19.2 18.4 17.6 
5 26.0 25.0 24.0 23.0 22.0 
6 31.2 30.0 28.8 27.6 26.4 
7 36.4 35.0 33.6 32.2 30.8 
8 41.6 40.0 38.4 36.8 35.2 
9 46.8 45.0 43.2 41.4 39.6 

P. P. 

Log cos A° from 45° to 90°. 



TABLES 503 

p. p. 

42 40 38 36 
1 4.2 4.0 3.8 3.6 
2 8 4 8.0 7.6 7.2 
3 12.6 12.0 11.4 10.8 
4 16.8 16.0 15.2 14.4 
5 21.0 20.0 19.0 18.0 
6 25.2 24.0 22.8 21.6 
7 29.4 28.0 26.6 25.2 
8 33.6 32.0 30.4 28.8 
9 37.8 36.0 34.2 32.4 

34 32 30 28 
1 3.4 3.2 3.0 2.8 
2 6.8 6.4 6.0 5.6 
3 10.2 9.6 9.0 8.4 
4 13.6 12.8 12.0 11.2 
5 17.0 16.0 15.0 14.0 
6 20.4 19.2 18.0 16.8 
7 23.8 22.4 21.0 19.6 
8 27.2 25.6 24.0 22.4 
9 30.6 28.8 27.0 25.2 

26 24 22 20 
1 2.6 2.4 2.2 2.0 
2 5.2 4.8 4.4 4.0 
3 7.8 7.2 6.6 6.0 
4 10.4 9.6 8.8 8.0 
5 13.0 12.0 11.0 10.0 
6 15.6 14.4 13.2 12.0 
7 18.2 16.8 15.4 14.0 
8 20.8 19.2 17.6 16.0 
9 23.4 21.6 19.8 18.0 

19 18 17 16 
1 1.9 1.8 1.7 1.6 
2 3.8 3.6 3.4 3.2 
3 5.7 5.4 5.1 4.8 
4 7.6 7.2 6.8 6.4 
5 9.5 9.0 8.5 8.0 
6 11.4 10.8 10.2 9.6 
7 13.3 12.6 11.9 11.2 
8 15.2 14.4 13.6 12.8 
9 17.1 16.2 15.3 14.4 

15 14 13 12 
1 1.5 1.4 1.3 1.2 
2 3.0 2.8 2.6 2.4 
3 4.5 4.2 3.9 3.6 
4 6.0 5.6 5.2 4.8 
5 7.5 7.0 6.5 6.0 
6 9.0 8.4 7.8 7.2 
7 10.5 9.8 9.1 8.4 
8 12.0 11.2 10.4 9.6 
9 13.5 12.6 11.7 10.8 

P. P. 

Log sin A° from 45° to 90°„ 

A0 O' 10' 20' 30' 40' 50' 00' A° d. P. P. 

45 8495 8507 8520 8532 8545 8557 8569 44 12 12 
46 8569 8582 8594 8606 8618 8629 8641 43 12 ] 

2 
1.2 
2 4 47 8641 8653 8665 8676 8688 8699 8711 42 12 

48 8711 8722 8733 8745 8756 8767 8778 41 11 3 3.6 
49 8778 8789 8800 8810 8821 8832 8843 40 11 4 4.8 

5 
6 
7 

6.0 
l~T O 

50 9.8843 8853 8864 8874 8884 8895 8905 39 10 
7.2 
8.4 

51 8905 8915 8925 8935 8945 8955 8965 38 10 8 9.6 
52 8965 8975 8985 8995 9004 9014 9023 37 9 9 10.8 
53 9023 .9033 9042 9052 9061 9070 9080 36 10 
54 9080 9089 9098 9107 9116 9125 9134 35 9 

55 9134 9142 9151 9160 9169 9177 9186 34 9 
56 9186 9194 9203 9211 9219 9228 9236 33 8 
57 9236 9244 9252 9260 9268 9276 9284 32 8 
58 9284 9292 9300 9308 9315 9323 9331 31 8 
59 9331 9338 9346 9353 9361 9368 9375 30 7 

60 9.9375 8393 9390 9397 9404 9411 9418 29 7 
61 9418 9425 9432 9439 9446 9453 9459 28 6 
62 9459 9466 9473 9479 9486 9492 9499 27 7 
63 9499 9505 9512 9518 9524 9530 9537 26 7 
64 9537 9543 9549 9555 9561 9567 9573 25 6 

65 9573 9579 9584 9590 9596 9602 9607 24 5 
66 9007 9613 9618 9624 9629 9635 9640 23 5 
67 9640 9646 9651 9656 9661 9667 9672 22 5 
68 9672 9677 9682 9687 9692 9697 9702 21 5 
69 9702 9706 9711 9716 9721 9725 9730 20 5 

30' 

70 9.9730 9734 9739 9743 9748 9752 9757 19 5 
71 9757 9761 9765 9770 9774 9778 9782 18 4 
72 9782 9786 9790 9794 9798 9802 9806 17 4 
73 9806 9810 9814 9817 9821 9825 9828 16 3 
74 9828 9832 9836 9839 9843 9846 9849 15 3 

75 9849 9853 9856 9859 9863 9866 9869 14 3 
76 9869 9872 9875 9878 9881 9884 9887 13 3 
77 9887 9890 9893 9896 9899 9901 9904 12 3 
78 9904 9907 9909 9912 9914 9917 9919 11 2 
79 9919 9922 9924 9927 9929 9931 9934 10 3 

80 9.9934 9936 9938 9940 9942 9944 9946 9 2 
81 9946 9948 9950 9952 9954 9956 9958 8 2 
82 9958 9959 9961 9963 9964 9966 9968 7 2 
83 9968 9969 9971 9972 9973 9975 9976 6 1 
84 9976 9977 9979 9980 9981 9982 9983 5 1 

85 9983 9985 9986 9987 9988 9989 9989 4 0 
86 9989 9990 9991 9992 9993 9993 9994 3 1 
87 9994 9995 9995 9996 9996 9997 9997 2 0 
88 9997 9998 9998 9999 9999 9999 9999 1 0 
89 9999 *0000 *0000 *0000 *0000 *0000 *0000 0 0 

A° 60' 50' 40' 30' 20' 10' 0' A° d 

Log cos A0 from 0° to 45° 

In
te

rp
o

la
te

 m
e
n
ta

ll
y
, 

u
si

n
g
 t

h
e
 m

u
lt

ip
li

c
a
ti

o
n
 t

a
b

le
. 



504 UNIFIED MATHEMATICS 

Logarithms of tangents and cotangents, 0 

A0 0' 10' 20' 30' 40' 50' 60' A° d. 

O' tan 7.4637 7648 9409 *0658 *1627. *2419 cot 89° 
log cot 2.5363 2352 0591 *9342 *8373 *7581 tan log 

1° tan 8.2419 3089 3669 4181 4638 5053 5431 cot 88° 
log cot 1.7581 6911 6331 5819 5362 4947 4569 tan log 

2° tan 8.5431 5779 6101 6401 6682 6945 7194 cot 87° 
log cot 1.4569 4221 3899 3599 3318 3055 2806 tan log 

3° tan 8.7194 7429 7652 7865 8067 8261 8446 cot 86° 
log cot 1.2806 2571 2348 2135 1933 1739 1554 tan log 

4° tan 8.8446 8624 8795 8960 9118 9272 9420 cot 85° 
log cot 1.1554 1376 1205 1040 0882 0728 0580 tan log 

5° tan 8.9420 9563 9701 9836 9966 *0093 *0216 cot 84° 
log cot 1.0580 0437 0299 0164 0034 *9907 *9784 tan log 
6°tan 9.0216 0336 0453 0567 0678 0786 0891 cot 83° 

log cot 0.9784 9664 9547 9433 9322 9214 9109 tan log 
7°tan 9.0891 0995 1096 1194 1291 1385 1478 cot 82° 

log cot 0.9109 9005 8904 8806 8709 8615 8522 tan log 

8° tan 9.1478 1569 1658 1745 1831 1915 1997 cot 81° 87 
log cot 0.8522 8431 8342 8255 8169 8085 8003 tan log 87 

9° tan 9.1997 2078 2158 2236 2313 2389 2463 cot 80° 78 
log cot 0.8003 7922 7842 7764 7687 7611 7537 tan log 78 

30' 

10° tan 9.2463 2536 2609 2680 2750 2819 2887 cot 79° 71 
log cot 0.7537 7464 7391 7320 7250 7181 7113 tan log 71 
11° tan 9.2887 2953 3020 3085 3149 3212 3275 cot 78° 65 
log cot 0.7113 7047 6980 6915 6851 6788 6725 tan log 65 
12° tan 9.3275 3336 3397 3458 3517 3576 3634 cot 77° 60 
log cot 0.6725 6664 6603 6542 6483 6424 6366 tan log 60 

13° tan 9.3634 3691 3748 3804 3859 3914 3968 cot 76° 56 
log cot 0.6366 6309 6252 6196 6141 6086 6032 tan log 56 
14° tan 9.3968 4021 4074 4127 4178 4230 4281 cot 75 52 
log cot 0.6032 5979 5926 5873 5822 5770 5719 tan log 52 

15° tan 9.4281 4331 4381 4430 4479 4527 4575 cot 74° 49 
log cot 0.5719 5669 5619 5570 5521 5473 5425 tan log 49 
16° tan 9.4575 4622 4669 4716 4762 4808 4853 cot 73° 46 
log cot 0.5425 5378 5331 5284 5238 5192 5147 tan log 46 
17° tan 9.4853 4898 4943 4987 5031 5075 5118 cot 72° 44 
log cot 0.5147 5102 5057 5013 4969 4925 4882 tan log 44 

18°tan 9.5118 5161 5203 5245 5287 5329 5370 cot 71° 42 
log cot 0.4882 4839 4797 4755 4713 4671 4630 tan log 42 
19° tan 9.5370 5411 5451 5491 5531 5571 5611 cot 70° 40 
log cot 0.4630 4589 4549 4509 4469 4429 4389 tan log 40 

20° tan 9.5611 5650 5689 5727 5766 5804 5842 cot 69° 39 
log cot 0.4389 4350 4311 4273 4234 4196 4158 tan log 39 
21° tan 9.5842 5879 5917 5954 5991 6028 6064 cot 68° 37 
log cot 0.4158 4121 4083 4046 4009 3972 3936 tan log 37 
22° tan 9.6064 6100 6136 6172 6208 6243 6279 cot 67° 36 
log cot 0.3936 3900 3864 3828 3792 3757 3721 tan log 36 

A° 60' 50' 40' 30' 20' 10' 0' A° d. 

67 

to 23°. 

Do not interpolate, 

but use the special 

table for log tan from 

0° to 9°, and log cot 

from 81° to 90°. 

P. P. 

82 80 78 76 74 • 
1 8.2 8.0 7.8 7.6 7.4 
2 16.4 16.0 15.6 15.2 14.8 
3 24.6 24.0 23.4 22.8 22.2 
4 32.8 32.0 31.2 30.4 29.6 
541.040 039.038.037.0 
6 49.2 48.0 46.8 45.6 44.4 
7 57.4 56.0 54.6 53.2 51.8 
8 65.6 64.0 62.4 60.8 59.2 
9 73.8 72.0 70.2 68.4 66.6 

72 70 68 66 64 
1 7.2 7.0 6.8 6.6 6.4 
2 14.4 14.0 13.6 13.2 12.8 
321.621.020.4 19.8 19.2 
4 28.8 28.027.2 26.4 25.6 
536.035.034.033.032.0 
6 43.2 42.0 40.8 39.6 38.4 
7 50.4 49.0 47.6 46.2 44.8 
857.656.054.4 52.851.2 
9 64.8 63.0 61.2 59.4 57.6 

62 60 58 56 54 
1 6.2 6.0 5.8 5.6 5.4 
2 12.4 12.0 11.6 11.2 10.8 
3 18.6 18.0 17.4 16.8 16.2 
4 24.8 24.023.2 22.4 21.6 
531.030.029.028.027.0 
6 37.2 36.0 34.8 33.6 32.4 
7 43.4 42.040.6 39.2 37.8 
8 49.6 48.0 46.4 44.8 43.2 
9 55.8 54.0 52.2 50.4 48.6 

53 52 51 50 49 
1 5.3 5.2 5.1 5.0 4.9 
2 10.6 10.4 10.2 10.0 9.8 
3 15.9 15.6 15.3 15.014.7 
4 21.2 20.820.420.019.6 
5 26.5 26.0 25.5 25.0 24.5 
6 31.8 31.2 30.6 30.0 29.4 
7 37.1 36.4 35.7 35.0 34.3 
8 42.4 41.6 40.8 40.0 39.2 
9 47.7 46.8 45.9 45.0 44.1 

48 47 46 45 44 
1 4.8 4.7 4.6 4.5 4.4 
2 9.6 9.4 9.2 9.0 8.8 
3 14.4 14.1 13.813.5 13.2 
4 19.2 18.8 18.4 18.017.6 
5 24.0 23.5 23.0 22.5 22.0 
6 28.8 28.2 27.6 27.026.4 
7 33.6 32.9 32.2 31.5 30.8 
8 38.4 37.6 36.8 36.0 35.2 
943.2 42.341.440.539.6 

P. P. 

to 90°. Logarithms of tangents and cotangents, 



TABLES 505 

Logarithms of tangents and cotangents, 23° to 46°. 

P. P. 

43 43 
1 4.3 4.2 
2 8.6 8.4 
3 12.9 12.6 
4 17.2 16.8 
5 21.5 21.0 
6 25.8 25.2 
7 30.1 29.4 
8 34.4 33.6 
9 38.7 37.8 

41 40 
1 4.1 4.0 
2 8.2 8.0 
3 12.3 12.0 
4 16.4 16.0 
5 20.5 20.0 
6 24.6 24.0 
7 28.7 28.0 
8 32.8 32.0 
9 36.9 36.0 

39 38 
1 3.9 3.8 
2 7.8 7.6 
3 11.7 11.4 
4 15.6 11.4 
5 19.5 19.0 
6 23.4 22.8 
7 27.3 26.6 
8 31.2 30.4 
9 35.1 34.2 

37 36 
1 3.7 3.6 
2 7.4 7.2 
3 11.1 10.8 
4 14.8 14.4 
5 18.5 18.0 
6 22.2 21.6 
7 25.9 25.2 
8 29.6 28.8 
9 33.3 32.4 

35 34 
1 3.5 3.4 
2 7.0 6.8 
3 10.5 10.2 
4 14.0 13.6 
6 17.5 17.0 
6 21.0 20.4 
7 24.5 23.8 
8 28.0 27.2 
9 31.5 30.6 

O' 10' 30' 30' 40' 50' 60' A° d. P. P. 

23° tan 9.G279 6314 6348 
log cot 0.3721 3686 3652 
24° tan 9.6486 6520 6553 
log cot 0.3514 3480 3447 

25° tan 9.6687 6720 6752 
log cot 0.3313 3280 3248 
26° tan 9.6882 6914 6946 
log cot 0.3118 3086 3054 
27° tan 9.7072 7103 7134 
log cot 0.2928 2897 2866 

6417 6452 6486 cot 66° 34 
3583 3548 3514 tan log 34 
6620 6654 6687 cot 65° 33 
3380 3346 3313 tan log 33 

6817 6850 6882 cot 64° 33 
3183 3150 3118 tan log 33 
7009 7040 7072 cot 63° 32 
2991 2960 2928 tan log 32 
7196 7226 7257 cot 62° 31 
2804 2774 2743 tan log 31 

6383 
3617 
6587 
3413 

6785 
3215 
6977 
3023 
7165 
2835 

33 32 
1 3.3 3.2 
2 6.6 6.4 
3 9.9 9.6 
4 13.2 12.8 
5 16.5 16.0 
6 19.8 19.2 
7 23.1 22.4 
8 26.4 25.6 
9 29.7 28.8 

28° tan 9.7257 7287 7317 7348 
log cot 0.2743 2713 2683 2652 
29° tan 9.7438 7467 7497 7526 
log cot 0.2562 2533 2503 2474 

7378 7408 7438 cot 61° 30 
2622 2592 2562 tan log 30 
7556 7585 7614 cot 60° 29 
2444 2415 2386 tan log 29 

• 

30° tan 9.7614 7644 
log cot 0.2386 2356 
31° tan 9.7788 7816 
log cot 0.2212 2184 
32° tan 9.7958 7986 
log cot 0.2042 2014 

7673 7701 7730 
2327 2299 2270 
7845 7873 7902 
2155 2127 2098 
8014 8042 8070 
1986 1958 1930 

7759 7788 cot 59° 29 
2241 2212 tan log 29 
7930 7958 cot 58° 28 
2070 2042 tan log 28 
8097 8125 cot 57° 28 
1903 1875 tan log 28 

31 30 
1 3.1 3.0 
2 6.2 6.0 
3 9.3 9.0 
4 12.4 12.0 
5 15.5 15.0 
6 18.6 18.0 
7 21.7 21.0 
8 24.8 24.0 
9 27.9 27.0 

33° tan 9.8125 8153 8180 
log cot 0.1875 1847 1820 
34° tan 9.8290 8317 8344 
log cot 0.1710 1683 1656 

35° tan 9.8452 8479 8506 
log cot 0.1548 1521 1494 
36° tan 9.8613 8639 8666 
log cot 0.1387 1361 1334 
37° tan 9.8771 8797 8824 
log cot 0.1229 1203 1176 

38° tan 9.8928 8954 8980 
log cot 0.1072 1046 1020 
39° tan 9.9084 9110 9135 
log cot 0.0916 0890 0865 

40° tan 9.9238 9264 9289 
log cot 0.0762 0736 0711 
41° tan 9.9392 9417 9443 
log cot 0.0608 0583 0557 
42° tan 9.9544 9570 9595 
log cot 0.0456 0430 0405 

43° tan 9.9697 9722 9747 
log cot 0.0303 0278 0253 
443 tan 9.9848 9874 9899 
log cot 0.0152 0126 0101 
45° tan 0.0000 0025 0051 
log cot 0.0000*9975*9949 

8235 8263 8290 cot 56° 27 
1765 1737 1710 tan log 27 
8398 8425 8452 cot 55° 27 
1602 1575 1548 tan log 27 

8559 8586 8613 cot 54° 27 
1441 1414 1387 tan log 27 
8718 8745 8771 cot 53° 26 
1282 1255 1229 tan log 26 
8876 8902 8928 cot 52° 26 
1124 1098 1072 tan log 26 

9032 9058 9084 cot 51° 26 
0968 0942 0916 tan log 26 
9187 9212 9238 cot 50° 26 
0813 0788 0762 tan log 26 

9341 9366 9392 cot 49° 26 
0659 0634 0608 tan log 26 
9494 9519 9544 cot 48° 25 
0506 0481 0456 tan log 25 
9646 9671 9697 cot 47° 25 
0354 0329 0303 tan log 25 

9798 9823 9848 cot 46° 25 
0202 0177 0152 tan log 25 
9949 9975 0000 cot 45° 25 
0051 0025 0000 tan log 25 
0101 0126 0152 cot 44° 25 

*9899*9874*9848 tan log 25 

8208 
1792 
8371 
1629 

30' 

8533 
1467 
8692 
1308 
8850 
1150 

9006 
0994 
9161 
0839 

9315 
0685 
9468 
0532 
9621 
0379 

9772 
0228 
9924 
0076 
0076 

*9924 

29 28 
1 2.9 2.8 
2 5.8 5.6 
3 8.7 8.4 
4 11.6 11.2 
5 14.5 14.0 
6 17.4 16.8 
7 20.3 19.6 
8 23.2 22.4 
9 26.1 25.2 

27 26 
1 2.7 2.6 
2 5.4 5.2 
3 8.1 7.8 
4 10.8 10.4 
5 13.5 13.0 
6 16.2 15.6 
7 18.9 18.2 
8 21.6 20.8 
0 24.3 23.4 

25 24 
1 2.5 2.4 
2 5.0 4.8 
3 7.5 7.2 
4 10.0 9.6 
5 12.5 12.0 
6 15.0 14.4 
7 17.5 16.8 
8 20.0 19.2 
9 22.5 21.6 

A° 60' 50' 40' 30' 20' 10' 0' A° d. P. P. P. P. 

Logarithms of tangents and cotangents, 44° to 67° 



506 UNIFIED MATHEMATICS 

Log sin by minutes from 0° to 9°. 

A ' 0' r 2' 3' 4' 5' 6' r 8' 9' 10' 

0 0 6.4637 7648 9408 *0658 *1627 *2419 : *3088 *3668 *4180 *4637 50 
10 7.4637 5051 5429 5777 6099 6398 6678 6942 7190 7425 7648 40 
20 7648 7859 8061 8255 8439 8617 8787 8951 *109 *261 *408 30 
30 7.9408 551 689 822 952 *078 *200 *319 *435 *548 *658 20 
40 8.0658 765 870 972 *072 *169 *265 *358 *450 *539 *627 10 
50 8.1627 713 797 880 961 *041 *119 *196 *271 *346 *419 0 

1 0 8.2419 490 561 630 699 766 832 898 962 *025 *088 50 
10 8.3088 150 210 270 329 388 445 502 558 613 668 40 
20 668 722 775 828 880 931 982 *032 *082 *131 *179 30 
30 8.4179 227 275 322 368 414 459 504 549 593 637 20 
40 637 680 723 765 807 848 890 930 971 *011 *050 10 
50 8.5050 090 129 167 206 243 281 318 355 392 428 0 

3 0 8.5428 464 500 535 571 605 640 674 708 742 776 50 
10 776 809 842 875 907 939 972 *003 *035 *066 *097 40 
20 8.6097 128 159 189 220 250 279 309 339 368 397 30 
30 397 426 454 483 511 539 567 595 622 650 677 20 
40 677 704 731 758 •784 810 837 863 889 914 940 10 
50 940 965 991 *016 *041 *066 *090 *115 *140 *164 *188 0 

3 0 8.7188 212 236 260 283 307 330 354 377 400 423 50 
10 423 445 468 491 513 535 557 580 602 623 645 40 
20 645 667 688 710 731 752 773 794 815 836 857 30 
30 857 877 898 918 939 959 979 999 *019 *039 *059 20 
40 8.8059 078 098 117 137 156 175 194 213 232 251 10 
50 251 270 289 307 326 345 363 381 400 418 436 0 

4 0 8.8436 454 472 490 508 525 543 560 578 595 613 50 
10 613 630 647 665 682 699 716 733 749 766 783 40 
20 783 799 816 833 849 865 882 898 914 930 946 30 
30 946 962 978 994 *010 *026 *042 *057 *073 *089 *104 20 
40 8.9104 119 135 150 166 181 196 211 226 241 256 10 
50 256 271 286 301 315 330 345 359 374 389 403 0 

5 0 8.9403 417 432 446 460 475 489 503 517 531 545 50 
10 545 559 573 587 601 614 628 642 655 669 682 40 
20 682 696 709 723 736 750 763 776 789 803 816 30 
30 816 829 842 855 868 881 894 907 919 932 945 20 
40 945 958 970 983 996 *008 *021 *033 *046 *058 *070 10 
50 9.0070 083 095 107 120 132 144 156 168 180 192 0 

6 0 9.0192 204 216 228 240 252 264 276 287 299 311 50 
10 311 323 334 346 357 369 380 392 403 415 426 40 
20 426 438 449 460 472 483 494 505 516 527 539 30 
30 539 550 561 572 583 594 605 616 626 637 648 20 
40 648 659 670 680 691 702 712 723 734 744 755 10 
50 755 765 776 786 797 807 818 828 838 849 859 0 

7 0 9.0859 869 879 890 900 910 920 930 940 951 961 50 
10 961 971 981 991 *001 *011 *020 *030 *040 *050 *060 40 
20 9.1060 070 080 089 099 109 118 128 138 147 157 30 
30 157 167 176 186 195 205 214 224 233 242 252 20 
40 252 261 271 280 289 299 308 317 326 336 345 10 
50 345 354 363 372 381 390 399 409 418 427 436 0 

8 0 9.1436 445 453 462 471 480 489 498 507 516 525 50 
10 525 533 542 551 560 568 577 586 594 603 612 40 
20 612 620 629 637 646 655 663 672 680 689 697 30 
30 697 705 714 722 731 739 747 756 764 772 781 20 
40 7S1 789 797 806 814 822 830 838 847 855 863 10 
50 863 871 879 887 895 903 911 919 927 935 943 0 

A 10' 9' 8' V 6' 5' M 3' 2' 1' 0' ' 

Log cos by minutes from 81° to 90°. 

A 

89 

88 

87 

86 

85 

84 

83 

83 

81 

A 



TABLES 507 

Log tan by minutes from 0° to 9°. 

o / 0' V 2' 3' 4' 5' 6' r 8' 9' 10' 

0 0 6.4637 7648 9408 *0658 *1627 *2419 *3088 *3668 *4180 *4637 50 
10 7.4637 5051 5429 5777 6099 6398 6678 6942 7190 7425 7648 40 
20 7648 7860 8062 8255 8439 8617 8787 8951 *109 *261 *409 30 
30 7.9409 551 689 823 952 *078 *200 *319 *435 *548 *658 20 
40 8.0658 765 870 972 *072 *170 *265 *359 *450 *540 *627 10 
50 8.1627 713 798 880 962 *041 *120 *196 *272 *346 *419 0 

1 0 8.2419 491 562 631 700 767 833 899 963 *026 *089 50 
10 8.3089 150 211 271 330 389 446 503 559 614 669 40 
20 669 723 776 829 881 932 983 *033 *083 132 181 30 
30 8.4181 229 276 323 370 416 461 506 551 595 638 20 
40 638 682 725 767 809 851 892 933 973 *013 *053 10 
50 8.5053 092 131 170 208 246 283 321 358 394 431 0 

2 0 8.5431 467 503 538 573 608 643 677 711 745 779 50 
10 779 812 845 878 911 943 975 *007 *038 *070 *101 40 
20 8.6101 132 163 193 223 254 283 313 343 372 401 30 
30 401 430 459 487 515 544 571 599 627 654 682 20 
40 682 709 736 762 789 815 842 868 894 920 945 10 
50 945 971 996 *021 *046 *071 *096 *121 *145 *170 *194 0 

3 0 8.7194 218 242 266 290 313 337 360 383 406 429 50 
10 429 452 475 497 520 542 565 587 609 631 652 40 
20 652 674 696 717 739 760 781 802 823 844 865 30 
30 865 886 906 927 947 967 988 *008 *028 *048 *067 20 
40 8.8067 087 107 126 146 165 185 204 223 242 261 10 
50 261 280 299 317 336 355 373 392 410 428 446 0 

4 0 8.8446 465 483 501 518 536 554 572 589 607 624 50 
10 624 642 659 676 694 711 728 745 762 778 795 40 
20 795 812 829 845 862 878 895 911 927 944 960 30 
30 960 976 992 *008 *024 *040 *056 *071 *087 *103 *118 20 
40 8.9118 134 150 165 180 196 211 226 241 256 272 10 
50 272 287 302 316 331 346 361 376 390 405 420 0 

5 0 8.9420 434 449 463 477 492 506 520 534 549 563 50 
10 563 577 591 605 619 633 646 660 674 688 701 40 
20 701 715 729 742 756 769 782 796 809 823 836 30 
30 836 849 862 875 888 901 915 927 940 953 966 20 
40 966 979 992 *005 *017 *030 *043 *055 *068 *080 *093 10 
50 9.0093 105 118 130 143 155 167 180 192 204 216 0 

6 0 9.0216 228 240 253 265 277 289 300 312 324 336 50 
10 336 348 360 371 383 395 407 418 430 441 453 40 
20 453 464 476 487 499 510 521 533 544 555 567 30 
30 567 578 589 600 611 622 633 645 656 667 678 20 
40 678 688 699 710 721 732 743 754 764 775 786 10 
50 786 796 807 818 828 839 849 860 871 881 891 0 

7 0 9.0891 902 912 923 933 943 954 964 974 984 995 50 
10 995 *005 *015 *025 *035 *045 *055 *066 *076 *086 *096 40 
20 9.1096 106 116 125 135 145 155 165 175 185 194 30 
30 194 204 214 223 233 243 252 262 272 281 291 20 
40 291 300 310 319 329 338 348 357 367 376 385 10 
50 385 395 404 413 423 432 441 450 460 469 478 0 

8 0 9.1478 487 496 505 515 524 533 542 551 560 569 50 
10 569 578 587 596 605 613 622 631 640 649 658 40 
20 658 667 675 684 693 702 710 719 728 736 745 30 
30 745 754 762 771 779 788 797 805 814 822 831 20 
40 831 839 848 856 864 873 881 890 898 906 915 10 
50 915 923 931 940 948 956 964 973 981 989 997 0 

10' 9' 8' 1 r 6' 5' 4' 3' 2' 1' O' ' 

89 

88 

87 

86 

85 

84 

83 

83 

81 
O 

Log cot by minutes from 81° to 90° 
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21 
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23 
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UNIFIED MATHEMATICS 

Numerical values of the sine function, 0° to 45°. 

0' 10' 20' 30' 40' 50' 60' d. P. P. 

0.0000 0029 0058 0087 0116 0145 0175 89 29 
0175 0204 0233 0262 0291 0320 0349 88 29 
0349 0378 0407 0436 0465 0494 0523 87 29 30 29 
0523 0552 0581 0610 0640 0669 0698 86 29 1 3.0 2.9 
0698 0727 0756 0785 0814 0843 0872 85 29 2 6.0 5.8 

3 9.0 8.7 
4 12.0 11.6 

0.0872 0901 0929 0958 0987 1016 1045 84 29 5 15.0 14.5 
1045 1074 1103 1132 1161 1190 1219 83 29 6 18.0 17.4 
1219 1248 1276 1305 1334 1363 1392 82 29 7 21.0 20.3 
1392 1421 1449 1478 1507 1536 1564 81 29 8 

o 
24.0 23.2 
97 0 9fi 1 

1564 1593 1622 1650 1679 1708 1736 80 29 if A 1 .\J 4\J • I 

0.1736 1765 1794 1822 1851 1880 1908 79 29 28 27 
1908 1937 1965 1994 2022 2051 2079 78 28 

O O o H 

2079 2108 2136 2164 2193 2221 2250 77 28 1 
o 

2.8 2.7 

2250 2278 2306 2334 2363 2391 2419 76 28 A 

3 
ll.VJ ~ 

8.4 8.1 
2419 2447 2476 2504 2532 2560 2588 75 28 4 11.2 10.8 

5 14.0 13.5 
6 16.8 16.2 

0.2588 2616 2644 2672 2700 2728 2756. 74 28 7 19.6 18.9 
2756 2784 2812 2840 2868 2896 2924 73 28 8 22.4 21.3 
2924 2952 2979 3007 3035 3062 3090 72 28 9 25.2 24.3 
3090 3118 3145 3173 3201 3228 3256 71 28 
3256 3283 3311 3338 3365 3393 3420 70 27 

26 25 
0.3420 3448 3475 3502 3529 3557 3584 69 27 1 2.6 2.5 

3584 3611 3638 3665 3692 3719 3746 68 27 2 
o 

5.2 5.0 
TO T E 

3746 3773 3800 3827 3854 3881 3907 67 27 3 
4 

7.8 7.0 
io4 loo 

3907 3934 3961 3987 4014 4041 4067 66 27 5 13*0 12.5 
4067 4094 4120 4147 4173 4200 4226 65 26 6 15.6 15.0 

7 18.2 17.5 
30' 8 20.8 20.0 

9 23.4 22.5 

0.4226 4253 4279 4305 4331 4358 4384 64 26 
4384 4410 4436 4462 4488 4514 4540 63 26 
4540 4566 4592 4617 4643 4669 4695 62 26 24 23 
4695 4720 4746 4772 4797 4823 4848 61 26 1 2.4 2.3 
4848 4874 4899 4924 4950 4975 5000 60 25 2 4.8 4.6 

3 7.2 6.9 
4 9.6 9.2 

0.5000 5025 5050 5075 5100 5125 5150 59 25 5 12.0 11.5 
5150 5175 5200 5225 5250 5275 5299 58 25 6 14.4 13.8 
5299 5324 5348 5373 5398 5422 5446 57 24 7 

o 
16.8 16.1 
i ft O IQ 4 

5446 5471 5495 5519 5544 5568 5592 56 24 8 
9 

1 V.Z lo.4 

21 6 20 7 
5592 5616 5640 5664 5688 5712 5736 55 24 

Sd X • V/ a* \J • f 

0.5736 5760 5783 5807 5831 5854 5878 54 24 22 21 2 
5878 5901 5925 5948 5972 5995 6018 53 23 1 O O O 1 9 

6018 6041 6065 6088 6111 6134 6157 52 23 1 Z.Z Z. 1 Z. 

2 4 4 4.2 4 
6157 6180 6202 6225 6248 6271 6293 51 23 3 6^6 6.3 6 
6293 6316 6338 6361 6383 6406 6428 50 22 4 8.8 8.4 8 

5 11.0 10.5 10 
6 13.2 12.6 12 

0.6428 6450 6472 6494 6517 6539 6561 49 22 7 15.4 14.7 14 
6561 6583 6604 6626 6648 6670 6691 48 22 8 17.6 16.8 16 
6691 6713 6734 6756 6777 6799 6820 47 22 9 19.8 18.9 18 
6820 6841 6862 6884 6905 6926 6947 46 21 
6947 6967 6988 7009 7030 7050 7071 45 21 

60' 50' 40' 30' 20' 10' 0' O d. p. p. 

Numerical values of the cosine function, 45° to 90°. 
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TABLES 509 

Numerical values of the sine function, 45° to 90°. 

40' 50' 60' d. P. P. 

7153 7173 7193 44 20 
7274 7294 7314 43 20 21 20 19 18 
7392 7412 7431 42 20 1 2.1 2.0 1.9 1.8 
7509 7528 7547 41 19 2 4.2 4.0 3.8 3.6 
7623 7642 7660 40 19 3 6.3 6.0 5.7 5.4 

4 8.4 8.0 7.6 7.2 
5 10.5 10.0 9.5 9.0 

7735 7753 7771 39 18 6 12.6 12.0 11.4 10.8 
7844 
7951 

7862 
7969 

7880 
7986 

38 
37 

18 
18 

7 
8 
9 

14.7 
16.8 
18.9 

14.0 
16.0 
18.0 

13.3 
15.2 
17.1 

12.6 
14.4 
16.2 

8056 8073 8090 36 17 
8158 8175 8192 35 17 

17 16 15 14 
8258 8274 8290 34 16 1 1.7 1.6 1.5 1.4 
8355 8371 8387 33 16 2 Q 3.4 

5.1 
6 8 

3.2 
4.7 
6 4 

3.0 
4.5 
6 0 

2.8 
4.2 
5 6 8450 8465 8480 32 16 O 

4 
8542 8557 8572 31 15 5 8.5 8.0 7.5 7.0 
8631 8646 8660 30 15 6 10.2 9.6 9.0 8.4 

7 11.9 11.2 10.5 9.8 
8 13.6 12.8 12.0 11.2 

8718 8732 8746 29 14 9 15.3 14.4 13.5 12.6 
8802 8816 8829 28 14 
8884 8897 8910 27 14 

13 12 11 10 8962 8975 8988 26 13 
9038 9051 9063 25 12 1 1.3 1.2 1.1 1.0 

2 2.6 2.4 2.2 2.0 
3 3.9 3.6 3.3 3.0 

9112 9124 9135 24 12 4 5.2 4.8 4.4 4.0 
9182 9194 9205 23 12 5 6.5 6.0 5.5 5.0 
9250 9261 9272 22 11 6 

7 
7.8 
9.1 

10.4 

7.2 
8.4 
9.6 

6.6 
7.7 
8.8 

6.0 
7.0 
8.0 9315 9325 9336 21 11 1 

8 
9377 9387 9397 20 10 9 11.7 10.8 9.9 9.0 

9436 9446 9455 19 10 
9492 9502 9511 18 9 
9546 9555 9563 17 9 
9596 9605 9613 16 8 
9644 9652 9659 15 8 

0' 10' 20' 30' 

0.7071 7092 7112 7133 
7193 7214 7234 7254 
7314 7333 7353 7373 
7431 7451 7470 7490 
7547 7566 7585 7604 

0.7660 7679 7698 7716 
7771 7790 7808 7826 
7880 7898 7916 7934 
7986 8004 8021 8039 
8090 8107 8124 8141 

0.8192 8208 8225 8241 
8290 8307 8323 8339 
8387 8403 8418 8434 
8480 8496 8511 8526 
8572 8587 8601 8616 

0.8660 8675 8689 8704 
8746 8760 8774 8783 
8829 8843 8857 8870 
8910 8923 8936 8949 
8988 9001 9013 9026 

0.9063 9075 9088 9100 
9135 9147 9159 9171 
9205 9216 9228 9239 
9272 9283 9293 9304 
9336 9346 9356 9367 

30' 

0.9397 9407 9417 9426 
9455 9465 9474 9483 
9511 9520 9528 9537 
9563 9572 9580 9588 
9613 9621 9628 9636 

0.9659 9667 9674 9681 
9703 9710 9717 9724 
9744 9750 9757 9763 
9781 9787 9793 9799 
9816 9822 9827 9833 

0.9848 9853 9858 9863 
9877 9881 9886 9890 
9903 9907 9911 9914 
9925 9929 9932 9936 
9945 9948 9951 9954 

0.9962 9964 9967 9969 
9976 9978 9980 9981 
9986 9988 9989 9990 
9994 9995 9996 9997 
9998 9999 9999 *0000 

60' 50' 40' 30' 

9689 9696 9703 14 
9730 9737 9744 13 
9769 9775 9781 12 
9805 9811 9816 11 
9838 9843 9848 10 

9868 9872 9877 9 
9894 9899 9903 8 
9918 9922 9925 7 
9939 9942 9945 0 
9957 9959 9962 5 

9971 9974 9976 4 
9983 9985 9986 3 
9992 9993 9994 2 
9997 9998 9998 1 

*0000 *0000 *0000 0 

20' 10' 0' O 

7 
7 
6 
6 
5 Interpolate men¬ 

tally, using the mul- 
5 tiplication table. 
4 
4 
3 
3 

2 
2 
1 
1 
0 

d. P. P. 

Numerical values of the cosine function, 0° to 459 



510 UNIFIED MATHEMATICS 

Numerical values of the tangent function, 0° to 45°. 

o O' 10' 20' 30' 40' 50' 60' d. P. P. 

0 0.0000 0029 0058 0087 0116 0145 0175 89 29 29 30 31 32 33 
l 0175 0204 0233 0262 0291 0320 0349 88 29 1 2.9 3.0 3.1 3.2 3.3 
2 0349 0378 0407 0437 0466 0495 0524 87 29 2 5.8 6.0 6.2 6.4 6.6 
3 0524 0553 0582 0612 0641 0670 0699 86 29 3 8.7 9.0 9.3 9.6 9.9 
4 0699 0729 0758 0787 0816 0846 0875 85 29 4 11.6 12.0 12.4 12.8 13.2 

5 14.5 15.0 15.5 16.0 16.5 
6 17.4 18.0 18.6 19.2 19.8 

5 0.0875 0904 0934 0963 0992 1022 1051 84 29 7 20.3 21.0 21.7 22.4 23.1 
8 23 2 24 0 24 8 25 6 26 4 

<; 1051 1080 1110 1139 1169 1198 1228 83 30 9 26.1 27.0 27.9 28.8 29.7 
7 1228 1257 1287 1317 1346 1376 1405 82 30 
8 1405 1435 1465 1495 1524 1554 1584 81 30 34 35 36 37 38 
9 1584 1614 1644 1673 1703 1733 1763 80 30 1 3.4 3.5 3.6 3.7 3.8 

2 6.8 7.0 7.2 7.4 7.6 
10 0.1763 1793 1823 1853 1883 1914 1944 79 30 3 10.2 10.5 10.8 11.1 11.4 

4 13.6 14.0 14.4 14.8 15.2 
5 17 0 17 5 18 0 18 5 19 0 11 1944 1974 2004 2035 2065 2095 2126 78 30 

12 2126 2156 2186 2217 2247 2278 2309 77 30 6 20.4 21.0 21.6 22.2 22.8 
13 2309 2339 2370 2401 2432 2462 2493 76 31 7 23.8 24.5 25.2 25.9 26.6 
14 2493 2524 2555 2586 2617 2648 2679 75 31 8 27.2 28.0 28.8 29.6 30.4 

9 30.6 31.5 32.4 33.3 34.2 

15 0.2679 2711 2742 2773 2805 2836 2867 74 31 39 40 41 42 43 
10 2867 2899 2931 3962 2994 3026 3057 73 32 1 3.9 4.0 4.1 4.2 4.3 

2 7 8 8 0 8.2 8.4 8.6 17 3057 3089 3121 3153 3185 3217 3249 72 32 
18 3249 3281 3314 3346 3378 3411 3443 71 32 3 11.7 12.0 12.3 12.6 12.9 
19 3443 3476 3508 3541 3574 3607 3640 70 33 4 15.6 16.0 16.4 16.8 17.2 

5 19.5 20.0 20.5 21.0 21.5 
6 23.4 24.0 24.6 25.2 25.8 

20 0.3640 3673 3706 3739 3772 3805 3839 69 33 7 27.3 28.0 28.7 29.4 30.1 
21 3839 3872 3906 3939 3973 4006 4040 68 34 8 31.2 32.0 32.8 33.6 34.4 
22 4040 4074 4108 4142 4176 4210 4245 67 34 9 35.1 36.0 36.9 37.8 38.7 
23 4245 4279 4314 4348 4383 4417 4452 66 34 

44 45 46 47 48 
1 4.4 4.5 4.6 4.7 4.8 
2 8.8 9.0 9.2 9.4 9.6 
3 13.2 13.5 13.8 14.1 14.4 

24 4452 4487 4522 4557 

30' 

4592 4628 4663 65 35 

25 0.4663 4699 4734 4770 4806 4841 4877 64 36 
4 17.6 18.0 18.4 18.8 19.2 
5 22.0 22.5 23.0 23.5 24.0 

26 4877 4913 4950 4986 5022 5059 5095 63 36 6 26.4 27.0 27.6 28.2 28.8 
27 5095 5132 5169 5206 5243 5280 5317 62 37 7 30.8 31.5 32.2 32.9 33.6 
28 5317 5354 5392 5430 5467 5505 5543 61 38 8 35.2 36.0 36.8 37.6 38.4 
29 5543 5581 5619 5658 5696 5735 5774 60 38 9 39.6 40.5 41.4 42.3 43.2 

30 0.5774 5812 5851 5890 5930 5969 6009 59 39 
49 50 51 52 53 

1 4.9 5.0 5.1 5.2 5.3 
2 9.8 10.0 10.2 10.4 10.6 31 6009 6048 6088 6128 6168 6208 6249 58 40 

32 6249 6289 6330 6371 6412 6453 6494 57 41 3 14.7 15.0 15.3 15.6 15.9 
33 6494 6536 6577 6619 6661 6703 6745 56 42 4 19.6 20.0 20.4 20.8 21.2 
34 6745 6787 6830 6873 6916 6959 7002 55 43 5 24.5 25.0 25.5 26.0 26.5 

6 29.4 30.0 30.6 31.2 31.8 
7 34.3 35.0 35.7 36.4 37.1 

35 0.7002 7046 7089 7133 7177 7221 7265 54 44 8 39.2 40.0 40.8 41.6 42.4 
36 7265 7310 7355 7400 7445 7490 7536 53 45 9 44.1 45.0 45.9 46.8 47.7 
37 7536 7581 7627 7673 7720 7766 7813 52 46 

54 55 56 57 58 38 7813 7860 7907 7954 8002 8050 8098 51 48 
39 8098 8146 8195 8243 8292 8342 8391 50 49 1 5.4 5.5 5.6 5.7 5.8 

2 10.8 11.0 11.2 11.4 11.6 
3 16.2 16.5 16.8 17.1 17.4 

40 0.8391 8441 8491 8541 8591 8642 8693 49 50 4 21.6 22.0 22.4 22.8 23.2 
41 8693 8744 8796 8847 8899 8952 9004 48 52 5 27.0 27.5 28.0 28.5 29.0 
42 9004 9057 9110 9163 9217 9271 9325 47 54 6 32.4 33.0 33.6 34.2 34.8 

7 37.8 38.5 39.2 39.9 40.6 
8 43 2 44 0 44 8 45 6 46 4 43 9325 9380 9435 9490 9545 9601 9657 46 55 

44 9657 9713 9770 9827 9884 9942 *0000 45 57 9 48.6 49.5 50.4 51.3 52.2 

60' 50' 40' 30' 20' 10' 0' O d. P. P. 

Numerical values of the cotangent function, 45° to 90°, 



TABLES 511 

Numerical values of the tangent function, 45° to 90°. 

o 0' 10' 20' 30' 40' 50' 60' d. P. P. 

45 1.000 1.006 1.012 1.018 1.024 1.030 1.036 44 6 6 7 8 9 10 11 
46 1.036 1.042 1.048 1.054 1.060 1.066 1.072 43 6 1060708091011 
47 1.072 1.079 1.085 1.091 1.098 1.104 1.11142 6 2 1.2 1.4 1.6 1.8 2.0 2.2 
48 1.111 1.117 1.124 1.130 1.137 1.144 1.150 41 6 3 1.8 2.1 2.4 2.7 3.0 3.3 
49 1.150 1.157 1.164 1.171 1.178 1.185 1.192 40 7 4 2.4 2.8 3.2 3.6 4.0 4.4 

5 3.0 3.5 4.0 4.5 5.0 5.5 
6 3.6 4.2 4.8 5.4 6.0 6.6 

50 1.192 1.199 1.206 1.213 1.220 1.228 1.235 39 7 7 4.2 4.9 5.6 6.3 7.0 7.7 
51 1.235 1.242 1.250 1.257 1.265 1.272 1.280 38 8 8 4.8 5.6 6.4 7.2 8.0 8.8 

9 5.4 6.3 7.2 8.1 9.0 9.9 52 1.280 1.288 1.295 1.303 1.311 1.319 1.327 37 8 
53 1.327 1.335 1.343 1.351 1.360 1.368 1.376 36 8 12 13 14 15 16 

1 1.2 1.3 1.4 1.5 1.6 
2 2.4 2.6 2.8 3.0 3.2 

54 1.376 1.385 1.393 1.402 1.411 1.419 '1.428 35 9 

55 1.428 1.437 1.446 1.455 1.464 1.473 1.483 34 9 3 3.6 3.9 4.2 4.5 4.8 
56 1.483 1.492 1.501 1.511 1.520 1.530 1.540 33 10 4 4.8 5.2 5.6 6.0 6.4 

E? (y A f* r rj f\ w r o 

57 1.540 1.550 1.560 1.570 1.580 1.590 1.600 32 10 5 6.0 6.5 7.0 7.5 8.0 
6 72 78 84 90 96 

58 1.600 1.611 1.621 1.632 1.643 1.653 1.664 31 11 7 8.4 9.1 9.8 10.5 11.2 
59 1.664 1.675 1.686 1.698 1.709 1.720 1.732 30 11 8 9.6 10.4 11.2 12.0 12.8 

9 10.8 11.7 12.6 13.5 14.4 

60 1.732 1.744 1.756 1.767 1.780 1.792 1.804 29 12 17 18 19 20 21 61 1.804 1.816 1.829 1.842 1.855 1.868 1.881 28 13 
62 1.881 1.894 1.907 1.921 1.935 1.949 1.963 27 14 1 1.7 1.8 1.9 2.0 2.1 

2 3.4 3.6 3.8 4.0 4 2 
3 51 54 57 60 63 63 1.963 1.977 1.991 2.006 2.020 2.035 2.050 26 14 

64 2.050 2.066 2.081 2.097 2.112 2.128 2.145 25 16 4 6.8 7.2 7.6 8.0 8.4 
5 8.5 9.0 9.5 10.0 10.5 
6 10.2 10.8 11.4 12.0 12.6 

65 2.145 2.161 2.177 2.194 2.211 2.229 2.246 24 17 7 11.9 12.6 13.3 14.0 14.7 
66 2.246 2.264 2.282 2;300 2.318 2.337 2.356 23 18 8 13.6 14.4 15.2 16.0 16.8 
67 2.356 2.375 2.394 2.414 2.434 2.455 2.475 22 20 9 15.3 16.2 17.1 18.0 18.9 
68 2.475 2.496 2.517 2.539 2.560 2.583 2.605 21 22 
69 2.605 2.628 2.651 ' 2.675 

30' 

2.699 2.723 2.747 20 24 22 23 24 25 26 
1 2.2 2.3 2.4 2.5 2.6 
2 4.4 4.6 4.8 5.0 5.2 
3 6.6 6.9 7.2 7.5 7.8 

70 2.747 2.773 2.798 2.824 2.850 2.877 2.904 19 26 4 8.8 9.2 9.6 10.0 10.4 
5 11 011 5 12 0 12 5 180 

71 2.904 2.932 2.960 2.989 3.018 3.047 3.078 18 29 
ct xx. \ j x x . • j x • yj x lj . yj i o . yJ 

6 13.2 13.8 14.4 15.0 15.6 
72 3.078 3.108 3.140 3.172 3.204 3.237 3.271 17 32 7 15.4 16.1 16.8 17.5 18.2 
73 3.271 3.305 3.340 3.376 3.412 3.450 3.487 16 36 8 17.6 18.4 19.2 20.0 20.8 
74 3.487 3.526 3.566 3.606 3.647 3.689 3.732 15 41 9 19.8 20.7 21.6 22.5 23.4 

75 3.732 3.776 3.821 3.867 3.914 3.962 4.011 14 46 
27 28 59 62 63 

1 2.7 2.8 5.9 6.2 6.3 
2 54 56118 12 4 12 6 76 4.011 4.061 4.113 4.165 4.219 4.275 4.331 13 53 

77 4.331 4.390 4.449 4.511 4.574 4.638 4.705 12 62 3 8.1 8.4 17.7 18.6 18.9 
78 4.705 4.773 4.843 4.915 4.989 5.066 5.145 11 73 4 10.8 11.2 23.6 24.8 25.2 
79 5.145 5.226 5.309 5.396 5.485 5.576 5.671 10 88 5 13.5 14.0 29.5 31.0 31.5 

6 16.2 16.8 35.4 37.2 37.8 
7 18.9 19.6 41.3 43.4 44.1 

80 5.671 5.769 5.871 5.976 6.084 6.197 6.314 9 8 21.6 22.4 47.2 49.6 50.4 
81 6.314 6.435 6.561 6.691 6.827 6.968 7.115 8 9 24.3 25.2 53.1 55.8 56.7 

82 7.115 7.269 7.429 7.596 7.770 7.953 8.144 7 
64 66 68 70 72 83 8.144 8.345 8.556 8.777 9.010 9.255 9.514 6 

84 9.514 9.788 10.078 10.385 10.712 11.059 11.430 5 1 6.4 6.6 6.8 7.0 7.2 
2 12.8 13.2 13.6 14.0 14.4 
3 19.2 19.8 20.4 21.0 21.6 

8511.43011.82612.251 12.706 13.197 13.72714.301 4 4 25.6 26.4 27.2 28.0 28.8 
86 14.301 14.924 15.605 16.350 17.169 18.07519.081 3 5 32.0 33.0 34.0 35.0 36.0 

6 38.4 39.6 40.8 42.0 43.2 
7 44 8 46 2 47 6 49 0 50 4 87 19.081 20.206 21.470 22.904 24.542 26.432 28.636 2 

88 28.636 31.242 34.368 38.188 42.964 49.104 57.290 1 8 51.2 52.8 54.4 56.0 57.6 
89 57.290 68.750 85.940 114.59 171.89 : 343.77 i infimt. 0 9 57.6 59.4 61.2 63.0 64.8 

60' 50' 40' 30' 20' 10' 0' ° d. P. P. 

Numerical values of the cotangent function, 0° to 45°, 
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Radian measure of angles, 0° to 180° 
or 

Length of arc in unit circle for angle 0° to 180° at center. 

A° Radians A° Radians 

1° 0.017 46° 0.803 
2° 0.035 47° 0.820 
3° 0.052 48° 0.838 

4° 0.070 49° 0.855 
5° 0.087 50° 0.873 
6° 0.105 51° 0.890 

7° 0.122 52° 0.908 
8° 0.140 53° 0.925 
9° 0.157 54° 0.942 

10° 0.175 55° 0.960 
11° 0.192 56° 0.977 
12° 0.203 57° 0.995 

13° 0.227 58° 1.012 
14° 0.244 59° 1.031 
15° 0.262 60° 1.047 

16° 0.279 61° 1.065 
17° 0.297 62° 1.082 
18° 0.314 63° 1.100 
19° 0.332 64° 1.117 
20° 0.349 65° 1.134 
21° 0.367 66° 1.152 

22° 0.384 67° 1.169 
23° 0.401 68° 1.187 
24° 0.419 69° 1.204 

25° 0.436 70° 1.222 
26° 0.454 71° 1.239 
27° 0.471 72° 1.257 

28° 0.489 73° 1.274 
29° 0.506 74° 1.292 
30° 0.524 75° 1.309 

31° 0.541 76° 1.326 
32° 0.559 77° 1.344 
33° 0.576 78° 1.361 

34° 0.593 79° 1.379 
35° 0.611 80° 1.396 
36° 0.628 81° 1.414 

37° 0.646 82° 1.431 
38° 0.663 83° 1.449 
39° 0.681 84° 1.466 

40° 0.698 85° 1.484 
41° 0.716 86° 1.501 
42° 0.733 87° 1.518 

43° 0.750 88° 1.536 
44° 0.768 89° 1.553 
45° 0.785 90° 1.571 

A° Radians A° Radians 

91° 1.588 136° 2.374 
92° 1.606 137° 2.391 
93° 1.623 138° 2.409 

94° 1.641 139° 2.426 
95° 1.658 140° 2.443 
96° 1.676 141° 2.461 

97° 1.693 142° 2.478 
98° 1.710 143° 2.496 
99° 1.728 144° 2.513 

100° 1.745 145° 2.531 
101° 1.763 146° 2.548 
102° 1.780 147° 2.566 

103° 1.798 148° 2.583 
104° 1.815 149° 2.601 
105° 1.833 150° 2.618 

106° 1.850 151° 2.635 
107° 1.868 152° 2.653 
108° 1.885 153° 2.670 

109° 1.902 154° 2.688 
110° 1.920 155° 2.705 
111° 1.937 156° 2.723 

112° 1.955 157° 2.740 
113° 1.972 158° 2.758 
114° 1.990 159° 2.775 

115° 2.007 160° 2.793 
116° 2.025 161° 2.810 
117° 2.042 162° 2.827 

118° 2.059 163° 2.845 
119° 2.077 164° 2.862 
120° 2.094 165° 2.880 

121° 2.112 166° 2.897 
122° 2.129 167° 2.915 
123° 2.147 168° 2.932 

124° 2.164 169° 2.950 
125° 2.182 170° 2.967 
126° 2.199 171° 2.985 

127° 2.217 172° 3.002 
128° 2.234 173° 3.019 
129° 2.251 174° 3.037 

130° 2.269 175° 3.054 
131° 2.286 176° 3.072 
132° 2.304 177° 3.089 

133° 2.321 178° 3.107 
134° 2.339 179° 3.124 
135° 2.356 180° 3.142 



TABLES 513 

Minutes as Decimals of 
One Degree or Seconds 

Growth Function, ex 
Decay Function, e~x 

as Decimals of One gX n p #>£ g>—X 

Minute X 

t 
Ioge X 

loge t Value 

Uxv v 

logio Value 

OR €> ® 

logio 

1 .017 31 .517 0.0 - 00 1.000 0.000 1.000 0.000 
2 .033 32 .533 0.1 -2.303 1.105 0.043 0.905 9.957 
3 .050 33 .550 0.2 -1.610 1.221 0.087 0.819 9.913 
4 .067 34 .567 0.3 -1.204 1.350 0.130 0.741 9.870 
5 .083 35 .583 0.4 -0.916 1.492 0.174 0.670 9.826 

6 .100 36 .600 0.5 -0.693 1.649 0.217 0,607 9.783 
7 .117 37 .617 0.6 -0.511 1.822 0.261 0.549 9.739 
8 .133 38 .633 0.7 -0.357 2.014 0.304 0 497 9.696 
9 .150 39 .650 0.8 -0.223 2.226 0.347 0.449 9.653 

10 .167 40 .667 0.9 -0.105 2.460 0.391 0.407 9.609 

11 .183 41 .683 1.0 0.000 2.718 0.434 0.368 9.566 
12 .200 42 .700 1.1 0.095 3.004 0.478 0.333 9.522 
13 .217 43 .717 1.2 0.182 3.320 0.521 0.301 9.479 
14 .233 44 .733 1.3 0.262 3.769 0.565 0.273 9.435 
15 .250 45 .750 1.4 0.336 4.055 0.608 0.247 9.392 

16 .267 46 .767 1.5 0.405 4.482 0.651 0.223 9.349 
17 .283 47 .783 1.6 0.470 4.953 0.695 0.202 9.305 
18 .300 48 .800 1.7 0.531 5.474 0.738 0.183 9.262 
19 ;317 49 .817 1.8 0.588 6.050 0.782 0.165 9.218 
20 .333 50 .833 1.9 0.642 6.686 0.825 0.150 9.175 

21 .350 51 .850 2.0 0.693 7.389 0.869 0.135 9.131 
22 .367 52 .867 2.1 0.742 8.166 0.912 0.122 9.088 
23 .383 53 .883 2.2 0.788 9.025 0.955 0.111 9.045 
24 .400 54 .900 2.3 0.833 9.974 0.999 0.100 0.001 
25 .417 55 .917 2.4 0.875 11.02 1.023 0.091 8.958 

26 .433 56 .933 2.5 0.916 12.18 1.086 0.082 8.914 
27 .450 57 .950 2.6 0.956 13.46 1.129 0.074 8.871 
28 .467 58 .967 2.7 0.993 14.88 1.173 0.067 8.827 
29 .483 59 .983 2.8 1.030 16.44 1.216 0.061 8.784 

30 .500 60 1.000 2.9 1.065 18.17 1.259 0.055 8.741 

3.0 1.099 20.09 1.303 0.050 8.697 
| 

3.1 1.132 22.20 1.346 0.045 8.654 
3.2 1.163 24.53 1.390 0.041 . 8.610 

3.3 1.193 27.11 1.433 0.037 8.567 

3.4 1.224 29.96 1.477 0.033 8.523 

3.5 1.253 33.12 1.520 0.030 8.480 

4.0 1.386 54.60 1.737 0.018 8.263 

4.5 1.504 90.02 1.954 0.0111 8.046 

5.0 1.609 148.4 2.171 0.0067 7.829 

6.0 1.792 403.4 2.606 0.0025 7.394 

7.0 1.946 1096.6 3.040 0.0009 6.960 

8.0 2.079 2981.0 3.474 0.0003 6.526 

9.0 2.197 8103.1 3.909 0.0001 6.091 

10.0 2.303 22026. 4.343 0.0000 5.657 



514 UNIFIED MATHEMATICS 

The accumulation of 1 at the end of n years. rn = (1 -f t)n. 

Years. H%. 2%. 31%. 3%. 4%. 5%. 6%. Years 

1 1.0150 1.0200 1.0250 1.0300 1.0400 1.0500 1.0600 1 
2 1.0302 1.0404 1.0506 1.0609 1.0816 1.1025 1.1236 2 
3 1.0457 1.0612 1.0769 1.0927 1.1249 1.1576 1.1910 3 
4 1.0614 1.0824 1.1038 1.1255 1.1699 1.2155 1.2625 4 
5 1.0773 1.1041 1.1314 1.1593 1.2167 1.2763 1.3382 5 

6 1.0934 1.1262 1.1597 1.1941 1.2653 1.3401 1.4185 6 
7 1.1098 1.1487 1.1887 1.2299 1.3159 1.4071 1.5036 7 
8 1.1265 1.1717 1.2184 1.2668 1.3686 1.4775 1.5938 8 
9 1.1434 1.1951 1.2489 1.3048 1.4233 1.5513 1.6895 9 

10 1.1605 1.2190 1.2801 1.3439 1.4802 1.6289 1.7908 10 

11 1.1779 1.2434 1.3121 1.3842 1.5395 1.7103 1.8983 11 
12 1.1956 1.2682 1.3449 1.4258 1.6010 1.7959 2.0122 12 
13 1.2136 1.2936 1.3785 1.4685 1.6651 1.8856 2.1329 13 
14 1.2318 1.3195 1.4130 1.5126 1.7317 1.9799 2.2609 14 
15 1.2502 1.3459 1.4483 1.5580 1.8009 2.0789 2.3966 15 

16 1.2690 1.3728 1.4845 1.6047 1.8730 2.1829 2.5404 16 
17 1.2880 1.4002 1.5216 1.6528 1.9473 2.2920 2.6928 17 
18 1.3073 1.4282 1.5597 1.7024 2.0258 2.4066 2.8543 18 
19 1.3270 1.4568 1.5987 1.7535 2.1068 2.5270 3.0256 19 
20 1.3469 1.4859 1.6386 1.8061 2.1911 2.6533 3.2071 20 

21 1.3671 1.5157 1.6796 1.8603 2.2788 2.7860 3.3996 21 
22 1.3876 1.5460 1.7216 1.9161 2.3699 2.9253 3.6035 22 
23 1.4084 1.5769 1.7646 1.9736 2.4647 3.0715 3.8197 23 
24 1.4295 1.6084 1.8087 2.0328 2.5633 3.2251 4.0489 24 
25 1.4509 1.6406 1.8539 2.0938 2.6658 3.3864 4.2919 25 

26 1.4727 1.6734 1.9003 2.1566 2.7725 3.5557 4.5494 26 
27 1.4948 1.7069 1.9478 2.2213 2.8834 3.7335 4.8223 27 
28 1.5172 1.7410 1.9965 2.2879 2.9987 3.9201 5.1117 28 
29 1.5400 1.7758 2.0464 2.3566 3.1187 4.1161 5.4184 29 
30 1.5631 1.8114 2.0976 2.4273 3.2434 4.3219 5.7435 30 

31 1.5865 1.8476 2.1500 2.5001 3.3731 4.5380 6.0881 31 
32 1.6103 1.8845 2.2038 2.5751 3.5081 4.7649 6.4534 .32 
33 1.6345 1.9222 2.2589 2.6523 3.6484 5.0032 6.8406 33 
34 1.6590 1.9607 2.3153 2.7319 3.7943 5.2533 7.2510 34 
35 1.6839 1.9999 2.3732 2.8139 3.9461 5.5160 7.6861 35 

36 1.7091 2.0399 2.4325 2.8983 4.1039 5.7918 8.1473 36 
37 1.7348 2.0807 2.4933 2.9852 4.2681 6.0814 8.6361 37 
38 1.7608 2.1223 2.5557 3.0748 4.4388 6.3855 9.1543 38 
39 1.7872 2.1647 2.6196 3.1670 4.6164 6.7048 9.7035 39 
40 1.8140 2.2080 2.6851 3.2620 4.8010 7.0400 10.2857 40 

50 2.1052 2.6916 3.4371 4.3839 7.1067 11.4674 18.4202 50 
60 2.4432 3.2810 4.3998 5.8916 10.5196 18.6792 32.9877 60 
70 2.8355 3.9996 5.6321 7.9178 15.5716 30.4264 59.0759 70 
80 3.2907 4.8754 7.2096 10.6409 23.0498 49.6514 105.7960 80 
90 3.8190 5.9431 9.2289 14.3005 34.1193 80.7304 189.4645 90 

100 4.4321 7.2447 11.8137 19.2186 50.5050 131.5013 339.3021 100 

Years. H%. 3%. 3J%. 3%. 4%. 5%. 6%. Years 



TABLES 515 

The present value of 1 due in n years. vn = (1 + i)~n. 

Years. 14%. 2%. 24%. 3%. 4%. 5%. 6%. Years. 

1 0.9852 0.9804 0.9756 0.9709 0.9615 0.9524 0.9434 1 
2 0.9707 0.9612 0.9518 0.9426 0.9246 0.9070 0.8900 2 
3 0.9563 0.9423 0.9286 0.9151 0.8890 0.8638 0.8396 3 
4 0.9422 0.9238 0.9060 0.8885 0.8548 0.8227 0.7921 4 
5 0.9283 0.9057 0.8839 0.8626 0.8219 0.7835 0.7473 5 

6 0.9145 0.8880 0.8623 0.8375 0.7903 0.7462 0.7050 6 
7 0.9010 0.8706 0.8413 0.8131 0.7599 0.7107 0.6651 7 
8 0.8877 0.8535 0.8207 0.7894 0.7307 0.6768 0.6274 8 
9 0.8746 0.8368 0.8007 0.7664 0.7026 0.6446 0.5919 9 

10 0.8617 0.8203 0.7812 0.7441 0.6756 0.6139 0.5584 10 

11 0.8489 0.8043 0.7621 0.7224 0.6496 0.5847 0.5268 11 
12 0.8364 0.7885 0.7436 0.7014 0.6246 0.5568 0.4970 12 
13 0.8240 0.7730 0.7254 0.6810 0.6006 0.5303 0.4688 13 
14 0.8118 0.7579 0.7077 0.6611 0.5775 0.5051 0.4423 14 
15 0.7999 0.7430 0.6905 0.6419 0.5553 0.4810 0.4173 15 

16 0.7880 
« 

0.7284 0.6736 0.6232 0.5339 0.4581 0.3936 16 
17 0.7764 0.7142 0.6572 0.6050 0.5134 0.4363 0.3714 17 
18 0.7649 0.7002 0.6412 0.5874 0.4936 0.4155 0.3503 18 
19 0.7536 0.6864 0.6255 0.5703 0.4746 0.3957 0.3305 19 
20 0.7425 0.6730 0.6103 0.5537 0.4564 0.3769 0.3118 20 

21 0.7315 0.6598 0.5954 0.5375 0.4388 0.3589 0.2942 21 
22 0.7207 0.6468 0.5809 0.5219 0.4220 0.3418 0.2775 22 
23 0.7100 0.6342 0.5667 0.5067 0.4057 0.3256 0.2618 23 
24 0.6995 0.6217 0.5529 0.4919 0.3901 0.3101 0.2470 24 
25 0.6892 0.6095 0.5394 0.4776 0.3751 0.2953 0.2330 25 

26 0.6790 0.5976 0.5262 0.4637 0.3607 0.2812 0.2198 26 
27 0.6690 0.5859 0.5134 0.4502 0.3468 0.2678 0.2074 27 
28 0.6591 0.5744 0.5009 0.4371 0.3335 0.2551 0.1956 28 
29 0.6494 0.5631 0.4887 0.4243 0.3207 0.2429 0.1846 29 
30 0.6398 0.5521 0.4767 0.4120 0.3083 0.2314 0.1741 30 

31 0.6303 0.5412 0.4651 0.4000 0.2965 0.2204 0.1643 31 
32 0.6210 0.5306 0.4538 0.3883 0.2851 0.2099 0.1550 32 
33 0.6118 0.5202 0.4427 0.3770 0.2741 0.1999 0.1462 33 
34 0.6028 0.5100 0.4319 0.3660 0.2636 0.1904 0.1379 34 
35 0.5939 0.5000 0.4214 0.3554 0.2534 0.1813 0.1301 35 

36 0.5851 0.4902 0.4111 0.3450 0.2437 0.1727 0.1227 36 
37 0.5764 0.4806 0.4011 0.3350 0.2343 0.1644 0.1158 37 
38 0.5679 0.4712 0.3913 0.3252 0.2253 0.1566 0.1092 38 
39 0.5595 0.4620 0.3817 0.3158 0.2166 0.1491 0.1031 39 
40 0.5513 0.4529 0.3724 0.3066 0.2083 0.1420 0.0972 40 

50 0.4750 0.3715 0.2909 0.2281 0.1407 0.0872 0.0543 50 
60 0.4093 0.3048 0.2273 0.1697 0.0951 0.0535 0.0303 60 
70 0.3527 0.2500 0.1776 0.1263 0.0642 0.0329 0.0169 70 
SO 0.3039 0.2051 0.1387 0.0940 0.0434 0.0202 0.0095 80 
90 0.2619 0.1683 0.1084 0.0699 0.0293 0.0124 0.0053 90 

100 0.2256 0.1380 0.0846 0.0520 0.0198 0.0076 0.0029 100 

Years. 14%. 2%. 24%. 3%. 4%. 5%. 6%. Years 



516 UNIFIED MATHEMATICS 

The accumulation of an annuity of 1 per annum at the end of n years. 

(1 + i)u - 1 

i 

Years. 1%%- 2%. 2\%. 3%. 4%. 5%. 6%. Years. 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 
2 2.0150 2.0200 2.0250 2.0300 2.0400 2.0500 2.0600 2 
3 3.0452 3.0604 3.0756 3.0909 3.1216 3.1525 3.1836 3 
4 4.0909 4.1216 4.1525 4.1836 4.2465 4.3101 4.3746 4 
5 5.1523 5.2040 5.2563 5.3091 5.4163 5.5256 5.6371 5 

6 6.2296 6.3081 6.3877 6.4684 6.6330 6.8019 6.9753 6 
7 7.3230 7.4343 7.5474 7.6625 7.8983 8.1420 8.3938 7 
8 8.4328 8.5830 8.7361 8.8923 9.2142 9.5491 9.8975 8 
9 9.5593 9.7546 9.9545 10.1591 10.5828 11.0266 11.4913 9 

10 10.7027 10.9497 11.2034 11.4638 12.0061 12.5779 13.1808 10 

11 11.8633 12.1687 12.4835 12.8078 13.4864 14.2068 14.9716 11 
12 13.0412 13.4121 13.7956 14.1920 15.0258 15.9171 16.8699 12 
13 14.2368 14.6803 15.1404 15.6178 16.6268 17.7130 18.8821 13 
14 15.4504 15.9739 16.5190 17.0863 18.2919 19.5986 21.0151 14 
15 16.6821 17.2934 17.9319 18.5989 20.0236 21.5786 23.2760 15 

16 17.9324 18.6393 19.3802 20.1569 21.8245 23.6575 25.6725 16 
17 19.2014 20.0121 20.8647 21.7616 23.6975 25.8404 28.2129 17 
18 20.4894 21.4123 22.3863 23.4144 25.6454 28.1324 30.9057 18 
19 21.7967 22.8406 23.9460 25.1169 27.6712 30.5390 33.7600 19 
20 23.1237 24.2974 25.5447 26.8704 29.7781 33.0660 36.7856 20 

21 24.4705 25.7833 27.1833 28.6765 31.9692 35.7193 39.9927 21 
22 25.8376 27.2990 28.8629 30.5368 34.2480 38.5052 43.3923 22 
23 27.2251 28.8450 30.5844 32.4529 36.6179 41.4305 46.9958 23 
24 28.6335 30.4219 32.3490 34.4265 39.0826 44.5020 50.8156 24 
25 30.0630 32.0303 34.1578 36.4593 41.6459 47.7271 54.8645 25 

26 31.5140 33.6709 36.0117 38.5530 44.3117 51.1135 59.1564 26 
27 32.9867 35.3443 37.9120 40.7096 47.0842 54.6691 63.7058 27 
28 34.4815 37.0512 39.8598 42.9309 49.9676 58.4026 68.5281 28 
29 35.9987 38.7922 41.8563 45.2189 52.9663 62.3227 73.6398 29 
30 37.5387 40.5681 43.9027 47.5754 56.0849 66.4389 79.0582 30 

31 39.1018 42.3794 46.0003 50.0027 59.3283 70.7608' 84.8017 31 
32 40.6883 44.2270 48.1503 52.5028 62.7015 75.2988 90.8898 32 
33 42.2986 46.1116 50.3540 55.0778 66.2095 80.0638 97.3432 33 
34 43.9331 48.0338 52.6129 57.7302 69.8579 85.0670 104.1838 34 
35 45.5921 49.9945 54.9282 60.4620 73.6522 90.3203 111.4348 35 

36 47.2760 51.9944 57.3014 63.2759 77.5983 95.8363 119.1209 36 
37 48.9851 54.0343 59.7339 66.1742 81.7022 101.6281 127.2681 37 
38 50.7199 56.1149 62.2273 69.1594 85.9703 107.7095 135.9042 38 
39 52.4807 58.2372 64.7830 72.2342 90.4092 114.0950 145.0585 39 
40 54.2679 60.4020 67.4026 75.4013 95.0255 120.7998 154.7620 40 

50 73.6828 84.5794 97.4843 112.7969 152.6671 209.3480 290.3359 50 
60 96.2147 114.0515 135.9916 163.0534 237.9907 353.5837 533.1282 60 
70 122.3638 149.9779 185.2841 230.5941 364.2905 588.5285 967.9322 70 
80 152.7109 193.7720 248.3827 321.3630 551.2450 971.2288 1746.5999 80 
90 187.9299 247.1567 329.1543 443.3489 827.9833 1594.6073 3141.0752 90 

100 228.8030 312.2323 432.5487 607.2877 1237.6237 2610.0252 5638.3681 100 

Years. 13%. 2%. 2i%. 3% 4%. 5%. 6%. Years. 



TABLES 517 

The present value of an annuity of 1 for n years, 

1 - vu 

Years. H%. 3%. 3i%. 3%. 4%. 5%. 6%. Years. 

1 0.9852 0.9804 0.9756 0.9709 0.9615 0.9524 0.9434 1 
2 1.9559 1.9416 1.9274 1.9135 1.8861 1.8594 1.8334 2 
3 2.9122 2.8839 2.8560 2.8286 2.7751 2.7232 2.6730 3 
4 3.8544 3.8077 3.7620 3.7171 3.6299 3.5460 3.4651 4 
5 4.7827 4.7135 4.6458 4.5797 4.4518 4.3295 4.2124 5 

6 5.6972 5.6014 5.5081 5.4172 5.2421 5.0757 4.9173 G 
7 6.5982 6.4720 6.3494 6.2303 6.0021 5.7864 5.5824 7 
8 7.4859 7.3255 7.1701 7.0197 6.7327 6.4632 6.2098 8 
9 8.3605 8.1622 7.9709 7.7861 7.4353 7.1078 6.8017 9 

10 9.2222 8.9826 8.7521 8.5302 8.1109 7.7217 7.3601 10 

11 10.0711 9.7868 9.5142 9.2526 8.7605 8.3064 7.8869 11 
12 10.9075 10.5753 10.2578 9.9540 9.3851 8.8633 8.3838 12 
13 11.7315 11.3484 10.9832 10.6350 9.9856 9.3936 8.8527 13 
14 12.5434 12.1062 11.6909 11.2961 10.5631 9.8986 9.2950 14 
15 13.3432 12.8493 12.3814 11.9379 11.1184 10.3797 9.7122 15 

16 14.1313 13.5777 13.0550 12.5611 11.6523 10.8378 10.1059 16 
17 14.9076 14.2919 13.7122 13.1661 12.1657 11.2741 10.4773 17 
18 15.6726 14.9920 14.3534 13.7535 12.6593 11.6896 10.8276 18 
19 16.4262 15.6785 14.9789 14.3238 13.1340 12.0853 11.1581 19 
20 17.1686 16.3514 15.5892 14.8775 13.5903 12.4622 11.4699 20 

21 17.9001 17.0112 16.1845 15.4150 14.0292 12.8212 11.7641 21 
22 18.6208 17.6580 16.7654 15.9369 14.4511 13.1630 12.0416 22 
23 19.3309 18.2922 17.3321 16.4436 14.8568 13.4886 12.3034 23 
24 20.0304 18.9139 17.8850 16.9355 15.2470 13.7986 12.5504 24 
25 20.7196 19.5235 18.4244 17.4131 15.6221 14.0940 12.7834 25 

26 21.3986 20.1210 18.9506 17.8768 15.9828 14.3752 13.0032 26 
27 22.0676 20.7069 19.4640 18.3270 16.3296 14.6430 13.2105 27 
28 22.7267 21.2813 19.9649 18.7641 16.6631 14.8981 13.4062 28 
29 23.3761 21.8444 20.4535 19.1885 16.9837 15.1411 13.5907 29 
30 24.0158 22.3965 20.9303 19.6004 17.2920 15.3725 13.7648 30 

31 24.6461 ' 22.9377 21.3954 20.0004 17.5885 15.5928 13.9291 31 
32 25.2671 23.4683 21.8492 20.3888 17.8736 15.8027 14.0840 32 
33 25.8790 23.9886 22.2919 20.7658 18.1476 16.0025 14.2302 33 
34 26.4817 24.4986 22.7238 21.1318 18.4112 16.1929 14.3681 34 
35 27.0756 24.9986 23.1452 21.4872 18.6646 16.3742 14.4982 35 

36 27.6607 25.4888 23.5563 21.8323 18.9083 16.5469 14.6210 36 
37 28.2371 25.9695 23.9573 22.1672 19.1426 16.7113 14.7368 37 
38 28.8051 26.4406 24.3486 22.4925 19.3679 16.8679 14.8460 38 
39 29.3646 26.9026 24.7303 22.8082 19.5845 17.0170 14.9491 39 
40 29.9158 27.3555 25.1028 23.1148 19.7928 17.1591 15.0463 40 

50 34.9997 31.4236 28.3623 25.7298 21.4822 18.2559 15.7619 50 
60 39.3803 34.7609 30.9087 27.6756 22.6235 18.9293 16.1614 60 
70 43.1549 37.4987 32.8979 29.1234 23.3945 19.3427 16.3845 70 
80 46.4073 39.7445 34.4518 30.2008 23.9154 19.5965 16.5091 80 
90 49.2099 41.5869 35.6658 31.0024 24.2673 19.7523 16.5787 90 

100 51.6247 43.0983 36.6141 31.5989 24.5050 19.8479 16.6175 100 

Years. u%. 3%- 2?%. 3%. 4%. 5%. 6%. Years. 



518 UNIFIED MATHEMATICS 

The annual sinking fund which will accumulate to 1 at the end of n years. 

1 t T'a aKEnin - add 4 
1 sinpp . - 1 + • 

siT\ C1 + i)n- l <*n\ an\ 

Years. H%. 2%. 2i%. 3%. 4%. 5%. 6%. Years. 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 
2 0.4963 0.4950 0.4938 0.4926 0.4902 0.4878 0.4854 2 
3 0.3284 0.3268 0.3251 0.3235 0.3203 0.3172 0.3141 3 
4 0.2444 0.2426 0.2408 0.2390 0.2355 0.2320 0.2286 4 
5 0.1941 0.1922 0.1902 0.1884 0.1846 0.1810 0.1774 5 

6 0.1605 0.1585 0.1566 0.1546 0.1508 0.1470 0.1434 6 
7 0.1366 0.1345 0.1325 0.1305 0.1266 0.1228 0.1191 7 
8 0.1186 0.1165 0.1145 0.1125 0.1085 0.1047 0.1010 8 
9 0.1046 0.1025 0.1005 0.0984 0.0945 0.0907 0.0870 9 

10 0.0934 0.0913 0.0893 0.0872 0.0833 0.0795 0.0759 10 

11 0.0843 0.0822 0.0801 0.0781 0.0741 0.0704 0.0668 11 
12 0.0767 0.0746 0.0725 0.0705 0.0666 0.0628 0.0593 12 
13 0.0702 0.0681 0.0660 0.0640 0.0601 0.0565 0.0530 13 
14 0.0647 0.0626 0.0605 0.0585 0.0547 0.0510 0.0476 14 
15 0.0599 0.0578 0.0558 0.0538 0.0499 0.0463 0.0430 15 

16 0.0558 0.0537 0.0516 0.0496 0.0458 0.0423 0.0390 16 
17 0.0521 0.0500 0,0479 0.0460 0.0422 0.0387 0.0354 17 
18 0.0488 0.0467 0.0447 0.0427 0.0390 0.0355 0.0324 18 
19 0.0459 0.0438 0.0418 0.0398 0.0361 0.0327 0.0296 19 
20 0.0432 0.0412 0.0391 0.0372 0.0336 0.0302 0.0272 20 

21 0.0409 0.0388 0.0368 0.0349 0.0313 0.0280 0.0250 21 
22 0.0387 0.0366 0.0346 0.0327 0.0292 0.0260 0.0230 22 
23 0.0367 0.0347 0.0327 0.0308 0.0273 0.0241 0.0213 23 
24 0.0349 0.0329 0.0309 0.0290 0.0256 0.0225 0.0197 24 
25 0.0333 0.0312 0.0293 0.0274 0.0240 0.0210 0.0182 25 

26 0.0317 0.0297 0.0278 0.0259 0.0226 0.0196 0.0169 26 
27 0.0303 0.0283 0.0264 0.0246 0.0212 0.0183 0.0157 27 
28 0.0290 0.0270 0.0251 0.0233 0.0200 0.0171 0.0146 28 
29 0.0278 0.0258 0.0239 0.0221 0.0189 0.0160 0.0136 29 
30 0.0266 0.0246 0.0228 0.0210 0.0178 0.0151 0.0126 30 

31 0.0256 0.0236 0.0217 0.0200 0.0169 0.0141 0.0118 31 
32 0.0246 0.0226 0.0208 0.0190 0.0159 0.0133 0.0110 32 
33 0.0236 0.0217 0.0199 0.0182 0.0151 0.0125 0.0103 33 
34 0.0228 0.0208 0.0190 0.0173 0.0143 0.0118 0.0096 34 
35 0.0219 0.0200 0.0182 0.0165 0.0136 0.0111 0.0090 35 

36 0.0212 0.0192 0.0175 0.0158 0.0129 0.0104 0.0084 36 
37 0.0204 0.0185 0.0167 0.0151 0.0122 0.0098 0.0079 37 
38 0.0197 0.0178 0.0161 0.0145 0.0116 0.0093 0.0074 38 
39 0.0191 0.0172 0.0154 0.0138 0.0111 0.0088 0.0069 39 
40 0.0184 0.0166 0.0148 0.0133 0.0105 0.0083 0.0065 40 

50 0.0136 0.0118 0.0103 0.0089 0.0066 0.0048 0.0034 50 
60 0.0104 0.0088 0.0074 .0.0061 0.0042 0.0028 0.0019 60 
70 0.0182 0.0067 0.0054 0.0043 0.0027 0.0017 0.0010 70 
80 0.0065 0.0052 0.0040 0.0031 0.0018 0.0010 0.0006 80 
90 0.0053 0.0040 0.0030 0.0023 0.00121 0.00063 0.00032 90 

100 0.0044 0.0032 0.0023 0.0016 0.00081 0.00038 0.00018 100 

Years. n%. 3%. 31%. 3%. 4%. 5%. 6%. Years. 
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Abel, 204, 399. 
abscissa, 67. 
absolute value, 104. 
addition, formulas, 237. 

geometrical, 13. 
of numbers, 4. 

aeroplane, 277, 278, 388. 
Ahmes papyrus, 90. 
air-pump, 179 ff. 
Al-Battani, 126, 216. 
Alexander III Bridge in Paris, 309. 
algebra, fundamental theorem, 392. 

literal, 12. 
algebraic functions, 66 ff., 392 ff. 
Almagest, 125. 
amplitude, of complex number, 444. 

of S. H. M., 412: 
of sinusoid, 408, 410. 

angle, between two lines, 246 ff., 461. 
depression, 210. 
direction, 457. 
measurement, 110 ff. 
of incidence, 262 ff. 
of refraction, 262 ff. 

annuity, 183 ff. 
approximations, logarithms, 48, 140 

ff., 274. 
numerical, 31 ff., 93. 
trigonometric, 170 ff. 

anti-sine, -cosine, -tangent, etc., 137. 
Arabic mathematics, 90, 119, 126, 

203, 256. 
Archimedes, 183, 404, 438. 
arc sin, -cos, -tan, etc., 137. 
area, of an ellipse, 287 ff. 

of an inscribed quadrilateral, 261. 
of a triangle, 51, 209 ff., 258 ff., 261. 

Argand, 450. 
arithmetical series, 166 ff. 

mean, 172 ff. 
asymptote, 325. 
auxiliary circles, 282 ff. 

Babylonian mathematics, 111, 183. 
bacteria, growth, 423, 427. 
barometric pressure, 60, 426 ff. 
Bhaskara, 261. 
binomial series, 193 ff. 
biquadratic, 392, 399. 
bisector, of the angle between two 

lines, 160 ff. 
perpendicular, 151, 164. 

Briggs, 49. 

capacity, of a can, 53, 73, 83, 100. 
of a cistern, 94. 

Cardan, 399. 
cardioid, 437. 
Carrel, 430. 
centigrade scale, 2, 86, 103. 
centimeters and inches, 103. 
characteristic, 44. 
ohess-board problem, 187. 
Chinese mathematics, 203. 
circle, 220 ff. 

auxiliary, 282 ff. 
circular sections of a cone, etc., 489 ff. 
circumferential velocity, 115. 
cissoid, 437. 
Colosseum in Rome, 288, 362. 
compass, geometrical, 4. 

mariner’s, 114. 
complex numbers, 439 ff. 
components of a vector, 152 ff. 
compound interest, 54 ff. 
conchoid of Nicomedes, 437. 
congruent angles, 116. 
conjugate hyperbolas, 328. 

numbers, 441. 
cone, 483. 
conic sections, 287, 483 ff. 
connecting rod, 421 ff. 
continuous functions, 393, 397. 
coordinate axes, 453. 

planes, 453. 
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coordinates, 67 ff., 115 ff., 118, 435, 
453. 

cosecant, definition, 120. 
cosine, definition, 117 ff. 

law, 252 ff. 
cotangent, definition, 120, 125 ff. 
crank arm, 421 ff. 
cubic, 392, 399. 

curves, 466. 
cubical parabola, 74. 
curvature of the earth, 146. 
cyclic interchange, 252. 
cylindrical surfaces, 466 ff. 

damped vibrations, 431 ff. 
decagon, 124. 
decimal, recurring, 177. 
deflection angle, 217. 
De Moivre, 445. 
departure, 210. 
depression, 210. 
Descartes, 69, 449. 
dihedral angle, 456. 
dip, 210. 
directed line, 1. 
direction angles, 457, 470. 

cosines, 457, 462. 
directrix, of a conic, 289, 309, 320. 

of a cylinder, 467. 
discount, 190, 386 ff. 
discriminant, 89. 
distance, between two points, 104 ff., 

458. 
from a point to a line, 158 ff., 487. 
from a point to a plane, 471. 

division, 5. 
abbreviated, 35. 
graphical, 9, 10. 
synthetic, 25, 394 ff. 

duplication of a cube, 204 ff. 

eccentricity (e), 289, 297, 347. 
Egyptian mathematics, 90, 175, 183. 
electrical phenomena, 108, 412, 

415 ff., 432. 
element of a cylinder, 467. 
ellipse,. 280 ff. 
ellipsoids, 476 ff. 
elliptical arch, 295, 307, 355. 

gears, 356 ff. 
elliptic paraboloid, 481 ff. 
equilateral hyperbola, 327, 329. 
Euclid, 183. 

Euler, 243. 
evolution, 41. 
explicit function, 58. 
exponent, 40. 

Fahrenheit scale, 2, 86, 103. 
family of surfaces, 465 ff. 
Farm Loan Act, 188 ff. 
Fermat, 69. 
Ferrari, 399. 
Fiori, 399. 
fly-wheel, 434. 
focal distances, 291, 327. 
focus, 289, 299 ff., 305, 309. 
fourth dimension, 452 ff. 
Franklin, 56. 
frequency, 412. 
functions, 58. 

algebraic, 66 ff. 
linear, 77 ff., 101 ff., 149 ff., 155 ff., 

462 ff. 
quadratic, 87 ff. 
trigonometric, 110 ff. 

Galton, 179. 
Gauss, 392, 450. 
generator, of a cylinder, 467. 

of a surface, 491. 
geometrical mean, 178. 

series, 176 ff. 
Glover, 188. 
graphical methods, 13 ff., 169 ff.,180ff. 
greater, 1, 3. 
Greek mathematics, 119, 125, 183, 

242, 256 ff., 287. 

half-angle formulas, trigonometric 
functions, 247 ff. 

oblique triangle, 258. 
Halley, 428. 
healing of a wound, law, 429 ff. 
helical spring, 414 ff. 
Hero, 51, 69, 261. 
Hill Auditorium, 352, 362, 489. 
Hindu mathematics, 119, 261. 
hyperbola, 320 ff. 
hyperbolic paraboloid, 481 ff. 
hyperboloid, of one sheet, 475, 479 ff. 

of two sheets, 475, 479 ff. 

imaginary numbers, 439 ff., 449, 450. 
implicit function, 58. 
index of refraction, 262 ff. 
indices, theory of, 40 ff. 
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induction, mathematical, 1G7, 198. 
infinity, 97 ff., 176 ff., 181, 200 ff., 

311 ff., 323 ff. 
integers, 3. 
intercepts, 82 ff. 
interest, 54 ff., 92, 183 ff., 200, 423. 
interpolation, 46 ff., 140 ff., 170 ff. 
intersections of graphs, 80 ff., 465. 
inverse functions, 137. 
involution, 41. 
irrational numbers, 10 ff. 

Kepler, 287. 
Khowarizmi, 90. 

latitude, 67, 147. 
lead of a screw, 211. 
Leibniz, 69. 
light-waves, 415. 
limagon, 437. 
limiting values, 97 ff. 
linear function, 77 ff., 101 ff., 149 ff., 

155 ff., 462 ff. 
logarithms, 41 ff. 
London Bridge, 281, 284. 
longitude, 67, 147. 

mantissa, 44. 
maximum, 398. 
mean, arithmetical, 172 ff. 

geometrical, 178. 
weighted, 173. 

measurements, 31 ff., 37. 
mercury, expansion of, 63, 85, 103. 
mid-point formula, 107. 
mil, 114, 115, 214, 215. 
minutes, 111. 
modulus, 444 ff. 
Mohammed ibn Musa al-Khowarizmi, 

90. 
multiplication, 5. 

abbreviated, 34. 
graphical, 15. 

musical scale, 414. 

Napier, 49. 
Nasir ad-Din at-Tusi, 256. 
natural logarithms, 425 ff. 
negative angles, 110. 

numbers, 6. 
Newton, 69, 203 ff., 260 ff., 287. 
Nicomedes, 437. 

normal form, of the equation of a 
line, 155 ff. 

of a plane, 470 ff. 
normal distribution curve, 428. 
du Noiiy, 431. 
numbers, 1 ff. 

classification, 3. 
definition, 3. 

oblate spheroid, 476, 478. 
Oldenburg, 203. 
Omar al-Khayyam, 204. 
one-to-one correspondence, 1. 
orbit of the earth, 38, 297 ff. 
ordinate, 67. 
organ-pipes, 388. 
origin, 1, 453. 

parabola, 73, 309 ff. 
parabolic arch, 317. 

reflector, 318, 319. 
paraboloids, 481 ff. 
parallel lines, 149, 462. 

planes, 471. 
parameter, 109, 221, 281, 326, 457 ff., 

464, 468. 
Pascal, 203, 437. 
pendulum, 38, 39, 54, 100, 213, 317 ff., 

427, 434. 
percentage error, 31, 36. 
perpendicular lines, 149, 462. 
phase-angle, 412, 416. 
piston-rod motion, 420 ff. 
point of division, 105 ff., 108, 459. 
point-slope formula, 101. 
polar-coordinates, 115 ff., 118, 435 ff. 
population statistics, 57, 65 ff.7 179. 
premium, 190. 
present value, 184 ff. 
progressive computation, 195, 201 ff. 
projectiles, 87, 93, 94, 99, 100, 154, 

214 ff., 278 ff., 317. 
projecting planes, 468 ff. 
projection of vectors, 152 ff., 156 ff. 
prolate spheroid, 476, 478. 
Ptolemy, 125, 242. 
Pythagoras, 125. 

quadrants, 113. 
quadratic form, 95 ff. 

function, 87 ff. 
graphical solution, 90 ff. 
solution, 88 ff. 
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radian, 111 ff. 
radical axis, 231 ff. 

center, 233. 
railroad curves, 217 ff. 
rational numbers, 7. 
real numbers, 2. 
Recorde, 13. 
rectangular hyperbola, 327, 329. 
rectilinear generator, 491 ff. 
reflection of light, 261 ff. 
refraction of light, 261 ff. 
Regiomontanus, 257. 
regular polygons, 448, 450. 
related angles, 128 ff. 
remainder theorem, 26, 394 ff. 
resultant, 152. 
Rialto in Venice, 213, 225, 236. 
right focal chord, 292, 310, 323. 
right-handed system of axes, 454. 
roots of unity, 447 ff. 
rotation, positive and negative, 110. 
ruled surfaces, 491 ff. 

scalar line, 1. 
screw, 211. 
secant, definition, 120. 
seconds, 211. 
series, arithmetical, 166 ff. 

binomial, 193 ff. 
geometrical, 176 ff. 

significant figures, 31. 
silo, 53, 76, 100. 
simple curve, 217. 
simple harmonic motion, 409, 412. 
sine curve, 407 ff. 

definition, 117. 
law, 255 ff. 

sinking fund, 189 ff. 
sinusoid, 407 ff., 419. 
skew lines, 461. 
slope, 101, 149 ff., 397 ff. 
slope-intercept formula, 101. 
sound, 86, 99, 107, 306, 412 ff. 
specific gravity, 39. 
sphere, 458, 473, 476. 
spherical segment, 405. 
spheroids, 478. 

spiral, 211, 438. 
squaring numbers, 21, 73. 
statistics, 59 ff. 
Steinmetz, 450. 
subtraction, 4. 

geometrical, 13. 
symbols, 13. 
synthetic division, 25, 394 ff. 

tables, 46 ff., 139 ff., 495 ff. 
tabular difference, 48, 141. 
tangent, definition, 119, 125 ff. 

law, 261. 
planes, 490 ff. 
to a curve, 227, 230, 298 ff., 301 ff., 

315 ff., 490 ff. 
Tartaglia, 399. 
temperature chart, 60. 
tensor, 444. 
Thales, 266. 
transformation of coordinates, 371 ff. 
transition curves, 217, 389 ff. 
triangle, trigonometric solution, 251 

ff., 266 ff. 
trisection of an angle, 399. 
two-point formula of a line, 101. 
tuning fork, 412. 

variable, 12. 
variation of trigonometric functions, 

126 ff. 
vector, 115, 152 ff., 444 ff. 

in space, 456. 
vectorial angle, 115. 
vibrations, 407, 412 ff. 
Viete, 13, 242. 
voice records, 413. 

water, weight, volume, etc., 61 ff., 
85, 103. 

wave lengths, 413. 
wave motion, 407. 
Wessel, 449. 
Widmann, 13. 

Zeno, 177. 
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