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Abstract 

Propensity score matching and weighting methods are often used in observational effectiveness 

studies to reduce imbalance between treated and untreated groups on a set of potential 

confounders. However, much of the prior methodological literature on matching and weighting 

has yet to examine performance for scenarios with a majority of treated units, as is often 

encountered with programs and interventions that have been widely disseminated or “scaled up”. 

Using a series of Monte Carlo simulations, we compare the performance of k:1 matching with 

replacement and weighting methods with respect to covariate balance, bias, and MSE. Results 

indicate that the accuracy of all methods declined as treatment prevalence increased. While 

weighting produced the largest reduction in covariate imbalance, 1:1 matching with replacement 

provided the most unbiased treatment effect estimates. An applied example using empirical 

school-level data is provided to further illustrate the application and interpretation of these 

methods to a real-world scale-up effort. We conclude by considering the implications of 

propensity score methods for observational effectiveness studies with a particular focus on 

educational research. 
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Running header: MATCHING AND WEIGHTING FOR BALANCE 

Experimentation through random assignment ensures that all variables related to both 

treatment receipt and the outcome (i.e., confounders) are balanced between treatment conditions. 

However, random assignment is not always feasible and is particularly unlikely to occur within 

observational research, frequently resulting in treated and untreated groups with unbalanced 

covariate distributions. Only after covariate balance between treatment groups is achieved may 

researchers obtain unbiased treatment effect estimates. Analytic approaches such as propensity 

score methods can be used to correct for such confounding. The propensity score can thus be 

viewed as a “balancing score”, such that units with similar covariate distributions will have 

similar propensity scores, attempting to mimic random assignment (Rosenbaum & Rubin, 1983).  

One condition often overlooked in the methodological literature on propensity scores is 

treatment prevalence, or the proportion of units exposed to treatment. Treatment prevalence is of 

great interest to researchers examining the effectiveness of interventions when widely 

disseminated or “brought to scale” because when effectively scaling an intervention, there is 

typically an increase in the proportion of units exposed to the intervention over time. Most 

notably, once more than 50% of a population (e.g., a school district, a state, or students) is 

exposed to treatment, matching with replacement becomes necessary, as failing to do so would 

result in the discarding of potentially important units, ultimately reducing statistical power in 

effect estimation (Stuart, 2010). When weighting for designs with a majority of treated units, 

certain untreated units may receive large or extreme weights if they comprise most of the 

information about the counterfactual, leading to increased variability in effect estimation (Austin 

& Stuart, 2015a; Hainmueller, 2011).  

The current paper aims to fill this methodological gap in the educational literature by 

investigating the performance of propensity score matching and weighting methods with respect 
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to covariate balance for scenarios with varying degrees of treatment prevalence. This issue is of 

particular concern within the context of examining the effectiveness of a widely disseminated (or 

scaled-up) intervention, in which a majority of the sample exposed to treatment. More 

specifically, we build upon prior simulation research by Hainmueller (2011) and Colson et al. 

(2016) who compared inverse probability of treatment weighting and nearest neighbor matching 

with replacement for designs with treatment prevalence ranging from 0.2 to 0.5. By expanding 

our simulation to consider scenarios with a majority of units exposed to treatment, we broaden 

our understanding of propensity score weighting and matching methods to be more applicable to 

observational effectiveness designs. Additionally, we consider increasing degrees of imbalance 

in baseline covariates, representing scenarios in which there is an increasing difficulty in 

establishing covariate balance. 

In fact, such methodological work has the potential to advance research on the 

effectiveness of educational interventions or programs already in wide use in “real-world” 

settings (see Fagan et al., 2019; Gottfredson et al., 2015). As compared to the amount of efficacy 

research in education and other fields such as public health or medicine, there is a paucity of 

research on the effectiveness of interventions. Such concerns in part motivated the U.S. 

Department of Education’s funding for what was initially coined “i3” (Investment in Innovation) 

and is currently the Education Innovation and Research funding (Office of Elementary and 

Secondary Education, 2021). Toward that end, we provide an applied example of a widely used 

and scaled educational preventive intervention framework, called Positive Behavioral 

Interventions and Supports, for which we use empirical data to illustrate the application and 

performance of different propensity score matching and weighting methods within a high 

treatment prevalence scenario.  
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Potential Outcomes Framework 

Using the potential outcomes framework described by Neyman (1923) and Rubin (1974), 

consider the simplest case in which there are two groups or conditions (i.e., treatment and 

control), observed at a single time point. Let Z denote a binary treatment indicator. Specifically, 

each individual i is considered to have a potential outcome Yi
1 associated with participating in the 

treatment condition (Zi = 1), as well as a potential outcome Yi
0 associated with participating in the 

non-treated (control) condition (Zi = 0). The treatment effect for individual i is then defined as:  

δ𝑖𝑖 =  𝑌𝑌𝑖𝑖1 −  𝑌𝑌𝑖𝑖0, (1) 

with the population ATE is given as:  

δ =  𝐸𝐸[𝑌𝑌1 − 𝑌𝑌0]. (2) 

As only a single potential outcome for each individual is ever directly observed, several 

assumptions must be met for the expectations of the potential outcomes to be identified. One key 

assumption in observational studies is that treatment assignment is strongly ignorable. 

Rosenbaum and Rubin (1983) demonstrated that unbiased estimates of the ATE (δ�) can be 

obtained if treatment assignment Z is independent of the potential outcome distribution of 𝑌𝑌1 and 

𝑌𝑌0, conditional on an observed vector of covariates X, and that no covariate values are associated 

with a probability of treatment equal to zero or one (positivity assumption). That is, (𝑌𝑌1,𝑌𝑌0) ⊥

𝑍𝑍|𝑿𝑿 and 0 < 𝑃𝑃(𝑍𝑍 = 1|𝑿𝑿) < 1. Additionally, the potential outcome distributions are also 

independent of treatment assignment Z given the propensity score 𝑝𝑝(𝑿𝑿), while treatment 

assignment Z is independent of the observed set of covariates X, conditional on the propensity 

score: 

 (𝑌𝑌1,𝑌𝑌0) ⊥ 𝑍𝑍|𝑝𝑝(𝑿𝑿) and 𝑍𝑍 ⊥ 𝑿𝑿 |𝑝𝑝(𝑿𝑿). (3) 



MATCHING AND WEIGHTING FOR BALANCE 4 

The stable unit treatment value assumption (SUTVA; Rubin, 1986) is further assumed, requiring 

the potential outcomes of individual i to be independent of both the treatment assignment 

mechanism and the treatment status of other individuals.  

 To balance the treatment and control groups, probabilities of being in the treatment group 

are generated for all individuals. This probability is known as the propensity score, or the 

propensity of exposure to the treatment condition. The most common estimation function is a 

logistic regression model:  

𝑃𝑃(𝑍𝑍𝑖𝑖 = 1|𝑿𝑿𝑖𝑖) = 𝐸𝐸(𝑿𝑿𝑖𝑖) =  
𝑒𝑒𝑒𝑒𝑝𝑝(𝑿𝑿𝑖𝑖𝜷𝜷)

1 + 𝑒𝑒𝑒𝑒𝑝𝑝(𝑿𝑿𝑖𝑖𝜷𝜷) . (4) 

where 𝑿𝑿𝑖𝑖 represents a vector of observed covariates for individual i, while β represents a vector 

of associated parameter coefficients. After estimating propensity scores, individuals may be 

matched according to the similarity of scores; this is known as propensity score matching. 

Propensity scores may also be used as inverse probability weights in estimating the ATE, known 

as inverse probability of treatment weighting (Hernán & Robins, 2020). Both matching and 

weighting according to the propensity score have been shown to produce conditional 

independence between treatment assignment the outcome (Rosenbaum & Rubin, 1983), allowing 

for more accurate estimates of treatment effects.  

In addition to estimating the ATE, propensity scores are commonly used to estimate the 

ATT. The ATT is defined as the difference in the expected value of the potential outcome for all 

individuals in the treatment group, had they been exposed to the control group (𝑌𝑌�𝑖𝑖0 | Zi = 1), from 

the expected value of the outcome for all individuals in the treatment group (𝑌𝑌�𝑖𝑖1 | Zi = 1; 

Heckman & Robb, 1984): 

δ = 𝐸𝐸[𝑌𝑌𝑖𝑖1|𝑍𝑍𝑖𝑖 = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖0|𝑍𝑍𝑖𝑖 = 1]. (5) 
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Evaluation researchers and policymakers are often more substantively interested in the ATT than 

the ATE. In practice, school administrators may be interested in the treatment effect of a new 

behavioral intervention program for those who chose to participate in the program (ATT), not the 

effect for all students in the population (ATE).  

Matching and Weighting Methods 

Propensity score analyses provide multiple advantages over traditional regression-based 

analyses. For example, the propensity score is able to effectively summarize all covariate 

distributions in a single dimension, helping avoid the “curse of dimensionality” often 

encountered in regression-adjustment approaches. Additionally, propensity scores are estimated 

without reference to the eventual outcome of interest, often viewed as a more transparent method 

than regression adjustment (Greifer & Stuart, 2021). These properties make propensity score 

methods an attractive choice for researchers investigating effects in observational designs. 

Specific to the field of education, a number of more recent studies have explored the 

methodological implications of matching (Keele et al., 2020; Page et al., 2020; Pimentel et al., 

2018; Rosenbaum, 2020) and weighting (Bishop et al., 2018; Fuentes et al., 2021; Leite et al., 

2019) methods, demonstrating the utility and demand for robust causal inference methodology. 

In what follows, we describe each of these methods in greater detail, highlight advantages, 

disadvantages, and implications of certain method choices.    

Matching  

After estimating propensity scores, pairs of treated and untreated individuals may then be 

matched based according to the similarity of their propensity scores. One of the most common 

matching strategies is 1:1 nearest neighbor matching, in which a single untreated unit is matched 

with a single treated unit based on a distance measure (typically pairwise differences in 
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propensity scores between units). One key issue researchers face when conducting matching 

involves whether to match with or without replacement. When matching without replacement, 

after a single untreated unit is matched with a single treated unit, the untreated unit can no longer 

be paired with another treated unit. This has the potential to result in poor-quality matches for 

scenarios in which there are few untreated units. Oppositely, matching with replacement allows a 

single untreated unit to be matched with multiple treated units. Allowing for replacement may 

improve match quality if a given untreated unit is considered to be the best match (in terms of 

closest distance) for multiple treated units. Prior simulations by Austin (2013) demonstrated that 

matching with and without replacement both produce unbiased treatment effect estimates. 

However, when there is weak overlap in the covariate distributions, matching with replacement 

produces smaller standard errors.   

One caveat to matching with replacement is that weights must be used in subsequent 

analyses (e.g., a weighted linear regression). The weights generated by matching with 

replacement reflect the frequency with which each untreated unit was matched (Leite, 2017). Let 

𝑤𝑤𝑖𝑖 represent the weight for unit i. Further, let 𝑤𝑤𝑖𝑖 = 1 for all treated units (𝑍𝑍𝑖𝑖 = 1). Then, weights 

for each untreated unit (𝑍𝑍𝑖𝑖 = 0) are calculated as: 

𝑤𝑤𝑖𝑖 =  
𝑛𝑛0
𝑛𝑛1
∗ �

1
𝑀𝑀𝑚𝑚

𝑛𝑛𝑖𝑖

𝑚𝑚=1

, (6) 

in which 𝑛𝑛0 is the total number of matched cases, 𝑛𝑛1 is the total number of treated cases, 𝑛𝑛𝑖𝑖 is the 

number of treated cases unit i was matched to, and 𝑀𝑀𝑚𝑚 is the total number of matches (including 

unit i) that each treated case received. Here, the untreated weights are scaled to sum to the total 

number of matched cases. Such weights are not utilized when conducting matching without 

replacement, as each untreated unit may only be matched with a single treated unit.  
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 A second key issue involves k:1 matching, a matching strategy that finds and matches not 

one, but k untreated units to each treated unit. This may be particularly useful for scenarios with 

a majority of untreated units. For example, prior simulation research by Austin (2010) has 

demonstrated a bias-variance trade-off with increasing k. While increasing the number of 

untreated to treated matches tends to increase precision in treatment effect estimates, k:1 

matching may simultaneously increase dissimilarity in the matched sample, ultimately increasing 

bias in effect estimates (Stuart, 2010). It is worth noting that while nearest neighbor matching is 

most commonly used in the health and social sciences (Thoemmes & Kim, 2011), other types of 

matching may provide certain benefits. For example, both Cepeda et al. (2003) and Ming and 

Rosenbaum (2000) found variable ratio matching, in which a variable number of untreated units 

are matched to each treated unit, resulted in better covariate balance but larger standard errors of 

the estimated treatment effect as compared to k:1 matching. Other types of matching, such as the 

optimal matching algorithm, entertain all possible matching combinations before declaring a 

match. While optimal matching has been shown to be remove more bias when allowing for a 

variable number of nearest neighbors (Gu & Rosenbaum, 1993), simulation studies have 

demonstrated nearest neighbor matching is more effective in reducing covariate imbalance than 

optimal matching when the untreated to treated ratio is fixed (Austin, 2013). Nonetheless, 

because nearest neighbor matching is the most commonly used matching approach, we focus on 

this particular matching strategy.  

A third issue regards the use of a caliper or trimming. When using a caliper, no units 

further apart than some pre-specified distance measure are allowed to be matched. For example, 

if a distance measure of 0.2 standard deviations of the propensity score was chosen as caliper 

width, only those with propensity scores less than 0.2 standard deviations away from the unit of 
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interest could be considered to be matched with. Austin (2009a; 2011) and others have 

demonstrated that caliper widths of 0.6 and 0.2 standard deviations of the propensity score 

remove approximately 90% and 99% of bias due to measured confounders, respectively, by 

enforcing more similar matches. Calipers are similar but distinct from trimming, which refers to 

dropping units with propensity scores outside of a pre-specified range. This is sometimes 

referred to as the ‘overlap problem’ in which Crump et al. (2009) suggest discarding all units 

outside the range of (0.1, 0.9) standard deviations of the propensity score. However, one 

limitation to matching with a specified caliper width or trimming is that observations outside of 

the region of common support are often discarded, reducing the analytic sample size, potentially 

negatively impacting power (Ho et al., 2007a). Additionally, discarding observations outside of 

the region of common support shifts the estimand as the estimated treatment effect is no longer 

in regard to a full sample of treated units.  

Weighting  

 Instead of matching on the propensity score, propensity scores can be used as unit 

weights when estimating the treatment effect. The intuition is that treated and untreated units are 

reweighted to be representative of the population of interest. The inverse probability of treatment 

weight (IPTW) is defined as 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖
�̂�𝑒𝑖𝑖

+ 1−𝑍𝑍𝑖𝑖
1−�̂�𝑒𝑖𝑖

, where �̂�𝑒𝑖𝑖 is the estimated propensity score for unit i. 

Letting 𝑌𝑌𝑖𝑖 represent the observed outcome for unit i, the ATE may be estimated as (Austin & 

Stuart, 2015a):  

δ� = �
1
𝑁𝑁
�

𝑍𝑍𝑖𝑖𝑌𝑌𝑖𝑖
�̂�𝑒𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� − �
1
𝑁𝑁
�

(1 − 𝑍𝑍𝑖𝑖)𝑌𝑌𝑖𝑖
1 − �̂�𝑒𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� , (7) 

which represents the difference in the weighted average outcomes between the treated and 

untreated groups. To instead estimate the ATT, a new set of weights can be calculated as 𝑤𝑤𝑖𝑖 =
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𝑍𝑍𝑖𝑖 + (1 − 𝑍𝑍𝑖𝑖)
�̂�𝑒𝑖𝑖

1−�̂�𝑒𝑖𝑖
. Thus, while the weights used to estimate the ATE weight the treated and 

untreated groups to their respective populations, the weights used to estimate the ATT weight the 

untreated group only (to a representative population of the treatment group), as weights for those 

in the treated group are equal to one.  

 One concern with IPTW is that it can generate extreme or large weights. As the weights 

are directly related to the propensity scores, a (misspecified) propensity score model that 

produces extreme propensity scores may yield extreme weights. For example, when using 

weights to estimate the ATE, treated units with a propensity score close to zero may have very 

large weights. Similarly, when using weights to estimate the ATT, untreated units with a 

propensity score close to one may also have very large weights. Such large weights can 

potentially increase the standard error of the estimated treatment effect as well as increase bias 

(Harder et al., 2010; Leite, 2017). Thus, a misspecified propensity score model may derive 

extreme weights, although this may also be due to a lack of common support.  

 Solutions to address extreme weights include improving the specification of the 

propensity score model, and to conduct weight trimming or truncating (Lee et al., 2011). 

Trimming is typically performed by setting weights that exceed a specified threshold to that 

given threshold, often determined by quantiles of the distribution. For example, units with 

weights above the 95th percentile may be set equal to the 95th percentile (and vice versa for the 

5th percentile). Prior research has demonstrated that weight trimming may decrease standard 

errors in treatment effect estimates, though weight trimming may also bias estimates depending 

on the estimation method (Lee et al., 2011; Thoemmes & Ong, 2016). However, there is no 

singular guideline for the optimal level of weight trimming. Thus, researchers conducting IPTW 
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must carefully inspect the distribution of weights and adjust either the propensity score model or 

the weights themselves.  

Matching Versus Weighting  

 When matching with replacement, matching weights are ultimately used in outcome 

estimation to appropriately account for untreated units matched to multiple treated units. This 

begs the question, “If matching is a means to getting weights, why not weight directly?” The 

purpose of matching and weighting methods is the same, namely, to reduce bias in treatment 

effect estimates due to confounders for observational research. However, matching methods may 

provide an advantage in terms of robustness to model specifications. Generally, matching 

methods are less sensitive to correct specification in propensity score estimation than weighting 

methods (Waernbaum, 2012). As described earlier, extreme propensity scores may result in 

extreme weights, potentially resulting in effect estimates driven by a few units with large 

weights. For matching methods, the value of the propensity score itself is not directly used to 

compute matching weights. Additionally, matching methods allow for many possibilities to 

customize the matching procedure, such as deciding on a particular distance measure, the 

matching method to be used, whether or not to match with replacement, the number of untreated 

units to match with each treated unit, and the matching order, among others. Although this may 

result in a more cumbersome model building process than weighting, this has the advantages of 

decreasing bias and improving precision in effect estimation. Weighting can allow for a more 

efficient model building process, although researchers often customize the type of weighting 

(e.g., kernel, regularization, and entropy balancing weights). In general, weighting may be 

preferred to matching when: a) the form of the exposure model is known, or b) no units have 

extreme propensity scores. However, in practice the form of the exposure model is generally not 
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well known, favoring matching methods. See Greifer and Stuart (2021) for a more thorough 

comparison of matching and weighting methods.  

Use of Propensity Score Methods in Observational Effectiveness Studies  

As noted in the introduction, the current investigation of the performance of propensity 

score matching and weighting methods with respect to covariate balance for scenarios with 

varying degrees of treatment prevalence has the potential to inform observational effectiveness 

research on the “real-world” implementation of widely disseminated interventions; those effects 

may inherently differ from the experimental efficacy or even quasi-experimental study designs 

used in prior studies due to treatment prevalence differences. This process, in which the adoption 

of innovation varies throughout the course of an intervention results for the “diffusion of 

innovations” (Rogers, 1962), whereby the number of units implementing treatment would be 

expected to increase over time. Additionally, effectiveness research of a scaled intervention is 

likely to include relatively large proportions of the sample implementing treatment, such as more 

than 50% of units as treatment units (see Gottfedson et al., 2015; Fagan et al., 2019 for additional 

information on effectiveness research). In such instances of a scale-up, the number of untreated 

units is likely outnumbered by the number of treated units. As a result, matching with 

replacement becomes essential to ensure each treated unit is matched with at least one untreated 

unit. Additionally, the sensitivity of the weighting procedure to the sample specification may 

result in extreme weights.  

Much of the previous simulation literature examining propensity score matching and 

weighting has only considered a relatively small proportion of treated units. For example, Austin 

(2009) only considered a constant 10% of units treated, whereas Austin (2010) considered a 

range from 2% treated to 15% treated. Moreover, because the proportion of treated units was so 



MATCHING AND WEIGHTING FOR BALANCE 12 

small, both studies used matching without replacement. While Colson et al. (2016) considered a 

sample of 45% treated units for their simulations, this proportion is still smaller than those 

expected within observational effectiveness research of scaled-up interventions. Prior literature 

has yet to examine how propensity score matching and weighting perform for scenarios in which 

50% or more of the sample is receiving treatment. This feature, common to observational 

effectiveness research of widely-disseminated interventions, suggests the utility of matching with 

replacement to retain the original sample. Taken together, the current paper extends previous 

simulation research on matching and weighting methods by comparing these methods for data 

with a range of treatment prevalence rates while also matching with replacement.    

The Present Study 

We investigated the performance of k:1 matching with replacement and IPTW across 

increasing levels of treatment prevalence. As the performance of these propensity score methods 

has yet to be examined for scenarios with a majority of treated units, the results from our study 

help inform observational research designs more broadly, with specific applicability toward 

observational effectiveness studies of widely disseminated interventions. Building upon prior 

simulation research, we conducted a series of Monte Carlo simulations to examine the 

performance of these two propensity score methods across a variety of scenarios faced by 

applied researchers. We build upon prior simulation research by Hainmueller (2011) and Colson 

et al. (2016) who compared inverse probability of treatment weighting and nearest neighbor 

matching with replacement for designs with treatment prevalence ranging from 0.2 to 0.5. By 

expanding our simulation to consider scenarios with a majority of units exposed to treatment, we 

broaden our understanding of propensity score weighting and matching methods to be more 

applicable to intervention scale-up research. Additionally, we consider increasing degrees of 
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imbalance in baseline covariates, representing scenarios in which there is an increasing difficulty 

in establishing covariate balance. An applied example using empirical data from a widely 

disseminated educational framework implemented in all states in the U.S. is further provided to 

illustrate the application and performance of propensity score matching and weighting methods 

for observational effectiveness studies with a high treatment prevalence. 

Method 

Design of the Simulation 

To investigate the effect of the proportion of sample exposed to treatment we simulated 

data where the following design factors were manipulated: treatment prevalence, baseline 

imbalance, sample size, number of covariates, and propensity score method. The values and 

methods chosen for the simulation conditions are informed by previous propensity score 

simulation research and prior applied education research; they are meant to represent a broad 

range of designs researchers face in practice. Each of the manipulated factors are described 

below.  

Treatment Prevalence 

 Previous simulation research on propensity score methods has not examined samples 

with a majority of units exposed to treatment. As described earlier, a large prevalence of treated 

units in the sample is a scenario often encountered in observational scale-up designs (see 

Gottfredson et al., 2015). However, prior simulation research has explored ratios of treated to 

untreated units less than or equal to 0.55 (Austin, 2013; Colson et al., 2016; Leite et al., 2019). 

As such, values of treatment prevalence were manipulated to P = 0.2, 0.4, 0.6, and 0.8. 

Importantly, the two conditions with a majority of treated units have not been explored in prior 
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propensity score literature and are most relevant for applied researchers using propensity score 

methods for observational effectiveness studies of scaled interventions.  

Baseline Imbalance 

 The degree of baseline imbalance represents the standardized mean difference in 

covariate values for the treated and untreated groups. For continuous variables, the standardized 

mean difference (d) is defined as: 

𝑑𝑑 =  
(𝑋𝑋�𝑡𝑡 − 𝑋𝑋�𝑐𝑐)

�𝑠𝑠𝑡𝑡
2 + 𝑠𝑠𝑐𝑐2

2

, (8) 

where 𝑋𝑋�𝑡𝑡 and 𝑋𝑋�𝑐𝑐 represent the mean of the covariate for the treatment and control groups, 

respectively, while 𝑠𝑠𝑡𝑡2 and 𝑠𝑠𝑐𝑐2 represent the variance of the covariate for the treatment and 

control groups, respectively. Standardized mean differences larger than 0.10 have been suggested 

as representing meaningful imbalance (Austin & Mamdani, 2006). Accordingly, standardized 

mean difference values at baseline were manipulated to d = 0.2, 0.3, and 0.5 For two populations 

of equal size, a standardized mean difference of d = 0.2 yields approximately 85% overlap 

between the distributions; d = 0.3 yields approximately 79% overlap; and d = 0.5 yields 67% 

overlap (Cohen, 1988). Thus, the larger the standardized mean difference value in baseline 

covariates, the stronger the separation between the treated and untreated distributions (i.e., less 

overlap), representing a scenario that is increasingly difficult for a given propensity score method 

to achieve balance.  

Sample Size 

 Sample sizes were varied to be N = 250 and 500, representing a small to medium sample 

size commonly found in school-based and student-based studies (Bradshaw et al., 2021; Lee & 

Gage, 2020). Moreover, these values are similar to or smaller than those used in prior propensity 
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score simulations (Stuart et al., 2013; Austin & Stuart, 2015b; Whittaker, 2020), thus 

representing a lower end of sample sizes.  

Number of Covariates 

 The number of baseline covariates were set to X = 10 and 20. A common number of 

covariates included in previous propensity score matching and weighting studies is 10 (Austin & 

Stuart, 2015; Leite et al., 2019). While examples of researchers using propensity score methods 

to balance more than 50 covariates may be more common in the medical literature (see Austin et 

al., 2020), it may not be feasible to include a large set of covariates, particularly in smaller 

samples (Stuart, 2010). 

Propensity Score Method 

 Finally, we compare propensity score matching and weighting methods by examining 1:1 

matching with replacement, 3:1 matching with replacement, 5:1 matching with replacement, and 

ATT weighting. For matching, k:1 greedy nearest neighbor matching with replacement was used 

to match cases on the estimated propensity score. The greedy algorithm matches treatment units 

with control units without considering a global distance measure (e.g., Mahalanobis distance; Gu 

& Rosenbaum, 1993). No caliper was used in the matching process to allow for a retention of the 

full sample for analyses without changing the quantity of interest (Ho, Imai, King & Stuart, 

2007b). For weighting, probability weights were calculated as 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖 + (1 − 𝑍𝑍𝑖𝑖)
�̂�𝑒𝑖𝑖

1−�̂�𝑒𝑖𝑖
. Thus, we 

refer to this as ATT weighting. For both matching and weighting, a parametric logistic 

regression, in which all covariates were linearly related to a binary treatment variable, was used 

to estimate propensity scores. In all cases, the ATT was the estimand of interest. This resulted in 

a total of 4 × 3 × 2  × 2 × 4 = 192 unique simulation cells. A total of 1,000 datasets were 

generated and analyzed according to each condition.   
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Data Generation 

For each subject, either ten or twenty baseline covariates were drawn from independent 

standard normal distributions. The treatment-selection model for the ten-covariate scenario was 

given as: 

logit[Pr(𝑍𝑍 = 1)] = α0 + α1𝑋𝑋1 + α1𝑋𝑋2 + α1𝑋𝑋3 + α1𝑋𝑋4 + α1𝑋𝑋5
+ α1𝑋𝑋6 + α1𝑋𝑋7 + α1𝑋𝑋4𝑋𝑋5 + α1𝑋𝑋1𝑋𝑋1 + α1𝑋𝑋7𝑋𝑋7, (9) 

and for the twenty-covariate scenario as: 

logit[Pr(𝑍𝑍 = 1)] = α0 + α1𝑋𝑋1 + α1𝑋𝑋2 + α1𝑋𝑋3 + α1𝑋𝑋4 + α1𝑋𝑋5 + α1𝑋𝑋6
+ α1𝑋𝑋7 + α1𝑋𝑋8 + α1𝑋𝑋9 + α1𝑋𝑋10 + α1𝑋𝑋11 + α1𝑋𝑋12 + α1𝑋𝑋13 + α1𝑋𝑋14

+α1𝑋𝑋9𝑋𝑋10 + α1𝑋𝑋7𝑋𝑋8 + α1𝑋𝑋1𝑋𝑋1 + α1𝑋𝑋10𝑋𝑋10 + α1𝑋𝑋3𝑋𝑋3 + α1𝑋𝑋7𝑋𝑋7. (10)
 

Thus, in both scenarios the true propensity score model included non-additivity and non-

linearity, mimicking the complexity involved in real-world data. To determine the correct 

intercept value α0 corresponding to a desired ratio of treated to untreated units, a bisection 

approach was used in which numerous intercept values are attempted until a given value results 

in the desired ratio within some pre-specified tolerance level; the specific algorithm is provided 

on lines 103-148 of the R code available at: https://github.com/jmk7cj/Covariate-Balance. The 

regression coefficient α1was equal to the standardized mean difference as shown in Equation 8. 

Then, for each subject, a binary treatment indicator Z was generated from a binomial distribution 

with a probability of exposure equal to 𝑒𝑒𝑥𝑥

1+𝑒𝑒𝑥𝑥
, where x is equal to the logit probability of treatment 

defined in Equations 9 and 10. 

 Next, potential outcomes for the ten-covariate scenario were generated as:   

𝑌𝑌 = β0 + δ𝑍𝑍 + β1𝑋𝑋1 + β1𝑋𝑋2 + β1𝑋𝑋3 + β1𝑋𝑋4 + β1𝑋𝑋5
+ β1𝑋𝑋8 + β1𝑋𝑋9 + β1𝑋𝑋2𝑋𝑋4 + β1𝑋𝑋3𝑋𝑋5 + β1𝑋𝑋1𝑋𝑋1 + ε𝑖𝑖, (11) 

and for the twenty-covariate scenario as:  

https://github.com/jmk7cj/Covariate-Balance
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𝑌𝑌 = β0 + δ𝑍𝑍 + β1𝑋𝑋1 + β1𝑋𝑋2 + β1𝑋𝑋3 + β1𝑋𝑋4 + β1𝑋𝑋5 + β1𝑋𝑋6
+ β1𝑋𝑋7 + β1𝑋𝑋8 + β1𝑋𝑋9 + β1𝑋𝑋10 + β1𝑋𝑋15 + β1𝑋𝑋16

+ β1𝑋𝑋17 + β1𝑋𝑋18 + β1𝑋𝑋3𝑋𝑋5 + β1𝑋𝑋1𝑋𝑋1 + ε𝑖𝑖. (12)
 

Here, β0 represents the intercept, β1 represents the regression coefficient, δ𝑍𝑍 represents the 

population treatment effect on the treated, and ε𝑖𝑖 represents a residual error term. The intercept 

value of β0 was fixed to 0. The treatment effect δ was set to 0.5, indicating a medium effect size. 

The residual error term was normally distributed ε𝑖𝑖 ~ N(0,1). The regression coefficient was 

varied such that the R2 of the covariates on the outcome was equal to 0.3. Overall, these values 

are in line with those found in meta-analyses of educational outcomes (Hedges & Hedberg, 

2014) and prior simulation studies (Leite et al., 2019). Figures 1 and 2 provide a graphical 

depiction of the data generation process for the ten and twenty covariate scenarios, in which half 

of the covariates were true confounders, with other variables related to treatment only, the 

outcome only, or neither treatment nor the outcome.  

Evaluation Criteria 

 The quality of the matching or weighting procedure was evaluated through balance 

diagnostics. Steiner et al. (2010) offered a rule of thumb for sufficiently good balance for 

covariates with standardized mean difference values less than |0.10|. We focus on the 

standardized mean difference averaged across the covariates after matching or weighting.  

After estimating propensity scores, a subsequent weighted linear regression model was fit 

to the matched or weighted data using the survey package (Lumley, 2004), in which the ATT 

was estimated and compared to the known population treatment effect on the treated (δ). We 

considered unadjusted estimates (i.e., a single treatment independent variable). Absolute bias in 

ATT estimates was used to evaluate the model, with values given on the scale of 𝑌𝑌0. Finally, the 

performance of each method was further evaluated using mean squared error (MSE = bias2 + 
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variance), in which the variance of ATT estimates across replications is used. There is no single 

cutoff value for which to determine adequate MSE, though values closer to zero indicate no bias, 

and no variability in estimates across replications. All analyses were conducted in R (R Core 

Team, 2021). Matching was implemented using the MatchIt package (Ho et al., 2007), while 

weighting was implemented using the WeightIt package (Greifer, 2019). All code used for data 

generation and analyses is available at: https://github.com/jmk7cj/Covariate-Balance  

Results 

 Results with respect to the three measures of evaluation criteria (covariate imbalance, 

bias, and MSE) were largely similar across the two sample size conditions (N = 250 and 500). 

Likewise, results were largely similar across the two covariate conditions (X = 10 and 20). 

Generally, covariate imbalance, bias, and MSE decreased as sample size increased, while 

covariate imbalance, bias, and MSE increased as the number of covariates increased, although 

these effects were negligible. We therefore do not present all possible variations, but rather focus 

our discussion on conditions with N = 500 and X = 10 as illustrations.  

Covariate imbalance, bias, and MSE are displayed in Figure 3 whereby each column 

within the plot represents a scenario with a specific baseline imbalance (e.g., d = 0.2, 0.4, and 0.6 

“standard mean difference”). Standardized mean differences averaged across covariates after 

implementing propensity score methods are presented in the top panel of Figure 3. The middle 

panel provides results for absolute bias in ATT estimates. The bottom panel illustrates values of 

MSE across the replications. For each panel, the x-axis represents treatment prevalence (P = 0.2, 

0.4, 0.6, and 0.8). Overall, it can be seen that as baseline imbalance increases, covariate 

imbalance, bias, and MSE increase, regardless of the propensity score method or treatment 

prevalence. 

https://github.com/jmk7cj/Covariate-Balance
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Covariate Imbalance 

Focusing on covariate imbalance (top panel), it can be seen that ATT weighting 

outperformed k:1 matching with replacement in terms of reduction in covariate imbalance across 

a range of scenarios. For scenarios with a baseline imbalance of 0.2 standardized mean 

difference (averaged across the covariates), all propensity score methods achieved sufficient 

balance (SMD less than 0.1), although weighting resulted in the largest reduction in imbalance. 

For scenarios with larger imbalance at baseline, all methods performed worse. Notably, as 

treatment prevalence increased, it became increasingly difficult to achieve sufficient balance. 

While weighting resulted in the best balance on average, there were differences in performance 

within matching methods. As k:1 matching increased from 1:1 to 5:1, there were greater 

reductions in covariate imbalance. Particularly for scenarios with 80% treatment prevalence, 5:1 

matching performed similarly to ATT weighting. We note that assessing balance on higher order 

moments such as the variance ratio is also important to ensure comparable groups. We do not 

report such findings here as balance with respect to variance ratios was largely similar across all 

simulations.  

Bias 

 Next, we focus on bias in unadjusted ATT estimates (middle panel). Interestingly, results 

appear somewhat opposite to those found regarding reduction in covariate imbalance. While 

weighting resulted in the best balance across conditions, weighting also produced the largest bias 

in ATT estimates across conditions. This result is somewhat perplexing at first glance, as 

improved balance should be directly related to the removal of bias in effect estimates. However, 

simulation studies by Lee et al. (2010) and Stuart et al. (2012) have demonstrated that balance 

across covariates does not align perfectly with balance on the propensity score itself, and 
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ultimately recommend against assessing balance on the propensity score but rather on covariates. 

For scenarios with larger imbalance at baseline, all propensity score methods resulted in larger 

bias. For matching methods specifically, bias increased as k:1 matching increased from 1:1 to 

5:1. There was no meaningful difference in bias across treatment prevalence.  

MSE 

 Finally, we direct our attention to MSE of unadjusted ATT estimates (bottom panel). 

There is no clear or consistent best method in terms of smallest MSE for scenarios with an 

average covariate baseline imbalance of d = 0.2 or 0.4. However, with an average baseline 

imbalance of 0.6 standardized mean difference, weighting produces the largest MSE across 

levels of treatment prevalence. Among the matching methods, the choice of k:1 matching that 

resulted in the smallest MSE depended on the treatment prevalence. For example, 1:1 matching 

has the largest MSE of the matching methods when treatment prevalence equals 0.2, but the 

smallest MSE when treatment prevalence equals 0.6. In general, MSE increased as baseline 

imbalance increased regardless of the propensity score method, results similar to those found for 

covariate imbalance and bias outcomes.  

For Applied Researchers: Illustrative Example 

We now consider a case example using empirical Positive Behavioral Interventions and 

Supports (PBIS) administrative data from the state of Maryland to illustrate the application of k:1 

matching with replacement and weighting methods within the context of a real-world high 

treatment prevalence scenario. School-level data from 1,316 K-12 public schools across the state 

involved in the state-wide scale-up were utilized. Data from the 2007-08 through the 2012-13 

school year were provided by the Maryland State Department of Education. Demographic 

information included variables such as student enrollment, the percent of students receiving free 
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and reduced-price meals, and the suspension rate. The outcome of interest was the truancy rate 

(i.e., percent of students missing 20 or more days of school in a school year) in a given year, as 

prior literature has demonstrated evidence that PBIS may reduce school-level truancy rates 

(Bradshaw et al., 2021; Pas et al., 2019). PBIS implementation data was also collected each year, 

in which schools implementing PBIS were considered treated units, while all other schools were 

considered untreated units. Because treatment assignment was not random, selection bias 

between treated and untreated schools was accounted for using either matching or weighting 

methods.  

We focused on PBIS implementation and outcome data during two separate periods: the 

2007-08 school year and 2013-14 school year. We focused on these two years to highlight a 

common theme in intervention scale-up study designs, wherein the proportion of the sample 

implementing treatment grows over time. Approximately 38% of schools implemented PBIS 

during the 2007-08 school year, while approximately 66% of schools implemented PBIS during 

the 2013-14 school year. For each timepoint, the ATT effect of PBIS on truancy rates was 

estimated.  

To estimate propensity scores, demographic variables from the current year were 

included as predictors of current year PBIS status. Specifically, student enrollment, the percent 

of students receiving free and reduced-price meals, the percent of students who were African 

American, the suspension rate, and the percent of students who were proficient or advanced on 

the state standardized tests of reading and math were used as predictors of PBIS status. These 

variables were included based on previous research by Pas et al. (2019), with an overall aim to 

reduce selection bias between treated and untreated schools.   
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Following the procedures outlined in the simulation study, propensity scores were 

estimated using a parametric logistic regression with all covariates linearly related to a binary 

PBIS indicator variable with the ATT as the estimand of interest. After estimating propensity 

scores, matching and weighting were conducted, including 1:1, 3:1, and 5:1 nearest neighbor 

matching with replacement, as well as ATT weighting. Standardized mean differences for each 

covariate before and after matching or weighting were calculated. Finally, a weighted linear 

regression model was fit to the data, in which unadjusted estimates of the effect of PBIS on 

truancy were estimated:  

Truancy𝑖𝑖 = β0 + β1PBIS𝑖𝑖 + ε𝑖𝑖 (13) 

Here, Truancy𝑖𝑖  is the percentage of students missing 20 or more days of school in a school year 

for school i, β0 is the intercept, β1is the treatment effect of PBIS, and ε𝑖𝑖 is a residual error term.  

 Table 1 provides standardized mean differences before and after matching or weighting. 

During the 2007-08 school year, in which approximately 38% of schools were implementing 

PBIS, the average standardized mean difference of the covariates at baseline was d = 0.15. 

Overall, 5:1 matching resulted in the largest reduction in covariate imbalance, reducing 

standardized mean differences by approximately 76% to an average of d = 0.04. While weighting 

reduced standardized mean differences by approximately 58% to an average of d = 0.07 (within 

the 0.1 rule of thumb), both 3:1 and 5:1 matching outperformed weighting. See Figure 4 for a 

graphical depiction of covariate balance before and after matching or weighting. 

 During the 2013-14 school year, in which approximately 66% of schools implemented 

PBIS, the average standardized mean difference of the covariates at baseline was d = 0.35. This 

represents a more difficult scenario to achieve balance than the 2007-08 school year, as treatment 

prevalence and the degree of imbalance at baseline were both larger. Similar to the earlier 
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timepoint, 5:1 matching resulted in the largest reduction in covariate imbalance, reducing 

standardized mean differences by approximately 92% to an average of d = 0.03. Weighting 

performed worst, although still reducing standardized mean differences by approximately 75% to 

an average of d = 0.09, still below the acceptable cutoff. Figure 5 provides a graphical depiction 

of covariate balance before and after matching or weighting.  

Discussion 

The current article sought to compare propensity score matching and weighting methods 

when used to reduce imbalance between treated and untreated groups on a set of potential 

confounders, with particular interest in the situation where the number of treated units exceeds 

the number of untreated. Under such conditions, propensity score matching with replacement 

becomes necessary to ensure sample size considerations. This was the first study to examine 

propensity score matching and weighting methods relevant to address this issue, and has 

particular significance in the field of effectiveness research on widely disseminated (or “scaled”) 

interventions. As such, this study has potentially important implications for the design of policy-

relevant research designs which aim to determine the impact of programs and interventions being 

brought to scale with implementation in a majority of relevant settings (i.e., schools). 

Simulation results across a wide range of scenarios demonstrated that as treatment 

prevalence increases to greater than 50%, both 1:1 matching with replacement and ATT 

weighting perform worse in terms of reducing covariate imbalance, bias in ATT estimates, and 

the MSE of ATT estimates as compared to 3:1 and 5:1 matching with replacement. While no 

single method resulted in the smallest MSE across conditions, the results were more consistent 

for covariate imbalance and bias. Regarding reductions in baseline imbalance across covariates, 

ATT weighting produced the largest reductions of all propensity score methods, regardless of the 
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degree of baseline imbalance or treatment prevalence. As k:1 matching increased from 1:1 to 5:1, 

the covariates achieved greater balance, only equaling the imbalance resulting from weighting 

when treatment prevalence was 80%. Thus, weighting was the superior method for reducing 

covariate imbalance.  

On the other hand, weighting also produced the largest bias in ATT estimates, regardless 

of the degree of imbalance or treatment prevalence. As previously described, this finding may 

appear counterintuitive but is consistent with prior simulation work that demonstrated a 

distinction between reducing imbalance among covariates and reducing imbalance on the 

propensity score itself (Lee et al., 2010; Stuart et al., 2012). For covariates with nonnormal 

distributions or scenarios in which some covariates are not related to treatment assignment, the 

differences between establishing balance on covariates versus the propensity score may grow 

larger. This is in line with the data generation process used in the current simulations, in which 

only 20% of the covariates were related to the outcome. As a result, although weighting resulted 

in the largest reductions in covariate imbalance, weighting also produced the largest bias in 

treatment effect estimates. Regarding bias, 1:1 matching with replacement was the superior 

method for producing unbiased treatment effect estimates.  

Propensity score matching and weighting methods share the same goal; to reduce bias in 

treatment effect estimates due to confounders in observational research. Therefore, assessing 

covariate balance can ultimately be viewed as a means to an end, in which methods that reduce 

imbalance generally lead to unbiased effect estimates. Our simulation results demonstrated that 

while weighting achieved the greatest covariate balance, 1:1 matching ultimately produced the 

most unbiased effect estimates. This result speaks to the traditional bias-variance trade-off, in 

which increasing k tends to decrease the standard error of treatment effect estimates but also 
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increase bias in treatment effect point estimates (Austin, 2010). One must decide then which 

property to emphasize: precise but biased estimates or unbiased but imprecise estimates. Our 

results demonstrate that this trade-off may be optimized by increasing to 3:1 or 5:1 matching 

with replacement. We therefore recommend slightly increasing the number of nearest neighbors 

used (i.e., more than one) for researchers examining the effectiveness of widely disseminated 

interventions being brought to scale in observational studies. While matching with replacement 

involves extra steps by the analyst as compared to weighting methods, these come with the 

benefit of producing less biased effect estimates. Moreover, the use of matching with 

replacement is particularly important for such research designs, as the majority of units may be 

exposed to treatment, requiring the reuse of control units in the matching process. While 

matching with replacement still results in the use of matching weights incorporated into outcome 

analyses, the benefits of not relying upon weights that are directly related to propensity scores 

can be seen through reductions in bias. 

  Our results demonstrated that performance deteriorated (i.e., less reduction in covariate 

imbalance, larger bias in ATT estimates, larger MSE of ATT estimates) as treatment prevalence 

increased, regardless of sample size, the number of covariates, baseline imbalance, or the 

propensity score method of choice. This increase in treatment prevalence across time is a 

defining feature of widely disseminated interventions, as demonstrated through our empirical 

example in which PBIS implementation rates increased from 38% to 66% over time. The PBIS 

example depicted here is one clear example of widespread dissemination both within this state 

and nationally. This is not unique to PBIS; currently, social emotional learning curricula and 

restorative justice/practices in schools are also seeing widespread national dissemination. Even 

programs that are not widely disseminated nationally may be of interest, given widespread local 
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dissemination (e.g., within large districts or within states). Programs that are scaled-up may have 

efficacy research supporting their use or that efficacy research may come after or in tandem with 

dissemination. In either case, interventions that are widely disseminated would benefit from real-

world effectiveness studies. In conducting such studies, researchers must be cognizant that the 

same matching and weighting methods that achieved well balanced groups to allow for unbiased 

effect estimates at lower treatment prevalence rates may not work as well for larger treatment 

prevalence.   

In fact, the simulation results demonstrated that both low and high treatment prevalence 

often negatively impact findings. This is demonstrated in Figure 3 with nonlinearity in the 

graphs. Additional sensitivity analyses not shown here demonstrated that optimal performance 

often occurred when treatment prevalence was evenly distributed at 50%. This again yields 

interesting implications for observational effectiveness researchers. Practically speaking, the 

ability to estimate unbiased treatment effects with low treatment prevalence would be most 

beneficial for promising interventions, and fewer resources would be required in implementation. 

In juxtaposition, it may become irrelevant and even impossible to estimate treatment effects as 

treatment prevalence approaches 100% as there is no comparison control group. Thus, scenarios 

with a balanced ratio of treated and untreated units may provide the most accurate estimates. 

Taken together, these findings have import implications for researchers examining the effects of 

programs or interventions being brought to scale in observational settings, an area of limited 

research but great relevance. In particular, we urge researchers to be cognizant of such sampling 

design issues from the onset, recognizing that investigations of treatment effects in the very early 

stages (e.g., 20% treatment prevalence) or the very late stages (e.g., 80% treatment prevalence) 

of implementation roll out may complicate one’s ability to produce unbiased effect estimates. 
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Study Limitations 

 There are important limitations to our simulation study that should be considered. First, 

propensity scores were estimated using a linear combination of covariates in a parametric logistic 

regression, a much more simplistic model than the known data generative process. As the 

functional form of the true propensity score model is rarely known in practice, machine learning 

methods such as classification and regression trees or random forest models may provide 

flexibility in propensity score estimation (e.g., Lee et al., 2010; McCaffrey et al., 2004; Suk & 

Kang, 2021). Similarly, nonparametric weighting methods such as marginal mean weighting 

through stratification (MMWS; Hong, 2010; 2012), a combination of nonparametric estimators 

with entropy balancing (Vegetabile et al., 2021), and covariate balancing generalized propensity 

score methods (CBGPS; Fong et al., 2018) may provide alternatives when the functional form of 

the exposure model is unknown. Additionally, we considered unadjusted treatment effect 

estimates, in which a binary treatment indicator was the sole predictor in the outcome model. 

Doubly robust estimators may provide advantages so long as either the propensity score model or 

the outcome model are correctly specified (Nguyen et al., 2017). Thus, including covariates in a 

more complex outcome model may improve the accuracy and precision of treatment effect 

estimates. A final, critical limitation concerns the longitudinal nature of scale-up study designs. 

While the current paper conducted propensity score analyses cross-sectionally, a more complex 

approach may consider time-varying treatment. Marginal structural models may be used to 

appropriately handle time-dependent confounding, estimating the probability of treatment at each 

timepoint, independent of prior covariate and treatment histories.  

Conclusions  
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Despite these limitations, our study provides useful information for observational 

researchers examining the effects of interventions being brought to scale. This paper illustrates 

how covariate balance and treatment effect estimates are impacted by treatment prevalence. 

Notably, a larger prevalence of treated units is associated with greater imbalance and larger bias 

in effect estimates. Findings from our series of studies suggest that k:1 matching with 

replacement results in less biased ATT estimates than propensity score weighting across a range 

of treatment prevalence rates, and that increasing k to larger than one may optimize such bias-

variance trade-offs. We recommend researchers consider the findings of this paper when 

planning and designing quasi-experimental study designs, particularly when examining 

interventions that have been widely scaled-up.      
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Table 1 
Standardized Mean Differences Before and After Matching or Weighting 
 2007-08 School Year (PBIS prevalence = 38%) 
 Baseline Weighting 1:1 matching 3:1 matching 5:1 matching 
 d d % d % d % d % 
Enrollment -0.03 0.00 -95.1 0.09 162.1 0.08 132.2 0.05 42.3 
FARMs 0.13 -0.04 -67.9 -0.13 0.3 -0.10 -19.0 -0.07 -48.2 
% AA -0.01 -0.04 623.6 -0.03 370.5 -0.02 196.2 -0.01 42.3 
% Suspend 0.31 -0.11 -65.1 0.05 -83.6 0.04 -88.2 0.04 -88.4 
Math -0.25 0.10 -61.2 0.09 -65.6 0.01 -94.4 0.02 -91.9 
Read -0.19 0.10 -49.6 0.12 -35.5 0.05 -74.4 0.04 -80.6 
Average 0.15 0.07 -57.8 0.09 -44.8 0.05 -67.2 0.04 -76.4 

 2012-13 School Year (PBIS prevalence 66%) 
 Baseline Weighting 1:1 matching 3:1 matching 5:1 matching 
 d d % d % d % d % 
Enrollment 0.02 0.04 61.8 0.09 296.6 0.00 -88.3 0.02 7.3 
FARMs 0.50 -0.07 -85.7 -0.11 -79.0 -0.04 -91.3 -0.04 -92.6 
% AA 0.26 -0.10 -60.6 -0.15 -44.3 -0.06 -77.5 -0.05 -80.4 
% Suspend 0.46 -0.16 -65.7 0.04 -90.7 0.03 -93.2 0.04 -91.9 
Math -0.44 0.07 -84.0 0.06 -87.3 -0.01 -98.3 -0.01 -98.7 
Read -0.42 0.08 -80.3 0.04 -91.4 0.01 -98.7 0.01 -98.7 
Average 0.35 0.09 -75.1 0.08 -77.4 0.02 -92.9 0.03 -92.3 
Note: Weighting = ATT weighting; 1:1 matching = 1:1 nearest neighbor matching with replacement, etc. d = standardized 
mean difference; % = percentage reduction in absolute value standardized mean difference, in which negative values 
indicate a decrease in d.  

 



  

 
Figure 1. Diagram of Data Generation Process for the 10 Covariate Condition 
 
Note: Z = treatment indicator, Y = outcome, X1 – X5 = true confounders, X6 and X7 = treatment predictors, X8 and X9 = outcome 
predictors, X10 = unrelated to treatment or outcome.  

 



  

 
Figure 2. Diagram of Data Generation Process for the 20 Covariate Condition 
 
Note: Z = treatment indicator, Y = outcome, X1 – X10 = true confounders, X11 – X14 = treatment predictors, X15 – X18 = outcome 
predictors, X19 – X20 = unrelated to treatment or outcome.  



  

 
Figure 3. Covariate Imbalance, Bias, and MSE After Matching or Weighting   
 



  

 
Figure 4. 2007-08 School Year Covariate Imbalance Before and After Matching or Weighting   



  

 
Figure 5. 2013-14 School Year Covariate Imbalance Before and After Matching or Weighting   

 


