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Regularized Variational Estimation for Exploratory Item

Factor Analysis

Abstract

Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT),

is a general framework for specifying the functional relationship between a respondent’s mul-

tiple latent traits and their response to assessment items. The key element in MIRT is the

relationship between the items and the latent traits, so-called item factor loading structure.

The correct specification of this loading structure is crucial for accurate calibration of item

parameters and recovery of individual latent traits. This paper proposes a regularized Gaussian

Variational Expectation Maximization (GVEM) algorithm to efficiently infer item factor load-

ing structure directly from data. The main idea is to impose an adaptive L1-type penalty to the

variational lower bound of the likelihood to shrink certain loadings to 0. This new algorithm

takes advantage of the computational efficiency of GVEM algorithm and is suitable for high-

dimensional MIRT applications. Simulation studies show that the proposed method accurately

recovers the loading structure and is computationally efficient. The new method is also illus-

trated using the National Education Longitudinal Study of 1988 (NELS:88) mathematics and

science assessment data.

Keywords: Latent variable selection, Multidimensional Item Response Theory, Variational In-

ference, Expectation-Maximization, Lasso, Adaptive Lasso
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1 Introduction

Full Information Item factor analysis (IFA), known as factor analysis of ordered categorical (such

as binary) item-level data, has been a useful tool to explore the latent structure underlying ed-

ucational and psychological tests (Bock, Gibbons, & Muraki, 1988). IFA provides a wealth of

information regarding the characteristics of the items and tests, which are important to ensure reli-

ability and validity of a measure. As IFA deals with item-level responses, it is also considered as

multidimensional item response theory (MIRT) (Embretson & Reise, 2000; Reckase, 2009)

The widely used multidimensional 2-parameter logistic (M2PL) model assumes item response

function of the ith individual to the jth item as

P (Yij = 1 | θi) =
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
, (1)

where there are N subjects who respond to J items independently with binary response variables

Yij, for i = 1, . . . , N and j = 1, . . . , J . αj denotes a K-dimensional vector of item discrimination

parameters for the jth item and bj denotes the corresponding item difficulty parameter. θi denotes

the K-dimensional vector of latent ability for student i. αj may contain structural 0’s implying

that item j does not measure (hence not load on) certain factors. When both αj and θi are uni-

dimensional, the 2PL model and one-factor categorical factor analysis model are mathematically

equivalent (Takane & De Leeuw, 1987; Wirth & Edwards, 2007). Another popular MIRT model

that is often suitable for multiple-choice binary response items is the multidimensional 3-parameter

logistic (M3PL) model. It includes an additional parameter cj to quantify guessing probability of
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the jth item. Hence, the item response function is expressed as

P (Yij = 1 | θi) = cj + (1− cj)
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
. (2)

Although the inclusion of the guessing parameter makes the model more flexible, it no longer

belongs to the exponential family and its estimation becomes much more challenging (Thissen &

Wainer, 1982; Yen, 1987).

In an exploratory IFA, the item factor loading structure that is reflected by the systematic 0’s in

αj is unknown. Identifying the loading structure, which is equivalent to the sparsity structure of

αj , is crucial not only for accurate calibration of item parameters and recovery of individual latent

traits, but also for understanding the construct validity of a measure. Traditional approaches for

identifying item factor loading structure proceeds in two steps: (1) allowing all item factor loadings

to be freely estimated, subject to identifiability constraints; and (2) conducting a post-hoc rotation

(Browne, 2001a). Most software packages use varimax (Kaiser, 1958) for orthogonal rotation or

promax (Hendrickson & White, 1966) for oblique rotation by default. Other popular methods

include, for instance, the CF-Quartimax rotation (Browne, 2001b). While these rotation methods

intend to produce a near-simple structure, an arbitrary cut-off for the rotated factor loadings is often

needed. Rotation methods that encourage sparse solutions have also been developed in Jennrich

(2004, 2006) using the component loss functions for orthogonal and oblique rotations.

To avoid setting subjective cut-offs, Sun, Chen, Liu, Ying, and Xin (2016) recently proposed

to formulate the problem of estimating the loading structure in MIRT as a latent variable selection

problem. Specifically, for each item, a set of latent traits influencing the distribution of the re-
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sponses are selected by the L1-regularized regression. The L1-regularized regression, also known

as the constrained least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996), has

received much attention for solving variable selection problems for both linear and generalized

linear models (Friedman, Hastie, & Tibshirani, 2010). The principle idea is to penalize the factor

loadings towards zero if the corresponding latent traits are not associated with an item. This leads

to correctly estimating an optimal non-zero factor loading structure, instead of setting subjective

cut-offs. This approach also has the advantage over the information criterion-based model selec-

tion methods in terms of the computational cost because it simultaneously estimates both loading

structure and model parameters. Despite of its appeal, the computation is still quite challenging

in MIRT model due to its intractable marginal likelihood function that involves high-dimensional

integration. For parameter estimation, Sun et al. (2016) used direct numerical approximation of

the likelihood in the iterative expectation-maximization (EM) procedure, which can be computa-

tionally inefficient especially in higher dimensions. Specifically, they showed that the computation

time for the latent variable selection with dimension K = 3 is about 30 minutes for the first pe-

nalization tuning parameter λ and additional 10 minutes for the subsequent λs. Considering that

multiple λs have to be used for the latent variable selection via regularization, it can take a few

hours to estimate a test structure for a single dataset with high dimensions.

Indeed, developing efficient estimation algorithms for MIRT parameter estimation has always

been a productive research topic. A number of methods have been proposed to deal with the com-

putational challenge (Rabe-Hesketh, Skrondal, & Pickles, 2005; von Davier & Sinharay, 2010).

The first one is the adaptive Gaussian quadrature method. Although the number of quadrature
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points per dimension could be small, the total number of quadrature points still increases exponen-

tially with the number of dimensions. Moreover, an extra step is needed to compute the posterior

mode and variance of latent factors in each iteration, which adds additional computation costs

(Pinheiro & Bates, 1995). The second one is the Monte Carlo techniques. This family of meth-

ods include, for instance, the Monte Carlo EM algorithm (McCulloch, 1997; C. Wang & Xu,

2015), stochastic EM algorithm (von Davier & Sinharay, 2010; S. Zhang, Chen, & Liu, 2020), or

Metropolis-Hastings Robbins-Monro algorithm (Cai, 2010b, 2010a). These methods circumvent

intractable integrations by sampling from the posterior distributions; however, they may be still

computationally intensive for complicated high-dimensional models, as a large Monte Carlo sam-

ple size is typically needed and the posterior distributions usually do not have a closed form. Fully

Bayesian estimation methods, such as Markov chain Monte Carlo (MCMC) (Albert, 1992; Patz &

Junker, 1999), is equally computationally intensive, even though it is preferable with smaller sam-

ple sizes. It usually needs a long chain to converge for complex models. In addition, Chen, Li, and

Zhang (2019) and H. Zhang, Chen, and Li (2020) studied the joint maximum likelihood estimation

by treating the latent abilities as fixed effect parameters instead of random variables; though com-

putationally efficient, such joint likelihood based estimation approaches may be less statistically

efficient than the marginal likelihood estimation (e.g., Cho, Wang, Zhang, and Xu (2021)).

Most recently, a variational approximation approach to the marginal likelihood was proposed,

namely, the Gausssian Variational EM (GVEM) algorithm (Cho et al., 2021). GVEM adopts a

variational lower bound of the intractable likelihood within the EM framework. The carefully

constructed variational lower bound allows one to derive closed-form updates for all model pa-
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rameters in the iterative EM steps, making the algorithm computationally efficient. Cho et al.

(2021) also proposed a stochastic version of GVEM to further improve its computational effi-

ciency when both the number of subjects, N , and the number of test items, J , are large. The

idea is to stochastically optimize the variational approximation in the E step, i.e., subsample data

to form noisy estimate of the variational lower bound and iteratively update the estimate with a

decreasing step size (Hoffman, Blei, Wang, & Paisley, 2013). The combined advantage of having

simple closed-form updates and stochastic optimization makes the GVEM algorithm appealing to

high-dimensional MIRT models. Additionally, it was shown that GVEM works well in complex

M3PL models compared to the existing methods.

In this paper, we propose to extend the GVEM algorithm by adding a regularization penalty

to simultaneously estimate item factor loading structure and model parameters. Our study differs

from Sun et al. (2016)’s in the following aspects: (1) we use GVEM as the estimation algorithm

instead of the quadrature-based EM algorithm, hence the new method is more suitable to tackle

high-dimensional challenge; (2) we consider both Lasso and adaptive Lasso (Zou, 2006), the latter

of which produces more accurate loading structure recovery; (3) we apply the new method to both

the M2PL and M3PL models.

The rest of the paper is organized as follows. Section 2 briefly introduces the GVEM algorithm

for the MIRT models. Section 3 presents the general regularized variational algorithm. Sections

4 and 5 illustrate the performance of the proposed methods with simulation studies and real data

analysis, respectively. Section 6 discusses potential future studies, and the supplementary material

includes the derivations of the estimation procedures and additional data analysis results.
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2 Variational Estimation for MIRT

In this section, we will briefly present the key idea of variational approximation discussed in Cho

et al. (2021). The exposition will be based on the M3PL model but it can be easily simplified to

the M2PL model. For conciseness, let us denote the model parameters for the MIRT models by

A = {αj, j = 1, . . . , J}, B = {bj, j = 1, . . . , J}, and C = {cj, j = 1, . . . , J}. Also, denote the

responses Y = {Yi, i = 1, . . . , N} where Yi = {Yij, j = 1, . . . , J} is the ith subject’s response

vector. Due to the typical local independence assumption in IRT, the log-marginal likelihood ofA,

B, and C in M3PL model given the responses Y is

l(A,B,C; Y) =
N∑
i=1

logP (Yi | A,B,C) =
N∑
i=1

log

∫ J∏
j=1

P (Yij | θi,A,B,C)φ(θi)dθi (3)

where N is the total number of respondents and J is the total number of items in the test. Sim-

ilarly this holds for the M2PL model with model parameters A and B. Here, φ denotes the K-

dimensional Gaussian distribution of θ with mean 0 and covariance Σθ. The maximum likelihood

estimators of the model parameters are then obtained from maximizing the marginal likelihood

function, which is often intractable under MIRT.

From here onwards, Mp is used to denote all model parameters for simplicity. Following Cho

et al. (2021), the variational approximation of (3) can be derived as follows. First, for any arbitrary

probability density function qi(·), we can rewrite the log-marginal likelihood in Equation 3 as

l(Mp; Y) =
N∑
i=1

∫
θi

logP (Yi |Mp)× qi(θi)dθi
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=
N∑
i=1

∫
θi

log
P (Yi,θi |Mp)

P (θi | Yi,Mp)
× qi(θi)dθi

=
N∑
i=1

∫
θi

log
P (Yi,θi |Mp)

qi(θi)
× qi(θi)dθi +KL{qi(θi)‖P (θi | Yi,Mp)},

where KL{qi(θi)‖P (θi | Yi,Mp)} =
∫
θi

log qi(θi)
P (θi|Yi,Mp)

× qi(θi)dθi denotes the Kullback-Leibler

(KL) distance between the distributions qi(θi) and P (θi | Yi,Mp). Then, since KL{qi(θi)‖P (θi |

Yi,Mp)} ≥ 0, we have a lower bound of the marginal likelihood as

l(Mp; Y) ≥
N∑
i=1

∫
θi

logP (Yi,θi |Mp)× qi(θi)dθi −
N∑
i=1

∫
θi

log qi(θi)× qi(θi)dθi. (4)

Note that the equality in (4) holds if and only if qi(θi) = P (θi | Yi,Mp) for i = 1, . . . , N .

Thus, to use the lower bound in (4) to approximate the marginal likelihood l(Mp; Y), the pos-

terior distribution P (θi | Yi,Mp) gives the best choice of the variational distribution function

qi(θi). However, such a choice of qi(θi) is not practically applicable as the posterior distribution

P (θi | Yi,Mp) is unknown. Alternatively, we could choose qi(θi) as a tractable approximation of

P (θi | Yi,Mp). One example is the EM algorithm, which can be viewed as choosing qi(θi) as the

estimated posterior P (θi | Yi, M̂p) with M̂p from a previous E-M step estimate. However, in the

MIRT model, it is known that the expectation in E-step with respect to the posterior distribution of

θi, i.e., the first term in (4) with qi(θi) being the estimated posterior P (θi | Yi, M̂p), does not have

an explicit form and often is challenging to compute.

Different from the EM algorithm, the variational inference method uses alternative choices of

the qi(θi)’s to have a computationally more efficient estimation of the lower bound in (4). Since the
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posterior distribution P (θi | Yi,Mp) for the MIRT model can be well approximated by a Gaussian

distribution as the number of items J increases, following Cho et al. (2021), we choose qi(θi) from

a family of Gaussian distributions and estimate the model parameters by the GVEM algorithm. In

particular, in the E-step, qi is estimated within the Gaussian family to minimize the KL distance

between qi(θi) and P (θi | Yi,Mp), and we then evaluate the expectation of the likelihood lower

bound with respect to the estimated qi(θi). In the M-step, the expectation is maximized to update

all model parameters. Carefully chosen qi yield closed-form updates for all model parameters (Cho

et al., 2021), making the algorithm computationally efficient.

3 Regularized Estimation of Loading Structure

In this paper, our main interest is to estimate a sparse loading structure, denoted as QA = (qjk)

where qjk = I(αjk 6= 0). Similar to Sun et al. (2016), we cast the problem of sparsity estimation

as a latent variable selection problem and solve it using the regularized regression via L1–type

penalization. One main contribution is to apply variational approach to avoid directly calculating

intractable marginal likelihood while solving the regularization problem.

Although Lasso regularization is a popular technique for simultaneous model estimation and

efficient variable selection, there has been some arguments against the Lasso oracle statement. For

instance, Zou (2006) argued that there exist nontrivial conditions for the Lasso variable selection to

be consistent and thus Lasso rarely enjoys oracle properties. Although the computational efficiency

of Lasso is appealing for the estimation problems in high-dimensional MIRT models, the bias of

the Lasso may prevent consistent variable selection and model estimation. On the other hand,
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adaptive Lasso is shown to enjoy oracle properties if the regularization parameters are chosen to

be data-dependent (Zou, 2006). Since it is a convex optimization problem, its global optimizer can

be efficiently solved. Additionally, adaptive Lasso is a simple extension of Lasso, which makes

it easy to implement with the existing algorithm for the Lasso and is computationally efficient as

well. Hence, adaptive Lasso is a good candidate as a penalization method for identifying item

factor loading structure in MIRT. Specifically for parameter estimation, we solve the following

optimization problem;

(Âλ, B̂λ, Ĉλ) = argmaxA,B,Cl(A,B,C; Y)− Pλ(A) (5)

where

Pλ(A) = λ
J∑
j=1

K∑
k=1

ŵjk|αjk|

with ŵjk = 1/|α̂(0)
jk |γ , α̂(0)

jk an initial estimator of αjk without the regularization penalty, and γ > 0

and λ > 0 the tuning parameters. In the adaptive Lasso penalization, we use adaptive penalization

weights for each parameter αjk, instead of a constant penalization parameter λ as in Lasso. The

penalization weight for αjk is λŵjk = λ/|α̂(0)
jk |γ . Thus, α̂(0)

jk < 1 will get penalized more than

the bigger values such as α̂(0)
jk > 1. The weight is chosen to be dependent on data to satisfy

the regulatory conditions discussed in Zou (2006). Particularly, Zou (2006) recommended three

values, 0.5, 1, and 2, for the γ parameter, and the selection of the λ parameter will be discussed in

Section 3.2.

To ensure identifiability, we impose certain constraints on the a K × K sub-matrix of QA.
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For the remaining part of the A matrix, we do not assume any pre-specified zero structure but

instead, the appropriate penalization is imposed to shrink αjk’s to recover the true zero structure,

Q∗A. Below are two different constraints on the A matrix. Note that the second constraint is more

flexible hence it is more challenging estimation wise. Except for adding constraints on QA, we

also fix the diagonals of Σθ at 1. Similar to Sun et al. (2016), we will compare the performance of

these two constraint settings in the simulation study.

Constraint 1 To ensure identifiability, we designate one item for each latent factor and this item

is associated with only that factor. That is, we set a K × K sub-matrix of QA to be an identity

matrix, IK . Together with the constraints on the variance of Σθ, we have K2 constraints in total.

Constraint 2 Instead of setting all off-diagonals of a K × K sub-matrix of QA to be zero, we

keep the sub-matrix of QA to be a triangular matrix with the diagonal being ones. That is, there

are test items associated with each factor for sure and they may be associated with other factors

as well. Nonzero entries except for the diagonal entries of QA are penalized during the estimation

procedure. Although this constraint is much weaker than the Constraint 1, it still ensures empirical

identifiability when proper regularized likelihood such as (5) is used for the model estimation (Sun

et al., 2016).

3.1 Additional Penalty for M3PL

The parameter estimation for M3PL in practice often gets more challenging due to the inclusion of

guessing parameters. To tackle this challenge and improve the accuracy of the parameter estimation
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in M3PL, we propose to impose additional constraints on the model parameters, B = {bj; j =

1, . . . , J} and C = {cj; j = 1, . . . , J} in addition to the parameter matrix A. Specifically for

parameter estimation, we solve the following optimization problem where P (·) denotes a penalty

function on model parameters:

(Âλ, B̂λ, Ĉλ) = argmaxA,B,C l(A,B,C; Y)− Pλ(A) + P (B) + P (C) (6)

where P (B) =
∑J

j=1 logN(bj|µb, σ2
b ), and P (C) =

∑J
j=1 logBeta(cj|αc, βc) for some distribu-

tion parameters µb, σ2
b , αc, and βc. These penalty functions are chosen to satisfy the ranges of

values on which the parameters are defined. For instance, since the guessing parameters C natu-

rally satisfy the constraint {0 < cj < 1; j = 1, . . . , J}, we can assume a “prior” distribution of

cj ∼ Beta(αc, βc). Similarly, we can assume a “prior” distribution of bj ∼ N(µb, σ
2
b ). The penalty

on bj and cj are essentially a L2-type and Laplace penalization, respectively. By imposing these

additional penalties on model parameters B and C, the parameter estimation becomes more stable

and robust.

The approach of imposing additional penalty on model parameters B and C with the chosen

distributions is similar to the Bayes modal estimation presented by Tierney and Kadane (1986).

That is, an augmented optimization objective is employed that includes the likelihood and some

prior beliefs on the item parameters. These priors can be used to prevent deviant parameter es-

timates and help the algorithm to produce more accurate estimation in complex M3PL models.

Essentially, Bayes modal estimation can be seen as a regularization on maximum likelihood es-

timation where maximum likelihood estimation is a special case of Bayes model estimation that
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assumes uniform prior distributions.

The amount of penalization can be flexibly controlled using the distribution parameters. For

instance, one can use non-informative priors on C such as Beta(1, 1), which is equivalent to

flat uniform distribution on [0, 1]. Additionally, one can similarly choose non-informative normal

prior with high variance σb for B. This suggests that although additional penalization functions are

added, the algorithm also allow the flexible estimation with essentially no penalty with the choice

of non-informative distributions. The advantage of this is that practitioners can adjust the amount

of prior knowledge they would like to impose on the model. The less prior knowledge one uses, the

more flexible the estimation is and the results will be based more on the observed data. With these

prior-like penalties, our algorithm yields more precise parameter estimates for the M3PL model.

3.2 Computation via GVEM

This section introduces the main estimation algorithm to obtain the estimate (Âλ, B̂λ, Ĉλ) via (6)

using GVEM algorithm. As introduced in Section 2, we will use a variational lower bound to

approximate the intractable marginal loglikelihood l(A,B,C; Y) in (6).

To derive a lower bound for easy estimation of the M3PL parameters, instead of directly work-

ing with (4), we employ an equivalent representation of the M3PL model with auxiliary latent

variable Zij , which is an indicator function of whether the ith individual answers the jth item

based on the latent ability or guesses it correctly (von Davier, 2009). Specifically Zij = 1 if the

ith individual solves item j based on his/her ability, and Zij = 0 if he/she guesses item j correctly.
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The distribution of Yij given the latent variables θi and Zij is then

P (Yij|Zij,θi) =

{[ exp(α>j θi − bj)
1 + exp(α>j θi − bj)

]Yij[ 1

1 + exp(α>j θi − bj)

]1−Yij}Zij

I(Yij = 1)1−Zij ,

where we define 00 = 1, and it can be seen that this new model with auxiliary variable Z is equiv-

alent to the M3PL model (von Davier, 2009; Cho et al., 2021). Denote Zi = {Zi1, Zi2, . . . , ZiJ}

and its distribution as p(Zi) =
∏J

j=1 p(Zij). Then the complete data likelihood of the ith subject

can be written as

logP (Yi,θi,Zi | A,B,C)

= logP (Yi | θi,Zi,A,B,C) + log φ(θi) + log p(Zi)

=
J∑
j=1

{
YijZij(α

>
j θi − bj) + Zij log

1

1 + exp(α>j θi − bj)
+ (1− Zij) log I(Yij = 1)

}
+ log φ(θi) + log p(Zi), (7)

where φ denotes the normal probability density function for latent variable θ. Here, without loss

of generality, we focus on the ith subject’s likelihood function due to the independence of different

subjects.

With the above representation, for any variational distribution functions qi and rij (to be esti-

mated later) of the latent variables θi and Zij , similar to the derivation in Section 2, we have the
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following variational lower bound, which generalizes (4),

logP (Yi | A,B,C) ≥
∫
θi

∑
Zi

logP (Yi,θi,Zi | A,B,C)× qi(θi)ri(Zi)dθi (8)

−
∫
θi

∑
Zi

log
(
qi(θi)ri(Zi)

)
× qi(θi)ri(Zi)dθi, (9)

where ri(Zi) =
∏J

j=1 rij(Zij). Since (9) doesn’t depend on parameters A, B and C, we focus

on (8) for the derivation of the lower bound. For (8), note that logP (Yi,θi,Zi | A,B,C) takes

the form of (7). To obtain a closed form lower bound expression for (8), we further use a local

variational method (Bishop, 2006; Jordan, Ghahramani, Jaakkola, & Saul, 1999). Particularly,

define ξi,j as a variational parameter indexed by i and j, and let η(ξi,j) = (2ξi,j)
−1[eξi,j/(1 + eξi,j)−

1/2]. Let ξi = (ξi,j, j = 1, · · · , J) denote the ith subject’s variational parameters for the J items.

Then following the local variational method (Bishop, 2006), we have

logP (Yi,θi,Zi | A,B,C) ≥ l(A,B,C, ξi;Yi,θi,Zi),

where l(A,B,C, ξi;Yi,θi,Zi) is defined as

l(A,B,C, ξi;Yi,θi,Zi) (10)

=
J∑
j=1

Zij log
eξi,j

(1 + eξi,j)
+

J∑
j=1

ZijYij(α
>
j θi − bj) +

J∑
j=1

1

2
Zij(bj −α>j θi − ξi,j)

−
J∑
j=1

Zijη(ξi,j){(bj −α>j θi)2 − ξ2i,j}+
J∑
j=1

{(1− Zij) log I(Yij = 1)}+ log φ(θi) + log p(Zi),
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and it gives a lower bound of logP (Yi,θi,Zi | A,B,C) in (8). We then have the following

expression for the variational lower bound of the marginal likelihood of all observed responses in

(6),

l(A,B,C; Y) =
N∑
i=1

logP (Yi | A,B,C) ≥ E(A,B,C, ξ),

with the lower bound E(A,B,C, ξ) defined as

E(A,B,C, ξ) =
N∑
i=1

∫
θi

[∑
Zi

l(A,B,C, ξi;Yi,θi,Zi)× ri(Zi)

]
× qi(θi)dθi. (11)

Appropriate choices of the variational distributions will lead to a closed form expression of the

lower bound in (11). Particularly, following the derivations in Cho et al. (2021), the above likeli-

hood function implies that an optimal choice of qi is qi(θi) ∼ N(θi | µi,Σi) where the mean and

covariance are

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1

2

}
(1− Yij + Er(Zij)Yij)α

>
j , (12)

Σ−1i = Σ−1θ + 2
J∑
j=1

(1− Yij + Er(Zij)Yij)η(ξi,j)αjα
>
j , (13)

and the variational distributions rij(Zij) is rij(Zij) ∼ Bernoulli(sij), where sij = 1 if Yij = 0,

and otherwise

s−1ij = 1 +
cj

1− cj
1 + eξi,j

eξi,j
exp

{
− Yij(α>j Eqi [θi]− bj) +
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1

2
(bj −α>j Eqi [θi]− ξi,j)− η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2i,j}

}
. (14)

With the above chosen qi’s and rij’s, we aim to estimate model parameters A, B and C,

together with the introduced local variational parameters ξ, by maximizing the variational lower

bound of the marginal likelihood, E(A,B,C, ξ) in (11), with the proposed penalties in (6), that

is,

(Âλ, B̂λ, Ĉλ, ξ̂) = argmaxA,B,C,ξ E(A,B,C, ξ)− Pλ(A) + P (B) + P (C) (15)

The corresponding solution (Âλ, B̂λ, Ĉλ) gives the our GVEM estimators for the penalized likeli-

hood in (6).

To estimate (A,B,C), we use the coordinate descent algorithm (Friedman, Hastie, Höfling,

& Tibshirani, 2007; Friedman et al., 2010), which solves the target optimization problem by suc-

cessively minimizing along each coordinate direction of (A,B,C). For each item j, there are one

difficulty parameter bj , one guessing parameter cj , andK discrimination parametersαj . The coor-

dinate descent algorithm updates each of the K + 2 variables according to the following updating

rule (Please see appendix for a detailed derivation of the updating rule). Note that the derivation of

the below soft-thresholding update rule of ajk can be viewed as from the proximal gradient descent

algorithm (Beck & Teboulle, 2009). Define a function S to be a soft threshold operator such that

S(δ, λ) = sign(δ)(|δ| − λ)+, (16)

where for any real number x, sign(x) denotes the sign of x and x+ denotes max{0, x}. The model
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parameters, αj’s, bj and cj are updated using Equations (17), (18), and (19), respectively,

αjk =

[ N∑
i=1

(1− Yij + sijYij)

(
2η(ξi,j)[Σi + (µi)(µi)

>]k,k

)]−1
×S
( N∑

i=1

(1− Yij + sijYij)
{

(Yij −
1

2
)µi,k + 2bjη(ξi,j)µi,k

−2η(ξi,j)
∑
l 6=k

αjl[Σi + (µi)(µi)
>]l,k

}
,

λ

|α̂(0)
jk |γ

)
(17)

bj =

∑N
i=1(1− Yij + sijYij)

[
1
2
− Yij + 2η(ξi,j)α

>
j µi
]

+ µb
σ2
b

2
∑N

i=1(1− Yij + sijYij)η(ξi,j) + 1
σ2
b

, (18)

cj =

∑N
i=1 Yij(1− sij) + α− 1

N + α + β − 2
. (19)

where α̂(0)
jk is the initial estimator of αjk by the GVEM algorithm without including the penalty

terms in (15). Additionally, the variational parameter ξ’s are updated as

ξ2i,j = b2j − 2bjα
>
j µi +α>j [Σi + µiµ

>
i ]αj, (20)

and the covariance can be updated as

Σθ =
1

N

N∑
i=1

[Σi + µiµ
>
i ]. (21)

To choose the constant sparsity parameter λ, we can apply popular information criteria, such as

Akaike Information Criterion (AIC), Bayesian information criterion (BIC) and generalized infor-

mation criterion (GIC) (Nishii, 1984; Y. Fan & Tang, 2013). We estimate the information criteria

by substituting the log-likelihood with the variational lower bound from the GVEM algorithm. The
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sparsity parameter that minimizes these information criteria will be considered optimal. Our pilot

study shows that the GIC method proposed for high dimensional model selection in Y. Fan and

Tang (2013) performs better than AIC and BIC, hence GIC is used throughout the study.

The detailed algorithm of the regularized estimation of the loading structure via adaptive Lasso

penalization is illustrated below in Algorithm 1.

Algorithm 1 Regularization with Adaptive Lasso Penalization (M2PL as an example)
1: Set a range of λ. Choose γ > 0.
2: Use GVEM algorithm to conduct EFA+rotation assuming all items load on all factors to ini-

tialize model parameters A0, B0, Σ0 and obtain Âw := [α̂
(0)
jk ]J×K

3: for each λ starting from smallest do
4: Update A, B, according to (17), (18), respectively. Update ξ and Σθ as in (20) and (21).

Iterate until convergence.
5: Estimate ˆGIC with recent updates.
6: Set Âλ,B̂λ as the initial values for next step.
7: end for
8: Find λ∗ that minimizes the information criteria. Calculate the evaluation criteria and save Q̂λ.
9: Re-estimate A,B,C, and Σθ according to confirmatory factor analysis with Q̂λ as the factor

loading matrix.

Algorithm 2 Regularization with Lasso Penalization (M3PL as an example)
1: Set a range of λ.
2: Use GVEM algorithm to conduct EFA+rotation assuming all items load on all factors to ini-

tialize model parameters A0, B0, C0, Σ0.
3: for each λ starting from smallest do
4: Update A,B,C according to (17) with λ/|α̂(0)

jk |γ in (17) replaced by λ. Update B and C
according to (18) and (19). Update ξ and Σθ as in (20) and (21). Iterate until convergence.

5: Re-estimate A,B,C, and Σθ according to confirmatory factor analysis with most recent
updates (i.e. Q̂λ) as the factor loading matrix.

6: With re-estimated A, B, C, and Σθ, estimate ˆGIC.
7: Set Âλ,B̂λ, Ĉλ as the initial values for next step.
8: end for
9: Find λ∗ that minimizes the information criteria. Calculate the evaluation criteria.

Remark 1 In addition to our choice of adaptive Lasso for Pλ(A) in (6), there are generally other
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methods of penalization. For instance, J. Fan and Li (2001) showed that the Lasso penaliza-

tion problem is suboptimal to their proposed method called smoothly clipped absolute deviation

(SCAD) penalty as Lasso produces biased estimates for the large coefficients. They showed that the

SCAD penalization enjoys asymptotic normality and oracle properties with proper choice of reg-

ularization parameters. Due to its solid theoretical properties, SCAD has been widely applied in

variable selection problems (T. Wang, Xu, & Zhu, 2012; Liu, Yao, & Li, 2016; Breheny & Huang,

2011). Additionally, Minimax Concave Penalty (MCP) has been presented as a fast, continuous

and nearly unbiased method of penalization and hence claimed to be a good alternative to Lasso

(C. H. Zhang, 2010). Truncated Lasso is also another popular penalization method (Shen, Pan, &

Zhu, 2012; Xu & Shang, 2018); however penalty function for these methods are non-convex and it

makes local solutions to be nonunique in general, which is computationally challenging to solve as

well. On the other hand, adaptive Lasso uses a convex penalty and it is computationally efficient,

which makes it a good candidate for regularization problem under complex MIRT models. Hence,

we choose adaptive Lasso for solving our regularized problem.

4 Simulation Study

4.1 Design

A simulation study was conducted to evaluate the performance of the regularized GVEM algorithm

in identifying true item-factor loading structure with both M2PL and M3PL models.Three manip-

ulated factors were considered: (1) the number of dimensions was fixed at 3 and 5 (i.e., K = 3, 5);
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(2) the correlations among factors were fixed at either 0.1, 0.3, or 0.7; and (3) both between-item

and within-item multidimensional structures were considered. The sample size was fixed at 2000

(i.e., N = 2000) and 100 replications were run. 1

For the between-item MIRT model, the test length was 45, with 15 items loaded onto each

factor. The true item parameters were selected from the 2013 NAEP item bank (combined na-

tional and state assessments) for grade 8. For the within-item MIRT, the true item discrimination

parameters were simulated from Unif(0.75, 2), and the difficulty parameters were drawn from

the standard normal distribution. Additionally in M3PL, the guessing parameters were fixed at

0.2. The generated item parameters resemble the item parameters in Table 6.1 of (Reckase, 2009)

closely. When the dimension was 3, about 60% of the items were loaded onto one factor, about

25% were loaded onto two factors and the rest were loaded onto all three factors; whereas for

the 5-dimension conditions, about 60% , 20%, 20% of the items were loaded onto one, two, and

three factors respectively. In all cases, the latent traits θ were simulated from MVN(0,Σθ) with

variance 1, where r = 0.1, 0.3 or 0.7.

Six methods were compared in the study, and they are (1) traditional exploratory item fac-

tor analysis followed by the CF-Quartimax rotation. This method is denoted as “Rotation” in

all results. For this method, during estimation, we did not assume any constraint on the item

discrimination parameter but fixed the population covariance matrix to an identity matrix, i.e.,

Σθ = I . The GVEM algorithm was used for model estimation. The final discrimination pa-

1In our pilot study, we varied the sample size (i.e., N =2000 or 3000) and the number of replications (i.e., 100
or 500 replications) and noted that results were stabilized with 100 replications, and relative performance of different
methods under different conditions were the same between two sample size settings. Hence, all results reported in the
paper were based on N = 2000 and 100 replications.
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rameters were transformed to standardized factor loadings, the value of which was compared

to 0.3 (Henson & Roberts, 2006; Costello & Osborne, 2005). We used ψj = U−1αj , where

U>U =

(
I + (α>j αj)Σ̂θ

)
to obtain the standardized factor loadings. If |ψjk| exceeds 0.3, the

item is assumed to load on the corresponding factor. This transformation function worked for all

simulated conditions except for the within-item structure, r = 0.7, K = 3, M2PL and M3PL.

In these two conditions, we transformed the true discrimination parameters to standardized factor

loadings, and found some values were smaller than 0.3. Under these two conditions, we set the

cut-off values as 0.75 instead, as the true values were generated from Unif(0.75, 2). Setting a

different cutoff will certainly affect the results, and this, to some extent, implies the subjectivity

in the traditional EFA rotation method. (2) Exploratory item factor analysis with fixed anchors,

and it is denoted as “Fixed Anchors” in all results. For this method, we imposed constraint 1 on

the QA such that post-hoc rotation is no longer needed. We used the same transformation formula

to calculate standardized factor loadings. This method was considered to ensure a direct and fair

comparison to the regularization methods. (3) Lasso with constraint 1 and 2; and (4) adaptive

Lasso with constraint 1 and 2. For the regularization methods, the tuning parameter λ was chosen

by GIC. The GIC was computed as follows,

GIC = log(log(N))× log(N)× k − 2× E(A,B,C, ξ),

where N refers to the sample size, k refers to the number of parameters estimated by the model,

E(A,B,C, ξ) refers to the lower bound.

In additional to the two constraints for the model ability, we truncated α̂jk to 0 if |α̂jk| < 0.001.
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As to γ in adaptive Lasso, Zou (2006) recommended three values, 0.5, 1, and 2. A few pilot trials

were conducted to decide on the optimal γ, and γ = 2 was used for all conditions except a few

conditions in which case γ = 1 was used. These conditions are within-item M2PL, r = 0.7, k = 5,

constraint 1 and 2, as well as between-item M2PL, r = 0.7, k = 5, constraint 2 only.

As the main objective of this section is to estimate relationship between test items and latent

traits, we used the correct estimation rate of A matrix (eq. (22)). It measures how well the sparsity

of the A matrix is estimated by the regularized estimation. Notice that we only calculated correct

rate for entries excluding the first K by K sub-matrix since we fixed this part to have identity matrix

as a zero structure to ensure identifiability.

CR =
1

K × J
∑

1≤j<J,1≤k≤K

I(Q̂jk = Qtrue
jk ) (22)

We also compared the performance of Lasso and adaptive Lasso penalization using two mea-

sures: sensitivity and specificity. In our context, sensitivity is the probability of correctly identify-

ing nonzero entries among true nonzero entries. Specificity is the probability of correctly identify-

ing zero entries among true zero entries. In other words, sensitivity measures the true negative rate

while specificity illustrates the true positive rate. Naturally, a test with both high sensitivity and

high specificity is desired, although there is always a trade-off.

Other criteria include the average relative bias and root mean squared error (RMSE). The pa-

rameter recovery for Σθ is calculated by taking differences between each freely estimated entries

of the true Σθ and estimated Σ̂θ. Relative bias and RMSE were obtained for each non-zero model

parameter across all items within a condition first and then averaged over 100 replications.
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4.2 Simulation Results

In this section, we first present the simulation results under various settings in M2PL and M3PL

with boxplots to show the distribution of correct estimation rates, sensitivities, and specificities.

Among the three information criteria, GIC showed the best performance at selecting the optimal

result as it favors the models that penalizes more on the number of parameters; thus, we present

the simulation results with GIC selection criteria in Figures in this section.

Figure 1 and Figure 2 presented the recovery of item factor loading structure in terms of cor-

rect rates, sensitivity and specificity under M2PL and M3PL respectively. All six methods were

presented in the same order under each manipulated condition in Figures 1 to 6. For M2PL, the

adaptive Lasso method is consistently the best-performing method under all conditions, except

when r = 0.1, K = 5, item structure is within-item M2PL, and when r = 0.3, K = 5, item struc-

ture is between-item M2PL. Under these two conditions, EFA rotation method performs slightly

better than the adaptive Lasso method. The EFA with fixed anchors and Lasso regularization meth-

ods, on the other hand, performs a lot worse. When K = 3, and within-item M2PL is used, EFA

rotation method performs considerably worse than EFA with fixed anchors and adaptive Lasso

methods. Between the two constraint settings, constraint 2 yields more free parameters and hence

it is harder to handle than constraint 1. Therefore, it is not surprising that adaptive Lasso with con-

straint 1 performs slightly better than with constraint 2 in more challenging scenarios (i.e., higher

correlation, larger K, and within-item multidimensionality), whereas the difference between the

two types is almost negligible in simpler scenarios.

When M3PL is the data generating model, the recovery of item factor loading structure is
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generally worse than that from M2PL, with a decrement of correct rate, sensitivity, and specificity

in the range of 5% to 20%. The general trend of the manipulated factors on the results stay the

same as compared to M2PL. That is, increasing factor correlation or allowing item cross-loadings

make the recovery of factor structure harder, although adaptive Lasso still performs the best among

the six methods in all conditions except when r = 0.7, K = 5 and test exhibits between-item

multidimensional structure. In this case, EFA rotation method tends to excel.
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Figure 1: Correct estimation rates of item-factor loading structure under M2PL.
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Figure 2: Correct estimation rates of item-factor loading structure under M3PL.
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Figure 3 presents the relative bias of model parameters under M2PL. When the test has 5 latent

factors and r = 0.1 or 0.3, although relative bias vary slightly differently for different parameters,

the results from the six methods are almost indistinguishable. In a between-item structure with

3 factors, the relative bias for b has more variability across replications. It is because the true

parameters of some items are close to 0. The relative bias vary more for the within-item condition

in general. In a within-item structure, the two regularization methods appear to produce less bias

than the EFA rotation method especially for Σθ. Under K = 3, r = 0.1 or 0.7, within-item M2PL

conditions, the relative bias values for Σθ estimated by EFA rotation fall outside of the range.

Figure 4 presents the RMSE of model parameters under M2PL. Again, all six methods produce

comparable RMSE when r = 0.1 under between-item condition. When the factor correlation

increases, the EFA rotation method generates larger RMSE for α and Σθ. The same trend holds

under the within-item M2PL conditions, although adaptive Lasso method seems to generate large

RMSE for some conditions. Under the most difficult condition of r = 0.7, K = 5, one can see a lot

of variability of RMSE across replications. In this case, the two Lasso methods seems to produce

smaller median RMSE for majority of the parameters than EFA rotation method and EFA with

fixed anchors method. The better performance of Lasso methods compared to adaptive Lasso may

be because of two reasons: (1) we computed bias and RMSE only on those parameters whose true

values were non-zero. Hence, even if the Lasso method fails to shrink some true zero loadings to

zero, they will not count toward bias or RMSE. (2) Initial values play an important role in adaptive

Lasso to determine an adaptive penalty weight. We used the results from EFA rotation methods

as initial values, and other better initial values could be explored in the future, such as the SVD
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method in H. Zhang et al. (2020).
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Figure 3: Relative bias of model parameter estimates under M2PL.
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Figure 4: RMSE of model parameter estimates under M2PL.
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Figure 5: Relative bias of model parameter estimates under M3PL.
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Figure 6: RMSE of model parameter estimates under M3PL.
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Figures 5 and 6 show the relative bias and RMSE of model parameters under M3PL. The inclu-

sion of the guessing parameter, unsurprisingly, makes the model parameter recovery much harder,

as shown in larger bias and RMSE as well as more variability across replications. The overall pat-

tern observed from M2PL results continued to hold. That is, increasing factor correlation and using

within-item factor structure not only increase relative bias and RMSE, but also yield more insta-

bility across replications. The EFA rotation method produces the largest average absolute bias and

mean RMSE in almost all conditions, followed by EFA with fixed anchors method, although results

from regularization methods seem to have more variability when the factor correlation is high.

In summary, the adaptive Lasso method outperforms EFA rotation method under almost all

conditions regarding item-factor loading structure recovery. There are only 3 exceptions: when r =

0.1, K = 5, item structure is within-item M2PL, when r = 0.3, K = 5, item structure is between-

item M2PL, and r = 0.7, K = 5, item structure is between-item M3PL. In these three conditions,

EFA rotation method performs better than the adaptive Lasso method by a small margin. Under

some simple scenarios (i.e. low-correlation or medium-correlation and K = 3, item structure is

between-item M2PL), there is no appreciable difference between the EFA rotation method and

the adaptive Lasso method with either type of constraints. As for item parameter recovery, the

adaptive Lasso method outperforms EFA rotation method for all of the high-correlation scenarios

in M2PL. For small-correlation, between-item M2PL conditions, the results of adaptive Lasso and

EFA rotation method appear to be indistinguishable. In M3PL, the adaptive Lasso method produces

more accurate results compared to EFA rotation method under all conditions. Only under between-

item M3PL conditions, EFA rotation generates smaller RMSE values and relative bias with less
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variability for Σθ, but it produces larger RMSE and relative bias for other parameters.

5 Real Data Analysis

In this section, the proposed regularization method was applied to the National Education Longi-

tudinal Study of 1988 (NELS:88) data, and results were compared with those from EFA rotation

method. NELS:88 was collected from a nationally representative sample of students whose perfor-

mance on different cognitive batteries were tracked from 8th to 12th grade (the first three studies)

in years 1988, 1990, and 1992. In this study, we focused on the science and mathematics test data

where the multidimensional factorial structure has been previously investigated (e.g, Kupermintz

& Snow, 1997; Nussbaum, Hamilton, & Snow, 1997). Table 1 shows an example of the content

of the questions in science test. For the science subject, there are 25 items and four factors were

found from the data collected in 1988: “Elementary science (ES)”, “Chemistry knowledge (CK)”,

“Scientific reasoning (SR)” and “Reasoning with knowledge (RK)”. For the math subject, there are

40 items in 1988 and two factors emerged. They are “Mathematical reasoning (MR)” and “Mathe-

matical knowledge (MK)”. We pooled together data from both domains, resulting in 65 items and

a complete sample size of N = 13, 488.

In the previous analysis of NELS:88 by Cho et al. (2020), the GVEM approach was used to

empirically estimate the optimal number of latent traits from this data set. The result suggests

there exists six latent traits measured by NELS:88. This finding is consistent with what the pre-

vious literature implies (e.g, Kupermintz & Snow, 1997; Nussbaum et al., 1997). Thus, we fix

the dimension of latent factors as six for this analysis. Also, Kupermintz and Snow (1997) and
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Nussbaum et al. (1997) analyzed the latent traits required by each test item based on the content of

the questions. Based on their findings, we chose 6 questions that only associate with each one of

latent factors and performed our proposed regularized estimation under Constraint 1.

Both the EFA rotation (with the CF-Quartimax rotation) and adaptive Lasso methods with

M2PL and M3PL were fitted to the data set. EFA rotation assumed all items load on all factors.

For the adaptive Lasso method, we assumed all items load on all factors and hence penalty is

added on every element in the loading matrix except for the constraints. Note that we also consider

another version of adaptive Lasso which assumes math items only load on the two math factors,

and science items only load on the four science factors, hence there are structural 0’s in the loading

matrix that we neither estimate nor add penalty on. The results of this version are reported in

the online supplementary materials to save space. Given the large sample size and test length

(65 items in total), stochastic version of GVEM algorithm was used for M3PL. Specifically we

used a stochastic sampling of 200 at each iteration and initially sampled 3000 for more stable

convergence. For models with penalty, only adaptive Lasso was considered at it was shown to

perform better than Lasso penalty under majority conditions in the simulation studies. The penalty

parameter γ was fixed at 3 in adaptive Lasso. This is because the item-factor loading structure is

more complex (as compared to simulation study), hence, heavier penalization (i.e., higher γ) was

used to produce a nicer sparse structure. Table 2 shows that the M2PL in general yields smaller

GIC than M3PL. For the same model, adaptive Lasso produces the smaller GIC compared to the

EFA rotation method. The fact that M2PL is preferred over M3PL implies that guessing may not

play a big role on the performance in NELS:88 math and science assessments. Moreover, larger
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Table 1: NELS:88 Science Items and Descriptions. S stands for Science items, and item descriptions were
adopted from Rock et al. (1991).

Item 8th grade 10th grade Description
S01 1 Infer geologic history from facts about limestone deposits
S02 2 Identify components of solar system
S03 3 2 Read a graph depicting solubility of chemicals
S04 4 3 Choose an improvement for an experiment on mice
S05 5 4 Choose a statement about source of moon’s light
S06 6 5 Identify the example of a simple reflex
S07 7 Choose viable way of communicating on moon
S08 8 Select statement about position of sun, moon, earth in diagram
S09 9 Identify source of oxygen in ocean water
S10 10 1 Choose the property used to classify a list of substances
S11 11 Explain lower freezing temperature of ocean water
S12 12 6 Answer question about the earth’s orbit
S13 13 Infer use of oxygen from description of condition of aquarium
S14 14 7 Estimate temperature of a mixture
S15 15 8 Select a statement about the process of respiration
S16 16 9 Read a graph depicting digestion of a protein by an enzyme
S17 17 10 Explain location of marine algae
S18 18 11 Choose best indication of an approaching storm
S19 19 12 Choose the alternative that is not a chemical change
S20 20 13 Infer statement from results of an experiment using a filter
S21 21 14 Explain reason for late afternoon breeze from the ocean
S22 22 15 Select basis for a statement about a food chain
S23 23 16 Interpret symbols describing a chemical reaction
S24 24 17 Differentiate statements based on a model or an observation
S25 25 18 Describe color of offspring from a guinea-pig cross
S26 19 Calculate a mass given density and dimensions
S27 20 Locate the balance point of a weighted lever
S28 21 Interpret a contour map
S29 22 Identify diagram depicting path of light through camera lens
S30 23 Calculate grams of a substance given its half life
S31 24 Read population graph; identify equilibrium point
S32 25 Identify cause of fire from overloaded circuit

GIC from EFA rotation method implies that the factor loading structure obtained from it may not

reflect the true item factor relationship as closely as the adaptive Lasso method.
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Table 2: GIC comparison from two methods and two models (AL stands for adaptive Lasso)

M2PL M3PL
EFA AL EFA AL

1.20× 106 0.73× 106 1.28× 106 1.81× 106

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”

Next, using M2PL with adaptive Lasso, tables 3 and 4 illustrate the estimated sparse test struc-

ture from math and science test, respectively; and tables 5 and 6 present the results from the

EFA rotation method. Note the order of the latent traits for the EFA rotation method is arbitrary.

As shown, for the EFA rotation method, before using 0.3 as the cutoff, we observe more cross

loadings, but after standardizing the factor loadings and using 0.3 as the cutoff, the EFA rotation

method yields more spare and close to simple structure compared to the adaptive Lasso method.

However, it appears that, in the EFA rotation method, both math and science items load dominantly

on a single factor, which contracts with the findings that 2 and 4 best reflect the underlying factor

structure. On the other hand, item factor loadings obtained from adaptive Lasso method, although

they are less sparse and contain more cross loadings, appear to be more reasonable.

Tables 7 and 8 present the estimated factor correlations for two methods. Factor correlations

obtained from EFA are in the range of 0.01 to 0.73, which are much lower than those from the

regularization method. Adaptive Lasso estimated the correlations between latent factors in the

range of 0.81 to 0.99. Such discrepancy could be explained from simulation findings. That is,

the simulation results indicate EFA rotation method appears to underestimate the factor correlation

especially when the true correlation is high and the number of factors is large. Also, GIC favors

the regularization method which implies that high factor correlations are likely present in the data.
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The observed high correlation also appears to be consistent with decades of research on NELS data

that treats math and science as unitary constructs.
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Table 3: Estimated sparse test structure for math test in NELS:88 (adaptive Lasso)

Factor MR MK ES SR CK RK
M1 0 0.768 0.923 0 0 0
M2 0 0.645 0.500 0 0 0
M3 0.899 0 0 0 0.940 0
M4 0.470 1.009 0 0 0 0
M5 0 1.484 0 0 0 0
M6 1.149 0 0 0 0.812 0
M7 1.016 0 0 0 0.263 0
M8 0 1.009 0 0 0.041 0
M9 1.373 0 0 0 1.255 0

M10 0 0 0 0 6.625 0
M11 1.182 0 0 0 1.361 0
M12 0 0 0 0 6.259 0
M13 1.466 0 0 0 0 0
M14 0 1.154 0 0 0 0
M15 3.535 0 1.345 0 0 0
M16 1.573 0 0 0 0 0
M17 0 0 0 0 5.784 0
M18 0.867 0 0 0 0 0
M19 1.459 0 0 0 0 0
M20 1.021 0 0 0 0 0
M21 1.521 0 0 0 0 0
M22 1.709 0 0.821 0 0 0
M23 0.449 0 0.496 0 0 0
M24 0.412 0 0.466 0 0 0
M25 1.456 0 0 0 0 0
M26 0.954 0 0.390 0 0 0
M27 0 0.463 0 0 0 0
M28 0.758 0 0.328 0 0 0
M29 0 0 2.903 0 0 0
M30 1.299 0 0 0 1.689 0
M31 0 0.855 0.715 0 0 0
M32 1.222 0 0 0 1.186 0
M33 0.423 0 0 0.099 0 0
M34 1.046 0 0 0 0.292 0
M35 0 0.706 0.147 0 0 0
M36 1.120 0 0 0 1.887 0
M37 0.727 0 1.049 0 0 0
M38 0 1.765 0 0 0 0
M39 0 0.475 1.460 0 0 0
M40 1.447 0 0 0 0.640 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”
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Table 4: Estimated sparse test structure for science test in NELS:88 (adaptive Lasso)

Factor MR MK ES SR CK RK
S1 0 0 0 0 0.992 0
S2 0 0 0.822 0 0 0
S3 0.175 0 0.629 0 0 0
S4 0 0 0.695 0 0 0
S5 0 0 1.483 0 0 0
S6 0 0 1.338 0 0 0
S7 0 0 0 0.966 0 0
S8 0 0 0 0.741 0 0
S9 0 0 2.469 0 0 0

S10 0.238 0 0 0 0.715 0
S11 0 0 0 0.542 0 0
S12 0 0.441 0 0.787 0 0
S13 0 0 0.900 0 0 0
S14 0 0.988 0 0 0.614 0
S15 0 0 0 0 0 0.65
S16 0.351 0 0 0 0.313 0
S17 0 0 0.899 0 0 0
S18 0 0 0 0.056 1.093 0
S19 0 0 0 0 1.491 0
S20 0.164 0 0 0 0.368 0
S21 0 0 0 0 0.535 0
S22 0 0 0.563 0 0 0
S23 0 0 0 0 1.620 0
S24 0 0 0 0 0.960 0
S25 0.154 0 0 0 0.404 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”
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Table 5: Estimated sparse test structure for math test in NELS:88 (EFA rotation Method)

Estimated Item Discrimination Parameters Estimated Standardized Factor Loadings
Factor F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

M1 0.700 0.288 0.167 0.053 0.097 0.106 0.536 0 0 0 0 0
M2 0.671 0.252 0.091 0.187 0.087 0.147 0.528 0 0 0 0 0
M3 1.001 0.134 0.162 0 0.017 0.146 0.685 0 0 0 0 0
M4 1.454 0.135 0 0.168 0 0 0.816 0 0 0 0 0
M5 1.238 0.135 0.062 0.269 0.071 0.035 0.767 0 0 0 0 0
M6 1.162 0 0.114 0 0.015 0.044 0.751 0 0 0 0 0
M7 0.954 0.074 0.169 0.017 0.127 0.051 0.672 0 0 0 0 0
M8 0.783 0.163 0.084 0.07 0.088 0.036 0.603 0 0 0 0 0
M9 1.315 0 0.074 0 0.167 0.056 0.781 0 0 0 0 0

M10 0.392 0.127 0.919 0 0.174 0.137 0 0 0.679 0 0 0
M11 1.087 0 0.023 0 0.18 0 0.711 0 0 0 0 0
M12 0.610 0.053 0.917 0 0.163 0.111 0.301 0 0.693 0 0 0
M13 1.362 0 0.094 0 0 0.042 0.793 0 0 0 0 0
M14 1.107 0.024 0.082 0.221 0 0.022 0.734 0 0 0 0 0
M15 0.340 0.166 0 0 0.164 0.116 0 0 0 0 0 0
M16 1.733 0 0 0 0 0.002 0.860 0 0 0 0 0
M17 0.225 0.124 0.832 0.004 0.215 0.169 0 0 0.628 0 0 0
M18 0.710 0.019 0.01 0 0.220 0 0.562 0 0 0 0 0
M19 1.421 0 0 0.006 0 0 0.800 0 0 0 0 0
M20 1.071 0.017 0 0 0.039 0 0.728 0 0 0 0 0
M21 1.588 0 0 0 0.022 0.063 0.837 0 0 0 0 0
M22 0.847 0.257 0 0 0 0.206 0.602 0 0 0 0 0
M23 0.600 0.246 0.003 0 0 0.221 0.485 0 0 0 0 0
M24 0.513 0.307 0.043 0 0.018 0.112 0.431 0 0 0 0 0
M25 1.315 0.003 0.111 0 0.091 0 0.788 0 0 0 0 0
M26 0.999 0.201 0.082 0 0 0.208 0.678 0 0 0 0 0
M27 0.454 0.106 0.037 0.162 0 0 0.407 0 0 0 0 0
M28 0.882 0.147 0.029 0.030 0 0.103 0.651 0 0 0 0 0
M29 0.577 0.378 0.155 0 0 0.148 0.448 0.348 0 0 0 0
M30 1.460 0 0.214 0 0.115 0 0.802 0 0 0 0 0
M31 0.779 0.296 0.172 0.175 0.239 0.289 0.536 0 0 0 0 0
M32 1.244 0 0.173 0 0.096 0 0.759 0 0 0 0 0
M33 0.601 0.059 0 0.006 0.241 0 0.470 0 0 0 0 0
M34 1.053 0.050 0.117 0.093 0.207 0 0.704 0 0 0 0 0
M35 0.734 0.290 0 0.121 0 0 0.566 0 0 0 0 0
M36 1.355 0.079 0.316 0 0.062 0.229 0.751 0 0.304 0 0 0
M37 0.923 0.344 0.156 0.040 0.087 0.453 0.574 0 0 0 0 0.422
M38 1.542 0.132 0 0.205 0.011 0.142 0.827 0 0 0 0 0
M39 0.532 0.132 0.056 0.213 0 0.202 0.438 0 0 0 0 0
M40 1.539 0.147 0.182 0.085 0.161 0.186 0.803 0 0 0 0 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”
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Table 6: Estimated sparse test structure for science test in NELS:88 (Rotation Method)

Estimated Item Discrimination Parameters Estimated Standardized Factor Loadings
Factor F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

S1 0.135 0.145 0.116 0.101 0.370 0.426 0 0 0 0 0.321 0.393
S2 0.092 0.145 0.096 0.093 0.235 0.399 0 0 0 0 0 0.371
S3 0.276 0.063 0.022 0 0.114 0.456 0 0 0 0 0 0.416
S4 0 0.245 0.103 0 0.164 0.322 0 0 0 0 0 0.307
S5 0.284 0.307 0.109 0.107 0.303 0.727 0 0 0 0 0 0.598
S6 0.280 0.271 0.153 0.060 0.287 0.613 0 0 0 0 0 0.529
S7 0 0.138 0 0.117 0.254 0.602 0 0 0 0 0 0.519
S8 0.014 0.144 0 0.073 0.336 0.388 0 0 0 0 0 0.363
S9 0.136 0.193 0 0.017 0.006 0.573 0 0 0 0 0 0.499

S10 0.310 0.132 0.094 0.043 0.377 0.215 0 0 0 0 0.347 0
S11 0.056 0.04 0 0.058 0.309 0.237 0 0 0 0 0 0
S12 0.426 0.168 0.027 0.198 0.301 0.420 0.325 0 0 0 0 0.391
S13 0.055 0.23 0.215 0.06 0.067 0.515 0 0 0 0 0 0.459
S14 1.007 0.159 0.091 0.303 0.307 0.170 0.656 0 0 0 0 0
S15 0.124 0 0.087 0.019 0 0.645 0 0 0 0 0 0.543
S16 0.273 0.248 0.040 0 0.332 0 0 0 0 0 0.315 0
S17 0.219 0 0 0.104 0.494 0.279 0 0 0 0 0.430 0
S18 0.278 0 0 0.193 0.507 0.311 0 0 0 0 0.436 0
S19 0.206 0.002 0.059 0.095 0.422 0.291 0 0 0 0 0.375 0
S20 0.196 0 0 0 0.392 0.114 0 0 0 0 0.363 0
S21 0.072 0.170 0 0.01 0.538 0 0 0 0 0 0.474 0
S22 0.045 0.099 0 0 0.158 0.358 0 0 0 0 0 0.337
S23 0 0.278 0.094 0 0.399 0 0 0 0 0 0.362 0
S24 0.160 0.061 0.101 0.082 0.290 0.523 0 0 0 0 0 0.465
S25 0.167 0.114 0.073 0 0.126 0.199 0 0 0 0 0 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”
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Table 7: Estimated Correlation between latent factors (Adaptive Lasso)

MR MK ES SR CK RK
MR 1.0000 0.9808 0.8465 0.7740 0.8646 0.8328
MK 0.9808 1.0000 0.9242 0.8684 0.9364 0.9119
ES 0.8465 0.9242 1.0000 0.9901 0.9968 0.9931
SR 0.7740 0.8684 0.9901 1.0000 0.9822 0.9807
CK 0.8646 0.9364 0.9968 0.9822 1.0000 0.9873
RK 0.8328 0.9119 0.9931 0.9807 0.9873 1.0000

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”

Table 8: Estimated Correlation between latent factors (EFA Rotation)

F1 F2 F3 F4 F5 F6
F1 1.0000 0.5784 0.7344 0.0848 0.6897 0.6780
F2 0.5784 1.0000 0.3224 0.3783 0.4007 0.7268
F3 0.7344 0.3224 1.0000 0.0067 0.4671 0.4186
F4 0.0848 0.3783 0.0067 1.0000 0.1829 0.2630
F5 0.6897 0.4007 0.4671 0.1829 1.0000 0.5051
F6 0.6780 0.7268 0.4186 0.2630 0.5051 1.0000

SOURCE: U.S. Department of Education, National Center for Education Statistics, National
Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up.”

6 Discussions

Exploratory factor analysis (EFA) is a popular statistical tool to gain insight into latent structures

underlying the observed data (Gorsuch, 1988; Fabrigar & Wegener, 2011). Exploratory item factor

analysis is a subset of EFA methods that deals with categorical observed data. In exploratory IFA,

the relationship among observed item responses are explained by a few number of common factors.

The naming of the common factors can be inferred from the content of the items that load on those

factors, and hence, a simple structure with items loading exclusively on a single factor is usually
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preferred.

In this paper, a Gaussian variational regularization method is proposed for the estimation of the

sparse item-trait relationship in M2PL and M3PL models. This computationally efficient method

estimates both item-factor loading structure and model parameters simultaneously. Both Lasso and

adaptive Lasso penalties are considered, and simulation studies demonstrate that they perform well

in correctly estimating the sparse item-trait structure for both M2PL and M3PL models. Adaptive

Lasso penalization is preferred between the two. With adaptive Lasso penalization, GIC is used

to choose the tuning parameter λ whereas the tuning parameter γ takes one of the three suggested

values by Zou (2006). Adaptive lasso also outperforms traditional EFA rotation method in most of

the simulation conditions, and the two methods are almost indistinguishable for simpler scenarios

such as lower factor correlation and lower dimensions. Since a user specified cutoff is needed to

decide “significant” factor loadings, future studies could consider sparsity-encouraging rotation

(e.g., Jennrich, 2006) to avoid arbitrarily truncating the rotated factor loadings.

The current study can also be expanded in the following directions. First, we assume the

total number of factors, K, is known in advance. However, this assumption may be freed by

varying K and use GIC as the model selection criterion to select the optimal K. This approach is

in contrast to the family of criteria based on eigenvalues of the sample tetrachoric or polychoric

correlation matrix of the observed data. Examples of this latter approach include the scree test

(Cattell, 1966), the parallel analysis (Horn, 1965), among others. Future studies on evaluating the

relative performance of these two approaches are worth pursuing. Note that because K is usually

defined as the minimum number of latent common factors that is needed to describe the statistical
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dependencies in data. Challenges may arise when there are additional nuisance factors, such as a

bi-factor structure.

Second, the proposed method may be generalized to other types of MIRT models, such as the

non-compensatory models (e.g. C. Wang & Nydick, 2015), which is essentially a non-linear item

factor model. While the adaptive Lasso idea can be directly applied, more work is needed to derive

a suitable variational lower bound to enable the GVEM algorithm.

Third, it is of interest to further study the theoretical properties of the estimation and the model

selection consistency for the proposed method. As shown in Cho et al. (2021), the GVEM al-

gorithm (without additional penalty) can consistently estimate the model parameters of the 2-

parameter MIRT model under a global Frobenius norm evaluation and the asymptotic regime when

both N and J increase to infinity. With the additional adaptive Lasso penalty, it is expected that a

similar global consistency result would hold when the tuning parameter is properly chosen. For in-

stance, with the tuning parameter λ = 0, the proposed estimator becomes that in Cho et al. (2021)

and the consistency result then follows. Moreover, it would also be of interest to study the variable

selection consistency as well as the oracle properties as in Zou (2006) under the MIRT setting.

However, such a problem is much more challenging due to several reasons. First, additional work

is still needed to derive the entry-wise consistency and convergence rate results under the double

asymptotic regime with N, J → ∞. In particular, to show the oracle properties, we would need a

sharp characterization of the entry-wise convergence rate of the GVEM estimators, which however

is a challenging problem in the high-dimensional MIRT model. Second, the theoretical analysis

of adaptive Lasso (or other penalties) is more challenging under the high-dimensional latent vari-
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able models, such as MIRT, and the variational approximation further complicates the problem.

In fact, the frequentist consistency properties of many variational approximation methods remain

unaddressed in the current literature. For such reasons, we would leave this interesting problem

for future study.

Finally, it is interesting to obtain standard errors of the proposed regularized estimators. For

variational approximations, the commonly used de-biasing technique in high-dimensional statistics

may not be directly applicable, due to the additional approximation bias induced by the variational

method. One way to reduce such a variational bias is to perform an importance sampling based

reweighing after the variational estimation so that the likelihood function can be better approxi-

mated (Domke & Sheldon, 2018); then a de-biasing step for the regularized estimation could be

used to obtain the standard error estimates. Another approach is to use the bootstrap method to

obtain the standard errors. As the setting of variational estimation for MIRT differs from many of

the existing works on de-biasing estimation or bootstrap, the theoretical consistency properties of

these methods are challenging and remain open problems in the literature. We therefore leave this

interesting problem for future study.
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Online Supplementary Material for “Regularized

Variational Estimation for Exploratory Item Factor

Analysis”

This supplementary material includes the detailed derivations of the estimation proce-

dures presented in Section 3 and additional results for the real data analysis.

1 Derivation in M3PL

We first derive the update formulas for b and c parameters. As discussed in Section 3.2,

the variational lower bound to the expected log-likelihood and the penalties P (B)+P (C)

is

l(A,B,C;Y) + P (B) + P (C)

= l(A,B,C;Y) +
J∑
j=1

{−1

2
log(2πσ2

b )−
(bj − µb)2

2σ2
b

}

+
J∑
j=1

{(α− 1) log(cj) + (β − 1) log(1− cj)− logB(α, β)}

≥
N∑
i=1

J∑
j=1

(1− Yij + sijYij)

(
log

eξi,j

(1 + eξi,j)
+ (

1

2
− Yij)bj + (Yij −

1

2
)α>j µi −

1

2
ξi,j

1



−η(ξi,j){b2j − 2bjα
>
j µi + α>j [Σi + (µi)(µi)

>]αj − ξ2i,j}
)
−

N∑
i=1

1

2
Tr(Σ−1θ [Σi + (µi)(µi)

>])

+
N∑
i=1

J∑
j=1

Yij(1− sij) log I(Yij = 1) +
N

2
log |Σ−1θ |+

N∑
i=1

J∑
j=1

{(1− Yij + sijYij) log(1− cj)

+Yij(1− sij) log(cj)}+
J∑
j=1

{−1

2
log(2πσ2

b )−
1

2σ2
b

(bj − µb)2 + (α− 1) log(cj) +

(β − 1) log(1− cj)− log(B(α, β))}

:= Q(A,B,C, ξ)

In the above equation, ξi,j is a variational parameter that is introduced to approximate the

sigmoid function, η(ξi,j) = (2ξi,j)
−1[eξi,j/(1 + eξi,j) − 1/2], B(α, β) denotes the Beta

function, and recall that sij is defined as follows

s−1ij = 1 +
cj

1− cj
1 + eξi,j

eξi,j
exp

{
− Yij(α>j Eqi [θi]− bj) +

1

2
(bj −α>j Eqi [θi]− ξi,j)− η(ξi,j){Eqi [(bj −α>j θi)

2]− ξ2i,j}
}

if Yij = 1 where Eqi [θi] = µi and Eqi [(bj−α>j θi)
2] = b2j −2bjα

>
j µi +α>j [Σi +µiµ

>
i ]αj .

To get the updating rules for b and c, we maximize the above defined Q function with

respect to parameters bj , cj for j = 1, . . . , J . First for bj , we get the following by setting

the derivative with respect to bj equal to zero.

∂Q

∂bj
=

N∑
i=1

(1− Yij + sijYij)

[
(
1

2
− Yij)− η(ξi,j){2bj − 2α>j µi}

]
− 1

σ2
b

(bj − µb) = 0
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We update bj according to the following equation

bj =

∑N
i=1(1− Yij + sijYij)

[
1
2
− Yij + 2η(ξi,j)α

>
j µi
]

+ µb
σ2
b

2
∑N

i=1(1− Yij + sijYij)η(ξi,j) + 1
σ2
b

Similarly for cj , the derivative of the partial log-likelihood is

∂Q

∂cj
= − 1

1− cj

N∑
i=1

(1− Yij + sijYij) +
1

cj

N∑
j=1

Yij(1− sij) +
α− 1

cj
− β − 1

1− cj

By rearranging the equation by cj , we get a closed-form update of cj as follows.

cj =

∑N
i=1 Yij(1− sij) + α− 1

N + α + β − 2
.

For M3PL, we penalize αj’s with adaptive lasso penalty, and we aim to update αj

such that Q(A,B,C, ξ)−Pλ(A) is maximized. We use the coordinate descent algorithm

developed by Friedman, Hastie, and Tibshirani (2010), and α̂jk is updated according to

the following soft-thresholding rule,

αjk =−
S(−∂2Qj(αj, bj)×α∗jk + ∂Qj(αj, bj), λ)

∂2Qj(αj, bj)

=

[ N∑
i=1

(1− Yij + sijYij)
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>]k,k

)]−1
× S
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2
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∑
l 6=k
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>]l,k
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,

λ

|α̂(0)
jk |γ

)
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where α∗jk is the vector of αj excluding the kth element, S is defined as in

S(δ, λ) = sign(δ)(|δ| − λ)+,

and the last equation follows from the results that

∂Q

∂αjk
=

N∑
i=1

(1− Yij + sijYij)

(
(Yij −

1

2
)µi,k + 2bjη(ξi,j)µi,k − η(ξi,j)

{
2αjk[Σi + µiµ

>
i ]k,k

+ 2
∑
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αjl[Σi + µiµ
>
i ]l,k
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,

∂2Q

∂α2
jk

=−
N∑
i=1

(1− Yij + sijYij)× 2η(ξi,j)[Σi + µiµi)
>]k,k.

The update formulas for ξ’s and Σθ can be obtained similarly by evaluating the corre-

sponding derivatives of Q with respect to ξ and Σθ. And we have

ξ2i,j = b2j − 2bjα
>
j µi + α>j [Σi + µiµ

>
i ]αj,

Σθ =
1

N

N∑
i=1

[Σi + µiµ
>
i ].

2 Derivation in M2PL

Item discrimination parameters αjk are updated by the following steps. Let Qj(αj, bj) be

the variational lower bound only concerning jth test item (without including penalties).

Then, as shown in Cho, Wang, Zhang, and Xu (2021),

Qj(αj, bj) =
N∑
i=1

(
log

eξi,j

(1 + eξi,j)
+ (

1

2
− Yij)bj + (Yij −

1

2
)α>j µ

(t)
i −

1

2
ξi,j
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1

2
Tr(Σ−1θ [Σ

(t)
i + (µ

(t)
i )(µ

(t)
i )>]).

The first and second derivatives of the jth variational lower bound with respect to αjk

are

∂Qj(αj, bj)

∂αjk
=

N∑
i=1
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N∑
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2η(ξi,j)[Σ

(t)
i + (µ

(t)
i )(µ

(t)
i )>]k,k

)
,

respectively. Then α̂jk is updated according to the following soft thresholding rule;

α̂jk =−
S(−∂2Qj(αj, bj) ∗α∗jk + ∂Qj(αj, bj), λ)

∂2Qj(αj, bj)

=

S

(∑N
i=1

[
(Yij − 1

2
)µi,k + 2bjη(ξi,j)µi,k − 2η(ξi,j)

∑
l 6=kαjl[Σi + (µi)(µi)

>]l,k

]
, λ

|α̂(0)
jk |γ

)
∑N

i=1

(
2η(ξi,j)[Σi + (µi)(µi)>]k,k

) .

In the above equation, α∗jk is the vector of αj excluding the kth element.

Similarly to the derivations for M3PL, the b, ξ and Σθ parameters can be updated by

bj =

∑N
i=1

[
(1
2
− Yij) + 2η(ξi,j)α

>
j µi

]
+ µb

σ2
b∑N

i=1 2η(ξi,j) + 1
σ2
b

if penaltyP (B) is used,
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bj =

∑N
i=1

[
(1
2
− Yij) + 2η(ξi,j)α

>
j µi

]
∑N

i=1 2η(ξi,j)
if penalty P (B) is not used,

ξ2i,j = b2j − 2bjα
>
j µi + α>j [Σi + µiµ

>
i ]αj.

Σθ =
1

N

N∑
i=1

[Σi + µiµ
>
i ].

3 Additional data analysis results

The following tables present the results from another version of adaptive Lasso, which

assumes math items only load on the two math factors, and science items only load on the

four science factors.
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Factor MR MK ES SR CK RK
M1 0 1.170 0 0 0 0
M2 0 1.624 0 0 0 0
M3 0.951 0.365 0 0 0 0
M4 0.856 0.620 0 0 0 0
M5 0 1.473 0 0 0 0
M6 1.792 0 0 0 0 0
M7 1.257 0 0 0 0 0
M8 0.325 0.726 0 0 0 0
M9 1.733 0 0 0 0 0

M10 1.346 0 0 0 0 0
M11 1.879 0 0 0 0 0
M12 1.489 0 0 0 0 0
M13 2.105 0 0 0 0 0
M14 0.639 0.519 0 0 0 0
M15 0.419 0 0 0 0 0
M16 1.924 0 0 0 0 0
M17 0.784 0.407 0 0 0 0
M18 0.824 0 0 0 0 0
M19 2.128 0 0 0 0 0
M20 1.014 0 0 0 0 0
M21 1.508 0 0 0 0 0
M22 0 0.949 0 0 0 0
M23 0 0.909 0 0 0 0
M24 0 0.843 0 0 0 0
M25 1.734 0 0 0 0 0
M26 0.592 0.717 0 0 0 0
M27 0 0.463 0 0 0 0
M28 0.409 0.645 0 0 0 0
M29 0 0.955 0 0 0 0
M30 2.336 0 0 0 0 0
M31 0 2.217 0 0 0 0
M32 2.273 0 0 0 0 0
M33 0.501 0 0 0 0 0
M34 0.863 0.449 0 0 0 0
M35 0 0.844 0 0 0 0
M36 1.334 0.518 0 0 0 0
M37 0 2.182 0 0 0 0
M38 0.496 1.271 0 0 0 0
M39 0 1.184 0 0 0 0
M40 0.919 1.118 0 0 0 0

Table 1: Estimated sparse test structure for math test in NELS:88

SOURCE: U.S. Department of Education, National Center for Education Statistics,
National Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second
Follow-up.”
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Factor MR MK ES SR CK RK
S1 0 0 0 0 0.997 0
S2 0 0 0.824 0 0 0
S3 0 0 0 0 0 0.776
S4 0 0 0 0 0.635 0
S5 0 0 1.480 0 0 0
S6 0 0 1.334 0 0 0
S7 0 0 2.182 0 0 0
S8 0 0 1.401 0 0 0
S9 0 0 0.781 0 0 0

S10 0 0 0 0 0.169 0.764
S11 0 0 0 0.544 0 0
S12 0 0 1.194 0 0 0
S13 0 0 0.897 0 0 0
S14 0 0 0 0 0 2.125
S15 0 0 0 0 0 0.617
S16 0 0 0 0 1.449 0.882
S17 0 0 0 0 1.514 0
S18 0 0 0 0 0.909 0
S19 0 0 0 0 0.845 0
S20 0 0 0 0 2.336 0
S21 0 0 0 0 0.542 0
S22 0 0 0 0 0.509 0
S23 0 0 0 0 2.078 0
S24 0 0 0 0 0.962 0
S25 0 0 0 0 0 0.544

Table 2: Estimated sparse test structure for science test in NELS:88

SOURCE: U.S. Department of Education, National Center for Education Statistics,
National Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second
Follow-up.”
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MR MK ES SR CK RK
MR 1.0000 0.9741 0.8631 0.8109 0.8770 0.9386
MK 0.9741 1.0000 0.9520 0.9016 0.9517 0.9899
ES 0.8631 0.9520 1.0000 0.9754 0.9926 0.9840
SR 0.8109 0.9016 0.9754 1.0000 0.9851 0.9501
CK 0.8770 0.9517 0.9926 0.9851 1.0000 0.9846
RK 0.9386 0.9899 0.9840 0.9501 0.9846 1.0000

Table 3: Estimated Correlation between latent factors

SOURCE: U.S. Department of Education, National Center for Education Statistics,
National Education Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second
Follow-up.”
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