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Abstract
Online educational games have been widely used to support students’ mathematics learn-
ing. However, their effects largely depend on student-related factors, the most prominent 
being their behavioral characteristics as they play the games. In this study, we applied a set 
of learning analytics methods (k-means clustering, data visualization) to clickstream data 
from an interactive online algebra game to unpack how middle-school students’ (N = 227) 
behavioral patterns (i.e., the number of problems completed, resetting problems, reat-
tempting problems, pause time before first actions) correlated with their understanding of 
mathematical equivalence. The k-means cluster analysis identified four groups of students 
based on their behavioral patterns in the game: fast progressors, intermediate progres-
sors, slow progressors, and slow-steady progressors. The results indicated that students in 
these clusters, with the exception of slow progressors, showed significant increases in their 
understanding of mathematical equivalence. In particular, slow-steady progressors, who 
reattempted the same problem more often than other students, showed the largest absolute 
learning gains, suggesting that behavioral engagement played a significant role in learning. 
With data visualizations, we presented evidence of variability in students’ approaches to 
problem solving in the game, providing future directions for investigating how differences 
in student behaviors impact learning.
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Introduction

Elementary and middle-school students’ struggle with mathematics learning has been a 
persistent problem in the United States. According to the results of the National Assess-
ment of Educational Progress (Hussar et al., 2020), only 41% of fourth-graders and 34% 
of eighth-graders are proficient in mathematics, and the progress in students’ mathematics 
performance has been stagnant over the past several years. More concerning, Hussar et al. 
(2020) reported that the gap between high-performers and low-performers has widened; 
while high-performing students’ math achievement slightly increased or remained the same 
compared to the previous assessment, low-performers’ math achievement decreased for 
both fourth- and eighth-graders.

Among mathematical topics, algebra is considered a gatekeeper in middle-school math-
ematics and students’ success in high school (Bush & Karp, 2013; Knuth et al., 2006). In 
particular, understanding of mathematical equivalence, one of the core algebraic concepts, 
is critical for students’ deeper understanding of algebra and their further study in mathe-
matics. However, previous studies have shown that many middle-school students hold mis-
conceptions and continue to struggle with understanding this concept (Alibali et al., 2007; 
Booth & Davenport, 2013; Knuth et al., 2006).

One possible instructional method to address these issues and support students’ math-
ematics learning is the use of online educational games. Previous studies have reported that 
well-designed educational games are effective in enhancing students’ math skills, perfor-
mance (Es-Sajjade & Paas, 2020; Vanbecelaere et  al., 2020), engagement (Chang et  al., 
2016; Deater-Deckard et al., 2014; Moon & Ke, 2020), and decreasing math anxiety (Van-
becelaere et al., 2021). In particular, research has revealed that students with lower math 
achievement benefited more from online educational games than students with higher math 
achievement, even after accounting for their pretest scores (Chang et al., 2015; Shin et al., 
2012), suggesting that these games may be a potential tool to reduce achievement gaps.

However, due to the higher interactivity and larger flexibility of educational game envi-
ronments (e.g., offering flexible options and choices for students) compared to other types 
of educational technologies, the effects of educational games largely depend on various 
factors, such as the unique features of the game environments, learners’ behavioral patterns 
in games, personal traits, cognitive states, and affective states (Martin et al., 2015; Shute 
et al., 2015). Moreover, although it is important to provide personalized learning environ-
ments that consider students’ individual differences (e.g., cognitive, affective, behavioral 
variables) in terms of instructional design, most studies in the field tended to focus on 
examining whether the games improve performance. Much uncertainty still exists about 
the relation between students’ behaviors or actions in games and their learning outcomes, 
particularly in online mathematics game contexts (Deater-Deckard et al., 2014; Vandewae-
tere et al., 2011). Thus, more research is needed to understand how different student behav-
iors relate to learning outcomes, which in turn informs how educators and game designers 
can support learners with various needs, abilities, or skills.

In recent years, advances in learning analytics have enabled researchers to look at stu-
dent actions and behavioral patterns in educational technologies at a more fine-grained 
level. By leveraging log data collected in these computer-based tools, learning analytics 
have provided information and insights into students’ in-game behaviors, the effectiveness 
of educational games, as well as improvement and validation of game design elements 
(Alonso-Fernandez et  al., 2019; Cano et  al., 2018). For instance, our previous work has 
focused on the design and evaluation of an algebraic learning game called From Here to 
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There! (FH2T)  that implements perceptual learning theories into math problem  solving. 
Classroom studies have revealed that the game is effective in improving students’ mathe-
matical understanding as well as decreasing mathematical errors (Chan et al., 2022a; Hulse 
et al., 2019; Ottmar et al., 2015). With the advancement of learning analytic techniques, 
we can examine the ways in which students play the game and the types of behavioral pat-
terns that lead to an increase in their learning outcomes. By leveraging log data collected in 
FH2T, this study aims to unpack how students’ different behavioral patterns influence their 
mathematical understanding through a person-centered approach that explores subgroups 
of students characterized by different types of behavioral patterns in the game. Specifically, 
the study addresses the following research questions:

1.	 How many different clusters emerge based on students’ behavioral patterns in the game?
2.	 To what extent do the different clusters of students’ behavioral patterns in the game 

predict changes in their understanding of mathematical equivalence?
3.	 How do the students’ problem-solving processes and solution strategies vary across the 

clusters of students’ behavioral patterns?

Background literature

Student behavioral patterns in online educational games

Online educational games have been found to enhance learners’ engagement and motiva-
tion, which in certain contexts have also led to increases in their problem-solving skills and 
learning (Huang et al., 2020; Karakoç et al., 2020). The same results have also been shown 
in mathematics learning contexts. Specifically, previous studies have reported that core fea-
tures of educational games (e.g., goal setting, ongoing feedback, authentic problem solv-
ing, challenges) led to increases in learners’ math performance (Es-Sajjade & Paas, 2020; 
Tokac et al., 2019; Vanbecelaere et al., 2020) and engagement (Chang et al., 2016; Deater-
Deckard et al., 2014; Moon & Ke, 2020).

Although online educational games can positively contribute to students’ learning, stud-
ies have demonstrated that various moderators influence the effects of educational games, 
including: (1) game design characteristics (e.g., types of tasks, presence of scaffolding or 
helps, control choices), (2) study or research characteristics (e.g., intervention duration, 
learning context), and (3) learner related factors such as their personal traits (e.g., gen-
der), cognitive states (e.g., prior knowledge), or affective states (e.g., engagement) (Clark 
et al., 2016; Shute et al., 2015; Vanbecelaere et al., 2021). More importantly, as educational 
games provide more interactive options for learners than standard testing or other educa-
tional technologies, learners subsequently exhibit larger variations in their behaviors while 
interacting with educational games (Kerr, 2015). Thus, how learners behave in games may 
play a significant role in their learning during or after the gameplay.

A number of studies have examined what behaviors lead to positive learning outcomes 
in educational games. First, some studies have found that in-game progress is positively 
associated with performance on a posttest (Martin et  al., 2015; Shute et  al., 2015). For 
example, Shute et al. (2015) investigated the relations among middle-school students’ prior 
knowledge, persistence (i.e., a performance-based measure), in-game progress (i.e., meas-
ured by the number of trophies awarded in the game), and learning outcome (i.e., under-
standing of physics; measured by a posttest) after playing an online physics game. The 
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results indicated that students’ prior knowledge and in-game progress significantly pre-
dicted their physics understanding after the gameplay.

Another important behavioral factor found to be predictive of learning outcomes is stu-
dents’ propensity to retry problems. For instance, one study (Chen et al., 2020) examined 
which behavioral features best predicted students’ performance in a digital game-based 
assessment. The findings showed that the number of students’ retry attempts on tasks were 
the most influential predictors for their performance among 27 behavioral features included 
in the prediction model. In other words, students who reattempted tasks more frequently 
performed better on these tasks. Shute and Ventura (2013) noted that measures such as the 
number of attempts to solve a problem and the number of failures or retries before success 
in games might be indicators of students’ persistence or conscientiousness. In addition, 
Strmečki et al. (2015) claimed that gamified online learning environments should provide 
learners opportunities to fail or attempt multiple times so that they could learn from their 
mistakes or previous experiences.

In previous work  on FH2T, it has been found that the students’ in-game progress 
(i.e., the number of problems completed in the game) predicts their posttest performance 
(Hulse et al., 2019). Further, pause time before problem solving (i.e., the amount of time 
the students pause before they initiate the first actions; Chan et al., 2022b) were positively 
associated with students’ performance within an online algebra learning game. While the 
prior studies were able to identify certain measures correlated with student performance, 
they did not explore how these measures were related to each other to describe patterns 
of behavior. The current work, therefore, expands upon these prior studies to explore the 
relation between emerging patterns of behavior (i.e., in-game progress, pause time before 
problem solving, the number of retries, the number of reattempts) and demonstrated math-
ematical understanding.

Understanding of mathematical equivalence

Performance on algebra is an important predictor of later success in upper-level math-
ematics (National Mathematics Advisory Panel, 2008). An important aspect of algebra 
is understanding mathematical equivalence—having the knowledge that two sets are the 
same in quantity and can be interchangeable. However, elementary students struggle with 
this concept (Rittle-Johnson et  al., 2011), and almost half of the middle-school students 
have misconceptions about the equals sign (Knuth et al., 2006). Given the importance of 
understanding mathematical equivalence in upper-level mathematics (Fyfe et al., 2018), it 
is crucial to identify interventions that promote these equivalence skills.

Several studies have tested interventions for improving students’ understanding of 
equivalence in elementary school (Alibali et  al., 2018; Blanton et  al., 2015; McNeil 
et al., 2012). However, few studies were designed to promote students’ understanding of 
equivalence at the middle-school level (McNeil, 2008), and even fewer studies leveraged 
technologies or educational games to improve middle-school students’ understanding of 
equivalence. One example of such studies used spreadsheets, such as Excel, to emphasize 
the numerical meaning of equivalent expressions among seventh-grade students (Tabach & 
Friedlander, 2008).

The online learning game,  FH2T, aims to improve students’ algebra performance 
through their understanding of mathematical equivalence. In this game, students can 
dynamically transform mathematical expressions (e.g., 2 + 3) into perceptually different but 
mathematically equivalent states (e.g., 6 − 1), providing students an interactive experience 
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with algebraic transformations. Prior work has found that playing FH2T improved mid-
dle-school students’ understanding of mathematical equivalence (Chan et al., 2022a). The 
current study expands this work by investigating how students’ behaviors and engagement 
within the game are related to their improved understanding of mathematical equivalence.

Students’ use of solution strategies

Understanding and evaluating multiple solution strategies (i.e., ways to solve a problem) 
then selecting the most efficient strategy are core competencies in algebra (Lynch & Star, 
2014; Star & Rittle-Johnson, 2008). For example, in a problem “4(2 + x) = 12”, the equa-
tion can be solved by using a three-step standard strategy: (a) distribute 4 into the paren-
theses, (b) subtract 8 from both sides, and (c) divide both sides by 4. Alternatively, the 
equation can be solved with a two-step efficient strategy: (a) divide both sides by 4, and 
(b) subtract 2 from both sides. Although the second strategy is more efficient in terms of 
the steps compared to the first strategy, it requires students to notice that 12 is divisible 
by 4. Students applying the standard distribution procedure may not notice the arithmetic 
shortcut in the problem. Previous studies have found that students’ broad knowledge about 
solution strategies was positively associated with their gains in conceptual knowledge, flex-
ibility, as well as further learning in mathematics (Heinze et al., 2009; Rittle-Johnson & 
Star, 2007).

To better understand and support students’ efficient algebraic problem solving, research-
ers have examined how factors such as mathematical knowledge influence students’ strat-
egy selection and efficiency of problem solving (Newton et al., 2020; Star & Rittle-John-
son, 2008). Some studies have found that students’ use of solution strategies is influenced 
by their understanding of two core algebraic concepts: equivalence and variables (Bush & 
Karp, 2013; Knuth et al., 2005). However, as previously noted, many middle-school stu-
dents have misconceptions about these topics (Stephens et al., 2013). Relatedly, students’ 
prior knowledge in various solution strategies (i.e., equation solving procedures) also con-
tributes to their efficiency of problem solving (Khng & Lee, 2009; Rittle-Johnson et al., 
2009). However, to the best of our knowledge, no studies to date have examined how stu-
dents’ behavioral characteristics are associated with their mathematical problem-solving 
processes. Thus, this study investigates associations between students’ different behavioral 
patterns in the game and their use of solution strategies when solving algebraic problems.

Methods

Participants

The participants of this study were 227 students from six middle schools located in the 
Southeastern United States. They were drawn from a larger randomized controlled study 
that investigated the efficacy of two educational technologies—the online algebraic learn-
ing game  (i.e.,  FH2T) and traditional online problem sets—in Fall 2019 (Chan et  al., 
2022a). The initial sample consisted of 348 students who played the game (i.e., students in 
the FH2T condition), but we excluded 121 students who completed less than 50% of items 
on either the pretest or posttest for more accurate estimates of their understanding and per-
formance. This resulted in a final sample of 227 students. Among the 227 students (55.9% 
male, 44.1% female), most of them (95.6%) were in sixth grade, and 4.4% were in seventh 
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grade. Regarding students’ instruction levels, 84.6% of the students were in advanced math 
classes, 9.3% were in support classes, and the remaining 6.2% were in on-level classes.

Materials: From Here to There! (FH2T)

FH2T (https://​grasp​ablem​ath.​com/​proje​cts/​fh2t) is a game-based dynamic algebraic nota-
tion tool developed based on theories of perceptual learning and embodied cognition to 
improve students’ algebraic understanding (Hulse et al., 2019; Ottmar et al., 2015). One of 
the core features of the game is that numbers and mathematical symbols are reified as mov-
able physical objects on the screen. In this way, students can tap, touch, and move numbers 
and symbols in object-like ways, which in turn provides opportunities for them to identify 
the underlying structure of algebraic expressions and realize that mathematical transforma-
tions are not static, re-copying of lines but dynamic.

In each problem in the game, students’ task is to transform a mathematical expression 
from the starting state (here)  to the mathematically equivalent goal state (there)  using 
dynamic gesture-actions (e.g., moving, tapping). Figure  1 represents a sample problem 
with a series of actions in FH2T. As shown in Fig. 1a, the objective of this problem is to 
transform the starting expression (i.e., 9*4) into the goal state in a white box (i.e., 3*6*2). 
Students must find a path between two mathematically equivalent expressions and trans-
form the starting state into the perceptually different goal using gesture-actions. If a student 
completes a problem in the most efficient way, in other words, with the fewest steps pos-
sible to reach the goal state (e.g., three steps: 9*4 → 3*3*4 → 3*3*2*2 → 3*6*2; Fig. 1b 
through 1h), then three clovers are given (see Fig.  1i). The number of clovers given is 
deducted if a student exceeds the fewest steps possible to reach the goal state.

Another important feature of the game is that it provides opportunities to reset or reat-
tempt the problems as many times as the student would like. If a student clicks the restart 

Fig. 1   A sample problem (a) and a potential solution involving three steps (factor 9 into 3*3 [b, c]; factor 4 
into 2*2 [d, e]; multiply 3 and 2 [g]) to reach the goal (h) and receive three clovers (i)

https://graspablemath.com/projects/fh2t
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button on the left side of the screen, the mathematical expression and the number of steps 
made reset to the initial state so that the student can restart the problem from the begin-
ning. Students can also revisit the problem they completed and try to solve the problem 
again (i.e., reattempt) in a more efficient way. The game consists of 252 problems organ-
ized into 14 “worlds” that cover various mathematical concepts (e.g., addition, multiplica-
tion, fraction, division) arranged in the order of difficulty. Students can advance to the next 
world when they complete 14 consecutive problems in each preceding world.

Procedure

First, the students took a pretest using an online assessment system for 45 minutes. After 
completing the pretest, the students played the game using a device over four half-hour ses-
sions (over 4 weeks) during their regular math classes. They played the game individually 
at their own pace, resulting in each student completing a different number of problems in 
the game (M = 104.7, SD = 31.96, Min. = 31, Max. = 173) by the end of the intervention. 
After the intervention, the students took a posttest using the same online assessment sys-
tem for 40 minutes. The posttest consisted of the isomorphic items that mirrored the pre-
test. As students solved problems in FH2T, the system automatically recorded detailed log 
files of all students’ touch- or mouse-based actions with timestamps, including measures 
such as the number of steps taken in solving each problem, the number of resets, the num-
ber of attempts, and all mathematical expressions made by the students.

Measures

Measures of student behavioral patterns

While the game logs recorded several different measures describing student interactions 
in the game, four key variables were selected for this study based on the review of previ-
ous literature. First, the number of problems completed refers to the distinct number of 
problems a student completed in the game during the intervention. For instance, even if 
a student solved the same problem more than once, it was counted as completion of one 
problem. Second, the average number of resets is computed by dividing the total number 
of resets by the total number of problems attempted. Resets in the game refer to clicking 
the reset button to set the expression back to the initial state and restart the problem during 
solving. Unlike resets, attempts refer to revisiting and trying the same problem again after 
completing the problem. The proportion of reattempts is calculated by dividing the total 
number of reattempts by the distinct number of problems completed during the interven-
tion. For example, if a student solved 71 distinct problems during the intervention and reat-
tempted some of the problems a total of 16 times, the proportion of reattempts for this stu-
dent would be 0.23 (i.e., 16 ÷ 71). Lastly, the pause time (seconds) represented the amount 
of time students spent (i.e., paused) before taking the very first interaction (e.g., step, error) 
on a problem in their first attempt to reach the goal state. We computed the average pause 
time by dividing the total amount of time students spent before taking the first action by the 
total number of problems attempted during the intervention.

Note that the  four variables of student behavioral patterns were normalized using 
min–max scaling because the number of problems completed (Min = 31.00, Max = 173.00) 
and average pause time (Min = 6.49, Max = 106.12) had much larger scales than the average 
number of resets (Min = 0.11, Max = 2.56) and the proportion of reattempts (Min = 0.00, 
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Max = 0.68). Normalizing variables can prevent the variables with a larger scale from 
overly influencing cluster analyses, as demonstrated in Kassambara (2017).

Understanding of mathematical equivalence

Students’ understanding of mathematical equivalence was measured with six items selected 
from two established measures (Rittle-Johnson et al., 2011; Star et al., 2015) at pretest and 
posttest. The six items assessed students’ ability to balance two sides of an equation (e.g., 
898 + 13 = 896 + __), perform operations on both sides, define the equal sign, and identify 
equivalent expressions [e.g., (n + 3) + (n + 3) + (n + 3) + (n + 3) is equivalent to 4(n + 3)]. 
The questions were presented one at a time, and students entered their answers via the 
keyboard or selected a response option using a mouse on each question. Posttest items were 
similar to those of the pretest but with different numbers in the questions and the response 
options. Each item was scored as correct (1) or incorrect (0), and the total score out of 6 on 
the posttest was included as the outcome, and the pretest score was included as a covariate 
in the analyses. The Kuder–Richardson-20 coefficients of these six items were 0.63 at pre-
test and 0.64 at posttest, indicating acceptable reliability.

Productivity of students’ solution strategies

We measured the productivity of students’ solution strategies to explore qualitative dif-
ferences in student behavior and qualitative differences in students’ problem-solving pro-
cesses in the game. Here, productivity refers to whether or not a student makes an appro-
priate mathematical transformation that brings the student closer to the target goal state of 
the selected problems. In particular, we focused on students’ first mathematical transfor-
mation (hereafter, first step) to measure the productivity of their solution strategies as our 
previous research (Lee et al., 2022) suggested that students’ first steps might influence their 
subsequent transformations as well as overall efficiency of problem solving.

Among the problems solved by the students, we selected one problem (labeled “problem 
A”) from the multiplication topic because this problem showed the highest average number 
of resets and a higher proportion of reattempts compared to other problems. The students’ 
task for this problem was to transform the start state (4*6*c*24*16) into the mathemati-
cally equivalent goal state (96*96*c) using gesture-actions learned in the game. Table 1 
shows examples of productive and non-productive first steps.

As shown in Table  1, we coded the action of multiplying 6 and 16 to transform 
“4*6*c*24*16” into “4*c*24*96” as a productive first step because the student made a 
96, which is a number in the goal state of the problem (i.e., 96*96*c). Contrary to this, 
transforming the start state into 4*6*c*384 by multiplying 24 and 16 was coded as a non-
productive first step because this action did not bring the student closer to the goal state of 
the problem in a productive way. Two researchers hand-coded students’ first steps as pro-
ductive (1) or non-productive (0) and had a perfect agreement for this problem (i.e., There 
were no instances where the coders disagreed on the label of productivity). Finally, Table 2 
summarizes the variables used in the study, including operational definitions of each vari-
able and how we measure them.
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Data analyses

To address research question 1, we performed a k-means clustering analysis, one of the 
most commonly used unsupervised machine learning algorithms, to find groups of obser-
vations that had similar characteristics. The method works by comparing the distances 
between data points within the feature space with a specified k number of central points, or 
“centroids,” that are iteratively calculated from the observed data. It is a particularly use-
ful technique when researchers seek to gain a better understanding of how students in the 
sample are alike based on variables of interest in order to identify students’ profiles that are 
grounded in their activities or behaviors (Antonenko et al., 2012; Martin et al., 2015). The 
analysis was performed using the “cluster” package in R (Maechler et al., 2014).

For cluster identification, we used the Euclidean distance measure with the Harti-
gan–Wong algorithm, which defines the total within-cluster variation as the sum of squared 
distances between items and the corresponding centroid (Boehmke & Greenwell, 2019). In 
order to validate the optimal number of clusters (i.e., cluster validation), we implemented 
the elbow method using the “fviz_nbclust” function in the “factoextra” R package (Kas-
sambara & Mundt, 2016), which identifies k as the point where the reduction in the total 
within-cluster sum of squares drops significantly and produces an angle (an elbow point) in 
the graph (Antonenko et al., 2012). In other words, k is selected as the number of clusters 
that best describes the data such that adding more clusters would not provide meaningful 
gains in explaining the variance among and between groups of data points.

To examine whether each cluster of students, as identified by the behavioral patterns, 
significantly improved on their understanding of mathematical equivalence from pretest to 
posttest (research question 2), we first considered paired t-tests. However, the results of the 
Shapiro–Wilk tests indicated that the null hypothesis of normal distributions was rejected. 
Thus, we conducted Wilcoxon signed-rank tests and also computed absolute learning gain 
and normalized learning gain scores. Absolute learning gain scores were computed by 
taking the difference between posttest score and pretest score (i.e., posttest score − pretest 
score). Normalized learning scores were calculated by taking the ratio of the actual learn-
ing gain and the maximum possible gain (i.e., (posttest score − pretest score)/(6 − pretest 
score); 6 was the maximum possible score on pretest; Hake, 1998). Further, we conducted 
linear regression analyses to examine how much of the variance in students’ later under-
standing of mathematical equivalence (i.e., posttest score) was explained by their behavio-
ral patterns within the game (i.e., the results of the cluster analysis).

Table 1   Examples of productive and non-productive first steps for problem A

Problem Productivity Actions taken Expressions after First 
steps

Start state: 4*6*c*24*16
Goal state: 96*96*c

Productive first steps (1) Multiplying 6 and 16 4*c*24*96
4*96*c*24

Multiplying 4 and 24 6*c*96*16
96*6*c*16

Non-productive first steps 
(0)

Multiplying 24 and 16 4*6*c*384
Multiplying 6 and 24 4*144*c*16
Multiplying 4 and 16 64*6*c*24
Factoring 6 into 2 and 3 4*2*3*c*24*16
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Lastly, in order to explore qualitative differences in students’ problem-solving pro-
cesses and solution strategies among the clusters (research question 3), we built San-
key diagrams, a data visualization technique that depicts the flow of a process (e.g., 
problem-solving process) or multiple paths between stages as well as the frequencies or 
quantities from one set of values to another using the width of lines (Riehmann et al., 
2005). To generate Sankey diagrams, we used “plotly.js,” a JavaScript data visualization 
library  (Sievert, 2020). Sankey diagrams consist of two main components: nodes and 
links. In this study, each node indicates the steps (i.e., transformations of expressions) 
made by the students, and the thickness of a link (i.e., paths in the diagram) represents 
the number of students who made that mathematical transformation in the game. We 
also visualized productive and unproductive first steps using color.

Results

Descriptive statistics and correlation analysis

Means, standard deviations, minimum and maximum values, and correlation coeffi-
cients for all variables used in the study are presented in Table 3. As most of the vari-
ables (e.g., the proportion of reattempts, average number of resets, average pause time) 
were positively skewed, we conducted a Spearman correlation analysis to examine the 
associations between the variables. Regarding the association with the posttest scores, 
two variables showed statistically significant and strong positive correlations: pretest 
scores (rs(225) = .63, p < .001) and the number of problems completed in the game 
(rs(225) = .60, p < .001). Two variables had moderate negative correlations with the 
posttest scores: the average number of resets in the game (rs(225) =  − .25, p < .001), 
and average pause time (rs(225) =  − .28, p < .001). The proportion of reattempts did not 
have a statistically significant association with the posttest scores. Together, the prelimi-
nary analysis suggests that students’ posttest scores may be associated with aspects of 
their behaviors in the game.

Table 3   Descriptive statistics and correlations for the overall sample (N = 227)

***p < .001, **p < .01, *p < .05

Variable 1 2 3 4 5 6

1. Posttest scores –
2. Pretest scores .63*** –
3. Number of problems completed .60*** .53*** –
4. Proportion of reattempts .08 .07 − .05 –
5. Average number of resets  − .25***  − .25***  − .21** .17* –
6. Average pause time (seconds)  − .28***  − .25***  − .59**  − .11  − .10 –
M 4.30 3.86 104.66 .05 .72 16.37
SD 1.54 1.59 31.97 .10 .37 11.13
Min. .00 .00 31.00 .00 .11 6.49
Max. 6.00 6.00 173.00 .68 2.56 106.12
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Clustering based on the students’ behavioral patterns

Before conducting k-means clustering analysis, we used the elbow method to determine 
the optimal number of clusters and validate the k value (see Fig. 2). As shown in Fig. 2, the 
“fviz_nbclust” R function suggested four cluster solutions (see the dotted line in Fig. 2), 
and the elbow point also indicated that k = 4 would produce the optimal cluster results.

From the cluster analysis of the four behavioral variables within the game, the entire 
sample (N = 227) was divided into four groups of students based on their behavioral pat-
terns: Cluster 1 (n = 60, 26.4%), Cluster 2 (n = 116, 51.1%), Cluster 3 (n = 13, 5.7%), and 
Cluster 4 (n = 38, 16.8%). Table 4 shows the descriptive statistics of each variable by clus-
ters. Figure 3 represents box plots of the four behavioral variables within the game by the 
cluster.

For interpretations of clustering results, we labeled four clusters based on the most sali-
ent characteristics that appeared in each cluster:

Fig. 2   The elbow method for determining the optimal number of clusters

Table 4   Descriptive statistics of each variable by cluster

Variables Cluster 1: fast 
progressors 
(n = 60)

Cluster 2: inter-
mediate progres-
sors (n = 116)

Cluster 3: slow-
steady progres-
sors (n = 13)

Cluster 4: slow 
progressors 
(n = 38)

M SD M SD M SD M SD

Number of problems completed 142.17 12.16 104.86 12.84 69.23 20.99 56.92 16.92
Average number of resets 0.55 0.21 0.75 0.31 0.82 0.54 0.87 0.55
Proportion of reattempts 0.03 0.04 0.04 0.06 0.38 0.13 0.03 0.05
Average of pause time (seconds) 11.23 3.08 14.36 5.42 14.03 6.02 31.40 18.67
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1.	 Fast progressors (Cluster 1, n = 60) included the students who had the highest number 
of problems completed but low values for the average number of resets, the proportion 
of reattempts, and the average pause time. The students in this cluster raced through the 
game and completed as many problems as possible, rather than retrying the problems 
again. The group also showed the lowest values of average pause time among the four 
clusters.

2.	 Intermediate progressors (Cluster 2, n = 116) were the students with the medium values 
for all four variables (the number of problems completed, the average number of resets, 
the proportion of reattempts, average pause time). Approximately half of the students 
in the sample (51.1%) were included in this cluster.

3.	 Slow-steady progressors (Cluster 3, n = 13) comprised of the students who showed the 
highest values for the proportion of reattempts, high values for the average number of 
resets, medium values for the average pause time, and low values for the number of 
problems completed. Only 5.7% of students in the sample belonged to this group. The 
students in this cluster explored the game slowly but steadily by retrying the problems 
they had completed before.

4.	 Slow progressors (Cluster 4, n = 38) were the students with the lowest values for the 
number of problems completed and the proportion of reattempts, and the highest values 
for the average number of resets and the average pause time. The students in this cluster 
spent a longer amount of time before they made the first actions and reset the problems 
to the initial states more often than students in other clusters.

Fig. 3   Cluster results depicting the distribution of the behavioral variables for the four clusters. Note Clus-
ter 1—fast progressors. Cluster 2—intermediate progressors. Cluster 3—slow-steady progressors. Cluster 
4—slow progressors  
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Changes in understanding of mathematical equivalence

Next, we examined whether there were significant improvements in students’ under-
standing of mathematical equivalence from pretest to posttest within each cluster 
as identified by the cluster analysis of students’ behavioral patterns. Table  5 presents 
means, standard deviations, medians of pretest and posttest scores, Z values, abso-
lute learning gains, and normalized learning gains by the cluster. Although we did not 
include the students’ pretest scores as input variables in the cluster analysis, there were 
descriptive differences in the pretest scores among the four clusters: fast progressors 
showed the highest pretest scores (M = 5.03, SD = 1.03, MED = 5.00), while the slow 
progressors had the lowest pretest scores (M = 2.71, SD = 1.59, MED = 2.50).

The Wilcoxon signed-ranks tests revealed that posttest ranks were statistically sig-
nificantly higher than pretest ranks for three clusters: fast progressors (Z =  − 2.333, 
p = .020), intermediate progressors (Z =  − 3.756, p < .001), and slow-steady progressors 
(Z =  − 1.983, p = .047). The “slow progressors” cluster (Cluster 4) did not show a statis-
tically significant difference between pretest and posttest scores.

Regarding the absolute learning gains, the “slow-steady progressors” showed the 
largest absolute learning gain scores (gabs = .77) among the four clusters, followed by 
the “intermediate progressors” (gabs = .50), “fast progressors” (gabs = .35), and “slow 
progressors” (gabs = .26) (see Fig.  4). Normalized learning gains for each cluster 
were further computed, and the values were .295 for fast progressors, .256 for slow-
steady progressors, .157 for intermediate progressors, and − .032 for slow progressors, 
respectively.

We then conducted linear regression analyses to examine how much of the variance 
in students’ posttest scores was explained by cluster identifiers after controlling for their 
prior knowledge (i.e., pretest scores). In order to conduct the analysis, we created three 
dummy variables (being in the fast progressors group, being in the slow-steady progres-
sors group, being in the slow progressors group) by selecting the “intermediate pro-
gressors” as a reference group (being in each group was coded as 1 = Yes and 0 = No). 
Table 6 shows the results of the linear regression analyses predicting posttest scores.

As shown in Model 1 in Table 6, the three cluster identifiers explained a statistically 
significant amount of variance in posttest scores (F(3, 223) = 27.435, p < .001, R2 = .270, 
R2

Adjusted = .260). The results also indicated that students in the “fast progressors” group 
performed significantly better on the posttest compared to students in the “intermediate 
progressors” group (β = .329, t(226) = 5.434, p < .001). The students in the “slow pro-
gressors” group performed significantly worse on the posttest compared to students in 
the “intermediate progressors” group (β =  − .309, t(226) =  − 5.132, p < .001). The post-
test performance in the “slow-steady progressors” group did not significantly differ from 
the “intermediate progressors” group.

Next, students’ prior knowledge (pretest scores) was added to the model as a 
control variable. The model explained 48% of the variance in posttest scores (F(4, 
222) = 51.181, p < .001, R2 = .480, R2

Adjusted = .470). In terms of the cluster predic-
tor variables, the students in the fast progressors group scored significantly higher on 
the posttest (β = .138, t(226) = 2.508, p = .013) compared to the students in the inter-
mediate progressors group, although the magnitude of the association became lower 
after adding prior knowledge as a control variable. Specifically, the regression coef-
ficient decreased by 58.1%, indicating that a part of the association between being in 
the ’’fast progressors’’ group and the posttest scores was explained by students’ prior 
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knowledge. Second, the students in the slow progressors group scored significantly 
lower on posttest compared to those in the intermediate progressors group (β =  − .180, 
t(226) =  − 3.416, p = .001). Lastly, the non-significant beta coefficient for the students 
in the slow-steady progressors group suggested that they performed similarly well on 
the posttest compared to students in the intermediate progressor group.

Fig. 4   Pretest and posttest scores by cluster

Table 6   Result of the multiple regression analysis predicting posttest scores

***p < .001, **p < .01, *p < .05

Predictors B SE β t p R2 Adjusted R2

Model 1 .270 .260
 (Constant) 4.241 .123 34.556*** .000
 Fast progressors (1 = yes, 0 = no) 1.142 .210 .329 5.434*** .000
 Slow-steady progressors (1 = yes, 

0 = no)
 − .626 .387 − .095  − 1.620 .107

 Slow progressors (1 = yes, 0 = no)  − 1.268 .247  − .309  − 5.132*** .000
Model 2 .480 .470
 (Constant) 2.322 .228 10.195*** .000
 Prior knowledge (pretest scores) .513 .054 .532 9.470*** .000
 Fast progressors (1 = yes, 0 = no) .479 .191 .138 2.508* .013
 Slow-steady progressors (1 = yes, 

0 = no)
 − .167 .331 − .025  − .504 .615

 Slow progressors (1 = yes, 0 = no)  − .739 .216  − .180  − 3.416** .001
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Qualitative differences in the students’ use of mathematical strategies

Lastly, we explored the qualitative differences in students’ use of mathematical strategies 
based on their behavioral patterns identified from the cluster analysis in one sample prob-
lem (labeled as problem A). The students’ task for this problem was to transform the start 
state (4*6*c*24*16) into the mathematically equivalent goal state (96*96*c) using a set of 
mathematical strategies. We first examined the productivity of initial solution strategies for 
“problem A” by the cluster (see Fig. 5). As shown in Fig. 5, the fast progressors (71.7%) 
showed the highest percentage of students who made a productive first step, followed by 
the intermediate progressors (57.8%), the slow-steady progressors (53.8%), and the slow 
progressors (47.4%).

Next, we explored variations in students’ problem-solving processes through data 
visualizations. Figure  6 depicts Sankey diagrams of problem-solving processes by clus-
ter, and colors in each diagram indicate the productivity of students’ first steps (blue: 
productive, red: non-productive) (For work that introduces the use of Sankey dia-
grams for exploring problem-solving variations in more detail, see Lee et  al., in press). 
Note that the minimum number of steps required to solve this problem is two steps (e.g., 
4*6*c*24*16 → 96*6*c*16 [1 step] → 96*96*c [2 steps]).

As shown in Fig. 6, there was a huge variability in students’ problem-solving processes 
across each of the clusters. Among the four clusters, the students in the fast progressors 
group (Fig. 6a) reached the goal state using the lowest average number of steps (M = 4.42, 
SD = 3.58), and 30% of students (n = 18) in this group solved the problem in the most 
efficient way (i.e., using two steps). Contrary to this, the slow-steady progressors group 
(Fig. 6c) took a higher average number of steps (M = 9.00, SD = 7.96) on their first attempt 
than the students in the other three clusters, and only one student in this group reached the 
goal state in the most efficient way (i.e., using two steps). The students in the intermedi-
ate progressors group (Fig. 6b) and the slow progressors group (Fig. 6d) showed similar 
values in terms of the average number of steps (intermediate progressors = 5.57 steps, slow 

Fig. 5   Frequencies of productive vs. non-productive first steps by cluster (Color figure online)
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progressors = 5.05 steps) and the percentage of students who completed the problem in the 
most efficient way (intermediate progressors = 15.5%, slow progressors = 15.8%).

For the slow-steady progressors, we further investigated the students’ second attempts 
for the same problem. The results indicated that 11 out of 13 students (84.6%) in slow-
steady progressors reattempted this problem, while 10% or less of the students in the 
other three groups (fast progressors: 10.0%, intermediate progressors: 8.6%, slow progres-
sors: 5.3%) reattempted the problem. Thus, we built another Sankey diagram to exam-
ine how the slow-steady progressors’ problem-solving processes differed from their first 
attempts (Fig. 6e). As shown in Fig. 6e, slightly more students (54.5%) made productive 
first steps on their second attempt compared to their first attempt (53.8%), and the aver-
age number of steps (M = 8.09, SD = 6.47) became slightly lower in comparison with their 
first attempts. Interestingly, the students in the slow-steady progressors group did not nec-
essarily solve the problem in a more efficient way in their second attempts but tried to 

Fig. 6   The proportion of students’ mathematical strategies used for problem A (start state: 4*6*c*24*16, 
goal state: 96*96*c) by cluster. Note For full image: https://​tinyu​rl.​com/​2s489​xyh

https://tinyurl.com/2s489xyh
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explore different solutions to reach the goal state. For instance, one student in the slow-
steady progressors group made a productive first step and completed the problem using two 
steps in the first attempt (e.g., 4*6*c*24*16 → [step 1] 96*6*c*16 → [step 2] 96*96*c). 
In the second attempt, this student made two more steps to reach the goal state than the 
first attempt but explored a different way to solve the problem (e.g., 4*6*c*24*16 → [step 
1] 6*c*96*16 → [step 2] 96*c*96 → [step 3] c*96*96 → [step 4] 96*96*c). These findings 
suggest that slow-steady progressors may explore various solution strategies by reattempt-
ing the problems multiple times, and this behavioral pattern may lead to increased learning 
gains that reduce the gap between slow-steady progressors’ and intermediate progressors’ 
mathematical equivalence scores at posttest.

Discussion

While online educational games have been used to support students’ mathematics learning, 
the effects of the games largely depend on various factors, in particular, students’ behav-
ioral patterns in the game (Martin et al., 2015; Shute et al., 2015). This study attempts to 
explore the subgroups of students that are characterized by different types of behavioral 
patterns in an online algebra learning game, FH2T, and unpack how students’ behavioral 
patterns impact their understanding of mathematical equivalence.

For the first research question, we examined how students were grouped into different 
clusters based on their behavioral patterns (the number of problems completed, the average 
number of resets, the proportion of reattempts, the average pause time) in the game. The 
k-means clustering identified four groups of students: fast progressors (26.4%) who had the 
highest number of problems completed, intermediate progressors (51.1%) with the medium 
values of all behavioral variables, slow-steady progressors (5.7%) who showed the highest 
values of reattempts, and slow progressors (16.8%) with the lowest number of problems 
completed. Although most of the students (84.6%) in our sample were in advanced math 
classes, we still observed notable variability in their behavioral patterns in the game. Fur-
ther, the behavioral patterns uniquely predicted student learning outcomes (i.e., posttest 
score) above and beyond their prior knowledge in mathematics, suggesting that the ways 
in which students worked with interactive educational games, like FH2T, were related to 
their learning. Therefore, it may be important to consider these individual differences while 
designing online educational games in order to provide an adaptive learning environment 
that supports learners with different behavioral patterns (Vandewaetere et al., 2011). These 
cluster results can form a foundation for designing an adaptive educational game environ-
ment based on learner profile data.

The second research question sought to examine how students’ different behavioral 
patterns influenced their understanding of mathematical equivalence. The results indi-
cated that the students in three clusters—fast progressors, intermediate progressors, slow-
steady progressors—showed statistically significant increases in their understanding of 
equivalence after playing the game. Slow progressors, who completed the least number of 
problems in the game and had the lowest values of reattempts, did not show a significant 
increase in their understanding of mathematical equivalence.

More specifically, fast progressors, who had the highest pretest score on mathematical 
equivalence, solved more problems than students in the other clusters and rarely reset or 
reattempted problems; they also showed the highest posttest scores among the four clus-
ters. This finding aligned with previous literature that the in-game progress was positively 
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associated with student performance (Hulse et al., 2019; Martin et al., 2015; Shute et al., 
2015). However, in terms of learning gains, slow-steady progressors, who did more resets 
and reattempts, showed the largest absolute learning gain scores among the four clusters. 
More importantly, although slow-steady progressors and slow progressors had similar start-
ing points in terms of their prior knowledge before the intervention (i.e., pretest scores), 
only slow-steady progressors, who repeatedly reattempted the problems in the game, made 
significant increases in their understanding of mathematical equivalence after the interven-
tion. Thus, these results corroborated the findings of other studies, which showed that stu-
dents’ retries or reattempts in the game positively correlated with their performance, and 
these behaviors might be indicators of students’ persistence, productive failure, or consci-
entiousness (Chen et al., 2020; Shute & Ventura, 2013).

Furthermore, while some studies have found that online educational games were more 
beneficial to low-performing students compared to high-performing students (Shin et al., 
2012), our results showed that it was not beneficial to all low-performing students. Among 
the low-performing students, only those with a high level of behavioral engagement or per-
sistence as measured by reattempts in the game showed significant improvement in their 
mathematical understanding. Further, as indicated by the regression analyses, the slow-
steady progressors were catching up to the intermediate progressors at posttest, whereas 
the slow progressors were not. In addition, the behavioral patterns differed between fast, 
intermediate, and slow-steady progressors, yet all three groups improved on their under-
standing of mathematical equivalence, suggesting that there might be multiple pathways 
to effective learning from educational games. The findings on the slow vs. slow-steady 
progressors suggest that perhaps a future direction is to examine whether prompting stu-
dents, especially low-performing students, to retry and reattempt problems can effectively 
improve their mathematical learning. If the findings align with the current results, instruc-
tional design of games can aim to foster persistence among students so they can learn from 
their previous mistakes and experiences (Strmečki et al., 2015) and explore multiple ways 
to solve the same problems. For example, a feature that enables students to review or reat-
tempt the problem that they just solved can be added to a game so that they can explore a 
different strategy to solve the problem.

Lastly, we used data visualization techniques, specifically Sankey diagrams, to investi-
gate the variability in students’ solution strategies within and across clusters for one prob-
lem from the multiplication topic. This process revealed that there was a huge variability 
in students’ solution strategies, productivity, and efficiency across the clusters. Specifi-
cally, most students in the fast progressors cluster made productive first steps and solved 
the problem in more efficient ways than their peers in other clusters. For the slow-steady 
progressors, almost half of the students made non-productive first steps, and many of them 
solved the problems in less efficient ways in comparison with the students in other clusters.

However, more than 80% of the students in the slow-steady progressors group attempted 
the problem again, so we further investigated the differences in their solution strategies 
between their first and second attempts to unpack what led to the largest learning gains 
among the four clusters. The results revealed that the students did not necessarily solve the 
problem in more efficient ways compared to their first attempts, but they tried to solve the 
same problem in a different way. Although these visualizations provide only a qualitative 
look into student strategies and behaviors by cluster on one problem, the findings suggest 
that resetting and reattempting may prompt thinking about various ways to solve the prob-
lems and may lead to increases in students’ understanding of mathematical equivalence. 
This supports the findings of previous studies that understanding multiple solution strate-
gies positively influences students’ gains in conceptual knowledge, procedural knowledge, 
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flexibility, as well as further learning in mathematics (Heinze et al., 2009; Rittle-Johnson 
& Star, 2007).

Limitations and future directions

A number of important limitations need to be considered. First, our study focused on 
only four behavioral variables in the game based on our review of previous literature, and 
other variables, such as errors or use of hints, were not considered. Further research might 
explore how other behavioral features influence students’ in-game performance and post-
test scores. Second, in order to investigate the qualitative differences among the clusters, 
the current study only looked at students’ use of mathematical strategies. Future studies 
should explore other qualitative differences among the clusters, such as demographic char-
acteristics, math anxiety, or math self-efficacy, which are known correlates of students’ 
mathematical performance. Third, although we tried to qualitatively unpack what led to 
the largest learning gains for slow-steady progressors by comparing the strategies in their 
first attempts and second attempts, we only examined the differences in one problem in 
the game. Further, the current analyses only included a subset of students who completed 
at least 50% of the pretest and posttest in the larger randomized controlled trial. While 
the current sample might be more motivated or better performing in math compared to 
the initial randomized sample, the students’ algebraic performance was not subject to the 
ceiling effect, and we still observed differences in their problem-solving strategies. A fur-
ther study with a more representative sample should be conducted to investigate the dif-
ferences in students’ attempts for other problems or temporal changes in their gameplay. 
Despite the greatest gains in the slow-steady progressors cluster, only a small number of 
students were classified in this group. Future work should replicate the current findings 
with a larger sample. If the patterns of results are consistent across studies, another possi-
ble area of research would be to identify design features that encourage students to do more 
retries in the game. This work will advance our understanding of factors that lead to more 
reattempts and larger learning gains among students. Finally, it is important to note that our 
results (i.e., student classification, cluster labeling) are game-specific, so the results should 
be interpreted in regard to this context. Although learner profiling can provide useful infor-
mation for designing an adaptive educational game environment, there are ethical concerns 
that students may be stereotyped or categorized in negative ways. As Tzimas and Dem-
etriadis (2021) argued, learner profiling should not define students nor limit their learning 
experiences.

Conclusion

This study demonstrates the usefulness of cluster analyses for identifying key patterns of 
student behaviors from log data that are recorded as students play educational games. This 
study identifies four unique patterns of student behaviors related to students’ resetting, reat-
tempting, problems completed, and pause times. The findings form the foundation for (a) 
interpreting patterns of student problem-solving strategies and perseverance in complex log 
data, (b) using the behavioral patterns to predict learning gains, and (c) leveraging data vis-
ualization techniques to explore students’ problem-solving approaches within educational 
games. They also have implications for fostering various behaviors within interactive edu-
cational games to help students steadily win the race of mathematics.
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