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ABSTRACT 

ITSs have the requirement to be adaptive to the student with AI. The classical ITS architecture defines three components 

to split the data and to keep it flexible and thus adaptive. However, there is a lack of abstract descriptions how to put 

adaptive behavior into practice. This paper defines how you can structure your data for case based systems in a way that 

adaptivity is easier to achieve while maintaining the classical splitting of the system and reducing the data footprint. 

Building a case based system from a collection of exchangeable steps is also possible with this approach. Two variants of 

adaptivity based on the data structure are explored and both can be used in conjunction. 
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1. INTRODUCTION 

ITSs (Intelligent Tutoring System) can look back at a comparably long tradition. The first ITSs have been 

developed in the 1970s, which is a long time ago. At this time, the main idea of ITS was to provide a maximum 

of expert knowledge. Nowadays, given the modernization of technical devices and the digitalization processes, 

the main task of the ITS and the part which makes it different then all the other teaching and training software 

types, is the adaptivity. Regarding this aspect, the ITS is a teaching program that has the highest scores 

(Mendicino 2009) (Beal 2010) (Singh 2011) (Van Lehn 2011). Adaptation as different facets, like adaptation 

of the content, adaptation of the navigation, adaptation to a given student (Pirolli 2013) or adaptation of help 

and correction. Not all these facets of adaptation are necessarily realized in an ITS - adaption can exist in 

multiple ways in such a system. Some ITS manage only initial adaption to a student, some provide for runtime 

adaptability. However, independent of the way adaptation is realized, the software system itself has to manage 

different groups of data to achieve this task. Regarding the basic idea of adaption, the groups of data can be 

categorized according to the questions: What shall be adapted to whom or to which process and in which way. 

On the software engineering level these ideas are reflected in different designs (Graf von Malotky 2020), but 

mainly the idea is constructed around the availability of data for steering the adaptation and for adaptation 

itself. The classical groups of data for an ITS is the domain knowledge, the pedagogical knowledge and the 

student knowledge (Nkambou 2010). These three groups represent the knowledge we want to teach, the 

knowledge about the teacher’s behavior and the student knowledge. The teaching material consists of the 

domain knowledge, which is the content we want to teach and the pedagogical knowledge which is needed to 

make good decisions as a teacher. The student knowledge is needed to track the student, so that the system 

adapts to his preferences and skills. Authoring teaching material that is marked as domain and pedagogical 

knowledge, makes it possible that domain experts can edit the domain knowledge only, with less thinking 

about the pedagogical consequences of the material, achieving the goal of making authoring easier (Murray 

1999). It is a more modular approach that sees the domain knowledge as a collection of material that can be 

used as teaching material, without having a certain place in a defined learning sequence of the student. 

Since the definition of the data groups (domain, pedagogical, student) are so generalized, one data group 

cannot expect specific data elsewhere when only designing them separately. Therefore, it is important that the 

basic structure of the teaching material and the student knowledge are harmonized with one another. 

Harmonizing the data groups reduces the amount of data we need to gather about the student, since we already 

know what data is needed for the adaptation. Instead of using big data to get clues out of a massive amount of 
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data from the student, we think about what we need from the student while creating the teaching material. 

There is a large variety of possible ITS types (Graf von Malotky 2019), by focusing on one ITS type, it is 

possible to specifically define what should be saved in each data group. 

It is rare that there is an abstract definition of how a splitting of the teaching material in pedagogical and 

domain knowledge can be implemented. In this paper it is shown how to structure your data and additional 

algorithms to accomplish adaptive teaching material consisting of the classical knowledge components in a 

case based system, since a case based system is inherently already split up into elements which can be filtered 

and reasoned about (Funk 2002). 

2. DATA OF THE STUDENT 

Before we can adapt the teaching material to the student, we need to know what is best suited for the student. 

This can be a combination of several aspects, like for example his personal learning preferences (e.g. more 

pictures), his level of expertise (e.g. beginner), and also his performance in former cases. Additionally, we 

have aspects like the performance at runtime. To abstract this, we split the student knowledge data in two: 

Student style preferences and student skills. We define the style preferences of a student as the attributes of 

teaching material which will make him more likely to stay motivated and are subjective to the student. A loss 

in motivation can partly be measured by checking if the student is active and or performing well in a given 

time period, but it is not very accurate, since there are many other factors that could influence that. Some 

students tend to be engaged but are less measurable active. Without knowing what the student is thinking and 

staying away from forcing the student to interact with the system just to check their motivation. This is not a 

good solution. Additionally, there is still the problem of slowly decreasing performance when the motivation 

decreases, even though the student could do better. We decided that the student can decide which explanation 

style is used for the presentation of the domain knowledge. All these explanation styles are generated from the 

same domain knowledge. This mostly boils down to the presentation style preferred by the student, for example 

having a style preference for graphical content. If available, the system chooses the domain knowledge with 

the matching style. If the student has not decided, the system automatically chooses one where the student 

performed best and makes a switch if the performance does decrease more than a threshold. Since the student 

cannot game the system by choosing a different style preference (scoring is not affected), we are letting him 

select and change it at any time. 

We define the student skill as the part of the domain knowledge the student has already learned. Skills are 

determined only by the student’s performance and are therefore easier to track. The goal is that the student 

fully learns all the skills available. Which skills they may learn at one point in time, is inferred by the skills 

already estimated to be obtained and saved in the student knowledge. How good a student is in a certain skill 

is saved by the skill levels, which are set through the evaluation of their performance in different sessions of 

the available cases for that skill. Since you cannot game the system to give you higher scores, students have 

the option to choose which teaching material they want to learn that has their current difficulty level. Asking 

the student which skills he has obtained opens up the possibility to game the system (d Baker 2006). Even 

ignoring this fact, it is expected that some student misjudges themselves. The student should not be required 

to know the correct dependencies of the skills. Even though a skill might seem to be easy for a student, the 

system expects also the dependencies. Students outperforming by a large margin will be recognized and their 

skill updates much faster. It may be beneficial to have short estimation tests for expert students, to speed up 

the process for them to get a higher difficulty level. 

Reducing the amount of data gathered improves the systems disk space, performance and protects the 

student’s privacy. Only the parts of data of the student which are required to make good assumptions about his 

skills and style preferences are necessary. Since we expect the system to handle teaching by cases, we can save 

a history of all the cases the student interacted with, including all necessary information that are relevant to 

judge the performance of the student. At the minimum, it is enough data, when you can generate an estimation 

of how good the student is at the different skills, which has to include the student’s history (Zhou 1999). The 

system cannot easily track the skills of the student directly, but instead the system can easily track what the 

student does. As an example, how this can be achieved is shown in the following: it is possible to use just three 

data sets, which are 
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• Duration of each step of a case (which implies if the case was started and finished) 
• Inputs for each step of the case (to check the correctness and the number of inputs) 
• Score achieved in each step of case (which is automatically also the progress) 

3. BUILDING THE TEACHING MATERIAL 

The teaching material consists of instructionally elaborated training cases. This material is split into domain 

knowledge and pedagogical knowledge, i.e. the underlying expert knowledge and the instructional aspects 

related to and embedded in the constructed training case respectively. The training cases often are related to 

real live cases, which can be extended, anonymized and then integrated in the knowledge modules.  

In contrast to other teaching and training system (e.g. mathematics or chemistry), we are developing a 

system based on these cases, which means the idea of the training cases influenced the software system design. 

In contrast to non case based training, in case based training we always find the above mentioned combination. 

Always these cases contain aspects of knowledge of the domain, e.g. in clinical medicine, we find overall 

medical information, medical information about anatomy and symptoms. This allows us to integrate a large 

amount of pre-existing databases. As for example the medical knowledge domain consists of facts and rules, 

we can integrate parts of this as universal information parts. Additionally, we have case-related information, 

e.g. in the medical domain, an x-ray of an elderly male thorax with lung disease after 30 years of smoking is a 

special picture with a related special diagnosis related, and which cannot be re-used in an arbitrary way. 

However, this is still not the pedagogical knowledge. The pedagogical knowledge can in such a case consist 

of certain related facts and special rules, like level required, skills, sequence of steps, but also of 

question/answer sets of different presentation styles (Graf von Malotky 2017). Moreover, here we have set 

goals: Which knowledge we want to teach which each case. This means we need different tasks grouped 

together to teach some predefined skills. 

A case can be represented as a graph with each node of it being a step in the case (see figure 1). There is 

always one starting node (no incoming edges), at least one end node (no outgoing nodes) and all nodes are 

reachable by edges. To keep it simple, in this model a step is associated with a display of content on the level 

of the human-computer-interface (e.g. the monitor). The navigation from one step to another (the edges in the 

graph) are the navigation buttons or menus in human-computer-interface. To graph shows all the potential 

ways navigating through the pages of a training case. The steps exist at least once and, in our example, cases 

as graphs are often simple enough to not need to think about complex graph theories. Generally, the complexity 

is realized in the training case to switch the nodes. Sometimes, content of steps can be designed in a way that 

a step can re-occur in different branches of the tree (e.g. in the medical domain, some examinations are not 

dependent on the time in the training case, some can even be repeated).  

To successfully complete the case the student has to view or solve steps and come to a step where there are 

no outgoing edges. Each step can be a passive explanation or an interactive task to be solved by the student. 

The passive steps are for the preparation of the student for the next task and can additionally feature storytelling 

aspects to merge the different tasks into one motivating case. The tasks in the case can be embedded in a story 

which progresses step by step. The story makes the tasks more interesting and motivating. 
The domain knowledge contains teaching content visible to the student while the pedagogical knowledge 

is the added data. For the case it is the graph, the available style preferences and skills and how they are 
connected to each case. For the step it is its difficulty, the style of the step and whether it can be used as a 
passive or interactive step. The style for the passive steps can for example be clean text, comic images or  
3D-Model instructions. The only “interaction” here is that the student has to read the information. No additional 
action like selecting, clicking, marking or whatever are included. These types of interactions are realized in the 
so-called interactive tasks. For the interactive tasks there are the typically used single or multiple choice 
questions, drag and drop, draw lines, text with drop down fill holes and so on.  

In figure 1 you can see an example graph, where passive steps are squares and interactive steps are circles. 
In this example passive and interactive steps alternate. The passive steps show knowledge embedded in a story 
which should be learned, while the interactive steps tests the skills of the student, so the student is forced to 
think about what they are showing, instead of only remembering. The starting (A) and the ending step (K) start 
and finish the included story. Dependent on the difficulty more or less information in the passive steps is 
shown, important parts highlighted and kept for later look up. The same goes for interactive steps, where help 
is reduced with higher difficulty. 
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Figure 1. Example case graph with passive elements as squares and interactive elements as circles 

With this approach, the idea is to build up a collection of steps that can be reused and exchanged. Each step 

has enough additional information to make an educated decision which step to use for a given student in his 

current situation. An idea was to create the graph automatically from the dependencies of the nodes to each 

other so there would be a dynamic graph, but that creates the problem that each node has to know other nodes 

or that there exists some sort of general, detailed, wide applicable node classification to use for all steps. To 

maintain the simplicity and the modularity of the steps the graph of the case is static. This means that the 

structure is a fixed attribute of the case which is represented by the graph and will not adapt to a student or 

changing steps. The graph can of course be still changed by authors of teaching content. The case itself is not 

adaptive, but is built in a way that each step can easily be exchanged at runtime. The adaptation algorithm has 

to decide which steps to choose. In another variation, the adaptation algorithm can also decide which steps are 

possible for a given case, but this is not the focus of the paper. This automation needs a lot more understanding 

of the system, e.g. which content is inside a step and which shall be used for the student according to which 

rules. 

 

Figure 2. Database structure of a case based ITS 

ISBN: 978-989-8704-33-7  © 2021

142



 

 

The reduced structure of the general data needed for the system is shown in figure 2. To be reusable we 

explain the system in an abstract way. There is a separation of domain knowledge and pedagogical knowledge, 

which allows authors to modify only one of them. The cases are exchangeable, as are their steps. Instead of 

defining which concrete case is dependent on other cases, this information is extracted into its own part, the 

skills that the student should learn. 

As we already defined the student knowledge, we have to associate the student knowledge with the teaching 

material. To track the progress in the observed skill of the student, we save the interactions of the student with 

the steps to evaluate a score. With the score, the progress and the time of each interaction in one case session 

it is possible to estimate the student's skill. 

4. ADAPTATION 

Now that the teaching material is structured in a way that it is ready to collect the necessary data about the 

student, while also being built in a way that the student's data is enough to be used as input to adapt the teaching 

material, we can use adaptation methods. In its raw form the student knowledge is not informative enough. We 

additionally need to calculate the student's overall skill levels from the sessions the student completed. The 

skill level of a student is just a number based on the progress, score, number of interactions and duration of his 

session history. For the score the difficulty of the steps is included. The difficulty could be a number from 0.0 

to 1.0 and be used as a multiplier in the score calculation. To be able to compare the student's skill level to a 

difficulty/scores and showing the progress, it is important that the algorithm for the skill level does not change 

and is built together with the adaptation methods. It has to be clear for the system, what a high and low score 

is. The teaching material also needs additional data if it did change. This includes the dependencies/relations 

between skills and implies the dependencies/relations between cases, the possible difficulties of each case, the 

possible styles of each case and the selection of available styles and skills. Two possibilities are explored how 

to adapt to the student. The first option is that adaption is realized by the selection of domain knowledge that 

matches the preferences and skills of the student; in the second option the adaptation is realized through 

adjustments on the shown domain knowledge. 

For the first option we need a case to teach the student. Each case has skills and styles associated with it. 

Dependency of cases to each other is calculated beforehand by the skills each case requires. Therefore, the 

selection of matching teaching material comes first. We want students which use our system to show matching 

learning material, but avoid to show the exact same material again. Additionally the teaching material should 

also take into account what style preferences and skills the student has. So the task is to select teaching material 

which is less often seen, has matching style and is about skills that are related to and dependent on skills that 

the student already has. 

Currently there is a problem for students, that do not learn in the set speed of existing static teaching 

material: If they learn slower, they will be presented with the same teaching material repeatedly. That means 

that some students may pass only because they learned about how the material is structured. They learned the 

answers but did not understand all necessary parts for it. The difference here is between “putting it into the 

brain” without grasping them deeper meaning, in contrast to the student’s knowledge construction and deeper 

learning, which is the target of all good structured learning material. If a student who does not pass a test after 

reading a book the first time is shown the exact same test over and over again, he will pass it eventually, but 

maybe does not really understand the underlying content. That problem also applies to digital content, if not 

prevented with varying content. Instead of showing complete new content we can exchange only some part of 

the content to adapt on a finer grained level to the learning speed of the student. Adjustments of the teaching 

material allows not only to have a better matched difficulty but has also the benefit of varying the case if used 

multiple times by the same student. Creating variations for a case has a higher change of requiring the requested 

skills, not knowledge about how the case is structured. We can reuse the teaching material by modifying it 

enough so that the student is more likely to think about the problem instead of remembering the already given 

solution from previous sessions. 
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The second option is the adaptation of teaching material itself. It allows the ITS to be more suited to the 

liking of the student to increase motivation or to address problems with improper difficulty settings. 

Adjustments on the case by exchanging steps to select a matching style, get the correct difficulty and the less 

seen steps. By allowing to have exchangeable tasks in the case we can adapt the content and difficulty of the 

case without changing what the goal of teaching of the case is. Another way that such a system can adapt the 

difficulty is to show less additional information from the case itself. To give a more concrete example of how 

the rules could look like the following list of rules could help. The system searches through the cases and 

selects the steps to build a case that matches as many as possible of the existing rules preferred in the given 

order (most preferred are on the top). A threshold for skills can be set to define how good a student has to be 

in one skill to progress to the next. 

• Cases that can be built from steps matching difficulty to the student's skill level 

• Cases that can be built with steps that match the student's style preference 

• Cases that are related to cases already in the student's history (ordered by highest score) 

• Cases that are directly dependent to cases already in the student's history above score threshold (ordered 

by highest score) 

• Cases with no progress (unseen case) 

• Cases that can be built with steps without scores (unseen steps) 

• Cases that can be built with steps with score below threshold 

• Cases with incomplete progress 

• Cases with a higher than threshold score but are completed long time ago (ordered by days since last 

session) 

5. CONCLUSION AND OUTLOOK 

There are multiple ways of achieving adaptivity in an ITS. Both shown methods of adaptation that were 

explored in this paper have their benefits and they can both be implemented side by side. With the presented 

structure this is possible in a reusable way for a case based system which can then be fitted with more details 

of the given domain. The presented steps to create an adaptive case based system allow for a general way to 

achieve the set goals for an ITS without demanding domain specific details. The data structure respects the 

subjective preferences of a student as well as his objective performance goals for skills while maintaining a 

minimal data footprint. Both of which can be fitted to many available domains. The presented adaptive methods 

work on the defined data structure and can easily be implemented with very simple algorithms and grow more 

complex as the system gets more sophisticated. We have explored this in the context of our DigiCare Project 

and the training cases in our project are developed based on the above mentioned algorithm. 

DigiCare is a project about supporting the Healthcare and Healthcare management students at the 

University of Applied Sciences Neubrandenburg and at the University of Rostock. Together with the DZNE 

(German Center for Neurodegenerative Illnesses), a threefold approach is realized in the funding period of 

2019 to 2022. The first steps have been the collection and digitalization of teaching and training material, 

which has gained double speed in the pandemic situation starting in 2020. Currently, large parts of the 

curriculum are digitalized and recorded with the purpose of distance education. On the long run, the University 

of Applied Sciences Neubrandenburg will keep open the opportunity for the students to combine distance and 

presence studs. The second step has been to integrate the system SCARLET (Nicolay 2020) as part of the 

lectures. SCARLET is a software which allows for the interactive annotation of lectures by students, via using 

hashtags. An automatic analysis of the lecture slides based on the LDA (Latent Dirichlet Algorithm) allows to 

grasp the underlying content structure of the slides. The resulting model shows the required domain knowledge, 

which should be mediated to the students. A mapping of the student’s hashtag annotations with the resulted 

graph structure allows the students or even a supervisor to see how close the students’ understanding is to the 

intended understanding. The third step is the Intelligent Tutoring System, as sketched above. The ITS in 

DigiCare has been developed for the purpose that in healthcare, student have to work with real life cases from 

very early stages of their professional development. However, given the traditional lectures at the University, 

this can only take place on a very abstract level. Moreover, in the pandemic situation, students are not allowed 

for practical parts of their study. Thus, to allow them at least a small glance into the patient situations, the ITS 

was developed. Our ITS consists of three main aspects:  
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• It is a case-based ITS, thus is contains only patient related training cases. The training cases are based 

on real existing cases, e.g. patients with dementia. These training cases, same as the underlying 

knowledge structures of the expert knowledge in the ITS are provided by the DZNE partner in the 

project, in close co-operation with the University partners. 

• The case-based ITS contains also a natural language and dialog component, which is described in 

several other publications (Sosnowski 2020)(Abuazizeh 2020). The main underlying idea is here, that 

patients with dementia show a very good observable behavior in communicative situations. Examples 

reach from ‘answering aggressively’ to ‘not answering at all’. The communication training is perceived 

to be one important part of the education, which admittedly cannot be reached in the traditional 

educational formats like lectures. Thus, an ITS can be at least a bit helpful in this context. 

• There exists a bunch of material, which can be re-used in different training cases, and which represents 

main parts of the necessary education in health care, e.g. how to fill in medical records, which rules 

apply during patient contact etc. This content can be re-used in diverse settings and allow the student 

to close the gap between theoretical and practical knowledge. In the above-mentioned graph, these step 

types are examples of re-occurring or re-usable steps. 

 

The ITS is developed based on software engineering aspects and is based on the framework for Intelligent 

Tutoring Systems. This component based generative framework is the first all-purpose framework for ITS, as 

it has been shown that especially ITS lack general and re-usable structures. 

Our future work will be to refine the existing ITS, to close the gap between the dialogue and the other 

content of the ITS. Currently, the dialog is perceived to be one step in the abovementioned graph. Thus, 

knowledge gain in the course of the dialogue is not yet part of the adaptation process. Additionally, the next 

steps will also be to allow for even more adaptability and flexibility in the training cases. 
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