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Using Lasso and Adaptive Lasso to Identify DIF in

Multidimensional 2PL Models

Abstract

Differential item functioning (DIF) analysis refers to procedures that evaluate whether

an item’s characteristic differs for different groups of persons after controlling for over-

all differences in performance. DIF is routinely evaluated as a screening step to ensure

items behavior the same across groups. Currently, the majority DIF studies focus pre-

dominately on unidimensional IRT models, although multidimensional IRT (MIRT)

models provide a powerful tool for enriching the information gained in modern assess-

ment. In this study, we explore regularization methods for DIF detection in MIRT

models and compare their performance to the classic likelihood ratio test. Regulariza-

tion methods have recently emerged as a new family of methods for DIF detection due

to their advantages: (1) they bypass the tedious iterative purification procedure that

is often needed in other methods for identifying anchor items, and (2) they can han-

dle multiple covariates simultaneously. The specific regularization methods considered

in the study are: lasso with expectation-maximization (EM), lasso with expectation-

maximization-maximization (EMM) algorithm, and adaptive lasso with EM. Simula-

tion results show that lasso EMM and adaptive lasso EM hold great promise when the

sample size is large, and they both outperform lasso EM. A real data example from

PROMIS depression and anxiety scales is presented in the end.
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1 Introduction

The increasing availability of rich survey data and the emerging needs of assessing complex

latent traits pose great challenges to existing techniques used to handle and analyze the data,

in particular when the data are collected from heterogeneous populations. Different forms

of multilevel, multidimensional item response theory (MIRT) models have been proposed

to extract meaningful information from complex survey data. In addition to item calibra-

tion, items for large-scale standardized testing are routinely scrutinized for differential item

functioning (DIF) to ensure equitable comparison of assessment outcomes among different

examinee groups.

Differential item functioning (DIF) analysis refers to procedures that evaluate whether

an item’s characteristic differs for different groups of examinees after controlling for overall

differences in performance. The term DIF was first defined by Holland and Thayer (1988),

and two types of DIF are often differentiated: uniform DIF and non-uniform DIF. The

former refers to an item having a constant advantage for a particular group, whereas the

latter refers to the advantage varying in magnitude and/or direction across the latent trait

continuum (Penfield & Camilli, 2006; Woods & Grimm, 2011). DIF is routinely evaluated for

any new items added in large-scale assessments as a quality control step. For example, in the

National Assessment of Educational Progress (NAEP), screening for item DIF often involves

three comparisons: male vs female, White vs. Black, and White vs. Hispanic. In the English

Language Proficiency Assessment for the 21st Century (ELPA21), DIF is evaluated across

gender, ethnicity, economic status, English learner status, and disability status. In addition

to these demographic or time variables, DIF may also be caused by cognitive variables that

are relevant for item solution processes (Walker & Beretvas, 2003) or other item and test

mode effects.

Early research on detecting multidimensional DIF is mostly extensions of unidimensional

DIF indices that are based on the difference of examinees’ performance in the focal group

versus the reference group. Oshima, Raju, and Flowers (1997) first proposed an index
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for DIF detection in two-dimensional models, namely, the multidimensional differential item

functioning of items and tests (DFIT). They assumed that the examinees’ true scores (defined

as the sum of model-based probabilities) would be independent of group membership, and

DIF is quantified by the expected difference in true scores between groups. Because their

test statistics require the calculation of model-based probabilities, linking is needed to find

two sets of item parameters for the focal and reference groups, respectively. This has to be

done with iterative linking based on matching test response functions, which is inefficient

and likely to be confounded with DIF itself. Stout, Li, Nandakumar, and Bolt (1997)

extended simultaneous item bias test (SIBTEST) (Chang, Mazzeo, & Roussos, 1996; Shealy

& Stout, 1993a, 1993b) to the two-dimensional case and proposed MULTISIB. Because their

methods use only observed total score, they are generalizable to other IRT models and are

not susceptible to model misfit. In the 2-dimensional case, a matching subtest is needed

for each dimension, and because matching is based on the combination of total scores on

both subtests, it would be very complicated to expand the procedure to tests beyond two

dimensions.

Three other more flexible approaches are the multiple indicators multiple causes (MIMIC)

models, multiple-group IRT modeling, and logistic regression (Choi, Gibbons, & Crane, 2011;

Swaminathan & Rogers, 1990; Zumbo, 1999). These three approaches share great similarity.

In a MIMIC model, at least one observed variable (i.e., group variable), often called a

casual indicator, predicts a latent variable (Jöreskog & Goldberger, 1975). In the multiple-

group IRT approach, rather than regressing latent θ on the grouping variable, one fits two

multiple-group IRT models with different equality constraints on target items to the data

and conducts a likelihood ratio test to test for DIF (Suh & Cho, 2014). Logistic regression,

as the name entails, recasts the IRT model as a logistic regression model such that uniform

DIF is modeled by including group variable as a predictor in addition to θ, whereas non-

uniform DIF has θ-by-group interaction as an additional predictor. Of note, while MIMIC

and multiple-group IRT model can naturally handle θ distribution differences by groups
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(i.e., impact), in logistic regression however, one does not distinguish the distribution of θ

for different groups. Hence, logistic regression does not usually account for impact. All three

approaches perform better using a free-baseline designated-anchor approach. That is, while

holding the anchor item parameters the same across groups, the full model that allows all

studied items to have DIF is fitted first. Then a constrained model is fitted, one for each item.

Because the analysis proceeds one item at a time, testing for multiple studied items usually

require additional control for Type I error rate, such as the Benjamini-Hochberg procedure

(BH) (Benjamini & Hochberg, 1995; Lee, Bulut, & Suh, 2017; Raykov, Marcoulides, Lee,

& Chang, 2013). Moreover, the selection of the designated anchor items is critical to the

success of the methods. Various methods for identifying anchors have been suggested, and

most of them are iterative purification procedures (Bolt, Hare, Vitale, & Newman, 2004;

Edelen, Thissen, Teresi, Kleinman, & Ocepek-Welikson, 2006; Kopf, Zeileis, & Strobl, 2015).

Procedurally for all these three approaches, it is cumbersome to perform a likelihood

ratio test (or Wald test) separately for one item at a time. For instance, in Woods (2009)

study, if there are 10 studied items, then at least 12 different models need to be fitted sepa-

rately. In educational assessment with a large item pool, this procedure can be prohibitively

time consuming, especially if the model is high dimensional. Instead, in this paper, we pro-

pose to use statistical regularization methods that can handle multiple group comparisons

simultaneously, making DIF detection extremely efficient.

Regularization is a process of adding information with the purpose of solving an ill-posed

problem or to prevent overfitting. The regularization term, known as penalty, imposes a cost

on the optimization function to remove parameters that have little influence on the fit of the

model (Bauer, Belzak, & Cole, 2020; Belzak & Bauer, 2020; Magis, Tuerlinckx, & De Boeck,

2015; Tutz & Schauberger, 2015). The penalty can take on different forms depending on the

research purpose, but the two most widely used types of penalty are the l2 penalty (Hoerl

& Kennard, 1970) and the l1 penalty (Tibshirani, 1996). The former one considers the sums

of the squared parameters whereas the latter one considers the sum of the absolute values of
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the parameters. In the context of DIF detection, an item level DIF parameter is introduced

for each covariate and item parameter type. For instance, a uniform DIF due to a binary

group variable would result in one DIF parameter per item that indicates how an item’s

difficulty differs across two groups. Then a penalty is imposed on the DIF parameters, and

with appropriate regularization algorithms, they will either shrink to 0 implying no DIF or

remain non-zero implying DIF.

Specifically, Magis et al. (2015) proposed a logistic regression least absolute shrinkage

and selection operator DIF method (LR-lasso), which aims to identify uniform DIF in Rasch

model using total score as the matching criterion. In their method, a lasso penalty is put on

all DIF parameters, which are the regression coefficient in front of the item-group interaction

in a logistic regression model. They found that for small samples, the LR-lasso method

outperforms the classic LR method or Mantel-Haenszel method in terms of false positive and

true positive rates. The advantage of LR-lasso seems to diminish with larger sample sizes.

Basing on Rasch model, Tutz and Schauberger (2015) further studied the penalty approach

in detecting uniform DIF when there are multiple, potentially correlated covariates, that

collectively cause DIF. Compared to Magis et al. (2015)’s study, two major difference are

(1) they used latent trait θ as the matching criterion instead of total score; and (2) they

used group lasso penalty (Yuan & Lin, 2006) by grouping DIF parameters of an item on all

covariates as a unit. This way, when the “unit” shrinks to 0, it implies the item is DIF-free,

otherwise, the item is considered having DIF regardless of the number of actual non-zero DIF

parameters within a unit. Without recourse to cumbersome pair-wise hypothesis tests, their

group lasso approach arrives at a model in which DIF is included only for those covariates and

only on those items where DIF inclusion meaningfully increases model fit. Their simulation

results demonstrate both the feasibility and promise of the penalty approach in detecting DIF

caused by multiple covariates. Along a similar line of inquiry, Bauer et al. (2020) also studied

the regularized DIF detection approach (reg-DIF) in the presence of multiple covariates,

albeit within the moderated nonlinear factor analysis (MNLFA) framework. They studied
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both uniform and non-uniform DIF and rather than using group lasso, they simply put l1

penalty on all DIF parameters (i.e., sum of absolute values). Then an item is considered

having DIF when at least one of the DIF parameters is non-zero. They found that reg-

DIF performs the best when both DIF magnitude and sample size are large, whereas the

performance is comprised when DIF is particularly pervasive. Within the same MNLFA

framework, Belzak and Bauer (2020) delved deeper into the classic two-group setting and

provide a thorough empirical investigation of Reg-DIF against “business-as-usual” IRT-LR-

DIF. They found that Reg-DIF shows far better Type I error control than IRT-LR-DIF,

particularly when there are considerable amounts of DIF and the sample size is sufficiently

large.

Building on the preliminary evidence demonstrating the promise of the regularized DIF

approach, the contribution of this study is two-fold. First, we will explore DIF detection

in the context of the simple-structure1 multidimensional two-parameter logistic model that

is pervasively used in applied settings. We will consider both uniform and non-uniform

DIF in a three-group comparison scenario (i.e., one reference and two focal groups), such

that the conclusions are more generalizable to future complex applications. Second, we

provide technical details regarding the coordinate-wise soft-thresholding within expectation-

maximization (EM) algorithm for DIF detection at individual parameter level, along with

self-written code for implementing the algorithms. As both Bauer et al. (2020) and Belzak

and Bauer (2020) mentioned, their way of implementing reg-DIF is non-standard and their

reliance on SAS NLMIXED is relatively inefficient, which calls for the needs of developing

computationally sound algorithms for reg-DIF. Another note to make is, in Belzak and

Bauer (2020), their benchmark IRT-LR-DIF method proceeds by treating all items except

the studied item as anchors. Instead, we use a version of the IRT-LR-DIF method in which all

items except the studied item and anchor items have DIF. Using a least constrained model as

a baseline for LR comparison should help control Type I error rate. Third, we propose to use

1Simple-structure refers to the factor structure in which each item only loads on one factor; in contrast,
complex structure indicates that items in a test can load on more than one factor.
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two variations of the lasso method, namely the lasso expectation-maximization-maximization

(EMM) algorithm and the adaptive lasso method. As the paper unfolds, it is clear that these

two alternatives perform better than the vanilla lasso EM algorithm.

The rest of the paper is organized as follows. First, the M2PL model with group covariates

is introduced, illustrating the uniform and non-uniform DIF parameterizations. Second,

model estimation via l1 regularization (i.e., lasso) is described, along with a discussion about

adaptive lasso algorithm and a modified EMM algorithm. Then, a comprehensive simulation

study is presented and a real data analysis example is provided at the end.

2 Methods

2.1 Multidimensional 2PL Model with Categorical Group Covari-

ates

Let J denote test length and K denote the total number of dimensions. For a dichotomously

scored item j, the probability that person i with a latent trait vector θi giving a correct

response to item j is

Pj(uij = 1|θi) =
1

1 + e−[a
T
j θi+dj+(Xiγj)θi+Xiβj ]

(i = 1, ..., N ; j = 1, 2, ..., J). (1)

In Equation 1, aj is a K-by-1 vector of discriminations for item j, dj is an intercept of item

j which can be interpreted as item easiness, and θi is a K-by-1 vector of latent trait for

person i. In addition, Xi is a 1-by-P vector including all the grouping information related to

DIF, and βj is also a P -by-1 vector of regression coefficients implying the effect of grouping

variables on correct item response probability. Similarly, γj is a P -by-K matrix of regression

coefficients that denote the interaction effects of θ and grouping variable on item responses.

Please note that in a confirmatory MIRT model, if ajk = 0, then the kth column of γj will

be zero by default. Take NAEP analysis for ethnicity DIF as an example. Since it includes
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two comparisons (i.e., White vs. Black, and White vs. Hispanic), P=2 in this case such that

a White student will have Xi = (0, 0), a Black student will have Xi = (1, 0) and a Hispanic

student will have Xi = (0, 1). Then we can spell out γj as follows:

γj = (γj1·,γj2·)
T =

γj11 γj12 ... γj1k ... γj1K

γj21 γj22 ... γj2k ... γj2K

 (k = 1, ..., K),

where γj1· is the non-uniform DIF effect for the first focal group and γj2· is the non-uniform

DIF effect for the second focal group. βj = (βj1, βj2)
T denotes the uniform DIF effect, where

βj1 is the uniform DIF effect for the first focal group and βj2 is the uniform DIF effect for

the second focal group. Including person covariates in the model also follows the same spirit

of the “person explanatory model” (Wilson, De Boeck, & Carstensen, 2008). By way of

this parameterizations, if item j does not have DIF, then γj = 0 and β = 0. If item j has

uniform DIF, then γj = 0. Similar to the multiple-group IRT approach, θi in Equation 1

can be written as θi(p) to reflect that the distribution of θ is allowed to differ across different

groups.

Model Identifiability. Before we proceed to model estimation, an important premise to

check is model identifiability. Here, we extend Tutz and Schauberger (2015)’s conclusion to

multidimensional models and non-uniform DIF conditions. Specifically, for model defined in

Equation 1 to be identifiable, three assumptions need to be satisfied:

1. The P -by-2 matrix, (1,XT
i ), has full rank.

2. θ in the reference group has mean of 0 and variance of 1 for all dimensions.

3. When the test displays a simple multidimensional structure, we need q DIF-free anchor

items, one for each dimension separately.

While the first two assumptions are exactly the same as in Tutz and Schauberger (2015),

the third assumption is unique to multidimensional models. It is needed because the reason
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of model in Equation 1 being non-identifiable, after we fix the scale of θ, is due to the

indeterminacy of the two parts:

(dj +Xiβj) + [aTj + (Xiγj)]θi

For the first part, we can write

dj +Xiβj = (dj +Xic) +Xi(βj − c) = d̃j +Xiβ̃j, (2)

where c is an arbitrary constant vector. Setting β1 = 0 (i.e., arbitrarily assuming item 1 is

the anchor item), that means for Equation 2 to hold for any value of Xi, β̃1 has to be 0 as

well. This implies that β1− c = 0, hence c = β1 = 0. So setting one anchor item’s intercept

parameter to 0 will remove indeterminacy in part I.

For the second part, we have

aTj + (Xiγj) = (aTj +Xic) +Xi(γj − c) = ãTj +Xiγ̃j, (3)

where both c and γj are P -by-K matrix and they contain columns of systematic 0’s depend-

ing on the loading structure in aj. Say, if item j loads on the first dimension, then both

c and γj have a potentially non-zero first column, whereas the remaining columns are all

0 by default. In this regard, even setting γj = 0 will only result in the first column of c

being 0. Hence, if the test displays a simple structure, we need K anchor items, one for each

dimension. If the test displays a complex structure, we may only need 1 anchor item which

loads on all three dimensions.2

2As we will make clearer in the rest of the paper, pre-selecting anchor items is not necessary for regu-
larization methods as non-DIF items will have their DIF parameters shrunk to 0 so that they will serve as
anchor items.
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2.2 Model Estimation and DIF Detection via l1 Regularization

Estimation of the model in Equation 1 can proceed using the state-of-art EM algorithm.

Specifically, let uij denote the response of the ith person to the jth item, and assume person

i belongs to group g. Note that throughout the paper, we assume only categorical covariates

Xi are considered such that each person is assigned to one and only one group defined by the

collection of the covariates. For instance, if two levels of gender and three levels of ethnicity

covariates are considered, then each person can be uniquely assigned to one of the six groups.

We consider categorical covariates with the intention to show that the θ distribution can be

estimated separately per group. If one intends to include continuous covariates and handle

impact at the same time, both the model and the estimation methods need to be updated,

as we will mention in the discussion session.

Let ∆ denote the set of model parameters, i.e., item parameters (a, d and β) and latent

trait distribution parameters (µp and Σp). The marginal likelihood given covariates X and

response u is

L(∆) ≡
∫
L(∆|X,u,θ)∂θ =

G∏
g=1

Ng∏
i=1

∫ J∏
j=1

L(aj, dj,βj,γj|Xi, uij,θ)f(µg,Σg | θ)∂θ, (4)

where

L(aj, dj,βj,γj|Xi, uij,θ) = Pj(θ)uij(1− Pj(θ))1−uij

is the likelihood of item parameters and

f(µp,Σp | θ) = (2π)−
K
2 |Σg|−

1
2 e−0.5(θ−µg)

T |Σg |−1(θ−µg)

is the density function of θ in the population group g. µg and Σg are the population mean

and covariance matrix respectively. G is the total number of groups and Ng is the sample

size for group g. One maximizes the marginal likelihood to obtain the maximum likelihood
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estimator (MLE)

(â, d̂, β̂, γ̂, µ̂, Σ̂) = argmax
a,d,β,γ,µ,Σ

log(L(∆)). (5)

However, the MLE does not serve the purpose of DIF detection. Instead, we consider a l1

regularized estimator by maximizing the following objective function

logL(∆)− η1||β||1 − η1||γ||1, (6)

where

||β||1 =
J∑
j

P∑
p

|βjp|, ||γ||1 =
J∑
j

P∑
p

K∑
k

|γjpk|1ajk 6=0,

and η1 > 0 is regularization parameters that controls sparsity.

Directly maximizing the marginal likelihood in Equation 4 is challenging, instead, the

EM algorithm provides a viable computational tool (Bock & Aitkin, 1981; Wang, Chen, &

Jiang, 2020). The EM algorithm alternates between the E-step and M-step. In the E-step,

we construct the conditional expectation of the complete data log-likelihood with respect to

missing data (i.e., θ). Suppose at the (t+ 1)th EM cycle, then we have

Q(∆|∆(t)) = Eh(θ|X,u,∆(t))(log(L(∆|X,u,θ)))

=
G∑
g

Ng∑
i

[ ∫
l(a,d,β,γ|Xi,ui,θ)h(θ|Xi,ui,∆

(t))∂θ +

∫
logf(µp,Σp|θ)h(θ |Xi,ui,∆

(t))∂θ

]

=
G∑
g

Ng∑
i

J∑
j

[ ∫
l(aj, dj,βj,γj|Xi,ui,θ)h(θ|Xi,ui,∆

(t))∂θ

]

+
G∑
g

Ng∑
i

[ ∫
logf(µg,Σg|θ)h(θ |Xi,ui,∆

(t))∂θ

]

≡
J∑
j

Qj(aj, dj,βj,γj|∆(t)) +Q(µ,Σ|∆(t)).

(7)

When the number of dimensions is not high (i.e., 2 or 3), Gauss-Hermite quadrature can be

used to approximate the integrals in Equation 7, otherwise, either Monte Carlo integration
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(Chen, Wang, Xin, & Chang, 2017; Newman & Barkema, 1999) or other variational methods

(Cho, Wang, Zhang, & Xu, 2021) could be used. In the M-step, Equation 7 is maximized

with respect to each parameter.

First, taking derivatives of Equation 7 with respect to µ and Σ result in closed-form

solutions for both parameters. That is, denote M0 as the number of points we evenly take

from each coordinate dimension, resulting in M = (M0)
K total quadrature samples, and

each sample qm is a K-dimensional vector. Then it can be shown that, the population mean

of a focal group g is

µ̂g =

∑M
m=1 ngmqm
Ng

, (8)

where ngm =
∑Ng

i=1 h(qm|Xi,ui,∆
(t)) is the expected number of persons in group g and mth

quadrature bin. The population covariance matrix of the reference group is (without loss of

generality, let us assume the first group is the reference group, i.e., g = 1)

Σ̂1 =

∑M
m=1 n1m(qm)t(qm)

N1

. (9)

For the purpose of model identifiability, the variances of θ in the reference group are fixed

at 1, whereas the covariances (hence correlation) can be freely estimated. To achieve this

constraint, we standardize the covariance matrix Σ̂1 by rescaling the quadrature vectors as

follows

q∗m =

(
qm1

(Σ̂1)11
, ...,

qmK

(Σ̂1)KK

)
.

These rescaled quadrature points are used for computing the estimated covariance matrix

for focal groups, i.e.,

Σ̂g =

∑M
m=1 ngm(qm − µ̂g)t(qm − µ̂g)

Ng

. (10)

Second, for the item parameters, we can maximize Qj(aj, dj,βj,γj|∆(t)) separately for

item j. Specifically, for aj and dj, as there are not closed-form solutions for the gradient of

these parameters, we use Newton-Raphson method to find the maximum numerically. Take
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dj as an example. At the (r + 1)th iteration (of M-step) within the (t + 1)th EM cycle, we

update dj using

d
(r+1)
j = d

(r)
j −

∂djQj(aj,dj,βj,γj|∆(t))

∂2djQj(aj,dj,βj,γj|∆(t))
. (11)

The parameters aj can be updated similarly. Below is a description of how the DIF param-

eters are updated in the M-step.

2.2.1 Uniform DIF

To detect uniform DIF, γ parameters vanish from the previous exposition, and the focus is to

update βj for each item separately within the M-step by maximizing the following objective

function

β̂
(t+1)
j = argmax

βj

[
Qj(aj, dj,βj|∆(t))− η1||βj||1

]
. (12)

We use soft-thresholding technique within coordinate descent algorithm for estimating βj.

Coordinate descent updates one parameter at a time while treating all other parameters as

constant, and cycles through all parameters in each iteration of the optimization routine,

i.e., we update βjp one at a time.

Following Sun, Chen, Liu, Ying, and Xin (2016), we first employ a quadratic approxima-

tion of Qj(aj, dj,βj|∆(t)) ≡ Qj(βj|∆(t)) as a function of βjp. That is,

Qj(βj|∆(t)) ≈ Qj(β
(r)
jp |∆(t)) + ∂βjpQj(βjp|∆(t))× (βjp− β(r)

jp ) +
∂2βjpQj(βjp|∆(t))

2
(β

(r)
jp − βjp)2,

(13)

where β
(r)
jp is the rth iteration within the M-step of the (t+ 1)th EM cycle. The l1-penalized

maximization with the approximated Q-function aims to maximize the following objective

function

[
Qj(β

(r)
jp |∆(t))+∂βjpQj(βjp|∆(t))×(βjp−β(r)

jp )+
∂2βjpQj(βjp|∆(t))

2
(β

(r)
jp −βjp)2−η1|βjp|

]
. (14)

Setting the first derivative of Equation 14 with respect to βjp equal to 0 yield the following
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updated rule

β
(k+1)
jp = −

soft

(
− ∂2βjpQj(βjp|∆(t))× β(r)

jp + ∂βjpQj(βjp|∆(t)), η1

)
∂2βjpQj(βjp|∆(t))

, (15)

where the soft threshold operator is defined as soft(S, η) = sign(S)(|S| − η)+ (Donoho &

Johnstone, 1995). After the updated values of all parameters of item j are smaller than a

pre-specified convergence tolerance, cyclical coordinate descent is applied again to estimate

the next item j + 1. After all J items’ parameters are updated, the M step ends and the

estimating process moves to the next EM cycle. To ensure proper convergence, we use the

estimator for η = 0 (the MLE) as starting value for the estimation of later η values.

2.2.2 Non-uniform DIF

For the non-uniform DIF, we consider the condition in which DIF occurs on both slopes

and intercepts. Other parameters a, d, µp and Σp are estimated in the same way as in the

previous case. Again, the EM algorithm with Gauss-Hermite quadrature approximation is

used, and in the M-step, the objective function to be maximized is

γ̂
(t+1)
j = argmax

γj

[
Qj(aj, dj,βj,γj|∆(t))− η1||βj||1 − η2||γj||1

]
. (16)

The cyclical coordinate descent with soft-thresholding is again used to obtain the estimates.

2.3 Tuning Parameter Selection, EMM, and Adaptive Lasso

The selection of the tuning parameter is a key component of the reg-DIF method. Taking

uniform-DIF as an example. As η1 keeps increasing, more DIF parameters βjp shrink to 0.

Denote β̂η1 as the regularized estimator at tuning parameter value η1. Since the regularized

estimators are biased, we perform a re-estimation step without penalty for each tuning pa-

rameter value η1 based on the DIF item pattern identified by non-zero β̂η1 . Then, we apply
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two information criterion, Akaike information criterion (AIC) and Bayesian information cri-

terion (BIC), to select the best-fitting tuning parameter. Specifically, with the re-estimated

model parameters using EM algorithm without penalty, resulting in ∆̂∗η1 ≡ (â∗η1 ,d̂
∗
η1

, β̂∗η1),

AIC and BIC can be calculated by

AIC ≡ −2× logL(∆̂∗ηl) + 2‖β̂η1‖0, (17)

and

BIC ≡ −2× logL(∆̂∗ηl) + logN × ‖β̂η1‖0 (18)

where the l0 norm is calculated by ‖β̂‖0 =
∑

j,p I(βjp 6= 0)3.

In the lasso estimation, while β and γ of non-DIF items shrink to 0 due to the soft-

thresholding operator, those non-zero parameters of DIF items also shrink and hence their

estimates are biased. Such bias may propagate via iterative EM cycles and eventually the DIF

items may not be properly identified. To overcome this bias, two solutions are considered.

The first solution is to use an adaptive lasso algorithm (Zou, 2006). The primary idea is

to use different weights for penalizing different coefficient in the l1 penalty. Take uniform DIF

detection as an example, the objective function that needs to be maximized now becomes

Q(a,d,γ,µ,Σ|â(t), d̂
(t)
, γ̂(t), µ̂(t)

p , Σ̂
(t)
p )− ηa

∑
j

ŵj||γj||1, (19)

where ηa is the adaptive-lasso tuning parameter and ŵj is the weight vector. When ηa = 0, we

have the MLE of γ. Denote the MLE of γ as γ̂(ML). Then the weight vector ŵj = 1/|γ̂(ML)
j |λ,

where λ is a tuning constant which is set to 1 in the current study. In adaptive lasso,

coefficients with larger absolute values (i.e., higher absolute MLE) are assigned lower weight

of penalty, resulting in lower bias than the lasso estimators.

3Note that L(∆̂∗
ηl

) is the marginal likelihood evaluated at ∆̂∗
ηl

by definition, but operationally, we replaced
this quantity by the Q-function defined in Equation 7 upon convergence to save computation time. They
are not exactly the same though because the Q-function approximates the marginal log-likelihood.
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The second solution is to re-estimate none-zero estimators during each EM cycle and

use the re-estimated coefficients to update the next E-step. That is, we can perform one

more M-step without penalty but using the DIF detection results from the previous M-step

within each EM cycle. Hence, each E-step is followed by two M-steps, first with penalty

and second without penalty. We call this method “EMM” algorithm. In the Appendix, we

present algorithmic details for three algorithms.4

3 Simulation Studies

Two simulation studies were conducted to evaluate the performance of the regularization

methods in terms of detecting uniform DIF (study I) and non-uniform DIF (study II). The

likelihood ratio test (LRT) was used as a reference. For both studies, two-dimensional two-

parameter logistic (2PL) IRT model was used. The total number of items was fixed at 20.

Two discrimination parameters were generated from Uniform(1.5, 2.5) and the boundary

parameters were generated from N(0,1). Each item measured only one of the two latent

traits. The true item parameters are given in Table 1.

Table 1: Simulated True Item Parameters
Item 1 2 3 4 5 6 7 8 9 10
a1 2.17 0 2.41 2.45 2.34 1.84 1.85 1.92 1.94 1.90
a2 0 2.46 0 0 0 0 0 0 0 0
d 0.03 -1.28 0.58 -2.06 0.12 3.25 -0.41 -0.51 0.89 1.33

Item 11 12 13 14 15 16 17 18 19 20
a1 1.92 0 0 0 0 0 0 0 0 0
a2 0 2.43 1.82 2.22 1.93 1.88 1.84 2.12 2.42 2.15
d 0.85 0.82 -0.37 -0.99 -0.27 0.19 1.73 0.05 -1.86 -0.63

Three factors were manipulated. The total sample size had two levels, 1500 and 3000;

the DIF proportion had two levels, 20% and 60%. This choice was consistent with prior

studies (Suh & Cho, 2014). In addition, two levels of correlations between two factors were

4The R code for the three algorithms are available at https://github.com/wang4066/MIRT-RegDIF
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considered: low level at 0.25 and high level at 0.85 (Jiang, Wang, & Weiss, 2016). The total

sample size was evenly divided into three groups, one reference group and two focal groups.

3.1 Simulation Study I

The first focal group has small magnitude DIF (βj1 = 0.5) and the second focal group has

large magnitude DIF (βj2 = 1), where j = 4, 5, 12, 13 for the 20% DIF condition and j =

4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17 for the 60% DIF condition. Low DIF proportion condition

was the same as Tutz and Schauberger (2015), whereas the high DIF proportion was the same

as Bauer et al. (2020). To further exemplify the DIF magnitude, the average area between

the expected item score curves from focal and reference groups, weighted by the normal

distribution was computed, and such area is called wABC (Edelen, Stucky, & Chandra,

2015). We used standard normal distribution in computing wABC, and the wABC values

of the true DIF items are given in table ??. As shown, the DIF magnitudes were selected

to follow the convention in literature (Suh & Cho, 2014). θ follows a multivariate normal

distribution with means zero and variances one. 50 independent datasets were generated

from the model in Equation 1 for each condition. Similar to the simulation design used in

Belzak and Bauer (2020), we kept DIF effects constant across replications within a given

condition to avoid mixing within-and between-condition variability in the magnitude of DIF.

The reg-DIF methods do not need pre-specified anchor items, but LRT requires a pre-

specified set of designated anchors to link the metric of θ for different groups (Woods, 2009).

Unfortunately, in most real-data scenarios, researchers, or even content experts, have diffi-

culty identifying anchor items. Hence, we adopt an iterative procedure to find a set of anchor

items. The procedure began with assuming all items are DIF-free. Conduct a LRT assuming

all items except the studied item having no DIF. Cycle through all items in one round, and

items displaying DIF were excluded from the living set of anchors. LRT was conducted

again using the new reduced anchor set. These steps were repeated until two successive

steps suggest the same sets of anchors (Kopf, Zeileis, & Strobl, 2014), and this final set was
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considered a purified set. Then, in LRT, each non-DIF item was tested individually for DIF.

For a particular studied item, an analysis begins with a test of the null hypothesis that target

parameters (i.e., intercept for uniform DIF or slope and intercept for non-uniform DIF) for

the studied item were group invariant. Two nested models were compared: a model with all

parameters for the studied item constrained equal across groups versus a model with target

parameters for the studied item allowing to vary across groups. In both models, the anchor

item parameters were constrained equal across groups. Different versions of LRT can be used

to test DIF between reference group and one focal group yielding a typical two-group com-

parison scenario, or DIF between reference group and two focal groups omnibusly yielding

a three-group comparison scenario. Benjamini-Hochberg (BH) false discovery rate control

(Benjamini & Hochberg, 1995; Lee et al., 2017; Raykov et al., 2013) was used to control

for family-wise error rate. Different from Bauer et al. (2020) and Belzak and Bauer (2020),

all parameters of the remaining items (i.e., non-studied items, non-anchor items) in both

models were also permitted to vary among groups. This yields a free-baseline designated

anchor approach, which should outperform a constrained baseline approach that assumes

all non-studied non-anchor items are DIF-free (Woods, 2009). Regularization methods was

carried out using self-written R code, whereas LRT was conducted using the ‘mirt’ package

(Chalmers et al., 2020).

Table 2: Uniform DIF magnitude measured by wABC
Item 4 5 6 7 8 9

Focal 1 0.06 0.07 0.03 0.08 0.08 0.07
Focal 2 0.12 0.13 0.05 0.16 0.15 0.13

Item 12 13 14 15 16 17
Focal 1 0.06 0.08 0.07 0.08 0.08 0.06
Focal 2 0.12 0.16 0.14 0.15 0.15 0.11

Evaluation criterion includes Type I error and power at both omnibus level and group

level, as well as the DIF parameter recovery. At omnibus level, the null hypothesis for LRT is

that the item has no DIF for neither of the focal groups, whereas the alternative hypothesis

is the item has DIF for both focal groups. This is due to the intrinsic multiple-group IRT
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model estimation as part of the LRT approach. That is, for the studied item, the full model

assumes the parameters of this item vary across all three groups whereas the constrained

model assumes the parameters of this item are the same among all three groups. In contrast,

at group level, say for the first focal group, the null hypothesis for LRT becomes that the

item has no DIF between the reference and focal group and the alternative hypothesis is that

the item has DIF between these two groups. As the second focal group is irrelevant in this

context, only a subset of item responses from reference and first focal group were fed into

the ‘multipleGroup’ function in the ‘mirt’ package. In contrast, in the reg-DIF method, a

distinct DIF parameter is designated for each studied item parameter and each focal group.

Therefore, an item is said to have omnibus DIF if at least one focal group shows DIF on that

item, i.e., when there is at least one non-zero element in βj that item j is considered to have

uniform-DIF at omnibus level. The group level DIF is then flagged based on the specific

non-zero βjp. By this definition, it is not surprising to note that, for the reg-DIF method,

the power at omnibus level is nothing but the maximum of the two group level powers.

Table 3 summarizes the Type I error (i.e., false positive) of all four different methods

under each simulated condition. The values in the parenthesis are standard deviation across

50 replications. First of all, consistent with the findings that LRT tends to be too liberal

when DIF is pervasive and sample size is large (Belzak & Bauer, 2020; Finch, 2005; Stark,

Chernyshenko, & Drasgow, 2006), LRT produces quite inflated Type I error when DIF

proportion is 60%. When DIF proportion is low, the LRT performs well and sometimes

better than reg-DIF. This is because the correct anchor items can be determined in this

scenario. All three reg-DIF methods produce well-behaved Type I error rate, except lasso

EM under the 60% DIF condition. When sample size is large, the omnibus error rate could

go up to 0.4, which is unacceptable. There is no appreciable difference between the lasso

EMM and adaptive lasso methods.

Table 4 presents the power of all four methods. When DIF is not pervasive and sample

size is moderate, all methods produce high power at omnibus level, although detecting DIF at
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Table 3: Study I Type I error (standard deviation) of detecting uniform DIF

Corr N DIF% Group LRT Lasso EM Lasso EMM
Adaptive
lasso

0.85

1500

20%
Omnibus DIF 0.028 (0.006) 0.043 (0.007) 0.021 (0.005) 0 (0)
Low DIF 0.013 (0.004) 0.018 (0.004) 0.013 (0.004) 0 (0)
High DIF 0.031 (0.006) 0.028 (0.005) 0.011 (0.003) 0 (0)

60%
Omnibus DIF 0.893 (0.022) 0.200 (0.023) 0.035 (0.011) 0.008 (0.008)
Low DIF 0.308 (0.043) 0.098 (0.016) 0.025 (0.009) 0.005 (0.005)
High DIF 0.88 (0.022) 0.153 (0.02) 0.013 (0.005) 0.005 (0.005)

3000

20%
Omnibus DIF 0.033 (0.007) 0.031 (0.007) 0.026 (0.006) 0.006 (0.002)
Low DIF 0.024 (0.006) 0.018 (0.005) 0.021 (0.005) 0.004 (0.002)
High DIF 0.034 (0.007) 0.021 (0.005) 0.006 (0.003) 0.003 (0.002)

60%
Omnibus DIF 0.91 (0.036) 0.345 (0.027) 0.060 (0.015) 0.035 (0.035)
Low DIF 0.498 (0.035) 0.218 (0.02) 0.058 (0.015) 0.035 (0.035)
High DIF 0.90 (0.035) 0.268 (0.027) 0.008 (0.004) 0.008 (0.008)

0.25

1500

20%
Omnibus DIF 0.028 (0.005) 0.029 (0.007) 0.016 (0.005) 0.013 (0.004)
Low DIF 0.013 (0.004) 0.011 (0.003) 0.005 (0.002) 0.005 (0.002)
High DIF 0.027 (0.004) 0.019 (0.007) 0.011 (0.004) 0.008 (0.003)

60%
Omnibus DIF 0.86 (0.03) 0.084 (0.014) 0.038 (0.013) 0.020 (0.008)
Low DIF 0.31 (0.028) 0.076 (0.013) 0.035 (0.013) 0.020 (0.008)
High DIF 0.86 (0.03) 0.033 (0.010) 0.005 (0.004) 0 (0)

3000

20%
Omnibus DIF 0.029 (0.007) 0.023 (0.006) 0.005 (0.002) 0.003 (0.002)
Low DIF 0.02 (0.005) 0.010 (0.004) 0.005 (0.002) 0.003 (0.002)
High DIF 0.030 (0.007) 0.015 (0.004) 0.003 (0.002) 0 (0)

60%
Omnibus DIF 0.91 (0.027) 0.128 (0.015) 0.103 (0.024) 0.071 (0.011)
Low DIF 0.468 (0.048) 0.125 (0.015) 0.095 (0.022) 0.071 (0.011)
High DIF 0.90 (0.026) 0.024 (0.008) 0.010 (0.005) 0.006 (0.003)

low-DIF group level is understandably hard. When DIF is pervasive, LRT cannot correctly

detect DIF with extremely low power in almost all conditions. Overall, increasing sample size

leads to higher power, whereas changing the correlation between two factors does not alter

the results. The general take-away message is LRT can only be used if DIF is not pervasive

unless a purified set of anchor items are known in advance, whereas the lasso EMM and

adaptive lasso can be used in all conditions. Our findings about lasso EM are in concert

with Bauer et al. (2020)’s conclusion that it “performs best at identifying true DIF when

DIF is large in magnitude and the sample size is large and is more likely to identify DIF

erroneously when DIF is particularly pervasive.” Our proposed two variations of the lasso
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Table 4: Study I Power (standard deviation) of detecting uniform DIF

Corr N DIF% Group LRT Lasso EM Lasso EMM
Adaptive
lasso

0.85

1500

20%
Omnibus DIF 0.985 (0.008) 0.965 (0.013) 0.96 (0.017) 0.985 (0.009)
Low DIF 0.615 (0.045) 0.455 (0.036) 0.55 (0.043) 0.470 (0.05)
High DIF 0.988 (0.008) 0.965 (0.012) 0.96 (0.017) 0.985 (0.009)

60%
Omnibus DIF 0.147 (0.022) 0.678 (0.027) 0.885 (0.019) 0.885 (0.024)
Low DIF 0.027 (0.007) 0.232 (0.019) 0.208 (0.024) 0.193 (0.021)
High DIF 0.163 (0.022) 0.677 (0.027) 0.885 (0.019) 0.885 (0.024)

3000

20%
Omnibus DIF 1 (0) 1.000 (0) 1.000 (0) 1.000 (0)
Low DIF 0.915 (0.022) 0.786 (0.039) 0.84 (0.029) 0.845 (0.032)
High DIF 1 (0) 1.000 (0) 1.000 (0) 1.000 (0)

60%
Omnibus DIF 0.115 (0.016) 0.943 (0.010) 0.998 (0.002) 1 (0)
Low DIF 0.017 (0.006) 0.467 (0.023) 0.632 (0.032) 0.44 (0.038)
High DIF 0.120 (0.016) 0.942 (0.010) 0.998 (0.002) 1 (0)

0.25

1500

20%
Omnibus DIF 0.97 (0.012) 0.955 (0.013) 0.965 (0.013) 0.985 (0.009)
Low DIF 0.62 (0.041) 0.430 (0.037) 0.490 (0.040) 0.510 (0.041)
High DIF 0.975 (0.012) 0.955 (0.013) 0.965 (0.013) 0.985 (0.009)

60%
Omnibus DIF 0.167 (0.020) 0.728 (0.035) 0.885 (0.022) 0.859 (0.024)
Low DIF 0.035 (0.009) 0.228 (0.018) 0.197 (0.023) 0.238 (0.017)
High DIF 0.175 (0.020) 0.728 (0.035) 0.885 (0.022) 0.859 (0.024)

3000

20%
Omnibus DIF 1 (0) 1 (0) 1 (0) 1 (0)
Low DIF 0.895 (0.022) 0.806 (0.036) 0.907 (0.022) 0.878 (0.028)
High DIF 1 (0) 1 (0) 1 (0) 1 (0)

60%
Omnibus DIF 0.123 (0.018) 0.944 (0.009) 0.998 (0.002) 1 (0)
Low DIF 0.023 (0.009) 0.356 (0.015) 0.513 (0.033) 0.317 (0.024)
High DIF 0.132 (0.018) 0.944 (0.009) 0.998 (0.002) 1 (0)

methods, lasso EMM and adaptive lasso, alleviate this issue hence they outperform lasso

EM by a large margin when DIF is pervasive.

Table 5 summarizes the mean absolute bias of the DIF parameters. For each method

under each condition, the bias was calculated as the estimated DIF parameter minus the true

DIF parameter for only the true DIF items that were correctly flagged. The true DIF items

that were missed by each method at both group levels were not considered in computing

this statistic because we want to evaluate if the DIF magnitude can be precisely recovered

without the contamination of Type II error. DIF items that were correctly flagged from at

least one group were included. Moreover, the mean absolute bias was reported at only group
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Table 5: Simulation I Mean absolute bias (standard deviation) of DIF parameter estimates

Corr N DIF% Group LRT Lasso EM Lasso EMM
Adaptive
lasso

0.85

1500
20%

Low DIF 0.114 (0.009) 0.119 (0.012) 0.116 (0.010) 0.121 (0.012)
High DIF 0.141 (0.010) 0.202 (0.008) 0.180 (0.008) 0.199 (0.009)

60%
Low DIF 0.212 (0.068) 0.108 (0.006) 0.111 (0.009) 0.113 (0.008)
High DIF 0.311 (0.024) 0.288 (0.011) 0.225 (0.007) 0.235 (0.010)

3000
20%

Low DIF 0.102 (0.005) 0.099 (0.006) 0.101 (0.005) 0.098 (0.005)
High DIF 0.111 (0.007) 0.145 (0.008) 0.135 (0.008) 0.131 (0.009)

60%
Low DIF 0.126 (0.097) 0.143 (0.008) 0.100 (0.005) 0.108 (0.006)
High DIF 0.541 (0.116) 0.233 (0.012) 0.157 (0.005) 0.192 (0.006)

0.25

1500
20%

Low DIF 0.108 (0.009) 0.115 (0.011) 0.116 (0.012) 0.116 (0.012)
High DIF 0.140 (0.009) 0.194 (0.010) 0.192 (0.010) 0.200 (0.011)

60%
Low DIF 0.272 (0.082) 0.107 (0.006) 0.113 (0.005) 0.117 (0.010)
High DIF 0.565 (0.107) 0.248 (0.010) 0.220 (0.007) 0.238 (0.010)

3000
20%

Low DIF 0.098 (0.005) 0.095 (0.005) 0.096 (0.008) 0.096 (0.005)
High DIF 0.115 (0.007) 0.141 (0.008) 0.129 (0.010) 0.131 (0.007)

60%
Low DIF 0.077 (0.044) 0.120 (0.005) 0.113 (0.007) 0.108 (0.008)
High DIF 0.484 (0.087) 0.202 (0.008) 0.157 (0.005) 0.189 (0.008)

The italicized values need to be interpreted with caution because the power in the corresponding

cells is too low.

level (no omnibus level bias) because we want to separately show the recovery of DIF size

when true DIF size is either small or large. One caveat to note when reading the results

is that for LRT, we estimated DIF size at different focal group levels by pooling together

data from reference group and respective focal group and fitted a two-group MIRT model.

In contrast, we estimated DIF size from the reg-DIF approach by essentially fitting a three-

group MIRT model. Then if an item only shows DIF at high-DIF group level but shows

DIF-free (type II error) at low-DIF group level, this item will have only one non-zero β. We

could have fitted the three-group MIRT model in LRT as well, but that would have given

us almost the same results as those from the reg-DIF methods because both approaches use

EM algorithm without penalty for final parameter estimation. The results reported in Table

5 are more interesting to illuminate that when DIF occurs at one focal group level, albeit

small, if ignored, it would bias the DIF size at the other focal group level. This conclusion

is supported by the observation that the mean absolute biases from three regularization
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methods are higher than those from LRT for the high DIF group in most conditions.5 The

results from LRT under 60% condition also needs to be interpreted with caution because the

power is extremely low in this condition such that the items entered in this calculation are

too few.

3.2 Simulation Study II

The second simulation study focuses on detecting non-uniform DIF. The item parameters

were kept to be the same as in simulation study I. For the DIF parameters, we still had

the first focal group with smaller magnitude of DIF and the second focal group with larger

magnitude of DIF. For the first focal group, we had γj1 = (−0.4, 0) and βj = 0.25 for

j = 4, 5 and γj1 = (0,−0.4) and βj = 0.25 for j = 12, 13 for the 20% DIF condition, and

γj1 = (−0.4, 0) and βj = 0.25 for j = 4, 5, 6, 7, 8, 9 and γj1 = (0,−0.4) and βj = 0.25 for

j = 12, 13, 14, 15, 16, 17 for the 60% DIF condition. Similarly, for the second focal group, we

had γj2 = (−0.6, 0), γj2 = (0,−0.6) and βj = 0.6 on the respective DIF items. The wABC

of DIF size per item is given in table 6. Compared to table ??, the DIF size in study II is

somewhat smaller, hence it will not be surprising if power drops.

Table 6: Non-uniform DIF magnitude measured by wABC
Item 4 5 6 7 8 9

Focal 1 0.02 0.05 0.04 0.05 0.04 0.06
Focal 2 0.04 0.10 0.06 0.11 0.10 0.12

Item 12 13 14 15 16 17
Focal 1 0.05 0.05 0.03 0.05 0.06 0.06
Focal 2 0.11 0.11 0.08 0.11 0.12 0.11

Type I error and power from study II are summarized in Tables 7 and 8. In general, the

same pattern preserves as compared to study I. That is, all three reg-DIF methods appear

to have good control of Type I error whereas LRT has hugely inflated Type I error when

5In this case, for some items included in the calculation, the smaller DIF at ‘low DIF group’ level may
be missed, and they further contribute to the bias of DIF estimate at high DIF group level. Whereas at low
DIF group level, items that show large DIF at ‘high DIF group’ will always be detected, so they will not
contribute to additional bias.
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DIF proportion is high. Power is uniformly lower in study II, which may be an artifact of

smaller wABC in this case. In addition, Lasso EMM seems to slightly outperform all other

methods in all conditions. Table 9 and 10 present the mean absolute bias of DIF parameter

estimates, γ and β. As shown, the bias is relatively higher for γ, which is consistent with

prior finding that detecting DIF on loading parameter is a lot harder (Bauer et al., 2020).

Table 7: Study II Type I error (standard deviation) of detecting non-uniform DIF

Corr N DIF% Group LRT Lasso EM Lasso EMM
Adaptive
lasso

0.85

1500

20%
Omnibus DIF 0.029 (0.007) 0.045 (0.009) 0.036 (0.006) 0.042 (0.008)
Low DIF 0.013 (0.012) 0.020 (0.006) 0.020 (0.004) 0.023 (0.005)
High DIF 0.018 (0.010) 0.030 (0.007) 0.020 (0.005) 0.026 (0.007)

60%
Omnibus DIF 0.407 (0.015) 0.037 (0.009) 0.035 (0.014) 0.02 (0.006)
Low DIF 0.105 (0.009) 0.023 (0.007) 0.017 (0.007) 0.015 (0.005)
High DIF 0.4 (0.014) 0.032 (0.008) 0.022 (0.013) 0.007 (0.004)

3000

20%
Omnibus DIF 0.02 (0.005) 0.032 (0.007) 0.035 (0.007) 0.035 (0.007)
Low DIF 0.014 (0.007) 0.018 (0.005) 0.017 (0.005) 0.015 (0.004)
High DIF 0.015 (0.007) 0.032 (0.004) 0.026 (0.005) 0.028 (0.005)

60%
Omnibus DIF 0.752 (0.035) 0.042 (0.009) 0.015 (0.006) 0.05 (0.013)
Low DIF 0.207 (0.025) 0.020 (0.006) 0.005 (0.003) 0.017 (0.006)
High DIF 0.777 (0.031) 0.037 (0.009) 0.012 (0.006) 0.045 (0.011)

0.25

1500

20%
Omnibus DIF 0.018 (0.004) 0.036 (0.007) 0.038 (0.006) 0.032 (0.006)
Low DIF 0.006 (0.003) 0.018 (0.005) 0.026 (0.006) 0.017 (0.005)
High DIF 0.015 (0.004) 0.025 (0.005) 0.021 (0.004) 0.017 (0.004)

60%
Omnibus DIF 0.415 (0.036) 0.077 (0.016) 0.030 (0.009) 0.062 (0.014)
Low DIF 0.11 (0.019) 0.030 (0.008) 0.020 (0.005) 0.03 (0.009)
High DIF 0.415 (0.037) 0.070 (0.014) 0.013 (0.008) 0.047 (0.011)

3000

20%
Omnibus DIF 0.026 (0.005) 0.026 (0.006) 0.046 (0.010) 0.048 (0.007)
Low DIF 0.016 (0.004) 0.015 (0.004) 0.026 (0.008) 0.028 (0.006)
High DIF 0.022 (0.005) 0.012 (0.004) 0.032 (0.006) 0.03 (0.005)

60%
Omnibus DIF 0.792 (0.031) 0.105 (0.015) 0.026 (0.008) 0.08 (0.015)
Low DIF 0.262 (0.030) 0.06 (0.012) 0.018 (0.006) 0.035 (0.011)
High DIF 0.807 (0.031) 0.08 (0.015) 0.021 (0.006) 0.06 (0.012)

4 Real Data Analysis

A real data set from patient reported outcome measures (PROMIS) was used to illustrate

the performance of the three reg-DIF methods in comparison to LRT. The sample contains

24



Table 8: Study II Power (standard deviation) of detecting non-uniform DIF

Corr N DIF% Group LRT Lasso EM Lasso EMM
Adaptive
lasso

0.85

1500

20%
Omnibus DIF 0.665 (0.043) 0.645 (0.035) 0.730 (0.029) 0.69 (0.037)
Low DIF 0.325 (0.037) 0.120 (0.024) 0.175 (0.026) 0.135 (0.028)
High DIF 0.66 (0.043) 0.645 (0.035) 0.730 (0.029) 0.69 (0.037)

60%
Omnibus DIF 0.218 (0.072) 0.325 (0.029) 0.396 (0.039) 0.371 (0.039)
Low DIF 0.007 (0.043) 0.060 (0.012) 0.065 (0.013) 0.007 (0.003)
High DIF 0.216 (0.063) 0.315 (0.028) 0.395 (0.039) 0.368 (0.039)

3000

20%
Omnibus DIF 0.905 (0.015) 0.890 (0.019) 0.915 (0.017) 0.91 (0.020)
Low DIF 0.535 (0.033) 0.235 (0.032) 0.335 (0.039) 0.24 (0.036)
High DIF 0.905 (0.015) 0.890 (0.019) 0.915 (0.017) 0.91 (0.020)

60%
Omnibus DIF 0.165 (0.019) 0.688 (0.027) 0.845 (0.019) 0.83 (0.025)
Low DIF 0.004 (0.009) 0.158 (0.015) 0.176 (0.016) 0.133 (0.016)
High DIF 0.181 (0.021) 0.685 (0.027) 0.845 (0.019) 0.825 (0.025)

0.25

1500

20%
Omnibus DIF 0.645 (0.041) 0.695 (0.036) 0.74 (0.031) 0.69 (0.039)
Low DIF 0.285 (0.036) 0.130 (0.027) 0.235 (0.030) 0.13 (0.025)
High DIF 0.645 (0.041) 0.695 (0.036) 0.74 (0.031) 0.69 (0.039)

60%
Omnibus DIF 0.181 (0.017) 0.365 (0.025) 0.423 (0.036) 0.466 (0.035)
Low DIF 0.036 (0.008) 0.071 (0.011) 0.073 (0.013) 0.086 (0.014)
High DIF 0.18 (0.017) 0.356 (0.025) 0.42 (0.028) 0.451 (0.035)

3000

20%
Omnibus DIF 0.89 (0.017) 0.875 (0.018) 0.895 (0.019) 0.925 (0.016)
Low DIF 0.52 (0.037) 0.265 (0.031) 0.355 (0.042) 0.26 (0.038)
High DIF 0.88 (0.018) 0.875 (0.018) 0.895 (0.019) 0.92 (0.016)

60%
Omnibus DIF 0.16 (0.019) 0.701 (0.025) 0.785 (0.024) 0.771 (0.027)
Low DIF 0.028 (0.007) 0.161 (0.017) 0.131 (0.015) 0.165 (0.021)
High DIF 0.188 (0.022) 0.693 (0.026) 0.785 (0.024) 0.77 (0.027)
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Table 9: Simulation II Mean absolute bias (standard deviation) of DIF parameter γ estimates

Corr N DIF% Group LRT LASSO EM LASSO EMM
Adaptive
LASSO

0.85

1500
20%

Low DIF 0.369 (0.035) 0.371 (0.077) 0.559 (0.058) 0.501 (0.078)
High DIF 0.324 (0.025) 0.212 (0.056) 0.343 (0.047) 0.255 (0.050)

60%
Low DIF 0.443 (0.068) 0.610 (0.234) 0.424 (0.114) 0.287 (-)
High DIF 0.371 (0.035) 0.284 (0.115) 0.225 (0.024) 0.165 (0.024)

3000
20%

Low DIF 0.220 (0.018) 0.317 (0.059) 0.323 (0.037) 0.281 (0.035)
High DIF 0.185 (0.011) 0.133 (0.016) 0.142 (0.020) 0.154 (0.018)

60%
Low DIF 0.263 (0.048) 0.370 (0.084) 0.232 (0.026) 0.283 (0.072)
High DIF 0.392 (0.041) 0.166 (0.032) 0.121 (0.018) 0.151 (0.017)

0.25

1500
20%

Low DIF 0.186 (0.028) 0.787 (0.120) 0.727 (0.081) 0.837 (0.114)
High DIF 0.148 (0.021) 0.294 (0.105) 0.398 (0.058) 0.381 (0.075)

60%
Low DIF 0.121 (0.069) 0.680 (0.153) 0.631 (0.101) 0.558 (0.074)
High DIF 0.166 (0.035) 0.332 (0.105) 0.267 (0.042) 0.306 (0.068)

3000
20%

Low DIF 0.107 (0.017) 0.241 (0.062) 0.349 (0.039) 0.403 (0.067)
High DIF 0.117 (0.011) 0.110 (0.018) 0.191 (0.031) 0.190 (0.021)

60%
Low DIF 0.201 (0.043) 0.432 (0.094) - 0.306 (0.058)
High DIF 0.124 (0.026) 0.142 (0.019) - 0.154 (0.012)

The italicized values need to be interpreted with caution because the power in the corresponding

cells is too low. The two empty cells imply no item was flagged to have DIF on slope parameter.

5,219 cancer patients’ responses to the two PROMIS scales, depression and anxiety scales.

We focused on detecting age DIF because in the sample, age is a categorical variable with

three levels and prior researches have studied age DIF on these items using the same sample

(Teresi, Ocepek-Welikson, Kleinman, Ramirez, & Kim, 2016a, 2016b).

Among the three age groups, the reference group is ‘Age 21-49’ (sample size n = 1, 143),

and two focal groups are ‘Age 50-64’ (n = 1, 935) and ‘Age 65-84’ (n = 2, 141) respectively.

The original data set contains 21 polytomous items with five response categories (1 = never,

2 = Rarely, 3 = Sometimes, 4 = Often, 5 = Always). As we focused on M2PL model

throughout the paper, we artificially combined response categories to create a dichotomous

data set. Given the proportion of the ‘never’ response falls between 50%-65% in most items,

we combined the other four response categories and made all 21 items dichotomous. That

is, the patient response to each item is either yes or no. This treatment is similar to Bauer

et al. (2020). The first 10 items measure depression and the other 11 items measure anxiety.
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Table 10: Simulation II Mean absolute bias (standard deviation) of DIF parameter β esti-
mates

Corr N DIF% Group LRT LASSO EM LASSO EMM
Adaptive
LASSO

0.85

1500
20%

Low DIF 0.208 (0.021) 0.287 (0.016) 0.288 (0.020) 0.346 (0.024)
High DIF 0.172 (0.015) 0.129 (0.008) 0.137 (0.010) 0.131 (0.009)

60%
Low DIF 0.269 (0.073) 0.309 (0.047) 0.338 (0.048) 0.699 (0.142)
High DIF 0.188 (0.019) 0.141 (0.010) 0.148 (0.009) 0.136 (0.007)

3000
20%

Low DIF 0.113 (0.009) 0.146 (0.013) 0.159 (0.026) 0.176 (0.021)
High DIF 0.113 (0.006) 0.122 (0.007) 0.132 (0.018) 0.125 (0.006)

60%
Low DIF 0.136 (0.033) 0.142 (0.016) 0.136 (0.014) 0.160 (0.019)
High DIF 0.228 (0.016) 0.150 (0.005) 0.144 (0.004) 0.148 (0.005)

0.25

1500
20%

Low DIF 0.213 (0.025) 0.269 (0.062) 0.285 (0.045) 0.330 (0.063)
High DIF 0.143 (0.010) 0.126 (0.026) 0.144 (0.016) 0.126 (0.026)

60%
Low DIF 0.273 (0.050) 0.255 (0.076) 0.355 (0.092) 0.501 (0.110)
High DIF 0.189 (0.022) 0.161 (0.015) 0.151 (0.009) 0.159 (0.014)

3000
20%

Low DIF 0.108 (0.009) 0.145 (0.011) 0.150 (0.013) 0.161 (0.016)
High DIF 0.109 (0.005) 0.122 (0.005) 0.126 (0.005) 0.128 (0.005)

60%
Low DIF 0.119 (0.026) 0.166 (0.033) 0.114 (0.009) 0.206 (0.038)
High DIF 0.144 (0.017) 0.159 (0.005) 0.145 (0.005) 0.157 (0.005)

The italicized values need to be interpreted with caution because the power in the corresponding

cells is too low.

Table 11 presents the item content.

To start the analysis, we first used three reg-DIF methods without any anchor items to

perform DIF detection (1) on discrimination parameter only (2) on intercept only, and (3)

on discrimination and intercept parameters simultaneously. From all three analyses, items

3, 14, and 15 did not show any DIF across all three regularization methods. The results,

on one hand, are consistent with the conclusions in Teresi et al. (2016b) and Teresi et al.

(2016a); and on other hand, imply that these three items can very well serve as anchor items

for LRT. To ensure fair comparison across methods, we also re-conducted the three reg-DIF

methods again using the same anchor items as in LRT. The results stay the same with and

without anchor items.

Figure 1 presents the flagged uniform DIF items and their corresponding DIF magnitude

on intercepts from all four methods. Items 3 and 15 served as anchor items in this case.

As shown, the LRT flagged eight items, whereas lasso EMM flagged 6 items, adaptive lasso
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Table 11: PROMIS depression and anxiety imputed data set: Item description
1 I felt worthless
2 I felt that I had nothing to look forward to
3 I felt helpless
4 I felt sad
5 I felt like a failure
6 I felt depressed
7 I felt unhappy
8 I felt hopeless
9 I felt discouraged about the future
10 I felt disappointed in myself
11 I felt fearful
12 I felt anxious
13 I felt worried
14 I found it hard to focus on anything other than my anxiety
15 I felt nervous
16 I felt uneasy
17 I felt tense
18 My worries overwhelmed me
19 I felt like I needed help for my anxiety
20 Many situations made me worry
21 I had difficulty calming down

flagged 5 items, and lasso EM flagged 4 items. Because the items detected by the reg-DIF

methods are a subset of the items detected by LRT, the result is somewhat consistent with

the findings from simulation study I. That is, LRT may yield inflated Type I error when DIF

prevalence is high. Indeed, the two unique items flagged by LRT have relatively smaller DIF

size, which may be false detection by LRT. Note there are two small DIF sizes around .07

from LRT, which may be false detection.

Figure 2 shows the flagged non-uniform DIF items and their corresponding DIF magni-

tude on discrimination parameters from all four methods. Items 3 and 14 served as anchor

items. Quite surprisingly, LRT did not flag any items, whereas the items detected by the

three regularization methods were consistent, and their estimated DIF sizes were close. One

reason could be that in this analysis, we assumed that DIF only occurred on discrimination

parameters. Therefore, the regularization methods may attribute the differences in item

characteristic curves across groups to discrimination differences when the intercepts were
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Figure 1: Items detected to exhibit uniform DIF
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Figure 2: Items detected to exhibit non-uniform DIF

constrained equal across groups. In fact, Figure 3 shows the flagged DIF items when we

assumed DIF could happen on both intercept and discrimination parameters. Now almost

all detected DIF from regularization methods appear on the intercept parameters. By the

nature of LRT, it tests both parameters of a studied item together for DIF, but as reflected,

some of the DIF sizes on discrimination parameters are close to 0. Note that we cannot

compare our DIF detection results directly to those in Teresi et al. (2016a, 2016b) because

they did not take impact into consideration. However, we found that impact on means is

relatively high that it cannot be ignored. Table 12 presents the estimated mean and covari-

ance matrix of the two focal groups from the analysis where both uniform and non-uniform

DIF were considered together, as this is the most flexible analysis. Results from the other

two analyses are rather similar. For the reference group, the means and variances of θ were
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Figure 3: Items detected to exhibit omnibus DIF

fixed at 0 and 1 respectively. The correlation between the two factors was freely estimated.

5 Discussion

The idea of using regularization methods for DIF detection started to emerge in psychomet-

rics literature a decade ago, although the statistical methods per se are around for much

longer. The regularization approach is fundamentally different from traditional DIF detec-

tion approaches which often involves hypothesis testing of some kind. The main purpose of

this study is to introduce the lasso regularization method within MIRT context and evaluate

its performance in detecting both uniform DIF and non-uniform DIF. Up to date, there are

only a handful of studies that explored DIF with MIRT models (Bolt & Johnson, 2009; Bulut
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Table 12: Estimated mean and covariance matrix (Impact) from PROMIS analysis
LRT Lasso EM

Age
21-49

Age
50-64

Age
65-84

Age
21-49

Age
50-64

Age
65-84

µ1 0 -.157 -.42 0 -.319 -.560
µ2 0 -.116 -.40 0 -.317 -.571
σ2
1 1 1.367 1.298 1 1.084 .979
σ12 .907 1.330 1.198 .915 1.036 .925
σ2
2 1 1.52 1.304 1 1.183 1.044

Lasso EMM Adaptive Lasso
Age
21-49

Age
50-64

Age
65-84

Age
21-49

Age
50-64

Age
65-84

µ1 0 -.327 -.564 0 -.324 -.550
µ2 0 -.316 -.570 0 -.321 -.576
σ2
1 1 1.060 .966 1 1.062 .951
σ12 .915 1.026 .919 .915 1.028 .908
σ2
2 1 1.185 1.046 1 1.186 1.036

& Suh, 2009; Fukuhara & Kamata, 2011; Lee et al., 2017; Mazor, Hambleton, & Clauser,

1998; Suh & Cho, 2014), and this study will add to the growing literature on this topic and

meanwhile, expand the applications of the reg-DIF methods.

Aside from MIRT applications, several unique features of our study are worth highlight-

ing. First, Bauer et al.(2020) and Belzak & Bauer (2020) relied on general-purpose opti-

mization routines in SAS NLMIXED. Because l1 regularization criterion is non-differentiable,

their approach may not efficiently find a (local) maximizer. Instead, we directly programmed

a soft-thresholding operator within the coordinate descent algorithm that is more authentic

for l1 optimization. Specifically, the quadratic approximation to the marginal likelihood en-

ables the direct uses of the soft-thresholding operator (Sun et al., 2016). In the event when

the number of dimensions is high, the marginal likelihood could be replaced by its varia-

tional lower bound (Cho et al., 2021) to further speed up the computation. Second, when

DIF proportion is high, the inflated Type I error of reg-DIF is likely due to the bias from

using the l1 penalty. Therefore, we propose to use two variants of the lasso method, namely,

the EMM algorithm and adaptive lasso. Both tend to perform much better than the original
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lasso method. In the future, alternative penalties could be considered, such as the smoothly

clipped absolute deviation (SCAD) penalty (Fan & Li, 2001), or Minimax concave penalty

(MCP) (Zhang, 2010). These penalties generally serve to mitigate the l1 bias by lessening

the strength of the penalty on estimates that are large in absolute value (Hastie, Tibshirani,

& Tibshirani, 2017). Hence, they should better distinguish large DIF effects from small DIF

effects. Third, Tutz & Schauberger (2015) and Magis (2015) only considered one focal group

as most of the DIF studies did, we intentionally constructed two focal groups just to exem-

plify the advantage of reg-DIF in handling multiple sources of DIF. Indeed, reg-DIF will be

extremely efficient to hone in on DIF items and specific covariates that cause DIF simulta-

neously as such information is encapsulated in either β or γ. In contrast, it is procedurally

cumbersome to perform a likelihood ratio test separately for one item and one covariate at

a time. For instance, if there are 10 studied items and one covariate with two levels, then at

least 10 different models need to be fitted separately. In educational assessment with a large

item pool, this procedure can be prohibitively time consuming and error prone, especially if

the model is high dimensional.

Our simulation results reveal that reg-DIF performs better when DIF proportion is low.

This conclusion, on one hand, coincides with Bauer et al (2019) that reg-DIF performance

starts to deteriorate when DIF proportion is 40%. On the other hand, it is not too surprising

because regularization methods will in general perform better when data is truly sparse.

When the DIF is too pervasive, there will be too many non-zero elements in β and γ,

yielding a non-sparse scenario. Even so, reg-DIF still greatly outperforms LRT because

when DIF proportion is high, it is almost impossible to identify a purified set of DIF-free

anchors, and LRT performance is greatly compromised as a result. A follow-up study is

underway where DIF is caused by multiple categorical variables simultaneously and DIF

proportion is low. This is exactly the scenario where reg-DIF approach will shine, especially

in multicollinear situations. Needless to say, simultaneous treatment of several covariates is

necessary to obtain accurate θ estimates that correct for possible DIF effects.
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We present the detailed identification conditions where MIRT DIF analysis can proceed.

In essence, for simple structure MIRT, we need at minimum one anchor item per dimension to

ensure model identifiability. However, “identifiable” should be separated from “estimable.”

That is, for reg-DIF, in the presence of sufficient penalty, no anchor items are required as

some DIF parameters will be shrunk to 0, “making the model estimable even without prior

selection of anchor items” (Bauer et al., 2020). Similarly, Schauberger and Mair (2019)

also argued that “as long as the respective penalty term corresponds to a restriction that is

strong enough, this identifiability issue can be ignored.” On the other hand, the selection of

the designated anchor items is critical to the success of LRT, which can be conceived as a

limitation of this method as finding the right anchors may not be easy when DIF proportion

is high (Bolt, Hare, Vitale, & Newman, 2004; Edelen, Thissen, Teresi, et al., 2006). For

practitioners, we recommend using reg-DIF when no prior knowledge of DIF-free items is

available. The advantage of reg-DIF methods is especially salient when DIF proportion is

high. In the reg-DIF method, not only are DIF items detected, but also item parameters and

non-zero DIF parameters are estimated simultaneously. Then they can be used in Equation

1 to estimate person parameters that correct for DIF effects.

Given the limitation of the simulation study design, the current study can be extended

in a few directions. Aside from the aforementioned ongoing study that considers multiple

categorical covaraites, the method can also be generalized to include continuous covariates.

In that case, instead of estimating µg and Σg per subgroup as shown in Equation 4, 8-10,

one can update Equation 1 as follows

log

(
Pj(θi)

1− Pj(θi)

)
= aTj θi + dj + (Xiγj)θi +Xiβj +Xiα, (i = 1, ..., N ; j = 1, 2, ..., J).

where α is a P -by-1 regression coefficients implying the impact of covariates on θ distri-

bution. In addition, we only considered between-item two-dimensional 2PL model. Future

study could extend to within-item multidimensional design and polytomous items. As reg-
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DIF requires multiple rounds of estimation to find the best tuning parameter based on BIC,

generalizing reg-DIF to more than two dimensions of course calls for a more efficient estima-

tion algorithm than the currently used quadrature-based EM algorithm. Alternatives, such

as Metropolis-Hastings Robbins-Monro algorithm (Cai, 2010) or variational methods (Cho

et al., 2021) can be plausible candidates for future studies.
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6 Appendix

Algorithm 1: Uniform DIF Detection via Adaptive Lasso EM

Input : a0,d0,β0,µ0,Σ0,u,ηl,w,ε1,ε2, X
Output: â∗,d̂∗,β̂∗,µ̂∗,Σ̂∗

set t = 1, a(0) = a0, d
(0) = d0, β

(0) = β0, µ
(0) = µ0, Σ(0) = Σ0, δ

(t−1)
1 = 1;

while δ
(t−1)
1 > ε1 do

Calculate ngm =
∑Ng

i=1 h(qm|Xi,ui,∆
(t−1)) and

rgjm =
∑Ng

i=1 uijh(qm|Xi,ui,∆
(t−1));

Update µ(t) and Σ(t);
for j=1,...m do

set k = 1, δ
(k−1)
2 = 1 ;

while δ
(k−1)
2 > ε2 do

a
(k)
jr = a

(k−1)
jr − ∂ajrQ(a,d,β)

∂2ajrQ(a,d,β)
;

d
(k)
j = d

(k−1)
j −

∂djQ(a,d,β)

∂2dj
Q(a,d,β)

;

β
(k)
jp = soft(β

(k−1)
jp −

∂βjpQ(a,d,β)

∂2βjp
Q(a,d,β)

,− ηlwj
∂2βjp

Q(a,d,β)
);

δ
(k)
2 = ||a(k)

j − a
(k−1)
j ||+ ||d(k)

j − d
(k−1)
j ||+ ||β(k)

j − β
(k−1)
j ||;

k = k + 1;

δ
(t)
1 = ||a(t) − a(t−1)||+ ||d(t) − d(t−1)||+ ||β(t) − β(t−1)||;
t = t+ 1;

Set ηa = 0 and re-estimate all none-zero estimates.
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Algorithm 2: Uniform DIF Detection via Lasso EMM

Input : a0,d0,β0,µ0,Σ0,u,ηl,ε1,ε2, X
Output: â∗,d̂∗,β̂∗,µ̂∗,Σ̂∗

set t = 1, a(0) = a0, d
(0) = d0, β

(0) = β0, µ
(0) = µ0, Σ(0) = Σ0, δ

(t−1)
1 = 1;

while δ
(t−1)
1 > ε1 do

Calculate ngm and rgjm;
Update µ(t) and Σ(t);
for j=1,...m do

set k = 1, δ
(k−1)
2 = 1 ;

while δ
(k−1)
2 > ε2 do

a
(k)
jr = a

(k−1)
jr − ∂ajrQ(a,d,β)

∂2ajrQ(a,d,β)
, d

(k)
j = d

(k−1)
j −

∂djQ(a,d,β)

∂2dj
Q(a,d,β)

;

β
(k)
jp = soft(β

(k−1)
jp −

∂βjpQ(a,d,β)

∂2βjp
Q(a,d,β)

,− ηl
∂2βjp

Q(a,d,β)
);

δ
(k)
2 = ||a(k)

j − a
(k−1)
j ||+ ||d(k)

j − d
(k−1)
j ||+ ||β(k)

j − β
(k−1)
j ||;

k = k + 1;
for j=1,...m do

set k = 1, δ(k−1) = any value greater than ε2;

while δ
(k−1)
2 > ε2 do

a
(k)
jr = a

(k−1)
jr − ∂ajrQ(a,d,β)

∂2ajrQ(a,d,β)
, d

(k)
j = d

(k−1)
j −

∂djQ(a,d,β)

∂2dj
Q(a,d,β)

,

β
(k)
jp = β

(k−1)
jp −

∂βjpQ(a,d,β)

∂2βjp
Q(a,d,β)

;

δ
(k)
2 = ||a(k)

j − a
(k−1)
j ||+ ||d(k)

j − d
(k−1)
j ||+ ||β(k)

j − β
(k−1)
j ||;

k = k + 1;

δ
(t)
1 = ||a(t) − a(t−1)||+ ||d(t) − d(t−1)||+ ||β(t) − β(t−1)||;
t = t+ 1;

Algorithm 3: Non-Uniform DIF Detection via Adaptive Lasso EM

Input : a0,d0,γ0,β0,µ0,Σ0,u,ηl,w, ε1, ε2, X
Output: â∗,d̂∗,γ̂∗,β̂∗,µ̂∗,Σ̂∗

set t = 1, a(0) = a0, d
(0) = d0, γ

(0) = γ0, β
(0) = β0, µ

(0) = µ0, Σ(0) = Σ0, δ
(t−1)
1 = 1;

while δ
(t−1)
1 > ε1 do

Calculate ngm and rgjm;
Update µ(t) and Σ(t);
for j=1,...m do

set k = 1, δ
(k−1)
2 = 1 ;

while δ
(k−1)
2 > ε2 do

a
(k)
jr = a

(k−1)
jr − ∂ajrQ(a,d,γ,β)

∂2ajrQ(a,d,γ,β)
; d

(k)
j = d

(k−1)
j −

∂djQ(a,d,γ,β)

∂2dj
Q(a,d,γ,β)

;

γ
(k)
jpr = soft(γ

(k−1)
jpr − ∂γjprQ(a,d,γ,β)

∂2γjprQ(a,d,γ,β)
,− ηlwj

∂2γjprQ(a,d,γ,β)
);

β
(k)
jp = soft(β

(k−1)
jp −

∂βjpQ(a,d,γ,β)

∂2βjp
Q(a,d,γ,β)

,− ηlwj
∂2βjp

Q(a,d,γ,β)
);

δ
(k)
2 = ||a(k)

j −a
(k−1)
j ||+ ||d(k)

j −d
(k−1)
j ||+ ||γ(k)

j −γ
(k−1)
j ||+ ||β(k)

j −β
(k−1)
j ||;

k = k + 1;

δ
(t)
1 = ||a(t) − a(t−1)||+ ||d(t) − d(t−1)||+ ||γ(t) − γ(t−1)||+ ||β(t) − β(t−1)||;
t = t+ 1;

Set ηa = 0 and re-estimate all none-zero estimates.
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