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ABSTRACT
Help-seeking is a valuable practice in online discussion forums.
However, the asynchronicity and information overload of online
discussion forums have made it challenging for help seekers and
providers to connect effectively. This study formulated a new
method to provide fair and accurate insights toward building a
peer recommender to support help-seeking in online learning.
Specifically, we developed the fair network embedding (Fair-NE)
model and compared it with existing popular models. We trained
and evaluated the models with a large dataset consisting of
187,450 discussion post-reply pairs by 10,182 Algebra I online
learners from 2015 to 2020. Finally, we examined models with
representation fairness, predictive accuracy, and predictive fair-
ness. The results showed that the Fair-NE can achieve superior
fairness in genders and races while retaining competitive predict-
ive accuracy. This study marks a paradigm change from previous
investigation and evaluation of fair artificial intelligence to pro-
actively build fair artificial intelligence in education.
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Introduction

Help-seeking in online discussion forums has been demonstrated to be an important
learning strategy (Chao et al., 2018). It is a strategy in self-regulated learning and goes
beyond stating the need for assistance. Studies have shown that help-seeking can
positively correlate with students’ self-efficacy (Chyr et al., 2017), motivation (Melrose,
2006), and learning outcomes (Parnes et al., 2020). Among different sources of support
for help-seeking, such as instructional teams and intelligent agents, peer support
stands out given its collaborative nature, which enhances learning through knowledge
exchange (Kear, 2004). However, seeking help among peers in online discussion
forums can be challenging. On one hand, students can find it challenging to know
whom to reach out to in an unfamiliar asynchronous environment (Labarthe et al.,
2016). On the other hand, help providers can be overwhelmed with disorganized
discussion forums swamped with threads, for example, massive open online course
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(MOOC) forums (Shaw, 2019), not knowing where to help. Consequently, the lack of
effective connections between help seekers and providers in online discussion forums
can impede students’ help-seeking practices, yielding a potential threat to students’
sense of belonging and engagement (Allen & Kern, 2017).

Recent studies have shown an increasing interest in building peer recommenders with
artificial intelligence (AI) to automatically connect help seekers with providers, given the
potential to initiate sustainable and reciprocal conversations among peers. A peer recom-
mender in education is a system to provide students personalized social outreach to
help expand their social networks and potentially assist with their learning (Garcia-
Martinez & Hamou-Lhadj, 2013). There is considerable theoretical research behind such
systems in education. From the perspective of help-seeking in self-regulated learning,
peer recommenders assist with identifying help providers, which is an important stage in
help-seeking (Cross et al., 2017). Furthermore, peer recommenders can greatly improve
the chances that students will receive peer feedback and suggestions on their statements
or questions by providing intelligence to suggest peers who are likely to connect. The
potentially enhanced bond among students might improve students’ retention and
engagement with the online learning community (Labarthe et al., 2016). Moreover, the
selection mechanism of a peer recommender tends to prioritize peers who share similar
interests in discussion topics, strengthening the ties between students and leading to
sustainable and reciprocal discourses (Potts et al., 2018).

From the algorithm perspective, the core component of a peer recommender is the
prediction of students’ possible connections in a network, named link prediction. There
are two popular approaches to building link prediction models for AI-based peer rec-
ommenders. One utilizes structural similarity with traditional social network analysis
(SNA) to suggest peers who would establish connections with help seekers (e.g.,
Hansen et al., 2019; Sunar et al., 2017; Yang et al., 2018). A new approach called net-
work embedding has been shown as a strong candidate to build peer recommenders
(Chai et al., 2019; Xiao et al., 2021). Network embedding utilizes deep neural networks
to represent nodes in a graph with latent vectors such that neighboring nodes would
have high similarity scores (Nelson et al., 2019). Researchers have found that network
embedding has advantages of computational efficiency and predictive accuracy over
prior link prediction algorithms (Grover & Leskovec, 2016; Nelson et al., 2019; Xu
et al., 2020).

Current studies on building AI-based peer recommenders have focused on improv-
ing prediction performance. Namely, researchers have examined enhanced or innova-
tive models to make recommendations more accurate and have witnessed some
successes. However, little is known as to whether these AI systems will treat students
fairly. There have been reports that AI models can be biased against demographic fac-
tors such as gender and race across domains: education (e.g., Riazy & Simbeck, 2019),
business hiring (e.g., van den Broek et al., 2020), and medicine (e.g., Esteva et al.
2017). In the case of peer recommenders, students might form communities of specific
demographics that could lead to AI bias. For example, Caucasian students dominantly
interact with other Caucasian students because they come from the same school
where minority students are scarce. Trained with such a dataset, the recommender
system can reinforce the status quo and not give students opportunities to establish
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diversified connections that can be equally helpful. Some conceptual studies (Baker &
Hawn, 2021; Kizilcec & Lee, 2020; Marcinkowski et al., 2020) and assessment studies
(Riazy & Simbeck, 2019; Sha et al., 2021; Yu et al., 2020) have discussed and evaluated
whether educational AI systems can deliver fair intelligence for learners. However,
there has not been a focused investigation into how to increase AI fairness in educa-
tional peer recommenders strategically.

In this study, we aimed to fill this gap by taking the first step by developing a new
algorithm that can improve the fairness of AI-based peer recommenders for education,
inspired by the work of Buyl and De Bie (2020). Furthermore, we intended to examine
and synthesize strategies to evaluate the AI fairness of peer recommenders.
Specifically, our study is rooted within the discussion forum in Algebra Nation (https://
www.algebranation.com/), an online math learning platform that originated in Florida.
Using Algebra Nation as the research context, we created a network embedding
model that can fairly represent students’ social attributes as latent vectors while being
competitive on link prediction accuracy. We evaluated the fair network embedding
(Fair-NE) model with existing widely adopted network embedding models—Node2Vec
(Grover & Leskovec, 2016) and FairWalk (Rahman et al., 2019). Details of these models
are discussed in the Methods section. The network embedding models were built to
power link prediction models in the discussion forum to recommend students who
are likely to connect with a particular help seeker. The results suggest that Fair-NE can
learn a fair representation of students, positively affecting link prediction’s fairness and
accuracy. This study marks a paradigm change from previous investigation and evalu-
ation about fair AI to proactively construct fair AI in education.

Background

Previous studies on AI-based peer recommenders in education

AI-based peer recommenders can be constructed twofold: (1) a link prediction approach
to suggest peers who are likely to establish connections with a target student through
graph theory, and (2) a student-modeling approach to recommend peers with similar
behaviors or backgrounds. The former provides a list of candidates for connections, and
the latter scores the candidates to allow further granular matching. For link prediction, a
majority of studies have used social network topologies such as node attributes (e.g.,
Hansen et al., 2019), edge attributes (e.g., Sunar et al., 2017), and community detection
(e.g., Yang et al., 2018) to construct models. For example, Hansen et al. included students’
closeness and betweenness centralities such as shortest connection length and involve-
ment in multiple subcommunities in the social network to improve link prediction per-
formance by 20%. Sunar et al. showed that the use of interaction strength in social
networks could enhance link prediction performance in MOOCs. They calculated the inter-
action strength based on the weighted frequency of interactions among students in the
discussion forum. Yang et al. (2018) extended Sunar et al. ‘s work and adopted time-series
models and social network’s topological features such as common neighborhoods to
have significantly improved link prediction’s performance in a MOOC discussion forum.

In terms of student modeling, researchers have examined a variety of attributes
such as learner profiles (e.g., Garg & Goel, 2021; Sun et al., 2020), learning behaviors
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(Xu & Yang, 2015), and learning progress (e.g., Bouchet et al., 2017) to recommend
peers highly similar in those aspects. For example, Garg and Goel used students’ demo-
graphic factors such as location, gender, and age to find similar peers on MOOCs. Sun
et al. built their peer recommender with the Big Five personality framework (Costa &
McCrae, 2008) to recommend peers with similar personality traits in an online learning
platform. Xu and Yang proposed to match students who were similar in terms of dis-
cussion forum behaviors using log and text data. Bouchet et al. built a recommender
that matched MOOC students with similar learning progress (e.g., modules learned and
videos viewed) and compared it with a demographic-based recommender. The results
suggested that students were more likely to accept recommendations and increase
interactions with the demographic-based recommender.

Network embedding for link prediction in education

The studies above on link prediction (Hansen et al., 2019; Sunar et al., 2017; Yang et al.,
2018) focused on the use of traditional SNA. However, recent works on link prediction
have suggested that using network embedding can be advantageous on both compu-
tational efficiency and predictive accuracy over traditional SNA (Nelson et al., 2019; Xu
et al., 2020). Network embedding uses deep neural networks to represent students’
social attributes in a graph with numeric vectors. Unlike traditional SNA, which repre-
sents students in a single dimension, network embedding encodes students’ character-
istics in a network with multidimensional representations, which can be used to
conduct further analysis in different angles: link prediction (e.g., peer recommenders,
Xiao et al., 2021), clustering (e.g., learning community detection, Wu et al., 2020), and
classification (e.g., domain knowledge acquisition, Abu-Salih et al., 2021).

Although the advantages of network embedding, such as superior predictive accur-
acy and versatile analysis, have been demonstrated in previous studies (Nelson et al.,
2019; Xu et al., 2020), only a few studies have examined the affordances of network
embedding in educational contexts (Chai et al., 2019; Xiao et al., 2021). Chai et al. uti-
lized network embedding to recommend potential empathizers in an online healthcare
community. Their results showed that the network embedding model could achieve
the best predictive accuracy among other benchmark models with SNA and user mod-
eling. Xiao et al. created a network embedding method that handled different types
of relationships for peer recommenders on MOOCs, and their results showed great
performance improvements over baseline models. Disregarding different methods to
build peer recommenders, most studies in education have focused mainly on improv-
ing recommenders’ predictive accuracy. In contrast, little has been done to evaluate
fairness and proactively reduce bias in educational AI systems. The following section
discusses the current landscape of fair AI in education.

Research on fair AI in education

Studies of fair AI have focused on discussing, evaluating, and reducing bias related to
AI algorithms. AI algorithms might be neutrally designed, but input data passed to
algorithms can be biased, thus causing algorithmic biases (Zimmer et al., 2019).
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Algorithmic biases are unwanted behaviors of algorithms that embed the hidden val-
ues of humans (Beer, 2017). Algorithmic biases in AI have been widely identified in
various fields. For example, van den Broek et al. (2020) found that hiring algorithms
could favor candidates with an outgoing personality, while in reality, the top perform-
ers in their sample were likely those with an introverted personality. Esteva et al.
(2017) found skin cancer diagnosis algorithms could be biased against dark-skinned
people, underestimating the chances of dark-skinned people developing skin cancer.
AI in education will not be warranted from algorithmic biases.

A recent educational research initiative on fair AI has concentrated on conceptualiz-
ing and assessing algorithmic bias, aiming to raise awareness of AI fairness in educa-
tional settings. For example, Kizilcec and Lee (2020) undertook an in-depth
examination of mathematical concepts on fairness that could be applied to educa-
tional research. They discussed the benefits and harms of the probabilities of AI mod-
els being able to correctly and incorrectly identify positive cases in educational
contexts. Building on Kizilcec and Lee’s study, Baker and Hawn (2021) discussed the
source of AI bias in education. They investigated that some types of bias could be
handled before and during data collection. Measurement bias, for example, can be
mitigated by ensuring construct validity. They also examined bias that could require
extra attention in AI model training: historical bias (e.g., using historically biased data
in combination with new data), aggregation bias (e.g., combining data from different
populations), and evaluation bias (e.g., evaluating models with unrepresentative sub-
samples). Instead of employing the ideas of fairness from a mathematical standpoint,
Marcinkowski et al. (2020) conducted a study to understand students’ perceptions of
AI fairness toward an AI-based college admission system. Their results revealed that
individual’s perceived fairness could greatly impact their opinions on applications to
the college and educational AI systems.

Other studies have evaluated whether AI models could meet their fairness criteria
in educational contexts. Riazy and Simbeck (2019) verified whether their AI models’
prediction accuracy differed for students with disabilities. They measured the models’
biases and discovered that the models had differing degrees of bias, whose prediction
accuracy was, however, satisfying. Similarly, Sha et al. (2021) examined the fairness of
AI-based classifiers that automatically categorized students’ forum posts in a learning
management system. They evaluated AI fairness against gender and language based
on the absolute between-ROC area (ABROCA) developed by Gardner et al. (2019).
ABROCA is the area between two receiver operating characteristic (ROC) curves from
subgroups (e.g., female and male). The results showed that most AI models favored
students whose first language was English. Hutt et al. (2019) also utilized ABROCA to
evaluate AI models’ fairness in predicting whether students would graduate on time,
from the perspectives of race and socioeconomic status. Their results suggested that
little bias could be detected in their AI models.

Research aim

Fairness challenges originating from AI models in educational contexts should receive
more attention as data-driven systems are increasingly adopted in K-12 and higher
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education to support teaching and learning (Kizilcec & Lee, 2020). Research of fair AI
in education has conducted extensive conceptual discussion and empirical evaluation
of AI fairness. However, little is known about what strategies researchers can adopt
proactively to reduce AI bias in education. This study aimed to create and evaluate a
fairness-aware algorithmic strategy to serve as the first step to inform studies on build-
ing fair AI-based peer recommenders for education. Specifically, we asked the research
question: To what extent can the Fair-NE model provide intelligence to support
help-seeking in a fair and accurate manner? Our hypothesis was that bias embedded
in data would lead to bias in fairness-unaware models trained with such data, while
fairness-aware models that specifically address data bias would achieve better fairness.
To explore the research question, we built three network embedding models using
existing solutions as well as ours and evaluated their representation fairness, predictive
accuracy, and predictive fairness.

Methods

Research context and data

Data collection in this study received Institutional Review Board approval from the
University of Florida. We collected data from the online math learning platform
Algebra Nation. A total of 500,000 students across six states use the platform every
year (University of Florida, n.d.). We randomly sampled 10,500 Algebra I learners from
the MySQL database of Algebra Nation along with all the posts generated by them
from 2015 to 2020. After removing students without demographic information and
their posts, the final dataset consisted of 187,450 discussion post-reply pairs by 10,182
students. Although Algebra Nation also offers other math courses such as Geometry
and Algebra II (University of Florida, n.d.), this study targeted Algebra I students
because this was the first course offered on Algebra Nation. A majority of students
enrolled in Algebra Nation took the Algebra I course; thus, making the study poten-
tially beneficial to many students. Of the participants, 48.21% (n¼ 4,909) were females
and 51.79% (n¼ 5,273) were males. In terms of race, 66.86% (n¼ 6,808) of Caucasian,
15.57% (n¼ 1,586) of Black or African-American, 7.13% (n¼ 726) of Asian, 1.10%
(n¼ 112) of American Indian, 0.17% (n¼ 17) of Hawaiian or other Pacific Islander,
4.70% (n¼ 479) of two or more races, and 0.11% (n¼ 11) of unspecified races.

Fairness comparison groups

There have been various reports on the underrepresentation of female and minority
students in the context of science, technology, engineering, and math (STEM) educa-
tion (Office of Civil Rights, 2016; Smith et al., 2013). Therefore, we chose to examine
the fairness of the peer recommender regarding gender and race. We further catego-
rized the race attribute into a binary value following the National Science Foundation
(2017) report on STEM education: overrepresented and underrepresented. Specifically,
we coded Caucasian and Asian students as overrepresented (n¼ 7,534). On the con-
trary, we coded students who were Black or African-American, American Indian,
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Hawaiian or other Pacific Islander, multiple racial identities, and unspecified races as
underrepresented (n¼ 2,648).

Fair network embedding and benchmarks

For the network embeddings, we benchmarked Fair-NE with Node2Vec (Grover &
Leskovec, 2016) and FairWalk (Rahman et al., 2019). Node2Vec was inspired by the
widely applied natural language processing algorithm Word2Vec (Mikolov et al., 2013).
Figure 1 demonstrates the learning process of Node2Vec to represent nodes with
numeric information compared to Word2Vec. Word2Vec represents words with
numeric vectors such that similar words (e.g., “love” and “enjoy”) or words that often
exist in the same context (e.g., “algebra” and “nation”) can be computed with high
similarities. The mechanism of Word2Vec helps machines understand and retain the
contextual meanings of data, which can also be adopted in social networks for encod-
ing nodes. Similarly, Node2Vec represents nodes (e.g., students) in a social network
with latent vectors to effectively capture information of similar nodes or nodes that
are (un)directly connected, thus understanding the relationship between nodes. In
Node2Vec, network nodes are analogous to words in Word2Vec. Node2Vec samples
sentences or sequences of nodes by iteratively selecting a starting node randomly, vis-
iting other connected nodes following the edges, and outputting the visited nodes as
a sequence when a predefined sequence length has been met. This sampling process
of node sequence is called random walk. Latent vectors of nodes are then extracted
from a neural network’s hidden layer trained with the constructed sequences of nodes.
Although Node2Vec is widely accepted in the network embedding community, it is
fairness-unaware. To help Node2Vec fairly encode students’ network information,
Rahman et al. (2019) proposed using FairWalk. FairWalk is almost identical to
Node2Vec except that its sampling strategy is modified to ensure that each node with
a specific sensitive attribute (e.g., race) has an equal chance of being selected.

Figure 1. Illustration of the learning mechanism of Node2Vec and FairWalk compared
to Word2Vec.
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Rahman et al. showed that the modified sampling of node sequences could help
achieve fairer results.

Fair-NE is different from Node2Vec and FairWalk in two ways. Firstly, we used a
Bayesian approach to solve for:

P GXð Þ ¼ PðXjGÞPðGÞ
PðXÞ (1)

where X is each node’s latent vector that can maximize the likelihood of seeing a
given network G’s structure (e.g., how nodes are connected). Table 1 explains the
notations used in Equation 1. Conceptually, the latent vector consists of coordinates of
network nodes in a high dimensional space (e.g., 50 dimensions). Although values in a
single dimension might not yield informative insights on nodes’ relationships, the
combination of values in multiple dimensions can distill knowledge about the neigh-
borhoods of each node (Nelson et al., 2019). The goal of Equation 1 is to iteratively
adjust the coordinate values of nodes such that researchers can be confident that
nodes will be connected in the way demonstrated in the training data. Latent vector
X is initialized with random values. Fair-NE will learn to adjust X repetitively to minim-
ize the distances between neighboring or connected nodes and to maximize the prob-
ability of reproducing the given network structure.

The possibility of defining a prior distribution allows the integration of individual or
external information into model learning. Thus, the latent vectors will need to repre-
sent only information not already captured by the prior distribution. For example,
researchers can inform Fair-NE how many neighbors and genders each student of a
specific gender is connected to and how many actual and potential connections each
gender has in general. Such information can be inferred from the network structure
using the existing discussion interaction data. The learned latent vectors in Fair-NE will
thus be greatly debiased as there is no need for the latent vectors to know students’
sensitive information. Fair-NE also adopts a different sampling strategy than Node2Vec
and FairWalk. In Node2Vec and FairWalk, negative samples (nodes that are not likely
to be connected) are drawn simplistically. Specifically, nodes that are outside a win-
dow (a sequence length defined by the researchers) will be sampled randomly as
negative. However, in Fair-NE, negative sampling is achieved with the robust negative
sampling strategy developed by Armandpour et al. (2019), which can yield better
predictive accuracy for link prediction.

Table 1. Explanations of the notations used in Equation 1.
Notations Explanations

PðGjXÞ :Posterior Probability distribution of seeing network G when latent vector X is known (or set
to a fixed value).

PðXjGÞ : Likelihood Probability distribution of latent vector X of different values when network G is
known. Conceptually, distances between nodes will be different as X changes.
This distribution can be interpreted as the probability distribution of pairwise
distance combinations.

PðGÞ : Prior Probability distribution of network G with different structures. This is defined by
users or inferred from data to provide knowledge of how densely connected a
network is and how many incoming and outgoing connections each node has.

PðXÞ : Marginal likelihood Probability distribution of latent vector X of different values. This can be calculated
with PðXjGÞ and PðGÞ:
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Fairness metrics

In this study, we examined fairness from two dimensions. First, we studied the repre-
sentation fairness of the latent vectors from network embeddings. We used represen-
tation bias (RB) to understand if sensitive attributes such as gender and race can be
predicted through the latent vectors. An ideal result would show that latent vectors
from network embeddings will provide little information on students’ gender and
race. We utilized balance score (BS) to determine whether clusters trained with the
latent vectors can fairly assign communities to students. We expected to see more bal-
anced communities with fairer models. Second, using equalized odds (EO) and
ABROCA, we investigated the predictive fairness of link prediction models that took
the latent vectors as input. For desirable predictive fairness, we expected that stu-
dents’ genders and races would not influence the link prediction model to under- or
overestimate their probabilities to connect. For example, it would not yield more cor-
rect connections for males than females. The following paragraphs discuss the metrics
for representation fairness and predictive fairness in detail.

RB
Zemel et al. (2013) defined RB as the area under the ROC curve, also known as AUC,
when using latent vectors to predict sensitive attributes (e.g., gender). A ROC curve
visualizes how the efficiency of prediction changes with different probability threshold
values, above which predictive models will yield positive prediction, otherwise nega-
tive. AUC measures predictive accuracy with a point value to allow a direct compari-
son between models. RB has been widely adopted in the fairness examination of
models that utilize latent vectors such as natural language processing (Caliskan et al.,
2017) and network embeddings (Bose & Hamilton, 2019). To evaluate RB, we used the
latent vectors of network embeddings as input to construct a classifier that predicts
students’ gender or race. Conceptually, latent vectors of network embedding models
are fair when RB is close to 0.5 since an AUC of 0.5 suggests a random classifier;
researchers cannot infer students’ sensitive information from latent vectors. Such
desensitized information can contribute to the fairness of spatial inference, such as
community detection with clustering techniques.

BS
Chierichetti et al. (2017) developed BS to indicate the fairness of clustering results. For
example, a fair cluster should have a female-to-male ratio close to 0.92 (e.g., 0.48:0.52)
if the female-to-male population ratio is 0.92. BS measures how well-proportioned are
binary values (e.g., female and male) of a demographic variable across multiple clus-
ters. Having such a fair representation of sensitive attributes such as race and gender
is vital to apply clustering results to support students’ learning (Quy et al., 2021). We
conducted clustering with students’ latent vectors and used BS to evaluate whether
fairness-aware models could contribute to achieving fair representation. Figure 2
demonstrates an example of calculating the balance score for clustering.
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EO
Hardt et al. (2016) defined EO to provide researchers with insights on predictive fair-
ness. Researchers can use EO to address individual fairness such that a predictive
model would yield similar results for students with a similar background. A variety of
AI fairness evaluation studies in education have adopted EO to help researchers iden-
tify the risk of AI bias (e.g., Li et al., 2021; Riazy & Simbeck, 2019; Yu et al., 2020).
Conceptually, a perfect EO suggests a model will not make more mistakes or correct
judgments for a specific demographic group. EO is formulated as:

P Ŷ ¼ 1jA ¼ 0, Y ¼ 1
� �

¼ P Ŷ ¼ 1jA ¼ 1, Y ¼ 1
� �

(2)

P Ŷ ¼ 1jA ¼ 0, Y ¼ 0
� �

¼ P Ŷ ¼ 1jA ¼ 1, Y ¼ 0
� �

(3)

where Ŷ is the predicted outcome of the model, Y is the ground-truth outcome from
the dataset, and A is the comparison group (e.g., gender). EO demands the same true
positive rate (TPR; see Equation 2) and false positive rate (FPR; see Equation 3)
between groups (e.g., female vs. male). However, achieving the same TPR and FPR can
be challenging in real life; therefore, we defined a scoring function of EO as:

c Ŷð Þ ¼ max FPRgroup1 � FPRgroup2
�� ��, jTPRgroup1 � TPRgroup2j

� �
(4)

taking the maximum between the absolute values of TPR differences and FPR differen-
ces between groups. In Equation 4, lower values indicate fairer results. A model might
yield the same percentage of wrong predictions for female and male students, which
might make it seem fair. However, researchers also need to check whether the model
shows a similar predictive correction rate between females and males. If there were a
great difference in the correction rate, the model would still be deemed biased.

ABROCA
Gardner et al. (2019) developed ABROCA to improve upon EO. Similar to EO, lower
ABROCA values suggest a similar TPR and FPR between groups, thus indicating fairer
results. However, EO requires a probability threshold to determine positive and nega-
tive predictions. Although the threshold of 0.5 is commonly used with AI models,
there are flexibilities of choosing different values (e.g., Esposito et al., 2021). ABROCA,
on the other hand, calculates the absolute area between two ROC curves, which con-
siders the predictive performance within the entire range of thresholds from 0 to 1.
ABROCA is the first AI fairness metric developed in the educational research

Figure 2. Balance score calculation.
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community and has been adopted in fairness evaluation studies in education (Hutt
et al., 2019; Sha et al., 2021). However, ABROCA has not yet attracted enough atten-
tion in the general fair AI community. Therefore, this study used both EO and ABROCA
to provide rich benchmarks for future studies.

Data analysis

Descriptive statistics
We first computed descriptive statistics on the discussion data to help us analyze if
the dataset might be biased. The descriptive statistics consisted of the distributions
of gender and race, the frequency of students’ interactions in gender and race,
and the communities that students have formed. We used network modularity to
detect communities of students to examine if students have formed communities
dominated by a specific gender or race. Modularity measured how densely were
student connected within a community and between communities, which has been
used in various educational studies on SNA (see the review of Phillips &
Ozogul, 2020).

Experimental setup for model training and evaluation
We set up an experiment to train and evaluate network embedding and link predic-
tion models. The experimental process is shown in Figure 3.

1. We split the post-reply pairs, namely, network edges, into training (n¼ 149,960)
and testing edges (n¼ 37,490). We then generated an equal number of negative
edges for testing and merged them with the testing positive edges, with a total
of 74,980 edges.

Figure 3. Experimental process.
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2. We used the training edges to allow Fair-NE, Node2Vec, and FairWalk to learn
latent vectors of network embeddings.

3. We then examined the representation bias of these latent vectors using a logistic
regression classifier.

4. We conducted k-means clustering with the latent vectors and calculated the clus-
tering balance scores accordingly. We tried the range from 2 to 20 as the number
of clusters to examine the relationship between clusters’ ability to partition stu-
dents and their balance scores. We then used the popular elbow method
(Kodinariya & Makwana, 2013) to determine the best number of clusters.

5. We built link prediction models with a logistic regression by using the latent vec-
tors from the three network embedding models as input (independent variable)
to predict the probability of other students connecting with a target student
(dependent variable).

6. We used AUC and accuracy to determine the link prediction models’ predictive
accuracy. A commonly used threshold of 0.5 was adopted to determine positive
and negative classes to calculate accuracy.

7. We used EO and ABROCA to determine the predictive fairness of the link predic-
tion models. We used 2,000 linearly interpolated values in the range of 0 to 1 as
the predictive thresholds to calculate EO, aiming to comprehensively understand
how different thresholds of yielding positive cases would affect EO.

Results

Descriptive statistics

Figure 4 shows the distribution of students’ gender and race. Figure 5 shows how fre-
quently students with different genders and races interact. The results showed that
students tended to connect with others who shared a similar demographic back-
ground. For example, there were 55,217 discussion interactions between female stu-
dents whose racial identity was overrepresented, greatly outnumbering students’

Figure 4. Distributions of gender and race in combination. Note. Blk or AFA¼ Black or African-
American; Pacific Islander¼Hawaiian or other Pacific Islander; Multi Races¼ two or more races;
Unknown¼ unstatedspecified.
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interactions with different demographic backgrounds. Figure 6 shows the communities
detected by network modularity, with nodes tinted by students’ gender and race.
Students within each community were densely connected, while they were relatively
loosely connected with students outside their community. Both Figure 6(a) and
Figure 6(b) have zoomed-in example communities dominated by students of a specific
demographic. It is interesting to note in Figure 6(a) that there were communities
whose members were dominantly male, given the similar proportions between
female (48.21%) and male (51.79%) students. A similar pattern applies to race
(see Figure 6(b)), where overrepresented students heavily interacted with other overre-
presented students.

Model evaluation

This section presents the results of the network embedding and link prediction mod-
els. First, we show the results of representation bias and clustering balance scores of
latent vectors. Then, we present the AUC and accuracy of the link prediction models.
Finally, we demonstrate the predictive fairness of the link prediction models with EO
and ABROCA.

Figure 5. Frequency of students’ discussion interactions through the lens of gender and race.
Note. F¼ females; M¼males; Under¼ underrepresented; Over¼ overrepresented.

Figure 6. Communities of students’ interactions on the discussion forum.
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Representation bias
Figure 7 shows the representation bias of the three network embedding models in
terms of gender and race. The boxplot showed that Fair-NE achieved the fairest repre-
sentation among the three models. The results showed that FairWalk was the least fair
when using race as the comparison group, meaning more information on students’
race was encoded in the latent vectors of FairWalk.

Clustering balance scores
Figure 8 shows the clustering results of the latent vectors regarding the clusters’
ability to partition students. In the analysis, the three models happened to have
the same best number of clusters of 5. Figure 9(a) shows the clustering balance
scores of gender, while Figure 9(b) shows those of race. In terms of gender, all
three models achieved the best balance score when there were two clusters (see
Figure 9(a)), while the second-best balance score was identified when there were
around 5 clusters. Interestingly, Fair-NE’s best balance score was located at 5 clus-
ters for race, while the balance scores of Node2Vec and FairWalk still peaked at 2
clusters (see Figure 9(b)). Generally, Fair-NE’s balance scores outperformed
FairWalk’s as we increased the number of clusters, with the gap between them
also increasing.

Figure 7. Representation bias of network embeddings in terms of gender and race. Note. Values
closer to 0.5 are fairer.

Figure 8. Elbow method results showing best numbers of clusters for network embeddings.
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Predictive accuracy of link prediction models
Table 2 shows the AUC and accuracy of the link prediction models using the latent
vectors of Fair-NE, Node2Vec, and FairWalk. All three models’ high values of predictive
accuracy showed that network embedding models could help predict students’ prob-
ability of connections accurately. Although Fair-NE did not achieve the best perform-
ance regarding AUC and accuracy, Fair-NE achieved comparable predictive accuracy
than its benchmarks.

Predictive fairness of link prediction models
Figure 10 shows the distributions of EO of link prediction models using different pre-
dictive thresholds. Within the threshold range of 0.4 and above, Fair-NE achieved
lower or comparable EO than FairWalk. The fairness advantage of Fair-NE was

Figure 9. Clustering balance scores of gender and race. Note. Values closer to the dotted purple
line, Balance from Data, suggest fairer representation.

Table 2. Predictive accuracy of link prediction models.
Models AUC Accuracy

Fair-NE 0.9821 0.9326
Node2Vec 0.9866� 0.9480�
FairWalk 0.9464 0.9450

Note. � denotes the best performance of a metric. Greater values indicate better predictive accuracy.

Figure 10. Equalized odds of link prediction models of gender and race at different thresholds.
Note. Lower values are fairer.
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apparent when compared with fairness-unaware Node2Vec. Figure 11 illustrates
the ABROCAs of link prediction models using gender as the comparison group, and
Figure 12 shows those when comparing race. The results showed that Fair-NE
achieved the smallest value of ABROCA when comparing gender, indicating the fairest
performance. However, FairWalk achieved the fairest result regarding race, with Fair-
NE still showing comparable results.

Discussion

Educational studies on AI-based peer recommenders have focused mainly on improving
predictive accuracy (e.g., Hansen et al., 2019; Sunar et al., 2017; Xiao et al., 2021), while
little has been done to examine the potential fairness issues of those systems. Recent
educational studies on AI have shown a burgeoning interest in creating accountable and
trustworthy intelligent learning systems. Some studies have conceptualized AI fairness in
education by operationalizing the definition of AI fairness in education using notions of
equality and equity (Kizilcec & Lee, 2020), introducing metrics to quantify AI fairness in
education (Kizilcec & Lee, 2020), and discussing the origins of AI bias as well as their
potential harms in education (Baker & Hawn, 2021). Other studies have empirically eval-
uated fairness of AI models applied in education such as automatic categorization of
online discussion posts (Sha et al., 2021), identification of academically at-risk students
(Riazy & Simbeck, 2019), and prediction of graduation time (Hutt et al., 2019). Although
AI bias was not always present in these evaluations, the researchers stressed the

Figure 11. ABROCA of link prediction models of gender. Note. Lower values are fairer.

Figure 12. ABROCA of link prediction models of race. Note. Lower values are fairer.
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importance of catering to AI fairness consciously. Educational studies on fair AI have laid
a solid foundation to help researchers conceptually understand AI fairness. However, few
have developed concrete strategies to proactively address AI bias in education. To the
best of our knowledge, this study is the first endeavor to provide actionable strategies to
mitigate the AI bias of peer recommenders in education.

Advantages of Fair-NE

We developed Fair-NE to provide recommendations for online peers to support help-
seeking. Fair-NE has the following advantages compared to the models evaluated in
this study.

First, Fair-NE was designed to be fairness-aware to address bias consciously.
Although FairWalk is also fairness-aware, it allows only one protected attribute, mean-
ing multiple FairWalk models are needed if both gender and race are protected
(Rahman et al., 2019).

Second, the Bayesian paradigm of Fair-NE indicates that the model can be updated
dynamically (K€onig & van de Schoot, 2018). For example, when conducting research
with new platforms, researchers or developers of educational peer recommenders
might start with small-sized data. Using Fair-NE, researchers can train with a limited
amount of data and then incrementally update the model’s knowledge with new data
effectively and efficiently. On the contrary, Node2Vec and FairWalk need to experience
a complete iteration of model training every time new data is available, which can be
resource-intensive and time-consuming.

Third, the Bayesian property of Fair-NE allows its users to apply personal insights
into the modeling process (Levy, 2016; Xing et al., 2021b). For example, training data
to build peer recommenders might not be representative of the distributions of stu-
dents’ demographics. In this case, researchers can incorporate their sources of informa-
tion (e.g., meta-analysis, governmental reports, and prior experience of platform
experts) in Fair-NE’s learning. In contrast, the other two models cannot achieve this.
Fair-NE’s ability to update knowledge incrementally and incorporate user-defined infor-
mation aligns with the construction of knowledge (Harel & Papert, 1991), whereas
Node2Vec and FairWalk adopt a paradigm that is based on the idea of punishment
from suboptimized predictive performance (Loftus & Madden, 2020).

Finally, Fair-NE adopts robust negative sampling to allow the model to understand
better why students in a dataset are not connected, which can enhance its predictive
accuracy (Armandpour et al., 2019). Studies have suggested that there can be trade-
offs between model accuracy and fairness (e.g., accuracy might need to be sacrificed
for fairness). However, such trade-offs can be mitigated with a careful model design
that efficiently utilizes available information (Islam et al., 2021). Table 3 organizes the
information on the comparison of Fair-NE, Node2Vec, and FairWalk.

Garbage in, garbage out

Garbage in, garbage out is widely seen across domains such as instructional design
(e.g., Snelbecker, 2018) and computer science (e.g., Vidgen & Derczynski, 2020). The
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principle suggests that the quality of output is heavily influenced by that of input
data, which also applies to the fairness of AI models in education. The results of
descriptive statistics showed that most of the interactions in our dataset happened
between students of the same demographic background (135,599 out of 187,450).
Inter-gender (n¼ 36,391) and inter-racial (n¼ 25,980) interactions each took less than
20% of the total number of interactions. The visualization of network communities of
students further suggests that students can form communities that are not inclusive
enough. Our hypothesis is supported by the fairness evaluation that such a dataset
would lead to bias in network embedding models. Results of fairness-unaware model
Node2Vec are consistently less fair regarding RB, BS, EO, and ABROCA. The finding
that data bias can be embedded in AI models is not news. Baker and Hawn (2021) dis-
cussed that the lack of representation of certain demographic groups in data could
lead to AI bias against them, which has been found in educational studies. For
example, studies have shown that AI could be biased against students with disabilities
(Riazy & Simbeck, 2019) or students whose first language is not English in a context
where English is used for communication (Sha et al., 2021). In our study, the noninclu-
sive interactions among students can make fairness-unaware model Node2Vec hold
the false causal assumption that connections between students with the same demo-
graphic factors should be prioritized. Fairness-aware models such as Fair-NE and
FairWalk, on the contrary, are designed to better identify the correlation between stu-
dents’ demographics and connection establishment, instead of mistakenly treating cor-
relation as causation.

Experiment of peer recommenders

The results of our experiment indicate that making AI models fairness-aware with
enhanced model learning mechanisms of prediction is essential to reducing the effects
of data bias while maintaining competitive accuracy. The results, to a great extent,
answered our research question of the affordances of fairness-aware network embed-
ding models on prediction fairness and accuracy. The low representation bias of Fair-
NE suggests that it can encode students’ information about gender and race
“agnostically.” Educational AI models such as peer recommenders built upon fair latent
vectors can learn to make predictions on students without being heavily affected by
students’ demographic factors (Bose & Hamilton, 2019). The better alignment of Fair-
NE’s balance scores suggests that clustering students with Fair-NE’s latent vectors can
result in groups that are fairly represented by demographic attributes. Interestingly,
the best number of clusters based on partition ability does not necessarily align with

Table 3. Comparison of Fair-NE, Node2Vec, and FairWalk.

Features
Models

Fair-NE Node2Vec FairWalk

Fairness-aware � �
Multiple protected attributes �
Incremental update �
Incorporation of personal beliefs �
Enhanced mechanism for predictive accuracy � �
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the numbers that yield good balance scores. This finding resonates with the findings
of Quy et al.’s (2021) study. They examined the fairness of clustering algorithms with
educational datasets and found inconsistent indications on best models between
accuracy and fairness. Moreover, the low EO and ABROCA scores of Fair-NE demon-
strate that link prediction models based on Fair-NE tend not to under- or overestimate
students of a specific gender or race regarding the probability of establishing connec-
tions with a student (Gardner et al., 2019; Kizilcec & Lee, 2020). Finally, Fair-NE can
achieve competitive predictive accuracy compared with Node2Vec (AUCFair-NE ¼ 0.982
vs. AUCNode2Vec ¼ 0.986) and better accuracy compared with FairWalk (AUCFair-NE ¼
0.982 vs. AUCFairWalk ¼ 0.946), suggesting the trade-off between fairness and accuracy
can be well balanced in Fair-NE.

Implications for practice

There are three main implications of this study for practitioners and researchers imple-
menting AI-based peer recommenders to support online learning.

First, prepare and scrutinize datasets used in building peer recommenders with
group membership to better understand potential data bias. Educational studies on AI
have carefully prepared datasets from the perspective of statistical power using meth-
ods such as power analysis and missing data imputation (e.g., Larmuseau et al., 2020;
Li & Xing, 2021), with few studies putting enough weight on using students’ group
membership such as demographics for analysis (Paquette et al., 2020). In this study,
we were able to identify potential issues of noninclusive communities among students
and used the information to yield possible explanations on the bias presented in fair-
ness-unaware model Node2Vec. Similar strategies have been successfully adopted to
understand datasets used for automated essay scoring (Loukina & Buzick, 2017) and
academic success prediction (Yu et al., 2020). Therefore, collecting data on students’
group membership and analyzing datasets with such information are essential to
uncover data bias and understand where bias occurs (Baker & Hawn, 2021).

Second, adopt a methodological shift in AI in education from solely focusing on
predictive accuracy to stressing the importance of both fairness and accuracy. In this
study, we synthesized a variety of fairness metrics and developed a new algorithmic
strategy to evaluate and mitigate AI bias of peer recommenders. The desirably fair and
comparably accurate performance of Fair-NE suggests that there can be a methodo-
logical shift in AI in education, where more efforts are put into building accountable
and trustworthy AI systems. As pointed out by Pedro et al. (2019), while AI is trans-
formative in education, it can also be disruptive in that biased AI can favor existing
privileged students. Such a standpoint is also held by Vincent-Lancrin and Van der
Vlies (2020). They argued that AI bias is a great threat to AI’s sustainability in educa-
tion, potentially further dividing society. Furthermore, addressing AI fairness is the pre-
requisite for trust-building between students and AI. Tsai et al. (2020) interviewed
students on their opinions of AI-based educational systems. Their results showed that
the opaqueness of AI fairness is one of the biggest reasons students distrusted AI.
Therefore, educational researchers should adopt the techniques of fair AI in their
exploration and application with AI systems.
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Third, keep scalability in mind when adopting or developing AI models to build
peer recommenders. Results in this study suggest that existing fairness-aware models
such as FairWalk can contribute to retaining fairness effectively. However, it might not
be as scalable as Fair-NE. In large online contexts such as MOOCs with hundreds of
thousands of students, the need to train multiple FairWalk models to cater to different
sensitive attributes can be unbearable, especially as the size of data and number of
protected attributes increase. Moreover, the lack of incremental update of FairWalk
makes it challenging to perform cold start (e.g., the application of models with a small
data size), thus making it unwieldy at the beginning of course offering (Xing et al.,
2021a). On the other hand, Fair-NE allows researchers to incorporate information from
previous course offerings to gradually finetune the model as the course proceeds.
Therefore, it is advisable to evaluate AI models’ scalability before implementing appli-
cations such as peer recommenders for actual use.

Limitations

There are several limitations in this study. First, the fairness of the peer recommenders
was evaluated mathematically. However, equity in AI for education is more than satisfy-
ing fairness metrics (Kizilcec & Lee, 2020). For example, an AI model might yield similar
or equal predictive correction and false alarm rates for students with different group
memberships. However, it is possible that the knowledge gap between advanced and
academically at-risk students can be widened after using AI systems. The effectiveness
of AI systems to support students’ learning can be associated with students’ self-regula-
tion skills and self-efficacy, which students in need of academic help often lack (Walker
& Graham, 2021; Yokoyama, 2019). Having tools to address AI is the first step to transit
from fairness to equity in AI for education (Baker & Hawn, 2021), this study developed
concrete strategies that researchers can adopt to evaluate and enhance fairness of AI-
based peer recommenders. Future studies could utilize fairness-aware models to exam-
ine their effect on supporting students’ learning to understand the equity affordances
of AI. Second, this study focused on building peer recommenders with link prediction
as an initial step. To build more complex peer recommenders, strategies to address AI
fairness in user-modeling approaches are needed. The use of user-modeling can intro-
duce individual differences through the analysis of rich-format data such as trace data.
Future studies could consider individual fairness when constructing fair peer recom-
menders using a user-modeling approach. Individual fairness requires that students
with similar backgrounds should have similar predictions from AI models (Kizilcec &
Lee, 2020). Finally, we included only data of students in Algebra I. However, Algebra
Nation also offers courses such as Geometry (University of Florida, n.d.), where learning
contexts and discussion results can differ. Future studies could examine Fair-NE’s gener-
alizability with data from diverse course contexts.

Conclusions

Help-seeking is a valuable practice in online discussion forums. This study created a net-
work embedding approach towards building a fair peer recommender to support help-
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seeking in online learning. The findings suggest that learners can be supported with
help-seeking suggestions both accurately and fairly in online discussion forums at a
large scale. The study also enriches the literature on fair AI by extending conceptual dis-
cussion and evaluation studies of AI fairness in education and developing concrete algo-
rithmic strategies to improve fairness in building peer recommenders. We have several
directions for future research. First, AI fairness could also be evaluated to reveal stu-
dents’ individual opinions on the trustworthiness and accountability of AI (Marcinkowski
et al., 2020). Currently, there is not enough evidence revealing the relationship between
model fairness and perceived fairness. We plan to integrate Fair-NE, Node2Vec, and
FairWalk on Algebra Nation to examine whether students’ perceived fairness on AI is
affected by algorithmic bias. We also plan to collect empirical data to understand
whether fairness-aware models can effectively support students’ learning compared
with fairness-unaware models, which tend to have better predictive accuracy. Second,
statistical tests on fairness metrics are currently missing in the literature. It is challenging
for researchers to determine whether one model’s fairness is significantly different from
another. We plan to develop a statistical test to inform researchers whether significant
differences exist among AI models. Third, AI models’ transparency is as equally import-
ant as its fairness. We will adopt explainable AI techniques to help researchers and stu-
dents open the black box of AI-based peer recommenders and understand the role of
AI explainability on contributing to human-AI collaboration.
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