
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hsbi20

Biodemography and Social Biology

ISSN: 1948-5565 (Print) 1948-5573 (Online) Journal homepage: https://www.tandfonline.com/loi/hsbi20

Genetic nature or genetic nurture? Introducing
social genetic parameters to quantify bias in
polygenic score analyses

Sam Trejo & Benjamin W. Domingue

To cite this article: Sam Trejo & Benjamin W. Domingue (2018) Genetic nature or genetic nurture?
Introducing social genetic parameters to quantify bias in polygenic score analyses, Biodemography
and Social Biology, 64:3-4, 187-215, DOI: 10.1080/19485565.2019.1681257

To link to this article:  https://doi.org/10.1080/19485565.2019.1681257

Published online: 18 Dec 2019.

Submit your article to this journal 

Article views: 523

View related articles 

View Crossmark data

Citing articles: 15 View citing articles 



Genetic nature or genetic nurture? Introducing social genetic
parameters to quantify bias in polygenic score analyses
Sam Trejo and Benjamin W. Domingue

Graduate School of Education, Stanford University, Stanford, CA, USA

ABSTRACT
Results from a genome-wide association study (GWAS) can be used to
generate a polygenic score (PGS), an individual-level measure summar-
izing identified genetic influence on a trait dispersed across the gen-
ome. For complex, behavioral traits, the association between an
individual’s PGS and their phenotype may contain bias (from geo-
graphic, ancestral, and/or socioeconomic confounding) alongside the
causal effect of the individual’s genes. We formalize the introduction of
a different source of bias in regression models using PGSs: the effects of
parental genes on offspring outcomes, known as genetic nurture. GWAS
do not discriminate between the various pathways through which
genes become associated with outcomes, meaning existing PGSs cap-
ture both direct genetic effects and genetic nurture effects. We con-
struct a theoreticalmodel for genetic effects and show that the presence
of genetic nurture biases PGS coefficients from both naïve OLS
(between-family) and family fixed effects (within-family) regressions.
This bias is in opposite directions; while naïve OLS estimates are biased
away from zero, family fixed effects estimates are biased toward zero.
We quantify this bias using two novel parameters: (1) the genetic
correlation between the direct and nurture effects and (2) the ratio of
the SNP heritabilities for the direct and nurture effects.

Introduction

Genomics & the Social Sciences

Spurred by the plummeting cost of DNA sequencing and technological developments in
processing large amounts of genetic data, researchers have made great strides in connecting
genes to biological and social outcomes in a replicable manner. The key tool is the genome-
wide association study (GWAS); a GWAS uses genotype and phenotype data from many
individuals to probe the relationship between a given trait and thousands of regions of the
genome (Pearson and Manolio 2008). GWAS are conducted on a wide variety of outcomes,
ranging from proximal, biological phenotypes, such as blood pressure (Giri et al. 2019) and
height (Yengo et al. 2018a), to distal, behavioral phenotypes, such as depression (Hyde et al.
2016; Okbay et al. 2016) and educational attainment (Lee et al. 2018).

Findings from GWAS are often used to generate a predictor – a polygenic score
(PGS) – meant to summarize an individual’s genetic predisposition for a given trait.
PGSs offer great promise to social scientists interested in incorporating genes into

CONTACT Sam Trejo samtrejo@stanford.edu Graduate School of Education, Stanford University, Stanford, CA, USA
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hsbi.

BIODEMOGRAPHY AND SOCIAL BIOLOGY
2018, VOL. 64, NOS. 3–4, 187–215
https://doi.org/10.1080/19485565.2019.1681257

© 2019 Society for Biodemography and Social Biology



biosocial models of human behavior (Belsky and Israel 2014). In the short term, PGSs may
be used as control variables in studies of environmental effects (Rietveld et al. 2013), used
in gene–environment interaction studies to probe whether genetic effects are environmen-
tally contingent (Barcellos, Carvalho, and Turley 2018; Papageorge and Thom 2017; Trejo
et al. 2018), and used to better understand how genetic factors influence developmental
processes (Belsky et al. 2013, 2016). In the long run, PGSs might be used to identify those
who would benefit most from early medical or educational interventions (Torkamani,
Wineinger, and Topol 2018) i.e., for a developmental disorder like dyslexia.

The Problem of Confounding

A point of emphasis is that the same technique, GWAS, is being used to map the genetic
architecture of a diverse set of phenotypes. It is not obvious that the methodology used to
identify the underlying genetics of proximal, biological phenotypes can be deployed without
side effect to interrogate the genetics of complex, socially contextualized phenotypes.
Especially in the case of traits like depression and educational attainment, it is critical that
existing GWAS results be interpreted cautiously (Martschenko, Trejo, and Domingue 2019);
while PGSs have been shown to predict complex phenotypes, they capture a broad range of
information and therefore the associations between an individual’s PGS and their downstream
outcomes cannot be readily interpreted as the causal effect of genes. An individual’s genome
contains fine-grain information about their place in the intricate structure of a population
(Hamer and Sirota 2000; Novembre et al. 2008), meaning that GWASs for complex traits may
inadvertently identify genes related to confounding environmental variables such as ancestry,
geography, or socioeconomic status.

Recent work in human studies has begun to elucidate a novel source of confounding:
social genetic effects (Domingue and Belsky 2017). Social genetic effects, also known as
indirect genetic effects, are defined as the influence of one organism’s genotype on
a different organism’s phenotype. The idea of social genetic effects originated in evolu-
tionary theory (Moore, Brodie, and Wolf 1997; Wolf et al. 1998), and social genetic effects
have been observed in animal populations (Baud et al. 2018; Bergsma et al. 2008; Canario,
Lundeheim, and Bijma 2017; Petfield et al. 2005). Social science is now beginning to study
such effects in human populations; examples include among social peers (Domingue et al.
2018; Sotoudeh, Mullan, and Conley 2019), sibling pairs (Cawley et al. 2017; Kong et al.
2018), and parents and their children (Armstrong-Carter et al. 2019; Bates et al. 2018;
Kong et al. 2018; Wertz et al. 2018). Genetic nurturance refers to the social genetic effect
that parents have on their children. The existence of within-family social genetic effects,
like genetic nurture effects, complicates attempts to derive causal estimates from GWAS.

For recent breakthroughs in the genetic architecture of complex traits to provide novel
insights to researchers in the biomedical and social sciences, the relationships discovered in
a GWAS must mostly reflect causal relationships between an individual’s genes and their
phenotype. If, for example, the genes identified for a complex trait predict it only through
spurious correlation, PGSs will provide little use toward broadening our understanding of
genetic and environmental influences. Thus, validating PGSs within families is vitally impor-
tant for sifting out causation from correlation among the genetics identified in GWASs of
complex traits (Belsky et al. 2018; Domingue et al. 2015; Lee et al. 2018; Rietveld et al. 2014).
Environmental differences are muted between siblings and, conditional on parental genotype,
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child genotype is randomly assigned through a process known as genetic recombination
(Conley and Fletcher 2017). This makes family fixed effect regression models that compare
genetic differences in siblings to phenotypic differences in siblings the gold standard for
testing and understanding whether genes are causally related to downstream outcomes.
Within-family research designs, however, are not without their own complications. Genetic
nurture may lead to bias in estimates derived from within-family studies, though the extent of
this bias has not yet been explored.

Accounting for Genetic Nurture

In this paper, we describe how genetic nurture influences PGS construction and can
introduce bias into within-family and between-family regression analyses using PGSs.
We construct a theoretical model for additive genetic effects and show that, unlike other
sources of bias in PGSs, the presence of genetic nurture can bias PGS coefficients from
both naïve OLS (between-family) regressions and family fixed effects (within-family)
regressions. We quantify the magnitude of this bias for a given trait using two novel
parameters: (1) the genetic correlation between the direct and nurture effects and (2) the
ratio of the SNP heritabilities for the direct and nurture effects. Bias is in opposite
directions; whereas naïve OLS estimates are biased upwards, family fixed effects estimates
are biased downwards. These findings highlight a shortcoming of existing PGSs and have
important implications for the use and interpretation of research designs using PGSs for
traits where genetic nurture is a relevant causal pathway.

Empirical Motivation

Empirical Model

We motivate our theoretical framework by first considering the empirical specifications
used in recent work (Belsky et al. 2018; Domingue et al. 2015; Lee et al. 2018). Consider
the following two models relating an individual’s PGS constructed from recent GWAS
results (dPGS0Dij ) to their outcome (Yij):

Model 1 : Yij ¼ ψ̂0 þ ψ̂1
dPGS0Dij þ XijbΘþ �ij

Model 2 : Yij ¼ π̂0 þ π̂1dPGS0Dij þ XijbΘþ Γ j þ �ij
(2a:i)

dPGS0Dij : Normalized PGS constructed from the observed linear relationship
between genotype and outcome
Yij : Outcome for individual i in family j
Γ j : Family j fixed effect
Xij : 12� 1 vector of covariates comprised of sex; age; and the first 10 principal
components of genotype

Model 1 treats individuals as though they are unrelated whereas Model 2 compares
siblings using a family fixed effect. Thus, Model 1 leverages covariation in Yij and dPGS0Dij
between individuals from different families while Model 2 compares individuals in the
same family. In effect, Model 2 asks whether sibling differences in PGS translate into
sibling differences in the outcome.
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Unresolved Questions

We consider a brief empirical example to motivate scrutiny of between- versus within-
family findings. Table 1 displays results from Model 1 and Model 2 using data from the
National Longitudinal Study of Adolescent to Adult Health (Harris et al. 2019) for six
phenotypes: educational attainment (Lee et al. 2018), cognitive ability (Lee et al. 2018),
depressive symptoms (Turley et al. 2018), birth weight (Warrington et al. 2019), body
mass index (Locke et al. 2015), and height (Wood et al. 2014). We further discuss the Add
Health data and PGS construction in Sections A1 and A2 of the Appendix.

In Table 1, a one standard deviation increase in the educational attainment PGS is
associated with an additional 0.8 year of schooling between-families (ψ̂1) but less than half
of that within-families (π̂1). If we compare the six phenotypes, the relative size of ψ̂1 and
π̂1 (as captured by their ratio) varies dramatically. For years of schooling and cognitive
performance, bootstrapped p-values show that the differences seen within and between-
family are statistically significant (i.e. ψ̂1�π̂1). These findings are consistent with those
from other data; using data from the United Kingdom, similar analyses found that PGS
coefficients for cognitive traits were on average 60% greater between families than within-
families (Selzam et al. 2019). In both cases, there was no evidence for differences between
within- and between-family results for non-cognitive traits.

What drives differences between ψ̂1 and π̂1? One possibility is that the between-family
models are confounded while the within-family models capture the true causal effects of
the PGS. Alternatively, it may be that some of the processes captured by GWAS function
differently within-families versus between-families (genetic nurturance, sibling spillovers,
niche formation, etc.). Answering this question requires a formal treatment so as to parse
differences between ψ̂1 and π̂1 across phenotypes. Our theoretical model, developed below,
suggests that bias in both ψ̂1 and π̂1 may depend in part on two novel parameters: (1) the

Table 1. The association between polygenic score and observed trait for six phenotypes, within-families
and between-families.

ψ̂1 π̂1
π̂1
ψ̂1 p ψ̂1 ¼ π̂1

� �
Years of Schooling 0.81** 0.35** 0.44 <0.01
Cognitive Ability 3.16** 1.70** 0.54 0.02
CESD Depression Index 0.13** 0.06 0.42 0.25
Birth Weight 3.10** 3.26* 1.05 0.91
Body Mass Index 2.01** 2.34** 1.17 0.59
Height 2.50** 2.51** 1.00 0.97

* 0.05 ** 0.01 . All models control for sex, age, and the first 10 principal components of individual genotype. All models use
only individuals of European ancestry. Models without individual-fixed effects use a sample of unrelated individuals,
whereas the family-fixed effect models use a sample of sibling pairs. The sample of unrelated individuals contains one
randomly selected sibling from each pair. All polygenic scores are standardized within sample to be mean 0 and standard
deviation 1. Cognitive ability is measured through the Peabody Picture Vocabulary Test during Wave 1 of Add Health,
when respondents were approximately 16 years old. Birth weight is retrospectively reported by respondents’ parents
during Wave 1 of Add Health. Years of schooling, CESD depression index, body mass index, and height are measured
during Wave 4 of Add Health, when respondents were approximately 28 years old. Height is reported in centimeters,
birth weight is reported in ounces, and cognitive ability is reported in IQ score points. The CESD depression index is
normalized within sample to be mean 0 and standard deviation 1. A traditional regression table is available in Section
A12 of the Appendix. P-values for the test that ψ̂1 ¼ π̂1 were calculated through bootstrap resampling with replacement
simulated with 1000 repetitions.
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underlying genetic correlation of direct and nurture effects and (2) the ratio of the SNP
heritabilities for direct effects and nurture effects.

Theoretical Model

Direct Genetic Effects and Genetic Nurture Effects

Historically, biosocial analyses have modeled complex traits as a function of both direct
genetic effects and environment influences on an individual. Motivated by recent work
highlighting the relevance of genetic nurture effects (Bates et al. 2018; Belsky et al. 2018;
Kong et al. 2018; Wertz et al. 2018), we extend this model to include the genes of an
individual’s parent. Thus, we assume the outcome Yij is a function of individual i’s
genotype, the genotypes of the parents in family j, and distinct individual-level and family-
level environments. We choose to have a common effect of parental genetics at a given
locus, instead of separate maternal and paternal effects, given the current lack of strong
empirical evidence of differences across parents (Kong et al. 2018). Note also that
environmental components are defined as the strictly non-genetic sources of variation
in Yij. In other words, an environment influences a child’s outcome irrespective of their or
their parents’ genotype. To the extent that family-level features of a child’s environment
are a result of their parents’ genotype (i.e. some portion of a family’s socioeconomic
status), they are captured by terms involving parental genotype.

Yij ¼ β0 þ f Gij
� �þ f Gj

� �þ f Eij
� �þ f Ej

� �þ �ij (3a:i)

f ðGijÞ : Effect of i0s genome on Yij

f ðGjÞ : Effect of family j0s genome on Yij

f Eij
� �

: Effect of i0s environment on Yij

f Ej
� �

: Effect of family j0s environment on Yij

We make three important assumptions to simplify the exposition of this model: no gene–
environment interaction, no gene–environment correlation, and no assortative mating (see
Section A3 of the Appendix for additional details regarding these assumptions). We consider
the likely implications of violations for our results in the Discussion. While our model is
simplistic, it illustrates the key empirical phenomenon of interest; these higher-order features
of the real world should not change the key implications derived from our model.

True Polygenic Scores

Complex, behavioral traits are associated with many genes across the genome that simulta-
neously produce very small effects (Chabris et al. 2015; Visscher et al. 2017). To increase
statistical power and simplify computation, researchers often summarize the relevant genetics
of individual i into a single linear predictor called a PGS (Dudbridge 2013). This has become
a widely utilized technique (Duncan et al. 2019) and standard usage relies on the assumptions
that genetic effects are linear and additive. Recent meta-analyses of twin studies support the
linear, additive model for genetic effects (Polderman et al. 2015). For the remainder of the
paper, we approximate f Gij

� �
and f Gj

� �
in our theoretical model (3a.i) using PGSs that

summarize information over n independent genetic loci.
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f Gij
� � � Xn

z¼1

αzgzij ¼ PGSDij

f Gj
� � � Xn

z¼1

δzgzj ¼ PGSNj

(3b:i)

αz : True causal effect of a one allele change at i0s genetic locus z on Yij

δz : True causal effect of a one allele change at either parent in family j0s genetic locus z
on Yij

gzij : Total number of risk alleles at i0s genetic locus z 0; 1; or 2ð Þ
gzj : Total number of parental risk alleles in family j at genetic locus z 0; 1; 2; 3; or 4ð Þ
PGSDij : PGS constructed from the true casual linear effect of i’s genes on Yij

PGSNj : PGS constructed from the true casual linear effect of the parents in family j’s genes
on i’s Yij

Notice that α is the vector of causal allelic weights used to construct the true, under-
lying PGS for direct genetic effects. In the same vein, δ is the vector of causal allelic
weights used to construct the true, underlying PGS for genetic nurture effects. Note that
both α and δ are structural parameters that are never empirically observed.

α ¼
α1

α2

..

.

αn

2664
3775 δ ¼

δ1

δ2

..

.

δn

26664
37775 (3b:ii)

α : n� 1 vector of the true causal effects of a one allele change at i0s genetic locus
z on Yij

δ : n� 1 vector of the true causal effects of a one allele change at a parent in family
j0s genetic locus z on Yij

We can now rewrite our theoretical model (3a.i) using PGSs.

Yij ¼ β0 þ β1PGS
D
ij þ β2PGS

N
j þ f Eij

� �þ f Ej
� �

(3b:iii)

Notice that, because PGSDij and PGSNj are not standardized, an individual’s value for PGSDij
and PGSNj represents the true effect of their genes and their parents’ genes, respectively, on Yij

in the units of Yij. Thus, β1 and β2 are both equal to 1 by construction and Equation 3b.iii can
equivalently be written as:

Yij ¼ β0 þ PGSDij þ PGSNj þ f Eij
� �þ f Ej

� �
(3b:iv)

Transmitted Genetic Nurture Alleles

The presence of social genetic effects, such as genetic nurture effects, will only bias GWAS
estimates of direct genetic effects when a social or biological process induces a correlation
between the genetics of an individual and the genetics of his or her relevant social relation-
ships. In the case of genetic nurture effects, biological recombination acts as such a process;
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children randomly inherit half of each parent’s genome, leading to a mechanical correlation
between parental genetics and child genetics. To capture the portion of the genetic nurture
PGS that was transmitted to individual i in family j from their parents, we introduce a third
PGS parameter, PGSNij , that is absent from our formal model that determines outcomes.Xn

z¼1

δzgzij ¼ PGSNij (3c:i)

PGSNij : PGS constructed from the true causal linear effect of i’s genes on i’s child’s Y

PGSNij is constructed using aspects of both PGSDij and PGSNj , the two PGSs correspond-
ing to the two causal sources of genetic effects present in our theoretical model. Like
PGSDij , PGS

N
ij is constructed using gij (as opposed to gj) and therefore varies within-families.

However, like PGSNj , PGS
N
ij is constructed using the allelic weights δ, which correspond to

genetic nurture effects (as opposed to direct genetic effects).
The relationship PGSNij and PGSNj hinges on the relationship between gij and gj. Because the

alleles transmitted from parent gj to child gij are determined stochastically through genetic
recombination, we can compute the correlation between gij and gj. This, in turn, leads us to the
correlation between the relevant polygenic scores (see Section A4 of the Appendix).

ρPGSNij ; PGSNj
¼

ffiffiffi
2

p

2
(3c:ii)

Note that this quantity does not vary between traits; this is due to the fact that same
vector of allelic weights is used to construct both PGSNij and PGSNj and differences are due
entirely to the trait-independent recombination of parental alleles.

The Relationship between Direct Genetic Effects and Genetic Nurture Effects

While PGSNij is absent from our underlying theoretical model, it provides the link between
PGSDij and PGSNj that allows for the presence of genetic nurture effects to distort GWAS

results and subsequent PGS analysis. Thus, crucial elements of our theoretical model are
relationships between PGSDij and PGSNij and between PGSNij and PGSNj . As we have seen

above, PGSNij and PGSNj have a mechanical correlation that does not vary between traits as

it depends only on genotype (and not allelic weights). However, any differences between
PGSDij and PGSNij are a result of differences between allelic weights used to construct each

PGS (α and δ, respectively). Because α and δ vary across traits, relationship between PGSDij
and PGSNij also vary between traits. We term the correlation between PGSDij and PGSNij for

a given trait the direct-nurture genetic correlation.

ρg ¼
cov PGSDij ; PGS

N
ij

� �
var PGSDij

� �1
2
var PGSNij

� �1
2

(3d:i)

ρg : Correlation between genetic nurture effects and direct genetic effects
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In general, we expect the direct-nurture genetic correlation to be positive. To describe the
relevant intuition, consider the case of educational attainment. Presumably, some genetic
pathways that lead a parent to create an environment conducive to their child succeeding in
school will also have impacted the parent’s schooling. However, there may also exist genetic
pathways that contribute to a parent’s ability to create a positive educational environment for
their children that do not influence the amount of educational attainment that the parent
themselves received. In a related vein, recent evidence (Warrington et al. 2019, Figure, 2)
suggests that the maternal genes that predict fetal birthweight also predict an individual’s
educational attainment whereas the fetal genes that predict birthweight are unrelated to those
genes that predict educational attainment. Based on this logic, we expect direct genetic effects
and genetic nurture effects to have a correlation of less than 1.While this value could in fact be
negative, existing evidence suggests that ρg is typically positive (Armstrong-Carter et al. 2019;
Bates et al. 2018; Belsky et al. 2018; Kong et al. 2018; Wertz et al. 2018).

Underlying Allelic Weights

Wenow turn to a discussion of αz and δz. In the course of this discussion, we will show that ρg
from Equation 3d.i is a critical structural parameter of our theoretical model. We first discuss
αz. Allelic weights αz (z 2 1 . . . nf g) are taken from a distribution with variance σ. Without
loss of generality, we define a “risk” allele at each genetic locus z such that this distribution has
mean 0. Turning to δz, we assume that δ are drawn from an identical distribution as α, except

with variance λ2

4 σ. Note that this is related to the variance of the α distribution but scaled by
a parameter λ; this allows for the average effects sizes to differ between direct genetic effects
and genetic nurture effects. Finally, we assume that genetic nurture effects and genetic nature
effects have a similar genetic architecture such that α are δ distributed identically across
genetic loci with respect to the mean and variance of the risk allele frequencies. See Section A6
of the Appendix for a formal treatment of this assumption.

The assumptions of our theoretical model entail that λ represents the ratio of the SNP
heritabilities of genetic nurture effect and direct genetic effects (see Section A7 of the
Appendix). We call this value the direct-nurture heritability ratio.

λ ¼ 2
Pn

z¼1ðδzgzijÞPn
z¼1ðαzgzijÞ

¼ h2N
h2D

(3e:i)

λ : Ratio of the SNP heritabilities of genetic nurture effects and direct genetic effects
h2D : SNP heritability for direct genetic effects of Yij

h2N : SNP heritability for genetic nurture effects of Yij

Without loss of generality, we normalize all variables such that the variance of PGSDij is
equal to one.

var PGSDij
� �

¼ 1 (3e:ii)

We can now use our theoretical model to derive the variance of the remaining PGSs as
a function of the direct-nurture heritability ratio (see Sections A8 and A9 of the
Appendix).
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var PGSNij
� �

¼ λ2

4

var PGSNj
� �

¼ λ2

2
(3e:iii)

Using these derivations, we can now gain insight into the implications of genetic
nurture effects for GWAS and PGSs.

Analytic Results

Observed PGS

Up until this point, all our work has been theoretical; we have defined the functional form
of a set of causal relationships between underlying parameters of interest which are
difficult to observe directly. We now transport our theoretical model into the real world
and consider its implications for GWAS and subsequent PGSs. In reality, we observe not

α but bα: We then use this observed bα to construct not PGSDij but dPGSDij , which, as we will
see, contains information from both PGSDij and PGSNij .

We obtain bα by fitting the following regression for n SNPs via GWAS.

Yij ¼ β̂z0 þ α̂zgzij þ XijbΘþ �ij (4a:i)

α̂z : Allelic weight from the observed linear relationship of a one allele change at i0s
zth gene and Yij

We can now plug in from our theoretical model (3b.iv) to derive how the estimator for
each allelic weight is impacted by omitted variable bias (Wooldridge 2015, Chapter, 3).

α̂z ¼
var gzij

� �
αz þ cov gzij; g

z
j

� �
δz

var gzij
� � (4a:ii)

To further analyze this expectation, we can separate gzj into the sum of alleles that were
transmitted to i and the alleles that were not transmitted.

gzj ¼ gzij þ f zij (4a:iii)

f zij : Total number of risk alleles at the parents in family j0s genetic locus z that were
not transmitted to i 0; 1; or 2ð Þ
Thus yielding:
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α̂z ¼
var gzij

� �
αz þ cov gzij; g

z
ij þ f zij

� �
δz

var gzij
� �

α̂z ¼
var gzij

� �
αz þ cov gzij; g

z
ij

� �
δz þ cov gzij; f

z
ij

� �
δz

var gzij
� �

(4a:iv)

In the absence of assortative mating, transmitted alleles are uncorrelated with non-
transmitted allele, meaning that cov gzij; f

z
ij

� �
¼ 0.

α̂z ¼
var gzij

� �
αz þ cov gzij; g

z
ij

� �
δz

var gzij
� �

α̂z ¼
var gzij

� �
αz þ var gzij

� �
δz

var gzij
� �

E α̂z½ � ¼ E
var gzij

� �
αz þ var gzij

� �
δz

var gzij
� �

24 35
E α̂z½ � ¼ αz þ δz

(4a:v)

We can already see that the estimated allelic weights bα intermingle both α and δ. As

a result, the quantity typically used for analysis, dPGSDij , will contain information about both

the direct genetic effects and the genetic nurture effects (4a.vi). We can see this by using bα
to construct our observed direct genetic PGS, dPGSDij .

dPGSDij ¼ Xn
z¼1

α̂zgzij

E dPGSDijh i
¼ E

Xn
z¼1

α̂zgzij

" #

E dPGSDijh i
¼

Xn
z¼1

αz þ δzð Þgzij

E dPGSDijh i
¼ PGSDij þ PGSNij

(4a:vi)

Finally, constructed PGSs are typically normalized within sample, so we convert dPGSDij
to dPGS0D

ij .

dPGS0D
ij ¼

dPGSDij � dPGSDij
var dPGSDij� �1

2
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E dPGS0Dijh i
¼

PGSDij þ PGSNij
� �

� PGSDij þ PGSNij
� �

var PGSDij þ PGSNij
� �1

2

(4a:vii)

Thus, we have shown that the PGS derived from GWAS has information from both an
individual’s PGS for direct genetic effects and genetic nurture effects.

Between-Family Analyses

Our theoretical model suggests that PGSs constructed from GWAS estimates capture both the
direct genetic effects and the genetic nurture effects of a given allele. We now explore the
implications of this result for analyses using such PGSs, beginning with the between-family
analysis (Model 1). We use the derived dPGS0Dij to calculate the expected bias in ψ̂1fromModel 1,

Model 1 : Yij ¼ ψ̂0 þ ψ̂1
dPGS0Dij þ XijbΘþ �̂ij (4b:i)

We will see that the inclusion of genetic nurture effects biases direct genetic effect
coefficients away from zero. Recall that (due to fact that PGSDij is unstandardized in our
theoretical model (3b.iv)) ψ1 and π1 are equal to one. Thus, the expected values of E ψ̂1

� �
and E π̂1½ � represent the expected inflation or deflation of estimated PGS coefficients (i.e.
bias) in between-family and within-family analyses, respectively.

ψ̂1 ¼
cov dPGS0Dij ;Yij

� �
var dPGS0Dij� � (4b:ii)

Note that cov dPGS0D
ij ;Yij

� �
is given by true causal relationships from our theoretical

model (3b.iv).

ψ̂1 ¼
cov dPGS0D

ij ; PGS
D
ij

� �
β1 þ cov dPGS0Dij ; PGSNj� �

β2

var dPGS0Dij� � (4b:iii)

β1 and β2 from our theoretical model are equal to 1 by construction and therefore fall
away.

ψ̂1 ¼
cov dPGS0Dij ; PGSDij� �

þ cov dPGS0D
ij ; PGS

N
j

� �
var dPGS0Dij� � (4b:iv)

We solve (see Section A9 of the Appendix for details) to obtain the magnitude of the
bias in ψ̂1.

E ψ̂1

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λρg þ

λ2

4

s
(4b:v)
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Thus, estimates for ψ̂1 will be biased upwards by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λρg þ λ2

4

q
. We will

unpack this quantity further in the discussion but note that it depends on unobserved
parameters λ and ρg .

Within-Family Analyses

Let us now turn to the within-family analysis (Model 2),

Model 2 : Yij ¼ π̂0 þ π̂1dPGS0Dij þ XijbΘþ Γj þ �̂ij

We will see that the inclusion of genetic nurture effects biases direct genetic effect
coefficients toward zero. We first translate Model 2 to an equivalent model based on
differences (Wooldridge 2015, Chapter 14):

Y1j � Y0j
� � ¼ π̂1 dPGS0D1j � dPGS0D0j� �

þ ð�̂1j � �̂0jÞ
Δ1
0Yij ¼ π̂1Δ

1
0
dPGS0Dij þ Δ1

0�̂ij

(4c:i)

PGSN0j : PGSNij of sibling 0 in family j

PGSN1j : PGSNij of sibling 1 in family j

As before, we begin by deriving the expected value of π̂1.

π̂1 ¼
cov Δ1

0
dPGS0Dij ;Δ1

0Yij

� �
var Δ1

0
dPGS0Dij� � (4c:ii)

cov Δ1
0
dPGS0Dij ;Δ1

0Yij

� �
is given by true causal relationships from our theoretical model.

π̂1 ¼
cov Δ1

0
dPGS0Dij ;Δ1

0PGS
D
ij

� �
β1 þ cov Δ1

0
dPGS0Dij ;Δ1

0PGS
N
j

� �
β2

var Δ1
0
dPGS0D

ij

� � (4c:iii)

Again, β1 and β2 from our theoretical model are equal to 1 by construction and
therefore fall away.

π̂1 ¼
cov Δ1

0
dPGS0D

ij ;Δ
1
0PGS

D
ij

� �
þ cov Δ1

0
dPGS0D

ij ;Δ
1
0PGS

N
j

� �
var Δ1

0
dPGS0D

ij

� � (4c:iv)

Notice that between siblings there is no variation in family genetic nurturing environ-
ment, meaning that Δ1

0PGS
N
j ¼ 0.

π̂1 ¼
cov Δ1

0
dPGS0D

ij ;Δ
1
0PGS

D
ij

� �
var Δ1

0
dPGS0D

ij

� � (4c:v)
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Now we just solve (see Section A11 of the Appendix for details) to obtain the
magnitude of the bias in π̂1.

E π̂1½ � ¼ 1þ λρg
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λρg þ λ2

4

q (4c:vi)

Recall that, because PGSDij is unstandardized in our theoretical model (3b.iv), the
expected value of π̂1 represents inflation or deflation of PGS coefficient estimates and is
itself interpretable as a measure of bias. Thus, we have shown that our observed estimates

for ψ̂1 will be biased downwards by a factor of 1þλρg
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þλρgþλ2
4

p . We discuss this quantity further

in the discussion.

Discussion

Bias

Our theoretical model illustrates that, in the presence of genetic nurture (i.e. h2N�0),
regression analyses using PGSs to estimate the effects of an individual’s genetics on their
outcomes will suffer from bias. Between-family OLS models will be biased upwards by

a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λρg þ λ2

4

q
while within-family fixed effect models will be biased down-

wards by a factor of 1þλρg
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þλρgþλ2
4

p . Figure 1 plots the bias in both OLS and family fixed effect

regressions using PGSs as a function of various direct-nurture genetic correlations and
direct-nurture heritability ratios.

The absence of bias is represented in Figure 1 by the horizontal gray line. For any given
trait, bias is always more extreme in the between-family models. The magnitude of bias is
a function of two parameters: ρg , the trait’s direct-nurture genetic correlation, and λ, the
trait’s direct-nurture heritability ratio. As λ increases, so does the magnitude of the bias.
However, ρg has opposing effects on the bias within and between families; as ρg increases,

we note more less within-family bias toward zero more between-family bias away from
zero. Thus, taken together, ψ̂1 and π̂1 can provide a useful set of upper and lower bounds
of the true relationship between a PGS and an outcome.

There is an intuitive interpretation of the trends presented in Figure 1. In the between-
family estimates, the inclusion of genetic nurture effects in dPGSDij leads to an upward bias
as it is capturing both differences in genetic composition between individuals and differ-
ences in the family environments between individuals that result from differences in their
parents’ genetic composition. The larger that ρg is, the greater extent to which an

individual with a beneficial allele for educational attainment reaps the reward from the
same genes twice; first when their parents provide a more nurturing environment,
and second when they themselves inherit the beneficial allele.

On the other hand, in family fixed effects models (within-family), the inclusion of
genetic nurture in the observed PGS leads to downward bias when ρg is less than unity.
This is because there are no differences in genetic nurture systematically driving
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differences in educational outcomes between siblings. Regardless of their own PGSDij ,

siblings have identical PGSNj because they are in the same family j. Thus, any extent

that genetic nurture effects causes bα to diverge from α amounts to measurement error in
the allelic weights and causes downward attenuation bias.

The insights from our theoretical model offer a partial explanation of the large
differences in π̂1

ψ̂1
observed across the various phenotypes considered in Table 1. For traits

like years of schooling, cognitive ability, and (more speculatively) depression, where
genetic nurture effects likely play an important role (i.e. large λÞ, we see large differences

between ψ̂1 and π̂1 (i.e. π̂1
ψ̂1

< 1). On the other side of the coin, for traits like body mass

index and height, where most of the genetic contribution is likely to be direct (i.e. small λÞ,
we see almost no difference between ψ̂1 and π̂1 (i.e. π̂1

ψ̂1
� 1Þ: These results coincide with

the predictions of our theoretical model. Further, our model suggests that the differences

in π̂1
ψ̂1

observed between years of schooling, cognitive ability, and depression may be

a function of differences in ρg between the traits.
Recall that these theoretical results are based on several simplifying assumptions: no

gene–environment interaction, no gene–environment correlation, and no assortative
mating. These three assumptions are unlikely to hold for most complex traits studied of
interest to the social and biological sciences. Nonetheless, we can use the results from this
simplified model to begin to probe how such violations might influence our results.
Consider the case of positive genetic assortative mating, which exists for many of the

Figure 1. Bias due to genetic nurture in within- and between-family regressions using polygenic scores.
Gray line at y = 1 represents no bias. ρg is the direct-nurture genetic correlation and λ is the direct-nurture
heritability ratio. Results are derived analytically from a theoretical model.
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traits considered in this paper (Yengo et al. 2018b). A correlation between maternal and
paternal genetics induces a positive correlation between transmitted and non-transmitted
parental alleles shown in (4a.iv). This is because non-transmitted maternal alleles would
be correlated with transmitted paternal alleles and vice versa. Thus, cov gzij; f

z
ij

� �
is no

longer equal to zero and does not fall out of our equation. In such a case, the expected
value of a GWAS allelic weight, shown in (4a.v), would include information about both
non-transmitted genetic nurture effects in addition to the direct genetic effects and the
transmitted genetic nurture effects. Thus, the bias documented in PGS analyses will
increase as positive genetic assortative mating increases.

Next, we consider the case of gene-environment correlation. Notice that the bias that
genetic nurture may cause in GWAS and PGS results from a special case of gene-environment
correlation (i.e. a gene–environment correlation that mechanically exists due to the correla-
tion of genetics between parents and their children induced through genetic inheritance).
Thus, in our theoretical model’s specification, gene-environment correlation only exists when
environmental features relevant to an outcome are correlated with an individual’s genetics
after accounting for their parents’ genetics.When such a gene-environment correlation exists,
GWAS results and PGSs become biased in exactly the same way as they do from genetic
nurture effects alone. For example, the existence of positive gene-environment correlation
effectively increases λ (as additional outcome variance explained by a non-genetic nurture
environmental component), therein increasing the magnitude of the bias.

Finally, the case of gene–environment interaction is difficult to consider more generally,
as it would vary as a function of the magnitude, direction, and the pathways of the
interaction. Thus, the effects of gene–environment interactions on how genetic nurture
effects influence GWAS and PGSs remain uncertain.

Direct-Nurture Genetic Correlation and Heritability Ratio

Thousands of GWAS have been conducted in the last decade (Mills and Rahal 2019;
Visscher et al. 2017). Nonetheless, to our knowledge, few or no GWAS has been con-
ducted in human populations that independently identifies the direct genetic effects and
the genetic nurture effects for a complex trait (a notable exception is GWAS on maternal
influences on child birthweight (Beaumont et al. 2018; Warrington et al. 2019), though
this indirect genetic affect may not be social in nature). Thus, for virtually all complex
traits, little is known about the parameters of interest identified in our models: the direct-
nurture genetic correlation and the direct-nurture heritability ratio (ρg and λ). Critically,
the two parameters are readily estimable with existing data and methods.

A better understanding of ρg and λ would offer value beyond aiding in the comparison
of results from within-family and between-family regressions. The genetic pathways
discovered in GWASs and summarized in PGSs offer researchers a puzzle to unpack
(Freese 2018). Understanding why some phenotypes have strong versus weak genetic
nurture effects, or why a phenotype’s direct genetic effects and genetic nurture effects
are more versus less linked, could help researchers glean insight into the underlying
mechanisms at play.

Moreover, it would be interesting to understand how ρg and λ are influenced by the
social environment. For example, while gene–environment interaction studies have been
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the conventional way to understand how the environment moderates the influence of
genetics, recent work has proposed a genetic correlation–environment interaction study
(Wedow et al. 2018). In a genetic correlation–environment interaction study framework,
the social environment can transform the genetic link between two traits. Exploring how
the environment shapes ρg would be a special case of a genetic correlation–environment

interaction study where the two traits influence the same phenotype (directly and socially).
Social policymakers might prefer a low ρg for valued life outcomes like educational

attainment to reduce the accumulation of inequality across generations.
While which specific social, physical, or economic factors moderate ρg and λ for various

traits remains to be explored empirically, there may exist a priori reasons to suspect
certain environmental modifiers. For example, imagine that individual variation in height
is a function of both direct genetic effects that shape physiological development and
genetic nurture effects that influence access to socioeconomic and nutritional resources
during childhood (thereby reducing the likelihood of stunting). If there is a large casual
effect of height on socioeconomic status, we would expect individuals with a greater

genetic predisposition for height (i.e. a high dPGSDij ) to be more likely to attain a high

socioeconomic position where their children to have access to nutritional and health

resources (i.e. a high dPGSNij ), resulting in a positive ρg . However, this relationship could

be modified by environmental features; if, for instance, the causal effect of height on social
status is due to labor force discrimination, outlawing the use of height for employment

decisions would uncouple dPGSDij and dPGSNij and reduce ρg . Alternatively, a social policy

that provides adequate healthcare and nutrition to all children could effectively eliminate
stunting and undo the relationship between parental genetics for height altogether, forcing
both ρg and λ to zero.

Implications for the Use of Polygenic Scores

While within-family analyses have demonstrated that many PGSs do have a significant
causal signal for direct genetic effects, comparing the results from within-family analyses
to results from between-family analyses is complicated by the presence of genetic nurture
effects. To what extent do existing PGSs capture direct genetic effects, genetic nurture
effects, and socioeconomic or geographic confounding? Until we better understand ρg
and λ for a wide variety of traits, our ability to use within-family analyses to validate
between-family discoveries will be limited. Analyses using PGSs should be interpreted
accordingly.

Even in the absence of confounding due to population stratification, the observation that
existing PGSs likely have genetic nurture components complicates their use and interpretation.
Say, for instance, a researcher wonders whether there exists moderation of the association
between an individual’s PGS and their educational attainment as a function of school-level
socioeconomic status (Trejo et al. 2018). Because a component of the PGS is capturing the benefit
of having a parent with higher educational attainment and (in turn a higher socioeconomic
status), any detected gene–environment interaction lacks a clear interpretation. It might be the
case that household socioeconomic status interacts with school-level socioeconomic status in
shaping educational attainment, or alternatively, it could be that an individual’s genetic
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composition interacts with school-level socioeconomic status in shaping educational attainment.
These two different results have very different theoretical and practical implications but are
indistinguishable in analyses using existing PGSs, which contain both direct genetic effects and
genetic nurture effects.

Future Research

The models constructed in this paper highlight key areas for future research in the field of
social science genomics. Across a range of complex phenotypes, there is much work to be
done toward separating out the genetics nurture effects from direct genetic effects.
Utilizing random cage-mate assignment in mice, a recent study in mice conducted
a social genetic effects GWAS and direct genetic effects GWAS in parallel and identified
statistically significant genome-wide social genetic effect loci for 16 phenotypes (Baud
et al. 2018). For these 16 phenotypes, the mean social-direct genetic correlation was 0.53
and the mean social-direct heritability ratio was 1.29. Crucially, social genetic effects arise
from partially different loci as direct genetic effects and can have effects of differing
magnitudes or directions at the same loci.

Unfortunately, social relationships are often not randomly assigned in human populations.
Nonetheless, existing GWAS methods could be modified to use dyads of parents and their
children. For example, a genetic nurture effects GWAS could be conducted by controlling for
child’s genetics in a GWAS of parental genetics on child phenotype. Alternatively, a GWAS
conducted using variation only amongst sibling pairs would provide information on direct
genetic pathways untainted by confounding or genetic nurture effects. Results from such
a sibling GWASmight then be used to back out information about the genetic nurture effects
from existing GWAS results of unrelated individuals. Nonetheless, obtaining large samples of
parent-child or sibling pairs might prove challenging for many complex phenotypes. If
statistical power is a problem, methods such as LD score regression (Bulik-Sullivan et al.
2015) could be used with smaller samples to identify estimates of ρg and λ. Indeed, having
estimates of ρg and λ for a trait would allow researchers to correct for bias in between-family

and within-family analyses that use PGSs by dividing observed regression coefficients by the
quantities displayed in Equation 4b.v and Equation 4c.vi, respectively.

It is also possible that the direct effects and genetic nurture effects are not independent.
Imagine, for example, that parents with a higher educational attainment PGSs tend to
invest more heavily in their children with higher PGSs than do parents with lower PGSs
(differential investment in low birth weight children has been observed by across socio-
economic lines (Hsin 2012; Restrepo 2016)). In such a case, the effects of parental genetics
on a child would vary as a function as their child’s genetics. Research designs that
investigate the existence of interaction between direct genetic effects and genetic nurture
effects may prove a fruitful avenue for future inquiry.

Finally, work should be done to extend our framework to other social genetic effects within
families, such as between sibling pairs. We chose to start with genetic nurture effects because,
unlike sibling effects, genetic nurture effects are likely to be unidirectional, with the causal effect
pointing from parent to child, making them more straightforward to model (effects between
siblings are likely reciprocal) (Kong et al. 2018) and because parental effects generalize to all
families, not just thosewithmultiple children.Nonetheless, social genetic effects between siblings
may also complicate the interpretation of GWAS results and warrant attention.
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Conclusion

In summary, we formalize a theoretical model for additive direct genetic effects and
genetic nurture effects and show that, unlike bias from other confounders, the presence
of genetic nurture can bias coefficients from between-family and within-family regressions
using PGSs. While within-family analyses that compare siblings using family fixed effects
are considered the gold-standard, they are not without their own complications. Even if
we were able to run a GWAS on an infinitely large sample using the methods in practice
today, the presence of confounding genetic nurture effects would mean that it would be
impossible to obtain precise estimates of the causal effect of an individual’s genes on their
life outcomes. Until GWAS can be conducted controlling for parental genotype, models
using PGSs may be biased by genetic nurture effects. Obtaining estimates of our two novel
social genetic parameters, the direct-nurture genetic correlation and the direct-nurture
heritability ratio, may allow researchers to correct for such a bias.
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Appendix

A1. Add Health

The National Longitudinal Study of Adolescent to Adult Health (Add Health) is a nationally represen-
tative cohort drawn from a probability sample of 80 high schools and 52 middle schools in roughly 80
US communities, and representative of schools in the United States in 1994–95 with respect to region,
urban setting, school size, school type, and race or ethnic background. About 15,000 Add Health
respondents (or 96%) consented to genotyping during theWave 4 interview in 2008–09 for purposes of
approved AddHealthWave 4 research. Of those who consented to genotyping, ~12,000 (or 80%) agreed
to have their DNA archived for future testing. DNA extraction and genotyping were conducted on this
archive sample using two platforms (Illumina Omni1 for siblings and the Illumina Omni2.5 for
unrelated individuals). Quality control procedures were performed on the genetic samples collected
yielding genetic data from ~10,000 individuals on 609,130 overlapping SNPs.

We focus our analyses on a set of genetically homogenous respondents of European descent. We
restrict our sample to only European ancestry individuals because differences in linkage disequili-
brium and allele frequencies across ancestral groups complicate the interpretation of PGS–pheno-
type associations (Martin et al. 2017). Although we recognize the importance of research in more
diverse samples, Add Health does not contain large enough samples of any ancestral group other
than European ancestry to conduct well-powered within-family analyses. Fortunately, the theore-
tical results regarding how genetic nurturance can induce bias in GWASs and the PGSs constructed
using their summary statistics, which we emphasize is the core contribution of our paper, applies to
genetic analyses conducted in all ancestry groups (although the relevant underlying λ and ρg
parameters may vary between such groups due to environmental differences). Add Health also
contains a variety of data on students’ academic performance, personal characteristics measured in
adolescence (cognitive ability, personality characteristics, professional aspirations, physical health,
and functioning, etc.).

A2. European Ancestry Identification and Polygenic Score Construction

To identify a sample of European-ancestry respondents, we calculated the first two principal compo-
nents of participants with known ancestries from the 1000 Genomes Project. We then projected Add
Health individuals onto those principal components, obtaining the loadings of each Add Health
respondent on each PC. We use these loadings to assign each individual to 1 of 5 super-populations
in the 1000 Genomes data: European, African, East Asian, South Asian and Admixed and restrict our
sample to only individuals of European ancestry. In this European ancestry sub-sample, we calculated
new PCs to use as controls in our polygenic score regression analyses.

Polygenic scores (PGSs) were created using SNPs in the Add Health genetic database that were
matched to SNPs with reported results in a GWAS. We also removed all SNPs where the risk allele
identified via GWAS could not be readily identified in the Add Health genetic database. For each
SNP, a loading was calculated as the number of trait-associated alleles multiplied by the effect size

208 S. TREJO AND B. W. DOMINGUE



estimated in the original GWAS. SNPs with relatively large p-values will have small effects (and thus
be down-weighted in creating the composite), so we do not impose a p-value threshold. Loadings
were summed across the SNP set to calculate the polygenic score. The scores are standardized
within sample to have a mean of 0 and standard deviation of 1. PGS generated from GWAS that
included Add Health was constructed from summary statistics with Add Health removed. Links to
the summary statistics used to construct each score are provided below:

Body mass index: https://portals.broadinstitute.org/collaboration/giant/images/c/c8/Meta-
analysis_Locke_et_al%2BUKBiobank_2018_UPDATED.txt.gz

Height: https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-
analysis_Wood_et_al%2BUKBiobank_2018.txt.gz

Own birth weight: http://mccarthy.well.ox.ac.uk/publications/2019/EggBirthWeight_
NatureGenetics/Fetal_BW_European_meta.NG2019.txt.gz

Educational attainment*: http://ssgac.org/documents/MTAG_EA.to10K.txt
Cognitive performance*: http://ssgac.org/documents/MTAG_CP.to10K.txt
Depressive symptoms*: http://ssgac.org/documents/MTAG_DEP_CLUMPED.to10K.txt

*Note that the Social Science Genomics Association Consortium phenotypes (i.e. educational
attainment, cognitive performance, and depressive symptoms) used 23andMe data in their pub-
lished GWAS. While our polygenic scores were generated using the full set of summary statistics,
the publicly available data (linked to above) contain only the 10K SNPs with the lowest p-values in
compliance with 23andMe’s data-sharing policies.

A3. Simplifying Assumptions of Structural Model

We make several simplifications to simplify the exposition of the structural model. In defining our
structural model, we have already assumed away gene–environment interactions (notice the lack of
an interaction term between genes and environment). We further assume no gene-environment
correlation (net of the correlation mechanically induced by the combination of genetic nurturance
and genetic inheritance).

cov PGSDij ;Eij
� �

= cov PGSNj ; Ej
� �

¼ 0

Finally, we assume no assortative mating. This means that the polygenic scores of parents are
uncorrelated.

PGSNj ¼
Xn
z¼1

δzgzj ¼
Xn
z¼1

δz gzmj þ g
zp
j

� �
¼

Xn
z¼1

δzgzmj þ
Xn
z¼1

δzg
zp
j ¼ PGSNm

j þ PGS
Np

j

var PGSNj
� �

¼ var PGSNm
j þ PGS

Np

j

� �
¼ var PGSNm

j

� �
þ var PGS

Np

j

� �
¼ 2var PGSNij

� �
gzmj : Total number of major alleles at the mother in family j0s genetic locus z 0; 1; or 2ð Þ
g
zp
j : Total number of major alleles at the father in family j0s genetic locus z 0; 1; or 2ð Þ
PGSDm

j : PGS constructed from the true causal linear effect of the mother in family j0s genes on Yij

PGS
Dp

j : PGS constructed from the true causal linear effect of the father in family j0s genes on Yij

This also entails that a child’s PGS is related to their parent’s and sibling’s PGS only directly
through the genes they receive through the process of recombination. Thus, the correlation between
the same PGSs for all parent-child and sibling-sibling pairs is .5.

ρPGSD0j;PGSD1j
¼ ρPGSDmj ;PGSD0j

¼ ρPGSDmj ;PGSD1j
¼ ρ

PGS
Np
j ;PGSD0j

¼ ρ
PGS

Np
j ;PGSD1j

¼ :5

ρPGSN0j ;PGSN1j
¼ ρPGSNm

j ;PGSN0j
¼ ρPGSNmj ;PGSN1j

¼ ρ
PGS

Np
j ;PGSN0j

¼ ρ
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¼ :5
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A4. Correlation between PGSNij and PGSNj
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A5. Correlation between PGSDij and PGSNj

ρPGSDij ;PGSNj ¼
cov PGSDij ; PGS

N
j

� �
var PGSDij

� �1
2
var PGSNj

� �1
2

ρPGSDij ;PGSNj ¼
cov PGSDij ;PGS

Nm
j þ PGS

Np

j

� �
var PGSDij

� �1
2
var PGSNm

j þ PGS
Np

j

� �1
2

ρPGSDij ;PGSNj ¼
cov PGSDij ; PGS

Nm
j

� �
þ cov PGSDij ;PGS

Np

j

� �
var PGSDij

� �1
2½var PGSNm

j

� �
þ var PGS

Np

j

� �
þ 2cov PGSNm

j ;PGS
Np

j

� �
�
1
2

ρ
PGSD

ij
; PGSN

j

¼
ρPGSDij ;PGS

Nm
j
νar PGSDij

� �1
2

PGSNm
j

� �1
2 þρ

PGSDij ;PGS
Np
j
νar PGSNij

� �1
2

PGS
Np

j

� �1
2

νar PGSDij
� �1

2
νar PGSNm

j

� �
þ νar PGS

Np

j

� �
þ 0

h i1
2

ρPGSDij ;PGSNj
¼ :5ρλþ :5ρλ

½λ2 þ λ2�
1
2

ρPGSDij ;PGSNj ¼
ffiffiffi
2

p

2
ρ

210 S. TREJO AND B. W. DOMINGUE



A6. Underlying Allelic Weights

Specifically, we assume:

ρα;gij ¼ ρδ;gij

ρα2; var α;gijð Þ ¼ ρ
δ
2

;var gijð Þ

�gzij : Population mean risk allele frequency count at genetic locus z

var gzij
� �

: Population variance of risk allele frequency at genetic locus z

gij: An n� 1 vector of the population mean risk allele frequency for all genetic loci z
var gij

� �
: An n� 1 vector of the population variation of risk allele frequency for all genetic loci z

ρα : Correlation between vectors comprised of αz and �gzij for all genetic loci z
ρδ;gij : Correlation between vectors comprised of δz and �gzij for all genetic loci z

ρα2; var α;gijð Þ : Correlation between vectors comprised of αzð Þ2 and var gzij
� �

for all genetic loci z

ρ
δ
2

;var gijð Þ : Correlation between vectors comprised of δzð Þ2 and var gzij
� �

for all genetic loci z

A7. λ is the Direct-Nurture Heritability Ratio
ρα;g ij ¼ ρδ;g ij
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� �
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� �
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A8. Variance of PGSNij is
λ2
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var PGSNj
� �

¼ λ2

2

A10. Between-Family Analyses
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A11. Within-Family Analyses
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