Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

REPORT

OF THE

COIVIISSSIONER OF EDUCATIOI

THE YEAR 1889-90.

Volume 2.
CONTAINING PARTS II AND III.

Albert S. Cook Licrary
 Towson State Co!lege
 Baltimore, Maryland 21204

WASHINGTON:
U.S. Docs.

HE19.101:

$$
890 / 2
$$

CONTENTS OF VOLUME II.

PARTII.
Chapter I.-City School Systems.
Page.
Introductory remarks 603
Relative importance of city school systems (Table 1) 604
Comparison of city and country schools (Tables 2 and 3) $60 \pm$
Comparatire statistics for four years of all cities reported (Table 4) 605
Comparative statistics of attendance, teachers, accommodations (Table 5). 605
Comparative statistics of school property and expenditures (Table 6) 603
Number and population, by States, of cities of over 4,000 inhabitants (Table 7) 609
Explanation of the foregoing table 610
Summary by States of school enrollment and attendance in cities and villages of over 4,000 in- habitants (Table 8) 613
Summary of superintendents, teachers, properts, and expenditures (Table 9) 614
Sumuary of public high schools (Table 10) 615
Summary of public erening schools (Table 11) 616
Chapter II.-Salaries of Teachers in City Public Schools.
Annual salaries of teachers in 69 of the principal cities of the United States. 617
Detailed statement of salaries paid in Baltimore, St. Louis, Boston, New Orleans, and Cincinnati each year since the establishment of public schools in those cities 647
Chapter III.-Scientific Temperance Instrection in the Public Schools.
Historical sketch, text-books, course of study, topical outline of study, standard of enforcement, duties of school boards, etc. 695
Effects of alcohol on the system, and the method of teaching them, by Prof. A. C. Boyden 709
The legislation effected 713
Reports of school officials on the enforcement of the law 714
Report of State Agent George H. Martin upon results in Massachusetss 721
Objections to scientific temperance instruction stated 733
Answers to some false notions 737
Questions on physiology and hygiene, alcoholic drinks, and narcotics 739
Chapter IV.-Higher Education of Tomen.
General statement, new institutions 743
Summary of statistics 746
Courses of study for A. B. degree in fifteen institutions 750
Chapter V.-Colleges and Universities of the United States.
Brief discussion of the system of higher education 755
Summary of statistics 759
Distribution of students in degree courses 772
Endomment funds of colleges and universities 778
Grounds, buildings, and apparatus 779
State universities 780
Denominational institutions 787
Organization of a number of leading universities 788
Reorganization of Columbia College 789
Nerr institutions 790
New buildings during 1889-90 795

Ceapter Vi.-Length of College Curriculum.

Introduction, arerage age of fresh̄men ... 799
Increased requirements for graduation ... 801
A rerage age of freshmen at Harvard.. 802
Remarks and opinions of prominent educators .. 804
Chapter VII.-Gradeate Departanents of Universities.
Organization.. 815
Growth of graduate work in eighteen years.. 818

Chapter TIII.-University and School Extension.

Definition and description .. 827
Origin and history .. 828
The morement in Scotland and Ireland... 830
In the Cnited States.. 831
Chapter IX.-Diagrays of Professional Edecation.
Comparative diagrams illustrating the statistics of professional education during the decade, 1881-90
Medicine: Chapter X.-Curricula of Professional Schools.
Requirements for admission 875
Matriculates haring degrees in letters or science. 876
Changes in the medical curriculum during the decade. 879
Text-book work 883
Practical work 885
Preparatory medical schools 895
Distribation of the studies in the course S97
How the standard of the medical profession may be adranced. 911
Theology:
Introduction. 913
Requisites for admission 918
Courses of studies 920
Changes during the decade. 936
Law 943
Schools and colleges of applied science:
Requirements for admission 944
Civil engineering. 945
Mechanical engineering 961
Mining engineering. @s6
Electrical engineering 990
Architecture 992
Chemistry 994
Agriculture 990
Biology 1013
Instruction in the art of teaching 1015
Chapter SI.-Statistics of Professional Instrection.
Summary of statistics of schools of medicine, dentistry, pharmacy, etc 1021
Summary of statistics of schools of theologr 1025
Of schools of law 1026
Of colleges endowed with the national land grant 1027
Of technological schools not endowed with the national land grant. 1023
Income and property of the colleges endowed with the national land grant 1029
Income and property of the colleges not endowed with the national land grant. 1029
Summary of statistics of public normal schools. 1030
Finances and property of public normal schools 1031
Statistics of private normal schools 1032
Summary of degrees conferred by professional schools 1033
Statistics of schools of medicine 1034
Page.
Statistics of schools of dentistry 1039
Of schools of pharmacy 1040
Of nurse-training schools 1042
Of schools of reterinary medicine 1044
Of schools of theology 1045
Of schools of law 1051
Of schools of science endowed with the national land grant 1653
Of schools of science not endowed with the national land grant 1055
Of public normal schools 1056
Of private normal schools 1060
Of private normal training schools 1052
Chapter XII.
Methods Exployed in the Reformation of Juvenile Offenders 1063
Chapter XIII.--Education of the Colored Race.
In the common schools 1073
In secondary and higher schools 1081
Industrial training 1093
Hampton Normal and Agricultural Institute 1098
Chapter XIV
Tife Siwedish or Ling Gyminastics 1103
Chapter XV.-Discussions of Educational Questions.
Civic instruction 1109
Compulsory attendance 1110
Courses of study-Adjustment of school programmes 1111
Education 1135
Higher education 1143
Kindergartens 1147
Manual and industrial training 1148
Methods of instruction 1148
Physical training 1152
Private and parochial schools 1156
Limitation by statute 1157
Questions of expedicncy 1158
The Faribault schools 1158
Public schools 1158
Buildings and appliances 1162
The teaching service 1163
The work of the schools should be defined 1163
Compulsory attendance 1165
Reading and literature 1168
Religious and moral training 1171
School management and discipline 1176
Secondary education 1176
Teachers 1177
Text-books 1184
Cinapter XVI.-Education Abroad.
Associations 1185
Bibliography 1189
Classic languages 1190
City school systems 1197
Compulsory attendance 1197
Crime 1199
Exhibitions 1200
Hygiene 1200
Language study $120 t$
Libraries for pupils and teachers 1206
Manual training 1209
Medical supervision 1212
Page.
Miscellaneous notes 1214
Muscums in schools 1218
National school system 1220
Pensions. 1230
Psychology 1231
Religious and moral education. 1233
Salaries 1234
Secondary schools 1236
Secular Sunday schools 1238
Special schools 1239
Superior institutions 1242
Teachers 1243
Chapter XVII.-Education in Alaska.
Number and general condition of the schools in Alaska 1245
Public schools 1245
Contract schools 1217
Other schools 1250
Rules and regulations for the conduct of schools in Alaska 1251
School districts 1233
Statistics of Alaskan schools 1254
Teachers and salaries. 1257
Schools on the Arctic coast of Alaska 1259
Supervision 1201
Siboria 1267
King Island 1273
The whaling fleet 1273
The whaling industry 1285
The Eskimos of Alaska 1286
Introduction of reindeer 1292
Introduction of Christianity 1293
New officers 1296
Tisitors. 1296
Recommendations 1298
Chapter XVIII.
Edecational Necrology 1201
PART III.
STATISTICAL TABLES
CITY SCHOOLS.
Statistics of population, private schools, and public school enrollment, attendance, superrising officers, teachers, and accommodations in cities and villages containing over 4,000 inhabitants (Table 1) 1318
Statistics of public evening schools in cities and villages containing over 4,000 inhabitants (Table 2) 1346
Statistics of manual training in city public schools (Table 3) 1351
Statistics of property, receipts, and expenditures of public schools in cities and rillages contain- ing over 4,000 inhabitants (Table 4) 1358
PUBLIC HIGH SCHOOLS.
Summary of statistics of public high schools, for 1889-90 (Table 1) 1388
Sammary of number of students pursuing certain studies (Table 2) 1390
Percentage of male and of female students in public secondary schools pursuing certain studies. 1392
Statistics of public high schools for 1889-90 (Table 3) 1394
PRIVATE SECONDARY SCHOOLS.
Summary of statistics of endowed academies, seminaries, and other prirate secondary schools, for 1889-90 (Table 4) 1486
Ratio of male and female instructors and students in private secondary schools in the United States in 1889-90 (Table 5) 1488
I'age.
Summary of certain studies pursued in endowed academies, seminaries, and other private sec- ondary schools, for 1889-90 (Table 6) 1490
Percentage of male and female students in private secondary schools pursuing certain studies (Table 7) 1492
Percentage of students in each branch of study to the whole number of students (Table 8) 1492
Statistics of endowed academies, seminaries, and other prirate secondary schools, for 1889-90 (Table 9) 1494
COLLEGES FOR WOMEN.
Statistics of colleges for women, for 1889-90, Dirision A (Table 1) 1572
Statistics of colleges for women, for 1889-90, Division B (Table 1) 1574
UNIVERSITIES AND COLLEGES.
Statistics of universities and colleges for 1889-90-Part_I (Table 2) 1582
Statistics of universities and colleges for 1889-90-Part II (Table 2) 1600
COMNERCIAL AND BUSINESS COLLEGES.
Summary of statistics of commercial and business colleges for 1889-90 (Table 1) 1610
Statistics of commercial and business colleges for 1889-90-Part I (Table 2) 1612
Statistics of commercial and business colleges for 1889-90-Part II (Table 2) 1621
Statistics of commercial and business colleges for 1889-90-Part III (Table 2) 1020
LNSTITUTIONS FOR THE DEFECTIVE AND DEPENDENT CLASSES.
Summary of statistics of public boarding institutions for the deaf for 1889-90 (Table 1) 1632
Summary of statistics of public day schools for the deaf for 1889-90 (Table 2) 1634
Summary of statistics of prirate schools for the deaf for 1859-90 (Table 3) 1635
Statistics of public boarding institutions for the deaf for 1889-90-Part I (Table 4) 1636
Statistics of public boarding institutions for the deaf for 1889-90-Part II (Table 4) 1639
Statistics of public boarding institutions for the deaf for 1889-90-Part III (Table 4). 1641
Statistics of public boarding institutions for the deaf for 1889-90-Part IV (Table 4) 1644
Character of defect and age at which it appeared (Table 5) 1646
Statistics of public day schools for the deaf for 1889-90-Part I (Table 6) 1648
Statistics of public day schools for the deaf for 1839-90-Part II (Table 6) 1649
Statistics of prirate schools for the reaf and dumb for 1889-90-Part I (Table 7) 1650
Statistics of private schools for the deaf and dumb for 1889-90-Part II (Table 7) 1651
Summary of statistics of public institutions for the biind for 1889-90 1652
Statistics of public institutions for the blind for 1889-90-Part I (Table 9) 1654
Statistics of public institutions for the blind for 1889-90-Part II (Table 9) 1656
Statistics of public institutions for the blind for 1889-90-Part III (Table 9) 1657
Statistics of public institutions for the blind for 1889-90-Part IV (Table 9) 1659
Number of pupils congenitally blind in public institutions; number not wholly blind (Table 10). 1660
Summary of statistics of public institutions for the feeble-minded for 1839-90 (Table 11) 1661
Summary of statistics of private institutions for the feeble-minded (Table 12) 1662
Statistics of public institutions for the feeble-minded for 1889-90-Part I (Table 13) 1663
Statistics of public institutions for the feeble-minded for 1889-90-Part II (Table 13) 1665
Statistics of public institutions for the feeble-minded for 1889-90-Fart III (Table 13) 1666
Statistics of public institutions for the feeble-minded for 1889-90-Part IV (Table 13) 1667
Statistics of private institutions for the feeble-minded for 1889-90-Part I (Table 14) 1668
Statistics of private institutions for the feeble-minded for 1889-90-Part II (Table 14) 1669
Statistics of public elcmentary education in foreign countries. 1671
T

PARTII.

CHAPTER I.

CITY SCHOOL SISTEMS.

Relative importance of city school systems (Table 1)-Comparison of city and country schools (Ta'les 2 and 3)-Comparative statistics for four years of all cities reported (Table 4)-Comparative statistics of enrollment. attendance, teachers, and accommodations in the city schools of the several States (Table 5)-Comparative statisitics of property and expenditures of the same (Table 6)-Number and population, by States, of cities, etc.. of over 4.00 inhabitants (Table 7)-Explanation of the same-Summary, by States, of school enrollment and attendance in the same cities (Table 8)-Similar summary of supervising officers, teachers, property. and expenditures (Table 9)-Similar summary of public high schools (Table 10)-Similar summary of public evening schoolà (Table 11).

The tables immediately following (i.e., Nos. 1, 2, and 3) are designed to indicate the differences in the conditions of work that exist between the city schools and those of rural districts. The tables are self explanatory, and even a cursory examination will disclose the importance of the facts they develop. A few of these may be mentioned.

Though 32.39 per cent of the totai population is in the cities, only 23.43 per cent of the enrollment is in city schools. This is apparently an indication thateducation is apprecia'ed more highly in the country and that, though school attendance is surrounded by greater difficulties, country children more eagerly accept the adrantages offered. The attendance is more regular in cities, as would naturally be expected.owing to the greater distancэ as a rule that must be traversed by country pupils and the botter highways in the cities.

In the length of the school term rural schools are at a great disadrantage and the same is true of the average duration of each child's attendance. These may arise from the more meager financial support accorded to rural schools and from the exigencies of farm life which demand the services of the older children for a great part of each year.

The number of teachers is relatively very small in the cities, and the number of buildings required for city schools appears insignificant until their greater size and value are considered.

The slight difference that exists between the average cost per day of tuition for each pupil is significant and mightreadily serve as a text for a lesson on the meagerness of the pay of country school teachers, for there are nearly twice as many pupils to each teacher in the city schools.

On the other hand, may it not be that the greater proportionate enrollment in the country is at least partially due to the smaller number of pupils to a teacher and consequently the more intimate personal relation that exists between teacher and pupil?

Tables 5 and 6 are similar to others that have appeared in the Reports of the three years previous, and in Table 4 are reproduced for comparison some of the ratios shown in those tables. The data presented do not cover sufficient time to form the bases for any important general conclusions. The method of keeping school statistics and the manner of collecting them are yet far from perfect, and a variation of a few tenths of a per cent affords no ground for startling assertions of progress or the reverse. Such conclusions may be justly reach 3 d only af er the appearance of marked differences or a series of changes in the same general direction covering a considerable numbэr of years.

For several years past there has been a d sire on the part of those intrested in the preparation of these statistics to present a series of tables showing with
reasonable accuracy the absolute totals of the sereral items for the entire Union. The first result of this was presented in the last Report, and similar tables are also included in this chapter as Nos. 8, 9, 10, and 11.

To prepare such tables it is first essential to perfect a list of cities of which all shall meet certain uniform conditions. This itself is very difficult even with the census reports at hand. Table 7, with the accompanying explanation, indicates some of the perplexities encountered. In the years other than census years the dificulties are of course multiplied, since dependence must be placed almost wholly upon local estimates.

Then, having the list of cities, the collection of complete statistics involves a task almost hopeless. Many cities fail to report every year, and in the returns of many more several of the most important items are omitted. As before explained, estimates were necessary to make good the deficiencies. The corrections and additions that the circumstances indicated having been made, the tables as they now stand are presumably fairly correct.

TABLE 1.-Relative imporlance of city school systcms; shown by comparison of the sum of results achieved by them, with similar data for the coriesponding geographical divisions and for the United States. (See Tables 8 and 9 of this chapter, and Tables 1 to 15, chapter 1, Part 1.)

					Number of teachers. (Proportion in cities.)				
1	2	3	4	5	6	7	8	3.	10
United States.	Perct. 32. 39	$\begin{aligned} & \text { Perct. } \\ & 23.43 \end{aligned}$	$\begin{aligned} & P \in r c t . \\ & 25.65 \end{aligned}$	$\begin{aligned} & \text { Perct. } \\ & 36.33 \end{aligned}$	$\begin{aligned} & \text { Per. ct. } \\ & 15.63 \end{aligned}$	$\begin{array}{r} \text { Perct. } \\ 3.49 \end{array}$	$\begin{gathered} \text { Peirct. } \\ 56.09 \end{gathered}$	$\begin{aligned} & \text { Perct. } \\ & 37.97 \end{aligned}$	$\begin{aligned} & \text { Perct. } \\ & 42.97 \end{aligned}$
North Atlantic Division	55.14	46.49	48.85	56.83	30.16	8.39	70.60	58.07	61.60
South Atlantic Division .-	17.55	12.55	13.82	26.34	1.09	1.55	60.51	33. 86	38.53
South Central Division.	12. 20	7.15	7.94	16.97	6.12	1.0 i	55.50	18. 73	21.98
North Central Division	30.19	19.81	22.65	28.72	11. 71	2. 25	43.92	28. 83	33.20
Western Division	34.46	28. 27	30.15	40.74	17. 18	4. 46	56. 53	35.72	41.29

Table 2.-Comparison of city and cointry schools. ${ }^{1}$-Attendance, length of school term, ctc.

	Ratio of public school enrollment to totalpopulation population		Ratio of arerage attend ance to total enrollment.		Arerage length of school term.		Areragenumber ofdays' attendance ofeach Fupilenrolled.		Average number of pupils to a teacher.	
							$\begin{aligned} & \text { Bo } \\ & \text { =0 } \\ & \text { gid } \\ & \text { ged } \end{aligned}$			戓或
1	2	3	4	5	6	7	8	9	10	11
United States.	14.6	23.0	70.3	62.3	$\begin{aligned} & \text { Days. } \\ & 190.3 \end{aligned}$	$\begin{gathered} \text { Days. } \\ 115.1 \end{gathered}$	133.8	71.6	36.7	19.7
North Atlantic Division	15.1	21.3	68.7	62.6	194.0	140.4	133.4	87.9	$3{ }^{36.0}$	${ }^{16.3}$
South Central Division...	12.3	${ }_{22.2}^{20.2}$	70.8	63.0	${ }_{188.5}^{18.4}$	${ }_{79} 8.5$	133.4	5	38.5	29.2
North Central Division...	14.7	25.8	72.7	61.3	188.6	136.4	1136.4	${ }^{83.6}$	36.7	16.6
Western Division.........-	14.0	18.7	68.8	62.8	182.5	114.6	125.6	72.0	38.9	18.7

[^0]TABLe 3．－Comparison of city and country schools‥－Property and expenditures．

	Value of school property per capita of total population．		Λ verage value of a school build－ ing with its site and furni－ ture．		Average cost per day of tuition for one pupil．		Average daily expenditure per pupilfor poses．	
	In the cities．	In the country．	In the cities．	In the country．	In the cities．	In the coun－ try．	In the cities．	In the coun－ try．
1	2	3	4	5	6	7	8	（9）
United States	\＄9． 48	\＄3．55	\＄21， 528	\＄694	Cents． 8.76	$\begin{array}{r} \text { Cents. } \\ 8.16 \end{array}$	$\begin{gathered} \text { Cents. } \\ 15.17 \end{gathered}$	Cents． 11.48
North Atlantic Division	9.67	5.09	24， 258	942	8.71	8.22	15.34	12.61
South Atlantic Division ．．	5.57	0． 77	373	177	7.81	5.45	11.48	6.54
South Central Division．．．－	5.87	0.65	348	159	7.49	6.64	10．79	7.82
North Central Division．．．	10.20	5.62	25， 773	909	8.72	8.67	15． 41	12.47
Western Division．．．．	13.56	5.48	35， 192	1，262	12.63	15.63	22.85	22.34

${ }^{1}$ The data relating to country schools represent the diferences between corresponding items in Tables 8 and 9 ，and Tables 1 to 15，chapter 1，Part 1.

TABLE 4．－Comparative statistics for four years of all cities from which information has been receired．

Year．									
1	2	3	4	5	6	7	8	9	10
1886－87	Per ct．	Per ct． 70.1	140.5		124.1		Per ct．	\＄85． 00	
1886－87	22.4	70.1	133.7	37.0	128.6	33.4	4.5	80.54	16． 29
1888－89	20.6	71.4	136.9	38.1	127.2	328.5	4.5	86.10	16． 05
1889－90．	20.7	70.3	133.8	36.7	129.6	345.2	4.5	92.10	16．67

 		$\stackrel{\text { 랄 }}{ }$		$\left\lvert\, \begin{array}{lll} N 0.0 \\ \text { M- Mo mix } \end{array}\right.$		सis cisosemeoc	\cdots
＇ұแәш！Іогиә โ飞zof of Stoouos प． 		69			rimioiococoo	－0000000000	$\stackrel{\text { \％}}{0}$
		$\stackrel{\theta}{2}$			 	 	888
		링	过	－19	－io－iocococó	－000～0．000	13 0
－Suṛprina 		$\underset{a}{\stackrel{\rightharpoonup}{a}}$	骨		－500000000：－ Sigigivion in io		$\stackrel{\square}{\text { ¢ }}$
－nd 001 पวъә ォо1 Şzอs 		6	6 0 -1		 		02 0 \cdots 7
 		30	$\stackrel{0}{9}$				
	1 पәеә 07 IT stidnd ๖ธิย．รวงV	to	\％		amo 	 	20
		－	$\begin{aligned} & \infty \\ & \text { ¢ } \\ & \text { Ni } \end{aligned}$		 		－${ }_{\text {N }}^{\infty}$
－โIO．兀шә －рแәาファ	－วัวน О7 әวแะ セ јо о！̣セモチ	45		$\begin{aligned} & -\infty \infty \\ & \text { BRSM } \end{aligned}$	 	 	－
โ1707 โOOчัง	 よ јо оฺ̣セฺ̣	룰	过	－－930	に～～かののーかっの 	 	$\stackrel{\square}{\text {＋}}$
－子แว จายงเุป ［を］07 ［OOपכS	แә โ00廿วs e omiqud әш！IO．Iนә むd јO о！̣еย	93	这｜	$\begin{aligned} & 1000 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	ㄷas 0 － H 		
－©od โe？ －пә I00 oा̣qud	－потุセโи 7tratuliox と， јо о！̣セy	$\theta 2$		いのシーか $\infty 00$	๗く゚○のに○かか $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{N}^{\infty} \infty$		
		m					

Table 6.-Comparative statistics of property and expenditures of the city and village school systems of the sereral States.

State.	Value of school property per capita of -		Cost of tuition (i. e., supervision and teaching) per capita of -		స్ 䓵 웅윺 ${ }^{9} 0$ Фّ © 号					
1	2	3	4	5	6	7	8			
United States	\$9.48	892. 10	\$1.\%2	\$16.67	Cents. 8.76	\$2.97.	Cents. 15.17			
North Atlantic Division	9.67	93.32	1.75	16.89	8.71	3.08	15.34			
South Atlantic Division.	5.57	56.15	1.44	14.49	7.81	2.11	11.48			
South Central Division.	5.87	67.40	1.23	14.12	7.49	1.77	10.79			
North Central Division.	10.20	95. 34	1.75	16. 35	8. 72	3. 09	15.41			
Western Division.	13.56	141.03	2.22	23.06	12.63	4.01	22.85			
North Atlantic Division:										
New Hampshire	10.02	117.68	1. 30	15. 29	8.82	2. 33	15.80			
Vermont.	9.15	97.70	1.47	15. 50	8.68	2.23	13. 27			
Massachusetts	14.76	123. 53	2.34	19.55	10.30	3.87	17.06			
Rhode Island	9.53	93.44	1.73	16.92	9.20	2.89	15.41			
Connecticut	11. 22	99.98	1.95	17.32	8.89	3.21	14.71			
New York	8.84	91.04	1.76	18.09	9.13	3.30	17.14			
New Jersey	6.28	66. 57	1.50	15. 93	8.16	2.27	12.30			
Pennsylvania	8.56	81.20	1.43	13.57	7.00	2.58	12.61			
South Atlantic Division: Delaware	7.90	77.55	1.26	12.34	6.33	2.18	10.99			
Maryland	5. 79	62.17	1. 59	17.03	8.90	2.27	12.74			
District of Colum			2.22	18.12	10.19	3.84	18.07			
Virginia.	3. 51	36. 01	1. 05	10.76	5.83	1.28	7.13			
West Virginia	8. 62	68. 73	1.78	14.17	7.50	2.84	11.99			
North Carolina	2.78	30.93	1.03	11. 40	6. 79	1.24	8.23			
South Carolina	2. 68	30. 09	1.09	12. 21	6.56	1.35	8.13			
Georgia	5.39	55. 80	1.19	12.28	6.46	1.54	8.40			
Florida --.-.---	1.50	20.80	0.78	10.83	6.51	0.99	8.28			
South Central Division: Kentucky	6.42	63.47	1.45	14.32	6.92	1.90	7.24			
Tennessee	4. 34	49.97	1.07	12.36	6.85	1.84	11.69			
Alabama	4.18		0.97							
Mississippi	4.56	44.08	1.18	11. 44	6. 46	1.42	7.74			
Louisiana Texas	7.25	80.14	1.52	16.83	9. 30	0.98 2.18	8. 52			
Ohio --.-	11. 70	101. 30	1.85	16. 06	8.53	3.21	14. 75			
Indiana	11. 54	95.84	1.70	14. 13	7.74	2. 69	12.26			
Illinois	8.57	85. 90	1.82	18.22	9.47	3. 13	16.32			
Michigan	9.36	85. 38	1. 62	14.81	7.62	3. 08	14. 48			
Wisconsin	8. 22	77.80 164.53	1.57 2.13	14. 84 24.37	7.88 12.60	2.41 4.42	12.13 26.10			
Iowa	11. 28	92.33	1.93	15.81	18.60	4.32	14.79			
Missouri.	8.32	84.34	1.50	15. 23	8.41	2.62	14.69			
North Dakota	27.25	237. 39	2. ${ }^{1} 1$	23. 60		4.88				
South Dakota	34.39	389.27	1.99.	22.57	13.77	3. 20	22.07			
Nebraska...	10. 29	135.27	1.35	17.78	9.57	2.67	18.85			
Wyoming										
Colorado	17.53	221. 74	1.77	22.42	12.29	5.05	35.05			
New Mexi	1.94	39.74	0.36	7.29	4.86	0.36	4.86			
Arizona Utah	6.61		0.95	16.15						
Nevada	3.53	28.95	2.08	17.08	8.63	3.53				
Idaho --..										
Oregon				22.55						
California	$\begin{aligned} & 10.10 \\ & 14.95 \end{aligned}$	130. 23	2.76	24.08	13.62	4.20	20.72			

Table 7.-Number and population, by States, of cities, etc., containing over 4,000 inhabitants.

a For the names of these cities and villages and their population see the tables of city school statistics in Part III, and also the list of cities annexed thereto from which no data are available,

ED $90 \longrightarrow 39$

The difference between the list of "places" of over 4,000 inhabitants presented in Bulletin No. 165 of the United States Census Office and the list of "cities and villages" ussd in the compilation of the tables of this chapter may be explained as follows :

First. The population of the cities of Owego, N. Y., Evanston, Ill., and Salem, Oregon, was not separately reported by, the enumerators of their respective localities. Consequently these cities were not included in the list of places in the census bulletin mentioned. All three cities are undoubtedly of the population requisite for representation in these tables; their school statistics are reported in due form, and no reason is apparent why they should not be inserted. The population assigned to them is estimated, the estimates being based principally upon the population in 1880 and the rate of increase of the several townships of which they are parts.

Second. The differences which appear in the figures for the six New England States require more extended notice, sicce the school data here presented will be used in comparison with similar items in future years, and it is important that persons so using them shall be in no doubt as to what the figures represent.

In New England, as it is well-kn wn, the methods of local government are peculiar. Counties exist, butfor judicial purposes only; in nearly all other matters what is there known as the "town system" prevails. The entire territory is divided into towns, which correspond in a measure to the western townships, but with the important difference that the New England towns are independent of the county in all matters of local concern. Villages in the towns are not recognized in the system and do not even have their boundaries defined. A "town" is made a city by simply changing the pian of government from a pure democracy to a representative form. This may be done when the people desire the change and the legislature sanctions it, after certain conditions have been reached, as, in Massachusetts for example, when the population is as great as 12,000 .

The average area of the towns in Massachusetts is approximately 23 square miles; in Rhode Island, 30 ; in Connecticut, 29 ; in Maine, 60 ; in Vermont and New Hampshire, 38.

It is plain, therefore, that there are many towns in which a population of several thousand is so scattered over a large territory as to deprive them of every aspect of urban communities. Then, too, some of the "cities" consist of several distinct villages, between which original forests or agricultural lands still remain, although in most cases the incorporated cities are uniformly and thickly settled, and do not difier materially from cities in other parts of the country. But there are no boundaries recognized excepting those of the counties and towns or cities, organized as before explained; and the custom prevalent in that scction of never considering the village apart from the town in official matters, evidently had its effect upon the census officials, for with a few exceptions they made no mention of the villages in their figures of population.

There is great difficulty, therefore, in making from such data a tabular statement of urban population in New England which will substantially correspond with the conditions elsewhere. Only two methcds of dealing with the problem seem possible : First, disregard the great territorial extent of the "towns" and place them in the same caregory with the cities and villages of other sections; second, investigate the character of the population of the several towns, considering each one separately, and from the best data available make as close an estimate as possible of the urban population.

The first method was adopte l by the census authorities in this city. It has the advantage of displaying no figures except those obtained by an actual count of something; but its disadvantage is obvious, since it makes the urban population appear to be far greater than it is in fact.

This method is particularly unsatisfactory in the matter of school statistics. "City school systems "are essentially those of dense settlements. The schools in rural, or sparsely settled, districts form a class entirely different in organization, in methods, and, as a rule, in results. It becomes important, therefore, to separate them as far as possible. As this could not be done under the classification of the Census Office the second method of obtaining the list of "cities" was adopted, although it involved the use of estimates in many cases.
The following may be given as the principal means by which the fitness or unfitness for these tables of individual localities was determined:

First. When a town was shown to contain more or less rural or scattered population, and a single vil'age or borough whose population was exactly stated, or could ba approximately determined from the school census or otherwise, the
town was disregarded and the village or borough was considered with sole reference to its own population. Cases of this kind arose principally in Connecticut and Vermont.

Second. When the only school statistics to be had were for the town as a whole, and it appeared that the town was composed wholly of a city or large village with its environs or "suburbs," as in the case of New Britain, Conn.. the population of the town was used in preference to that of the city alone. This was necessary to make the figures of population correspond in area with the school data, and is in accordance with the general practice of including more or less of contiguous territory in the corporate limits of a city.

Third. When a town contains several distinct villages with separate interests, none of which had as many as 4,000 inhabitants, all were discarded, though the population of the entire town may have been a great deal more than the mimum limit. But when one of the villages evidently contained the required population that village was included in the list, with an estimate as accurate as may be of its population. Warwick, R. I., is an instance of the first class, and Lincoln, R. I., containing Central Falls, of the sesond class.

Fourth. When nothing definite could be determined concerning the villages in a town the population of the town as compared with its area as shown by the maps was taken as an indication of the density of its population, and cunsequently of the fitness of the town for use in the tables. But in all such cases the organization of the schools shown by the reports of the school committees was considered, for in New England small schools almost invariably indicate sparse populaticn. In Massachusetts, and in some instances in other States, it was necessary to accept or discard each town as a whole according to these guides, which, it must be admitted, were by no means satisfactory.
It is to be remembered that the list as it stands is not claimed to be a periect one, and persons with an intimate knowledge of the several localities may detect flaws in the conclusions reached regarding them; if so, any suggestion in relation thereto will be gl dly accepted.
The following shows in detail the instances of difference between the Census Office tables and those of this chapter so far as they relate to New England:

CONNECTICUT.

MAINE.

b Estimated.
The following appear in Census Bulletin No. 165, but are excluded from the list of this Office in accordance with the plan indicated above:

Town.	Popula- tion.	Town.	Population.
Brunswick	6, 012	Houlton	4,015
Camden -	4, 621	Oldtowis.	5,312
Cape Elizabeth	5,459	Sanford....-	4,201 5,038
Deering	5,353	Westbrooz	6, 632
Eastport	4,908		

MASSACHUSETTS.

The following appear in Census Bulletin No. 165, but are excluded from the list of this Bureau in accordance with the plan indicated above:

Town.	Population.	Town.	Popula- tion.
Abington	4,260	Millbury	4,428
Amherst	4, 512	Milton.-	4,278
Andover	6,142	Montague	6,296
Ariington	5,629	North Attleboro	6,727
Athol.	6,319	Northbridge	4,603
Barnstable	4, 023	Orange	4,568
Blackstone	6,138	Palmer	6,520
Braintree	4,848	Provincetown	4,642
Bridgewater	4,249	Reading	4,088
Canton	4,538	Revere	5,668
Concord	4,427	Rockland	5,213
Easthampton	4,395	Rockport	4,087
Easton	4,493	South Hadley	4, 261
Franklin	4,831	Stoughton	
Grafton - - ${ }_{\text {Grat }}$	5, 4 4, 612	Ware	6, 7 382 28
Greenfield.	5,252	Warren	4,681
Hingham	4,554	Webster	7,031
Hopkinton	4,088	Westboro	5,195
Hudson	4,670	West Springfield	5,077
Ipswich	4,439	Whitman	4,441
Leominster	7,269	Williamstown	4,221
Methuen	4,814	Winchendon	4,390
Middleboro	6,065	Winchester	4,861

NEW HAMPSHIRE.

	Popu	lation.		Popul	lation.
	$\begin{aligned} & \text { Census } \\ & \text { bulle- } \\ & \text { tin No. } \\ & 165 . \end{aligned}$	List of Bureau of Edu- cation.		$\left\|\begin{array}{c} \text { Census } \\ \text { bulle- } \\ \text { tin No. } \\ 165 . \end{array}\right\|$	List of Bureau of Edu- cation.
Claremont town	5,565	(a)	\{ Rochester town	7,396	
Franklin town	4, 284	(a)	\{ Rochester village	(a) ${ }^{\text {a }}$	b 6, 100
$\xrightarrow[\text { Franklin town }]{\text { Laconia town }}$	4,085 6,143	(a)	Somersworth town.	6,207	

RHODE ISLAND.
b Estimated.

	Population.			Population.	
	$\begin{array}{\|l} \text { Census } \\ \text { bulle- } \\ \text { tin No. } \\ 165 . \end{array}$	List of Bureaucation. \qquad		Census bulle- tin No. 165.	List of Bureau of Edu- cation.
Burrillville town.	5, 492	(a)	$\{$ Lincoln town	20,355	
Coventry town.	5, 068	(a)	\{ Central Falls village	(a)	b8,700
Cranston town	8, 099	(a)	North Kingstown.	4,193	(a)
Cumberland town	8, 090	(a)	South Kingstown.	6,231	(a)
$\left\{\begin{array}{l}\text { Johnston town } \\ \text { Olneyville village }\end{array}\right.$	$\xrightarrow[(a)]{9,778}$	(a) $b 8,042$	Warren	4,489 17,761	(a)

a Omitted.

VERMONT.

Population.		Remarks.
Census	List of	
bulle-	Bureau	
$\frac{\operatorname{tin} \text { No. }}{165 .}$	of Education.	
6,812	(a)	
(a)	4,146	
6,391 6862	(a)	Bennington village has 3,971 inhabitants.
(a)	${ }_{5,467}$	
5, 143	(a)	Winooski village has 3,659 inhabitants.
4,160 4,579	(a)	Montpelier village has 3,617 inhabitants.
11,760	(a)	Bellows Falls village has 3,092inhabitants.
(a)	8,239	
6,567	(a)	St. Johnsbury village has 3,857 inhabitants.

Table 8.-Summary ${ }^{1}$ by States of school enrollment and attendance in cities and villages containing over 4,000 inhabitants.

State.	$\begin{aligned} & \text { Enroll- } \\ & \text { ment in } \\ & \text { public day } \\ & \text { schools. } \end{aligned}$	Aggregate number of days'attendance of all pupils.	Arerage attendance.	Enrollment in private and parochial schools. (Estimated.)
1	2	3	4	5
United States	2,969,938	397, 370, 327.4	2,088,071.8	773, 709
North Atlantic Division	1,446,635	192, 965, 023.6	994, 432.2	329,265
South Atlantic Division	219, 166	28, 595, 166.6	154, 257.1	48, 264
South Central Division	164, 896	21, 997, 437.8	116, 664.3	57, 979
North Central Division	993, 509	135, 506, 309	$722,411.2$	308, 062
Western Division	145, 732	18, 306, 390.4	100, 307.0	30, 139
North Atlantic Division:				
Maine	28,120	3, 586, 990	20, 215	4,847
New Hampshire	13, 252	1,720, 247	9, 927	6,493
Vermont	5, 158	674, 742	3,766. 1	2,882
Massachusetts	256, 534	36, 642, 795. 3	193, 015.2	43, 946
Rhode Island	40, 667	$4,452,246.6$ $8,669,858.7$	$24,220.1$ $44,509.3$	7,271 13,734
New York.	542,525	73, 361, 119	370, 102.4	144,400
New Jersey	121, 315	15, 441, 590.5	79,066. 1	35, 735
Pennsylvania	375,887	48, 415, 434. 5	249, 611	69,957
South Atlantic Division:				
Maryland	70, 294	$8,503,614$.	44, 450	17, 357
District of Columbia	36,906	5, 012,255	28, 184	3,119
Virginia.	33, 188	4, 478,353. 6	24, 263.1	9,585
West Virginia	11, 943	1,586, 616	8,406	1,485
North Carolina	14, 252	1, 467, 741	8,739	
South Carolina	9,610	1, 401, 477	7,523	4, 17
Georgia	27, 812	4, 159,132	21,897	6,42
Kentucky -	45, 879	6,801,567. 8	32,853	
Tennessee	26, ${ }^{\text {a } 59}$	3, 454, 424	19,068. 8	4,589
Mississippi	11, 758	938, $\overline{787}$	5,295	- $-7 \overline{4} \overline{6}$
Louisiana.	22, 759	3, 055,072	16. 349	
Texas.	40, 127	$4,742,710$	26,212. 1	
Arkansas	9,672	1, 137, 350	6,394	2,165
North Central Division:				
Ohio .-	210,910	30, 188, 440.2	160, 316	61,719
Indiana	89,546	11, 136, 848.2	61,060	22, 960
Illinois	217,674	30, 940,411. 5	160, 832.8	85, 342
Michigan	91, 825	13, 896, 263.1	71,528.7	31,536
Wisconsin	79,294	10, 396, 957.5	55, 220.7	32, 062
Minnesota	51,104 57,755	$6,857,721$ $7,501,616.6$	$35,445.1$ $40,833.2$	11,841 10,525
Missouri	116, 605	14, 4:8,824. 5	80,075	40, 163
North Dakota	2,007		1,221	
South Dakota	$\begin{array}{r}1,441 \\ 30 \\ \hline\end{array}$	$\begin{array}{r} 144,48.5 \\ 3,865,759.9 \end{array}$		250 3,445
Kansas.	44,536	5,971,783	34, 192.5	7, 461
Western Division:				
Wyoming				
Colorado	21,519	2, 431,256.8	13, 335.4	
Utah	8,120	801, 212	4,105	2,500
Oregon	9,789	1,236,096	6,747. ${ }^{-1}$	
California	81, 422	11, $094,940.8$	62,708	15,187

[^1]Table 9.-Summary by States of supervising officers, teachers, property, and expenditures of school systems of cities and vililages containing over 4,000 inhabitants.

State.		Number of teachers.				Number of seats or sit- tingsfor study.	Value of all public property used for schoolpurposes.	Expenditure for supervising and teaching.	Expendi ture for all purposes except bonds andloans						
		$\stackrel{0}{\text { ® }}$		$\begin{aligned} & \text { ざ } \\ & \text { ثi } \end{aligned}$											
1 \%	2	3	4	5	6	7	8	9	1						
United Stat	2,900	4,653	52,229	56, 882	7,842	2, 705,716	\$192,359,704	834,807,680	\$60,274,732						
North Atlantic Divi-	1,209	1,914	25,648	27, 5	3,826	1,299,27	92, 814, 038	16, 800,601	29,566,176						
South Atlantic Divi-	149	503	3,48	3,9	503	187,	664,	2,234,	282, 304						
South Central Division	189	422	2,608	3,030	439	152,980	7,866	1,646, 951	2,372, 501						
North Central Division	1,074	1, 564	18,133	19,697	2,672	941, 72	68, 867,767	11, 812, 100	20,871,712						
Western Division	179	220	2,358	2,5\%8	402	124, 953	14, 147, 429	2, 313, 104	4,182, 039						
North Atlantic Division:															
	29	60	658	718	285	28,218	1,488, 850	293, 000	409,79						
New Hamp	27	22	270	292	99	12,650	1,168,323	151.721	271,784						
Vermont			112	120	35	5,248	367, 933	58.550	89, 358						
Massachuse	154	503	4,875	5, 378	1,103	204.525	$23,8 \pm 4,069$	3, 774. 239	6,253, 162						
Rhode Islan	39	61	633	754	172	33, 938	2. 263, 371	409, 860	686, 195						
Connecticut		98	1,245	1,343	260	61, 251	4,450,430	770, 796	1, 275, 213						
New York	622	589	9, 713	10,302	768	475, 153	33, 697, 620	6,695, 505	12, 376,381						
New Jersey	145	92	2,027	2,119	235	100,447	5, 263, 493	1, 259, 689	1,838,787						
Pennsylvania --..-	240	511	6,055	6,566	859	317, 815	20, 269, 934	3, 387, 241	6, 105, 317						
South Atlantic Division:															
Delaware		4	180	184	21	8,469	517, 237	82, 2	142,755						
Maryland	12	131	1,173	1,204	121	61, 562	2,764,154	756, 868	1, 083, 905.78						
District of Columbia.	22	92	653	745	96	31, 150		510, 601	905, 78						
Virginia	29	91	466		80	27,222	873,	261,	4						
West Virginia	13	22	203	225	36	10, 991	577, 798	119, 077	190, 243						
North Carolin	22	60	168	228	34	10,997	270, 200	99,606	120, 718						
South Caro	19	13	143	156	17	8, 014	226, 416	91, 863	114, 022						
Georgia	26	74	430	504	65	24, 999	1,221,680	268, 836	349,270						
Fouth Centraldivision:	4	16	66	82	25	4,782	85, 885	44, 723	56, 860						
South Central Division:	43	70	742	812	90		2, 085, 216	470	619,357						
Tennessee	51	76	349	425	50	19, 547	952, 772	235, 7 \% 3	403, $6 \subset 8$						
Alabama		49	213	262	28	11, 056	517,700	117, 654							
Mississipp	5	16	121	137	22	10,622	233, 386	60, 602							
Louisia		34	432	466					260, 160						
Texas...	46	150	578	728	145	34, 62	2,100,628	441, 102	629,284						
Arkansas	5	26	165	191	40										
North Central Division:															
Ohio	198	381	3, 738	4,119	534	205,	16, 240, 628	2,573, 788	4, 453,397						
Indiana	80	169	1,459	1,628	238	77, 858	5, 852, 171	562. 405	1, 335, 696						
Illinois	299	283	4,170	4, 453	453	198, 424	13, 817, 257	2, 930,994	5, 051, 512						
Mrichigan	99	114	1,935	2,049	318	94, 814	6, 106, 753	1, 059,415	2, 012,649						
Wisconsi	86	123	1,349	1,472	244	74, 691	4, 296, 412	819, 640	1, 261,446						
Minnesot	96	79	1,165	1,244	152	54, 280	5, 831, 285	863, 761	1, 790,232						
Iowa	68	T9	1,146	1,225	196	56, 255	3,770,029	645, 323	1,110,021						
Missouri	91	168	1,889	2, 057	256	107, 245	6, 723,685	1,219,283	$\text { 2, 127, } 712$						
North Dak	$\stackrel{2}{2}$	1			7	1,895	$\begin{aligned} & 250.000 \\ & 350,000 \end{aligned}$	$\begin{aligned} & 28,820 \\ & 20,300 \end{aligned}$	$\begin{aligned} & 52,07 \\ & 32,545 \end{aligned}$						
South Dak	30	29	30 546	375	114	1,315 25,869	330,000 $2,812,440$	20, 300	728, 859						
Kansas	23	134	669	803	153	43,793	2, 747, 107	418,596	885, 504						
Wroming															
Colorado	27		337		51		,955, 57	298,997	52.076						
Arizona..............................															
Nevad		$3 \pm$	$\begin{aligned} & 67 \\ & 20 \end{aligned}$	$\begin{array}{r} 101 \\ 22 \end{array}$			408, 30,000	17, 7 C0	$30,000$						
Washin				233											
Oregon	112	101	1, 150	1, 165	20	9,835 73,481	$\begin{aligned} & \mathrm{7} 60,517 \\ & 8,167,087 \end{aligned}$	$1,510,2 \approx 9$	$\begin{array}{r} 222,796 \\ 2,297,605 \end{array}$						
		101	1,457	1, 5	219	73, 881	8,167, 01	1,510, 20							

${ }^{1}$ Sce footnote on p. ci3.

Table 10.-Summamy by States of statistics of public high schools in cities and villages containing over 4,000 inhabitants.

State.			Number of pupils enrolled.			Number graduatedduring 1889-90.		
			忶		$\begin{gathered} \text { in } \\ \text { Hi } \end{gathered}$	$\begin{gathered} \text { ®் } \\ \text { ت゙ } \end{gathered}$	¢	Fin से E-
1	2	3	4	5	6	7	8	9
United States	865	4,289	51,560	83, 383	134, 943	5,185	11, 2¢0	16, 445
North Atlantic Livision	311	1.814	24, 134	34, 860	58,994	2,644	5,075	7,719
South Atlantic Division.	74	306	2,998.	5,574	8,472	368	$8: 0$	1,188
South Central Division.	79	1235	2, 305	4, 409	6,814	173	593	769
North Central Division	355	1, 728	19, 817	35, 044	54, 891	1,771	4,308	6,079
Western Division.-.-.-	46	206	2,276	3,496	5,7\%2	229	461	690
North Atlantic Division:	15	75						
	7	31	988	1,26+	2, 262	101	218	196
Vermont	5	20	430	${ }_{313}$	543	28	118	196
Massachusetts	69	495	6,760	8,807	15,567	858	1,439	2,297
Rhode Island	9	54	661	- 1,021	1,682	77	113	190
Connecticut	17	108	1,524	- 2,145	3,669	202	247	449
New York	74	525	7, 246	10,613	17,859	569	1,398	1,967
New Jersey	$\stackrel{27}{ }$	127	1,562	2,524	4,085	163	1335	498
Pennsylvania	88	376	4,761	7,602	12, 363	570	1,185	1,755
South Atlantic Division:	3	12	151	223	374	11	23	34
Maryland	8	49	477	880	1,357	40	146	186
District of Columbia	2	53	604	1,163	1,767	135	195	350
Virginia	19	60	612	1,183	1,795	39	127	166
West Virginia	12	36	320	430	750	19	64	83
North Carolina	10	27	267	389	656	49	85	134
South Carolina	11	16	22	280	503	$\stackrel{2}{2}$	39	${ }^{32}$
Georgia	11	37	487	905	1,292	65	123	188
Florida.	4	16	58	121	179	8	27	35
Kentucky .---	15	58	796	1,326	2,122	61	156	217
- Tennessee	9	34	279	625	- 904	32	97	129
Alabama	10	26	198	489	687	8	56	64
Mississippi	9	13	40	169	209	9	35	44
Louisiana.	3	21	233	508	741	20	89	109
Texas.-	26	69	620	1,115	1,735	24	123	147
Arkansas.	7	14	139	177	416	19	40	59
Oklahoma								
North Central Division: Ohio		328						
Indiana.	42	167	1,904	3, 396	12, 5 , 490	151	${ }_{416}$, 567
Illinois	58	322	3, 208	6,714	9, 922	283	867	1,150
Michigan.	41	241	2,952	4,498	7, 4 $=0$	256	448	, 704
Wisconsin	35	147	1,716	2, 496	4,212	131	248	379
Minnesota	20	127	1,165	1,643	2,808	86	184	270
Iowna	24	121	1, 1111	2,591	4, 003	162	325	487
Missouri	30	148	1,548	3, 472	5, 0:0	127	455	582
North Dakota		7		109	154	3	11	14
South Dakota Nebraska	1	4	24	56	80	0	3	
Nebraska_	10	53	490	880	1,3\%0	60	124	190
Tansas	19	63	789	1,503	2,292	86	194	280
Montana	2	5	42	85	127	7	6	13
Wyoming	2							
Colorado	9	49	400	631		25	69	94
New Mexic	0	0	0	0	0	0	0	
Arizona Utah	1	1	3 0	13	16 0	0	0	
Nevada	1	2	25	4		6	10	16
Idaho----								
Washington		19				15	27	42
Oregon--	$\stackrel{3}{3}$	114	120	${ }_{2} 232$	35.2	8	36	44
California	20	114	1,419	2,125	3,54i	165	304	469

${ }^{1}$ See footnote on p. 613.

Table 11.-Summary by States of statistics of public evening schools in citics and villages containing over 4,000 inhabitants.

CHAPTER II.

SALARIES OF TEACHERS IN CITY PUBLIC SCHOOLS.

A.-Annual salaries of teachers in the following cities: Birmingham, Ala., Litlle Rock, Ark., Los Angeles, Cal., San Francisco, Cal., Denver, Colo., Bridgeport, Conn., New Haven, Conn.: Wilmington, Del., Washington, D. C.. Atlanta, Ga., C'hicago. Ill., Peoria, Ill., Evansville, Ind., Indianapolis, Ind., Des Moines, Iowa (west side), Des Moines, Iowa (east side), Sioux City, Iowa, Kansas City, Kans., Covington, Ky., Louisville, Ky., Portland, Me., C'ambridge, Mass., Holyoke, Mass., Lawrence, Mass., Lowell, Mass., New Bedford, Mass., Salem, Mass., Worcester, Míass., Detroit, Mich., Grand Rapids, Mich., Saginaw, Mich. (east side), Minneapolis, Minn., St. Paul, Minn., Kansas City, Mo., St. Joseph, Mo., Helena, Mont., Omaha, Nebr., Nashua, N. H., Camden, N. J., Jersey City, N. J., Newark, N. J.. Paterson. N. J., Trenton, N. J., Albany, N. Y., Brooklyn, N. Y., Buffalo, N. Y., New York, N. Y., Rochester, N. Y., Syracuse, N. Y., Troy. N. Y., Yonkers. N. Y., Columbus, Ohio, Dayton, Ohio, Springfield, Ohio, Portland, Oregon, Allegheny, Pa., Philadelphia, Pa., Pittsburg, Pa., Reading, Pa., Providence, R.I., Charleston, S. C., Memphis, Tenn., Nashville, Tenn., Dallas, Tex., Salt Lake City, Utah, Richmond, Va., Tacoma, Wash., Milwaukee, Wis.
B. - A contribution to the history of teachers' salaries, being, as far as the available records show, a detailed statement of the salaries paid in Baltimore, Md., St. Louis, Mo., Boston, Mass., New Orleans, La., and Cincinnati, Ohio, for each year since the establishment of public schools in those cities. (Tables 1 to 28.)
A. - Annual salaries of teachers in 69 of the principal cities of the United States.

Birmingham, Ala.

[From manuscript report, 1892.]

Teacher of training class, female \qquad $\$ 1,100$ HIGH SCHOOL.

principal, male	1,350
1 first assistant, female	765
1 second assistant, fema	495
1 third assistant, female	675
1 teacher of German, fem	562
elementary schools.	
2 principals, male	\$1,300
1 principal, female	1,300
1 principal, male	720
1 principal, male	540
1 principai, male	495
1 principal, male	360

ELEMENTARY SCHOOLS-continued.

ssistant, female	\$540.
6 assistants, female	517.50
1 assistant, female	495.00
2 assistants, female	472.50
5 assistants, female	450.00
6 assistants, female	427.50
10 assistants, female	405.00
9 assistants, female	382.50
13 assistants, female	360.00
4 assistants, female	337.50
2 assistants, female	315.00
9 assistants, female	270.00
1 assistant, colored, ma	495.00
1 assistant, colored, male	405.00
3 assistants. colored, m	360.00
3 assistants, colored, ma	315.00

Little Rock, Ark.
[Compiled from the Report of the Public Schools, 1888-89, p. 62.$]$

Inexperienced teachers holding first-
grade license
Experienced teachers holding secondgrade license
$\$ 450.00$
Inexperienced teachers holding sec-ond-grade license
480.00
405.00

The board may employ four experienced teachers holding first-grade licenses

 at $\$ 540$ per annum.
Los Angeles, Cal.

[Compiled from the Annual Report of the Board of Education, 18:0-91, p. 101.]

Principa	\$1,350	Teachers in other grades	6\%5 to $\$ 765$
Teachers in high school	1,125	Kindergarten principal	. 5
Principals of 12-room building	1,215	Kindergarten teachers	450 to 5 :
Principals of 8 -room buildings.	1,080	Kirdergarten assistants, not over.	5
Principals of 4-room buildings	900	Drawing teacher.	170
Principal of normal primary	900	Writing teach	1,125
Teachers in second and		Music teacher	1,125
grade	585 to 675	Night-school teacher	

Oakland, Cal.

[Report of the Public Schools, 1886, p. 16.]

teacher at	\$2,700	26 teachers at	\$870
10 teachers	1,800	24 teachers at	84
1 teacher at,	1,500	18 teachers at	81
15 teachers	1,200	6 teachers at	7¢0
6 teachers at	1,080	1 teacher at	\%
13 teachers at	1,050	1 teacher at	69
2 teachers at	1,012	1 teacher at	63
3 teachers at	930	2 teachers at	610
13 teachers ${ }^{\text {at }}$	900	1 teacher (evening school) at .-................	360

San Francisco, Cal.
[Compiled from the Report of the Superintendent of Common Schools, 1800-91, pp. 42-45.]

ASSISTANTS IN GRANMAR AND PRIMARY

First jear ---.-.. 8600
After 1 year's experience a .-..................... 636
After 2 years' experience 672

After 4 years' experience $\quad 744$
After 5 years experience-. -- 780

After 8 years' experience 888
After 9 years' experience .-.-...................... 924

EVENING SCYOOLS.
Principal of Lincoln evening school, per $\$ 100$
Principal of other evening schools, per $\quad 60$
Assistant principal of Lincoln evening

Head teacher of mechanical drawing, Lincoln evening school, per month....
Assistants in evening schools, per month 50

SUBSTITUTE TEACHERS.

Substitutes, day schools, for reporting,

$\$ 1.00$
Substitutes, day schools, when teach-

Schools, per day -.................................
Substitutes, when teaching in commer-
cial school, per day-...-..................
6. 00
5.00

Substitutes, erening schools, for report-

1. 00

Head inspecting teacher
Head inspecting teacher -..-..-. --............ 3, 000
Inspecting teacher
2,100
a All experience in public schools of the United States to count.
NUMBER OF TEACHERS RECEIVING THE VARIOUS SALARIES IN THE FOREGOING SCHEDULES.

4	\$3, 000	9 teachers	\$1, 3:0	hers at	¢720
6 teachers at	2,400	10 teachers at	1,200	23 teachers at	708
14 tea	2,100	1 teacher at	1,080	43 teachers at	2
2 teachers at	1,980	314 teach	960	33 teachers at	36
10 teachers at	1,860	13 teachers at	9.4	45 teachers at	600
11 teachers at	1,800	4 teachers at	900	2 teachers at	480
18 teachers at	1,680	24 teachers at	888	36 substitu	
11 teachers at	1,620	30 teachers at	852	paid by the	
14 teachers at	1,560	88-teachers at	816	5 substitutes,	
22 teachers at	1,500	48 teachers at	780	paid by the	
2 teachers at .	1,410	22 teachers at			

Denver, Colo., District No. 1.

After a teacher has been with us one year she recaives $\$ 760$ a year, or $\$ 63.33$ per calendar month. The pay is the same, without regard to the grade taught. The exceptions are, first, that the first assistant in a large building receives $\$ 45$ a year more, and, second, the teachers of beoinners, when they take charge of two schools or over 70 pupils, receive an addition of 25 per cent. Assistants in the high school receive from $\$ 500$ to $\$ 1,200$, according to the time of servico and scholarship required.-[Sixteenth Annual Report ol the Board of Education, 1889-90, p. 11.]

Bridgeport, Conn.

[Compiled from the Fourteenth Annual Report of the Board of Education, 1889-50, pp. 88-42.]

Superintenden	\&2,500
HIGH SCEOOL.	
1 principal, male	\$2, 500
1 assistant, male	1,100
1 assistant, male	850
4 assistants, female.	900
1 assistant, female	850
1 assistant, female	750
TRAINING SCHOOL.	
1 principal, male	\$1, 500
1 assistant, female	700
1 assistant, fernale	650
1 assistant, female	600
2 assistants, female	550
1 assistant, female	525
1 assistant, female	500
9 assistants, female.	300

New Haven, Conn.
[Compiled from the Manual of the New Haven Public Schools, 1891, pp.40-42.]

The maximum salaries shall be as follows:

Principals, grammar schoo	\$2,500	Teachers, female, Grade V-	
Assistant principais, male	1,000	Room 5	\$ร.0
Assistant principals, fema		Room 50	60
2 -room puilding	500	Room $5 b$	620
3 -room building	550	Teachers, female, Grade VI	
4 -room building	600	Room 6	630
Nore than four rooms, $\$ 10$ fo		Room 6	6:0
		Room 66	
Masters of ungraded schools	800	Teachers, female, Grade VII-	
Teachers, female, Grade I*-		Room 7	67
Room A	600	Room 7 a	\%
Room 1	600	Teachers, female, Grade VIII-	
Room $1 a$	500		750
Room 13	475	Assistant teachers, female, Grado VIII.	550
Room $1 c$	450	Kindergartners	
Teachers, female, Grade II-		Graduates of the training school ap-	
Room 2	450	pointed as substitutes, first year-....-	30
Room 2α	460	Substitutes, after first year...............	350
Room $2 b$	460	Special instructors-	
Room $2 c$	470	Music	2,300
Teachers, female, Grad		Mechanical drawing	1,200
Room 3	480	Freehand drawing	1,209
Room 3a	490	Sewing	650
Room $3 b$	500	Cooking	800
Teachers, female, Grade IV-		Manual training	1,030
Room 4	530	Kindergartner, training class for teach-	
Room $4 a$	545	ers	600
Room 43	560	Principals of high school......................	$2,700$

The salaries of all teachers in the high school and in the training school for teachers shall receive sepa ate consideration, and shall be fixed according to experience and the character of the work to be performed.
[Compiled from the Annual Report of the Board of Education, 1890-91, pp. 88 and 94.]
The following are the salaries of teachers in the high and training schools for 1891-92:

HILLHOUSE HIGH SCHOOL.

Principal, male	\$2,500
1 teacher, male	2,000
1 teacher, male	1,800
1 teacher, male	1,600
2 teachers, male	1,500
1 teacher, male	1,300
1 teacher, male	1,200
3 teachers, female	1,000
2 teachers, female	900
2 teachers, female	800
2 teachers, female	750
3 teachers, female	700
1 teacher, female	00

WELCH AND CEDAR STREET TRAINING SCHOOLS.

principal, female.	\$1,5
1 principal, female.	1,300
1 associate principa	1,300
1 teacher, female	900
1 teacher, female	800
1 teacher, female	750
1 teacher, female	675
2 teachers, female	650
1 teacher, female	610
1 teacher, female	c0
1 teacher, female.	550
1 teacher, female	560
3 teachers, female	50
1 teacher, female	000
3 teachers, female	400
4 teachers, femal	350
1 teacher, female.	300
1 kindergartner	600
kindergartner	350

teacher, female..........

4 teachers, female.. 350
-

Wilmington, Del.

1 teacher at	\$1,700	5 teachers a	$\$ 650$	21 teachers at	\$425
1 teacher at	1,200	5 teachers at	600	1 teacher at	380
4 teachers at	900	16 teachers at	550	70 teachers at	365
2 teachers at	800	1 teacher at	525	20 teachers at	300
2 teachers at	750	14 teachers at	500	4 teachers serving with-	
3 teachers at	700	18 teachers at	460	outsalary.	

Four divisions in the training school are taught by pupil-teachers who are in training and on trial. These teachers serve eighty days in this school and recoive salary at the rate of $\$ 300$ a year for the last twenty days.
[Reports concerning the Public Schools for 1893 91, p. 8.]
Washington, D. C.
[Report of the Board of Trustees, 1890-91, p. 15.]

WHITE SCHOOLS.

COLORED SCHOOLS.

1 superintendent at $-\ldots-.-$.-........................ $\$ 2,250$

1 supervising principal at 1; 100
1 principal of normal school at............ 1, 1,500
1 teacher in normal school at .-............- 800
2 teachers in normal school at- 700
1 principal of high school at 1,800

Atlanta, Ga.

[Compiled from the Twentieth Annual Report of the Board of Education, 1891, pp. 7-11.]

BOYS' HIGH SCHOOL.	
1 principal, male.	\$1,700
1 teacher, male	1,600
2 teachers, male	1,500
GIRLS' HIGH SCHOOL.	
1 principal, female	\$1, 450
1 assistant principal, female	700
1 teacher, female	1,200
1 teacher, female.	950
1 teacher, female	900
2 teachers, female	800
3 teachers, female	750
1 teacher, female	600
elementary Schools.	
1 principal, male	\$1,600
1 principal, female	1,410
6 principals, female	1,200
2 principals, female	800
1 principal, female.	700
1 principal, female	650
1 assistant principal, female	700
7 assistant principals, female	600
3 assistant principals, female .-	530

elementary schools-continued.
1 assistant principal, female $\quad \$ 450$
9 teachers, female (seventh grade) 600
9 teachers, female (sixth grade).........- 575
11 teachers, female (fifth grade)- 550
12 teachers, female (fourth grade) 525
13 teachers, female (third grade) 500
15 teachers, female (second grade) -.-..-. $\quad 500$
12 teachers, female (first orlowest grade) $\quad 600$
\approx teachers,female (first or lowest grade) 500
NIGHT SCHOOL.
${ }^{1}$ principal, male - -.-............................ $\$ 1,800$

NEGRO SCHOOLS.
4 principals, male .-...-......................... $\$ 650$
4 assistant principals, female................................ 250
4 teachers, female (seventh grade).....- 400
4 teachers, female (sixth grade) 375
4 teachers, female (fifth grade) 375
4 teachers, female (fourth grade).......... 350
4 teachers, female (third grade) .-...... 350
4 teachers, female (second grade) 350
4 teachers,female (first or lowest grade) $\quad 350$

Chicago, Ill.

[Compiled from Thirty-sixth Annual Report of the Board of Education, 1889-90, pp. 142-145.]

SUPERINTENDENTS.

Physical culture, 8 assistants, grammar grades
Pnysical culture, 5 assistants, primary grades
\$5, 000
4, 000
4,500
3,500
3,000
$\$ 2,400$
2,000
2, 200
1,900
1, 400
2,500
2,200
1,800
1,000
1,800
1,000
900
Physical culture, 1 assistani, primary grades b.

HIGH SCHOOLS

PRINCIPALS OF GRAMMAR SCHOOLS.

PRINCIPALS OF GRAMMAR SCHOOLS-cOnt'd.

8 principals, second group-continued.

> Fourth year
> 1,950

Fifth year
2, 000
1 principal, third group:
First year- 1,400
Second year ... 1, 1,500
Third year.. 1,600
1 principal, third group........................ 1,500
1 principal, third group.......................... 1,400

PRINCIPALS OF PRIMARY SCHOOLS.

15 principals, first group:
First year $\$ 1,400$

9 principals, second group:

6 principals, third group:

2 principals, fourth group-............. 1,100
2 principals, fourth group 1, 1,050

ASSISTANTS, PRIMARY AND GRAMMAR SCHOOLS.

Assistants to principals .-................... $\$ 1,100$

Head assistants, grammar schools:
First 5 years
00

After 10 years ... 1, 000
Head assistants, primary schcols:
First 5 years............................... 850

Assistants, primary grades:
First year... 400

Assistants, grammar grades: 450
First year
450

Second teachers in half-day divisions receive $\$ 50$ per annum less than assist ants in primary grades. Three reserve teachers at $\$ 700$ each.

SUBSTITUTES.

Four substitutes, to be employed at the discretion of the superintendent, $\$ 4$ each per day of actual service; other substitutes, $\$ 1.50$ per day of actual service.

CADETS.
After two months' satisfactory service, 75 cents per day of actual service; after six months' service, $\$ 1.25$ per day.

Peoria, Ill.

[Compiled from the Thirty-third Annual Report of the Boara of School Inspectors, 1888-89, pp. 46-49.]

Evansville, Ind.
[Annual Report of the Public Schools, 188i-S8, p. 106.]
-Maximum salaries of assistants:
To those teaching in the-
Second and third grades
Fourth, fifth, and sixth grades.

Indianapolis, Ind.

[Compiled from the Manual of the Pubiic Schools, 1888, p. 56.]

Supervising principals:	
First year	\$1,000
Second year	1,100
Third year	1,200
Principals of 1-room buildings	600
Principals of 2-room buildings	650
Principals of buildings of 3 or more	
rooms, $\$ 800$; and $\$ 2 \overline{\text { additional for each }}$	
room over four.	
Maximum salaries of teachers:	
Those teaching second and third grades	500
Those teaching the fourth, fifth, and	
sixth grades, and German.	550

Those teaching the first, seventh, and eighth grades	\$c00
All teachers receive salaries propor-	
tioned to their experience as follows:	
First 5 months in practice schools	150
First year thereafter	350
Second year thereafter	450
Third year thereafter	500
Fourth year thereafte	550
Fifth year thereafter	600

The rule as to experience dees not operote to give to any teacher a higher salary than that fixed as a maximum for the grade taught. Those who teach both English and German receive $\$ 25$ additional, and all teachers of German only, who teach part of a day in one building and part in another, receive $\$ 25$ additional. Teachers of pupils studying German in the sixth, seventh, and eighth grades receive $\$ 600$ per annum maximum.

Substitutes in primary grades receive $\$ 2$ per day; in grammar grades, $\$ 2.50$ per day, and in the high school $\$ 4$ per day.

The board of school commissioners annually fix the salaries of the superintendent, assistant superintendents, special teachers, critic teachers, and teachers lin the high school.

Des Moines, Iowa (west side).

[From manuscript report, 1892.]

Des Moines, Iowa (East side).

[From manuscript report, 1892.]

Sup	\$1,600	3 principals of elementary schools	¢855
Principal of high school	1,3n0	Teachers in elementary schools:	
Teachers in high school	600 to 650	First jear	350
4 principals of elementary schools.-	675	Annual inc	50
3 principals of elementary schools.-	630	Maximum	00

Sioux City, Iowa.
[From manuscript report, 1892.]

HIGH SCHOOL.		6 teachers	\$550
		1 teacher	6\%5
Principal	\$1,500	27 teach \in rs	600
5 teachers	900	18 teachers	550
1 teacher	800	1 teacher	525
		13 teachers	500
ELEMENTARY SCHOOLS.		20 teachers	450
		26 teachers	400
1 principal	31, 000		
3 principals	900	SPECHAL TEACHERS.	
3 principals	800		
1 principal	750	1 teacher of training class	\$1,200
2 principals	$\%$	1 supervisor of music	1,200
1 teacher	750	1 supervisor of physical culture	1,200
1 teacher..	700	1 supervisor of drawing..	900

Kansas City, Kans.
\qquad
HIGH SCHOOL.

Covington, Ky.

[Compiled from the Annual Report of the Public Schools, 1889-90, p. 0.]

HIGH SCHOOL.		COLORED SCHOOL.	
1 principal, male	\$1,600	1 principal, male	81, 000
1 first assistant, m	1,250	1 teacher, female	500
1 assistant, female.	850	2 teachers, female	450
1 assistant, female	700	2 teachers, female	400
2 assistants, female	650	1 teacher, female	350
DISTRICT SCHOOLS.		SPECIAL TEACHERS.	
4 principals, male	\$1, 250	Music, male	\$1, 2\%0
6 teachers, female	600	Penmanship, female	700
7 teachers, female	550	Drawing, female.	500
9 teachers, female	503		
25 teachers, female	450		
6 teachers, female	400		
4 teachers, female- 350			
Louisville, Ky.			
[School Manual, 1890-'91, p. \%1.]			
Superintendent	\$2,500	First-class assistants	8680
Principals of high schools .-.-.-.---.-.	2,250	Second-class assis ants	570
Professor of natural science (Male High		Third-class assistants	520
School	1,800	Fourth-class assistant	470
Professors, Male High School	1,500	Fifth-class assistants	420
Adjunct professors, Male High School..	1,000	Fifth-class assistants (first year) --.....	0
Professors, Female High School	1,000	Substitutes for principals of interme-	
Teacher of normal class-.....-.-.-.....-	1,000 1,000	diate and secondary schools............	1,000
Teacher, Colored High School Teacher, Colored High School	$\begin{aligned} & 1,000 \\ & 800 \end{aligned}$	Substitutes, intermediate department, at the rate of	500
Principals, intermediate school	1,550	Substitutes in secondary and primary	
Principals, secondary schools.	1,500	schools, at the rate of..	400
Principals, primary schools..............	680		

New Orleans, La.

For historical statement see pages 680-682.
Portland, Me.
[Compiled from the School Report, 1890-91, pp. 53-50.]

HIGH SCHOOL.		PRACTICE SCHOOL.	
1 principal, male	\$2, 000	1 principal, female	8900
1 assistant, male	1,100	1 acting principal, female	650
2 assistants, male	1, 000	3 assistants, female	250
1 assistant, female	750	9 assistants, female	100
1 assistant, female	700		
7 assistants, female	500	UNGRADED SCHOOLS.	
GRAMMAR SCHOOLS.		1 principal, male	\$1,000
		2 assistants, female	400
2 principals, male	\$1,440	2 teachers, female	350
1 principal, male	1,500	1 teacher, female	300
1 principal, male	1,050		
1 principal, female	1,000	SPECIAL TEACHERS.	
1 principal, female	800		
4 assistants, female	600	1 female special teacher	\$425
1 assistant, female	500	Writing and drawing, 1 male	1,400
14 assistants, female	450	Music, 1 female.	800
18 assistants, female	425		
1 assistant, female	375	PORTLAND SCHOOL FOR THE	
PRIMARY SCHOOLS.		1 principal, female	\$1,500
		1 assistant, female	500
7 principals, female	\$500	1 assistant, female	450
1 assistant, female	475	1 assistant, female	350
1 assistant, female	450	1 assistant, female	300
3 assistants, female	425	1 assistant, female	250
60 assistants, female	400	1 assistant, female, in training	228
1 assistant, female	375	1 assistant, female, in training	190
10 assistants, female	300		

For historical statement see pp. 647-655.
Boston, Mass.
For historical statement see pages 668-679.

Cambridge, Mass.

[Compiled from the appendix to the School Report, 1883, p. 28.]

3 Superintendent officers ..	

LATIN SCHOOL AND ENGLISH HIGH SCHOOL.

Head ma	83, 000
Masters	2,000
First assistants.	1,150
Assistants:	
First year	800
Second year	875
Third year.	950

Submasters1, 000 700
First assistant
First assistant
Assistants:
400
400
First year
470
470
Third year 520
Fourth year 570
Fifth year 620
Second year

PRIMARY SCHOOLS.

The salaries of the teachers of the primary sehools are tha same as those of assistant teachers in the grammar schools.
Principals of the primary schools receive, in addition to the regular salary, $\$ 5$ per annum for each separate class in the schools under their charge.

SPECIAL TEACHERS.

Teacher of singing \$1, 700
Teacher of physics 1,500
Teacher of drawing 900

SUBSTITUTES.
When acting as assistants in grammar and primary schools, $\$ 1$ for each school session.

Holyoke, Mass.

[Compiled from the Annual Report of the School Committee, 1839-90, pp. 108-111.]

ELEMENTARY SCHOOLS-continued.

19 assistants	\$425
1 assistant	400
3 assistants	375
1 assistant.	325
1 assistant.	100
2 teachers	$\$ 600$
3 teachers	475
1 teacher	

3 teachers 475

SPECIAL TEACHERS.

Calisthenics, 1 at.. 400
EVENING SCHOOLS.
1 teacher, per evening $\$ 2.00$

Lawrence, Mass.

[Compiled from the Forty-eighth Annual Report of the School Committee, 1830, p. 45.]

Superintendent .-.-.....-.-.-.-.-.-..........- $\$ 2,500$	
Truant officer	1,000
HIGH SCHOOL.	
1 master	\&2,5С0
1 submaster	1,200
1 assistant, fema'e	1,000
3 assistants, female	903
3 assistants, female	700
GRAMMAR SCHOOLS.	
1 master	\$2, 000
1 master	1,400
1 master	1,000
9 assistants, female	550
14 assistants, female	590
6 assistants, female	450
5 assistants, female.	400
PRIMARY SCHOOLS.	
3 principals, femaiss	$\$ 600$

PRIMARY SCHOOLS-continued.

13 assistants, female 400

TRAINING SCPOOL.

1 assistant principal. female --.................. 700

SPECIAL TEACHERS.

Drawing, 1 male
?1,200
Music, 1 male.
(G)

Sewing, 2 females
Salaries of teachers of evening schoois are not stated.

Lowell, Mass.

[Compiled from the Sixty-fifth Annual Report of the School Committee, 1890, p. 62.]

HIGII SCHOOL.

Principal, male	\$2, 200
Assistants. male	1,800
First assistants, female	800
Assistants, female:	
First year	$\$ 600$
-Second year	650
Thira jear.	700
GRAMMAR SCHOOLS.	
Principals, male	\$1, 800
Assistants. female:	
First year	450
Secorid year	500
Third jear.	600
PRIMARY SCHOOLS.	
Teachers, female:	
First year	S450
Second year	500
Third year.	600
TRAINING SCHOOL.	
Principal, female	\$1,500

TRAINING SCHOOL-continued.

First assistant, female ScOO
Second assistant. female 703
Third assistant, female. 500
SPECIAL TEACHERS.
Penmanship, 1 male 81, 250
Drawing, 1 female 1,250
Music, 1 male 1,250
TEMPORARY TEACHERS.
Nale teachers, per day $\$ 3.00$
Female teachers, hirh school. per cay 1.75
Female teashers, other schoois, per cay. 1.25
EVENING SCHOOLS.
Principal, high school, per evening-. 85.03
Principal, elementary school, per even- ing 2. 09
Assistants, high school, per erening - 2. 60
Female assistants, elemintary schools,
Female assistants, elemintary schools, per evening 1. 2

New Bedford, Mass.
[Ccmpiled from the Report of the School Committee, 1890, pp. 25 and 80.$]$

GIGH SCHOOL.
Principal, male
Submaster. male
\$2, 750
Submaster, male
1.600

Teacher of sciences, male
1,500
Assistants, female
TRAINING SCHOOL.
Principal, female
$\$ 1,300$
700
Training teachers
Seniors, female..-per week.-
Juniors, female.........do....

GRAMMAR SCHOOLS.

Principals, maximum 81,800 to $\$ 9,000$
Assistants, female, maximum............ 550

PRIMARY SCEOOLS.

Principals, female, maximum..
Assistants, female, maximum..

SPECIAL TEACHERS.

Drawing, primary añd grammar, female
Drawing, high school, female -....
Music, male
Sewing, female
1, 7 \%
ewing assistant fo......
5
UNGRADED SCHOOLS.
Teachers
8400 to 700

EVENING SCHOOLS.

Drawing school, principal, male. Drawing school, assistant, male-

Elementary schools. assistants,
female, per week

The salary of a primary-sehool principal of a four-room building is $\$ 550$ a year, which is increased at the rate of $\$ 25$ for each additional room. The salaries of assistant teachers in the grammar and primary grades are increased at the rate of $\$ 25$ per year until the maximum salary is reached.

Salem, Mass.

[Compiled from the Annual Repor't of the School Committee, 1831, p. 114.] HIGH SCHOOL.

aster	82,200
Submaster	1,500
1 teacher, male	1,500
1 teacher, male	1,000
1 first assistant, female	1, 100
6 assistants, female	650
Grammar	
4 principals, male	\$1,800
1 principal, female	1,500
1 subprincipal, female	800

GRAMMAR SCEOOLS-continued.

5 first assistants, female	$\$ 600$
29 assistants, female	500

29 assistants, female 500

PRIMARY SCEOOLS.

41 assistants, female
5 CO
1 music teach or, female........................ 800
1 principal of industrial school, male.-- 750

Worcester, Mass.
[Compiled from the Report of the Worcester Schools, 1890, p. 83.]

Superintendent	\$3,500	ELEMENTARY SCHOOLS-C	
HIGH SCHOOL.		1 principal, male	\$ 800
		1 principal, female.	1,400
1 principal, male	\&3, 000	2 principals, female	900
1 teacher, male	2,000	7 principals, female	0
1 teacher, male	1,800	2 principals, female	00
1 teacher, male	1,400	5 principals, female	550
2 teachers, male	1,200	1 principal, female	500
1 teacher, male	1,100	30 assistants, female	C00
2 teachers, male	1,000	80 assistants, female	0
1 teacher, female	1,100	124 assistants, female	00
3 teachers, female	1,000	9 assistants, female.	50
1 teacher, female	900		
7 teachers, female	800	SUBURBAN SCHOOLS.	
3 teachers, female	700		
1 teacher, female	600	1 teacher, female	acco
1 teacher, female	500	19 teachers, female	5 CO
1 teacher of booklreeping, male	600	1 teacher, female	450
elementary schools.-		SPECIAL TEACHER3.	
6 principals, male	\$2, 000	Drawing, 1 female teacher	\$1,400
1 principal, male	1,800	Drawing, 1 male assistant.	
1 principal, male	1,500	Music, 1 male teacher	1, C50
2 principals, male	1,400	Music, 1 male assistant	1,000
1 principal, male	1,200		

Salaries of evening-school teachers and truant officers are not stated.

Detroit, Mich.

[Compiled from Forty-seventh Annual Report of the Board of Education, 1889-90, pp. 23 and 23.]

Superintendent
$\$ 4,000$
HIGH SCHOOLS. a
Assistants:

Fifth year
800

ELEMENTARY SCHOOLS:

Principals in charge of -

ELEMENTARY SCHOOLS-continued.
Principals in charge of -
Less than 6 rooms
First assistants in buildings of 12

Grammar and primary school teachers:
First year
801

Second year
©5)
Third year460

Teachers of half-day schools with more than 74 pupils in attendance, $\$ 50$ per annum in addition to regular rates.
a The salaries of principals, grade principals, and heads of special departments are as agreed upon in each individual case, and are not included in the schedule.

NUMBER OF TEACHERS RECEIVING THE SEVERAL AMOUNTS NAMED.

1 at....-.-.-.-.-.-- 82,500	1 at	1,250	13	\$775	32 at	2525
3 at...--.-.-.-...-- 2,000	5 at	1,200	1 at	750	53 at	500
1 at......-.-.......- 1, 800	6 at	1,000	101	700	32 at	450
3 at.-.------------ 1, 600	10 at	900	12 at	653	36 at	400
2 at....-........-.-. - 1, 500	10 a	850	11 at	600	38 at.	350
2 at....-.-.-.-.-... 1, 400	2 at	825	24 at	575	29 at	3 CO
10 at.............-. 1, 300	28 at	800	11 at	550	14 at	120

Grand Rapids, Mich.

[Compiled from the Eighteenth Annual Report of the Board of Education, 1883-90. pp. 42 and 162.]

1 superintendent, male	\$2, 250	HIGH SC	
1 assistant superintendent, fem	1,050		
		1 teacher, female	\$900
HIGH SCHOOLS.		1 teacher, female	850
		3 teachers, female	750
1 principal, male	\$2, 0¢0	2 teachers, female	700
1 principal, male	1,700	3 teachers, female	650
1 teacher, male	1,300	2 teachers, female	625
1 teacher, male	1,200	5 teachers, female	600
1 teacher, male	800	2 teachers, female	580
1 teacher, male	7 70	2 teachers, female	560
1 teacher, male	650	2 teachers, female	5 50
1 preceptress, female	1,203	2 teachers, female	510

ELEMENTARY SCHOOLS.

Principals receive for the first room actually used as a session room, $\$ 500$; for each additional session room, $\$ 25$. Salaries of assistant teachers in charge of romms shall be based on experience, as follows :

Experience.	```First tothird grades, inclu- sive.```	Fourth grade.	Fifth grade.	Sixth grade.	Seventh grade.	$\begin{aligned} & \text { Eighth } \\ & \text { and } \\ & \text { ninth } \\ & \text { grades. } \end{aligned}$
First year's experience (́cadetship)	\$203	\$200	\$200	\$200	\$200	\$200
Second and succeeding years of cadetship	300	300	300	300	300	330
Second year of experience, first year in charge of room	350	350	350	350	350	350
Third year of experience, second year in charge of room	400	400	400	400	400	450
Fourth year of experience, third year in charge of room.	450	450	450	450	450	500
Fifth year of experience, fourth year in charge of room.	475	475	475	500	500	550
Sixth year of experience, fifth year in charge of room.	500	520	540	- 560	580	600

Class-room teachers receive the same salaries as teachers in charge of rooms of the next lower grade.

Saginaw (East Side), Mich.

[Report of the Public Schools, 188i-89, p. 134.]
The salaries of teachers are as follows, unless otherwise specified by the board:

[^2]
Minneapolis, Minn.

[Fourteenth Annual Report of the Board of Education, 1890-91, p. 61.]

Rank.	First sear.	Second year.	Third year.	Fourth jear.	Fifth jear.	Sixth year.
HIGH SCHOOLS.				=		
Assistant teachers.	$\$ 700$	8750	$\$ 800$	\$850	\$900	8500
Teachers in charge of rooms except "A" room, containing less than 50 pupils.	750	800	850	900	950	950
PRINCIPALS OF ELEMENTARY SCHOOLS.						
4-rcom building	650	675	700	725	750	750
6 -100m building	675	725	750	715	800	800
8 -room building	700	750	800	850	900	900
8-room building, with grammar grade	750	800	850	900	950	1,000
	800	850	900	1,000	1,100	1,200
$1 \sim$-rcom building a	¢03	950	1,000	1,100	1,200	1,300
GRADE TEACHERS. ELEMENTARY SCHOOLS.						
In buildings of less than ten rooms:						
First grade, entering room	5	600	650	700	700	700
Other first, second, third grade rooms	400	450	500	550	600	650
Fourth and fifth grade rooms	450	500	550	600	650	700
Sixth and serenth grade roems	500	550	600	650	700	700
Eighth-grade rooms.	500	550	600	650	700	750
In buildings of ten or more rooms:						
First grade, entering room	550	600	650	700	750	750
Other first, second, third grade room	400	450	503	550	600	650
Fourth and fifth grade rooms	450	- 500	550	603	650	700
Sixth and serenth grade rooms	500	5¢0	600	650	703	700
Eighth-grade rooms....	550	600	650	700	750	800
ASSISTANTS, ELEMENTARY SCHOOLS.						
Primary assistants.	350	350	350	350	350	350
Intermediate assistants	400	400	400	400	400	400
Grammar assistants	400	450	500	550	550	550

a In buildings of more than 12 rooms the salaries of principals are as directed by the board.
Substitutes receire is per cent of the schedule salary of the positions filled. When taken from the teachers' training school they receive $\$ 1.50$ per day. The salaries of all other teachers and of the superintendent and supervisors of special work are fixed by special action of the board.

St. Paul, Minn.
[Compiled from the Manual of the Public Schools, 1891-92. p. c1.]

Rank.	First year.	Second year.	$\begin{aligned} & \text { Third } \\ & \text { year. } \end{aligned}$	Fourth year.	Fifth year.	Sixth year.
HIGH SCHOOL.						
Principal..	\$3, 000					
Teachers of mathematics, English, and drawing.	$\begin{array}{r} 0 \\ 850 \\ 1,000 \end{array}$	$\$ 1,000$ 1,200	\$1,000	$\$ 1,100$ 1,600	$\$ 1,100$ 1,800	$\$ 1,200$ 2,00
	1,000	1,250	1,350	1,500		
- teachers` training school.						
Principal	1,600					
Assistant	1,200					
Director of practice ---	1,250 1,000					
Model teachers..................	1, 850					
DISTRICT SCHOOLS.						
Principals of-						
4 room buildings.	850					
${ }_{8}^{\text {6-room buildings. }}$	¢00	950	1,000			
10-room buildings	1,100	1,150	1, 1200	1,200		
12 -room buildings	1,300	1,350	1,400	1, 120	1,500	
14 -room buildings	1,450	1,500	1,550	1,600	1,650	
16-room buildings...-	1,550 1,800	1,600 1,850	1,650 1,900	$1,7 \mathrm{~F}$ 1,950	1,750 2,000	

St. Paul, Minn.-Continued.

Kansas City, Mo.

ELEMENTARY SCHOOLS.

St. Louis, Mo.
For historical statement, see p. 000.
Helena, Mont.

Omaha, Nebr.

ELEMENTARY SCHOOLS.

Principals.	Salary.	After 5 years' service.	Principals.	Salary.	After 5 years' service.
2-room buildingsi.	8800	\$950	9-room buildings	\$1,150	81, 250
3 -room buildings.	850	950	10-room buildings	1,200	1,250
4-room buildings.	900	950 1,000	11-rcom buildings -..........-	1,250 1,30	1,360
6-room buildings.	1,000	1,100	13-room buildings.	1,350	1,400
7 -room buildings.	1,050	1,100	14-rcom buildings(or more)	1,460	
8 -room buildings.-	1,100	1,150			

Teachers of highest grammar grade, $\$ 300$. Other teachers, first year, $\$ 100$; annual increase $\$ 50 ;$ maximum, \$i00.
Graduates of a high school who have attended a regular normal school for one year are credited with two years' experience.

> NASHUA, N. H.
[Twenty-third Annual Report of the Board of Education, 1889, p. 5J.]

Mechanical department: Principal, per evening87. 50Assistant per ereningFree-hand departmcat:
Principal, per evening 6. 50
Assistant, per evening 2.50
EVENING ELEMENTARY SCHOOL.
2 principals, per week $\$ 10.00$
1 principal, per week 7.50
5.00
Truant officer, per weck 12.00
Camden, N. J.
[Report of the Board of Educatioב, 1820, p. 42.]
District principals, male $\$ 1,675$
Principals, secondary schools 750
Principals, boys' primary schools 575
Principals, girls' primary schools 550

ASSISTANTS IN BOYS' SCHOOLS.

\times	Grade.	,	$\begin{aligned} & \text { Mini- } \\ & \text { mum. } \end{aligned}$	Annual increase.	Maximum.
First			\$350	\$20.00	\$430
Second			370	20.00	450
Third			400	20. 00	480
Fifth...			450	12.50	525
Sixth			525	12.50	550
Serenth			625	12.50	650

ASSISTANTS IN GIRLS' SCHOOLS.

First	\$3ะ0	820.00	$\$ 100$
Second	350	20.00	430
Third	370	20.00	450
Fourth	425	12.50	475
Fifth	450	12. 50	500
Sixth	500	12.50	525
Seventh	600	12.50	625

Jersey City, N. J.
[Twenty-third Annual Report of the Board of Education, 1889-90, page 139.]

Newark, N. J.
[Compiled from the Thirty-fourth Annual Report of Board of Education, 1890, p. 151, and Thirty fifth Report, p. 90.]

-
a Those who teach classes of the highest grade receive $\$ 900$.

EVENING SCHOOLS.

Principals, male, per month $\$ 60$
Assistant, male or female, per month 40 and 45

SUBBTITUTES.
Grammar and primary schools,per day -- \$1. 50 High schools, per day-..-.............-....-- 2.50

Paterson, N. J.

[Compiled from the Annual Report of the Board of Education, 1890-91, page 119.]

HIGH AND NORMAL SCHOOLS.

Principals, male
$\$ 1,800$
Assistants, high school, female 750
Assistants, normal school, female 800

GRAMMAR SCHOOLS.

PRIMARY SCHOOLS.

PRIMARY SCHOOLS-continued.
1 principal, female............................... $\$ 700$
Head assistants. first grade, female .--. 550
Assistants, below first grade. female--

Assistants, kindergarten, female- $\quad 375$

Maximum .--------------------.-.-..-. 550
SPECTAL TEACHERS.
Instructor in training shop, male $\$ 1,000$
Instructor in drawing, female 1, 000

Trenton, N. J.

[Annual Report of the Board of Education, 1890-91, p. 120.]

Rank.	First year.	Second year.	Third year.	Fourth ye:r.	Maximum.
HIGH SCHOOL.					81,800700650600550
Principal, male-...-.					
Hied-principant, female					
First assistant, female					
Second assistant, female					
GRAMMAR SCHOOLS.					
Principal, male					1,500
Principal, female ---					750600
Vice-principal, female					
Head assistant, female	8350	\$400	\$100	8450	600500
¢istant, remale					
PRIMARY SCHOOLS.					
Principal, female..					650
Assistant, female	350	400	$40 \pm$	400	${ }^{450}$
COLORED SCHOOL.					
Principal, male			400	450	1,200

EVENING SCFOOLS.

Albany, N. Y.

[Compiled from the Twenty-fourth Annual Report of the Board of Public Instruetion, 1889-90,
p. 190.]

Superintendent
\$3, 000

EIGH SCHOOL.

Principal
Vice-principal and professor of Latir and Greek
\$3,000
Professor of mathematics
2,500
Professor of natural science
Professor of English literature
--.......-
Classical assistant and teacher of elo-
cution (who is also librarian)
Teacher of rhetoric and elocution
Assistant teacher of natural sciences...
Teacher of history and English branches
First assistant teacher of mathematics.
Second assistant teacher of mathematies
Third assistant tea her of mathematics.
First assistant teacher of Latin

- - -----

Second assistant teacher of Latin -.........
Third assistant teacher of Latin .-.........
First assistant teacher of English literature
Second assistant teacher of English literature
Third assistant teacher of English literature
Fourth assistant teacher of English lit erature
Professor of German

HIGH SCHOOL-Continued.

Teacher of French and German.
 Teacher of manual training (boys)

800Teacher of manual training (girls) 600
GRANMAR AND PRIMARY SCHOOLS.
$\$ 1,800$ 10 principals, male $\$ 1,800$ 1,600

principals. male

principals. male
1
4
principal, female
pripals, female , 800
4 principals, female 703
Principals' assistants and teachers of ninth-year class, and one first assist- ant 600
Teachers of seventh and eighth year classes (after four years' service), and two principals' assistants 550
Assistant teachers:
First year 350
Second year 400
Third year 600

SPECIAL TEACHERS.

Drawing master $\$ 1,600$
Director of music .. 1,200
Teacher of music (high and training achools) 500

Brooklyn, N. Y.

[Compiled from the 33th Annual Report of ths Suparintendent of Public Instruction, 1890, pp. 241 to 249.]

The entire elementary course covers seven and a half years, the time being divided into eight grammar and seven primary grades of a half year each. All primary schcols are call d "branch schools," and are under the direction of the principals of the grammar schools to which they are attached. Their principals are styled " branch principals." Salaries of other teachers are not staied.

Buffalo, N. Y.

[Compiled from the Annual Report of the Superintendent of Education, 1883-50. pp. 170-155.]

HIGH SCHOOL.

HIGH scinool-continued.

1 assistant, female.--------------------------------------

Buffalo, N. Y.-Continued.

ELEMENTARY SCHOOLS.
5 assistants, female 700

SCHOOL OF PRACTICE-continued.

SCHOOLS IN CHARITABLE INSTITUTIONS. b
3 principals 700
1 principal, female 600
1 principal. female 450
2 assistants, female 600
1 assistant, female.
500
1 assistant. female 500
KINDERGARTEN
1 principal (female)$\$ 450$
SPECIAL TEACFERS.
Miusic, 1 male principal $\$ 1,600$
Music, 1 male assistant 1,500
Penmanship, 1 male principal 1, 600
Drawing, 1 female teacher 1, 700
Drawing, 1 female teacher 650
German, 13 female teachers 600
German, 4 female teachers 570
German, 5 female teachers 500
German, 4 female teachers400
a This seems to be the salary of experience $\bar{\lambda}$ assistants, since nearly all on the list received it b All but two of these teachers are members of religious orders.

New York, N. Y.

[Forty-ninth Annual Report of the Board of Education, 1890, p. 刃1.]

MALE DEPARTMENTS OF GRAMMAR SCHOOLS.

FEMALEDEPARTMENTS OF GRAMMAR SCHOOLS.

PRIMARY DEPARTMENTS AND SCHOOLS.

75 principals, female......................... $\mathbb{8 1}, 750$
11 principals, female........................... 1,700
4 principais, female.-..-.-.-.-................ 1, 600
10 principals, female.-.......................... 1, 500

4 principals, female.-..-.-..................... 1, 100
6 principals, female...-..................... 1,000
42 vice-plincipals, temale, average .- 1,014
1,671 assistants, female, average......... $6: 3$

SCHEDULE OF SALARIES.

[Compiled from the Manual of the Board of Education, 1892, pp. 154-163, 208, 284.]
MALE AND MIXED GRAMMAR SCHOOLS


```
Male assistant teachers:
```



```
    Third-class assistants.---.-----------------------
    Fourth-class assistants ...............- 1,476
    Fifth-class assistants.................... 1,332
```



```
    Seventh-class assistants .-............--...- 1,080
```

Where five male assistants are employed, there is allowed one salary each of the first, second, fourth, sixth, and serenth class.

Where four are employed, one each of the first, third, fifth, and seventh class.

Where three are employed, one each of the second, fourth, and sixth class. Where two are employed, one each of the second and fifth class.
Where one is employed, one of the second class.

Female assistants in male schools:		Female assistants in mixed grammar schools:	
First-cl	\$1,116	First-class assistants	\$1,086
Second-class assistants	1, $0 \leq 0$	Second-class assistants	990
Third-class assistants	933	Third-class assistants	903
Fourth-class assistants	855	Fourth-class assistants	825
Fifth-class assistants	785	Fifth-class assistants	756
Sixth-class assistants	726	Sixth-class assistants	696
Seventh-class assistants	675	Seventh-class assistant	645
Eighth-class assistants.	633	Eighth-class assistaints	603

[See explanation of method of assigning salaries at the end of the schedule for female grammar schools.]

FEMALE GRAMMAR SCHOOLS.

Principalsinschool attendance of -	
100 or less	\$1,200
101 to 150	1,300
151 to 300	1,500
301 to 500	1,600
501 and up	1,700
Vice-principals in schools having an average attendance of a grammar grade	
250 or less	1,000
251 and upward	1,200

le assistants:	
First-class assistants	81,056
Sezond-class assistants	960
Third-class assistants	873
Fourth-class assistants	795
Fifth-class assistants.	726
Sixth-class assistants	666
Seventh-class assistants	615
Eighth-class assistants	573

1,000
251 and upwards

Female assistants in mixed grammar First-class assistants 1, 086
Second-class assistants 990
Third-class assistants 903
Fifth-class assistants $\quad 756$
Sixth-class assistants 696
Seventh-class assistants................... 645
Eighth-class assistants...........................

Where eight female assistants are employed in any grammar school there is allowed one of each class of male, mixed, or female grammar salaries, as the case may be.

Where more than eight are employed, there is added one salary of each class of similar salaries, beginning with the lowest, and repeating, if necessary, until the required number is reached. But there is not allowed to any grammar school more than one salary of the first or second class, two of the third class, three of the fourth class, four of the fifth class, five of the sixth class, or six of the seventh class.

Where less than eight are employed, there is deducted one salary of each highest and lowest class alternately, beginning with the lowest, until the recuired number is reached.

Female first assistants who teach the first grammar grades alone or in connection with other grades in mixed grammar schools where boys and girls are instucted in the same class, and where no male assistant is employed, and where the average attendance exceeds one hundred and fifty, are not counted under the foregoing provisions, and they are paid a special salary of $\$ 1,440$.

PRIMARY SCHOOLS.

Principals in schools having an av age attendance of-	
200 or less..	\$1,000
201 to 400	1,100
401 to 500	1,300
501 to 600	1,400
601 to 850	1,500
851 to 1,000	1,600
1,001 and upwards	1,700
Vice principals in schools having	
average attendance of- Less than 325	
Less than 325	850
325 to 500	900
501 to 1,000.	1,000
1,001 and upwards	1,200

Female assistants:
First-class assistants $\$ 900$

Fourth-class assistants........................ 720
Fifth-class assistants.................................. 672
Sixth-class assistants
Serenth-class assistants.-.-................-. - 594
Eighth-class assistants 564
Ninth-class assistants........................... 540

Twelfth-class assistants 504

Where twelve assistants are employed, there is allowed one of each class of primary salaries.

Where more than twelve are employed, there are allowed additional primary salaries in the same manner as in the grammar schools. But there are not ailowed to any primary department or school more than one salary of the first, second, third, or fourth class, two of the fifth or sixth class, three of the seventh or eighth class, four of the ninth or tenth class, or five of the eleventh class.

When less than twelve and more than five are employed, there is deducted
one salary of each of the highest and lowest of the erenly numbered classes alternately, beginning with the lowest until the required number is reached.

Where less than six are employed, there is allowed one salary of each alternate class, beginning in each school with the class next below the highest class allowed in a school of the next larger size and proceeding until the required number is reached.

TEACHERS OF LONG EXPERIENCE.

Principals who have been so employed for fourteen years, and whose record for five years preceding the application has been meritorious and uniformly excellent, may be paid not less than the following annual salaries:
Principals of male and mixed departments
\$3. 030
Principals of female departments
1,900
Principals of primary departments and schools
1, 750

Assistant teachers whose services hare been meritorious and extending over a period of fourteen years receive not less than $\$ 750$ per annum.

INEXPERIENCED TEACHERS AND SUBSTITUTES.

Assistant teachers of less than one year's experience are known as junior teachers, and are paid for the first year's service: Males, $\$ 720$ per annum; females, $\$ 108$ per annum; and on the expiration of the year's service they cease to be considered as junior teachers, and are entitled, as assistant teachers, to the salaries prescribed in the paeceding sections.
Substitute teachers are paid $\$ 1.20$ per day.

SPECIAL TEACHERS.

No salary paid to a teacher of vocal music in a grammar or primarv school, or to a teacher of French or German in a grammar school may exceed $\$ 1.50$ rer hour for the time actually employed in instruction. No salary paid to a teacher of drawing in a grammar school may exceed $\$ 2$ per hour.

EVENING SCHOOLS.

Rochester, N. Y.
[Compiled from the Forty-third Anuual Report of the Board of Education, 1883-00, p. 153-187.]

FRIE ACADEMY.		ELEMENTARY SCHOOLS	
1 principal, male	82, 200	1 principal. female	81, 200
1 teacher, male.	1,800	1 principal, female	1,0.0
1 teacher, male	1,650	2 principals, female	800
1 teacher, male	1,400	7 principals, female	\% 0
1 teacher, male	1,250	1 principal, female	00
8 teachers, female	800	2 principais, female	650
2 teachers, female	750	2 principals, female	C00
2 teachers, female	700	3 principals, female	550
1 teacher, female	- 650	22% assistants, female	$4{ }^{\circ}$
2 teachers, female	600	78 assistants, female	40
1 assistant, female	400	59 assistants, female	3 3n
		£0.assistants, female	300
ELEMENTARY SCFOOLS.		10 assistants, female	250
7 principals, male	1,500	KINDERGARTENS.	
2 principals, male	1,400		
2 principals, male	1,300	1 principal, female	500
1 principal, male	1,000	5 principals, fema'e	450
1 principal, female	1,250	10 principals, female	350

The salaries of other teachers are not stated.

Syracuse, N. Y.

[Complied from the Forty-secon d Annual Report of the Board of Education, 1889-80, p. 130.]

HIGH SCHOOL.

1 principal, male	\&2,500
1 teacher, male	2,000
1 teacher, male	1,400
1 teacher, male	1,200
1 teacher, male	1,150
1 teacher, male	1,100
2 teachers, female	800
2 teachers, female	700
1 teacher, female	650
4 teachers, female	600
1 teacher, female	- 550
1 teacher, female	500
1 teacher, female	350
ELEMENTARY SCHOOLS.	
8 principals, male	1,600
9 principats, female	850
4 principals, female	800

ELEMENTARY SCHOOLS-continued.

17 principals, female $\$ 600$
135 assistants, female 500
28 assistants, female 450
24 assistants, female 400
12 assistants, female 300
SCHOOLS IN ORPHAN ASYLUMIS.
2 prineipals, female 500
1 assistant, femaie 300
SPECIAL TEACHERS.
Penmanship, male 1,500
Music, male 1,300
Drawing, female 00
Training class, female 1,000

Troy, N. Y.
[Compilea from the Manual of the Board of Sehool Commissioners, 1830-91, p. 65.]
HIGH SCHOOL.

GRAMMAR SCHOOLS.

Rank.	Salary first year.	Annual increase.	Maximum.
6 crincipals .	\$1,600		
1 priucipal (mixed school)	650 500	\$50	
First assistants -..............-	500 450	50 50	700 650
Assisiants .-.------..............-	350	50	603

INTERMEDIATE AṆD PRIMARY SCHOOLS.

Special teacher of music, $\$ 1,500$; of drawing, $\$ \$ 00$.

Yonkers, N. Y.
[Compiled from the Ninth Annual Report of the Board of Education, 1888-89, p. ธ̊.]

HIGH SCHOOL.

ELEMENTARY SCHOOLS-continued.

Cincinnati, Ohio.

For historical statement see pages 683-693.

Columbus, Ohio.

[Annual Report of the Board of Education, 1889-90, p. 403.]

Superintendent 83,000	ELEMENTARY SCHOOLS-continued	
NORMAL SCHOOL.	Principals of less than 8 rooms (required to teach)	
Principal 81,600	Teachers of highest grammar grade.	7800
Training teachers............................. 1,000	Other teachers:	
	Minimum...	400
HIGH SCHOOL.	Annual increase.	50 600
Principal .-................................. 82,400		
Special teachers............................ 1, 100	EYENING SCHOOLS.	
Other teachers: Minimum		
	Principals of 5 rooms or more (not re-	
	quired to teach)	\$2. 25
Maximum- 1,500	Principals of less than 5 rooms (re-	
elementary schools.	quired to teach, per erening	2. 1.85
Principals of 10 or more rooms (not required to teach)	Special teachers.	
Principals of 8 to 10 rooms (required to	Music	\$2,000
teach)....................................-. 1,000	Drawing	2,000
DAYTON	OHIO.	
[Compiled from the Annual Report of	3oard of Education, 1883-89, pp. 143-151.]	
Superintendent-........... 82.50	district schools-continued.	
NORMAL SChOOL.	1 principal, female	\$1, 200
	11 first assistants, female	800
1 principal, female....-................... \$1,503	1 first assistant, female	700
1 critic teacher, female.................... 1,000	1 assistant, female	900
	2 assistants, female	800
HIGH SCHOOL.	${ }_{5}^{2}$ assistants, male	750
principal, male..-......................... \$2,000	${ }_{27} 5$ assistants, female	650 600
1 teacher, male.. 1,500	67 assistants, female	550
4 teachers, male.............................. 1,200	17 assistants, female	500
5 teachers, female............................. 1,200	30 assistants, female.	450
district schools.	SPECIAL TEACHERS	
1 principal, male .-........................ 81,800	Music, male.	\$1,200
5 principals, male .-........-.............-. 1,500	Drawing, male	1,200
1 principal, female .-.-......---.......... 1, 600	Writing, male.	1,200
	Writing, male..	1,20

Spring field, Ohio.

[Compiled from the Reports of the Public Schools, 1858-90, p. 87.]

Superintendent \$2, 000

HIGH SCHOOL.

elementary schools.
2 principals, male
$\$ 1,100$
2 principals, male.. 1,050
3 principals, male.. 1,000
2 principals, male-.. 850
1 principal, male
1 principal, male
1 principal, male
1 principal, female
350
1 principal, female
1 teacher, male

elementary schools-continued.

1 teacher, male $\$ 500$
2 teachers, female 800
10 teachers, female 600
550
11 teachers, female 550
29 teachers, female 500
13 teachers, female 50
8 teachers, female 400
350
11 teachers, female
300
300
1 teachers, 1 male $\begin{array}{r}300 \\ 250 \\ \hline\end{array}$
1 teacher, female 200
2 teachers, female 150

SPECIAL TEACHERS.

Music, male $\$ 1,200$
Drawing, female 1,00

Portland, Oregon.

[Rules and Regulations of the Public Schools, 1830, pp. 14 and 15.]

Position.	First year, mini- \qquad	Second year.	Third year.	Fourth year.	Maximum.
City superintendent	\$2, 000				\$2, 500
Drawing teacher					1,200
Singing teacher-	900				
Principal of high schoo	2,000				2,500
Assistant, high school.	1,000	11,100	81, 200		1,200
Principal of grammar school --	1,500	1,600	1,700	\$1,830	1,800
Principal's assistant in gramma	900	1,000	1,100	1,200	1,200
Serenth grade.	750	800	850	900	900
Sixth grade	700	750	800	850	850
Fifth grade	650	700	750	800	800
Fourth grade	600	650	700	750	750
Third grade	600	650	703	750	700
Second grade.	600	650	700	750	750
First grade (lowest)	700	750	800	850	850
Principal Lownsdale primary	900				1,000
Teacher in Ainsworth school					850

Substitutes receive $\$ 2.25$ per day for teaching primary grades, $\$ 2.75$ for grammar grades, and \&4 for the high-school grades.

Allegheny, Pa.

[Compiled from the Thirty-sixth Annual Report of the Board of Controllers, 1889-90, p. 147.]

Superintendent \qquad HIGH SCHOOL	\$2,200	elementary schools-continued. Teachers of primary grades:	
Principal	81,700	First year Second and third years	9350 420
Head teachers	1,000	Fourth and fifth years.	450
Assistant teachers	650	After fifth year.	550
ELENENTARY'SCHO		evenivg schools.	
Principals of-			\$40
15 or more rooms	\$1, 300		30
10 to 15 rooms	1,400		
5 to 10 rooms.......	1,300	SPECIAL TEACHERS.	
Teachers of grammar grades:		Music, 2 males	
Firstyear	550	Drawing, 1 female.	803
Second and third years	580		

Substitutes receive the salary of the absentees whose places they fill.

Philadelphia, Pa.

[Compiled from the Serenty-second Annual Report of the Board of Public Education, 1890, pp. 384-388.]

Superintendent6 assistant superintendents .-.................................... 2,500

CENTRAL HIGH SCHOOL.
President

GIRLS' NORMAL SCHOOL.

GIRLS' NORMAL SCEOOL-continued.
8 teachers, female 81, 100
8 teachers, female 1,003
16 teachers, female
16 teachers, female 900
800
2 teachers of cooking, female 800
2 assistants, school of practice, female. 750
1 assistant to principal, female 750
2 teachers of kindergarten, female 450

MANUAL TRAINING SCHOOLS.

Principal, male \$2,700
1 teacher, male 2,178
4 teachers, male 1, 800
4 teachers, male 1,400
5 teachers, male 1,200
4 teachers, male 1,000

Philladelphia, Pa.-Continued.

EINDERGARTENS.	
Principals employed one session daily in	
kindergartens of 1 class:	
First year	\$350
Second year	375
After second year	400
Principals employed one session daily in	
First year	375
Second year	400
After second year	425
Assistants employed one session daily in	
kindergartens of 2 or more clas	
First year.-	300
Second y ar	335
After second year	350

KINDERGARTENS-continued.

Principals or assistants employed for both sessions daily:
First year. 9420
Sccond year 450
Third Jear 480
Fourth year 510
Fifth year 540
After fifth year 570Teachers, female
First year $\$ 500$
Second year 525
Third year. 550
After third year 570

ELEMENTARY SCHOOLS.

Principals of boys' grammar schools, $\$ 1,755$ to $\$ 1,815$ per annum, according to previous experience.
Principals of girls' grammar schools, $\$ 1,140$ to $\$ 1,200$, according to previous experience.
Principals of secondary schools, $\$ 610$ to $\$ 700$, according to previous experience.
Principals of primary schools, $\$ 530$ to $\$ 550$, according to previous experience.
Supervising principals of schools containing grammar and lower grades, $\$ 200$ per annum adãitional.

Supervising principals of schools containing secondary grades only, primary grades only, or both primary and secondary grades, $\$ 250$ per annum additional.

Principals of consolidated schools in accordance with the number of divisions in the schools. Naximum (10 divisions or over), $\$ 1,595$.

Assistants in secondary and primary schools, $\$ 420$ for the first year, with an increase of $\$ 30$ per annum for five years. Maximum, $\$ 570$.

Assistants in grammar schools, $\$ 470$ for the first year, with an increase of $\$ 30$ per annum for five years. Maximum, $\$ 620$.

First assistants and assistants in charge of the highest grammar grades, $\$ 620$ for the first year, with an increase of $\$ 30$ per annum for five years. Maximum, $\$ 770$.

Teashers having two years' astual exporienco and teaching the first grade receive $\$ 40$ additional.

Pittisburg, Pa.

[Twonty-third Annual Report of the Suparintondent of Pu’lic Schools, 1830-21, p.91.]

Superintendent
HIGF SCHOOL.
Principal
Professor of mathematics
82,500
Profess
Professor of geology and chemistry .-
or Latin and Greek
Professor of elocution
Assistant professor of sciences .-............
Professor of belles lettres
Professor of biology
Professor of physics
83,500
--------------------1, 1,100
2 teachers of arathematics ...- 1,200
2 teachers of draming
2 preceptresses
Head
ol commercial department
Professor of theory of accounts
1 assistant (commercial department)
1 assistant (commercial department) --
Head of normal department..................
1 assistant (normal department)
1 assistant (normal department)
1 assistant (normal department)
Training teacher

ELEMENTARY SCHOOLS.

Principals of schools requiring-
Over 30 teachers
\$2, 000
21 to 30 teachers
1,800
1, 600
1,500

ELEMENTARY SCHOOLS-continued.
3 to 5 teachers S1, 200
Less than 3 teachers 800
Assistant principals 800
Grammar teachers:
First year 600
Second year 650
Primary teachers:
First year 350
Second year 400
Third year 450
Fourth year 500
Fifth year 550
Sixth year 600
Teachers in charge of first-year pupils:
330
330
First year
First year 400
Second yea
Third year 450
Fourth year 530
600
Fifth year 600
Sixth year 650

SPECIAL TEACEERS.

Writing and drawing:

Reading, Pa.
[Manual and Directury of the Public Schools, 1839-90, p. 23.]

BOYS' HIGR SCHOOL.

SECONDARY SCHOOLS.

Principals, male	\$360
Principals, female	340
Assistants, male	330
Assistants, female	320

PRIMARY SCHOOLS.

260

Providence, R. I.
Maximum salaries fixed by city ordinance:

HIGH SCHOOL.

Principal
First assistant, English and scientific depariment.

1,900
Second assistant, Englishand scientific department

1,100
Third assistant, English and scientific department

1,100
Fourth assistant, Englishana scientific department.

Principal, classical department
First assistant, classical department Second assistant, classical department. Third assistant, classical department.Fourth assistant, classical departmentPrincipal, girls' department
of girls
Assistant teacher, first class of girls....
Teacher, second class of girls
2 teachers, third class of girls \qquad 3 teachers, fourth class of girls
Other assistant teachers, giris' depariment
Teacher of French
Assistant teacher in laboratory

ELEMENTART SCHOOLS,

9 príncipals, grammar schools 1,900
Assistant teachers, first(highest) grade,grammar schools700
Assistant teachers, second grade, gram- mar schools 625
Assistant teachers, other grades, gram- 575marschools - iprincipal teachers, intermediateind teachers, intermediate
550Assistant teachers, intermediate
 525
Principal teachers, primary schools.... 525
Critic teachers, grammar grade 800
Assistant teachers, primary schools:
First year 350
Second year 450
Thira year 500
Critic teachers, primary schools (in ad- 100
SPECIAL TEACHERS.
Music, principal \$1,700
Sewing teachers 500

The following rules are added by the Board of Education :

"Assistant teachers shall be paid for their first year of service in our public schools, $\$ 350$; for their second year, $\$ 150$; for their third year, $\$ 500$; for their fourth year, $\$ 525$; for their fifth year, $\$ 575$; for their sixth year, $\$ 025$; for their seventh and subsequent years, $\$ 700$; provided that their pay shall not exceed the maximum allowed to the grade in which they are instructing. a
"Pupil-teachers shall receive $\$ 200$ per annum.
"Principals shall receive $\$ 25$ per annum in addition to the pay to which they would bs entitled as assistants."
Substitutes employed less than twenty days receive $\$ 1$ per day if the salary of the absentee bs $\$ 200, \$ 1.25$ per day if $\$ 350, \$ 1.50$ if between $\$ 350$ and $\$ 575$, $\$ 1.75$ if $\$ 575$, and $\$ 2$ if $\$ 600$ or more.

Substitutes employed twenty or more consecutive days in the same position shall receive the same pay to which they would be entitled if appointed to that.position, but such salary shall not exceed that of the absentees whose places they fill.-[Compiled from the Manual of the Public Schools, September, 1888, pp. 123-129.

[^3]Charleston, S. C.

[From manuscript report, 1892.]

Nas :VILle, Tenn.

[Compiled from the Annual Rep rt of the Board of Education, 1888-82, pp. 54-57.]

HIGH SCHOOL.

1 professor of classics (also floor principal) male
1,800
1,000

1 professor of mathematics, male
1 floor principal, female
1900
1 professor of history.
1, 100

ELEMENTARY SCHOOLS.

1, 800
1, 500
1 principal, male
1,400
2 principals, male .-.. 1,200
1 principal, male
850

6 floor principals, female
700

1 grade teacher, female
1 grade teacher, female
700
1 grade teacher, female
650
5 grade teachers, female
14 grade teachers female

12 grade teachers, femate........................-- $\quad 350$
COLORED SCHOOLS.

1 grade teacher, male 850

2 grade teachers, male -...............................- 450
9 grade teachers, male -..................................... 400
2 grade teachers, male- 350
1 floor principal, female 700
2 grade teachers, female 500
3 grade teachers, female 450
4 grade teachers, female 400
3 grade teachers, female-.............. 350
SPECIAL TEACHERS.
Vocal music, male- 1,200

Dallas, Tex.

[Compiled from the Sixth Annual Report of the Board of Directors, 1889-90, p. 10.]

HIGII SCROOL.

1 principal	\$1, 350
3 teachers, male	990
1 teacher, male	630
1 teacher, female	1,080
1 teacher, female	990
5 teachers, femal	67
5 teachers, female	540
1 teacher, female	360
elementary schools.	
1 principal, male	1,125
2 principals, male	1,080
1 principal, male	810
3 principals, male	765
1 assistant, male	675
1 assistant, malc	

ELEMENTARY SCHOOLS-continued.
1 assistant, male
8540
8540
8 assistants, female 675
23 assistants, female 540
SUBSTITUTES.
1 male, high school 90
2 females, elementary schools 90
COLORED SCHOOLS.
3 principals, male 630
2 principals, male 540
1 principal, male 495
1 assistant, male 540
1 assistant, female 540
assistant, female 495

Salt Lake City, Utaif.

[From manuscript report 1892.]

elementary schools-continued.

5 principals.	$\$ 800$
1 principal	750
2 teachers	900
13 teachers	750
21 teachers	700
36 teachers	650
12 teachers	600
10 teachers.	500
SPECIAL TEACHERS.	
1 supervisor of drawing.	1,250
1 teacher of music.	1,150
1 assistant teacher of music	800

[Compiled from the Directory of the School Board, 1891-92, p. 13.]

Rank.	First year.	Annual increase	$\begin{aligned} & \text { Maxi- } \\ & \text { mum. } \end{aligned}$
Principals of district schools	\$1,400	\$100	\$1,700
Principals of primary schools of four rooms	900	50	1,000
Principals of primary schools of more than f additional room			1,300
First assistants.	700	100	900
Assistants teaching seventh-year class	500	50	700
Assistants teaching sixth-year class...-	450	50	650
Assistants teaching classes below th	400	50	600
Directors of kindergartens.	400	50	600
Assistants in kindergartens.	350	50	500
Teachers of German	800	100	1,100
Assistant teachers of Germa	400	50	650

Teachers in the "reserve corps" (substitutes) are paid the same salaries as regular teachers. No deductions of salary are made except for failing to report for duty. Principals of evening schools, $\$ 2.50$ per night; assistants, $\$ 2$ per night
B.-A Contribution to the History of Teachers' Salaries.

Table 2.-Salaries of public-school teachers in Baltimore, Md., 1840 to 1849, inclusive.

Tablee 3.-Salarics of public-school teachers in Baltimore,

TAbLe 3.-Salaries of public-school teachers in Baltimore, Md., 1850 to 1859, inclusive-Continued.

Table 4.-Salaries of public-school teachers in Baltimore, Md., 1860 to 1869, inclusive.

TABLE 4.-Salaries of public-school teachers in Baltimore, Md., 1860 to 1869, inclusive-Continuèd.

a Reduced in 1878.
c Increased
${ }_{e}$ Paid to two professors.
h Established in 1884. Salaries: Of director, $\$ 1,800$ first year, $\$ 1,900$ second year, and $\$ 2,000$ third year of service; of instructors, $\$ 1.200$ per annum. In 1885 an offleer of the Navy was detailed as principal and received $\$ 500$ from the Board. Provision for assistants has been made as follows: At $\$ 600$ in 1886 , at $\$ 720$ and at $\$ 1,000$ in i In addition to his salary as an officer in the United States Navy.
Note-The schedules for the years 1870 to 1875 , inclusive, are not available, but were probably not materially different from those of 1869 and 1876 , since no men-
tion is made in the reports of a general change. The changes made in the intermediate years between 1876 and 1880 and between 1880 and 1890 are indicated in the footnotes.]

FEMALE HIGH SCHOOLS.

Principal:-.....
baltimore city college.
drawing, etc.
First assistants....
Second assistants
Teachers of French
MANUAL TRAINING SCHOOL. h

Table 5.-Schedules of teachers' salaries in Baltimore, Ma., in force in 1869, 1876, 1880, and 1890-Continued.

a From 1880 to 1886, inclusive, these were called "public schools." The first was established in 1874.
c The special provision for teachers of the lowest grades was not made during the years intervening between 1877 and 1881. e Those who have passed an intermediate exa mination receive 81,000 per annum. g In addition to salary as a teacher in the schools.
h Per evening, for actual service.
Table 6.-Salaries of public-school teachers in St. Louis, Mo., 1837 to 1848, inclusive.

SALARIES OF TEACHERS IN CITY SCHOOLS.
Table 7.-Salaries of public-school teachers in St. Louis, Mo., for the dates named.

ED $90-42$
Table 7.-Salaries of public-school teachers in St. Louis, Mo., for the dates named-Continued.

Table 8.-Salaries of public-school teachers in St. Louis, Mo., 1870 to 1879, inclusive.

Table 8．－Salaries of public－school teachers in St．Louis，Mo．， $18 \% 0$ to 18\％9，inclusive－Continued．

00000	-สəqumn	${\underset{c i}{\infty}}_{8}^{8}$	 ペनiनiनiテiai 		
		サーい			ーームー
$\begin{aligned} & \infty \\ & 0 \\ & 00 \\ & \infty \\ & \hline 10 \end{aligned}$		\bigotimes_{6}^{8}	898868881068 $8 \% 961088 \%$ がデデーデーi゙	ㅇㅇㅇㅇNㅇNㅇNㅇㅇㅇㅇㅇㅇ ペーiデデデ	
	＇raqumN	\sim			ハーーーか
$\begin{aligned} & \frac{\pi}{0} \\ & \frac{10}{10} \\ & \hline 1 \end{aligned}$					$\begin{aligned} & \infty \\ & 686 \\ & i x \end{aligned}$
	－soqum	$20-102$			ーーが
0_{0}^{∞}		CRO	$\begin{aligned} & 88 \\ & 88 \\ & \text { NiN } \end{aligned}$	$\begin{aligned} & 8888808 \\ & \text { Ninn } \\ & \text { Ninnin } \end{aligned}$	
	\cdots ：İquan	$\bigcirc \infty$	$\stackrel{\text { 2 }}{\sim}$	QーOHO－TO	！
$\begin{aligned} & 10^{\circ} \\ & \frac{10}{10} \\ & \hline 1 \end{aligned}$		$\begin{aligned} & 8.8 \\ & 8.8 \\ & \leftrightarrow \end{aligned}$	$\begin{aligned} & 888 \\ & 688 \\ & \text { にiが一 } \end{aligned}$		
	－Joqumin	0002	$=\square^{\infty}$		！
$\frac{4}{+\infty}$		$\mathrm{C}_{\substack{8 \\ \multirow{2}{\circ}{1 \\ \hline}\\ 1 \\ \hline}}$	$\begin{aligned} & \text { 응 } 88 \\ & \text { Gis } \\ & \text { Gin= } \end{aligned}$	$\begin{aligned} & 8888888 \\ & \text { RON } \\ & \text { Nininin } \end{aligned}$	
	$\cdot \operatorname{Taqum}$	上，－	－ごご		！
$\begin{aligned} & \stackrel{\circ}{00} \\ & 00 \\ & \hline 10 \end{aligned}$			898888988 	옹ㅇㅇㅇㅇ に○ミ欠○○心 	！
	：roqumn	C2－1－			！
$\begin{aligned} & \mathbf{o}^{\circ} \\ & 0 \\ & 00 \\ & \hline 10 \end{aligned}$		$\begin{aligned} & 8 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 88988 \\ & 68808 \\ & \text { Nun゙ーi } \end{aligned}$	$\begin{aligned} & 8.888888 \\ & \text { No } \\ & \text { Ninnininin } \end{aligned}$	，
	：xəqumn	4	－－Coser	ーールーのサ゚パ	；
$\underset{0}{90}$		8		8 88 옹 88 © がごデデ	，
	－тəฐun	\cdots	O－20－1		！
$\underset{\substack{0 \\ 0 \\ \hline 1 \\ \hline \\ \hline}}{ }$				88888	！
	\cdot İqunN	，	ごった	Comers co	；
	$\begin{aligned} & i \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 1 \\ & \vdots \\ & 0 \\ & \text { 感 } \\ & \hline \end{aligned}$		$\begin{gathered} 1 \\ \sum_{k}^{\text {s. }} \\ \hline \end{gathered}$
				Principals	

Table 9．－Schedules of salaries of public－school teachers in St．Louis，Mo．， 1879 to 1882，inclusive．a

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$			： 1 ¢0\％	： 1 ¢\％	188	
			（88088880\％	88800	18020	8
			 がべーデデーテ		ర⿵冂𠃍冖口	$\stackrel{8}{7}$
	$\stackrel{\text { ェъә }}{\text { рпоәәS }}$				品号	$\stackrel{8}{0}$
			がベーデデージ		\％\％웅ํํํㄱ	8
					రిర్ర	
			（o）	88880000\％		8
			 			8
	－теә人 puoวəs		かだびー゙デー			\％
	$\begin{gathered} : \pi r ə \Lambda \\ 7 \operatorname{sit} \end{gathered}$		우운웅유잉융 がデーデージージ			8
					\％80\％	
					＋10\％	
	$\begin{gathered} \text { т飞ә. } \\ \text { puoวəS } \end{gathered}$				喿哭	
			なが		\％80우ำ	¢
$\left\lvert\, \begin{array}{l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$			（18888\％		\％ิ¢	
					\％oif	
			๙゚ズ ーデー゙ー゙		\％888：	8
	$\begin{aligned} & \text {-х飞әК } \\ & \text { риоวəS } \end{aligned}$		응야 오응ㅇㅇㅇㅇㅇㅇ がべ，ー゙べご		1®以	$\xrightarrow{8}$
	$\begin{gathered} \cdot \pi \varepsilon ə \Lambda \\ 7 S \pi!4 \end{gathered}$		ぷべ，ーデーデー		10융야륙	\％
	登					宽

in the
in the

Table 10.-Schedules of salaries of public-school teachers in St. Louis, Mo., for the dates named. a

Table 11.-Schedules of salaries of public-school teachers in St. Louis, Mo., 1888 and 1889. a

Ianis.	1888.					1889.				
NORMAL AND HIGH SCHOOLS.										
Principal of Normal School	82, 400	82, 500	89,600	\$3,000		\$2,400	\$2,500	\$2, $¢ 00$	\$3, 000	
Principal of High School--	2,400	2,500	2,600	2,750		2, 400	2,500	2,600	3, 000	
Assistant principal.-.---.--	1,700	1,800	1,900	2,000		1,700	1,800	1,900	2,000	
First assistant.....	1,400	1,500	1,600	1,700	\$1,800	1,400	1,500	1,600	1,700	\$1,80j
Second assistant	1,300	1,350	1,400	1,450	1,500	1,300	1,350	1,400	1,450	1,500
Third assistant.	1, 000	1,050	1,100	1, 150	1,200	1,000	1, 050	1, 100	1, 150	1,200
Fourth assistant	750	800	850	900	950	750	800	-850	900	950
Fifth assistant..	650	700	750	800		650	700	750	800	
DISTRICT SCEOOLS.										
Principal of -										
First-class school b	1,700	1,800	1,900	2,000		1,700	1,800	1,900	2,000	
Second-class school	1,500	1,600.	1,700	1,800		1,500	1,600	1,700	1, 803	
Third-class school......-	1,200	1,300	1, 400	1,500		1,200	1, 300	1,400	1,500	
Fourth-class school ...-	- 900	950	1,000	1,050	1,100	- 900	- 950	1,000	1,050	1,100
Fifth-class school	800	850	${ }^{2} 90$	1,050		800	850	1900		
Síxth-class school	700	750	800			700	750	800	----	
Seventh-class schoo	600	650				600	650			
Head assistant.	650	700	750	800	850	650	700	750	800	850
First assistant.	500	550	600	650	700	500	550	600	650	TOU
Second assistant	440	480	520	560	600	440	480	520	560	600
Third assistant.	400	440	480	520	560	400	440	480	520	560
KINDERGARTENS.										
Supervisor.-.---r.-........-	1,000					1, 000				
Director (whole day) -.....--	- 500	550	600	650	700	500	550	600	650	700
Director (half day) .-.-.-.--	300	350	400			300	350	400		
Paid assistant (whole day)-	275	300				275	300			
Paid assistant (half day) --	150	175	200			150	175	200		
Supervisor of music...-.-..-	1,500	1,600	1,700	1,800		1,500	1,600	1,700	1,800	
Supervisor of drawing.....-	1,500					1,500				
DEAF-MUTE SCHOOL.										
Principal.	1,000					1,000				
Assistant	400	440	480	520	560	1, 400	440	480	5\%0	560

[^4]TABLE 12.-Number of public-school teachers of the ranks indicated in St. Louis, Mo., 1879 to 1889, inclusive. a

[^5]Table 13．－Number of teachers in the district，high，and normal schools of St．Louis， Mo．，who received the salaries indicated， 1880 to 1889，inclusive．

$\begin{aligned} & \text { Annual sal- } \\ & \text { ary. } \end{aligned}$	1880.		1881.		1882.		1883.		1884.		1885.		1886.		1887.		1888.		1883.	
					㡙		$\begin{aligned} & \text { 玉゙ } \\ & \text { ت゙ㄹ. } \end{aligned}$				$\begin{aligned} & \dot{9} \\ & \text { 岂 } \end{aligned}$	$\begin{aligned} & \text { ®. } \\ & \text { స్ష్ర } \\ & \text { تَ } \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { 岂 } \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { స్ } \\ & \text { ష్ఠ } \\ & \text { 任 } \end{aligned}$	$\begin{aligned} & \dot{\text { g }} \\ & \text { İ } \end{aligned}$		$\begin{aligned} & \text { ⿷匚 } \\ & \text { む゙ } \\ & \text { In } \end{aligned}$		$\begin{aligned} & \dot{9} \\ & \text { B } \\ & \text { B } \end{aligned}$	寅
\＄3，000． 00																			1	
2，750． 00									2		2		1		1		1			
$\begin{aligned} & 2,600.00 \\ & 2,000.00 \end{aligned}$	$\begin{array}{r} 2 \\ 21 \end{array}$	3	22	3	21	3	$\begin{array}{r} 2 \\ 23 \end{array}$	3	25	3	22	3	23	3	23	4	25	4	24	
1，900．00	3	1			4		2		1		1		3		1		1		1	2
1，800．00	2		6	1	4	1	7		7	2	11	2	11	2	9	1	9	1	7	1
1，700．00	3		3		4				1	1	4		1	1	，	1	1	1	2	
1，600． 00	2		3			1	2	1	4		1	2	1		2		2		2	
1，500．CU	3	1	3	4	3	4	7	4	1	5	3	5	2	10	4	9	${ }^{6}$	8	9	9
1， 400.00		3			3			1	1	2	1	1	2	1	2		2	，		4
1，350． 00	3												1		1	2		2		
1，300．00			4	4	1	5	$\stackrel{1}{2}$	2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	7	1	6	$\stackrel{2}{2}$	2	1	3		3	1	
1，200．00	3	3 3	．${ }_{1}^{4}$	1						7	1							8		2
1，100．00	1			2	1	2		2	1	2		2		2	2	5	2	5	1	2
1，050．00		1	1				1	1				1	1		1	5		1	1	2
1， 000.00	2		1	1	3	1	2		1		6	7	1	1	3	1	4	4	1	1
950.00	2	7	$\stackrel{2}{2}$	，	1	5	5	6	2	6		4	1	4	2	13	1	12		12
900.00	4	1	3	2	5	2	5	5		5	4	1	4	5	2	4	3	4	3	10
850.00	3	59	3	58	6	55	5	49	4	48	3	50	5	43		30		34	2	34
8 v 0.00	3	16	5	14	4	7	6	11	7	11	8	11	9	12	7	15		11	5	3
750.00	4	2	4	5		4	5	4	3	${ }^{3}$	6	5	4	7	1	1	1	${ }_{12}^{2}$	1	${ }^{5}$
700.00	9 4	95	7 3 3	91	10	84	2	709	8	116	${ }^{6}$	126	6	134	1	128	1	128		
650.03	4	10	3	11	1	31	2	15	2	16	2	21		19	－－－			11	1	8
$\begin{aligned} & 610.00 \\ & 605.00 \end{aligned}$		16		24	1	19	－－			10								11		
600.00		99		104		$9{ }^{-7}$		95	1	103	1	94	1	88		96	1	96	2	98
570.09						2		2			1.	3		5						
560.00					4	256	11	242	8	225	－ 7	225	6	227	7	307	5	294	4	302
558.75		9			－－		－－		－－		－－－		－－		－－－					
555.00		9	2	267																
550.00		4		2			1					1								
530．00					8	25		27	${ }_{3}^{1}$	$\begin{array}{r} 3 \\ 28 \end{array}$		17	4	$\begin{array}{r} 4 \\ 108 \end{array}$		66		63		40
512.50		3																		
508.75		82		28																
500.00	2	3	2	5	2		1		1		1		2		1		1			
490.00								3		7								1		
$\begin{aligned} & 480.00 \\ & 475.00 \\ & \hline \end{aligned}$											4			50				44		35
462.50	4	24	11	27																
450.00	10	36	1	31	1	8	2	10		8		6	1	7		5		7		6
440.00					2	32		14	4	146	3	60	1	75		35		41		41
400.00	1	6	3	24	1	100	6	185	2	74	1	89	1	71	1	54		80		135
37500		4	6					3		6								5		
355	1	12 ${ }^{9}$	1	18		$\begin{array}{r} 26 \\ 6 \end{array}$						3		10		4		5		3
300.00		14		8		3		4		3		23		35		32		33		41
275.00		10		4		4		15		14		1		5						6
256.25																				
250.00								3		1										
200.00		34		29		22						35		23		42		37		
175.00								33		37		11		8		14		15		9
155.00								10		16		7		16		8		22		12
125.00		49		66		90	－－	24		13										

Table 14.-Schedules of salaries of public-school teachers in Boston, Mass., 1849, 1852, 1855, 1857, 1858, and 1859.

Table 15.-Schedules of salaries of public-school teachers in Boston, Mrass., 1860 to 1864, inclusive.

TABLE 16.-Schedutes of salaries of public-school teachers in Boston, Mass., 1865 to 1869, inclusive.

EDUCATION REPORT, 1889-90.
TABLE 17.-Schedules of salaries of public-school teachers in Boston, Mass., 1873, and 1876 to 1879, inclusive.
[NOTE.-These schedules went into effect in September of the years named. The number of teachers in each case is for the term immediately following.]

Table 18．－Schedules of salaries of public－school teacher＇s in Boston，Mass．， 1880 to 1884，inclusive．
［NOTE．－These schedules went into effect in the year named．The number of teachers in each case is for the term immediately following．］

Ranlt．	Sex．	1880.				1881.				188.2				1883.				1884.			
			$\begin{aligned} & \text { Salary } \\ & \text { first } \\ & \text { year. } \end{aligned}$		$\begin{gathered} \text { Maxi- } \\ \text { muma } \\ \text { salary. } \end{gathered}$		Salary tirst year．		$\begin{gathered} \text { Maxi- } \\ \text { mumary. } \\ \text { salary } \end{gathered}$	$\begin{aligned} & \text { 毕 } \\ & \text { 品 } \\ & \text { 学 } \end{aligned}$	Salary first year．		Maxi－ mum salary．		Salary first year．		Maxi－ mum salary．	$\begin{aligned} & \text { 岇 } \\ & \text { on } \\ & \text { 号 } \end{aligned}$	Salary first year．		$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { salary. } \end{aligned}$
Superintendent． Supervisors	Male	6	$\$ 4,200$ 3,780			1	$\begin{array}{r} \$ 4,200 \\ 3,780 \end{array}$			6	$\$ 4,200$ 3,780			$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{array}{r} \$ 4,200 \\ 3,780 \end{array}$			${ }_{6}^{1}$	$\$ 4,200$ 3,780		
HIGH AND NORMAL sCHOOLS．																					
Head masters．	Male ．．．	6	3，780			5	3，780			5	3， 780			5	3，780			5	3，780		
Masters	Male ．．．	15	a2，880			17	b2，880			20	b2，880			19	$b 2,880$			21	$b \stackrel{3}{2} 80$		
Juniur masters－－．．－	Male ${ }^{\text {Female }}$	15	1,440 1,800	\＄144	a\＄2，880	13 1	1,008 1,800	\＄144	682，880	10 1	1,008 1,800	\＄144	b $¢ 2,880$	11	1,098 1,800	\＄144	b\＄2，880	9 1	1，008	$\% 144$	b \＄2， 880
Assistant principal	Female	$\frac{1}{5}$	1,800 1,440	36	1，6：0	5	1，440	36	1，620	$\frac{1}{5}$	1，440	36	1，6：0	1	1,800 $c 1,440$	36	1，620	5	c 1,1440	36	1，620
Second assistants	Female	5	1，200	36	1，380	5	1，200	36	1，380	5	1，200	36	1，380								
Third assistants ．	Female	10	900	36	1，140	9	960	36	1，140	11	960	36	1，140								
Fourth assistants．	Female	19	768	36	948	18	768	36	948	19	768	36	918								
Assistants．	Female													35	756	48	1，380	40	75	48	1，380
Teacher of chemistry （girls）．	Female	1	1，380			1	1，380			1	1，380			1	1，380			1	1，380		
Assistant teacher of chem－ iscry（girls）．	Female	1	744			1	744.			1	744			1	744			1	744		
Teacher of physical cul－ ture（girls）．		1	744	－－		1	744			1	744			1	060			1	960	－－－－	
Teacher of physical cul－ ture（girls＇Latin）．		1	492			1	49：			1	492			1	492			1	492		
Teacher of sciences（East Boston and West Rox－ bury）．		1	948			1	948			1	400			1	400			1	400		
Teacher of drawing，pen－ manship，and elemen－ tary methods（normal）．		1	1，380	－－－－		1	1,380 （d）			1	1，380	．－．－		1	1，380	－－－－		1	1，380		
Teachers of modern lan－ gauges．		7	（d）			7	（d）			6				6	（d）			5	（d）		
Instructor of military drill．	Male ．－－	1	1，500			1	1，500			1	1，500			1	1，500			1	1，500		
grammar schools．																					
Masters	Male ．－	43	2，580	60	2，880	44	$\underset{\substack{2,580 \\ 1,380}}{ }$	60	$\stackrel{2}{2} 880$	4.2	2，580	60 60	$\stackrel{2}{2,880}$	42	2，580	60	2， 280	43	2，580	60	2，8， 2 ， 280

Table 19.-Schedules of salaries of public-school teachers in Boston, Mass., 1885 to 1889, inclusive.

TABLe 20.-Schedules of salaries of public-school teachers in Boston, Mass., 1890 to 1892, inclusive.

[^6]Table 21.-Salaries of publicrschool teachers in New Orleans, La., 1843, 1844, 1855, 1856, 1858, 1860, 1867,1868.

a Per month.

Table 22.-Salaries of puj̉lic school teaghers in New Orleans, La., 1878, 1881, 1884, 1886, 1888.

a Sex not stated.

TABLE 23.-Salaries of puふic school teachers in Cincinnati, Ohio, 1834, 1836, 1839.

Table 24.-Salaries of public-school teachers in Cincinnati, Ohio, 1840 to 18ヶ9, inclusive.

TABLE 25．－Salaries of public－school teachers in Cincinnati，Ohio， 1850 to 1859，inclusive．

			1850.		1851.		1852.		1853.		1854.		1855.		1856.		185%.		1858.		1859.
Rank．	Sex．	$\begin{aligned} & \text { í } \\ & 0 \\ & \text { 号 } \\ & \text { 号 } \end{aligned}$	An－ nual salary．	走	An－ nual salary．	$\begin{gathered} \text { \&i } \\ 0 \\ 0 \\ \text { a } \\ \text { B } \\ \text { Z } \end{gathered}$	An－ nual salary．		$\underset{\text { An－}}{\text { nual }}$ Salary．	岂	An－ nual salary．	㐌	$\underset{\text { An－}}{\text { nual }}$ Salary．	$\begin{aligned} & \text { \& } \\ & \text { O } \\ & \text { 年 } \\ & \text { 天 } \\ & \text { Z } \end{aligned}$	An－ nual salary．		$\begin{gathered} \text { An- } \\ \text { nual } \\ \text { salary. } \end{gathered}$		An－ nual Salary．		$\begin{gathered} \text { An- } \\ \text { nual } \\ \text { salary. } \end{gathered}$
HUGHES AND WOODWARD HIGH SCHOOLS．（a）																					
Principals	Male－－－－－	$a 1$	\＄1，500		（b）		（b）	2	\＄1，500	2	\＄1，500	－－－	（b）		（b）		（b）	2	\＄1，750	2	\＄1，750
Assistants	Male ．－－－－－		800		（b）		（b）	1	1，300	2	1，040	－－－	（b）		（b）	－－－	（b）	2	1，320	2	1，220
								2	1，040	1	1，000							2	1，200	2	1，200
								1	c 480	1	－ 480							1	c 570	1	c 5740
								1	c200	2	$c 200$							1	c 100	1	c 212
Assistants	Female．－	$a 1$	500		（b）		（b）	1	600	1	800		（b）		（b）		（b）	2	1，000	1	1，000
								1	504	1	600							1	700	1	800
								2	360	1	504 450							1	504	1	700
										1	360										
INTERMEDIATE SCHOOLS．（d）																					
Principals	Male													4	\＄1，020	－－	\＄1，320	4	1，320	4	1，320
Assistants	Male													2	780		800	4	－ 800	4	800
														1	552			$e 2$	450	$e 3$	450
														$e 1$	360			$e z$	400	$e 1$	400
First assistants	Female．																600	e3	300 600	$e 2$	300 600
Assistants	Female．－													2	504	\cdots	450	$\stackrel{4}{2}$	450	2	450
Assistants．														6	420	（f）	400	3	400	1	400
														2	360 300	(f)	300			1	300
														1	300						
DISTRICT SCHOOLS．																					
Principals．－	Malo ．－－－－		780	14	\＄r80	14	\＄780	14	1，0\％0	14	1，020		1，0\％0	11	1，020	－－－	1，200	13	1，200	14	1，200
		1	540											1	－900	－－－	1，200	3	1，000	2	1，000
														$\underset{1}{2}$	840						
Principals femalo departments g ．	Female--		420	13	420	13	420	14	504	13	504	－－	（b）	13	504	－－－－	g600	13	$g 600$	13	q 600
Assistants	Male－－－－－	7	540	10	540	1	780	10	780	16	780		（b）	7	780	－－－－	h900	$h 6$	900	6	\％ 900
		12	420	9	420	10	540	12	55%	6	55%			5	55%		800	10	800	10	800
						9	420			c1	504			$\stackrel{2}{2}$	300		600	3	600	$\stackrel{1}{2}$	$\begin{array}{r}600 \\ \hdashline \text { 25\％}\end{array}$
																	h552	3	552	3	hอ52
a Tigures for 1850 are for the Central School． b Data not available． c For only a part of each day．				d Established 1855. e Males elected to places provided for femaics． f One－third of the whole number．										g Called first assistant after 1856. h German assistants．							

Table 25.-Salaries of public-school teachers in Cincinnati, Ohio, 1850 to 1859, inclusive-Continued.

[^7]c One-fourth of the whole number.
Table 26.-Salaries of public-school teachers in Cincinnati, Ohio, 1860 to 1869, inclusive.

d Men occupying places provided for women.

EDUCATION REPORT, 1889-90.
TABLE 26.-Salaries of public-school teachers in Cincinnati, Ohio, 1860 to 1869, inclusive-Continuod.

TABLE 27．－Salaries of public－school teachers in Cincinnati，Ohio， 1870 to 1879，inclusive．

$$		$\begin{aligned} & 8 \\ & 80 \\ & \text { \% } \end{aligned}$		ిరి్రి్రిరిక్రిగ్రి్రి 	 riテiテini	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
	－toqumn	\square	－7mor		－ーが	\cdots	！	－Tー
$\underset{\sim}{0.0}$		$\begin{aligned} & 8 \\ & 8 \\ & \text { \% } \\ & \text { \% } \end{aligned}$		いの人ズージージー		$\begin{aligned} & 8 \\ & \infty \\ & \rightarrow \end{aligned}$	$\begin{aligned} & 188 \\ & 108 \\ & \sim \end{aligned}$	$\begin{aligned} & 888 \\ & 88 \\ & 02 \pi \end{aligned}$
	－xəqumn	\cdots	－ーーツー		－10000	1	－	
$\begin{aligned} & 8 \\ & \substack{50 \\ \hline 0 ⿴ 囗 ⿱ 一 一 儿} \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \\ & 80 \\ & \text { in } \\ & 0 \end{aligned}$	ర88ిరిరిరి	にiのiniनiデテーデー	ి్లిర్నిరి rinizi		인운 ごぶ	$\begin{aligned} & 880 \\ & 808 \\ & \text { Ginit } \end{aligned}$
	－xoqumn	\square	－ricon	cracocruncon	－1－0202	－20	ームツ	
O	安苗舜゙	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 080 \end{aligned}$		ペにばーデーデーデ	8880		;ox คัテ	888
	－Təqumn	\square	\rightarrow－rm		$\rightarrow \infty$		－ッ3？	
$\begin{aligned} & 10 \\ & \hline 90 \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & 8 \\ & \text { in } \\ & 50 \\ & 0 \end{aligned}$	\％ 8 \％	888888 	8888		888 $6^{-i c i}$	－in
	－x －qumn	－	$\cdots!-1007$		ーザい			
皆	安荷蔦	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 \vdots or 	${ }_{6}^{\circ}$	§		E્రీ్ర	용
	－xəqums	\rightarrow	－	${ }^{\circ} \mathrm{L}$	！	710	：	，
$\stackrel{9}{\infty}$		$\begin{aligned} & \mathscr{0} \\ & \text { N } \\ & \end{aligned}$		 		$\begin{aligned} & 88.8 \\ & \substack{\infty \\ 62 \sim} \end{aligned}$	$\begin{aligned} & 8.088 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Boల్రి } \\ & 0 \end{aligned}$
	－xequmn	\rightarrow	\square－－－		H－1	－120	\rightarrow	Пッ－
$\begin{gathered} \text { si } \\ 0.0 \end{gathered}$		$\begin{aligned} & 8 \\ & 80 \\ & \text { が } \end{aligned}$	$\begin{array}{l:l} 88 \\ 88 \\ \text { or } \\ \hline \end{array}$	ర్రి，잉ㅇㅇ に゙にのにだ	ర్రిర్యిరి nirin	$\begin{aligned} & 88 \\ & 08 \\ & \text { aif } \end{aligned}$	$\begin{aligned} & 8880 \\ & \text { BOM } \\ & \text { nin } \end{aligned}$	
	－requin	－	－1－02027	Q20ヶー－20	नismy	－120	T－a	\rightarrow－
$\underset{\sim}{\dot{\infty}}$			$\begin{array}{l:l} \hline 8 & 88 \\ 0 & 28 \\ \text { or } & =-i \\ \hline \end{array}$				BిOిర	
		\square	\rightarrow－ーヅ		\rightarrow－－		－-12	$\rightarrow-0$
佥		$\begin{aligned} & 8 \\ & \text { O } \\ & \text { ®in } \end{aligned}$	$\begin{array}{l:l:} \hline 8 & 880 \\ 0 & 0000 \\ - & -1 \end{array}$	vivaiがだージ	Bిద్రిరి్రి	80		
	－ dequnn $^{\text {N }}$	\cdots	\rightarrow－	020	75010	\square	$\rightarrow \square$	$\rightarrow-\dot{1}$
	$\begin{aligned} & \dot{i} \\ & \dot{0} \end{aligned}$							
药					ตาuczstssy			

Rank.	Sex.	Salary 1st year.	Annual increase.	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { salary. } \end{aligned}$
INTERMEDIATE SOHOOLS.				
Principals	Male	\$1,800	\$100	\$2, 100
Trirst assistants	Mable.	1,200	100	1,5100
Second assistants	Male	1,000	100	1,300
Assistants (b)	Male -	700	100	900
Assistants ...	Female	600	50	800
DISTRICT SOHOOLS.				
Principals	Male	1,600	100	1,900
First assistants	Male.	1,000	100	1,300
Assistants (b)	Male	500	100	700 700
Assistants (c)	Female	400	50	\%00

[^8]$10 \% 913$
Table 28.-Salaries of public-school teachers in Cincinnati, Ohio, 1880 to 1891, inclusive.

a Data not available.
Schedules of salaries of teachers in elementary schools in force during the above period.

Rank.	Sex.	1880-86, inclusive.			1887-91, inclusive.		
		Salary 1st year.	Annual increase.	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \\ & \text { salary. } \end{aligned}$	Salary 1st year.	Annual increase.	Maximum salary.
INTERMEDIATE SCHOOLS.	\|						
Principals.	Male...	\$1,800	$\$ 100$	\$2, 100	\$1,800	\$100	\$2, 100
First assistants	Male.....	1,200	100	1,500	1,200	100	1,500
Second asssistant	Male...-	1,000	100	1,300	1,000	100	1,300
Assistants (a)	Male-	700 600	100 50	800	600	50	800
Assistants.	Female..	60					
district schools.							
Principals	Male.....	1,600	100	1,900	1,600	b 100	b 1,900
First assistants	Male....-	1,000	100	1,300	1,000	100	1,300
Assistants (a)	Male	- 500	100 50	700	400	50	700
Assistants.	Female.-	400	50	\%00			

a Men elected to positions provided for women.
b Maximum salary of principals of district schools with less than 500 pupils, $\$ 1,600$.

CHAPTER III.

SCIENTIFIC TEMPERANCE INSTRUCTION IN THE PUBLIC SCHOOLS.

CONTENTIS:
I.-Historical sketch, text-books, course of study, topical outline of study, standard of enforcement, duties of school boards, etc. (pp. 695-~09).
II.-The effects of alcohol on the human system, and the method of teaching them, by Prof. A. C. Boyden (pp. 709-713).
III.-The legislation effected (pp. 713-714).

1V.-Reports of school officicts on the enforcement of the law (pp. 714-724).
V.-Report of State Agent Geo. H. Martin upon results in Massachuseits (pp. 724-733).
VI.-Objections to scientific temperance instruction stated (pp. 783-737).

V11.-Answers to some false notions (pp . 787-742).
It is now about a decade since the first organized effort was made to cause all public-school pupils to be taught the laws of health and in that connection the evil effects of alcoholic beverages, tobacco and other narcotics; that their use in whatever degree is dangerous because of their power to create an uncontrollable appetite for more; that the indulgence of such an appetite is unqualifiedly detrimental to the physical and moral well-being of man; and that the only safe course to pursue with regard to these substances is one of total abstinence.

HISTORICAL SKETCH.

This movement was started by Mrs. Mary H. Hunt, ${ }^{1}$ through the Woman's Christian Temperance Union. The previous experience of Mrs. Hunt as a professor or teacher of chemistry in an eastern college had led to her assuming practical oversight of the education of her only child, who was a student in the Massachuseits Institute of Technology from 1872 to 1876. "While thus engaged," she says, "the question concerning alcohol as a chemical reag nt led to inquiry as to its origin, nature, and effects upon the human system as found in the popular alcoholic beverages. This study became an absorbing resaarch that filled me with alarm for the future of a nation whose people were consuming such vast quantities of alcohol."

As a result of this study the conviction was forced upon her "that intemperance could never be prevented until people were taught the ral nature and effects of alcoholic drinks, and that this must be done through the schools." The National Temperance Publication Society of New York made several tentative movements in that direction, principally under the direction of Miss Julia Coleman, whose Jurenile Temperance Manual, published in 1878, was subsequently introduced into a few public schcols.
The town of Hyde Park, Mass., at the instigation of Mrs. Hunt, was the first to introduce the study of scientific temperance into its public school curriculum. No suitable text-book had been prepared, and for the time being use was made of The Témperance Lesson Book, written by Dr. B. W. Richardson (London, 1887).

Action of the Woman's Christicun Temperance Union.-The first official action of the Woman's Christian Temperance Union was taken, in response to Mrs. Hunt's earnest importunity, at their Indiauapolis meeting in 1879, when the following resolution was adopted:
Resolved, That this convention consider the introduction of scientific temperance text-books into the regular course of study in our public schools as a most hopeful line of work. We therefore urge the various States here represented to take immediate action to secure this important study taught in the schools of their several localities.

[^9]A standing committee, of which Mrs. Hunt was made chairman, was chosen to carry the above resolution into action. But difficulties were soon encountered in the way of accomplishing any uniform work through a committee widely separated; and at the Boston meeting of the Woman's Christian Temperance Union the ensuing year (1880) a department of scientific temperance instruction in schools and colleges, under a national superintendent, was created, to take the place of the standing committee. Mrs. Hunt, who was chiefly instrumental in bringing about this change, was made superintendent of the department, a position she still holds. It was made her duty in that capacity "to oripinate, advise, and direct plans of work," which are carried out with the assistance of auxiliary superintendents in all the States and Territories, who are under the direction of and report to the national superintendent.

Subordinate assistants were appointed for the minor civil divisions of the State, so that the organization is somewhat military in character. Prompt, vigorous, and effective action has been thereby secured, with the ability to concentrate effort at any desired point. This centralization of authority has been one great secret of success.

The labors of the first year, 1880, were chiefly "confined to organizing the work throughout the country and to creating public interest in the proposd study through the press and lectures by the national superintendent before popular audiences, educational bodies, churches, and philanthropic conferences."

In her Brief History of the First Decade, from which the foregoing has been chiefly condensed, as also much which follows, Mrs. Hunt goes on to say: "Some teaching from Dr. Richardson's Temperance Lesson Book and a little work by Miss Coleman, entitled Alcohol and Hygiene, followed these efforts, by order of local school boards. The sporadic character of these results deepened the conviction that the study must be mandatory or it never would be systematically pursued. Experience soon proved the soundness of my position from the first, viz., that text-books on temperance only would not fully meet the need. In order to understand the consequences of violating hygienic law in all respects, but especially in the use of alcholic drinks and other narcotics, pupils must know something of relative physiology and general hygiene; therefore the study should be incorporated with these topics."

What the doctors said.-In the efforts of the leaders in the movement to make progress the stock objection that met them on every side was, "'There is nothing definite that can be taught about the effects of alcoholic drinks upon the human system." "The doctors are not agreed about it." It became evident that no progress could be made in getting legislation until an authoritative reply to this objection could be produced.

Mrs. Hunt, therefore, went before the American Medical Association at its meeting at St. Paul, in June, 1882, and asked them for some expression as to the evil nature and effects of alcoholic drinks. She presented the following resolutions on behalf of the Woman's Christian Temperance Union:

> Whereas alcoholic intemperance is a prolific cause of disease, and prevention, through the education of the people, is one of the most powerful antidotes,
> Resolved, That we approve teaching the children and youth in the schools and educational institutions in this country, as facts of hygiene, the physiological dangers and evils resulting from the use of alcoholic beverages; and
> Whereas it is the acknowledged duty of the State to provide for such education of the people as is essential to good citizenship,
> Resolved, That we recommend the State legislature to enact laws requiring the physiological dangers and evils resulting from the use of alcoholic beverages taught in all schools supported by public money or under State control.
> These resolutions were referred to the section on State medicine, which after some discussion adopted the following as a substitute:
> Resolved, That the a assosiation reaffrm the resolutions in regard to the abuse of alcoholic liquors passed at Buffalo in 1878 , and further urge that all State legislatures introduce hygiene as one of the branches to be taught in the schools.

The resolutions of 1878 so reaffirmed are as follows:

Resolved, That in view of the alarming prevalence and ill effects of intemperance, With which none are so familiar as members of the medical profession, and which have called forth from eminent practitioners the voice of warning to the people of Great Britain concerning the use of alcoholic beverages, we, the undersigned, members of the medical profession of the United States, unite in the declaration that we believe alcohol should be classed with other powerful drugs, that when prescribed it should be done with conscientious caution, and a sense of great responsibility.

Resolved, That we are of the opinion that the use of alcoholic liquors as a bererage is productive of a large amount of physical and mental disease; that it entails diseased appetites and enfeebled constitutions upon offspring, and that it is the cause of a large percentage of the crime and pauperism of our cities and country.
Resolved, That we would welcome any change in public sentiment that would confine the use of intoxicating liquor to the uses of science, art, and medicine.

No one can doubt that these resolutions placed a powerful weapon in the hands of the promoters of the new study, or that it was most effectively used. "The favorite objection," wrote Mrs. Hunt at the time, " of opponents is silenced, for no one can hereafter say that the doctors of this country disprove the statement of facts against alcoholic beverages that we would teach the rising generation."

The end achieved.-A course of thorough and systematic agitation was entered upon to create a public sentiment in favor of compulsory temperance education and to influence law makers in the desired direction. As a result, the first compulsory temperance education law was enacted in Vermont, in November, 1882. By this law there was added to the branches to be taught in the common schools "elementary physiology and hygiene, which shall give spocial prominence to the effect of alcoholic drinks, stimulants, and narcotics, upon the human system."

In the ensuing year laws to the same effect, more or less stringent in their requirements, were enacted in many other States. A tabular statement giving the date of enactment of these laws and their general features will be found on page 713.

TEXTT-BOOKS.

A difficulty was experienced at first in the matter of text-books. Dr. Richardson's Temperance Lesson Book proved too technical for common school use, and like Miss Coleman's book, contained only temperance matter, but no physiology or other hygiene which the State laws were demanding. Publishers and authors were slow to believe there would be a permanent market for this kind of literature.
The first physiological temperance boor: indorsed by the superintendent of the Scientific Department of the Woman's Christian Temperance Union was written by Dr. Steele, and published by A.S. Barnes \& Co., the latter being actuated in their venture by philanthropic as well as business motives.

The design of the promoters of the movement was to have "all pupils in all schools," receive a temperance education, and to this end a series of at least three text-books would be necessary, one each for high, intermediate, and primary grades of schools, and four for schools closely graded. It was deemed best that these books should be issued by regular school-book publishing houses.

In 1884, after a search for authors and publishers, and the disappointments of authors of manuscripts rejected because unsuitable, and wrath of publishers books who secould not be indorsed, two books were pronounced ready for use, one for high schools (Steele's Hygienic Philosophy) and one for intermediate grades (Hygiene for Young People). The book for primary grades was still wanting. Mrs. Hunt says in her report of that year :
"Large numbers of publishers and authors have rushed into our field with books containing the old and disproven theories concerning alcohol, badly arranged and badiy graded, and otherwise inadequate to the demands of the laws and the needs of the schools. These works are defective in their treatment of alcohol, and have not the proportion or arrangement of temperance matter that is intended by the spirit and letter of this legislation."

The ensuing year (1885) the set of three approved text-books, known as the Pathfinder series, was made complete by the addition of the Child's Health Primer, prepared under the direction of the scientific department of the Woman shristian Temperance Union.

As the temperance-education movement began to assume large proportions, publishers ceased to entertain doubts about a market for this kind of school literature. About thirty works on physiology for school use were issued by different houses immediately after the passage of the New York law in 1884. "Most of these were the old-time physiologies with a little temperance matter tacked on the back of the book as an addenda, where pupils would rarely reach it. The embarrassing position of the national superintendent in not being able to indorse these books can hardly be appreciatea."

The laws passed by the Legislatures of Massachusetts and Pennsylvania in 1885 excluded text-books with temperance matter in the appendix. This aroused the opposition of the publishers, but to no purpose; they were obliged generally to remodel their books, "putting the temperance matter where it belongs, in each division of the subject of physiology with the other hygiene. Although this was the first step toward the satisfactory revision that came in later years, yet these books, in quality and quantity of temperance matter and adaptation to grade, were still so defective that they could not be indorsed," as was the Pathfinder series.

Rigid text-book requirements in Vermont.-The Vermontlaw, as amended in 18S6, required that "all pupils in all public schools of the State shall be taught the nature of alcoholic drinks and other narcotics. Children too young to read shall receive oral instruction, and those who can read shall use a text-book." Textbooks were required to devote one-fourth their space to this subject, and schools not giving the statutory instruction forfeited their share of tho public money.

Other States followed the example of Vermont in requiring one-fourth of the space of tixt-books in physiology to be devoted to temperance instruction.

The great petition to publishers.-In order to bring a strong pressure to bear upon publishers, a syllabus was compiled in 1887 of what should be taught in the schools as scientific temperance, and after having been signed by over two hundred leading American citizens, "representative of the best medical, physiological, chemical, educational, legal, and ethical opinion in our country," was presented to publishers in form of a petition asking for a revision of their imperfect text-books upon this subject. As a whole, this petition constituted "an expression of the best expert sentiment of our country, in favor of teaching to the children of the United States the full truth of science against.strong drink and in favor of total abstinence."

After this petition was sent to the publishers its syllabus of requirements was adopted as their standard for temperance text-books by the National Woman's Christian Temperance Union, at Nashville, November, 1887, and became their creed, or " articles of faith," so to speak.

The full text of the petition is as follows:

A PETITION TO PUBLISHERS OF TEMPERANCE TEXT-BOOKS.

1. Thirty-two States and Territories now require scientific temporance instruction in the public schools, and the question whether the children shall receive such instruction is seen to depend largely upon the character of the text-books employed.
2. It was the intention of those who secured these laws that the children should have the latest science concerning the dangerous and hurtful qualities of alcohol used in any degree, and the peril of forming the habit of its use. The law requires this. Nothing less than this will ever satisfy its friends.
3. Those text-bo.ols that are largely physiology, with a minimum of temperance matter that only points out the evil of drunkenness and the danger of excessive use of alcoholic drinks and narcotics, do not meet the requirements of the law, and do not satisfy those who secured its enactment and who are determined to secure its enforcement.
4. Therefore, the undersigned legislators who voted for these laws in various States and in the National Congress, the representatives of temperance organizations, and who are familiar with the sentiment and are entitled to speak for the very numerous membership of different, churches and other bodies, extending widely throughout the land, and citizens who speak for ourselves, do make respectfut and earnest appeal to all publishers of text-books on this subject to revise their publications to conform to the latest results of scientific inquiry, and to meet the terms and spirit of these statutes in making the temperance matter the chief and not the subordinate topic in theso books, so that public and authorized expressions of approval and indorsement of all such books can be issued and given wide circulation.
5. In urging this appeal we beg leare to represent that if this new education is to give to the world a coming generation of intelligent total abstainers, as we expect, its manuals of instruction must conform to the following specifications:
(1) They must teach with no uncertain sound the proven findings of science, viz:
(a) That alcohol is a dangerous and seductive poison.
(b) That beer, wine, and cider contain this same alcohol, thus making them dangerous drinks, to be avoided, and that they are the product of a fermentation that changes a food to a poison. (c) That it is the nature of a little of any liquor containing alcohol to create an appetite for more, which is so apt to become uncontrollable that the strongest warning should be urged against taking that little and thus forming the appetite.
(2, They must teach also the effect of these upon "the human system," that is, upon the whole being-mental, moral, and physical. The appalling effects of drinking habits upon the citizenship of the nation, the degradation and crime resulting, demand that instruction hero should give clear and emphatic utterance to the solemn warnings of science on this subject.
(3) This instruction must be as well graded to the capacities of each class of pupils as the modern school readers are. A book fit for high schools put into primary or intermediate classes will make the study a failure there. Truth is just as true and as scientific when told in easy words as when put into stilted technicalties the child can not understand.
(4) This is not a physiological bat a temperance movement. In all grades below the high school this instruction should contain only physiology enough to make the hygiene of temperance and other laws of health intelligible. Temperance should be the chief and not the subordinate topic, and should occupy at least one-fourth the space in text-books for these grades. As only a small portion of the pupils in our public schools attend high schools, and vast numbers leave with the primary, this instruction should be early and ample. It is not desirable to hare a separate book for the physiology heretofore studied in the high school or to limit the amount, but at least twenty pages out of that ordinarily required should be given to the question of the danger of alcoholic drinks and other narcotics, in a text-book for these classes.
(5) This effort to disabuse the minds of the rising generation of fallacies which lead to drink habits should purposely avoid reference to the medical use of alcohol, except to state that as by common consent its lay prescription is condemned, the question of its use as a remedy may properly be relegated to medical treatises, as out of place and misleading in a school text-book.

Lacking in any of these points, a text-book on scientific temperance is incomplete, and the use in the schools of such a book will not result in a strong temperance sentiment among the pupils using it.

Because the question of total abstinence for the children of this country, and therefore of their well-being and that of the land soon to be governed by them, depends so largely upon the teachings in these books, we make this appeal.

As a result of the foregoing petition nearly all of the publishers of temperance text-books expressed the desire to have their books remodeled in conformity therweith. This work of revision was taken up and carried on in 1888 under the supervision of Mrs. M. H. Hunt, the national superintendent of the scientific department of the Woman's Christian Temperance Union, with the assistance of the following advisory board: Albert H. Plumb, D. D., president Massachusetts Amendment Society; Daniel Dorchester, D. D., vice-president Massachusetts Total Abstinence Society; William E. Sheldon, president National Teachers' Association of 1887; Rev. Joseph Cook, of Boston Monday Lectureship.

Upon consultation with authors it soon became apparent that there was not so much difference of opinion about what was true concerning the subject as misapprehension as to what special truth should be brought forward. "Some writers were misled by supposing that exhortation or aopeal after the style of the temperance lecture was desired. These difficulties ianished when they found that we wanted no fanatical preaching, but instead a full statement as to the origin, evil nature, and effects of alcoholic drinks and other narcotics, all told in language that the various grades of pupils can understand."
"The great men among these authors who are fully abreast with the researches, experiments, and proven facts of modern science -on this subject were first to come into accord with the petition standard."

Now fully equipped.-Mrs. Hunt, writing at the beginning of 1892. says: "The study that was thus hampered and halting at the first is now fully equipped. What it then lacked is now supplied. Everything is ready. As the teachers translate these methods into actual school-room work, the intent of the law will be accomplished in the generation of intelligent total abstainers that will come from our schools."

Endorsed text-books (1892).
Primary text-books:
Health for Little Folks.
No. 1 of the Union Series.
Child's Health Primer.
House I Live In.
Published by the American Book Company, N. Y.
Good Health for Children.
Published by Leach, Shewell \& Sanborn.
Physiology for Little Folks.
Published by Lee \& Shepard, Boston, Mass.
A primer of Health.
Published by Silver, Burdette \& Co., Boston.
Intermediate text-books:
Young People's Physiology, (or)
Hygiene for Young People.
No. 2 of the Union Series.
Youth's Temperance Manual.
Published by the American Book Company, New York.
Stowell's Healthy Body.
1 Published by Silver, Burảette \& Co., Boston.
Blaisedell's Pysiology for Boys and Girls.
5 Published by Lee \& Shepard, Boston, Mass.
Brand's Health Lessons for Beginners.
Published by Leach, Shewell \& Sanborn.
Adranced grammar grade text-books:
No. 3 of the Union Series.
Johonnot \& Bouton's Lessons in Hygiene.
Published by the American Book Company, New York.
Essentials of Health.
Published by Silver, Burdette \& Co., Boston.
Young Folks' Physiology.
Published by Lee \& Shepard, Boston.
High school text-books:
Tracy's Outlines of Anatomy, Physiology, and Hygiene.
Steele's Hygienic Physiology.
Eclectic Guide to Health.
Published by the American Book Company, New York.
Martin's Human Body and the Effects of Narcotics.
Published by' Henry Holt \& Co., New York.

Charts.-With reierence to charts Mrs. Hunt says: "To be worth anything to the cause the endorsement of this department on scientific matter must represent accuracy. Realizing the injury to the work sure to follow any accusation of inaccuracy that could be well sustained, we have hesitated about placing our endorsement upon physiological charts. We are yet waiting for the chart that shall be pronounced accurate, as to delineation and coloring, by the best physiological experts, and that shall give a due representation of the evil re-ults of narcotic indulgence. We would advise our friends to delay the purchase of charts until some that are authorized are issued."

Course of study.-In order to assist in finding a place for this study, and to determine how much to teach each year and in what grades to teach it orally, "a cavefully graded course of study in this branch has been prepared covering all these points." "It also shows the grades or classes in both graded and ungraded schools to which the various books are adapted." This course of study is as follows:

NATIONAL AND INTERNATIONAL DEPARTMENT OF SCIENTIFIC INSTRUCTION OF THE WOMAN'S CHRISTIAN TEMPERANCE UNION.

A Schedule of Courses of Study in Physiology and Hygiene, with

 Special Reference to the Nature and Effects of Alcoholic Drinks and Other Narcotics.This plan provides for three lessons per week for fourteen weeks of each school year, after which the subject may be dropped for the remainder of the year, to be taken up with a more advanced treatment for the same length of time the following year. These courses, with well-graded text-books that contain the truths the law requires taught, will, if faithfully pursued, with oral or written reviews, cover the subject, and will not unduly crowd other studies.

GRADED SCHOOLS.

$$
\text { Course A. }{ }^{1} \text { - For graded schools having eight years below the high school. }
$$

[Pathfinder series of text-books.]

First, second, and third year.-"Child's Health Primer," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

Fourth year.-"Child's Health Primer," in hands of pupils. Recitations three times per week until the book is completed.

Fifth year.-"Hygiene for Young People," in hands of pupils. Recitations three times per week until first half of book is completed.

Sixth year.-"Hygiene for Young People," in hands of pupils. Recitations three times per week until last half of book is completed, reviewing from beginning.

Seventh year.-"Lessons in Hygiene, No. 2 of Appleton series," in hands of pupils. Recitations three times per week until first half of book is completed.

Eighth year.-"Lessons in Hygiene, No. 2 of Appleton series," in hands of pupils. Recitations three times per week until last half of book is completed, reviewing from first chapter.

High-school year.-"Steele's Hygienic Physiology," in hands of pupils until book is completed.

Course B. ${ }^{2}$-For graded schools having eight years below the high school.
[Appleton series of text-books.]
First, second, and third year.-"Health for Little Folks," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

Fourth year.-"Health for Little Folks," in hands of pupils. Recitations three times per week until book is completed.

[^10]Fifth year.-"Young People's Physiology," in hands of pupils. Recitations three times per week until first half of book is completed.

Sirth ycar.-"Young People's Physiology," in hands of pupils. Recitations three times per week until last half of book is completed, reviewing from first chapter.

Seventh year.-"Lessons in Hygiene," in hands of pupils. Recitations three times per week until first half of book is completed.

Eighth year.-"Lessons in Hygiene," in hands of pupils. Recitations three times per week until last half of book is completed.
High-school year.-"Outlines of Anatomy, Physiology, and Hygiene," by Roger S. Tracy, M. D., in hands of pupils until book is completed.

Course C. ${ }^{1}$ - For graded schools having seven years below the high school.

[Union series of text-books.]
First, second, and third year.-"Number One" of the Union series, in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.
Fourth year.-"Number One" of the Union series, in hands of pupils. Recitations three times per week until book is completed.
Fifth year.-"Number Two" of the Union series, in hands of pupils. Recitations three times per week until book is completed.
Sixth year.-"Number Three" of the Union series, in hands of pupils. Recitations three times per week until first half of book is completed.
Seventh year.-"Number Three" of the Union series, in hands of pupils. Three recitations per week until last half of book is completed, reviewing from first chapfer.
High-school year.-Steele's "Hygienic Physiology," or "Outlines of Anatomy, Physiology, and Hygiene," by Roger S. Tracv, M. D., or "The Human Body and the Effects of Narcotics," by H. Newell Martin, M. D. In hands of pupils until book is completed.

Course D.-For graded schools having six years below the high school.
[Eclectic series of text-books.]
First, second, and third year.-"House I Live In," in hands of teacher for oral instruction. Recitations three times per week. Facts drawn from text-book.
Fourth year.-"House I Live In," in hands of pupils. Recitations three times per week until book is completed.
Fifth year.-"Youth's Temperance Manual," in hands of pupils. Recitations three times per week until first half of book is completed.
Sixth year.-"Youth's Temperance Manual," in hands of pupils. Recitations three times per week until last half of book is completed.
High-school year. -"Eclectic Guide to Health," in hands of pupils until book is completed.

Course E.-For graded schools having eight years below the high school.

[Blaisdell Revised Physiology series.]

[^11]Eighth year.-"Young Folks' Physiology," in hands of pupils. Recitations three times per week until last half of book is completed, reviewing from first chapter.

High-school year.-Steele's "Hygenic Physiology," or Tracy's "Outlines of Anatomy, Physiology, and Hygiene," or Martin's "Human Body and the Effects of Narcotics," in hands of pupils until book is completed.

UNGRADED SCHOOLS.

In an ungraded school, three classes should be formed, one for advanced pupils, one for those who rank as intermediate, and another for primary. All pupils in the school should be divided according to their attainments among these three classes.

Is it necessary to have a separate book for each of the three classes referred to in an ungraded school? Yes, emphatically yes. All pupils in ungraded schools where there are advanced pupils can not be taught as the law requires with less than three grades of books. The primary or lower grade pupils need a book they can understand; the next grade should have one a little more advanced; and pupils who correspond to the high-school grade should have a book adapted to their arquirements. This study has often been made a ridiculous failure by the attempt in ungraded schools to make one book (and that often a high-school book) fit all pupils.

Course A.-For ungraded schools, or schools having two, three or four depariments.
[Pathfinder series of text-books.]
Primary class.-Pupils reading in the primer, first, second, and third readers. "Child's Health Primer," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

Intermediate class.-Pupils reading in Fourth Reader. "Hygiene for Young People," in hands of pupils. Recitations three times per week until book is completed.

Advanced class.-Pupils reading in Fifth Reader and higher books. "Physiology and Health, No. 3 of Union series," in hands of pupils. Recitations three times per week until book is completed.

COURSEB.-For ungraded schools, or schools having two, three, or four departments.

[Appleton series of text-books.)

Primary class.-Pupils reading in the primer, first, second, and third readers.
"Health for Little Folks," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

Intermediate class.-Pupils reading in Fourth Reader. "Young People's Physiology," in hands of pupils. Recitations threa times per week until book is completed, reviewing from first chapter.

Advanced class.-Pupils reading in Fifth Reader and higher bcoks. "Lessons in Hygiene," in hands of pupils. Recitations three times per week until book is completed.
Course C.-For ungraded schools, or schools having two, three, or four departments.

[Union series of tezt-books.]

Primary class.-Pupils reading in the primer, first, second, and third readers.
"Number One" of the Union series, in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

Intermediate class.-Pupils reading in fourth reader. "Number Two " of the Union series in hands of pupils. Recitations three times per week until book is completed.

Advanced class.-Pupils reading in fifth reader and higher books." "Number Three" of the Union series, in hands of pupils. Recitations three times per week until book is completed.

[^12]Course D.-For ungraded schools, or schools having two, three, or four departments.
[Eclectic series of text-books.]
Primary class.-Pupils reading in the primer, first, second, and third readers.
"House I Live In," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

Intermediate class.-Pupils reading in fourth reader. "Youth's Temperance Manual," in hands of pupils. Recitations three times per week until book is completed.

Advanced class.-Pupils reading in fifth reader and higher books. "Eclectic Guide to Heaith," in hands of pupils until book is completed.

COURSE E.-For mingraded schools, or schools having two, three, or four departments.

> [The Blaisdell revised serles of text-books.]

Primary ciass.-Pupils reading in the primer, first, second, and third readers. "Physiology for Lictle Folks," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-books.

Intermediate class.-Pupils reading in fourth reader. "Physiology for Boys and Girls," in hands of pupils. Recitations three times per week until book is completed.

Advanced class.-Pupils reading in fifth reader and higher books. "Young Folks' Physiology," in hands of pupils. Recitations three times per week until book is completed.

REASONS FOR THE ADOPTION OF A COURSE OF STUDY AS OUTLINED.

The reasons to be urged in favor of adopting a definite course of study in this topic, which includes text-books in the hands of all pupils above the primary, are as follows:
First. Such a course gives the definite time and place to the branch that the law demands.
Second. It points out the grade for which oral instruction is adapted, and those in which instruction should be given from text-books in the hands of pupils.

Third. It specinies the grade for which each book is adapted. The pupil just learning to gain information from a text-book needs one in which the style and vocabulary is very little in advance of his own. As soon as he gains ability to master a more advanced style and treatment he needs a more adranced book. To keep him longer in the book he has outgrown is to stultify his developing faculties. On the other hand, to give him a book too adranced is to discourage him and lead to a distaste for study. Either course is false economy and contrary to all educational principles.

Fouth. The use of text-books as specified secures the teaching of truth instead of the notions and traditions of some teacher who has had no special education on this topic.
Fifth. It will, in nearly all cases, prevent outside topics, such as the legal or political phases of the temperance question, from being brought into the recitation under the guise of scientific temperance instruction, which sometimes gives rise to trouble.
Sixth. It takes less time from the overcrowded school course than anything like an honest attempt above the primary class to teach the subject orally, which is always liable to cause waste of time through branching out into unimportant collaterals.

TOPICAL OUTLINE OF COURSE OF STUDY. ${ }^{1}$
[Prepared by Department of Scientific Temperance Instruction, W. C. T. D.]
This age needs men and women who are wise to resolve, strong and quick to act. Such men and women are the result of the right development of the threefold human system, mental, moral, and physical, and are the object sought by this study.

[^13]Because the use of alcoholic drinks and other narcotics is a prime obstacle in the way of such development, a knowledge of their origin, their inherent evil nature, and of their destructive effects is an objective point in the study of scientific or physiological temperance. But it is by no means all. This study does not stop with teaching the consequences of evil. It at the same timeshows the road to the ideal.

As demanded by law and presented in all approved manuals of instruction, it teaches the all-round physical education that leads to strength, health, and such physical development as will make the body an efficient servant of a rightly trained mind-a meet temple for the divine indwelling. In showing the consequences of broken natural law, it is also a powerful moral teacher.

As some knowledge of structure is an essential basis, enough anatomy and physiology to make the various laws of hygiene intelligible is a part of the study. The whole subject may be classified under the following divisions:

Ten divisions.

(There may be differences of opinion as to the order of presenting these divisions. It is not essential that the same order be always followed, provided the division treating of the nature of alcoholic drinks and other narcotics precede those treating of the various organs and the effects of these narcotics upon them.)

1. Food.-This division includes the uses of and kinds of food and rules for their selection and proper preparation, together with hygienic rules in regard to eating.
(For reference and personal study the teacher should have some one of the highschool books mentioned on the last page of this circular, and for guidance in the selection of matter appropriate for primary grades, one or more of the primary books there mentioned.)
2. Alcoholuc drinks and other narcotics.-This division has for its object to show when and why healthful fruit juices and grain infusions become poisonous drinks that should be avoided. The instruction therefore covers the changes that take place in these liquids during fermentation, the causes of such changes, and the nature of the changed liquids.
(For full information on these points the teacher should study this division of the subject in some one or more of the text-books mentioned above, and for the selection of matter adapted to grade, the primary text-books before menticn d.)
3. Digestion.-Its anatomy, physiology, and hygiene, and the effects of alcoholic drinks and other narcotics.
4. Circulation.-Its anatomy, physiology, and hygiene, and the effects of alcoholic drinks and other narcotics. In this division the controlling action of the vaso-motor and inhibitory nerves should be brought out as early as possible, because many of the contradictory appearances concerning the action of alcoholic and other narcotics on various portions of the body are only intelligible when this is understood.
5. Respiration.-Its anatomy, physiology, and hygiene, including the effects of alcoholic drinks and other narcotics, with special emphasis on the importance of breathing pure'air, of full and deep breathing, and of right positions for securing this; also of simple methods of ventilating rooms in which no provision for ventilation has been made. Such information, put into actual practice in the schoolroom, will be carried home by the children and correct many of the bad habits in this direction that lead to unhealthful conditions of the body and to drink.
6. The nervous system.-Its anatomy, physiology, and hygienic laws that govern the best development of nerve and brain tissue, and the consequence; of disobeying these laws in the use of alcoholic drinks and other narcotics. The shock of all narcotic indulgence falls with greatest force on the nervous system. Instruction at this point should therefore be full and emphatic. Effects on the intellect, will, and moral character, as a result of its effects on brain and nerve tissue, should be fully brought out, as is done in all the approved text-books, which also indicate how much of each topic may be appropriately presented in each grade.
7. The bones.-The anatomy and physiology of bone tissue and its hygiene, including the effects of alcoholic drinks and other narcotics. Special siress should be laid on the fact that growth lost through wrong habits during the growing time of life can never afterwards be made up, of the importance of right position, and the relation of proper food, and the effects of alcohol, tobacco, and other narcotics in preventing healthful growth.
8. The muscles. -The anatomy and physiology of muscular tissue and its hygiene, including the effects of alcoholic drinks and other narcotics. This division of the subject includes in its hygiene systematic exercises for the development of the various tissues of the body, such as calisthenics, gymnastics, or what are called physical-culture exercises.
9. The skin.-Its anatomy, physiology, and hygiene, including the relation of exercise, pure air, right food, bathing, and proper clothing to the hygiene of the skin, and the evil effects of alcoholic drinks and other narcotics upon the same.
10. The senses.-Their anatomy, physiology, and hygiene, including the effects of alcoholic drinks and other narcotics.

Giadation.

In physiological temperance, as in other branches which extend through several years of the school life, a few of the simple elements should be taught in the lowest grade, and these reviewed and more added from year to year, until an advanced treatment of the whole topic is completed in the high school.
In the lower primary grades a few lessons on the parts of the body should precede the work on the other divisions, which, in the lower grades, should consist chiefly of hygiene with only a very little physiology and almost nothing of the anatomy of internal organs.

Methods for primary grades.

Simple truths should be selected for first, second, and third year pupils under each division of the subject, to be developed by means of simple stories, objects, or pictures, or questions relating to the pupil's previous experience. The following indicates what may be taught under the division of alcoholic drinks and other narcotics to first-year pupils, to be reviewed with added truths for second or third year pupils:
First lesson:

1. There are ferments on the dust on grapes.
2. There is sweet juice inside the grape.
3. When the juice is pressed out the ferments get into it.
4. The ferments take away the sweetness of the juice and leave a poison in it

Second lesson :

1. Poisons can do us harm.
2. Poisons may kill.
3. Alcohol is a poison.
4. We should never take any drink that has alconol in it.

Third lesson:

1. Cider is made from apples.
2. Ferments change the juice of the apples after it is pressed out.
3. We should not drink cider, for there is alcohol in it.
4. Wine is made from grapes.
5. We should not drink wine, for there is alcohol in it.
6. There is no alcohol in grapes or apples.

Methods for lower intermediate grades.
The law. in saying that this study should be introduced and taught as a regular branch, virtually says that the established methods of teaching other branches with text-books when pupils are able to read, and orally before, is to be the method here. But the books used should be adapted to grade. Where such books are in the hands of the pupils three lessons per week for fourteen weeks of the school year will allow time for covering as much of each division of the subject as the pupils are capable of understanding, without repetition or crowding other branches. When pupils have mastered so much of a topic as is adapted to their grades, they should not go over and over the same with needless repetition. The subject, after suitable reviewing, should be dropped for the remainder of the year and something else take its place.

Fourth-year poupils.-Pupils in the fourth year of school are ready to begin to learn to use text-books, and should at this point begin to pursue this branch as a regular text-book study. The matter contained in the indorsed primary text-

ED $90-45$
book has been carefully culled with special reference to what is adapted to this grade of pupils.

Fifth and six year pupils.-Pupils in these grades are prepared for a larger discussion of the subject, which should here, as in all grades above the primary, be a text-book study. More time would therefore be required to cover the subject, which may here be distributed over a period of two years. Fifth-year pupils may take a part of the ten divisions, as food, alcoholic drinks, and other narcotics, digestion, circulation, respiration. [The hygiene of the last three will include the effects of alcoholic drinks and other narcotics.]

Sixth-year pupils, after reviewing the work of the fifth year, may take the remaining divisions, as bones, muscles, skin, the nervous system, the senses [each including in its hygiene the effects of alcoholic drinks and other narcotics].

For the use of pupils in these grades a large variety of books that contain the matter that should be taught at this stage, expressed in language adapted to the comprehension of the pupils, without the use of technical terms, are ready and indorsed by the friends of the movement.

Advanced grammar grades.

For seienth and eighth year pupiis the topics may be apportioned as in the fifth and six year grades; but the pupils will require text-books containing a more advanced treatment of the subject. Nothing is more detrimental to the object sought by this study than attempting to make one grade of books on temperance physiology fit all grades of pupils.

High-school grades.

The spirit and letter of the law requires this to be a text-book study in this grade. High-school pupils are capable of comprehending the partially technical treatment found in the indorsed high-school physiologies mentioned on p. 699. This can bs easily mastered the first year of the high-school course. Where examinations show that it has been so mastered the study is completed and should be dropped and not repated through the other years. Pupils in the second and third years of the high school who have not had this study should take it up in those grades.

Ungraded schoois.

The divisions are the same here as in the graded schools. The pupils should be arranged in classes according to their attainments, ordinarily three-a primary, an intermediate, and a more advanced. Each class of pupils able to read should have books corresponding to their various grades. At least three grades of books on this subject are generally needed for ungraded schools.

THE SPECIAL WORK OF 1890.

"The special work of 1890 has been careful planning for thorough enforcement of legislation that has made scientific temperance a mandatory study. Two States, Massachusetts and Pennsylvania, began this year what may be termed campaigns for this enforcement. The State organizations, after voting to make this a leading line of work, provided fuuds for paying the expenses of county superintendents or other organizers to go through the counties securing local workers; also for the necessary literature and postage. Literature, showing the local superintendents, as fast as they were appointed, exactly what to do in every, detail of the work, was then sent out from State and national headquarters."
"As soon as active work for enforcement was begun it became apparent that an accepted standard as to what constitutes an honest enforcement of a temperance education law is as necessary as the standard for temperance text-books proved. Time and experience have established something like school-room standards for the pursuit of other branches; but the conceptions as to now this new subject should be studied and taught were vague, various, and indefinite. From consultation with eminent educators and comparison of the fruits of varied experience the following standard was wrought out. This is being sent to superintendents of public instruction intrusted with the enforcement of temperance education laws in various States. Its specifications as to minimum of time, necessary means, and method for the pursuit of the study is receiving their cordial indorsement:"

A STANDARD FOR THE RNFORCEMENT OF A TEMPERANCE EDUCATION LAV

1. Minimum of time." -The pursuit of the study of physiological temperance by "all pupils in all schools," as the law demands, requires at least three lessons per week for fourteen weeks of each school year below the second year of the high school. After an adequate and well-gradect portion of the topic assigned for this time is thoroughly learned, the subject may then be dropped for the remainder of that year. The following year a little more advanced treatment of the subject should be pursued for the same length of time. Allowing twenty minutes to a lesson for all grades or classes above the primary, this requirement would amount to only fourteen hours per year; but if carried through the several years between the primary and the second year of the high school or corresponding class of ungraded schools, would give sufficient time for a thorough comprehension of the subject without encroaching upon other. studies.
2. Necessary means for the fulfillment of the law. - Well-graded text-books on physiology and hygiene that contain also the "special" facts concerning the nature and effects of alcoholic drinks, tobacco. and other narcotics, that the law requires taught. These facts can not be treated in less than onequarter of the space given to the physiology and hygiene appropriate for primary and intermediate grades, or in less than twenty pages of the ordinary high-school book. These books shomld be as well graded to the capacities of pupils as modern school readers are.
3. Necessary method. ${ }^{2}$-Text-books in the hands of pupils who use text-books in studying such other branches as arithmetic or geography, and oral instruction, not less than three times per week, for those not sufficiently advanced to use text-books.
4. Examinutions or tests. ${ }^{3}$ - As thorough examinations or tests should be required in this study as in other branches, the same marking system should be used, and such marks should enter into the general arerage which decides the rank of the pupil.
The abore standard of requirement for the enforcement of a temperance education law is both fair and just. Anything less would not represent the spirit and letter of this legislation, and would not be a pursuit of the subject "as a reg'ular branch" by "all pupils in all schools," as the laws of many States demand.
(Signed)

HENRY SABIN

Superintendent Public Instruction for Iowa.
A. A. MINER,

Nember of State Board of Education of MIClssachuset̂ts.
Alice Freeman Palmer,
Member of State Board of Eaucation of Massachusetts.
Elmer H. CAPEN,
Nember of State Board of Education of Massachusetts.
J. Estabrook.

Superintendent of Public Instruction, Miichigan.
N. A. LUCE,

Superintendent of Common Schools of Maine.
GEO. J. LTCKEy,
Superintendent of Pitisburg Schools, Pennsylvania.
W. H. JACK,

State Superintendent of Public Eaucation for Louisiana.
D. J. Waller. Jr.,

Superintendent Public Instruction for Pennsylvania.
Thos. MI. BALLIET,
Superintendent Schools, Springfield, Massachusetts.

RICHARD EDWARDS,
Superintendent Public Instruction for Illinois.
W.B. POWELL,

Superintendent Schools for Washington, D. C., and District of Columbic.

IRA G. Hoiry,
Superintendent Public Insíruction for California.
A. N. RAUB,

Presideni State Board of Eaucation, Delaware.
Bend. S. Morgan,
State Superintendent Free Schools, West Virginia.
Geo. W. Winans,
Superint ${ }^{\text {Stient }}$ Public Instruction for Kansas.
JOHN HANCOCK,
State Commissioner of Common Schools for Ohio.
JOHN OGDEN,
Superintendent Puもlic Instruction for North Dakota.
W. C. Dovey,

Superintendent of Public Instruction for Nerada.

[^14]The following, relating to the requirements of institute instructors and the duties of school hoards, is taken from Mrs. Hunt's work, "A Brief History of the First Decade," before referred to:

INSTITUTE INSTRUCTORS.

There is now great need of trained institute instructors on this topic. Great harm has been done this cause, and the study has been brought into disrepute, by persons going before institutes and attempting to give instruction when they were not qualified to do so, and were not prepared to answer the questions propounded by critics, friendly or otherwise.

An institute instructor on this topic should have the following qualifications:

1. He, or she, should be a good physiologist.
2. Should be thoroughly familiar with the biological side of the question as revealed by the researches of the last few years. Should be well read in the works of Pasteur, De Barry, Troussart, Shurtzenberger and others on fermentation.
3. Should know enough of modern investigation to be able to refute, on the testimony of scientific experts, the popular fallacies concerning the nature of alcohol, especially as found in the most common drinks, beer, wine, cider, etc.
4. Should be familiar with the great physiological authorities on the subject of the effect of these narcotics upon the human system, mental, moral, and physical.
5. Should be familiar with all the school literature on this subject and be able to point out quickly where one book is defective and where and why another is sound.
6. Should understand thoroughly the matter of grading the topic, i.e., what should be taught the first year and what enlargement of the subject should be added each succeeding year, through all the grades, in order that "all the pupils in all schools" may be taught the subject as the law demands without unnecessary repetition.
7. Should by familiar with modern methods of teaching as based upon psychological principles, so as to be able to present this subject in harmony with the same.
8. Should have also what is called "platform powers," i. e., ability to present this subject with clearness, enthusiasm, and the magnetism which ho!ds an audience.
The subject of physiology and hygiene, with special reference to the nature and effects of alcoholic drinks and other narcotics, is a large one requiring exact knowledge on the part of anyone who would attempt to instruct teachers. For those who can fully meet these requirements there is a wide opening, and correspondence with such is invited by the national superintendent of this department, Mrs. Mary H. Hunt, Hyde Park, Mass.
A bureau for the training of such instructors on this topic for teachers' institutes is already under way. Applicants for the course of training will be required to present testimonials as to previous education, capacity for study, aptness to teach, and power to interest an audience. The instructors now preparing for this work have had experience as institute instructors on other topics, and have established a reputation in that direction.

THE SCHOOL BOARD.
The parties who ought to take the first official steps in the enforcement of a temperance education law are ordinarily the local school boards. These steps, if rightly taken, are:
(1) The adoption of a definite course of study, with time and place given to it as to other branches, and for each grade of pupils.
(2) The recommendation of text-books containing the facts the law requires taught, graded to the capacities of the several classes of scholars.
In the discharge of these duties on the part of the schcol boards, there is wide room for improvement. They have too of ten reconmended books notably lacking in temperance matter, and so absolutely out of grade as to be practically useless. Conscientious teachers in such cases have tried to give oral instruction, but they have not had the previous drill in this branch that they have had in others. When neither the teacher nor the books are in possession of the facts to be taught, it is not strange that the teacher soon runs out of matter for the so-called oral instruction.

Oral instruction on this topic, in all grades above primary, has beerr, and still is, a signal failure. We must insist upon text-book study in all grades using text-books for other like branches, if we would not be mocked with disappointment in results.
A master in a city school, under temperance education law, recently said: "I can and will teach this branch when it is put into my course of study and books containing the subject are put into my hands and those of my pupils, but the school board must do that first. If they fill my course of study absolutely full with other branches, leaving no time for this, and in addition, neglect to give me or my pupils any adequate text-books, I can not do much."
This statement represents the relation of school boards to the enforcement of these laws, and reveals the greatest hindrance to be overcome. The neglect with these officials is often due to misapprehension or indifference, and sometimes to positive opposition. The appeal in the latter case is to the people for the election of persons who will execute the law. The man who would withhold this instruction from the children of a city or modify its full truth for fear of injuring the brewing or other liquor interests is most unfit to be intrusted with any care of the education of the children in this age. Misapprehension on the part of school boards can be enlightened; that should be the work of the local superintendent. The indifferent can ordinarily be aroused: if not, they should be retired.

Hard indeed must be the heart of the man or woman who could deliberately withhold the utmost warning science has against strong drink and other narcotics from the children under his or her care. If we deliberately or otherwise withhold a given information from a child are we not responsible for what may follow to that child's future and to others through him because of such withholding? Is it too much to say that the officials who carelessly, negligently, or purposely fail to provide for the full enforcement of the temperance education laws in the schools under their control, are incurring a fearful and personal respensibility for the drunkenness of the future? The time has come for calling attention to this from pulpit, platform, and press.

II.-THE EFFECTS OF ALCOHOL ON THE HUMAN SYSTEM AND THE METHOD OF TEACHING THEM.

By Prof. A. C. Boyden, of Bridgewater, Mass.

[From proceedings National Educational Association, 1886.]

* * * Two very practical questions remain for us as teachers. The two are these: What shall we teach? and How shall we teach it? That is, what shall we select from all the mass of material that has been prepared upon this subject for the young pupil? Much is especially adapted to them. Much we can give them with assurance. Many of the facts can be presented correctly, simply, and effectively to the children. And when we have made our selection, the importait question comes, how shall we present the subject according to the best methods of teaching and in such a way as to lead to conriction on the part of the young. Let me say, what I am going to repeat a great many times throughout this discourse, that it is not mere knowledge that we are to teach-it is conriction that we are to bring to the minds and the wills of these pupils. Stopping with mere knowledge will not accomplish the work. Whatshall we teach?

First. A knowledge of the human body: Its external parts; the relations of those parts to each other: the uses of these parts, and especially the proper care of them; a knowledge of these delicate organs, the senses that we have and the work which they do for us, and the care which we should take of them; the work done by the important systems within our bodies, the way in which they do that work, and the care which they should receive from us-not merely a knowledge that we have certain parts, that we use them in certain ways, and that they can be taker care of in certain ways, but we should lead the mind to a profound conviction of the marrelous construction of our body, the delicate arrangement of its parts and the duty of each one of us to take the very best care of these houses of our souls. Not the mere knowledge, we repeat, but the conviction of the duty to care for these. This work is the preparation for the later work.

Second. A knowledge of the origin, properties, and uses of the various stimulants and narcotics; that the children may recognize them when they see them ;
that they may know the properties, and the effects upon the human body, and that they may know why alcohol has this certain influence upon the human body.

Third, and most important: That these narcotics, especially alcohol, tobacco, and opium, upon the human body; what they do and why they do it. Now, with your indulgence, I shall hope to offer a few suggestions in answer to these two questions, what shall we teach and how shall we teach it, with some rery simple experiments. I have gone to the extreme of simplicity in order to aroid the objections which come from so many teachers who say: "I have hal no practice in any laboratory. I am situated in a school where rery few, if any, appliances are given to me." I wish to present that which can be used by every man and woman in every schooihouse in this land; requiring no previous laboratory work, requiring no great outlay or expense. Of course in those schools which are more favorably situated, more advanced experiments may be conducted; but I intend to present those experiments which will give a sufficient knowledge of the effects on the human body, so that if it is taught rightly the children will be saved. Now, in this work, so far as I can show it before such a large audience, I will leare the subject of general physiology, and come directly to the subject of narcotics, their origin, their properties, and uses, and what they do to the human body; and I have selected for their principal work,

Alcohol.

I.-ORIGIN OF ALCOHOL.

1.-In fermented liquors.

Experiment 1. Add molasses to water in a bottle till it is of a deep brown color, then add a teaspoonful of yeast; allow it to stand in a warm place for a day or two. Observation: The mixture has the odor of alcohol, later a sour, acid odor; the mixture has a sharp taste. Inference : The little reast has changed the sugar of the molasies to alcohol; this will change to acid if left alone. Call the yeast plant a "ferment," and the process of changing "fermentation."
Experiment 2. Allow apple juice to stand exposed to the air for a few days. Observation: The liquid has the odor of alcohol, also the biting taste. Later it has a sour, acid taste like vinegar. Inference: Very small ferments from the air have changed the sugar of the apple juice to alcohol. Call the liquid "cider." The alcohol will change to rinegar if left exposed to the air.
Cider is formed by the fermentation of apple juice in the air.
Wines are formed by the fermentation of grape juice, etc., in the air.
Ales and beers are formed by the fermentation of the sugar of grains. (Nalt liquors.)

Alcohol is an essential constituent of all these fermented liquors; nature will change it to an acid if left to itself.
2.-In distilled liquors.

Experiment 3. Heat cider or wine in a test tuke over an alcohol lamp : pass the steam through a glass tube into a bottle which is wrapped in a wet cloth to condense this steam. Observation: The odor and taste are more marked than in the fermented liquors; often there is a bitter taste. Inference: The condensed liquor 1 stronger than the fermented liquor and is changed intonew substances oftentimes. Call this process of evaporating and condensing "distillation," and the resulting liquid a "distilled liquor."

Brandy is distilled from wines.
Gin is distilled from beer and flavored with juniper berries.
Whisky is distilled from the wort of fermented grain.
Rum is distilled from fermented molasses.

II.-PROPERTIES AND USES OF ALCOHOL.

Experiment 4. Examine alcohol for its color, odor, and taste. Place a little on the hand. Observation : Alcohol is a transparent liquid, has a strong odor, and a biting taste. Inference : The rapid evavoration of the alcohol makes the hand feel cool-it is a rolatile liquid.
Experiment 5 . Place a little in aspoon; apply a lighted match. Observation: It burns in a blue; hot flame. Inference: Alcohol is inflammable because it unitos easily with the oxygen of the air.

Experiment 6. Shake a little powdered resin in alcohol. Observation: The alcohol changed to the color of the resin; finally the resin disappears. Inference : Some resinous substances are soluble in alcohol.
Experiment 7. Mix a little oil of turpentine with alcohol; shake. Observation: The turpentine mixes with the alcohol. Inference: Alcohol will mix with some oils.
Experiment 8. Add alcohol to the white of an egg (albumen). Observation: The albumen changes the moist, mucilaginous albumen to a white, stringy solid. Call this "coagulation." Inference: Alcohol coagulates albuminous substances by extracting the water from them.

Properties.-Alcohol is a transparent liquid, odorous, has biting taste, is volatile. It dissolves many resinous substances, and mixes with most oils. It is inflammable, has great affinity for oxygen. It coagulates albumen, has attraction for water. Uses (resulting from these properties), external application to allay inflammation. Alcoholic lamps for heating purposes. A solvent for gums in preparing varnishes. In preparation of perfumery, medicines, etc. Preservation of museum specimens.

III.-EFFECTS OF ALCGHOL ON THE HUMAN BODY.

> 1.-Alcohol impairs digestion.

Experiment 9. Place with the finger a little alcohol on the inside membrane of the mouth (a mucous membrane); ${ }^{1}$ repeat this several times. Observation: The membrane stings, the saliva flows freely, finally there is a dry, puckery feeling. Inference: Alcohol inflames the membrane, excites the flow of the liquid which it secretes, and absorbs the moisture in it.

Application.-The lining membrane of the mouth also lines the stomach and the other organs of the digestive system. A small amount of alcohol will cause a profuse flow of the gastric juice and pass very rapidly into the blood. A larger amount inflames and irritates the lining membrane of the stomach. A continued use weakens the quality of the gastric juice by the unusual and irregular fow, also impoverishes the blood from which it comes. It irritates the constantly inflamed membrane of the stomach, leading to an ulcerous condition and chronic inflammation.

Experiment 10. Add alcohol to raw meat, also rub some meat in water till it is well colored with blood, add alcohol to this blood. Observation: The liquid is full of white particles and the meat seems hard. Inference: The alcohol has coagulated the albumen of the meat and blood.
Experiment 11. Add alcohol to some of the pepsin of the gastric juice. Observation: The pepsin contains white, stringy particles. Inference: Alcohol coagulates pepsin.
NoTe.-To prepare the pepsin get from the butcher the inside membrane of a pig's stomach, cut into fine pieces and soak it in glycerine for a few hours. The glycerine dissolves the pepsin; strain through a fine cloth. Prepared pepsin can be bought of the druggist.
Application.-Pepsin is the active solvent of the gastric juice. Alcohol tends to harden the food and coagulate the pepsin, thus retarding digestion. Continued use tends to chronic indigestion and to the intensifying of any disease of the digestive system.
2.-Alcohol absorbs the water of the body.

Refer to experiments 8 and 9. Alcohol not only absorbs water from the albumen which it coagulates, but the whole system floods it with water to dilute it and render it less harmful. Hence alcobol absorbs the water of the saliva, of the gastric juice, of the blood, of the tissues, and of all the secretions. This soon results in a craving for fluid to suppiy the body, really a "thirst" for water, requiring time for its absorption throughout the system, but temporarily satisfied by more exciting drink.
3.-Alcohol destroys the blood corpuscles.

Experiment 12. Prick with a pin under the finger nail and draw a drop of blood; place this on a bit of glass and examine with a magnifying glass. $\mathrm{Ob}-$ serve the way in which the little blood corpuscles are arranged. Touch them with the smallest amount of alcohol. Observation: The corpuscles are of an
irregular shape and have lostpart of their color. Add more alcohol. Observation: The corpuscles are an irregular mass of a whitish color. Inference: Alcohol coagulates the albumen of the corpuscles and dissolves the coloring matter. Refer also to experiment 5.
Application.-Alcohol at once enters the blood, seizes the oxygen that the red corpuscles are carrying to the rarious parts of the body, dissolves the coloring matter, and coagulates the albumen of these corpuscles; hence the blood partially fails in its work of carrying new matter to the tissues and in eliminating the waste matter. The result is a clogging of the system with effete matter, poisoning of the blood, diseases of the skin, liver, and kidneys. The retarding of the combustion within the body lowers its temperature in direct proportion to the amount of alcohol taken.

> 4.-Alcohol ruins the blood vessels.

Observe the crust of earthy matter on the inside of bottles of grape wine. Inference: The earth matter which was soluble in the grape juice is thrown down by the alcohol in the wine.
Application.-The mineral matter is being carried by the blood to the bones, is precipitated by the alcohol, and forms a crust in the blood ressels and in all the tissues, making them weak and brittle. As a result blood vessels burst nnder any unusual strain, and apoplexy results.

> 5.-Alcohol paralyzes nerve matter. (A narcotic.)

Experiment 13. Etherize or chloroform a frog by soaking a wad of cotton and putting it in his mouth, or place a spoonful of ether in a jar of water and immerse the frog. When insensible carefully cut upon the skin and flesh of the leg till the nerve is exposed. Touch a drop of alcohol to the exposed nerve. Obsercation: The nerve becomes stiff and white, the trembling of the limb ceases. Inference : Alcohol has paralyzed the live nerve matter.

Application.-A small dose of alcohol causes incipient paralysis of the nerves of the tissues and brain; this causes an extra activity for the purpose of diluting and expelling the poison from the system, manifested by the " animated appearance, the throbbing of the arteries, the flush of the face, and the sparkle of the eye." This paralysis also numbs any feelings of pain, apparent benefits arising from previous paralysis. The paralysis of the nerves controlling the muscular walls of the capillaries weakens their elasticity, at the same time the heart increases its action, hence the blood tends to remain near the surface, and an extra radiation of heat takes place, a second reason for the lower temperature of the body.

Increase the dose and the paralysis of the brain increases in this order: First, of the delicate nerve matter of the superior brain (cerebellum), blunting the highest functions, reverence, modesty, love, etc., its reflex action is the loss of control of the connecting nerves, thus moral power fails and the lower nature is supreme; second, the part of the brain controlling voluntary motion is paralyzed, and also that part which is said to preside over the thoughts (cerebrum), at the same time the nerves are paralyzed, resulting in an insensibility to pain and injury-this goes on till a person is "dead drunk;" third,-the last part of the nervous system affected is that which controls the involuntary actions, breathing, etc.-this paralysis causes death.

Continued use leads to a degeneracy of nerve matter and tissue by the constant paralysis and repair, because the structure of the nerve matter is changed, hence "disorders occasioned by the strain imposed on the system, diseases traceable to the general degeneration of the system, and diseases which might otherwise be averted or resisted;" finally the insatiable demand for alcohol: diseases of the nerve, delirium, and death.

This extra exertion of the organs tends to weaken them, which accounts for the fact you are all familiar with, namely, that when a person is taken with a serious disease and is brought to the hospital the first thing the physician or surgeon who comes to him says is: Has this person been using alcohol? Yes; and he shakes his head. There is a question about that. That extra exertion of those organs which has been going on eliminating poison from that man makes it impossible for those organs to resist the terrible strain of a new disease. The physician says to another: Has this person used alcoholic liquors? No. Then we will try to pull him through. Those organs have not been exerted under that terrible strain. Nor the effect on this nerve matter of pulling
it down, paralyzing it to-day, then mending it, pulling it down, and to-morrow mending it, paralyzing it a little more the next day, and mending it again, changes the constitution of that nerve matter so that it gets into what we call a diseased condition. And there is a second reason for this terrible thirst that comes over a man. Such thirst that nothing, as he says, in heaven or earth will stop him in getting that liquor: and why? Because of the changed condition of that nerve matter, and it looks as if there was no remedy for him. Surely it is a terrible condition for a man to reach.

Now, without going further, I think I have made the points that I desire: That in teaching these points we should lay the foundation on simple experiments (with substances which are the same or similar to those of the human body), performed by the pupils themselves. That, I say, should be the foundation. Then we should apply these facts and explain the action on the human body. This may be supplemented by reading, not from one book, but from many books, of the effects, which can not be shown by simple experiments, but which are the result of difficult scientific experiments and of medical experience.

Now let me leave these thoughts with you: Teach very carefully out of a full knowledge of the subject; discriminatingly, not with exaggeration, but for the purpose of finding the truth, the whole truth, and nothing but the truth. Teach scientifically, according to the principles of the very best science, basing the work upon experiments in the hands of the pupils. Teach impressively. As I said at first a person may know all about these facts that I hare presented and yet go right on doing just the same thing as before. The lessons should be taught in such a way by the teacher as to bring conviction and decision to the minds of each one of the children. Any teacher that fails to reach that. point has failed in moving the wills of the children. Teach for the sake of developing right habits and good character.

III.-THE LEGISLATION EFFECTED.

The following table shows what States have enacted compulsory temperance education laws and gives the principal features of the different laws:

Table showing the Stateshaving temperance education laws; also the date of encuctment and the chief requirements of the different laws, as compiled by Mary H. Hunt.

Explanation of marks.

\times The cross signifies that scientific temperance is a mandatory study in public schools. (Column 3.)

* The star signifies a penalty attached to the enforcing clause of this statute in the State or Territory to which it is affixed. (Column 4.)
\dagger The dagger signifies that the study is not only mandatory, but is required of all pupils in all schools. (Column 5.)
\ddagger The double dagger signifies that the study is required of all pupils in all schools and is to be pursued with text-books in the hands of pupils able to read. (Column 6.)
\|The parallel indicates that the study is to be taught in the same manner and as thoroughly as other required branches. (Column $\boldsymbol{\tau}$.)
§ The section marix indicates that text-books on this topic used in primary and intermediate schools must give one-fourth their space to temperance matter and those used in high schools not less than 20 pages. (Column 8 .)
I The paragraph indicates that no teacher who has not passed a satisfactory examination in this subject is granted a certificate or authorized to teach. (Column 9.)
The States in italics have no temperance education law.

| 1 | |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^15]b Under United States law. Idaho and Wyoming have since continued the same provisions in their' State codes.

a Date of original law; a more stringent one enacted in 1891.
6 Amended 1886.
c Under United States law. Idaho and Wyoming haye since contained the same provisions in their State codes.

JV.-THE ENFORCEMENT OF TEMPERANCE EDUCATION LAWS.REPORTS AND OBSERVATIONS OF SCHOOL OFFICLALS.

ALABAMA.

The Alabama law of 1885 required that "instruction shall be giren all pupils in all schools and colleges, supported in whole or in part by public money or under State control, in physiology and hygiene, with special reference to the effects of alcoholic drinks, stimulants, and narcotics upon the human system."
In 1889 , out of 261,667 pupils, 19,211 are reported as studying "physiology and hygiene."

In 1891 a law more rigid in its requirements was enacted.

CALIFORNIA.

[From Report of State Superintendent Ii G G. Hoitt, 1590.]

Teaching desultory and results inappreciable.-The provision in our law requiring scientific temperance instruction to be given in all grades was adopted by the legislature of 1887.

Up to the present time the teaching has been desultory and the results inappreciable. Some teachers are earnest and enthusiastic on the subject, many take hold of it in a cold, perfunctory way, and many, I fear, neglect it altogether. Some teachers, when the law was passed.found themselves unprerared to do anything in that line, and, not having the fear of an examination before them, failed to make any adequate preparation. Some of the county boards very properly required an examination of their teachers in this subject and entomology before issuing renewals of certificates. The course of study suggested by the State board of education supplies the data for some years only.
I would suggest that county superintendents give this subject a more prominent place at their institutes and in their teachers' examinations and that pupils be examined thoroughly in the work prescribed for each grade: also, that by legislative enactment scientific temperance ba added to the branches in which applicants for teachers' certificates must be examined, and that the words "intemperate habits" be added to the clause bearing upon the revocation or suspension of certificates.
If this were done the almost unirersal desire which I have observed anong our superintendents and teachers to uphold the law would produce beneficial results in this direction.

SAN DIEGO.
Methods of instruction.-Eugene De Bum, superintendent of San Diego schools: In connection with the work in physiology, alcoholic drinks and narcotics are treated of as fully in each grade as the comprehension of the pupils will permit. The teacher talks with the class of the manufacture of alcohol, its uses in the arts, and the bererages in which it is found. A brief history of tobacco is givenwith the process of manufacture and the ways in which it is used. Thedeserip, tion, uses, and hygiene of each part of the body; the skin, the muscles, the bones, the stomach, the lungs, etc., are taught; the effects of alcohol and tobacco are given with the hygiene. Caution as to using other narcotics, as opium and morphine, is given the pupils. This work is not only laid out in the course of study, but it is done in the school room.

COLORADO.

Generally observed.-State Superintendent L. S. Cornell reports (1888): The temperance law passed by the last legislature has been generally observed throughout the State. In all of our schools instruction as to the effect of alcohol and narcotics on the human system has been giren. The law, as passed, is somewhat rague and indefinite, yet it has been obeyed as the school boards understood it.

Douglas County reports (1890) the law as "generally enforced."

CONNECTICUT.

REPORTS OF SCHOOL VISITORS.

Lack of text-books and of intercst.-The evident intention of our legislators in the law requiring the study in our schools of physiology as connected with alcoholism is not being realized as it should be, owing to a lack of appropriate textbooks, as well as a lack of interest in all concerned. The derastation, moral, physical, and financial, resulting from the drink traffic, calls for a more full and clear understanding of the direful effects of indulging in alcoholic drinks, and also tobacco in its rarious forms, that those who persist in going the downward road may not present the plea of ignorance as an excuse. Statistics of classes pursuing a college course show conclusively that those who indulge in the use of the weed rarely attain to the highest position mentally or physically. Fashion and habit hold a tyrant's sway over the boys who think they have attained to manliness when they can sport a cigar, or flood the spittoon, the flcor, or the walk with foul tobacco juice: and we know the natural tendency of this habit is to lead on to the saloon. The moral obtuseness of those addicted to the use of strong drink is something startling to every thoughtful mind. The great majority of the accicents and crimes which are so appalling are directly traceable to aicohol, which is the provocative of nearly every sin in the calerdar. I shall probably be accused of want of jiberality in this mattar, but when our law-
makers in their wisdom have seen fit to place such a law on the statute book, it is well for us to heed it, especially when we are charged with the moral and physical, as well as mental, wellbeing of the young in our communities.-Plymouth, L. D. Baldwin, acting visitor.

Regularly and faithfully taught.-The subject of physiology and hygiene has been regularly and faithfully taught. A conscientious effort has been made to select and teach the facts best adapted to the mental status of the pupil, and to impress him with the importance of obeying the laws of health which a consideration of the body and its complicated machinery suggests. So far as practicable scientific terms are avoided, and the matter is presented in language within the comprehension of the pupil.

The composition and nature of alcohol and tobacco are studied, and the effects which they produce when taken into the system. The evils which flow from their long-continued use are pointed out, and the effort made to create an impression which will result in total abstinence.-Norwich Central District, N. L. Bishop, superintendent.

DELAWARE.

Growing more and more popular.-Superintendent James H. Ward, of Sussex County, reports: The study of physiology and hygiene is growing more and more popular every year. Three years ago these two branches were introduced into our schools. During the first year comparatively few schools used the book, but now nearly all the schools in the county are making use of it; and very soon none, we think, will be without it. The teachers prove themselves in the examinations to be much more conversant with these subjects now than they were three years ago, and their interest will, of course, to a great extent assure us of the interest and advancement of the pupils in this part of a popular education. We feel gratified that the people begin to show themselves interested in this work, and begin to feel that the laws of health should be taught in our schools, and that the principles of temperance instilled into the children's minds should be considered a part of a good, substantial education.

JLLINOIS.

State Superintendent Richard Edwards (1890): During the last session of the legislature a law was passed requiring that instruction be given in the laws of health and in regard to the effect on the human system of narcotics and alcohol. Whatever opinions may be held concerning the liquor traffic, every intelligent man will welcome all honest efforts to enlighten the people in regard to the physical effects of narcotics and intoxicants.

IOWA.

[From Report of State Superintendent Henry Sabin, 15s8-89.]

Scientific temperance instruction.-The law requiring that regular instruction shall be given in all the public schools of the State having special reference to the effects of alcoholic drinks, stimulants, and narcotics upon the human system has been the subject of much thought and attention. I believe the law has been steadily growing in favor, and that its provisions are generally complied with by our teachers. Not only has the attention of teachers been called to the absolute necessity of obeying the letter of the law, but in most of our county institutes raluable instruction has been given in methods of teaching this branch and in the arrangement of the subject-matter, so as to make the teaching most effective.

In response to many inquiries, in May, 1888, the following circular was distributed among the teachers for their guidance and direction:

To county supsrintendents and teachers of Towa:

We are often asked as to the limit of instruction in the branch of scientific temperance instruction.
The evident intent of the law is to place the teaching of the nature and effects of stimulants and narcotics upon the same basis as other branches taught in our public schools. The pupil gains his knowledge of arithmetic by successive steps; he must pass an examination in one part of the subject, and show his familiarity with it before he is adranced to the next division. Scientific temperance instruction should be treated in the same manner. One portion should be thoroughly mastered before the next is entered upon. If this is well done, the teacher will often find work enough in one part of the subject to employ and interest the pupils during a whole term. Careful consideration will convince us that the work in this branch of study is too superficial in many of our schools, because we are attempting more in a given time than can be done well. Temperance instruction needs to be reduced to a system.

We suggest the following plan:
In the first division, intended for little children, let the work be entirely oral, and confine the subject-matter largely to the simple rules of health, as cleanliness, exercise, and habits of eating and drinking, with but little of physiology or anatomy.
In the second division, instruction should still be given orally, but an advance may be made, in that the pupil should be required to carefully reproduce what has been given him, and to commit to memory facts and principles, so as to make them his own. The department of hygiene may be enlarged, and something of the mechanism of the body may be added. It is to be noticed, however, that this oral work should be very carefully prepared, with method and thought, in order to adapt it to the capacity of the pupils. It is of especial importance in these two divisions that you giye, if possible, a strong bent to the child's mind against the use of liquor and tobacco
In the third division the use of the text-book should begin. Here more individual study and work on the part of the pupil is necessary. It would not be well to endeavor to cover the whole ground of physiology and hygiene. The functions of the more important organs only should be thoroughly studied and explained. The action of stimulants and narcotics upon these organs should be faithfully impressed upon the child's mind.
In ad vanced divisions the whole subject of the human body, its mechanism, its needs and protection, may be carefully studied. At this stage a few of the more important technical names may be learned, and the functions of the various organs more minutely described.

In all your work care should be taken to give instruction in accordance with the spirit of the law. Total abstinence should be taught as the only sure way to escape the erils arising from the use of alcoholic drinks and tobacco. This systematic plan, if carefully followed, will insure a more thorough understanding of the subject, and teachers will not complain that they have used up all their material,

Allow me to suggest to county superintendents that you give this study, especially as it has reference to the effects of stimulants and narcotics upon the human system, the attention which it deserves at your coming institute; and that at examinations you submit to your teacher short but comprehensive questions to test their knowledge, as required by section 3 of the law. * * *
Reports from every county in the State indicate that there is a very general desire to administer the law faithfully. Considering the difficulties naturally arising when a new branch is introduced into the course of study, the progress made is very encouraging. The attention the subject received last year in institutes greatly assisted teachers in their work. Our confidence in the fidelity of the school officers and instructors of Iowa to any trust imposed upon them makes us certain that much more will be accomplished during the coming year. To assist in this important work the hearty coöperation of all is invited.

Henry Sabin.
Superintendent of Public Instruction.
Des Moines, May 20, 1888.
The code should be amended so as to require the teacher to include in his register. which he files with the secretary at the close of his school, a certificate that he has fully complied with the provisions of the law. Section 1745 should also be amended, so that the secretary should be required to furnish the county superintendent with a transcript of the action of the board, as required by laws of 1886 , and also with the names of those teachers who have and those who have not filed the required certificate.

The attempt to teach the children and youth the injurious effects of stimulants and narcotics promises great good to the cause of temperance. The aim of such instruction should be to fortify the child against the formation of bad habits in his youth, and to lay the foundations upon which to build the higher work of strengthening the will, so that he may be able to resist temptation from whatever source it may come. In this connection I am free to say that I believe there should be upon our statute book a law making it a misdemeanor, punishable by a heavy fine, to sell tobacco in any form to a minor under 16 years of age. The necessity of such a law is becoming more apparent every day, and we ought not lunger to delay its enactment.

Statistics.-Reports from the township boards indicated "that the law had been complied with in its spirit" in every township without exception: also that the teachers were "skillful in giving the instruction required by law."

In 1890, out of 15,762 schools, the effects of stimulants and narcotics were ta ught in $15,097$.

KANSAS.

We should unite to make the teaching a success.-State Superintendent J. H. Lawhead (1886): A vigorous mind inhabiting a healthy body can do more for the State than the same mind can in a body that is weak and diseased; and as the public school is sustained at public expense upon the theory that the permanency of the State depends upon the intelligence of its citizens, the State claims the right to have those branches taught in her schools that will best secure these results. Now a thorough knowledge of the human system is essential to its preservation and highest development, which can only be secured by a study of its physiology and hygiene, and the effects of such substances as may be deleterious to its growth and the healthy exercise of its rarious functions; and it has
been decided by the best medical authority, as well as by unirersal observation of mankind, that both alcoholic stimulants and narcotics exert a baneful and destructire influence, not only upon the body and its various functions, but it likewise destroys the intellect and deadens the moral sensibilities. In view of all these results, we, as school officers and good citizens, should unite to make the teaching of the effects of alcoholic stimulants and narcotics upon the human system a success. We should supply our teachers with all the necessary appliances to secure the best results, and furnish our schools with the best maps, charts, and books, to enable the teacher to perform his part in this great work. I am pleased to note that teachers throughout the State have, in most instances, taken hold of this subject with an earnestness that is full of promise for good results.

MAINE.

Obstacles to the execution of the law.-State Superintendent N. A. Luce reports (1890): The results of the law requiring instruction in the hygienic effects of stimulants and narcotics have not been fully up to what was hoped and expected when enacted. Three obstacles have stood in the way of such results:

1. In the smaller rural schools where failure has been most general, the incompetence of the teachers has been the cause of such failure. In such schools of necessity the instruction must be largely oral because of the primary character of those to be taught, and such instruction to be efficient presupposes teachers of higher professional grade than is required to give instruction from textbooks. Efficient oral work, except in rare cases, can be done only by those trained and practiced in such work.
2. The unwillingness of parents to purchase text-books has hitherto been an almost insurmountable obstacle not confined to any class or grade of schools. While oral teaching in this as in other branches is most efficient with primary classes, it is otherwise with those more advanced. With these the text-book is a necessity.
3. The inertia of public opinion-a quite general feeling that this instruction is of minor importance-has not only been in large measure the producing cause of the two obstacles already cited, but an obstacle in and of itself. Schools both in their instruction and supervision are quick to respond to the condition of public opinion. Had there been sharp public demand that every child in every school should be taught as the terms of the law require, a demand watchful and exacting, there can be little doubt that cases of utter ignoring of law would have been rare, and that pupils and teachers would everywhere have been affected by that demand.
The first of these obstaciescan be removed only by such reform in our system as will lift these poorer schools out of their present condition. The second has been largely removed by the furnishing of free books. The third will disappear only as the result of a "campaign of education." To bring this instruction up to the efficiency desired by those who believe in its vital importance, calls not for law but for labor. Law can not create public opinion, but public opinion will compel the observance of law. Labor with teachers is needed to awaken them to deeper interest and more earnest effort; with school officers to force them to fuil exercise of their authority; and especially with the people to educate them to an intelligent appreciation of the value of the results sought. Such labor is the privilege, and the duty as well, of those by whose efforts the law was enacte and of all others who believe in its wisdom.
Statistics.-In 1889, out of 3,894 ungraded schools, $2,55 \mathrm{i}$ had classes in physiology.
In 1890, out of 3,909 ungraded schools, 2,426 had classes in physiology.

MASSACHUSETTS.

Object and methods of the instruction-Exaggerated statements to be aroided.-G. T. Fletcher, agent of the State board: This is required to be given in connection with "physiology and hygiene, which are to include special instruction as to the effects of alcoholic drinks, stimulants, and narcotics on the human system."
Right and faithful teaching in this line may prove of great value to the Commonwealth, and the subject should secure careful consideration from school officials and teachers. The reports of school committees seem to indicate that some effort is made in every town to comply with the requirements of the law.
My personal observation convinces ine that the methods and results are not satisfactory. Many teachers desire to do justice to the subject, but they plead,
as an excuse for neglect, lack of time and knowledge. Perhaps a brief consideration of the object of the instruction may suggest a method.

The teaching is to lead the child to form temperate habits of living. His knowledge of the danger of indulgence in the use of narcotics and intoxicants must lead to a derelcpment and exercise of will power sufficient to enable him to resist temptation. The education must be intellectual and moral, to induce the habits of thought and action necessary to good citizenship. The instruction should be true, simple, and earnest, largely objective; illustrations may be drawn from life, pictures, and recorded facts. Personalities and allusions that will wound the feelings of children should be aroided. No exaggerated statements of the erils to be shunned should be made; they are not wholly true, and they will react against the cause.

For young pupils good temperancestories are raluable. I am inclined to think that most temperance teaching should be oral, the school being supplied with such books and charts as will be helpful to teacher and pupils for reference. Truths from scientific investigations, and facts and figures from other reliable sources, may prove raluable. Not so much for school as for life the children need temperance instruction, and the teacher should honestly, faithfully, as well as intelligently, endearor to make lasting impressions.

Begin uith the teachers.-State board of education: The statutes require that physiology and hygiene shall be taught in all the public schools as a regular branch of study, and that the teaching shall have special reference to the effect of stimulants and narcotics upon the human system. The board has instructed its agents to make particular inquiry as to the manner in which this requirement is met. They report that the disposition is very general to comply with the law, but that rery much of the teaching under this head is defectire and of little value, owing to the inability of teachers to deal with the subject. In the judgment of the board, therefore, especial attention must be given to the training of teachers to teach this branch of learning before the results expected from its introduction into the schools will be produced.

MICHIGAN.

Overteaching is perilous.- State Superintendent Theodore Nelson (1886): In my opinion it is the design of the law to give to this class of studies the same status it gives to other practical topics, such as reading or grammar, i. c., that somewhere in his course the pupil shall be taught the physiological and moral effects of narotics and alcoholic stimulants upon the whole being of man. To my mind this is quite enough. Lees would be insufficient; more would be unnecessary, and possibly harmful. It is to be regretted that in any public school the full requirements of the law should suffer neglect; jet it would be a mistake quite as serious to give to these special studies a disproportionate, unequal place in the school curriculum-to coörainate them, as some extremistsinsist upon doing, with every other subject from the low zones of a. b, c up to the high regions of calculus. Overteaching upon a subject which relates to moral conduct, especially if it concerns the appetites or passions, is really perilons. Too constant dwelling upon topics of this character has a tendency to invoke morbid conditions in the mind of the youth which either provokes or fascinates him to attempt dangerous experiments. Were you to teach a boy the flagrant wickedness of burglary it would not be expedient, nor would it be necessary, to induct him into the mysteries of picking a lock. The specialist finds a peculiar charm in the ugly spider; he sees a thousand beauties in the bright colors and sinister eyes of a loathsome snake. We may well fear the consequences of making our boys and girls too familiar with nauseating details of any eril which we desire them to shun. The teacher or parent can not be to earnest to enjoin correct principles, to give warning of penalties, and to himself exhibit a blameless example: which having done he can effectively add nothing further, except to deroutly leare the result with God.

Siatistics.-In 1890, out of 10.810 school districts, 5,701 reported physiology taught, and 4.668 reported physiology not taught: 341 districts failed to report.

MINNESOTA.

Tomperance in the broader sense.-State Superintendent D. L. Kiehle (1888): The reports from the counties indicate a purpose to honestly execute the law. The subject is doubtless as well taught as others are. The children are easily
interested, and I have no doubt will derive much permanent good through the skill and example of good teachers. Nothing should be left undone that will fix in the minds of our youth a sense of the folly and danger of the use of alcoholic beverages, and a resolution to entirely abstain from their use. I therefore cordially support this law, and have, so far as I know, used every means to administer. it thoroughly. It ought, howerer, to be noted in a report upon education, as this assumes to be, that temperance in the restricted sense of abstinence from the use of any kind of food or drink is in itself but a negative rirtue, and must therefore in an educational view take a subordinate place in any curriculum of instruction. Character is determined by what a man is, and not by what he is not, by what he does, and not by what he does not do. Hence, education having to do with the whole man in his health, intelligence, and character, it has chiefly to do with the positive virtues of temperance in the broader sense of self-control and the subordination of appetite and passion to the authority of the higher moral and intellectual natures, of high purposes in choosing worthy objects of life, of pure tastes in the love of the good, the beautiful, and the true. These receiving the first place, a secondary consideration should in reason be given to what is destructive and inconsistent with what every wise man should be, and for what he should live.

> Reports of county superintendents-(1890).

Anoka County.-No opposition has been made to the instruction in temperance hygiene. Both teachers and pupils seem to enjoy this subject. Anatomical charts have been purchased for about two-thirds of all the schools. The greatest difficulty seems to be in getting parents to supply the children with books.
Douglas County.-Instruction in temperance hygiene has been systematically and regularly given in all schools, since the law requiring it became operative. The books recommended by the commission have been used exclusively and have giren the best of satisfaction.
Lac qui Parle County.-No objection to the teaching of this subject in the schools has been heard. In nearly all of the schools it is taught, and I believe there is no subject more entertaining to the little ones, or one that will be of more importance to them in their general education. The teachers in nearly all of the schools use the book recommended by the commissioner.
Mecker County.-Temperance hygiene has been taught in every school without exception. In some instances, however, threats had to be resorted to in order to induce school boards to do their duty in this respect. All the teachers have been loyal and active in doing their parts in fulfilling the law:
Redwod County. - The temperance hygiene work is quite satisfactory. Teachers feel the need of good, earnest work on this subject. Nearly all make place for it on their programme. Some try it on the three times a week plan. What have we accomplished in the work, no one can tell. We shall know more five years hence.

Swift County.-Temperance hygiene has found a place on every programme in our schools, and the law is well observed.

Wilkin County.-Instruction in temperance hygiene has been given in this county, I think, very thoroughly and has been met with no opposition.

MISSOURI.

The law a farce and a fraud. -The law on teaching the evil effects of alcoholic stimulants and narcotics upon the human system is a farce and fraud. It is virtually a prohibition against temperance instruction in the public schools. And strange as it may appear, those who claimed to favor proper legislation upon this subject, farored this measure, while they rejoiced over the defeat of Senate bill No. 52 , which required such instruction in all schools of the State. The law as it stands is worthless, and should be repealed or amended. (State Superintendent W. E. Coleman.)

MONTANA.

Montana without a luw.-State Superintendent John Gannol (1892): The only law upon our statute books relating to the teaching of the effects of stimulants and narcotics is that known as the "Blair bill," approved May 20, 1886; but as that applied only to the Territories, it became roid upon the admission of Montana into the Union, and has not been reënacted by our legislature; though
teachers are still examined in "physiology and hygiene, with special reference to the nature and the effects of alcoholic drinks and other narcotics upon the human system."

Statistics (1890). -Out of three hundred and sixty-one school districts in the State, physiology and hygiene were taught in three hundred and thirty-six.

NEVADA.

Scientific knowledge necessary.-State Superintendent W. C. Dovey (1890): The legislature passed an act in 1885 which provides that elementary physiology and hygiene, which shall give special prominence to the effect of alcohol and narcotics upon the human system, shall be taught in the public schools. No wiser provision is found in our school law. Scientific knowledge on this subject, though very primary, will do more in shaping the habits of the children in this respect than can be done by appeals to his moral nature or by reviewing the terrible degradation and ruin which its use has inflicted upon the human family. Reasons, stronger than sentimentalism, excite in him a wise fear of the tippler's habit. The following figures show that the great body of our teachers are in hearty accord with this law: Number of children studying physiology in 1885, 365 ; in 1886, 851 ; in 1887, 1,602; in 1888, 2,150; in 1889, 2,265 ; in 1890, 2,283 [out of 7,387 pupils enrolled]. In six years the number has increased from 365 to 2,283 . This item is a source of thankful congratulation to every intelligent friend of the rising generation.

NEW HAMPSHIRE.

Nearly all schools complying with the law.-State SuperintendentJ. W. Patterson (1890): In the year 1883 an act was passed, without any material opposition in either house, which required school boards to prescribe in all schools sufficiently adranced the study of physiology and hygiene, with special reference to the effects of alcoholic stimulants and narcotics upon the human system. To prevent evasion by those not favorable to the law, it was amended in 1887 so as to require the introduction of this study in "all mixed schools and in all graded schools above the primary."
Being deeply interested in the execution of the law, I endeavored to inform myself as to how far it had been complied with and the spirit with which the subject was taught. It took a year or two to qualify the teachers to do even respectable work in this branch. There were a few towns which ignored the law, as every sensible man knew there would be, and there were others that complied with the letter of the law and violated its spirit. But as time went on I was gratified with what seemed to me as general a compliance with the law as any one had reason to anticipate.

I was, therefore, greatly surprised and not a little annoyed when his excellency the governor, in his inaugural, stated that so far as he could learn the law had been "almost entirely disregar'ded." I said to myself, either I am mistaken or the governor has been misinformed, and the public has a right to know whether the law is a dead letter or not. I therefore inserted the following questions in the statistical blanks sent to the school boards for their annual returns: 1. Give number of schools in which physiology and hygiene are taught with text-book. 2. Give number of schools in which they are taught orally.

All but eight towns in the State responded to these questions, and the result is as follows: In 946 schools physiology and hygiene are taught by text-books, and in 817 they are taught orally. This gives us 1,763 schools out of 2,302 in the State in which the law has been regarded, leaving only 539 in the whole State in which the subject is not taught. This number would be considerably reduced by the statistics from the eight towns not heard from. It is gratifying to learn from the school boards, who know the facts, that nearly all the schools of the State, except the primary, in which the'subject is not required to be taught, are complying with the requirements of the law. Clearly his excellency the governor, whose scrupulous loyalty to facts and fearless fidelity to the cause of temperance all men must respect, was misinformed by parties who presumed to advise on matters in respect to which they had no definite knowledge.
I do not claim that the subject is taught with great thoroughness in some of the schools, but I presume it is up to the average teaching in other studies in those schools. The limitations are in the qualifications of the teachers, and will be removed with their improvement.

NORTH DATKOTA.

Statistics.-In 1889, out of 30,024 pupils, 18,523 studied physiology and hygiene. In 1890°, out of 30,821 pupils, 21,301 studied physiology and hygiene.

OHIO.

Statistics.-In 1889: Number of pupils, 7i7,162; number studying physiology, 155,621.

In 1890 : Number of pupils, 797,439 ; number studying physiology, 236,901.

PENNSYLVANIA.

Such knowledge is of rast account.-State Superintendent E. E. Higbee (1885) : In regard to the recent law requiring physiology and hygiene to be taught as part of the necessary curriculum of our public schools, a word here may not be out of place. Of course, where children can not read intelligently or with ease, it would be a monstrous perversion of ordinary common sense to expect them to use a text-book. Their instruction, to be such and not a farce, must be oral; and such instruction must and ought to be given, properly adapted to the age and attainment of the pupil. In higher grades, text-books in full conformity with the meaning and purpose of the law should be used; and thus all pupils, whether of low or high grades, will receive instruction. Only enmity to the law can warrant such an interpretation as will defeat its own purpose, which plainly is, that all our children shall gain as much knowledge of physiology and hygiene as our common schools, with their limited sphere, can give, accompanied at each step with a proper practical application of this knowledge in reference especially to the effects of alcohol and narcotics on the human system. Such knowledge is in itself of vast account; and such special application of it, in way of warning, properly belongs to the moral discipline which should characterize all teaching; whether required by definite statute or not. The lawabiding habits of teachers and directors give abundant assurance that this law will be fully obeyed. We are willing that time shall demonstrate how far it may serve to remove one of the greatest curses that pollute social life. The fathers and mothers of this Commonwealth will be more than thankful for anything which may aid their children in keeping away from those temptations which they themselves so much fear, and from which so many of them have been made miserable and broken hearted.

In harmony with public sentiment-The right to impart such-instruction unquestion-able.-State Superintendent E. E.Higbee (1886): The practical operation of the act of assembly requiring the subject of physiology and hygiene, with special reference to the effects of alcohol and narcotics upon the human system, to be introduced in the schools as a legal branch of study, stiengthens and confirms our belief in the wisdom of the law. The act was approved April 2, 1885, and went into effect at the beginning of the school year, in June following.

The commendable spirit in which the measure was so generally acquiesced in by the patrons of the schools, its prompt enforcement by directors, the earnest coöperation of superintendents, and the wiliingness of the teachers to comply with its provisions by a ready performance of the duties required of them, ofter an unanswerable argumentin proof of the fact that such instruction given to the children in the public schools is in favor with the people, and in harmony with a strong and growing public sentiment throughout the Commonwealth.

There have been shortcomings in some instances and partial failures in others, but there are few indeed in comparison, and occasioned more, we beliere, by a misunderstanding of the law's requirements than by a disposition to evade its provisions. All things fairly considered, the friends of the measure have cause for congratulation, and even the most sanguine and hopeful of its advocates can find much to commend in the work of the first year.

The good results that will come from judicious and timely instruction in the subject will in the near future demonstrate the practicability of temperance teaching in the public schools, and will fully justify the policy of the course pursued.

The principles underlying moral instruction in the schools as a proper preparation for grood citizenship, as well as to afford protection and safety to the individual, are pressing themselves more forcibly to-day than ever before upon the
earnest attention of our teachers. The causes, only too clearly discernible, that make such teaching an absolute necessity need not here be referred to.

The right to impart such instruction can not be questioned with any degree of sincerity or consistency, and when made an imperative and lawful requirement by the State, it becomes the duty of all concerned to render willing obedience thereto.

Gaining favor with teachers and pupils.-State Superintendent E. E. Higbee (1888): Scarcely any difficulties have arisen in reference to the comparatively new study of physiology and hygiene made obligatory by law. The teachers at the outset, in preparing themselves for this work, have rery naturally given themselves to the study as a science, and no doubt in many instances have made this so prominent in their teaching as to overshadow the moral side in not fully discussing the vast evils of intemperance to both body and soul. In our judgment, however, there has been little if any conscious attempt to evade, in any way, the explicit requirements of the law, and the science, together with its hygienic applications, is gaining favor with teachers and pupils.
There should be no indifference to the serious moral import involved in such instruction. To aroid the evils of intemperance requires, of course, the firm exercise of will, which in most cases, when habits are already formed, needs the power of Divine grace to secure a lasting victory; yet it must be plain that a clear knowledge of the evils, as affecting body and soul, especially with the young, can but be of great service in helping them to shun the temptation when in subsequent years the tempter meets them with his specious pleas. Prudent treatment of any rice is not only therapeutic in the way of applying remedies for the disease already in existence, but prophylactic as well in guarding against its threatened attack.

General compliance with the law.-State Superintendent D. J. Waller, jr: (1890): The reports made to this office indicate a very general compliance with the spirit as well as with the letter of the law. The penalty for failure to comply with its provisions has proven to be sufficient to secure obedience on the part of those not specially interested in the subject.

Aninstance of harmful legislation-Resultsoppositeto whatintended:-Superintendent C. F. Foster, of Chester, Delaware Co.,(1891): With all respect for the philantrophic and Christian women who have secured the presentscientific temperance law, we can only characterize it, after a thorough test of six years in a strictobservance of all its details, as an instance of harmful legislation. We have followed its requirements to the letter. We have used only the authorized text-books.

Every grade, from first primary to high school, is taught physiology and hygiene, "including special reference to the effect of alcoholic drinks, stimulants, and narcotics upon the human system." The result upon the minds of the pupils, and too often upon their personal habits, is the opposite of what was intended. The way in which this effect is produced, for aught we know, may be that illustrated in the oft-repeated lines of Pope:

> "Vice is a monster of so frightful mien, As, to be hated, needs but to be seen; Yet seen too oft, familiar with her face, We first endure, then pity, then embrace."

It is certain that a repetition of any precept, whether in abstract or concrete form, during twelve or thirteen years of a school course, must produce weariness and erentually disgust in the pupil's mind, and that the natural perversity of the human heart will, in not a few cases, assist to produce a revulsion in sentiment and practice. I am ready to affirm that in this community the evils which this legislation aims to check are constantly on the increase in spite of the most thorough temperance instruction in the schools, and that the, bestresults in this line have been reached by a few teachers, who, in a kindly, yet conservative way, hare gained the confidence of their pupils, and by the voluntary organization of children in "bands" or "societies," have kept them interested in the various features of moral and social reform. There can be no objection to the requirement by which scientific temperance instruction is made a part of the publicschool course within certain limits, but when it becomes like the image set up in the plain of Dura, claiming universal homage, it is well to ask "cui bono?"

SOUTH DAKOTA.

Not received the attention which it shoull.-State Superintendant G. L. Pinkham (1890): The impetus given this matter by national legislation, while we were yet under territorial government, has been preserred by the passage, at the first
session of the State legislature, of a bill, with stringent provisions, for teaching in our schools the facts concerning the nature and effects of alcoholic drinks and narcotics upon the human system. I am not able to state how universally in our schools the provisions of this law are complied with, but I aprehend that the matter has not received in all places the thorough attention from school officers and teachers which it should. Its provisions are not too strict when we consider the importance of the subject.

After June 1, 1891, teachers are required by this law to be examined with special reference to their knowledge of the nature and effects of alcoholic drinks and narcotics. As the questions heretofore prepared by the state department have quite thoroughly covered this ground, the teachers and schools are presumably in full harmony with the spirit of this law, and the only change will be that of the text-books that do not comply with the provisions of the statute.

Statistics 1890.-Number of pupils, 66,250 ; number studying physiology and hygiene, 26,732.

VERMONT.

Let the children be taught to form good habits. - State Superintendent Justus Dartt (1886): The startling fact that so large a number of school boys are forming the habit of using tobacco by smoking cigarettes, thus retarding physical development, disordering the nervous system, and weakening their mental power, is a sufficient incentive to all the effort that has been or can be put forth to forearm the children against this evil. Above all things else, let the children be taught to form good habits.

V.-AN INQUIRY INTO THE RESULTS OF TEMPERANCE TEACHING IN MASSACHUSETTS.

REPORT OF GEORGE H. MARTIN, AGENT OF THE STATE BOARD OF EDUCATION.

[The following report of Mr. Martin was taken from the Massachusetts School Report of 1890-91, pp. 312-326.]

Under the law of 1885, ${ }^{1}$ which requires physiology and hygiene, with special reference to the effects of stimulants and narcotics, to be taught as a regular branch to all pupils in all schools, there is great diversity of practice. I have made it a subject of special inquiry, and have gathered a large amount of material in the form of written papers. These papers have been furnished by the most advanced classes in the grammar schools. The pupils have been asked to write for me what they could recall concerning the effects of alcohol and tobacco on the human body. They were not required to put their names to the papers, so that they wrote without constraint, usually taking all the time they wanted. To judge of the work most intelligently, one should read all the papers; but in this report I can use only enough to illustrate the classes of work, or special features of the instruction. Read with the allowance which all written papers need, they are useful. They are printed as written.
The cities and towns within my inspection may be roughly grouped in four classes: (1) those in which oral instruction is given during three or four years of school, with the use of text-books during the remainder of the course, from four to six years; (2) those using text-books only in the last one or two years, confining all earlier work to oral instruction; (3) those using no text-books, but having regular oral instruction throughout; (4) those having only oral instruction, of an occasional, desultory sort. The first three classes might each be subdivided into those having regular oral and written examinations, and those having none. For the use of the teachers in giving oral instruction one or more books are usually furnished, from which the teachers gather material for talks, or from which they read.

Of the work of the schools in the fourth class, it is perhaps enough to say that it does not meet the requirements of the law. Physiology is to be taught as

[^16]a "regular branch." This can mean nothing less than it shall have a permanent place in the programme of school exercises. How frequently the periods given to it shall recur; the law does not attempt to prescribe; but that they should recur at stated intervals, and frequent enough for teachers and pupils to consider them essential parts of the school exercises, there can be no doubt.

The word occasional is so elastic that the results attained in schools of this class may vary widely. In some schools few facts have secured a lodgment in the pupils' memory, though there is a decided impression of the harmful character of alcohol; for example

EFFECTS OF ALCOHOL AND TOBACCO.
The effects of alcohol is bad because it injures your health and body and in a little while it will kill you. When you are cold and take alcohol in liquor it will warm you up for a while and in case of sickness the doctors will give it to you in liquor.

the effects of Alcohol.

I have heard that the effects of alcohol on the human body is a ruination to the person who uses it It burns the person in side and doen't him any good but does him harm. They say it is good for medicine but I do not know. I think we could get along with out it. If it is good they abuse it by puting it into intoxicating drinks which is very injuriou to the human body.

TOBACCO.
If the persons smoke it will make cancers come on their lips and will make the cancer in the stomach. Tobacco often leads to drinking. Tobacco is sometimes made in filthy places and is not good for persons to use.

In other schools of this class the best pupils are are able to write as intelligently as when more formal work is done:

Alcohol is a stimulant when taken in small quantities, in larger quantities it is a narcotic. Its immediate effect is exhilerating but after working through the system it stupefies the brain and makes the body unfit for use. It destroys many of the small glands of the stomach and alimentary canal and makes those that. are left hard and ropy. It makes ulcers on the small intestines. It destroys pepsin which is the fluid that digests the food taken into the stomach, It makes the blood flow much faster than is necessary and consequently wears out the heart much quicker than it naturally would, It makes a man a keast, It in time takes the place of food, and makes the stomach a good pouch for holding alcohol, but useless to digest food. The poison in tobacco is called nicotine, a drop of this fluid will instantly kill a dog. The general effect of tobacco is the same as that of alcohol although it is not so violent, it produces ulcers in the throat.

THE EFFECTS OF ALCOHOL AND TOBACCO ON THE HUMAN BODY.
When a boy begins to smoke young his growth is stunted, his complexion is sallow, his teeth become yellow, and his breath bad. It also works on the brain. It does not effect one right off but by degrees The man who drinks a little at a time does not think he is doing any harm to his body, but he is, His stomach is burning by degrees and finally when he becomes a drunkard he has no stomach at all, (so to speak). It works on his nerves and his muscles, and he finally looses all his power.

The weaker ones have little to say, but contrive to express their feelings:

alcohol and tobacco.

The effect of alcohol on the human system is to produce raw sores in the intestine. In time it produces a disease of the brain known as delirium tremens. A man who drinks intoxicating liquors is slowly poisoning himself and if he keeps on he will die. Tobacco contains a deadly poison called nicotine. When the young use it, it dwarfs the body more or less.

ALCOHOL AND TOBACCO.

Alcohol makes any one nervous and irritable. If any one begins to drink, it is very hard to leave off. It irritates the stomach and heart.

In schools where the instruction is all oral, but regular, the pupils write more fluently than in schools of the fourth class. Their knowledge of the subject is apt to be more comprehensive, but it is still general. The effort to be specific is not often successful:

THE EFFECT OF ALCOHOL ON THE HUMAN SFSTEM,

Alcohol is one of the worst enemies of mankind, yet many people, falling into the habit of drinking this disastrous spirit, could not live without it. If they could see the picture of their system before and after using the alcohol they would not care to drink another drop. When it passes down the throat it burns off the skin leaving it bare and burning. It causes the heart to beat many unnecessary times and after the first dose the heart is in danger of giving out so that it needs something to keep it up and therefore the person to whom the heart belonss has to take drink after drink to keep his heart going. This unnecessary work soon wears the heart out. The liver is also effected by alcohol. Before the use of it, the liver is smooth and velvety. After long use of it, the liver is turned to a different color, and there are large pimples growing out on it. These look like nails and the liver is called "Hob nail liver."

THE EFFECT OF ALCHOHOL ON THE SYSTEM.

Alchohol poisons the human system. After a man has been drinking alchohol his brain becomes cloudy and he is unfit for work. Many people think that alchoholic drinks help men to do their work better, but after they get used to drinking alchoholic drinks, it is hard for them to work without it, and they do not do their work so well.

Statements like the following abound in the average papers: "Makes the mind dizzy;:" "The skin on the organs cracks out:" "Before alcohol is put into the cody, the lirer is soft and flat, but after a person drinks it for two or three years, that organ becomes hard and full of holes like a sponge, and instead of being flat, it is round;" "Every drop that is taken rushes to two little cups in the brain." The more illiterate pupils here, as in the other schools, are firmly impressed that alcohol is an evil.

Alcohol, to those who drink it makes great blotches on your face, and makes it red. If you drink much of it, it will make you drunk. Its maises your liver like leather, and is called the hob-nailed liver. It affects your whole body and makes you die sooner. It affects your heart the most.

THE EFEECT OF ALCHOALL ON THE HEMAN SYSTOM.
When aman gets adrinking rum, which contains alchoall, it goes to his brain, and makes him unsenseable. Alchoall will quicken the pults, and the hart will beat faster than usual Alchoall is poision, and will poision the blood.

In some schools the moral and social side of the drink question seems to be made more prominent in the oral instruction than the physiological side. Some of the best papers. from a literary standpoint, are from these schools. Such are the following, which awe scarcely better than the arerage of the whole class:

THE LSE OF ALCOHOL.
Alcohol is a spirit of wine. It is very injurious to the system, and sometimes causes paralysis of the nerves, which also leads to blindness. The use of alcohol by grown up people, sets a bad example to the joung, who surely can not help from seeing intoxicated men and sometimes women staggering along the street. It seems as if young people might resist the temptation of what they know will ke an injury to them, when they see the effects; poverty, cruelty, murder, suicide and many others.
A man who comes home under the influence of alcohol, with his mind dazed, is often cruel to his family, and what might be a happy home is an unhappy one, on account of the father:s habit of drink.

In many homes wine is on the table daily, and the children see it drank before them, and some are even allowed to taste it.
I think the whole country suffers from it, and it should be put down as it has in some places. Attempts have been made in Boston, but the prohibitionists hare not succeeded. Some oi the business men say it will hurt business, but I should like to have it triea.

THE USE OF ALCOHOL.
Alcohol is a kind of azleat spirit. It will paralyze the nerres when taken as a drink. Alcohol is generally used to put in drinks, such as rum, ale, and lager.
When once a man begins to drink things in which alcohol is put, it is very hard for him to stop. A man who drinks, almost invariably, is robbing his family of the money which they aught to have and which he is spending for his crarings of liquor.
It is one of the great topics of the day whether or not drinks, which contain alcohol shall be sold, made or imported into this country.
Young men who begin to drink do it because they think it a smart thing They do not look forward to what will become of them when they grow up to be men. They perhaps do not think or know that nations have been ruined by this curee.
Every day this curse is getting a stronger hold on our nation. Every day it is growing larger and larger. Shall we allow this curse to ruin our nation. No ! Somehow it must be stopped but how.

TEE USE OF ALCOHOL.
The pure alcohol is a liquid of about the color of water. The Bible says "It biteth like a serpent and stingeth like an adder."
It is mixed with wine and sold to people as a beverage. To such people the ordinary food is not strong enough to satisfy their appetites. They sometimes eat garlic with their food.
A liquor saloon is a very poor thing to have in a community. It is generally brilliantly lighted in the evening to attract the young men. They will stay away from home for the sake of being in this gay company. They may loose their position in business if found intoxicated. It is the ruin of a man to take liquor as a beverage.
Drunkenness leads to many evils. When intoxicated murder may be committed, rash acts, stealing, and sometimes suicide.
A large part of the money spent in the Union is for liquor, wines, and tobacco. Good could be done in erery way with the money spent for these purposes.

In the effort to have the pupils receive their information in more definite form and retain it, some teachers arrange the leading physiological facts in form and order and require the pupils to memorize the statements. In classes where this practice obtains, the papers are essentially alike:

Alchohol is a drug of very great power It weakens the nervous system and often leads to paralysis. It causes a disease of the liver, stomach and kidneys, and often leads to dyspepsia, which is caused by indigestion. It lessens the mental powers, so, that a child using would not be able to learn or think as quick as he otherwise would. It often dwarfs the bodje.
It weakens the whole nervous system and often causes paralysis, epilepsy or insanity. When used in small quantities it is a stimulant, when used in large quantities it is a narcotic.
The higher faculties are first paralyzed learing the victim under his lower and meaner nature.
Alchohol weakens the muscles of the heart causing it to beat more rapidly, distending the blood-ressels, and overcharging them with blood.
Alcohol, irritates, weakens, and inflames the stomach, liver, and kidneys and often causes fatal diseases in these organs.
Alcohol weakens the muscle of the heart causing the blood to flow too rapidly and thus distending the blood-vessels. By use of alcohol the brain is first excited, then paralyzed. The higher faculties are first paralyzed learing the victim under control of his lower and meaner nature. It weakens and exhausts the nerrous system and sometimes causes paralysis, epilepsy and insanity.

EFFECTS OF TOBACCO ON THE SYSTEM.

Tobacco is very injurious to the young and no child which uses it is erer a good scholar. It dwarfs the body and lessens the mental power when first used by the young it makes them feel sick, stupid and drowsy, and gives them a yellowish or sallow look. It hurts the action of the heart, persons using it are hardly ever if ever healthy. Tobacco is a drug of very great power, a drop oil extracted from it placed on a dogs tongue will kill him nearly as quick as sprucid asic.

EVIL EFFECTS OF TOBACCO.

Tobacco is a drug of very great power a drop of oil exacted from it placed on a dog's tongue would kill him nearly as prusic asid.
Tobacco when used by young is always injurious. It oftens duarfs the body and always lessens the mental powers. No child usuing it is ever as good a scholar as he otherwise would be.
Tobacco also causes diseases of mouth and throat.
Passing to consider the schools where text-books are used for a longer or shorter time, the character of the papers presented seems to depend more on the general character of the school and the ability of the pupil than on the number of years spent in the study of alcohol.
If we select a number of schools in which the subject is studied from text-books one, two, three, or more years, we shall find the best papers presented will cover essentially the same facts in all the schools. On the other hand, the arerage papers, after one year.s use of the book, may be better than other schools will furnish after five or six years' study. For example:
A.-Text-book one year ; two lessons a week.

EFFECTS OF ALCOHOL.

Alcohol at first acts as a stimulant, but when the stimulant has spentits force it leaves the body in a very weak condition It paralyzes the nervecentres, and causes a fatty deposit around the heart and enlargement of the liver. When alcohol is first taken into the system it quickens the action of the heart and afterwards leaves it very weak so that it cannot perform its work properly Continued use of alcohol produces delirium tremens which sometimes ends in death. The appetite for alcohol may be inherited In persons who use it the nerves are so weak that they cannot resist the temptation to drink.
B.-Text-book one year; four lessons a week.

effect of alcohol on the human system.

When a person first tastes any alcoholic liquor, as a rule, they do not like it ; but they often try it again just to see if they don't like it. Gradually they learn to like it. Some persons drink to such excess that their whole system is saturated with liquor and it would kill them to go without.

Alcohol weakens the muscles and makes them flabby. When alcohol is first taken into the system it exhilarates the person and makes them lively; but it soon produces a stupor. Alcohol weakens the heart, so that it is not able to perform its work thoroughly. It eats out the coats of the stomach, and of course the stomach is not able to perform its work of digesting the food thoroughly, thus causing indigestion. Nothing will quench the thirst of a man who drinks alcohol but alcohol.
C.-Text-book two years; two or three lessons a week, with written examinations.

EEFECT OF ALCOHOL ON THE HUMAN SYSTEM.

Alcohol drys the blood, weakens the mind, deadens the nerves, causes sickness, sores, cancers and in every way weakens and poisons the body. It has a great craving for water and therefore it takes the most necessary thing from our body. It weakens the blood-vessels so much that the blood, which flows with much force when alcohol has been taken into it, burst them, this causing death. The blood often stagnates in the blood-vessels near the skin, causing it to have a red appearance.

It weakens the mind, causing the victim to stagger. It also puts one in such a way as to murder, steal and to even worse things. The man does know he is doing anything because the alcohol has weakened his mind so much that he does not think.
The liver, stomach; lungs, and intestines are weakened and poisoned more or less.
The teeth have a soiled appearance, and the gums are spungy. The breath also has a disagreeable odor.
The habit of drinking alcoholic drinks often leads to insanity.
D.-Text-book five years; two lessons a week during last two years. PHYSIOLOGY.

Alcohol in any form, is very injurious to the body. Young children should never use it, because it checks their groath. It weakens the brain, and makes them seem very stupid at times.
People who begin to use it, and think it will do them no harm, find out in after years that it has power over them, and they cannot control their appetite. It also makes them have an uncontrolable temper.
Alcohol hurts the stomach very much. Without realy giving strength, they give a feeling of strength and confidence. Their sensibilities become lively Alcohol often causes paralysis and insanity, and often enlarges the small bloodvessels. People who use alcohol have very impure blood.
E.-Text-book three years; two lessons a week; written examinations.

EFFECTS OF ALCOHOL ON THE SYSTEM.

Alcohol is the fermentation of fruits and grains. The different liquors made from it are cider, beer, wine, whisky, brandy, and gin. Alcohol is a clear colorless fluid and is lighter than water. Alcohol could not be a food for the body because it does not nourish the body. The alcohol makes the person dry and want to drink a good deal after using it. It also takes water from other parts of the body where it is needed. It turns the blood to water, and it does not satisfy the hunger because hunger needs solid food to satisfy that, and it does not help to digest the food. It does not keep the body warm as some persons think it does It flushes the face, deadens the body and makes the face red and bloated. Alcohol poisons the stomach and bowels. When the person first commences to use this for a drink it makes him sick to his stomach, and the food does not agree with them. And after awhile the stomach gets diseased and flamed and the person dies. Alcohol might be looked upon as a medicine and never should be used for any other use. It is a real poison and if persons regarded it so the better their health would be. It is a cause of thousands of peoples death and nervous diseases. And children inherit bad habits, and are likely to be weak minded.
F.-Text-book three years; weekly lessons.

THE EFFECT OF ALCOHOL ON THE HUMAN SYSTEM.
When alcohol is first taken, it goes first to the stomach, where it does its first harm. It begins to absorb the gastric juice, so that there will not be enough to mix the food. Then it is carried into the blood, which it poisens. Then it does a great harm in the brain. It destroys the nerves centered there, and so the person that takes the poisen, does not feel the cold or heat as he ought. The alcohol in the blood, makes the flesh look bloated and discolored. Sometimes persons grow crazy from the effect of strong drink. So, we see what a great harm it does.
G.-Text-book five years; semiannual written examinations.

THE EFFECIS OF ALCOHOL ON THE HUMAN BODY.
Alcohol is a stimulant and narotic. It causes disease of stomach and congests the blood-vessels. It impairs the appetite for food It delays and impairs digestion. It thins or coagulates the blood It collects in the brain and causes death. It affects men of all temperments It causes delirium-tremens if taken into the system frequently

Alcohol makes you lose your self-control. It draws water from the nerves and injures them It quickens the beating of the heart and wears it out. It hastens circulation It leads to crime of all sorts. It injures the thought-producing power. It causes paralysis. It causes insanity.
H.-Text-book five or six years: two or three lessons a we

EFFECTS OF ALCOHOL UPON THE BODY.

Alcohol is a poison, which has great effect upon the body. It injures the brain so it cannot think properly, it burns the stomach, so that it cannot digest the food, it makes the heart beat faster, and if it is drank continually it will finally kill a person, it also poisons the blood.
I.-Text-book six years; weekly lessons; class marking; term examinations.

EFFECT OF ALCOHOL ON THE HUMAN SYSTEM.
Alcohol is very injurious to the human system. It effects every part of it. It stops the growth of the bones. It makes unhealthy fat on the muscles so that they cannot work with much force and are not so elastic. It enters the stomach and does great harm there. It separates the pepsin from the gastric juice and makes sores all over the stomach. It gets into the blood and makes it impure, and also injures the blood vessels. In the lungs it injures the thin membrane or lining to the them and makes the breath smell bad. The heart is a muscle so that it injures that in much the same way as other muscles and also makes it work harder.

The nerves and brain are also injured: Alcohol deadens the nerves and often people will do things when intoxicated that they would think very wrong when sober. Alcohol also causes consumption instead of curing it as some people think. If children have drinking parent they often weak and sometimes idiots. Alcohol is used by some people because they think that it will warm them but it does not only for a little while then they are colder than before. It has been found that people can work better without alcohol than with it.

THE EFFECT OF ALCOHOL.

(a) The effect of alcohol is that of a narcotic ; it destroys character, destroys the vital functions of the body \& has the effect of a slow poison.
(b) The action of the heart is increased \& "fatty heart"" is often the result.
(c) The lungs are affected by having more work \& the influence of bad surroundings.
(d) The bones are affected by having their growth stunted by poor blood \& the injuring of the pieroistum.
(e) The blood as the life fluid is affected by a loss of red corpuscles, the minute bodies which carry oxygen, \& from this loss comes a disease known as Aneamia; Of course there is a large increase of fat which is entirely useless.
(f) The effect upon the brain in slight does; as a glass or two at a fashionable ball, is to increase or stimulate the action of the cerebrum. In larger doses the nerves are deadened or the person is hateful \& finally sleeps it off. In a regular spree Delirum Tremins is often the result.
(g) All the senses are deadened.
(h) The pepsin in the gastric juice is separated from it, \& sinks to the bottom of the stomach, stopping digestion tiil more can be thrown in \& digestion completed. The lining is also irrated to the extent of cancers \& sores.
(i) The liver becomes of an immense size, swollen, or "hob-nailed." Also a bad secretion of bile.
(j) An extra growth of the connective tissue is caused in the muscles.

The last two papers are from a school where the instruction has been most thorough and systematic, and continued through the longest period; probably in no town in the State has more time been given to the subject.

These are specimens of the best papers; from them the others shade down to almost zero; for example, in schools where a text-book has beenstudied for five years many of the pupils can write but two or three lines:

ALCOHOL AND TOBACCO ON THE SYSTEM.
Alcohol has a bad effect on the system. It makes the head feel thick and heary and also stupefies.

ALCOHOL.
Alcohol is a stimulant and narcotic, it interfers with digestion, causes congestion of the blood ressels, and if you once take it you will want it all the time. Food is delayed by Alcohol.

EFFECTS OF ALCOYOL.
Alcohol wȩakens the muscles. Alcohol affects the nerves. Alcohol affects the brain.

TOBACCO.
Tobacco injures the spinal cord. Tobaceo injures the brain. Tobacco injures the blood.

In many of the country schools the amount of information retained and ready for use is very small. The poorer scholars, whose deficiency is marked by faulty English, are often stronger in their expressions than the more cultivated pupils:

ALCORHALL.

All liquor contanes alcharhall. It poisions the syliava and the gastrit juice when it mixes withe the food itstops the works and the food layes in the stomacke, which causes it to ache. When the juice mixes with the blood it poisons it. Next the man is sick with blood poison and dies and the people wonder what made him have that.

THE EFFECTS OF ALCOHOL.
Alcohol is another very injurious thing to the body. It is very injurious to the heart especially and there are a great many men that die from the use of alcohol sooner than those that don't. Some men go crazy from the use of alcohol or they are called delireum tremans, and a great many men the have used alcohol have become ministers and their advice to boys or anybody not to use alcoholic drink's.

Alcohol is very bad for the stomach and is good for the head ack and it is a strong smell and It will stop any one from fainting.

THE EFEECT OF ALCOKOL.
It will gradually eat away the flesh. If any one drinks it, it will pickel,the inside of the body.

THE EFFECT OF TOBACCO ON THE HUMAN SISTEM.
The effect of tobacco on the sistem it deadens the brain and the user it is said to have a sore heart which in the gets clogded and they die quicker than if they did not use it. it softens the brain.

In schools where the text-book is begun early, I have sometimes called for papers from the sixth grade, a class which has used books for two or three years. Here the amount of information retained is usually scanty, and in crude form. The following are the best papers from school I, sixth grade:

EFFECTS OF ALCOHOL.

Alcohol weakens the body and makes the heart beat too fast, it also makes the blood-ressels enlarge and weakens the walls of the blood-vessels.

Alcohol makes a man hare a red face because when the blood-vessels enlarge they show out.

When alcohol is taken into the system it makes poor circulation. The brain wants good blood but when alcohol is taken it does not receive it. When alcohol is taken the brain cannot send the messages so well. Livinstone found that in Africa that the men could do better without it and could endure more heat. And in the Artic Regions the explorers can do better without it because when they take alcohol they do not know so mush and can do great deal better with
out. A man said once that he would not have any alcohol used in his factory because they did not work so well, and if any did use it he would discharge them.

Alcohol also makes the muscles weak and fat so that they cannot work so well.
If a person once takes some alcohol he will keep wanting more because his appetite for it is so strong.

ALCOHOL ON the body.
When a man drinks the first glass he cannot stop but wants more It burns his stomach and fills the blood vessels so full with the watery substance that they cannot bear the strain so sometimes an artery breaks and death occurs instantly.

About one-fifth of all the water that is in the body is in the head around the soft fibers of the brain and the alcohol mixes with it and takes it away from where it is needed. It deadens his nerves so that the messages do not obey and he does not know what he is doing. Many people are in prison for murder or some other wicked thing because they are under the influence of licquer.

A story is told of a great murderer who was about to kill a baby when the little creature looked up in his face and smiled so he did not like to kill it, so he took a glass of brandy and he did not care.

Insurance men will not insure the lives of licquer sellers because they are most always beer drinkers.
Some times when a person is dying the doctor gives him aicohol to make his heart keat faster till he can give him some other medicine and thus somztimes save his life.

From school H, sixth grade, the following are the best:
The effects that alcohol has on the body is that it poison the blood, and hardens the albuem of the brain, just as it hardens the egg as if it was boiled, and it does harden the brain, so that we can not think as we could if we did not drink the alcohol, and it hurts the heart because it makes the heart beat to fast because heart wants to drive it out quick, and this wears the heart out, and so we know alcohol does harm to the body.
Alcohol poisons the blood and hurts the brain so it is not able to think well, It poisons the heart and lungs it makes people stuid and they don't don't walk straight. And it makes them have diseases
Sometimes it makes the heart stop beating and then they die. Alcohol makes them so stuid that they do not know what they are doing part of the time.

Alcohol makes bad blood and bad blood makes poor bones. Alcohol makes them unhealthy and so shortens their lifes. When people first begin to drink alcohol it seems bitter, but they keep on and so get used to it.

I have culled the following statements of the effects of alcohol on the stomach and brain from a large number of papers. Most of them are from the better class of papers, as the poorer scholars make few specific statements: "It separates the pepsin from the gastric juice, and makes sores all over the stomach;" "Destroys the fine membrane that lines it;" "Inflames the lining of the stomach ;" Inflames the sides, and changes the pinkish lining to a bright red;" "By taking the gastric juice from the stomach, so the stomach has no juice to aid in digesting the food;" "Inflames the membrane, and causes sores to come inside;" "It uses up all the tissues lining around the stomach, and it uses all the saliva in the body so that we cannot digest the food;" "Will make the lining of the stomach fat;" "The pepsin in the gastric juice is separated from it, and sinks to the bottom of the stomach;" "Takes the gastric juice of the lining and turns the lining into fat;" "Irritates the lining, and takes the water from the gastric juice;" "The alcohol in the system lies at the bottom of it until the glands can pour in enough gastric juice to dissolve the alcohol", "Burns the stomach so as to raise little blisters on the inside of it;" "Eats the lining;" "Burns off the coating;" "Makes cancers come in the system;" "Makes the lining of the stomach tough;" "His stomach becomes black, and covered with cancers. The moderate drinker's stomach is not quite so black;" "Hardens the mucuous membrane, so that the digestive juice can not get through ;" "Makes the gastric juice flow fast, until it becomes so weak it can not perform its part;" "Causes the stomach to be dry and hard;""It draws the pores of the stomach
so tight that the first coating on the stomach is so hard that it can not perspire;" "The stomach becomes coated with a sort of crust, and disease sets in ;" "Hinders the action, and makes it, look like raw beef;" "Makes great sores in the stomach, because alcohol burns the stomach;" "Gastric juice becomes thick and ropy;" "The blood oozes out from the flesh into the stomach;"" "Eats the stomach until, after a time, a man has no stomach at all, so to speak;" "It hurts the brain by injuring the nerves, and often the nerves break, and people have apoplexy;" "It causes more blood to go to the brain ;" "When alcohol is taken, the brain can not send the messages so well;" "About one-fifth of all the water in the body is in the head around the soft fibers of the brain, and the alcohol mixes with it and takes it away from where it is needed;" "About one-fifth of the blood is in the brain, and around the soft gray matter, and among the white fibers are tiny blood vessels, and the blood vessels are injured from the drinking of alcohol, and then the blood sometimes becomes stagnant, and headaches of ten follow after a glass of liquor."

I have endearored to show as clearly as possible in a limited space the present condition of the physiological work of the schools. To show the work completely would necessitate printing all the papers. After a careful study of these papers, I am lead to the following conclusions. 1. The phrase, "scientific temperance instruction," sometimes applied to this work, is a misnomer. There is, and in the nature of things can be, no such instruction. The two essential elements of scientific study-observation and inference-are necessarily wanting; neither the pupil nor the teacher can have first-hand information; 2. That the outcome in accurate knowledge, resulting from much of the work done, is meager and out of proportion to the time spent uponit; 3. That many false impressions are left in the minds of the students ; 4. That physiological details are not suited to young children; 5. That, however defective the instruction may be, the sentiment of the schools is sound-the conviction that alcohol and tobacco are bad things to use seems universal : 6. That the strength of this sentiment does not depend upon the amount of information acquired; 7. That, where exaggerated notions of the effects of stimulants have been acquired, there is danger of a reaction of sentiment in the light of after knowledge. From these conclusions I renture the following suggestions: 1. That committees and superintendents give more careful attention to work in this department, prescribing definitely its limits, and requiring the prescribed work to be done as well as work in other subjects, using the same means for juadging of its progress and results; 2. That teachers who are called upon to give oral instruction prepare themselres with great care for the exercise, and see that their statements are true, and by frequent tests, oral and written, ascertain that their teaching is intelligently comprehended by all the pupils; 3. That, when no text-book is used in any grade, the teachers prepare for the highest classes a summary of the effects of stimulants and narcotics upon the different systems of the body, aiming at clearness of statement; and avoiding exaggeration; 4. That the use of text-books be limited to the older pupils; 5. That so much of explanation accompany the use of the book as may be necessary to guard against error and insure exact knowledge: 6. That, as far as possible, technicalities be avoided; 7. That the pupils hare frequent opportunities to express their knowledge orally and in writing; 8. That throughout the course the moral and social effects of the use of intoxicants be made prominent, and abstinence be inculcated from higher ends than such as concern only the body.

Respectfully submitted.
Geo. H. Martin.

VI.-OBJECTIONS TO SCIENTIFIC TEMPERANCE INSTRUCTION STATED.

SCIENCE IN HARNESS.

[From the Popular Science Monthly, November, 18s\%.]
No journal has upheld more steadily than the Popular Science Monthly the principle that, as far as they are established, the truths of science shall be applied to useful purposes and through popular education be made as widely available as possible for the general guidance of life. And jet we can not look with favor upon what many persons doubtless regard as a very signal and happy example of the utilization of scientific conclusions. We mean the authoritative
and dogmatic teaching as to the effects of alcohol now provided for by the school laws of many States. It is only right, therefore, that we should assign our reasons for holding that this is not a case of the legitimate application of scientific truths to practical life.

In the first place, it is an abuse of power on the part of the majority. In the "temperance" controversy as a distinct social issue we have no wish to interfere; but we can notignore the fact that there is such a controversy, nor can we consent to believe, with the advocates of prohibitory legislation, that their opponents are necessarily persons devoid of all high motives and hardly to be distinguished from the criminal population. But if a minority in the State is to be respected so long as it is law-abiding, its opinions are also to be respected; and to seize hold of the school machinery of the State to inculcate opinions that are not accepted by the minority, and that tend to set the minority in a very unfavorable light, is not right nor just. If every triumphant party were to seize the public schools for the inculcation of doctrines favorable to its own party interests, there would soon be an end of our public-school system. It would al ways be easy to invoke the name of science. If it were desired to rear a race of protectionists, it would only be necessary to claim that you were teaching the truths of political economy. The proper text-books would be prepared, and teachers, on pain of dismissal, would have to enunciate the doctrines of Henry C. Carey and Horace Greeley; and so in the days of slavery, the science of ethnology might have been invoked either on the side of abolition or in defense of the slave system, according to the leaning of the majority. At this momentwe have the president of a New England college recommending the majority in the several States to use their power to enforce the teaching of certain specific views of New Testament history which he is pleased to declare all competent critics have accepted.
"But," say the advocates of the teaching to which we refer, "we only wish to inculcate the real results of scientific research in regard to alcohol." To which we rejoin that, in a community like this, it is too soon to inculcate the truth, supposing you have it, if the issue is still practically open, and if large numbers of your fellow-citizens are not persuaded that what you call the truth is the truth. Minorities have their rights even when they are in the wrong, and to use a school system which the minority support to teach opinions which the latter do not believe to be true is unfair.
But there is another view of the matter. Are the advocates of such instruction prepared to have it communicated in a thoroughly nonpartisan spirit? Are they:prepared to have the whole truth taught, or do they want only that part of the truth which is favorable to the specific end they have in view? Are they prepared, for example, to give any fair representation to the views of those who consider that alcohol has its important uses, dietetic and social? A few years ago the Contemporary Review opened its columns to a discussion of the alcohol question; and we are safe in saying that there was a preponderance of opinion among the many eminent men who joined in the discussion in favor of a moderate use of alcoholic beverages. In the August number of the North American Review, a well-known physician of this city enters a plea against the indiscriminate condemnation of narcotics and stimulants. Is all this opinion to go unrepresented when the alcohol question is introduced into the schools? Of course it must, or the specific object of the teaching would be ruined. We say, therefore, that this is not teaching science; it is harnessing science to the "temperance " cart, and driving her under instruction from " temperance " headquarters.

THE RESULT OF SCIENTIFIC TEMPERANCE INSTRUCTION.

[From Science, July 29, 188\%.]
Will the reader please cast his eye upon the following questions: 1. How can it be proved that nicotine is a poison? 2. Why are cigarettes especially harmful? 3. Is alcohol a food? 4. What is the effect of disuse upon a muscle? 5. Under what names is opium sold? 6. Under what name is alcohol drunk? 7. What is the difference between a food and a poison? 8. Is anything gained by changing from one narcotic to another? 9. What is the effect of beer as a drink? 10. How does cheerfulness help the muscles? These are the questions given as a test in physiology in the public schools of a prominent Eastern city. They are not addressed to young men about to leave school. No; they are asked of little boys and girls of from 8 to 10 years of age. This is the examination paper a.t the end of the first year's elementary instruction in physiology. Of ten questions, eight rolate to drinking and smoking; the physiology is a mere side issue. These children, who ought to have about as much knowledge of such matters as they should of the methods in vogue at the stock exchange, are
actually forced to learn by rote the details of human vice; and that, too, under the name of "physiology," the only science which they learn. Unconsciousness, naiveté, is the symbol of childhood. The fact that physiology, even if well taught, tends to destroy this trait is the chief objection to its early study. Instruction such as the above implies crushes the most valuable trait in the child, directs curiosity to what is morbid, and forces into precocious development all its dangerous elements. Not enough that the newspaper and the dime novel proclaim in glaring colors the story of crime and sin ; some notion of the perversity of human nature must be mixed with the food of babes. That the result of this teaching is to excite in the children a morbid curiosity to experiment for themselves in such matters; or (with the boys) to regard the whole thing as a lesson in "goody-goodiness," to which they forthwith decide to show themselves superior; or to regard their father who takes his glass of wine at dinner as an incipient criminal-this could easily have been foreseen and goes without saying. If there is one method better than all others to produce a race of drunkards, this has good claims to that distinction. If there is a degree of wrong in such superlatively perverse methods, then it is still worse that the fair name of science should be outraged in this cause. Not only that this kind of teaching necessarily depends upon catechism methods (that the answer to the second question, for example, is to read that the especial perniciousness of cigarettes is due to the fact that they are usually made of decayed cigar stumps), but that the entire idea of science thus implanted is as wrong as it well can be. Better far revert to the old days when there was no science on the curriculum than have science thus taught. The crowning educational virtue of science is that it leads to the use of scientific methods of teaching; this usurper chokes up all possibility of an interest in the scientific. The temperance question is doubtless one of the most important with which our age has to deal; sufficiently important, perhaps, to make some consideration of it in the public schools a legitimate proceeding, but it must be done at the right time and in the proper way. Nothing can excuse the conversion of a text-book on physiology into a "temperance" tract; nothing can excuse the sacrilege of presenting this story of disgusting vice under the name of "science."

TEMPERANCE INSTRUCTION IN SCHOOLS.
 [From the Medical Record, September 24, 1857.]

Probably no class of men in the community are better fitted to give a calm, unprejudiced opinion on the alcohol question than physicians. In their capacity of public sanitary guardians, they feel an interest in all practical measures designed to limit the deletertous effeets of the use of liquors upon the human systems. The latest effort in this direction is the introduction in to the public schools of several States of so-called "temperance" text-books and other paraphernalia of teaching. Some communities have already experienced the first fruits of this new system of instruction. These results are somewhat curious. It is found that the incidental facts designed only to lead up to the one great moral are more prominent in the pupils' minds than the moral itself. The various charts which portray stomachs, livers, and other viscera diseased from alcohol are regarded much in the light of picture-books on a large scale. They produce no more impression on a child's mind than the sight of a tattooed man, or some "freak" of a dime museum.
It is right that the question of temperance should be brought down to the scope of a child's ideas; right from a medical standpoint as well as from a moral one. But it is hardly the judicious course to teach him to regard alcohol as a deadly poison under every circumstance. He will be disillusioned as he grows older, and will look back to his text-book teaching as a mass of overstated facts. The trouble with many of the text-bookson temperance used in schools is that they are not physiologically correct. They are written by persons with more zeal than accurate knowledge, and consequently we have sometimes ludicrous statements from pupils. The description of the distillation of alcohol strikes the child as a very interesting thing, and so the fact designed to be taught-its pernic ious effects-fails to make a lasting impression.

We think that a better state of things could be brought about if physicians could be led to take a more active management in the public schools. Ministers, lawyers, business men, and professional politicians are always represented upon school boards, but rarely physicians. They are the very ones who should be fully represented. They can, by their advice, better than any other class, conduce to bring up a class of pupils who shall hare sound minds in sound bodies. They can prevent the introduction of text-books on-temperance or any other topic having a reference to physical matters which are not written with a due
regard for truth and for the receptivity of the minds which are to grasp it. It is coming more and more to be realized that a physician's duty to the community oversteps the sphere of mere sanitary matters and lays hold upon social factors as well. Much of the teaching in schools nowadays is one-sided, because the mind is regarded as something apartfrom the body and taughtaccordingly. 'No one so well appreciates the relation of one to the other as the physician.

HOW WE TEACH INTEMPERANCE.

[From the Popular Educator, December, 1891.]

At the Norfolk County teachers' convention, recently held in Boston, a paper was read on the teaching of physiological temperance (or intemperance) in the public schools; and, a little more than a week after, the same subject was presented for our consideration at a teachers' meeting in Hyde Park.

At the former meeting it was very noticeable in the discussion that followed the reading of the paper that those who objected to this scientific teaching, taking the moral side instead, met with greater favor from the audience as a body, judging from the heartiness of the applause, than the paper itself. Possibly. if those gentlemen who advocated the strengthening of the moral nature as the best preventive of intemperance had explained their position more fully, this article would not have been written.
There is, as I believe, a radical error at the basis of this scientific teaching of intemperance, or its causes, to little children. Let me illustrate.
On our way home from the convention we were discussing this subject, and one of our party related the following incident which had come under her notice :
A teacher, who was an enthusiast on this subject, had taken the fruit into the schoolroom and taught the children the process by which the pure juices of the grape and apple were changed into alcohol, and its effect upon the body.
A short time after, one of the boys who had been instructed by her remarked to some one that he had learned the taste of all the liquors in his fathers store (he was a saloon keeper), and could readily distinguish one from the other.
How much fear of the effects of alcohol upon his body do you suppose had been created in this boy's mind by this teaching? Instead of this, it would seem there had been aroused in him a curiosity to know more of the things about which he had been taught.
How many of these boys, think you, went home, took their grapes and apples, and made their own wine and cider?
All might not do this, of course, but, judging human nature as it appears, and especially child nature, there seems to be a strong desire to do that which is forbidden.
I know the thought has keen, and still prevails, that to avoid evil we must know something about it.
What is our practice in educational matters?
Formerly teachers used to put mistakes upon the blackboard to correct, but now the best teachers claim that children should see only the perfect form of word or letter.
We teach children to be pure in thought, word, and deed, but would never think of specifying the evils to be avoided.
No wise parent or teacher would ever say to a child, "You must not read that book. It contains that which will poison your mind and give you wrong views of life."
Nevertheless, I did hear of a teacher not long ago who advised her girls not to "ead a certain book which she named, and immediately they sought and obtained the book, of which they had not known before, and read it, although warned against it.
No doubt all who read this can recall many instances of like character.
Vice is a monster of such frightful mien,
That to be hated, needs but to be seen; But seen too oft, familiar with her face, We first endure, then pity, then embrace.

As the world is to-day, the children can not but see that which we call evil all about them; but if they have been taught to love the good, the evil will be hated, or perhaps not recognized by them; while, if we continually keep it before their minds, even though we teach them to avoid it, we make it a familiar object of thought which can not but produce bad results.
"As a man thinketh in his heart, so is he."
"Whatsoever things are true, whatsoever things are honest, whatsoever things are just, whatsoever things are pure, whatsoever things are lovely, what-
soever things are of good report; if there be any virtue, and if there be any praise, think on these things."
We all know what great imitators children are, and that with them example goes further than precept. How, then, can we teach them the bad effects of alcohol and tobacco so they will feel it and never touch them when fathers and brothers and men who hold high places in the community and are respected by everyone are slaves to one or both of these habits? We must find some other means of teching them the truth so they also shall not be led into this captivity to the sunses, than that recommended at the convention.
Teach temperance, not intemperance; health, not disease; truth, not error; purity, not impurity; goodness, not badness; teach the positive, not the negative.

A Teacher.

"EFFECTS OF ALCOHOL."
[From the Journal of Education (Boston), December 31, 1s91.]
May I again call attention of the importance of strictly adhering to truth in teaching concerning the effects of all drugs upon the body. On page 359 of the Journal we are told, "Whatever effect is produced upon the albumen of the egg by contact with the alcohol the same thing must happen when alcohol is mixed with food in the stomach."
This is incorrect: 1. Because blood albumen is not egg albumen. 2. Because the blood albumen is greatly diluted, while the egg albumen is concentrated. 3. Because in one case the alcohol used is concentrated, in the other greatly diluted. 4. The experiment in the test tube is performed away from the "life forces," while in the body "life forces" modify chemical forces. In a word, a laboratory experiment must not be taken to explain literally what occurs in the body. The boy, taking a drink of beer, finds he is not killed by it, and soon comes to reject all that he has been taught in reference to the effects of stimulants. Harm is done by our inaccuracy.

CHILDREN CAN BE TAUGHT TO THINK ABOUT BETTER THINGS.

An effort has recently been made to fight intemperance by teaching, in connection with the subject of physiology, the effects of alcohol and narcotics on the system. It is an open question whether the results are all that were anticipated. It seems that in many places the craze after cigarettes and old cigar stumps is worse than ever before, notwithstanding the fact that the schools are giving instruction along thisline. Why is this? It is quite possible that many teachers use both time and text book in such a way as to injure the cause of temperance. To spend a portion of each recitation in talking aboutrum and tobacco is, to say the least, unwise on the part of the teacher. Instead of this let him class rum, tobacco, and opium with other things that should be let alone, and let him speak of them only as cccasion requires. The better way will be to see that none of these things are found on or about the schcol grounds. Miltonhas not increased our hatred of Satan by making him a hero in Paradise Lost. Why should rum and tobacco be the "heroes" in so many school rooms? Children can be taught to think about better things. (J. D. Meese, Southwest State Normal School, Pennsylvania.)

VII. ANSWERS TO SOME FALSE NOTIONS.

BY MRS. MARY H. HUNT.

The following misconceptions have arisen in certain quarters concerning the teaching of physiological or scientific temperance:
First, that "temperance is a moral not a scientific question; therefore, if taught at all in the schoolsit should be from the moral standpoint only." "The strengthening of the moral nature is the best preventive of intemperance." "You should strengthen the will to prevent the pupil from drinking," these objectors say.
Second, "If you teach the pupil the evil character and effects of alcohol, tobacco, etc., the law of perversity in his nature will make him want to try those things for himself," etc.
Third, "As long as the fathers smoke and drink it is not only of no use to teach the children not to, but such teaching is disrespectful to parents."

ED $90-47$

In answer to the first objection that "temperance is a moral, not a sceentific question," etc., let us inquire:
(1) Is it not true that a moral question is one that considers what is right or wrong in action on the part of beings capable of choice?
(2) Are there not certain facts which are the reasonsfor an action or course of action being right or wrong?
(3) If these facts, the reasons for the right or wrong, are duly arranged in the case of each obligation, do they not form the science of that special obligation? Webster says that "Science is knowledge duly arranged."
(4) Can a person be taught the principles of morality in any case, or to intelligently choose the right without being taught the facts which show why one course or set of acts is right and another wrong; are not these facts the science of the case?

To illustrate: Moral obligations may be classified under three general heads:
(1) Duties to our Maker.
(2) Duties to our fellowmen.
(3) Duties to ourselves.

The facts that are the reasons for our duties to our Creator are set forth in the science of theology.
Those in the case of our duties to our fellowmen are classed as the science of sociology.

The facts that prove our moral obligations to ourselves in the case of alcoholic drinks and other narcotics are very properly termed the science of temperance; and here, as in the case of other duties, no person can fully comprehend the extent or scope of that obligation without knowing the facts.

The answer to the question, "What is the nature and effects of these substances," is the facts in this case, on which the whole temperance question rests.

There is no such thing as moral question without a basis of fact that is the science of the question. These are not the days of dogmatic morality. Modern morality teaches the reasons for the right, shows why, and thus "strengthens the moral nature."

The objector says, "Strengthen the will to resist temptation." How do we strengthen the will? The will is the faculty in us that acts on choice, and our choices are more or less influenced by our knowledge or ignorance of the facts in the case. How would you strengthen the will of a boy against the temptation to row across the Nisgara River alittle way above the falls-by telling him he must not, it would be wrong, or by explaining to his reason the perils that inhere in that fatal current? How would I strengthen a boy's will against intemperance? I would try to give him intelligent reasons on which his will should act. Just as I would teach him the character of the Niagara Rapids I would teach him the nature of those other, the alcoholic rapids, that lead to a worse, a more hopeless plunge into utter darkness. While I would never exaggerate, I would search for the truth on this topic as for "hid treasures," and then teach it, abating not "one jot or tittle," leaving the consequences with Him who said "I am the Truth." He has so made the human mind that it is mored by truth that warns as well as promises. I would teach the boy before appetite is formed the dangerous and deceptive character of alcoholic drinks and other narcotics, especially that proven fact that a little alcohol in any liquor has the power to create an imperious, uncontrollable, and destructive appetite for more, and therefore its use in any quantity is never safe. I would show him that there is a scientific connection between the first glass and the drunkards' fate. I would not preach at the boy nor weary him with repeated homily, but I would lead him, through the study of the laws of his own boing, to see and understand for himself that the inestimable blessing and happiness of a strong, healthy, useful life are the result of obedience to laws that are written in our living tissues, and that the penalty of disobedience inheres in the law itself. I would strip the wine cup, and the whole brood of strong drinks, the pipe, the cigar, and the cigarette of the glamor with which ignorance and tradition have decked them, and help the boy to see them and their consequences as labeled by modern science-narcotic poisons.

In answer to the second objection, that teaching the evil character of alcoholic drinks will make the pupil want to try them for himself, we reply: If we tell the boy the perils of the rapids in the smooth, safe-looking stream above the falls, will he immediately wish to embark thereon? Is it a rule that teaching the consequences of evil is only furnishing a motive for immediately plunging into the evil? If so, there must be something radically wrong in the most authoritative of all teaching, for all through the Bible the blessing's of right doing are coupled
with vivid descriptions of the consequences of following the wrong. Gerizim and Ebal stand together. I am sure the great body of teachers in our land will agree that it will be safe for us to follow in method the great Teacher. He made the human mind, and He knows the laws of its development far better than we ever can, after all our study.

We teach the need of pure air and good rentilation by showing its importance and relation to health, and how to get it, and the consequences of its absence. If you teach the need of oxygen by showing the consequences of breathing vitiated air, are you thereby teaching imperfect ventilation? Such a claim would be absurd. And yet a recent writer refers to teaching the evil nature and effects of alcoholic drinks, etc., as "teaching intemperance." Then the vivid descriptions of intemperance in the "woes" the Bible pronounces upon drunkards is "teaching intemperance." These objectors certainly need a new and expunged version of the greatest of all manuals of instruction.
Experience must, after all, decide, and happily we are not without precedent. Wherever in the thirty-five States of our country the spirit and letter of the law requiring this study are obeyed, and well-graded text-books on this topic containing the truths the law requires taught are used, with the same wise and thorough methods of teaching as in the case of other branches, pupils thus taught have not consequently rushed headlong to the saloons. On the contrary, an intelligent arersion to strong drinks and other narcotics is manifest; fewer cigarettes are smoked, and pupilsare more careful to obey other laws of hygiene.
Giving an occasional temperance exhortation in the schoolroom may take less time and study on the part of the teacher, but, compared with the results of carefully prepared lessons that guide the pupil in finding and intelligently understanding the reasons for total abstinence from alcohol, tobacco, and other narcotics, and for obedience to other laws of health, the mere exhortation or socalled moral homily falls immeasurably short.
The prophet said, "My people are destroyed for lack of knowledge," not for lack of exhortation. To a right-minded child or youth the most impressive of all moral lessons is the one that convinces his understanding and is thereby lodged in his reason. That all children and youth are not right-minded towards alcohol and tobacco is evidence of the deep wound these substances have made upon our humanity through inheritance upon children and "children's children." That some of these, heavily weighted with the sins of the fathers, will go wrong anyway, does not prove that faithful instruction is useless in all other cases.
To the third objection we would put the question: Shall we make no attempt to teach the children better because the fathers drink and smoke? Because some parents murder the Queen's English, we do not therefore think it useless or disrespectful to their parents to teach the children correct speech, and as a consequence the generations rise in the scale of better utterance.
The difficulties are appreciated of teachers who were commanded to teach this topic and giren nothing to do it with but the imperfect, badly graded books first put upon the market. But a better day has dawned. Well-graded manuals of instruction, that contain these truths adapted to all classes, are published in great abundance and variety.
Truth is the lever of Archimedes that moves the world. The truth concerning the evil nature of alcoholic drinks and other narcotics is the lever destined to overthrow their use. To the teacher has come the opportunity to scatter that truth. Opportunity is God's command.

VIII.-QUESTIONS ON PHYSIOLOGY AND HYGIENE, AND THE NATURE AND EFEECTS OF ALCOHOLIC DRINKS AND OTHER NARCOTICS.

Published by the scientific temperance department of the Woman's Christian Temperance Union for use in the preparation of essays, examination papers, etc., for the World's Columbian Exposition, Chicago, 1893.

FOR PRIMARY GRADES.

In this subject, as in other branches which extend through several years of school life, a few of the simple elements of each topic are taught, where the subject is properly pursued, in the lowest grade, to be reviewed, with additions from year to year, until an advanced treatment of the whole subject is completed in the high school.

The work of the first year, therefore, properly consists of oral lessons on parts of the body, sight, hearing, taste, smell, touch, cleanliness, and rery simple les-
sons on the harm that comes from the use of tobacco and the common alcoholic drinks.

Second year pupils review these topics with additional matter and add lessons on care of the bones, the hygiene of eating and drinking, breathing, etc. The special points brought out in these lessons will be written out by the children at the close of the lesson, and from these written exercises selections may be made and sent on to the exhibit with photographs of class, etc., as above.

Third year pupils, reviewing the ground already covered, learn more on each topic, and add a few simple facts about muscles, nerves, the organs of digestion, circulation, respiration, etc.; the best of their written exercises may also be selected.
In response to request, the questions given below are suggested by the department of scientific temperance instruction.

QUESTIONS ON THE SENSES FOR FOURTH YEAR PUPILS.

[NOTE.-Other topics studied during the fourth year are, food, alcoholic drinks and other narcotics, digestion, circulation, respiration, the skin, bones, muscles, and nervous system, the hygiene of each being chiefly developed. As it is manifestly impossible in the time allowed for preparing papers for this exhibit to cover all the topics studied in any one grade, a selection has been made of one or more for each grade, with questions covering salient points.]
2. How may the eyes be injured? 3. What is a good thing to do when specks get in your eye? 4. What is the outside part of the ear for? 5. Where is the hearing part? 6. How does the brain know about sounds?

1. Why can you feel better with the ends of your fingers than with the back of your hand?
2. What tells your brain that sugar is sweet when it is dissolving in your mouth?
3. How does the brain find out about odors? 2. Upon what does the right action of all our senses depend?
4. What do alcohol and tobacco do to the senses, as of sight, taste, etc.? 2. How will our comfort and pleasure be affected if we blunt or injure our senses with alcoholic drinks or tobacco?

QUESTIONS ON THE ORIGIN AND NATURE OF ALCOHOLIC DRINKS, FOR FIFTH YEAR PUPILS.
[Note.-According to the plan of grading this study, now in most successful operation, only a part of the topics included in the whole subject, as food, alcoholic drinks, digestion, circulation, and respiration, are taken up during the fifth year; the remainder, bones, muscles, skin, nervous system, and senses, being left for the sixth year. But the work, though more exhaustive than that in the fourth year, still leaves much that the pupil is not yet prepared to comprehend. The same plan is again pursued for the seventh and eighth years, the seventh year taking up the same topics as the fifth, i. e., food, alcoholic drinks, digestion, circulation, respiration, but with a more thorough and comprehensive treatment; the eighth taking the same topics as the sixth-year grades, i. e., bones, muscles, skin, nervous system, and senses, with more comprehensive treatment. The topics covered by the questions are selected in accordance with this plan.]

1. When the juice pressed from apples, grapes, or other fruits is left in a moderately warm air what change soon takes place in it? 2. What causes this change? 3. Where are the ferments before the apples are ground? 4. How do they get into the juice and what do they do there? 5. What is alcohol and how does it differ from water? 6. What is vinous fermentation? 7. What does fermentation al ways change? 8. How is this law illustrated when cider changes to vinegar? 9. Why are wine, cider, and beer dangerous drinks? 10. Show how the law of fermentation applies to beer-making. 11. How does beer-drinking give a false appearance of health? 12. How do the results of fermentation differ in bread-making from those in beer-making? 13. Why is there no alcohol in well-baked bread? 14. What is meant by distilled liquors? 15. Mention some of the more common distilled liquors and tell why they are destructive to health and character. 16. What is the alcoholic appetite and how does it differ from a natural appetite? 17. Why should not alcoholic liquors be used as a flavoring for food?

QUESTIONS ON DIGESTION AND MUSCLES FOR SIXTH-YEAR PUPILS.

[The teacher may choose either subject to be written upon if both are considered too long.] DIGESTION.

1. Explain how food is made ready to mix with the blood and what is meant by digestion. 2. Describe the organs of digestion and tell what they do. 3.

Tell what you can about the liver. 4. What can you tell of Alexis St. Martin? 5. Tell how the nutritious part of food is taken into the blood. 6. What general rules should guide us as to what we should eat? 7. Explain in a general way how we should eat, how much, and the importance of proper cooking. 8. What care should be taken of the teeth? 9. What is the effect of alcohol on digestion and how does it affect the liver? 10. What is the efiect of tobacco on digestion?

MCSCLES.

1. What are muscles, voluntary and involuntary, and what purpose do they serve? 2. What are tendons and their uses? 3. Why do we need exercise? 4. What are the advantages of walking as an exercise? Of light gymnastics? 5. What is the effect of alcoholic drinks on the muscles? 6. What is the effect of alcoholic drinks on the strength? 7. How do alcoholic drinks injure a workman's power of doing fine work? 8. What can you say of the effect of tobacco on the muscles?

QUESTIONS ON THE CIRCULATION AND RESPIRATION FOR PUPILS OF THE SEVENTH-YEAR GRADE.
[The teacher may choose between these subjects the one to be written upon if both are too long.]
circelation.
I. 1. Describe the blood and its uses. 2. Describe the different kinds of blood ressels, their uses, and the pulse. 3. Describe the heart. 4. Starting in the aorta follow the blood in its course through the blood ressels until it has returned to the heart. 5. Follow the course of the blood through the heart and describe the action of each part. 6. How is the action of the heart regulated? 7. How does the heart gets its rest? 8. What are some of the aroidable causes of palpitation and other heart troubles? 9. What is a smoker's heart?
II. 1. How is the circulation regulated? 2. What effect has bodily inactivity on the circulation? 3. Why is outdoor exercise necessary to healthful circulation?
III. 1. What effect have alcoholic drinks on the blood? On the beating of the heart? 2. How does alcohol deprive the heart of a portion of its rest? 3. What effect may alcohol hare on the structure of the heart? 4. Explain the cause of the flushed face that follows taking alcoholic liquors? 5. What other parts besides the face are also flushed? 6. How does alcohol affect the blood ressels? 7. How do alcoholic drinks interfere with the proper distribution of the blood?

respiration.

I. 1. What bodily need is more pressing than the need of food and drink? 2. How does expired air compare with inspired air in its composition?
II. 1. Discribe the organs of respiration and their use. 2. What reason for breathing through the nose rather than through the mouth? 3. Trace the blood-ressels from the heart to the lungs and back.
III. 1. What effect has purity of air on the blood? 2. What is the work of the corpuscles?
IV. 1. What makes air impure, and how does nature preserve the purity of the outdoor air? 2. Why is it so difficult to secure pure air for breathing indoors? 3. What is a good test of the character of the air of a room? 4. Tell what rou know about ventilation and how it may be secured.
V. 1. What effect have alcoholic liquors on the blood ressels of the lungs? 2. How does alcohol affect the substance of the lungs? 3. What disease of the lungs is caused by alcohol? 4. What effect has tobacco on the throat and nose?

QUESTIONS ON THE NERVOUS SYSTEM FOR EIGHTH-YEAR PUPILS OR FIRST YEAR BELOW THE HIGH SCHOOL.

I. 1. Describe the nerves and the brain and tell what you can of their various uses. 2. Where is the spinal cord situated, what is its appearance, and over what movements does it preside? 3. Why are sensation and motion lost below an injury of the spinal cord? 4. What is the condition of a person whose nerves are incapable of action? 5. What are some of the aroidable causes of disease of the nervous system? 6. How much time should be spent in sleep? 7. Name two safeguards of the nerrous system. 8. What is the effect of excessive excitement?
II. 1. How does alcohol reach and affect the nerve centers? 2. Show the fallacy of the supposition that alcoholic drinks aid brain work. 3. Show how alcohol through its action on the brain affects the judgment, the will, the character. 4. What change may alcohol make in the structure of the brain? 5. What inheritance may a drinking or tobacco-using parent leave his children? 6. What effect is tobacco likely to hare on the brain and nerves of a boy who uses it?

QUESTIONS SUGGESTED FOR THE USE OF HIGH-SCHOOL PUPILS IN PREPARING EXAMINATION PAPERS ON THE SUBJECT OF PHYSIOLOGY AND HYGIENE, INCLUDING THE NATURE AND EFFECTS OF ALCOHOLIC DRINKS AND OTHER NARCOTICS, FOR THE WORLD'S COLUMBIAN EXPOSITION.
I. 1. Describe the cell as found in the human body; a tissue; an organ; a system.
II. 1. Why do we need food? Discuss kinds, sources, and proper preparation of food.
III. 1. What are healthful drinks? 2. What change takes place when the juices of fruits are pressed out and allowed to ferment? Tell what you know about the causes of this change. 3. What is present in the liquid after it has fermented that was not there before and how did it get there? 4. Show the fallacy of supposing that beer, wine, and cider are good because made from healthful grains, grapes, or apples. 5. What characteristic of alcohol makes any liquid containing it a dangerous drink? 6. Describe the alcoholic appetite and its causes.
IV. 1. Describe the organs of digestion, and the office of each, and tell what harm alcoholic liquors and tobacco do the same.
V. 1. Describe the blood, the organs of circulation, and the function of each. 2. The need of pure blood, showing causes that make the blood impure. 3 What is the immediate effect of alcohol upon the blood vessels and why? 4. Upon the heart and why? 5. What changes may be brought about in the blood ressels and the heart by continued use of alcohol and why? 6. How may tobacco affect the heart?
VI. 1. What are the organs of respiration and what are their functions? 2. Tell why pure air is a necessity and how to get it. 3. How are the organs of respiration and the voice injured by alcoholic drinks or tobacco?
VII. 1. What are muscles and their functions? 2. How is strength of muscles affected by lack of exercise, tight clothing, or improper food? 3. Explain the eflect of alcohol upon muscular strength and precision.
VIII. 1. Describe the brain, nerves, and spinal cord, and the uses of each. 2. How is brain power developed? 3. How are habits formed? 4. What is the relation of habit to character and success in life?
IX. 1. What causes the flushing of the face which usually follows taking an alcoholic drink? 2. Describe the effect of alcohol upon the higher faculties of the brain? 3. What changes in the brain may the use of alcohol produce? 4. What are the results upon character? 5. What institutions supported by tax on the general public are made necessary largely by the effect of alcohol on the brain? 6. What diseases of the nerrous system and what hereditary consequences are due to the use of alcohol? 7. How does tobacco affect the brain and nerves? What is its effect upon brain power and scholarship? 8. What of opium on the nerves and brain?

CHAPTER IV.
 HIGHER EDUCATION OF WOMEN.

General statement.-Description of new instituiions: Barnard College; Woman's College of Baltimore: Cleveland College for Women; Evelyn College.
Summury of Statistics: Number of Institutions; Endoument Funds; Scientific Apparatus; Benefactions; Income; Degrees.
Course of Study for \boldsymbol{A}. B. degree in fifteen Institutions.

GENERAL STATEMENT.

The higher education of women continues to receire marked attention in this country, several institutions for this purpose having been established during the past few years. These institutions make provision for instruction of collegiate grade and are not merely "finishing " schools. The tendency seems to be to establish these institutions as colleges affiliated to universities already established, or at least to locate them in cities where leading universities exist, thus securing to these new schools the adrantages of large and well-selected libraries, museums, etc., facilities which otherwise could not be obtained until after a long period of years. Another advantage gained by locating them in university towns consists in this, that very frequently the services of some of the university professors or instructors whose time is not fully occupied with their regular duties can be easily secured for a part of the day. In this manner nearly all the instruction in a few of the more prominent of these institutions is provided by unirersity professors, and this fact has done much toward making their work successful. A short account of the establishment of some of the institutions recently founded is here given.

DESCRIPTION OF NEW INSTITUTIONS.

Bamard College.-Since the year 1885 Columbia College, New York, has granted the degree of bachelor of arts to women who have pursued a course of study equivalent to that for which the degree is conferred in the school of arts. Notwithstanding the degree was conferred by the college no provision was made by which the women pursuing this course could obtain instruction from the faculty, although those who had secured this degree might study for higher degrees under the direction of the professors of the college. The suggestion was therefore made to found a college where women studying for the Columbia degrees could receive instruction from the college faculty. This proposal receired the official approval of the trustees of Columbia in March, 1889, and the college was opened for instruction in the following October. The name given to the new institution is Barnard College, in honor of the late Dr. F. A. P. Barnard, who had always taken great interest in the higher education of women and had advocated granting to women full opportunity for collegiate training. The course of study is identical with that of the School of Arts of Columbia College, and is intended to give to the girls of New York and its vicinity the same instruction that is given to the boys. In order that the status of this institution may be made clear the following is reprinted from the first report of the academic committee:
"The entrance examination papers are the same for the students of Barnard and Columbia, the papers are passed upon by the same examining board, the course of study is the same, and at the end of the course the degree awarded is the same. These facts are emphasized because nothing is so constantly mis-
understood as the fact that Barnard College has no separate academic existence. Educationally considered, Barnard is Columbia. Its only autonomy is administrative and financial."

The establishment of Barnard College rendered unnecessary the continuance of the collegiate course for women by Columbia, and no new students in that course are received; but those who have already been admitted to the course will be allowed to complete it.
Barnard College does not yet possess an endowment fund, but depends for its support upon the fees from its students and upon yearly contributions. Strenuous efforts are being made to raise an endowment sufficient to make the institution in a measure independent of students' fees.

Although Barnard has no productive funds, ${ }^{1}$ on account of its relations with Columbia College it has been able to exact that its students should be fully prepared to enter upon the course as laid down. It has been decided by the authorities, as a result of the experience of the first year, to accept, at least for some years to come, only regular students in its undergraduate classes. This was rendered necessary by the large number of students who wished to enter upon special courses. Students who wish to purzue special courses in botany and chemistry only will be admitted, but such students must pass the examinations required for admission to the freshman class. The first year's work of the college proved successful. There were thirty-six students in attendance, which number was increased to forty-five at the beginning of the second year; of these, eighteen are in the regulâr classes, eight are graduate students. and sixteen are specials in chemistry and botany only, while three are specials from last year who are permitted to remain.
-Woman's College of Baltimore.-Another addition to the institutions for the higher education of women is the Woman's College of Baltimore, Maryland. This institution was first opened for instruction in Septemb r, 1888, with fifty students, while the number in attendance during the year 1889-90 was two hundred and eighty-three. Of this number only thirty were in attendance upon regular undergraduate courses, one hundred and thirty-three were in special or partial courses, while the remainder were in the preparatory department. The name of this department has been changed to Girls' Latin School of Baltimore and the purpose is to give it a separate organization.

The institution was founded "to provide women with the best facilities for securing liberal culture. Its primary purpose is to meet the educational demands arising in the Methodist Episcopal Church. It was established by action of that church, and is conducted under its fostering care. At the same time it was not planned and is not managed in an exclusive or sectarian spirit.", ${ }^{2}$
The buildings, three in number, have been erected since 1887 and are valued at $\$ 340,000$, while the productive funds of the college amount to $\$ 150,000$. The president of the institution is Rev. John F. Goucher, D. D.

The scheme of instruction consists of four years' courses of study leading to the degree of bachelor of arts, supplemented by such instruction in subcollegiate courses as may be found necessary. No election of studiesis allowed in the first collegiate year and but little in the second. In the third and fourth years a wide range of choice is permitted, to accord with individual tastes or to meet the demands of preparation for practical work.

Cleveland College for Women.-The Cleveland College for Women, Cleveland, Ohio, was first opened for instruction in 1888 as a department of Western Reserve University. At the same time the trustees of the university decided to receive no more women into Adelbert College. That the success of the new school might be assured, the faculty of Adelbert College generously offered their services for a term of years as instructors. During the first year twenty-three young women were admitted, but two of whom were in the regular courses. During 1889-90 the number of students increased to thirty-eight, eleven of whom were in the regular courses, of which there are three, viz, the classical and modern language courses, leading to the degree of A. B. and the Latin English course to that of PH. B. The institution received $\$ 100,000$ from Mrs. Eliza A. Clark, one-half of which is to be used for the erection of a building and the remainder invested as an endowment fund.

Evelyn College.-In 1887 Evelyn College, an institution for women, was opened at Princeton, N. J. Its location at this place gives the institution very great advantages, inasmuch as the use of the libraries and museums of the College of

[^17]New Jersey, popularly known as Princeton College, are granted to the students. The college offers the following courses of study:
I. A classical and scientific course corresponding to that of Princeton College, including the lectures of the professors and examinations upon them.
II. Post-graduate courses under the direction of the professors of Princeton Co'lege.
III. A special or elective course with lectures and college ad rantages, in which French and German may be substituted for Latin and Greek, and other modifications made to meet the requirements of those who, for want of time or for other reasons, are prevented from taking the full college course.
IV. Preparatory classes, with reference to either collegiate or special work.
V. Opportunities for the study of music, art, and modern languages, including constant conversation in French and German.
Erelyn College grants its own degrees, and in this respect it differs from Barnard College, whose students receive the Columbia degree. Another point of difference between these two institutions is that while Evelyn gives instruction in preparatory studies, Barnard receives only those as students who are already prepared to enter the freshman class. Thus of the forty-six students in attendance at Erelyn during the year 1889-90, only four are reported as in the regular undergraduate courses.

PREPARATORY DEPARTMENTS, ETC.

It can not but be deplored that so many of the higher institutions of learning in this country are compelled, either through the lack of good preparatory schools or on account of insufficient endowment funds, to maintain preparatory and other departments which are neither collegiate, professional, nor postgraduate. The maintenance of such departments calls for a part of the valuable time of a number of professors which otherwise could be devoted entirely to the collegiate classes or be spent in the necessary study and research so indispensable to the college professor of the present time. But the large number of institutions claiming to give higher instruction, especially those for women, renders it necessary for the larger part of them to maintain all grades of instruction, so that a large number of students may be enrolled, the tuition fees of whom are necessary to meet the expenses of the institutions. Some idea of the amount of labor that is imposed on some of the professors of colleges may be formed from the fact that in one of the colleges for women five professors give all the instruction to siety students in the preparatory department, twenty students in the seminary or academic department, and fifty students in the collegiate department, to say nothing of the instruction in music and art, which of course is furnished by these professors.

A majority of the colleges for women are without endowment and are therefore compelled to rely in great part if not entirely upon the fees received from the students. This is especially the case with the large number of such institutions in the South, where more than 68 per cent of all the institutions for the higher education of women exclusively are situated.

The list of colleges for women contains a large number of institutions which should really be classed assecondary schools, but which, by virtue of the authority to confer degrees granted them by the several State legislatures, demand to be included in the table deroted to colleges for women. This fact necessitates the incorporation in this table of institutions not authorized to confer degrees, but which maintain courses of study that are by far superior to the courses for which regular collegiate degrees are conferred by a large number of the institutions. In order to show how easy it is to obtain a degree in one of these the following cóurse of study for which the degree of A. B. is conferred is taken from its catalogue:

JUNIOR CLASS.

First Semester.
Latin Grammar and Reader. Arithmetic, Mental and Written. Algebra.
Physiology,
Civil Government.

Latin, Cæsar.
Latin Composition.
French or German.
Algebra.
General History.

Second Semester.

Latin Grammar and Reader.
Rhetoric.
History of England.
Algebra.
Botany.

MIDDLE CLASS.

Latin, Cicero.

French or German.
English Literature.
Studies in English.
General History.

Latin, Virgil.
French or German.
Plane Geometry.
Zoölogy.

SENIOR CLASS.

Latin, Horace. French or German. Solid Geometry.
Physics.
FOURTH YEAR CLAS̄S.
Logic.
Astronomy.
Geology.
Evidences of Christianity.
Ethics.
Senior Review.

A comparison of this course with the admission requirements of institutions like Wellesley, Bryn Mawr, etc., shows that the above course for the first three years is little more than what is required for admission to the freshman classes of institutions like those above named. Again, it will be seen that Greek has no place whatsosver in the curriculum. The above course is a fair sample of the courses of study offered by a number of colleges for women and shows that there is room for considerable improvement in this class of institutions.

This state of affairs is due. without doubt, to the lack of endowment funds. In connection with this subject W. Le Conte Stevens says: "Experience has amply demonstrated that no institution of learning can preserve a high standard of scholarship and present an extensive course of studies for selection unless possessed of a permanent endowment, so as to be wholly or partly independent of the fluctuations of patronage. Without this it is like an engine without a flywheel." A glance at column 17 of the table of colleges for women will show that this important feature of institutions for higher education is rendered prominent by its infrequent appearance in the tabulation of the statistics. The table on the following page shows that the total amount of endowment funds reported by the 179 institutions is $\$ 2,609,661$, of which amount $\$ 1,901,461$, or 72.8 per cent, is reported by 12 institutions of the North Atlantic Division.
In a large number of cases the institutions are either owned by the president or leased to him by the owners, and he makes out of it whatever he can. In this respect these institutions differ very materially from the coeducational and male institutions, where the president is generally engaged by a board of trustees, by whom his work and actions are controlled and from whom he receives a stated salary.

SUMMARY OF STATISTICS.

The following table presents the summary, by States, of the statistics of colleges for women for the year 1889-90:

[^18]| State. | | Professors and instructors. | | | Students. | | | | | | | $\begin{aligned} & \text { Volumes in libra- } \\ & \text { ries. } \end{aligned}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\begin{aligned} & \text { त्ञा } \\ & \text { O } \\ & \text { E- } \end{aligned}$ | | | | | | | | | | | | |
| 1 | 6 | 33 | 4 | 5 | 6 | dy | 8 | 9 | (1) | 11 | 1\% | 13 | 14 | 15 | 16 | 17 |
| Alabama | 8 | 13 | 34 | 97 | 225 | 179 | 857 | 22 | 1,298 | | 11 | 11,296 | \$8, 350 | \$465, 000 | | 810,500 |
| California | 3 | 9 | 50 | 59 | 113 | 205 | 29 | | 347 | | 11 | 48,500 | 7,000 | 583,220 | \$80,000 | |
| Georgia. | 11 | 30 | 76 | 106 | 437 | 140 | 1,. 184 | 17 | 1,830 | | 18 | 12,450 | 8,850 | 569,500 | 78,200 | 750 |
| Tllinois | 6 | 16 | 70 | 86 | 178 | | 328 | 3 | 693 | | 3 | 9,200 | 6,800 | 325, 000 | 17, 060 | 3,000 |
| Kansas | 2 | 2 | 20 | 22 | 116 | | 88 | | 204 | | 2 | 1,752 | 1,030 | 38\%, 000 | | |
| Kentucky | 17 | 35 | 130 | 165 | 637 | 283 | 1,164 | 9 | 2,212 | | 14 | 14,000 | 7,370 | 531, 000 | | 10,900 |
| Louisiana | 3 | 5 | 17 | 22 | 80 | 25 | 168 | | 273 | 2 | 30 | 2,700 | 475 | 70,000 | 30,000 | |
| Maine. | $\stackrel{3}{2}$ | 14 | 13 | 27 | 55 | 341 | 48 | | 444 | - 5 | $\stackrel{2}{11}$ | 9,500 | 7,000 | 207, 000 | 150,000 | 5, 000 |
| Maryland | 3 | 17 | 27 | 44 | 145 | | 202 | 1 | 481 | 22 | 11 | 3,200 | 11,400 | 480,000 | 182, 000 | 61,000 |
| Massachusetts | 7 | 98 | 155 | 270 | | 447 | 1,370 | 16 | 1,9\%1 | \cdots | 142 | 64, 864 | 172,900 | 2,004, 425 | 822,739 | 65,54* |
| Minnesota | 2 | 3 | 15 | 18 | 16 | 32 | 16 | | , 64 | 0 | 0 | 1,382 | , 800 | 70, 000 | 0 | 2,258 |
| Mississippi | 12 | 16 | 93 | 109 | 227 | 280 | 605 | $\stackrel{2}{2}$ | 1,632 | 301 | .- | 8,150 | 3,400 | 252,500 | | 6, 700 |
| Missouri | 12 | 25 | 99 | 131 | 206 | 186 | 781 | 3 | 1,555 | | | 12,000 | 5,640 | 530, 000 | 76,000 | 19,000 |
| New Hamıpshire | 2 | 5 | 11 | 16 | 15 | 20 | | | 259 | | 3 | 1,400 | 1,000 | 135, 000 | 51, 000 | 2,000 |
| New Jersey.. | 2 | 12 | 9 | 21 | 18 | 23 | 4 | 1 | 93 | | | 2,000 | | | | |
| New York | 7 | 33 | 114 | 147 | 526 | 367 | 547 | 13 | 1,536 | | 34 | 58, 120 | 120,210 | 1, 159, 387 | 867,723 | 18,157 |
| North Carolina | 15 | 37 | 114 | 151 | 380 | 341 | 619 | 13 | 1,715 | | 13 | 15,550 | 5, 670 | 623, 000 | 4,000 | 570 |
| Ohio... | 8 | 42 | 86 | 128 | 183 | 24 | 45% | 4 | ${ }^{7} 68$ | | 7 | - 7, 600 | 6, 450 | 615, 000 | 159,000 | 75, 000 |
| Pennsylvania | 10 | 54 | 102 | 156 | 182 | 228 | 512 | 33 | 1,289 | | 62 | 33,750 | 20,600 | 948, 147 | 10,000 | 1,765 |
| South Carolina | 7 | 12 | 48 | 60 | 263 | 145 | 599 | 8 | 1,025 | | 2 | 3,051 | 2,305 | 144, 000 | 1,000 | |
| Tennessee | 13 | 24 | 94 | 168 | 337 | 25% | 741 | 19 | 2,341 | | 31 | 21, 075 | 11,250 | 522,200 | 33,500 | 2,400 |
| 'Texas | 3 | 8 | 35 | 43 | 178 | 176 | 167 | | 521 | | 4 | 13,400 | 675 | 180, 000 | | |
| Virginia | 19 | 60 | 158 | 218 | 389 | 133 | 1,228 | 16 | 2,06\% | 1 | 9 | 7,950 | 6,5\%5 | 610,000 | 7,500 | 8,700 |
| West Virginia | 3 | 2 | 16 | 18 | 15 | | $\begin{array}{r}79 \\ \hline 8\end{array}$ | | 144 | | | 550 | 200 | 28,000 | | |
| Wisconsin | 2 | 5 | 12 | 17 | 102 | | 23 | 1 | 146 | 0 | 1 | 5,060 | 3,000 | 125, 000 | 40,000 | 10,000 |
| North Atlantic Division. | 30 | 216 | 404 | 637 | 796 | 1,426 | 2,481 | 63 | 5,542 | 5 | 243 | 169,634 | 321,710 | 4, 453, 959 | 1,901,461 | 92, 464 |
| South Atlantic Division. | 58 | 158 | 439 | 597 | 1,629 | \% 259 | 3,911 | 55 | 7,257 | 23 | 53 | 42, 751 | 34,950 | 2,454,500 | 272, 700 | 71,035 |
| South Central Division | 56 | 101 | 453 | 604 | 1,684 | 1,195 | 3,702 | 5% | 8, 277 | 303 | 90 | 70,621 | 31,520 | 2,090,700 | 63,500 | 30, 500 |
| North Central Division | 32 | 93 | 30% | 402 | 801 | 242 | 1,688 | 11 | 3,428 | --. | 13 | 36, 994 | 23,720 | 2,047, 000 | 292, 000 | 109,258 |
| Western Division | 3 | 9 | 50 | 59 | 113 | 205 | 29 | | 347 | | 11 | 48,500 | 7,000 | 583, 220 | 80,000 | |
| Total. | 179 | $5 \% 7$ | 1,648 | 2,299 | 5,023 | 3,8\%7 | 11,811 | 181 | 24,851 | 331 | 410 | 398,500 | 418, 900 | 11,559, 379 | 2,609,661 | 303, 257 |

The total number of colleges and seminaries for women reporting to the Bu reau during 1889-90 was 179, which is 19 less than were included under the same category in 1888-89. A number of institutions hithertore ported as colleges or seminaries for women have been classed this year as secondary schools. This action was warranted either by some statement of the reporting officers or by the work of the institutions as shown by an examination of the catalogues. Owing to the widely diversified characteristics of these institutions it is a very difficult matter to devise some standard of classification which, if adopted, would give due credit to all the institutions for the work which is done by them. A few of the better class give instruction which will compare favorably with that afforded by some of the best male and coeducational institutions. But the large majority of the institutions do not come up to this standard. They begin by admitting pupils to the primary and preparatory departments, usually organized on the plan of a graded school. and conduct the pupils by successive stages, through the academic and collegiate departments. The course in the last-named department would not in a large number of cases take a student farther than the end of the sophomore year in a college for males.

An examination of a number of the catalogues also shows that with some exceptions Greek is entirely omitted from the curriculum. We also find that some institutions will give the degree of A. B. for a course which is considerably inferior to courses which in other institutions are not accorded a degree. It will therefore be seen that a classification based only on the authority to confer degrees would not be a just classification in this case. Until a suitable standard shall be decided upon, the classification adopted a few years ago will be continued.

A glance at Division A of the table ${ }^{1}$ of colleges for women will show that the number of institutions in this division has beer increased from 8 in 1888-89 to 14 in the current year. This increase resulted from the establishment of a few new institutions and the reorganization of several others, through which reorganization they were raised to the regular college grade. In a few cases the number of students in the collegiate departments is very small, but such is nearly always the case in newly established institutions or in newly organized departments of institutions.

Endowment.-The institutions in Division A are as a rule fairly well endowed, differing somewhat in this respect from the institutions included in Division B. The total amount of permanent productive funds reported by the institutions in both divisions of the table was $\$ 2,609,661$, of which amount $\$ 1,970,461$, or 75.5 per cent, was reported by 10 of the institutions in Division A, while the remainder was reported by 24 of the institutions in Division B, thus leaving 145 institutions not reporting any productive funds.

Scientific apparatus.-The total value of scientific apparatus reported was $\$ 418,-$ 900 , of which $\$ 305,391$, or 72.9 per cent, was reported by 12 of the institutions in Division A, while the remainder was reported in small amounts by 97 of the institutions in Division B. This latter fact would seem to show that very little attention is paid by the institutions in this division to the practical study of chemistry, physics, astronomy, etc., for the prosecution of which apparatus is absolutely necessary.

Benefactions.-One evidence of the greater popularity of the institutions in Division A is shown in the column of the table deroted to benefactions. The total amount of gifts and bequests to the 179 institutions during 1839-90 was $\$ 303,257$, and of this amount $\$ 193,502$, or 63.8 per cent, was reported by 9 of the 14 institutions in this division, while the remaining $\$ 109,775$ was reported by 29 of the institutions in Division B. The latter amount was reported in sums varying from $\$ 15$ to $\$ 20,000$, while the former was comprised of sums ranging from $\$ 465$, reported by Bryn Mawr College, to $\$ 61,000$, reported by the Woman's College of Baltimore.
income. -The attempt to tabulate and publish the income of these institutions has been abandoned for the present. It was found that the reports on this subject were so meagre that the totals would not be valuable for any purpose whatsoever. As said before, a large number of these institutions are owned or leased by the presidents, who manage and conduct them for the profits that can be made. In such cases the questions relating to finances of the institutions remained, as a rule, unanswered, and when they were answered, the replies to the inquiry asking for the amount received from tuition fees usually included the amount received for board, lodging, etc. As it was desired to learn the amount

[^19]expended purely for educational purposes, it is evident that such answers could not be used and were practically useless.
Degrees.- The following table presents the summary, by States, of the number of different degrees conferred by colleges for women in 1889-90:

Table 2.-Summary of degrees conferred by colleges for women in 18s9-90.

States.			¢	込	$\begin{aligned} & \dot{\sim} \\ & \dot{n} \end{aligned}$	$\begin{aligned} & \dot{\text { ப் }} \\ & \dot{\text { ̇̇ }} \end{aligned}$	$\begin{aligned} & \dot{\text { Á }} \\ & \text { 空 } \end{aligned}$	$\begin{aligned} & \dot{n} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \dot{4} \\ & \dot{H} \end{aligned}$	vi	
Alabama	68	49	6	13							
California	4		4								
Georgia...	94		87		7						
Illinois...	29	7	11			10	1				
Kansas --	$\stackrel{2}{2}^{2}$	4	12	10	25						
Louisiana	15	11		1	3						
Maine --	13			3				4	6		
Maryland	16	16									
Massachusetts	177	16	124	1	35	.	1				
Minnesota	$\stackrel{1}{66}$		$\stackrel{1}{8}$								
Mississippi	$\stackrel{66}{51}$	$\stackrel{56}{25}$	128	$\stackrel{2}{14}$							
New Hampshire	7	7									
New York.	69		62	5	2						
North Carolina	32	4	23		5						
Ohio.........-	${ }^{7}$		1	1	5						
Pennsylvania-.	52	9	35	4	4						
South Carolina	67 108	9 39	47 54	12	4					3	
Texas .--	9	1	5		3						
Virginia	24		9	13							2
West Virginia Wisconsin	10	8	1		1						
United States	978	261	510	86	94	10	2	4	6	3	2

Course of study. - In the report of the Bureau for 1888-89 appears a table giving the courses of study in one hundred colleges and universities, including a few of the colleges for women of Division A. A similar scheme, somewhat condensed, has been devised for the comparative representation of courses leading to the degree of A. B., as given in fifteen of the institutions included in Division B. All the studies have bien grouped under five headings, viz, language, mathematics, natural science, history and geography, and philosophy and civil government. An examination of the table will show that while a few of the institutions have a fairly good course for the degree of A. B., in other cases the same degree is earned quite easily. The course, as set forth in the latest catalogues of the several institutions, is as follows:
TABLE 3.-Courses of study leading to the degree of A. B. in 15 colleges and seminaries for women.

Name.	Languages.	Mathematics.	Natural science.	History and geogra-	Plilosophy and civil government.
1. Alabama Conference Female College, Tuskegee, Ala.	Freshman-Latin grammar and reader (Harkness), selections from Cornelius Nepos, English composition,rhetoric. Sophomore-Cæsar, Cicero, mythology, rhetoric. Junior-Rhetoric (higher), critical study of English classics, Virgil, French or German. Senior-Studies in English classics, history of English literature (Gilman), French or German (Stern).	Freshman- Arithmetic (Robinson), algebra (Wentworth). Sopho-more-Arithmetic (reviewed), higher algebra. Junior-Geometry (Davies's Legendre). SeniorPlane, analytical and spherical trigonometry, mensuration (Davies), astronomy (Lockyer).	Sophomore-Physiology (Hutchinson), botany (Gray). JuniorNatural philosophy (Peck's Ganot), chemistry (Houston).	Freshman-History of England, general history. Sophomore-History of Rome (Sewell). Jun-ior-History of Greece (Sowell). Senior-History of England (Montgomery), physical geography (Appleton), history of United States (Chambers).	Senior - Psychology (McCosh), moral science (Seelye's Hickok), evidences of Christianity. Biblestudies throughout the course.
2. Santa Rosa Ladies' College, Santa Rosa, Cal.	Freshman-Virgil, prose composition, Horace, rhetoric, elocution. Sophomore-Cicero, prose composition, Herodotus, Sophocles; English literTacitus, Demosthenes. rhetoric, English composition, elocution. Senior-English literature, Anglo-Saxon, history of Roman literature, history of Greek literature, English composition,	Freśhman-Algebra, geometry, bookkeeping. SophomoreTrigollometry, bookkeeping. Junior-bookkeeping, astronomy.	Freshman-Natural history, botany, zoology, physiology. SophomoreChemistry, biolo$\underset{\text { Geology, mineral- }}{\text { g }}$ ogy. SeniorAstronomy.		Junior-Logic (McCosh), political economy, civil government. Sen-ior-Mental philosophy (Porter), Christian evi dences.
3. Wesleyan Female College, Macon, Ga.	Freshman - Word lessons (Reed), higher lessons in English (Reed and Kellogg), Latin grammar (Harkness), Cæsar, Ovid, French Principia (Part 1), elocution, composition. Sophomore-Composition and rhetoric (Hart), Latin grammar, Cæesar, Cicero, Latin prose composition, Greek grammar and reader (Bullion), French Principia (Parts I and II), practical elocution(Shoemaker). JuniorTuckerman, Backus), classic English reader (Swin(on), Latin grammar, Horace, Livy, Latin prose composition, French Principia (Part 11), French prose classics, Gastineau's conversation method, Greek grammar, Greek testament, Anabasis, German Principia (Part I), Studien and Plaudereien, prose composition, reminants of early Latin (Al-	Freshman - Arithmetic (Robinson), algebra (Wentworth). Sopho-more-Geometry (Wentworth). Junior - Geometry, trigonometry and conic sections (Loomis). Sen-ior-Astronomy (Snell's Olmstead), bookkeeping.	Sophomore-Chemistry (Clark). Junior- Physics (Gage), botany (Whod). Seniorphy (Appleton), geology (LeConte).	Freshman-History of United States (Derry). Sopho-more-History of England (Montgomery). Jun-ior-Modern history (Myers).	Junior-Moral philosophy (Peabody). Senior-Logic (Jevons-Hill), political economy (Chapin), mental philosophy (Haven),Christian evidences (Fisher). Study of the Bible throughout the course.

 E

音
イчdosoifud Iequoむ （Haven），logic（Cop－
pee），evidences op
Christianity（Alex－ Christianity（Alex－
 （3） Freshman－Practi－
calphysiology，
botany（Gray）．
Sophoniose－Bot－
any，theoretical
ehemistry，zoölogy．
Junior－Physics．
Senior－Mineral－
ogy，physiology，ge－
ology．
 History of United States（Thalhei－
mer），hisiory of
 E
0
0
0
0
0
0
0
0
0

录
ह2
30
0
$i=1$
0
6
0
0
0

Physics（Norton），
physical geogra－
plyy．Junior－

（Gray）．Senior
Geology（Dana）．

Table 3.-Courses of study leading to the degree of A. B. in 15 colleges and seminaries for women-Continued.

First year－History
of England．Sec－
ond year－Gen－
eral history－
Fourth year－
Physical geog－ Physical zoog－
raphy．

Senior－Logic（N．K． Davis），analoory （Butler），metaphys ies（Hamilton）．

Junior－Political
economy（Way－
land）．Senior－
Mental philosophy
（Upham），logic
（Coppee），moral
science（Alexan－
der），evidences of
Christianity（Alex－
ander）．

我c家 E

 school arithmetic gebra（Robinson＇s gebra（Robinson＇s
elementary）．
 University），ele－

 solid geometry，
and conic sections
 Senior－Trigo－ nometry（Loomis）
完
 on），plane geom Sophomore－Al－ try（Robinson）． try Robinson）．
Junior Astron－
（Norton） omy（Norton），
conic sections and analytical
geometry（Robin－
son）．Senior－ son）．Senior－
Salculus（Olney）．

 Freshman－English grammar，English composi－
tion，beginners＇Latin boork（Collar \＆Daniell），
fablos，Cæsar．Sophomore－Rhetoric，English
prose and prose writers（Hunt），Cæsar，Virgil，
French grammar（Kieetel） French grammar（Keetel）and prose readings or
German grammar（Otto），Grimm＇s Märchen German grammar（Otto），Grimion＇s Märchen
 grammar，comppsition，and readings or German
 speare（Hudson \＆Rolle）and other principal poets，
philology of the English tongue（Earle），lecture philology of the English tongue（Earle），lectures pieces in：English literature，Livy，Tacitus．Latin the course．

$\stackrel{\circ}{\circ}$

First year－Latin grammar and reader，rhetoric． English literature，studies in English，French or
German．Third year－Virgil，Horace，French or German．Fourth year－Critical readings．

Freshman－Latin grammar（Allen and Greenongh）， Grammar（Whitney），rhetoric（Hill）．Sophomore－ lessons（Leighton），Anabasis，Mueller＇s grammar and reader，Anglo－Saxon grammar（March）study $\underset{\text { Fhonch grammar and reader（Fasquelle），Contes }}{\text {（Téémaque）．Junior－Cicero，Latin }}$ prose composition（Allen），Horace，Xenophon， Demosthenes，Greek prose composition（Boise）， dramas，American poems（Scudder）．Senior－ ides，Plato，Fschylus，Greek prose composition，
Hale＇s English poems，Shakespere＇s plays． Freshman－English grammar，English composi

$\stackrel{\Delta}{2}$

Cory Sharp Chellege，Win－ chester，Tenn．

$\dot{\square}$
48
TABLE 3.-Courses of study leading to the degree of A. B. in 15 colleges and seminaries for women-Continued.

Name.	Languages.	Mathematics.	National science.	History and geography.	Philosophy and civil government.
13. Stonewall Jackson Institute, Abingdon, Va.	Freshman-Rhetoric (Clark), history of English language (Shepherd), Latin grammar, Cæsar, elocution. Sophomore-American literature (Beers), English literature (Brooke), elocution, Virgil, Cicero. Junior-English literature, Horace, Livy. French or German may be substituted for Latin. English composition and penmanship throughout the course.	Freshman-Algebra (Wentworth). Sophomore-Algebra, geometry (Hill or Wentworth). JuniorGeometry, trigonometry (Wentworth). SeniorReview of arithmetic, and algebra, astronomy.	Freshman-Botany (Steele). Sopho-more-Zoölogy (Steele), geology (Steele). JuniorPhysics and chemistry (Steele).	Junior-General history. SeniorGeneral history, physical geography (Maury).	Senior-Evidences of Christianity (McIlvaine), psychology (Baker).
14. Wheeling Female College, Wheeling, W. Va.	First year-Latin grammar, Cæsar, Greek grammar, Greek lessons. Second year-Latin grammar, Sallust, Virgil, mythology, Greek reader, Greek grammar, Anabasis, Herodotus, Antegenitus, rhetoric. Third year-English literature, Latin grammar, Cicero, Homer, Horace. Fourth year-Elements of criticism (Kame). Greek is optional with a foreign language.	First year-Algebra. Second year -Geometry. Third year-Trigonometry, astronomy.	First year-Physiology. Second year-Natural philosophy, zoölogy. Third year -Chemistry, botany. Fourth year -Geology, mineralogy.	First year-United States history, physical geography. Second year-History of England, Roman history, Grecian history.	Third year-Mental philosophy. Mourth yearlogic, philosophy of history, evidences of Christianity, United States Constitution, politicaleconomy.
15. Downer College, Fox Lake, Wis.	Freshman - Virgil, Livy, rhetoric. Sophomore Horace, Cicero, elocution, rhetoric. JuniorRhetoric and science of language, English literelocution. Senior-Rhetorical work, elocution, English literature, critical study of modern English prose, Shakespeare, and the drama.	Freshman-University algebra, solid geometry, trigonometry. Sophomore-- Analytical geometry. Senior-Astronomy.	Freshman-Zoölogy, botany, hygiene. Sopho-more-Physiology, chemistry. Junior-Analytical chemistry or mineralogy physics. SeniorGeology.	Fresbman - Bible. Sophomore-History of England, Bible. JuniorBible. SeniorBible, history of the United States, or history of civilization or library work, history of art or history of philosophy.	Sophomore - Logic (Jevons). SeniorPolitical economy, psychology, moral philosophy, evidences of Christianity.

CHAPTER V.

COLLEGES AND UNIVERSITIES OF THE UNITED STATES.

Abstract

I.--Brief Discussion of the System of Highes Education: Aumber of Inslitutions; Tendency of Institutions io Allopt Pretentious Names; Increase in Number of Institutions Due to Tarious Causes; Character of Universities and Colleges; System and Methods of Instruction; Union Colléege, N. Y., and Scientific Education; Degrees; Talue of the Ph. D. Dearee. II.-Sumimary of Statistics; Coeducation; Teaching Force; Students; Location of Institutions; Distribution of College Students; Income; Income from Productice Funds; Benefactions; State or 11 unicipal Appropriations. III.-Distribution of Students in Degree Courses from 18S6-S7 to 1859-9. IV. - Endowment Funds of Colleges and Universities. T.-Grounds, Buildings, and Apparatus.

TI.-State Universities. VII.-Denominational Institutions. VIII.-Organization of a Number of Leading Thiversities. IX. - Reorganization of Columbia Colleqe. X.-Brief Description of New Institutions. XI.--New Buildings during 1833-9.

I.-Brief discussion of the system of higher education,

Number of institutions. -The number of colleges and universities from which this Office has received reports for the year under consideration is 415 . The number is constantly increasing; a condition not to be regretted, provided the institutions do work for which they are prepared and equipped and not attempt to gire courses of study for the successful prosecution of which they lack both the necessary appliances and finances. As is well known higher education is not and can not be celf-supporting and needs considerable aid from outside sources, either in the form of endowment funds or annual gifts or appropriations for current expenses. Notwithstanding this fact it of ten happens that no sooner is an institution established whose real work ought to be secondary instruction than it organizes a college of commerce, so-called normal, collegiate and graduate departments, and calls itself a university, even if it has no endowment and relies almost entirely for support upon the tuition fees receired from the students.

It is frequently the case that some of the smaller institutions of the country advertise graduate or university courses of study, when, in fact, they often hare not a sufficient number of professors and instructors to carry on properly the undergraduate work of the institution. In order to make a success of graduate work-work which renders necossary considerable independent research-it is desirable, if not absolutely necessary, for the student to have, at his or her command, large and well-cquipped laboratories and libraries such as are far beyond the means of our smaller institutions. Such work ought, therefore, to be left to those institutions that are well endowed enough to provide the appliances which are indispensable for the successful prosecution of the work. The discussions of the relations of institations to scholastic work and requirements have keen intensified and extended by the action of the Harrard faculty in its attempt to shorten the time necessary for the aequisition of the A. B. degree. ${ }^{1}$
Increase in number of institutions.-The age of the institutions for higher education in the United States is inconsiderable when compared with that of European institutions. The first of our colleges, Harrard, was founded in 1638 under sircumstances which are familiar. From that time on new institutions were gradually established until now the number exceeds four hundred. This large increase in the number of institutions is due to the munificence of wealthy people who wish to promote the adrancement of knowledge, to religious zeal, and to the formation and settlement of new States. The large majority of the
people settling the new States are people of moderate means, who wish to give their children a good education, but who are frequently not able to spend the sum necessary to send them to an institution at a considerable distance from their homes. The desire for an institution of their own naturally follows, and the attempt to establish one succeeds in the larger number of cases. In most of these attempts the object is accomplished through the aid of some one of the religious denominations by whom the controlling power is retained. The rivalry existing among the several churches frequently causes the establishment of weak colleges in places where more good would be effected by deroting the money thus used to the enlargement and better equipment of some existing institution.

General character of colleges and universiites.-Speaking of the general character of the universities and colleges of the United States the Hon. James Bryce, M. P., in The American Commonwealth, says: "Out of this enormous total of de-gree-granting bodies very few answer to the modern conception of a university. If we define a university as a place where teaching of a high order, teaching which puts a man abreast of the fullest and most exact knowledge of the time, is given in a range of subjects covering all the great departments of intellectual life, not more than twelve and possibly only eight or nine of the American institutions would fall within the definition. Of these nearly all are to be found in the Atlantic States. Next below them come some thirty or forty foundations which are scarcely entitled to the name of universities, some because their range of instruction is still limited to the traditional literary and scientific course, such as it stood thirty years ago; others because, while professing to teach a great variety of subjects, they teach them in an imperfect way, having neither a sufficiently large staff of highly trained professors, nor an adequate provision of laboratories, libraries, and other external appliances. The older New England colleges are good types of the former group. Their instruction is sound and thorough as far as it goes, well calculated to fit a man for the profession of law or divinity; but it omits many branches of learning and science which have grown to importance within the last fifty years. There are also some Western colleges which deserve to be placed in the same category. Most of the Western State universities belong to the other group of this second class, that of institutions which aim at covering more ground than they are as yet able to cover. They have an ambitious programme, but neither the state of preparation of their students nor the strength of the teaching staff enables them to do justice to the promise which the programme holds out. They are true universities rather in aspiration than in fact.
"Below these, again, there is a third and much larger class of colleges, let us say three hundred, ${ }^{1}$ which are for most intents and purposes schools. They differ from the gyminasia of Germany, the lycées of France, the grammar schools of England and high schools of Scotland, not only in the fact that they give degrees to those who hare satisfactorily passed through their prescribed course or courses, but in permitting greater personal freedom to the students than koys would be allowed in those countries. They are universities or colleges as respects some of their arrangements, but schools in respect of the educational results attained. These three hundred may be further divided into two subclasses, distinguished from one another partly by their revenues, partiy by the character of the population they serve, partly by the personal gifts of the president, as the head of the establishment is usually called, and of the teachers. Some seventy or eighty, though comparatively small, are strong by the zeal and capacity of their teachers, and while not attempting to teach everything, teach the subjects which they do undertake with increasing thoroughness. The remainder would do better to renounce the privilege of granting degrees, and be content to do school work according to school methods."

System and methods of instruction.- About thirty or thirty-inve years ago nearly all the colleges and universities of the country prescribed a regular four years' course of study. The course consisted of classics and mathematics followed by the elements of mental and moral philosophy. and at its completion the degree of A. B. was conferred upon the students. The system of a prescribed inflexible course has been abolished by the greater part of all the institutions, and considerable latitude in the matter of choice of studies is allowed. The adoption of the elective system, as it is called, was due to the demand for instruction in scientific studies, in addition to those of the old time curricuium.

Provision for a choice of studies has been made in two different ways, viz, by offering to students the choice of separate and distinct courses of study, and by

[^20]offering electires in a course of study. This latter plan was in vogue to a limited extent in Harrard Unirersity as early as 1843-44. The following extract from the catalogue for that jear will show the arrangement at that time: "The laws of the University allow, after the freshman year, to the parents or guardians of undergraduates a selection in respect of certain specified studies. This selection must be made known to the faculty on or before the first day of June, in each year. If no notice of such selection be receired, in respect of any student, the faculty themselres proceed to assign to such student the elective studies they deem it best for him to pursue. No student is allowed to select or have assigned to him more elective studies than will occupy, with the required studies in recitation and lectures, every week twenty-one hours." At the date specified all the work of the freshman year and a comparatively large part of the work of the sophomore, junior, and senior years remained as required studies. The amount of "required" work has been gradually reduced, and the "elective "increased, until at the present time the only required studies in Harvard are in the freshman year: Rhetoric and composition (three times a week), chemistry (lectures, Thursday, first half year), and German or French for those who do not present both of these languages for admission (three times a week); in the sophomore and junior years the prescribed work consists of themes and forensics ; in the senior year no studies are prescribed.

The action of Harvard in offering electives to students was naturally followed by other institutions. These either offered similar privileges or formed new courses of study from which the student could take his choice. It may be well to note the fact that down to the present time none of the institutions allow as much freedom in this respect as Harrard. In many instances election is not allowed until the beginning of the junior year, while in some cases, especially in those institutions that are not well endowed, the prescribed courses are still adhered to. This action is very often a matter not of choice but of necessity, for an elective system can be maintained only by institutions where the teaching staff is able to do justice to a wide range of subjects.

Union College, N. Y., and scientific education.-Union College, Schenectady, N. Y., claims to hare been the first college to provide a scientific course of study. The essential features of this system, as originated by Dr. Nott and now so generally adopted, was the substitution of the modern languages and an increased amount of mathematical and physical science in place of the Greek and Roman

- classics. A scientific course of study was offered by Union in 1833. This course, in 1838-39, was as follows:

FRESHMAN CLASS.

First term :
Sallust.
Horace and Latin prosody.
Herodotus and Thucydides.
Second term:
Xenophon's Cyropa and Anabasis.
Horace, Roman Antiquities.
Cicero de Officiis, de Amicit., etc.
Third term:
Livy, with composition and declamation.
Algebra (Bourãon).
Lysias, Isocrates, and Demosthenes.

SOPHOMORE CLASS.

First term :
History.
Arithmetic (Hassler).
Algebra (Bourdon).
Second term:
History (Tytler).
Natural theology (Paley).
Plane geometry (Legendre).
Third term:
Natural history (Ware).
Solid geometry (Legendre).
Logic (Whately).

JUNIOR CLASS.
First term:
Trigonometry and applications (Hassler). Algebra (Bourdon).
Rhetoric (Blair).
Second term :
Chemistry.
Descriptive geometry (Davies), analytic geometry of two dimensions (Boucharlat).
Natural philosophy (Farrar's Mech.).
Third term :
Differential and integral calculus (Boucharlat).
Analytic geometry of three dimensions (Boucharlat).
Natural philosophy (Farrar"s Mech.).

First term :
Mechanics (Boucharlat).
Electricity and magnetism, optics (Biot).
Elements of criticism.
Second term:
Astronomy.
Moral philosophy.
Chemistry (Kames, and lectures).
Third terpa:
Law (Kent or Blackstone).
Anatomy and physiology.
Chemistry, botany, mineralogy, technology, synoptical view of the sciences.

The studies of the freshman year, as given above, are the same as were pursued at that time by students in the classical course. It will be seen that in the above course of study neither ancient nor modern languages were pursued after the freshman year. This was changed shortly afterwards, for, in the catalogue
for 1842 we find that Latin (Tacitus and Jurenal) was studied in the first and second terms of the sophomore class and German during the second term of the junior class. French was first offered as an extra study in 1843, and was made a required study during the second term of the junior class in 1850.

From 1838 to 1853 the requirements for admission and the studies of the freshman year of the classical course were identical with those of the scientific course, and election between the two courses was made at the beginning of the sophomore year. In 1854 the scientific course was remodeled, with the result that ancient languages disappeared entirely from it. The requirements for admission, which were necessarily modified, demanded that the candidate "be thoroughly prepared in English grammar and the other usual elementary studies, and bs quite familiar with practical arithmetic.

From what has here been said, it will be seen that a student can at the present time pursue almost any studies above what is generally required for admission to college during a period of four years, and at the completion thereof receive his degree. Through the adoption of the elective system it naturally follows that a degree given by one college does not necessarily mean the same thing as the same degree given by another college. In fact, some institutions frequently confer the same degree upon students who pursued widely different courses of study. Harvard, for instance, offers for 1890-91 $219 \frac{1}{2}$ full courses of instruction, of which 18.2 courses must and 25.2 courses may be taken to obtain the A. B. degree. From this total number of courses it will be seen that a large number of combinations, each leading to the A. B. degree, could be made.
Deyrees.-The fact that no fixed value is attached to the degrees in this countrv causes considerable confusion, especially among foreigners. Respecting the significance of the degrees given in this country, Professor Bryce, in the American Commonwealth, says: "As regards the worth of the degrees given, there is, of course, the greatest possible difference batween those of the better and those of the lower institutions; nor is this difference merely one between the few great universities and the mass of small colleges or Western State unirersities, for among the smaller colleges there are some which maintain as high a standard of thoroughness as the greatest. The degrees of the two hundred colleges to which I have referred ${ }^{1}$ as belonging to the lower group of the third class have no assignable value, except that of indicating that a youth has been made to work during four years at subjects above the elementary. Those of instituticns belonging to the higher group and the two other classes represent, on an average, as much knowledge and mental discipline as the poll or pass degrees of Cambridge or Oxford-possibly rather less than the pass degreas of the Scottish universities. Between the highest American degrees and the honor degrez of Oxford and Cambridge it is hard to make any comparison."
The number of different kinds of degrees conferred by American colleges and universities is constantly increasing and is rery often the cause of considerable confusion. Thus, for instance, we find that the degree of Ph. B. (bachelor of philosophy) is given by one institution at the completion of a course of study for which in another institution the degree of B . S. (bachelor of science) is conferred.

Value of the Ph. D. degree.-For some time past many of the leading colleges and universities and a few scientific associations of the United States have attempted, by resolutions and by example, to restore its original value to the degree of Ph. D. In Germany this degree is the reward purely of scholarship, which must be shown by examinations and other tests; but in this country the value of the degree has been greatly impaired by the fact that many of the colleges confer it as an honorary doctorate. To such an extent has this custom spread that the American Philological Association, at a meeting in-Cincinnati, Ohio, July, 1881, adopted the following resolution:

Whereas many colleges in the United States have in recent years conferred the degree of doctor of philosophy, not by examination, but honoris causa: Be it

Resolved, That this association deprecates the removal of this degree from the class to which it belongs (nameiy, B. D., LL. B., M. D., and Ph. D., degrees conferred after examination), and its transfer to the class of honorary degrees.
This resolution was concurred in by the American Association for the Advancement of Science, at its meeting, held in Cincinnati, August, 1881.
The following table, compiled from the annual reports of the Bureau from 1873 to 1890 , shows the number of honorary $\mathrm{Ph} . \mathrm{D}$. degrees conferred and the number of institutions so conferring the degree:

Year	Number of colleges conferring Ph.D.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { honorary } \\ & \text { Ph. D.'s } \\ & \text { conferred. } \end{aligned}$	Year.	Number of colleges conferring Ph.D	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { honorary } \\ \text { Ph. D.'s } \\ \text { conferred. } \end{gathered}$	Year.	Number of colleges conferring Ph . D .	Number of honorary Ph. D.'s conferred.
1873	12	17	1878	21	31	1884.	26	6
1874	10	15	1879	18	33	1885 ...	19	25
1875	12	19	1880	19	29	1886	18	29
1870	20	26	1881	29	49	1888		29
18\%....	14	19	1882	21	30	1889	31	50

From this table it would appear that the protest from the above-named societies had a temporary effect, as both the number of honorary Ph. D. degrees conferred and the number of colleges conferring the degree was considerably less in 1882 than in 1881; but, though the number of such degrees conferred in succeeding years fluctuates considerably, there does not seem to be any tendency to abolish the custom, as will be seen by looking at the last year of the above table. During this year both the number of degrees conferred and the number of schools conferring them exceeded the numbers of any previous years.

The custom is opposed by many colleges. President Pepper, in his annual report to the board of trustees of Colby University in 1887, says :
\therefore The faculty desire respectfully through this report to express to the board their conviction that the degree of $\mathrm{Ph} . \mathrm{D}$. should never be conferred as an honorary degree, but only, as is now the custom in the best colleges and universities, on those who by completing courses of study prescribed by the faculty under conditions also prescribed, shall merit the degree. It seems to the faculty that Colby, in consistency with its past history, should do nothing to lower, but everything to maintain or raise, the ralue of the symbols of scholarship."

That this recommendation was adopted is shown in the report of President Small for 1890 , which contains the following statement:
"The faculty wish to express their gratification that the trustees roted at their last annual meeting to adopt the recommendation made in 1887 by Di. Pepper: with reference to the degree of doctor of philosophy. * * * The ground upon which the faculty based their support of Dr. Pepper's recommendation was that the degree referred to had a distinct meaning abroad, and that the leading unirersities of this country had attempted to reserve it for the same use in the United States. The degree is intended not as a distinction for men who hare shown marked ability, or performed conspicuous service, but it is now used as a certification that, in addition to college instruction, the person upon whom it is conferred has had at least three years of university training in the processes of original investigation, and has proved his right to recognition as a master workman' by university examination and the publication of some results of original research." He also says: "It is also manifestly improper for an institution to grant that degree when it makes no pretension of furnishing the training which qualinies for it."
The sentiment here expressed by Dr. Small seems to be shared by the authorities of Rock Hill College, in the catalogue of which the following appears:
"Application is sometimes made to the college for the degree of doctor of philosophy. This of all degrees ought to be the reward of high merit, whether for work actually done in the field of philosophy or for an examination rigidly gone through before a faculty of philosophy. It is not within the scope of a faculty of science or a faculty of arts to pass upon this degree. It can be legitimately conferred only by a university having a school and faculty of philosophy. Proceeding from any other source it is valueless and misleading."

If this sentiment was shared by a large number of the institutions which confer the Ph. D. as an honorary degree the evil would be rapidly diminished, but so long as a few of our leading universities persist in this custom it is not to be supposed that the smaller colleges will drop it.

Many of those who receive this degree for work done at some of the leading institutions make it a practice to write after the degree either the name or an abbreviation of the name of the institution by which the degree was conferred. If this practice were more generally followed by people who earn the degree it might have some effect upon those colleges who do not provide courses of study leading thereto.

II.-Summary of statisticis.

The following table gives a summary by States of some of the more important statistics of unirersities and colleges for the year 1889-90:

EDUCATION REPORT, 1889-90.
TABLE 1.-Summary of statistics of universities and colleges for 1889-90.

	Professors and instructors.						Students.									
				Total number.			Preparatory departments.		Collegiate departments.		Graduate departments.		Professional departments.		Total number in all departments.	
				Male.	Female.	Total.	Male.	$\mathrm{Fe}-$ male.	Male.	$\begin{gathered} \text { Fe- } \\ \text { male. } \end{gathered}$	Male.	Female.	Male.	$\begin{aligned} & \text { Fe- } \\ & \text { male. } \end{aligned}$	$\begin{array}{c\|c} \text { Male. } & \mathrm{Fe} \\ \text { male } \end{array}$	Total.
\pm	3	4	5	6	7	8	9	110	11	12	13	14	15	16	1718	19
$\begin{aligned} & 3 \\ & 1 \\ & 2 \end{aligned}$	0 0 0	38 19 24	15 15 21	53 47 41	0 0 0	$\begin{aligned} & 53 \\ & 47 \\ & 51 \end{aligned}$	0 0 0	0 0 0	415 256 157	61 0 29	0 0 0	0 0 0	93 74 201	0 0 0	508 61 417 0 503 29	569 417 533
9	11	215	89	498	5	503	112		2,552	177	259	24	1,066	53	$\left\{4,178{ }^{(40)} 200\right\}$	4,474
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	0 0	82	$\begin{array}{r}0 \\ 58 \\ \hline\end{array}$	182	0 0	1823	0 0	0 0	276 1,078	${ }_{21}^{0}$	9 87	0	0 301	0	$\begin{array}{rrr}4,188 \\ 285 & 0 \\ 1,793 & 53 \\ 0\end{array}$	285 1,846
22	¢ 0	387 ?	254	785	11	796	2,261	111	4,262	343	356	35	2,350	6	1,850 680	10,530
,		+86	1	91	0	91		0	955	0	118	0	2	0	1,141 0	1,141
27	$\left\{\begin{array}{c}78 \\ 7\end{array}\right.$	287 \%	168	506	41	547	$\left\{1,45{ }^{(5}\right.$		2,871	$267\}$	$136{ }^{\circ}$	10	1,246	1	$\left\{\begin{array}{l} \left\{, 711 j^{(574)}\right. \\ 550 \end{array}\right\}$	7,141
1	0	8		8	0	8	0	0	82		0	0	0	0	820	82
10	42	141	${ }^{6}$	174	20	194	466	81	746	85	230	6	27	0	1,592 231	1,823
	43	50	84	167	11	178	286	2	289	28	${ }_{0}$		818	17	1,487 1,48	1,5\%6
8	7	72	13	104	3	107	- 93	5	1,029	13	17	0	321	0	1,426 18	1,444
3	10	21	2	27	2	29			${ }_{64}$	1\}			10	0	$\left\{{ }^{(164)} 11\right\}$	427
10	$\{1$	573	18	91	10	101	2 $\begin{array}{r}168 \\ 387 \\ \hline\end{array}$	10 192	$\begin{array}{r}64 \\ 949 \\ \hline\end{array}$	96	14	0	165	0	< $\begin{array}{r}\text { 1,561 } \\ \text { 252 }\end{array}$	1,954
9	22	65	13	86	7	93	363	50	586	1	18	1	85	0	1,229 255	1,484
7	35	50	21	75	26	101	489	433	600	39	1	0	169	0	1,259 472	1, 731
,	16	18		16	16	32	125	143	44	37					$169 \quad 180$	349
14	3	$90\}$	28	130	35	165	545	209	996	200	4	0	180	0	2,750 608	3,358
20	$\left\{\begin{array}{l}\text { (2) } \\ \\ \end{array}\right.$	$113\}$	127	270	39	309	1,355	585	1,373	179	24	0	1,087	2	3,980 931	4,911
6 6	($\begin{array}{r}63 \\ 10 \\ 8\end{array}$	113 4.3 29	3 1	69 39	${ }_{21}^{6}$	75 60	$\begin{aligned} & 359 \\ & 32 \end{aligned}$	$\begin{gathered} 370 \\ 620 \end{gathered}$	$\begin{aligned} & 691 \\ & 407 \end{aligned}$	$\begin{array}{r} 21 \\ 134 \end{array}$	11	0	$\begin{aligned} & 46 \\ & 16 \end{aligned}$	0	1,100 926 391 426	$\begin{aligned} & 1,491 \\ & 1,352 \end{aligned}$
12	$\left\{\begin{array}{r}8 \\ 83\end{array}\right.$	${ }_{9} 9.4$	41	160	55	221	1,423	1,019	663	236	14	0	489	0	2,899 1,496	4,395
11	- 27	${ }_{70}^{94}$	4		39	128	693	394	916	342	4	3	88	0	$\left\{{ }^{(469)}\right.$ 054\}	3,254
4	1	4	-		\}	28	90	28	8	7	1	0	44	0	(295)	627

States and Territories.
North Atlantic Division: Maine Nampshire-..............
Massachusetts Rhode Island... New Jersey
South Atlantic Division: South Central Division: Kentucky..
Tennessee
Alabama...
Mississippi
Louisiana.
Texas
Arkansas.

TABLE 1.-Summary of statistics of universities and colleges for 1889-90-Continued.

States and Territories.	Number of endowed professorships.		Number of scholarships.	Number of volumes in libraries	Valne of scientific apparatus and libraries.	Value of grounds and buildings.	Amount of productive funds.	Income from productive funds.	Receipts from tuil tion fees.	State or municipal apriations.	Total income.	Benefactions.
1	[20	21	¢5	2:3	24	2.5	26	29	28	¢D9	33	31
North Atlantic Division: Maine	4		78	76,614	¢80, 000	\$650,000	\$1,245, 000	\$64,591	830,395		\$94,986	\$31, 150
New Hampshire	10		143	70,000 56,000	125,000	375, 000	589,436	22,501	5,383	88,400	48,003	121,050
Massachusetts	48	49	6%	547, 100	1,020,000	5, 013,000	10,641,083	576,304	438, 931		1,424,87\%	807, 813
Rhode Island.	3		100	68,000 269,698		$6 \% 5,000$ $1,400,000$	4,710, ${ }^{9811}$	232, 68\%	235, 8\%1	0	496, 096	567, 453
Comnecticut	42	38	${ }_{476}^{16}$	501, 2005	$\begin{array}{r} 109,630 \\ 2,005,733 \end{array}$	7, 7 , 699,374	16, 462,158	860, 354	542, 434	149,118	1,738,757	682, 262
New Jorsey	10	12	78	93, 262	51,200	495,000		39,400	14,000		58,100	
Pennsylvania	54	12	398	320,986	619, 300	5, 599, 000	4, 686, 241	264,566	332, 872	0	639, 130	5
South Atlantic Division:	0	0	30	4,100	6,000	75, 000	83,000	4,980	360		7, 140	
Maryland	3	21	143	95, 700	204, 050	1,449,900	3, 033,000	52, 250	100,222	14,675	168, 127	123, 829
District of Columbi	1		78	68, 000	30, 000	1,000, 000	430,000	25, 512	77,216 80,540	23,000 40,000	134, 9202,431	16,360 154,000
Virginia .-	21	1	67	116,900	310,800	1,681,100	$1,391,048$ 188,150	11,409	80,500	25, 000	41,909	15, 100
West Virginia.				9,200 73 7800	131,200	-235, 8000	1887, 806	11,'271	46,454	20, 125	111,049	160,000
North Carolina	2	1	$\stackrel{20}{9}$	73,500 47800	131,000 39,000	600,000	203, 000	16,580	28, 360	53,050	123, 040	6,215
South Carolina	11			40,800	97, 300	848,000	775,20\%	50,949	19,000	1,065	92,514	51, 049
F'lorida.				5,675	8,075	\%5, 000	20,000	1,000	7,330		19,821	20,414
South Central Division:										400	140,966	136,000
Kentucky-	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	10	${ }_{330}$	103, 631	233,550	2, 175, 000	1, 847, 400	121, 100	151,093	800	364,324	117, 685
Tennessee				25,700	60,500	-922, 000	325, 000	25, 500	22, 784		8\%, 5\%4	12,600
Mississipp		1	,	25, 000	58,550	409,500	574,000	33,743	22, 034	300	64, 247	142, ${ }_{\text {25, }}$
Louisiana	0	0	173	97,376	89,950	1, 131,533	1, 616, 313	105,255	76,788	17,500 12,500	- 139,2288	14, 32,244
Texas..	4	0	15	19,937	61,081	832, 800	662, 000	43,800	60, 10031	12,500	13, 181	
North Central Division:				1,950								
Ohio.	41	3	447	285, 713	478, 953	5,001,235	5,072,062	281, 904	222,273	126,600	738, 344	361,757 178,000
Indiana	17		158	121,520	217,300	2,025, 000	1, 711, 129	99, 253	100, 154	46, 314	628,018	178,000
Illinois.	15		465	190,375	270, 800	3, 187, 8,85	3, $1,508,069$	103,724	154, 2153	194, 820	500, 133	179, 399
Michigan	36		4	137,989	675, $5: 27$	1,891,8,500	1,501, 816	63, 092	61,613	112,570	315, 160	235, 355
Wisconsin	11	${ }_{3}$	58	49,839	219,138	$2,437,824$	1,3:4, 876	63,537	41, 613	65, 000	$2 \sim 8,749$	121, 80\%
Minnesota	23		157	97, 156	1206, 205	1, 664,000	1,231,714	81,043	136,218	54,000	3:8, 101	401,200
Missouri	17	2	202	135, $68: 3$	236,550	2,381, 000	1,975, 207	119, 938	237, 965	34, 400	399,213	73,042
North Dakota	0	0	1	3,500	10, 000	180,000	25,000 11,000	3,000 1,000	6,500	36, 2850	52, 035	34, 300
South Dakota	0	0	11		\%9,	1,043,000	1,236,700	48,'710	13, 204	80,000	145, 546	63,089
Nebraska....	6	0	40	22,104	7,000	1,043,000	1,230, 00		13, 20		16,	

Kansas			2	57, 741	175, 300	1,762,050	463,500	20,917	81, 172	72, 125	244,549	114,338
Western Division: Montana.....	0		1	1,200	1,500	113,0	3,000	3,000	2,8		10,238	25,000
W yoming				1,500								
Coiorado-...	0	0	3 0	18,040 0	23,800	1,700, 5,5000	351,000	${ }_{0}^{900}$	1,188	0		$\begin{array}{r} 122,000 \\ 1,500 \end{array}$
Utah				8,500	25, 000	240, 000			5, 634	28,750	39, 384	
Nevadia-...-			8	3, ${ }_{6} 600$	1,000	150,000	121,000	1400	10.400	58,000	28,000 1680 108	4800
Oremon.		0	44	16,700	13,200	302, 000	237',000	14,249	24,7\%\%	11,277	50, 744	13, 100
Californi	4	0	7	102, 930	372, 700	1,009, 088	2,232,596	125, 393	61, 835	98,348	312,772	39,500
North Atlantic Division.		118	2,016	2,005, 665	4,010,863	21,816,374	39, 155,565	$2,060,398$	1,599,836	157,518	4,499,944	2,732, 033
South Atlantic Division.	41		347	461, 675	876,425	6,791,500	6, 483, 206	265, 067	364,982	176,915	920,806	
South Central Division.	27	11	727	324, 594	578,871	6,353,583	6,201, 713	397, 148	419,063	31, 500	1,014,353	465,924
North Central Division.	178	18	1,62:	1,201,599	2,725, 176	24,150, 299	19,300, 335	1,098, 539	1,270,495	868, 809	3,84, 189	2,055' 630
Western Division .-.-. -	7	0	63	158, 530	441, 050	5,147,588	2,929,59\%	144,941	110, 608	171,375	522, 626	205, 200
Total..	471	172	4,775	4, 152,053	8,635,385	64, 259, 344	74,070,415	3,966,083	3,764,984	1,406, 117	10,801,918	6,006, 474

Coeducation.-The fact that increasing attention is being bestowed upon the higher education of women is apparent not only from the number of colleges for women that are constantly being established, but from the number of institutions that are continually removing the barriers against the admission of women to their privileges. The great advance that has been made in this direction during the past ten years may be graphically presented by means of the following diagram. This shows the ratio of coeducational institutions to the total number of colleges and universities (excluding colleges for women) for the years 1880 and 1890:
1880.

I.--Diagram showing the ratio of coeducational colleges to the total number of colleges (excluding colleges for women).

Teaching force. The total number of professors and instructors employed in the 415 institutions during the year under consideration was 7,918 . This number includes the instructors in all the departments of the institutions. The distribution of instructors among the several departments is shown by the following diagram:

College, 44.5%

II.-Diagram showing the distribution of professors and instructors among the several departments of colleges and universities.

From this representation it will be seen that a little more than half the total number of professors instruct in the collegiate department, counting those instructing in both collegiate and preparatory departments. Of the 7,918 professors and instructors reported 1,083 were women. The great majority of this number were engaged as instructors in music, art, and elocution, or as assistants to professors. An examination of the catalogues of the 272 coeducational institutions shows that in 134 of them women have charge of some regular college studies. This includes not only the cases where women have the title of "professor," but also cases where they are called "instructor," but have charge of the subject specified. Nearly all of the coeducational institutions have women in their
corps of instructors, but, as said before, the large majority of these are engaged as assistants or as instructors in music, art, etc. The same investigation also showed that 24 of the coeducationalinstitutions have women as members of their boards of trustees.

Students.-The distribution of the 118,581 students among the several departments is shown in the following diagram:

Cölege, 37.2\%.

Preparatory, 33.2\%

Professionat, 13.2%

Gradriate, 1.7\%

Unclassified, 14.7\%:

III.-Diagram showing the distribution of students among the several departments of colleges and universities.

The graduate students form a very small percentage of the total number, notwithstanding the remarkable increase in this respect during the past twenty years. ${ }^{1}$ As would naturally be expected, much the larger proportion of all the students are males, though this ratio is being constantly decreased. The accompanying diagram shows the proportion of males and females reported in all departments of colleges and universities :

MaZes, 72.6\%

IV.-Diagram showing the sex of students in all departments of colleges and universities.

Taking only the regular college students-that is, students pursuing undergraduate college courses, we find that the proportion of males is larger than when the students in all departments are considered. The total number of stu-
dents reported as being in the collegiate departments was 44,133 , and the classification according to sex is given in the following diagram:
V.-Diagram showing the sex of students in collegiate departments.

Location of institutions.--The distribution of colleges among the several gecgraphical sections of the United States is shown in the following:

North Atlantic Division.

South Atlantic Division.

13.5\%.

South Central Division.

North Central Division.

VI.-Diagram showing the distribution of 415 colleges and universities among the several geo graphical divisions of the United States.

Distribution of college students.-The proportion of regular college students enrolled in the several dirisions is shown in Diagram vir.

North : Atlantic Division.

[^21]Comparing Diagrams VI and VII it will be seen that the North Atlantic Division is the only one in which the proportion of college students is greater than the proportion of institutions. This is somewhat changed when we consider the students in all the departments, the distribution of which is as follows:

North Atlantic Division.

South Atlantic Division.

South Central Division.*

16.4%

North Central Division.

45.9\%

Western Division.

VIII.-Diagram showing distribution of total number of students among the several geographical divisions.

Comparing the above diagram with Diagram VI we find that in this case both the North Atlantic and North Central Divisions have a larger proportion of students than institutions. With respect to the North Central Division this fact is due to the large number of preparatory students. Nearly 53 per cent. of the total number of such students reported are found in this section-i.e., the North Central. Here also are found a large number of students in business, music, and art departments. In the North Atlantic Division the proportion of preparatory students is comparatively small. This is especially the case in the New England States, where the total number, 112, is reported by one institution. The excellent secondary schools maintained by this section of the country relieve the colleges and universities of preparatory work, thus allowing their entire resources to be devoted to higher education. Preparatory departments in other sections of the country are being abolished as fast as the high schools attain a standard which will allow such action to be taken.

Income.-The sources from which colleges and universities draw their annual income forms another interesting subject for investigation. The total income reported for $1889-90$ was $\$ 10,801,918$, derived from tuition fees, productive funds, State or municipal appropriations, and from miscellaneous sources. The ratio which the income derived from each of theze sources bears to the total income is shown in the following diagram:

Tuition Fees.

As would be expected, the amount of income derived from productive funds is greater than that from any other source, while the amount derived from tuition fees is buta little more than one-third of the total. As institutions supported by tuition fees nearly always expend their total annual income the small proportion of the cost of college education paid by students is again forcibly brought out. The inference is that vigorous institutions for higher educatiou can not be self-supporting, but must receive aid from sources other than tuition fees.

The income derived from permanent funds was $\$ 3,966,083$, distributed among the several geographical divisions as follows:

North Atlantic Division.

South Central Division.

North Central Division.

Western Division.

X.-Diagram showing the proportion of income from productive funds reported by the colleges and unirersities of the several geographical divisions.

ED $90-49$

Comparing diagram VI (p. 766), showing the ratio oî institutions in th several divisions with the above diagram, it will readily be seen that the institutions of the North Atlantic Division are more generously endowed than those of the other divisions of the country. The institutions in this section are, comparatively speaking, old institutions with well-established reputations, having alumni scattered throughout the entira country. The rich man with money to give for educational purposes naturally turns to his alma mater, and, if he is not a college graduate, he designates an institution or institutions with well-established reputations. Thus the older institutions are constantly receiving large and numerous benefactions. The gifts and bequests to colleges and universities amounted in 1889-90 to $\$ 6,006,474$, the distribution of which is shown in the following diagram:

XI.-Diagram showing the proportion of benefactions received by the colleges and universities of the several divisions.

The institutions of the North Atlantic Division received, as will be seen, 45.5 per cent of the total amount. The advantages possessed by this division in the matter of productive funds and benefactions are somewhat offset in some of the other divisions by State appropriations for current expenses.

The total amount of State or municipal appropriations in 1889-90 amounted to $81,406,117$, distributed as follows :

North Atlantic Division.

South Atlantic Division.

12.6%

South Central Division.

2.2%
North Central Division.

61.8%

Western Division.

XII.-Diagram showing the proportion of State or municipal appropriations receired by the colleges and universities of the several divisions.

The North Atlantic Division reports 11.2 per cent of the appropriations here considered. Nearly the whole of this was received by the College of the City of New York from the city of New York, which it serves as a high school. The North Central Dirision reports 61.8 per cent of the total. In this division State unirersities have met with considerable favor, and the States hare, as a rule, dealt with them rery generously. It will also be seen that a!though nearly all the States comprising the South Central Division have State unirersities, the amount appropriated for their support was exceedingly small. They depend chiefly for their support upon students' fees and the income from productive funds. In a large number of the State universities tuition is free to residents of the State, and in the few cases where tuition is not free the charges have been made as low as the resources of the institutions would allow.

III.-DISTRIBUTION OF STUDENTS IN DEGREE COURSES.

Table 2, page 773, presents, in a form convenient for comparison, the distribution of undergraduate students in the several degree courses for the successive years from 1886-87 to 1889-90. During the past few years the statistics necessary for the compilation of this summary have been given by the different institutions with a marked degree of accuracy and in considerable detail, thus enhancing the value of this representation.

The summary furnishes an indication of the trend of college education, which is virtually determined by the relative predominance of different courses of study for a period of time.

From an examination of the statistics included in this table it appears that the ratio of students in what is known as the classical or A. B. course is slightly decreasing. The greatest decrease is shown in the South Central Division, where the ratio in the classical or A. B. course has dropped from 59 per cent in 1886-87 to 47.9 per cent in 1889-90. It will also be seen that the South Atlantic Division continues to draw a larger ratio of its students to the A. B. course than any other section of the country. The movement here indicated, i. c., the decrease of students in the A. B. course, will not be a surprise to anyone who has studied the subject of collegiate education in America during recent years. The colleges and universities of the country are continually forming new courses of study for which evidently there is a demand. But, notwithstanding the multiplication of courses leading to degrees other than the A. B., the number of students pursuing the A. B. course is still greater than the sum of all the students pursuing other degree courses.

The degree of A. B. does not at present necessarily imply that its possessor has acquired a classical education, for there are institutions that confer this degree on the completion of courses of study in which neither Latin nor Greek are included.

It is a matter of great regret that statistics showing the classification of students by courses for a long period of years can not be obtained. In making comparisons the data used should be for at least a period of ten years, so that temporary fluctuations of any sort whatsoever would be avoided. But, since such complete data do not exist, the reader and investigator must content himself with the briefer record.

A glance at the statistics will show that the percentage of students pursuing regular degree courses has increased with considerable regularity since 1886-87, the time when these statistics were first collected. It will also ke noted that it is in the older portions of the country, the North and South Atlantic Divisions, in which the classical course has the deepest hold upon college students, while in the more recently settled regions more attention is given to the sciences and courses of study in which the ancient classics seldom find a place.

			188	6－87．						88\％							1888	－89．									82－90．				
	$\begin{aligned} & 80 \\ & \neq A \end{aligned}$		$\begin{aligned} & \dot{n} \\ & 0 \\ & 0 \\ & 0 \\ & y \\ & 0 \\ & 0 \end{aligned}$	Per de 12 re		tof 0 res ourse ed in	$\begin{aligned} & \text { stu- } \\ & \text { su- } \\ & \text { as } \\ & \mathrm{n}- \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { 䐀 } \end{aligned}$		$\begin{aligned} & \dot{Q} \\ & \dot{0} \\ & \ddot{0} \\ & \text { A } \end{aligned}$	Per stud re cou		$\begin{aligned} & t \text { of } \\ & \text { s in } \\ & \text { ar } \\ & \mathrm{re} \end{aligned}$	$\begin{gathered} 80 \\ \end{gathered}$		$\begin{aligned} & \dot{4} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$		cer reg	nt o	f st	ade		$\begin{aligned} & 80 \\ & \text { 品 } \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { lar } \end{aligned}$	$\begin{aligned} & \text { cont } \\ & \text { cous } \end{aligned}$	of st ses	uden epor	ts in	egu-
	号		$\underset{H}{0}$					．		－		ted	n－	$\stackrel{H}{4}$	\pm	0						0	H	$\begin{array}{\|} \stackrel{+}{\rightrightarrows} \\ \underset{\sim}{4} \end{array}$	8						¢
States．	$\underset{\sim}{\substack{4 \\ \hline}}$	ત્ત్		¢	©				ry	$\underset{\sim}{\square}$	$\dot{\sim}$	ષ்		$\underset{H}{0}$	艺							4	$\begin{aligned} & 0_{0}^{0} \\ & 0.1 \end{aligned}$	B	줄						－
	$\begin{aligned} & 8 \\ & \stackrel{y}{8} \\ & 80 \end{aligned}$	$\begin{aligned} & 60 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{0}$	$\begin{aligned} & \text { I2 } \\ & \text { In } \end{aligned}$	莒			$\begin{aligned} & 6 \\ & 0 \\ & 80 \end{aligned}$	50	80				$\begin{aligned} & 0 \\ & 0 \\ & 80 \\ & 0 \end{aligned}$	${ }_{2}^{50}$	$\underset{\sim}{\infty}$				$\stackrel{8}{6}$			$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & \hline 80 \end{aligned}$		0				$\stackrel{\oplus}{i n}$		－
	$\stackrel{』}{\rightleftharpoons}$		ম	0	0	\％	范	$\stackrel{\Phi}{9}$	Oi	\nexists	8	8	100	$\stackrel{\otimes}{\rightrightarrows}$	ơ	ㅂ	On	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ i=1 \\ i=1 \end{gathered}$	苢	$\begin{aligned} & 0 \\ & 0_{2}^{2} \end{aligned}$		$\stackrel{0}{\square}$	0	g	4		\％	$\stackrel{A}{2}$		${ }_{0}{ }_{0}$
	O	9	$\stackrel{\rightharpoonup}{a}$	శ్రే	电			8	寻	$\stackrel{+}{a}$	न－	品		8	寻	$\stackrel{\rightharpoonup}{a}$	\％	E	0	8	0		0	$\underset{\sim}{9}$		－	0	8	0	0	${ }^{4} \mathrm{O}$
	4	"-	0	皆				4	4	O	CH	吉	140	4		©	－		0	$\dot{\oplus}$		${ }^{4}$	4	4	©				$\dot{\oplus}$		－
	安	$\stackrel{\circ}{7}$	$\begin{aligned} & \dot{4} \\ & \text { H } \end{aligned}$	$\begin{gathered} \text { むi } \\ \text { む̃ } \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\dot{8}$	$\dot{0}$	$\begin{aligned} & \text { H } \\ & \text { م) } \end{aligned}$	だ	$\begin{aligned} & 0.0 \\ & \text { - } \\ & \sim \end{aligned}$	$\begin{array}{r} 0 \\ 9 \\ \hline 010 \\ 0 \end{array}$	$\stackrel{\circ}{7}$	$\dot{8}$	$\begin{aligned} & \dot{6} \\ & { }_{1} \end{aligned}$	$\begin{aligned} & \text { ח } \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \dot{1} \\ & \dot{\varphi} \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \dot{n} \end{aligned}$	$\stackrel{\dot{A}}{\dot{A}}$	$\begin{aligned} & \text { 任 } \\ & \dot{0} \end{aligned}$	$\begin{array}{\|c} 0 \\ 9 \\ 0 \\ 0 \end{array}$	$\dot{\circ}$	$\dot{0}$	$\begin{aligned} & \dot{0} \\ & \text { م } \end{aligned}$	Q ＜	$\begin{aligned} & \text { थ } \\ & \text { ロ் } \end{aligned}$	$\begin{aligned} & \dot{\mu} \\ & \dot{\mu} \end{aligned}$	Á	［2	－
United States	360	41，906	60	62	22	8	8	334	33， 038	65	62	20	18	263	26，115	83	62	19	6	9	2	2	323	37， 164	84.6	57.8	19.9	7.1	8.1	3.8	3.3
North Atlantic Division－ $1-\ldots-$－	65	10，541	87	77	19	1	3	62	10，366	82	78	15	7	47	8，480	89	81	10	1.	5	2	1	57	12，584	89.3	70.7	12.0	1.7	5.4	5.2	5.0
South Atlantic															－ 011																
Division ．－－－－	50	4，552	51	81	10	9	0	45	3， 705	60	\％8	7	15	37	2，911	72	82	7	2	7	2	－－－－	43	3， 000	82.4	77.3	12.3	2.3	5.3	2.8	
vision	66	7，0\％0	38	59	31	8	2	49	3，961	45	54	27	19	31	2，283	77	57	27	9	1	4	2	50	4，556	75.9	47.9	31.4	8． 2	3.2	5.1	．
North Central Division	$\} 152$	17，142	60	46	25	12	17	143	13，427	63	47	25	28	126	10， 995	83		1）$\}$	11	12	2	4	154	15， 207	83.6	45.3	20． 5	12.8	11.3	2． 7	2． 4
Western Division	27	2，601	28	43	25	23	9	25	1，579	36	32	39	29	22	1，438	75	48	$\stackrel{26}{ }$	5	20	1		19	1，217	87.8	48.1	20.4	5． 7	21.3	2.4	1.1
North Atlantic																															
Division：																															
Maino．－－－－－－－	3	393	100	100	0	0	0	3	432	57	100	0	0	3	441	99	100	－－－					3	476	99．2	100.0					
New Hamp－ shire	1	249	100		0	0		1																							
Vermont．．	2	213	＋ 94	100	24	0	16	1 3	229	1	100 64	0	0 32	1	229	99 96	80	7	20		13	－－－	$\stackrel{1}{2}$	256	94． 1	78.8		21.2			
Massachusetts	6	2，114	91	97	－ 3	0	0	7	2，2\％9	78	97	1	$\stackrel{\text { \％}}{ }$	5	2， 133	89	99			1	13		7	2，723	89.8	$\stackrel{59.9}{ }$	1.1		13.3 .4	14．5	1.1
Rhode Island．	1	241	100	100	0	0	0	1	25	9.	81		19	1	2， 268	93.	81			19				2，							
Connecticut	3	866	99	91	9	0	0	3	913	98	90	5	5	2	319	96	71	16		13			3	1，099	98.9	91.0	5.3		3.7		
New York	20	2， 741	79	64	29	5	$\stackrel{3}{2}$	17	2，486	83	68	＇25	7	14	2， 206	81	79	11	2	7		1	18	4，07\％	86.6	5． 9	12.9	3.3	9.4	9.5	12.0
New Sersey	4	626	88	86	14	0	0	4	781	85	77	18	5	\％	¢81	91	85	8			7		2	， 838	89.6	73．4	18.1			7.2	1.3
Ponneylvania	25	3，098	83	61	34	0	5	23	2，785	80	62	25	13	17	1，996	92	61	22	1	7	6	3	21	2，928	86.4	55.1	25． 9	． 8	8.0	6.1	4.1

H00世0
かにのシールにのの
¢人）
ผた
๙
－¢ \％\％20
W0000会000 0，00

Degrees conferred in 1889-90.-The following table presents the summary, by States, of the number of different degrees conferred by 415 colleges and universities during the year 1889-90.

c Includes \boldsymbol{z} sanitary engineers and 6 metallurgical engineers.

IV.-Endowment funds of colleges and universities.

Although the number of colleges and universities in the United States is constantly increasing, both by the foundation of new institutions and by the development of institutions from secondary schools to colleges, this increase in the number of institutions has not thus far affected to any perceptible degree the increase in the endowment funds of the older institutions of the country.
The gifts of the people to higher institutions have been large and numerous and seem to be keeping pace with the increase in the population and wealth of the country. During the past few years a number of rich bequests have been made to old institutions, and also in not a few cases for the foundation of new institutions. The most notable of the latter are Clark University, Worcester, Mass., University of Chicago, Chicago, Ill., Catholic University, Washington, D. C., and Leland Stanford Jr. University, Palo Alto, Cal.

On account of the failure of a number of institutions to report to the Bureau from year to year a comparison between the total amounts of productive funds in 1880 and in 1890 would not show the true rate of increase in the funds during the last ten years.
The following tabular statement includes, first, only the institutions that reported on this subject in both 1880 and in 1890 , and, second, all the institutions that reported in either year. From the first showing the average rate of increase may be inferred.

States.		Productive funds.			1879-80.		1889-90.	
					Productive funds.		Productive funds.	
		1879-80.	1889-90.					
United States...... North Atlantic Division South Atlantic Division South Central Division North Central Division Western Division .-.-.-.	191	\$37, 726,501	866, 900, 817	$\begin{array}{r} \text { Per ct. } \\ 77.3 \end{array}$	243	\$13,168;2\%0	315	\$74,070,415
	42	19,2ヶ9, 002	37, 970,113	97.0	51	23, 739,371	54	39, 155, 565
	25	4, 62J, 883	5,921, 106	28.0	36	4, 947, 883	36	6, 483, 206
		2, 992, 149	5, 015, 313	68.6	37	3, 073,149	51	6,201,713
	90	8,871,263	15, 507, 189	77.3	104	9, 294,653	153	19, 300, 335
	9	1,958,204	2,457,096	25.5	15	2,113, 204	21	2,929,596
North Atlantic Division Maine New Hampshire Vermont \qquad Massachusetts Rhode Island \qquad Connecticut \qquad New York \qquad \qquad Pennsylvania- \qquad	3	611, 000	1,245,000	103.7	3	611,000	3	1,245, 000
	2	275, 000	529,436	92.5	$\stackrel{1}{2}$	500.003	2	529,435
	6	5, 665, 321	10,638, 583	87.8	6	5, 666, 321	8	10,641,083
	1	643, 637	-980,836	52.4	1	643,637	1	980,836
	2	1,954, 033	4, 154, 811	112.6	2	1,554, 023	3	4.710, 811
	14	8, 213, 631	16, 35\%2, 6ะ̌8	99.1	15	8,765, 731	17	16, 362, 158
	14	1,915, 3	4,0068, 789	112.5	- 19	$1,386,369$ $3,937,390$	20	4, 686, 241
South Atlantic Division:		1,015,						
	1	83, 000	83, 000	. 0	1	83, 000	1	83, 000
Maryland	${ }^{2}$	3, 027,600	3, 030,000	\% ${ }^{-1}$	6	3,027, 600	$\stackrel{4}{4}$	3, $033 \mathrm{j}, 000$
District of		116, 000	430, 000	270.7	4	116, 000	2	430,000
Virginia	5	338, 460	1, 010,448	207.4	5	338, 460	7	1,391,043
West Virgini	3	138, 653	188, 150	35.7	4	138, 653	3	188, 150
North Carolina	5	264,000	291, 306	10.3	6	274,003	8	357, 806
South Car	4	180,000 478,170	203,000 655,202	12.8 37.0	6 4	492,000 478,170	5	203,000
Georgia Florida.	3	478,170	655,202	37.0	4		5	710,200 20,000
South Central Division:								
Kentucky	12	560,400 $1,232,375$	802,000 $1,786,000$	43.1	${ }_{13}^{9}$		12 18	$1,1777,000$ $1,847,400$
Alabama	${ }_{2}^{12}$	1, 302, 000	1, 300,000	a.7		1,302, 090	8	1, 325, 000
Mississippi	2	552, 061	574,000	4.0	2	552, 061	5	5\%4,000
Louisiana	3	328,313	1,563, 313	$3 \% 6.1$	4	328, 313	8	1, 616,313
Texas --- Arkansas	1	17,000	20,000	17.6	6	61,000	5	C62, 000
North Central Division:						12,000		
	19	1,812,711	3, 481, 276	92.0	24	2, 009,711	29	5,072,052
Indiana	9	902,000	1, 711, 129	89.7	11	1,022, 000	9	1,711, 129
Illinois	17	1,686, 910	3, 823, 569	126.7	20	1,738,910	24	3, 849,569
Michigan.	9	1, 081, 392	1, 428, 062	32.1	9	1,081, 392	10	1,508, 062
Wisconsin	5	${ }^{1} 779,022$	$891,516$	14.4	7	783, 022	6	
Minnesota	${ }_{14}^{2}$	609,853	1, 111,783	827.3	$\stackrel{2}{15}$	$\begin{aligned} & 609,853 \\ & 796,6 \Sigma 0 \end{aligned}$	${ }_{19}^{6}$	1,324,876
Missouri	9	1,062, c00	1, 733, 000	63.2	10	1,052, 400	21	1,970,207
	a Decrease.							

From this table it will be seen that, while the increase in the productive funds of the 191 institutions distributed over the entire country is 77.3 per cent, the largest increase has taken place in the forty-two institutions of the North Atlantic Division, which reported, in 1889-90, more than 56 per cent of the total amount included in the above table. The poorest showing is made by the institutions of the Western Division, but this can be accounted for in a measure by the small number of institutions reporting in 1880 and the number of new institutions that have been iounded during the decade.

The most remarkable increase recorded is in the State of Louisiana. This is due to the establisnment of the Tulane University of Louisiana, which is the successor of the old University of Louisiana. It has at present an endowment fund of more than $\$ 1,000,000$.

The total number of colleges and universities reporting to the Bureau in 1889-50 was 415, and of this number but 315 answered the question relating to productivefunds. Among those not answering this inquiry were Clark University, Princeton, Rutgers, Dartmouth, and Haverford, all of which have large endowment funds, and would have materially increased the total amount for 1889-90. The figures here given show an increase of 71.6 per cent, which would be considerably larger if all the institutions had reported.

V.-Grounds, buildings, and apparatus.

In considering the resources of institutions for higher education the material equipment, such as grounds, buildings, and apparatus, must not be lost sight of. The increase in the value of appliances is due, in great measure, to the increased attention given to the sciences and the consequent erection and equipment of laboratories for experiments and research. The substantial and ornamental style of architecture which has been adopted in the erection of college buildings hasincreased the cost of buildings while adding considerably to the general appearance of the college campus. In the following table an attempt is made to present in a convenient form the value of grounds, buildings, and apparatus of colleges and universities for the years 1879-80 and 1889-90. In order to show the rate of increase the table is divided into two parts, the first part containing statistics of such institutions only as reported in both 1879-80 and 1889-90, while the second part includes all the institutions that reported in either of the years under consideration.

States.		Value of grounds, buildings, and apparatus.			1879-80.		1889-90.	
					Value of grounds, buildings, and apparatus.		Value of grounds, buildings, and apparatus.	
		1879-80.	1889-¢0.					
United Sta	245	\$32, 889, 720	855, 920, 205	$\begin{array}{r} \text { Per ct. } \\ 70.0 \end{array}$	312	¢40,523,424	378	\$i2, 894,729
North Atlantic Division	48	12, 316,079	19, 377, 837	57.3	59	16, 445, 283	61	25, 827,237
South Atlantic Division	34	4, 427,000	6, 277, 900	41.8	43	5, 2\%2, 500	51	7, 667, 925
South Central Division	39	3, 324, 000	5, 284, 650	59.0	57	4, 046, 500	67	6, 932, 454
North Central Division	106	11,282, 241	20, 108,430	78.2 216.2	129	12, 821, 741	172	26, ${ }^{\text {5, }} 5975,475$
Western Divi :ion		1,540, 400	4, 871,388		24	1,937, 400	27	5,591, 638
North Atlantic Division: Maine	3	805,000	730,003	$a 9.3$	3	805, 000	3	730,000
New Hampshire						125, 000		
Vermont.	2	340, 000	500, 000	47.1	2	340, 000	2	500,000
Massachusetts	4	1,150, 000	1,895, 000	64.8	4	1,150, 000	7	6, 033, 000
Rhode Island	1	472, 881	509, 630	7.8	1	472, 884	$\stackrel{1}{2}$	625,000 $1,509,630$
New York	19	5,509,569	9,277, 507	68.4	21	7, 266, 773	21	$9,665,107$
New Jersey	1	400, 000	450,000	12.5		1,150,000	3	546, 200
Pennsylvania	18	3, 638, 626	6, 015, 700	65.3	25	5,135, 626	22	-6,218,300
South Atlantic Division: Delaware	1	75, 000	81,000	8.0	1	75,000	1	81, 000
Maryland	4	702, 000	1,337,000	90.5	6	520, 500	8	1,653, 950
District of	2	775, 000	1, 024,000	32.1	4	1,150,000	3	1,030,000
Virginia.	7	1,385, 000	2,019,400	45.8	8	1, 465, 000	8	2,021,900
West Virginia	3	267,000	255, 200	a4. 4	4	307, 000	3	255, 200
North Carolina	7	539,000	634,500	17.7	7	539, 000	10	958,500
South Carolina	4	170, 000	234, 000	37.6	6	250, 000	8	639,000
Georgia	6	514, 000	692, 800	34.8	7	966, 000	7	945,300 83,075
South Central Division:							3	
Kentucky -..---	9	621,000	721,550	16.2	13	773,000	14	854, 250
Tennessee	15	1,383, 000	2,233, 200	61.5	19	1,451,500	18	2, 408, 550
Alabama	3	370, 000	637,000	72.2	3	370,000	6	982,500
Mississippi	3	450,000	446, 800	$a .7$	4	625, 000	6	468,050
Louisiana	5	363, 000	791, ¢00	118.2	7	418,000	10	1,221,483
Texas.	3	133, 000	446, 200	235.5	8	295, 000	10	893, 881
Arkansas	1	4, 000	8,000	100.0	3	114,000	3	103, 740
North Central Division: Ohio	26	3,181,421	4,875, 888	53.3	31	3,591,421	35	5,480, 188
Indiana	8	-625, 000	-897, 300	43.6	13	1,020, 000	10	2, 242, 300
Illinois	22	2, 378, 600	2, 818, 325	18.5	26	2, 703,600	28	3,458,625
Michigan	9	1,353, 442	2,167,892	60.2	9	1,353,442	11	2, 370, 392
Wisconsin	6	637, 000	2, 260, 663	254.9	8	798,500	8	2, 633,163
Minnesota	2	302, 650	1,623, 362	436.4	3	327, 650	8	2, 656, 962
Iowa.---	15	1, 040, 908	1,518,450	45.9	18	1, 173, 908	20	1,790,225
Missouri North Dakota	9	1, 035, 220	1,961,000	89.4	12	1, 125, 220	25	2,617,550
North Dakota							5	190,000 384,720
Nebraska	${ }^{-7}$	188,000	767,500	308.2	2^{-}	188.000	6	1,114,000
Kansas.	7	540, 000	1,218, 050	125. 6	7	540,000	14	1,937, 350
Western Division: Montana							1	114,500
Wyoming							1	153,000
Colorado	3	190,000	1,696,800	793.1	3	130,000	4	1,723,800
New Mexic							1	5,500
Utah	1	25,000	151,000	504.0	1	25,000	1	265,000
Washingto	1	100,000	525, 600	425.6	1	100, 000	3	581, 850
Oregon--	5	193, 000	315, 200	63.3	8	255, 000	5	315, 200
California	8	1,032, 400	2,182,788	111.4	11	1,367, 400	10	2,281,788

a Decrease.

VI.-State universities.

The establishment and management of State universities form an interesting subject for study and investigation. As early as 1787 the General Government passed an ordinance setting aside two townships of land in what is now Ohio for the support of a " university," and this precedent has been followed in the case of nearly every State since admitted into the Union. The funds derived from the sale of these lands have in almo ${ }^{t} 5$ evary instance been devoted to the support of State universities, and if properly managed would have ýielded handsome en-
dowment funds for such institutions. But in many cases the persons to whom the management of the lands was intrusted were in too great a hurry to dispose of them, often sacrificing them at a ridiculously low figure: in some cases they served as a means of "booming". a particular State, the lands being advertised and sold at rery low rates, thus inducing settlers to locate; in a few cases, where the Statez disposed of the land and assumed the indebtedness therefor, the funds have keen mismanaged and sometimes very much impaired.

The mismanagement of these lands and the funds derived therefrom has sarved one good purpose. The newer States, profiting by the experience of the older, are disposing of their lands advantageously, and by the time all of them are sold their universities will have endowments far exceeding those of the older institutions.

In a number of cases the funds derived from the sale of university lands have bsen considerably augmented by the land grant of 1862, which was given by some of the States to the State unirersities, while in other cases the fund was used for the establishment of separate and distinct institutions.
The State universities have also as a rule been generously treated by the legislatures of their respective States in the matter of annual and special appropriations. Very recently the legislature of Missouri granted to the State University at Columbia the direct tax refunded to the State by the General Government, amounting to $\$ 647,900$. This amount is to be added to the permanent endowment fund, increasing the latter to $\$ 1,180,946$.

The statistics of State universities for the year under consideration are given in the table on the following page.

Namo．	Coileges of arts and science．					Professional schools．															
	Prepara－ tory de－ part－ ment．			der－ uate art－ $n t$.		$\begin{aligned} & \dot{y} \\ & \text { on } \\ & 0 \\ & \text { a } \end{aligned}$		$\underset{\sim}{\stackrel{\rightharpoonup}{5}}$													
	Hi	$\stackrel{4}{0}$	H边	$\begin{gathered} +10 \\ 0 \\ 0 \end{gathered}$		$\stackrel{\square}{\circ}$	$\left\|\begin{array}{ll} 10 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$														
				$\begin{aligned} & \text { 品荡 } \\ & \text { 号荡 } \end{aligned}$		$\begin{gathered} \text { 罟 } \\ \text { '/4 } \\ \hline \end{gathered}$	$$	$\begin{aligned} & \text { 界 } \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$													
1	2	8	4	5	6	＇ 7	δ	9	10	11	12	13	14	15	16.	17	18	19	280	181	22
University of Alabama	0	0	23	182	3	1	3	21	26	206	0	0	0	12，000	\＄380，000	\＄300，000	\＄24， 000	$\$ 900$	0	\＄36，900	0
University of California	0	0	38	380	21	4	33	300	67	701	1	0	0	41， 330	1，676， 088	2， 035,096	114，092	0	\＄98， 348	213， 947	0
University of Colorado		75	13	45	7	1	10	23	23	150	0	0	0	8，140	1，120，000	62， 000		300		45，000	${ }^{0}$
University of Georgia	0	0 113	13	160	1	2	15	158	28	319	1	0	0	14，000	183，000	445， 202	31， 199	12 0	${ }^{0}$	31， 199	82．5
University of Illinois	5	113	31	350	6	0	0	0	32	469	0	0	0	19，000	460，000	450， 000	24，606	12，626	46，044	98， 983	0
Indiana University－－	3	99	25	310	12	1	$\stackrel{9}{2}$	17	30	438	0	0	90	12，000	240，000	500， 000	22，941	5，155	23， 000	51， 923	2，000
State University of Iow	0	0 138	26	288	9	5	55	459	57	737	0	0	0	23， 656	270，000	232， 487	17，554	27， 585	54，000	100， 710	＋100
University of Kansas．		138	25	199	17	2	5	88	33	509	0	0	0	12， 541	500，000	165，000	9，000	270	72， 125	82， 735	1，500
Louisiana State University																					
and Agricultural and Me－ chanical College．	2	85	11	72	0	0	0	0	13	157	0	0	0	19，000	206，000	318， 313	14，556	0	10，000	39，556	0
University of Michigan	0	0	53	925	78	5	43	1，155	96	2,158	0	0	0	74， 599	1，200，000	550， 000	38，700	95， 884	194，8\％0－	144， 677	
University of Minnesota		46	28	394	48	5	64	265	103	1，002	0	0	0	25， 000	1，350，000	800， 000	30，000	12，000	65，000	330， 000	
University of Mississippi		39	11	178	13	1	1	16	12	246	0	0	5	13，000	1，350，000	554，000	3），643	800	0	35，513	0
University of the State of Missouri		101		131		2	38	326	67	737				22，647	534， 000	540，000	2\％，970	10，605	33，500	73，414	
University of Nebraska	8	138	26	236	15	0	0	0	$\cong 9$	475	0	0	0	11，41\％	678，000	95：，560	30，000	10，005	80，000	110， 000	0
University of Nevada．	2	87	8	50	0	0	0	0	10	137	0	0	0	3，000	151，000	91，000			28，000	28，000	
University of North Carolina．	0	0	16	165	14	1	2	33	18	200			11	34， 000	287， 000	10，000	640	8，248	20，000	28， 887	
University of North Dakota．－		70	11	24	0	0	0	0	11	151	0	0	0	3，000	110，000	0	0	0	23， 400	24， 100	25
Ohio State University		165	32	221	13	3		26	32	425	0	88	0	9，313	1，500， 000	539， 470	42， 270	6，868	75， 100	129， 07%	0
University of Oregon	0	0	9	183	0	2	23	52	3：	292	0	0	0	3，300	105，000	149， 000	9，149	2，991	11， 2777	23， 417	4，100
University of South Carolina．	0	0	23	175	10	2	4	44	$\because 6$	227	0	0	6	30，000	¢75， 000	0	0	5，000	42，000	55， 000	0
University of South Dakota－－	6	210	21	71	4	0	0	0	$\cdots 7$	435	0	0	0	2， 100	130，000	0	0	0	35， 000	39， 000	0
University of Tennessee．．．．．－－	0	0	18	250	1	3	21	259	38	510	0	275	11	7，000	513，000	426， 000	25， 410	3，000	0	41，810	0
University of＇Iexas．．－－－	0	0	15	$2 \% 6$	${ }^{4}$	$\stackrel{1}{4}$	${ }^{2}$	＇79	15	307	0	0	0	6，300	250，000	64\％， 000	4\％， 000	3，840	12，500	58，310	16，000
University of Virginia	0	0	2%	24%	11	$\stackrel{3}{0}$	10	264	31	483	4	0	17	45，000	1，034，900	290，600	16，886	42， 040	40，000	109， 681	
University of Washington		256	10	31	0	0	0	0	10	287	0	0	0	3，000	1，525， 600			4，000	5，000	9， 0,000	
University of West－Virginia．	4	129	10	59		$\stackrel{1}{4}$	2	10	16	208				6，000	165， 000	108，000	6， 400	1，000	25，000	3\％， 400	
University of Wisconsin．	0	0	49	488	21	2	10	163	＇70	800	1	0	11	33,000	1，800，000	：351，236	27，45＇7	16，549	112，5\％0	20：3，987	20，000
University of Wyoming		44		，					12	80				1，500	153， 000						
Total	30	1，798	567	6，043	308	45	343	3，758	961	19，816	7	363	151	491，838	15，146，588	10，411，964	587， 453	259，601	1，106，684	2，176，250	43， 950

The following shows the present organization of the State universities and the manner in which the controlling power is chosen:

The University of Alabama comprises-
Classical course.
Scientific course.
I. Academic Department.

Literary course.
Civil engineering course.
Mining engineering course.
II. Law Department.

It is controlled by-
$\{$ Governor of State,
$\}$ Ex offcio.
9 trustees appointed by the governor and confirmed by the senate.
The University of Caiifornia comprises-

1. College of Letters . $\begin{cases}a & \text { Classical course. } \\ b & \text { Literary course. } \\ c & \text { Course in letters }\end{cases}$
(c Course in letters and political science.
2. College of Agriculture.
3. College of Mechanics.
4. College of Mining.
5. College of Civil Engineering.
6. College of Chemistry.

It is controlled by-
Gorernor.
Lieutenant governor. Speaker of assembly.
Superintendent of public instruction.
Board of Regents. President of State Agricultural Society. President of Mechanics' Institute of San Francisco. President of university.
16 regents appointed by the governor and confirmed by the senate.
7. Lick Observatory.
8. College of Law.
9. College of Medicine.
10. College of Dentistry.
11. College of Pharmacy.

The Cniversity of Coloradio comprises-

1. Department of Philosophy and Arts.

Bachelor of arts. Bachelor of philosophy. Bachelor of science. Bachelor of letters. Master of arts. Master of science.
2. Department of Medicine.
3. Normal School.
4. Preparatory School.

It is controlled by-
Board of Regents.- $\left\{\begin{array}{l}\text { President of university, ex officio } \\ 6 \text { regents }\end{array}\right.$
The University of Georgia comprises-

1. Franklin College

Bachelor of arts.

- -

Master of arts.
Master of science.
2. State College of Agriculture and Mechanic Arts.-

Bachelor of agriculture.
3. School of Technology.
4. School of Law.
5. School of Medicine.

It is controlled by -
Governor.
Board of Trustees.$\left\{\begin{array}{l}\text { Governor. } \\ \text { President of board of technological school. } \\ \text { One from each Congressional district of the State, four from the State at } \\ \text { large, and two from the city of Athens, appointed by the governor and } \\ \text { confirmed by the senate. }\end{array}\right.$ large, and two from the city of Athens, appointed by the governor and confirmed by the senate.

I. College of Agriculture .-.---------	Course in agricultur
	Course in mechanical engineering.
II. College of Engineering	Course in electrical engineering.
	Course in mining engineering.
	Course in architecture.
III. College of Natural Science	Course in chemistry.
	Course in English and science.
IV. College of Literature and Science.-	Course in Latin and science.
	Course in ancient languages.
	Cour
c	Course in art and design.
	Course in rhetoric and oratory.

[^22]The Indiana University comprises-
I. College Department.
II. Law Department.

It is controlled by
Board of Trustees.- $\left\{\begin{array}{l}5 \text { elected by board of education. } \\ 3 \text { elected }\end{array}\right.$
The Siate University of Iowa comprises-
II. Law Department.
III. Medical Department
IV. Homeopathic Medical Department.
V. Dental Department.
VI. Pharmaceutical Department.

It is controlled by-
$\left\{\begin{array}{l}\text { Governor. } \\ \text { Superintendent of public instruction. }\end{array}\right\}$ Ex officio.
Board of Regents.- $\left\{\begin{array}{l}\text { Superintendent of public instruction. } \\ \text { One member from each Congressional district who are elected by the gen- }\end{array}\right.$ eral assembly.

The University of Kansas comprises-
I. Department of Literatures, Sciences, and the Arts.-

General scientific course. Latin scientific course. Classical course.
Modern literature course.
Latin English course.
General language course. Civil engineering course. Electrical engineering course.
II. School of Law.
III. School of Music.
IV. School of Pharmacy.

It is controlled by-
Board of Regents .- $\left\{\begin{array}{l}6 \text { appointed by governor and confirmed by the senate. } \\ \text { Chancellor- }\end{array}\right.$ Chancellor-elected by the regents.

The Louisiana State University and Agricultural and Mechanical College comprises-
I. Subfreshman Department.
II. Collegiate Department. $\left\{\begin{array}{l}\text { Literary course-A. B. } \\ \text { Agricultural }\end{array}\right.$

Mechanical course-B. S.
III. Commercial course.

It is controlled by-
Board of Supervisors.- $\left\{\begin{array}{l}\text { Governor of State. } \\ \text { Sup't of public education. } \\ \text { President of university. } \\ \text { 12 members appointed by the governor and confirmed by the senate. }\end{array}\right\}$ Ex officio.
The University of Michigan comprises-
Bachelor of arts. Bachelor of philosophy. Bachelor of science. Bachelor of letters. Civil engineer. Mechanical engineer.
I. Department of Literature, Science, and the Arts, comprising courses leading to-

Mining engineer.
Electrical engineer.
Master of arts.
Master of philosophy.
Master of science.
Master of letters.
Doctor of philosophy.
Doctor of science.
Doctor of letters.
II. Department of Medicine and Surgery.
III. Department of Law.
IV. School of Pharmacy.
V. Homeopathic Medical College.
VI. College of Dental Surgery.

It is controlled by-
Board of Regents.. $\left\{\begin{array}{l}\text { President of university. } \\ 8\end{array}\right.$
$\{8$ regents elected by popular vote for terms of 8 years.

The University of Minnesota comprises-

I. College of Science, Literature, and Arts.
II. College of Mechanic Arts.
III. College of Agriculture.
IV. Department of Law.
V. Department of Medicine . $\left\{\begin{array}{l}\text { College of Mencopathic Medicine and Surgery. } \\ \text { College of Homeon }\end{array}\right.$ College of Dentistry.
VI. Department of Veterinary Medicine.
VII. Graduate Department.

It is controlled by-
Governor.
Board of Regents .. $\left\{\begin{array}{l}\text { Superintendent of public instruction. } \\ \text { Sresident of university. }\end{array}\right\}$ Ex officio.
President of university.
7 members appointed by the governor and confir
The U゙niversity of Mississippi comprises-
I. Department of Science, Literature, and Arts.- $\left\{\begin{array}{l}\text { Bachelor of arts. } \\ \text { Bachelor of science. } \\ \text { Bachelor of philosophy. } \\ \text { Master of arts. } \\ \text { Doctor of philosophy. }\end{array}\right.$
II. School of Law.

It is controlled by-
Board of Trustees.. $\{$ Gorernor, ex officio.
$\{15$ members appointed by the governor and confirmed by the senate.
The Tniversity of the State of Missouri comprises the following schools:

I.-Tee Academic Schools.

XIV. Agriculture.
XVI. Law.
XVII. Medicine.
XVIII. Mining and metallurgy.

It is governed by-

It is governed by- $\begin{aligned} & \text { Consists of } 9 \text { members, appointed by the governor and confirmed by the } \\ & \text { senate. }\end{aligned}$
The Cniversity of Nebraska comprises at present-
I. College of Literature, Science, and Arts..
$\left\{\begin{array}{l}\text { Classioal. } \\ \text { Literarr. }\end{array}\right.$ Agricuiture.
II. Industrial College
Practical science.
Civil engineering.
Mechanic arts.
III. Latin or Preparatory School.

It is governed by-
Board of Regents.
$\int 6$ members, elected by popular vote for torms of \{ 6 years.

The University of Nevada comprises-
I. School of Liberal Arts.
II. School of Agriculture.
III. School of Mines.
IV. Normal Department.
VI. Business Department.

It is governed by a board of regents. consisting of three members, elected by popular vote.

The University of North Caralina comprises-
 Classical course.
 Philosophical course.
 I. Undergraduate courses.Scientific course.
 Literary course.
 Engineering course.
 II. School of Law.

III. School of Medicine.
IV. Graduate courses.

It is governed by-
Board of Trustees
XX. Military science and tactics.
XXI. Art.
XXII. Commercial.
XI. Chemistry.
XII. Geology and mineralosy. XIII. Biology.
(
\qquad
I. English.
II. Latin,
II. Greek.
IV. Modern Languages,
III. Metaphysics.
IX. Mathematics.
X. Physics.
II.-THe Professional Schools.
$\left\lvert\, \begin{gathered}\text { XIX. Engineering. } \\ \text { XX. Military scien }\end{gathered}\right.$
V. Hebrew.
VI. Sanskrit.
VII. Comparative philology.
B.-Science.
III. Latin,
III. Greek.

The Ohio State University comprises-

I. School of Agriculture
Bachelor of agriculture. Short course in agriculture. Civil engineering.
II. School of Engineering Mechanical engineering. Mining engineering. Short course in mining.
III. School of Pharmacy.
IV. School of Veterinary Medicine.
V. School of Science.
VI. School of Arts and Philosophy .- \{ Classical course.

It is governed by-
Board of Trustees-7 members appointed by the governor and confirmed by the senate.
The University of Oregon comprises-
(Classical course.
I. Collegiate Department.-\{ $\left.\begin{array}{l}\text { Scientific course. } \\ \text { Literary course. }\end{array}\right\}$ A. B. degree.
II. Law School.
III. School of Medicine.

It is managed by-
Board of Regents- 9 members appointed by the governor and confirmed by the senate.
The University of South Dakota embraces-
I. Preparatory Departiient.
II. Collegiate Department.- $\left\{\begin{array}{l}\text { Classical course. } \\ \text { Philosophical course. } \\ \text { Scientific course. } \\ \text { Literary course. }\end{array}\right.$
III. Music Department.
IV. Commercial Department.

The government of the university is vested in a board of nine regents, who appoint five trustees for the current management of the institution.
The University of Tennessee comprises-

A.-Academic Department.

I. College of Agriculture, Mechanic Arts, and Sciences.
II. University Department

Literary scientific course. Latin scientific courss. Course in agriculture. Course in civil engineering. Course in mechanical engineering. Course in chemistry and mining engineering. $\left\{\begin{array}{l}\text { Courses leading to degrees of A. M., M. S., PH. D., C. I., } \\ \text { MIN. E., MECH. E. }\end{array}\right.$

B.-Professional Departments.

I. Department of Law.
II. Department of Medicine.
III. Department of Dentistry

It is controlled by a board of trustees, which is, in a measure, self-perpetuating. The board nominates members to fill vacancies, but the election is vested in the general assembly.

The University of Texas embraces-
I. Academic Department.$-\left\{\begin{array}{l}\text { Bachelor of arts. } \\ \text { Bachelor of letters. } \\ \text { Bachelor of science }--\left\{\begin{array}{l}\text { General course. } \\ \text { Engineering. } \\ \text { Chemistry. } \\ \text { Physics. } \\ \text { Geology. }\end{array}\right. \\ \text { Special course in letters leading to a certificate. }\end{array}\right.$
II. Law Department.

It is governed by-
Board of Regents- 8 members appointed by the governor and confirmed by the senate.
The University of Virginia comprises-
I. Literary Department.
II. Scientific Department.
III. Law Department.
IV. Medical Department.
V. Pharmaceutical Departmênt. VI. Engineering Department. VII. Agricultural Department.

It is governed by a rector and board of visitors appointed by the governor and confirmed by the senate. They are nine in number.

The State University of Washington comprises-
I. Preparatory Department.
II. Collegiate Department. $\left\{\begin{array}{l}\text { Classical course. } \\ \text { Latin scientific course. }\end{array}\right.$ English scientific course.

[^23]
The Test Tirginia University comprises-

I. Preparatory Department.
II. Collegiate Department.. $\left\{\begin{array}{l}\text { Classical course. } \\ \text { Scientific cours }\end{array}\right.$
III. Military Department.
IV. Law School.
V. School of Civil and Mining Engineering.

It is governed by a board of regents consisting of one member from each senatorial district and is self-perpetuating.

The University of Wisconsin embraces-
I. College of Letters and Science
II. College of Mechanics and Engineering.
III. College of Agriculture
IV. College of Law.
V. School of Pharmacy

It is governed by-
Board of Regents
(1. Graduate and fellowship courses.
2. Ancient classical course.
3. Modern classical course.
4. General science course.
5. English course.
6. Civic-historical course.
7. Special science course.
8. Special course for normal school graduates.

1. Civil engineering course.
2. Mechanical engineering course
3. Mining and metallurgical engineering courses.
4. Railroad engineering course.
5. Electrical engineering course.
6. Experiment station.
7. Graduate courses.
8. Long agricultural course.
9. Midade agricultural course.
10. Short agricultural course.
11. Dairy course.
12. Farmers' institutes.
\{ Graduate course.
Pharmacy ccurse.
\{Superintendent of publicinstruction\} Ex offcio. President of university.
2 members from the State at large.
1 member from each Congressional district, appointed by the governor.

The University of Wyoming embraces-
I. Academic Department. \qquad 2 years' academic course.
Sub-preparatory course.
Business department. Classical course.
II. College of Liberal Arts
III. Normal School.
IV. Agricultural College.
V. School of Mechanics and Manual Training.
VI. School of Irrigation Engineering.
VII. College of Mechanic Arts.

It is governed by-
Boärd of Trustees.
(Presiadent of university
Superintendent of public instruction $\}$ Ex officio 9 members appointed by the governor.

VII.-DENOMINATIONAL INSTITUTIONS.

The majority of institutions for higher education in this country are at present carried on under the auspices of the several religious denominations. As stated before, the total number of institutions reporting to the Bureau in 1889-90 is 415 , and of this number but 99 claim to be nonsectarian, leaving 316 that are under the control of some religious sect. It must not, however, be inferred that the instruction in denominational institutions has a sectarian bias. On the contrary a large number of them state particularly that their teaching is entirely unsectarian and that students will not be disturbed in their respective religious beliefs.
These denominational institutions have been the pioneers of higher education in several States, and have, at least in the Western States, prepared the way for the establishment of good State institutions. This they have succeeded in doing, not by advocating the establishment of such institutions, but by creating and fostering a desire for knowledge and making the people of the several communities realize the value of a liberal education. This much accomplished, the establishment of a State university naturally followed, the funds having been provided by the land policy of the General Government in setting aside certain tracts of land for the purpose of founding institutions of learning.
The proceeds arising from the sale of these lands are generally used in the establishment of new institutions in preference to giving the money to some one
of the institutions already in operation. This is rendered necessary by reason of the denominational relations of nearly all institutions for higher education not under State control. To give public money to any one of these institutions would cause a great deal of jcalousy and bitterness throughout the State. Again, if the money were distributed among the differentinstitutions of the States a great deal of its effectiveness would be destroyed. Thus it will be seen that the States have, as a rule, adopted the most feasible plan. The number of institutions under the control of the several religious denominations is as follows:

Denomination of colleges and universities.

Nonsectarian 99

METHODIST.

Methodist Episcopal--.------- 52
Methodist Episcopal South.-.- 16

African Methodist Episcopal -

African Methodist Episcopal
Zion --.-.-.-.-.-.-.-.-.-.-.--- 1
Methodist Protestant--.------ 2

PRESBYTERIAN.

Presbyterian ---------------- 35
Cumberland Presbyterian ---- 6
United Presbytarian---------- 6
Reformed Presbyterian ------- 1
Associate Reformed Presbyte-
rian
1

Baptist------------------------- 36
Free Baptist-..----------------- 6
Seventh-Day Baptist.-.------------- 2

Christian------------------------------------ 20

United Brethren ----------------------------- 10

Friends -- 6
Universalist.------------------------- 4
Evangelical Association ------------------ 2
German Evangelical.------------------ 1
Sev́enth-Day Adventist.-..........-. 1
New Church (Swedenborgian)----- 1
Total------------------------ 415

VIII.-Organization of a number of leading universities.

Having shown the organization of the State universities, an attempt is here made to present in a somewhat similar manner the organization of a number of other leading institutions for higher education in the United States. These institutions are well equipped not only with able professors and instructors, excellently chosen libraries, and scientific apparatus, but with valuable buildings and large productive funds, both of which are necessary for effective work. Nearly all of the selected institutions provide for advanced work in graduate departments in addition to the regular undergraduate and professional courses. They are well supplied not only with endowed professorships, but also with fellowships and scholarships to assist students in obtaining an education.

As will be observed, all the institutions with two exceptions are located in the extreme eastern section of the country, and among them are included the oldest institutions of the country. They are arranged in the order of their organization. The number of professors and students in the several departments in 1889-90 is given.

Name of institution.		Number of students.		Name of institution.		Number ofstudents.	
						获	
Harvard University	217	126	0	Yale University .	143	1,445.	2
Harvard College...j-	101	1,274	0	Yale College Si........-			
Lawrence School			0	School	38	343	
Bussey Institution --..-	5	3	0	Graduate Department.	61	81	
Graduate Department	9	112 36	0	Theological Department	${ }_{24}^{14}$	136 111	0
Law School --.	5	265	0	Medical Department.	20	54	0
Medical School	55 19	310 35	0	School of Fine Arts		10	32
School of Veterinary	19	22		College of New Jersey	45	769	0

Name of institution．

College of New Jersey （Princeton）－Continued． Coilegiate Department． John C．Green School of Science Graduate Department－
Unirersity of Pennsylvania Collegiate Department－ Graduate Department－ Law Depariment Medical Department－．．． Dental Department Veterinary Department－ Auxiliary Medical De－ partment
Columbia College
Collegiate Department School of Mines
School of Political Sci－ ence
Graduate Department
Law Department
College of Physicians and Surgeons in the city of New York．

Dartmouth Coilege
Collegiate Department
Chandler Scientific School
Thayer School of Civil Engineering．
New Hampshire College of Agriculture and Mechanic Arts．
Dartmouth Medical Col－ lege

Columbian University
Collegiate Department．
Corcoran Scientific School
Law Department－．．．．．．－
Medical Department．．．．
Dental Department
Preparatory Depart－ ment

	∞ 晏	जv	\bigcirc	N	20	厄気	8	淃	ω_{i}	\checkmark		$\underbrace{}_{\text {出 }}$		Number fessors instru	$\begin{aligned} & \text { pro- } \\ & \text { a nd } \\ & \text { tors. } \end{aligned}$
骨	出茄	${ }^{-1}$	¢	\bigcirc	안	发シ	$\stackrel{9}{6}$		న్ర్రి్రియ	8	－10			Male．	号茫
－ローコロの	い蜀	\bigcirc	\bigcirc	\bigcirc	\bigcirc	00	\bigcirc	000	－0゙0	－	0000～岕出	00	－	Female．	药

Name of institution．
De Pauw University

	Number of students．	
	宝	¢
51	778	260
15	216	70
4	11 86	0
4	20	0
16	216	120
18	75	148
2	15	30
5	70	74
104	1，143	186
100	\｛ 979	175
	2 73	11
4	105	0
118	672	256
22	115	177
14	133	0
50	r6	24
16	131	5
29	171	8
38	62	40
16	9	5
63	637	0
23	112	0
	8	0
21	49	0
7	54	0
4	50	0
18	279	0
10	100	0
7	15	0
58	404	0
58	$\left\{\begin{array}{l}175 \\ 229\end{array}\right.$	0
（6）	0）	0

a The organization of Clark University is fully explained on p． 790 ．

IX．－Reorganization of Columbia College．

One of the most significant occurrences of the year was the reorganization of Columbia College，New York．President Low，in his report for 1889－90，treats this subject very fully，and the following facts are taken therefrom．

On the 6 th of February，1890，Columbia College in the city of New York，con－ sisted of the School of Arts，the School of Law，the School of Mines，and the School of Political Science．In addition to these schools，which are under the direct control of the trustees of the college，the College of Physicians and Sur－ geons had become the Medical Department of Columbia College．The president， however，and the board of trustees have no responsibility as towards the medi－ cal department．${ }^{1}$

Each of these schools，the School of Arts，the School of Law，the Schooi of Mines，and the School of Political Science，had its own faculty，and each was administered without any reference to the others，almost without any conscious－ ness of the others．There were indeed students of one school taking some

[^24]studies in one or another of the other schools, but in order to do this they were obliged to matriculate and pay the fee of $\$ 5$ in each school in which they studied. Senicrs in the School of Arts were permitted to elect certain subjects in the other schools.: In fact, the attitude of the institution towards the student was one of multiplied opportunities, but opportunities held more or less out of relation to each other. What seemed especially to be needed, from the point of view of the student, was such a unification of the institution as would make its varied opportunities more available to those students whose equipment and capabilities justified them in desiring to study in more than one school,

The graduate work also stood in need of organization. It had grown to considerable proportions, but depended too much upon individual professors. There was no general standard to which all must conform.
"For this purpose," says President Low, "it was necessary to secure a body which could, in effect, direct the graduate work where it concerned itself with more than one school and provide a common standard for all the schools. Ineidentally it was desirable, if possible, to place this work, in its general phases, under the charge of faculties rather than of individuals."

A faculty of philosophy was formed to take charge of the advanced work in philosophy, philology, and letters. The central body or university council was then formed, based primarily on the four university faoulties of law, mines, political science, and philosophy, which between them comprise all the professors entitled to a seat in any faculty, and yet no professor sits in any more than one of them. The council was made to consist of twelve members, four of whom are men of letters, four of whom are men of science, and four of whom are men of law and political science.

It was decided that every student should matriculate simply as a student of Columbia, paying but the one matriculation fee, and thereafter that the facilities offered by any faculty or by all should be open to him, subject, of course, to any necessary regulations. Thus at one stroke Columbia ceased to be divided into fragments, and took upon herself the aspect of a university, wherein each department was related to every other and every one strengthened all.

The general control of the graduate work was also placed into the hands of the university council. "The result," says President Low, " has been to secure a common basis of requirement for the degrees of master of arts and doctor of philosophy, under whatever university faculty they may be obtained, which common basis represents a combination, for the most part, of the best requirements hitherto maintained in any quarter."
"The most important result of the reorganization of the institution thus far attained in its bearing upon the college proper is seen in the enlarged option already given to the members of the senior class. By a unanimous vote of the faculty of the School of Arts, it was resolvéd that courses under any university faculty designated by such faculty as open to seniors should be accepted as optional courses for seniors in the School of Arts. This action, being referred by the trustees to the president and university council with power, was unanimously indorsed by them. The senior year is thus made the point of contact between the college and the university. This arrangement, while it has the advantage of maintaining the dignity of the faculty of the college proper as a degree-granting faculty, has the other undoubted advantage of making the bachelor's degree seem, not so much the end of a student's course, as what it ought to be, merely an incident on the way to the true goal, the professional degree, or the degree of doctor of philosopy. While it in no way cheapens the bachelor's degree, it does shorten by one year the time required for the college and professional course combined."

X.-New Institutions.

Clark University, Worcester, Mass., was first opened for instruction, October 2, 1889. This institution was founded and endowed by Mr. Jonas G. Clark. Among the reasons given by Mr. Clark for choosing Worcester as the seat of the new foundation is the following: "Because its location is central among the best colleges of the East, and by supplementing rather than duplicating their work, he hopes to advance all their interests and to secure their good will and active support, that, together, further steps may be taken in the development of superioreducation in New England."

The corner stone of the main building was laid on October 22, 1887. The building is plain, substantial and well appointed, 204×114 feet, four stories high, and five in the centre, with superior facilities for heating, lighting, and ventilation, and has been constructed of brick and granite, and finished throughout in oak. The chemical building, erected in 1888, is constructed throughout of brick. The
dimensions of the building are 134.6×135 feet; the main body of the building is three stories, and the southwestern wing is two stories high. Another department building is in course of erection.

On April 3, 1888, Dr. G. Stanley Hall, then professor of psychology at Johns Hopkins University, was invited to the presidency. The official letter conveying this invitation contained the following expression, showing the liberal spirit animating the trustees and their confidence in the man whom they wished to honor: "They desire to impose on you no trammels; they have no friends" for whom they wish to provide at the expense of the interests of the institution; no pet theories to press upon you in derogation of vour judgment; no sectarian tests to apply; no guarantees to require, save such as are implied by your acceptance of this trust. Their single desire is to fit men for the highest duties of life, and to that end, that this institution, in whatever branches of sound learning it may find itself engaged, may be a leader and a light."

Having accepted this invitation, Dr. Hall was granted a year's leave of absence with full pay in order to inspect universities in Europe. During this year he visited every European country but Portugal, conferring with ministers of education, heads of universities, and leading scientific men. As a result of his inrestigations Dr. Hall, in his first annual report to the board of trustees, thus defines the work of Clark University:
"1. It must be of the highest and most advanced grade, with special prominence given to original research. This our country chiefly lacks and needs for both its material and educational wolfare. This is in the current of all the best tendencies in the best lands, and is the ideal to-day of, I believe, about every scientific man, who is able and in earnest, throughout the world. For this our location offers the rarest opportunities and inducements yet possible in this country.
" 2 . We must not attempt at once to cover the entire field of human knowledge, but must elect a group of related departments of fundamental importance, and concentrate all our care to make these the best possible. Each science has become so vast and manifold that it is impossible to cultivate the frontier of all at a single university. This is more and more recognized abroad, and is still more true under our American system of private endowment than on the European plan, with a national treasury to draw from. If coming universities, instead of imitating, would supplement others, will elect each its group of studies, all the gain in economy and effectiveness which skilled labor has over unskilled will be secured in the field of highest education.
"3. For our group we chose at first five fundamental and related sciences. Work in science can be quickest organized. Great libraries and museuins, and everything else that only age can bring, can be dispensed with at first, and a complete outfit of the best apparatus and of all needed books can be gathered in a short time. Again, this is a practical country, and its industries are sure to depend more and more on the progress of science. So far, we have utilized science with extraordinary ingenuity in our inventions, but have done comparatively little to create or advance it. We desire to make a patriotic endeavor to develop American discoverers as well as inventors. Finally, and above all, science, with its modern methods, has become an unsurpassed school of discipline, culture, and reverence.
"4. We must seek the most talented and best-trained young men. We must not exploit them for the glory of the institution, work them in a machine, nor retard their advancement, but we must give them every needed opportunity and incentive. Their salaries must be among the very best in the country; yet we must not ask them to spend their best energies in teaching and earning tuition fees for the university. and must leave open all possibilities, should such problems as individual fees, a periodic-year in Europe, etc., arise later. We must give to those who know how to value it such facilities as we are able, that they may work for science and for themselves, requiring in return only a limited amount of mutual instruction, special and adranced enough to aid rather than dirert from research (and no one is so eager and so able to teach the few fit as a discoverer), and careful conformity to a few obvious regulations."

The five sciences selected by the university are mathematics. physics, chemistry, biology, including anatomy and physiology, and psychology, including neurology, anthropology, criminology, and history of philosophy. In addition to these, modern languages are taiught in a way to meet the practical needs of studentsin these departments. The policy of the institution is, first, to strengthen the departments already established, and then proceed to the establishment of those which are scientifically most closely related to the established departments.

According to the register for 1889-90, no clearly marked lines exist between instructors and students. Fellows and scholars who have attained some degree of mastery in a special line of work give brief special courses, which are often attended by professors. This is a stimulus to the student, and both tests and exhibits his powers in teaching. The total numbər of professors and students during the first session of the institution was 60, selected in part only from about 900 applicants for various positions. The number selected included graduates from forty-eight different universities and colleges. Only graduate students, or those of equivalent attainments, are admitted, unless in rare and special cases. The tuition fee is $\$ 200$ per annum.

The University of the Northwest, Sioux City, Iowa, was opened for instruction in September, 1890. It is located at Morningside, a suburb of Sioux City, and is reached by the elevated railway. The institution is under the fostering care of the Methodist Episcopal Church, but is free from sectarianism, and will be conducted on broad Christian principles. The following departments have been established: Preparatory department; college of liberal arts; college of commerce; college of didactics; college of law; conservatory of music, and college of medicine. The college of medicine will be opened in September, 1891.
Lake Charles College, incorporated under the Louisiana statutes, June 22, 1887, is located at Lake Charles, in southwestern Louisiana. The college, preparatory and academic departments were opened for instruction, October 1, 1890. The institution is open to both sexes. The home life of the college is after the "cottage plan," and separate cottages are provided for young ladies and gentlemen, each accommodating about thirty students. Each cottage is under the care oî a matron.

Parker College, Winnebago City, Minn., was founded by the Free Baptists, and was first opened for instruction in September, 1888. The college has $\$ 100,000$ worth of property, $\$ 5 \overline{5}, 000$ of which is productive endowment.

Cotner University, Lincoln, Nebr:, was first opened for instruction in 1889, under the name of Christian University, which was changed to its present name on the 1st of June, 1890. This institution was established by the Christian Church of Nebraska, and is under the presidency of David R. Dungan, A. M. The courses already established are collegiate preparatory, normal preparatory, special Biblical, and medical. Other courses will be established when needed.
Black Hills College, Hot Springs, S. Dak., was founded by the Black Hills Mission of the Methodist Episcopal Church, and opened for instruction on Thursday, September 11, 1890. The college building is constructed of gray sandstone. It is 54 feet wide, 74 feet long, and three stories high. The recitation halls are large, commodious, and well lighted. The campus is a gently rolled tract of land comprising 20 acres situated in the very center of the town.

University of Chicago, Chicago, Ill.-One of the most generous benefactors to the cause of education is Mr. John D. Rockefeller, a prominent member of the Baptist church. When the Board of American Baptist Education Society, in May, 1889, decided to establish a well-equipped college in the city of Chicago, Mr . Rockefeller made a subscription of $\$ 600,000$ towards the purpose, which sum was increased during the succeeding year by about $\$ 600,000$ more in subscriptions, representing more than two thousand persons. Three months after the completion of this subscription, Mr. Rockefeller made an additional proffer of $\$ 1,000,000$. The following are the formal terms in which these subscriptions were made:

May 15, 1889.
Rev. Fred. T. Gates, Corresponding Secretary american Baptist Education Society:
My Dear Sir : I will contribute $\$ 600,000$ toward an endowmentfund for a college to be established at Chicago, the income only of which may be used for current expenses, but not for land, buildings, or repairs, providing $\$ 400,000$ more is pledged by good and responsible parties, satisfactory to the Board of the American Baptist Education Society and myself, on or before June 1, 1890, said \$400,000 , or as much of it as shall be required, to be used for the purpose of purchasing land and erecting buildings, the remainder of the same to be added to the above $\$ 600,000$ as endowment.

I will pay the same to the American Baptist Education Society in five years, beginning within ninety days after completion of the subscription as above and pay 5 per cent each ninety days thereafter until all is paid; providing not less than a proportionate amount is so paid by the other subscribers to the $\$ 400,000$; otherwise this pledge to be null and void.

Yours, very truly,
Jno. D. Rockefeller.

Cleveland, OHio, September 16, 1890.
To the Board of Trustees of the University of Chicago:
Gentlemen: I will contribute $\$ 1,000,000$ to the University of Chicago, as follows:
Eight hundred thousand dollars, the income only of which shall be used for nonprofessional graduate instruction and fellowships, and not for land, buildings, or repairs.
One hundred thousand dollars, the income only of which shall be used for theological instruction in the divinity school of said University, and not for land, buildings, or repairs.

One hundred thousand dollars for the construction of buildings for said divinity school.

I will pay the same to the said University in seven years, beginning October 1, 1890, and pay one twenty-eighth each three months thereafter in cash or approved securities at a fair market value, until the whole is paid, it being understood that a certain pledge made July 15, 1890, for $\$ 56,500$ to the Baptist Union Theological Seminary of Chicago shall be included in the above $\$ 1,000,000$; and also that the said seminary is to become an organic part of the said University; and also that the transfer of said seminary to the grounds of the University of Chicago shall be made within two years from this date; and also that a thoroughly well-equipped academy shall be established in the buildings hitherto occupied by the said seminary on or before October 1, 1892.

Yours truly,

John D. Rockefeller.

The institution was chartered September 10, 1890, as the University of Chi cago, and the management of the corporation is vested in a board of twenty-one trustees. The qualifications of the trustees and of the president of the University are thus set forth in the application for the charter:
"At all times two-thirds of the trustees and also the president of the University and of its said college shall be members of regular Baptist churches-that is to say, members of churches of that denomination of Protestant Christians now usually known and recognized under the name of the regular Baptist denomination; and as contributions of money and property have been and are being solicited, and have been and are being made, upon the conditions last named, this charter shall not be amended or changed at any time hereafter so as to abrogato or modify the qualifications of two-thirds of the trustees and the president above mentioned, but in this particular this charter shall be forever unalterable.
"No other religious test or particular religious profession shall ever be held as a requisite for election to said board, or for admission to said University, or to any department belonging thereto, or which shall be under the supervision or control of this corporation, or for election to any professorship, or any place of honor or emolument in said corporation, or any of its departments or institutions of learning."

The site of the University consists of three blocks of ground lying between the two South Parks of Chicago, and fronting on the Midway Plaisance, which is a park connecting the other two. One-half of this site was given by Marshall Field, of Chicago, and the other half was purchased at a cost of $\$ 132,500$.
William R. Harper, Ph. D., professor of the Semitic languages and Woolsey professor of Biblical literature in Yale University, was elected to the presidency at the first meeting of the board. He has decided to accept the position to which he was elected by the unanimous vote of the board.

The work of the University will probably be begun in October, 1892, and is thus set forth in Official Bulletin No. 1, published by the trustees:

The work of the University shall be arranged under three general divisions, viz., The University Proper, The University-Extension Worls, The University Publication Work.

1. The University Proper will include-
(1) Academies: The first academy of the University will be established, in accordance with the terms of the gift of Mr. John D. Rockefeller, at Morgan Park, Ill. Others will be organized or affiliated as rapidly as favorable opportunities are presented.
(2) Colleges: Of these there will be organized-
(a) The College of Liberal Arts, in which the curriculum will be arranged with a view to the degree of B. A.
(b) The College of Science, in which the curriculum will be arranged with a view to the degree of B. S.
(c) The College of Literature, in which the curriculum will be arranged with special view to the study of Modern Languages and Literature, History, etc., with a view, likewise, to the degree of B. S.
(d) The College of Practical Arts, in which the curriculum will be arranged with greater reference, than in the other Colleges, to the practical departments of business and of professional life, with a view to the degree of B. S.
(3) Affiliated colleges: The sharacter of affiliation will be determined by existing circumstances in particular cases.
(4) Schools: Of these, there will be organized-
(a) The Graduate School, which will include all graduate work of a nonprofessional character.
(b) The Divinity School, which will include the curriculum of study ordinarily presented by Divinity Schools.

As soon as the funds of the University permit, there will also be established-
(c) The Law School.
(d) The Medical School.
(e) The School of Engineering, which will include civil, mechanical, and elestrical engineering.
(f) The School of Pedagogy.
(g) The School of Fine Art.
(h) The School of Music.
2. THe University Extension Woris, which will include-
(1) Regular courses of lectures, delivered in and about the city of Chicago, in accordance with the best developed plans of University Extension.
(2) Evening courses in college and university subjects, in and about the city of Chicago, for men and women whose daily occupation will not permit them to take advantage of the regular college and university courses.
(3) Correspondence courses in college and university subjects for students residing in all parts of the country whose circumstances do not permit them to reside at an institution of learning during all of the year.
(4) Special courses in a scientific study of the Bible in its original languages and in its translations, to be conducted by University instructors at the University at times which shall not confict with University work.
(亏̄) Library Exteusion, in connection with the preceding forms of University Extension work.
3. The University Publication Work, which will include-
(1) The printing and publishing of University bulletins, catalogues, and other official documents.
(2) The printing and publishing of special papers, journals, or reviews of a scientific character, prepared or edited by instructors in the various departments of the University.
(3) The printing and publishing of books prepared or edited by University instructors.
(4) The collecting, by way of exchange, of papers, journals, reviews, and books similar to those published by the University.
(5) The purchase and sale of books for students, professors, and the University library.
The general regulations published by this institution will undoubtedly attract considerable attention on account of the many new features that will be introduced. Instead of the customary three months' suspension of work during the summer, the year is divided, for the purpose of instruction, into four quarters, beginning on the 1st day of October, January, April, and July, and continuing twelve weeks each, thus leaving a weak between the end of one quarter and the beginning of the next. Each quarter is divided into two terms of six weeks each. Students will be allowed to take as vacation any one of the four quarters, or two terms of six weeks in different parts of the year. By attending four quarters per year, students will be able to complete the course in three years.
The courses of instruction will be classified as majors and minors. The major will call for 10 to 12 hours of class-room work each week, the minor for 4 to 6 hours. All courses are to continue six weeks, but the same subject may be continued through two or more successive terms either as a major or a minor.
The regulations regarding the teaching body will be fully appreciated by the members thereof. Each resident professor or teacher shall lecture thirty-six weeks of the year, 10 to 12 hours a week, and no instructor shall be required to lecture more than this amount. For any time that he may teach in addition to the three-quarters required, he shall receive either an extra two-thirds pro rata salary or an extra full pro rata vacation. A teacher who has taught three
years of 48 wreeks each, or six years of 42 weeks each, will thus be entitled to a year's racation on full salary.

XI.-New buildings during 1889-90.

Selma University, Selma, Ala.-A four-story brick building for dormitory and school purposes.

University of California, Berkeley, Cal.-A large and commodious bailding, costing $\$ 60,000$, to be used as a chemical laboratory.

Napa College, Napa, Cal.-An astronomical observatory, equipped with an eight-inch equatorial telescope.
Hesperian College, Woodland, Cal., has sold its building and erected a new one one-half mile from the old site. The new building consists of three stories; the first is set apart for a boarding department; the second consists of the chapel and recitation rooms, while the third is used for societies, art department, laboratory, and library.

University of Colorado, Boulder, Colo.-Woodbury Hall is a new dormitory for male academic students, with accommodations for 48 young men.

Yale University, New Haven, Conn.-Osborn Hall, used as recitation rooms for the academical department, was erected in 1889 at a cost of nearly 8200,000 . Chittenden Library was erected in 1890.
Mercer University, Macon, Ga., has in process of erection a large building of brick and stone, three stories high, 102 by 155 feet, to cost about $\$ 25,000$. It will contain a library room, a chapel, and several recitation rooms.

University of Illinois, Champaign, Ill., reports the erection of a new military building, 100 by 150 feet, in one grand hall for drill purposes and large audiences upon special occasions. The cost of the building is $\$ 15,000$.

German-English College, Galena, Ill., will be removed in the fall of 1891 to Charles City, Iowa, where new buildings are in course of construction. The city gives to the college $\$ 30,000$ cash, a campus, and the use of city water for ten years.

Illinois College, Jacksonville, Ill., will erect during 1891 a new gymnasium to cost $\$ 10,000$, which will be equipped with apparatus, etc., costing $\$ 2,000$.

Northwestern College, Naperville, Ill., has erected a new building, 71 by 41 feet, which provides, among other accommodations, a limited number of rooms for lady students.

Indiana University, Bloomington, Ind., reports the completion of library hall, 140 by 75 feet. The central part of the building is occupied by the book stacks. The ends of the building are two stories high and contain rooms used for various library purposes, seminary rooms, etc.

Wabash College, Crawfordsville, Ind.-Yandes Hall, the new library building, is expected to be completed in June, 1891. It is fireproof and built in the form of a cross, extending 110 feet east and west, 90 feet north and south, and is two stories high.

Hanover College, Hanover, Ind., reports the completion of an astronomical observatory. It consists of a central building two stories high with wings on the east and west sides. The telescope, which is on the second story of the central building, is a $7 \frac{1}{2}$ inch. A good transit instrument is placed in the eastern wing, while the western wing is occupied by a Howard astronomical clock.
Butler University, Irvington, Ind.-A building for the preparatory department was erected in 1890 at a cost of $\$ 20,000$. An astronomical observatory has also been completed and equipped.

Earlham College, Richmond, Ind., has completed the erection of a wooden structure, 60 by 40 feet, to be used as a gymnasium. It is well furnished with modern apparatus, and is under the charge of a director.

Luther College, Decorah, Iowa.-The main building (170 by 52 feet, four stories besides basement) was destroyed by fire May 19, 1889. A new building reared on the foundation of the old, and of the same dimensions, was dedicated and occupied on October 14, 1890.

Drake University, Des Moines, Iowa, reports that the Alumni Science Hall, a new brick building 60 by 80 feet, is being erected. It is three stories in height besides the basement, and will be occupied by laboratories, museum, gymnasium, etc.

Lenox College, Hopkinton, Iowa, has erected Clarke Memorial Hall at a cost of $\$ 8,000$. It is to be used as a boarding hall for young ladies. An astronomical observatory has also been erected.

Two buildings were erected by Simpson Coilege, Indianola, Iowa, during 1889 and 1890. Science Hall contains the laboratory, museum, study and recitation rooms, and music and art rooms, while Ladies' Hall affords facilities for accommodating young ladies with rooms and board.
The State University of Iowa, Iowa City, will soon have two new buildings upon its campus. The twenty-third general assembly appropriated $\$ 50,000$ for a building to be used as a chemical laboratory. It was begun in August, 1890, and will be ready for occupancy in September, 1891. The sum of $\$ 350,000$ has been subscribed for a new building for the Christian associations. It will contain a large assembly hall, gymnasium, reading rooms, and bath rooms, and will becompleted by September, 1891.
Iowa Wesleyan University, Mount Pleasant, Iowa, has in course of erection a new Chapel and Science Hall. The building will be 102 by 95 feet and will be used as chapel, laboratories, recitation rooms, professors' rooms, etc.
The main building of Western College, Toledo, Iowa, was destroyed by fire December 26, 1889. A new building much superior to that destroyed is now finished and occupied.

Washburn College, Topeka, Kans., reports the erection, at a cost of $\$ 37,000$, of a new chapel building, of stone, 112 by 90 feet. Besides the audience room the building affords nine recitation rooms and a Y. M. C. A. room.
Johns Hopkins University, Baltimore, Md., reports the construction of a hall for the uses of the Y. M. C. A. The building is the gift of Mr. Eugene Levering, of Baltimore, and contains a large reading room, a room for devotional services, a committee room, an office for the dean, and a large assembly room where 429 persons may be seated.

Harvard University, Cambridge, Mass., has erected a substantial brick athletic building for the use of mombers of the principal teams and of other students. It has a floor area of 7,848 square feet and was the gift of Henry A. Carey, who gave $\$ 36,000$ for its erection.

University of Michigan, Ann Arbor, Mich.-The State legislature and the city of Ann Arbor together appropriated the sum of $\$ 75.000$ for the erection of a hospital building, which will greatly increase the facilities for clinical instruction. Olivet College, Olivet, Mich., reports the erection of Burrage Hall and Adelphic Hall. The former, which is used as a library, is 110 by 52 feet and has a capacity of 100,000 volumes. Adelphic Hall, which is the home of the Adelphic Society, contains an auditorium, reception rooms, cloak rooms, library, committee rooms, and janitor's room.

Unicersity of Minnesota, Minneapolis, Minn.-Pillsbury Hall and Museum, the gift of Hon. J. S. Pillsbury, is used for instruction in science and for a museum. It is 245 feet in length and is built of stone. The Chemical and Physical Laboratory is built of Roman brick with red sandstone basement, 192 feet front, and furnishes accommodations to the departments of physics and chemistry. The Law building, 80 feet front, built of pressed brick with red sandstone trimmings, was finished in 1889. It contains a large room for library, a large lecture room, four smaller lecture and recitation rooms, and offices for the dean and professors.
The University of Mississippi reports the erection of a library building containing four large rooms and constructed on the modern style of architecture.

Bellevue College, Bellevue, Nebr., now furnishes boarding facilities for young ladies. Elwina Hall, a four-story building containing a dining room, kitchen, laundry, housekeeper's rooms, library, reception room, halls, and twenty-two rooms for young ladies was erected during 1889-90.
The College of New Jersey, Princeton, N. J., reports the erection of Albert B. Dod Hall to be used as a dormitory, of the magnetic observatory and of a dynamo building. A number of other buildings have been contracted for or are in course of erection.
Colgate University, Hamilton, N. Y. . reports the erection in 1839 of a new library building. No particulars are given.

Cornell University, Ithaca, N. Y., reports the completion of Morse Hall. This building, which is for the exclusive use of the chemical department, is built of brick and is nearly fire-proof. It is 130 by 70 feet, with high basement and two stories, and contains forty rooms besides a large sub-basement. Additions hare also been made to Sibley College.

Syracuse University, Syracuse, N. Y., has erected two fine buildings during 1889. The Library Building, erected at a cost of $\$ 40,000$, is of limestone and Trenton brick with terra-cotta trimmings. It has abundant room for library appliances and shelving in the stack room for 135,000 volumes. The John Crouse Memorial College Editice, built and furnished by the late Mr. John Crouse, and his son Mr. D. Edgar Crouse, is of Long Meadow red sandstone, with granite
foundations. It is four stories high, 162 by 190 feet. The amount expended upon the structure was $\$ 150,000$.
Mount Union College, Alliance, Obio, reports the erection of the Morgan Gymnasium at a cost of $\$ 10,000$. It is 50 by 80 feet and built of brick. The basement contains bath rooms, lockers, bowling alley, and base ball cage. The main floor is devoted to gymnastic performances of all kinds, while in the second story there is a roomy, running gallery.
Calvin College, Cleveland, Ohio, has acquired and equipped Pestalozzi Hall, a large new building for the preparatory department.
Ohio State University, Columbus, Ohio.-The Electrical Laboratory, a two-story brick building, 75 by 45 feet, was erected in 1889. The first floor contains the engine and dynamo room, office, and washroom. On the second floor are a lecture room, a photometric room, a library room, and three measurement rooms. The building and its outfit are valued at $\$ 16,000$. The Chemical Building was completed in 1890, and is occupied by the departments of general chemistry, agricultural chemistry, mining and metallurgy, and pharmacy. It is a twostory and basement brick building, 179 by 132 feet. The building and contents cost about $\$ 62,000$.

The University of Oregon, Eugene, Oregon, erected a new building to be used as a gymnasium. It is built of brick and cost $\$ 4,500$.
Pennsylvania College, Gettysburg, Pa.-The Recitation Hall, completed in 1889, contains on the first floor, library room and office, presidents office, reception and recitation rooms. The second floor has recitation rooms. The third floor contains a museum room, mineralogical laboratory, infirmary, and two society halls, while the basєment is designed for a physical laboratory. Brua Memorial Chapel was erected in 1889-90, and is used for morning chapel service. commencement exercises, lectures, and other occasions requiring a large audience room.
Bucknell University, Lewisburg, Pa., reports the erection of two new buildings. Bucknell Laboratory is 43 by 86 feet and has two stories above the basement. On the first story are a lecture room and a working room for individual work in chemical analysis; the second floor contains a lecture room and one room each for quantitative and qualitative analysis; the basement has a dark room for photometry, a room for applied chemistry, another for electricity, and a fireproof room. The Tustin Gymnasium is built of brick and stone, and contains, in the basement rooms for lockers, wardrobes, dressing rooms, shower baths, furnaces, and coal. ${ }^{-T h e}$ second story rises 22 feet from the main floor to the square and is oper to the roof. At the height of 12 feet a running track gallery, 6 feet wide, surrounds the room.
The University of Pennsyluania, Philadelphia, Pa., reports the erection of a large library building. The storage capacity is for 350,000 volumes, but the book stack admits of indefinite extension. The building is fireproof, and the plans for the erection of it were subjected to severe criticism and were widely altered in many respects before final adoption.
The Young Men's Christian Association of the University of Tennessee has erected a handsome separate building for the association. The building is a substantial structure of pressed brick and stone, covered with slate, and was planned with special reference to its uses. The building affords ample facilities for physical culture and is equipped with a complete set of standard gymnastic apparatus.

Carson and Newman College, Mossy Creek, Tenn., reports the erection, in 1890, of a college building costing $\$ 20,000$.

Fisk University, Nashville, Tenn., reports the erection of a gymnasium and workshop. The gymnasium is furnished with apparatus both for the young men and for the young women.

Uniceisity of Texas, Austin, Tex.-Brackenridge Hall, to be used as a club house, was erected in 1890 at a cost of $\$ 16,000$. It is a hall for students, containing lodging rooms and a restaurant. The building is of brick, trimmed with stone, and is four stories high. Besides the large dining room, kitchen, etc., the building contains twenty-four rooms, each 22 by 15 feet. The erection of the central building in 1889 at a cost of $\$ 75,000$ is also reported.
The University of Vermont, Burlington, Vt., reports the completion of the Billings Library at a cost of $\$ 153,000$. The building has a shelving capacity of 100,000 volumes and contains the general library of the university and the special collections. Three new houses for professors were erected in 1889-90 at a cost of $\$ 12,000$ each.

Tandolph-Macon College, Ashland, Va., has erected a new Science Hall costing $\$ 10,000$, to be used for lecture rooms and laboratories for practical work in physics and biology.

Three buildings were erected in 1889 by Emory and Henry College, Emóry, Va. The William Morrow Science Hall contains a chemical lecture room, chemical laboratory, physical lecture room, cabinet of minerals and fossils, apparatus room, room for chemical calculus, etc. The Sam W. Small Gymnasium is a large octagonal building constructed with reference to a double use, viz, during the session, for bodily exercise, and at the close, as a public auditorium. Its seating capacity is about 1,600 . Byars House is the college boarding house and hotel. Students are not allowed to room in this building, as the rooms are kept for hotel purposes. The third floor of the building is occupied by two society halls.

Washington and Lee University, Lexington, Va., reports the erection of a gymnasium. No particulars are given.

West Virginia University, Morgantown, W. Va., reports the erection of a new hall to be used as an armory, gymnasium, and commencement hall.

Beloit College, Beloit, Wis, reports the completion of Scoville Hall at a cost of $\$ 25,000$. This building is for the use of the preparatory department.

MISCELLANEOUS NOTES.

The College of St. Augustine, Benicia, Cal., reports that it was suspended during 1889-90 on account of the murder of the vice-president of the college by two students who were refused their diplomas, having been found deficient in mathematies.

Wesleyan University, Middletown, Conn., reports the organization of a department of English language.
Moore's Hill College, Moore's Hill, Ind., established a normal school simultaneously with the abolishment of the De Pauw Normal School.
Kentucky University, Lexington, Ky., was opened to women in 1889. The president says that coeducation has proved a success with them.
Kentucky Classical and Business College, North Middletown, Ky.-The building with its contents was burned in November, 1889, and will not be rebuilt at present.

Kentucky Wesleyan College has been removed from Millersburg to Winchester, where new buildings have been erected.
The trustees of the University of Mississippi have decided to establish a department of pedagogy.

Trinity College, North Carolina.-In March, 1890, Mr. Washington Duke, of Durham, N. C., offered to give $\$ 85,000$ to the college in building and endowment, and Mr. J. S. Carr agreed to donate a magnificent tract of $63 \frac{1}{2}$ acres of land lying on the west of Durham as a site on condition of the remoral of the college to that city. These offers were promptly accepted and buildings are now in course of erection. The main building to cost $\$ 50,000$ will be three stories high and will have a main front of 200 feat long and 50 feet wide, with two end wings, extending 50 feet back. This building contains 60 dormitories, each consisting of a bedroom and study, 12 lecture rooms and offices, laboratories for the use of the professors, apartments for assistants and employés, and a basement under the entire building. The technological building contains separate apartments for the manual training school, the schools of civil, mechanical, and electrical engineering, two laboratories, two lecture rooms, a carpenter shop, machine shop, and a blue print and photographer's room. The Dining Hall and Chapel contains on the first floor, a dining hall with a capacity of 200 seats, and the second floor a chapel with a capacity of 500 . The gymnasium is 80 by 40 feet, and will be furnished with good gymnastic appliances. In addition to the foregoing buildings there have been erected a laundry building and seven residences for the faculty and officers.

CHAPTER VI.

LENGTH OF COLLEGE CURRICULUM.

Abstract

Introduction-Reduction of Course Recommended in the Interest of Medical Students-Average Age of Freshmen-Increased Requirements for Graduation (Course of Study in Yale, 1824-25 and 1890-1891)-Average Age of Freshmen at Harvard-Method of Computing Average Age at Har-vard-Remarks and Opinions of Prominent Educators: President Eliot and the Action of the Harvard Faculty-Ex-President Andrew D. White, of Cornell-President Gilman, of John HopkinsAction of Columbia College-President Adams, of Cornell-President Angell, of University of Michi-gan-President Hyde, of Bowdoin-President Capen, of Tufts-President Warren, of Boston C'ni-versity-President Andrews, of Brown University-Mr. George L. Fox, of Hopkins Grammar School-Prof. Tracy Peck, of Yale-Significance of the A. B. degree.

INTRODUCTION.

The subject of higher education has been so ably discussed and set forth during late years by the leading college men of the country that it will be profitable to reproduce here some of their remarks.
Prominent among the subjects which have engaged attention is that of shortening the time required to complete the college course. The proposition took practical shape in the attempt made by thefaculty of Harvard College to reduce the time required for obtaining the A. B. degree.
This attempt was made in the interest of those students who, after completing a college course take a full four years course in medicine. By the method now in practice the average age at graduation of such students, according to President Eliot, is between 25 and 27 years. That this is anevil and that something ought to be done"to remedy it is generally admitted; but considerable opposition has been developed to the propositions advanced with this end in view, more especially by the smaller colleges of the country. To these institutions the abridgment of the course would mean, for some time at least, a diminished attendance and consequently a diminished income from tuition fees, while to replace this loss a larger increase in the productive funds of the colieges would be required than there is any reasonable hope of obtaining.

The Harvard plan of shortening the course is given farther on. Another and less radical measure looking to the accomplishment of the same purpose as the shortening of the college course has been proposed. This plan allows seniors to elect the first year studies of the professicnal department which they propose to enter; but this plan, it is evident, can be adopted only by those institutions which have professional departments in close proximity to the college.
Age of freshmen.-Before giving the views of college presidents on this subject it may be well to consider the age of college students. An inquiry on this subject was addressed by this Office to the colleges and universities of this country, 220 of which have returned fairly satisfactory answers. The inquiry was worded as follows: "How does the average age of the members of the freshman class in your institution compare with the average age ten years ago?"
Of the 220 institutions replying, 102 reported the average age as being the same as ten years ago; 65 reported a lower average, and 53 a higher arerage. Of the 65 institutions in the second category 52 give the age as "slightly lower," or "less than one year;" 9 report it as being between one and two years lower, and 4 report it as between two and three years lower. Of the. 53 that report the age as higher, 36 say it is slightly or less than one year higher, 12 report it as being between one and two years higher, and 5 report it as between two and three years higher. But we must not lose sight of the fact that in a large number of these institutions the requirements for admission have been raised considerably
during the last ten. years, which would naturally have a tendency to raise the age at admission, provided no improvement had been made at the same time in the secondary schools preparing for the colleges. Of the 220 institutions answering the inquiry as to the age of their students, 81 say that the requirements for admission have been raised ; and of these 81 institutions the standard of 54 has been raised without increasing the age; in fact, 23 of these 54 institutions say that the age is lower than ten years ago. The requirements for admission have been raised in 27 of the 53 institutions that report the age as having increased, and it may be well to note the fact that of the 12 institutions in the North Atlantic Division reporting an increased age, 10 show an increass in the requirements for admission.

The foregoing information, summarized by States, is given in the following table.

Average age of freshmen as compared with the average age ten years ago.

States.	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber of } \\ \text { schools } \\ \text { report. } \\ \text { ing. } \end{array}\right\|$	Number reporting theage as-			Number in which the requirements for raised, and reporting the age as-		
		Same.	Lower.	Higher.	Same.	Lower.	Higher.
United States	220	102	65	53	31	23	27
North Atlantic Divisio South Atlantic Divisio South Central Division North Central Western Division	$\begin{aligned} & 41 \\ & 36 \\ & 36 \\ & 94 \\ & 13 \end{aligned}$	$\begin{array}{r} 22 \\ 14 \\ 15 \\ 42 \\ 9 \end{array}$	$\begin{array}{r} 7 \\ 9 \\ 11 \\ 35 \\ 3 \end{array}$	$\begin{gathered} 12 \\ 13 \\ 10 \\ 17 \\ 1 \end{gathered}$	$\begin{array}{r} 2 \\ 13 \\ 13 \\ \hline \end{array}$	3 1 -1 18	
Alabama	3	1	1	1	1		
Arkansas ${ }_{\text {California }}$	4	2	1	1			
Colorado	${ }_{2}^{2}$	1					
Connecticut	${ }^{3}$			2			
Delaware - ${ }_{\text {district }}$ of Coiumbia	2	1			1		
Georgia........	7						
Illinois..--	21	13	5		6	1	
Iowa	11		6	2	1	-	
Kansas...	${ }_{3}$	1	$\left.\frac{1}{3} \right\rvert\,$	1			
Kentucky Louisiana	4	1	$\stackrel{3}{2}$	1		1	
Maine --..	3	${ }_{2}^{2}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	-	- 1	-------	
Marylana-		1	3	1			
Michigan .	5	2	3			${ }_{1}^{1}$	
Minnesota ${ }_{\text {Mississippi-... }}$	${ }_{3}$	2					
Missouri -...	13	5	${ }^{6}$	2	1	1	
Nebraska							
New Yori-	15		1	5	3	1	
Ohio -...---....	21	12	6	3	3	4	
Oregon Pentivi-	14	7		5	4	2	
South Carolina.	7	8		4			
Texas	${ }_{2}$		2				
Vermont.					1		
Washingtoo	$\stackrel{5}{2}$	${ }_{2}^{2}$			1		
West Virginia	6	1			1		
Wisconsin -				2			

Increased requirements for graduation.-A comparison of the following courses of study in Yale College for the years 1824-25 and 1890-91 will give some idea of the increased requirements for graduation in this country.
18:21-2こ.

FIESHMAN CLASS.

First term.-Livy, two books; Adams' Roman Antiquities; Webber's Arithmetic reviewed; Day's Algebra begun.

Second term. Livy continued through five books; Græca Majora; Xenophon's Cyropædia and Anabasis; Day's Algebra inished.

Third term.-Græca Majora, Herodotus, Thucydides, Lysias, and Isocrates; Morse's Geography; Murray`s Grammar.

SOPHOMORE CLASS.

First term.-Horace, Odes and Satires; Græca Majora, Demosthenes, and Xenophon's Memorabilia; Playfair's Euclid, six books.

Second term. -Euclid finished and reviewed; Horace finished and reviewed; Græca Majora, Plato, and Aristotle; Day's Mathematics; Plane Trigonometry; Nature and Use of Logarithms; Mensuration of Superficies and Solids, and Isoperimetry.

Third term.-Græca Majora, Vol. I finished; Cicero de Officiis, de Senectute, and de Amicitia; Day's Mathematics, Mensuration of

SOPHOMORE CLASS-COntinued.

Heights and Distances, Navigation and Surreying; Dutton's Conic Sections and Spherical Geometry; Jamieson's Rhetoric.

JUNIOR CLASS.

First term.-Cicero de Oratore; Homer's Iliad, Robinson's; Dutton's Spherical Trigonometry; Enfield's Philosophy, four books.

Second term.-Tacitus; The History de Moribus Germanorum and Agricola; Græca Majora, Vol. II; Sophocles and Euripides; Enfield's Philosophy finished and reviewed.

Third term.-Enfield's Astronomy; Lytter's History; Vince's Fluxions; Græca Majora, Vol. II continued, or Hebrew.

SENIOR CLASS.

First term.-Blair's Rhetoric; Hedge's Logic; Locke's Essays.

Second term.-Paley's Natural The ology; Stewart's Philosophy of the Mind.

Third term.-Paley's Moral Philosophy; Paley's Evidences of Christianity.

1890-91.

FRESHMAN CLASS.

Greek.-Homer's Odyssey, five books: Xenophon's Hellenica; Herodotus, seventh book.
Latin.-Livy, Books XXI and XXII; Tusculanæ Disputationes, De Amicitia, and De Senectute of Cicero; Satires of Horace; Prose Composition: History of the Roman Republic. French or German. - Three hours a week throughout the year. Students may at their option either continue the study of the modern language presented for admission or begin the study of German in case they hare not previously pursued it.

Mathematics.-In Geometry: Planes, polyhedrons, cones, cylinders, and spheres. Projection of figures with exercises on models (Chauvenet).

Plane Trigonometry: Solutions of Triangles, Mensurations, and Surreying (Richards); Trigonometric Analysis (Case).

Algebra: The geometrical interpretation of the Theory of Equations, Imaginaries, and the Solution of Higher Equations (Phillips and Beebe).

Oriental History.-One hour a week. A general view of Egyptian, Assyrian, and Babylonian and Persian history, with special reference to Biblical and classical history.

SOPHOMORE YEAR.

Greek.-Sophocles' Antigone and Electra; Euripides' Medea; Thucydides, first book; Isocrates' Panegyric; Plato's Apology.

Latin.-Pliny's Letters; Agricola and Germania of Tacitus; Odes and Epodes of Horace; Menæchmi of Plautus; Andria and Adelphi of Terence; sight reading.

Modern Languages.-Adranced French or German, two hours a week.

Mathematics.-Trigonometry: Spherical Trigonometry; Applications to Navigation and Astronomy (Richards).

SOPHOMORE YEAR-continued.

Analytical Geometry: Plane and Solid, with application to map projection (Loomis).

Ifechanics.-Kinematics, Kinetics (or Dynamics), and Statics (Dana).

Astronomy.-Loomis.
English.-Half year, readings in Addison, Lamb, De Quincey, Macaulay, Ruskin, and Arnold; half year, compositions connected with the theoretical study of rhetoric.

Compositions.-Throughout the year.

JUNIOR AND SENIOR YEARS.

The prescribed courses of junior year occupy six hours per week, and those of senior year two hours per week. In addition, each member of the junior class is required to selectnine hours per week and each member of the senior class thirteen hours per week from a list of elective courses.

PRESCRIBED STUDIES OF JUNIOR YEAR.

Physics.-Ganot's Physics: First term, liquids, gases, sound, and light, and part of the subject of heat: second term, heat, electricity, and magnetism.

Logic.-Jevons's Logic; Fowler's Inductive Logic; lectures.

Psychology.-Porter's Elements of Intellectual Science; lectures.

Ethics.-Porter's Elements of Moral Science.

Theism and Evidences of Christianity.-Lectures.

PRESCRIBED STUDIES OF SENIOR YEAR.

Philosophy.-One course of two hours per week in psychology, ethics, or history of philosophy.

Average age of freshmen at Harvard.-The following table showing the age of freshmen at Harvard College is taken from the report of the president of that institution for the year 1889-90:

Age of students who eniered the freshman class of Harrard College, 1856-1890, inclusive.

Year.	$\left\lvert\, \frac{x}{\frac{1}{7}}\right.$	$\begin{array}{r} 0 \\ 0 \\ 0 \end{array}$	$$	$\frac{\infty}{1}$	$\begin{array}{r} \dot{\Phi} \\ \dot{\Phi} \end{array}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{K}} \\ & \stackrel{\rightharpoonup}{\mathrm{a}} \end{aligned}$	$\frac{\square}{\frac{9}{9}}$			$\frac{\dot{x}}{\frac{9}{2}}$			$\begin{aligned} & \frac{\infty}{0} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$						$\left\lvert\, \begin{aligned} & \text { © } \\ & \text { \# } \end{aligned}\right.$	$\begin{gathered} \text { Av- } \\ \text { erage. } \\ \text { age. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { No. } \\ \text { admit } \\ \text { ted. } \end{gathered}\right.$
1835-- 1857	4		$\begin{aligned} & 44 \\ & 31 \end{aligned}$	$\begin{aligned} & 34 \\ & 27 \end{aligned}$	$\begin{aligned} & 29 \\ & 25 \\ & 29 \end{aligned}$	$\begin{array}{r} 7 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$			5												${ }_{108}^{148}$
1838.		7	${ }_{26}^{23}$	${ }_{56}^{43}$	30 31	14	5	${ }_{3}$		1	1										${ }_{17}^{17} 11{ }^{117}$	
18000		9	${ }_{24}^{23}$	38 50	${ }_{23}^{33}$	14	9.	1	4	2											188	
1862		${ }_{2}$	19	41	${ }_{30}^{23}$	15	10	3	$\stackrel{1}{2}$												18 ${ }_{18}^{18} 8{ }^{17}$	12
180	1	2	22	${ }^{33}$	$3{ }^{36}$	13	5	7		${ }_{2}^{2}$			1		1						188 ${ }^{18}{ }^{\text {a }}$	2
1864		5	19	${ }_{51}^{30}$		${ }_{23}^{19}$	${ }_{9}^{6}$	1	5		1		1									143
1866		6	19	38	46	23	8														18	144
${ }_{1}^{1867}$			16	56 48	${ }_{37}^{55}$	${ }_{22}^{24}$	${ }^{7}$		${ }_{1}^{3}$	${ }_{2}^{1}$	1										188 ${ }^{18}$	178 141 14
1869.		2	15	49		22	11	6						1							18 硓	159
1870		3	19	$\begin{aligned} & 76 \\ & 59 \end{aligned}$	${ }_{6}^{53}$	${ }_{23}^{29}$	${ }_{16}^{11}$			1	1			1							188 ${ }_{18}^{18}$	20
1872.		2	20			29	12			1				1							18 5is	
1873	1	2	19	${ }_{51}^{51}$		43	17	11	${ }_{3}$	4	2	5		1							$1810{ }^{\text {ciz }}$	23
1874.	1	1	12	${ }_{78}^{61}$		${ }_{49}^{42}$	10	4		$\stackrel{2}{4}$		2		1							18 18 6\%	
${ }_{1876} 18$		1	12	58	${ }^{60}$	${ }_{53} 5$	20	7		2	1		1								${ }^{18}{ }^{18} 9$	
${ }_{1878 .}$		${ }_{2}^{2}$	14	${ }_{52}^{52}$	78	${ }_{45}^{53}$	${ }_{22}^{23}$				1										18 18 ${ }^{18}$	
1879		1	16	49		53	19	15				1	1	1							1811	
1880			12			55	${ }_{31}^{24}$	${ }^{9}$		${ }_{1}^{4}$	1			1							${ }_{19}^{18} 11{ }^{12}$	24 23 23
1882	1	3	11	58	89	60	28	12	4	5		2							1			析
1884	1		12	63		${ }_{72}^{61}$	23 23	7		2	$\stackrel{2}{5}$	1									${ }_{18}^{18} 180^{9 \frac{1}{2}}$	
1885.	2		10	63	-	56	40		4		1	2						1	1	b1	19 19	28
${ }_{1}^{18887}$			14	${ }_{70}^{64}$	${ }_{109}^{116}$	${ }_{87}^{67}$	${ }_{25}^{29}$	12	+ ${ }_{12}^{3}$	${ }_{2}^{3}$		${ }_{3}^{1}$									${ }_{19}^{18} 11{ }_{2}^{18}$	${ }_{3}$
1888			13	58	115	65	32	15	-	3	4	1						1				31
1889.		1	11	$\stackrel{65}{59}$	${ }_{119}^{112}$	${ }_{85}^{83}$	${ }_{27}^{23}$	${ }^{8}$	${ }_{1}^{3}$	${ }_{3}^{4}$	${ }_{3}^{4}$	1		2	1	1	1				199	${ }_{3}^{321}$

a On the assumption that all who ever joined each class were admitted as freshmen. 645 years old. c 44 years old.

From this table it would appear that the average age has been increased in thirty-four years by a little more than seventeen months. But let us inquire into the manner of arriving at these results. The secretary of Harvard Unirersity, in a communication received August 16, 1890, gave the average age of the freshman classes for the last ten years as follows:

As the figures in the president's report did not agree with those given by the secretary, a letter was written to the latter asking him which of the two sets of figures should be used in the compilations of the Bureau. The following reply was received March 5, 1891:
'The table in the President's report is the best authority, as it contains all recent changes and corrections in the age statistics.
"The most marked changes are due to the embodying in the figures of persons entering the classes of 1890, 1891, 1892, and 1893 (i.e., the freshman classes marked 1887, 1888, 1889, and 1890) with advanced standing. For example: If a man comes from Yale or Amherst after graduation and enters our senior class
his age is added to the freshran table of that c'ass as though he had entered three years earlier as a freshman.
"As 73 men were admitted to advanced standing this year, you can readily see that the chance of change in the arerag is very strong. * * * From what I have said you will see that the present figures for 1888,1889 , and 1890 will change slightly until the classes of "92, "93. and '94 have been graluated."
Prior to 1873 the catalogues of Harvard do not show the presence in the undergraduate department of students who had already taken the A. B. degree at some other college. In 18.3 three such students were enrolled in the senior class, but the year when such degrees were received is not given until the year 1387. In order to show the number oi such students in the different classes a rigid examination of the catalogues has been made, with the following results :
1873. Senior class, 3.
1874. Senior, 2; junior, 2.
187. Senior, 5 ; junior, 1 .
1876. Senior, 7 .
1877. Senior, 5 ; junior, 1.

18\%8. Senior, 1: sophomore, 1.
1879. Not roted.
1880. Senior, 2.
1881. Senior, 6 ; junior 6.
1883. Senior, 9 ; junior, 6; sophomore, 1.
1883. Senior, 8; junior, 4; sophomore, 1.
1884. Senior' 15 ; junior, 4.
1885. Senior, 8 ; junior, 6.
1888. Senior, 8; junior, 1 ; sophomore, 1.
1887. Senior, 1 (1883); 4 (1885); 3 (1886); 1 (1887).
1888. Senior, 2 (1887); 6 (1888); junior, 2 (1887); 4 (1888) ; sophomore, 1 (1885); 1 (1886).
1889. Senior, 1 (1880); 1 (1886); 2 (1887); 5 (1888); 4 (1889): junior, 1 (1887); 3 (1889); sophomore, 1 (1889).
1890. Senior, 2 (1887); 4 (1888); 7 (1899): 14 (1390); junior, 1 (1883); 1 (1887); 1 (1830); sophomore, 1 (1889).

The figures from 1873 to 1886 , inclusive, have not much significance beyond giving the number of such students, inasmuch as the years when the stucents had received the A. B. degree are not given. In order to show to what an extent the aggregate age of the Harvard freshman classes are raised by the methods of computation employed by that institution, let us examine into the probable ages of students who had received the A. B. degree and were members of the senior class in 1889-80. By looking at the table above given we find that a member of that class had received his A. B. degree in 1880. Supposing that he was 22 years of age when he received his degree he would have been 31 years old when he entered the senior class of Harvard. According to the method of computation there, as given by the secretary, his age as a freshman at Harvard is used as 28 years, when really he was a freshman at some other institution ten years before and had never been in the Harvard freshman class. By means of such methods thirty-four years were added to the total of the ages of members of this freshman class by taking the ages of students who had already roceived the degree of A. B. elsewhere. In our investigations no note was made of students who had received a degree other than A. B. Of these there are quite a number; there are also students who had not taken a degree, but were admitted to adranced standing. Some idea of ihe number of such students in the different classes may be formed from the fact that in 1890 seventy-three students were admitted to advanced standing, while the catalogue shows the prasence of but thirty-one students in the college who had already received the degree of A. B. at some other institution. The number of such students entering the undergraduate department of Harvard is constantly increasing, and this fact will of course have the tendency to continually increase the average age of the freshman classes as this is now being computed. Nor is it likely that a large number of the graduates who thus raise the age will ever pursue the study of either law or medicine, but are merely pursuing liberal studies and very likely fitting themselves to teach. Speaking of these students, the dean of the graduate school of Harvard says: "A large proportion of these students should properly be classed in the graduate school; but many of them have elected to enter the undergraduate department in order to arail themselves of Price Greenleaf aid and of scholarships which can be given only to students of the college."

From the above statement of the dean it would appear that these students are not actuated so much by the desire to obtain the Harvard A. B. as by the desire to receive Harvard aid for the purpose of pursuing post-graduate studies, and it seems that such students should not be included in the computations. The real average age of a freshman class is the average obtained from the ages while they are freshmen, and the average age of a senior c ass should be obtained by adding the ages of the members of the class and dividing it by the number of members in the class, and not by adding four years to the average age of the freshman class, for a suticient number of students might have been dropped to change
materially the average age.- From these statements and explanations it will be seen that in comparing the age of the Harvard freshman class with that of other institutions it must be borne in mind that the methods of computation employed by Harvard are different from those generally used, and the result does not represent the age of the freshman class as such.

Having shown that the increass in the average age of freshmen during at least the last decade is not general, as proved by the facts collected from the colleges throughout the country, we will now proceed to set forth the views of the most prominent educators upon the length of the college course and the propriety of reducing it. In collecting these expressions of opinion, an effort has been made to present it from every point of view. It is a matter of great regret that the opinions from the smaller institutions are so few. This is owing to the very small number of sach institutions that publish the annual reports of their presidents. It is in these reports, and not in the general reports or catalogues, that remarks and recommendations upon subjects pertaining to general college matters are as a rule found.

PRESIDENT ELIOT AND THE ACTION "OF THE HARVARD FACULTY.

The first remarks of President Eliot of Harvard on this subject appear in his annual report for 1885-86, where he calls attention to the comparatively advanced age at which graduates of colleges and scientific schools begin the study of medicine. In connection with this subject he says: "The average age at which Harvard graduates get the degree of A. B. is about 22 years and 7 months. If such bachelors of arts then spend four years in the study of medicine, they are 26 years and 7 months old when they are ready to begin the practice of their profession. The faculty consider this unreasonable postponement of entrance into practice a serious evil, which it is their duty to combat, since more than half of their students-and that much the best half-are graduates of colleges or scientific schools. They therefore laid before the acalemic council in June last a plan for the abridgment of the college course by those students who go from college directly into one of the professional schools of the university."
The medical faculty proposed that the first-year studies of the medical school be counted, under certain conditions, for the degree of A. B., which proposal was concurred in by the law faculty. This would have resulted in shortening the college course by one year for students who should pursue their professional studies to the full limit in the Harvard schools. The general subject of shortening the college course was then (December, 1887) submitted to a committee of nine professors, appointed by the president, who were to consider the subject in all its relations. No report seems to have been made by the board when President Eliot made his annual report for 1888-89, in which he again says: "Wherever the fault and whatever the remedy, it is clear that the degree of bachelor of arts is taken in the United States later than in any other country in which the degree is used, and too late for the best interests of the individuals who aspire to it and of the institutions which confer it."

On account of the pressure of other matters the college faculty was unable to give this subject full consideration until the jear 1889-90, when eighteen meetings of the faculty, from November to March, were spent in its discussion. At last, March 25,1890 , the following was communicated to the president and fellows by vote (not unanimous) of the faculty :
"The faculty desires to modify its present regulations in accordance with the following propositions:
"1. That the requirements for the degree of bachelor of arts be expressed under suitable regulations with regard to length of residence and distribution of work, in terms of courses of study satisfactorily accomplished.
": 2. That the number of courses required for the degree be sixteen.
"3. That when a student enters college there shall be plased to his credit, towards satisfying the foregoing requirements of sixteen courses, (1) any advanced studies on which he has passed in his admission examination beyond the number required for admission and (2) any other college studies which he has anticipated.
"4. That a student may be recommended for the degree of bachelor of arts in the middle as well as at the end of the academic year.
"In case the measures here proposed shall be adopted, it is the purpose of the faculty to encourage the anticipation of college studies by students at the time of their admission and to facilitate the attainment of the degree of bachelor of arts in less than four years.
"The faculty further proposes to advise parents and teachers that eighteen years is a suitable age for entering Harvard College."
A comparison of these propositions with the present requirements for the degree of bachelor of arts shows that, though the faculty does not, in so many words, advocate the reduction of the course from four to three years, it proposes by a slight reduction in the requirements to make it possible for close or diligent students to attain the degree in three years. The requirements for the degree at present are 18.2 courses and in three years the student completes at least 14.2 courses; so that, if the proposition to reduce the requirements to sixteen courses should be adopted and the conditions should remain the same, the student will complete the course in about three and one-half years, though, by anticipating some studies or by taking extra courses, as is frequently done even now, hard-working students would be enabled to complete the course in three years. It is to be remarked, however, that, although under the present conditions it is possible for students to complete the course in three years, very few have thus far accomplished it. According to the report of the dean of Harvard College for the year 1889-90 the number so completing the course during the last ten years was twenty-seven, ${ }^{1}$ ten of whom graduated in 1890.
In the same report the dean says: "Among the great mass of the present students there is unquestionably a sentiment in favor of the traditional four years' course. If it should be made possible by moderate exertion to graduate in three years, there is nothing in the present attitude of the students to indicate that the majority would restrict their liberal training to this three years' minimum, any more than they are disposed to confine themselves to the minimum requirement of courses in any year. And these facts may well reassure those who fear that a general lowering of the standard of education would result from the adoption of the faculty's proposals." Another point that the dean emphasizes is that even if the course be reduced as proposed the standard of the degree will still be considerably higher than it was twenty years ago.

At the meeting of the Board of Overseers, October 8, 1890, the committee, to whom these propositions had been referred, submitted its report-only a qualified approval of the suggested changes-which was laid over for future action. The following are the principal recommendations made by the committee:
"Voted, That the Board of Overseers concurs with the corporation in the approval of the fourth proposal of the college faculty: that a student may be recommended for the degree of bachelor of arts in the middle as well as at the end of the academic year.
"Voted, That the Board of Overseers concurs with the corporation in its approval of the third proposal of the college faculty, provided it be amended by striking out the words 'the foregoing requirement of sixteen courses' and substituting therefor the words 'the requirements for the degree of bachelor of arts;' so that it shall read as follows: 'That when a student enters college there shall be placed to his credit towards satisfying the requirements for the degree of bachelor of arts'any advanced studies on which he has passed in his admission examination beyond the number required for admission and any other college studies which he has anticipated.'
"Voted, That the Board of Overseers does not concur with the corporation in its approval of the first and second proposals of the college faculty: that the requirements for the degree of A. B. be expressed under suitable regulations with regard to length of residence and distribution of work in terms of courses of study satisfactorily accomplished; that the number of courses required for the degree be sixteen.
"Foted, That the Board of Overseers recommends the modification of the present regulations of the college faculty in accordance with the following proposition: That a senior intending to enter the medical school and to take the full four years' course therein may, under proper supervision, include in the requirements for the degree of bachelor of arts the courses on physiology and anatomy required in the first year of the medical school, each of said courses to count as one full elective course."
The committee thinks that if any time is lost it is in the preparatory schools, where considerable attention is given to athletics, etc.

The Board of Overseers, at a meeting in April, 1891, finally decided to reject all the proposals of the faculty.

[^25]
EX-PRESIDENT ANDREW D. WHITE.

Andrew D. White, LL. D., in an article entitlod "The future of American universities," published in the North American Review for October, 1890, urges the reorganization of our college and university system. He calls attention to the very large number of colleges and universities in this country, especially to the number of small colleges with still smaller endowments, which pessess all the powers of universities ${ }^{1}$. Although Dr. White does not expressly recommend the shortening of the college course, his plan for the reorganization of cur unirersity system would nevertheless accomplish that purpose, as well as reduce the age of coll ge graduates. His plan is as follows:
"Let institutions of small endowment, whether called colleges or universities, frankly take their rightful positions; let them stop claiming to do work which their authorities know well that they can not accomplish in competition with the largely endowed universities. Let them accept the situation and begin their freshman jear two years earlier than the present freshman year at most of the better colleges; that is, let them put their roots down into the great publicschool system of the country and draw copiously from it. A course of instruction thus formed would begin with the beginning of the higher arithmetic, algebra, geometry, the principal modern languages, the elements of the natural sciences, and, for those who wish to study them, one or more of the ancient languages.
"Next, let this courss in the intermediate college be continued up to the point which is at present reached. as a rule, in our colleges and universities of a good grade at the beginning of the junior year. After its four years' work, let the college bestow its diplomas or certificates upon its graduating classes and then let those who desire it be admitted into the universities upon the presentation of these certificates and diplomas.
"Next, as to the universities. In these let there be courses of adranced study, general, professional, or technical, covering, we will say, three years, and graduating men into the various professions."

According to this plan the degree of bachelor would be received two years earlier than it is at the present time. But let us see what effect this would have upon the significance of the degrees. At the present time some of the large institutions that confer the degree of doctor of philosophy demand three years of study after receiving the bachelor's degree and none demand less than two years; while, according to Dr. White's plan, but one year's study in addition to the time now required for the bachelor's degree would suffice for the attainment of the PH. D. degree.

PRESIDENT D. C. GILMAN.

Johns Hopkins University, Baltimore, Md., has for some time been maintaining courses of study leading to the degree of bachelor of arts and which were designed to be completed in three years. In view of this fact, it might easily be expected that President Gilmain would be an enthusiastic adrocate of the shorttening of the college curriculum, but, as will be seen, he is very conservative on this subject. In an article entitled "Shortening the college curriculum," published in the Educational Review for January, 1891, he says:
"No general conclusion can be quickly reached on such a question. It must be settled in each institution according to its own circumstaress. It must be tried in the local court before it is submitted to the court of appeals; that is, to the public. It does not follow that if one institution, even the strongest and most influential, decides to shorten its course, others will likewise do so. * * *
"The curtailment of the curriculum is chiefly urged for this reason: The number of persons who proceed to professional schools after taking a college course is much smaller than it should be; it is diminishing; and those who pursue a collegiate and then a professional course postpone till too late a perioa the actual business of life. For all such persons a year of preparatory work can well be spared."

Farther on he says: "As remedial agencies for this acknowledged difficulty I make the following suggestions:
(a) The authorities in our educational system should really, as well as nominally, distinguish between the requirements of three scholastic periods, namely:

[^26]The school, the college, and the university; or, in other words, between what is essential, what is liberal, and what is special in a prolonged education.
(b) The period of college life, which of late years has been carried forward so that it extends on the arerage from 18.5 years to 22.5 years (in many, perhaps, most oif the older colleges), may be brought back to an earlier age, say, from sixteen to twenty years.
(c) The significance of the baccalaureate degree should be restored, so that it may be, at least, a trustworthy certificate, an approximate measure, both of the capacity and of the acquisitions of the possessor. In one way or another a consensus should be reached as to the dignities, rights, and privileges to that degree appertaining.
(d) The rigidity of the class system should be relaxed, so that those who are exceptionally favored or exceptionally strong may, if they choose, run the coursa in less than the average time, and likewise so that any who are embarrassed by ill health, the necessity of earning a support, or the inadequacy of their early opportunities may spend more than the usual time without any implied discredit, indeed without attracting any attention.
(e) The enormous waste of time and energy at the school period, the time of preparation for college, must be stopped.
Dr. Gilman says that the result of the adoption of these remedies would be that school life would usually end at sixteen years of age, college life at twenty, and the young man would receive his professional certificate or his diploma of doctor of philosophy at the age of twenty-thre years or thereabouts.
He also says: "If then the stronger universities would take the ground that, as a rule, none should be admitted to the professional courses or to the freedom of university instruction until they had attained a bachelor's degree, or in some other way acquired a corresponding preparation for advanced work, the reproaches of which we are conscious would soon disappear, and higher education would be more generally diffused, more wisely ordered, and more serviceable to the public."

ACTION OF COLUNBIA COLLEGE.

Although Harvard may have been the first to call attention to the excessive age of those students who, after completing a college course, enter professional schools, Columbia Coilege, New York, was the first to make provisions by which students can complete both courses at an earlier age. In order to accomplish this end an entire reorganization of the institution was rendered necessary. As a result of this reorganization, ${ }^{1}$ seniors in the School of Arts may select as optional courses such courses under any unirersity faculty as may be designated by said faculty as being open to seniors. The senior year is thus made the point of contact between the college and the university. PresidentLow, in speaking on this subject, says: "This arrangement, while it has the advantage of maintaining the dignity of the faculty of the college proper as a degree-granting faculty, has the other undoubted advantage of making the bachelor's degree seem not so much the end of a student's course as, what it ought to be, merely an incident on the way to the true goal, the professional degree. or the degree of doctor of philosophy. While it in no way cheapens the bachelor's degree, it does shorten by one year the time required for the college and professional course combined."

PRESIDENT CHARLES KENDALL ADAMS, LL. D.

In his annual report for 1889-90, President Adams of Cornell University says there ought to be some means by which the work done in the last one or two years of the undergraduate course could be made to apply directly in the interests of those professional studies which students might desire to take up after completing their undergraduate work. After discussing the plan put in operation by Columbia College and that proposed by the faculty of Harvard University, he says:
"It is not my object in this connection to express an opinion in regard to either of these methods. but simply to point out that, whaterer the weakness of either system may be, the substantially simultaneous efforts of two institutions as prominent as Harvard and Columbia to reduce the number of years necessary to complete the requirements for an advanced degree is one of unmistakable significance. The movement will unquestionably have not a little imporiance in influencing the development of higher education within the next few years."

President Angell of the University of Michigan has a few words to say on this subject in his last annual report. He remarks:
"It certainly is desirable, and I believe possible, to save some time in the education of the men who take four years' work in college and then their professional training. I am convinced that considerable time can be gained in the better arrangement of the work in schools. After the student is prepared for college, two plans for completing his education in briefer time than has usually been consumed are possible:
"First. Only three years of college work may be asked for the bachelor"s degree. In that case the student must be required to do more work in each year than he has done heretofore in college, or the standard of attainment for graduation must be reduced.
"Second. Substantially the plan which we have followed for several years may be adopted. The condition of attaining the bachelor's degree is not meeting a requirement of time, but of work. One must complete so many courses of study, a part of which are fixed, a part elective. While in order to avoid cramming there is a limit to the number of courses which a student may undertake at once, still, with the liberty given, a capable and industrious man may easily meet the requirements for the degree of bachelor of arts in three and one-half years, and a few exceptionally strong men in each class may do it in three years. But in case they are within half a year of graduation at the beginning of their fourth year, we allow them to enter any one of our professional schools and continue half work in the literary department. Having planned their course in advance, they have always elected some studies-the law students, constitutional history; the medical students, biology and chemistry-which either form a part of the professional course or are closely allied to it. Thus they are able without overwork or cramming to complete the college course and the first year's course in the law school or the medical school. This plan, which has been followed several years, has worked on the whole satisfactorily. Of course, it could be followed only by a university which has upon the same grounds its collegiate and its professional departments."

But President Angell doubts the expediency of the reduction of the college course from four to three years by the University of Michigan on account of the effect it would have upon the standard of education in the West. In this connection he says: "Without assuming too much for ourselves, we can hardly doubt that if we made the proposed change our example would compel the smaller colleges in this region and probably tend to bring all State universities in the West to make the change also. One who is familiar with the range of work now generally done in the Western colleges and universities can hardly think that it would be beneficial to the West to reduce the standard of graduation by a year's study, at least until the requirements for admission are considerably raised."

PRESIDENT HYDE OF BOWDOIN.

The November (1891) number of the Educational Review contains an article entitled The Policy of the Small College, which was contributed by Rev. William De Witt Hyde, D. D, president of Bowdoin College, Brunswick, Me. This article coming from a man who is himself at the head of one of the smaller colleges is so suggestive that extracts therefrom are here reproduced. He begins his article as follows :
"Now that we have the germs, more or less developed, of eight or ten universities, the college must prepare to take second place in our educational system. To ape the university and try to spread over the whole field of higher education, or to be jealous of the university and set up as its rival, is equally absurd and suicidal. Its proper policy is to accept with modesty and self-respect its new position, and by losing the old life of self-sufficient independence to find the new life of membership in the highly differentiated educational organism of which the kindergartens are the feet and the university is the head.
"There are three classes of educated persons: First, those whose knowledge of reading, writing, arithmetic, grammar, geography, modern history, descriptive science, and their native language and literature enables them to do ordinary business, to enter good society, and to enjoy periodical and popular literature. Second, those whose knewledge of ancient and modern languages and literatures, higher mathematics, experimental science, political and economic history, psychology, ethics, and sociology enables them to grasp the principles
of medicine, or law, or politics, or theology; to guide social progress and form public opinion; to enjoy the companionship of wise and good men of all lands and ages; and to appreciate the results in some department of scientific investigation or historical research. Third, those whose special training qualifies them to discover and interpret new truth within some chosen field of knowledge.
"To make schola:s of the first class is the business of the school; to make scholar's of the second class, and to discover and encourage those capable of ente:ing the third class, is the business of the college; to train the chosen few who constitute the third class into full possession of productive powers is the business of the unirersity."
The requirements for admission and the course of study to be maintained by the college are then discussed. He proceeds to show wherein the requirements for admission ought to be modified in order to bring the secondary schools and colleges into close connection. On this subject he says:
"The change is destined to become universal in the near future. As soon as the high schools are able to teach experimental science, French, and German as well as they now teach Greek and Latin, it will be the policy of the college to require for admission mathematics and English as at present; ability to read easy prose at sight in Latin, and either Greek, French, or German, and evidence of a thorough course in experimental science. We shall then have a considerable number of students fitting for college in the high schools, who will be for the most part in the same classes with the students who are not intending to enter college, instead of the small number who pursue a separate course, and thus receive an undue amount of the time of the teacher and an unjust proportion of the public school fund.
"This modification in requirement will necessitate some corresponding modifications in the coursa of study. It will be necessary to offer an elementary course in Greek, as well as in German and French, for those who wish to begin this study after admission to college. There should be a course in the history, literature, mythology, and archæology of Greece required of every student who has not studied the Greek language as a part of his preparatory or college course.
"The multiplication of highly specialized electives is not the province of the college. The expense is too great, and the profit to students at this stage too small.
"There are two fundamental lines of scholarly interest and two corresponding types of mind, the literary and the scientific.
"The college should, by its required courses, insure to every student an acquaintance with the first principles in both these fundamental lines of study. The college may wisely require of its candidates for a degree, ability to read both French and German, to write correct English, the elements of political and economic science, psychology, and ethics on the side of the literature and life of man, and higher algebra, geometry, and trigonometry, and the elements of chemistry, physics, and biology, on the side of mathematics and physical scienca.
"For the remaining half of the course sufficient electives should be offered to allow concentration on either literary or scientific studies, according to the taste and interest of the individual student.
"Such a readjustment of the conditions of admission and the course of study, totether with improved methods of teaching in the lower schools, will allow pupils to enter college a year or two earlier than at present. No shortening of the course will be necessary. The difference between the best academies and high schools and those of inferior grade will express itself by the increased number of students who will enter college a year in advance.
"A. B. should be the ordinary college degree, and it should be given without reference to the precise nature of the course pursued. The degree means simply that the recipient is a liberally educated man. Attempts to discriminate between the educational value of courses of equal length and thoroughness in the same institution of liberal learning are relics of an educational superstition from which it is high time to emancipate ourselves.
"In order to encourage continued study during the year immediately following graduation the college is justified in granting the degree of A. M. to graduates who give evidence of having done the equivalent of a year's graduate study. Beyond this the college has no right to go. It owes to its undergraduates the full expenditure of its income and the full time of its professors, and if it attempts to divide its strength between graduates and undergraduates it does an injustice to both. It is the duty of the small college to drive away grad-
uates who desire a prolonged course of systematic instruction to larger institutions, which make graduate instruction their main concern.
"The degree of PH. D. no mere college has a right to confer, and the conferring of this degree by institutions which make no adequate provision for graduate instruction is the gravest breach of educational propriety."

PRESIDENT CAPEN, OF TUFTS COLLEGE.

The purpose of the Office being to present this subject impartially, the most strenuous objections that have been advanced to a change in the college course are here presented. The first of these is from President Capen, of Tufts College, who protests most vigorously against any reduction in the requirements for the degree.

In the course of his remarks on the subject he says: "Of course, if knowledge be substituted for discipline and culture ; if the cramming process takés the place of those calm and thoughtful methods by which the intellect of man finds its most complete development, it is possible that many young men might corer the ground embraced by the college curriculum in three years. But if the attainment of the bachelor's degree is to be put within the reach of the majority of undergraduates in the shorter time by diminishing the courses of study now regarded as essential to it, few persons who have given attention to the subject will fail to esteem it as a lowering of the standard of general education." ${ }^{1}$

He does not agree with those who say that 27 is too advanced an age for a man to commence the practice of medicine. In connection with this hesays: "It may well be asked who wants a stripling by the bedside of those whose lives are most precious to him?"

He also says that if the age of college graduates has been increasing in recent years it is due to the increase in the requirements for admission, and the remedy would be either to abridge these requirements or to so improve the facilities for secondary education that men may be brought to college at an earlier age. "For," says he, "if a youth has but seven years to give to study from the time he enters the secondary school until he receives the degree of bachelor of arts it is better that hespend thres years in the fitting school and four years in the college than four years in the fitting school and only three years in the college."

PRESIDENT WARREN, OF BOSTON UNIVERSITY.

One of the leaders of the opposition in this matter is President Warren, of Boston University, who has done his utmost to arouse popular disapproval to the proposals of Harvard. His remarks have been given great publicity through the medium of the public press, so that but fragments thereof will be here presented. In an open letter to one of the overseers of Harvard University he says: "The scheme which I thought to propose is this: That every American classical college retain its present four-years' course, and simply notify all stidents of their successful completion of the junior year by conferring upon them at that point the title A. B. (Harv.), reserving the proper and legitimate A. B. as now for those who complete the entire course. This ought to satisfy Earvard, since it would greatly multiply the representatives of her ideas and standards, while, on the other hand, it would permit the other colleges to go on as usual, protecting and promoting the interests of liberal education, properly so called. This happy compromise seems to me so just and conservative of all interests that I take great pleasure in presenting itior your consideration and for the consideration of your distinguished colleagues."

Again, on October 31, 1880, the Boston Post contained a communication from Dr. Warren, from which the following is taken :
"As critical action is to be taken within a few days by the last of the governing boards of Harvard University, it may serve a useful purpose to set beiore the interested public a few pertinent facts and suggestions.
"First. The new measure now pending at Harvard makes no provision whatever for a compensative increase of the present requirements for admission to the freshman class.
"Second. The college is not understood to claim thatits present requirements for admission are more exacting than those of any first-class American college. In fact, in consequence of their flexibility and of the provision for maxima and minima many a student now enters Harvard College who can not pass the en-
trance examinations at Yale, Brown, Amherst, Wesleyan, and similar colleges. Few people seem to be aware of this fact.
"Third. The new movement aims to cut down the requirements for the A. B. degree to such a point that any apt and industrious student can acquire the degree of A. B. in three jears. In point of fact, an exceptionally brilliant student, taking as many hours per week as some of the more hard-working frequently take, could finish the proposed sixteen courses and win the degree in two and a half years.
"Fourth. So far as yet appears, no effort is to be made to limit the present range of election allowed to the student, so that the A. B. degree on the new terms, as on those now in force, may be taken by persons whose entire undergraduate course is spent in Harvard, and yet who have never studied Latin, or Greek, or French, or German, or mathematics, or history, or philosophy, a single day in Harvard College.
: Filth. The new proposal, if adopted, will make the Harvard A. B. the least significant and least valuable in New England. There is even danger lest the 'A. B. (Harv.)' become a byword.
"Sixth. No body of American students has ever asked for such a cheapening of the degree. Even at Cambridge the students are reported to have voted against it.
"Seventh. The Harvard alumni have never asked for the change, and many have expressed themselves in terms of the strongest opposition to it.
"Eighth. Still less have the American colleges, or any class of them, or any association representing them, asked for-such a surrender as the proposals of the Harvard faculty contemplate. On the contrary, the authorities of every college in New England, if not in the United States, deprecate the morement as fraught with grave and far-reaching evils in all the colleges, Harrard included.
"Ninth. The fitting schools have not desired the change. On the contrary, nearly all yet heard from deplore even the discussion of so demoralizing a proposition.
"Tenth. Massachusetts, which has ever felt a special ownership and pride in Harvard College, has required no such action as that proposed. Had the legislature, five years ago, required it, how furious a storm of indignant opposition and expostulation would have raged from one end of the land to the other! Courts would have been appealed to, constituencies instructed, new legislators elected, to frustrate so pirnicious a measure. Yet, quod non fecerunt barbari, fecerunt barbarini. What the Philistinian "rural members" did not do, that the faculty and corporation of Harvard are doing their best to accomplish.
"Eleventh. No ecclesiastical or religious body has called for the innoration. All the religious bodies. even to those which are popularly supposed to care least for culture, ssem stoutly to oppose so needless and harmful a capitulation.
"Twelfth. The entire morement is self-originated in Harvard University, and herein, for the first time in all her noble history, Harvard appears before the American public and the world as the sole leader in a confessedly and disgracefully downward and backward movement in liberal education.
"On careful consideration of this matter, several questions suggest them-selves-questions which the Harvard overseers and all custodians of the higher education should take time to investigate. For example, it has been jauntily assumed that the age of Harvard undergraduates is too high, and that the only problem is how to reduce it. Would it not be eminently appropriate for all concerned, first of all, to make a few inquiries like the following:
"1. Is it a fact that the majority of the youth entering Harvard and other colleges are any too mature for that self-direction in study now expected of them?
"2. Is it a fact that they are any too mature for that manly self-government in conduct now expected of them?
" 3 . If younger would their power of sustained and accurate abstract thinking be sufficiently dereloped within the limits of their course to enable them thoroughly to master the fundamental, philosophical, ethical, and sociological sciences as now taught?
"It has been assumed that the age of those entering our colleges is higher than it was fifteen years ago. Precisely the contrary is the truth in Boston University, and it might be well for all concerned in the discussion to inquire:
"4. Whether the age of the majority of students in college has not of late years steadily fallen in all or most of our classical colleges.
"It has been assumed that the grow th of the higher education in our country has not kept pace with the growth of population, and the short-weight degree
(which may also be spelled short-wait) has been represented as the only cure for the evil. As the first allegation does not accord with the results of my investigations, nor the second with my judgment, I renture to suggest two further questions:
" 5 . Whether the relative significance and power and growth of the higher education were ever as great in the United States as to-day. And
" 6 . In case they are not, whether the best way to cure the evil would be to raise up a larger crop of superficial and one-sided smatterers chiefly interested in obtaining the earliest possible chance for money-getting?
"It has been assumed that many of the students who now enter schools of medicine would first have taken an A. B. course, had this required but three years instead of four. As in all my life I have never yet learned of one such student, it might be well to institute another inquiry and to ascertain-
"7. Whether ten such students can be found in all the scores of medical schools in the United States taken together?
"It has been assumed that the required attendance upon college four years makes the collegiate medical students far older on graduation than they ought to be. Inasmuch, however, as the statistics of the Harvard Medical School show that the noncollegiate members of the school are but seven months younger than the collegiate, it would be wise to inquire-
" 8 . Whether a four years' course in liberal arts may not abundantly pay for seven months' delay in entering upon medical practice?
"It has been assumed that a three years' course in arts would attract far greater numbers of young men than can be induced to take a four years' course. Inasmuch, however, as many of the best colleges of the country have for many years offered both three years' and four years' courses, under the same teachers and with degrees conferred by the same authorities, the three years' course invariably offering even greater privileges of election than the four years' course, and still many times more students have always chosen the four years' course than the three years'-it is certainly fitting to start another inquiry, namely:
"9. Whether untested assumptions are to be made the basis of far-reaching and revolutionizing measures in educational administration?
"It has been assumed that Harvard College, without consulting with any other colleges of the country, has the full right to cut down the A. B. course to three years. Might it not be well to discuss for a little-
"10. Whether she has not an equal right, if it please her, to cut it down to two years, or to one, or to six months?
"It has been assuned that if Harvard were to cut down her course, all the other classical colleges would do the same. In view hereof, might it not be well to ask-
"11. Whether, in case they were to do so, it would be a good thing for American education-a thing for which, in history, Harvard University would be pleased to take the responsibility? And
"12. Whether, in case they were not to do so, it would be a good thing for Harvard College?
"In closing, I may be permitted to say that Harvard College is the one institution whose leadership the other colleges of the country will gladly accept and follow so long as she is true to her own illustrious traditions. If just now these other institutions break with her and revolt, it is because they can not recognize her in her strange new rôle. She is not herself, Herface is set the wrong way. She is marching, not at the front forward, but at the rear backward. The warmth of our remonstrance is simply an index of our habitual love and loyalty."
This letter was written a few days before the meeting of the Harvard board of overseers, at which meeting it was supposed that the question of shortening the course would be decided, and it was undoubtedly intended to influence this decision.

PRESIDENT ANDREWS, OF BROWN UNIVERSITY.

The fifth annual meeting of the New England Association of Colleges and Preparatory Schools was held at Boston, Mass., October 17 and 18, 1890. At this meeting President Andrews, of Brown University, delivered an address on "Shall the college course of study for the bachelorship in arts be reduced?" As a representative of one of the smaller institutions, it was to be expected that he would uphold the negative side of the question, which he did in a very able manner. His address was discussed freely and brought forth the fact that the men at the head of some of the leading institutions for secondary instruction are greatly dissatisfied with the present state of our educational system. While
they did not definitely declare for the reduction of the course of study, they were emphatic in the expression of the opinion that something ought to be done to make our system more elastic, "so that those who feel the need of starting in their life work as soon as possible, and are ready to put forth extra effort, would be encouraged to finish their course in three years rather than four."
Diring the discussion Mr. George L. Fox, rector of the Hopkins Grammar Schcol, New Haven, Conn., said: "I am aware that this [completion of the course in three years] is often done at Harvard, but so far as I know, at other colleges, while in rare instances it may be done, there is not the disposition to encourage any suoh efforts. If such a possibility could be distinctly held out to men having a college course under consideration, some worthy men would be deterred from the unwise step of entering the professional school without college training, as they do now."
Another objection to the proposed change was advanced by Prof. Tracy Peck, of Yale. In the course of his remarks, on the negative side of the question, he said: "If there is a widespread call in the thoughtful part of the community for reducing the college cour'se of liberal study to three years, I have not been able to discover it. There certainly are many earnest young persons whom poverty or other circumstances prevents from pursuing a full or even any course of liberal study. Such cases appeal strongly to our sympathies, and most colleges provide for the support of the meritorious; but no reduction in the conditions of time or other requirements can reach them all, and it would be unjust to the majority of students if their privileges were to be diminished because of the unfortunate few."
Exception may well be taken to that part of Prof. Peck's remarks which relate to the curiailment of the privileges of the majority of the students. Let us consider whether in fact these privileges would be diminished by the shortening of the present college curriculum. It appears not, for the reason that the graduate department would still be at the command of such students as might wish to pursue still further those studies which comprise what is known as a liberal education, and their privileges would be at least as great as they are at the present time. The shortening of the undergraduate course would not by any means carry with it the abridgment of any of the opportunities or facilities for advanced study now offered by our institutions of learning, but would very probably be the means of inducing a larger number of young men to pursue such studies, since they would be enabled to enter thereon one year earlier than at the present time.

Another objection to the proposed reduction is that it would mean the degradation of the A. B. degree. If this degree had a fixed meaning, or meant in one part of this country the same that it means in another rart, this might perhaps stand as an objection; but we are sorry to say that such is not the case, and will not be so long as State legislatures continue to grant to institutions the power of conferring degrees without defining the requirements to be demanded therefor. Should this reduction be made by Harvard and other leading institutions, it is certain that even then the A. B. degree conferred by these institutions would still mean at least as much, if not more, than the A. B. given by a large number of institutions in the United States.
The full discussion which the subject has excited has the great advantage that those upon whom the final adjustment of the matter will devolve will act in full view of all the difficulties to be met and of all possible means which experience suggests fo: the solution of the problem.

CHAPTER VII.

GRADUATE DEPARTMENTS OF UNIVERSITIES.

Abstract

Organization-Development of graduate departments in four institutions: Yale; Harvard; Princeton: Columbia-Nonresident courses-Growth of graduate work in eighteen years-Number of students in graduate departments from 1871-72 to 1859-90, inclusive-Statistics of graduates in individual institutions - Effect of the opening of Johns Hopkins Cniversity on other institutions Drawing power of threetypical institutions. Harvard, Johns Hopkins, and the University of Michigan, as shown by the State residence of the graduate students-Probable causes of the popularity of Johns Hopkins Cniversity-Statesin. which graduate students of Harvard, Johns Hopkins, and the University of BIichigan received their first degrees.

ORGANIZATION.

The organization and maintenance of departments for the prosecution of graduate or advanced study and research is of comparatively recent date. By this we do not mean that before the establishment of such departments graduate students did not remain in residence at the universities, for we find that in some cases such students remained in residence before special provision had been made for their instruction. An attempt is here made to trace the progress made by a few institutions in this direction.

Yale Coliege.-The catalogues of Yale College show that although graduate students were in residence as early as the rear 1836-37, no mention was made of any provision for their instruction until the year 1844-45, when the catalogue for that year contained the following: "Instruction is also given by the professors to resident graduates, provided a sufficient number present themselves to form a class." A few years later the catalogue for 1847-4.8 announced the establishment of a new department, in the following terms:
"It has long been felt at Yale College to be impo"tant to furnish resident graduates and others with the opportunity of devoting themselves to special branches of study, either not provided for at present or not pursued as far as individual students may desire. With the hope of accomplishing this object moie fully and systematically, the corporation at their meeting in August, 1816, appointed a committee to tike this subject into consideration, and in accordance with the report of the committee, at their next meeting in August, 1847, established a new department called the department of philosophy and the arts. The branches intended to be embraced in this department a e such in general as are not included under theology, law, and medicine; or more particularly mathematical science, physical science, and its application to the ats, metaphysics, philology, literature, and history. Instruc ion in this department may be giren by professors not belonging to the other departments, by the academical professors, and by such others as the president and fellows may approve. The instructors for the year, with the president, compose the faculty of the department. The instructions in the department are intended for graduates of this and other colleges, and for such other young men as are desirous of pursuing special branches of study; but it is necessary for all students in philology and mathematical science that they be thoroughly grounded in those studies."

The greater portion of the students enrolled in this department were not graduates, but may perhaps properly be called special students, who wished to pursue studies not giren in the regular academical department. A school of applied chemistry was made a part of the department from its organization. The catalogue for 1852-53 shows that a school of engineering had also been established, and that of the 55 students enrolled in the department during that year, 51 were connected either with the school of applied chemistry or the school of engineering. The same catalogue also contained the following respecting degrees: "The degree of bachelor of philosophy will be conferred by the president and fellows upon students in the department of philosophy and the arts, after being connected with the department for two years and passing a satisfactory examination in three branches of study."

The catalogue of $185.4-55$ shows that the chairs of chemistry and engineering received the name of Yale Scientific School some time during the year 1854, and that several new professors became connected with it. The following extract from The History of Yale College shows the development of the department from this time:
"The 'scientific school' now entered upon a rapid career of extension. Mr. Joseph E. Sheffield bagan his remarkable series of gifts. The 'school,' in honor of its distinguished benefactor, was called in 1861 the 'Sheffield Scientific School,' and a large number of new professors were appointed. Thus the 'scientific school'-a section of the department of philosophy and the arts-had now become one of the most flourishing and valuable branches of the college. Its origin was due to the effort which had been made, in 1846, to establish what was then called a 'fourth department,' the primary object of which was to provide instruction for graduate students in all branches of knowledge. But till this time everything had been in a formative state. There had been all along a small body of graduates who went on with their studies in history, philology, and literature ; there had been also graduates among the students in the scientific section of the 'department,' who pursued advanced studies under the instruction of the scientific professors; but it was found by experience that the larger proportion of those who applied for admission to the Sheffield school had not received the proper preliminary education which would enable them to pursue the study of any of the higher branches of science to advantage. Accordingly, in 1860 , substantially what is the present organization of the school was decided upon ; the courses of instruction being adapted to the educational wants of those persons who resorted to it, and to the somewhat general public demand for what was beginning to be known as the 'new education.' A scheme requiring three years of study was planned after the methods followed in the academical department, characterized mainly by the omission of classical studies and the prominence given to scientific studies."

This new arrangement of the scientific section was undoubtedly the cause of the readjustment of the whole department, which occurred in $187 \overline{2}^{\circ}$. According to this reorganization the department of philosophy and the arts was made to include the undergraduate academical department, the Sheffield scientific school, the school of fine arts, and the school for graduate instruction. This organization is still in force. It will thus be seen that a distinct school for gradnate instruction was not organized until 1872.

No degree for advanced work seems to have been given by Yale prior to 1860-61. In that year the catalogue contained the following:
"It is required of candidates for the degree of doctor of philosophy that they shall faithfully devote at least two years to a course of study selected from branches pursued in the department of philosophy and the arts. The selection may be made from the studies of either or both sections, but must belong to at least two distinct departments of learning.
"All persons who have not previously received a degree furnishing evidence of acquaintance with the Latin and Greek languages will be required, before presenting themselves for the final examination for the doctor's degree, to pass a satisfactory examination in these languages, or in other studies (not included in their advanced course) which shall be accepted as an equivalent by the faculty.
"The degree of doctor of philosophy will be conferred on all members of the department who, having complied with the conditions above stated, shall pass a satisfactory final examination, and present a thesis giving evidence of high attainment in the branches they have pursued."

The requirements in vogue at the present time require the student to have taken a bachelor's degree, to have a good knowledge of Latin, German, and French, and to have pursued for two years studies in the graduate department.

Harvard University.- The history of graduate instruction in Harvard is ably set forth by James Mills Peirce, secretary of the academic council, in his report to President Eliot for the year 1879-80. In this report he says:
"As no report has heretofore proceeded from this (the graduate) department, it seems to be desirable that I should take the occasion to present a brief sketch of its history. The residence of graduates at the university for the purpose of pursuing advanced studies is a practice probably as old as the college itself. Traces of it are to be found in the ancient records of the faculty, and it has always been felt that the presence of such persons, even when their connection with the university has been of the slightest kind, has had a tendency to heighten the serious scholarly feeling of the place. At the time of the foundation of the scientific school, under the administration of President Everett (1846-1849), one
of the main objects had in view was the provision of instruction suited to the wants of the most adranced students, and it will be remembered that, in the first organization of that sckool philological studies were represented in the faculty as well as the natural and practical sciences. In point of fact, the scientific school did, within the boundaries to which it was soon restricted, fulfill an important function in regard to higher work, and had a considerable influence in preparing the way for what is now the graduate department. Until the great extension of the elective system of the college ten years ago (1870), and the establishment of the degrees of Ph. D. and S. D. somewhat later (1872), it was the only department of the university that offered the opportunity of obtaining a degree by the performance of special work of a high character in pure science. It was resorted to by college graduates and other advanced students who desired to make a real beginning of a scientific career. Its opportunities of study, under professcris of rare eminence, not overburdened with undergraduate work, and eager to promote genuine scientific achievement, were exceptionally fine, though inadequately represented in any printed record, and the degree of the school soon attained a very high estimation.
"The nextstep that wastaken towards the provision of instruction for graduates was the institution of the system of 'university lectures' during the administration of President Felton [1860-1862]. Early in 1863, under the presidency of Dr. Hill, these courses of lectures, having been practically discontinued, were resumed on a plan of increased extent and efficiency; and at the same time it was ordered by the corporation that 'the president, with the professors in all departments of the university, be authorized to meet and associate themselves in one body for the consideration of itseducational interests, and for the arrangement of such courses of lectures as may be thought expedient for the benefit of the members of the proiessional schools, graduates of this or other colleges, teachers of the public schools of the Commonwealth, and other persons.'"

The university lectures do not seem to have been very popular. In the seven years from their establishment in 1863, seventy-four courses of lectures were delivered, of which number sixty-seven were upon scientific subjects. The seven exceptional courses were delivered before 1866.

At the beginning of Dr. Eiiot's administration graduate instruction was placed upon a permanent and more efficient footing. In 1869 two courses of instruction, one in philosophy and the other in modern literature, were opened to "graduates, teachers, and other competent persons (men and women)." Thirteen teachers took part in the two courses, 7 in the first. and 6 in the second. Twelve stud nts were in attendance upon the courses, 4 of whom presented themselves for examination on the course in philosophy. In his report for 1871-72 President Eliot says: "The university lectures have now been tried for nine years. Although some temporary advantages and certain improvements have resulted frcm them, it must be confessed that they have distinctly failed as a scheme for giving advanced instruction in philosophy, history, and the humanities, and that they have failed hopelessly and in an unexpectedly short time. They have not induced bachelors of arts of this university to remain in Cambridge for purposes of systematic study, and they have not attracted to the university advanced students from other places. Advanced students want profound, continuous, and systematic teaching. The university lectures, taken together as a body of teaching, have been discursive, heterogeneous, and disconnected." The best results were obtained in 1869-70, when the courses in philosophy and modern languages were given. Nevertheless, even these two long courses, given by a succession of five or six different teachers, lacked consecutiveness and unity of plan and method.

In 1872 the corporation and board of overseers adopted a statute of which only a summarized statement can be given. "The scheme contemplates residence of one year for the masters' [A. M.] degree, of two years for the degree of doctor of philosophy, and of three years for the degree of doctor of science, examinations for all degrees, and the presentation of these by candidates for either doctorate." This action of the university immediately attracted an increased number of students, as will be seen by a glance at the table on page 819.

Princeton.-The catalogues of Princeton do not show the presence of graduate students at the institution prior to 1870-71, in which year there were 3 in attendance. In 1870 three fellowships were created, and the students referred to were the holders of them. The conditions on which the fellowships were bistowed were such as to require the holders thereof to pursue adranced studies for at least one year. The number of fellowships was gradually increased, thus increasing the number of graduate students; butit may be well to remark that until the year 1877-78 no graduate students, excepting fellows, were
in attendance at the college, although a few such students had been in attendance at the scientific school. In $18 \% \mathrm{Dr}$. McCosh made a report to the board of trustees on the course of study in Princeton College. In this report he says:
"In the last few year's there have been a few graduates receiving instruction from individual professors. The board of trustees has now sanctioned postgraduate courses. They have been started this year experimentally, and the trial has been successful beyond all expectation.
"The aim of every college should be to secure a fair amount of scholarship from every student. No college can make all its students great scholars. But there is a certain proportion, say one in ten, or one in five, who as having the taste and the talent may be made so. This is to be done by postgraduate courses. We have at present no fewer than 42 graduates, mostly from the College of New Jersey, but a number from other universities in America and Great Britain, attending classes in our college, chiefly in philosophy and physics."

From that time the graduate courses of Princeton have been well attended. In 1890-91 graduate courses will be offered in the following subjects: Theoretical ethics, science and religion, Pluto and his philosophy, modern philosophy, history, Latin, pedagogics, Greek, architecture, archæology, English language, Sanskrit. Semitic languages, physics, higher mathematics, theoretical astronomy, biology.

Columbia College.-The graduate department of Columbia College was not organized until 1880, although graduate students were enrolled as early as 1874-75. Here, as at Princeton, the first graduate students enrolled were induced to pursue adranced studies through the instrumentality of fellowships. The holders of these fellowships were not importuned to pursue studies in the college itself, butwere encouraged to resort to foreign universities, and the only conditions imposed upon them was to report the character of their work periodically to the president. But on the organization of the graduate department a new departure in this respect was made, which was the adoption of a plan for the appointment of fellows with tutorial duties. This scheme was first put into operation at the close of the school year 1883-8t, and marks a considerable increase in the number of students in the graduate department.

Nonresident courses.-In addition to the institutions that provide courses of study for resident graduates, there are a number of institutions that provide similar courses for nonresidents. Such courses were established as early as 1874, and are, as a rule, taken by large numbers of students. In such cases the students pursue their studies at home, and, after a satisfactory examination, the appropriate degree is conferred upon them. At least one institution, the Illinois Wesleyan University, also offers a nonresident course of study for undergraduates, which leads to the degree of Ph . B. These courses are intended for persons whose circumstances and occupations are such that they would be unable to obtain a higher education if residence at an institution were insisted upon. In some cases where a demand arose for an opportunity to do advanced work for which credit would be given, nonresidentcourses were established in preference to resident courses, because the time of the professors was so fully occupied with other duties that they could not give the time that would be demanded by resident graduates.

GROWTH OF GRADUATE WORK IN EIGHTEEN YEARS.

The growth of graduate work in American colleges and universities during the past twenty years has been remarkable, the number of students in graduate departmentsof such institutions having increased from 198 in 1871-72 to 1,998 in 1889-90. This increase has been due, probably, to the greatly increased facilities which have lately been provided for the prosecution of advanced study and research in the older foundations and to the establishment of new institutions in which advanced work is the chief if not the only feature. Of the latter class the number is very small, Johns Hopkins University, at Baltimore, Md.. opened forinstruction in 1896, and Clark University, at Worcester, Mass., opened in 1889, being the only representatives. The larger part of the students of the former are registered in the graduate department; the latter admits such persons only as have already received their first degree or have otherwise prepared themselves to enter upon advanced study.
The number of students in the graduate departments of colleges and universities in the United States from 1871 to 1890 was as follows:

Year.	Students.	Year.	Students.	Year.	Students.
18\%1-72	198	1877-78	414	1884-85.	859
1872-73.	219	1878-79	465	1885-86	935
1873-74	283	1879-80	411	1886-87	1,237
18\%4-75	369	1880-81.	460	1887-88	1,290
1875-76	399	1889-83	522	1888-89	1,343
18\%6-77.	389	1883-84.	778	1889-90.	a1, 998

a Includes 281 nonresident graduates.
As will be seen from the above, the increase in numbers has been fairly regular, especially during the last ten years.

Statistics of graduates in individual institutions.-In order to show the increase in individual institutions, and the fluctuations caused in some of them by the establishment of new institutions, the following table has been prepared. The statistics have, with few exceptions, been taken from the annual catalogues of the institutions concerned. In a few cases where catalogues were not available the statistics were taken from the annual reports of the Bureau:

Number of students in graduate departments.

Year.	Harvard.									University of California.		University of Kansas.		
18\%0-\%1	8			24									2	
1871-\%	11			53	5	9		2					2	
1879-73.	20			50	7	8		5					2	
1873-74-	43	5		60	7	9		11		2			3	
1874 -75.	53	5		55	0		5 8	16	11	9			4	
1875-76	52	7		60	8	15	8	13	11	5	5		${ }^{6}$	
1876-7\%	58	9		${ }_{5}^{67}$	8	14	${ }_{7}$	23	11	3	2		10	
1877-78.	49	7 2	68	50 46		11	7 9	21 15	$\stackrel{23}{37}$	$\stackrel{4}{5}$	0		7	
1878-79-80	5	2	63 79	46 39	68 47	11	10 ${ }^{9}$	15	37 39	5	3 0	$\stackrel{3}{2}$	$\stackrel{5}{2}$	
1880-81	41	2	102	29	45	10	7	14	45	6	1	1	3	
1881-82.	49	12	99	44	63	13	1	22	53	3	9	3	3	
188\%-83.	55	20	125	41	67	25	7	36	73	2		6	5	
1883-84	75	18	159	30	62	19	25	21	78	6	10	10	13	
1881-85.	70	21	174	37	66	15	23	33	101	5	17	21	14	
1885-85	72	16	184	42	58	a35	23	35	102	9	25	14.	25	
1886-87	70	12	228	56	95	$a 41$	25	41	100	9	22	14	25	
1887-88	$\stackrel{9}{6}$	13	231	69	80	a59	20	52	107	12	21	13	37	4
1888-89.	95	21	216	79	93 117	$\stackrel{+}{a 65}$	35 70	69 84	114 100	${ }_{21}^{17}$	34 48	13 17	38 40	26
1889-90.	107	22	229	81	117	$a 78$	70	84	100	21	48	17	40	37

a Includes nonresident graduate students.
Effect of the opening of Johns Hopkins University on other institutions.-From the foregoing table it would be inferred that the opening of Johns Hopkins University caused a temporary diminution in the number of graduate students in nearly all of the institutions presented. This should not, howerer, cause surprise to any one who is acquainted with the farorable conditions the new institution afforded for advanced study. At the time of its establishment few institutions in the United States could offer inducements in the form of fellowships. In this respect Johns Hopkins University had a decided advantage, as it possessed twenty fellowships available upon terms which naturally attracted the graduates of other institutions. The natural result in the course of time was that other universities secured funds for the same purpose.
The readiness with which the graduates from the graduate departments of the leading universities receive appointments to professorships in educational institutions has undoubtedly created a desire for advanced study among the young men. This fact, together with the multiplication of fellowships, has been an important if not the chief cause of the increase of students in graduate departments. The number of fellowships has increased from 19 in 1872 to 172 in 1889-90. ${ }^{1}$

[^27]State residence of graduate students at three typical institutions. - In connection with this subject of graduate students it may be interescing to know the sections of the country from which the differentiastitutions recruitthese advanced departments; for, the standing of a sciool isshown net only by the number of students that flock to it, but also by its drawing power or the geegraphical extent of its influence.
In order to give a fair representation of the drawing powers of three typical institutions, the annual catalogues of Johns Hopkins University, Harvard University, and the University of Michigan for the four years 1885-87 to 1889-90, inclusive, have been carefully examine with the view of ascertaining the home residences of the students in the graduate departments. In an investigation of this kind a faiper representation can be made by taking the statistics of a series of years than by taking the statistics of but one year. The result of the examination indicated is as follows:
Residence of students in attendance upon graduate departments of Johns Hopkins University, Harvard University, and the University of Michigan during the ycars 1886-87, 1887-88, 1888-89, and 1889-90.

States.	Johns Hopkins University.					Harvard University.					University of Michigan.				
				$\begin{aligned} & \dot{8} \\ & \hline 1 \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { స్ञ } \\ & \text { ث̈ } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \dot{\infty} \\ & \dot{1} \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$ $\dot{1}$ $\stackrel{\infty}{\infty}$ $\stackrel{\sim}{\sim}$			$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & 1 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}\right.$	$\mid \dot{\infty}$	$\stackrel{\circ}{\circ}$ ∞ ∞ ∞	N゙す
North Atlantic Division:			9											1	
New Hainpshire	4	$\stackrel{4}{2}$			${ }_{6} 6$	--	2	4	2	13				1	1
Vermont--.......	2	2	1	2	7										
Massachusetts	12	11	7	9	39	40	53	47	53	193	2	1			$\overline{3}$
Rhode Island	1	1.	1	1	4			3	$\stackrel{2}{2}$						
Connecticut	5	4	$\stackrel{2}{2}$	3	14		1	1	1	3			1	1	2
New York	14	13	17	13	57	7	8	${ }_{6}^{6}$	$\stackrel{7}{7}$	28	2	1		1	4
New Jersey--	-4	2	$\stackrel{3}{3}$	4	13	2	2	3	2						
Pennsylvania South Atlantic Division:	9	9	7	8	33	6	6	4	3	19	3	4	3	1	11
Maryland.---......	65	76	65	87	293		1	---	1	2			1	1	2
District of Columbia.	3	1	6	5	15				2	2				3	3
Virginia	6	7	7	10	30										
West Virginia	1	2	2	1	6										
North Carolina	6	6	4	8	24				2	2	---			1	1
South Carolina	4	4	4	2	14	1	2	1	2	6					
Florgia	7	6	5	3	21					1					
South Central Division:		1			1		1			1		1	1		2
Kentucky .-	3	3	4		14		1		1	2			1		1
Tennessee		1	1	2	6				1	1					
Alabama	3	2	2	1	8										
-Louisiana	2	2	1	1	6										
Texas..-	1				1									1	1
Arkansas												1			1
North Central Division:															
Ohio --.-	13	7	9	9	38	4	-	8	8	26	1				5
Indiana		6	6	8	24		1	1		${ }^{2}$	2	5	3	2	11
Illinois.-	6	8	10	3	27	3	4	2	1	10		5	7	8	20
Michigan			2	4	10				1	1	22	33	31	41	
Wisconsin	4	3	7	,	17				3	$\stackrel{3}{2}$	${ }_{3}^{2}$	1	1	1	5
Minnesota	$\stackrel{4}{5}$	3 4 4				--		1	1	2			1	$\stackrel{2}{3}$	6
Iowa-.--	5 3	3	2	7	12			1	1	2	1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1	3 2 2	${ }_{8}^{6}$
North Dakota			1	1	2										
South Dakota				1	1							1	1		2
Nebraska	4		,	1	6	--		2	1	3			2		1
Western Division:		2			4			2	1	3	1	1	2		
Montana......														1	1
Colorado			1		1							1	1	2	4
Utah				1	1										
Washington												1	1		2
Oregon.													1		1
Californi	7	3	1		11	1	3	2	2	8	1			1	2
North Atlantic Division	54	48	47	46	195	58	73	69	74	274	7	6			
South Atlantic Division.	92	103	93	116	404	1	5	1	7	14		1	2	5	8
South Central Division.	11	8	8	8	35		1		2	3		1	1	1	3
North Central Division	43	40	45	42	170	7	11	-15	16	49	32	48	54	61	195
Western Division	7	3	2	1	13	1	3	2	2	8	1	2	3	4	10
Foreign.	16	18	18	13	65		3	8	6	20	1	1	1	3	6
U. S. Navy	4	3	1	2	10										
U. S. Army	1	1	2	1	5										
Total.	228	a231	216	229	904	70	96	95	107	368	41	59	65	78	243

a The residence of seven students not given.

This tabulation indicates that Johns.Hoykins has a stronger drawing power than either Harvard or the Univ.rsity of Michigan. It is also noticeable that notwithstanding the fact that the North Atlantic Division has more institutions ofering the advantages of well-equipped graduate departments than any of the other divisions, Johns Hoplins draws more students from this than from any other division excepting the South Atlantic in which it is situated. It is a wellknown fact that institutions nearly always draw much the larger part of their students from the immediate locality in which they are situat d.
Taking the figures es given above, we find that while Johns Hopkins draws 55 per cent of its students from sections other than the division in which itis located, Harvard draws but 25 per cent, and the University of Michigan but 20 per centfrom such sections. It will be observed further that the number of foreign students in a^{\wedge} tendance at Johns Hopkins exceeds the number in attendance at the other two institutions.
Probable causes of the popularity of Johns Hopkins University.-The large number of students from the North Atlantic Division attending Johns Hopkins suggests that some department of this institution is superior to the corresponding departments of the institutions in that division. In order to arrive at some conclusion with respect to this matter the catalogues of Johns Hopkins hare been examined with particular reference to the students from New York and Massachusetts, with the following result: The 57 students from New York were distributed among the studies as follows: Chemistry, 12; pathology, 7; history, 7; physies, 6 ; English, 5; biology, 4; astronomy, 4; mathematics, 3 ; Latin, 3; Romance languages, 3; geology, 1 ; histology, 1 ; and Semitic languages, 1. The thirty-nine from Massachusetts were divided as follows: History, 9 ; biolcgy, 6 ; chemistry, 5 ; Greek, 5; geology, 4; Germanic languages, 3 ; mathematics, 2 ; philosophy, 2 ; Assyriology, 1 ; English, 1 ; and Sanskrit, 1 . It will thus be seen that the two departments of history and chemistry include 33 , or about one-third, of all the students from the two States specified, and may very properly be said to be the most popular departments of the institution. This statement is substantiated by the annual report of the president of Johns Hopkins, in which it is shown that more students are entered for those departments than for any other.
Probably, however, the true cause of the superior drawing power of this institution is to be found in the manner of making appointments to the fellowships. While a large number of the Harvard fellowships are open only to Harvard graduates, all of the Johns Hopkins fellowships are open to graduates of any institution. Thus, although the number of fellowships possessed by Harvard exceeds the number possessed by Johns Hopkins, the chances of obtaining a fellowship at Johns Hopkins by a graduate of another institution are larger than at Harvard.
It has been suggested that the place where a student received his first degree might have some influence in the selection of an institution for the prosecution of advanced study and research. In order to arrive at some conclusion with respect to this subject the catalogues for the past four years of the three institutions which have thus far been made the subjects of special study and investigation were again examined. Before giving the results of this investigation it may be well to state that of the 243 students registered in the graduate department of the University of Michigan during that time but 133 were resident students, the remainder pursuing advanced study at a distance. In this investigation the latter could not be included, as the catalogues do not give the desired information concerning these students. For the same reason 118 of the students at Johns Hopkins University who were attendants at single courses only could not be included.
While the investigation was being made it was found that the institutions represented were so numerous that it was deemed impracticable to give the names of the institutions. It was then decided to give merely the State residence of the students and the States in which they received their first degrees. So as to make the representation as simple and complete as possible the results have been incorporated in three separate tables, which are as follows:

1	ลै
	（io
	（it：
	：
（ir：	10 \vdots 10 10
100¢0	
100 \vdots \vdots	11：in：ics｜ه
\＃ $\begin{aligned} & \text { 交 } \\ & 1 \\ & 1 \\ & 1\end{aligned}$	
	0 0
¢ 020 \vdots 	
！$\vdots: \begin{aligned} & 1 \\ & \vdots\end{aligned}$	
	：$: 1: 10 \vdots \vdots 0$
	：
	：imos：
	$\cdots$$\infty$ 0
	：$: 10$ ：
	：
！\vdots ：$\vdots: 1$	：$\vdots: \begin{aligned} & \text { ¢ }\end{aligned}$
	：$:$ ：¢ ¢
	$1:$ 0 \vdots 0
enrtrin	12－ザo ir－｜E
	： 1 ¢0ッ：
	crav－comm
1∞ \vdots \vdots 	
	\：晈：
	：\ddagger サー ！

Table giving residence and State in which graduate students at Harvard University from 1886-87 to 1889-90 received their first degrees.

Table giving residence and State in which resident graduates at the University of Michigan from 1886-87 to 1889-90, receired their first degrees.

The facts here presented are so simple that an extended explanation of them appears entirely unnecessary. The tables show that a comparatively small proportion of the students concerned left their own geographical sections for their first degrees. We also find that the students who had received their first or bachelor's degrees in the several geographical sections of the country were registered in the graduate departments of Johns Hopkins, Harvard, and the University of Michigan as follows:

Divisions.	Total number of of	Johns Hopkins Uni- Versity.	Harvard Uni- Versity.	Univer. Sity Michi- of
gan.				

- We thus find that Johns Hopkins University draws heavily from the institutions of all divisions. An examination of the tables will show that while but 21.8 per cent of the graduate students at Johns Hopkins received their first degrees in Maryland, 64.4 per cent of those at Harvard received theirs in Massachusetts and 55.6 per cént of those at the University of Michigan received theirs in Michigan.

CHAPTER VIII.

UNIVERSITY AND SCHOOL EXTENSION.

Abstract

Definition and description-Origin andhistory-Cambridge University-Oxford Vniversity-London Society for the Extension of University Teaching-University Ewtension in Scotland-In IreiandIn the United States-Chautauqua Literary and Scientific Circle-Johns Hopkins University and University Extension-University Extension in Pennsylvania-University and School Extension Movement in New York.

1. DEFINITION AND DESCRIPMION.

By the term university extension is meant that movement by which higher education is provided for all classes of people who are unable to attend the unirersities where such instruction is imparted. The definition given by Prof. R. G. Moultou, A. M., one of the Cambridge University extension lecturers, is "University education for the whole nation, organized upon itinerant lines." He says that university education has nothing to do with universities, that is, has no necessary connection with universities, and in order tosupportthis statement he shows that one of the three great branches of the movement in England is not managed by a university, but by an association which simply goes to the universities for lecturers just as one would go to a grocery store to provide for the household. He claims that university education must be defined in antithesis to school education. School education is compulsory and administered under discipline, while university education is purely voluntary; school education is limited, while university education begins where school education ends, and is practically unlimited, as it may be kept up during a man's whole life. "The essence of university education," says Prof. Moulton, "is that it is education for adults; it is voluntary; it is unlimited in scope; unlimited in age; it applies to a man's whole life. If that be the true view of university education you will see that it has no necessary connection with universities, but it is equally the interest of all adults who have a desire to take part in it."

The methods adopted by the different branches for the extension of university education in Europa do not differ very materially. The elements employed are lectures, class, syllabus, weekly exercises, examinations, and certificates.
The lectures are open to everybody and the audience is expected to be as miscellaneous as the congregation of a church. But in every audience there is expected to be a nucleus of students. By this is meant persons who wish to learn more than is brought out in the lectures. For such persons the syllabus which contains the lecturer's own outline for the whole work of his course is provided. With the syllabus as a guide the student can employ the time between lectures very profitably in reading what is required. In addition to the outline of the course of lectures and references for reading, the syllabus contains a list of questions, one set of which is to be answered weekly. This is known as the weekly exercise, but is widely different from our examinations. The exercises are to be written at home, and any and all assistance that the student can derive from books, papers, or any source whatsoever is allowed. The exercises are not intended to find out how much the student remembers, but simply to train him to work for himself.
The class is held on the day of the next lecture either before or after the lecture. It usually occupies an hour, and during this time the students can ask any questions they desire. Very frequently the lecturer discusses points brought forth in some of the exercises, or repeats some bright saying made by a student. But it should be borne in mind that the exercises are treated as being confidential, and it is the lecturer's aim to see that the feelings of no student are hurt in the class.
At the close of the course of lectures a final examination is held. This is a written examination and is open to those only who have done the weekly exercises in a manner satisfactory to the lecturer.
The granting of certificates depends equally upon the lecturer's reports of the exercises throughout the term and the result of the final examination.

2. ORIGIN AND HISTORY.

The term "university extension" seems to have become current in England as early as 1850, but the movement as it is now known was not started uatil more than twenty years thereafter. For a few years prior to the establishment of the university extension scheme, educational associations for mutual benefit had been formed in many of the towns in England, and university graduates had been engaged as lecturers. The associations thus established found the greatest difficulty in securing competent teachers, and therefore requested the University of Cambridge to supply them with lecturers and draw up a scheme of higizer education suitable to the wants of the towns. "After careful consideration the university, in 1872, appointed a syndicate (or committee), and instructed them to inquire into the best methods of dealing with the subject, and afterward empowered them for a period of two years to try the experiment of holding courses of lectures and classes in a limited number of populous centers, and of testing the work by examinations. The result of the experiment proved satisfactory, andthe syndicate were accordingly made permanent and invested with power to organize and superintend courses of lectures and classes in such populous centers as the syndicate might appoove, where the necessary funds should be guaranteed from local sources." The plan proved to be very successful, for we find that from 1873 to 1881 the Local Lectures Syndicate had conducted lectures in over sixty towns. In some of these places the scheme assumed a permanent form, either by association with some institution already established or by the erection of a college, while in others the syndicate was compelled to abandon the work, owing to a want of sufficient support.

The unit adopted by Cambridge University is a three months' course of lectures, ons lecture being delivered each week. Arrangements can not be mace for less than the unit unless it is to introduce or start a movement in a new place. When this is desired, a lecture upon some interesting subject is given, during the delivery of which the university extension movement is fully explained and its advantages freely set forth. Generally the people are so well pleased with the lectures that they wish them to be continued, and wherever a number of people sufficient to pay the expenses of a course of lectures evince such desire, centers are established. The university undertakes the educational organization of the course, while the towns must provide the funds and undertake the local management.

The univer ity fee for a three months' course of lectures is £45, while the local expenses for hall, lighting, etc., are about $£ 20$. This sum must be raised by the local committee, but the manner of raising it varies widely atdifferent centers. In a few cases sums of money have been obtained from concerts, etc., with which the centers were endowed, thus making them in a certain sense permanent.

Considerable care is taken in the formation of the local committees. These should be representative, and political or religious bias should be avoided. The committees should include teachers, artisans, ladies, and especially young people, who will be very useful to circulate information or sell tickets.

In 1887 Cambridge University, in order to maintain a high educational standard in its university extension movement, adopted what is known as the afiliation scheme. By this scheme students who attend a course of lecturesprescribed by the university for a term of three years, and at the completion of which receive a certificate, may at any time thereafter proceed to the university and obtain its degrees with two years' residence instead of three, and are known as affiliated students of Cambridge University. The following-named towns have adopted the Cambridge University affiliation scheme, viz, Derby, Exeter, Hull, Newcastle, Plymouth, Scarborough, and Sunderland. The course for affiliated students is as follows:

1. Special series of courses.-This consists of six single courses, consecutive, thus extending over three years. They must be in the same group, but not necessarily on the same subject of the group.
2. General series of courses.-This consists of two single courses in a group other than that in which he takes the special series. It need not be consecutive, and may bs taken before, during, or after the thres years of special series.
3. Elementary examination on Latin and one other foreign language, Euclid, I-III, and algebra to quadratics.

Another important factor in the movement for the extension of the influence and teaching of the universities is what is known as the summer gathering. In-
vitations are extended to extonsion students to come to the universities for a certain length of time during the summer months and make use of the extersive laboratories, museums, and libraries. Cambridge limits its invitation to those more earnest students who have obtained certiecates during the courses of lectures in the winter, and desire to supplement their theoretical knowledge by pactical work. The Cambridge summer classes appeal to the few, and their purpose is to add to the educational efficiency of the work. During August, 1890, forty-one students attended the Cambridge summer classes. The mornings were devoted to practical classes in chemistry, physics, and geology (palæontology), while the afternoons were devoted to courses on Greek arts, architecture, early inscriptions, engraving, Egyptology, and single lectures on other subjects.

Some idea of what has been accomplished by Cambridge University can be formed from an investigation of the following summary:

Summary for the years 1873-74 to 1889-90.

	Year.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { courses. } \end{aligned}$	Average attendance at lectures.	Average attendance at class.	Average number of weekly papers.	$\begin{aligned} & \text { Number } \\ & \text { exam- } \\ & \text { ined. } \end{aligned}$
1873-74		23-29	3,200			368
1874-75.		a30-40	a3,500			an84
1875-76.		$a 56$	a7,273			1,724
1875-7\%		83	7,511	4,833	--.--	1,075
1877-78.		59	5,940	4,138		1,088
1878-79		48	4,920	3, 201	1,272	556
1879-80.		47	5,009	3, 748	1,293	694
1880-81		37	4,369	2, 624	887	573
1881-82		43	3, 406	2, 100	822	502
1882-83		63	6,274	3, 438	1,337	906
1883-84		66	7,878	4,783	1,649	1,175
1884-85.		73	7,259	4,152	1,528	1,093
1885-86.		80	8,557	4,380	1,893	1,378
1886-87.		100	10, 494	4,820	1,885	1,341
1887-88.		98	9,509	4,653	1,975	1,531
1888-89		89	9,295	4,476	1,945	1,420
1889-90.		125	11, 595	5,405	2,458	1,732

a The figures are for but one term.

OXFORD UNIVERSITY EXTENSION LECTURES.

The extension movement was taken up by Oxford University in 1878. The plan of forming centers and the methods followed by Oxford are similar to those used by Cambridge. One of the most important points in which the two differ is in the number of lectures constituting a course. As has been said before, the least number for which Cambridge will make an engagement is for a single course of twelve lectures, while Oxford maintains courses of from six to twelve lectures, butcertificates are not issued for attendance at courses of less than twelve lectures.
While the main point with Cambridge seems to bs to maintain a high educational standard in the movement, it appears that Oxford does not lay much siress upon this point, butaims to extend the influence of the University as fae as possible. This difference between these two branches is very apparent even at the summ?r gatherings. We have seen how chary Cambridge is with her invitations, but not so with Oxford, which welcomes all who care to come, ir espective of particular educational qualifications and whether university extension students or not. The courses of lectures are of general interest, and designed to meet the most varied tastes. The Oxford meeting touches the many and tends to extend more widely the influence of the university. The third meeting at Oxford, in August, 1890 , was attended by 900 persons, just as many as attended the first meeting, in 1888.
The cost of the lectures ranges from $£ 21$ 12s. for a course of six lectures to $£ 54$ $12 s$. for a course of twelve lectures.

The number of towns in which local committees, acting in concert with Oxford University delegates, have been established is 132 , and the number of students attending extension courses in 1888-89 was 14,351 and in 1889-90 the number was 17,904 .

LONDON SOCIETY FOR THE EXTENSION OF UNIVERSITY TEACHING.

The London Society for the Extension of University Teaching, which was the first body to follow the lead of Cambridge, dates its foundation from a public meeting held at the Mansion House, June 10, 1875, at which the following resolution was adopted:
"That the principle of the Cambridge University Extension Scheme be applied to London, and that the various educational institutions of the metropolis be requested to coöperate in an endeavor so to apply it."

The principal educational institutions acceded to this request, and are represented on the council of the society. Furthermore, the Universities of Oxford, Cambridge, and London appointed three members each to form a universities' joint board, to nominate lecturers and examiners, and undertake (in conjunction with the council) the general supervision of the teaching, and thus give that university status to the work which the absence of a teaching university in London rendered necessary. The existence of this board has further secured for the Londonsociety the advantage of a wide choice of lectures and a close connection with both the old universities.
The first courses were given at permanent institutions, but the size of the audiences soon proved this to be a poor plan. Special committees were appointed in the central and suburban districts, who arranged for courses of lectures in local halls, which led immediately to a great improvement not only in the size of the audiences, butalso in the character of the work done. As the years passed by the difficulty of providing special courses of lectures for the most advanced students of the different centers presented itself. This was partly met in 1888 by the kindness of the Gresham committee in placing at the disposal of the society the Lecture Theatre at Gresham College, where central courses for students from the various local centres were established.

Another great difficulty seems to have been to obtain continuity in study. But this also has been remedied in a marked degree by the institution, recently, by the Universities' Board, of Sessional Certificates and Certificates of Continuous. Study.

In order to show the progress of the work done by the London society and the favor with which it is meeting, the following tabular form is taken from the University Extension Journal of February 1, 1890:

Periods.	-	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { courses. } \end{gathered}$	Number of entries for the courses.	Average number of weekly papers.	Number of certificates awarded.
October-December, 18\%6		7	139		
First year, 1877-..........		18	601		
Second year, 18\%8		19	604		57
Third year, 1879..		32	1,374		91
Fourth year, 1880		44	2,237	.-.-	219
Fifth year, 1881		43	2,489		199
Sixth year, 1882		65	3,214	610	288
Seventh year, 1883		50	3,421	625	293
Eighth year, 1884		53	3, 662	625	330
Ninth year, 1885.		63	5,195	803	405
Tenth year, 1886		61	5,084	806	483
Eleventh year, 1887		65	5,668	868	612
Twelfth year, 1888		80	7, 150	1,204	859
Thirteenth year, 1889		100	10,982	1,882	1,361
Fourteenth year, 1890		130	12,923	1,9\%2	- 1,350

IN SCOTLAND.
It is said that as early as the year 1874 the university extension movement was started in Scotland. Several Dundee citizens formod a guaranty fund, and arranged for five courses of lectures to be delivered by professors of the University of St. Andrews, three of the courses-chemistry, natural history, and physiology-being of twenty lectures each. This work was carried on for two years, but was rendered unnecessary by the establishment of University College, Dundee.

The movement was again started in 1888, and is now under the direction and supervision of the universities of Glasgow, Edinburgh, and St.Andrews. Although the work has been going on for but two years, the reports show that satisfactory progress has been made.

IN IRELAND.

In Ireland the movement has been started recently by the Belfast University Extension Society. The first three courses of lectures arranged under the auspices of the society were very successful, as the following statistics will show:

- Subject.	Average attendance.	Average number of weekly papers.
Geology	200	12
Shakespeare	134	19
Representative writers.	182	17

Each course consisted of twelve lectures, and the number of certificates awarded was 30 .

IN THE UNITED STATES.

The University Extension morement, as it is known in England, had no existence in the United States until 1887. The field of home study had, however, been occupied for some time by other educational agencies, which have, in a manner, paved the way for the adoption of the university extension movement. The foremost of these agencies is what is known as the Chautauqua movement.

CHAUTAUQUA LITERARY AND SCIENTIFIC CIRCLE.

This movement originated in the brain of Bishop J. H. Vincent, D. D., more than twenty years ago, and the first meeting was held in the summer of 1874 at Lake Chautauqua, New York, and was known as the Chautauqua Summer Assembly. The purpose was first to bring together Sunday-school teachers for conference and for a course of systematic instruction in biblical knowledge; and, second, to eventually include all learning, secular as well as sacred.
The plans were matured by Dr. Vincent during a return trip from Europe, and are stated as follows:
"It was to involve a course of reading and study covering the principal subjects of the college curriculum, but omitting of necessity its drill in languages and mathematics, giving to the English reader an outlook over the field of learning and some acquaintance with the masterpieces of literature, ancient and modern, employing handbooks and compendiums for the mastery of outlines and appointing more extensive work to be read-a course which the individual could pursue alone, if necessary, yet adapted for associated study. It was sufficiently simple to invite masses and to lead them on without discouragement from its difficulties or its extent, yet so thorough as not to be deemed superficial by the more learned. Above all, it was to bring the six secular days of the week into harmony of purpose with the Sabbath, not only by recognizing the Bible as a department of its study, but more especially by having the entire course penetrated with the spirit of reverence and faith."
The following statement of the methods of the Chautauqua Reading Circle was given by Mr. George E. Vincent, of the Chautauqua Assembly, October 10, 1889 :
"The Chautauqua Literary and Scientific Circle was organized at Chautauqua, N. Y., in 1878. The central idea was to provide systematic and definite aid to earnest people who desire to pursue progressive courses of study. Large numbers were at once enrolled, and the membership has steadily increased. Nearly 150,000 people have been at different times members of the circle, and at any given time 50,000 are pursuing the course faithfully. It was the belief of the originators that thousands of people were ambitious to do systematic work, and needed only specific directions. The plan comprises a carefully selected course extending over four years, divided as follows:

The four-years' course of the Chautauqua Literary and Scientific Circle.

1839-90.	1890-91.	1891-92.	1892-93.
Roman history.	English history.	American history.	Greek history.
Latin literature.	English literature.	American literature.	Greek literature.
Human nature.	English composition.	History and litera-	Greek mythology.
Political economy.	Astronomy.	ture of the far East.	Ancient Greek life.
Art.	Geology.	Physiology and hy-	Circle of the sciences.
Philosophy.	Pedagogy.		Zoölogy.
Physics. ${ }^{\text {Physical }}$ geography.	Readings from French literature.	Questions of public interest	Chemistry. Philanthrops
Physical geography. Uses of mathematics. Religious literature.	literature. Social questions. Religious literature.	interest. German literature. Religious literature.	Philanthropy. Religioas literature.

A half dozen volumes approved by a council of six prominent men; a monthly magazine with supplemental readings, outlines of study, annotations, and other sources of aid; memoranda papers to be filled out either from memory or by reference to authorities, not examinations, but as means of fixing facts in their proper relation, and as thorough reviews of the subjects taught. At the close of the course those who have, upon their honor, done all the required reading, and filled out the memoranda papers, are given certificates. not college degrees.
"The promoters of the Chautauqua Reading Circle have invariably held up the college as the highest standard, as unquestionably offering the best opportunities for education. But at the same time they maintained that those who can not attend college ought to be given every encouragement to educate themselves. The eagerness with which people have availed themselves of the definite and intelligent plans offered by the Chautauqua organization is positive proof that there is a widespread ambition among the people at large to do systematic intellectual work. It is a source of gratification to the original circle of the United States that a home reading club should have been organized in England avowedly modeled on the Chautauqua system.
"As an outgrowth of the original plan, which provided only for individual study, readers in towns and cities have been drawn by a community of interest into organizations known as local circles. These clubs have proved of great value, not only in aiding members in their individual work, but in arousing an interest in intellectual things and in fostering a taste for better literature."
The following statistics were furnished by Miss Kate F. Kimball, the office secretary of the Chautauqua Literary and Scientific Circle;

Class of-	Number enrolled.	Number graduated.	Class of	Number enrolled.	Number graduated.
1882	8,000	1,700	1888	20,000	4,000
1888	${ }_{7}^{9,000}$	1,300	1890	23, 230000	3,850 3,700
1885.	6, 600	1,300	1891	24, 000	
1887	14,000 18,000	4,000 4,500	${ }_{1893}^{1892}$	16,000 13,500	

Johns Hopkins University and university extension.-Dr. Herbert B. Adams, of Johns Hopkins University, in an article entitled University Extension in America, says "the first conscious attempts to introduce English university extension methods into this country were made in 1887 by individuals connected with the Johns Hopkins University." In 1887-88 Dr. Edward W. Bemis, a graduate of Johns Hopkins, gave a course of twelve lectures in one of the class rooms of the Buffalo (N. Y.) Library upon Economic Questions of the Day. The average attendance at these lectures was 250 , of which number more than 200 usually staid to hear the class discussion.

In 1888-89 Mr. Edward C. Lunt, a graduate of Harvard University, gave a course of lectures at the Buffalo Library upon American Political History. The same year Dr. Bemis repeated his course on Economic Questions of the Day in Canton, Ohio, where he lectured two evenings in the week for a period of five weeks.

The work in Baltimore, Md., is described by Dr. Adams as follows: "The first practical beginning was made with a class of young people, who met once in two weeks, throughout the winter of $1887-88$, in the reading room of a beautiful modern church close by the Woman's College. After an introductory talk upon
university extension by a Hopkins instructor the class was intrusted to a graduate student, Mr. Charles M. Andrews, now professor of history in Bryn Mawr College, who gave a series of instructive lectures, accompanied by class exercises, upon the History of the Nineteenth Century, with Mackenzie for a textbook on that subject.
"Following the young people's course, the like of which is entirely practicable in any church society with a college man for class leader, came a coöperative and peripatetic course of twelve lectures for workingmen on The Progress of Labor by twelve different men from the historical department of the Johns Hopkins University. These twelve apostles of extension methods swung around a circuit of three different industrial neighborhoods in Baltimore, each man repeating his own lecture to three different audiences. * * *
"Every lecture was accompanied by a printed syllabus in the hands of the audience, and was followed by an oral examination and a class discussion. Every man lectured without other notes than those contained in his outline of topics. The courses were organized upon a business basis and not upon the theory of giving something for nothing. This coöperative experiment in university extension work was, however, only moderately successful. Probably it was more useful to the lecturers than to their hearers. It is the conviction of the writer that it is mistaken zeal for university men to attempt to lecture to workingmen, as such, or indeed to any class of people. University extension should be for citizens without regard to their occupation.
"The most successiul educational experiments by Johns Hopkins men have been in connection with teachers' associations and Young Men's Christian Associations in Baltimore and Washington. Under such auspices coöperative and class courses in American history and economic and social science, with printed syllabuses, have been given before audiences varying from 150 to 1,000 appreciative hearers. Chautauqua circles in Baitimore have also been found intelligent and responsive to student lectures. Under the direction of Hopkins men a three-year's graduate course of study in English history has been successfully carried on by more than 1,000 students, who had already finished the four years of required study in the Chautauqua literary and scientific circles. A very elaborate syllabus based on Green's History of England and select volumes of the Epoch Series, has been the means of guiding this interesting work now in progress in all parts of the country. In connection with the Chautauqua College of Liberal Arts more detailed courses in ancient and modern history have been conducted in the same way, with monthly written examinations, the papers being in most cases set and read by Hopkins graduates, working under direction a'ter the manner of Prof. W. R. Harper, of Yale University, president-elect of the new university at Chicago, who is the recognized leader in the recent higher educational work of Chautauqua."

University extension in Pennsylvania.-The following note, in reference to the starting of university extension in Pennsylvania, was furnished by George F. James, A. M., general secretary of the American Society for the Extension of University Teaching:
"There has been recently an interesting development in education in Pennsylvania. Many of the leading educators of the State have become interested in the English plan of popular education known as university extension, and in February of this year a meeting was called by Provost William Pepper, of the University of Pennsylvania, for a discussion and explanation of the system. The scheme, as it was presented, met with universal favor. On further consultation with men connected with the higher educational institutions of the State it was decided to form a society for the purpose of introducing and establishing university extension in this country. On June 1 [1890] the Philadelphia Society for the Extension of University Teaching was organized in that city with Provost William Pepper as president. A fund has been raised by subscription for the initial expenses of the society, and the secretary will be sent during the coming summer [1890] to England, where other influential members of the society will unite in a careful examination of the origin and development of university extension, and a study of the best forms of general and local organization. An earnest effort will be made by the society to adapt this system to American conditions. It seems clear to those interested in the movement that it promises valuable results to American education along many lines.

University and school extension. -The following extracts from the circular of the university and school extension for the year 1889-90 will give a fair idea of the purposes of this movement:
"The design of the university and school extension" is, in the words of the circular announcing its purposes, "to supplement and to strengthen the univer
sity and the school system, to increase the culture and to promote the interests of teachers as members of a profession, and ingeneral to advance the knowledge of letters and of the arts and sciences.
"The work is not, however, restricted to teachers; it is open to all persons of the required age. No one can expect, through the university and school extension, to secure a university education ; but university graduates and others, ladies and gentlemen, will thus have an opportunity of continuing or of taking up each year some one or two studies under university guidance and recognition.
"The courses in university extension will be parallel to those of the universities and, within the necessary limitations, of the high grade maintained in the best universities. The work in school extension, which will be slower in development, will be in the subjects taught in schools. It will also include the methods and the principles involved in teaching the respective subjects."

METHODS.

"The features of the work are home study, class work, lectures, instruction by correspondence, lectures by correspondence, the library, public examinations, prizes, and certificates-various marks of honor for work of high grade, but no degrees."
"Each registered member is entitled to one of the following syllabi, and may procure the others from the general secretary." [There are twenty-five of these syllabi, laying out courses of study, preliminary and advanced, in literature, history, psychology, political science, French, German, mathematics, astronomy, physical geography, geology, physics, chemistry, and philosophy of education. These are prepared by professors of Harvard, Yale, Columbia, Princeton, and by Superintendent Calkins.]

CLASSES.

"Any person may form a society or a class to study any one of the prescribed courses. A class should consist of from three to twelve students. The best talent available should be secured to lead or to assist in the work. The general secretary will assist in forming classes in New York, in Brooklyn, and in other places. A class can pay its registration fee and class instruction by charging its members a small fee.
"The class meetings may not only be made the occasion for pleasant social and intellectual intercourse, but the exercise may be varied by readings, essays, and discussions. It is suggested that small circulating libraries for the use of a class may be formed by the gift or loan of one or more books by each member of the class.
"A student who has no associates with whom to form a class should pursue his situdies with the assistance of the correspondence courses., Registered members will, however, be advised as to the formation of classes."

CORRISPONDENCE.

"Registered members desiring to join correspondence classes should communicate with the general secretary. These classes will be formed only when a sufficient number of students express a desire for them. The correspondence will be under the personal direction of a university professor. Most of the professors in the unirersity extension have consented to teach the correspondence classes in their respective studies.
"Correspondence classes are suggested for each of the following topics: Greek, Latin, French, German (the language and literature of these languages for a four or five years' course), English literature, psychology, political science, American and European history, physical geography, geology, chemistry, physics, astronomy, algebra (atwo years' course), geometry, trigonometry, physical training, the philosophy ard history of education."

LECTURES.

"The class and the lecture systems, as the work is developed, will be thoroughly well organized. During the year 1889-90 there may be a few lectures in New York or Brooklyn. It is expected that members of the university and school extension will have the opportunity of attending, each year, short courses of lectures by university professors."

LIBRARY.

"In most of the syllabi the professors have outlined their subjects by topics; and after each topic they have referred in many cases, by chapter and page, to the best reading on the respective topics. The student has the benefit of readings selected in each subject by an acknowledged expert."

FEES.

"The registration, or membership fee for the present year, is $\$ 1$ for one student or a small class, and $\$ 5$ for a large class or a society.
"Ladies 18 years of age or older and gentlemen of 20 years or older, and also classes and societies, may become registered members.
"The fee for instruction by correspondence will be $\$ 10$ for each study. but no correspondence class will be formed nor will the money be received until a sufficient number hare expressed a desire to join the respective classes.
"All the lines of work, including the examinations, are entirely optional with members, nor will any charge be made for any part of the work unless that part is chosen by the member."
"The class registration fee of $\$ 5$ entitles a class to 12 syllabi. Additional syllabi may be had by members at 25 cents each, or 6 for $\$ 1$.
"Send registration fee with address to the undersigned."
SEtH T. Stewart, General Secretary, Box 192, Brooklyn, N. Y.

CHAPTER IX. ${ }^{1}$

COMPARATIVE DIAGRAMS ILLUSTRATING THE STATIS. TICS OF PROFESSIONAL EDUCATION DURING THE DECADE 1880-90.

Befora entering upon an exhibit of the statistics of professional training in the United States for 1889-90, with particular reference to the statistics of the nine preceding years and incidentally to those of France and Germany for the same period, the attention of the reader may with great propriety be called to certain facts too important to be lost sight of.

Both in Germany and France education, higher and lower, since the beginning of the century has been in the hands of the State, and, as a result, the Government of France and of the several German States may each demand statistical information and compel its stipendiary to furnish it. On the other hand the information annually obtained by this Bureau is due to the courtesy of its correspondents who are under no other obligation to furnish their statistics to the Federal Government, or in many cases eren to the government of the State in which they are located. From this itnaturally follows that several delinquent correspondents will be found each year, though not infrequently as many as four blanks are sent out to such on as many occasions. When these delinquencies happen it is the custom to use the statistics furnished by the delinquent institution the preceding year, indicating the fact by a footnote. When an institution fails to report for two successive years it is taken out of the table unless there is evidence that it still exists. In the following diagrams it has been the object of the compiler to fill up sulch lacunæ whenever it appears that the institution still exists or has, after a period, been restored to the table.

A still more formidable difficulty, however, is presented by the dissimilarity of institutions which bear the name of college or university or normal school and the like, but beyond cautioning the reader in the matter it is advisable to leave the subject to a future occasion, though whatever can at present be attempted in this line is given in Chapter X, which deals with the curricula of the schools whose attendance is given in this.

[^28]DIAGRAM 1.-Showing morement of the enrollment in the faculties of law, medicine, and theology, in twenty-:uo German unirersities during thirtecn years.

Students in

[^29]
Location of German Universities.

Population, 49,421,061; area, 208,695 square miles.

DIAGRAM 2.-Showing movement of the enrolment in the State Faculties of Law, Medicine, and Theology in France during eight years.
[Scale same as diagram 1.]

[^30]Students in
For every 100,000 inhabitants in France Law. Medicine.
There were in 1881 14 11
" " " 1888 14 17

Location of juculties (schools) of higher education in France.
[Population, $37,930,759$; area, 204.092 square miles.]
[Dotted lines indicate the "academies"' into which the " University" of France is divided, not including Algeria and Corsica.]

Diagram 3.-Showing movement of enrollment in schools of law, medicine, and theology in the United States during the period 1880-90.
[Population 62,622,250; area 3,025, 600 square miles. Scale same as Diagram 1.]

—_ Medicine, 14,884 in 1890

- - - - - - - Theology, 7013 in 1890.
--- -- -- Law, 4518 in 1890.
Students in
For every 100,000 inhabitants in the United States
Law. Iedicine. Theology.
There were in 1881
6
25
9
" " " 1890
24
11

DIAGRAM 4.-Showing the distribution of the enrollment in the German universities among the fou faculties of which twenty are composed, the two faculties composing the University of Mïnster, and the Catholic Seminary of Braunsberg, at the dates of 1881 and 1889.

DIAGRAM 5. -Showing the distribution of the enrollment in the faculties of France at the dates of 1881 and 1888.

1880-81, 11.9\%3 enrolled.

188\%-88, 19,152 enrolled.

DIAGRAM 6.-Showing the distribution of the enrollment of the several schools, colleges, and universities of the United States which have professional courses, at the dates of 1881 and 1890.
[It will beremembered that the students of the faculties of France and Germany are baccalaureates, which is not necessarily the case with the students of professional schools or departments in the United States. See diagram 15.]

1880-81, :23,217 enrolled.

1889-90, 34,272 enrolled.
Location of schools of theoloygy in the United States' at the dute of 1890.

DIAGRAM 7. - Showing enrollment, graduates, and number of students having a degree in letters or science during 1880-90, in schools and departments of theology in the United States.

[^31]-- -- .- Having degrees in letters or science in 1890, 1559.
-------- Graduates in 1890, 137\%. To every 100,000 of population 2 in 1890, 1 in 1831.

DIAGRAM 8.-Showing same facts as diagram 7 for thirty-four schools and departments of theology which have reported regularty during the period 1880-90.

Strdents, 2454 in 1850.
Haring degrees in letters or science, 1203 in 1800.
Graduates, 002 in 1800.

Diagram 9.-Showing percentage of students in theology enrolled in the schools of each denomination in the United States at the dates of 1881 and 1890.

1880-81, 4,569 enrolled.

1889-90, 7,013 enrolled.
Location of schools of law in the United States at the date of 1890.

EDUCATION REPORT, 1889-90.

DIAGRAM 10.-Showing enrollment, graduates, and number oj stidents haring a degree in letters or science in schools and departments of law in the United States during the period. 1880-90.

Students in 1890, 4518, of whom 33 per ct. graduated in 1890 against 34 per ct. in 1881. Graduates in 1890, 1514 (in some instances computed). Graduates to every 100, 000 of population 2.4 in 1890, 2.1 in 1881.
------ Having degrees in letters or science in 1890, 1255 (in some instances computed).

DIAGRAM 11.-Showing same facts as diagram 10 for nine schools or departments of law in thë United States which have reported regularly during the period 1880-90.

\longrightarrow Students, 1841 in 1890.
--- - Having degrees in letters or science, $6 \pi 0$ in 1890.
----------- Graduates, 495 in 1890. (Decrease due to Columbia College extending her courșe.in law.

Diagram 12.-Showing number of degrees conferred annually by the fourtern faculties of law of France during the period 1880-88.

Total Enrolment.
Total Enrolment.
Graduated (as Licertiates.)
[Scate, 2000 to the inch.]

Total Enrolment.

Location of schools of medicine (undergraduate) in the United States at the date of 1890 .

Diagram 13.-Showing enrollment and graduates for the period 1880-90 in medical schools of the United States.

Students in $1890,14,884$, of whom 30 per cent. graduated in 1890 against 33 per cent. in 1831.
Graduates in 1890, 4492. To every 100,000 of population, 7 in 1800, 8 in 1881.

DIAGRAM 14.-Showing fluctuation of attendance at the schools of each of the three medical sects in the United States during the period 1880-90.

Regular. 13,044 stadents in 1890.
Eclectic. 661 students in 1890.
Homeopathic. 1123 students in 1890.

DIAGRam 15.-Showing relation between the number of students in certain medical schools of the United States, and the number of these studentsholding degrees in letters and science, during the period 1880-90.

\longrightarrow (a) Students in schools represented.
ers or science in schools represented in (a) above.

Diagram 16.-Showing number of degrees annually conferred by the six faculties of medicine, the two medical schools of "full exercise" and fifteen preparatory schools of medicine in France during the period 1880-88.

Total Enrolment.

Total Enrolment.

[Scate, 2000 to the inch]
Location of schools of dentistry and of pharmacy in the United States at the date of 1890.

Diagram 17.-Showing enrollment and graduates of schools of dentistry in the United States during the period 1880-90.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { N } \\
& 0 \\
& \infty \\
&
\end{aligned}
$$ \& $$
\begin{aligned}
& \infty \\
& 1 \\
& \infty \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \infty \\
& \text { Sin } \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$ \& \& $$
\begin{aligned}
& 0 \\
& 1 \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { í } \\
& \text { ín } \\
& \infty \\
& \text { in }
\end{aligned}
$$ \& ∞
N
N
∞

\sim \& $$
\begin{aligned}
& 9 \\
& \infty \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
$$ \& - ${ }^{\text {P }}$ \&

\hline \& \& \& \& \& \& \& \& \& 2700

\hline \& \& \& \& \& \& \& \& \& 2500

\hline \& \& \& \& \& \& \& \& \& 2300

\hline \& \& \& \& \& \& \& \& \& 2100

\hline \& \& \& \& \& \& \& \& \& 1900

\hline \& \& \& \& \& \& \& \& \& 1700

\hline \& \& \& \& \& \& $$
0
$$ \& \& \& 1500

\hline \& \& \& \& \& \& \& \& \& 1300

\hline \& \& \& \& \& \& \& \& \& 7100

\hline \& \& \& \& \& \& \& \& \& 900

\hline \& \& \& \& \& \& \& \& \& 700

\hline \& \& \& \& \& \& $$
0^{-}
$$ \& \& \& 500

\hline G \& zuate \& - \& \bigcirc \& \& \& \& \& \& 300

\hline
\end{tabular}

DIAGRAM 18. -Showing the movement of population in iwelve dental schools of the United States which report regularly for the period 1880-90 the number of students enrolled having a degree in letters or science. (Of these schools only six were in existence in 1881.)

Students, 1587 in 1890.
Having degrees in letters or science, 69 in 1890.

Diagram 19.-Showing movement of enrollment and the graduates in schools of pharmacy in the United States during the period 1880-90.

DIAGRAM 20.-Showing number of degrees annually conferred by the six higher schools of pharmacy and mixed schools of medicine and pharmacy, the two medical schools of "full exercise," and the twenty-one preparatory schools of medicine and pharmacy in France during eight year's.

	M		$\begin{array}{cc} \hline 9 & \text { M } \\ \text { N } & 1 \\ \infty & \infty \\ \infty & \infty \\ \hline \end{array}$	$\begin{aligned} & 19 \\ & \text { N } \\ & \infty \\ & \underset{y}{\infty} \end{aligned}$	0 1 ∞ ∞ ∞		-	
								2300
								2100
								1900
								1700
					∞			1500
								1400
				7				1300
	Student	nts.	\square					1100
	-							300
=								700
								500
	Degrees	of $2^{n a}$ c	Class.					200
	Degrees	es of $1^{\text {st }}$ C	class.	-------	\pm	-...-.--*		100

[^32]Diagram 21.-Shouing movement of enrollment and the number of graduates in murse training schools in the United States during the period 1880-90.

DIAGRAM 22.-Showing munber of graduates (passed an examination before faculty) in miduifery in France during the period 1880-88.

Graduates in Midwifery of 1st and $2 d$ classes.
Location of schools of technology in the United States at the date of 1890.

DIAGRAM 23.-Showing mumber of students in scientific schools and departments of colleges and universities (excluding manual training high schools) during the period 1880-90, and the degrees in science conferred during the same period.

-...-.......- Degrees in science (B. S., C. E., M. E., etc.).

DIagRam 24. -Showing distribution of attendance at colleges and schools endowed with the national land grant, from 1880 to 1886.

Location of public normal schools in the United States at the date of 1890.

Location of teachers' training schools in France at the date of 1889.
[Area, 204,092 square miles; population, 37,930, \%59.]

- For Men.
+ "Women.

Location of tcuchers' seminaries in the Finglom of Prussia.
[Area, 134,500) square miles; population, 29,959,388.]

- Private.

Location of teachers' seminaries in the Fingdom of Saxony.
[Area, $5,78 \%$ square miles ; popalation, $3.500,513$.]

Location of teachers seminaries in the Fingatom of Bararia. [Area, $29,17 \%$ square miles ; population, $5,589,352$.]

Location of teachers' training schoots in the Kingdom of Wïrtemburg.

DLAGRAM 25.-Showing number of "normal" students in teachers' training schools in the United States for the period 1880-87, and the number of "professional" students in the same class of schools during the period 1887-90, also the number of graduates (normal or professional).

CHAPTER X. ${ }^{1}$

CURRICULA OF PROFESSIONAL SCHOOLS.

If a certain number of individuals have a common quality that may be represented in numbers a statistical table may be formed. But if this common quality is expressed in a very general way, such as by the term "medical students in 1889-90," it will happen that students who are pursuing a three-years course of medicine count for as much as those who are pursuing a four-years course. It is therefore quite as important to know what and how the students in medicine for 1889-90 were taught as to know how many of them were taught in medical schools during that period.
In taking up in order the several classes of professional schools, the requisites for admission to them will be considered first, then their curricula. Statistics for the last ten years have been given in the preceding chapter, and those for the year 1889-90 will appear in full detail in the chapter which follows.

MEDICIIFE.

REQUIREMENTS FOR ADMISSION.

If we begin by inquiring what was required of the applicant for matriculation in 1880-81, it is shown by an inspection of the announcements and catalogues of about 80 medical schools that the situation was, in general terms, as follows:

Ten had examinations for admission covering several subjects and 14 employed some slight tests of an applicant's fitness to study medicine. The subjects of examination were elementary physics in 8 schools, arithmetic in 7 , elementary Latin in 5, grammar in 4, geography in 4, algebra in 4, geometry in 3, and history in 2. Grammar and composition were determined usually from the papers submitted. The amount of physics required was generally a knowledge of Balfour Stewart's Primer of Physics or its equivalent. The Latin requirements were raried, and were intended to show the familiarity of the applicant with declensions, conjugaticns, common words, and simple constructions. Algebra to quadratic equations and two books of geometry were usual requirements in these branches. The Michigan College of Medicine allowed a substitution of either Greek, French, German, botany, or zoölogy in place of other studies mentioned above (except Latin). French, German, algebra, geometry, and botany were alternative subjects at Harvard Medical School, on one of which the candidate must be examined. Botany and chemistry, as found in the Science Primers, were required by the Woman's Medical College of the New York Infirmary. College diplomas, degrees from scientific schools, graduation from acceptable high schools and academies, and licenses to teach public schools were among the proofs of a candidates fitness which were accepted in lieu of examination. In the Medical School of Missouri University all students before entering the senior class were required to pass a satisfactory examination on English grammar, rhetoric, history of the United Ștates, and arithmetic through common fractions.

In examining the announcements of the requirements demanded of matriculates, in 1890 the reader is struck with the very frequent use of the expression "all the branches of a good English education," to which is added in the majority of cases "including mathematics, English composition, and elementary physics or natural philosophy." The phraseology varies, however; sometimes it is a "fair English education;" in other connections it is the "common-school
branches." In many other cases the requirements are "proficiency in grammar, arithmetic, geography, history," and even reading, writing, and spelling, and profici ncy in a.l these subjects may be taken as a definition of a "good (or fair) English education." Such an education ought to be given in the public schools, and thus it follows that the requirement of the great majority of the medical schools of the country is a thorough common-school education. The entrance requirements of the medical schools of France are considerably higher, for in that country the matriculate must have obtained the degree of bachelor of letters and another degree, which is called bachelier ès sciences restraint pour mathematiques, and the curriculum of the German gymnasium, which is preparatory to a course of medical instruction, is quite as high and as thorough as that of the French Lycée. What the requirements in Great Britain are may be inferred from the special matriculation examination of the Bellevue Hospital School for those students who expect to present their diplomas for recognition in Great Britain. This examination embrases the following subjects: English language, including grammar and composition; arithmetic, including vulgar and decimal fractions; a'gebra, including simple equations; first two books of Euclid; Latin, translation and grammar, and one of the following subjects: Latin (first two books of Cæsar), Greek (St. John's Gospel), French (the first chapter of Télémaque or Charles XII), German (first part of Adler's Reader), natural philosophy, including mechanics, hydrostatics, and pneumatics (Peck's Ganot's, or Parker's Philosophy).

There are some exceptions to the average requirements in the United States which call for attention. In several instances a familiarity with Latin grammar is demanded, though in four instances this familiarity may be obtained during the course of medical instruction. For admission to the department of medicine of Harvard University the requirements are that the applicant shall write an English composition of two hundred words and write English prose from dictation, translate easy Latin prose, possess such a knowledge of physics as may be obtained from Balfour Stewart's Elements, and elect one of the following subjects: French, German, elements of algebra or of plane geometry, or botany. At the Yale Medical School the requirements, with the exception of the languages, are about the same. In the case of the department of medicine of Michigan University stress is put upon a compətent knowledge of zoölogy, and languages are not required, while in the case of the medical department of the University of Minnesota the examination embraces an English composition of two hundred words, Latin, French, German, or a Scandinavian language, an examination in algebra, plane geometry, or botany, and in physics. The College of Physicians and Surgeons in the City of New York (Columbia College) has an entrance examination in which the Latin (Cæsar or Sallust), algebra, and geometry are fully equal to the requirements in those branches demanded by the abovenamedinstitutions. These schools are connected with our highest and wealthiest institutions of learning, and if they are unable to ask as much as the departments of arts, with which they are affiliated, how is it to be expected that nonuniversity schools, wholly dependent upon themselves for support, both moral and pecuniary, can ask as much?

In addition to the examination as to intellectual attainments a certificate as to moral character is required.

It is not to be supposed, however, that the attendance at these schools is made up for the most part of those who pass an examination which is "satisfactory to the faculty" of the school; for that examination is only required when the candidate can not present a diploma from a college, high school, or academy, normal school, or, in some cases, a teacher's certificate entitling him to teach in a public school of his State.

The number of the matriculates who have obtained a degree in letters or science has been collected by this Bureau for a number of years. Consulting this record, which is by no means as perfect as it should be, the following facts are developed:

Of the 96 institutions reporting to the Bureau in 1881, 42 returned 1,111 students having a degree in letters or science, and 3 report definitely that they had no scholar with a degree. In these 45 institutions there were 6,625 students. Thus in every hundred students there were 17 who, it may be said, had been liberally educated. If the other institutions (51) had reported specifically that they had no student who had received a degree in letters or science, the whole attendance as far as reported to this Bureau $(11,399)$ could be compared with the number of students who were reported as having obtained a degree by the schools which answer the question definitely in the affirmative or negative and no error occur.

If we assume, however, that these 51 institutions had no matriculate in attendance having a degree in letters of science, then, to do jus ice to the different parts of the country, comparison may take the following form:

	New England and Middle States.	South Atlantic States.	South Central States.	ITorth Central States.
	Per cent.	Percent.	Per cent.	Per cent.
Ratio of matriculates having degree in letters or science to students in all medical schools of each section of the country	14	6	2	7
Ratio of matriculates having degree in letters or science to siudents in medical schools that report students with such degrees in each section of the country	20	11	8	15

Continuing this sifting process by considering eleven schools of medicine which are departments of a university, it appears that at-

	$\begin{aligned} & \text { Attend- } \\ & \text { ance, } \\ & 1880-81 . \end{aligned}$	Had a degree in letters or science.
		Per cent.
Harvard Medical School	243	
Yale Medical School	21	48
College of Physicians and Surgeons (Columbia College)	547	34
Medical department, University of Pennsylvania.	375	26
Medical School of Maine (Bowdoin College) ---	112	20
Medical department of the University of the City of New	623	19
Meaical department of University of Vermont.	E0	12
New Hampshire Medical Institution (Dartmouth College)	94	
Department of medicine and surgery, University of Michi	350	10
Medical School of the University of Missouri	40	43
Chicago Medical College (Northwestern University)	15.	20
Total	2,635	a22

a Average per cent

In 1886-87, 60 schools reported the number of their matriculates that had received a degree in letters or science and 5 schools definitely reported that they had no person thus distinguished among their students. In these 65 schools there were 6,690 students, of whom 15 in erery 100 had received a degree in letters and science. Taking the same individual schools as bzfore, the showing is as follows:

		Attend- ance. $1886-87$.	Had de- gree grience
and arts.			

[^33]Finally let us consider the statistics of the year 1889-90. One hundred and ten institutions have reported to this Bureau, 78 of which report definitely the number of students having a degree in letters or science or that they have no student possessing such a degree. In these 78 schools 15 per cent of the matriculates had obtained a degree before entering upon the study of medicine. The absolute figures are, 16 schools with no students enrolled who had obtained a literary or scientific degree, 62 schools with $1,38.2$ students having a degree; total enrollment in the 78 schools, 9,389 . Adding to the enrollment of the 78 schools the enrollment of the 32 which answer "Don"t know," "No data," etc., the total enrollment of the 110 schools reporting is 13,793. Comparing the enrollment in these 110 schools with the number of matriculates reported by the 78 schools as having degrees, the result is that 10 per cent of the enrollment in the medical schools of the country were possessors of a degree in letters or science. Considering the States by sections and including only the 78 schools which report 15 per cent of their matriculates having a degree in letters or science, it is found that 18 per cent of the matriculates in the medical schools of the North Atlantic Division had a degree in letters or science. 13 per cent of the South Atlantic division, 18 per cent of the South Central division (including Tulane University, estimated at 25 per cent), 9 per cent of the North Central Division, and 9 per cent of the Western Division. These figures show a diminution for the schools of the North and an increase for those of the South.
Considering the statistics of the eleven individual medical schools as before, at-

-	$\begin{gathered} \text { Attend- } \\ \text { ance. } \\ \text { a } 889-0.0 . \end{gathered}$	Had de science cr let- ters.
Harvard Medical School.		Per cent.
Yale Medical School....		
College of Physicians and Surgeons (Columbia College) a		
University of Pennsylvania, medical de		
Medical ${ }^{\text {d }}$ hool of Maine (Bowdoin College) -	${ }_{63}^{81}$	
Medical department of the University of Vermont.	205	
New Hampshire Medical Institution (Dartmouth College)		
Chicago Medical College (Northwestern University) -	${ }^{237}$	
Medical School of the University of the State of Missouri		
Total	3,081	3

a These figures are taken from the president's report for 1890. The medical department made no report on the blanks prepared for replies from such schools sent out by this Bureau.
b Arerage per cent.
From the foregoing statements it appears that there has been a slight reduction in the number of matriculates (17 in every 100 in 1881, 15 in 1890) at medical schools, who had received a degree in letters or science; while the statistics of the eleven departments of universities (where one would expect a large per cent of the matriculates to have obtained degrees) show that there has been an increase of but 1 per cent in the matriculates who had obtained a degree in letters or science. Indeed in the instance of the College of Physicians and Surgeons (the medical department of Columbia College) of New York City a decrease of 2 per cent is shown when the per cent of enrollment for the decade 1870-1880 (37 per cent) is compared with that for $1880-1890$ (35 per cent) ; or comparing the per cent for the first half of the decade 1880-1890 with the second half, a reduction of over 3 per cent is shown.

The question, then, is: Has there been no improvement in the scholarship of the matriculates at medical schools?
The first of several questions asked on the form of inquiry sent out at the close of the school year 1889-90 was "Have you noticed during the last decade that the students of later years were in a scholastic sense better prepared to enter upon the study of medicine than those who preceded them?" Of the 86 "regular" schools reporting, 75 answer the question, 67 in the affirmative and 8 in the negative. Of 7 "eeclectic" schools only 1 answers "no." Of 13 "homeopathic" schools, 12 answer yes, 1 fails to answer.

How are thes facts to be reconciled? Statistics show that the number of matriculates having a degree is not increasing relatively to attendance (see
diagram 15, Chapter X), and yet the medical schools are almost unanimous in asserting that there has been an improvement in the scholarship of the matriculates. Is this unanimous report as to advanced scholarship to be attributed to an increased attendance at the secondary schools of the country? Are more graduates of high schools matriculating at medical schools? If we compare the attendance of secondary schools (exclusive of public high schools and departments of normal schools and of institutions for superior instruction) for 1880-81 with that for 1888-89 we find that there has been an increase in the attendance of schools for secondary instruction of 13 per cent. If we compare the attendance at the public high schools of one hundred and thirty-two cities in 1880-81 with the attendance in the public high schools of those cities in 1887-'88 an increase of 37 per cent is shown. Or, speculating upon the subject from the still more general standpoint of population and considering that the public high school is always a feature of urban life, it may bz concluded that the increase of 7 per cent in urban population during the decade 1880-1890 has increased the high-school attendance of the country at large.

Some confirmation of the idea that the improvement in the scholarship of matriculates at medical schools is due to high schools is found in the great protest against secondary and collegiate education bacause it tends to overcrowd the learned professions, especially those of law and medicine. But a protest is entirely too insecure a foundation to build a theory upon. What is necessary is information as to the localities whence the matriculates at medical schools come, whether from towns and cities or from the rural districts, for public high schools with few exceptions are located in centers of population and rest on a system of grades beneath them from which they are fed. The public high school of the rural districts it should ke said is, in many cases, the State normal school or agricultural college.

In examining the reports made to the Bureau some expressions are found that corroborate what has been suggested above. A medical school of California, in answering the question as to a better scholarship, answers, "Decidedly so," and adds: " 18 had attended universities, academies, or colleges, 12 were graduates of high schools, 17 were graduates of State normal schools, or held educational diplomas or first-grade certificates, and 40 passed examinations." A southern school, in denying improvement, adds: "The common-school system has destroyed the private schools, and only an elementary education can be had outside." (There is no normal school in this correspondent's State.) The medical department of a celebrated university of the Northwest replies: "Our students average far better now than formerly, as nearly all who enter now [who are not possessors of a degree] are graduates of high schools;" while one of the foremost universities of the Southwest reports in the affirmative, adding, "many oour matriculates being graduates of high schools or universities." A college of Ohio makes a very striking answer in saying: "Yes, as to students who entef under 25 years of age; no, as to those over 25 years; " and a Southern collegr answers: "I have noticed an improvement in this respect, but it must be rememe bered that the students from the South now seeking admission to our colleges received their education (literary) during the decade following the war when eaucational matters were chaotic."

Oí 110 schools, 88 answer the question: "Has the average age of matriculates advanced ?" Two-thirds of these answers are no, and 10 of them say the average has diminished. The Hospital College of Meãicine (Central University) reports the age of seniors in 1880 as 26 , in 1885 as 28 , and in 1890 as 27 . One college reports "age diminished; mental caliber adranced."

THE CURRICULUM.

THE CHARACTER OF THE CHANGE IN THE COURSE DURING THE DECADE AS REPORTED BY THE DEANS OF THE SEVERAL SCHOOLS.
In reply to a general question as to the character of the changes during the decade in the medical curriculum, especially in regard to practical instruction, onefourth of the schoolsanswer "no change," or ignore the question. The general tenor of the affirmative responses may be classified under two heads, to wit, increase of the time devoted to the study of medicine, and increase in the time devoted to laboratory and chemical instruction. The answers as to the time devoted to study may be classed under two heads, one class of answers showing avery decided movement to increase the course from two to three years and to grade it, and the other a tendency to prolong the session from five or six to eight months. The replies indicate a strong tendency to introduce laboratory instruction, chemistry and histology being the subjects most frequently mentioned. Clinical in-
struction also appears to be a subject in which improvement has been made. Entrance examinations, higher requirements for graduation, and recitations from text-books are only mentioned four or five times in each case. It is not to be supposed that all these subjects should occur to the gentlemen who answered the inquiry as they read the question on the blank. One thing would suggest i'self to one and another to another. What appeared to each at the moment as most important was jotted down in the small space allowed for the answer. It is, therefore, surprising to find so many, though relatively few, answering the question in the same way.
With this preliminary view of the character of the advance during the decade, and a reference to the summary of the condition of medical instruction in 1881, let us attimpt to ascertain its condition in 1890.
The first question that naturally is asked is, "What is considered to be a good preparation for admittance to practice medicine?" The regulations of the U. S. Army require the candiadate to pass in the following subjects:
I. The physical examination will be rigid; and each candidate will, in addition, be required to certify "that he labors under no mental or physical infirmity, nor disability of any kind which can in any way interfere with the most efficient discharge of any duty which may be required."
II. Oral and written examinations on subjects of preliminary education. general literature, and general science. The board will satisfy itself by examination that each candidate possesses a thorough knowledge of the branches taught in the common schools, especially of English grammar, arithmetic, and the history and geograrky of the United States. Any candidate found deficient in these branches will not be examined further. The examination on general science will include chemistry and natural philosophy, and that on literature will embrace English literature, Latin, and history, ancient and modern. Candidates claiming proficiency in other branches of knowledge, such as the higher mathematics, ancient and modern languages, etc., will be examined therein, and receive due credit or their special qualifications.
III. Oral and written examinations on anatomy, physiology, surgery. practice of medicine, general pathology, obstetrics and diseases of women and children, medical jurisprudence and toxicology, materia medica, therapeutics, pharmacy: and practical sanitation.
IV. Clinical examinations, medical and surgical, at a hospital, and the performance of surgical operations on the cadaver.
Due credit will be given for hospital training, and practical experience in surgery, practice of medicine, and obstetrics.

The Illinois board of health, so well known by its activity in investigating the value of medical diplomas, has a schedule of minimum requirements of ten sub-jects-anatomy, physiology, chemistry, materia medica, and therapeutics, theory and practice of medicine, pathology, surgery, obstetrics, and gynæcology, hygiene, and medical jurisprudence.

But these curricula are a mere framework, so to speak, to be clothed with flesh according to the taste and conscientiousness of the instructors and examiners. Nor is the order indicated in which these special studies should be pursued, much less the reason why they should be pursued at all. If we turn to France we may obtain some information on both these points.
It is well known that professional instruction in France has been remodeled during the last ten or twelve years. The reform began with the schools or faculties of medicine, and in 1878 the following decree was issued by the minister of public instruction:

ARTICLE 1. The course of study leading to the degree of doctor of medicine lasts four years. Of this period the first three years may be spent in the 'faculties' [i. e., schools taught by the faculty using that word in our sense] or in the schools of full exercise [i. e., schools taught by a corps of instructors who can not grant degrees], or in preparatory schools of medicine and pharmacy [i.e., those which only educate for an inferior grade of physician or pharmacist]. The studies of the fourth year can only be pursued in a faculty or a school of full exercise.
"ART. 2. * * * The student undergoes five examinations and sustains a thesis. The second, third, and fifth examinations are divided into two parts. Examinations at the end of each year are suppressed.
"Art. 3. The five examinations are as follows: First, physics, chemistry, medical natural history. Second, part 1: Anatomy and histology ; part 2: Physiology. Third, part 1: Surgery, accouchements, operative medicine; part 2: Medicine (pathologie interne), general pathology. Fourth: Hygiene, medical
jurisprudence, materia medica, and pharmacology. Fifth, part 1 : Surgical and obstetrical clinics (clinique externe et obstśtricale); part 2: Clinical medicine, practical evidence of work in pathological anatomy (clinique interne, épreuve pratique d'anatomie pathologique).

Thesis: The candidate sustains this test upon a subject chosen by himself.
"ART'. 4. The first examination comes off between the fourth inscription and the fifth [i.e., after 12 or 15 months of study]; the first part of the second examination between the tenth and twelfth inscriptions and second part between the twelfth and fourteenth inscriptions. The third examination can not be taken before the expiration of the sixteenth trimonthly period of study. Every candidate who shall not have passed the first examination by November at the latest shall be adjourned to the end of the year and can take no inscription during the course of that year.
"Art. 5. Candidates for the doctor"s degree, the students of the schools of full exercise and the pruparatory schools, are examined before the faculties at the times stated in the preceding article; the first examination, however, may be taken, after the twelfth inscription. In such cases they must stand both parts of the second examination before taking the thirteenth inscription, but the student following this course is subjected during each semester beginning with the second year of studies to interrogations the results of which are transmitted to the faculties that they may be considered in the final examination for the degree.
"Art. 6. The inscriptions for the degree of officer of health (the lower medical grade) shall in no case be converted into an inscription for the doctor's degree. This conversion, however, may be authorized in the case of officers of health who have practiced medicine during two years at least.
"ART. 7. Practical-work in the laboratory, dissection, and hospital attendance are obligatory. Each annual period of work in the laboratory, and in dessecting covers a semester. The hospital attendance (le stage près des hospitaux) shall be two years at the least."

When satisfied that an attempt at reform is not merely a whim or the ignorance of the reiormer, the intelligent inquirer immediately asks to know the grounds upon which the change is made. What then is the motive that has induced the French legislature to modify the law of 1803 ? M. Wurtz, ${ }^{1}$ as a member of the superior council of public instruction, gives several in reporting on the desirability of adopting the provision contained in the above decree. His remarks are in brief as follows :
The old law of 1803 prescribed that an examination should be made at the end of each of the first three years of the course (without value in obtaining the degree however), and then five examinations more when the fourth and last year of study had been completed. In 1825 the examinations at the end of the year were aboiished and the five final examinations distributed through the course of four yearis. But this was found to bring the examinations too near together and to cause the student to slight his studies (la scolarité était abrégée), inasmuch as the most important examination (on clinical surgery and medicine and accouchements) was put off until the last year. This caused a new regulation in 1816, which, rejecting the examinations for the degree at the end of the whole course, instituted examinations at the close of each year. Although these annual examinations kept the student busy, thirty years of experience had shown their weakness as tests of capacity and as a means of discipline. The object in drawing the above law was to divide the four years of study into periods, in such a manner that each period would be devoted to several related subjects and could be closed with a test examination on those subjects.
The question then became a purely pedagogic one. In what order should the periods follow each other? The degree of bachelier ès lettres testified to the medical student's literary qualifications, and the modified degree of bachelier ès sciences testified to his proficiency in the natural and physical sciences. Should the student, possessing such intellectual maturity and such knowledge of those sciences which are the necessary introduction to the study of medicine, proceed immediately to the study of anatomy and physiology, which are the foundation of med.cine? No, says M. Wurtz, the medical student must study physics, chemistry, and natural history in a course that is neither a repetition nor even a development of his scientific studies in a lycée. The student is now to study these subjects as applied sciences, and to them he is to devote one year.

[^34]But will one year fix these subjectsindelibly, especially if the first examination is the only one upon them? This was precaution the old programme had taken by keeping up the examination on physics and chemistry to the end of the course. But what followed? The first examination was frequently weak; the students were careless and the examiners indulgent; while towards the end of the course it was intolerable for the student to take his mind from his proper professional work to rectify the neglect of the first year of his course. The new programme attempts to remedy this, says M. Wurtz. The applications of the sciences to physiology, to hygiene, and to pathology [subjects of the second and third examinations] have now become so important, that it is easy to introduce in the programmes corresponding to the examinations many questions touching the application of pure science to the subjects of these examinations.

To prevent crowding the programme of the examination-a fault of the old examination scheme-an innovation was made which is the distinguishing characteristic of the new one. The second, third, and fifth examinations are divided intotwo parts. In the middle of the third year of the course, and eighteen months after the first examination, the candidate undergoes the first part of the second examination; at the close of the third year he undergoes the second part, after taking the twelfth inscription. In the second part of this second examination the chemistry of digestion, respiration, nutrition, composition of the blood, etc., is studied, as also the physical phenomena of hearing, seeing, and respiration as a source of heat, all very much specialized, it is true, but fruitful because of the solid foundation laid in the first year. The division of the two professional examinations, in the practical sense of the term-the third and fifth-was demanded by the faculties of medicine; for it was thought that it was too much to ask that both parts of these examinations be taken in immediate succession. It was found that under the old scheme mediocre candidates would neglect one part of the examination and prepare for the others, counting upon the benevolent intervention of an easily satisfied examiner and the indulgence of the others.

But there is another position from which the subject of teaching may be viewed. At an early meeting of the French society for the study of subjects related to higher instruction the question " of what faculties should a university be composed" was formally put to the society by its president. Dr. Le Fort, of the celebrated faculey of medicine of Paris, on this occasion, after stating the views of his faculty as far as the matter related to the faculty of medicine, proceeded to express his own, as follows:
"The place to study medicine is in the hospital and only in the hospital. Some medical savants devote themselves to laboratory study. Nothing can be better. But for the physician, who should above all things learn to care for and, if he can, cure his patients, the only school is the hospital. There may be courses in hygiene and medical jurisprudence, but there can be no theoretical course in medicine, none in surgery ; there is only a course of clinics, and the professor at the same moment teaches the students the theory (of which they hare obtained the principal notions from the books) and the practice."

Dr. Le Fort, speaking for himself and not for the faculty with which he is connected, may have been induced to speak so very practically in view of his opposition to bringing afaculty of medicine under the control of a contemplated "University Senate ;" but it can not be denied that public opinion is with him. His position seems to be, to judge from his remarks, thatinstruction in medicine consists of two operations-getting the principal notions out of the books a:-. 1 seeing practical work done and hearing it explained at the hospital.

It is quite supposable, howerer, that the curriculum of a medical school has the especial object to assist the student to obtain the principal notions from the books and to obtain them correctly. At all events, we shall assume that in America the original intention of the lecture course was to perform this service (generally imperfectly performed by the physician under whom a student has been placed), that by degrees, where possible, the hospital became the field for professional sight-seeing, and in many cases a good deal more, and that during the last decade the laboratory has been added to the instruction of the lectureroom and the clinic, as the biologist opened up a science of histology.
In conducting the following inquiry, as to the curriculum, then, three points will be considered. The manner in which the student obtains the "principal notions" of medicine from the books, clinical instruction and dissecting, and laboratory work. The curriculum of the schools having a graded course will be used as best adapted to the purpose in hand.

Beyond the ability to read the printed page, which may in a measure be a mere mechanical operation, certain intellectual attributes are requisite for getting the principal notions out of the books. In the first place (presupposing a logical arrangement of the text-book) it is highly advantageous for the student to have attained an intellectual maturity sufficient to enable him to understand the system on which the text-book writer has arranged his matter, and, in the second place, the mental alertness to recognize the parts of the arrangement and their relations as they are filled in, so that what is material may be giren the study due to its importance and the lesser matters be noted as such. Perhaps not less important in this process of getting the ideas of an author out of his book and into one s orrn head is a cultivated perception of the meaning of phrases and sufficient continuity of thought to carry a term, or phrase. or centence in the mind until the idea it contains as an isolated part of the discourse has been reduced to its proper value by the modifying phrases or sentences which generally accompany the principal part of a sentence or of a paragraph.

Thus we see why in some quarters so much stress is laid on a thorough literary education as a preparation for the study of medicine. Even during the eighth decade of this centiury, when the theoretical or literary science of the class and lecture room had reached its maximum and was soon to begin to give way to laboratory instruction, the well known German evolutionist, Prof. Ernst Haeckel, could say from his own experience that "in comparing graduates of classical colleges (Gymnasien) and those of scientific colleges (Realgymnasien), I have always observed an intellectual superiority in the former, despite their defective knowledge, and hare eren found during the teaching of my own specialty, zoology, that the former enter more easily into the higher and more general problems of science than the latter. I am, therefore," he continues, "against the admission of Realschul graduates to the medical schools (faculties), and I base this conclusion on my own experience.: ${ }^{1}$

But since the distinguished professor wrote these words a new class of medical schools has arisen in America. At the beginning of the decade there were three or four courses of study whose object was to prepare the student for the study of medicine. The course corered two years, and was chemical and biological in character. At Cornell the student intending to pursue a preparatory medical course was adived to secure adegree inlletters or science; at Johns Hopkins the course led to the bachelor's degree (A. B.). To-day we find three or four times as many such courses, as will be shown later on. In the mean time let us examine into the manner in which the student (much the larger number) who has neither the experience of the preparatory school, or the ability to collect, digest, and formulate his knowledge given by higher literary education, is instructed by the American medical colleges.

Until comparatively recently the method of didactic (i.e., nonclinic) instruction, called repetitional, held almost undivided sway. The essence of this system of instruction is the well-known pedagogical-that is to say psychologicalfact that repetition and attention are the most important elements in the acquisition of knowledge. The application of this not very obscure principle of pedagogy to medical instruction was made this way: There were so many "didactic" professors in the school. Each of these gave the same course of lectures every year. The student listened to them during his first year and again during his second year, and had he attended a third year he would have heard them for a third time. This system has been severely criticised during the ten years past. It has, especially of late, been rapidly giring place to the graded or progressive course, which can not be finished in a single sear by a well-prepared, intelligent, and laborious student, as at a celebrated southern unirersity. But it is instructire to hear what may be said for the repetition principle by a department of a large university of the northwest, which sought to retain the

[^35]repetition feature in conjunction with a progressive course of three years. This defense is as follows:
"The course of instruction consists of three collegiate years of nine months each. The work of the course is systematically arranged, and so graded that the more elementary branches and the practical courzes are first taken by the student, while the more advanced courses and theoretical subjects are presented later in the course, so as to secure, as far as practicable, an orderly succession of studies; while the more fundamental subjects are presented a second time during the course, so as to secure a more perfect comprehension of their principles and relations, and to fix the facts more firmly in the mind. The hours of the required lectures are so arranged that but few are given at the same time, and every facility is afforded for students to attend the repetition of the principal lectures as often as may be thought profitable. The faculty recognize, what is evident in the experience of all medical students, that attendance upon lectures on the same subject a second time, after other relate λ branches have been studied, is much more interesting and profitable than the first; and hence they require students to attend lectures on all the leading subjects more than once."

In the catalogue giving the reorganized course of four years, however, nothing is said of the repetitional features.

But more particularly to facilitate the comprehension of the text-book matter and impress the principal notions which itcontains, two methods have been adopted in America in addition to the "didactic" lecture. These are the recitation and the "quiz," neither of which are employed in the schools of university grade in Europe. Indeed, in America the lecture system may be said to be gradually becoming complementary to the text-book, just as in Europe the seminarium or conference is becoming supplementary to a course of lectures. Thus we are informed by the Yale Medical School that "in reorganizing the school as an integral part of Yale University in 1884, the inherent defects in the older and still common method of instructing chiefly by didactic lectures were recognized and the methods now employed are similar to those in vogue in the other departments of the university. Didastic lectures are still employed as best in some branches, but recitations from assigned readings, with explanatory lecures, labozatory work, and personal instruction in the clinics constitute the main portion of the curriculum." At the Albany Medical College it is believed that instruction by recitation is as essential in medical as in literary colleges, and the faculty have greatly enlarged and extended this department of the teaching in this college. The recitations, which have hitherto been held during unoccupied hours in the evening, are now made part of the regular curriculum. Every study taught in the college by lectures is also made the subject of recitations, the ratio of the number of lectures to that of recitations being in general two to one.

The Long Island College Hospital, having the old system of lecture courses, has adopted a reading and recitation term, which begins at the close of the regular term and continues until June. It is designed to thoroughly prepare the student for attendance on the lectures of the ensuing regular term. Clinical instruction for advanced students is continued during the reading and recitation term. As the laws of the State of New York require three years’ study of medicine, students are advised to commence their study at the beginning of the reading and recitation term.

The daily and weekly quiz appears to be but a modification of the examination at the end of the year or term without the breadth or formality of that ancient contrivance for testing the memory of the student or his ability to grasp the idea expressed by the words in the examination paper before him. At the University of Virginia it has been found that "the daily oral examinations on the subject of the previous lecture are of great value in stimulating the student to regular and systematic habits of study, and furnishing the professor an opportunity of discovering and removing the difficulties met with by the stident."

At the Medical College of Alabama still stronger language is used in favor of these daily oral examinations, and it announces that "so important is this method of impressing the leading facts considered in the lecture hour, and so useful is this method of instruction in obtaining systematic and accurate information considered, that members of the faculty will, after the middle portion of the term is reached, establish a daily quiz, which will be so arranged as not to interfere wi h any lecture or other duty, and will be of great interest, especially to those who contemplate applying for graduation."

As medicine principally deals with diseased conditions of the human body in an effort to restore it to health, it is not difficult to illustrate the lecture on anatomy, physiology, surgery, and even the practice of medicine by demonstrations,
specimens, models, and charts, and in this way even the "didactic" lecture has a semb'ance to the clinic. Without dwelling further on the subject of the didactic lecture, we now pass to the clinic, which must be treated with equal brevity.

PRACTICAL WORK.

In his Life of Macaulay, Trevelyan gives an extract from his uncles diary in which the historian gives the argument by which he dissuaded the Prince Consort from attempting to give the English universities a Continental form by introducing a faculty of medicine. Macaulay explained to the Prince the great difficulty there would be in getting distinguished physicians to exchange a princely revenue in London for the salary and retirement of a university professor at Oxford or Cambridge.
But there is another reason of still greater importance for locating a first-class school of medicine in a large city. "The workingman feeds the hospital, and to enable a faculty of medicine to exist a great industrial center is necessary." ${ }^{1}$ This sentiment is supported by the testimony of the Harvard Medical Schcol, which says that it was established in Boston in order to secure those advantages for clinical instruction and for the study of practical anatomy which are found only in large cities.
Practical instruction in medicine may be classed under two heads: There is, first, the nonpathological form, which gces by the name of dissection, and, second, the clinic, which may be subdivided into three forms, in one of which the subject is operated on in the amphitheater before the class: in the second the class, or a portion of it, is taken to the bedside, and in the third the adranced student acts as a physician or as an assistant.
The amount of work required in dissection is not uniform throughout the country and is still less uniformly stated. From 91 schools whose catalogues mention the work in dissection required for graduation, the following information has been obtained:

The modification of the didactic lecture by the previously "assigned reading" by the Yale Medical School has been noted; it would appear that the method in vogue there for studying the framework of the human body is no less complete and systematic. This system of instruction in anatomy is as follows:
"As in the other fundamental branches of medicine, the instruction in anatomy is chiefly by means of recitations and laboratory work. The course extends through two years, with examinations at the end of each year. At the beginning of the course each student is provided with a box containing all parts of the skeleton for home study, and during the first term two weekly laboratory lectures are given on osteology and syndesmology, altarnating with recitations from the text-book. After a thorough knowledge of the bones, ligaments, and muscular attachments has been obtained, the student enters upon laboratory work on the soft parts, in which eight hours weekly are required until the dissection of all parts of the body has been made. Preparations of the different
parts are made, showing muscles, arteries, and nerves, satisfactory demonstrations of which must be given before the professor at their completion. PrelimInary to the dissection of the human body, a brief laboratory course is pursued in the anatomy of the cat. All laboratory work is under the immediate instruction of the professor. The written examination at the close of the year is upon osteology, syndesmology, and the trunk viscera. The instruction the second year is by alternating lectures and recitations, and includes the remainder of systematic anatomy, with topographical and superficial anatomy, illustrated by preparations, models, and several hundred lantern slides."

At the University of Virginia the course in dissection appears to be carried out with equal thoroughness. "For the course in practical anatomy, dissecting material, obtained under the permissive law of the State, is abundantly supplied without cost to the student. Each medical student, however many sessions he may have attended, is required to dissect under the constant and careful supervision of the demonstrator. Attendance in the dissecting room is compulsory, a strict record being kept in the case of each student. Besides the oral examination which precedes each lecture, and the other examinations, each student is required to stand seven practical examinations, one upon osteology, four upon different parts of the muscular system, one on the viscesa, and one on the ressels and nerves. These examinations are oral and private, each student being examined alone. They consist of the identification of the truths of anatomy on the bones, the cadarer, and the dissected calaver, and are thus a perfect test of the student's acquaintance with the gross structure of the human body."

As the attendance at neither of these schools is large as compared with the attendance at the schools of Philadelphia, New York, and Chicago, the following course of dissection may more nearly represent what the great schools can do and the average school does do.
During each session every student of the first and second classes will be rej quired to dissect all regions of the human body. The first dissection of a region -will be mainly of the nature of a preliminary study, the student being required to examine the attachments and relations of muscles and the general course and situation of the great rascular and nervous trunks. The second dissection of a region will be as exhaustive as it is practicable to make it, all the structures being as completely displayed as the time at the disposal of the student will allow. The demonstrator of anatomy will examine the students from time to time during the progress of their dissections, and, if he finds that they have not properly displayed the structures or have no accurate knowledge of the parts dissected, he will require a new dissection of the same region upon another subject. He will certify to the professor of anatomy the satisfactory completion of each dissection. It is recommended to students of the third class that they perform upon the cadaver such surgical operations as may be practicable, such as ligations of arteries, amputations, etc. Material for this purpose will be furnished. Dissecting will commence October 15 and continue until the following March. The room will be open daily for students and the demonstrator or his assistants will be present. During the session there will be giren special demonstrations of the brain, of the thoracic and the abdominal viscera, and also of other difficult or obscure regions of the body. The demonstrator and assistants will hare general supervision and direction orer all students while in the dissecting room.
In two schools with rery large attendance a rather novel course is pursued in aiding the student in his study of osteology. Instead of providing him with a complete skeleton, as at Yale, individual bones are loaned the student, as books are loaned at libraries. At the Columbia College school this "new and useful feature" is transacted in the "bone-room," where a large number of disarticulated skeletons are kept under an ostelogian, it is presumed. In the other school, the celebrated medical school of the University of Pennsylvania, the "bone-room" is dignified by the technical term Osteo-syndesmological Laboratory.
Upon the question of clinical instruction the medical fraternity agree: Clinical instruction is necessary to fit the student for the practice of his profession. Following out this conclusion, a class of hospitals has arisen which in the strictest sense are clinical. In some cases hospitals have been attached, as it were, to a college, as in the case of the medical department of the Tulane University of Louisiana and the School of Medicine of the University of Maryland. In others the hospital has founded a school, as in the case of the Bellevue Hospital Medical College and the Woman's Medical College of the New York Infirmary, and in othors the school has founded a hospital, as in the case of the University of Pennsylvania, of Michigan, and of Wooster; of the Jefferson Medical College and Medico Chirurgical College, both of Philadelphia; the Long Island College

Hospital, and of the homeopathic medical colleges and hospitals of New York and Philadelphia. As a general introduction to the programmes of clinical instruction which follow, the opinion held by the faculty of the Tulane University medical department will be used as expressing the views of every reputable school.
"It is universally admitted that, without abundant anatomical and clinical material, no medical school, however numerous or eloquent its professors, can possibly fit its pupils for practical professional life. It is scarcely necessary to state that it is only in large cities that such advantages can be procured; but it is of paramount importance that the opportunities there afiorded should be properly utilized; that the students should be required, under the direction of the teacher, to examine patients for themselves, to keep record of cases, to note daily changes which may occur, and thus acquaint themselves by personal observation with the progress and termination of diseases and accidents. The mere introduction of a patient into an amphitheater and the discussion of his case by the professor in the presence of a large class are nosubstitute for bedside instruction, and no reduction of lecture fees, not even their entire abolition, can possibly compensate for the lack of such opportunities."
In the medical department of the University of the City of New York, a very largely attended school, the graduating class is divided into sections of about twenty-five each, which receive separate instruction for one or two hours daily throughout the term. This instruction is under the immediate direction and management of nine professors and is carried on partly in the wards of Bellevue Hospital and partly in the college building. The students receive practical instruction in operative surgery upon the cadaver, in the examination of medical and surgical cases for the purpose of diagnosis, in the application of dressings and apparatus, and in the use of the laryngoscope and ophthalmoscope. In the hospital, students are taken to the bedside of the patient and are exercised in making diagnosis under the direction of the instructor, and in dressing wounds, and are enabled to watch the progress of cases. In the dispensary they have similar opportunities to become familiar with the methods of diagnosis, the treatment, and the course of those diseases which do not require confinement in bed. "The success of this system of instruction," says the faculty, "has been very marked in the past, and it has given much satisfaction to both students and teachers; it enables the students to become practically familiar with many of the things which they have learned from their text-books or in the lecture room, to cultivate their powers of observation, and to aid their memory. The importance which the faculty attaches to it is shown in the fact thatitinvolves an increase in the time given to instruction of more than twenty hours each week."
To the same effect the School of Medicine of Columbia College speaks of the recent founding of the Vanderbilt Clinic and Sloane Maternity Hospital, as branches of the school, as being especially beneficial in enabling the school to organize a system of practical clinical teaching, whereby each member of numerous small classes may be brought into direct personal contact with the cases under examination. This teaching takes the following form under the title of "Practical Clinical Instruction:"
General medicine.-Diagnosis, including so-called physical diagnosis, and treatment.
General surgery.-Diagnosis and treatment, including minor surgery, bandaging, and the application of antiseptic dressings.
MIIdwifery.-Attendance upon cases of labor at the Sloane Maternity Hospital by advanced students, under the direction of the obstetricians of the hospital.
Gynecalogy.-Practical instruction in diagnosis and treatment, including the use of instruments.

Diseases of children.-Diagnosis and treatment.
Diseases of the genito-urinary organs.-Diagnosis and treatment.
Diseases of the nervous system.- Examination of cases, including electrical tests; diagnosis and localization of lesions; electro-therapeutics.
Diseases of the skin.-Diagnosis and treatment.
Diseases of the eye.-Diagnosis, including the tests for errors of refraction and accommodation, and the use of the ophthalmoscope, and treatment.
Diseasees of the ear.-Diagnosis and treatment.
Diseas s of the throat.-Diagnosis and treatment, including the use of the laryngoscope and rhinoscope.

At the Yale Medical School the instruction is given in the New Haven Hospital and at the college dispensary.
"In the medical clinics at the dispensary the preliminary examination is made by a student, and this is reviewed and extended as far as necessary by the instructor; the latter explains the relations of the symptoms, makes the diagnosis, and gives the student in charge general directions for treatment; the student, subject to correction, gives the precise directions to the patient. All symptoms
and physical signs are demonstrated to all the members of the class, and examinations of urine, sputum; gastric contents, and blood are made, when called for, by the student, under the supervision of the instructors. It is the especial aim in these clinics to familiarize the stadent with all methods and instruments of diagnostic examination, and the instraction is made as personal as possible. Cases which need to seen at home are put in charge of the senior students, and obstetrical cases are assigned to them. In such cases the professor of clinical medicine or his assistants give counsel whenever called on. At the hospital one medical clinic is held each week; these are general medical clinics, but particular attention is given to the demonstration of the various signs of importance in physical diagnosis. Opportunity is also here provided for the study of those severer cases which the dispensary service does not furnish, and care is taken to have the students see the same patient in various stages of his disease, and, in fatal cases, to demonstrate the lesions."
The "clinical out-practice," referred to in the above quotation, illustrates the usige of other schools. At the Jefferson Medical College the professor of practice will, during his clinical term, devote a number of hours to clinical conferences. During these the advanced student will have a case assigned him, which he will be required, with the aid of the chief clinical assistant, to examine beforehand, and which then, with remarks on the diagnosis, prognosis, and treatment, he will present to the class. The Bennett Medical School, of Chicago, goes further. Students in the senior year, by assignment, will be given the care of out-patients from the clinic, thus giving the experience in actual badside practice, in such cases as fevers, rheumatism, treatment after surgical operations, obstetrical cases, etc.
But it is in the dispensary that this "out" instruction is most frequently given. At the Chicago Medical School of the Northwestern University, for instance, the members of the clinical class may serve as assistants to the physicians and surgeons of the several departments of the dispensary, and to the pharmacist of the dispensary, and receive certificates of such service. Members of the attending staff and the dispensary pharmacist appoint their own assistants, and the term of service is six weeks. At the Kansas City Medical College every member of the senior class served a period of two months in each of the departments of the dispensary during the sessions of 1889-'90.

To illustrate the order of clinical exercises, the following programmes are given:

Roster of hospital practice and laboratories for the third-year students of the Jefferson Medical College.

SESSION OF 1891-92.
[The class is divided into eleven sections, A to K , inclusive, serving as follows, in periods of two weeks each, the dates being included.]

Clinics, etc.	$\begin{aligned} & \text { Ni } \\ & 0 . \\ & \text { N. } \\ & \text { N. } \\ & \dot{0} 0 . \end{aligned}$	$\begin{aligned} & 8 \\ & 0 . \\ & 0 . \\ & 0 . \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { तi } \\ & \stackrel{1}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \text { Ai } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & =0 \end{aligned}$		
Medical	A	B	C	D	E	F	G	H	I	J	K
Surgical	B	C	D	E	F	G	${ }^{\text {H }}$	I		K	A
Gynæcologic	C	D	E	F	G	H	I	J	K	A	${ }^{\text {B }}$
Ophthalmic.	D	E	F	G	H	I	J	K	A	$\stackrel{B}{B}$	C
Orthopædic	E	$\stackrel{F}{F}$	G	H	I	J	K	A	B	C	D
Dermatological	F	G	H	I	J	K	A	B	C	D	E
Children's	G	H	I	J	K	${ }_{\text {A }}$	${ }_{\text {C }}$	C	D	${ }_{\text {E }}^{\text {E }}$	$\stackrel{\text { F }}{\text { F }}$
Neurology --..----	R	${ }_{\text {I }}^{\text {I }}$	${ }_{\text {A B }}$	${ }_{\text {K }}^{\text {K }}$	CD	$\stackrel{B}{\mathrm{CD}}$			$\mathrm{G}_{\mathrm{E}}^{\mathrm{E}}$	${ }_{\mathrm{G}}^{\mathrm{F}} \mathrm{H}$ I	G
Physical diagnosis	J K	JK_{B}	${ }_{\text {A }}{ }_{\text {C }}$	A B	${ }_{\text {C }}^{\text {E }}$	CD_{F}	$\mathrm{E}_{\mathrm{G}} \mathrm{F}$	EF	$\mathrm{G}_{\mathrm{I}} \mathrm{H}$	G $\mathrm{J}_{\mathrm{J}} \mathrm{I}$	I
Throat and nose	A	B	C	D	E	F	G	H	I	J	K
Dr. Hearn	B	C	D	E	F	G	H	I	J	K	A
Dr. Henry or Dr. Da	C	D	E	F	G	H	I	J	K	A	B
Dr. S. Solis Cohen.-	${ }^{\text {D }}$	$\stackrel{\mathrm{E}}{\mathbf{E}}$	F	G	H	I			${ }^{\text {A }}$		C
Pathological laborato	$\mathrm{J}_{\mathrm{G}}^{\mathrm{K}}$	${ }_{\mathrm{G}}^{\mathrm{J}} \mathrm{K}$	A B	A B	CD	CD	E E ¢	${ }_{\text {E }}^{\text {E }} \mathrm{C}$	G H	GHEI	I
Operative surgery	A B	A 1	C D	${ }_{C} \mathrm{D}$	EF	E F	$\mathrm{G}_{\mathrm{H}} \mathrm{H}$	G_{H}	IJ	I J K	K

Bellevue Hospital Medical College.

ORDER OF LECTURES-REGULAR SESSION, 1890-1891.

SPRING SESSION, 1891.

Hours.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.
11	Juniors, microscopical examination of urine at 10.			Genito-urinary clinic.	
2		Clinic, dise ases of children.	Surgical clinic, until May 1; after May 1.	Gynecological clinic.	Medical clinic and exercises in diagnosis.
3		Demonstrations in gross pathology, Dr. Biggs.		Clinic, diseases of the throat, after May 1.	
4	Demonstrations of surgical dressings; Dr. Silver.	Demonstrations in anatomy, dissecting room.	Demonstrations in anatomy, dissecting room.	Demonstrations in anatomy, dissect ing room.	Demonstrations in anatomy, dissecting room.

Schedule of hospital and college clinics for students of second and third years of the Chicago Medical College of the Northwestern University.

MERCY HOSPITAL.

Hours.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
9 to 10.	Medical...	Surgical ...	Gynecology. Oral surgery		Medical	
$\begin{aligned} & 2 \text { to } 3-\ldots .-\mid \\ & 3 \text { to } 4 \end{aligned}$				Eye and ear.		

ST. LUKE'S HOSPITAL.

COLLEGE CLINICS.

Schedule of hospital and college clinics for students of second and third years of the Chicago Medical College of the Northwestern University-Continued.

DISPENSARY CLINICS.

Hours.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
2 to 3.	Medical. Surgical Throat and chest. Gynecological. Eye and ear. Diseases of children.	Medical Surgical	Medical Surgical	Medical-	Medical \qquad Surgical .-. Throat and chest.	Medica! Surgita. Throat and chest. Gynecolo gical. Eye and ear.
				Surgical		
		Throat and chest.	chest. Gynecological.	Throat and chest.		
		Gynecological.		Gynecological.	Gynecological.	
		Eye and ear-	Eye and earDiseases of children.	Eyeand ear. Diseases of children. Nervous diseases.	Eye and ear Diseases of children.	
		Diseases of children.				Eye and ear. Diseases of children. Nervousdiseases. Skin diseases.
		Nervousdiseases.				

Hospital and dispensary clinics of the medical department of the University of Califormia.

Hours.	Tuesday.	Thursday.	Saturday.
$9 \mathrm{a} . \mathrm{m}$.	Clinical medicine	Clinical medicine	Clinical medicine.
$11 \mathrm{a} . \mathrm{m} .$	Examination of the patient	by student. etc.	
	Clinical surgery...-........-	Clinical surgery - .-- --....	linical surgery
	Especial attention is given, orders of the genito-urinar	in a ward devoted to the pu y organs and venereal disea	es.
4 p.m.		Operative gynecology and practical obstetrics.	
	Dispensary clinic.-..........	Dispensary clinic......	
	Eye and ear clinic twice a reek. Autopsy three times a week.		

College and hospital clinics of the Kentucky School of Medicine at Louisrille.

Hours.	Monday.	Tuesday.	Wednesday:	Thursday.	Friday.	Saturaxay.
8 to 9 ar . m.	Venereal and skin diseases.	Diseases of rectum.	Diseases of women.	Medical clinic.	Medical clinic.	Diseases of children.
2 to $3 \mathrm{p} . \mathrm{m} .-$			Hospita clinic in afternoon.		Hospital clinic in afternoon.	Diseases eye, ear, and throat.
4 to 5 p.m.-	Surgical clinic.			Surgical clinic.		Surgic al clinic.

The clinics of the New York Homeopathic Medical College and Hospital.

LABORATORY WORE.

The most noteworthy innovation of the decade has not been the lengthening of the course of instruction, many years ago recognized as too short, not the better and completer organization of the clinic, which in a great part no longer renders the "study under a physician" indispensable, but the introduction of laboratory work in chemistry, physiology, and especially in normal and pathological histology or, more generaliy, biology. Perhaps the introduction of laboratory work has played a great part in lengthening the course of medical instruc-
tion, as it certainly has given it status as a course in science. It is certainly so in the case of the Medical School of the University of Michigan, for its faculty states explicitly that the extension of the course from three to four years "is largely due to the need for the more through instruction in laboratory work," for the student who spends but "three years in attendance upon lectures and one year of study with a- preceptor can not reap the advantage of the full course of laboratory instruction.:"

Laboratory instruction as given in the American colleges of medicine may, in riew of the laboratories in which it is given, be classed under six heads, to wit:

1. Dissection or "Practical Anatomy."
2. Chemical manipulation (general and analytic).
3. Physiological.
4. Histological.
a. Normal.
b. Pathological.
5. Bacteriological.
6. Materia medica.

Dissection has already been spoken of ; normal histology will be spoken of further on: while other than noting that it affords each student the opportunity to go through a course of chemical experiments, the instruction of the chemical laboratory calls for nospecial mention except as to that form which at the Yale Nedical School is called the course in physiological aìd medical chemistry.

This course consists of recitations and a practical laboratory study of the composition and reactions of the rarious animal tissues and fluids, the processes of metabolism and digestion, and the action of ferments. Due attention is paid to the composition of foods, the physiological use of the digestire preparations, and other matters of medical interest, especially to the recent analytical methods employed in clinical work. The study of normal urine is supplemented by abundant practice in the chemical and microscopical examination of pathological specimens. At the Jeferson Medical College, the same tendency towards the pathological side is shown in the instruction in its laboratory of practical chemistry. The student there examines the normal and abnormal products of the human body as aiding diagncsis, and studies practically the "morbid chemistry of the bile and blood" and the most approred methods of examining urine. At the University of Michigan there are two courses, one in qualitative chemistry and the other in urinalysis as applied to chemical uses and physiological stuay; but, in addition to them and at the option of the student, two other courses are offered, one in physiological chemistry and the other in pathological chemistry. The first of these optional courses deals with the analysis of the solid and fluid parts of the body, the other embraces courses in qualitative and quantitative analysis and the examination of foods and of the tissues-and fluids of poisoned animals. One might renture to call this specialization of chemistry diagnostic chemistry. Toxocologic chemistry also appears as a department of the chemical laboratory, but sometimes is connected with medical jurisprodence.

The physiological laboratoy, of which there are very few in the country, is to the medical school what the mechanical or testing laboratory is to the college of technology, and in some schools (which care to mention the fact) what the biological laboratory is to the vivisectionist. The instruments with which such a laboratory is fitted up and the use made of them may be illustrated by the laboratory of the Jefferson Medical College. The teaching of this college in its course of experimental physiology embraces the demonstration of the essential phenomena of digestion, absorption, circulation, respiration, excretion, the functions of the nervous system, including the special senses, the reproductive apparatus, and development of the embryo. For these demonstrations, as well as for original research, the laboratory is equipped with the following apparatus. For the study of -

Digestion and absorption. - Chemical appliances for the inrestigation of the properties of the albuminous bodies, the chemistry of the tissues, the composition of the digestive fluids, blood, ete., instruments for making gastric and intestinal fistulæ, water baths, and dialysers, and apparatus for recording rate of secretion.

[^36]Circulation.-Czermack's holders; kymographion clockwork motor; Foucault'; regulator and three recording cylinders, including those for continuous tracess mercurial manometers; Bernard's differential manometers; Brindley's and Sanderson's cardiographs, cardiophone with telephonic attachment, Haldat's and other apparatus for demcnstrating hydrostatic phenomena; Marey's simple cardicgraph and sphygmograph with Sanderson's modification; Marey's apparatus of rigid, elastic, and vertical tube; arterial schema; Hawksley's vascular schema; Majendie's cardiometer; Fick's spring kymograph; Marey's cardiac clamp; Coat's apparatus with Brubaker's modification; Franck's double myograph; Marey's cardiac sounds for horse, apparatus for retardation of pulse, cardiograph for small animals, Ludwig*s strohmuhr, and apparatus for studying capillary circulation, the warm and electrical stages, gas chambers, Gower's apparatus for counting blood corpuscles, also a hæmoglobinometer.

Respiration.-The Pettenkofer-Voit respiration apparatus; Regnault and Reiset's respiration apparatus; Ludwig's respiration apparatus; Valentin's respiration appavatus; Hutchinson's spirometer; recording'stethometer; Marey's preumograph ; Bamberger's apparatus; Rosonthal's apparatus with Brubaker's modification; ä̈rotonometer; Gréhant-Alverguiat gas pump; apparatus for artificial respiration, with water motor; anemometer scales turning the beam at the ${ }_{7}^{\frac{1}{5} \overline{0}}$ of a grain, and standard barometer ; Calliburce's instrument for vibratile cilia.

Calorimetry.-Thomson's and D'Arsonval's calorimeters; thermometers, etc.
Secretion.-Roy's kidney onkometer and onkograph. Apparatus for determining rate and amount of urea.

Nervous system.-Du Bois-Reymond's indication apparatus with Helmholtz's modification ; spring myograph; muscle telegraph, nonpolarizable electrodes, diverting chambers, key, rheocord, round compensator, resistance box, whippe ; commutator; moist chambers; Wiedemann's galvanometer, including telescope and scale; Thomson's Elliott galvanometer, including shunt, scale, lamp, etc.; Bunsen and Daniel batteries; Page's vibrator; metronome; chronograph; tuning forks, marking keys; Bernstein's differential herotome; Helmholtz's electro-magnetic rotator and myophone with telephonic attachments and pendulum myograph; Pflüger`s myograph ; Gréhant's chariot with clockwork motor ; Brubaker's apparatus for electrotonus; apparatus for reflex movements, and Ludwig's section-cutter for spinal cord.

Vision, voice, and hearing.-Models of eye; Kuhne's artificial eye; Helmholtz's ophthalmometer; models of larnyx and ear; acoustical apparatus, including air pump and bell; Helmholtz's siren; acoustic bellows; sonometer; rods, membranes, plates, pipes, resonators, oboe vox humana; Koeing s manometric apparatus.
Embryology.-An incubator, capable of holding one hundred eggs for the study of development, and numerous microscopic sections.

Comparative physiology.-This collection, embracing several hundred specimens, many of which are extremely rare, illustrates the comparative physiology of the teeth, stomach, etc., of the circulatory, respiratory and genito-urinary organs, of the nervous system, and of the successive stages in the development of the human embryo. The collection is used in supplementing the experimental demonstrations.

Arrangements have been made through which the laboratory can be also supplied from time to time, as required, with living fresh-water and marine objects for biological study, as well as ample material for dissection.

The physiological and histological department has been especially arranged with reference to the wants of the members of the attending class, the laboratery demonstrations constituting a part of the regular instruction during the winter session.

At the Loomis laboratory of the University of the City of New York, in addition to the recording and other instruments used by physiologists, the laboratory contains alarge tank for administering to animals air or oxygen, compressed under many atmospheres of pressure; an air pump for experiments upon animals with rarefied air; hot-air chambers for the study of the effects of external heat on body temperature; large automatic models of the heart and sninal cord and of the mechanism of gland secretion, urine secretion, and micturition.

At the University of Michigan medical school the subjects commonly embraced in the practical course relate to the physiology of the special senses, muscular contraction, nerve, reflex action, circulation, and respiration. A smaller room is devoted to advanced work and original investigation. Conveniently situated are an apparatus room, a dark chamber for optical experiments, an incubation closet, and a large workshop containing machinists' and carpenters' appliances.

The instruction in physiology given by several schools is by means of a course in vivisection or lectures illustrated by vivisection.

The laboratory instruction (excluding dissection as such) the most generally introduced is in histology. Although there is a tendency on one side to class the work in medical chemistry and other laboratory work under the general head of microscopy, as, for instance, at the Tulane University school, where there has been since 1889 a " microscopical laboratory for the better study of normal and morbid anatomy and bacteriology," there is a'so a tendency to group these subjects under the head of histology. Thus, at the University of Pennsylvania school, "each student of the second year is provided with a separate table and microscope and receives personal instruction in pathological histology, in micology, and in the microscopy of urine," in the "pathological laboratory." A term frequently used is histological and pathological laboratory or histology and pathological anatomy, in which the term histology appears to indicate the microscopic anatomical study of undiseased matter, and the term pathological anatomy the microscopic study of diseased parts.

The laboratory work in histology consists of two parts: One, the preparation (cutting, staining, and mounting) of the specimens and the manipulation of the microscope, the other the study of the import of the specimens. At the University of California school the socond process is thought to be attained by the mere mechanical work of the first, "which illustrates and fixes in the mind of the student" the general principles of normal growth and development and the operation of pathological laws. At the Columbia College school the course of mounting, etc., teaches the "methods" not only of preparing, but of studying normal and diseased tissues, and furnishes the student specimens from which he prepares a series of outline sketches.

On the other hand, at the Northwestern University school, students of the first year work two hours a week in cutting, staining, and mounting normal histological sections. Material for this course is furnished in abundance and each student secures a full series of normal histological slides. Free-hand drawing of a large number of the sections mounted in this course is compulsory. Students of the second year devote two hours each week to the study of mounted sections of pathological tissue already cut and stained for them. Free-hand drawings of the sections is compulsory, and the quality of a student's work in this course is considered in his grading in the department of pathology. In the four years' course the work in the microscopical laboratories will be more extensive. All of the work in the microscopical laboratory is done in the presence and under the supervision of the demonstrators of the respective departments. Students are required to furnish their own slides, cover glasses, mounting needles, and spatulæ.

- At the Yale medical school histology is treated from the embryological standpoint. By this method the student is enabled to gain not only a thorough understanding of the structure of the various tissues and organs of the body, but also to trace their development and growth. The course of instruction consists of lectures, recitations, and laboratory work. The lectures are very fully illustrated by lantern transparencies made from photographs of typical sections and drawings. These are accompanied by recitations from a standard text-book. In the laboratory, each student receives carefully prepared sections and specimens of all the tissues and organs of the body, both in the adult and embryonic condition; these are mounted for permanent preservation and from them careful drawings are made. Practical instruction is given each student in the technology of the subject. The laboratory cabinet contains an extensive reference collection of histological specimens and serial sections of embryos; this, together with the most recent instruments and publications and an abundant supply of material, affords good facilities for advanced work.
The University of Maryland school announces that, with the introduction of the three-years course, a laboratory of normal and pathological histology will be opened and that constantly increasing attention will be devoted to the development of this laboratory work, as the faculty fully recognizes its all-important influence in modern medical education.
The bacteriology course is frequently united with the work in histology, but in perhaps half a dozen cases it has a laboratory of its own. At the University of Michigan school work of this character is done in the laboratory of hygiene. The work is, in an elementary way, on the model of that done in the laboratories of Koch and Pasteur.
The several laboratories of materia medica and experimental medicine may be illustrated by that of the University of the City of New York. This laboratory is provided with a full assortment of the various articles of the materia
medica to be used in giving the students a practical acquaintance with each drug and its preparation. Classes will be formed to work in the laboratory under supervision, for the purpose of insuring familiarity with the compounding and administration of medicines. In addition to this, practical instruction will be given in the use of remedies which are not medicines. This will include a special course in electrical therapeutics, for which purpose the laboratory has been fully equipped.

Incidentally the programme of laboratory instruction has been given in the programmes of clinical instruction on pages 888 and 910 . It is therefore only necessary to give by way of illustration the special rosters of the University of Pennsylvania school.

Rostcr of laboratory instruction in pathology and instruction in orthopcedics, for students of the third year.

I.

For attendance upon these courses, the third year class is divided into four sections, A, B, C, and D, which attend as follows:

First period, from Thursday, October 3, to Friday, November 15, inclusive.

Second period, from Monday, November 18, to Friday, January 10, inclusive.

Third period, from Lronday, January 13, to Friday, February 2s, inclusive.

Pathological histology...	$\stackrel{B}{\mathrm{C}} \mathrm{D}$	A	C	D
Orthopædics --...-.-......-				

Fourth period, from Monday, March 3, to Friday, April 11, inclusive.

The instruction in orthopædics is given at the university hospital at 110° clock; in pathology, in the pathological laboratory.
II.

Special roster of laboratory instruction in histology, osteology, and syndesmology for students of the first year, session 1889-90.

For instruction in these laboratories the first-year class is divided into five sections, A, B, C, D, and E, which attend throughout the entire session as follows:

	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
Histology Osteology	$\stackrel{A}{\mathrm{~A}} \mathrm{D}$	B	Cll.	$\begin{gathered} \mathrm{D} \\ \text { E and } \mathrm{A} \end{gathered}$	E	

[^37]
PREPARATORY MEDICAL SCEOOLS.

The lar of 1801 of the French Republic fixed the number of medical schools at six, of which three had been established by the date of 1810 . In the meantime there had gradually grown up a lower kind of school for the purpose of initiating students of medicine into the elements of the art of curing disease. During 1820 these schools were placed under the control of the State educational authorities called the "university," and in $18 \frac{10}{10}$ they were reorganized by the minister. The eighteen schools whose instruction was thus unified had been founded independently, and on no common principle, and therefore were very diverse in their organization. Some had endowments, some lived on the meager diet of tuition fees, but the most were supported by the city or department, or by grants from the Governmental hospital bureau. In all the amphitheaters dissecting material and chemical adrantages were poor or wholly absent. In $18 \frac{1}{2}$ a uniform course was given them as follows:

Chemistry and pharmacy; natural medical history (botany) and materia medica: anatomy and physiology; pathology (medical clinic) ; pathology (surgi(al clinic); accouchement, and diseases of women and children.
One of the great adrantages of these schools, said the minister, is "that they give opportunities for anatomical study, that essential of medical study which can not always be furnished by the higher medical faculties (i. e., schools). where the students are frequently too numerous to follow with profit all the demonstrations." In each school there were to be six professors and two adjunct professors and the cities were required to furnish the necessary anatomical material and the hospitals at least fifty beds for clinical purposes.
In 1854 the American Medical Association had adopted a resolution "cordially approring of the establishment of private schools to meet the increased desire on the part of a respectable number of medical students for a higher grade of professional education than can usually be acquired by 'reading medicine' under the direction of a single instructor." In 1856 Drs. Dana, Robinson, and Fitch. of Portland, opened the Portland Medical School for Preparatory Instruction, Dr. Robinson representing materia medica, midwifery, and diseases of women and children; Dr. Dana, physiology, pathology, and practice; Dr. Fitch, anatomy, surgery, and chemistry. The school was located in the Portland Dispensary and opened with two students. The faculty of the school now consists of 9 professors and three adjunct instructors, and the student is requested to remain at least one year. which constitutes the course. The departments of instruction are four. In the first, systematic recitations are held in anatomy, materia medica and therapeutics, surgery, theory, and practice of medicine, and obstetrics. In the seconä, familiar lectures and demonstrations are giren on the physical explcration of the chest and diseases of the heart and lungs, on minor and operative surgery, on diseases of women, and on physiology. In the third, clinical instruction at the school and various charitable institutions. Cases of midwifery will be furnished to adranced students as far as possible. In the fourth department the study of practical anatomy is a prominent feature of the winter term and during the last weeks of this term the recitations are omitted and the whole attention of the student given to dissections, lectures, and clinical study. No degrees are conferred.

At present fourteen institutions report preparatory courses in medicine; and two, including the Portiand school just mentioned, report themselves as wholly engaged in such work. These courses are, with two exceptions, of tro years, and it is sometimes indicated. in the remarks which explain why they have been formed, that they are for those who wish to prepare to pursue the study of medicine without spending the time required by a collegiate course. The proposition of the president of Harrard to reduce the four-year curriculum to three jears, and the adoption by Columbia College of that period as a college curriculum leading to a degree to be given when the student has pursued the first year's course of the medical or other professional school is seemingly promoting the rapid creation of those preparatory medical courses in our higher institutions of learning. None of these courses by itself leads to a degree. even the four years" "special science course, antecedent to medicine" of the University of Wisconsin dces not lead to the bachelor of science degree. Their object is rery well, stated by the University of Pennsylvania in the following terms:

This course preparatory to medicine was established in 1885 for earnest students tho can not present the requirements for admission to the regular college courses or are unable to devote four years to the preparatory work, and yet desire some systematic training in scientific and liberal studies. The results have already shown conclusively that such a course was greatly needed and that the men who hare faithfully pursued the work have excelled in their subsequent professional studies."

The course of the University of Pennsylvania, given below, is, generally speaking, the type of those of the Northwestern, Wake Forcst, and Wisconsin universities. At the No th western University, however, mathematics takes the place of history in the first year, ad logic, psycholory, and physics the place of physiology and botany in the second. Mathematics, psychology, and physics also appear in the course of the Wisconsin University, while "rhetorical work and military drill are required as of other students." The course at Cornell University agrees with the type in having French or German, and with the Northwestern University in having logic and psychology. Closely related to the Pennsylvania type is another furnished by threeelective courses, each of two years, which are prefaced by one or two years of collegiate s udy, the entire course of three or four years being capped with the degree of bachelor of science. The institutions at which these courses obtain are the Johns Hopkins University, the John C. Green School of Science (Princeton College), and the Sheffield Scientific School (Yale University). They are in reality academic coursesin biology, for they are of sufficient completeness to be rewarded with a degree, and are by no means preparatory to the study of medicine in the sense that the first year of a graded course of a medical school is preparatory to the study of the second year. Were this distinction not a true one every academic course in biology might be classed as a medical preparatory course, which is not the pedagogical function of biology as a collegiate study. This type, therefore, is not represented in the curricula that follow. ${ }^{1}$
Tricer preparatory courses are those offered by the University of Virginia and others. In one of these, that of the University of West Virginia, the instruction is given in a "school of biology," it must be admitted; buit it is stated that "practical anatomy" is required of those who intend to study medicine; while the others study general anatomy only. The question of priority of establishment is always a dangerous one to discuss; but as it appears that the University of North Carolina was the first to inaugurate a course of this kind, its course, were it not of a single year, would be used to illustrate the type of curriculum now under discussion, instead of that of the University of Virginia. The course of the latter institution was established for the following reasons:
" Graduation in medicine, as in the other departments of the University of Virginia, does not depend upon the time which has been spent in the study of medicine, but upon the preparation of the student as indicated by rigid written examinations which he is required to pass. It is possible, therefore, for a wellprepared and laborious student to graduate in one session, and examples are not wanting where such graduates have attained conspicuous success in professional life. But the severe and protracted labor necessary for this purpose is attended with evils of which the medical faculty is fully conscious. And while the regular course is complete as far as professional studies are concerned, it leaves the student without the benefit of certain scientific studies, which furnish an admirable preparation for and enlargement of the strictly professional course. Students are therefore advised to devote two sessions to the work; and for the benefit of those who can afford the time to pursue them, special courses in biology and physics have been arranged with particular regard to the training needed for medical studies."
From an examination of the curriculum given below it will be seen that the repetitional feature is strongly emphasized.
Now what value do the medicalschools of the country place upon these various kinds of preparatory courses? In the case of the course at Princeton College the faculty of the Medical School of Columbia College will accept it as equal to six months study under a preceptor in cass the student attends three sessions at that medical college, while the Chicago College of Physicians and Surgeons, Rush Medical Gollege, and the Chicago Medical College "have approved the four years" course [of the University of Wisconsin], and will accept it as the equivalent of one year's study." The course of the Portland Preparatory School is to supply the place of the preceptor not of the medical college, and what the introductory courses of the Universities of Virginia and Pennsylvania are intended to do has already been very fully explained in the words of their own competent faculties.

[^38]Course preparatory to medicine in the University of Pennsylvania.

FIRST YEAR.

First term.
Engiish, three hours a week.
History, two hours.
Latin, French, or German, four hours.
Drawing, three hours.
Chemisiry, 5 hours.
General biology, six hours.
Nineralogy, two hours.

Second term.

English, three hours a week.
History, two hours.
Latin, French, or German, four hours.
Drawing, three houis.
Chemistry, five hours.
General biology, six hours.
Mineralogy, two hours.

SECOND YEAR.

First term.

Latin, or German, or French, four hours. Chemistry, seven hours. Geology, two hours. Zoology, one hour.
Invertebrate morphology, six hours. Histology, seven hours.
Structural botany, five hours.
Physiology, two hours.

Second term.

Latin. or German, or Frezch, four hours.
Chemistry, seven hours.
Geology, two hours.
Zoology, one hour.
Vertebrate morphology, six hours.
Embryology, seven hours.
Systematic botany, five hours.
Physiology, two hours.

Preparatory course for students of medicine of the University of Virginia.

This first year of preparatory work will com-prehend-

1. The course in general chemistry attended by all medical students.
2. A special course in physics.
3. A special course in biology and comparative anatomy.
4. The course in anatomy required of all medical students.

Those who are graduated in this preparatory course will attend for the second session-

1. The regular courses in physiology and surgery.
2. The regular courses in medical jurisprudence, obstetrics, and practice of medicine.
3. The course in materia medica.
4. The reguiar course in practical anatomy repeated.

THE PLACE OF THE STUDIES IN THE COURSE.

The admission requirements, the didactic, the clinical, and the laboratory instruction of the medical schools of the United States have in turn received attention. It has been shown how an effort is being made to dispense with a coursa in the humanities by inaugurating a preparatory course in scieace, and it now is necessary to examine the character of the medical curriculum as a whole, just as in the foregoing its parts have been discussed.
In $18 \frac{7}{6}$ on the call of several colleges a convention was called to meet at Philadelphia. This convention became the American Medical College Association, which adopted a scheme of instruction consisting of eight chairs. In 1832 the seheme of minimum requirements of the Illinois State Board of Health, adopted in 1830, went in effect. For convenience these curricula and that of the U.S. Army medical service are placed side by side.

Scheme of the-		
American Medical College Association.	Illinois State Board of Health.	U. S. Army medical service.
1. Anatomy (with dissection). 2. Physiology. 3. Chemistry. 4. Materia medica and therapentics. 5. Obstetrics. 6. Surgery. 7. Pathology. 8. Practice of medicine.	1. Anatomy. 2. Physiology. 3. Chemistry. 4. Materia medica and therapeutics. 8. Obstetrics and gynæcology. 7. Surgery. 6. Pathology. 5. Theory and practice of medicine. 9. Hygiene. ${ }^{1}$ 10. Medical jurisprudence.	Anatomy, Physiology. Pharmacy, Materia medica and therapeutics. Obstetrics and diseases of women and children. Surgery. General patholozy. Theory and practice of medicine. Practical sanitation. Medical jurisprudence. Toxicology.

At their first meeting the Association of American Medical Colleges adopted the following:

Whereas a knowledge of the elementary branches of medicine should precede a study of the practical branches:
Resolved, That in the hope of inducing students to prolong and systematise their studies, this convention recommends to all medical colleges to offer to students the option of three courses of lectures, after a plan similar to the following: Students who have attended two full courses on anatomy, chemistry, màteria medica, and physiology may be examined upon any of these subjects at the end of their second course. During their third course such students may devote themselves to the lectures upon the theory and practice of medicine, surgery, obstretrics, and diseases of women and children, upon which subjects only they shall be examined at the final examination for the degree of M. D., their standing, however, to be determined by the results of both examinations.

We now turn to the examination of the curricula of the schools having graded courses. In the first year we find invariably instruction in chemistry, anatomy, physiology and histology, and dissection. Materia medica in the majority of cases also comes in the first year. In half a dozen instances minor surgery is introduced thus early, and in eleven cases, at least, clinics, " general and surgical," as at the University of Pennsylvania, or medical, surgical, eye, and gynæcological, as at the University of Wooster, are also held. At least $9 \mathrm{col}-$ leges have instruction in hygiene during the year. Gynæcology, physical diagnosis, pathology, principles of surgery, medical jurisprudence, ethics, and physics have place in the first-year course of one or more colleges.

Comparing these figures with those of ten years ago, and remembering that 43 graded courses (several notobligatory) are represented now against 13 in 1881, it appears that in the main featuresno change has been made and that chemistry, anatomy, and physiology are the groundwork of medical instruction.

Twenty-six schools report definitely as to the examination at the close of the firstyear. General chemistry is disposed of by the great majority of the 26 schools and normal histology and materia medica by a great many. Several schools have a final examination on the bones and ligatures. It is impossible to speak with more than approximate accuracy on the character of the examinations of the first year except to say that the final examinations on the fundamental subjects of anatomy. and physiology, and the subject of materia medica are passed during the second year, to the curriculum of which we now turn.

The principal studies of the second year are anatomy, theory and practice of medicine, surgery, therapeutics and matoria medica, obstetrics, medical chemistry, and physiology. Clinical instruction is very generally given during this vear. In twenty cases diseases of women and in fifteen, diseases of children are a part of the curriculum, and in ten physical diagnosis and hygiene. The special branches-eye, ear, throat, chest, and nervous disease-are represented in from three to five schools, and medical jurisprudence in six schools. Minor surgery and toxicology are each represonted in four schools.

The lanyuage used by the schools in their curriculums is not uniform, but it appears that of 43 schools having graded or progressive courses but 3 do not have anatomy during the second year. One of these has "surgical pathology," another pathological anatomy, and the third pathology illustrated with morbid specimens. Ten schools do not report physiology, at least under that name, though it may be included in "medical chemistry," which is specifically named by 8 of these 10 schools. But the new studies of importance of the year are theory and practice of medicine, surgery, and therapeutics. Pathology and clinical instruction are also mentioned, in many cases alone, in others in connection with medicine and surgery. Occasionally there is a term such as this: " Theoretical, operative, and clinical surgery," or "theoretical and clinical medicine or obstetrics."

At the close of the second year the final examinations in anatomy, physiology, materia medica and therapeutics, pathological anatomy, and chemistry take place, and in several schools an examination in medicine and in surgery occurs.

The third is the practical year of the three-year course. Medicine, surgerv, and obstetrics are represented in the curriculum of every school, while the subjects diseases of women and of children are not reported by 4 and 12 respectively. The new subjects of the year are the special branches, which are clinically taught, to wit, diseases of the eye, ear, throat, skin, nose, and nervous and mental diseases. Pathology, materia medica, medical jurisprudence, and hygiene are important features. In several schools orthopædiatrics, electrotherapeutics, and bacteriology are mentioned as subjects of study.

The character of the four years' course is illustrated by the following programmes:
HARVARD MEDICAL SCHOOL. .
The following tabular view illustrates the distribution of studies throughout the year.
1890-91, from September 25 to June 24.
FIRST CLASS.

Hour.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
9	Anatomy, L. Prof. Dwight, Lect. room C.	Histol. Asst. Prof. C.	Anatomy, L. Prof. Dwight; Lect. room C.		a Anatomy, R. Drs. Conant and Munro, Lect. room C and D.	c Histology L. $b \mathrm{Embryol}$ L. Asst. Prof. C. S. Minot, Lect. room B.
10	aPhysiol. L. or Conf. Prof. Bowditch, Lect. room A.	$\left\{\begin{array}{l}\text { S. Minot and Dr: } \\ \text { Quincy. Laborat. }\end{array}\right.$	a Practical physiol. Dr.		bMateria M. Dr. C. Harrington, Lect. room E.	Physiol. R. Prof. Bowditch, Lect. room A.
	b Materia M.' Dr. C. Harrington, Lect. room E.		$\left\{\begin{array}{l} \text { a Practical physiol. Dr. } \\ \text { J. W. Warren. Phy- } \\ \text { siol. Laborat. } \end{array}\right.$	$\left\{\begin{array}{l} \text { Histol. Asst. Prof. C. } \\ \text { S. Minot and Dr. } \\ \text { Quincy. Laborat. } 1 \end{array}\right.$		
11 12	$\left\{\begin{array}{l} c \text { Histol. Asst. Prof. C. } \\ \text { S. Minot and Dr. Quincy, } \\ \text { Laborat. } \end{array}\right.$	$\left\{\begin{array}{l} \text { Physiol. L. Prof. Bow- } \\ \text { ditch, Lect. room A. } \\ \text { A natomy L. Prof. } \\ \text { Dwight, Lect. room C. } \end{array}\right.$	Chemistry, L. Prof. Hills, Lect. room A.	Chemistry, L. Prof. lills, Lect. room A.	1’hysiol. L. Prof. Bowditch, Lect. room A. bHygiene, L. Dr. Harton, Lect. room E.	$\left\{\begin{array}{l} \text { Hills, Lect. room A 1st } \\ 10 \text { w. } \\ \text { Pract. physiol. Dr. J. } \\ \text { W. Warren. Ph. Lab. } \end{array}\right.$
2 3	Labolatory b Chemis., L. Prof.Wood, Lect, room A. Laboratory \qquad \qquad	Laboratory	Laboratory b Chemis., L. Prof. Wood, Lect. room A. Laboratory	$\begin{aligned} & \text { aPractical physiol. Dr. } \\ & \text { J. W. Warren, physiol. } \\ & \text { Laborat. } \end{aligned}$	Laboratory----------------------------	
4	Laborat	Laboratory	Laboratory		Laboratory------------	
5	Pract, anat. Asst. Prof. M. H. Richardson, Lect. room D.		Pract. anat. Asst. Prof. M. H. Richardson, Lect. room D.		Pract. Anat. Asst. Prof. M. H. Richardson, Lect. room D.	-

[^39]harvard medical school-Continued.

Ilour.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
8	b Bandaging. Dr. Burrell,	b Bandaging. Dr. Bur-	b Bandaging. Dr. Burrell, No Grove St.	b Bandaging. Dr. Burrell, No. Grove St.	b Bandaging. Dr. Burrell. No. Grove St.	b Bandaging. Dr. Burrell, N. Grove St.
9	Clin. Med. Prof. Shat-	rell, No. Grove St. Clin. Med. Asst. Prof.	rell, No. Grove St.	rell, No. Grove St. Clin. Med. Dr. Vickery,	rell. No. Grove St. Clin. Med. Asst. Prof.	rell, N. Grove St. Clin. Med. Prof. Shat-
	tuck, M. G, H.	Mason, B. C. H. Bost. Disp.	Shattuck, M. G. H.	M. G. H.	Mason, B. C. H. Bost. Disp.	tuck, M. G. H. f Med. visit. B. C. H.
10	h Surg. clin. M. G. H. and B. C. H.	h Surg. clin. M. G. H. and B. C. H.	h Surg. Clin. M. G. H. and B. C. H.	h Surg. clin. M. G. H. and B. C. H.	h Surg. clin. M. G. H. and B. C. H.	f Surg. visit. B. C. H. Oct. 1-May 1.
	cLaryngo'py. Prof.	c Laryngo'y. Dr.	cLaryngopy. Prof.		c Lary ngo'py.	Oct. 1-May 1. c Laryng'y. Dr. Hooper,
	Knight, M.G.H.	Iooper, M. G. H.	Knight. M. G. H. La	Hooper, M. G. H. Lab-	Knight, M. G. H.	M. G. H.
		eTherapeut's. Asst. Prof. E. H. Williams,	oratory. Drs. Wood and Emerson.	oratory. Drs. Wood and Emerson.	eTherapeut's. Asst. Prof. F. H. Williams,	
		B. C. H. 10-11.30.			uscultation B. C. H	
11	a Auscultation. Drs. Garland, Gannett, and	a Auscultation	a Auscultation Cl. Conf. Child. Asst. Prof.	a Auscultatio	a Auscultation B. C. H. Operations.	$a \mathrm{Auscult}$. M. G. II. Operations.
	n. Sur	g Surg. visit. M. G. H.	Surg. Conf. Prof. Por-	Adv. anat. L. Prof.	Pathology, L. Prof.	Museum.
		Paediatrics. Asst. Prof. Rotch, Mar. and Apr. Lect. room B.	ter, M. G. H. aiter Oct.	Dwight, Lect. room C.	Fitz, Lect. room C.	
2	dChemistry, L. Prof. Wood, Lect. room A.	Path. histol. Drs.	Chem. L. or R. Prof. Wood, Lect. room A.	b Bact'y. 6 L. Dr. Ernst, Lect. room B.	Path. histol. Drs. Whitney and Gannett,	
3	Pathology. R. and Dem.	Laborat.	Pathology, L. Prof. Fitz, Lect, room C.	Pathology. Dem. and R. Prof. Fitz laboratory.	Laborat.	
4	b Therapeut's. Asst. Prof. F. H. Williams, Lect. room E .	Theo. and Pr. R. Dr. Cutler, Lect. room E.	b Ther apeut's. Asst. Prof. F. H. Williams, Lect. room \mathbf{E}.	Theo. and Pr. R. Dr. Cutler, Lcct. room E.	Clin. Conf. Profs. Shattuck and Mason, and Drs. Garland Vickery, Lect. room C.	
5	Pract. anat. Asst. Prof. M. H. Richardson, Lect. room D .	bTherapeutis. Asst. Prof. F. H. Williams, Lect. room E.	Pract. anat. Asst. Prof. M. H. Richarason, Lect. room D.		Pract. anat. Asst. Prof. M. H. Richardson, Lect. room D.	

[^40]a Till February in sections.
d Examination in February.
THIRD CLASS.

9	Clin. Med. Prof. Thattuck, M. G. H. f Med. Visit. B. C. H. Asst. Prof. Mason.	Clin. Med. Asst. Prof. Mason, B. C. H. Boston Disp.	Clin. Med. Prof. Shattuck, M. G. H.	Clin. Med. Dr. Vickery, M. G. H.	Clin. Med. Asst. Prof. Mason, Ophthal. Cl. Prof. Williams, Clin. Otol. Jan.-Mar. Prof. Green, B. C. H.	Clin. Med. Prof. Shat tuck, M. G. H.
10		Gynaecol. Cl. Boston	Cl. Dermatology. Prof. White, M. G. H.	Dis. of nerv. System. Dr.Putnam, M. G. H.	Surg. visit. B. C. H. Gynaecol. Cl. Boston Disp. till April.	!
11	f Surg. visit Oct.-May, B. C. H. 10-11:30.	$\left\{\begin{array}{l} \text { Disp. } \\ \text { eSurg.Cl. Prof.Cheever. } \\ \text { Oct.-May B. } \\ \text { 10-11:30. } \end{array}\right.$	Diseases of children. Asst. Prof. Rotch. No. Grove St.	f Med. visit. M. G. H. Prof.Shattuck,Nov.Mar. Cl. E. \& E. Inf. Jan. Feb. Mar. Profs. Blake and Green.	Operations, B. C. H. Child. Dis. Asst. Prof. Rotch. Lect. Room B. Oct. \& Mar.-June, Disp. Nov.-Mar.	Operations. M. G. H.
12	Surg. cl. M. G. H. after Oct. Profs. Porter and Warren.	Surg. anat. L. Mar. and Apr. Prof. Porter, Lect. room D.	Surg. Conf. Prof. Porter, after Oct. M. G. H.	f Surg. cl. M. G. H. Profs. Porter and Warren.	cSyphilis. Dr. Post, Oct. Lect. room B. Nov.-Feb. Boston Disp.	Museum.
2	Gynaecol. L. Prof. Baker, Lect. room B. g Practical bacteriology. Dr. Ernst.	g Practical bacteriology. Dr. Ernst.	a Legal Med d Prof. Draper, Lect. room E.	a Opthal. L. Prof. Williams. Lect. room A. g Practical bacteriology. Dr. Ernst.	a Legal Med. Prof. Draper, Lect. room E.	g Practical bacteriol. Dr Ernst.
3	Theo. and prac.L. Prof. Minot, Lect. room E.	a Ophthalmology, L..... d Prof. Williams, Lect. room A. b Mental dis. Dr. Fisher, Lect. room A.	Obstetrics, L. Prof. Richardson, Lect. room B.	Theo. and prac. L. Prof. Minot, Lect. room E.	Obstetrics L. Prof. Richardson, Lect. room B.	Ment. dis. clinic b Bos. Lun. Hosp. Dr. Fisher. Sch. f. Feeb. Mind. Chil. Jan. and Feb.
4	Surgery, L. Prof. Warren or Cheever, Lect. room C .	Dermatology, L. Prof. White, Lect. room B.	Surgery, L. Prof. Warren till Jan. Lect. room C .	Surgery, L. Prof. Cheever, Lect. room C.	Clinical Conf. Profs. Shattuck and Mason, Vickery,Lect. room C.	
5	Otol L., Oct., Nov., Dec., Lect. room B. Prof. Blake, Pract. Anat. Asst. Prof. M. H. Richardson, Lect. room D. after Jan. 1, Lect.room B.	Obstetrics, R. Dr. Green, Lect. room B.	Pract. anat. Asst. Prof. M. H. Richardson, Lect. room D.	Otol. L.,Oct., Nov., Dec.. Lect. room B.	Pract. anat. Asst. Prof. H. M. Richardson, Lect. room D.	

[^41]a During first half-year.
b During second half-year.
d Examination in February.
HARVARD MEDICAL SCHOOL-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hour. \& Monday. \& Tuesday. \& Wednesday. \& Thursday. \& Friday. \& Saturday.

\hline 9

10 \& Prof. Williams, eye diseases (c) City Hospital. \& Prof. Green, ear diseases (4) Eye and Ear Inf. \& Prof. Williams, Eye Diseases (c) City Hospital. \& \begin{tabular}{l}
Prof. Green, ear diseases (4) Eye and Ear Inf.

Prof. Fitz, medical visit (12) M. G. H.

 \& Prof. Williams, eyediseases (c) City Hospital. \&

Prof. Green, ear dis eases (4) Eyo and Ear Inf.

Prof. Fitz, medical visit (12) M. G. H.
\end{tabular}

\hline 10 \& Asst. Prof. Rotch and Dr. Buckingham, Child. Dis. (c)Children's Hosp. and Dispensary. \& Prof. White, skin diseases (15) M.G.H. \& Dr. Davenport, Women's dis. (5) Dispensary. \& Asst. Prof. Rotch and Dr. Buckingham, child. dis. (c) Children's Hosp. and Dispensary \& Prof. White, skin diseases (15) M. G. H. \& Dr. Davenport, women's dis. (5) Dispensary.

\hline 11 \& Prof. Richardson, Clin. Obstet. (5) Lying-inHosp. \& Dr. Wadsworth, Ophthalmos'y (5) M. G.H. \& \& Dr. Wadsworth, ophthalmos'y (6) M. G.H. \& Prof. Richardson, clin. obstet. (5) Lying-inHosp. \& Dr. Garland, medical clinic (c) Dispensary.

\hline 12 \& \& Dr. Cabot, genito-urinary diseases (c) M. G. H. \& \& \& \&

\hline 3

4 \& \begin{tabular}{l}
Prof. Draper, Legal. Med. (c) B.C.H.

Dr. Bradford, orthopedic

 \&

Prof. Baker, women's dis. (6) free hospital.

Dr. Strong, women's

 \&

Prof. Draper, Legal Med. (c) College.

Dr, Bradford, orthope-
\end{tabular} \& Prof. Baker, women's dis. (16) Free Hospital. \& \&

\hline 4 \& | Hosp. |
| :--- |
| surgery (c) Children's | \& dis. (2) Free Hospital. \& Dr. Brad surgery (c) Children's Hospital. \& \& dis. (2) Free Hospital. \&

\hline
\end{tabular}

Note.-The time at which each exercise begins is shown in the margin at the left of each page; the time of its ending is subject to the instructor's convenience.
Department of medicine, University of Pennsylvania-Order of lectures, daily.

Hour.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
$9 \mathrm{a} . \mathrm{m}$	General chemistry .-..-	$\begin{aligned} & \text { General chemistry-.-.- } \\ & \text { Chemical laboratory, } \\ & \text { two hours. } \end{aligned}$	Chomical laboratory, two hours.	Topographical anatomy. General pathology .-...	Dissection \qquad Materia medica \qquad	$\left\{\begin{array}{l} \text { Dissection or Phila. } \\ \text { or Penna. Hospita, } \\ \text { medical and surgical } \\ \text { clinics. } 10 \text { to 12. } \\ \text { Dissection. } \end{array}\right.$
$10 \mathrm{a} . \mathrm{m}$	Hygiene ..-- --- --- ---					
$11 \mathrm{a} . \mathrm{m}$	Topographical anatomy.		Osteology			
12 m		Practical normal his-	Practical normal his-	Practical normal his-	Practical normal histology, one section, two hours. Others osteology or dissection.	Dissection or medical and surgical clinics, U. H.
	tology, one section two hours. Others	tology, one section two hours. Others	tology, one section two hours. Others	tology, one section two hours. Others		
1 p	osteology or dissec-	osteology or dissec-	dissect or attend med.	ostoology or dissec-		
10.	tion.	tion.	and surg. clinics, U. H.	tion.		
3:30 p. m		Anatomy	Histology	Anatomy	Anatomy	
4:30 p.m	Physiology		Physiology	Bandaging, lecture,	Phyisology .-.......	
7:30 p. m	Pharmacy, laboratory. Half the class.	Bandaging, sections, until Dec. 15.	Pharmacy, laboratory. Half the class.	Bandaging, sections, until Dec. 15.	Bandaging, sections, until Dec. 15.	

For the study of histology, osteology, and syndesmology the class is divided into sections, one of which is occupied at a time. Students not thus engaged dissect alter December 1, or if not otherwise occupiea may attend general clinics.

Department of medicine, University of Pennsylvania-Order of lectures, daily-Continued.
SECOND YEAR-Continued.

Hour.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
4;30 p. m--	Physiology .	Phys. diagnosis, prac-	Physiology	Therapeutics	Physiology	Therapeutics.
5:30 p. m...	Dissection	Practice	Dissection	Practice	Dissection	

THIRD YEAR.

U. H. $=$ University Hospital. tions in bacteriology by Dr. Formad.
FOURTH YEAR.

U. H. = University Hospital.

Schedute of studies of the University of Michigan.

FIRST YEAR.

FIRST SEMESTER.
Lectures and recitations:
Descriptive anatomy.
Osteology.
Nateria medica.
Analytical chemistry.
General chemistry.
Hygiene.
Laboratory work:
Pharmacognosy, 1 to 4 p. m., twice a week for one semester.
Geueral chemistry, 2 to $5 \mathrm{p} . \mathrm{m} .$, twice a \bar{T} eck for one semester.
Qualitative chemistry, 1 to 5 p. m., daily for one semester.
Piactical anatomy $a, 1$ to $5 \mathrm{p} . \mathrm{m}$., daily for ten weeks.

SECOND SEMESTER. δ

Lectures and recitations:
Descriptive anatomy.
Materia medica.
Analytical chemistry.
Pharmacy.
Organic chemistry.
Hygiene.
Physics.

SECOND Year.

 FIRST SEMESTER.Lectures and recitations:
Physiological chemistry.
Histology.
Descriptive and surgical anatomy.
Therapeutics.
Toxicology materia medica.
Laboratory Work:
Qualitative chemistry, 1 to 5 p.m., daily for one semester.
Practical anatomy, 1 to 5 p.m., daily for ten weeks.
Practical hygiene, 1 to 5 p . m., daily for twelve weeks.
Electro-therapeutics, 1 to 4 p.m., daily for six weeks.
Elementary histology, 1 to 4 p. m., twice a week for the semester.

SECOND SEMESTER.

Lectures and recitations:
Physiological chemistry.
Physiology.
Descriptive and surgical anatomy.
Therapeutics.
Electro-therapeutics.
Laboratory work: c
Qualitative chemistry.
Practical anatomy.
Practical hygiene.
Electro-therapeutics.
Adranced histology.

Third Year.

> FIRST .SEMESTER.

Lectures and recitations:
Theory and practice.
Surgery.
Diseases of children.
Diseases of women and obstetrics.
Physiology.
Meteorology and climatology.

Third Year-Continued.

FIRST SEMESTER-continued.
Laboratory work:
Analysis of urine, 1 to 5 p . m., daily for twelve weeks.
Practical pathology, 2 to 5 p.m, daily for six weeks.
Practical hygiene, 1 to 5 p . m., daily for twelve weeks.
Optional:
Adranced hygiene, 1 to 5 p.m., daily for one somester.
Sanitary examination of water, 1 to 5 p. m., daily for twelre weeks.

Detection of adulterations in food and drink, 1 to 5 p.m., daily for one semester.
Physiological chemistry, 1 to 5 p.m., daily for one semester.

SECOND SEMESTER.

Lestures and recitations:
Theory and practice.
Surgery.
Diseases of women and obstetrics.
Embryology.
Dermatology.
Laboratory work:
Analysis oi urine.d
Practical patko'ogy.d
Practical hygiene.d
Practical physiology, 1 to 5 p. m., daily for the semester.
Operative surgery.

Fotbith Year.

FIRST SEMESTER.

Lectures and recitations:
Theory and practice.
Surgery.
Diseases of women and obstetrics.
Diseases of children.
Ophthalmoiogy.
Pathology.
Diseases of nervous system.
Laboratory work:
Clinical.
Bandaging and dressing.
Practical obstetrics.
Physical diagnosis.
Bedside practice.

SECOND SEMESTER

Lectures and recitations:
Theory and practice.
Surgery.
Diseases of women and obstetries.
Laryngology and otology.
Diseases of the nervous system and insanity.
Pathology.
Medical jurisprudence.
Laboratory work:
Clinics and hospital practice.
Three lectures are giren each forenoon:
while the afternoons are devoted to laboratory and clinical worls.

[^42]Present four-years' course of Boston University School of Medicine (homeopathic)Arrangement of studies.

FIRST YEAR.

SECOND YEAR.

THIRD YEAR.

Surgery. (3)	Surgery. (3)	Special pathology and thera-
Special pathology and thera-	Special pathology and thera-	peutics.
peutics	peutics. ${ }^{\text {materia }}$ (2)	Maieria medica.
Practical obstetrics. (2)	Operative obstetrics (in	Clinics.
Clinics. (6)	classes). (2)	Surgical clinic. (1)
Surgical clinic. (3)	Practical obstetrics. (1)	Medical and surgical cases
Medical and surgical cases	Clinics. (6)	Fisitea.
visited.	Surgical clinic. (3)	Examinations in-
	Medical and surgical cases	Materia medica.
	Examinations in-	General patholozy and
-		Special pathology and
	Gynæcology.	therapen ics.

FOURTH YEAR.

Special pathology and therapeutics (optional).
Materia medica (optional).
Ophthalmology.
(1)

Dermatology. (1) Clinics.

Surgical clinic.
Clinical reports.
Obstetric cases.
Dispensary practice.
Thesis.
Examinations in-
Dermatology.
Ophthalmology.

Special pathology and therapeutics (optional).
Materia medica (optional)
Insanity and its jurispru-
dence. (1)
Ethics and æsthetics. (1)
Clinics. (6)
Surgical clinic.
(1)

Dispensary practice.
Examinations in-
Nerrous diseases and insanity.
Thesis.

To compare with the foregoing full courses the course of lectures at two
The course of lectures of the medical depart

Date.	Chemistry.	Anatomy.	Physiology.
First week, beginning November 3, 1890.	Physical phenomena and force; physical properties of matter.	Introductory-Histology; mouth.	Introductory: Chemical and histological composition of the
Second week...	Physical properties; heat.	Alimentary canal....-	Normal histology: histology of tumors.
Third week .-.-.-...-	Light	Abdominal and pelvic riscera.	Digestion.
Fourth week........-	Electricity, magnetism, galvanism, etc.	Male organs of generation.	Digcstion; absorption.
Fifth meel3.-.......-	Inorganic chemistry: Nonmetalloids, nomenclature, affinity.	Heart and respiratory organs.	Absorption;sanguinification.
Sixth week	Metalloids, physical and chemical properties of.	Nerrous centers-	The blood..
Seventh week	Metalloids, physiological, pathological. and toxicological properties of.	Organs of special sense.	The blood: circulation.
Eighth week........	Demonstrations with non-metaliic elements and compounds.	do	.-..-do .-.................
Ninth meek.........	Metallic elements, chemical, nomenclature, and affinity.	Osteology	Respiration .---------
Tenth week........-	Metals, physical and chemical properties of.	Osteology; articulations.	Secretion and excretion.
Eleventh week	Metals, physiological, pathological, and toxicological properties of.	Articulations; muscles.	Excretion, renal .-....
Twelfth week.	Demonstrations with metallicelements and compounds. Organic chemistry:	Muscles.................	Nutrition and animal heat.
Thirteenth week ..-	Carbon and its compounds.	Muscles; arteries....-	Contractility and locomotion.
Fourteenth week..-	Organic acids; sugar; fermentation, oils.	.do	Nervous system, chemistry and histology of.
Fifteenth week....-	Alkaloids....-.-..........	..do .-...............-	Functions of the spinal cord and nerves.
Sixteenth week....-	Proximate principles of the human body.	Veins; lymphatics..-	Functions of the brain.
Serenteenth week.-	The urine...	Nerves	.do
Eighteenth week..-	The blood.	Nerves; surgical anatomy.	Functions of the cranial nerve.
Nineteenth week.--	Toxicological experiments.	Surgical anatomy .-.-	Functions of the sympathetic system; special senses.
Twenty-first week.	do	Development of the organs.	Review

a One lecture per week will be deroted to the subject of hygiene.
bedside in the wards of the same institution.
schools suill retaining the nongraded system are given.
ment of The Tulane University of Louisiana.

Surgery. c

Acute inflammation; phenomena, causes, and treatment of.

Treatment of acute inflammation;chronic inflammation.

Local effects of inflammation.

Diffuse inflammatory erysipelas; thrombosis, embolism, pyæmia.

Tumors, benign

Tumors, malignant and semi-malig nant.

Injuries, constitutional and local effects, contusions, wounds.
Tetanus; burns; effects of cold.

Hemorrhage

Injuries and diseases of arteries, veins, and nerves.
Injuries of bones; contusions and fractures.

Fractures

Injuries of joints; contusions, wounds, dislocations.
Dislocations

Diseases of bones and joints.

Anæsthesia; operations in general.

Regional surgery:

Head
Face, nasal and buccal cavities; throat.
Cervical region

Thorax and abdomeп.

Pelvis

Obstetrics and diseases of women and children. d

Introductory: Female organs of generation.

Ovulation, menstruation, conception, derelopment of orum.
Decidua, chorion, placenta, etc., changes during and signs of pregnancy.
Disorders of menstruation; abortion.

Abortion; duration of pregnancy; molar pregnancy.
Super and extra fœtation; missed labor; spurious pregnancy.

Gravid uterus, palpation, pelvis.

Fœtal head; labor.

Stages and management of labor; puerperal state.
Presentations: Vertex, face, pelvis.
Presentations: Shoulder, funis, placenta.

Tedious labor.

Tedious labor, postpartum hemorrhage; rupture of uterus.
Inversion of uterus, retained placenta, puerperal mania.
Eclampsia; puerperal fever.

Eclampsia; puerperal fever; phlegmasia dolens; induction of labor.

Obstetric operations: chloroform.
Obstetric emergencies.

Do.

First dentition: Convulsions, cholera infantum.
Catarrhal afiections of children.

[^43]Sclledule of didactic and clinical lectures given in the Long Island College Hospital and the Hoagland Laboratory during the regular term.

SUGGESTIONS AS TO HOW THE STATUS OF THE MEDICAL PROFESSION MAY BE ADVANCED.

In response to an inquiry for opinions as to the manner in which the status of the medical profession might be advanced, as far as it is influenced by the instruction in a medical school, about fifty replies were made, all, with three or four exceptions, from "regular"" schools. These are grouped under four heads: Suggestions that all candidates be examined and licensed (a) by State boards, (b) by national boards, (c) that the course be extended two or three years, and (d) suggestions not falling in a, b, or c.
The drift of the suggestions in regard to the establishment of a State board is that it should examine the student as to his competency to practice medicine after he has obtained a cartificate or diploma from a medical school or college, the State examination to be independent of the college. The dean of the Yale medical school puts the matter thus: "(1) No practice without registration; (2). no registration without diploma or examination; (3) an impartial hoard to determine what diplomas could be registered (desirable for effect on schools and as best meeting the conditions in the different States) ; (4) registration only by examination, but not until conditions are more uniform in different States. ${ }^{2}$
In eight cases a national board (or boards) of examination is suggested. In two of these the matter is expressed by saying that it would be of great advantage if the laws relating to medical education were uniform throughout the country.
A third of the deans think that the course should be lengthened to three years of lectures or graded course, and in some cases four years of study. As this is what is being very rapidly done, no comment is required.
In the miscellaneous category are suggested a preliminary examination, more laboratory work, and compulsory graduation from a medical college. From Iowa it is answered: "A change in the law that now requires a student to study practical anatomy and then makes him a criminal for obtaining the material would materially advance the status of the profession." Another correspondent says: "The first law in Tennessee was passed by the legislature of 1888 and 1889. Having gained this one great step I think it unwise to attempt more too soon lest reaction result and we lose all."

Reply from the facuity of the medical department of the University of the State of

Dr. William T. Harris,

Commissioner of Education, Washington, D.C.:
DEAR SIr: Dr.A. W. McAlester asks me to reply to the request made on the back of the circular sent out by your Bureau for the purpose of obtaining statistical information of the medical schools of the country. I do so with some diffidence, and beg to call your attention to two things in this connection:
The first is, that length of course should, in my judgment, be measured by something else or additional than mere length of time; system, manner, and kind of instruction are of more importance in laying the foundation of a good medical education than time. The knowledge and mental discipline which the average medical student brings to the school or college of medicine is limited and deficient; to what extent this is the cass no one connected with any medical school likes to tell. Such as he is, the medical student, hears five or six or even seven lectures a day; no one, I presume, will affirm that he masters them; and when the process is repeated another term, and may ke a thied, any general discernment has been sacrificed for the possession of disjointed and loose parts. The more a student at the beginning of his career is encouraged to attend to clinics and hospital practice, the more certain is this result attained: a certain handiness has effectually taken the place of knowledge. There are three things to counteract and overcome these tendencies:

1. A graded course, strictly adhered to and guarded well at the entrance; students should bs made to take a narrow path rather than to spread themselves over the whole subject.
2. Lecture and text-book instruction not merely descriptive, but to stand in organic relation to the whole, and to be in themselves logical treatises of the subject they deal with.
3. Lectures to alternate with recitations; no quizz classes, where the aim is to rote and cram, but proper lectures and wise questions to strengthen as well as to test the intelligence, understanding, and progress of the students.

The other point is, that a difference should be made between a college of medicine and a medical school ; the former teaches medicine as a science, the latter mainly as an art; the fo mer attempts to make scientific physicians, the laiter pactitioners. A State university has no more business to make practitioners in medicine or advocates in law than it has to make carpenters or shoemakers. If the State desires to do so, it could establish technical or trade schosls, of which the ss-called agricultural and mechanical colleges are types. They stand in my judgment coaqual with the university, each called into life by the foresigh of the Gzneral Government, and each for a distinct purpose, their connection being, I take it, somewhat like this:
I. State university:
a. Academic college.
b. College of medicine.
c. College of law.
II. Agricultural and mechanical college:
a. School of agriculture.
b. Mining school.
c. Engineering school.

This dissociation between the schools and colleges could of course be carried farther, but as I have already spoken at some length, I will only add that I believe it to be rash to set up the claim that a medical graduate is, in virtue of his graduation, a skillful and experienced physician ; he should, after graduation, receive one or two years hospital practice, which in no case is rendered unnecessary on account of clinical attendance while a student.

Respectfully yours,
P. Schweitzer.

Woodson Moss, Secretary.
A. W. McAlester, Dean.

Reply from William M. Thornton, chairman of the faculty of the University of Virginia.

The following are recognized as the reforms most urgently needed in medical education:

1. The separation of the teaching and licensing bodies already carried out in Virginia should be adopted in all the States. This reform was advocated by the late Prof. James L. Cabell, of this State and University, in 1817, in an address before the American Medical Association; was persistently urged by him, and was finally carried into effect in 1885 in Virginia.
2. The grading of the course of medical studies and the inclusion of biology and comparative anatomy, as follows:

First year course : Chemistry, physics, biology, and comparative anatomy, with laboratcry practice in each case.

Second year course: Human anatomy, physio'ogy, histology, with laboratory practice in each cass.
Third year course: Pathology (with laboratory practice), obstetrics, gynæcology, surgery (with laboratory practice), practice of medicine, materia medica, medical jurisprudence, clinical surgery.
3. The extension of the term of study to nine months in the year.

The step indicated in 3 has been approved by the faculty, but the visitors consider it one for which the public is not prepared.

Willitam M. Thornton, Chairman of the Fculty.

Reply from H. D. Didama, M. D., LL. D., dean of the College of Medicine of Syrclcuse University.

"If you had asked for opinions instead of information I mighthave answered:
"'Obse"vation proves that higher matriculation requirements and better systems of education do not originate with the great schools in the State of New York, but are forced upon them by the profession through the legislature.
" 'The schools did not adopt a matriculation examination of any value. Some had no examination whatever. Most of them had been content with the old unnatural two six-months' courses, both exactly alike, so that if the student had a good memory on 3 course would have been all sufficient.
''The protession should dəmand enactments requiring fitness at the entrance, a thorough graded course of three years of eight months each, and a rigid examination at the termination of the three courses, if not at the end of each year. But you asked only for information, and I forbear.,'

Replyfrom I. T. Talbot, M. D., dean of the Boston University Sclool of Medicine.
The great difficulty is, and has been in the past, that the student entering upon the study of medicine is of ten entirely lacking in qualification. This of ientimes arises from the fact that many men as ignorant as themselves, often holding diplomas, acquire reputations and large incomes. To obviate this state of airirs this school requires the first of its four years to bs devoted to the preparato:'y or found ution studies of a course of medical instructions. These include, in addition to a good English education, Latin, physics, biology, zölogy, microscopy, chemistry, botany, human osteology, comparative anatomy, and animal dissections. Many of these can be studied in the last year of a college course in arts, while the remainder can be pursued under the direction of a medical instructor or in the first year of a medical school. Knowledge on these subjects must be tested by a thorough entrance examination to the second year of the medical course. Such students will be prepared for thorough subsequent work.
I. T. Talbot,

Deun.

THEOLOGY.

A comparison of the annual reports received from theological seminaries and departments during the ten years last past shows the necessity of having some standard by which may be determined the characteristics of a department or school of theology. There seems to be a distinction of some kind made by the management of higher institutions of learning in which theological instruction is given; for frequently the forms sent out by this Bureau are returned with the indorsement: "Not a regularly organized school of theology," or the Bureau fails to obtain a response at all. ${ }^{1}$ Either of these circumstances vitiates the comparison of statistics of one period with those of another, for the school which appears in the report for 1881, but thereafter fails to report or reports that it is not a theological school for two successive years, will not appear in the report for 1883.

On the other hand there is still more embarrassment as to what constitutes a theological curriculum. Some colleges having a course in theology return the whole number of the students within their walls as members of the theological department. The effect of this may be illustrated by the reports of an institution during a series of years, as follows:

When the catalogue is at hand these errors can bs rectified, but as the false figures are usually prepared ior the printer long before the catalogue containing the true ones is received they become a matter of record.

Still referring to the curriculum of a true theological school, the question may be asked: "Of how many branches is that curriculum composed?" In the case of medicine anatomy and physiology are undoubtedly the groundwork of the study, but pathology, therapeutics, theory, and practice, etc., are also indispensable to complete the training of a skillful and legitimately successful physician. And we see how unremittingly the profession of medicine is laboring to awaken the

[^44]
Commissioner of Education :

DEAR SIR: Recently I received from your department a circular asking for information as to the theological department of McKendree College, Lebanon, Ill. In reply permit me to say that McKendree College has no theological department or school. There is a small theological class of ten to twelve students who pursue a limited irregular course of study in some branches of theology. This class can not be regarded as a department. Yours,
T. H. Herdman,
V. P., McKendree College.
legislative conscience to the necessity of passing laws that will prevent the profession from being embarrassed by the practice of inadequately educated men.

It may indeed be said that the ancient universities of Oxford and Cambridge have been in a certain sense theological seminaries, as the garb their students wear indicates, and that our own Harvard and Yale were theological seminaries to all intents and purposes in their early days. But if the interpretation of the term theological curriculum were to be based on such a plea, the difficulty of the statistician would not be solved. The question would no longer be what should be considered a curriculum of a theological school, but what difierence if any is there between a school of theology and a college; for even in tho sense that a study of the Bible and of the history of the Christian religion is enoagh to constitute a foundation for a pastorate, every German college (gymnasium) might be called a theological school, for in it some time is spent every day upon the Bible and church history. Under certain conditions there is much to be said for a course of instruction in theology that is not too advanced or too long, but it is mere juistice to the advanced schools of theology that they should be clazsed by themselves.

Without pursuing further the discussion of so delicate a topic, the Bureau illustrates the idea of a theology school as held by two European countries, placing them in juxtaposition with several American curricula, one of which is a type of the several seminaries of the highest class that exist in this country and may therefore be compared with the faculties of France, especially those maintained by the Catholic Church, for the French state faculties of theology are all protestant institutions.

Course of lectures in the theological faculty of the University of Berlin.

General discussion of the sphere of theolosy (encyclopedia) and introduction to theological study on. Wednesday and Sunday, 1 hour.

Introduction to the Old Testament, 5 hours. History of the text of the Old Testament, Sunday. Interpretation of Genesis, 4 hours. Interpretation of the Psalms, 5 hours. Interpretation of Isaiah, 5 times. Hebrew grammar for beginners (with exercises) 4 times. Exercises of the Institutum Judaicum (Society for Jewish Missions), 1 hour. The people of the Old Testament, 1 hour.
Introduction to the New Iestament, 6 hours. Introadaction to the synoptical Evangels, 1 hour. Biblical theology of the New Testament, 4 hours. Interpretation of the synoptical Erangels, 4 hours; of the Evangels and the Epistle of John, 4 hours; of the Epistle to the Romans, 4 hours; of the Epistle to the Galatians, 1 hour. Early history of the church, 5 hours. History of the church during the middle ages, 4 hours; in modern times, 5 hours. History of dogma, 4 hours. General history of religion, 4 hours. The early Christian and old Jewish burial places, especially the catacombs at Rome, illustrated by the
monuments in the museums, 2 hours Sunday evenings. The edifices of the Erangelican faith, their construction and interior decoration. illustrated by the contents of museums ${ }^{1}$ and by visits to the churches of Berlin. 1 hour. Explanation of selected old Jewish inscriptions found in Italy, 1 hour. Relation of Judaism to Chistianity, 1 hour. Exercises on the history of the church, 2 hours. St. Augustine's confessions, 1 hour.

Philosophy in its application to religion, the proof of a Divine Being, etc., are taught in the faculty of philosophy.

Symbolism, 4 hours. Christian dogma, (apologetic), 4 hours; (systematic), 5 hours. ethics, 5 hours. The recent opinions held as to Christ and the Christian dogma (Die neveren Ansichten ron der Person Jesu und das christologische Dogma), 1 hour. Dogmatic society, 2 hours. Theological society, 2 hours.

System of practical theology, 4 hours. Homiletics and catechetic, 3 hours. Pedagogy and catechetic, 4 hours. The pedagogical systom of the nireteenth century, 1 hour. Practical explanation of pastoral letters, 2 bours Sunday evenings. Introduction to practical sermon writing. Sermon wilting, 2 hours.

Courses of instruction in the divinity school of a university of the United States.

As more courses are presented than are required for the degree of D. B., a certain amount of election vill be ailowed. Students must, in every casc. submit to the faculty for its approval a list of the studies which they propose to take.
Old Testament.-1. Hebrew. Davids on's Grammar. Harper's Hebrew Nethod and Manual. Harper's Elements of Hebrew. Explanation of parts of the Pentateuch, Historical Books, and Psalms. Three times a week. 2. Hebrew (second course). Interpretation of parts of the Prophets and Poetical Books. Twice a week. 3. Jewish-Aramaic. Kautzsch's Grammar. Brown's Aramaic Method. Interpretation of selections from Daniel, Ezra, and the Targums. Twicea week, during the second half year. 4. History of Israsl, political and social. Twice a week. 5. Old Testament Introduction. Twice a week. 6. History of the religion of Israel, with comparison of other Semitic religions. Twice a week. 7. Assyrian.

Lron's Assyrian Manual. References to Delitzsch's Assyrische Grammatik. Delitzsch's Assyrische Lesestücke. 8. Assyrian (second course). Delitzsch's Assyrische Grammatik. The cuneiform inscriptions of western Asia (interpretation of selections). Prof. Lyon.

Other Semitic courses are given, namely, two in Arabic, each twice a week; one in Ethiopic, once a week, and one in Babylonian-Assyrian, once a week.

The Semitic Seminary meets on the first and third Mondays of every month except June. At each meeting a short paper is read by a student or an instructor, and its subject-matiter discussed; in this way the class work is brought into practical use, and various matters studied which do not come up in the class instruction.

New Testament.-1. New Testament times: the political, social, moral, and religious condition of the world when Christ appeared. Twice a week, during the first half year.

[^45]
Courses of instruction in the divinity school of a university, ctc.-Continued.

2. Outline lectures on Theological Encyclopædia and literature; the characteristics of the New Testament Greek; the Septuagint; textual criticism; the life of Christ. Study of the Gospels. Essays and criticism. Twice a weels. 3. New Testament introduction.-The origin, contents, and history of the New Testament writings, together with the formation of the canon. Twice a week during the second half year. 4. Outline lectures on the life of Paul; study of the epistles; essays and criticisms. Twice a weelz. 5. Lectures on our English Bible and its recent revision. Lectures on topics in biblical theology. Exposition of difficult texts. Essays and criticisms. Twice a week. 6. Biblical interpretation: Its history, its methods, its principles, and their application (to New Testament passages of historical, prophetical, ethical, and doctrinal import). Once a week. 7. Classical Aramaic (Syriac). Grammars of Nöldeke and Hutchinson-Uhleman. Roediger's Chrestomathia Syriaca. Reading of selections from the Peshitto Gospels, the Chronicles of Barhebräus and the Hymns of Efrem. Twice a week during firsti half-year.

The New Testament Seminary meets on the second and fourth. Mondays of every month for the reading and criticising of essays by the students upon tonics relating to the New Testament.

Church History.- [1. The conflict of Christianity with Paganism, Origin and development of the Roman primacy to its alliance with the Holy Roman Empire, A. D. 800 . Twice a week. Omitted in 1889-c0.] [2. The Mediæval Church, with especial reference to its effect upon public life and upon intellectual and social progress. Twice a week. Omitted in 1889-90]. [3. The era of the Reformation in Europe from the rise of Itaiian Humanism to the close of the Council of Trent 1350-1563. Twice a week]. [History of Christian doctrines. Twice a week. Omitted in 1389-90]. [5. Advance study and research in Church history in connection with courses 1 and 2. Omitted in 1889-90].

Comparative religion.-Studies in the com-
parative history of religions, particularly the Vedic religion, the Hindu philosophies, Buddhism, Mozdaism, and the Chinese religions. Twice a week.
Ethics.-Practical ethics of social reform; an examination of the problems of charity, temperance, labor, divorce, prisons, the Indian question, lectures, essays, and the study of institutions. Twice a week.
Theology.- 1 . The Philosophy of religion; an introduction to the study of theology. Once a week. 2. Systematic theology begun. The Psychological basis of religious faith. Once a week. 3. The same continued. The content of Christian faith. An elaborate essay on some theological subject is expected from each student taking this course. Three times a week.
The Theological Seminary meets on the first and third Wednesdays of every month.
Homiletics and pastoral care.-The structrare and analysis of sermons. Once a week. 2. Each student writes six sermons during the year, three of which are preached before the two upper classes and criticised by students and instructor; the rest are criticised privately, both as to composition and delivery, in preparation for the public preaching named below. [3. Liturgies and the history of Christian worship; its prayers, its hymns, and its preaching. Once a week. Omitted in 1889-90. 1 4. Pastoral care and the conduct of Christian worship. Lectures. Once a week during the second half year.

Elocution.-1. Class work. iwice a week, supplemented by private instruction. 2. Similar to the above.
General exercises.-Preaching by students in the chapel of the school, open to the public. Once a week. Meetings for debate. Once in two weeks. Meetings for religious conterence, conducted by students, alternating with the above. Once in two weeks. Morning prayers, conducted by professors and students.
Special lectures.-A special course of six lectures by offieers of the University who are not teachers in tho Divinity School will be given.

French faculties of theology.
PARIS.

1. PROTESTANT.

Chairs.

Lutheran dogma.
Evangelical morality.
Exegesis.
Ecelesiastical history.

Calvinistic domma.
Prasocal theology
History of philosophy.
Hebrew.

Complementary course.
Practical theolozy.
Conferences.
The Greek anu Latin Fathers of the Church.
Sacred Philology (New Testament).
German Theological language and literature and ecelesiastical history.
2. CATHOLIC. a

Chairs.

Dogmatic theology.
Scriptures.
Eeclesiastical history.
Oriental languages.
Scholastic philosophy (philosophy of the schoolmen).

Canon law.
Civil law.
Public ecclesiastical Iaw.
History of canon law.

MONTAUBAN.

CALVINISTIC ONLY

Chairs.

Dogma.
Evangelical morality.
Ecclesiastical history.
Exegesis and criticism.

Hebrew.
Philosophy.
Greek and advanced Latin (Haute latinite).

Complementary course.
Natural sciences.

Course of study in a Northern theological seminary.

FIRST YEAR.

Old Testament Literature: General Introduction; Hebrew. New Testament Literature: General Introduction; Special Introduction to the Gospels; Exegesis of selected Epistles of Paul. Sacred Geography and Antiquities. Old Testament History. Relations of Philosophy and Science to the Christian Religion; Theism; Theological Encyclopedia. Ecclesiastical Theology: Homiletics; Elocution.
The Junior Class has fire weekly exercises in Hebrew; two in Introduction to the Old Testament and Archæology; one in Introduction to the New Testament; two in the Exegesis of Paul's Epistles; two in Old Testament History; two in Theism; one in Homiletics, and one in Elocution.

SECOND YEAR.

Oid Testament; Hebrew; Special Introduction to the Poetical Books; Special Introduction to the Historical Books. New Testament. Life of Christ and Exegesis of the Gospels. Didactic Theology: Theology Proper, Anthropology begun. Church History. Government and Discipline of the Church: Homiletics; Criticisms of Sermons; Elocution.
The Middle Class has three weekly exercises in Church History; three in Didactic Theology; five in Old Testament Literature and Exegesis; two in the Life of Christ and Exegesis of the Gospels; two in Homiletics and Church Government, and one in Elocution.

THIRD YEAR.

Old Testament: Hebrew; Special Introauc-
tion to the Prophets; Biblical Theology. New Testament: Acts of the Apostles; Special Introduction to the Epistles: Biblical Theology (Elective). Didactic Theology: Anthropology, Soteriology. Eschatology. Church History, Relations of Philosophy and Science to the Christian Religion: Christian Ethics and Christian Social Science. Pastorial Care: Ordinances of Worship. Homiletics: Analysis of texts; Homiletical Criticism; Elocution.
The Senior Class has three weekly exercises in Didactic Theology; two in Old Testament Literature and Exegesis; one in Biblical Theology of the Old Testament; two in New Testament Literature and Exegesis; t wo in Church History; two in Homiletics and Pastoral Theology; two in Christian Ethics and Christian Social Science, and one in Elocution.

FOURTH YEAR.

The regular course is completed in three years, but students may, with great advantage, continue to prosecute their studies in the seminary for a longer period. It is not thought best to prescribe a fixed course of study for graduates. Each is at liberty to devote himself to those branches of theological learning for which he has the greatest aptitude. or which he judges to be most necessary or profitable to himself. Accordingly grajuate students may at their discretion attend the lectures and racitations of the regular classes for the review of their previous studies; or they mar individually conduct original investigation under the direction and advice of the professors and with the aid of the library.

SEVERAL TYPES OF CURRICU^A OF THEOLOGICAL SCHOOLS IN THE UNI'TED STATES.

Course of instruction in the divinity school of a university.

JUNIOR YEAR

Encyclopædia and Literature of Theology, 1 hour; Grammar of the Hebrew Language, in connection with the first 8 chapters of Genesis, 5 hours; Critical Study of the Greek Testament, consisting of two courses, (1) the Life and Teaching of Christ, as Presented in the Synoptic Gospels: (2) Studies in General and Special Introduction to the New Testament, and Methods and Principles of Textrial Criticism, 5 hours; The Philosophical Basis of Theism and the Self-Revelation of God, 2 hours.

MIDDLE YEAR

Systematic Theology, 5 hours; Old Testament Bible Theology with special reference to the progressive stages of Divine Revelation to Israel, Biblical Aramaic (optional). The instructor in Hebrew will read with the class, (1) the more important prophecies of Isaiah in connection with a consideration of his entire work and the principles of Old Testament prophecy; (2) the earlier Psalms, with a General Study of the Hebrew Psalter, its origin, structure, and contents; General Church His-
tory, including its nature, divisions and sources, and the literature and the character of the societies among which Christianity spread, 3 hours; Lectures on the Epistles to the Romans and Corinthians, with special reference to the doctrinal and practical contents, 2 hours; Lectures and Criticised Exercises on the Principles of Ministerial Rhetoric.

SENIOR YEAR.

Homiletics, 4 hours during first half of year; Class Exercise in the Criticism of Sermons and Plans of Sermons. 1 hour; Pastoral Theology, 3 hours during the last half of the yeaz; Class Discussions of Questions of Practical Interest Relating to the Work of the Church, History of Christian Doctrine and Symbolical Theology, 3 bours; Biblical Theology of the New Testament, 2 hours. The Prophetical Books of the Old Testament and reading once a week (or oftener) with those who wish to study Syria?, the Peshito version of the New Testament. The president of the university will lecture once or twice a week on ons or more of the books of the New Testament.

Course of instruction in the divinity school of a university-Continued.
GRADUATE OR FOURTH-YEAR CLASS.
For the year 1893-90 the following subjects of special study were announced, not excluding others which might be desired by members of the class:
I. Special topics in philosophy and theology.
II. Examination and discussion of a number of the more important marginal readings in the Revised Old Testament, as compared with the text now standing in the Revision.
III. A review of systematic theology in the reading and examination of Dr. Dorner's system of Christian doctrine, with free colloquial discussion.
IV. Weiss's Life of Jesus, with comments on the author, and conversational discussion and special investigations and essays by members of the class.
V. Schools of preaching and the history of preaching; with critical exercises and discussions.
VI. Weiss's Introduction to the New Testament. In addition to the discussion of the opinions of the auth or, the students will be directed in making investigations for themselves in other writings upon the same subjects and in the original sources.
VII. Schürer's History of the Jewish People in the Time of Christ; with special reference to the literature and thought of Judaism at this period as bearing upon New Testament interpretation.

English course of a seminary of theology.

A course which may be pursued by those who do not select the study of either the Greek or Hebrew language or only one of those languages.

JUNIOR YEAR.

Instead of the Hebrew and Greek there will be special exegetical exercises in the English scriptures and in bibical history, sacred geography, and antiquities. Origin, history, and canon of the Bible. Interpretation of the scriptures. Natural theism. The authority and inspiration of the Bible. Analytic rhetoric, study of expression in English. Drill in breething, vocalization, and elocution. Exercises in composition and criticism. Extemporaneous debates. Instruction is also given during the year in mental and moral science and to religions other than Christian.

MIDDLE YEAR.

Two exercises each weel in the study of Old Testament criticism and exegesis. Two exercises each week in the study of New Testament criticism and exegesis. Old Testament theology. Systematic theology. History of the Church. Homiletics.

SENIOR YEAR.

Two exercises each week in the New Version of the Old Testament and two in that of the New Testament. Old Testament theology, History of the Church. Homiletics. Sacred rhetoric. Pastoral theology. Bibical homileties, consisting of a homiletical study of the discourses of our Lord, of those of Paul and Peter and other bibical preachers, and a homiletic study of epistles, psalms, and prophecies.

Theological department in a college.

This departmentis designed primarily to prepare young men to preach the gospel. It is open, however, to all students who wish to qualify themselves for Christian life and work. Of this privilege a number have already availed themselves, and it is the wish of the college authorities that their action should become general.
The following are prominent features of the work done in this department:

1. Direct contact of the student with the Bible itself is emphasized. 2. The historical portions of the Scriptures are studied early in the course. 3. Careful study of Hebrew and Greek is required of all who wish to complete the course. 4. Biblical antiquities and ancient history receive attention. 5. A knowledge of church history is given.
Students are graduated from this department on the following conditions: (1) There must be conclusive evidence of Christian character; (2) In addition to the studies of this department of theology the classical and scientific course must be completed. For either of these the student may substitute an equivalent course if he has taken it in another institution.

Sophomore Class.

1. The Old Testament: First Division-Genesis to Ruth (three terms) ; Second DivisionSamuel and Later Historical Books (three terms).
2. The Gospels (three terms).

Junior Class.
 First term.

Acts of Apostles.
New Testament Greek.
Hermeneutics.

Seiond term.
Acts of Apostles.
New Testament Greek.
Exegesis-Romans.

Thirl term.

Scripture topics.
New Testament Greok.
Exegesis-Hebrews.
Senior Class.
First term.
'Hebrew:
Plan of Redemption.
Church History.
Second term.
Hebrew.
fividences.
Homiletics.

Third term.

Hebrew.
Evidences.
Homiletics.

Postgraduate Course.

First year.-Old and New Testament Intro-duction-History of Christian Doctrines.
Second year.-Theism and Anti-Theistic Theories, Relations of the Christian Religion to Philosophy and Science.

The school of theology in a college.

This school gives a two years' course of nine hours a week in the essentials of theological learning.
Leading topics of study:

1. Biblical thoology.
2. Exegetical study of Old and New Testaments.
3. Church history, homiletics.
4. History of doctrine.
5. Christian evidences. Theism.

Students preparing for the Christian ministry or any others may count these courses in
the required amount of study for the degree of bachelor of divinity.
This degree will be conferred upon any resident student completing academic courses of eighteen hours a week with New Testament Greek in it, together with all of the studies offered in the schools of metaphysics, history, physics, and theology.

Ministerial students are expected to engage in some systematic professional work during vacation under some regular pastor or presiding elcier.

REQUISITES FOR ADMISSION.

As is to be expected, the utmost unanimity prevails among the schools as to the desirability of excluding persons either morally or intellectually unfit to enter upon the sacred calling. While almost every school will admit an applicant who belongs to another denomination than that to which the school pertains, all demand that he shall bs in full communion with some Christian (in two cases with an "Evangelical") church. The evidence of this is given by letters of recommendation from pastors, churches, or, in the Presbyterian church, from the presbyteries under whose care the student is requested or required to place himself. Nor does the precaution taken cease with the student's admission within the walls of the institution; in several cases at least some months elapse be.ore he is admitted formally as a member of the school. There is another qualification that sometimes is mentioned as a prerequisite, which is called by one institution "earnestness of purpose" and by others a" call to the ministry."

As to the literary qualifications demanded by the schools, some diversity exists. It may be said, speaking generally, that a college education, at least that of a first-class high school, is the qualification that is thought requisite. But there are several ways in which this requirement is sometimes modified or dispensed with. It is modified when the scholastic deficiences of the pupil are compensated for by natural ability and when the course of the seminary is five or more years in duration, as is the case with many Roman Catholic seminaries, the Moravian Seminary, and others. It is dispensed with when the Greek and Hebrew Testaments are eliminated from the curriculum and the English Bible substituted. To enter upon the English course some institutions require that the applicant for admission be at least 25 years of age.

The instruction and lodging at these schools of theology being gratuitous and in the great majority of the schools pecuniary aid being furnished to the student, it is natural that a bonefaction so wide in its scope and operating constently in favor of new individuals, should seek to secure the attention of the student to the instruction which it provides. Indeed, in addition to the testimonials as to moral and intellectual fitness spoken of in a preceding paragraph, some schools are known to require a declaration in writing from the student on his admission, which may be represented by the following formula:
"Deeply impressed with a sense of the importance of improving in knowledge, prudence, and piety, in my preparation for the gospel ministry, I solemnly promise, in reliance on divine grace, that I will faithfully and diligently attend on all the instructions of this seminary, and that I will conscientiously and rigilantly observe all the rules and regulations specified in the plan for its instruction and government so far as the same relate to the students; and that I will obey all the lawful requisitions and readily vield to all wholesome admonitions of the professors and board of trustees while I shall continue a member of the institution:"

Of the 145 schools given in Table 16 (p. 1045), 104 answer specifically the question addressed to them, "Have you noticed during the last decade that the students of later years were better prepared to enter upon the scientific study of their intended profession than those who preceded them?" In some cases the school had not been in existence for ten years, in others the dean had recently assumed charge. In many others the inquiry was passed by with a mere scratch of the pen, etc. Of the $10 \frac{1}{4}$ specific answers, two say outright that they have nothing to base an opinion on, which leaves 102 schools whose answers are of service in the canvass of this important matter. Of these 102 answers 78 are in the affirmative, the greatest number baing simply "yes," but 17 answer "decidedly," or "very much," or "mankel or decided advance," as the case may be,
while about half a dozen answer" slightly "or"somewhat,"etc. Twenty schools answer "no," two of them adding that they are getting fewer graduates in letters or sciences. There are two classes of statements that deserve consideration, to wit: Those relating to the effect of the elective system in colleges and those giving the reason why the scholastic character of the applicants for admission has improred.
"One of our important seminaries in New England answers the question thus: The optional system tends to make the Greek preparation deficient; history is lacking ; the English languare and literature do not seem to have adequate atten:ion. Students are not able to read Latin with facility; the philosophic systems seem to be a priori. We do not find a better average than in previous years."
By another eastern seminary of the highest standing we are informed: More come now than formerly with some preparation in Hebrew, which is a distinct gain. On the other hand, the spread of the elective system in colleges, with other causes, has probably lowered the average quality of preparation in Greek. From the Upper Mississippi Valley it is learned that "the scientinc courses in colleges make more students enter the seminary knowing little or no Greek," but otherwise no change has been noticed.
From Pennsylvania one school reports that the students hare much general intelligence and are equal to those who preceded them in training of faculties, but are behind them in the classical training especially called for in theological schools. By another, it is said that their college training has been broader and more varied, but it is not apparent that there has been any better mental development tham under the earlier systems of college study when the curriculum was narrower. Depth has been sacrificed to breadth. From a third the answer is received: "No; as a general thing it may be said that classical schools hare not yet distinguished themselves for thoroughness of mental training."
The Harrard and Yale divinity schools, on the other hand, assure the Bureau that there has been a very undoubted improvement, the latter school attributing it to stricter requirements for admission. The Harvard school instances the fact that all but one of its members were degree men, adding that a few years ago this would have been impossible. A half a dozen other seminaries attribute the improvement in scholarship of those they are admitting to their having exacted more elerated attainments for admission. Sereral attribute the fact to the advance of education in the South or West, as the case may be.
To the question Has the average age of the freshman advanced? an almost universal No is returned. In a university for the colored race, the dean answers that, whereas some years ago the students of the divinity school were ministers seaking further education, now the students come fresh from the preparatory school. Two seminaries give statistics. The dean of the Augustana Seminary at Rock Island gives the average age as varying from $27 \frac{1}{2}$ to $29 \frac{1}{3}$ during the last years; in some of the earlier classes it was over 30. Union Thsological Seminary reports a slight increase, as follows:

Taking the answers to the two questions as to scholarship and age and considering them together some corroboration is found for the remarks upon the influence of the high schools, made under medical instruction (p. 878). But though the great extension of public higher elementary instruction, or, as it is called, secondary instruction, is in all probability subserving in America the purpose accomplished by the colleges of Germany and France (Gymnasien and lycées) it is still interesting to note the percentage of college graduates in attendance at our seminaries of theology. In attempting such a showing the Bureau must ask the indulgence of the reader who expects the utmost mathematical exactness. The diagrams given on pp. 846-7 are accurate as far as the schools have reported. But many schools will not report or insist in reporting by making a scratch of the pen so that it is not possible to tell whether they mean that an account of such matters has never been taken or that there are no students of the kind in their institution. The table which follows is an attempt to represent the percentage of college graduates in theological seminaries, by showing the percentage that has been reported by 27 schools in various parts of the country for the 10 years last past. Before canvassing the table, however, it may be said that, in the schools reporting an improvement in the scholastic attainments of their freshmen, 30 per cent of the attendance were students having a degree in letters or science.

From the table it appears that there is a decrease in the number of graduates of coll ${ }^{2}$ es seeking admission to the theological seminaries (columns 2,4 , and 6) and that this decrease has been constant during the ten years last past. The general average for the ten years (column 8) for the New England and Middle States is the same, while that of the schools representing the West is much lowər. Had the statistics of other sections of the Union been at hand the table might have been made more complete in its attempt to represent the condition of affairs in the country at large:

Students having degree in letters or science in twenty-seven schools of theology that report for each of the ten years 1880-81 to 1889-90 (omitting 1882-83).

a Omitting the year 1882-83. b Omitting 1880-81. \quad c Omitting 1889-90.

CURRICULUM.

LENGTH OF THE COURSE.

The course of the theological seminary proper is three years. The principal exception to this is in the case of the seminaries of the Roman Catholic Church. where the course is four, five, or six, or even more years in duration. The regular course of the Catholic University of America covers four years. Other exceptions are the schools having a shorter (not necessarily an English) course or a postgraduate course. In the schools of New York and New Eng and, and of Chicago there are from two to six postgraduate students. The reas n for the length of the course in Catholic seminaries, excluding the coursz of the

Catholic Unirersity, is shown by the following ; there are really three courses, one dovetailing into the other:

The object of the Salesianum is the remote and immediate preparation for the holy priesthood, and only such students are receired as express their intention of becoming priests.
In accordance with this object, the education imparted embraces the classical studies, philosophy, and theology, nine years in all, with the following courses:
I. CLASSICAL COURSE (embracing fire years).

The following branches are taugit during this course:

1. Christian doctrine.
2. Ancient languages:
(a) Latin (Schultz's Grammar and Exer-cise-book, Nepos, Cæsar, Cicero, Virgil. Horace).
(b) Greek (Spies's Grammar, Exercisebook, Xenophon, Homer).
3. Modern languages:
(a) English.
(b) German.
(c) French (optional).
4. Mathematics:
(a) Arithmetic.
(b) Algebra, as far as logarithms, inclusire.
(c) Geometry (stereometry, trigonometry.
5. History and geography.
6. Natural philosophy.
II. PHILOSOPHICAL COURSE.

This course embraces:
Philosophy.
Church history.
Natural philosophy.
Hebrew.
III. THEOLOGICAL COURSE.

This course embraces:
Dogmatic theology.
Moral theology.
Church history (continued and finished). Canon law.
Introduction into the Holy Scripture.
Exegesis.
Homiletics.
Liturgy.

This system, though not characteristic of, is not unrepresented among Protestant schools.
The two-year course is the English course. No better illustration can be given as to what this course is than the English course of Oberlin Theological Seminary. This course has been established in view of the present urgent need of more ministers and of the fact that many young men now in secular business would be willing to give their lives to the preaching of the gospel, but can not pursue a course of preparation extending over 10 years. It is designed for mature young men of at least 25 years of age, who, though possessing perhaps but a common English education, hare acquired, in practical business, familiarity with affairs and acquaintance with men. It is believed that men of this class by two years of judiciously applied study can acquire such a knowledge of the English Bible, of systematic theology, and of other fundamental branches as will qualify them for great usefulness in many fields. Should a sufficient number apply, some special additional instruction will be provided for those looking forward to Y. M. C. A. secretaryships as a substitute for the homiletic training of candidates for the pulpit. The programme is as follows:

Tabular view of the English course of Oberlin Theological Seminary.

	Fall term.	Winter term.	Spring term.
First year --	1 English New Testament. 2 SHomiletics 45 hours. ${ }^{2}{ }_{2}$ Rhetoric, 25 hours. 3 Psychology and logic.	1 English New Testament. 2\{Homilletics, 12 hours. Rhetoric, 48 hours ${ }^{\text {Sogic and moralphilos- }} \begin{aligned} & \text { Lophy, } 56 \text { hours. } \\ & \text { Home missionary lec- } \\ & \text { tures, } 12 \text { hours. }\end{aligned}$	1 English New Testament. (Homiletics. 29 hours. 2 Moral philosophy, 20 h hours. 3 Christian evidences.
Second year $\{$	1 English Oid Testament. 2 Theology. 3 Pastoral theology.	1 English Oid Testament. 2 Theology. . 3 Homiletics.	1 English Old Testament. $2\{$ Theology, 2 Modern skepticism. $3\{$ Positive institutions.

Another species of the two-year course is shown by the course of the Jeremiah Vardeman School of Theology in William Jewell College, Liberty, Mo. The regular course of this school is intended for two years in the case of those who are fully prepared to proceed with the study of the Scriptures in the Greek or Hebrew or who have taken the first degree in college; but, to afford profitable instruction to those who have not a classical education and to those who desire to study theology at the same time that they pursue their literary studies, the
course is so arranged as to bs pursued in connection with a literary course, and parts of the theological course which are adapted to the development of mental power are taken by agreement of the faculty, in lieu of proportionate parts of the literary course in the examination for the degree of A. B. Theological students who are candidates for the degree of A. B. may substitute, in each year after the freshman, one class in theology for oneother class with an equal number of recitations, except in Latin, Greek, English, and geology.
Still another kind of two jears' course is shown by the curriculum of the Moravian Theological Seminary. The course of study, arranged for six years, is divided into two department: (1) Classical, of four years' duration, and (2) theological, of two years' duration. A class graduates and a new class is formed every alternate year. Hence only three classes of the six are in existence at the same time. The number of lectures and recitations for each class ranges from 20 to 25 per week. The figures in parentheses indicate the number of hours a week.

Theological department [of the Moravian Seminary].

First year (sth year).
Introduction to the Old and New Testaments (4).
Old Testament (4)-History of Israel.
New Teslament (4).-The Synoptical Gospels. Church History (4).-Fisher's Manual, from the Reformation.
Moravian Church History (2).-The Ancient Church of the Brethren. De Schweinitz: Unitas Fratrum.

Homiletics (2), with written sermons.
German (4)--Essays, orations. Reading of German anthors.

Second year (bth year).
Old Testament (4).-Isaiah and Minor Prophets.
New Testament (4).-St. John's Gospel. Epistles.
Systemaiic theology (4).-Lectures.
Moravian Church History (2).-The Renewed Church of the Brethren.
Pastoral Thealogy (2), with sermons, writaen and delivered.
Liturgics (2).-Results of the General Synod. Provincial Digest.
German (4).-Essays, orations. Realing of German authors.

A three years' English course is offered by Hilisdale College, the last year being the course followed by the student in the "full course."

English theological course.

Preparatory.-Fall: English grammar; arithmetic; United States history. Finter: English grammar; arithmetic; elementary philosophy. Spring: Reading and orthography; civil government; composition and rhetoric.
Junior-Fall: Systematic theology; inorganic chemistry; ancient history. Winter: Systematic theology; organic chemistry; Roman history. Spring: Systematic theology; elementary botany; English history.
Midale.-Fall: Systematic theology; mental philoscphy: logic. Winter: Systematic theology: evidences; rhetoric. Spring: Sytematic theology; moral philosophy: Englishliterature. Senior.-Fall: English Bible; pastoral theology; nistoric doctrines. Ninter: English Bible; homiletics; historic doctrines. Spring: English Bible; homiletics; historic doctrines.
As illustrating a composite course (academico-theological) the course in divinity of the Southwestern University is given. The curriculum of this unirersity is arranged on the cördinate school principle, the completion of the course of a certain number of schools entitling the student to a degree. The divinity course is the only professional course as yet established in the university. It was organized by the board in June, 1885 , and has been in operation for five years with the most satisfactory results. The various schools and departments of this course stand in the same relations to the university as the academic schools. The two faculties are in reality but one, and have the same government and discipline. The chancellor is the chief executive and the presiding officer of the whole. Schedule of recitations is asfollows:
I. 8:45 to 9:30-Jun. French, bjokkeeping, Monday, Wednesday, and Friday; Sen. French, Tuesday, Thursday, and Saturday; Jun. Greek, El. Latin, 5 days.
II. 9:30 to 10:30-Sen. Latin, Sen. Ec. Hist., Jun. Met., Monday, Wednesday, ana Friday; Int. Latin, Sen. N. P., Sen. Met., Tuesday, Thursday; and Saturday; Jun. Hebrew, 4 days; Subj. Math.. El. Algebra, 5 days.
III. 10:30 to 11:30-Jun. N. T. Greek, Sen. German, Int. Greek, chemistry, Jun. Bible, Mondar, Wednesdar, and Friday; Sen. Greek, Jun. Ec. Hist., Geol., etc., Int. Bible, Jun. History, Tuesday. Thursday, and Saturday: Sen. Theol., 5 days.
IV. $11: 30$ to 12:30-Sen. Math.. rhetoric, Jwn. Lit., Monday. Wednesday, and Friday; Sen. Hebrew, Int. Math., ethics, Pol. Econ., Tuesday, Thursday, and Saturday; El. Greek. 5 days.
V. $12: 30$ io $1: 33-$ Sen. N. T. Greek, Jun. N. P., Sen. Bible, Monday, Wednesday, and Friday; Sen. Lit., Tuesday, Thursday, and Saturday; Jun. Math., Jun. Theol., arithmetic. 5 days.
VI. $1: 30$ to 2:15-Sen. Hist., Monday, Wednesday, and Friday; Jun. German, Tuesday, Thursday, and Saturday; Jun. Latin, 5 days.
Three yeans, however, is the time devoted to study in our seminaries of theology. The studies pursued during that poriod group themselves around certain
central or lealing ideas, batso honoreneous is the course that as you move from the center of one group towards that of another it becomes more and more difiicuit to distinguish the periphery of the one from that of the other.

EXEGESIS.

This department mar be considered under three heads, the first of which is concerned with commentaries on or introductions to the study of the text of the G:cek and the Hebrew Testaments, and the second and third with the personal study of the text of those works. It is evident howerer that the translation of the Greek and Hebrew Testaments may be made partially an exegeticai exercisz, eren in the case of the tyro in Greek or Hebrew, and may become wholly so in the case of well-prepared students. In the larger semina ies of the country the chairs of exegesis are known as "New (or Old) Testament language and literature" or as "Litorature and interpretation of the Old (or New) Ticstament," as the case may be, or words to the same effect. Occasionally there is an instructor in Greek or Hebrew to assist the chair. The arrangement of one of the important theological schools of the country will illustrate, howerer, that the name of the chair is not always indicative of the special work performed by its occupant. In this schoal the philological and exegetical work is distributed among tiro chairs (both endowed) and an associate professor of biblical philology. The titles of the chairs are "Hebrew and cognate languages" and "sacred literature." The professor of the Hebrew and cognate languages leaves the philological work in Hebrew to the associate professor of philology and confines himself, in the regular course, to the higher exegasis of the Old lestament, while the professor of sacrea literature devotes himself to teaching both New Testament Greek and exegesis.

The threeold character of the work of the department of exegetical study is rather clearly indicated during the firstyear of the American theological course, inasmuch as the work in Greek and Hebrew of that jear is probably more philological than theological; though the language exercises are generally accompanied by study of work on the hamony of the gospels and sometimes by the principles of higher criticism. Eow far the preparation of the students will permit of the lower or textual criticism of the languages in which the testaments are written, it is impossible to say. The Greek text read is usual one of the synoptic Gospels or the Acts, sometimes it is John, at other times the 'Septuagint, or one or more of the Pauline Epistles. Tha study of Hebrew is usually concarned with the grammar of the language and obtaining a vocabulary.

In the second year of exegetical study in the higher order of smminaries the text of the testaments becomes the foundation of the work and there is unity given to the department that justifies the inclusion of the study of Greek and Hebrew as a branch of exeges:s. In Greek the Pauline epistles and in Hebrew the historical and prophetical writings and the Psalms are the principal exegetical studies of the sccond year, the text giving occasion for an excursus in one or another direction, as may be illustrated by the following course:

FIRST TERM OF SECOND YEAR.

1. Lectures on the higher criticisms of the poetical and prophetical books once a week by the professor of Hebrem.
2. Hebrem poietry: Exposition of selections of rarions kinds of poetry from the earlier periods of Hebrew history twice a Treek by the same proiessor.
3. Expesition of the Book of the Acts or of the epistles of the imprisonment, with special lectures on practical exposition as related to preaching, twice a weel by the professor of sacredlierature.

SECOND TERM OF SECOND TEAR.

1. Hebretr poetry: Exposition of selections from the later periods of Hebrew poetry twice a meek, including portions of Proverbs, Job, Song of Songs, andEcclesiastes, with the professor of Hebrew.
2. Critical and poetical exposition of the Epistle to the Romans, Galatians, or First Corinthians, twice a week with professor of sacred literature.

In the third year exegetical study approximates, from the Old Testament side, the history of the Messiah-that is to say, the early history of the Christian re-ligion-and, from the New Testamentside, the history of its earliest teaching. The study of the prophets, and especially of the facts of Messianic prophecy is preëminently the final study in Hebrew exegesis, while the study of the Pauline epistles, especially those to the Romans and Hebrews, and the catholic epiztles is equally preëminent in the exe esis of the New Testament. From an examination of the programmes of the theological seminariesco the country, a tendency is shown to take up the historical boolss of the New Testament as introductory and follow them with the Pauline epistles during the middle and senior years.

In the Hebrew testament the same course appears to be followed: Genesis, the historical books, in selections, the Psalms, but finally and specially Messianic prophecy. But it is better, perhaps, to turn from such generalizations to compare what is taught as Old Testament exegesis in one of our first-class seminaries, with what is taught in the Hebrew Union College.

Department of exegetical theology.

Old Testament. (Professor Bissell).-Junior class, five hours per week during the first semester: The principles and forms of Hebrew giammar and a sufficient vocabulary to enable the student to read at sight the narrative portions of the Hebrew Bible; four hours per week during the second semester: reading considerable portions of the Hebrew text, with a review of the grammar; one hour per week during the second semester: lectures on general introduction to the Old Testament. Middle class, four hours per week during the first semester, divided as follows: exegesis of prophetical books, two hours; interrelations of the Pentateuchal Codes, ons hour; institute work in Pentateuchal criticism, one hour. The institute work will include the examination of selected passages and thereading and criticism of essays on assigned topics. An optional in Hebrew sight-reading, not exceeding one hour per week during the second semester. Senior class, two hours per week during the second semester: lectures on Messianic prophecy and study of the more important Messianic passages; also lectures on special introduction to the disputed books of the Old Testament. An optional in biblical Aramaic, open to all students one hour per week throughout the year, and an optional in Arabic, open to the senior class one hour per week during the second semester. [A special class, if desired, will hereafter be formed in junior year for those who have studied Hebrew before entering the Seminary.]

Bible, ancient version and commentaries. ${ }^{1}$

(a) Thorah.-Taught by Rabbi Davidson in junior and second collegiate classes, with Targum, Rashi, and Ibn Ezra; Leviticus, chapters xix, xxi, xxiii, xxiv, xxv. In first collegiate class: Deuteronomy, with Targum and Rashi, chapters xxix, xxxii, xxxiii, xxxiv. In A Grade: Genesis, with select portions of Rashi in chapters i, vi, xii, xiii, xviii, xxii. Taught by Preceptor Mannheimer in Grade B: Leviticus, chapters xvi to xxvii, with cursory reading of Rashi. Taught by Assistant Preceptor Feldman in B Grade: Leviticus, chapters i to Xv.
(b) Former Prophets.-Taught by Preceptor Mannheimer in Grade D: Joshua; Judges, chapters i to viii. Taught by Professor Zirndorf in B Grade: I Kings and II Kings, chapters \mathbf{i} to iii.
(c) Latter Prophets. - Taught by Preceptor Mannheimer in junior and second collegiate classes: Jeremiah complete. In first collegiate class: Isaiah, chapters xiii, xiv, xxi, $1-10$; xxxiv, xxxv, and xl to the end of the book: memorized, chapters xl, liii, lviii.
(d) Hagiography. - Taught by Preceptor Mannheimer in senior class: Job complete. In Grade A: Daniel, Ezra, and Nehemiah, with Aramaicgrammar and translations from the Aramaic into Hebrew. Taught by Professor Zirndorf in A Grade: Proverbs, chapters i to xviii. Taught by Assistant Preceptor Feldman in Grade D: Psalms, chapters i to v, viii, xiii, xv, xix, xiii to xxv, xxvii, xxx, xxxiii. Taught by Rabbi Charles Levi during second semestor in B Grade: Psalms, chapters civ (committed to memory), cxx to cxl.

The order followed in New Testament exegesis may be represented by the following:

Department of New Testament Exegesis.

I. GENERAL SUBJECTS.

Principles of interpretation; Biblical criticism: its history, principles, and results as related to the text of the New Testament. Archæology and geography of the New Testament period. The method of study in these subjects is by lecture, recitations from text-books, and essays prepared by the classes.

II. INTRODUCTION.

General and special introtuction to the books of the New Testament, with an examination of the history and special characteristics of each book, and an outline analysis of its contents. This occupies one exercise a week throughout the course, and is intended to secure, on the part of the student, the careful translation or reading of all the books, with a study of the plan and argument of each book and of passages of special interest in it. together with an investigation of its canonicity and of other questions belongirg to introduction.

III. EXEGESIS.

First year.-1. The Gospels: Translations and exegesis of select passages, embracing the chief events in the life of Christ, the miracles, the parables, and several of the principal discourses. 2. The acts and the Epistles of Paul: Translation and exegesis of select passages from each book, in connection with the studies of its plan and an outline analysis of its course of thought.
Second year.-The Epistle of Paul: Translation and exegesis of Romans and Hebrews.
Third year.-The Catholic Epistles and Revelation: Translation and exegesis of James, First Peter, First John, and of select portions of the other Catholic epistles, with the translation of a part of the Book of Revelation and an examination of the current theories of its interpretation. Also a comparison of the style, composition, and the type of doctrine in the several New Testament writings.

[^46]Biblical archæology (or "antiquities") is usually classed under exegesis and porhaps should hare been made a fourth division of the subject. But its study does not yet appear to have been introduced with the thoroughness that warrants such prominence, though lately a Hull professorship of Biblical geography and archæology has been established in the Nyder Divinity School of Lombard University. More promin nt as an exegetical study than arch eoolory is the study of the Semitic languages and of the hieroglyphics and cuniform charasters, the last two being, indeed, a prerequisite for first-hand archæological study in the present conception of the term. As these philological studies are optional they will be spoken of after the remaining three heads of the theological course have been given.
In closing this brief summary of the exercises of the department of exegesis a word of explanation may be permitted. In several cases the I hilological instruction in Greek and Hebrew is not called exegesis but philology; in other cases the instruction in the works written in one or the other of these languages and in books written about those works is called Biblical study, and in othe:s still Old and New Testament study and interpretation. In distributing the matters taught in the way of exegesis under the heads of commentary and study of the texis it must not be supposed that this Bureau has attempted or desired to improve theological terminology, but that convenience alons has been consulted. The information possessed by the Bureau will not permit a close classification into philological and exegetical study, the proper distinction, and it is not impossible that such a classification can only be made after a tborough personal stady of the syllabus of the various courses in exegesis as they are actually given. Indeed, when the question of philology is up as a department of study in a thoological seminary it is advisable to consider that at the Harvard Divinity School German is required for the degrea of bachelor, and that the German is recommended to be taken in the junior year, "as a knowledge of this language will be found of great service during the remainder of the course." Nor should it be forgotten that in the Western Theological Seminary and elsewhere Augustine's De fide verum quæ non videntur, and Thomas Aquinas's In Symbolum Apostolorum Expositio, etc., are read in the original, and that "high latinity" is a study in the French faculties of theology.

THEOLOGY.

In natural sequence though not in importance the department of theology follows that of exegesis. This department of the curriculum may be treated under two general heads, the first of which may take the name of systematic theology or dogmatics, and the second that of apologetics or polemical theology. The first head may certainly be subdivided into theology (proper), anthropology, soteriology, and eschatology. Perhaps Christology (as far as it can be separated from exegetical work and soteriology) angelology, and finally ecclesiology (as far as it can be separated from the material facts of ecclesiastical organization on one side and from soteriology and Christology on the other) should be added.

The course in systematic theology is usually introduced by a general survey of the subject which it may be permitted to call encyclopædia. Occasionally this is made to bear upon the work of the student by pointing out methods that he should follow or aids that he should avail himself of, while pursuing his studies. Christian ethics also appears in the first year of the course, though it frequently comesamong the studies of the third year. Frequently theology proper (the being and attributes of God) is begun during the first year, but the subject is always finished with the second. Closely connected with theology proper is the study of man, his spiritual nature and fall, cailed anthropology, and this leads naturally to soteriology or the doctrine of salvation, and that to eschatology. Sometimes all these seve al divisions of systematic theology are taken up and finished during the second year, but the rule is that eschatology comes in the third year, leaving anthropology and for the most part soteriology as the second or middle year subjects in this department. In addition to the headings already given the terms angelology and pneumatology occasionally occur and those of Christology and ecclesiology often, especially in the case of the former. In one institution the division of soteriology is composed of objeciive soteriology, which includes " the covenant of grace, Christology, the person, offices, wo k, and stat s -of Christ," and subjective soteriology, which includes "The Holy Sprit, calling, regeneration, faith, etc." At another institution the subject of Christology is defined perhaps with perfect accu:acy, as "Christ's Theanthropic person, divinity, and humanity." Ecclesiology may be said to be a third-year study.

In the third rear eschatologr, ecclesiology, arologeticz, and a general review of the studies of the course, figure prominently. In addition soteriology appears so frequently that it is doubtiul whether it is not as much a third year as a second yearstudy. Christian evidences comes frequently in the first year, though under the title of apologetics it is here included among the third year studies.

As in the schools of the Episcopal church there seems to be a rariation, indicated either by the phras ology or by the text-book employed, from the usual curriculum of the department of theologs, it seems advisable to insert a curriculum of one of the seminaries of that denomination. In selecting this illustration a curriculum has been taken that will not only exemplify sectarian as opposed to "nonsectarian" instruction, but also te of more general interest as showing the plan upon which the profeszor of divinity conducts the exercises of the department under his direction.

Systematic divinity.

In this department will be carrisd on two linos of study. In onc. begun in the junior rear and extending into the jears following, under the direction of the assistant professor, the object will be:
First, to ascertain the Scriptural support for the received doctrine of the church;
Sacondly, to trace the history and development of doctrine tillit has reachedits present form.
The text-books used will be namely: Pearson on the Creed; Brown on the Articles; Bruce on the Humiliation of Christ; Oxenham on Atonement; Mason's Faith of the Gospel; Martensen's Dogmatics; With partial study of Scott's Christian Life, Liddon's Bampton Lectures, Hooker's Ecclesiastical Polity, and Magee on Atonement.
It is not thought needful to mention here the many books of reference whose consultation is advised so far as there is time, unless it be Dorner on the Person of Christ, Pusey and Richey on the Filioque Clause, and Bull on Justification.
The second course, begun in the middle Fear and contipued in the senior year fill consist entirely of lectures by the professor of divinity, and its object will be to mould Christian doctrine into a coherent whole, giving it philosophic vindication bJ relating it to all truth. In this course will be read, parallel with the lectures, the professor's. own Work, "Christian Doctrine Harmonized, and its Absolute Rationality Vindicated."
In several institutions of another denomination it is customary to take a general and final revierr of the whole subject of theology in relation to the tenets of the denomination. which supports the school. Thus in one school, during the latter part of the third year, a "special series of lectures will be delivered on the Westminister symbols, including the history of their formation, their doctrinal contents, and their influences and claims." In another seminary the subject of "Christian theology" is finished by a critical study in the Westminster confession as a final review of systematic theology; while at a third seminary of the same denomination the subject is broadened out during the second term of the final year into the subject of "symbolics," which deals with "comparative theology," being an exposition of the doctrinal differences between Rnmanism and Protestantism, and the rariation of the protestant churches, and is treated from the-denominational standpoint during the first torm under the head of church polity.
The following syllabus will show, though with the mere accuracy of a numerical arerage, the type of the course in the department of theology; it may be added, however, that it seems exceptionally full on the subject of apologetics which here enters into the curriculum of two of the three years of the course, and is conducted by a specialist with the title of "Instructor in Apologetics."
Department of systematic theology.-Mr. Gillett, Junior Class, two hours per week during the first semester; Historic Apologetics, including both the Ecclesiastic and Christian divisions. Midale Class, three hours per weak during the first semester: Philosophic Apologetics, including the Anthropic and Theistic divisions.
Professor Beardsiee, Junior Class, two hours per week during the second semester: Theology proper, treating of the being and attributes of God, decrees, creation. providence. angelology, demonology, and theodicy Middle Class, four hours par week during the first semester: Anthropology, including Biblical psychology, man's original state and fall, hamartialogy, soteriology, including the person and work of Christ, and the application of redemption; three hours per week during the second semester, continuation of the same studics. Senior Class, two hours per week during the first semester: The wori of the Holy Spirit, ecclesiology, eschatology, and inspiration; four hours per week during the second semester, Christian ethics. The entire course is pursued by means of an inductive study of tbe Bible, requiring constant individual investisation in the original languages, and in connection with each leading doctrine an examination of ecclesiastical theology from the sources.

CHURCH EIISTORY.

The third great department of the theological course is the history of Judaism as precursory to Christianity and the history of Christianity. Tha department has several names-Ecclesiastical (or Church) History, Historical Theology, Biblical and Ecclesiastical History, History of Religion. Sometimes the term Church Polity is added to the name Ecclesiastical (or Church) History, and
when this happens the combination may be taken as a definition of whatis meant by historical theological.
Two types are shown by the courses of this department. Ono treats of the historic connection between Judaism and Christianity and of the apostolic age as the first period, the patristic and consolidating epochs as the second, and the epoch of protest or Reformation and the results as the third. But the moro usual division is to make the point of departure for each period, (1) the beginning of our era, (2) the Council of Nicea, and (3) the Reformation. The treatment of Jewish history shows some variation. At one institution the "histo y and the religion " of that people is treated of in the junior year as Biblical Theology, while under the general head of "History," "Apostolical Chi istianity" is given, the professors in each branch being widely known as specialists in their respective departments ; but not every institution can afford this wealth of instruction. The Old Testament has, in addition to its sacred, a historical character, but it is impossible to say how far the exegetical work in Hebrew brings out the history of the people of Israel. In one institution, at least, the Old Testament is studied as history "directly from the text," for two hours a week during the first semester of the junior year and three hours during the second semest r^{r}.
As the ceasional use of tie term church-polity in connection with church history indicates, and the logical development of the results of the reformation offers the occasion, the organization of the Roman Catholic and Protestant churches bicomes a subject of examination and the examination is naturally made with relation to the particulars of the faith professed by the denomination to which each school pertains. In the foregoing we have found the Episcopalian Church introducing the study of its creed and articles of faith in the second year, but the study of the "confessions" or, to use the scholastic expression, the differentia of the beliefs held by the Christian peoples, is usually deferred until the final year in the dera.tmentnow under consideration. A pronounced instance of this is shown by the following course:

The Biblical Geozraphy will occupy ten weeks of the first term, and the remainder of the year will be devoted to Sacred History, including both the old and New Testament, and lectures on Biblical Archæology. This requires two hours per weelk in the recitation room.

MIDDLE YEAR.

History of the Christian Church from the Apostolic age to the present. This will include lectures on Pairistics and the Councils. This is required three hours a week. Christian Biography and History of Special Churches are electives for one hour a week.

SENIOR YEAR.

History of Methodism will seek to give a general view of the origin, growth and work of the ehurch. Weekly recitations will be held in History of Doctrines throughout the year. The History of Methodism, Comparative Symbolics of American Churches and Hymnology are required two hours a week. They will be taught by lectures in connection with a printed syllabus. Comparative Religions, Christian Art, and statistics of Peligious Progress are elective two hours a week. Throughout the entire course students will be assigned subjects which they are to study in the library, and present these upon the same in the class. The aim from first to last is to lead thestudent as far as practical to depend upon his own careful study of the topics.

HOMILETICS AND PASTORAL THEOLOGY.

The fourth department of the theological course is prastical and is usually called homiletics when dealing with the preparation of the sermon, and pastoral theology when it is concerned with the other practical work of the minister. It is the intention here to treat of both these as divisions of the departrent of practical theology. As a general introduction to the subject the following is taken from the catalogue of a theological department in a western university:

PRACTICAL THEOLOGY.

"The importance of the instruction of this department to young men proposing to enter upon the work of our ministry may be szen by reference to the fact that most young ministers are now required to begin their labors without the care and oversight once given by the senior preacher. Formerly the junior preacher was expected to engage for several years in acquiring the needful experience before assuming the management and responsibilities of a charge. But in these days, a young man upon leaving school is required to parform the full work of an experienced minister, with but the scant advics and direstion of his presiding elder, as occasion may serve once or twice a year. The chair of practical theology is intended to supply by direct instruction that which was
once furnished in some measure by the senior minister. The object is in part to teach the student how to put into practice that which he has mastered in the other departments of the school, especially that which relates to Christian character and conduct. Homiletics and pastoral theology will have a large place in the work of this department. Further, it is important to his interests and to the work as well, that he should become acquainted with the principles and law of our church, so as to wisely administer its discipline in the interest of the Gospel, and that he should be thoroughly acquainted with the great connectional plans and purposes of the church, so as to enter intelligently and enthusiastically upon the work of our ministry. During the first year, attention will be given to homiletics, pastoral theology, and preaching before the school. Lectures on the articles of religion, the discipline, constitution, and polity of the church will mainly occupy students of the second year. Questions of ecclesiastical law, courts of trial and appeal, church benevolences, and Sunday school and general church work will, during the third year, receive attention."

The study of homiletics is kegun more frequently perhaps in the first than in the second year, and is, of course, accompanied by drill in elocution. The study is a special case of literary analysis, appreciation, and use, the models being found in sermons by eminent divines or much more frequently in compendiums on pulpit oratory or in the professorial or other criticism of the class room. In several cases lay rhetoric is studied. Extemporaneous work is, seemingly, accented and oral delivery of excogitated work insisted upcn. The endeavor is to make the work as practical as possible, and in one instance the students are called upon to "participate in the conduct of a large children"s [Sunday school] class led by the professor each week." So important is this subject of homiletics that one school speaks of "the paramount importance of the ministers' pulpit work.

The work in pastoral theology, though less brilliant, is certainly not less valuable. In the proper acceptation of the term it treats of the pastor as an agent and administrator rather than as an orator. But as the duties of the ee lines of activity require, if they are to be well performed, traits of a high order, the attributes desirable for the pastor to possess also receive great consideration. Occasionally church polity is included under this head. Sunday school and other religious agencies for recruiting the congregation, the conversion of the heathen in foreign parts, etc., also fall within its scope. The following courses will render further remark unnecessary :

Course of the theological department in a university of the South. Homiletics and Pastoral Theology.

In the Trinity term the studies of the junior class seek to make clear such fundamental questions as what a pastor is? What are his relations toward God and toward man? What are his motives, responsibilities, and helps? What should be the main outline of his continuous and lifelong course of study? And what is the best method of preparation of sermons, whether unwritten or written? Distinctly to understand these questions is of highest importance, as well for its influence upon the student's devotedness and zeal. as for the adrantage of applying homiletic theory to immediate practice in sermon writing and in preaching during his seminary life. Hence, these topics are placed at the beginning of the junior year, and that they may be perfectly understood they are taught in the threefold way of (a) the text-book and recitations; (b) printed lectures selected by the professor and read by the students in turn, and (c) the instructions of the professor. Then, throughout the remainder of the three years this knowledge is made use of in the writing of sermons, and in extemporaneous speaking, for which the Homiletical Society of St. Luke's Hall and the literary societies of the university furnish the opportunity at least once in every week.
In the senior year the studies are upon the administration of the sacraments, the perform ance of the occasional office of the Book of CommonPrayer, and the practical detail of pastoral duty. Much attention is given to the reading of the service, and in particular to an accurate and intelligent reading of the lessons from Holy Scripture. The regular course of study in this department is supplemented by the able and instructive lectures of the rightreverend the bishop of Louisiana.

Course of a seminary of the Middle States.

Department of Pastoral Theology.

I. Church polity.-The church; its membership, internal organization, external relations, officers. discipline.
II. The ordinances.-Their nature, effcacy, and obligation; baptism, its significance, form, and subjects; the Lord's Supper, its significance, and the qualifications for partaking of it.
III. Pastoral duties.-Call to the ministry; settlement; public worship; subject-matter of preaching; administration of ordinances; social religious meetings: pastor and Sunday sehool; the pastor as an organizer of the social and religious forces of the church; pastoral visitation; studies of a pastor; personal spirit and life.

Department of Homiletics.

The course in this department extends through two jears. It furnishes stated exercises to secure, on the part of the student, a mastery of principles and methods, and to form in him
correct habits in the preparation and delivery of sermons. These exercises consist of recitations from standard treatises, with lectures, elucidations, and criticism; carefully prepared analyses and written criticisms by the student of sermons by eminent preachers; presentation of plans of sermons before the class, with criticism by students and by the officer; and the preparation and delivery of sermons before the seminary, with criticism by students and officer.

In all cases of criticism before the classes and the seminary, in addition to the negative criticism to which the student is subjected, the professor holds himself responsible for an independent treatment of the text, or the subject, that the student may not be left conscious simply of his defects and errors, but may have suggested to him a method by which he mayimprove his own ideal and work.

Course of saminary in New England.
 Department of Practical Theology.

Junior class, two hours per week during the first semester: Introduction to practical theology. The foundation for the whole course is laid by an expository study in the Gospels of the Lord's selection of His disciples, and of the personal training that he gare them in character, faith and methods of work. The first principles of the construction of the sermon are inductively drawn from the Biblical history of preaching. Constant practice in sermon analysis is required. Middle class, one hour per week during the first semester, four hours a week during the second: The stuty of Homiletics is completed. the practical exercise of making and delivering sermons is continued. Christian nurture, theoretical and practical, is also studied. Practice ln preparing sermons, addresses, and class exercises for children, and participation in the conduct of a large children"s class, led by the professor each Weel, supplement the study of theories. The history and methods of the Sunday school, Young People's Endeavor Societies, and Christian associations are objects of original research. A preliminary course in congregational polity is also given. Senior class, four hours per week throughout the year: The principles and methods of evangelistic work, pastoral care, Christian economics, and Christian benevolence, ecclesiastical polity and administration, and practical liturgics. One half the year is devoted the comparative study from the sources of Christian sociology. Preaching before the seminary is required. In all classes, besides the constant homiletic drill, practical personal work in Sunday school teaching, erangelistic efforts of many kinds, reformatory and preventive agencies, charity methods, and labor with individuals for their conversion and upbuilding are expected of each student under the supervision of the professor.

Course of a department in a college of the West.

Homiletics and Pastoral Theology.

Homiletics.-In the fall term, lectures five days a week for the first nine weeks, on homiletics, treating of the different classes of sermons, the principles of their construction, the use of texts, the nature and value of expository preaching, the method of preparation and production of the extemporaneous and the written sermon, the respective advantages which belong to each style of preaching, the homiletic habit, and the paramount importance of the minister's pulpit work. In connection with these lectures there are special exercises for the illustration and practical application of the principles of homiletics. consisting of the analysis of the sermons of eminent preachers, and the criticism of sermon plans presented by the different members of the class.
In the winter term the lectures are continued once a week upon the delivery of the sermon, the conditions of ministerial success, the ministerial spirit, the ministers theme, the method and range of the minister"s studies, and the invention of thought for sermons.
In the spring term, the professor lectures five days a week for four weeks upon sacred rhetoric, discussing the properties of style adapted to the pulpit, the study, the characteristics of oral address. and the method of culivating it. (Seventy-seven hours.)

Pastoral Theology elective.-Lectures five days a week throughout the term, treating of the following topics, viz: The conduct of public worship, Sunday schools, the pastor's special worlk for the children, the relation and the duty of the minister to missionary societies and other organizations for Christian work, the best method of educating and training a church to systematic beneficence, the advantages of a settled pastorate, prayer meetings, revivals, the instruction of religious inquirers and young converts, pastoral visiting, church organization, ministry to the sick, the afficted, and the poor.
Tie members of the class, under the professor's direction, prepare to be read before the class during the year elaborate "studies in biography" of distinguished preachers, in which their special merits and methods of ministerial workare described and commented upon. (Seventy hours.)

Course of a seminary in the West.

Sacred Rhetoric and Pastoral Theology.

The work in this department begins with the junior year and extends throughout the entire course of study. enlarging as the student advances to graduation. For the fullest benefit it is indispensable that the drill and discipline cover three years.
A series of exercises in extempore expositions and explanations of scripture, or lecture-roon talks, extends throughout the junior year; also, exercises in the reading of scriptures and of hymns.

A course of lectures on the sermon is given the middle class, together with a discussion of style as related to the literature of the pulpit. The preparation and criticism of sermon plans are also required. The lecture-room talks founded upon assigned passages of scripture are continued.

The senior class is giren a course of lectures on preaching, embracing methods of preparation, delirery, etc. Critical exercises in sermon plans are continued throughout the year. Essays are also required from the seniors on topics closely related to this department. Preach. ing in chapel before all the students, and conducted by the members of the senior class in successinn,

Lectures are also given in pastoral theology on thefollowing and kindred topics. The pastor's personal character, habits, manner; the pastor in the study, in the prayer meeting. in the Bible school, in the homes of the people, in revival. in inquiry meeting, in the pulpit. This department covers, also, the call to the ministry and the choice of a field of labor.
Personal private drill in the reading of scripture and of hymns and in the deliyery of sermons will be giren by the professor to the seniors.

PROGRAMMES AND TIME SCHEDULES OF SEVERAL SEMINARIES. ${ }^{1}$
CONNECTICUT.
Hartrord Theological Seminary.
Summary of subjects and appointments.

Optionals are indicated by italics and parentheses ().

ILLINOIS.

Western Theological Seminary.
Schedule of hours, 1889-90-(for the three higher classes.)

	Junior.	Middle.	Senior.
Tuesday $\left\{\begin{array}{l}\text { 10 a. } \\ 10 \\ 11 \\ \mathrm{a} . \\ \mathrm{m} \\ \mathrm{m} \\ \mathrm{m} \\ \mathrm{m} \\ 9\end{array}\right.$		Exegesis	Exegesis. Preaching. Theology.
	Preaching-.-.----	Preaching -..-.....	
	New Testament exegesis -	Theology or Hebrew.-	
	Greek (Patristic)	Theology or Hebrew.	Theology.
Wednesday. $\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	Theology or Hebrew...	History	History.
	Psychology	Liturgics	
$\int_{10}^{9} \mathrm{a}$ a. m-		Exegesis-...-...-	Exegesis.
$\left\{\begin{array}{l}11 \mathrm{a} . \mathrm{m} \\ 12\end{array}\right.$	Liturgics .-.................	Histary .-.......-	History.
$12 \mathrm{~m} . .-\mathrm{m}$	Psychology	Moral Theology	Moral Theology.
Friday $\left\{\begin{array}{l}\text { 10 a. } \\ 11 \\ 11 \\ \text { a. } \\ 12 \mathrm{~m} \\ \mathrm{~m} \\ \mathrm{~m} \\ \mathrm{~m} \\ \hline\end{array}\right.$	Greek (Patristic)	Theology or Hebrew.-	Theology. Liturgics. Apologetics. Apologetics.
	Theology or Hebrew Meditation		
Saturday ..- $\left\{\begin{array}{lll}10 & a . & \mathrm{m} \\ 11 & \mathrm{a} . & \mathrm{m} . \\ 12 & \mathrm{~m} & \ldots\end{array}\right.$	New Testament exegesis.	Apologetics.	
	Theology		
	Liturgics	Theology or Hebrew.-	Theology.

${ }^{1}$ Several schools are not represented here, for the reason that their catalonues do not contain the time schedules.

INDIANA.

Theological Departnent of De Pauw University.
Daily routine of departmental exercises.
A.

	Junior class.	Middle class.	Senior class.
Old Testament: Required \qquad	11 a. m. Monday, Tuesday,Wednesday, and Friday.	8 a. m. Tuesday and Wednesday or 9 a. m . Tuesday and 10 a . m. Wednesday. 11 a. m. Thursday and $2 \mathrm{p} . \mathrm{m}$. Frilay.	8 a. m. Thursday and Friday or 11 a. m. Thursday and $2 \mathrm{p} . \mathrm{m}$. Friday.
Elective			
New Testament: Required \qquad Elective	9 a. m. Monday, TVednesday, and Thursday.	9 a. m. Monday, Wednesday, and Thursday. 9 a.m. Friday	9 a. m. Friday.
Historical: Required Elective	8 a. m. Thursday and Friday.	11 a.m. Monday, Tuesday, and Wednesday. 3 p. m. Monday	10 a. m. Monday and Tuesday. 10 a. m. Thursday and Friday.
Systematic: Required Elective	10 a. m. Monday and Tuesday.	10 a. m. Thursday and Friday.	$11 \mathrm{a} . \mathrm{m}$. Tuesday and Wednesday. 11 a. m. Monday and Friday.
Practical: Required	11 a. m. Thursday and 2 p. m. Friday.	8 a. m. Thursday and Friday.	$2 \mathrm{p} . \mathrm{m}$. Monday and Tuesday. $2 \mathrm{p} . \mathrm{m}$. Wednesday and Thursday.
Elective			

Introductory classes: Greek lessons, $9 \mathrm{a} . \mathrm{m}$. Monday, Wednesday, Thursday, and Friday; Psychology, 2 p. m. Wednesday and Thursday.

B.

-	1	Junior class. 	Middle class.		Seniorclass.	
				号	-	
Old Testament theology		4				
New Testament theology		3	3	1	1	
Historical theology .-....		2	3	1	2	2
Systematic theology Practical theology.		${ }_{2}^{2}$	$\stackrel{2}{2}$		$\stackrel{2}{2}$	$\stackrel{2}{2}$
Total per week.		13	12	4	9	6

KENTUCKY.

Southern Baptist Theological Seminary.

Scheme of lectures.

(Sabject to alterations at the beginning of every session.)

Hour.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
8.30 a. m		Gk. Sr	Pol	Gk. Sr	Pol	Gk. Sr.
9.30 a. m		N. T	O. T	N. T	O. T	N. T.
10.30 a. m		Ec. Hist	Ec. Hist	Ec. Hist	Ec. Hist	Ec. Hist.
$11.30 \mathrm{a} . \mathrm{m}$.	Gk. Jr., Heb. Sr.	Heb. Jr	Gk. Jr., Heb.	Heb. Jr	Gk.Jr.,Heb.	Heb. Jr.
$12.30 \mathrm{p} . \mathrm{m}$ -		Bib. In	Hom	Bib. Int	Hom	Bib. Int.
$3.00 \mathrm{p} . \mathrm{m}$ -		Pol.-...		Hom. Eloc		
$4.00 \mathrm{p} . \mathrm{m}$ -	Hom	Erig. Th	Eng. Th	Eng. Th	Eng. Th....	
5.00 p. m -	$\begin{aligned} & \text { Ch. Gov. and } \\ & \text { P. D. } \end{aligned}$	Lat. Th	Ch. Gov. and P. D.	Lat. Th	Ch. Gov. and P. D.	

MASSACHUSETTS.

Harvard Divinity School.

Tabular view of the exercises. (The Roman numeral in parenthesis indicates the examination group to which the course belongs.)

Monday.-10 to 11 a. m., New Testament (2) ; 11 to 12 m., Theology (3) and New Testament (4); 2 to 3 p . m., History of Israel; 3 to 4 p . m., Hebrew (1) and Homiletics (2).
Tuesday.- 9 to 10 a. m., Theolgy (2); 10 to 11 a. m., Ethics and Homiletics (2) (private criticisms); $11 \mathrm{a} . \mathrm{m}$. to 12 m. ., Aramaic; 12 m . to $1 \mathrm{p} . \mathrm{m}$., New Testament (5); 2 to $3 \mathrm{p} . \mathrm{m}$., Old Testament introduction; 3 to 4 p. m., Hebrew (2).

Wednesday.-9 to 10 a . m., New Testament ($1 a$) ; New Testament ($3 b$); Church history (3); 10 to 11 a . m., Theology (1) ; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., Theology (3) ; 12 m . to $1 \mathrm{p} . \mathrm{m}$., New Testament (2) ; 2 to 3 p. m., History of Israel; 3 to 4 p. m., Hebrew (1).

Thursday.-9 to 10 a. m., Comparative religion; 10 to 11 a. m., Ethics; 11 a.m. to $12 \mathrm{~m} .$, Aramaic; 12 m . to $1 \mathrm{p} . \mathrm{m}$., New Testament (4) ; 2 to $3 \mathrm{p} . \mathrm{m}$., Old Testament introduction; 3 to $4 \mathrm{p} . \mathrm{m}$., Hebrew (2).
Friday.-9 to 10 a. m., New Testament ($1 a$); New Testament ($3 b$); Church history (3) : 10 to 11 a. m., Homiletics (1) ; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., Theology (3) ; 12 m . to $1 \mathrm{p} . \mathrm{m}$. , Homiletics ($4 b$) ; New Testa. ment (5) ; 2 to 3 p. m., Religion of Israel; 3 to 4 p. m., Hebrew (1); Religion of Israel.

Saturday. -9 to $10 \mathrm{a} . \mathrm{m}$., Comparative religion.

NEW YORK.

Hamilton Theological Seminary.

(Figures in parenthesis indicate number of recitations.)

Junior Year.
Old Testament.-First and second terms, Hebrew grammar (3) ; Isagogics (2) ; third term, Hermenutics (2); Historical books (3).
New Testament.-First half year (Greek section), Translation and exegesis of the Gospels (3); (whole class), Hermeneutics and introduction (2); second half year (Greek section), selections from Pauline Epistles (2): (whole class), Introduction to Pauline epistles (2).
Biblical Greek.-First term, Grammar and Grammatical study of the Fourth Gospel (4), Old Testament history (2); second term, Grammatical study of Pauline epistles (4), History of the Commonwealth of the Restoration (2); third term. study of Old Testament Apocrypha (1); Grammatical study of Petrine Epistles (4). New Testament history (2).
Church History.-Through the year, Ancient period (3).

Middle Year.

Old Testament.-First term (Assyrian) ; second term, Prosody and the Psalms (4), (Assyrian); third term, Prophecy and the Prophetical Books (4), (Syriac).
New Testament.-First term (English section), R omans (4); second term, (Greel section), Catholic epistles and Revelation (4); third term (English section), Hebrews (4).
Biblical Greek. Through the year translation and study of selections from the Septugint version (1); third term, (Textual criticism of the Greek Bible).
Church History.-First term Ancient and Mediæval Periods (3); second term, Mediæval and Reformation periods (3).
Homiletics.-First term Principles of Homiletics (4); second and third terms, Criticisms of selections and sermons (4).

Senior Year.

Old Testament.-First term Christology and Christological passages (4), (Chaldee); through the year (Arabic).
New Testament.-See middle year. Next year, both classes: First term (Greek section), Rommans (4); second term, (English section), Catholic Epistles (4); third term (Greek section), Hebrews (4).

Church Fisiory.-First term. Reformation and Modern periods (2.)
Homiletics.-Second and third terms. Preaching before the Seminary, with Criticism (2).
Pastoral Theology.-First and second terms Constitution of the Church; the ordinances, pastorsl duties (2).
c'hristian Thoology.-First term Introduction; Theology; Anthropology (4); second term, Christology; Pneumatology (4); third term, Eschatology; Christian ethics (4).

Sihedule of the hours of recitation.

	Junior class.	Middle class.	Senior class.
$9 \mathrm{a} . \mathrm{m}$.	Dr. Harvey, Greeiz (3); Dr. Harvey (2) and Prof. Schmidt, History	Dr. Maynard (3), Prof. Schmidt, Greek (1).	Dr. Dodge (4), Christian theology.
$10 \mathrm{a} . \mathrm{m}$........	Prof. Schmidt, Hebrew (3), terms 1 and 2.	Dr. Harrey and Dr. Burnham, alternately (4).	Dr. Harvey and Dr. Burnham, alternately, (4).
$11 \mathrm{a} . \mathrm{mm}$	Dr. Burnham, Hebrew (3), term 3.	Dr. Beebee (1), Homiletics.	Dr. Beebee (2), terms 2 and 3; Dr. Harvey (2), terms M and 2 , and ${ }^{\text {Drand }}$ (2), term 1.
2:30 p. m......	Prof. Schmidt, Greek (4)	Syriac (4), term 3, Dr. Burnham.	Chaldee (4), term 1, Dr. Burnham.
3:30 p.m	Dr. Burnham (2) ana Dr. Maynard (3), History.	Assyrian (1) Tuescay, Prof.Schmidt; English Old Testament (2), Wednesday and Friday, Dr. Burnham.	Arabic (1), Friday, Prof. Schmidt.
4: $50 \mathrm{p} . \mathrm{ml}$.	Old Testament Apocrypha (1), Wednesday, Proi. Schmidt.	Old Testament History (1), Friday, Dr. Burnham; Textual criticism (1) Thursday, Prof. Schmidt.	Historical criticism studies (1), Tuesday, Dr. Burnham.

Union Theological Semtnary.

Schedule of lectures for 1899-90, second term.

Dass.	Hours.	Juniors.	Middlers.	Seniors.
Monday..... $\{$	$\begin{aligned} & 11 \mathrm{a} . \mathrm{m} \\ & 3 \mathrm{p} . \mathrm{m} \\ & 4 \mathrm{p} . \mathrm{m} \end{aligned}$	Prof. Prentiss. ${ }^{1}$ Prof. Brown. ${ }^{2}$	Prof. Schaff. Prof. Sheâd. ${ }^{6}$ Conference meeting.	Prof. Schaff.
$\text { Tuesday }\{$	$\begin{aligned} & 11 \mathrm{a} . \mathrm{m} \\ & 3 \mathrm{p} . \mathrm{m} \\ & 4 \mathrm{p} . \\ & \mathrm{m} . \end{aligned}$	Prof. Brown. Prof. Vincent. ${ }^{3}$ Prof. Brigss. ${ }^{4}$	Prof. Schaff. Prof. Briggs. Prof. Shedd.	Prof. Hastings. Prof. Vincent.
Wednesday- $\{$	$\begin{aligned} & 11 \mathrm{a} . \mathrm{m} \\ & 3 \mathrm{p} . \mathrm{m} \\ & 4 \mathrm{p} . \mathrm{m}- \end{aligned}$	Prof. Brown. Prof. Schaff. ${ }^{3}$ Prof. Vincent.	Prof. Briggs. Prof. Shedd. Prof. Briggs.	Prof. Prentiss. Prof. Hastings. Prof. Sheda.
Thursday... $\{$	$\begin{aligned} & 11 \text { a.m } \\ & 3 \text { p. m } \\ & 4 \text { p. m } \end{aligned}$	Prof. Prentiss. Prof. Brown. Prof. Briggs.	Prof. Hastings. ${ }^{7}$ Prof. Vincent. Prof. Shedd.	Prof. Schaff. Prof. Briggs. Prof. Tincent.
Friday $\{$	$\begin{aligned} & 11 \mathrm{a} . \mathrm{m} \\ & 3 \mathrm{p} . \mathrm{m} \\ & 4 \mathrm{p} . \mathrm{m} \end{aligned}$	Prof. Schafr. Prof. Brown. Prof. Vincent.	Prof. Hastings. Prof. Vincent. Prof. Briggs.	Prof. Prentiss. Prof. Briggs. Prof. Shead.

Prirate criticism of sermons, seniors, Tuesdays, Thursdays, and Fridays, 1.20 to $2.30 \mathrm{p} . \mathrm{m}$. with Prof. Hastings.
Class in Syriac. Tuesdays. 2 to 3 p. m.. with Prof. Briggs.
Ciass in Biblical Aramaic, Tuesdays, 2 to $3 \mathrm{p} . \mathrm{m}$.. With Prof. Brown.
Class in Assyrian I., Mondars. 2 to 3 p. m., with Prof. Brown.
Ciass in Assyrian II., Wednesdays, 10 to 11 a. m., with Prof. Brown.
Adranced class in Hebrew, Thursdays and Fridays, 2 to $3 \mathrm{p} . \mathrm{m}$., with Prof. Brown.
Vocal culture, middlers individually, juniors in sections, daily, 9 to 11 a . m., with Prof. Roberts.
Sacred music, choir drill, Mondays, 5.15 p. m.; classes, Thursdays, 7.50 p. m., With Prof. Herman.

[^47]| Days. | Hours. | Juniors. | Middlers. | Seniors. |
| :---: | :---: | :---: | :---: | :---: |
| Monday...-- | $11 \mathrm{a} . \mathrm{m}$-- | Prof. Prentiss | Prof. Schaff | Prof. Schaff.
 Prof. Hastings. |
| | $3 \mathrm{p} . \mathrm{m}$-- | Prof. Brown | Prof. Shedd . | |
| Tuesday .-.- | ${ }_{11}^{4 \mathrm{p} . \mathrm{m} . \mathrm{m}}$ | Prof. Prentis | Conference mee | |
| | $3 \mathrm{p} . \mathrm{m}$-- | Prof. Brown | Prof. Briggs | |
| | $4 \mathrm{p} . \mathrm{m}$-- | Prof. Vincent | Prof. Shedd | Prof. Briggs. |
| Wednesday $\{$ | $3 \mathrm{p} . \mathrm{m}=-$ | Prof. Briggs | Prof. Vincent | Prof. Brown. |
| | $4 \mathrm{p}, \mathrm{m} .-$ | Prof. Vincen | Prof. Shedd | Prof. Briggs. |
| Thursday-.- | $11 \mathrm{a} . \mathrm{m} .-$
 m | Prof. Brown. | Prof. Priggs | Prof. Shedd. Prof. Brown. |
| | $4 \mathrm{p} . \mathrm{m}$-- | Prof. Briggs | Prof. Sheid | |
| | $11 \mathrm{a} . \mathrm{m}$.- | Prof. Schafi | Prof. Hasting | Prof. Prentiss. |
| Friday. ----- | $3 \mathrm{p} . \mathrm{m}$-- | Prof. Brown
 Prof. Vincen | Prof. Vincent
 Prof. Briggs | Prof, Briggs. Prof. Shedd. |

Private criticism of sermons, seniors, Tuesdays and Thursdays, 1.30 to $2.30 \mathrm{p} . \mathrm{m}$., with Prof. Hastings.
Class in Arabic, Wednesdays, 10 to 11 a. m., with Prof. Briggs.
Class in Assyrian II, Tuesdars, 2 to 3 p. m., with Prof. Brown.
Advanced class in Hebrew. Mondays, Thursdays, and Fridays, 2 to 3 p. m., with Prof. Brown.
Vocal culture, seniors individually, middlers in sections, daily, 9 to 11 a . m ., with Prof. Roberts.
Sacred musie, choir drill, Mondays, 5.15 p. m.; classes, Thursdays, 7.30 p. m., with Prof. Herman.

EXAMINATIONS.

The academic year consists of two terms, the first beginning with the third Wednesday of September and ending with the Christmas holidays: the second beginning immediately after those holidays and ending with the Tuesday next preceding the second Thursday of May. Examinations will be held during the last week of each termupon the studies then completed. These examinations are conducted by the faculty with the coöperation of committees of the directors. The Presbytery of New Yorkis represented by a committee at the intermediate examination, the Synod of New Yoriz at the final examination.

Virginia.

Theological Seminary of the Diocese of Virginia.

Scheme of lectures. ${ }^{1}$

MFonäay.-9 to 10 a. m., middle class theology, junior Greek; 10 to 11 a. m., senior history, middle class Hebrew; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., junior He brew; 12 m . to 1 p . m., middle elass English, Bible; 1 to 2 p. m., senior class polity, junior history.
Tuesday.- 9 to 10 a . m., senior Hebrew, middle class history; 10 to 11 a . m., middle class theology, junior Hebrew; 11 a . m . to 12 m . senior class polity, junior class natural theology; 12 m . to 1 p. m.. senior English Bible, middle class Greek; 1 to 2 p. m., junior history.

Wednesday.-9 to 10 a.m., senior history, junior Greek; 10 to 11 a. m., senior Gresk, middle class theology; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., junior apologetics; 12 m . to $1 \mathrm{p} . \mathrm{m} .,^{2}$ senior theology (nomiletics), middle class Hebrew; 1 to 2 p. m., junior history: 5 p. m., exercises in homiletics and the use of the prayer book which all the students are required to attend.
Thur'sday. -9 to $10 \mathrm{a} . \mathrm{m}$., senior Greek, middle class history; 10 to 11 a . m., middle class theology, junior Hebrew; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., senior Hebrew; 12 m . to 1 p . m., senior theology, middle class Greek: 1 to 2 p . m., junior history.
Friday.- 9 to 10 a . m., senior Greek, middle class history; 10 to 11 a. m., ${ }^{3}$ senior history (canon law), middle class theology, junior Hebrew; 11 a . m . to 12 m. , junior apologetics; 12 m . to 1 p . m., senior theology, middle class English Bible.

TEXT BCOKS.

The necessary information is not possessed by this Bureau to enable it to discuss the subject of text books with any dogree of thoroughness. The following scheme will show very succinctly a peculiarity of the catalogues of the schools of the Episcopal Church, to wit: The text and reference books are invariably

[^48]mentioned. To compare with it a programme of the Mount St. Mary's Ecclesiasitical Seminary (Roman Catholic), and another of the Augustana Theological Seminary (Lutheran) are inserted:

Scheme of study.

Studies.	Junior year.	Middle year.	Senior year.
Hebrew and Greek.	Tregelles' Heads of Hebrew Grammar. Readings from the Pentateuch and the Psalms. Gesenius' Hebrew Lexicon. Readings from the Septuagint.	Readings from the Messianic Psalms, and Extracts from the Prophets. Gesenius' Hebrew Lexicon.	
Exegesis.	The four gospels; the Acts of the Apostles. Gardiner's Harmony of the Gospels.	The Epistles of St. Paul. with Ellicott's and Lightfoot's Commentaries.	Christological portions of the Old Testament in Hebrew. With Commentaries.
Ecclesiastical history.	First six centuries: Mahan, Blunt, Burton and Robertson's Church Histories. Bates' Lectures on Christian Antiquities. Mosheim's Commertaries.	Serenth to fifteenth centuries, inclusive: Hammond on the canons. Newman's History of the Arians. Hardwick's Middle Ages. Robertson's Church History, 3d ed. Milman's Latin Christianity.	Sixteenth century to present time: Hardwick's Reformation. Burnet's History of the English Reformation. Carwithen's and Perry's Histories of the English Church. Perry's and Wilberforce's Histories of the American Church.
Sjstematic divinity	Bishop Butier's Sermons at the Rolls. Christian Ethics. Adams' Elements of Caristian Science. Lectures by the Professor.	Pearson on the Creed. Hooker on the Incarnation.	Bishop Browne on the Thirty-nine Articles.
Pastoral theology	Gresley's Ecclesiastes Anglicanus. A mer. ed. Brooks' Lectures on Preaching. Bishop Ellicott's Collections on Homiletics. Lectures on Homiletics, by the Professor. Four sermons by each	Blunt's Parish Priest. Bishop Burnet on Pastoral Care. Bishops White and Wilberforce on the Ordinal. Bishop Ellicott's Collections on Pastoral Work. Lectures on Pastoral Duties, by the Professor.	Wheatley and Procter on the Book of Common Prayer. Hooker's Ecclesiastical Polity, Book vs. Lectures on Liturgics and Pastoral Work, Conscience and Hu man Law, by the Professor.
Ecclesiastical polity and law.		Five Sermons by each student. Abp. Potter on Church Government. Wordsworth's Outlines of the Christian Ministry. Lectures by the Professor.	Six Sermons by each student. Haddan's Apostolical Succession. Canons and other Ecclesiastical Laws. Lectures by the Professor, with Exercises on books of reference.

Motnt St. Mary's Ecclesiastical Seminary.

Cursus theologicus quatuor annos complectitur. ${ }^{1}$

Auctores rero qui in scholis adhibentur sunt sequentes.
Theologia Dogmatica: Jungmann et Schouppe.
Thaologia Moralis: Gury-Ballerini. Ad consulendum, Lehmkuhl.
Introductio in Sacram Scripturam: Ubaldi.
Introductio Critica Hermeneutica Biblica et

Archæologia Biblica. Commentarii: Piconius et Estius.

Historia Ecclesiastica: Wouter.
Jus Canonicum: Soglia-Vecchiotti.
Sacra Eloquentia: Potter.
Liturgia Sacra: De Herdt, O'Brien et O'Kane Lingua Hebraica: Vosen.
Cantus Planus: Magister Choralis.

[^49]
Augustana Theological Seminary.

Text-books and books recommended.

EXEGETICAL THEOLOGY

1. Weidner's Theological Encylopædia, vol. 1.
2. Harper's Introd. Hebrew Method and Manual.
3. Harper's Elements of Hebrew.
4. Mitchell-Gesenius’ Hebrew Grammar.
5. Harper's Elements of Hebrew Syntax.
6. Davies' Hebrew Lexicon.
7. Theile's or Hahn's Biblical Hebraica.
8. Harper-Weidner's Introd. N. Ti. Greek Method.
9. Westcott Hort's Greek Testament.
10. Boise's Notes on the Greek Text of St. Paul's Epistles.
11. Bengel's Gnomon.
12. Thayer's Lexicon of the N. T.
13. Weidner's Commentary on Mark.
14. Rosenius' Isagogics.
15. Hasselquist's Ephesians.
16. Melin's Notes on the Bible.
17. Weidner's Studies in the Book.
18. Cornelius' Theologiska Prænotioner.

HISTORICAL THEOLOGY.

1. Kurtz's Sacred History.
2. Weidner's Biblical Theology of O. T.
3. Cornelius' Handbook i Kyrkohistorien.
4. Kurtz's Church History.
5. Schéele's Lärobok i Theologisk Sombolik.

historical theology-Continued.

6. Günther's Symbolik
7. Graul's Skiljeläror
8. Weidner's Theological Encyclopædia, vol. II.
9. Billing‘s Lutherska Kyrkans Bekännelse.

SYSTEMATIC THEOLOGY.

1. Luthardt's Kompendium der Dogmatik.
2. Bring`s Grunddragen af den Cnristliga Trosläran.
3. Blörling's Christliga Dogmatiken.
4. Norbeck's Lärobok i Theologien.
5. Schmid's Doctrinal Theol. of the Evang. Luth. Church.
6. Weidner's Introduction to Dogmatic Theology.
7. Martensen's Kristliga Ethik.

PRACTICAL THEOLOGY.

1. Baur's Homiletics.
2. Ullman's Liturgics.
3. Scheele's Catechetics.
4. Norrby's Pastoral Theology.
5. Horn's Evangelical Pastor.
6. Palmer's Catechetics.
7. Kubel's Pastoral Theologie.
8. Holmström's Kyrkorättslära.

CHANGES DURING THE DECADE $1850-80$.

ELECTIVES.

Before speaking on this, in college history, well-worn question, let us distinguish between a special or nondegree course in a theological scheol and a course composed of a certain number of studies chosen by the s.udents from among a category of subjects offered by the faculty in lieu of an invariable curriculum. To state the question thus is to answer it. The special courses for ministers or for others who seek to extend their acquirements in languages will be spoken of under the head of optional studies.
In 1885, the Theological Department of Oberlin College introduced the elective system for one-half of the course for B. D. For this degree students were required to complete work amounting to 1,050 hours of lectures. The required studies demanded 485 hours, the elective studies might extend to 1,252 hours, but $56 \overline{5}$ hours were required. At present the daily exercises are as follows:

Hour.	Fall term.	Winter term.	Spring term.
8 to $9 \mathrm{a} . \mathrm{m}$	Hebrew, a. (70) ; church	Hebrew, b. (60) ; church	Hebrew, c. (40) ; church
9 to 10 a.m..	history, a. (70). Elocution; Hebrew, d. (70).	history, a. (60). New Testament, b. (60) ; Homiletics, b. (60).	history b. (40). Church history, c. (40); Semitic or Septuagint (40); New Testament, c
10 to 11 a.m....-	Natural theology, (45); revealed theology, (25); Homiletics, a. (45).	Greek, a. (60); revealed theology (48); homiletics, a. (12).	Natural theology (15); modern shepticism (20): science and religion (20).
$11 \mathrm{a} . \mathrm{m}$. to 12 m .	Greek, a. (25): pastoral theology (70).	Elocution; history of doctrine.	Homiletics, a.(20); positive institutions (20); Greek, a. (40).
4 to 5 p. m.......		Oild Testament introduction and theology (48).	Homiletics, c. (20).

tures upon this system. The studies of the several departments may be pursued in such order as is necessary to secure the desired electives; but continuous courses, such as church history a, or homiletics a, should never be interrupted until completed. ${ }^{1}$

The study of Syriac in the second year and the study of Chaldee in the third year were elective in the Hamilton Theological Seminary as early as 1885, they being optional studies at the date of 1881. In this institution the student may pursue a "full course " or a "Greek-English course "(which dispenses with Hebrew and begins the study of Greek) or an "English course "(which dispenses with both Hebrew and Greek).
About 1886 or 1887 "electives" were introduced in the Newton Theological Institution, the prescribed studies requiring from 9 to 10 hours a week. Most of the elective courses being open to more than one class, they are not arranged according to classes, but according to the term in which they are given. No e'ective course is begun unless there is an attendance of four or more students. In the first term the electives are the Semitic languages, including Assyrian and Biblical Greek, exegetical work in Old and New Testament apologetics, Christian theology according to John, inspiration, comparative religion and history of missions, and preaching and methods-14 courses in all of 1 or 2 hours a week, some oneir to all students, others open only to the miadle and senior classes. The second term, for it appears that each course only continues one term, is very similar to the first in character, being, it would seem, a sort of continuation of the first term, though the courses of both terms are numbered consecutively from 1 to 30 , course 15 being the first course of the second term. A peculiarity of the courses of the second term is indicated by expressions such as this "Course 15,1891 , and every third year Old Testament history; Course 17, 1889 and 1891, rapid reading of Hebrew Testament."
From the dean of Harrard it is learned that during the decade " the studies hare gradually changed in the way of enlargement, the elective system having been introduced to some extent," while the acting warden of the Seabury Divinity School informs the Bureau that "We hope soon to introduce the elective system," and that "the German seminary system is increasing in favor." This seminary system is in vogue at Harvard; and perhaps elsewhere, without designation as such. ${ }^{2}$
With the year 1890-91 the system of elective studies will be introduced in the An over Theo ogical Seminary in order to encourage a degree of specialization and to offer an increased number of subjects, particularly in Biblical studies. While the study of theology is in itself an election, says the faculty, and necessarily includes foundation work in Hebrew, Greek, dogmatics, church history, homiletics, and other branches of sacred learning, there may properly be opportunity for more extended rezearch in one or another of the principal departments, and in accordance with the tastes and aptitudes of the students. The amount of prescribed work by lecture hours is therefore somewhat reduced in the middle and senior years, and several courses are offered from which a required number of hours is to be chosen. All the elective courses of each year are offered to both classes, and entirely different courses are offered in alternate years. A sufficient number shall be chosen to make, with prescribed studies, an average of $1 \geqslant$ hours a week in the middle and 10 in the senior year. Old Testament studies include the three courses of introduction, exegesis, and Biblical
${ }^{1}$ The following course is recommended by the faculty for the general student:

	Fall term.	Winter term.	Spring term.
Junior year ...-	8 to 9 a. m., Hebrew, a. 9 to 10 a . m., elocution, 10 to $11 \mathrm{a} . \mathrm{m} .$, natural theology; Greek, a.	8 to 9 a. m., Hebrew, b.; 9 to $10 \mathrm{a} . \mathrm{m} .$, elocution; 10 to 11 a . m., Greek, a.	8 to 9 a. m., Hebrew, c.; 10 to 11 a. m., natural theology; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., Greek, a.
Middle jear	10 to $11 \mathrm{a} . \mathrm{m} .$, reiealed theology; homiletics, a.; $11 \mathrm{a} . \mathrm{m}$. to 12 m .,	10 to $11 \mathrm{a} . \mathrm{m}$. . revealed theology, b.; homiletics, a.; $11 \mathrm{a} . \mathrm{m}$. to 12 m ., New Testament. b.	9 to 10 a . m., Semitic, or New Testament, c.; 11 to 12 m. , pos. institutions; homiletics, a.
Senior year ...-	8 to 9 a. m., church history. a.; 9 to 10 a. m., pastoral theology.	8 to 9 a. m., church history, $a . ; 11 \mathrm{a} . \mathrm{m}$. to 12 m., horniletics, b.	8 to 9 a. m.. church history b.: 10 to $11 \mathrm{a} . \mathrm{m} .$, science, religion, modern skepticism.

[^50]theology. New Testamentstudies include the three courses of introduction, exegesis. and the life of Christ. Courses are offered also in social economics, Christian ethics, and the philosophy of religion.

A feature of the Southern Baptist Theological Seminary requires notice. The plan of instruction is quite similar to that of the University of Virginia. Every department of study is elective, and a separate degree is given upon graduating in cach department; and the degree of "full graduate" when all have been completed or "English graduate" when all, except Hebrew and Greek. Many students remain only one year, others two, electing certain departments as pleasure, with advice of the professors. "We are satisfied from thirty years of experience," says Dr. Broadus, "that the elective works best when complete and consistent."

OPTIONAL STUDIES.
The optional studies of the theological seminaries are languages and those srecial courses of individual or collective inquiry and mutual criticism that are called seminariums, or, to use the Latln form, seminaria. An illustration ois this seminarium may be found in the case of the Lane Theological Seminary, which has as an optional course a "special class for the study and criticism of the literavy sources of ancient church history," once a week throughout the year, the chief subject of investigation during 1889-90 being the formation of the New Testament canon.

But the great optionals are the Semitic languages, the Egyptian hieroglyphics, and perhaps the German language, which shows some indications of becoming as much the language of Protestant theology as Latin is of the Roman Catholic. At Yale it is noted that Sanscrit may be studied under Prof. Whitney, of the college proper. Of the twelve or thirteen schools reporting optional courses in the languages with which Hebrew is cognate but two mention in addition the study of the hieroglyphics. One of these, the Theological Seminary of the Dutch Reform Church, offers in each of its three years a course in Coptic or Hieroglyphic, while the other, the theological seminary at Andover, Mass., offers instruction to the middle and senior classes in.Egyptology, including, the elements of the hieroglyphs, or in Assyriology. The course of the schools then, taking them altogether, is well confined to the languages of the Semitic group, with a preference for the northern branch, as might be expected from the religious literature its languages contain, though the study of the ancient or Bibical Hebrew should not be classed among the optional studies of our seminaries.

The following statements will illustrate various phases of the course of instruction in the optional languages:
1.-As to organization of the classes.

Tee Cognate Oriental Languages at Union Theological Seminary.
(See page 933 for time table.)
All the studies in this department are optional.
The class in Biblical Aramaic will study the grammar of that language with selections from the Aramaic of the Bible, in the second term, with Prof. Brown.

Those who hare already studied Hebrew and Biblical Aramaic may unite with the Syriac and Arabic classes, which are organized in alternate years (1889-90, Syriac ; 1890-91, Arabic), so that in regular order the three classes may pursue Biblical Aramaic, Syriac, and Arabic. The Syriac class will study Syriac grammar, and read selections from the Peshitto version in the first term, and read selections from Bar-Hebraeus and Ephraem Syrus in the second term with Prof. Briggs. The Arabic class will study the Arabic grammar, and read selections from the version of Saadia in the first term, and read selections from the Koran, in connection with a more particular study of Arabic syntax, in the second term with Prof. Briggs.

There will be two Assyrian classes, composed of those who have already studied Hebrew, and two oi the Cognates. The one will study the Assyrian characters and grammar, and read selections from the historical inscriptions during the second term with Prof. Brown. The second class will consist oi those who have already passed through the first class. They will read selections from the historical and mythological inscriptions and the syllabaries. Lectures will also be given on Babylonian and Assyrian literature, and on the history of the Assyrian language and the cuneiform signs. This course will be extended through both terms with Prof. Brown.
2.-As to charcteter of course offercd.
derartuent of Semitic Languages and Old Testament Exegesis of hamilion Theological Seminary.

SEMITIC LANGEAGES.
First year.

1. Hebrew:
(1) Grammar, with practical exercises.
(2) The prose accents and accentuation.
(3) Translation and study of selections from the historical books.
2. Elements of comparative Semitic philologs.

Second year.

1. Hebrew:
(1) Prosody, with practical exercises.
(2) Poetic accentuation.
(3) Translation and study of selections from the poetical boois.
2. Syriac (elective):
(1) Grammar, with practical exercises.
(2) Translation and study of selections from the Peshitto Old Testament.
(3) Translation and study of selections from historians and commentators.
3. Assyrian (optional):
(1) Grammar, with practical exercises.
(2) Translation and study of transliterated texts.
(3) Translation and study of cuneiform texts.

Third yzar.

1. Eebrew: Reviews.
2. "Chaldee" (elective):
(1) Grammar, with practical exercises.
(2) Translation and study of selections from the Targums.
(3) Translation and study of Biblical "Chaldee."
3. Syriac (optional):
(1) Translistion and stuay of selections from the Peschitto New Testament.
(2) Translation and study of selections in verse.
4. Assyrian (opsional):

Translation and study of cuneiform texts.
5. Arabic (optional):
(1) Grammar. with practical exercises.
(2) Translation and study of selections from the Koran and the Arabic Bible.
(3) Translation and study of selections from the poets.
6. Comparative Semitic philology and grammar (optional).

To illustrate the intermitting system of the elective course the work at Oberlin Theological Seminary is given:

Comparative Semitic and Septuagint Greek.-In 1890, and every second year. a class will be formed in the Greek of the Septuagint with special reference to the influence of the vocabulary and grammar of that important version upon the New Testament Greek. In 1891, and every second year, a class will make a baginning in comparative Semitic grammar by reading comparatively the first four chapters of Genesis in Hebrew. Aramaic, Syriac, and Arabic ; 40 hours.

At the Southern Baptist Theological Seminary, whose peculiarity of independence of schools has been noted, twelve collateral studies, previously irregularly pursued in private classes, have been organized into definite specialties for resident or under-graduates. The first four of these schools deal with Arabic. Aramaic, Assyrian, and the Coptic languages, but it is of the sixth, the eiohth, and the twelfth that mention is made here. The sixth course is in Patristic Greek, and during the year "The Teaching of the Twelve Apostles" and portions of Justin Martyr, etc., were read. The eighth course is in Patristic and scholastic Latin, with readings in Tertullian, Augustine, Bedes History, and the Imitation of Christ. The twelfth course deals with German, as is shown by the following:

Theoloyical German.- The importance of the German language is appreciated by numbers of students in theology. A special class has been regularly organized for beginners; advanced students' who shall prosecute with the professor a course of reading in German works of exegesis, church history, systematic cr practical theology, will in the future be entitled to a diploma for attainmen's in this course. The junior class for the present year has maste ed the forms and read coasiderably in the New Testament. The senior class has read largely in the Old Testament.

At the School of Theology of Boston University Spanish is an optional study for those intending to labor among Spanish-American populations. The instruction is given in this as in a number of other studies in the College of Liberal Arts of the University. The same adrantages are offered at Yale and other seminaries which are university departments.

POST GRADUATE COURSES.

Postgraduate work is individual, and when such students are congregated into classes their work is but the work of the seminarium. A fourth year of work was established at the Andover Seminary as early as 1858, but only survived for a short period. In 1881 it was again established and on a firm basis.

FOREIGN DEPARTMENTS.
When George Primrose, the son of Goldsmith's Vicar of Wakefield, went to Holland to teach the natives English he found his purpose frustrated by his inability to speak Dutch. It has long been found necessary to teach the missionary to the Indian the language of those among whom he is to labor and even to send out native preachers, and quite an effort has been made by several schools during the last decade to educate a ministry that is to deal with our foreign populations. This effort is not only Christian and denominational but patriotic. At the Old German Theological School of Newark (Presbyterian) it is held as a fundamental principle that "to reach any powerful body of foreign people in a large way there must be a native ministry springing from among the people themselves. In view of the great power of the German people in this land it is wise to concede the German language during the period of transition. Success in German churches among adult Germans by ministers preaching exclusively in the English tongue is exceptional, depends on special individual genius, and can not be depended upon for a general system of evangelization. * * * In order to bring the German mind-educated through a long history so entirely diftierent from our own-into sympathy with our doctrine and practice, a rightly devised and wisely conducted indoctrination of the German mind is necessary. * * * The instruction should be in both languages. * * * The graduate as an individual should gravita e towards the German flock, the pastor and flock as a mass should gravitate towards the American life. ${ }^{*} *_{*}$ The practical effect of the education of German ministers by our established American theological seminaries has been to educate the student away from the German people, thus gaining the individual pastor but losing the flock."

The German Baptist churches in America, according to the Rochester Theological Seminary, were, in 1850 , only 10 in number ${ }^{1}$ and, as their number increased many young men of mature years felt themselves called upon to preach the gospel to their countrymen, and the course of the German department, established many years ago, was arranged to suit their scholastic attainments. The course of instruction is subject to modification, according to the needs of the students. The study of the English language does not cease with the second year, but is continued by attendance at many of the lectures and other exercises of the English department. The course of instruction, now extended to six years, is divided into two parts; first, a preparatory or academic course, embracing the three lower classes; and, secondly, the theological course proper, embracing the three higher classes. Students in these higher classes not infrequently continue at the same time their academic studies.
To meet "manifest and growing needs" the German department of the Chicago Theological Seminary was opened in 1882, the Dano-Norwegian in 1884, and the Swedish in 1885. "The German department is in close connection with the German Seminary at Crete, Nebr., and has already received students from it. The Swedish department has the approval of many of the Swedish churches in this country, both among those which are independent and those which belong to the 'förbundet.' The Dano-Norwegian department has no ecclesiastical connections. It originated in the suggestion of a banker in Chicago, a Norwegian by birth, who has rendered it pecuniary aid." These foreign sections of the school are thus described:

The departments are under the charge of able and judicious teachers of high Christian character, graduates of foreign universities. The instruction given to the students in these departments is similar to that of the special [English] course, and it is expected that they will, as far as possibie, attend lectures in the middle and senior years with the regular classes. It is required, also, that all foreign students shall taze at least two exercises a week each year in their own languages. They are allowed to omit in the English course, in the first year, homiletics and natural theology; in the second year, Old Testamentintroluction; and in the third year, pastoral theology. They have an equivalent for these studies in their own languages. Insiruction in English is given
to these who are not familiar with that language by Rev. Reinert August Jernberg, a native of Norway, a graduate of Yale College and of Chicago Theological Seminary.

The Slavic department of the Oberlin Seminary was opened at the instance of the officers of the American Home Missionary Society, and has for its object the training of young men of Slavic descent for missionary work among their countrymen in the United Siates. The course of study now occupies three jears, and is pursued in English and Bohemian. In Bohemian, the students are taught by a native teacher the correct use of the language, and are drilled in the preparation and delirery of such addresses as are likely to be required of them. The students for this department are obtained through the instrumentality of the superintendent of missionary work among the Slavic people.

Quite as near to national sympathy, and, in a certain sense, still more deserving of it, are the descendanis of those who occupied the territory now covered by a European civilization and also of those who were broughthere for the purpose of being sold into perpetual slavery. An interpretation of the Constitution ${ }^{1}$ has made the Indian a peculiar kind of foreigner in our imperium, and an amendment to the Constitution has made the negro a member of our body politic. The Gene:al Gorernmentcares for and educates the first, while the other has been launched into the struggle for existence without further provision than the constitutional provision referred to, and an education in the public schools of his natire State. The improvement effected in the social condition and enlightenm nt of these two races is largely, if not entirely, due to religious enthusiasm. There is not an American denomination of wealth or power that has not distinguished itself in this work, and it would be invidious to make distinction further than to say that the Protestant churches have operated largely in the South as well as in the West, and that the Roman Catholic Church has also been eminently successful in missionary work among the Indians.

If we bear in mind the injunction of the German Theological School and the practice of the foreign departments of certain seminaries, one Indian school especiaily calls for our attention. The Santee Normal Training School was established in 1870 for the purpose of educating native teachers, preachers, interpreters, and business men for the Dakota or Sioux Nation. The great object of the work is to prepare a native agency which shall work the regeneration of a race " which is so thoroughly controlled in all their ideas and customs by their own religion that no change of life is possible except through the substitution of ano her." Hence, while the students are fitted for citizenship, care is taken to maintain their common interest in, and sympathy with, their own race. This gives law to the methods and makes it needful to use two languag s in order to make the student a competent instructor among his own people. The very idea of education had to be planted in the Indian mind, says Dr. Riggs, the principal. The following are the studies pursued:

WOONSPE KUWAPI.

Analytical Bible study..............-........-. 12	Physiology and hygiene-.-......-.- 73
Arithmetic:	
	154
Intermediate .-.-......................... 43	
	Reading: ${ }^{\text {a }}$
- 153	
	INDUSTRIAL WORK-BOYS.
	Blacksmith shop.
	Shoe shop.-
- 83	
Music:	INDUSTRIAL WORK-GIRLS
	Sewing, cutting, and fitting: cooking, laun-
- 139	dry Work, and housekeeping

[^51]The language of the American negro being English and as he is no longer a heathen, the scope of instruction of the colored theological school is to educate the colored pastor as well as train him as a minister. Thus it follows that the course in a majority of the theological institutions or departments is rery simple, being confine 3 in its religious branches to the study of the Bible and of church history. Of the seminary type, however, is the course the Gammon Theological Seminary and that of the theological department of Howard Unirersity. In both, howerer, Hebrew and Greek are optional. In regard to the course in these languages the dean of the latter institution informs the Bureau that they are "for those who have had the advantages of a college education. Most of the students take the English course of study."

In closing this subject, which might as well have been headed " missionary", as " foreign departments," a project of the Boston University to enlarge the usual missionary department into a distinct course, is to be mentioned. In its scientific aspect the course might be called a department of the philosophy and comparison of religions with special reference to missionary labor. As sketched the course is of three years.

CHATRS ON the relation of science to religion.

One of the results of the conflict between science and those who believe in revealed religion appears to be the foundation and endowment of new chairs in our theological seminaries, with the view of studying the matter, which may be considered, in military parlance, as carrying the war into Africa. The theological seminary at Columbia, S.C., has a Perkins, professor of natural science in connection with revelation and Christian apologetics; the seminary at Princeton, N. J., has a Stuart, professor of the relations of philosophy and science to the Christian religion; the San Francisco Seminary has a Montgomery professor of apologetics and missions, while the seminary at Oberlin has a Douglass lectureship on the relations of science and religion, and on comparative religion. The scope of this instruction, as might be expected, is very intimately connected with apologetics. At least this is the case at the Columbia (S.C.) Seminary, whose course in the department of natural science, in connection with revelation and Christian apologetics, is concerned in its first year, with the philosophy or basis of religion, in its second with comparative religion, or the study of the forms in which theism has manifested itself, and in its third year with the connection of science with revelation. Of a less apologetic nature from the standpoint of Christianity as a revealed religion and more related to the science of religions, if such a term be allowed, is the comparative study of the religions of the world. The great enterprise of Oxford in publishing the sacred books of Oriental peoples, the remarkable interpretations of Greek. Roman, and Teutonic mythology and folklore, a revival, it would seem, of the exegesis of later Hellenic writers, ${ }^{1}$ the work of Sanskrit scholars, Egyptologists, and Assyriologists in France, Germany, and England, have created an enthusiasm in the direction of inquiry into the scientific basis of theism that has forced its way into the professional schools of Christian theology, though the study is apologetic only so far as it brings out in strong relief the religion of the peoples of Europe against the background furnished by the religions of the conservative peoples of the Orient. The work of the Divinity School of Boston University will illustrate a course in-

Comparative theology.-Introduction to the history of religion, comparative theology, and the philosophy of religion; special examination of the ChaldæoAssyrian, the Egyptian, Persian, Indo-Aryan. Chinese, Greek, and Teutonic religions : comparative cosmology and mythical geography of the most ancient nations; essays and discussions.

The courses of the Presbyterian seminaries at Princeton and San Francisco are more particularly concerned as yet with theism and anti-theistic theories. The Princeton course does not seem to be definitely fixed. The dean of the Ryder Divinity School of Lombard University informs the Bureau that the course of that school gives prominence to the relations subsisting between science and religion. The course of the department of the seminary at Columbia, S. C., is given in full.

Natural Science in Connection with Revelation and Christian Apologetics.

The instruction in this department is given by means of lectures and recitations. No text-books are prescribed, but books of reference are recommended. Oral and written oxercises are regularly required in the class roam.

Each year a course of lectures is given to the several classes in the seminary. In these courses the ground of Christian apologetics is corered in a general way. In all the courses atiention is directed to the scientific aspects of the various topies under discussion; and during the senior year special attention is given to the relations of natural science and revelation.

1. Junior year.-The nature, scope, spirit, and aim of apologetics; the theory of knowlelge, and the relations of knowledge and belief; the nature of the religious consciousness and theistic belief; the various theories to explain the origin of religion; theistic arguments in detail, and their precise import; antitheistic theories: Atheism, agnosticism, positivism, materialism, and materialistic evolution, pantheism and idealistic evolution, deism, socialism, secularism. Other topics required from time to time in defense of Christianity will be taken up.
2. Niddle year.-Comparative religion: Islam, religions of Egypt, Canaan, Phœenicia, Assyria, Babylon, Greece, Rome, Persia, India, China, Japan, Western Europe, and savage tribes. The supernatural in its historical manifestation. Revelation as historical: Higher criticism and false historical theories of the Scriptures. The Miracle: Its historical evidence and import. The Christ of history: Discussion of false historical views of Christ and the Gospel narratives. The supernatmal in a kingdom: The church historically considered. The evidences in general, external, internal, and experimental.
3. Senior year.-The connection of science With revelation: Several preliminary questions coñsidered. The field of scientific inquiry will be reviewed and results compared with the Scriptures at various points of coutact. Physics: Matter and force briefly considered. Biology: Nature and origin of life. Origin of species by the theory of descent: Anhropology, relation of man to the brute creation. the races of men, the unity and antiquity of the race, man's primitive condition, the pre-Adamite theory. Geology: Specially in its bearing on Genesis. The Deluge: Astronomy and chronology as they relate to the Bible, creation and evolution.

At New Haven a university professorship of music has been created, which is for the divinity school as well as for other departments of Yale. In fact music, elocution, and physical culture appear to have been assuming considerable proportions as concurrent theological studies or exercises.

LAW.

Through a committee, the National Bar Association has for nearly a year been making an investigation of the condition of instruction in jurisprudence, not only in America, but the world over. By the agency of this Bureau a circular of inquiry has been distributed, the answers to which are now receiving the attention of the committee. In a few days their report will be given to the public, and there is therefore no necessity of instituting for the law schools such a far less pretentious and thorough study as has here been made for the schcols of medicine and theology.
[NOTE.-As these pages go through the press it can be definately stated that the final report of the committee will appear as a part of the annual repor o this Bureau for the school year 1890-91, and also, at an earlier date, in phampletform.

The report as thus presented will contain the results of the very thorough study which the committee made of the methods in vogue in a number of our representive schools of law, and a supplementary series of essays dealing with the stady of jurisprudence in Europeanschools, the curricula (in tabular form of the American schools of law, and with the study of law in collegiate institutions and commercial schools.]

SCHOOLS AND COLLEGES OF APPLIED SCIENCE.

REQUIREMENTS FOR ADMISSION.

The colleges and departments endowed with the national land grant of 1862 may be divided into two classes when taken with reference to their requirements of admission. One class-not quite half of the whole number-is composed of those who require nothing more than proficiency in the studies of the grammar grade of the public schools, while the other class requires in addition the elements of algebra and geometry. In several cases, however, algebra to quadratic equations and plane geometry are deemed sufficient, while in one case, to algebra and geometry completed is added trigonometry. Botany, chemistry. or physics is required in several schools and in one Latin and in another French. As about half of the schools have preparatory departments, it would seen: that any deficiency on the part of the candidate might there be made good before he entered upon his course in the collegiate department. The arrangement of the University of Minnesota in this respect is unique; it has a preparatory department, but even that is an agricultural course. In the catalogue for 1891-92 the reasons for the institution of two agricultural courses are given with considerable force, as follows:
"Observation and experience have shown that all the facilities afforded by the regular colleges of the country for agrieultural education have failed to attract any large number of farmers' sons. The requirements for admission are such as to compel the boy to leave home for one or two years to secure such preparation, and this, together with the four years necessary to complete a full course, entails an expenditure of time and money which comparatirely few can a ord, and the education thus received, while valuable in itself, fails in many respects to furnish the training and knowledge needed by young men for the practical duties of the farm. In order to meet this want the board of regents of the university has established a "school of agriculture" with a full equipment of buildings and instructors on the experiment farm, where students live, work. and study during the three years devoted to this department. * * * Students will be recsived without examination in subjects on which they can furnish the certificates of high schools or of county superintendents."
Graduates of the School of Agriculture are admitted to the college. In the catalogue above cited the number of students in the College of Agriculture is given as 5, all freshmen; in the School of Agriculture, 104. In two or three institutions ashorter course is provided, generally of two years, which serves the purrose of the school of agriculture of the Minnesota University.
Turning now to the technological schools not endowed with land grant the same subjects are required as in the case of the schools endowed with the land grant. At the Lawrence Scientific School of Harvard, the John C. Green School of Princeton, the Chandler Scientific School of Dartmouth, the Towne Scientific School of the University of Pennsylvania, the Polytechnic School of Washington University, and the Lehigh University, it is no surprising that the requirements in mathematics should be uniformly high; but the distinguishing feature between the school attached to a school of b -lles lettres and the isolated institution for the benefit of agriculture and the mechanic arts is the demand for literary culture, as shown by the requirement of a foreign language by the departments of colleges and universities. The Sheffield School of Yale and the Massachusetts Institute of Technology show the same characteristic as the nonendowed departments justnamed. Cornell, endowed with the national land grant, does not require a foreign language in the preliminary examination unless the candidate enters for a degres.
There is a requirement of the Lawrence Scientific School that merits attention. In physics the candidate is examined "either in (1) astronomy (Lockyer.s elementary lessons) and physics (Avery's elements of natural rhilosophy or Gage's elements of physics); or (2) a course of experiments in the subjects of mechanics, sound, light, heat, and electricity, not less than forty in number, actually performed at school by the pupil. These experiments may be select=d from A. M. Worthington's Physical Laboratory Practice or from the 'New Physics,' by John Trowbridge, or from any similar laboratory manual."

Literary astronomy and physics call for no particular mention, but a course of forty experiments in the subjects of mechanics, sound. light. heat, and electricity, actually performed at the school by the pupil, is an important innoration. The principal difficulty in the way of this kind of instruction has been rery ably expressed by Prof. Trowbridge, of Harvard, in the preface to his "New Physics," as follows:
"The teacher may grant the comparatively small result which is obtained from the study of physics by the method of lectures and recitations; but he will immediately ask, 'How can we obtain the time for laboratory work in physicscrowded as we are with so many studies?' Moreover, the subject of physics is unlike that of chemistry or botany. In these subjects the cost of the apparatus and material is comparatively small."
It would be interesting to know how many of those applying for admission to Harvard have availed themselves of this election, but efforts to ascertain the fact have failed. ${ }^{1}$
In almost every school there is a "formal" examination for admission.
The selection of the beneficiary varies considerably among the institutions endowed with the land grant. In some cases it is the county judge, court, or superintendent that selects the pupil, in others the appointment is in the hands of the members of the legislature, and sometimes the selection is made by means of a competitive examination. In the Georgia School of Technology there is a scholarship for every member of the House of Representatives, filled by competitive examination. The State board of education fills the scholarship at the Worcester Free Institute, and the city school board of Philadelphia the 31 city scholarships of the Towne Scientific School of the University of Pennsylvania.

I.

COURSE IN CIVIL ENGINEERING.

Perhaps the only thing that is absolutely agreed upon as an essential for the successful practice of the profession of civil engineering is a general culture of the mind. For it seems to be thought that this general culture will give the ability of forming general ideas and of speculating upon things, the prerequisites of a scientific method. ${ }^{2}$

The conception of Gen. Thayer in founding the postgraduate school of Dartmouth College, which bears his name, as to what this general culture should be was more technical. He required for admission knowledge of mathematics that could only be obtained at a college or a high class technological school, and the pupil when once entered upon the course of study has his attention confined to "surveying in general," "construction in general," and special applications. (See Table A.)

The civil engineering course of other American high-class technological schools is arranged upon an entirely different plan, being, in a word, a compromise. Instead of the two years of concentrated work on this specialty as at the Thayer school, the compromise course is lengthened to four years, its admission requirements are lowered to admit the high school graduate, and the first two years of the course are partly given to laying a foundation for general culture and partly for a specialty.

Turning to Europe a different condition of affairs is shown. In Germany there are 10 technical universities, called generically the Technishe Hochschulen. Admission to these technical universities is obtained under the same condition as that to the literary institutions called universities, the possession of the Reifezeugniss of a gymnasium or of a realgymnasium. An examination of the programme of the civil engineering course of the Technical University of Hanover given in Table B will show that nothing of a literary nature is there taught, for the general culture of the intellect is supposed to have been accomplished by the course in the gymnasium and to be cartified to by the certificate of maturity or Reifezeugniss, which gives the student admittance to the university. What that general culture is will be shown by the courses of the Gymnasien, which are given beside the civil engineering course of the technical university. It is perhaps too much to say that the course of these Gymnasien is equal to the course of our colleges; but the programmes that follow fully explain themselves. (Table B.)

[^52]The course of civilengineering in France is bestillustrated by the programme of the celebrated "Schosl of Bridges and Roads" (Tab,e C). With that logic ior Waich the French are noted the instruction of an engineer is a series of interdepeadent courses in three dilerent schools. The first of thes ?, the lyc en cor eesponds to the German gymnisium as an institution of culture, th, h in its internal arrangements it bears a pretty close resemblance to our colleges that have a courso in the anciont languages, a Latin scientific course, and aloo an English scientific courss. On the contrary in the German college or gymnasiam oas, and only one, curriculum is followed, in the realgymnaziun, or gymnasium wi hout Greak there is also only one course, an lin the realschu'e, which \perp as neither La in or Greek, the same unity prevails. Thus the Germans have a separate school for each separate curriculum. But in France the gymnasium and the reaschule aje contained in the same institution, the course corresponding to the gymnasium is called l'enseignemeni classique, and that corresp nding to the r a: schule is called l'enseignement special. while to supply the place fille 1 by the rea gymnasium in the German system the enseignement classique has aiter the coapletion of the third class, an enseignement scientifque dans les classes de mathématiques (instruction in science in the mathematical classes). Mathematics hasever been considered in France as fully entitled to be called a science as physics is, thourh in translating the programme the writer has adopted the ashon of English p:ogrammes. Thus in France in the same school, the lycèe, there are three concurrent curriculums. But it is only the mathematical classes that are to be cousidered here.

Now, $i s$ is customary for those students who intend to enter upon a course of instruc ion under a Faculty of Sciences or upon the course of the military school at St. Cyr, to take the first two years of Division of Science, callod, respectively, the preparatory and the elementary c'ass of science. Having finished the sudies of these two years, the degree of Bachelor of Science is conferred. ${ }^{1}$ But for those who desire to enter the school for preparing teachers for the lycée (École Normale Supérieure), or thosə who desire to enter the quasi military Ecole Polytechnique, a more extended knowledge of mathem tics is required, which is given in a class called special mathematics. The Ecole Polytechnique is the sesond courso in the education of the French engineer, but its course is concerned with unappli sd science. "The course forms a great physcomathematical encyclopædia, the instruction there given is a general instruction destined to develop the scientific mind and to furnisi each pupil with the to l that later on will serve him when engaged in personal work. In a word. the scaool neither produces engineers nor officers. Its rôle is at once more elevated and more modest; it wholly consists in proparing students for special schouls whose business is to make engineers and officers. It is at the artillery school, at the naval school, etc., during two years, and at the schools of bridges and roads, and of mines during three years. that technical instruction is given." ${ }^{2}$

Table C will show the character of the programmes of several French schools which form a course of instruction:

Table A.-AMERICA.

An Example of a High-Grade Composite Course in Civil EngineerING.

REQUISITES OF ADMISSION.

Short English composition and correction of ungrammatical language, geography, history of United States, arithmetic, algebra, Wentworth's Elements, plane geometry, French or German grammar, and translation of easy prose.

COURSE.

FIRST YEAR.

Common to all regular courses.

First term.-Solid geometry, algebra, general chemistry, chemical laboratory, rhetoric and English composition, French (or German), mechanical drawing, free-hand drawing, military drill.
Second term.-Plane and spherical trigonometry, general chemistry, chemical laboratory, political history since 1815, French (or German), mechanical drawing, free-hand drawing, military drill.

[^53]SECOND YEAR.
Firstterm.-Surreying and plotting, topogra hical drawing, descriptive geometry, descriptire astronomy, analytic geometry, physics, political economy, German.
second term. $\rightarrow u r r e y i n g ~ a n d ~ p l o t i n g, ~ d i f f e r e n t i a l ~ c a l c u l ~ u s, ~ p h y s i c s, ~ p h y s i c a i ~ g e o g r a p h y, ~ E n g-~-~$ lish literature, German, mineralogy.

THIRD YEAR.

First term.-Railroad and highway engineering with field worlz and drawing, stereotomy, advanced surveying, integral calculus, general statics, physics (heat), physical laboratory, structural geology, German, English composition.
Second term.-Railroad and highway engineering with field work and drawing, advanced surreying. elements of construction, elementary design, spherical and practical astronomy, paysical lavoratory, historical geology, German, strength of materials, kinematics, and dynamus.

FOURTH FEAR (PURELY PROFESSIONAL).

First term.-Theory of structures, bridges and roofs, hydraulics, strength of materials, theory of elasticity, metallurgy of iron, elements of geodesy. Options: 1. Sanitary engineerins, bridse design, hydraulic measurements and sanitary field work; 2. Railroad engineering, rillroad management, bridge design; 3. Least squares, geodesy, physical laboratory, hydrauic measurements.

Second term. - Theory of structures, bridges and roofs, English composition, business law, thesis work. Options: 1. Hydraulic engineering, machinery and motors, bridge and sanitary desirn. public hygiene; 2. Railroad engineering, machinery and motors, bridge design; 3. Hydraulic engineering, geodesy and map projection, design, differential equations.

The Curriculum of the Thayer School of Civil Engineering.

REQUISITES OF ADMISSION.

Candidates for admissinn must pass a thorough examination in the following subjects:
(1) English grammar; (2) geography; (3) history of the United States; (4) arithemetic; (5) booikeeping, only the simpler principles and methods of single and double entry; (6) algebra, Bourdon; (\%) geometry, Legendre; (8) trigonometry and mensuration; (9) compass survering, Murray: (10) descriptive geometry, including shades, shadows, perspective, Church, and isometrical drawing, Warren: (11) analytic geometry, Bowser or Church; (12) calculus, Rice and Johnson or Bowser; (13) analytic mechanics, Wood's elementary; (14) chemistry, any good elementary work including brief treatment of organic chemistry, e. g., Barker's; (15) physics, Ganot; (16) astronomy, Newcomb and Holden; (17) physical geography and meteorology.

COURSE.

SURVEYING IN GENERAL.

A.-Instruments and fundamental operations.-Construction and adjustments of all essential instruments used in the field and office. Principles and practice of location and measurement of lines and of the measurement of angles.
B.-Surveying and location.-Of lines and areas; leveling; triangulation; topography, including hydrography; mining surveying; city surveying; geodesy, including practical astronomy (as to location of meridian and determination of latitude, azimuth, and time), ouiline of principles and methols; office work; computing, adjustment, and comparison of observations, plotting, and estimating.

CONSTRUCTION IN GENERAL.

C.-Mechanics and general applications.-(a) Mathematical theory of motion; (b) physical science of motion in general; (c) statics and dynamics of rigid bodies; (d) statics of fluids; (e) dynamics of fluids; (f) principl es of graphical statics; (g) elements of mechanism.
D.-Nature of materials.-(1) Physical and chemical properties, by general description and analysis, of all materials used for construction, including a suitable course on mineralogy; (2) mechanical properties, considered analytically and experimentally.
E.-Fundamental applications of materials.- (1) Special forms of materials and structural elements, including stonecutting, carpentry, ironwork, workshop appliances, etc.; (2) masonry and foundations-nomenclature, principles, methods, and appliances; theory of retaining walls and arches; (3) estimates, specifications, and contracts.

SPECIAL APPLICATIONS.

F.-Britges and roofs.-Trusses, arches, and suspension bridges; mathematical and graphical analysis of stresses; general study of construction and preservation; tours; designing.
G.-Rockwork, tunneling, and mining.-Outlines of geology; explosive agents and blasting, theory and practice; special appliances and methods in subterraneous works.
H.-Highways and railways.-Surveys, construction, maintenarece, añ operation-leading principles and practical details.
I-Hydraulic engineering.-Principles and data of hydraulics; collection, storage, and distribution of water; Hydraulic motors-theory, construction, and operation.
J.-Heat and heat engines.-Principles of thermodynamics; fuels and their combustion; steamheat engines-construction and operation of typical forms; application of laws.
K.-Sanitary engineering.-Drainage and sewerage-systems and appliances, governing principles, heating and ventilation.
L.-Rivers and harbors.-Principles relating to improvement; surveys and observations; constructions in different cases; methods and means of procedure.

An Example of the Usual Course in Civil Engineering.

REQUISITES FOR ADMISSION.

Arithmetic.-Examples in all the fundamental rules, together with reductions in the metric system of weights and measures.
Algebra.-Fundamental principles and operations, factoring, least common multiple. greatest common divisor, fractions, involution, evolution, radicals of the second degree, simple and simultaneous equations of the first and second degree.

Geometry.-Plane and solid.
English.-The principles of English grammar and composition.
Chemistry.-Eliot and Storer's Elementary Manual of Chemistry, or an equivalent.
Physics.-Stewart's Elementary Physics, or an equivalent.

COURSE.

FIRST YEAR.
First term.-Algebra and trigonometry, chemistry (lectures), chemical laborators, rhetoric, French. mechanical drawing.
Second term.-Analytical geometry, chemistry (lectures), chemical laboratory, English literature, French, descriptive geometry and drawing.

SECOND YEAR.

First term.-Surveying, analytical geometry, descriptive geometry, physics (lectures and recitations), German, French, drawing.
Second term.-Surveying and leveling, calculus, shades, shadows, and perspective, physics (lectures and recitations), French, German, drawing.

THIRD YEAR.

First term.-Railroad engineering, strength of materials, mechanics, physics (lectures and laboratory). topography, German, mineralogy, drawing.
Second term.-Railroad engineering, mechanics, machine drawing, stability of structures, physics (lectures and laboratory), stereotomy, German, geology.

FOURTH YEAR.

First term.-Astronomy, graphical statics, steam engine, hydraulic engineering, roofs and bridges, architecture.
Second term.-Engineering construction. details of practice and design, specifications and contracts, sanitary engineering, geodesy, thesis work.

Table B.-GERMANY.

Course of the Gymnasium of Stettin, in Pomerania (a Town of 116,000 INHABITANTS).

REQUISITES FOR ADMISSION.

Religion, German grammar, reading, memorizing, orthography, geography, fundamental rules of arithmetic and denominate numbers, writing. [These are the studies of the last year of the Vorschule or preparatory school.]

- COURSE.

Sexta.-Bible history, German (exercises in reading and repetition of what has been read, grammatical and orthographic exercises, memorizing poems, to wit: (1) Der Gute Kamerad, Uhland; (2) Wandelnde Glocke, Göthe; (5) Des Deutschen Knaben Tischgebet, Gerok; (6) Die Wacht am Rhein. A written exercise weekly, Latin grammar and reading book, history, and geography (Greek and Roman biographies, non-European lands), arithmetic, botany, writing, drawing.
Quinta.-Religion, German, Latin, French, history and geography, arithmetic, botany and zoölogy, writing, drawing.
Quarta.-Religion, German, Latin (Nepos), French, history, geography, business arithmetic, geometry, natural history, drawing.
Untertertia.-Religion, German, Latin (Cæsar and Ovid), Greek grammar, French history (German history to 1648), European geography, geometry, algebra, elements of biology.
Obertertia.-Religion, German, Latin (Cæsar, Ovid, and Curtius), Anabasis, French, English (optional), history (1648-1870), geography, algeura, geometry, mineralogy, and zoilogy.
Untersekunda--Religion, German (study of Schiller's dramas and Göthe's Hermann and Dorothea every 4 weeks as composition), Latin (Cicero and Livy), Greek (Odyssey, Anabasis, and Hellenica), French (Voltaire and La Fontaine), Hebrew (optional), English (optional), history and geography, algebra, geometry, physics.

Obersekunda.-Religion, German, Latin (composition, (1) Tarquinius Superbus Roma expellitur; (3) Hannibal bellum contra Romanos parat), Greek, French, Hebrew (optional), English (optional), history and geography, algebra, trigonometry, physics.
Unterprima.-Religion, German, Latin (Cicero, Tacitus, Horace), Greek (Plato and Demosthenes), French. Hebrew (optional), English (oftional), history and geography, algebra, trigonometry, physics.

Gberprima-Religion (the Gospel according to John, the forerunners of the Reformation, etc.), German (a study of the life and works of Gothe and Schiller, with compositions on (1) How far is the observation of nature on one side depressing, on the other elevating? (2) Life is indeed a gift, but before all a duty. What influence had his residence at Strasburg on Göthe? etc.), Latin (Cicero pro Sestro, Tacitus, Horace. Theses: (1) Fortunæ inconstantiam summum quemque antiquitatis virum exportum esse; (2) De Polycrate Samis; (3) Comparantur Camillus et Themistocles, Tertium bellum Punicum narratur, etc.), Greek (Thucydides, Plato, Sophocles), French (Corneille's Cid, Molière's Femmes Savantes, conversation, written extemporalia), Hebrew (optional), English (optional), history and geography, physics, mathematics, algebra, stereometry, trigonometry, geometrical analysis.

Course of the Realgymnasium of Stettin, in Ponierania.

REQUISITES FOR ADMISSION.

Religion, German pieces in prose and verse, natural history of the surrounding country, fundamental rules of arithmecic and simple denominate numbers, writing. [These are the studies of the 1ast year of the Vorschule, or preparatory school.]

COURSE.

Sexta.-Bible history of Old Testament to Psalms, etc., study of pieces read in class, learning poetry, words, and the declensions, simple sentence, writing and reading every week a composition, Latin grammar to verbs, third, conjugation in io. every week a Latin exercise, Greek and Roman myths (Sagen), globes and non-European countries, arithmetic, study of twenty-five plants with easily determined organs, animals of the first two classes, drawing from straightline figures.

Quinta.-Bible history, German, Latin, French, German myths, geography, arithmetic, natural history, drawing.
Quarta.-Religion, German, Latin, French, history, geography, geometry, arithmetic, natural history.
Untertertia.--Religion, German, Latin (Nepos and Cæsar) French, English, history, geography, geometry, algebra, natural history, drawing.
Obertertia.-Religion, German, Latin (Cæsar and Oyid), French, English (Scott's Tales of a Grandfather), history, geometry, algebra, botany, zoölogy, drawing (freehand and mechanical).

Untersekunda.-Religion, German (essays on masterpieces), Latin, French, English, history and geography, geometry, algebra, goniometry, physics, mineralogy, perspective.
Unterprima.-Religion, German, Latin (Sallust and Livy), French (Racine and Molière), English (Shakespeare and Macaulay), history (1517-1763), plane and spherical trigonometry and stereometry, algebra, physics, chemistry, drawing.
Oberprima.-Religion, German, Wallenstein, Macbeth, Egmont, Göthe's Iphigenia in Tauris compared with that of Euripides, Iphigenia in Aulis of Racine compared with that of Euripides, the Orestes of Æschylus and the Electra of Sophocles, lesser writings of Schiller, some of the more diffieult poems of Schiller and Goethe, elements of empirical psychology, rhetoric (selected portions) Theses, (1) examples of everyday sense deceptions, (2) discussion of ideas, the fancy, and hope in connection with Goethe's poem, entitled "Meine Göttin," (4) Was Schiller right in his "Critic of Egmont?" (8) the groundwork of Schiller's "Was heisst und zu welchem Ende studiert man Universalgeschichte?" (8) characteristics of the clergy, the nobility, and the commercial class of cities (Städtewesens) during the Middle Ages; What is culture? Latin (Horace, Cicero, Tacitus, Livy), French, English, history (1763-1871), analytical geometry, new geometry: physics (experimental physics), chemistry (the metals), drawing.

Optics.-Colors, spherical lenses, the focus, enlarging apparatus.
Mfechanics.-Motion of falling bodies, friction, elasticity, unelastic boaies, the pendulum, centrifugal force, the comparison of living forces.

Course of the Division for Civil Engineers (Bau-Ingenieurwesen) in the Technical University of Hanover.

REQUISITES FOR ADMISSION.

The certificate of maturity (Reifezeugniss) of a German gymnasium, or real gymnasium, or a Preussische Oberrealschule.

FIRST YEAR.

Winter session.-Differential and integral calculus ($4 \frac{1}{2}$ hours lectures, 1 of practice), analytical geometry, plane and solid (3 hours), algebraic analysis and trigonometry (3 hours average), descriptive geometry (3 hours lectures and 6 hours of practice); physics (4 hours), mechanics ($3 \frac{1}{2}$ hours), elements of mineralogy (2 hours), freehand drawing (6 hours); in all, 23 hours of lectures and 13 of practice.
Summer session.-Differential and integral calculus (3 hours lectures, 1 of practice), descriptive geometry (3 hours of lectures and 6 of practice), plan drawing (4 hours of practice), physics (4 hours), mechanics (7 hours), elements of chemistry (6 hours) elements of mineralogy (2 hours), freehand drawing and coloring (6 hours practice); in all, 25 hours of lectures and 17 of practice.

SECOND YEAR.

Winter.-Differential and integral calculus (4 hours), surreying (4 hours lectures, 2 hours practice), elasticity (5 hours), geology (2 hours), construction of building 3 (4 hours lectures, 6 of practice), elements of machine construction (3 hours lectures, 4 of practice), building techno ogy (metallurgy, wood, etc., 3 hours).

Stmmer.-Surveying (2 hours lectures, 6 practice), graphic statistics (2 hours lectures, 2 practice), hydraulics (2 hours), analytical mechanics (3 hours), geology (2 hours), construction of buildings (4 hours of lectures, 6 of practice), elements of machine building (3 hours lectures, 4 of practice); in all, 18 hours of lectures and 18 of practice.

TEIRD YEAR.

Winter-History and styles of architecture (3 hours). building construction (2 hours of lectures, 4 hours of practice), embankments and road-making (erd und strassenbau) (2 hours), railroad building (2 hours), stone bridges (2 hours lectures, 4 practice), iron bridges (2 hours lectures, 4 hours practice), hydrology and hydraulic engineering (4 hours lectures, 2 hours practice), elements of machinery (3 hours); in all. 20 hours lectures, 14 hours practice.
Szmmer.-Styles of architecture (4 hours practice), embankments and road-making (2 hours), railroad construction (2 hours lectures, 2 hours practice), stone bridges (2 hours lectures, $\dot{4}$ hours practice), iron bridges (4 hours lectures, 4 hours practice), hydrologic and hydraulic engineering, locomotives, and cars (2 hours).

FOURTH YEAR.

Winter.-Sketches of simple buildings (2 hours lectures, 4 hours practice), transportation ${ }^{1}$ (2 hours), railroad construction (2 hours lectures, 4 hours practice), tunneling (2 hours), iron construction (2 hours lectures, 2 hours practice), iron bridges (2 hours lectures, 4 hours practice), liydraulic engineering (4 hours lectures, 4 hours practice) ; in all, 16 hours lectures and 18 of practice. In addition may be taken up the following: Theory of elliptical functions (3 hours), surveying and projection (2 hours), telegraphy and telephony (2 hours), political economy.
summer.-Transportation (2 hours lectures, 2 hours practice), railroad construction (2 hours lecturos, 4 hours practice), iron construction, etc. (2 hours practice), iron bridges (2 hours lectures, 4 of practice), hydraulic engineering (2 hours lectures, 4 of practice); in all, 8 hours of lectures and 16 of practice. In addition may be taken up the followng\%: Selected parts of higher mathematics (4 hours). surveying and projection (3 hours practice), astronomical demonstrations (2 lectures), protection from lightning (1 lecture), political economy (2 lectures).

TABLE C.-FRENCH.

Course of Special Mathematical Instruction in the Colleges (Lycées) of France, Preparatory to the École Polytechnique of Paris. ${ }^{2}$

General studies.

elementary division of the lycée.

Preparatory class.-(Child supposed to be 8 years of age): French, $9 \frac{1}{2}$ hours a week; English or German, 4 hours; history, $1 \frac{1}{2}$ hours; geography, $1 \frac{1}{2}$ hours; arithmetic, $2 \frac{1}{2}$ hours; lessons on common mineral substances, etc. (coal, iron, water, air, animals), 1 hour.
Eighth class.-French, 9 hours; English or German, 4 hours; history, $1 \frac{1}{2}$ hours; geography, $1 \frac{1}{2}$ hours; arithmetic, 2 hours; lessons on minerals, as before, 1 hour; drawing, 1 hour.
seventh class.-French, 9 hours; English or German, 4 hours; history, $1 \frac{1}{2}$ hours; geography, $1 \frac{1}{2}$ hours; arithmetic, 2 hours; elementary ideas about the rocks and soil of the earth, 1 hour.

examination for promotion to the division of grammar of the lycée.

Sixth class.-French, 3 hours; Latin, 10 hours; English or German, 2 hours; history, 2 hours; geography, 1 hour; arithmetic andgeometry, 1 hour; zoölogy, 1 hour; drawing.
Fifth class.-French, 2 hours; Latin, from 8 to 10 hours; Greek, 2 hours from January 1 to close of year; English or German, 2 hours; history, 2 hours; geography, 1 hour; arithmetic and geometry, 1 hour; botany, 1 hour; drawing.
Four:h class.-French, 2 hours; Latin, $5 \frac{1}{2}$ hours;'Greek, 6 hours; English or German, 2 hours; history, 2 hours; geography, 1 hour; theoretical geometry (first two books), 1 hour; geology, 1 hour; drawing.

EXAMINATION FOR PROMOTION TO THE UPPER (SUPÉRIEUR) DIVISION OF THE LYCEE.

Third class.-(Student supposed to be 14 years old): French (Corneille's Cid and Horace, Racine's Iphigenie, les Plaideurs, history of literature and composition), 2 hours; Latin (Livy $215 t$ and ${ }^{2} 2 n d$ books, Cicero, De Suppliciis, Pliny, Sallust, Virgil, compositions), 5 hours; Greek (Odyssey, Heroditus, Memorabilia, Lucian), 5 hours; English or German (Goldsmith's Vicar, Macaulay's History, or Göthe or Schiller), 2 hours; geography, 1 hour; arithmetic. algebra, and geometry (theory of numbers, algebraic computation, regular polygons, circle), 2 hours; physics (gravity, equilibrium, liquids and gases, heat), all tanght in an essentially experimental way, 1 hour; drawing.

[^54]EXAMINATION FOR PROMOTION TO THE CLASS OF PREPARATORY MATHEMATICS IN THE SECTION OF SCIENCE.

Special mathematical clusses (Section of Science).

Proparatory class.-Mrthematic, algebra, geometry, cosmography, 10 hours; natural history, 1 hour; French, 3 hours; Latin (Cæs \downarrow, Cicero, Virgil, Horace), 2 hours; English or German cliseses, 2 hours; history and geography, 4 hours; drawing.

Elementary class.-Arithmetic, algebra, geometry, cosmography, frigonometry, elements of descriptive geometry and of mechanics, 103 hours; physics (gravity, heat, electricity, aroustics, opstcs. and inorganic chemistry, $6 \frac{3}{4}$ hours; French and Latin, 2 hours; English oi German, 2 homs; history and geography, 3 hours; philosophy, 1 hour: drawing.
class of special mathematics.-Revision of arithmetic, revision and completion of algebra, geomekry, and trigonometry, descriptive geometry, anolytical geometry of two and three dimensions, 11 hours; physics reviewed and completed, 3 hours.

Course of the Ecole Polytechnique (from among whose Graduates the Students from the Ecole des Ponts et Chaussées are seLECTED).

The course is of two years and is given under the following heads:
Analysis.-Differential and integral calculus. This course lasts two years. It is completed by conferences upon the immediate application of the subject studied. In addition the students may be called upon to show their knowledge of the subject on paper.
lescriptive geometry.-Different modes of representing bodies, study of the principal geometric surfaces. This course occurs during the first year.
Stereotomy.-Carpentry and stone-cutting. Course occurs in second year.
Mechanics and machines.-Course of two years. Completed by designing of the parts of a machine.
Physics.-Thermodynamics, electricity, and magnetism (first year), acoustics and optics (second year). Completed by experiments.
Chemisiry.-Metals (1 year), organic chemistry (second year). Completed by experiments.
Astronsmy and geodesy.-Course occurs in the second year. Completed by experiments.
Architeciure.-Course is of two years. Completed by designs and projects.
Military art.-Course of the first year.
History, geography, and liferature.-History of the political, military, and moral greatness of the principal states of Europe in modern and contemporaneous times. Course of two years and is completed by essays upon historical subjects.

German, drawing, coloring drawings, during two years.

Course of the Ecole Nationale des Ponts et Chaussées at Paris.

First year.-Resistance of materials, construction of ways of communication, mineralogy and geology, use of wood and iron in construction, decoration of bridges, political economy, general procedure in construction, applied chemistry.

Second year.-Hydraulics, canals (navigation intérieure), construction of bridges, steam engines, use of wood and iron in construction, decoration of bridges, administrative law (first part).

Trird year.-Construction of railroads, construction of maritime works, administrative law (second part), fortification.
In aldition to the general course given above, the curriculum comprehends the study of the German and English languages. In each division the students are exercised in practical work, to wit, graphic representation, drawing, water color, manipulation and tests of building material. leveling and drawing plans, drawing engines and buildings. They draw up plans for construction.
These courses comprise the normal instruction of the school, but in addition there are regular conferences upon telegraphic construction, photography, management of railroads, and fish-culiure. There are also other conferences whenever a discovery or the prosecution of some great worls demands it.
The school possesses an experimental shop, where the students attend upon a series of operations and practical experiments.
Having thus attempted to give some idea of a course in civil engineering both at home and abroad we may venture to examine a little more closely the character of this course in the schools of the United States that have been endowed by national or by private munificence for the purpose of benefiting agriculture and the mechanic aits. This term, civil engineering, we are told by the faculty of the Rose Polytechnic In stitute. is somewhat vague. Sometimes it means land-surveying, sometimes topographical mapping, and often railroad construction. In the Rose Polytachnic it means "all these and moze." Let us use the catalogue of this school, then, not only for this reason, but because, 1 aving out of consideration the eatalogue of the Technical High School (Univensity \dagger of Hanover and of other German states or provinces, and the catalogue of the Massachusetts Institute of Technology, it is among the most thoroughly and ably prepared catalogues that are in the files of the Bureau.
The details of the purely civil engineering in the Rose Polytechnic part of the course are exhibited in the schedule below. The complete course in civil engineering will be shown by subs ituting the several blocks of this schedule for the "shop practice" of the general course in mechanical engineering."

Purely technical instruction in ciril encincering at Rose Polytechnic.

	FIRST TERM.	SECOND TERM.	THIRD TERM.
Freshman year.--	[Same as "Dynamics,"	[Same as "Dynamics,""	Land surreying-t h θ

Sophomore year.-
Theory and practice of surveying ; field practice with transit and lerel; partition and division of land; citysurreying ; mine-surveying, etc. (10 hours.)
Junior jear
Railroad-surveying; map-drawing; retaining walls and theory of foundations. (16 hours.)

Senior jear \qquad

Algebraic and graphical deduction of stresses in arches and continuous trusses; suspension bridges. (14 hours.)
p. 968.]

Topographical dranting; United States Government system of land-surveying; railroad curves; turnouts, etc.; computations of earthwork. (10 hours.)
Algebraic deduction of stresses in framed structures, including roofs and noncontinuous bridge trusses; applications of the method of least squares. (16 hours.)
Designing and dimensioning structures according to the best specifications. (14 hours). Laboratory practice. (6 hours.) Thesis work.

Land surreying-the adjustments and use of instruments used in land-suryeying; chain surveying; compass surreying; calculations of areas; supplying omissions, etc. (8 hours.)
Field practice with transit level, plane table, solar compass, sextant, etc.; railroad surveying. (10 hours.)

Graphical deduction of stresses in roof and noncontinuous bridge trusses. (10 hours.) Stereotomy. (6 hours.)

Lectures and reading; foundations, hydraulics, sanitary engineering, etc. (14 hours); laboratory practice (6 hours); thesis work.

Less adapted to show an actual course of civil engineering, but excellentlyadapted to show how mining, mechanical, electric, and sanitary engineering, and even practical work in geology and chemistry are connected with civil engineering, is the scheme of the Massachusetts Institute of Technology. The first column of the following, schedule, it is hardly necessary to say, shows the department of civil engineering, the second the method by which it is taught, the third the instructor, the fourth the course or courses which include the particular department of civil engineering, the fifth the year, and so on. The first year of study is general and resembles that of the school whose curriculum is given first in Table A:

Purely techrical instruction in ciril engineering at the Massachusetts Institute of Technology.

Subject.	Lect., rec., lab., draw., or field.	Instructor.	Taken by students	+	砫		
Surveying	Lect., rec., field,draw.	Burton, Robbins, Stanwood.	Civil, mining, sanitary engineering,	2	1,2	30	6
Surveying instruments (six lessons).	Lect., field.-	Burton, Robbins.	geology. Mechanical engineering.	3	2		
Surveying --...........-	Lect., field		Mining engineering-	$\stackrel{2}{2}$	1	15	
Topographical drawing.	Draw		Civil, mining, and sanitary engineering.	2	1	15	2
Surveying	Lect., field,	Burton. Robbins,	Civil and sanitary en-	3	1,2	30	2
Geodesy	Lect., field.-	Burton....	Civil engineering...	4	1,2	30	
Goodesy	Lect.	Buron.	-	4		15	
Geodetic surveying .-.--	Lect., fielô.-			4		15	2
Railroad and highway engineering.	Lect., rec.--	Allen.	Civil, mining. and sanitary engineering.	3	1,2	30	3
Railroad field work and drawing.	Field, draw.	Allen, Robbins .-		3	1,2	30	4
Railroad engineering--	Lect., rec., draw.	Allen.	Civil engineering.	4	1,2	30	3

Purely technical instruction in civil enyineering at the Massachusetts Institute of Tech－ noloyy－Continued．

Subject．	Lect．，rec．， lab．，draw．， or field．	Instructor．	Taken by students	$\begin{aligned} & \text { 犬゙ } \\ & \text { ๗̈ } \end{aligned}$	苞		
Railroad management．	Lect．．．．．．．．．．	Allen．	Civil engineering．．．－	4	1	15	2
Stereotomy－．．．．．．．．．．．．．	Lect．，draw．	Porter	Civil and sanitary	3	1	15	4
Theoretical hydraulics．	Lect．，rec	do	Civil，mining，me－ chanical，electric， and chemical engi－ neering．	4	1	15	3
Hydraulic and sanitary	do	do	Civil and sanitary	4	1	15	3
engineering．			engineering．	4		15	2
Sanitary designing Hydraulic motors．．	Lect．，		Mechanical and	4	2	15	2
Hyarauic motors．．			chemical engineer－ ing．				
Hydraulic engineering－	do	do	Civil，mining，and sanitary engineer－ ing．	4	2	15	3
Hrdraulic measure－ ments and sanitary field work．	Field，draw－	do ．．．．．．．．．．－	Civil，mining，chem－ ical，sanitary en－ gineering，and ge－ ology．	4	1	15	2
Elements of construc－ tion．	Lect．，rec．．．	Swain．	Civil and sanitary engineering．	3	2	15	2
Elementary design．．．．	Draw	，		3	2	15	
Theory of structures．．－	Lect．，rec	Swain，Robbins ．	Civil，mining，and sanitary engineer－	4	1，2	30	2
Bridges and similar structures．	do	Swain	ing． Civil and sanitary engineering．	4		30	2
Bridge design ．．．．．．．．．．	D	Swain，Robbins Stanwood	Civil engineering．．．－ Sanitary engineering	4	$\begin{gathered} 1,2 \\ 1 \end{gathered}$	30 15	\}

Having now obtained what we want，that is to say，the details of a purely technical course of civil engineering，it is useless to encumber the pare with other courses．In examining the above courses the reader observes that the first year is wholly or almost wholly deroted to preparatory study and the techno－ logical work does not begin until the second year；for during the preparatory year algebra，geometry，trigonometry，chemistry，or physics，and the mother tongue or another language are studied．He also will observe that during the remain－ ing three years（those represented in the above schedules）no mention is made of geometrical and mechanical or of free－hand drawing，or of that species of drawing called descriptive geometry．Topographical and＂railroad＂drawing， map－drawing，and plane table surveying，etc．，occur，but nothing is said of the general kinds of delineation，whether free－hand or mathematical．It must not be supposed，however，that general mathematical delineation ceases to be a sub－ ject of instruction in the two schools whose courses are represented．At the Rose Polytechnic mechanical drawing is given throughout the second and third years and descriptive geometry during the second year．At the Massachusetts Institute five hours a week for fifteen weeks of the second year，first term，are oc－ cupied with descriptive geometry．It is the same with language and the higher mathematics．They are not treated as an integral part of civil enineering， though studied concurrently by the students of the course in civil engineering． So strictly is the connotation of the term civil engineering observed at the Mas－ sachusetts Institute of Technology that not only pure，but even applied ma－ thematics are considered as coördinate departments with that of civil engi－ neering．The scheme of the department of applied mathematics at that school is therefora given．

Applied Mechanics.

Subject.	Lect., rec., lab., draw., or field.	Instructor.	Taken by students in-	-	E		
Statics and stresses in frames.	Lect., rec .-	Sondericker .-	Civil,mechanical,mining, electrical, sanitary and chemical engineering, architerture and physics.	3	1	10	2
Strength of materials; kinematics and dynamics.	Lect., rec .-	do	As above, with the omission of architecture.	3	2	15	3
Strength of materials.-	Lect., rec	do	Architecture	3	2	10	3
Strength of materials; theory of elasticity.	Lect., rec., lab.	Lanza, Merril	Civil, mining, and sanitary engineering.	4	1	15	3
Strength of materials, friction.	Lect., rec., lab.do	Mechanical, mining, and chemical engineering and architecture.	4	1	15	3
Strength of materials.-	Lect., rec., lab.	do	Architecture	4	1	7	3
Strength of materials; stability of structures; theory of elas-	Lect., rec., lab.	do	Méchanical, mining, and chemical engineering.	4	2	15	3
Machinery and motors	Lect., rec --	Lanza.	Ciril, mining, and sanitary engineering.	4	2	15	3

Of the subjects composing the course of pure mathematics in the Massashuset:s Institute, calculus and analytical geometry enter into the curriculum of the civil engineering and every other course, except that of biology and tha gen ral course, during the second or third year. Differential equations, theory of pro abilities, and spherical and practical astronomy, are features of the fourth year of the civil engincering ccurse for two hours a week for fiteen weeks, in the case of the first subjects and in the case of astronomy for five weeks for three hours a we k during the third year. Though less radical in its treatment of ap lied ma hematics, the Rose Polytechnic also deems that pure mathematics are not civil engineering, though they are indispensable to the student of that subject.

Mathematics at Rose Polytechnic.

	FIRST TERM.	SECOND TERM.	THIRD TERM.
Sophomore year.-	Analytic geometry: Loci; treatment circle, by cartesian and polar coorrdinates; also parabola, ellipse, hyberbola (three times a week). Determinants: In roduction to the theory of determinants, with applications (once a week).	Analytic geometry: the 2d degree between two variables; introduction to inolern geometry; introduction to solid geometry. surfaces of the 2 d degree, suria revolution (three times a wesk). Calculus: Introduction	Calculus: Introduction to differential and integral calcultrs (four times a week).
Junior year......-	Successive differentiation.developments, series. partial differ-	Integral calculus: Eiementary integrals,	Differential equations (five times a week).
		rational fractions, in-	
	series. partial differentiation, maxima andminima, tangents and normals. asymp-	tegration by parts, by rationalization, by	
		series, definite inte-	
		grals, problems (five	
	totes. multiple points,	times a week).	
	envelopes, points of inflecticn, rauius of curvature, evolutes,		
	curvature, evolutes, involutes, tracing curves, roulettes		
	transformations, problems (five times a		

As the methods of instruction-recitation, lecture, or field-are given in full by one of the other of the schedules of the two courses just commented upon, it is time to turn from the technical to the statistical side of the course in civil engineering in order to inquire how the time devoted to the course in other insiitutions compares with that given in the courses just mention d.

The summary of the hours of public study and practice lecture, recitation, etc.) at the Massachusetts Institute, at the Rose Polytechnic, and at the Technical University at Hanover is as follows:

	Arerage number ci hours of recitation.		
	Second jear.	Third year.	Four h year.
Massachusetts Institute:			
Civil engineering (proper)	7	12 2.2	${ }_{1.5} 16$
Pupe mathematics.	5.3	1.2	1.5
Miscellaneous..	13	8	1.5
Total (catalogue)	25.3	23.4	20.5
Total (Special Report)	27	25	
Rose Polytechnic:			
Civil engineering ...-...			
Laboratory practice	0	0	$b 4$
Pure mathematics.-.---.-...-	4	5	0
Mechanical drawing and descriptive geometry	8	6 3	0
Miscellaneous (not including English essay).	3	3	?
Total (catalogue)	25	28	
Total (Special Report)	31	30	31

Technical University at Hannover (Germany)-First year: winter, 34; summer, 43. Second year: winter, 37; summer, $3 \overline{5}$. Third year: winter, 36 ; summer, 36 . Fourth year: winter, 30 ; summer, 30.

It is evident that the schedules of the American catalogues do not give all the work performed; and it is neeessary to obtain this by special inquiry. A preparatory step to such an inquiry was made in the form :or 138.9 .9 , sent out by this Bureau in June, 1890, its object. however, being to ascertain what courses had been introjuced and were being followed in our technological insticutions, and the duration and character of such courses. All these fac s should be booug it out, it is thought, by the following schem thourh the time devotea to each course cannot be accurately indicated on so condensed a form.

Students (technological only) by courses.

Studies.	$\left\lvert\, \begin{gathered} \text { Years } \\ \text { required } \\ \text { to } \\ \text { complete } \\ \text { course. } \end{gathered}\right.$	Hours a week devoted to-		$\begin{aligned} & \text { Punils } \\ & \text { in the } \\ & \text { course } \\ & 1883-90 . \end{aligned}$
		Theory.	Practice (shop or laboratory).	
1. Civil engineering .---				
2. Mechanical engineering				
4. Electrical engineering.				
5. Applied chemistry .-.				
6. Architecture -.....				
7. Asriculture, including horticu				
8. Students in parial courses				
10.				
11.				
12.				

Some eight or nine mnnths later the enterprise of the editor of Engineering News caused that journal to issue a circular of six foolscap printed sheets, that if answered will be a monument of the courtesy of its correspondents, and will place the public interested under obligations to the periodical which has carried
through such an undertaking. In June, 1891, the question represented by Table D. was sent out by the Bureau. The results of that inquiry are tabulated as they have been returned. Neither the question of 1889-90 nor that for 1890-91 was mace with the ambitious design of showing statistically the history and condition of the engineering courses. Indeed, the Bureau was under the impression that such facts could not be obtained with sufficient fullness by the ordinary means of distributing circulars, and it was not prepared to formulate its desires until a study of the answers to the questions on its form and of the annual catalogues of the schools had shown that the time had come when such an inquiry would give fully satisiactory results. As said before a technical journal has undertaken the inquiry, has placed the results in the hands of an expert to be edited, and will soon publish them.

Thus relieved of any scruples in slighting the subject of technological instruction, one may turn to the consideration of a very energetic protest that has been caused by the question which forms the several headings of the following Table D. The point to which the Bureau would call special attention is expressed as follows: "This question [all the headings of Table D], although it can be readily and fairly answered by some and perhaps many of the land-grant colleges, is so unsuited to our methods that even with the best intentions I see no way of fairly and honestly answering it in figures alone." In the case oi the institution thus spoken of the question served its purpose. For years past the following colleges, endowed with the proceeds of the act of 1862 for the benefit of agriculture and the mechanical arts. have found it impossible to separate their technical work from that of their technical departments and have elected to be considered as colleges of letters rather than of technology :

List of agricultural and mechanical colleges whose work can not be separated from that of the State universities of which they are departments.

Location.	Name.
Berkeley, Cal.	College of Agriculture, Mechanics, Mining, Engineering, and Chem-
Athens, Ga -	Georgia State College of Agriculture and Mechanic Arts (University
Baton Rouge, La	Louisiana State University and Agricultural and Mechanical Col-
Minneapolis, Minn	College of Agriculture and Mechanic Arts (University of Minnesota).
Columbia, Mo	Missouri Agricultural and Mechanical Collegé (University of Mis-
Lincoln, Neb	Industrial College of the University of Nebraska.
Reno, Nev	University of Nevada.
Chapel Hill, N.	Agricultural and Mechanical College (University of North Carolina). ${ }^{1}$ Ohio State University.
Plovidence, R	Agricultural and Scientific Department of Brown Unirersity.
Columbia, S.	South Carolina College of Agriculture and the Mechanic Arts (University of South Carolina). 1
Knoxville, Tenn	University of Tennessee and Agricultural and Mechanical College.
Burlington, Vt	University of Vermont and State Agricultural College.
Morgantown, W. Va	Agricultural Department of West Virginia University.
Madison, Wi	College of Arts (University of Wisconsin).

${ }^{1}$ Now a separate institution.
The protest to which reference has been made is as follows:

Sheffield Scientific School of Yale University,

 New Haven, October 24, 1891.Hon. William T. Harris,
Commissioner of Education, Washington, D. C.:
Dear Sir: In the absence of President Dwight the inclosed schedule has been placed in my hands to answer. I have spent some considerable time in trying to answer the questions as fully and as correctly as is possible; but the fact is that several of the more prominent ones can not (or ought not) be answered in the shap they are asked. Some can not be answered because of the way our school is organized as a department of this university, or beciuse of the complications incident to its age, and others ought not, because, if answered according to the schedule, the kare figures tell but part of the truth, and if tabulated along with answers to the same questions from certain other institutions, are misleading, a thing I know you wish to avoid.

The truth but half told may be as misleading as a positive falsehood, and is much harder to meet and explain when made use of as an argumentin discussion or criticism. Some very bitter criticisms and many unjust charges have been brought against sundry of the land-grant colleges in the last fow years, based nominally upon statistics. In most of these cases the statistics were unfair, if not positively false, in that the figures used either told but part of the truth or else meant different things when applied to contrasting colleges having different systems of classification or different methods of instruction. Several prominent institutions, North, South, East and West, have suffered from this and I think that few have entirely escaped. The fact that these colleges have suffered so much more in that respect than classical institutions I believe to be in part due to the nature of the statistics put forth, in which things essentially unlike are classed together, or things alike are called by different names. I am sure that you do not mean to help along this evil.

The land-grant colleges are so very varied in their organization, methods, scope, grade, and aims that tables of statistics made from the answers to the same questions by the different institutions may be made to show almost anything the user wants them to show. The answers to your schedule, stated in figures alone, mean very different things in the different institutions.
I have, therefore, written at more length explanations of some of my answers and the causes of my failure to answer others.
Question 6. [Table D.] This question, although it can be readily and fairly answered by some, and perhaps many, of the land-grant colleges, is so unsuited to our methods that even with the best of intentions I see of no way of fairly and honestly answering it in figures alone.
Our institution is not so organized that specific figures can be given to these questions without being misleading when the figures are used as components of statistical tables made out of the reports from several of many institutions. Many of the land-grant colleges are so organized that specific figures can be given in answer to most of these questions; ours is not.
The numerical data given in these tables would be very differently interpreted by difierent persons studying the figures for unlike objects. Some of the figures, even when correct, would tell but part of the truth and be misleading, and inferences very unfair to our college could be drawn from them. I know you do not wish that, kind of statistics.

Please let me explain some of the more serious difficulties. First, as to what is "theory" and what "practice." When at the Washington meeting of the American Association of Agricultural Colleges, in August last, I took pains to get the views of a number of the college officers there present on this very matter, and I found the interpretation of these terms so very different by the different teachers consulted that the same facts returned according to your schedule questions by these different teachers would be very differently tabulated. Let me illustrate:

Mechanical drawing, as taught in these colleges, is certainly "technical;" it is taught in special rooms and with special appliances as truly as is the "work" in the "shops." Some teachers therefore call it "practice," but others call it "theory" and limit the term "practice" to "shop work" (done with the tools of the mechanic).

Botany and mycology are sciencesnecessary in teaching scientific agriculture or horticulture. They are pursued in specialized laboratories, with special appliances, and reguire skillful technique. Are these scientific studies " theoretical" or "practical," and is this laboratory work "theoretical" or "practical" work? Some teachers in agriculture call it theoretical, others practical, more especially if in mycology. Some call the laboratory work "practical work;" others limit the use of the term to manual labor on the farm or in the garden, barn, or greenhouse. I feel sure that were we to return the hours spent in the drawing rooms and laboratories by our students in mechanical engineering or our students in agriculture as "practice," rather than "theory," many good people who know that we have neither farm nor machine shop for manual labor would feel that we had misrepresented things.

Your section 5 of question 6 relates to "applied chemistry." Does your term "practice" include all chemical study pursued by the students in the laboratory ? All our undergraduates have such practice, those in engineering during the first year only, those in agriculture for two years, those in the chemical course three years. In each case it is our way of teaching the science of chemistry, and would be called "theoretical" study by most of those who discuss "industrial education." To tabulate as "practice" the laboratory work done in elementary
chemistry by our mechanical engineers during their freshman year, would, I think, make us iiable to the charge of misrepresentation by that large and earnest class who think that "practice" is synonomous with "practical work," and that "practical work" means only "shop work," or its equivalent, farm work.

We have no workshops for teaching the handicraft of the trades, nor land for teaching the art of farming. We are, therefore, especially liable to a certain kind of hostile criaicism by those who think that the especial functicn of these institutions is to teach the trades and occupations. The figures derived frim our classes, st ted in the terms of your schedule, would tell only a part of the truth, and toll it in such a way as to give a handle for use in unfair criticism whichever way we state them. If we do not tabulate all our laboratory work as "paactice" we do not con"orm to your schedule. If we make the figures include, as "practice" in the technological courses, all our laboratory work, it makes it look as if we were doctoring the figures for the pu"pose of making our course seem less "theoretical" and we want to avoid the appearance of dodging these questions. We believe our method is a good and sound one and are willing that it stand squarely upon its merits.

Again, as to the "hours a week devoted to." In our system of instruction, except for recitations and lectures, we measure little by hours. We have not a single requisition which can be "made up" or "worked off" in any specinied number of hours.

There is a minimum of work which a student must do before he can get a degree. But this is not measured by the number of hours spent in the class room or laboratory although a record is keptof attendance and any considerable irregularity is not tolerated.

A pet idea in our system and methods is to give each and every student a chance to do his bast, to encourage acquisition by work rather than to consume time by the hour. The facilities of our class rooms and laboratories and the division of the classes into sections are in accordance with this idea and largely directed to this end. The laboratories are open much beyond the times of "required " attendance. The minimum requisition for a degree does not represent in any sonse the number of hours devoted per week to any subject. So far as hours represent anything, it is the minimum attendance of the very poorest st dent who ultimately graduates. Consequently, we have never yet compiled and published, even for our own use, a complete tabulated statement of the numbsr of hours per week required for all the various sections of this school othor than the regular programme of daily exercises. Such a table might be made, but if we made it, it would be with the understanding that it was for the lowest possible grade of work allowed.

Again, the Sheffield Scientific School is a department of the university in which department none of the students are pursuing a classical or merely literary course in the sens: in which these terms are used in classical colleges. Yet I think that it would be untrue as well as misleading to class them all as "technological "students, although everyone is pursuing some of the studies classed as technical in the great majority of the land-grant colleges.

I have given the figures which are called for in the last column, but when tabulated along with the figures from many other colleges, as from Cornell, for example, are very misieading. In Cornell, and, I think, all those colleges where there is also a classical course, the technical and scientific courses are distinct or recognized from the very entrance. Here the studies are the same for all our students during the freshman year. The classes here do not differentiate into courses until the beginning of the second year, therefore the numbers I have given include only those in the last two years. They do not include the 137 undergraduates who are not officially in the courses specified, although they are purusing the studies required as a part of the technical courses. Nor does it include the 29 graduate students who are pursuing the higher studies supplemental to the undergraduate courses. The total is therefore smaller by over 160 than the same students would be tabulated in most of the colleges.

I have gone at length into this question, and I think you will see the force of the difficulties and the importance of the matter, especially in these times, when so many of these institutions are being made the subject of sensational criticism and hostile attack.

Question 8. (a) This is no State appropriation but the income from the fund derived from the land grant of 1862. The State still holds that, paying us only the income. We receive no State appropriation. (b) This is as it appears from the books of the college treasurer.

Question 9. No part of this question can ba satisfactorily answered. I will remark f n the three items.
(b) The Sheffeld Scientific School is but a department of the univer $\mathrm{i}^{+} \mathrm{y}$, and all of its instruction was carried on in buildi-gs belenginr to "The Pr s dent and ellows of Yale College" for the first twenty-five years of its existence. Now, three large and several small biiding are used by this department exclusively, but mucy of the instruction goes on in buildings whos use is shared by other departecents of the university. A fart of the drawing is taingi in the Street Art school: geology, mineral-gy, palæontology, and zo ils gy in th Peabody Museum which containsthe university collections belonging to these sciences. 'Then, too, the university libary. gymnasium, reading ronm, ete., tc., a e used by our stuatents in c mmon wi h the rest of the universi y. T'u include all these in the property of the Sheffield Scientific School would be untrue and would grossly overrate its riches and possessions. On the other hand. to leave them all oit would be to un ruthfully underate its facilities for instruction. As a Iart of the university, this school gets more or less benefit of all the varied possess ons which constitute the material part of the university, the ownership of which is peculiarly complicated. They represent the growth of two centuries. Of the buildings in our exclusive use, two were originally built for other purposes, and late" adapted to our use. I have nevar seen any inveatory of the grounds and buildings of the university, as a whole, nor any attempt to estimate what the ralue of those of our department would bs without the others.
(b) The same is true of apparatus and collections; some belong to the Sciontific School especially and some belong to the University. I am not aware t_{i} at any attempt at an inventory has erer been made, and any estimate would be but a rude guess. The collections are largely the collecti ns of the University and rep:esent the accumulations of about a century. The apparatus in the exclusive use of the Scientific School represent the accumulation of about fifty years. A set equivalent to the latter could probably be got together for $\$ 10,000$, but it cost originally very much more than that. Some of it now has merely a historical or sentimental value, hard to estimate in money, yet it has still an educational value.
(c) "Productive funds." Here the answer is still more difficult, as it is more complicated. Some belong to the Scientific School, some to the University, a poztion is for special purposes, others for general purposes. We now have the income of some university funds, which we mav not have when certain unicersity instruction is given in some other way. We have some funds of our own; we share in the use of others for general university uses; we share in still o her special endowments: and any statement we might make rould be a ma ter of bookkeeping rather than an exhibit of the capital of the Sheffield Scientific School. The treasurer's report gives the names and status of the rarious funds, but of some of these funds even he does not attempt to decide whether they should be considered in this schedule as belonging to "The Sheffield Scientific Schoo!" or "Yale College" or "Yale University." They are in the possessicn of the Yale corporation for certain uses. The University can apply the income for instruction or use in the department which it thinks fulfills most nearly the objects intended by the donor. I have spent some time with the treasurer trying to compile satisfactory answers, but I can not answer either division of this qu:estion in a way that will be both truthful and satisfactory, or that will show the money value of the educational plant we have here. For a solution we mou d have to go away back to colonial times for a part, and the answers are complicated in a great variety of ways.

Question 10. This refers to the speciallibrary in the schcol. This department shares in all the use and facilities of the university library, hence thera is no attempt to make a large collection of books of our own; most of our books are to supplement those in the main library, or else those needed in the laboratories, cr for handy reference.

Yours, truly,
TABLE D.-Number of students and duration of civil engineering course.

[^55]
II.

COURSE IN MECHANICAL ENGINEERING.

The instrument of the civil engineer is the transit and his sphere of practice the open country, but the instrument of the mechanical engineer is the hammer and his place is in the shop. The Roman roads and aqueducts are standing evidences of the skill of the Roman people, the pyramids and Lake Moeris testify to the ability of the Egyptian engineer, and the cathedrals of France to that of the master masons of the Middle Ages, but an "industrial revolution" waited fo: the invention of a steam engine that was something more than a curiosity or a toy. This industrial revolution may be said to have reached its majority, so to speak, about the middle of the present century, at least in England, where from peculiar circumstances it found a congenial soil. Progress in industry, however, must not be confounded with progress in that kind of industrial education which is given in schools. Neither the Greek literary and artistic genius nor the English industrial and political genius was born within the walls of an educational edifice. But when a nation has manifested its genius it is possible and desirable to have persons study the manifestations of that genius, formulate and teach the results, and thus mechanically a naturally less gifted or enterprising nation is elevated to a stage of culture in which the less gifted nation may reap the same inteilectual or material benefits the more gifted enjoy.

In 1855 , at the time of the reorganization of the Rensselaer Institute.; a department of "Mechanics, Machines, and Constructions" was established in the school, with a set of text-books printed mostly in Paris and London, and in two cases in Germany, but there was no course leading to a degree in mechanical engineering, the instruction in that art being a part of the course in civil and mining engineering. At the Massachusetts Institute of Technology in 1864 there was in the fourth year a course of mechanical engineering separate from the civil engineering course after the close of the third year. At the School of Mines of Columbia College, New York City, "a course of machines which is essential in a course of mining engineering" was given, about 1861, during the third year. The first practical schools of mechanical engineering were the Worcester Institute and the Stevens Institute of Technology, though it may be objected to them that they are schools for making master workmen rather than engineers. Nevertheless, as the practical work of the course of mechanical engineering is what distinguishes the institutions in which it obtains from all other educational institutions, it is well to begin with a consideration of it.

At the Worcester Institute the regular course of instruction is prefaced by an "apprentice half year," in which the four studies that the average student of mechanical engineering has been found to be deficient in are followed from January to June. These studies are English and French literature (6 hours a week), free-hand drawing (6 hours a week), and shop practice in woodwork and moulding ($36 \frac{1}{2}$ hours a week). Then during the three years of the course 10 hours a week are devoted to "practice, which in the second term of the last year includes machine design.

In this shop practice two principles are observed: First, that while labor with hand tools and machines should be wisely blended, yet since machinery has a constantly increasing share in the conversion of material into useful forms, the educated mechanic should know how to design, construct, and assemble the parts of a machine as well as how to make its product; and, second, that excellence in construction is to be sought as a most valuable factor in instruction. The power of the engineer, says the faculty, to decide upon general grounds the best form and material for a machine and to calculate its parts is greatly increased by blending with it the skill of the craftsman in manipulating the material, and the fact that the product is to be tested and used kindles interest in its manufacture and furnishes additional incentive to thoroughness and exactness. After the earliest lessons the practice is on commercial goods and follows the best methods of commercial production. Thus, while the institute offers a good education, based on mathematics, the living languages, physical sciences, and drawing, and sufficient familiarity with some branch of applied science to secure to its graduates a livelihood, its two peculiar features are: (1) that in addition to the general course of study and to the regular work of all students in the laboratories each student devotes at least ten hours weekly to practice in the department he has chosen; and (2) that the practice of the students in the department of mechanical engineering is in well-equipped shops in which a manufacturing business is carried on. Construction accompanies instruction at every step.

The printed page is not adapted to describing the technicalities of a machine shop and even photo illustrations are more useful as evidences of the equipment of the school than of the value of its work to the future engineer. It will, then, suffice to say that in the third year of the Worcester Institute the students build one or more machines from their drawings, which, though made from definite specifications, are intended to afford ample field for the personal responsibility and originality of each student in making correct design and arrangement of parts of the machine in hand. While the work is not copying, it must not depart essentially from the best practice among manufacturing mechanics. Thus one class has constructed a 25 horse-power Corliss engine, another a 10 horse-power upright reversible engine, another a 40 horse-power Buckeye engine. The class of 1885 constructed an engine lathe 18 feet in length: the class of 1880 a Hendey shaper, etc.

The Stevens Institute is, as its catalogue claims, "a schcol of mechanical engineering." There are departments of physics and of chemistry, and applied electricity is taught, but the object of the school is to provide a systematic course in the theory of machine construction and a study of existing systems. Mathematics, pure and applied, mechanical drawing, shop practice and experimental mechanics, experimental physics, and chemical analysis, all are more or less powerful auxiliaries to the object of the systematic course in the theory of machine construction and the study of existing systems. But as we are now particularly concerned with the shop work, it is necessary to keep to that.

The work-shop course of the institute is intended to supply the student with a knowledge, as complete as possible, of the best existing methods and processes necessary to the construction of such mechanical designs as the theoretic part of the course will enable him to originate. But dependence is not entirely placed on the necessarily elementary and limited instruction that can ba given in the machine, blacksmith, and carpenter shops, and the iron and brass foundry; but. after differences in machines, tools, and methods of manipulation are comprehended by the student, he is taken to establishments where real work is being carried on. The usual tour of the senior class is as follows:
April1.-Bethlehem. Eagle Hotel. Steel and zinc manufacture. Bethlehem Iron and Zinc Works.
April 2.-Philadelphia. Girard House.
(1) Welding, fitting, and testing of wrought-iron pipe. Morris \& Tasker's Pascal Iron Worizs.
(2) Arrangement and outit of first-class machine shops. Seller's Machine Works.
(3) Locomotive manufacture. Baldwin Locomotive Works.
(4) Marine engines and shipbuilding. Cramp Ship Yard.

April 5.-Hartiord. Allyn House.
(1) Machine tools, taps and dies, and standard gauges; gear-cutting by machinery, and drop forgings. Pratt \& Whitney Company.
(2) Improvements in automatic screw machinery; recovery of oil from metal cuttings; straightening of bar iron. Hartford Screw Company.
(3) Machinery for manufacture of repeating rifles: manipulation of Gatling gun; construction of dise and Baxter engines; automatic wood-screw machinery; latest attempt at setting type by machinery. Colt's Armory.
(4) Latest methods of heating and rentilation. Hartford statehouse.
(5). Extreme case of use of fast-speed engines for large steam-power plant. Willimantic Linen Mill.
April 6.-Springfield. Massasoit House.
(1) Construction and use of turbine water wheels. Holyoke Machine Works.
(2) Testing of turbines. Holyoke Testing Flume.
(3) Manufacture of paper. Dickinson Paper Mills.

April \%.-Boston. United States Hotel.
(1) Most improve machinery for rapid working of brass. Hancock Inspirator Company shops.
(2) Testing of large sizes of materials. Emery testing machine. Watertown Arsenal.
(3) Types of modern pumping engines. Leavitt walking-beam and fly-wheel type and Worthington direct-acting type. Boston sewage-pumping station, Dorchester.

April S.-Proridence. Narragansett House.
(1) Manufacture of mashines in duplicate by most improved machine processes. Wilcox \& Gibbs's sewing machine, machine molding, pickling and annealing of castiron for milling machine work. Brown \& Sharp Manufacturing Company.
(2) Supply water to cities and towns; direct distribution. Hope street station. Corliss (5) cylinder direct engine and Nagle geared form of engines. Reservoir
distribution, Pawtucket Water Works. Corliss compound engines and Swan turbine water wheels.
April 9.-Fall River. Wilbur Hotel.
(1) Manufacture of cotton fabrics and standard single Corliss engine. Bernard Mills.
(2) Medium high-speed engines and latest types of compound mill engines Globe Mills.
The shop exercises of the institute are finished before the close of the third year, the course being of four years. The time devoted to shop worix by each student is distributed as follows:

	Hours.
Metal lathe	
Pattern-making	100
Metal planer.	65
Vise work	40
Molding.	40
Wood-turning	40
Blacksmithing	40
Miller	32
Drill press	21
Millwrightins	24
Carpentry	

a This total has been very materially reduced of late.
It will be observed that 40 of these hours are consumed in what is called experimental mechanics, and so can not be called shop work in the sense of manual labor. For the fourth-year class there is a regular course in experimental mechanics given during a supplementary term of three weeks. Assistants chosen from the last graduating class take charge of a group of exercises and aid other students to secure without loss of time the data belonging to experiments. As soon as the data of any one experiment are secured the students report to the chief instructor, who directs such calculations as are necessary to be deduced. This done the next exercise is entered upon. The following chart will explain the character of this laboratory work:

Order of exercises in experimental mechanics, class of 1891.
The figures 1 to 18 represent groups of stuaents, consisting of generally two each, who are due at the test opposite their group number horizontally and at the date opposite their number vertically.
There must be just twice as many groups as there are exercises, so that erery other day, can be devoted to a test and to the computation of that test alternately. The instructors are always graduates, either of the last senior class or.earlier ones. The exercises really consist of nine groups, each of which is so designed as to afford experimenting sufficient to occupy a full day of eight hours, and the computations occupy another interval of eight hours.

Scheme of several exercises.
Exercise $D(I V)$. Compound engine.

Time.	Number of revolutions by counter.	Cubic feet of condensing water by meter.	Reading of tachometer.	Pressure of steam in pounds per square inch above the atmosphere.	Barometrical pressure in inches of mercury.	Temperature of engine room.
		-				

Exercise $F(I)$. Boiler test.

Time.					Temperature in degrees F.						Remarks.	$\underset{\text { recoral }}{\text { Cor }}$	
						$\begin{aligned} & \text { © } \\ & \text { of } \\ & \text { a } \end{aligned}$	Boiler room.		$\begin{aligned} & \text { ®i } \\ & \text { ®̈ } \\ & \text { g } \\ & \text { H } \end{aligned}$				\ddagger
							Wet bulb.	Dry bulb.				品	
		*											

Friction of belting.

Revolutions per minute.		Weight, in pounds.	
Driving shaft.	Driven or Prony brake shaft.	On platform scales.	At end of Prony brake shaft.

At the Massachusetts Institute the time devoted to the shop and laboratory is as follows:

Hours.
Shop:
Carpentry and wood turning ... 60
Pattern work 30
Forging
30

Machine tool work
Laboratory of engineering... 150
Total
514
At Cornell shop work is given 3 hours a week throughout the course of 4 years, except that during the spring term of the last year 12 hours are allowed to investigations and work. Work in the mechanical laboratory is given during the last two years for two hours throughout, except in the case of the spring term, as above specified.

At Purdue University the régime is as follows:

	Hours
Bench work in wood and turning	. 75
Pattern making	- 92
Molding and casting..	23
Mrachine and vise work in irol	115
Total.	380

Let us now consider a class of schools of quite a different character as far as manual training is concerned. As a type we may take the Lehigh University course in mechanical engineering. The object of its course is the study of the science of machines. The principal subjects taughtare: The nature, equivalence, and analysis of mechanisms, the mechanics or theory of the principal classes and practice of machine design. To obtain "the practical engineering data which they will most need when beginning their work as mechanical engineers the students are required to pursue a course of shop instruction which does not necessarily involve manual labor and manipulation of tools, but is principally devoted to familiarizing them with those points in patternmaking, molding, forging, fitting, and finishing, which they will need to know as designers of machinery." In brief, the student is an observer, and is familiarized with processes as a foreman rather than experienced in carrying them through to a successful issue as a mechanic. To insure the attention and cievelop the reason, a full description of the process under observation and the means by which it is accomplished are required of each student during a series of properly graded examples of patterns, castings, forgings, and finished pieces which are not being constructed in the shops at the time, the blue prints for which have been given to them on entering the shops. The attention of the student is directed by these drawings, a printed programme, and a teacher who examines the pupil's notes and sketches and questions him. The works of the Bethlehem Iron Company, the railroad shops at Easton and other engineering establishments in the vicinity are visited, each visit having a definite object in view.

As this approaches, perhaps, in a measure, duplicates, the characteristics of a German Technische Hochschule or Polytechnicum, an illustration of the programme of one of these schools is given. The periuds represented are the first semester of the first and of the fourth years of the course. The charts are given to illustrate the way in which the German school carefully notes the difference between the lecture during which the student listens and the hour during which he is an active agent while working at drawing or descriptive geometry. Such work is called Uebungen [practical exercises] in German, and the word seems to hare been understood in some of our schools to mean practical work. Thus, when it is asked, How many hours do you devote to theory, how many to practice? the correspondent is nonplussed to know whether we mean to include an exercise in descriptive geometry as practical work or not. This opportunity may therefore be taken to say that drawing in any of its forms, even designing machinery which is to be made, or making out specifications of buildings or works to be constructed, is not considered by this Bureau as practical work. Some years ago when the polytechnic idea reached America it might have been considered such, but the advance of the age in the way of organizing industrial instruction has rendered a truer definition of the term practical work necessary, or at least rendered it necessary to reserve it for the work done in the shop, lakoratorty, or field.

Winter semester, first year of Technical University at Hanover.

Hours.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
$8109 \mathrm{a} . \mathrm{m}-$	(Lecture.) Analytical geometry.	(Lecture.) Descrip- tire ge-	(Lecture.)	(Lecture.)	(Lecture.)	(Lecture.) Analytical geometry.
			Descrip-	Descrip-	Analytical	
			tire ge-	tive ge-	geometry.	
9 to 10 ar m...)	(Exercise.)Free-hand Free-hay	(Exercise.)	(Exercise.)	(Exercise.)	'Exercise. ${ }^{\text {(}}$	(Exercise.) Free-hand drawing.
			Descrip-	Descrip-	Machine	
$\begin{aligned} & 10 \text { to } 11 \mathrm{a} . \mathrm{m} \text {. } \\ & 11 \mathrm{a} . \mathrm{m} . ~ t o ~ \\ & 12 \mathrm{~m} . \end{aligned}$		tive ge-	tive ge-	tive ge-	drawing.	
		(Exercise.)Buildingconstruc-tion formechani-cal en-gineers.	$\left\lvert\, \begin{gathered} \text { (Lecture.) } \\ \text { Physics. } \end{gathered}\right.$	(Lecture.)		(Lecture.)
				Build-		Differen-
				ing con-		tial and
				struc-*		integral
				M. E.		calculus
12 m. to $1 \mathrm{p} . \mathrm{m}$.	(Lecturc.) Physics.		$\left(\begin{array}{l} \text { (Lecture.) } \\ \text { Build } \\ \text { ing con- } \\ \text { struc } \\ \text { tion for } \\ \mathrm{M} . \mathrm{E} . \end{array}\right.$			
				(Lecture.) Physics.	(Lecture.) Physics.	chanics after.
3 to 4 p.m.....	(Lecture.)	(Exercise.)			(Lecture.)	
	Algebraic	Mechan-			Alge-	
	analysis	ics after			braic an-	
	andmetry				alysis	
4 to $5 \mathrm{p} . \mathrm{m}$.....	until Jan. 1.				nometry.	
	(Lecture.)	(Lecture.)	(Lecture.)	(Exercise.)	(Lecture.)	
	Differen-	Differen-		Differen-	Differe n-	
	tial and in-	tial and	tial and	tial and	tial and	
	tegral cal-	integr al	integr al	integr al	integral	
	culus, one	calcu-	calcu.	calcu-	calcu-	
	lecture.	lus until	lus, one.	lus, one.	lus, one.	
5 to 6 p. m.....	(Leature.)	(Lecture.)	(Lecture.)	(Lecture.)	(Lecture.)	
		Alge -	Alge -			
	tial and in-	braic an-	braic an-	braic an-	braic an-	
	tegral cal-	alysis	alysis	alysis	alysis	
	culus, one,	and trigo-	and trigo-	andtrigo-	and trigo-	
	until Jan.1;	nometry	nometry	nometry	nometry	
	mechanics	until Jan.	until Jan.	until Jan.	until Jan.	
	afterwards.	$1 ; \mathrm{me}$ -	$1 ; \mathrm{me}$ -	1, me-	1; me-	
		chanics	chanics	chanics ${ }_{\text {after }}$	chanics	
		$\begin{aligned} & \text { after } \\ & \text { wards. } \end{aligned}$	wards.	wards.	wards.	

Winter semester, fourth year of Technical University at Hanover.

To illustrate the character of the "dynamic" element in a course of mechannic Institute; on the opposite pages are given in one column the course of meproper:

Year.	First term.		Second term.
	Course.	Dynamics.	Course.
Freshman .-	Algebra, geometry, free-hand drawing, elementary physics; English, practice in wood shop.	Practice in wood shop; use of hand tools, chisels, saws, planes, bits, etc.; laying out frames from working drawings; use of the turning lathe, circular saws, jig saws, planing and boring machines (16 hours a week).	Algebra, trigonometry, free-hand drawing, elementary chemistry, German, practice in wood shop.
Sophomore.	Determinants, analytic geometry, descriptive geometry, elementary mechanics, freehand drawing, chemistry and chemical laboratory, German; practice in machine shop, blacksmith shop, and foundry; care of boilers and engines.	Elementary mechanics. Mass, momentum, collision, force, work, energy, power, units (two lessons a week). Practice in machine shop, with instruction in the use of machine tools and the various operations of machine construction; turning, planing, drilling. boring, filing, thread-cutting, scraping to a true surface. finishing, etc.; construction of simple machines; forging of simple machine parts; foundry practice; care and management of engines and boilers (10 hours per week).	Analytic geometry, introduction to differential calculus, descriptive geometry, elementary mochanics, mechanical drawing, chemistry and chemical iaboratory, mineralogy, German; practice in machine shop, blacksmith shop, and foundry; care of boilers and engines.
Junior	Differential calculus, mechanical drawing, analytical mechanics, French and German; practice in machine shop, blacksmith shop and foundry.	Analytical mechanics.Equations of motion; attraction, potential, hydrodynamics (five lessons a a week). Practice in machine shop; construction of useful machines from working drawings, such as foot lathes, drill presses, engino lathes, steam engines, etc.; forging tools for use in machine shop, care of boilers and engines, practice in brass foundry and moulding room (10 hours a weelz).	Integral calculus, mechanical drawing, physics, lectures on the method of least squares, French and German, lectures on astronomy, practice in machine shop, steam-engine and gen-eralmachine-tool construction.
Senior-	Applied mechanics, thermodynamics, chemical technology, English literature, physical laboratory, machine design, engineering laboratory, practice in machine shop, steam - engine andmachine-tool construction.	Rankine's applied mechanics; forces in stiaight-line, parallel, and inclined forces; stress, ellipse of stress (four lessons a week). Machine design, with lectures on the proportional parts of machines; design of simple machines (6 hours a week). Laboratory work (6 hours a week). Practice in machine shop; construction of high-class machine tools, steam engines, etc.; making and tempering of standard tools, reamers, drills, milling cutters, gauges, etc (8 hours a week.	Applied mechanics, thermodynamics, chemical technology, political economy, physical laboratory, machine design, engineering laboratory, practice in machine shop; making ofstandard tools, including forging, tempering, etc.; thesis work.

ical engineering, recourse is again had to the curriculum of the Rose Polytechchanical engineering and in the next the development of the mechanical feature

Second term.	Third term.	
Dynamics.	Course.	Dynamics.
Practice in wood shop of first term continued (14 hours a week).	Algebra, spherical trigonometry, mechanical drawing, elementary chemistry,German, practice in wood shop.	Practice wood shop continued, construction of patterns of a simple character (14 hours a week).
Elementary mechanics.-Composition of relocities and accelerations, parallel forces, center of grarity, simple machines, friction (two lessons a week). Practice in machine shop of first term continued (10 hours a week).	Introduction to integral calculus. descriptive geometry, elementary mechanics, mechanical drawing, chemistry and chemical laboratory, mineralogy, German; practice in machine shop, blacksmith shop, and foundry; care of boilers and engines.	Elementary mechanics.-Projectiles, periodic motion, harmonic motion, pendulum, moment of inertia. etc. (twolessons a week). Practice in machine shop of first term continued (10° hours a week).
Practice in machine shop of first term continued (10 hours a week.	Differential equations, mechanical drawing, physics, French and German, practice in machine shop, steam-engine and general machine-tool construction.	Practice in machine shop of first term continued (10 hours a weelz).
Applied mechanics, continued; frames, strength of materials; practical application to joints, pipes, boilers, beams, etc. (four lessons a tinued; complete detailed drawings, with tracing and blue prints, of machines and their parts (6 hours a week). Laboratory work (6 hours a week). Practice of first term in machine shop, continued (8 hours per weelk).	Applied mechanics, thermodynamics. chemical technology, lectures on geology, Constitution of the United States, physical laboratory, machine detory; practice in Tood shop, construction of patterns for foundry use from working drawings of machines designed by members of the class; thesis work.	Applied mechanics, continuea; dynamics of rigid bodies with applications to mechanism; machine design continued, with lectures on slide valve, link motion, and other forms of valve gearing (6 hours a Treek). Laboratory work (6 hours a week). Practice in wood shop, construction of patterns for foundry use from Working drawings of machines designed by mem bers of the class (8 hours a week.)

The following curricula will represent in some measure the various courses of mechanical engineering that obtain at home and abroad. Attention is called to the commercial instruction in the French schools.

A.

COURSES OF MECHANICAL ENGINEERING WHOSE PUPILS VISIT MANUFACTURING ESTABLISHMENTS, BUT DO NOT WORK IN A SHOP.

Curriculum of the Course in-Mechanical Engineering in a University not Endowed with the National Land Grant.
 REQUISITES OF ADMISSION.

English grammar, geogiaphy, history of the United States, arithmetic, algebra through * equations of the second degree, geometry, first six books of Chaurenet's Geometry, elementary physics.

COURSE.

FRESHMAN CLASS.

First term.-Geometry completed, elementary chemistry, French or German, drawing, exercises and declamations in English, physiology and health, gymnasium.
Second term.-Algebra completed (2 hours), plane and spherical trigonometry and mensuration, and use of logarithmic tables (2 hours), French or German (3 hours), drawing or machine design (5 hours), exercises and declamations in English (2 hours), gymnasium (2 hours).

SOPHOMORE CLASS.

Firsi term.-Analytical geometry (4 hours), physics (5 hours), machine design (2 hours), visits of inspection (2 hours), French or German (2 hours), English exercises and declamations (1 hour), gymnasium (2 hours).
Second term.-Differential and integral calculus (4 hours), physics (3 hours), French or German (2 hours), mechanics (4 hours), steam engine, Holmes's book on (3 hours), English essays and declamations (1 hour), gymnasium (2 hours).

JUNIOR CLASS.

First term.-Calculus and analytical mechanics (2 hours), French or German (2 hours) mechanical technology (7 hours), boilers, Welsenon (1 hour), strength of materials (4 hours), iterature and history, gymnasium.
Second term.-French or German (2 hours), kinematics of machinery (3 hours), machine design (5 hours), metallurgy (4 hours), machinery of transmission, Weisbach-Herrmann (2 hours), essays and original orations, gymnasium.

SENIOR CLASS.
First term. -Thermodynamics (3 hours), graphical statics (2 hours), machine design (4 hours), kinematics (3 hours), mechanics of machinery (4 hours).

Second term.-Mechanics of machinery (4 hours), machine design (5 hours), hydraulics (2 hours), measurement of power (1 hour), lectures on American and English literature (2 hours), Christian evidences (1), preparation of thesis, gymnasium.

Curriculum of the course in Mechanical Engineering at the Technical University of Hanover, in Germany.

REQUISITES FOR ADMISSION.

The Reifezeugniss of a gymnasium, a realgymnasium, or an oberrealschule. (See Page 818.)

COUTSE.

FIRST YEAR.

Winter semester:-Differential and integral calculus ($1 \frac{1}{2}$ hours of lectures, 1 of practice), analytical geometry (3 hours), algebraic analysis and trigonometry (3 hours), descriptive geometry (3 hours lectures, 5 hours practice), physics (4 hours), mechanics ($3 \frac{1}{2}$ hours) free-hand drawing (5 hours practice), building construction for mechanical engineers (2 hours lectures, 2 hours practice), arawing of machines (3 hours practice). In all 23 hours of lectures and 16 hours of practice.
Summer semester.-Differential and integral calculus (3 hours of lectures, 1 of practice), descriptive geometry (3 hours of lectures and 5 of practice), physics (4 hours), mechanics (7 hours), principles of chemistry (6 hours), free-hand drawing (5 hours practice), building construction for meehanical engineers (3 hours lectures, 3 hours practice), machine drawing (3 hours). In all 26 hours lectures, 17 practice.

SECOND TEAR.

Winter semester.-Differential and integral calculus (4 hours), elasticity (5 hours), principles oî civil engineering (Grundzüge des Ingenieurbauwesens) (3 hours lectrures, 2 hours practice), general technlogy (4 hours), kinds of machines (5 hours), parts of machine (5 lectures, 8 practice), pumps ($\frac{1}{2}$ hour). In all $26 \frac{1}{2}$ hours lectures, 9 practice.

Summer semester.-Differential and integral calculus (4 hours), hydranlics (2 hours), analytical mechanics (3 hours), principles of civil engineering (3 hours lectures, 2 hours practice), general technology (4 hours), linds of machines (5 hours), parts of a machine (4 hours lecture, i hours practice), pumps (2 hours). In all 27 hours lectures, 9 practice.

THIRD YEAR.
Winter semester.-Principles of practical geometry, surveying (2 hours lectures, 2 hours practice), mechanical theory of heat (2 hours), technical chemistry (3 hours), principles of miner, ology (2 hours), iron bridges (2 hours lectures, 4 practice), theory of machines (3 hours lectures, 1 hour practice), mechanical regulation of machinery and kinematics (2 hours lectures)prime morer's (6 hours lectures, 8 hours practice). In all 22 hours lectures, 15 hours practice.
Summer semester.-Principles of practical geometry (3 hours), technical chemistry (3 hours), principles of mineralogy (z hours), iron bridges (2 hours lectures, 4 practice), theory of machines (3 hours lectures, 1 practice), mechanical regulation of machinery and kinematics (2 hours), prime movers (6 hours lectures, 8 practice). In all 18 hours lectures, 16 practice.

FOURTH YEAP.,

Winter semester.-Geology (2 hours), metallurgy (2 hours), experimental hydrauiics (1 hour lecture, 2 hours practice), hot air and gas machines (2 hours), special technology (3 hours), heating, ventilating, and lighting (4 hours lectures), construction of manufactories (2 hours lectures, 2 hours practice), spinning, weaving, paper making, etc. (2 hours), construction of locomotives (3 hours lectures, 3 hours practice), shipbuilding (3 hours-lectures, 4 hours practice), elements of electrical technology (2 hours), business relations, (Gewerbe-Oekonomie) (2 hours). In all 28 hours lectures, 11 hours practice.

Summer semester.-Geology (2 hours), metallurgy (2 hours), experimental hydraulics (1 hour lecture, 2 hours practice), reservoirs, pumping machines, and blowing machines (3 hours), technology of the materials of construction (3 hours lectures, 4 hours practice), construction and arrangement of manufactories (3 hours practice), spinning, weaving, etc. (2 hours), locomotive construction (3 hours lectures, 3 hours of practice), shipbuilding (3 hours lectures, 4 practice), principles of electrical technology (2 hours), business relations (2 hours). In all 23 hours lectures, 16 hours practice.

Curriculum of the Course in Mechanical Engineering in a University Endowed with the National Land Grant.

REQUISITES FOR ADMISSION.

Grammar, spelling, history of United States, geography, Latin (3books of Cæsar), arithmetic algebra and geometry completed, trigonometry.

COURSE.

FRESHMAN YEAR.

Fïrst ierm.-German (3 hours), history, English literature (1 hour), derivatives of algebraic functions, properties of equations, plane analytical geometry (3 hours), physics (2 hours recitation, 2 hours experimental lectures), chemistry (2 hours recitation, laboratory practice 2 hours), elementary drawing (3 hours).
Second term.-Language, physics, and chemistry as stated above; plane analytical geometry continued (3 hours), physical geography, 8 lectures, botany (3 hours), orthographic projection, isometric drawing, projection of shadows, shading and tinting, sections, developments, and intersections of surfaces (4 hours).

JUNIOR TEAR.

First term.-Analytical geometry of three dimensions, elements of the theory of functions, differential calculus, with applications to geometry and analysis, solution of numerical equations (6 hours). Surveying-Theory and practice (3 hours until November 1), kinematics (1 hour. Shop visiting-Study of machine details and tools (3 hours, beginning when surveying ends), descriptive geometry (3 hours), German (3 hours), French (3 hours).
Second term. - Integral calculus, with applications to geometry and rational mechanics (6) hours): applied kinematics, forms of teeth of wheels, cams, parallel motions, transmission of power by belts and gearing; etc. (1 hour until spring recess, then 2 hours), shop visiting (3 hours, until spring recess) ; study of the steam engine (2 hours after spring recess) ; perspectire and shadows and machine elements (3 hours), German (3 hours), French (3 hours).

SENIOR YEAR.

First term. - Friction, moment of inertia, centrifugal force, elasticity and strength of materials, theory of flexure and torsion, strains in structures, construction of roofs and bridges, equilibrium and pressure of fluids, theory of flotation, flows of fluids in pipes and channels, resistance of ships (6 hours), practical exercises in designing machine details and simple machines (12 hours), study of the steara engine (2 hours), electricity (optional, laboratory work 3 hours), visits of inspection (examination of machinery in operation and reports of visits), French (3 hours).
Second term.-Hydrodynamics and theory of water wheels and turbines (6 hours), thermodynamics (3 hours), study of the steam boiler (2 hours), electricity (optional-laboratory work 3 hours, lectures 2 hours), advanced exercises in preparing designs and working drawings for machinery and estimates of weight and cost of machinery (12 hours), French (3 hours during winter half term), thesis, visits of inspection and reports.

B.

COURSES OF MECHANICAL ENGINEERING WHOSE PUPILS WORK IN SHOPS AS WELL AS VISIT.

Curriculum of a Course in Mathematical Engineering in an Industrial University in the West.

REQUISITES OF ADMISSION.

Short English composition evincing familiarity with some masterpiece of literature; arithmetic; algebra.

COURSE.

FRESHMAN YEAR.

Recitations on edges for cutting wood and adjustment of wood-working tools, shrinkage and warping of woods, and the form, adaptation, and relative strength of joints; lectures on woodworking machines and on pattern-making, moulding, and casting; mechanical drawing, exercises in wood shop, rhetoric, elocution, geometry, algebra, trigonometry.

SOPHMORE YEAR.

Lectures on management of steel in forging, hardening, tempering, and annealing; lectures on machines and machine work, mechanical drawing, iron forging, steel forging, exercises, machine work, history, English literature, physics, higher algebra, trigonometry, analytical geometry, descriptive geometry.

JUNIOR YEAR.

Principles of mechanism, mechanical drawing, metallurgy, steam engine, valves and links, experimental work, heat, chemistry, calculus.

SENIOR YEAR.

Analytical mechanics, strength of materials, steam engine, boilers, machine design, mechanical drawing and experimental work in engineering, political economy, chemistry.

Curriculum of the Course in Mechanical Engineering of a TechnoLOGICAL UNIVERSITY. REQUISITES OF ADMISSION.

Short English composition and correction of ungrammatical language, geography, history of United States, arithmetic, Wentworth's elements of algebra, French or German grammar, and translation of easy prose.

COURSE.

FIRST YEAR.

-

First term.-Solid geometry, algebra, general chemistry, chemical laboratory, rhetoric and English composition, French (or German), mechanical drawing, freehand drawing, military drill.

Second term.-Plane and spherical trigonometry, generai chemistry, chemical laboratory, political history since 1815, French (or German), mechanical drawing, freehand drawing, military ärill.

SECOND YEAR.
First term.-Principles of mechanism, drawing, carpentry and woodturning (shop work), analytic geometry, descriptive geometry, physics, political economy, German.
Second term.-Construction of gear teeth, mechanism of cotton machinery, mechanism of machine tools, drawing, pattern work (shop work), differential calculus, physics, English literature, German.

THIRD YEAR.

First term.-Valve gears, thermodynamics, steam engineering, drawing, forging (shop work), integral calculus, general statics, physics (heat), physical laboratory, German.

Second term.-Steam engineering (boilers), drawing, design, and use of surveying instruments, engineering laboratory; forging, chipping. and filing (shop work); strength of materials, kinematics, and dynamics; physical laboratory, English composition, business law, German.

FOURTH YEAR.

First term.-Steam engineering, hydraulics, dynamics of machines, machine design, engineering laboratory; chipping and tiling, machine-tool work (shop work); strength of materials, friction; metallurgy of iron, heating and ventilation. Options: Marine engineering, locomotive construction, mill engineering.
Second term.-Hydraulic motors, engineering laboratory, machine-tool work (shop work); strength and stability of structures, theory of elasticity; English, thesis work. Options: Marine engineering, locomotive construction, mill engineering.

Curriculum of a Course in Mechanical Engineering of a University IN THE EASt.

REQUISITES FOR ADMISSION.

Short Fnglish composition upon an English classic geography, physiology and hygiene, arithmetic, plane geometry, algebra, history of United States.

COURSE.

FRESHMAN.

Fall term.-French or German, algebra, chemistry, freehand drawing, shop work, hJgiene, drill.
Winter term.-French or German, algebra, chemistry, freehand drawing and machine sketching, shop work.
Spring term.-French or German, trigonometry, instrumental drawing, chemistry, shop work drill.

SOPHOMORE YEAR.

Fall term.-Analytic geometry, descriptive geometry, experimental mechanics and heat, chemical laboratory, shop work, drill.
Winter term.-Differential calculus, electricity and magnetism, chemical laboratory, descriptive geometry, shop work.
Spring term.-Integral calculus, acoustics and optics, descriptive geometry, chemical laboratory, shop work, drill.

JUNIOR YEAR.

Fall term.-Mechanics of engineering, materials of construction, designing and drawing, physical laboratory, mechanical laboratory, shop work.
Winter term.-Mechanics of engineering, machine design, mechanical laboratory, physical laboratory, designing and drawing, and drawing, shop work.
Spring term. -Mechanics of engineering, machine design, physical laboratory, mechanical laboratcry, designing and drawing, shop work.

SENIOR YEAR.

Fall term.-Steam engine and other motors, physical laboratory, mechanical laboratory, mechanical engineering and machine design, shop work, electives.

Winter term.-Steam engine and motors, physical laboratory, mechanical laboratory, mechanical engineering and drawing, shop work, elective.
Spring term.-Thesis, designing and drawing, mechanical laboratory investigations, shop worls, elective.

C.

CURRICULA OF MECHANICAL ENGINEERING SCHOOLS.

A School of the New England States.

REQUISITES OF ADMISSION.

English syntax and an essay on a classic English author, history of the United States, geography, arithmetic, gecmetry (5 books of Wentworth), algebra as far as quadratics, French.

COURSE.

APPRENTICE HALF YEAR.

English, 6 hours; French, 6 hours; free drawing, 6 hours; shop, $36 \frac{1}{2}$ hours.

JUNIOR.

.First term.-Algebra (3 hours), geometry (3 hours), German (4 hours), general chemistry (3 hours), physics (3 hours), practice (10 hours).
Second term.-Algebra (1 hour), solid geometry (2 hours), trigonometry (2 hours), analytical geometry (1 hour), German (4 hours), general chemistry (5 hours), physics (3 hours), free drawing (4 hours), mechanical drawing (2 hours), practice (10 hours), additional summer practice (168 hours).

MIDDLE YEAR.

[^56]
JUNIOR YEAR.

First term. -Theoretical mechanics (3 hours), applied mechanics (2 hours), thermodynamics 2 hours), history and literature (5 hours), geology (2 hours), physical laboratory (2 hours), mechanical drawing (4 hours), steam engineering (2 hours), practice (10 hours).

Second term.-Applied mechanics, including hydraulics and kinematics (5 hours), steam engineering (1 hour), thermodynamics (2 hours), political science (5 hours), industrial chemistry (2 hours), thesis work, engineering, or electrical laboratory (6 hours), practice, including machine design (10 hours).

A School in the Middle States.

REQUISITESS OF ADMISSION.

An essay upon a topic assigned at time of examination, arithmetic, algebra, equations of second degree, geometry, analytical and plane trigonometry, universal history, rhetoric, French reader, physics.

COURSE.

FIRST YEAR.

Fin'st term.-Logarithms and plane trigonometry reviewed, spherical trigonometry, mechanical drawing, Spanish, physics, history of the English language (lectures and essays), shop work. Second term.-Theory of equations, analytical geometry and ealculus, mechanical drawing, Spanish, light, English literature, and essays.
Third term.-Analytical geometry and calculus, exercises in mathematical laboratory, mechanical drawing, Spanish, light, English literature and essays, shop work.
Supplementary term.-Shop work.

SECOND YEAR.

Firsi term. - Analytical geometry and calculus, machine drawing from sletches, descriptive geometry, Spanish, German, physics, English literature, essays, chemistry, analytical chemistry, shop work.
Second term.-Analytical geometry and calculus, machine drawing from sketches, descriptire geometry, German, magnetism and electricity, deductive logic and essays, general and malytical chemistry, shop work.
Third term.-Integral caiculus and applications, machine drawing from sketches, descriptive geometry, German, electricity, inductive logic, essays, general and qualitative cheinistry, shop work.

Supplementary term.-Shop work.

THIRD YEAR.

First term.-Analytical mechanics, kinematics, machine drawing, descriptire geometry, German, lectures on the use of instruments for making precise measures and on their application to the practical work in the physical laboratory, metallurgy, qualitative analysis, resistance of materials, the steam indicator, vaive gears, link motions, and mechanism of engines, shop work.
Second term.-Analytical mechanics, kinematics, machine drawing, descriptive geometry, German, physics, metallurgy, quantitative analysis, mechanism of boilers, lectures, foundations, boilers, shop work.

Third term-Analytical mechanics, linematics, machine drawing, physics, metallurgy, quaztitative analysis, machine design, shop work.

Supplementary term.-Experimental mechanics.

FOURTH YEAR.

First term.-Thermodynamics, vapor machines, construction, adjustment, and use of engineering instruments, graphical status, problems in applied mechanics, machine drawing and design, physics (laboratory), applied electricity, analytical chemistry (elective).
Secondterm.-Heat engines, refrigerating machines, hydraulic motors, theory of bridges and roofs with graphical statics applied, selected problems, machine drawing and designing, work in physical laboratory work, applied electricity, analytical chemistry, elective.

Third term.-W ork on graduating theses, including experimental investigations and general research.

A School of the Southern States.

REQUISITES OF ADMISSION.

Arithmetic, including elementary principles, fractions, compound quantities, percentage.and interest and proportion. Algebra, through simple operations, including factoring. English, including grammatical construction of sentences, and an essay or letter. Geography. History of United States.

COURSE.

APPRENTICE YEAR.

Firsit term.-Algebra, geometry, freehand and mechanical drawing, Englisin grammar and essays. shop work.
Second term.-Algebra, geometry, mechanical drawing and projection, English grammar and essays, sbop work.

JUNIOR YEAR.

First term.-Solid geometry, trigonometry, leveling, topographs, descriptive geometry and shades and shadows, rhetoric, essays, physics, chemistry, shop work.
Second term.-Spherical trigonometry, surveying, tield practice in compass and transit surveying, descriptive geometry, machine drawing, rhetoric, essays, hydrostatics, pneumatics, acoustics, chemistry, shop work.

MIDDLE YEAR.

First term.-Analytical geometry, field practice in plane table surveying, mechanical drawing. rhetoric, essays, kinematics and mechanism, physics, metallurgy, qualitative analysis, geology, shop work.

Second term.-Calculus, field practice, map work, machine designing, political economy, science of goverument, essays, mechanism, materials of construction, machine design, physics, qualitatire analysis, geology, shop work.

SENIOR YEAR.

First tcrm.-Calcuius, special problemsin designing machinery, English literature, criticisms, original speeches, analytical mechanics, machine design, physical laboratory work, organic chemistry, geology, shop work.
Second term.-Calculus, graduate work in machine decign, criticism, original speeches, analytic mechanics, applied mechanics, steam engineering and prime movers, laborator's experiments, technical industries, geology, shop work.

National Schools of Arts and Trades at Aix, Angers, and Chalons, France, (for the Higher Grade of Mechanicians).

Admission is obtained through competitive examination, which is upon the following subjects:
Writing, spelling, grammar, "theoretical and practical" arithmetic, elementary geometry, algebra to equations of the second degree. Elementary history of France and geography.
A.-Theory.

The theoretical instruction, always given with a view to its applications, consists of the following subjects, which occupy three years:

1. Algebra to Newton's binomial theorem, its applications and the principles which result from it.
${ }_{3}^{2}$. Right-line trigonometry, elementary notions of cosmography, surveying.
2. Elements of analytical geometry.
3. Descriptive geometry, shades and shadows, and perspective, stone-cutting and carpentry.
4. Theoretical and applied kinematics.
5. Pure and applied mechanics, including dynamics, statics, resistance, hyaraulics, and the steam engine.
6. Physics and its industrial application.
7. Chemistry and its principal industrial applications, especially metallurgy.
8. Drawing, principaliy industrial drawing.
9. Technology. with special reference to the construction of machines.
10. The study of the mother tongue.
11. History.
12. Geography.
13. Industrial accounts and elements of industrial economy.
14. Industrial hygiene.

> B.-Practice.

The practical instruction is given in special workshops, to wit;

1. Joinery and model working.
2. Foundry work.
3. Forging and the making of small metal utensils.
4. Construction (ajustage).

Central School of Arts and Manufactures.

Abstract

The matters upon which the applicant for admission is examined are: Analytic geometry, elementary and higher algebra, pure and descriptive geometry, physics, chemistry, machine drawing. The school has four specialties and as the student follows one or the other of these he is called a mechanician, a constructor, a metallurgist, or a chemist.

FIRST YEAR.
 A.-Theory.

[^57]
B.-Practice.

Chemical manipulations, physical manipulations, stereotomical manipulations, plans, graphics, and problems.

SECOND YEAR.
A.-Theory.

Applied mechanics, resistance of materials employed in machines and in construction, construction and placing of machines, analytical chemistry, industrial chemistry, mineral chemistry, metallurgy, building construction (constructions civiles), industrial physics, industrial legislation, ceramics, dyeing, glass-blowing.

B.-Practice.

Manipulation in industrial physics, raising embankments, measuring the flow of water, construction of machines, graphics, and projects.

$$
\begin{aligned}
& \text { THIRD YEAR. } \\
& \text { A.-Theory. }
\end{aligned}
$$

Applied mechanics, construction and placing machines, agricultural and industrial chemistry, general metallurgy and metallurgy of iron, working mines, public works, railroads.
B.-Practice.
(Not given.)

Industrial Institute of the North of France.

This municipal school has two divisions or schools, technology and civil engineering, each of which is composed of three specialties or sections, mechanics, spinning and weaving, and chemistry. During the first year there is no difference between the sections, and it is only in the third year that the specialization is marked. The difference between the division of technology and that of civil engineering is that which separates the three national schools at Aix, Angers, and Chalons from the central school of arts and trades namely: The course of technology is a secondary technical course, while the civil engineering ccurse is of university grade. ${ }^{1}$

The plan of study of the mechanical section of both the technological and civil engineering divisions prepares especially for instruction in machine-making and in the construction of public works. The students of the section are particularly practiced in drawing, construction, plan-malking, levelling, and drawing up specifications (redaction des projects).
The students of the section of spinning and weaving after the first year follow a special elementary course, but during the third year they follow the higher courses relative to textile and the related industries. The practical exercises of spinning and weaving commence during the second year and are greatly developed during the final year.
The students of the chemical section commence the study of analytical and industrial chemistry after the first year. Later on they study in a very developed special course the principles of industrial chemistry. They are exercised in manipulation and during the last year devote the greater part of their time to practical work.

In Table D the time devoted by the student in the course of civil engineering is given as far as reported by the institutions having such courses. In the table which follows the same facts are given for the courses in mechanical engineering.
${ }^{1}$ Nevertheless the first year of the division of technology furnishes a preparation for enter ing upon the first year of the civil-engineering division.

TABLE E-Number of students and duration of course in mechanical engineering.

Name of school.	Hours a week devoted to-							
	Theory.				Practice (shop or laboratory)			
	First year.	Second year.	Third year.	Fourth year.	First year	Second year.	Third year.	Fourth year.
Alabama Agricultural and Mechanical College a								
Sheffield Scientific School Delaware College b								
Florida Agriculture College	6	6			6	6		
The University of Inlinois..........-	15	12	20	25	10	10	10	10
Rose Polytechnic Institute Maine Agricultural and Mechanical College \qquad	13	11	14	11	22	20	16	23
	15	20	20	20	10	10	10	10
Worcester Polytechnic Institute.	11	20	23.5	c20.5	36.5	15	15	15
Michigan Agricultural College...-	8	5	10	10	10	10	10	10
Polytechnic School of Washington University	16	16	15	d15	4	8	6	d 6
New Hampshire College of Agriculture		8	9	9	5	8	6	8
Cornell University Case School of Applied Science	83 15	63 15	15	15				
Case School of Applied Science Oregon State Agricultural Col lege d.								
Claftin University, College of Agriculture, and Mechanics' Institute University of Tennessee								
	13	10	12	10	6	12	12	12
University of Tennessee. Texas State Agricultural and Mechanical College.				5			4	4
Virginia Agricultural and Mechanical College.	10	5	5	5	10	10	5	5

a The course of instruction is "manual training."
b Course just establisbed.
c During the fifth year in this institution fifteen hours are devotel to theory and six to practice.
d Two hours a week both in theory and prastice.
Now, let us turn to a third class of schools which is sharply defined from the two classes that have just been noticed. Like one class it lays stress on the shop feature; like the second clasi it lays stress on training the faculties of observation; but unlike both it does not teach a trade, but " the underlying principles of all trades," better, perhaps, expressed by "the underlying principles of construction in wood and metal." So much attention was given to this class of schools in Chapter XV of the Bureau's report for 1.887-88 and in Chapter XVI of the report of 1888-89 that consideration of them is not now necessary, further than to repeat that the admirers of these schools may be divided in to two groups, one group strongly maintaining the pedagogical value of the schools as secondary institutions and the other urging their value as apprenticeship schools or as preparation for apprenticeship. The three features of the shopwork in the "manual training schools". are well illustrated by the departments of the Chicago Manual Training School.

	Department.	$\begin{aligned} & \text { Weeks } \\ & \text { in } \\ & \text { course. } \end{aligned}$	Greatest accom-modation.	Pupils.
First year:				
Woodwork		40	151	161
Foundry.		6	90	90
Forge		34	c0	90
Third year: Machine shop		40	52	52

These systematic exercises in wood-working, forging, and fitting, usually called the "Russian system," have been adopted by many institutions of ahigher grade than that of a school having a post-grammar (or high school) course of study. Thus at Swarthmore College, and at many of the schools en

$$
\text { ED } 90-62
$$

dowed with the national land grant of 1862, manual training on the Russian system has been introduced.

If the drawing that is taught in the public elementary schools of almosterery important city and the clay-modeling, cardboard construction, and even carpentry that are taughtin many, be excluded from consideration, inasmuch as the public schools are not apprentice schools, it will be found that the types of schools supported at public or private expense to provide the country with mechanical engineers or mechanics has been exhausted. At New York there is a school for teaching the trades of bricklaying, and at Philadelphia a weaving school, but the class of schools they represent has, as aclass, no existence in America unless the trade instruction given in the schools for the deaf, blind, and delinquent be included. As we hear much talk of "industrial art," "industrial schools," etc., in Europe, what is being done there becomes of interest. The difficulty is to give a comprehensive description; for usually what is done in a single school is made to represents all the shades of meaning in which the term "industrial" school can be taken. For some years Monsieur Marius Vachon has been intrusted with an inquiry into the conditions of industrial art instruetion (peculiarly near to French industrial prosperity) in Europe. In pursuance of this commission Monsieur Vachon has made extended study through Europe and has published five reports. ${ }^{1}$ At the conclusion of his last volume he summarizes the results of his study and travel, and it is this summary that has been translated and reproduced here as the best possible way of illustrating the character of schools which do not exist as a class in America, though we have a Cooper Union, several "mechanics' institutes," and even a "Newark Technical School" for apprentices who are abnormally developed on the practical shop or side.

Résumé of an Inquiry in Regard to the Schools and Museums of Industrial Art in Europe.

By Monsieur Marius Vachon.

The mission that the minister of public instruction and fine arts intrusted me with for the purpose of studying the organization of the schools and the museums of art and industry in Europe is at leng th completed. I have visited 110 schools, 40 museums, and 14 great associations, and I may now present them in their proper physiognomy by typical institutions. Every form which instruction in industrial art has taken has passed under my eyes and has rendered it possible for me to make a comparison of the methods and systems which are in vogue. I, therefore, at the conclusion of my fifth report, summarize the rasults of this extended personal inquiry which during five years has required a year of travel and of study.

Character of instruction.

At the base of instruction in art and industry are the apprenticeship school and the school preparatory to apprenticeship. The instruction of apprentices for the trades connectd with art has taken a great variety of forms, accoraing as the State, municipality, or association which supports a school bas followed one of two systems, to wit: Apprenticeship in the shop or apprenticeship in the school. The respective values of these two systems have occasioned the discussions and disputes of pedagogues, manufacturers, and political economists.

But before entering upon the work proper it is necessary that I should indicate as exactly as possible what I understand by apprenticeship in the school. There is a tendency to mistake the true character of the instruction the term indicates when properly used; and from this error unnecessary contradictions and empty polemics result.
The manual instruction that has been introduced into the French elementary schools has no relationship with true apprenticeship, and it has been clearly defined in the Dictionnaire de Pédagogie et l'Instruction Primaire of Monsieur Buisson as "School apprenticeship (apprentissage scolaire)." By this term is understood the "workshop in the school," a part of the organization of the elementary school by which a few hours of manual work are added to the usual routine of school work. It is not an apprenticeship, but a preparation for an apprenticeship; it gives the habit of and the taste for work." Whenever, as in

[^58]France it too frequently happens, the limit of this instruction is passed, pure apprenticeship instruction is the result, and the extremely poor work done calls forth very justly the denunciations of manufacturers. In almostall the schools of foreign countries laboratories have been organized for the application of theoretical principles, and if they are not called apurenticeship shops the manual-training school of the public-school system should not be.

APPRENTICESHIP SCHOOLS.

During my investigations I found true schools of apprenticeship both in Belgium and in Holland, and moreover they were so called. The most typical are the Iron School at Tournay, in Belgium and the Quellinus School at Amsterdam.
The Iron School at Tournay possesses shops administered as a business concern, by a lessee. The student is thus simultaneously taught theory and practice while receiving a real professional education and learning a trade. Nevertheless, the very unique and remarkable organization of this school does not give good results. The number of students is small, 75 in all, and very few finish the term of apprenticeship. The working class is not interested in the school, and the municipality and the General Government are very much concerned about its decay. Undoubtedly this type will soon be abandoned.
The Quellinus School also has a peculiar organization. When the eminent architect, Cuyppars, kegan the construction of the National Museum at Amsterdam, he was embarrassed by the difficulty of obtaining competent persons to execute his designs for its decoration and furnishing. Masters and workmen of abil. ity were utterly wanting.
To train such, a school was necessary. The architect called together some friends, a society was formed, and with the concurrence of the city a school was established. Theobject of the school is the theoretical and practical application of drawing to carving in wood and stone. The practical work is done in a shop attached to the school, which thus is divided into two very distinct parts. The shop is the enterprise of a society which, however, realizes nothing from the work, the proceeds being distributed pro rata among the students and professors who have executed and superintended each piece of work. The students are taught drawing, but the instruction is confined to making correct designs, and is especially directed to the reading and-reproduction of the designs of professional architects and designers. The management of the school, however, desires to give a more artistic character to the school and to make it a finishing institution so far as the industries taught in the school are concerned. Such as it is the organization is not sufficiently powerful to struggle successfully against the many obstacles which the journeymen carvers in stone and wood place in the way of the school's success. Moreover, the school is very expensive. Each student costs annually $\$ 113$, exclusive of the interest on the building and apparatus. I am certain that a reorganization must be effected soon or the school will go under.
In Russia, where a national industry has only lately come into existence, apprenticeship schools are very numerous. At the time of my visit there were more than fifty having more than 2,000 pupils. They are mostly the creations of the state or of cities aided by the state; but a number have been founded by societies or by private individuals. By the side of the great schools there are about 1,200 small schools which teach the industry that is peculiar to the village or city in which they are situated-carpentry, turning, forging, locksmithing, tanning, bookbinding, etc.

SCHOOLS PREPARATORY TO APPRENTICESHIP.

On the other hand, the schools preparatory to apprenticeship are very numerous in Europe. Of these the schools that I have studied as types are the Ambats School of Amsterdam, the Technical School of Birmingham, Heriot's Hospital School at Edinburgh, and Les Écoles St. Luc in Belgium.
Though deeming that real and industrial instruction is only capable of being given in a shop located in an industrial center, the founders of the Ambats School have recognized the necessity of a special institution where intelligent masters, free from the preoccupation of business, shall introduce children into the principal trades through the theoretical and practical demonstration of their elements and instruction in drawing. In the shops of Holland, as almost everywhere, apprenticeship is an unscientific process, and moves so slowly that the apprentice loses heart. This is due to the selfishness and the negligence of superintendents and masters.

The Ambats school is fed exclusively by the working class. In the general course the students receive a good elementary education. In drawing the instruction is confined to the indispensable elements for the intelligent exercise of manual work. Those who desire to perfect themselves remain a long time at the school, during which they receive supplementary instruction in drawing and mathematics. Practical and manual instruction enters largely into the course. The shops are for carpentry, wood-carving, mechanical work, and locksmithing.

In this as in all schools of the same kind the management is confronted with the difficulty of holding its students. As soon as the children can use the graver and the plane a little they desert. The institution appears to prosper because it insists vigorously that the child shall be given a real manual education for apprenticeship. The society that founded the school has opened an annex in another part of the city. The cost per capita is $\$ 37$ a year.

The Technical School of Birmingham and the Heriot Hospital School of Edinburg have been organized in the same spirit as the school at Amstordam, to wit, to furnish industry with young people practically prepared for apprenticeship. But the English scbools are of a higher grade than the Amsterdam school, for they will only receive students who have already finished their elementary edu-cation-who have already acquired the elementary principles of art, of science, and of literature. To the shops for manual work have been added very complete laboratories of chemistry and of physics, where the students are introduced to real scientific problems and to a certain amount of practice in industrial art. Before finishing their studies the students are engaged as future apprentices, as a rule, by the chiefs of industrial establishments. These schools are very prosperous and render great service to local industries. Day by day they grow and are constantly serving as models to new schools of the same nature that are being created in different parts of the three kingdoms.

The great institution known as the Schools of St. Luc, Belgium, follows the same course of preparing for apprenticeship to the trades which are directly concerned with art. On leaving the school the management places the young people in shops directed by former pupils, imposing on the superintendent the duty of sending the apprentice to school every evening and of admitting into the shops the professors who are charged with the duty of giving account of the conditions under which the apprenticeship is taking place and the professional progress of the apprentice. This system is rendered very practical and very valuable in results by the interest that the directors of the shops have in the St. Luc establishment, their own alma mater.

Moved by the same ideas, the work of the professional schools of Belgium has, in every important industrial center, created syndicates of the superintendents of industrial establishments, who have organized shops in their manufacturing establishments, to which the students of the industrial and professional schools are admitted. These schools give theoretical and artistic instruction; the shops the practical exercises.

Another type of schools preparatory to apprenticeship is that furnished by the numerous industrial schools of Ireland, of which the most remarkable is the school of Artane at Dublin. Only wholly orphan children are admitted, who are to devote themselves to domestic or rural work. They receive an elementary instruction, elementary ideas of science and art, and a rather complete manual education. Some thousands of children are raised in these institutions, which have the double character of a schcol and an asylum.

ELEMENTARY SCIENCE AND ART SCHOOLS FOR APPRENTICES AND JQURNEY MEN. (ECOLES COMPLEMENTAIRES DE L'APPRENTISSAGE.)
Of a higher grade than the schools of which I have just spoken are the industrial and the technical schools. ${ }^{1}$. These schools aim to give the apprentice and journeyman elementary notions of science and art after his work for the day ceases. Thus the economic value of the work produced by the laborer is enhanced because it is done more rapidly and perfectly. The school completes by theory the practice of the shop.

These schools are the best type of institutions for the development of artistic and technical instruction. They answer exactly to the new conditions of the organization of skilled labor and plase in the possession of the mechanic an out-

[^59]fit that is of marrelous power and yet of great simplicity. It does not interfere with apprenticeship in the shop, the basis of industrial life, and gives the apprentice, without causing social disturbance, without loss of time, and without great expense to the workingman a solid scientific and artistic instruction. The moral discipline of the school and the essentially professional character of its instruction doas not disgust the student with his daily work, but rather tends to lend it new attractions and render it more elevated and productive. Thus these institutions are innumerable.

Belgium has created 36 industrial schools, properly so called, which are destined exclusively to instruct journeymen and apprentices in the elements of the science or art which is demanded by their profession. The number of students in these schools is 10,597 . If to these be added the students in other and higher professional schools the total number of persons annually instructed in Belgium in the industrial way is over 25,000 : The population of Belgium being $5,853,278$, the proportion of the population in professional schools is 4.2 per thousand. At Brussels, Ghent, and Charleroi the proportion is 1 in 100 of population.

England is in the same category with Belgium. At London the People's Palace has 7,000 students, the Polytechnic Institute 9,000 , at Birmingham the Midland Institute has 10,000 . In Holland the number of industrial schools is 32 , that of professional schools. 25 , and the attendance 7,000 , in other words, 2 persons in every thousand are in attendance. Switzerland has 87 schools with 8,000 pupils, not counting in the realschulen and others. Attendance on these schools is, in many cases, made obligatory. In Denmark there are 77 schools with 6,000 students, the proportion to the population being 3 in 1,000 . In Sweden there are 28 schools, that of Stockholm has 800 students, more than 5 in every 1,000 of the city's population. In Italy there are 136 industrial or art schools with 16,274 students. At Hamburg the industrial school contained 3,200 pupils, or 8 per cent of the city's population.

The types of this class of schools are numerous and vary with their environment. In Germany itseems to me that the programmes give art a preponderating place even in the centers of great metallurgic or textile industries, and that the sciences are taught only in their elements. The same is true according to my observation in Belgium, Holland, Switzerland, and Austria. In England, on the contrary, the organization of the course tends in the direction of the pure and applied sciences rather than in that of art. The technical schools with well organized laboratories of chemistry, physics, and electricity, with shops for work in iron and wood, are in greatest number. According to the most recent figures there were 112,808 pupils in technical classes, and 77,364 in art classes.

The Hamburg school is, in my opinion, the most perfect institution of its kind existing in Germany, as well from the point of view of the principles which caused its establishment, as from those of administration and instruction. It has served as a model for the majority of the German schools. Upon entering the school every pupil, if he is not yet a mechanic as sometimes happens, must choose a trade. Many corporations of mechanics have inserted in their constitution that the director of an establishment must send the apprentice to school for at least eight hours a week. Moreover, a law of the Hamburg Senate, passed in 1864, imposes the duty upon every director of an industrial establishment to send his apprentices to school during six hours a week.

The duration of the studies is not fixed by rule, the students must remain in the school for six months, but after that they may remain for two, three, four, or five years even, according to their tastes and their aptitudes; in brief, they leave only when they think they know enough to work at their trade with advantage. The session is from 6 to 10 p . m . The first half of the first year is given up exclusively to the study of the elementary principles of drawing. Copying is rigorously forbidden ; all drawing must be from nature. The second half of the first year is partly devoted to professional drawing. As soon as the student has acquired the ability to draw he is put to work upon drawing objects which belong to his profession. The following years the professional drawing proceeds pari passu with general artistic instruction. With the exception of the theoretical courses, collective class instruction is not permitted. Each student receives a personal, intimate, and varied instruction according to his temperament and his aptitudes. The master is constantly in the study rooms, and constantly inspects the work of the student, advising and criticising him freely. Punishment and prizes are unknown. The discipline is severe, but it is not by general orders. Each student is habituated to conduct himself in a serious manner and to consider the work as a social duty and not as an instrument of puerile ambition. The idea of giving the tuition without charge has been pushed aside with dis-
dain as antidemocratic and as calculated to hurt the organization of the school. It is thought, very justly, that the tuition fee is an excellent, even infallible, means of interesting the children and parents in the attendance on the course.

The most typical and complete institution of this kind in Belgium, where industrial instruction has had an immense development, is that at Charleroi. It is not only an elementary industrial school, but a sort of higher institution for journeymen and apprentices. The course of instruction touches upon all the industries of the region. In view of its double object the school of Charleroi has two kinds of courses, to wit, the evening course, which has asession every evening of the week from 7 to 9 during the whole year, and the Sunday course, from 9:30 a. m. to 12:30 p. m. The evening course is elementary, the Sunday course in a certain way a higher course, since it is intended to supplement the instruction received during the week in the evening school, or the local day schools of Charleroi.

The curriculum of the evening course consists of French, commerce, physics, arithmetic, geometry, chemistry, linear drawing (figures and ornament), and to draw from plaster casts. The curriculum of the Sunday course comprises commerce and bookkeeping, arithmetic, geometry, physics, chemistry, topography (land and mining surveying), steam engine, electricity, building and architecture, forging, coal mining and engineering, linear, figure and ornamental, drawing from casts and modeling. The student may choose the course which suits him, provided he has the ability to follow it with profit. A certificate, however, is only delivered to those students who have followed the course for two years at least, and have passed a thorough examination upon all the studies that they have pursued. I visited this school one Sunday when the ground was covered with snow and witnessed a scene that touched me deeply. Eight hundred pupils, young and cld, employers and employés, were assembled, and were listening to the discourse of the master, or were engaged in study, as stoically indifferent to the chilly temperature as they had been to the seductions of the salocn. Many of them had risen before daylight, had traveled for hours through the snow to attend the lesson of their professors-engineers or directors of mines, doctors of science, or other distinguished university people-to learn arithmetic, geometry, physics, chemistry, and to pay for the instruction they receive.

In England these complementary schools for the education of the apprentice form the type most in vogue. There is not an industrial center, however small, which does not pcssess one, and the great centers have many. I will add even that in reality these are the only industrial schools that really exist and that render real service to the national industries (J'ajouterai même qu'en realité ce sont les seules écoles qui existent sérieusement et qui rendent de réels services aux industries nationales). The day schools, with few exceptions, are luxuries (écoles de pur luxe), which are especially for young people who desire to enter upon a liberal career, for amateurs, and for persons whose time hangs heavy on their hands (oisifs). The attendance at the day schools is scarcely a twentieth of that of the evening schools.

The great schools of the kind now under consideration that I have studied with care are the school of the People's Palace at London, which contained in 1889, 5,500 students; the school of the Polytechnic Institute at London, with 7,000 students ; the Technical School at Finsbury, with 1,000 students; the school of the Birmingham and Midland Institute, with 3,527 students; the Heriot-Watt College at Edinburgh, with 2,000 students: the Technical School of Manchester, with 500 students; the Technical School of Bradford, with 352 students. The instruction given in these schools is very thorough and of a higher order. To follow the course profitably it is thought that the student should be versed in the elements of art and science. But this requirement is not enforced and those who can not follow the regular course are taught in preparatory classes. Industrial science figures largely in the programmes, and to complete the theoretical instruction laboratories and shops have been fitted up with extraordinary completeness. In the case of great industrial centers having a predominating industry care has been taken to specialize the instruction. Thus I have found at the Birmingham and Midland Institute a real school of metallurgy, with laboratories, forges, etc.; at Bradford there is an evening technical school for the drapery industry; at Manchester, a schcol for spinning and weaving; at Glasgow, a veritable schooi of marine engineering.

Beside these schools where technical and industrial instruction preponderates or almost excludes any other, there exists a class of evening schools where the pupil learns drawing, painting, sculpture, modeling, etc. These are intended particularly for journeymen and apprentices in trades in which art-plays a great rôle. These schools are numerous and flourishing. Each city possesses one.

The organization of these English technical and art schools presents the interesting peculiarity that I noted at Charleroi, to wit, the use of the same building by the day and evening schools, the teaching corps being common to both. This is very economical. The social results are immense. The evening schools that are attended exclusively by apprentices and journeymen come out in strong relief by their fusion with the day schools of high and low degree. The evening school is no more a philanthropic enterprise which brings the young and old together whose intellectual derelopement would otherwise cease, but it is an institution of a high order in which the student must pay for what he receives. The journeymen, the apprentices, the son of the owner and the children of the bourgeoisie are brought together in public and both are honored by having been students in the same institution, and the social harmony increases.

SPECIAL PROFESSIONAL SCHOOLS.

Above the schools for journeymen and apprentices, are the special-profession schools which have the object of educating foremen and other higher employés. They are true higher schools of industry. The great schools of this class that I have studied are:
In Germany: The weaving school of Crefeld (founded in 18555, thoroughly reorganized in 1831); the metal-working school at Iserlohn (1879); the mining school of Bochum (founded in 1844 and afterwards reorganized) ; the school of iron and steel industries at Remsheid (1880), and the woolen-industry school at Aix la Chapelle.
In Switzerland: The weaving school at Zurich; and the school of embroidery and lace at St. Gallien.
In England: The Bradford technical college, the weaving and spinning school at Manchester, and the technical school of the City and Guilds of London Institute.
In this type of institutions general and artistic instruction holds a great place, which is not the case, as we have seen, in the industrial and technical night schoils. Those who attend these schools are neither journeymen nor apprentices, but young people who desire to occupy a higher rank in the industrial hierarchy, as foremen or superintendents. They study what I will call the industrial humanities.
The most complete school and the best in its organization as to matters of instruction and equipment is the Crefeld Weaving School. The school, in the first place, is something more than its name indicates. Its real mission is to train, by a professional, theoretic, and practical instruction and by a solid artistic education, weavers, foremen, silk dealers, and industrial designers for the textile industry. The programme includes the study of drawing and painting; the examination and separation of all the tissues-silk, cotton, linen, etc.; the practice and analysis of all the manipulations and transformations that they undergo before and after weaving; the theoretical and practical study of all the systems of mechanical and other trades; all the modes of fabrication; all the motors employed in the weaving industry; the appearance and the color of goods; industrial bookkeeping and commercial geography. The coulse, which covers two years, is conducted by fourteen teachers. Practical work alternates with theoretical and artistic instruction. The school contains for these purposes weaving shops with eighty mechanical or hand looms (metiers) with all the accessories, laboratories of chemistry, of dyeing, and printing, and a complete museum of ancient and modern cloths. After spending two years in the school the studious and intelligent student has received a complete professional instruction in weaving, and is able to become an overseer in a shop, a designer, or a commercial agent of the first order. In addition an artistic education has given him the love of the beautiful, of the works of the masters, and a desire for new ideas (la curiosité d' dées nouvelles .
The schools of Iserlohn, Remscheid, and Aix la Chapelle, were founded on the same principles, and present an organization but slightly different. They are, as is the Crefeld school, true special schools for the officers of industry.
The Technical School of Bradford and the Weaving School of Manchester have not the same general character of technical and artistic instruction. Their course is less complete and less elevated. I think that I may justly denominate them as preparing the under officers of industry. In England the dogma in matters of technical instruction, "theory in the school, practice in the shop," is applied to directors as well as to the journeyman. I am not inclined to blame the English in this, though I admire so much and recommend the Crefeld school.

SCHOOLS OF DECORATIVE ART. ${ }^{1}$

[SCHOOLS OF INDESTRIAL ART, SCHOOLS OF DRAWING, SCHOOLS OF ART.]

In the third class come the schools of drawing and art, schools of decorative art, or schools of industrial art. These constitute, so to speak, the higher instruction of art applied to industry. They may be placed in three divisions which have no definite line of demarcation.

England, Germany, Russia, Austria, Sweden, and Denmark unite in distinguishing between high art and industrial art, between academic art and factory art, but Belgium is more advanced, and the old academies of Anvers and of Brussels are radically transforming their instruction. During the first year of the course the students receive instruction in drawing and geometry; the course being preparatory. In the following year the students find themselves called upon to choose the profession of an artist, sculptor or architect. To aid them a synoptic table has been gotten up which indicates the industrial branches " which are derived from each of these general divisions." It was thought that a specialization should be made at the beginning of the second year as giving point to the study of art. Experience had shown that two-thirds of the students formerly abandoned the academies before accomplishing anything because they were impressed with the inutility of the long course in art for their profession. The old system of generalization of the studies had the defect of sending off the student in quest of pure art without application to industry, and thus made very bad painters, sculptors, and architects of them.

II. Organization and administration.

SUPPORT.
In Germany the interlocution of the state in the support of these schools is manifested in many ways. When it is a cofounder it furnishes collections, tools, and furniture. When it is simply a participant it gives a fixed sum for a determined period. Finally the schools whose foundation it has caused (provoqué), therefore called royal, are inscribed as beneficiaries on the state budget. The municipalities make an annual appropriation and sometimes provide the building. The workingmen's and the professional schools generally receive no support from the state and are generally supported by the communities in which they are located, with the aid of societies and individual benefactors.

In Belgium the municipality is at the head of the school movement. It either taikes the initiative or adopts a school founded by private societies as soon as their public utility has been shown. The state appears in the affairs of the school only as it makes appropriations, which, however, are always liberally accorded. The schools preserve their own autonomy, the state is only concerned with results, and if they are satisfactory the appropriation is continued. The municipality in giving recognition to schools founded by societies leaves to the society the management of the school, the appointment of the professors, the budgets, and the course. The municipality only administers directly the communal schools, buteven in them a great deal of independence is given to the directors.
In Holland, with four or five exceptions, every industrial, art, or professional school has been founded by societies which direct them in a perfectly independent mannêr. The state, province, or municipality grants them aid.

In Denmark, Sweden, and Norway the most active rôle is played by private enterprise in the creation of institutions for the development of technical and art instruction. The state and municipality grants aid, but does not absorb their individuality.

In Russia almost all the schools have been founded and are supported by societies. The activity of the state is almost nil.
In Austria-Hungary every school is under the minister of public instruction or of commerce, according as they are technical or art schools.
In Switzerland the schools are generally founded and administered by the municipality. The Federal Government grants aid, which varies according to the more or less national or local character of the institution.

[^60]In Italy all the schools are the creations of societies of artists and of mechanics. So far from being supported, the schools have been opposed by the state and municipality. Now the state has laid its hand upon them all and leaves them but comparatively little independence. The municipalities make them liberal grants and intervene in their administration.
In England the state has up to the present left the matter entirely to the municipalities, societies, and individuals, the National Normal School of the South Kensington Museum being the only exception. For the most part the schools are the creations of societies who manage them and endeavor to make them self-supporting with the aid of contributionsfrom private and public purses. Every municipal school should have a governing board at its head of five members chosen from the inhabitants of the town. The state never interferes in the administration of the municipal or private schools, except so far as to require from all schools that desire to share in the public appropriation, to recruit its teaching corps from among the professors holding the diploma of the South Kensington School. This public appropriation to the schools of science and art of the Kingdom by means of an annual competition is large but variable.

TUITION.

In England the system of gratuitous instruction is resolutely excluded as injurious. Scholarships are given after a very severe examination. In Germany it is the same, though scholarships are given to poor students. In Denmark, Sweden, and Norway even scholarships are not given. In Holland nearly every school is a pay school.
In Belgium there is a mixed system and there are as many gratuitous as pay schools. Some schools require some pupils to pay while other pupils are edueated free. At Charleroi the tuition is repaid at the end of three or four years to students who have obtained a diploma.

COST.

Country.	Schools.	No. of students	Per capita cost.
Germany	Weaving School of Crefeld (shops, laboratories, etc.)	250	$\$ 74$
	Industrial School of Hamburg.	3,200	10
	School of Decoratire Arts, Berlin	500	20
Switzerland	School of Industrial Arts, Geneva	200	10
	Municipal School of Art and Industry, Gene	58	30
	Watchmakers' Schnol, Geneva	112	
Belgium	Industrial school of Zurich	350	9
	Industrial School at-		
	Charleroi..	${ }_{260} 8$	7
	Anvers	, 200	13
	School of Decorative Art and Academy of Fine Arts, Brus-	686	44
	School of Decorative Art, Ixelles, Brussels	300	16
	Professional School of Wood, Tournay, shops, etc	150	21
Holland.......	School of Decorative Arts, Amsterdam (without board or	32	325
	lodging).		
			${ }_{27}^{20}$
	Ambats School, Amsterdam (shops)-............	250	37
	Academie of Liberal Arts, at The Hague.............................	400	23
	Ambats School, at The Hague (shops)	120	46
	School of Industrial Art, Harlem.	200	25
	Public schools of art and industry (average)................	6,000	8
England	Normal School of South Kensington...........................	563	22
	School of Art, Manchester...	452	29
	School of Art, Birmingham	735	46
	Higher Technical School of Londo	431	100
	Finsbury College, London,	1,217	33
	Technical School, People's Palace, Lond	5,500	28
	Technical School, Birmingham (shops)	308	28
	Technical School, Manchester (shops, laboratories)	-600	75
	Bradford Technical College (shops and laboratories) -...--	1,500	20 105
	Artane Industrial School, Dublin (board and loaging)....-	800	

III.

COURSE IN MINING ENGINEERING.

The features which distinguish the course in mining engineering from that of civil engineering become apparent on comparing the course of the Massachusetts Institute of Technology given below with the civil-engineering course given at page 952 . Laboratory work is especially prominent. In brief, the mining engineer is a civil engineer who operates beneath the surface of the carth and a chemist whose specialty is metallurgy. The Massachusetts Institute of Technology has a special laboratory for the students of this course, called the Cummings Mining and Metallurgical Laboratories. The institute is careful to anticipate the common criticism that work in such a laboratory is no substitute for the experience gained inlarger works; for the object of its laboratory is to prepare students for such experience, to instil the spirit of investigation, and to emphasize the process given in the text-book. The mining laboratory consists of three parts-milling, furnace, and assay rooms. To bring the student into still more intimate connection with their specialty, summer schools of mining and metallurgy are organized for the study of mines, mills, smelting works, and geological fieldis. In 1890 the schooi, consisting of twelve students, spent a month at work-mining, setting timbers, and surveying underground-in the iron mines at Ishpeming, Mich. Next year instead of a mining a metallurgical school will be organized.

Mining engineering at the Massachusetts Institute of Technology.

Subjeot.	Lect., Rec., Lab., Draw., or Field.	Instructor.	官	吕		
Blowpipe silver assay	Lab	Richards. --......		1	15	2
Mining engineering ..	Lect	Richards, Hoffman.-	3	1,2	30	3
Assaying by fire...	Lab	Richards, Lodge .-.	3	2	15	4
Metallurgy of iron	Lect	Richards	4	1	15	1
Metallurgy.	do	Richards, Hoffman, Howe.	4	1	15	2
Mining -	Lab	Richards, Lodge .-.-.	4	$\stackrel{1}{2}$	15	${ }_{12}^{8}$
Mining and metallurgy	do	.-do	4	$\stackrel{1}{2}$	15	${ }_{12}^{8}$
Ore-dressing	Lect.	Richards	4	1	15.	1
Metallurgy.		Richards, Hoffman.	4	2	15	3
Drawing	Draw	Richards.	3 4 4	1	15 15	${ }_{1}^{2}$
Memoirs	Read	Richards, Hoffman.	4	1,2	30	2

As at the Massachusetts Institute the civil-engineering course is the starting point for the other technological courses, and at the Rose Polytechnic the mechanical engineering course is the basis of the other courses; so has the school of mines of Columbia College been developed into a general school of technology. Owing to lack of information, however, it is necessary to pass by this very important school and to let the Michigan Mining school represent the class now under consideration. It is hardly necessary to remark that the school is situated in the northern or mineral-yielding portion of that State. The school has been in existence only a few years, having been established in 1886.

Curricutum of the State Mining School of Michigan.

One of the oldest and certainly one of the most renowned mining schools of Europe is the Bergakademie at Freiburg, in Saxony. In this institution there are four courses, to wit, for mining engineers, mining surveyors (markscheider), metallurgical engineers, iron-smelting engineers. To show how this specialization is made the curricula of the four courses are given side by side :

FOR MINING ENGINEERS.			FOR MINING SURVEYORS.		
Studies.	Hours a week.		Studies.	Hours a week.	
	Lecture.	Exer- cises		Lecture.	$\left\lvert\, \begin{aligned} & \text { Exer- } \\ & \text { cises. } \end{aligned}\right.$
First year: Higher mathematics (part 1) Descriptive geometry Spherical trigonometry \qquad Physics ic chemistry. Inorganic chemistry. \qquad \qquad Mineralogy. Crystallographic practicum Topographical drawing and sketching. Second year:	63a26445	020100012	First year: Higher mathematics (part 1) . Descriptive geometry Spherical trigonometry Physics. \qquad	63226550	02011002
			Mineralogy-.-.-....-....-.		
			Mining (1 part) ---.-....-.-.-.		
			Topographical drawing and		
	26655200020		Second year: Geodesy and mine surveying (part 1). Geodetical practicum		
		01000a22224		3	0
Mechanics .-...-.					
Mining (1 part)				0	$\left\{\begin{array}{l}\text { a } \\ 6\end{array}\right.$
Geology			Higher mathematics (part 2) --		
Palæontology			Mining (part 2)	5	
Study of strata and fossils			Geology...		0
Mineralogical practicum			Mechanics	6	1
Physics (practicum)					
Computative and graphical exercises in mechanics.					
Third ercises:				3	3
Geodesy and mine surveying (part 1).	3	$\left\{b^{2}\right.$	Third year: Geodesy and mine survering (part 2). Mine-surveying practicum Strata \qquad		
Geodetic practicum.-		$\left\{\begin{array}{l}\text { b } 2 \\ a \\ 0 \\ 0\end{array}\right.$		03$b 4$$a 4$$b$$b$$a$2	
Mining (part 2)	5				6000
Machines	4	0	General law		
Strata -...-	3	0	Mining law		
Metallurgy .-..----		a	Political economy		
Building construction Computative and graphical ex-			Political economy		
ercises in machine construction, etc.					
Fourth year:					
Geodesy and mine surveying (part 2).	3	0			
Surveying practicum..	b				
General law					
	144	0 0			
Sketches of mining and smelting works.		0			
Mining and metallurgical	1	0			
Mining and metallurgical	b 1	0			
Mining statistics.					
Political economy.	$\left\{\begin{array}{rl} b & 3 \\ a & 2 \\ 2 \\ 2 \\ 2 \end{array}\right.$				
Mining and smelting hygiene. . Electricity					

FOR METALLURGISTS.			FOR METALLURGISTS IN IRON.		
Studies.	Hours a week.		Studies.	Hours a week.	
	Lecture.	Exer-		Lec. ture.	Exercises.
First year:			First year:		
Higher mathematics (part 1)--	6 3	0 2	Hescriptive geometry...-.......-.	6 3	0 2
Physics	6	1	Physics	6	1
Inorganic chemistry	4	0	Inorganic chemistry	4	0
Mineralogy	5	0	Mineralogy	5	0
Mining (part 1) -............	5	0	Mining (part 1)	5	0
Topographical drawing and sketching.	0	2	Topographical drawing and sketching.	0	2
cond year:			Second year:		
Higher mathematics (part2) .--	2	0 1	Higher mathematics (part 2)	2	1
Mining (part ${ }^{\text {a }}$)	5	0	Mining (2 part)	5	
Geology	5	0	Geology .-	5	
Mineralogical pr	0	2	Physics (practicum)	0	2
Physics (practicum)	0	2	Blowpipe assaying--......-.--	2	(a) ${ }^{2}$
Blowpipe assaying --.	2	2	Qualitative chemical analysis-	1	(d)
Qualitative chemical analysis Chemical technology	2	(d)	Computative and graphical exercises in mechanics.	0	4
Computative and graphicalex-	0		Third year:		
ercises in mechanics.			Iron smelting	4	0
ird year:			General smelting --.--..------		
General metallurg	4	0			
Machines.	4	0	Qualitative chemical analysis-	1	(d)
General law.	$b 4$	0	Geodesy and mine surveying	3	
Mining and metallurgical bookkeeping.	1	0	(part 1).	3.	
Mining and metallurgical sta-	$b 1$	0	Computative and graphical	0	4
tistics.			exercises in machine con-		
Qualitative chemical analysis-	1	(d)	struction.		
Geodesy and mining surveying (part 1).	3		Firing	fb 3	
Building construction.		0	Political economy	¢ $a 2$	
Computative and graphical exercises in machine construc-	0	4	Fourth year: Shot, pen, and typemaking, etc	1	0 0
Production of salt..	$a 1$	0	Assay of iron..................---	$b 1$	(c)
Fourth year:			Gas analysis.	0	2
Shot, pen, and typemaking, etc-	a 1	0	Location of iron smelting	1	0
Foundry work and smithing, etc.	2	0	works. Sketches of mine and smelt-	0	4
Assaying-	0	1	ing works.		
Mass analysis	0	$b 2$	General law	64	
Gas analysis	0	$a 2$	Mining and metallurgical	1	0
Iron smelting	4	0	book-keeping.		
Firing -	1	0	Mining and metallurgical sta-	61	
Electricity	2	$a 2$	tistics.		
Sketches of mining and smelting works.	0	4			
Hygiene of mining and smelting work.		0			
Political economy	$\begin{cases}b & 3 \\ a & 2\end{cases}$				

cOne afternoon.
d Daily.

IV.

ELECTRICAL ENGINEERING.

Just as mining engineering is a specialty of civil engineering, so electrical engineering may be considered as a specialty of mechanical engineering; for "generation of steam" write "generation or collection of electricity,"for "boiler" write dynamo, and the difference is reduced to a minimum. The main feature of difference, then, is not in the study of the art of applying the energy when generated, but in the theoretical and scientific study of the energy itself. However, there is another feature connected with electricity that is not in anyway connected with mechanical engineering unless the setting up of apparatus and construction of lines be also called such, and that is electric lighting.

During the ten or twenty years last past the development of the study of electricity and the application of it as an illuminating and motive agent has shared with the discoveries in organic chemistry the honor of public attention and applause. So responsive have our schools of higher education become to the growth of science, that already many courses of biology have been instituted and several courses in electrical engineering.
In the Massachusetts Institute the course of electrical engineering is made up in its technical features from the subjects composing the physics or mechanical engincering departments. On pages 968,969 is given in parallel columns the course of mechanical engineering at the Rose Polytechnic Institute and the following scheme is for the students of that school who elect electrical engineering instead of the usual course.

Electrical Engineering.

This course can be elected only by stalents in mechanical engineering.

	First term.	Second term.	Third term.
		Electrostatics. Magnetism; elementary laws of magnetism and properties of magnetic substances. Electric currents; their measurements, use of galvanometers. Text-books and laboratory. (3 hours a week.)	Electric units: derivation and definition of quantity, resistanceand potential; relations of. Resistance measurements, Wheatstone's bridge, Kirchoff's laws, etc. Text-book and laboratory. (3 hours a week.)
	Current generators; study of various forms of batteries; polarization and electrolytic resistance. Construction of batteries; care and management of same. Text-book and laboratory. (2 hours a week.)	Electro-magnetism; laws of electro-magnets and their construction, induction; electro-magnetic induction. Text-book and laboratory. (2 hours व week.)	Application of electro-mar netic induction in various operations, and for purposes denser in measurement, of insulation and insulation tests. Text-book and laboratory. (2 hours a week.)
	Accurate determination of magnetic elements; absolute measurements in magnetism and electricity. The calibration of commercial instruments, and the study of their errors. (3 hours a week.)	Measurement of commercial currents by various instruments and methods, insulation of lines for electric light, telegraph and telephone purposes, arc and glow lamps, photometry, telegraph, telephone, and submarine cable appliances and systems. (3 hours a week.)	Electric lighting and power transmission; study of dynamos and motors as to ef ficiency, characteristics, etc., using various dynamumeters. Design and construction of electrical apparatus and machinery. (6 hours a week.)

Recent arrangements at Purdue University have put that institution among the first in the country as a school of electrical engineering. A laboratory has been erected that is in itself an institution. The work has been developed from the mechanical engineering course and is identical with it during the freshman and sophomore years. During the junior and senior years the course is as follows:

JUNIOR YEAR.

Technical instruction.

(a) Lectures and recitations, electricity and magnetism.-Thirty-eight weeks, twice a week, This work thoroughly covers the elementary theory of the subject, and forms the necessary groundwork for the more advanced and technical instruction of the succeeding year. The elements of electrical and magnetic potential receives particular attention. The instruction is by textbook, supplemented by notes.
(b) Laboratory work:-Thirty-eight weeks, 6 hours a week, consisting during the first term of instruction in the art of physical measurement, and during the remainder of the year in the elements of electrical testing.

SENIOR YEAR.

(a) Dynamo-electric machinery.-Thirty-five meeks, twice a wreek. This course consists of the fundamental theory of such machines, of their various forms, and the applications of the same to electric lighting and power. The mathematical theory of electricity is drawn upon so far as found adrantageoss to the discussion of these machines. Systems of electrical distribution will beinvestigated, and tests on the continuous and alternating circuits of the department discussed. Each student is expected to produce from time to time a paper giving the results of reading or investigation of some eleetrical subject.
(b) Laboratory work.-Thirty-five weeks, 8 hours a week. During the first term the subjects considered will be advanced electrical testing and the standardization of testing apparatus, while the remainder of the year will be occupied with testing dynamos and motors, photometry and electric lighting, together with a practical study of the problems of electric pighting and power, and, finally, practice in elect rical designing. Inspections of electric light factories and plants and reports on the same are considered part of this work.
(c) Thesis.-A thesis giving an original design of some electrical machinery, or an original investigation and discussion of some electrical installation, is required at the end of the course.

This electrical laboratory is a two-story structure of brick and stone, with a tower and ample rooms in the roof. The lower floor is given up almost entirely to electrical work. The second story contains the physical lecture room. offices, drafting rcoms, and the like. The institution had a comparatively small electrical equipment at the start, but as soon as the new building was under way extensive importations were made, so that there are now available a rather full set of the best modern testing instruments, and a well appointed dynamo room with all the paraphernalia of commercial measurement.

The main part of the electrical building contains a general laboratory, lecture room, two laboratories for special work in electrical testing, a small laboratory for magnetic and other extremely delicate measurements, a battery room, and a director's office. The dynamo room is in an accessible and well-lighted extension, as far as possible from the laboratories where delicate instruments are in use.
This dynamo room is 27 by 42 feet, and is supplied with half a dozen typical modern dynamos of small size, conveniently arranged for experimentation. Power is furnished by a 22 high-pressure straight-line engine. This is placed at the extreme end of the dynamo room, farthest from the main building, and is coupled directly to a line shaft running nearly the length of the room, and is supported at short intervals by substantial piers. This shaft is very carefully lined up, and carries the driving pulleys for the rarious machines.
The equipment of dynamos consists of one of the original workshop type of gramme machines, brought to this country at the time of the Centennial Exhibition at Philadelphia, a Thomson-Houston 3 -light arc machine, a Brush 4 light arc machine, an Edison 40 -light incandescent machine, to which supplementary series coils for compounding have been added, and a Slattery alternator specially designed for experimental work and giving an output of about 10,000 watts. In addition, a compound wound incandescent machine is under construction from designs by the director of the laboratory. This last is a Manchester type machine, with field magnets seated on a gun-metai base. In connection with the alternating dynamo there are converters of Westinghouse, Slattery, Thomson-Houston, and national make. A bank of lamps and a Julien storage battery of 25 or 30 cells are also located in the dynamo room. A Sprague constant-potential motor and a Baxter constant-current motor serve as types of those classes of machines. The testing rooms are fitted with substantial masonry piers independent of the flooring or foundations of the building, and are
quite free from vibration. The set of testing apparatus was designed to give opportunities for the absolute measurement of resistances and of both alternating and direct currents at all potentials. To this end the equipment includes a well-selected series of standard resistances, two of Sir William Thomson's balance dynamometers and a Weber and a Siemens dynamometer, and two Thomson electrostatic voltmeters, aside from the ordinary apparatus of testing and commercial measurement.. The physical lecture room is located over the dynamo room, so that any kind or quantity of current and direct mechanical power are both easily available.

The city of Lafayette, in which the institution is located, has an electrical railroad and two electric lightstations, which through the courtesy of the managers are often available for additional instruction and illustration.

V.

ARCHITECTURE.

The readers of one of those romances of Violet le Duc which have an engineering "motif" will remember the answer given by the engineer to the architectural student who asked for the difference between an architect and an engineer. "You ask me a difficult question to answer," was the response; "art has been separated from science and calculation because it is thougint that both can not be held in the same brain." However this may be, we have in America but few courses of architecture, those known to the Bureau-being at the Massachusetts Institute of Technology, the Lehigh and Cornell Universities, Columbia College, and the University of Illinois. The courses of the two universities last named are given, together with that of the technological university at Hanover.

Course in Architecture at Cornell University.

FIRST YEAR.

Instrumental drawing and projection, six hours during winter term; building, surveying, and levelling, spring term; lectures and field work, two afternoons per week.

SECOND YEAR.

Building materials and construction, winter term; lectures three times a week; drawing, six hours a week. Spring term: Lectures and ärawing, six hours a week, and each week four hours additional drawing; shades, shadows, and perspective. Spring term: Lectures: drawing, six hours a week.

THIRD YEAR.

History of architecture; lectures, fall and spring terms, three times a week; winter, daily. Drawing, six hours a week. Designing, nine hours a week. Additional drawing and library work in each term, ten hours. First half of spring term: Mechanics applied to architectural construction; lectures three times a week, with drawing as above. Ornament, spring term, twice a week.

FOURTH YEAR

[^61]Architectural Course at the Technical University of Hanover.

Course in Architecture (Leading to the Degree of B. S.) at the

 University of Illinois.first year.

1. Advanced algebra, projection drawing, French or German, shop practice.
2. Trigonmetry, descriptive geometry and lettering, French or German, shop practice.
3. Analytical geometry, ađvanced descriptive geometry, French or German, shop practice.

SECOND YEAR.

1. Differential calculus, physics, French (optional), wood construction.
2. Advanced analytical geometry, physics. French or German (optional), stone, brick, or metal construction.
3. Integral calculus, physics, French or German (optional), sanitary construction.
third year.
4. Analytical mechanics, chemistry, architectural drawing.
5. Resistance of materials, chemistry, history of architecture, architectural drawing.
6. Graphic statics, history of architecture, astronomy or geology, or drawing or modeling.

FOURTH YEAR.

1. Mental science, æsthetics of architecture, architectural perspective.
2. Constitutional history, designing, heating and ventilation.
3. Political economy, designing, estimates and specifications.

BUILDERS' COURSE (1 YEAR).

1. Wood construction, projection drawing, shop practice (carpentry and joinery).
2. Stone, brick, and metal construction, architectural drawing, shop practice (stair-building) 3. Graphical statics, architectural designing, shop practice (cabinet-making).

VI.

CHEMISTRY.

Until now the subject of engineering has occupied attention, but we have arrived at a subject which being neither engineering nor agriculture, but being common to both will serve as an excellent transition from the one to the other. Before illustrating what a course of professional chemistry is, let us make a distinction for the sake of convenience, though the distinction perhaps is obvious enough. The assayist is a chemist with a specialty, the dyer is also a chemist with a specialty; but their methods, places of activity, and materials are very different. But beyond these specialties there is the chemist whose sphere is general consultation and analysis, the professional chemist. The practical or rather laboratory character of the course in applied chemistry is well shown by, the chart representing the programme of the course for "technical chemists" at the Hanover University, whose excellent catalogue we now draw from for the last time.

	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.	Saturday.
8-9..-	Laboratory.	Laboratory.	Laboratory.	Laboratory.	Laboratory	
9-10..						Mechanical.
10-11..						Physical
11-12.-				Building construction.	-	tory. .
12-1.-	General technology.	General technology.	Building construction.	General technology.	General technology.	-
3-4.--						
4-5...		L	Labora	Labor		
5-6..-			Political economy of industry.		Political economy of industry.	
6-7-.-			Element of electricity.	Element of electricity.		

Returning to the consideration of American schoois we ind that the chemically technical part of the course of chemical engineering at the Massachusetts Institute is given during the third and fourth years. Here again laboratory work predominates.

Chemistry.

Subject.	Lect.. Rec., Lab., Draw., or Field.	Instructors.	* ¢ -			
Industrial chemistry	Lect.	Norton.	3	1.2	30	2
Organic chemistry	Lect	---.do.	4	1,2	30	2
Do.---.---.-.	Lect	--do.-.	3	1	15	1
Industrial chemistry	Lab	Norton, Smith	4	1	- 15	12, 4
DO-------	Lab	--.-do.--	3	2	15	5
Textile coloring	Lab	--do.	4	1	15	6
Applied chemistry	Lect	Norton	4	1,2	30	1
Gas analysis	Lab	Drown, Gill	4	1012	15	1

Nore specific in its indications, the course of applied chemistry of the School of Mines of Columbia College shows the same concentration of the technical work during the third and fourth years, and places the work under four heads, to wit, chemical manufactures, food and drink, clothing, and fertilizers The course is as follows:

In the second year.
(For all students.)

1. Air: nature, sources of contamination, sewer gas, plumbing, draining, disinfection, ventilation.
2. Water: composition of natural waters, pollution, disposal of sewage and house refuse.
3. Artificial illumination: candles, oils, and lamps, petroleum, gas and its products, electric light.
4. Photography.
5. Limes, mortars, and cements.
6. Building stones: decay and preservation.
7. Timber and its preservation: pigments, paints, essential oils, varnishes, preserring processes.
8. Glass and ceramics.
9. Explosires: gunpowder, gun-cotton, nitrogljcerine, etc.
10. Electro-metallurgy.

In the third and fourth years.

(For students in the course of analytical and applied chemistry.)

1. Chemical manufactures: acids, alkalies, and salts.
(a) Sulphur, sulphurous acid, hyposulphites, sulphuric acid, bisulphide of carbon, etc.
(b) Common salt, soda ash, hydrochloric acid, chlorine, binoxide of manganese, bleaching powder, chlorates, chlorimetry, etc.
(c) Carbonate of potash, caustic potash.
(d) Nitric acid aid nitrates.
(e) Iodine, bromine, etc.
(f) Sodium, aluminum, magnesium.
(g) Phosphorus, matches, etc.
(h) Ammonia salts.
(i) Cyanides.
(j) Alum. copperas, blue Titroi, salts of magnesia, baryta, strontia, etc.
(k) Borates, stannates, tungstates, chromates, etc.
(l) Salts of mercury and silver.
(m) Oils, fats, soaps, glycerine.
2. Food and drink: milk, cereals, starch, bread, meat, tea, coffee, sugar, fermentation, wine, beer, spirits, vinegar, preservation of fond, etc.
3. Clothing: textile fabrics, bleachlng. djeing; calico printing, paper, tanning, glue, in-dia-rubber, gutta-percha, etc.
4. Fertilizers: guano, superphosphates, etc,

But specialized as these courses are they are of a less special nature than the course which follows:

Curriculum of the Royal (Sayon) Professional School for SoapMakers at Chemnitz.

FIRST COURSE (WINTER HALF YEAR).
[NOTE.-The instruction of this course is common to the students of the dyeing school and of the soap-makers school.]

> 1. General chemistry (12 hours). Dr. Bornemann. Fundamental principles, the more important elements and their compounds. Introduction to organic chemistry, especially the carbon compounds.
> 2. Physics (4 hours). Dr. Kollert. General properties of bodies; the different forms of structure and the more important principles of equilibrium and the movement of solid, liquid, and gaseous bodies. . Dr. Wend. Funda-
> 3. Arithmetic (6 hours). Dren mental principles, common and decimal fractions, proportion, powers and roots, and equations having one or more unknown quantities.
4. Geometry (2 hours). Dr. Tetters. The essentials (Hauptsätze) of planimetry. Computation of areas and contents.
5. Free-hand drawing (4hours). Mr. Schneider. Cultiration of the eye and hand to correctly represent simple forms and ornaments in clear outlines after copies or piaster paris models.
6. German (4hours). Mr. Loereusen. Exercises in oral and written, expression of thought through composition and impromptaremarks. The more important points of grammar based on the reading book.

SECOND COURSE (SUMMER HALF YEAR).

7. Chemical technology (4 hours). Prof. Dr. von Cochenhausen. Water (rain, spring, river), hard and soft, cleansing for use in industry, etc. The important materials used by the soap-maker, common salt, soàa, potash, and caustic alkalies, acids, etc. Heating materials, fire places.
8. Technical chemistry, 1 part (2 hours). Dr. Bernemann. The important organic elements and compounds for soap-making, especially the fats and their constituent parts. Coloring matter and perfumery used in soap-making.
9. Practical chemical work in the laboratory (16 hours). Prof. Dr. von Cochenhausen. Exercises in qualitative analysis. Exhibit of preparations. Exercises in easy quantitative
determinations. Ascertaining value of the soda, etc. in soap.
10. Physics (2hours). Dr. Kollert. Theory of heat.
11. Free-hand drawing (2 hours). Mr. Kühn. 12. German (t hours). Mr. Walther. Exercises in style in relatlon to business composition and technological description, etc. Exercises in making imprompturemarks, the drawing up of minutes of a conversation, etc., and the more important period of German literary history.
12. Bookkeeping (2 hours). Mr. Meyersieck. Exercises in keeping the important account books. Peculiarities of business affairs under the influence of the laws governing trade, etc.

THIRD COURSE (WINTER HALF YEAR).

Abstract

14. Technical chemistry,second part(6 hours). Dr. Bornemann. Extracting and cleansing fat, its qualities, the indispensable apparatus and machines for house and toilet soap making, different kinds of soaps, perfumery, candlemaking, examination of fats and soap. 15. Practical chemical work in laboratory (20 hours.) Prof. von Cochenhausen. Qualitative and quantitative analysis. Testing and valuing soap, fat, etc. Exercises familiarizing the student with the character of the important

 fars and soaps, etc.16. Free-hand drawing (2hours). Mr. Schneider.

> 17. German (2 hours). Mr. Walther.

In addition the students of the second and third classes may take the following subjects in the foreman's school.
18. Management and conduction of water (2 hours, summer).
19. Electricity (2 hours, summer).
20. Electrical technology (3 hours, winter).
21. Extinguishing fires (2 hours).
22. Selected discussions on political economy.

VII.

AGRICULTURE.

Two ideas, not mutually exclusive, though in a measure antagonistic, have dominated in the formation of the curricula of the colleges endowed with the national land grant of 1862-the education of the farmer's son; the education of the boy for a farmer. The intent of Congress is sufficiently clearly expressed to leave no doubt as to what was meant by the caption of the act when it recites tha ${ }^{t}$ it is "for the benefit of agriculture and the mechanic arts." But an act of Congress can not create a professional corps such as have the American classic colleges, or even some schools of engineering, and schools of analytical chemistry had at the date of 1862. Liebig's theories had not yielded to those of a new luminary in biological chemistry just then appearing in France. Biology as now understood was unborn, and the theoretical instruction of the German poly technicum or the mathmatical instruction of the École Polytechnique of Paris were the models for American schools whose object was to teach industry. Besides this there was the heaviest handicap of all-the meager mental training in literary matters possessed by those who were to attend these schools. Under such circumstances the makers of their programmes were swayed to adopt methods and studies familiar to them, and in view of the limited education of those who applied for admission to adapt their programme to the purpose of educating the country boy, and also to educate him as much as possible for the farm. To the complaint that in doing this the school educated the boy away from the farm, Prof. Clute, president of the Michigan Agricultural College, answers that 36 per cent of the graduates are engaged in farming, to say nothing of the 11 per cent engaged in industrial pursuits or teaching in agricultural colleges, nor of the number who do not graduate.

The curriculum of the American agriculture school is therefore not a university course of study, but by the necessities of its situation has been compelled to take refuge in that scheme of instruction which, in its extremest classical form, was worked out by John Sturm, in Germany, in the sixteenth century; by the Jesuits, in France, during the seventeenth, and was modified by the ideas of Hecker, the founder of the German scientific school (Realschule), and the pedagogics of the French revolution in the eighteenth. It might be shown how this ideal of an education based on science found expression in the university of Thomas Jefferson as the education founded on the classics found an expression in the university of the Puritans and an education based on research found expression in that of Johns Hopkins.
The course of agriculture naturally follows the composite character of the science. It is broken up into schools of chemistry, horticulture, entomology, forestry, veterinary science, etc. Agriculture proper is usually considered under
the heads of agricultural soils, vegetable life, and animal life. As the requirements for admission and the ideals of the school vary so much, the time de voted to the agricultural topics is not uni orm. The course of two institutions challenge attention. Both schools have been founded by private endowment, are situated in New England, and are well calculated to illustrate agricultural instruction as it obtains in the United States, in its higher and in its secondary form.
It is impossible as yet to say what the endowment of the Bussey Institution of Harvard University will ke, further than that it is very large. It is a school of agriculture and horticulture, giving systematic instruction in agriculture, useful and ornamental gardening and stock raising, and is especially adapted for the instruction of young men who have been brought up as practical farmers or gardeners, as well as for those who wish to qualify themselves to be farmers or superintendents of farms, country seats, or public institutions or wish to pursue some special branch of agriculture, horticulture, botany, or entomology. The literary courses of the university are open to the student; and surrcunding the school, and belonging to it, are 200 acres of excellent land. The school is an agricultural school; its faculty consists of six professors and instructors called, respectively, frofessor of applied zoollogy, professor of agricultural chemistry, instructor in horticulture, instructor in botany, instructor in entomology, and the director of the Arnold Arboretam. Instruction is given by lectures and recitations and by practical exercises in the laboratories, greenhouses, and fields. The aim is to give the student a just idea of the principles upon which the arts of agriculture and horticulture depend, to teach him how to make intelligent use of the scientific literature which relates to those arts, and to enable him to put a proper estimate upon those kinds of evidence which are obtained by experiments and by the observation of natural objects. The course is of one year, its professional character is indicated by the titles of the teachers.
The Storrs Agriculture School at Mansfield, Conn., derives its name from the donors of the original property, the brothers Augustus and Charles Storrs, of Brooklyn, N. Y. It has been established for the education of boys whose parents are citizens of Connecticut. in such branches of scientific knowledge as shall tend to increase their proficiency in the business of agriculture. Thus the object of the school is to teach practical and scientific agriculture and horticulture, "yet as subse"vient and necessary to this purpose various other branches are taught, especial prominence being given to those most necessary for the successful prosecution of agriculture."
In the class room the students study those branches of natural science, and only those, which have a directly useful bearing upon New England farming; and the indoor work is made to harmonize with that upon the farm and garden. These branches are general and agricultural chemistry, natural philosophy, farm mechanics, elementary geometry, land surreying, botany, zoölogy (which includes especially domestic animals and insects injurious to the crops of the farm and garden), geology, human and animal physiology, agriculture, farm accounts, stock breeding, milk production, arithmetic and English, taking up the general principles of scientific subjects and afterwards their special application to practical agriculture.
During the fall and winter term, when the necessities of the farm (of 170 acres) demand it and the weather permits, the students are required to spend three hours daily upon the farm, and six or more upon study, laboratory work, and recitati ns, a part going upon the farm in the forenoon and the others in the afternoon; and during the spring term, five hours a day may be required upon the farm, when there is special need of that amount of work, and five or more in school work. Extra labor, as far as practicable, is furnished to all who desire it as an aid towards self-support, when it can be performed without interference with regular duties. The aid received from the State permits the school to reduce its tuition fe 3 to a minimum.
In brief the general plan of the course is to begin with a brief history of agriculture, ancient and modern; secondly, to enter into a study of soils, manures, and fertilizers, and the relation of these to plant-life and plant growth; and, lastly, a study of the higher forms of life, as represented in our domestic animals. Stock breeding, breeds of live stock, and cattle feeding occupy a large part of the time of the senior year. The agricultural experiment station is operated in connection with the school.

As an appendix to the remarks on the schools of agriculture in the United States, an account of the system of agricultural instruction in Prussia and in France has been translated and inserted after the curricula which follow.

Curriculum of the Institut Agromique (École Supérieure de l'Agriculture), Paris.

REQUISITES FOR ADMISSION.

The possession of the degree of bachelor of science, or in lieu thereof:
Written examination.-Arithmetic, algebra, geometry, logarithms, trigonometry, French composition, natural history sciences, physics, chemistry, descriptive geometry, English, German. Oral examination.-Arithmetic, geometry, descriptive geometry, algebra, trigonometry, mechanics and cosmography, physics, chemistry, geography, English, German.

COURSE.

FIRST YEAR

First semester.-Mechanics, general physiology, general chemistry, zoölogy, physics and meteorology, mineralogy and geology, botany, mathematics.
Second semester.-General chemistry, mineralogy and geology, mechanics, zoötechnics, physics and meteorology, general agriculture, agriculture (genie rural), zoölogy, political economy, botany.

SECOND YEAR.

First semester.-Agricultural technology, rural economy, agricultural chemistry, agriculture, engineering (genie rural), zoötechnics, special agricultural: arboriculture, comparative agriculture.
Second semester.-Viticulture and agriculture in the south [of France], comparative agriculture, administration of law and rural legislation, vegetable physiology, forestry, viticulture, hippology, agriculture, hygiene, and book-keeping.
The course is completed by conferences and practical exercises and demonstrations in chemistry, micrography, agriculture, physiology, zoölogy, zoötechnics, mineralogy, agricultural, arboriculture, and viticulture. Several times during the week there are exercises in tinting and topography, rural architecture and agricultural machines. Every Tuesday there is an excursion, industrial, botanical, or geologic, and in addition visits are made to farms, cattle markets, etc. A library which is supplied with all the important works on agriculture published in France and in foreign parts is open to the students.
There is a laboratory of vegetable pathology, a station for testing grains (essai de graines), a special laboratory for the study of fermentations in relation to brewing, distillation, wine-making, milk, and finally a laboratory of agricultural entomology.

Curriculum of a Typical American School.

REQUISITES FOR ADMISSION.

English composition and grammar, history of United States, geography, six books of Cæsar, arithmetic, algebra, geometry, trigonometry.

COURSE.

FRESHMAN YEAR.

First term.-German Ireader, history. English language, derivatives of algebraic functions, fundamental properties of equations, plane analytical geometry, physics with experimental lectures, chemistry, including laboratory practice, practical lessons in the art school.
Second term.-Plane analytical geometry, physical geography, botany, principles of orthographic projection, isometric drawing, etc.

SECOND YEAR.

Firstterm.-Organic chemistry, qualitative analysis, mineralogy and botany, German, French. Second term.-Organic chemistry, quantitative analysis, mineralogy, German, French.

THIRD YEAR.

First term.-Agriculture, agricultural chemistry, geology, zoölogy, meteorology, botany, French.
Second term.-Agriculture, agricultural chemistry, physiology, geology, zoölogy, heredity and stock-breeding, sanitary science and public health, French.

Curriculum of the Landwirthschaftliche Hochschule, Berlin, for
the Winter SEmester 1890-91.

LECTURES.

1. Agronomy, forestry, cnd gardoning.

(a) Prof. Dr. Orth: General agronomy (tilling, irrigating, manuring) Monday until Friday, 10-11. Exercises in agronomical seminary: Field and plant cultivation dirision, Monday 6-8. Chemistry or the soil and plants, work, Monday to Friday, 9-4.
(b) Prof. Dr. Werner: Agricultural operations, Monday and Tuesday, 4-6. Breeding animals, Thursday, 4-6; Friday, 4-5. Bookkeeping, Friday, 3-4. Sketch of the science of agricultural production. Wednesday, 4-6.
(c) Prof. Dr. Lehmann: General breeding of animals. Tuesday, Wednesday, and Thursday, 9-10. Sheep-raising and wool-growing, Monday and Friday, 9-10; Saturday, 10-12. Fodderraising, Monday and Wednesday, 12-1.
(d) Privy counsellor, Engineer Schotte: Agricultural machines, Saturday, 3-5. Principles of mechanics and of machinery, Friday, 1-3. Drawing, Tuesday and Thursday, 1-3.
(e) Forestmaster Krieger: Timber-growing, Monday, 5-7. Management and use of forests, Friday, 5-7.
(f) Garden Inspector Lindemuth: Fruit-growing, Monday and Thursday, 2-3.

2. Natural science.

I. Chemistry and technology:
(a) Privy counsellor, Prof. Dr. Landolt: Inorganic experimental chemistry, Monday untii Friday, 11-12. Practikum in large chemical operations on the first five days of the week, 9-5; Saturay, from 9-1. Practicum in small chemical operations on the first five days of the week, as the student may select, 9-1 or from 1-5.
(b) Prof. Dr. Delbrüciz: The production of spirits, Jeast, and starch, Wednesday, 12-2; Saturday, 8-10.
(c) Privat docent, Dr. Kayduck: Chemistry of fermentation, Friday 4-5.
(d) Privat docent, Dr. Marckwald: Chemical investigations in relation to agricultural processes, Saturday, 9-10.
II. Physics and meteorology:
(a) Prof. Dr. Börnstein: Experimental physics. 1 Part, Tuesday and Wednesday, 3-4.
(b) Selected chapters on mathematical physics, Weunesday, 11-12. Exercises in physics, Saturday, 11-1. Meteorology, Monday, 3-4.
III. Mineralogy, geology, geognosy: Prof. Dr. Gruner: Geognosy azd geology. Tuesday, 12-1; Saturday, 9-10. Qualities of soil and their valuation, Monday, Weinesday, and Thursday, 12-1. Exercise in examining soils, Tuesday and Saturday, 4-6.
IV. Botany and regetable physiology:
(a) Prof. Dr. Kny: Anatomy and history of the development of plants, Monday, Friday, and Saturday, $9-10$. Use of the microscope, Monday and Thursday, 12-2. Work for tree cutters (woodsmen) in the botanical institute, daily, 9-4.
(b) Prof. Dr. Frank: Plant food, Tuesday, 12-1. Diseases of plants, Friday and Saturday, 12-1. Vegetable pathology (Practicum), Wednesday, 12-3. Work for forest cutters in Vegetable Physiological Institute, daily, 9-4.
(c) Prof. Dr. Wittmack: Seeds Thursday, 12-1. Falsification of food and fodders, Friday, 1-3. Appropriate work in the botanical division of the museum, Saturday, 1-3.
V. Zoólogy and animal physiology:
(a) Prof. Dr. Nehring: Zoollogy and comparatire anatomy with special reference to the vertebrata, Monday, Thursday, 11-12. The game of Germany, Friday, 11-12. Zoülogical collo. quium. Friday, 5-7.
(b) Dr. Karsch:

Insects useful or injurious to agriculture, with special reference to bee keeping and silk-worm raising, W ednesday and Friday, 8-9.
(c) Prof. Dr. Zuntz:

Physiology of the change of food into fiesh, Monday, Tuesday, Thursday, and Friday, 10-11.
Hygiene of the domestic animal, Monday, 3-5.
Work in physiological laboratory, Friday and Saturday, 2-4.

3. Teterinary science.

(a) Prof. Dr. Dieckerhoff: Epidemic disease and parasites of the domestic animals, Monday, and Thursday, 2-3.
(b) Privy counsellor, Dr. Müller:

Anatomy of the stomach of the domestic animals with demonstrations, Tuesday, Wednesday, and Saturday, 2-3.
(c) Chief veterinarian for horse diseases (oberrossartz) Küttner: Horseshoeing, Tuesday, 8-9.
(d) Prirat docent, Dr. Hagemann: Brief review of the physiology of feeding, Thursday, 4-5. Practical course of physiological chemistry, Saturday, 4-6,

4. Lav and administration.

(a) Prof. Sering: Agrarian laws of Germany. Economical exercises in seminary of administrative law, with risits. Imperial and Prussian law with special reference to the farmer, surveying, and the technicalities of culture, Wednesday, 4-6.

5. Agricultural engineering and building.

(a) Amelioration inspector, Gerhardt: Agricultural engineering (Kulturtechnik), Saturday, 10-12. Plans of improvements, Friday, 11-1; Saturday, 12-2. Engineering seminary, Friday, 9-11.
(b) Prof. Schlichting: Management of water, Monday, 9-10. Construction of bridges and roads, Monday, 4-6. Plans of water management, Monday and Tuesday, 10-12.

c. Geodesy and mathematics.

(a) Prof. Dr. Vogler: Settlement of accounts, Monday and Saturday, 9-10; surveying, Tuesday and Thursaay, $9-10$; practical geometry, Tuesday and Thursday, 11-12; exercises in measurements, in two groups, Monday, Tuesday, and Saturday, 10-12; Friday, 11-1; geodetic seminarium, Friday, 3-5; drawing, Friday, 9-11; exercises in surveying, Monday and Thursday, 3-5; geodetic calculation, in two groups, with assistant Prof. Friebe, Monday, 10-12; Friday, 11-1.
(b) Prof. Dr. Reichel: Analytical geometry and analysis, Tuesday and Thursday, 9-10; Wednesday, $9-11$; mathematical exercises, in two groups, Monday and Thursday, 4-6; Friday, 3-5; descriptive geometry, Tuesday and Thursday, 10-11; exercises upon descriptive geometry, Tuesday, 12-1, and (with assistant Seiffert) Tuesday, 12-1.

Curriculum of a Southern Agricultural College.

PREPARATORY DEPARTMENT.

English grammar and composition, penmanship, declamation, arithmetic, elements of bookkeeping, algebra to equations of the first degree, geography, United States history, and agriculture.

COLLEGIATE DEPARTMENT.

FRESHMAN.

First term.-Drawing, algebra, English, natural philosophy.
Second term.-Algebra, English, agriculture, horticulture.
Thirad term.-Etymology, algebra, bookkeeping, English, history.
Declamations and compositions through the entire session.

SOPHOMORE.

First term.-Chemistry, drawing, geometry, rhetoric.
Second term.-Rhetoric, geometry, chemistry, geology, preparation of addresses on scientific and industrial subjects.

Third term.-Trigonometry, agriculture, botany, chemistry, delivery of addresses contesting for places at commencement.

JUNIOR.

First term.-Surveying, anatomy and physiology, horticulture, Constitution of United States (6 weeks), criticism (6 weeks), preparation and delivery of addresses on scientific and industrial subjects.
Second term.-Mechanics, chemistry, veterinary science, political economy, preparation and delivery of addresses on scientific and industrial subjects.

Third term.-General history, military science and tactics, entomology, mechanics, preparation and delivery of addresses, contesting for places at commencement, afternoon work in chemical laboratory, and with steam engine, 10 hours per weelk, November 15 to February 15.

SENIOR.

First term.-Literature, zoölogy, drawing, chemistry, preparation and delivery of addresses on scientific and industrial subjects.
Second term.-Botany, civil engineering, literature, chemistry, preparation and delivery of addresses on scientific and industrial subjects.
zhird term.-Agriculture, chemistry, astronomy, moral science (6 weeks), meteorology (6 weeks), preparation and delivery of addresses, contesting for places at commencement.

POST-GRADUATE.

Biology.-Mycology, fertilization and cross fertilization, relation of insects and plants, histology, zoölogy, including embryology, with monthly written discussions, under direction of professor of biology.

Agriculture.-Principles of stock-breeding and feeding, theory of drainage, cultivation, curing and marketing crops, improvement of soil and manure supply. The student will be required to take charge of field and feeding experiments, dairy and general farm work under direction of the professor of agriculture.
Horticulture.-Pomology, floriculture, landscape gardening,forestry.geographic botany, economic botany, management of greenhouses, under the direction of professor of horticulture.
Chemistry.-Chemistry applied in the analysis of soils, plants, foods, animal tissues and products. feeding, water and other drinks, under the direction of the professor of chemistry.
English.-A course of reading in English prose and poetry, embracing entire works, logic, and mental science, with monthly written essays, under the direction of the professor of English.
Mathematics.-Analytical geometry, differential and integral calculus, applied mechanics,. and civil engineering.

Curriculum of an Eastern Agricultural College.

REQUISITES FOR ADMISSION.

English grammar, geography, arithmetic, algebra to quadratics, the metric system, history of United States.

COURSE.

FRESHMAN YEAR.

Fall term.-Climatology or relations of weather and farming (2 hours), structural botany (5 hours). chemistry, principles and metaloids (5 hours), algebra (5 hours), Latin (3 hours), composition (1 hour), military exercises (3 hours in afternoon).

Winter term.-Farm accounts, history of agriculture (2 hours), metals (4 hours), algebra and geometry (5 hours), Latin (4 hours), free-hand drawing (6 hours), tactics (1 hour half term), military exercise (3 hours).
Spring term.-Breeds of live stock and hand tools (5 hours), analytic botany (5 hours), mineralogy (4 hours), geometry (3 hours), Latin (5 hours), composition (1 hour), military exercises (3 hours).

SOPHMORE YEAR.

Fallterm.-Soils, tillage. and drainage (5 hours), economic botany (5 hours), geology (4 hours), trigonometry (4 hours), French (5 hours), composition (1 hour), tactics (half term 1 hour), military exercises (3 hours).
Winter term.-Mixed farming, rotation of crops (2 hours), laboratory work (4 hours), anatomy and physiology (5 hours), mensuration (3 hours), French (5 hours), mechanical drawing (5 hours), military exercises (3 hours).
Spring term.-Manures, grains, and forage crops (5 hours), horticulture (8 hours), surveying (7 hours), French (5 hours), composition (1 hour), military exercises (3 hours).

JUNIOR YEAR.

Fall term.-Farm implements, harvesting and storing crops (2 hours), market gardening (6 hours), zoölogy and laboratory work (8 hours), mechanics, draft, friction, etc. (3 hours), rhetoric and composition (5 hours), military exercises (3 hours).

Winter term.-Preparation and transportation of crops, markets (2 hours), laboratory work (10 hours), zoölogy (3 hours), physics, sound, and heat (4 hours); English literature (5 hours), composition (1 hour), military exercises (3 hours).
spring term.-Special crops, farm roads (1 hour), forestry and landscape gardening (- hours), laboratory work (5 hours), entomology (7 hours), physics, light, and electricity (3 hours), English literature (4 hours), composition (1 hour), military exercises (3 hours).

SENIOR YEAR.

Fall term.-Breeding and care of live stock (4 hours), lectures on law, etc., laboratory work, chemistry of fertiiizers (8 hours), comparative anatomy of domestic animals (3 hours), veterinary science (5 hours), mental science (4 hours), composition and debate (1 hour), military science (1 hour).
Winter term.-Dairy farming (3 hours), lectures on law, etc., organic chemistry (3 hours), veterinary science (5 hours), meteorology (2 hours), political economy (5 hours), composition and debate (1 hour), military science (1 hour), military exercises (3 hours).
Spring term.-Agricultural review (3 hours), lectures on law, etc., chemical industries (3 hours), geology (3 hours), veterinary science (5 hours), constitutional history (5 hours), composition (1 hour), military science (1 hour), military exercises (3 hours).

Curriculdjm of a Western Agricultural College.

REQUISITES FOR ADMISSION.

Arithmetic, geography, grammar, reading, spelling, penmanship, and history of the United States, a knowledge of elementary algebra to equations of second degree.

COURSE.

FRESHMAN YEAR.

Autumn term.-Algebra, ancient history, English grammar, elocution,
Spring term.-Geometry, free-hand drawing, lectures, lectures on agriculture, declamations. Summer term.-Geometry completed. Botany, rhetoric. essays.

SOPHOMORE YEAR.

Autumn term.-Algebra completed, trigonometry (half term), military tactics (half term), botany (half term), agriculture (half term), lectures, declamations and essays (based on readings from Longfellow).
Spring term.-Trigonometry completed (half ierm), surveying and field work (half term), botany (laboratory work, 2 hours daily), rhetoric. essays, reading of American orations.

Summer term.-Mechanics, elementary chemistry (lectures), chemical manipulation (2 hours per week, optional). English literature (half term), lectures on landscape gardening (half term), botany (one day in the week), original speeches.

JUNIOR YEAR.

Autumn term.-Mechanics completed (half term), lectures on and laboratory practice anatomy (half term), lectures and laboratory on horticulture, lectures on organic chemistry, blowpipe and volumetric analysis, essays and public speeches, Shakespeare once a week

Spring term.-Human and comparative physiology (laboratory work 3 hours daily for 2 weeks), analytical chemistry (laboratory work 2 hours daily), logic, essays and public speeches, Shakespeare once a week.
Sum: aer term.-Entomology (laboratory practice 3 hours a week), agriculture, agricuitural chemistry, essays; Shakespeare once a week.

SENIOR YEAR.

[All studies elective in this year. except moral philosophy.]
Autumn term. - Psychology, chemical physics, lectures and laboratory work, lectures on agricultural engineering, lectures and practical dissections in veterinary work, critical essays.
Spring term.-Moral philosophy (half term), lectures on meteorology, lectures on civil engineering, lectures on Constitution of United States (half term), political economy (half term), lectures and clinical instruction in veterinary science, lectures on geology (half term), lectures and laboratory practice in horticulture (half term), military science, essays and public speeches.
Summer term.-Quantitative analysis, lectures and laboratory practice in botany or forestry, lectures and clinical instructions in veterinary science, English literature, philosophy of history (half term), astronomy, Milton (once a week), public speeches.

THE SYSTEM OF AGRICULTURAL SCHOOLS OF THE KINGDOM OF PRUSSIA.

Division A: University Grade.

At the head of the system come the so-called institutes, which form a part of the universities. As the chemical and other laboratory instruction are adjuncts to the lecture system of the university so these agricultural institutes are places for demonstration, exercises, and investigation, and of course with special reference to the business of agriculture. The titles of these institutions are as follows:

1. The Agricultural Institute and Agricultural Chemical Laboratory in the University of Königsberg, with which is also connected the milk chemical laboratory, the agricultural physical laboratory, and the agricultural botanical garden and the veterinary clinic. Founded 1869-76. Length of study, 4 to 6 semesters. Conditions of admission, the Reifezeugniss of a gymnasium. ${ }^{1}$ Four professors of agriculture and 7 university professors. Appropriation, $\$ 4,293$ for the institute (excluding salaries) and laboratories, $\$ 1,083$ for the veterinary clinic. At the close of 1890 there were 11 students. The agricultural chemistry laboratory has places for 20 students.
2. The Agricultural Institute in the University at Breslau, with which is joined a veterinary clinic. Founded in 1881. Lengti of course, 4 to 6 semesters. Eight professors proper, 14 university professors. Students, 27 farmers and 9 others. Appropriation for 1890-91, $\$ 7,794$, excluding the salaries of professors.
3. The Agricultural Institute in the University at Halle. Founded 1862. Duration of course, 4 to 6 semesters. Professors of agriculture, 7 ; of science, 14; of law and political economy, 7; 8 assistants; students, 281, farmers by calling, of whom 71 were foreigners. The institute consists of the agricultural physiological laboratory, the agricultural collection, the botanical garden, the experimental field, the agricultural domestic animal farm (landwirthschaftiche Hausthiergarten), the dairy, the machine hall, the veterinary clinic. Cost, $\$ 20,560$.
4. The Agricultural Institute in the University at Kiel. Founded in 1873. Duration of study, 4 to 6 semesters. Professors of agriculture, 2 ; of veterinary science, 1 ; of science, 10 ; of national economy and agrarian politics 2. One student, farmer by calling. Cost during 1890-91, $\$ 1,185$, excluding salary of director.
5. The Agricultural Institute in the University at Göttingen, with which is connected the "animal chemistry experiment station," the agricultural chemistry laboratory, and the veterinary clinic. Founded in 1770 as a chair in the University, from which was developed a course of study in 1851, an academy in 1857, and finally the institute in 1872. Duiation of study, 4 to 6 semesters. Professors of agriculture and fruit raising, 4; of building, 1 ; of veterinary science, 1; of science, 10 ; of national economy, 2; of agricultural law, 1. Students, 22 . Cost, excluding the salaries of the director and the regular assistants, $\$ 2,198$.

INDEPENDENT SCHOOLS OF AGRICULTURE OF UNIVERSITY GRADE.

1. The Royal Agricultural High School at Berlin. Founded in 1859-1881. (Program given on page 998.) Duration of study at least 4 semesters; for teachers in agricultural schools at least 6 semesters. There is, however, a twosemesters course, for land surveyors, and for "proved" surveyors another twosemesters course, called the Kulturtechniker (agricultural engineer) course.
[^62]There is also a course for practical farmers. Requisites for admission, about that of an American classical high school with four years course. Those who desire to become teachers of agriculture must hare the Reifezeugniss of a gymnasium or of a Realgymnasium, and hare had two years of practical experience in agriculture. For survejors the requirements are a little lower than for the prospective teachers. Thirteen professors, 13 assistant teachers, 2 privat docents, 15 assistants (surreyors, reterinary surgeons, and doctors of philosophy in the laboratories). Students 406, of whom 178 were agricultural engineers and surveyors. In addition the following students took part in the exercises: From the Üniversity of Berlin, 53 ; from the Veterinary College and Military Horse School, 113. Cost, $1890-91$, $\$ 95,788$, of which the State paid $\$ 81,228$, the rest being income from all sources.
The school has a chemical laboratory, a botanical institute, a vegetable physiological institute, a zoölogical institute, a zoötechnical institute, an animal physiological. institute, a mineralogical institute, an agronomico-pedological institute, a physical cabinet ard meteorological station, a geodetico-agricultural engineering professional division, a museum with a permanentexhibition of machines, etc. The course for practical farmers lasts for a wieek and is given during February. Attendance in 1890, 37.
2. The Royal Agricultural Academy at Poppelsdorf, near Bonn. (In connection with the University at Bonn). Founded in 1847-187. The course for farmers and agricultural engineers covers four semesters, and for surveyors two semesters. Professors 9, assistant teachers 11: cost for 1890-91, $\$ 31,331$, of which the state paid $\$ 25,426$, the balance being income from various sources. There were 133 students, of whom 92 were taking the surveyor's course of two semesters, and 5 the agricultural engineer course of four semesters. The requirements for admission are that the candidate hare the mental training possessed by a student of the third below the highest class in a Prussian gymnasium, or of the final class of a scientific school (Realschule).

SUMMAARY OF TEE FOREGOING.

Institutions.
Requirements for admission, about the completion of a collegiate course of study, and under very thorough methods.
Duration of course from 2 to 3 years. Teaching corps:
Professors teaching agronomical studies
Assistant teachers teaching agronomical studies
Scientific attachés.
Students
Appropriation (or cost)
\&101, 231

HIGHER FORESTRY ACADEMIES.

The object of these institutions is to ground the student in the art of caring for and propagating forests and in related arts, but especially for service in the state forest service and the advancement of forestry in general. They are of university grade.

1. Royal Forest Academy at Eberswalde. Founded 1830; from 1821 to 1830 was connected with the University of Berlin. Length of study, four semesters at the academy and iwo at the university. Professors, 13,1 assistant to the director, and 2 docents: students, 128 winter semester: appropriation 1890-91, \$22,803. Several "forest gardens" and the institution for artificial fish raising are visited by the students, and with the school is connected the principal station of experimental forestry, which is composed of the following divisions: Technical forestry, meteorology, vegetable physiology, zoölogy, agricultural, chemistry.
2. Royal Forest Academy at Münden. Founded in 1868. Duration of study same as abore. Professors, 10; docent, 1; assistants, 2; students, 31; appropriation, $\$ 15,865$. With this academy are connected sereral gardens and "forest chemical experimental laboratories" and a fish-hatching establishment.

SUMMARY OF THE FOREGOING.

umber of schoolsRequirements for admission. collegiate education, not over 25 years of age, good char-acter, at least one year of practical work.
Duration of course two years at the academy and one at a university.
Teaching corps:Professors23
Docents$\begin{array}{r}3 \\ 3 \\ \hline\end{array}$
Strutents
38. 668
38. 668
Appropriation

VETERINARY UNIVERSITIES (THIERÄRZTLICHE HOCHSCHULEN).

1. Royal Veterinary University at Berlin. Founded in 1790 , but raised to university grade in 1887. Duration of study, 7 semesters. Requisite for admission, Reifezeugniss of a gymnasium or of a Realgymnasium. Professors, 12: assistants, 3; students, 453 ; appropriation, $\$ 56,312$, of which the state furnished $\$ 25,000$. The school has an anatomical, a pathological, a physiological, and a histological institute. There is a clinic for internal diseases, etc., another for external disorders, for small animals, a pharmacological institute, an "ambulatory clinic," and a chemical institute.

During the year 18902,315 horses, 2 horned cattle, 1 hog, 1,127 dogs, 16 cats, 1 deer, 1 goat, 1 sheep, 1 squirrel, and 38 birds were in the hospital.
In the polyclinic were treated 5,900 horses, 1 horned beast, 5 goats, 22 hogs, 7,465 dogs, 265 birds, 96 cats, 5 rabbits, 7 squirrels, 2 porpeises, 2 hedgehogs, 5 apes.

In their stalls were treated about 600 animals and several herds. Over 100 cadavers of animals were used in dissection.
2. The Royal Veterinary University in Hanover. Founded 1778 ; raised to present grade in 1887. Duration of study and requisites for admission as above. Professors, 6; teacher, 1; assistant teachers, 6; students, 221; appropriation, $\$ 23,600$, of which the state supplied nearly $\$ 12,000 ; 4,800$ animals of various kinds were treated during the year; 266 visits were made by students with a teacher and 485 without.

SUMMARY OF THE FOREGOING.

Number of schools 2
Requisites for admission Reifezeugniss of a gymnasium or realgymnasium.
Duration of course, 3 years and a haif.
Teaching corps :

 674

Division B-Agricultural Colleges.

As a rule the agricultural schcols (Landwirthschaft-Schulen) are not state institutions, although regulated by it, but are institutions subventioned by the state, a city, or a society. They have the object of preparing their students for farmers by teaching them as far as possible the science and art of agriculture, and by giving them a general education. The completion of the Tertia of a gymnasium absolves the student from two years of the compulsory military service, and the completion of the course of these agricultural schools is accepted as equivalent to the completion of the Tertia of the gymnasium course. In Germany the standard of reference for mental training is ever the gymnasium course.

In Prussia there are 16 of these colleges. They were estab ished as furnishing a grade of instruction higher than the Ackerbau schools (see Division C), and were regulated by a Royal decree of 1875, which furnished them with a code, and, of course, a programme. As might be expected, they have all been established between 1875 and 1880. Some were formerly Ackerbauschulen, but the majority are new institutions.

The cities, provinces, or districts, and the agricultural societies have been about equally interested in starting though not in supporting these schools, but the Government exercises an oversight through the minister of agriculture, domains, and forests. In order to obtain absolution from two of the three years of army service the schools must strictly follow the curriculum provided, must have the necessary apparatus for teaching, and at least four professors, including the director, who must have passed through the course of an agricultural school of university grade. The subjects of the course provided by the Government are as follows :

1. Religion.
2. Language.
(a) German. Correct use of the mother tongue and acquaintance with the classics of the language.
(b) Latin (optional). Ability to read a selection from an easy prose writer, a piece of easy poetry, with assistance in the case of unusual words, but otherwise with ease and purity.
(c) English or French. Correct pronunciation and knowledge of the more important rules of grammar. Facility in reading medium difficult prose (Voltaire's Charies XII or Irving s Sketch Book) and ability to translate an easy theme in the mother tongue into English or French without any serious errors of orthography, grammar, or idiom.
3. Geography: Principal points of mathematical geography [astronomy]. Knowledge of the different parts of the world.seas, mountains, rivers, etc. For Europe, and especially Germany, special knowledge of the natural and political features and ways of communication. History: Acquaintance with the principal facts relating to the Greeks and Romans. More special knowledge of the growth of the German Empire and the development of the states of which it is composed, especially Prussia, the intellectual advancement being regarded as well as the political.
4. Commercial arithmetic and the application of the same to agricultural affairs. Computation of surfaces and solids. The four fundamental algebraic operations, powers, roots, and logarithms, equations of the first degree of one and two unknown quantities, planimetry, knowledge of the simple trigonometrical functions and their application to goniometry, surveying with simple instruments, leveling, and mapping.
5. Nàtural science.
(a) Zoölogy: Knowledge of the different classes of animals with the principles of anatomy and physiology, with especial reference to animals important to agriculture.
(b) Botany: Knowledge of the vegetable families and the elements of vegetable anatomy, physiology, and pathology.
(c) Mineralogy and soils (Bodenkunde). Knowledge of the important minerals, their qualities, and usefulness of the different kinds of soils, the formation and agricultural value.
(d) Physics. Experimental familiarity with the great laws of physics (qualities of bodies, heat, etc.), and with meteorology.
(e) Chemistry, Knowledge of the most important elements and their compounds, as well as of the processes in their manipulation, with especial reference to physiology and technical agricultural affairs.
6. Agriculture.
(a) Production of vegetation. Knowledge of principles that govern the tilling and the amelioration of the soil and the growing of crops; acquaintance with the culture of the important plants.
(b) Breeding of animals. Knowledge of the principles of rearing, feeding, and care of domestic animals.
(c) Management. Knowledge of the factors of good management and their connection with the management of a farm; bookkeeping.
7. Drawing.
8. Gymnastics and singing.

Time table of the Prussian agricultural colleges.

The statistical facts connected with the school of Division B are thesc:

Number of schools 16
Number of- 107
Assistant teachers 56
Students in college proper ci 1,090
Appropriation from-
State (usually $\$ 3,750$ and sometimes $\$ 4,500$ to each) $\$ 63,900$
Provinces (in the case of 10 schools) 8, 100
Districts (in case of 11 schools) 3, 076Cities (in case of 8 schools)7,159
Societies (in case of 3 schools) 1, 613
Total 83,248

A garden is always attached to these schools; and frequently more extensive grounds, such as experimental fields, fruit gardens, and the like. There is almost always a preparatory school, which should be taken into account in considering the number of teachers, but the 1,090 students given above are professional students and are not in the preparatory course.

Division C.-Elementary Agricultural Schools.

The elementary agricultural schools, or Ackerbauschulen, are lower agricultural schools in which the pupil of the country school may continue his studies while learning something of the theory and practice of agriculture. There are 25 of these schools in Prassia, and although 7 of them were opened 1840 to 1850, the great majority have come into existence during the last twenty years. during which there seems to have been a desire on the part of the Government to promote agricultural education.

There is no common programme for these schools, and it is thus rery difficult to discuss their curriculum. Perhaps they may with sufficient accuracy be divided into three classes: Those having one or more teachers of the grammarschool studies, and a teacher of agriculture, those haring a teacher of the grammarschool studies and teachers of agriculture, surveying, and the elements of reterinary art, and those (the largest class) having several teachers of a course which resembles the scientific course of an Ame ican high school and also instructors in agriculture and related arts. How far this instruction is carried it is impossible to say. As the completion of the course do s not absolve the student from two-thirds of his army servica, the state has no indircet way of stimulating a high or even a uniform curriculum, which thus being left to the locality is, it may be presumed, in some places high, in others low. The schools are excellently well supplied with experimental fields, etc. Smithing and other trades are taught. The course is, as a rule, $1 \frac{1}{2}$ or 2 years in length; cccasionally it is only 1 year, and in two instances it is 3 years. The summary of the statistics of this class is as follows:
Number of schools 28
Teachers 60
Pupils ,073
Pupils from farm in every 100 87
Appropriation by-
829, 403
Provinces (21 cases)
2,013
2,013
Cities (1 case) $\stackrel{20}{20}$
Societies (2 cases) 963

Division D.-Agricultural Winter Schools.

The object of these schools is to continue the general education of the common country school. They offer to the farmer's boy, at the time when his services are not required on the farm, or to the young farmer who is not in the situation to avail himself of the instruction of the Ackerbauschulen, a certain amount of practical instruction which such persons require to carry on alvantageo sly their vocation. Of these schools there are 73. They are in the main supported

[^63]by the prorinces, which appropriate from $\$ 250$ to $\$ 1,000$ annually; but the sources of support are rarious, the state, the district, the city, and very frequently a society, make grants. In 69 of them there were, in $1890,2,235$ pupils.

Division E.-Meadow Schools.

These have the object to instruct the sons of peasants in the management of meadows and in draining. There are 3 schools with an attendance of 195 pupils. They seem to be specialized winter schosls, and are supported by the prorince in which they are located.

Division F-Ponological and Gardening Institutes.

Of these there are 4. The course is of two or three rears.
The conditions of admission are, on the intellectual side, the completion of the upper or lower class of the gymnasium grade, called Tertia, and, on the practical side, 2 years' experience in gardening. Pupils in attendance, $137 ;^{1}$ appropriation for 3 schools, $\$ 36,037$, mostly from the state.
The full course of the Royal Institution for Teaching the Cultivation of Fruit and Wine-making at Gersenheim is as follows:
(a) Fundamental subjects: Botany, chemistry, physics, zoölogy, mineralogy, and mathematics.
(b) Professional subjects: Cultivation of plants in general, fruit-culture, tree trimming and geowing, pot culture, pomology, utilizing fruit, grape-culture and the enemies of the vine and fruit tree. vegetable-growing, landscape gardening, flower-growing, drawing plants, painting fruits, and surveying and levelling.
(c) Horticultural bookkeeping, bee-keeping, singing, and gymnastics.

It will suffice to show the condition of agricultural education in Prussia to give the titles and attendance at the other classes of schools. For convenience the classes previously spoken of are again given.

General statement of the attendance at the schools for agricultural and the related arts at the close of the year 1890.

COURSE IN AGRICULTURE IN THE HIGHER ELEMENTARY SCHOOLS OF FRANCE.

Occasionally it has happened in the history of the public-school systems of Europe that public economic distress or social disorder has been the cause of an addition to the curriculum of the public schools, and in order that the new subject may be properly and thoroughly presented in the elementary schools the
curriculum of the schools for training teachers has first bsen similarly enlarged. No sooner does the German Emperor complain, for instance, that he finds that the curriculum of the German public schools in the past has given him no aid in combatting the socialistic theories so prevalent in his Kingdom of Prussia, and straightway the subject of political ec nomy is introduced into the Prussian schools for training teachers; and so has it been with the subject of agriculture in France. Though the French revolution decided that agriculture should be placed upon the pregrammes, it was not until 1851, howerer, that instruction in agriculture was in roduced as a part of the programme of the last year of the course of the schools for training teachers.
In 1860 the majority of 6,000 teachers to whom the French minister of public instruction had applied for suggestions as to the ameliorations to be made in elementary instruction responded that agriculture should be added to the courss of the public schools. Shortly afterwards the symptoms of an agricultural crisis began to appear, and an investigation was made into the matter for the purpose of remedying the evil. The commission were unanimous in calling attention to the powerful influence that elementary instruction would exert in favor of agriculture, the greatest national industry of France, if introduced as a subject of study in the public schools. The manner in which this instruction should be introduced was given under three heads: First, the inst:uction that should be given in the schools for training elementary-school teachers; second, the instruction that should be given to the children in the district schools; third, the instruction that should be given to the adults in special courses which were appropriate to the needs of agriculture. By the law of 1879 it was enacted that every departm nt that had not yet established a departmental professor of agriculture should be obliged to provide for one within three years. At the close of 1838 instruction in agriculture was completely organized in almost all the schools for training elementary-school teachers. But in the elementary schools instruction in agriculture has been unsatisfactory. "It is to the teacher that a good book on agriculture is indispensable; in the hands of the child it is more hurtful than helpful," says the report of the professor of agriculture of the Department of the Gironde.
But above the district school, and frequently in connection with it, there are higher elementary schools, which are of two kinds-proessional and nonprofessional. In the city of Paris the course of these schools is as follows

Theoretical branches.

The subjects of this programme are apportioned over the three years' course, so as to apply in the best way to the requirements of professional instruction.

MORALS.-The principles of morals, duties, and rights of the citizen; elementary principles of political economy.
FRENCH LANGUAGE.-Methodical study of grammar and orthography, etymology, and derivation of words, exercises in style and composition, elements of the history of literature.
Writing.-Principles and practice of run-ning-hand, round-hand, and commercial handwriting.

HISTORY.-Principal characters of antiquity, history of France up to the present day, deveiopment of national institutions, chief epochs of general history (ancient, middle ages, and modern).

GEOGRAPHY.-Physical and political geography of the world, special geography of France (comprising the divisions for administrative purposes), economic geography, map drawing.
MODERN LANGUAGES. - One modern language at least.

MATHematics.-First year: Theoretical and practical arithmetic, first elements of ordinary geometry. Second year: Advanced arithmetic, elements of algebra, plane geometry and its applications. Third year: Principles
of algebra as applied to the solution of simple equations, the elementary principles of rectilinear trigonometry as applied to the estimation of triangles, elementary principles of solid geometry and their application, the common curves.

ACCOUNTS.-First principles of commerce and account keeping, book-keeping, current accounts bearing interest.

PhYsics.-The most important phenomena and the principal theories of physics, modern discoveries, and the application of science to daily life.

CHEMISTRY.-Exercises involving the observation and examination of some of the familiar facts introductory to the study of chemistry, the metalloids and the most useful metals, the laws of chemistry, the elements of organic chemistry.

NATURAL HISTORY.-Organs and functions of men and animals, practical study of the principal groups of animals and vegetables, application of hygiene to the local industries, principal facts of geology, and examination of the best-known minerals.

SINGING.-Choir, with three parts.
GYMNASTICS. - Exercises with apparatus and military drill.

Professional Instruction.

The programme of professional instruction in the workshops is apportioned to the three years as follows, and is in practical operation in a number of schools:

First Year.

[Two hours per day.]

DRAWING AND MODELING.-Execution of the regular geometric solids of given dimensions from figured sketches.
WORKSHOP TEACHING. - (First period)Working in wood: A box, a drawing board, a mortise - and - tenon joint, a slit-and - tongue joint, a joint halved together obliquely, a St. Andrew's cross, various kinds of scarfed joints.
(second period)-Working in iron: Exercises with the file on an uneven piece of iron. Makerectangular parallelopiped, with a square base of given dimensions; this to be converted into an octagonal prism, then into one with sixteen sides; this is to be filed round; then, in the lathe, to turn this into a cylinder of specified diameter, and finally convert it into a hexagonal prism.
(Third period) - Working in wood: Various kinds of dovetail joints, splices, skew splices, halved together, scarf-halved with dovetail pieces.
(Fourth period)-Working in iron: Toolmaking, two rules in iron of given dimensions, two plain squares, a pair of colipers, exercises with the lathe and cutting chisel.

Second Year.

[Three hours per day.]
DrawING and modeling. - Execution in graduated series of ornamental casts composed of elements of solid geometry arranged systematically, rosettes, etc.
WORK IN THE SHOPS. - (First period) -Working in wood: Mortise and tenon to moulded work, tenon for miter joint, mortise and tenon with champfered dovetail, tongued joint with cross-ties, mortise and tenon for quoins.
(Second period)-Working in iron: An angle out of square, a pair of pointed compasses, a hand vise.
(Third period) - Working in wood: Angle open-mortise joint, slit-and-tongue joint in two

Second Year-Continued.

thicknesses of stuff, stepped in mortise and tenon, square joint of two cylinders, oblique joint of two cylinders, a pair of screw clamps.
(Fourth period)-Working in iron: Bit pincers, screw-wrench, exercise with the lathe, exercise with the cold chisel.

Third Year.

[Five hours daily the first six months, seven hours the last six.]

DrAwing and modeling.-Elements of architecture, orders and styles, ornaments of the different orders and styles.
Industrial drawing: Theoretical principles of composition and of the arrangement of colors.

General principles of the application of drawing to pottery, to fret-cutting in wood and metal, to artistic locksmith's work, and to the ornamental stamping of paper and fabrics.
CHEMISTRY.-Experimentsin the laboratory, manipulation, analyses, mode of fixing colors (applied to pottery, stuffs, etc.).

ACCOUNTS.-Industrial account keeping, fixing of a scale of profits, applying the same to the work of tools and machines.

WORK IN THE SHOPS.-(First period) -Working in wood: The making of tools, mouldingblock, miter block, wood bench-clamp, tenon saw, small hand saw, inlaying saw, a plane, use of the wood lathe.
(Second period)-Working in iron: Themaking of tools, a pair of steel squares, (one of them to be a rim square), a tap wrench, working with the cutting chisel.
(Third period)-W orking in wood: The making of tools, a plane, jack plane, square, marking gauge, grocving plane, work with the lathe, model-making.
(Fourth period)-Working in iron: Making a shifting gauge, working at the forge, elemen tary work; making of tools, chisels, cross-cut chisels, boring bits, etc.; working at the lathe and with the cutting chisel.

In the schools of this class which have instruction in agriculture instead of in the mechanic arts, the course of agriculture covers two year's, although the school has a course of three years, the first year of the course being entirely devoted to general culture. The applications of physics, chemistry, natural history, geometry, etc., however, should be pointed out to the students to prepare them for the professional instruction of the last two years of the coursé. During the week there are two lessons in agriculture, each of one and a half hours. The first year of the course proper is devoted to the study of vegetable life, general and special agricuiture, horticulture, and arboriculture. The second year is devoted to the study of animal life, rural economy, and accounts. The syllabus which follows is modified at the discretion of the teacher. The lessons upon general agriculture and zoötechnics should be made as general as possible, and only the plants and animals which are raised in the surrounding country should be treated in detail. No lesson on grape-culture should be given in a country where the grape is not cultivated, nor should a lesson upon tobacco-culture be given when none is grown in the neighborhood, and so on. The theoretical instruction is illustrated and fixed by demonstration, practical exercises in the school garden, and excursions. The teacher should avoid with care the use of technical words, which very frequently obscure his meaning and in any case load the memory of the pupil with terms which later on he will nэver use. The instruction should be as far as possible clear, precise, interesting, and prątical.

Lately a course of agriculture for the country elementary schools of France has been printed; how far it is in operation is not known to this Bureau, but what it is is shown by the syllabus which follows:

SYLLABUS OF THE AGRICULTURAL COURSE IN THE ECOLES.PRIMAIRES SUPÉRIEURES FOR BOYS.

First Year-Agriculture.

1.-Introduction.

Definition and object of agriculture. - As one of the branches of human knowledge. The object of the sciense is to find the most advantageous way of piouucing vegetables and animals. Is one of the mostimportant industries. R'sumé of its results. Capital that it employs. Number of persons that it employs. Its primary conditions, tools, and forces. The rôle of water, heat, and light. The farmer should be familiar with the physical and natural sciences. Illustrations of this fact by examples taken from botany, geology, zoölogy, physics, etc. Agriculture as a science, as an art, as a trade. What meaning the words practice and routine should conrey. The object of the course is not to teach the trad of agriculture, but to study the phenomena of the life of cultivated plants and domestic animals and to give information that will aid in is development and multiplication. The course should be filled with practical and healthy ideas, so that the pupil when he becomes a man will better understand his trade by reasoning upon what he is doing and strive to improve his methods, to wit:

Utility and advantage of instruction never more necessary than now to the farmer; competition: rapidity of the change in procedur ; conditions under which plants and animals may be improved; advantages of this improvement; good and bad seedings; fertility of the soil ; law of restitution; necessity of neglecting nothing ; influence of good and pcor food on domestic animals ; difference between a well-made and a pcorly constructed plow as an instrument of work.

Importance of the slightest progress in agriculture. Choice and improvement of the French varieties of seed so as to obtain a great yield, as for instance, if 50 more liters of grain can be raised to a hectare, it would be a gain of $100,000,000$ francs a year, and if a centime can be saved daily in the feeding of domestic animals by improving the manner of preparing the food or ameliorating the animal machine in a manner to enable it to employ the focd consumed to a better advantage to the farmer, it would be a gain of a $215,000, \mathrm{c} 00$ francs.

Instruction increases the charms of rural life. The attractions of the study of natural objects. Observation and interpretation of natural phenomena. Rôle of the enlightened farmer as the director of operations or as a broker. Mechanical work nourishes (asservit) both mind and body. Work done intelligent'y and willingly elevates man and increases his dignity. Work of cities and shops. Work of the country. Economy, health, strength, and vigor. Thanks to the healthfulness of her occupations agriculture is able to furnish the most numerous, spirited, and enduring part of the army. To cultivate and improve the soil is, then, doubly to serve one's country.

2. General Agricutiture.

Agrology (i.e., study of the soil with relation to agriculture).
I.-Soil and subsoil.

Origin and formation of the arable bed. Meteorological, physical, and chemical action. Circumstances which influence the quality of the land, such as geographic situation, altitude. Inclination and exposure of the land. Rainfall.

> IL.-Classification of lands according to their physical and chemical composition.

Physical properties and chemical composition of the land. Wheat, rye, oats, vine, and fruit lands, natural and artificial meadows, pastures, woods, and forest land.
III.-Study of the best voay of modifying the composition of the soil and the physical properties.

1. Definition and classification of measures. Animal, regetable, and mineral manure. Composts.
2. Stable manure, solid and liquid. Relation between and food consumed. Influence of food upon. Importance of liquid portion. Use of litters and of
what made. Preparation of litters of straw, rushes, ferns, leaves, dry grass, sawdust, marl (marne), dry earth. Care that should be given stable manure as to fermentation so as to prevent loss of valuable ingredients. Calculation of the production in relation to the consumption of forage and grain. Means at hand for increasing the supply of manure and improve its quality. Value of manure lost by negligence, in money. Fertilizing matter of cities and villages; its value and utilization. Mauner of employing liquid manures. Poudrette. Wool-waste, hair, horn, skin, etc. Guano.

Tegetable manure.-Green manure; fiber (such as cotton-seed meal, for instance); sediments and waste from distilleries and sugar refineries, tanneries, etc. : sea plants, muck, paring and burning (as it is called in English agriculture).
Mineral manure.-Phosphates of chalk: salts of ammonia, of potash; ashes; nitrate of soda, salt, plaster, chalk, shells, etc. Practical exporiments with these manures. Valuing the quantity of carbonate of lime in a marl. Theory of chemical manures and estimation of the relative value of manures. Precautions that the farmer should take to prevent his being imposed upon when buying commercial manures. Law touching the subject. Laboratories and stations of experimental research.

Irrigation.-Object is to supply water to enable the plants to grow, and also to carry in fertilizing matter. Kind of water required ; its collection and distribution. Reservoirs, machines, canals, systems of irrigation, and preparation of the land. Increased value of the land. Lands adapted to the purpose. Quantity of water required. Time of distribution, precautions, cost, sediment. Means of using the local advantages for irrigation in the country in which the school is located.

Reclaiming land.-Difficulty of working wet soils and bad effects of water, especially in the early spring, when in the furrows. Means employed to remove the surface water. Open ditches. Influence of draining on clay lands as to temperature. Aereation of the soil. Absorption of atmospheric gases. Manure. Partial and complete drainage. Expense. Enhanced value of land. Loans by the state to enable the farmer to drain his land; law of May 28,1858. Servitudes of draining; law of June 10, 1854. How valualess lands of the locality of the school which might be reclaimed.

Mechanical means of modifying the physical properties of the soil.-Conditions under which good tillage is possible. Proper time. The effects. Subsoiling. Clearing and breaking up land. Nonlifting subsoiling. Plowing. Various kinds of plows, and the qualities of an ideal instrument. The use of steam and animals as power. Cost. Harrowing, rolling, etc. Indications of the improvements which might be introduced in the vicinity of the school in these respects.

> 3.-Spectal Culture.

1. Study of the plant considered as an instrument (outil) by the aid of which the cul tivator produces reyetable matter by using the nutriment contained in the atmosphere and in the soil.-Composition of plants. How they grow and feed. Influence of latitude and altitude. The farmer should accommodate his crops to these conditions. Qualities of the various kinds of plants cultivated. (Syllabus abridged.)
2. Study of the principal vegetables cultivated in the locality of the school or which may be introduced there with profit.-Cereals, legumens, forage and pastures, plants of industry (sugar beet, tobacco, etc.). Rotation of crops, viticulture, sylviculture. (Syllabus abridged.)

Horticulture (including the kitchen garden):

1. General ideas.-Situation of the garden. Proper soil. Preparation of the soil. Grafting. Improvements possible in the environment of the school.
2. Arboriculture.-Table grapes, peaches, apricots, cherries, plums, pears, and apples; the soil in which they should be grown, the manner in which the trees should be trimmed, eitc. Conservation of fruit. Flower garden. Improvement possible in these respects in the vicinity of the school.
3. Kitchen garden.-1. General remarks. The usual kinds grown. Seed beds and resetting. 2. Cultivation of the usual vegetables. Cultivation of ornamental plants by slipping, etc. Possible improvements to be made in these respects in the locality of the school.

zOÖTECHNICS.

Study of the use oî animals in agriculture. The animal a machine which transforms the food it raceives into power, flesh, milk, wool, etc. The course is divided into three parts-general, hygienic, and special zoötechnics.

1. Gencral zoötechnics.-Food, importance of knowledge of. Animal physi-ol-gy. Comparison of the chemical structure of the organs of animals with that of the food they eat. Organic and mineral matters. Different methods of determining nutritive equivalents. Cured and green food. leaves, branches, roots, st:aw, grain. Influence of the time of year (l'époque) upon the harvest, and of the method of culture upon its nutritive value. Good cultivation and good manuring, poor cultivation and careless cultivation. Vege able husk and pulp and other industrial refuse as food. Salt, its physiologic action, and the manner of fee ing it.

Watering. Necessity. Quantity necessary. Temperature. Precautions to be taken in winter, especially for cows. Qualities that the water should have. Ponds and drinking places.

Feeding. Regularity. Changing from green to cured food and the precautions that should be taken; preparing hay, cutting hay, grinding grain, warming roots and grain. Fermentation. Effect of these preparations upon the ass.milation of the food. Importance of the matter. Study of the instruments and machines employed. Feeding during the different seasons, pasture, and stable. Amount to be fed daily and the influence which race and individual peculiarities should exercise upon it.
2. Products.-Milk, its comrosition, secretion, food proper to produce. Type of a milch cow, general and special characteristics, and Guénon's system. Sale of milk and utilization of that unsoid. Butter and cheese making. Dairy-keeping. Reforms that should be introduced. Production of flesh, strength, and manure.
3. Reproduction.-Selection of stock for breeding, heredity, and atavism. Rearing. Castration.
4. Hygiene.-General principies. Currying and rubbing down. Construction of stables, etc. Care and treatment of disease.
5. Zoötechnie Spéciale.-Species and races and the improvement of the latter. Special study upon the horse and other domestic animals. General study of the animals useful to the farmer. Pisciculture in fresh, brackish, and salt waters. Culture of oysters and salt-water mussels (moules). Useful insects. Apiculture. Sericulture. Acclimatization.

RURAL ECONOMY.

Property in land and methods of cultivation. Leases. Salaries. Means of stopping the depopulation of the country. Agricultural loans (crédit agricole). Agricultural societies. Syndicates. Instruction in agriculture. The "Institut Agronomique"(Agricultural University of France). The "national schools of agriculture." The "practical schools of agriculture." Th " farm schools." The "departmental professors of agriculture." Agricultural statistics of France. Production and consumption. Importation and exportation. Importing e untries. Countries to which France exports food stuffs. Agricultural statistics of the department in which the school is situated and a general review of its situation from an economic standpoint.

BOOKKEEPING FOR FARMERS.

Necessity of keeping a record of the details and results of cultivation. The necassity of raducing the writing to the smallest amount possible; for the cultivator from the nature of his occupation is not fond of office work. By order and method it is possible to accomplishing this by noting in a pocket notebook the facts as they occur, and giving an hour or two on Sunday to their study. Above all the farmer should know the capital that has been sunk in his enterprise. His inventory should consist of the value of the property and buildings, the capital used in carrying on farming (animals, instruments, manur 3 , etc.), and cash on hand. A farmer should study in advance his plan of action and regulate his expenditure thereby. In addition the farmer should keep a cash book.

PRACTICAL WORK.

Within doors.-Study of seeds-determination of the nature of the seeds of cultivated plants and of weeds. Dodder seeds-determination of the purity of the sowing and its germinating power. Study of soils, their composition and analysis. Rocks found in the locality. Soil formed by the disintegration of rocks, and alluvial soils. Soil and subsoil. Study of manures. Appearance of
commercial fertilizers, their preparation and distribution. Analysis of specimens of commercial fertilizer. Study of agricultural instruments, the work they do, the care they should receive, and their repair. Study of plants, of milk, of the teething and age of animals, the foot of the horse, ox, and ass, and shoeing. Beehives, trellises, etc. Insectides, etc. Buildings and materials. Collecting insects.

Outside work.-Spading, raking, rolling, clipping, grafting, pruning, sowing, replanting, growing, cuttings, weeding, making composts, etc.; applying sulphur, etc., to destroy the fungus on vines and vegetables; gathering and preservation of the crops. Special plates for comparative study of the value of the different kinds of manures and cultivated plants. Visits to hothcuses, gardens, etc.

BIOLOGY.

The study of biology has been given the attention its importance deserves in a special study issued by this Bureau as Circular of Information No. 9, 1891. By an inadvertency, however, a notice of the biological departments of the University of Illinois was omitted from the circular, and the occasion is here taken to insert an account of the biological work of that institution, which has been kindly furnished by Prof. S. A. Forbes, of the State laboratory of natural history of Illinois.

The erection, in 1892, at a cost of $\$ 60,000$, of a new building for the biological departments of the University of Illinois affords a suitable occasion for a description of their organization and work-in some respects typical for the State universities, and in others unique. These departments are thrown together, by the plan of unive sity organization, forming what is known as the school of natural science, which comprises the departments of botany, zoölogy, entomology, human physiology, and geology.

The courses in this school are especially intended:
(1) To afford a thorough and liberal education with a basis in science and the modern languages.
(2) To prepare for the pursuit of specialties in zoölogy, entomology, botany, general biology and geology, as a scientific career.
(3) To lay a liberal foundation in biological work and study for a course of medicine.
(4) To prepare for the teaching of the natural and physical sciences either in the higher schools or as a professional specialty.

The sciences required for admission to the studies of the school are botany, physiology, and physics, with algebra through radicals, and plane and solid geometry. The scheme of requirements for graduation is so constructed as to permit the student either to specialize at the beginning of his sophomore year by the selection of a macor subject, to be pursued, if desired, for three years continuously, or to distribute his principal effort within certain limits over a smail group of related subjects. To this end the studies of this school are divided into three groups: (1) required studies, (2) restricted electives, and (3) open electives. Under the head of restricted electives both major and minor courses are given, the former the maximum offering and the latter the minimum requirement in their respective subjects.

No student may graduate from the school of natural science until he has completed all required courses, and has done at least nine terms' work on one major subject, or twelve terms' work on more than one from the group of restricted electives; and taken at least minor courses in all the other subjects of this group in which such courses are offered. The major courses must be chosen for a year at a time, and may not be changed without special permission.

The required subjects are, on the other hand, general culture studies (mathematics, history, and philosophy) and, on the other, modern languages and drawing, required because necessary to any extensive pursuit of the biological sciences. The minor courses of the "restricted elective" group are all one term courses offered in botany, zoölogy, physiology, geology, physics, and chemistry respectively.

Major courses of three years are offered at present in botany and zoollogy only. In geology five terms' work may be had, in entomology two terms, and in general biology a single term, coming as a sequel to the courses in zoollogy and botany.

In botany six courses of instruction are offered-five primarily in ended to meet the wants of students making botanical work more or less a specialty, and
the sixth occupying a single term, complete in itself, for students whose chief attention is given to other branches. Three to eight terms' work constitute a major course; that of the single term a minor course. To a very large extent natural objects are studied rather than books; but constant endeavor is made. to introduce students to pertinent existing literature. In the laborato y much use is made of the compound microscope and special attention is given to its manipulation for best resulıs, and to the preparation of objects.
The courses offered as major work (ten hours a week) are: (1) the histology, morphology, and physiology of plants; (2) bacteriology; (3) advanced determinative and biological work on fungi ; (4) the reproduction and development of plants; and (5) research work for two terms of the senior year for such as are to present a botanical thesis for graduation.

The zoölogy is taught in five courses: (1) a major course (restricted elective) of a full year, ten hours a week; (2) a term of embryology, likewise ten hours a week, for those who have taken course 1; (3) two terms of research work (senior) for those who have taken courses 1 and 2, and who select a zoölogical subject for the graduating thesis; (4) a year's work, open elective, in systematic zoölogy for advanced students only; and (5) a general course of a single term, offered as a minor course in the school of natural science and as an elective to the students of the university at large.

A course in practical and general embryology and in the theory of evolution is given in the fall term as a sequel to course 1. It is required of all students intending to present a zoölogical thesis, except such as take course 4.

A single course of two terms, ten hours a week, is offered in entomology. It is designed mainly as a preparation for economic work and investigation as a specialty ; but students whose principal interest is in structural or systematic entomology are permitted to take a special line of such work in the second term.
Palæontology is taught at present as a term's work in geology, and requires a major or a minor course in zoollogy as a precedent.
The department of human physiology is as yet in embryo, but ample provision for the development of the subject as an experimental science has been made in the new building. At present but a single term is given to it. Comparative physiology is taught extensively, however, as a part of zoölogy, with assigncd experiments by students on the lower animals from the protozoa upwards.
For those who have taken a major course in either botany or zoölogy a single term (ten hours a week) of general biology is arranged and especially commended. It is intended to review, extend, systematize, and unify the student's knowledge of the phenomena, the history, and the laws of life, of the relations of plant and animal, of living and notliving matter, and of biology to other sciences and to philosophy. It is properly a senior study for students of the school of natural science.
The studies of animal life are brought to a conclusion by a single term's work (three hours a week) in anthropology, the objects of which are tosummarize the facts and theories relating to the origin of man, to introduce the comparative study of races with a view to ascertaining their relations to each other and to primitive man, and to study the steps by which races change from the savage to the enlightened stage.
The subject of physiological psychology in the department of philosophy is so correlated with these biological courses as to amount to a practical continuation of their methods and spiritinto the field of psychological investigation.
Intimately associated with the zoölogical department of the university, and practically merged with it since 1884, is the work of the Illinois State laboratory of natural history and that of the State entomologist of Illinois, the former consisting essentially of a systematic and thorough-going investigation of the zoölogy and cryptogamic botany of the State, the results of which are in course of publication by the State, and the latter of entomological investigations whose main end is economic, but whose product is largely scientific and educational. Both these departments of work, although supported by appropriations independent of those granted to the university, are directed by the head of the zo jlogical department of university instruction, and provided with quarters and facilities in the new natural science hall. The State laboratory is also the headquarters of an extensive work on the zoölogy of the fresh waters of the United States, conducted under the auspices of the U. S. Fish Commissioner.
The natural science building is 134 feet in length by 94 in width, and three stories in height above the basement. There is a spacious, well-lighted central hall, around which on all sides are situated laboratories, lecture rooms, closets, storerooms, and dark rooms, a full series for each department.

As an example of the arrangement and equipment of this building a general description may be given of the provision for zoölogy. The students' la oratories in this department are three in number, on the first floor, for elementary, advanced, and post-graduate work, respectively. In the first, table room is giren for 30 students; in the second, for 16 ; and in the last, for 10. Adjoining the tirst is the priva:e laboratory of the assistant in zoölogy and next this is the lecture room. Direct y over the assistant's laboratory is that of the professor of zo logy, and over the post-g aduate laboratory is his private office. On this second floor are also the ruoms of the State laboratory of natural history. consisting of an assistant's lab ratory, 36 feet by 21 ; a collection room of the same dimensions; a library, 32 feet by 23 ; and a room for the artist of the establishment. In the basement of the building is a very large storeroom for tho department, and an animal room to be fitted with aquaria, animal cagas, and the like. On the third floor are he zoollogical collection rooms, containing the material required to illustrate the work of the department. The zoollogical laboratories are furnished with microscopes and with an abundance of microscope apparatus, including several first-class microtomes, an imbedding apparatus, and an incubator. A full equipment for field work in the various departirents is at the service of the students, and the library and collections of the State entomologist and the State laboratory of natural history are also macie accessib'e to them under suitable restrictions.

The general museum of zöllogy and geology is in another building. It occupies a hall 79 by 61 feet, with a gallery on three sides, and it is completely furnished with wall, table, and alcove cases, full to overflowing with prepared material.

HIGHER INSTRUCTION IN THE SCIENCE AND ART OF TEACHING.

I.

If the boast of autobiographies and the complaints of State superintendents go for aught it would seem that in many cases in the early days of the public school systems of the New England States the common schools were taught by college undergraduates, who thus "worked their way through college." Even now it has been stated that " of the more than 6,000 public school teachers in Tennessee at least two-thirds are working earnestly to obtain a good education either by privata study or by teaching school and attending college alternately." In this way it is possible to explain the fact that in Massachusetts fifteen years elapsed between the founding of her first normal school and the establishment of public scholarships at Harvard and other colleges for the purpose of providing competent instructors for her one hundred public high schools in existence at the date of 1853 .

But by the act of that year Massachusetts did not establish a higher normal training; for forty-eight scholarships of $\$ 100$ each were created and distributed among her colleges, twelve of which were annually given to as many person selected from among the forty scholarship districts into which her territory had been for this purpose divided,-"The scholarships were filled, the holders graduated, but they failed to become teachers." ${ }^{1}$ The colleges turned out what is usually called educated men but not teachers. In 1866 these scholarships were abolished.

There is still another early attempt in this line to chronicle. In 1851 Brown University established a department of didactics in which a course of lectures was given "On the habits of mind necessary to eminent success in teaching, the relation of the teacher to the pupil, etc., and on the elements of the art of teaching or the best methods of imparting instruction in reading, grammar, geography, history, mathematics. language, and the various other branches tanght in our higher seminaries." The school, however, soon closed its doors.

This movement, however, was not confined̉ to New England. At the instance of the State superintendent of Michigan the board of regents of the university of that State in 1860 permitted a course of lectures to be given on the principles and philosophy of education and the organization and mangement of schools. But it appears that the University of Iowa was the first to reward the student of pedagogy with a distinctive degree.

After the repeal of the act of 1853 creating forty-eight scholarships the educational authorities of Massachusetts urged the necessity of an adcitional and higher course of instruction in the four normal schools of that State. At the date of 1870 those schools had a" voluntary" course of two years, chiefly attencled by former graduates, "who had learned from their experience in teaching the value of a more advanced scholarship."

It was not until 1879 that a definite step was taken in the way of recognizing pedagogy as a science and also of recognizing the necessity of training teachers for schools above the elementary grade. In that year the University of Michigan established a chair which took the expressive name of the "Science and art of teaching." In considering the instruction given from this chair, the inquirer is struck with three facts, to wit, the announcement that the science of education, being one of the latest of the sciences, had not yet been cast into articulate form, in fact was in process of formation; the scholastic character of the a: tendance on the course; two-thirds of whom were college graduates; and most imrortant of all, the double requirements to be fulfilled befo se the " teacher"s diploma" was given to the candidate, the requirements being (1) marked ability in either Greek, Latin, French, or physics as shown by special examinations, and (2) one of the courses offered by the professor of the science and art of teaching. The course of this chair was not long, only occupying, indeed, an academic year, and even this time was halved, one-half boing devoted to the study of supervision, grading, courses of study, examinations, the art of instruction and governing (no practice or model school), school architecture, school law, in a word, superintendency, and therefore called practical ; and the other half to the history and science of education and comparative pedagogy, if that term may be coined.
The differeace between this course and those of either the French Focle Normale, or the Prussian training colleges for Gymnasialpädagogik is marked. To illustrate this it may be profitable to compare the work at the University of Michigan with that of two typical Prussian training colleges for candidates for teachers' positions in the classical schools called gymnasiums.

Berlin (1885-86).-Essays by the Menbers of the Seminary.

The great Homeric hymn on Mercury.
De Nemæorum Pindari carminum locis quibusdam controversis.
Platonica (critical essay on some points in the Symposium).

Remariss on the names of Greek priests.
Quæstiones Tullianæ ad libros de inventione spectantes.
Aschylus's De Aristophanis Thesmophoriazusis quæstiones duæ. (Question 1. Was the work published in 411 B . C.? Question 2. A critical examination of verses 1001-1033.)
The tax levy of Nausinikos and the Trierarch law of Periander and Demosthenes.

Current work (1 instance): Criticism of a member upon Bindseil's recent book on composition (in German) in the highest class of a gymnasium (college).
The critic was praised for the accuracy and intelligence cisplayed in his work; but was criticised for withholding his own judgments and for agreeing with many doubtful statements. In conclusion the director seized the occasion to speak from his own experience on the matter contained in the essay and to connect the whole discussion with the object of the seminarium, that is to say, the training for teaching in a gymnasium.

Ann Arbor (1880-81).-Announcement.

Course I (one semester).

The general purpose will be not as much to teach specific methods as to put pupils in firm possession of a body of doctrine out of which they may draw their own methods. Recitations and lectures four times a week.
The varieties, true, and common conception of labor and a basis for estimating its value. Qualities needed for superintendence, the supervision of schools and its value.
Delegated power, its rights and privileges; relation of the board to the people, of superintendent to board and to teachers, and his duties.
The purpose and methods of the teachers' meeting.
The nature, adrantages, and disadvantages of a graded school.
The course of study.

Course II (one semester).

Historical, philosophical, and critical, embracing the history of education, the comparison and criticism of the systems of different countries, the outlines of educational science, the science of teaching, a critical discussion of theories and methods. A translation of Paroz's Histoire Universelle de la Pédagogie is in progress and this will be the basis in this porion of this course. Special studies on the reformers in education will be made.
The general purpose of thesecond course will be to teach general principles and doctrines rather than specific methods. Pupils will be taught in the assumption that they can forin for themselves their own art out of the principles they have learned and that have sutficient versatility to adopt their methods to the requirements of circumstances.
Private reading required and a course in philosophy or on lectures XXXI-XXXVI, of Hamilton's Metaphysics.

Magdeburg (1883-84).-Essays by the Members of the Seminary.

Criticism of Jean Paul Richter's Lavana:

1. The Importance of Education.
2. Spirit and Principle of Education.
3. Culture through Religion.
4. Origin of Man and Instruction.
5. Bidding and Forbidding.

Proof of the last antinomy in Plato's Parmenides.
The justification and purpose of classical instruction.
Indirect questions in Greek.
What is Herbart's idea of instruction in a foreign language, and upon what has he founded it?
How far is Xenophon's prejudice for Laconia shown in his Hellenica?
Perthes's proposition to reform instruction in Latin.

Three hours of Virgil in a Gymnasium.
Montaingne as a Pedagogue.
Montaigne and Rousseau.
Locke's position in pedagogy.
Literary and historical study of Jodelle's Plays.
Criticism of an essay entitled "The character and purpose of classical instruction," by the Director, as follows:
"The paper shows a certain amount of industry; but the theme is not worked out, nor does the author go very deeply into his subject. The essay is more areproduction of stale thoughts than the independent expressions of opinions of a mind filled with enthusiasm for the dead languages."

Haring thus briefly reviewed the efforts to provide for the professional training of teachers at our higher institutions of learning, we now turn to consider the condition of the study of pedagogy in those institutions at the present day. Those interested in the work of the normal schools usually so called are referred to chapters xi-xiv of the Bureau's Report for 1888-89.

II.

It would be difficult to generalize on the pedagogical courses of the more important universities of this country, as they have few elements that are common. Two of these elements, however, are of considerable interest. One is that some universities have complete courses in pedagogy, whether graduate or undergraduate, while others make it an elective study for juniors and seniors in the regular college course. The other common element is that by establishing such a course or study these institutions recognize that the person who intends to teach should have instruction in matters and in methods that the candidate for the degree in arts or science does not receive. This may not be an attempt to recognize education or pedagogy as a science, as political economy or politics under the name of sociology has been recognized, but it is certainly placing pedagogy on the same footing as those subjects.

The only classification of the university courses in the science and art of education that is attempted here is the division into courses in which special pedagogy (methods in Latin, mathematics, etc.) receives the emphasis and those in which the emphasis is placed upon the science of education. To illustrate the first the recently established course at Harvard is used; to illustrate the second the course at Clarke University is given.

From its age, standing, and its conservative attitude in the matter of according to pedagogy a place among the sciences, Harvard University caused more than a passing interest when it announced that in its faculty of arts and sciences "courses for teachers on methods of instruction" had been established. These courses are of university grade; that is to say, they are only open to those who hare graduated from a college of arts or of science. As was the case at the Unirersity of Michigan in 1879, there is a department or course of pedagogy proper, which is called "The history, theory, and art of teaching," and many cour'ses, each concerned with the best methods of teaching the several studies of the college curriculum. The history, theory, and art of teaching course is divided into three departments, to wit: History of teaching and of educational theories, theory of teaching, and the art of teaching. The first and third are considered, either in the form of a lecture or discussion, twice a week during the year; the second, only once a week. In the first and second subjects two essays are required from the student, in the third the student is expected to observe the teaching in some designated school or schools in the vicinity of the university and, during the second half year, to present reports on what he has seen. In addition to this instruction given or directed by an assistant professor of the university, twelve lectures on "Topics in psychology of interest to teachers" are delivered by the professor filling the chair of philosophy at the university.

In special pedagogy there are thirteen subjects of study, Greek, Latin, English, German, French, history. mathematics, physics, chemistry, botany, zoöl-
ogy, geology, and geography. The syllabus for Greek and chemistry will very well illustrate the method of conducting courses in language and in science.

GREEK.

(1) Lectures (once a week during the second half Jear). Topics: Discussion of existing methods of acquiring the elements. Outline of method recommended in teaching forms and syntax. Method of securing practical application of the knowledge acquired. The art of reading. Acquisition of a vocabulary. Translation and retranslation. Review of grammar during the second year's work in school. Wider application of the principles of "reading at sight" and of the "group system" in the acquisition of a vocabulary. Method of teaching the facts of geography, history, and antiquities. Greek prose composition. Method of teaching the dialectical and syntactical peculiarities of Herodotus and Homer. Amounts to be read. Homeric verse. Geography, history, and antiquities. Literary treatment.-List of books to be used or consulted.
(2) Practical exercises: Discussion of topics suggested by members of the course.-Practice in outlining lessons, in construction of exercises, in formation of word groups, in selection of passages for translation at sight, in composing English passages to be translated into Greek, and in arranging facts of geography, history, and antiquities for presentation to a class.

CHEMISTRY.

(1) Lectures (five). Topics: Methods of teaching chemical science. The history of the development of the modern methods. Fit adjustment of theoretical and experimental teaching and the value of each as.modes of mental discipline. How far chemistry can profitably be taught in the secondary and primary schools. Best means of securing enduring results. The best and most economical ways of installing and of furnishing a school laboratory, and the precautions required to insure profitable and safe work from immature students. Suggesticns on the preparation and delivery of experimental lectures. The best system of teaching the three main branches of elementary chemistry, viz: General descriptive chemistry, mineralogy, or the natural history aspect of chemistry, and qualitative chemical analysis.
(2) Additional exercises: In order to gain a competent knowledge of class-room and laboratory methods of teaching chemistry, the student will ind it essential to take such of the following courses as he has not already studed: Chemistry, A, B, C. 1 and 3 . (See the general announcement of the courses of instruction provided by the faculty for 1891-92.)

The courses at Harvard are "adapted to the purposes of teachers and of persons intending to become teachers," not so with the curriculum of the depa tment of education of Clarke University. At the latter institution the work in pedagogy is "primarily shaped to meet the special needs of two classes, one composed of those desiring to qualify themselves for professorships of pedag gy in unirersities, colleges, or no:mal schools, the other class composed of those who intend to become superintendents of State or city systems of education or Wish to fit for other administrative positions." In following out this programme President Hall has constructed a curriculum that is quite an innovation. This curriculum falls, it would ssem, under four heads-comparative redagogy 7if that term may be used to connotate the description and comparison of foreign systems of education), the social effects of higher education, the effect of the artificial or intellectual developmert of the child upon his natural or physical development, and special pedagogy, beginning with the three R's. The courses in neurology, experimental psychology, anthropology, and practical ethics (criminalogy, pauperism, and defectives) are open to the students.

Certificates of proficiency are given on completion of the course at both universities, whose course has been described, but at the University of Iowa something more than a testimonial of proficiency is conferred. After two yea s of successful teaching graduates of the university who have taken a full course in pedagogy may obtain the degree of Bachelor of Didactics. The course in pedagogy of this university-fully described in Circular of In o mation No. 8, 1891is composed of three sections, known as history of education (fall term), educational science and systems (winter term), and school management and exemplification of methods instruction (spring term). During the week preceding annual commencement the State board of education holds an examination at the university for the State certificate.
The teachers' department of the University of Tennessee has been organized to aid in educating teachers for the public and private schcols of the State. but especially to give this class of public-school teachers an opportunity to secure a better education. "The course is in no sense a normal department. Our (Tennessee) teachers have already, in the various normal schools, college, and institutes, sufficient opportunty for that kind of training if they want it. The purpose of the university is to adrance knowledge, and the object of this course is to stimulate its students to seek a complete, liberal education, and it is hoped that many of them will take a full college and university course. A due proportion of professional training is provided as a part of their education. but in every thing the thorough development of the man in all his powers will be the object aimed at, and not merely his training to perform a few professional pro-
cesses. Even the work in the common-school branches has for its object the perfection of the teacher-student in these sub ects."
A course practically of the same nature as that just spoken of is offered by the University of Wisconsin to graduates of the State normal schools who desire to improve tineir scholarship.
At Cornell, Columbia, and Princeton, under various titles, there are courses or quasi courses in ped gogy which juniors or seniors of the regular college course may elect. Of these the course at Cornell has the name of "The science and art of teaching."
Two schools of pedagogy which are connected with universities have peculiarities that require mention. The comparativelv elaborate system of pedagogical degrees conierred by the University of the City of New York is based upon the idea inaugurated at Iowa, that a degree should follow successful teaching and not precede the efforts of the holder in the school room, and further that thecourse in the science and art of teaching is a professional course to be pursued by persons whose general education has been finished at a college or at a normal school. The conditions under which the degrees are conferred are as follows:

DOCTOR OF PEDAGOGY.

Abstract

Each student of the schcol who has been a member of the senior class for two or more years and a resident student at least one year, will be entitled to the degree of doctor of pedagogy upon the following conditions : (1) He must have been credited with attendance upon the required lectures. (2) He must have been credited with attendance upon the required seminaria. (3) He must have passed an examination upon each of the five courses. (4) He must have presented the prescribed final thesis as defined below and have recaived approval of the same. (5) He must have presented, upon entering the school, a certificate showing seven years' successful experience in school-room work.

MASTER OF PEDAGOGY.

Each student of the school who has been a member of the junior class for one or more years,
and a resident student at least one year, will be entitled to the degree of master of pedagogy upon the followlng conditions:
(1) He must have been credited with attendance upon the required lectures.
(2) He must have passed the examination upon each of the four courses first named.
(3) He must present a certificate showing three years' successful experience in school-room work.

The features of the department of pedagogy of the University of South Carolina that call for special mention are (1) the establishment of an undergraduate and graduate course and (2) the introduction of modeling and blackboard drawing as a part of the undergraduate course.

Turning now to the schools of pedagogy which are unconnected with a university, it seems advisable to take up the recently established State Normal College at Albany, N. Y., since the American prototype of this class of schools, the New York College for the Training of Teachers, has been fully discussed in chapter VIII of Circular No. 8, 1891, of this Bureau, and in the Bureau's annual reports.

Of the several schools which constitute the normal-school system of New York the school at Albany was the first to be established, owing its existence to the incompetency of the normal classes of the academies to fill their proper functions. In Michigan, and in other States, the State university was called upon to give the higher education in the science and art of teaching required by the times, but in the States of which the Union was originally composed, with the exception of New York, higher education is not under State influences, much less under State control, and in creating a school of pedagogy even, New York selected one of her own schools for the purpose, and her first State Normal School became the first State Normal College.
This college has been established to give instruction in the science and art of teaching. It is a purely professional institution, consequently nothing will be studied or taught in it which does not bear directly upon the business of teaching. Advanced courses in mathematics, the natural sciences, rhetoric, and such studies can not be pursued in the college, inasmuch as only methods of taaching those subjects are taught, a knowledge of them being a prerequisite. Without dwelling on the particulars of the administration of the college which is just entering upon its work, it suffices to say that there are three courses of study,
namely, the English, the classical, and the kindergarten. The minimum age for admission to the first and second courses is seventeen years, while for the kindergarten course the minimum age is fixed at eighteen. The only course which leads to a degree (B. Ped.) is the classical course, which is of two years. Its subjects are as follows:

COURSE OF STUDY.

First term.-Philosophy of education, school economy, drawing.
Methods of teaching the following subjects, viz: Number, place, language, reading, arithmetic, geography, grammar, penmanship, botany, physiology, zoology, composition, color, object lessons. A course of reading connected with professional work.
Second term.-Methods of teaching the following subjects: Algebra, physics, Latin, mineralogy and geology, geometry, chemistry, rhetoric, astronomy, preparation of specimens and apparatus, discussion of educational themes.

Third term.-Methods of teaching the following subjects: Latin, Greek or French or German, history, physical geography, solid geomentry and mensuration, civil government, trigonometry, bookkeeping, English literature, sanitary sciencē, school architecture, preparation of specimens and apparatus, discussion of educational themes.

Fourth term.-History of education, school law, kindergarten methods.
Methods of teaching the following subjects. viz: Music, drawing, physical culture, elocution familiar science, teaching in model sciool, a course of reading connected with professional work, discussion of educational themes, school supervision.

Among four hundred institutions carried on the lists of this Bureau as universities or colleges one hundred and fourteen report students in teachers' courses to the number of 3,414 . In other words, nearly 8 per cent of the enrollment of the four hundred institutions were studying in the teachers' course or department of one hundred and fourteen colleges. Of these one hundred and fourteen colleges the great majority are situated in the Mississippi Valley; scarcely any of them are located in the New England or Middle States. With few exceptions these departments, or courses, are nothing more than normal schools, which are usually classed among institutions of secordary grade. In many of these depariments Latin is introduced as a required or as an optional study ; in most cases, however, the course is concerned with the studies of the grammar grade of the public schools, with high-school mathematics and science. Bible instruction and surveying appear occasionally. In some cases it is very evident that the teachers' course is constructed on the interchangeable parts plan. Thus if history of education, school management, etc., be omittcd and less technical subjects be introduced the prepara ory course of the college or university is formed. At the completion of the course, which is intended, it would seem, to prepare for teaching in the district schools of the State, a certificate of proficiency is given. The length of the course of the schools of the class now under consideration is generally of three or four years, frequently it is of two, sometimes of one. In the case of a one or two years' course, however, the course may be looked upon as special or irregular. In conclusion it may be said that an intelligent graduate of a thoroughly taught high school who had attentively read Compayrés History of Pedagogical Ideas, a book on methods and management, and Sully s Psychology, for example, might graduate immediately and with honor from the great majority of the normal departments or teachers' courses of our colleges and universities.
The Normal Department of the National College for the Deaf at Washington presents several unique features. To supply a limited demand for specially trained hearing-and-speaking teachers in schools for deaf-mutes, a few modestly endowed fellowships are available annually. The candidates for fellowships are graduates of approred colleges and universities specially certified by instructors in these institutions, and nominated by heads of schools for the deaf. The degree of Master of Arts is conierred upon fellows satisfactorily completing the course of study and practice. Harvard, Williams, Amherst, Yale, University of Mississippi, De Pauw, etc., have been represented in this department. The course of study includes lectures and assigned readings with required essays upon general or "comparative" pedagogics; class-room and "seminary" investigation of the literature of deaf-mute instruction; the dispassionate consideration of rival methods; the mastery of means of communication with deaf-mutes; lectures upon anatomy and physiology of the vocal organs, and Iaryngoscopy; the study of English phonetics, mechanism of elements of speech, Bell's Visible Speech, and observation and practice classes in speech and "lip-reading," with detailed weekly reports of work done, occasional examinations, and a thesis. In the course of the year each member of the class is expected to teach at least one deaf-mute pupil to speak. The same course of study has been pursued by candidates for certificates only. ${ }^{1}$
${ }^{1}$ As the pages go through the press Prof. Gordon, in charge of the Articulation Department of the National College for the Deaf, kindly furnishes the foregoing sketch of the work of one of his departments.

CHAPTER XI.

STATISTICS OF PROFESSIONAL INSTRUCTION, 1889-90.

The diagrams and maps on pages 838 et seq., the consolidated statistics given on pages 3 and 4 , and the general discussion of the curricul of the several classes of proiessional schools leave no occasion to discuss the statistics of the year. Indeed. to do so would be but to repeat what is said far more concisely in the summaries which follow. These summaries have not been drawn with the intent of showing statistically the entire life of the various institutions during the year under review, but with the view of presenting a few primary facts, to wit, the number of schools, the number of instructors and students in them, of graduates from them, and, as far as the replies of the Bureaus correspondents will allow, the proportion of the students having a degree in letters or science. If the secondary statistics, such as the financial particulars, are missed, they may readily be found by examining the report preceding, where they have been given with as much accuracy as the character of the institutions concerned (university departm nts, independent schools occupying rented buildings, etc.) will admit. Matte:s of this subordinate kind do not vary sufficiently within a twelvemonth to require annual insertion. Even in the case of the colleges endowed by the acts of Congress of 1862 and August 30,1890 , it is preferable to wait and use the more reliable figures which the act of the latter date exacts than those furnished to the Bureau under the provisions of the law of 1862. Table 6 , therefore may be regarded as a compilation that falls short in its totals of the true amounts.
In the case of the normal schools, the amount received from public funds shows a great increase over that reported for the preceding year. It is evident that this is due in some measure to the separation of the qu stion usually asked in the Bureau's form of inquiry into two items, namely, appropriation for support and appropriation for building. In former years it would appear that, as a rule, only the amount for support was reported. Assuming this hypothesis for a moment as true, an increase of only $\$ 28,000$ is shown between the appropriation for the support of public no:mal schools for the years 1888-89 and 1889-50. This amount is too small, as appropriations for building were undoubtedly included in 1888-89 which have been rigorously excluded in 1889-90.

Table 1.-Summary of statistics of schools of medicine, dentistry, pharmacy, for nurses, and veterinarians.

TABLE 1.-Summary of statistics of schools of medicine, dentistry, etc.-Continued.

| | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 1.-Summary of statistics of schools of medicine, dentistry, ctc.-Continued.

| | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 1.-Summary of statistics of schools of medicine, dentistry, etc.-Continued.

Table 2.-Summary of Statistics of Schools of Theology for 1889-90.

	0000000000on	Instructors.				Students having degree in letters and science.	
						No. of schools reporting for 1889-'90.	Students having degree.
United States	145	643	101	7, 013	1,372	112	1,559
North Atlantic Division-	44 22		40 2		628 114	34 14 14	983 50
South Atlantic Division.	17	82	10	685	107	13	56
North Central Division.	58	233	30	2, 95	512	49	468
Western Division .-.....	4	8	19	5%	11	2	2
North Atlantic Division:							
Maine -.....-....	7	50	8	371	${ }_{6}^{23}$	6	181
Connecticut .-.	3	27	8	227	66	2	161
New York.-	11	70	9	727	165	8	205
New Jersey	5	27	3	386	107	5	207
Pennsylvania	16	82	12	776	190	11	225
South Atlantic Division:		20	0	144	11	1	
Martrict of Columbia	3	18	0	127	12	3	19
Virginia --......	3	14	0	190	58	1	0
North Carolina	4	10	0	96	2	3	9
South Car olina	6	17	0	104	20	$\stackrel{4}{4}$	17
Georgia---...-	3	5	2	128	11	2	
South Central Dirision: Kentucky	3	17	0	324	35	2	
Tennessee .-...-.......	7	22	9	213	25	4	28
Alabama.	3	3	0	64	24	3	6
Louisiana	3	6	1	56	10	3	1
Texas .-.--	1	4	0	28	13	1	13
North Central Division:				418			
Indiana	12	12	4	163	129	5	138
Inlinois.	16	77	7	1146	198	13	114
Michigan	3	9	0	91	6	3	9
Wisconsin.	5 4 4	19	3 3 3	210	$\stackrel{28}{28}$	3 4 4	29
Minnesota.	7	18	1	262	26	4	6
Missouri	5	14	0	341	82	4	149
Nebraska	2	4	1	34	9	2	0
Kansas.	1	3	0	39			
Western Division: Colorado							
Colifornia -...	${ }_{3}^{1}$	8	19	49	11	2	2

Schools, instructors, and students in schools of theology, by denominations.

Denominations.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { schools. } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { of in- } \\ & \text { struct- } \\ & \text { ors. } \end{aligned}$	Number of students.
Baptist	17	a74	1,027
Free-Will Baptist	2	9	1, 54
Presbyterian	14	81	884
United Presbyterian...-.	2	15	85
Cumberland Presbyterian	2	10	64
Reformed Presbyterian..-.........	1	3	24
Associated Reformed Presbyterian	1	3	7
Methodist Episcopal	17	66	884
Methodist Episcopal South			79
African Methodist Episcopal	1	4	18
Methodist Protestant	2		72
Lutheran -------	14	56	872
German Evangelical.		3	79
Norwegian Augustana Synod (Lutheran)	3	$a 7$	62
Evangelical Association.	1	3	26
Roman Catholic....--	18	93	946
Congregational .	12	99	673
Christian.	7	32	380
Protestant Episcopal	12	72	332
Reformed Church in the United States	4	17	89

a All schools not reporting this item.

Schools, instructors, and students in schools of theology, by denominations-Continued.

Denominations.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { of in- } \\ & \text { struct- } \\ & \text { ors. } \end{aligned}$	Number of students.
United Brethren	2		76
Undenominational.	2	15	76
Universalist...........	3	16	68
Hebrew - .-.....-........	${ }_{9}^{1}$	8	38
Reformed Church (Duteh)	2	8	46
Unitarian....	1	7 5	35 7
Total.	145	a738	7,013

a Two schools not reporting students, excluded hère.
Table 3.-Summary of Statistics of Schools of Law.

-	$\begin{aligned} & \dot{2} \\ & 0 \\ & 0 \\ & \tilde{c} \\ & 0 \\ & 0 \\ & 0 \\ & \dot{0} \\ & \dot{Z} \end{aligned}$	Instruetors.				Students having degree in letters or science.	
						No. of schools reporting for 1889-90.	Students haring degree.
United States	54	278	68	4518	1424	33	983
North Atlantic Division	9	83	28	1505	314	8	632
South Atlantic Division.	14	57	6	1010	387	4	67
South Central Division.	10	28	$\stackrel{2}{2}$	352	163	7	31
North Central Division.	18	93	32	1535	538	11	205
Western Division .-...	3	12	0	115	22	3	48
North Atlantic Division:							
Massachusetts .-......	2	27	4	445	100	2	253
Connecticut.	1	12	10	111	42	1	50
New York --	5	39	14	773	122	4	286
Pennsylvania --...-	1	5	0	176	50	1	43
South Atlantic Division:							
Maryland	1	7	0	108	${ }_{23}^{31}$		
District of Columbia.	4	31	1	58.2	247		-
Virginia --....	2	4	0	208	69	2	50
West Virginia.	1	2	0	10	0		
North Carolina	1	2	0	35			
South Carolina	$\stackrel{2}{3}$	2	0	28	4	1	$\stackrel{2}{15}$
Georgia	3	9	5	39	34	1	15
South Central Division:		3	0	30	15		
Kentucky-..	4	9	0	138	65	3	16
Alabama.	1	3	0	21	18	1	11
Mississippi	1	3	2	15	10	1	3
Louisiana.	1	5	0	49	24	1	0
Texas.	1	2	0	79	30		
Arkansas	1	3	0	20	1	1	1
North Central Dirision:							
Obio --.	1	6	0	166	91	1	41
Indiana	3	9	4	105	23	2	13
Illinois.	4	18	\bigcirc	193	20		
Michigan	- 1	3	3	405	147	1	56
W isconsin	1	6	5	114	59	1	9
Minnesota	1	17	0	134	41	1	32
Iowa	2	15	5	155	70	2	29
Missouri	2	14	4	147	51	1	21
Nebraska	1	4	3	32	0	1	0
Kansas	2	6	8	84	36	1	4
Western Division:							
Oregon --.	2	8	0		9	2	-998989
California	1	4	0	76	13	1	\%7

TABLE 4. -Summary of statislics of colleges endowed with the national-land grant.

| | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | |

TABLE 5.-Summary of statistics of technological schools not endowed with the notional land grant.

Table 6.-Annual income and the property of colleges endowed with the national land grant of 1862, compiled from several sources, June 30, 1890.

-	Income from-			Property.	
	State.	Funds.	Tuition fees.	Grounds, buildings, and apparatus.	Productive funds.
Alabama.	\$16,556	\$20, 280	\$1,005	\$140,000	\$253, 500
Arkansas	*17,500	*10, 400	*1,000	*300,000	164,589
Connecticut (Yale University)	38, 0	164,589	2,000	Unknown	3, 147, 894
Delaware	0	4,980	8,000	81,000	83, 000
Florida	10, 800	9,000	728	54,000	153,060
Illinois.	46, 046	24,606	27, 833	460, 000	450,000
Indiana	75, 000	170,000	6,000	380, 000	340, 000
Iowa --		42, 000	0	850, 000	648,000
Kansas	8,900	34,546	654	239, 750	500,086
Kentucky	24, 000	9,900	2,500	313, 000	165, 000
Maine.	10, 000	10, 000	3, 500	201, 000	231, 300
Maryland	6,000	6,170	900	90, OCO	115, 000
Massachuset	20,000	39, 957	168,194	1, 114, 824	723,098
Michigan	20,973	46,322	0	450, 000	484, 636
Mississippi	27, 393	10,608	1,021 1,900	241,331 73,000	(b) 212,150
New Hampshire	3,000	7,000	0	90, 000	130,000
New Jersey.		6,960			116, 000
New Mexico	10,000			30,000	
New Yorls (Cornell University)	20,000	265,154 7,500	86,062 160	$2,500,576$ 54,000	$4,854,690$ 125,000
Oregon....	37, 500	10,500	1,000	95, 000	93,985
Pennsylvania	59, 750	31, 020	0	340,000	517,500
South Carolina	10,800	0	15,000	195, 000	
Texas	20,000	14,280	3,000	375,000	209,000
Utah	34, 000		405	55, 000	(b)
Virgini	14, 079	31,154	0	635, 050	375, 000
Total (as far as reported)	537, 797	977, 116	331, 162	9,473,481	14, 094, 428

* For 1888-89.
a Land mostly unsold.
b Reported in colleze table.
c Act of August 30, 1890.
Table 7.-Annual income and the property of colleges not endowed with the national land grant, June 30, 1890.

	Income from-			Property.	
	State.	Funds.	Tuition fees.	Grounds, buildings, and apparatus.	Productive funds.
California.		\$28,000	\$5,000		\$1, 100,000
Colorado --	$\$ 33,000$ 58,000		$\begin{array}{r} 0 \\ 590 \end{array}$	$87,000$	0
District of Colu	58,000	0 0	590 4,000	76,500	0
Georgia .-.	18,000	0		130,000	0
Indiana		24,000	12,500	195, 000	450, 000
Massachusetts	0	35,500	9,980	275, 000	a760, 000
Michigan	b52, 000	0		160, 0150	0
Montana	0	0	1,200	152, 060	0
New Hampshire	0	c3, 900			- 65,000
New Jersey	0	24,000 50,030	30,000		- 400,000
Pennsylvania	0	C120, 000	27,000	1,015, 000	2, $2,000,000$
South Dakota	43,688	0	0	167,000	(d)
Vermunt..	1,500	1, 200	$\begin{array}{r} 500 \\ e 110,894 \end{array}$	$\begin{aligned} & 35,000 \\ & 265,000 \end{aligned}$	20,000
Total	206,188	285, 600	201, 664	3, 038, 500	6,795,000

[^64]TABLE 8.-Summary of statistics of normal schools supported in whole or in part by public funds, for 1889-90.

| | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 9.-Finances and property of public normal schools (many city normal schools not included) for 1889-90.

	Received from-			Value of grounds, buildings, and apparatus.	Productive funds.	Peabody fund distribution (for normal schools, scholarships, and institutes).
	State. county, or city for-		Other sources.			
	Support.	Building.				
Alabama	\$25. 700	\$2, 250	as8, 606	6\$304, 750	80	¢\%, 625
Arizona	6,000 3,000			105,600 40,500		
Arkansas	71,500	12,500	253	299, 250	0	4,000
Connecticut	21,520	25, 00	0	125, 000	0	0
Florida.	8, 000	2,000		9,300	0	0
Georgiat	82,700		- ${ }^{0}$		0	4,335
Illinois	82,704	4,000	c12, 269	379,000	0	0
Indiana	22,050	150, 0	5,572	114, 050	0	0
Kansas.	5, 175	0	225,000	120, 375	270, 000	
Kentucky	4,323	0		30, 300		0
Louisiana	9,600	0	0	(e)	0	6,065
Maine	18, 900	9,800	1,554	84. 000	0	
Massachuse	¢0,7\%	304, 100	re,	$f 602,100$	0	0
Michigan..	42. 875	0	4,200	230, 748	70,000	0
Minnescta	57,500	0	3,300	320, 400	0	0
Mississippi	4,520	510	3,082	-2, 260	0	0
Missouri	35, 000	0	11,648	437, 000	0	0
Nebraska	20,787	13,000	5,000	123, 500	(g) 0	0
New Hampsh	9, 9 200	60, 000		40, 000	0	0
New Jersey	22,546	40, 000	15,020	545,000	0	0
North Caroina	5,017	51, 0	300	2, 4,550	0	4,945
North Dakota	590		10,000	No data.	(h)	0
Ohio.	-4,500	0	1,000		0	0
Oregon	682		6,160	40, 700	0	0
Pennsylvania	2140.000	145, 000	(i)	2.058,7\%2	0	3
Rhode Island --	13,973		${ }^{2}$	41, 500	0	0
South Carolina	1, 050		30		0	6,039
Tennessee...-	10,550	3,000	4,100	194, 250	0	
Texas	32, 500	65,000		140, 000	0	6, 100
Vermont	19,610		1,014	38,489	0	
Virginia	45, 329	3, 800	10,425	749, 501	244,900	6,895
West Virgini	12, 380	6,320		181,800	15,000	5,000
Wisconsin	l50,000	0	11,819	350, 000	1,500,000	0
United Sta	1,312, 419	900, 533	171,843	10, 5 วั2, 744	-, 107, 903	80,729

a One school not answering.
b At least 1 school occupies a rented building, the value of which has not been included. c No answer from 1 school.
d Of this $\$ 16,500$ was interest on endowment.
ϵ No answer.
f Notincluding new builaings in course of erection.
g Twelve thousand acres of land, some of which is sold.
\hbar The $\$ 10,000$ in column 3 is "from bonds of endowment lands," but the answer to the question as to prodictive funds is "none."
i At page 404 of the Bureau's report for $188 \%-88$ the peculiar system of giving free tuition in Pennsylvania normal schools is described. The appropriation directly made by the legislature is $\$ 7,500$ to each school. Some schools include the amount indirectly appropriated by the State with that directly appropriated; others return the indirect appropriation as the amount of the legislative grant and the direct appropriation as a benefaction, etc. The amount given in column 1 is estimated. The aid from other sources can not always be given accurately by the schools, as their system of bookkeeping includes board, etc.
$j \$ 12,000$ of this was for building.
F Includes statistics of 1887-88 for 1 school that has failed to report for two years.
l Each of the 5 schools of Wisconsingets $\$ 10.000$ by appropriation and a pro rata of $\$ 105,000$, the income from the normal-school endowment fund. . This interest has been included, of course, in column 3.

Table 10.-Statistics of private normal schools for 1889-90.

Table 11.-Sumarmary of degrees (as far as reported) conferved by professional schools in the United States at the close of the school year 1859-90. Thie degrces in theology, medicine, and laur, conferred by colleges and universities, Chapter 5, are duplicated in this summary.)

	Letters.		Science.			$\begin{aligned} & \text { Theology, in } \\ & \text { course. } \end{aligned}$	Medicine in course.							
	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \ddot{\sharp} \end{aligned}$		$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { On } \end{aligned}$				$\dot{\dot{~}}$	$\begin{aligned} & \dot{\sim} \\ & \dot{A} \\ & \dot{A} \end{aligned}$	-18	$\stackrel{\square}{\circ}$				
The Cnited States By divisions.	11	4	559	4	1	1,372	4,128	922	655	143	1,366			
North Atlantic..............			298			628	1,253	380	348	89	289			
South Atlantic	1	1	17			114	498	122	69		354			
South Central	1	3	80	2	1	107	826	55	31		163			
North Central	9		154	2		512	1,437	338	185	54	538			
Western.			10			11	114	27	22		22			
By States.														
North Atlantic Division: Maine			42	0		23	16	0	0					
New Hampshire.							$\stackrel{24}{48}$	0	0					
Massachuset			164	0		76	108	44	28	9^{-}	100			
Connecticut						66	10	0	0		42			
New York						166	556	80	122	58	97			
New Jersey			39	0		107	0	0	0	0	0			
Pennsylvania			53			190	491	256	198	22	50			
South Atlantic Dirision:			6	0		11	223	110	43					
District of Columbia.						12	78	12	18		247			
Virginia --....		--	7	0		58	29	0	0		69			
North Carolina.						2	5	0	0					
South Carolina.	1	1	2	0.		20	23	0	8		4			
South Central Division:-			2	0		11	140	0	0		34			
Kentucky.............	1	0	7	0		35	404	12	21		15			
Tennessee						25	310	43			65			
Alabama	0	2	$\stackrel{23}{29}$	0		24		0			18			
Louisiana.						10	93	0	10		24			
Texas....			18	0		13	2	0			30			
North Central Division: ${ }_{\text {Al }}$														
Ohio --.-			8	0		105	375	66	26	4	91			
Indiana		--	14	0		29 198	$\begin{array}{r}57 \\ 357 \\ \hline\end{array}$	26 106	15 43		$\stackrel{23}{23}$			
Michigan			5	0		6	164	42	34	0	147			
Wisconsin .						28			8		59			
Minnesota Iота						29		6	1		41			
Iowna	9	0	32	2		26 88	112 313	43 49	$\stackrel{2}{4}$		50			
North Dakota														
South Dakota			16	0										
Nebraska						9	4		7		0			
Kansas.-.......			20	0							36			
Western Division:														
Oregon.-			4				24				9			
California						11	72	16	18		13			

TABLe 11.-Statistics of schools of medicine jor 1889-90.

					uct-	Stud	nts.	g	\rightarrow			
	Post-office.	Name of school.	Dean.			苋						
	1	2	3	4	5	6	7	8	- 9	10	11	18
1	Portland, Me -	Portland School for Medical Instruction	W. L. Dana, M. D., secre-	12		22		0	. 26	460		
2	Poughkeepsie, N. Y.	Preparatory Medical School*	Walter M. Rew, M. D., medical director.	2	1	22		4	68	100		
3	Mobile, Ala	Medical College of	George A. Keteham, M. D.-	4		115		36	102	75	85	05
4	Little Rock, Ark Los Angeles, Cal	Medical Department, Arkansas Industrial University The College of Medicine of the University of South-	Jas. A. Dibrell, Jr., M. D...-	$\stackrel{18}{23}$		78 28 8	5	17	10 102	63 90	5	250
6	Los Angeles, Cal .-.- San Francisco, Cal	The College of Medicine of the University of Southern California. Cooper Medical College.	J. P. Widney, A. M., M. D.--	19	1	113	14	41	$a 60$	130	5	40
7	do	The Medical Department of the University of Cali-	Robt. A. McLean, m.	21		89	8	15	96	130	5	40
8	Boulder, Colo	fornia. Medical Department of the University of Colorado...	I: M. Giffn, acting dean .-	7	7	$\Sigma 0$	6	4	105		5	0
9	Denver, Colo	Gross Medical College of Denver-	John Chase .-.-.-.-......--	18		33	5	10	84	75	5	10
10	do	Medical Department of the University of Denver	J. C. Davis	21		31	4	4	84	75	5	S0
11	New Haven, Conn	Medical Department of Yale University ---.-.-.--	Herbert E. Smith	16	3	55		10	102	125	5	S0
12	Washington, D.C	The Medical Department of Georgetown University-	G. L. Magruder, M. D	$2{ }^{2}$		86		18	96	80	5	
	do	Medical Department, Howard University	Thomas B. Hood	13			3	27	78	60		
13	do	Medical and Dental Department, National University	H. H. Barker, M. D	24		36	1	13	84	b70	5	30
14	do	Medical Department of the Columbian University ...	A. F. A. King, M. D	23		117	11	20	84	$b 87$	5	
15	Atlanta,	Atlanta Medical College.	H. V. M. Miller, M. D., LL.D.	14		135		50	40	75	5	30
16	.-..-do.	Southern Medical College	W. P. Nicolson.-.-...-.-.-	13		84		33	44	75	5	30
17	do	The Woman's Medical College of Ceorgia	J. W. Stone, M. D	10	2		12	${ }^{c 1}$	48	80	5	29
18	Augusta, Ga	Medical College of Georgia (Medićal Department of the University of Georgia).	Edw. Geddings.	12		124		40	63	\%	5	30
19	Chicago, Ill	Chicago Medical College, The College of Medicine of the Northwestern University.	Nathan Smith Dav	33		237		50	90	75	5	30
20		College oi Physicians and Surgeons of Chicago	A. Reeves Jackson, M. D	50	5	148		57	72	50	5	39 30
21		Rush Medical College, Medical Department of Lake Forest University.	E. L. Homes, A. M., M. D., President.	37	2	519		161	88	$8{ }^{5}$	5	30
22		The Women's Hospital, Medical College of Chicago.-	W. H. Byford, A. M., M. D -	25			110	25	${ }_{78}^{96}$	80	5	30 25
23 24	Fort, Wayne, Ind	The Fort Wayne College of Medicine	Christian B. Stemen				$\stackrel{2}{3}$	7	48	53 61	5	25
	Indianapolis, Ind	Central College of Physicians and Surgeons	Joseph Eastman \qquad	$\stackrel{19}{27}$	$\stackrel{3}{2}$	81	3	30	72			25
26	Des Moines, Iowa	Iowa College of Physicians and Surgeons	Lewis Schooler .-......--	13	3	9	4	7	63	45	5	25
	Iowa City, Iow	Medical Department of the State University of Iow	W. F. Peck	6	7	117	7	$\therefore 4$	75	37	5	5

100000	150			0000020		\therefore	＊	。	
にセきかった			88.8			ミ	8	8	

が

kul		\％．C． Inghes
Lous．${ }^{\text {do }}$	Ken	W
	L	Dr．J．A．Irelind－．
do	Medical Department，Uuiversity of Louis	J．
cw Orleans， L	Onten	Prof．s．E．Chatil
New Orleans（1428 st．Charles ave－ nue）La．	Medical Dopartmont，Now Orleans Universily	Q．W．Hubbard
Brunswick，Me．．．．．．	Medical School of Maine，at Bowdoin Colloge	＇Alfrod Mit
Batimore．Md	The College of Physictans and Surgoons，of Balti－ more	Thomas O
	Medical Department，Batimore Univorsity．	
	The Batimere Medical	
do	Universit．	J．E．Michael，Λ ．M．
－－．－do－－．．．－		
	Collego of Physticins and Surgcons	Albert Nott，M．
Ami Arbor，Mich	Medical Department of the University or	C．L．Fo
Detrolt，Mich	The Detroil Collego of Medicin	T．A．Mcefira
		3．，M．Mulh
Maneapol	Minneapolts Colluge of Physicians and	Perry H．Millar
Columbia，Mo	Medical Department of tho Univorsity of the State	A．W．McAlester，A．M．
Kunsas Clty，Mo	Kansas City Modica	J．D．${ }^{\text {brimm }}$
	The Universtiy Medical Co	Charle
St．Jose	Ensworth Mertical	W．I．Ho
	de Northw	
c． Lomas ，		W．B．Outt
do	St．Lonis	\wedge ，
	St．Lomi	Hen
Omaha， N	Omana Medieal	
Hanover	Darturnth Medical Colles	O．＇T．Frost
Albany，	Modical Deparmment，Union	Willis（E．Tuck
Brookly	Long Island College Hospltal	A．J．C．Skene，
Bufr	Medical Department of Niagarit Universit	A．A．Hubbell，M．D
		M．M．Mat
New York，N．${ }^{\text {I }}$	ne H	
	Conlege of Paysicans and Sutgeons in the City of New York，Columbia College．＊	Henry Deisior，
	Medical Department．Unlversity of the city of New	Chatles 1
York（123	Wo	Emile
racu	College of Nedicine of Syracuse Universit	Henry D．Didama，M．D．，
leigh，N，	Leonard Medical School（Shaw University）	James McKee，m．

EDUCATION REPORT, 1889-90.

TABLE 11.-Statistics of schools of medicine for 1889-90.-Continued.

Table 12.-Statistics of schools of dentistry for 1889-90.

TABLE 13.-Statistics of schools of pharmacy for 1889-90.

				$\underset{0}{\text { Inst }}$	uct- s.	Stud	nts.					
	Post-office.	Name of school.	Dean.			芢	$\begin{aligned} & \text { ® } \\ & \text { ت゙ } \\ & \text { gu } \\ & \text { un } \end{aligned}$		$$			
	1	2	3	4	5	6	7	8	9	10	11	12
1	San Francisco, Cal.-	California College of Pharmacy	W. M. Searby	9	0	56	$\stackrel{2}{2}$	18	52	\$63	\$3	\$10
,	Denver, Colo	College of Pharmacy, University of Denver	Ammi B. Hyde, A. M., D. D.-	$\stackrel{2}{6}$	0	11	0	4				
3	Washington, D. C..-	National College of Pharmacy .------.-....-	H. E. Kalusowski, secretary.	6	0	58	2	18	48	65	3	0
4	..do	Pharmaceutical College of Howard University *-....-	Rev. William Patton, D. D., LL. D., president.	1	0	16	0	13	25	50		
5	Chicago, Ill .	Chicago College of Pharmacy*	George Buck -.-.-...-- --	7	0	334	0	85	40	65	0	0
7		Illinois College of ${ }^{\text {Pharmacy }}$	Oscar Oldberg, P. ${ }^{\text {d }}$	7	0	178	5	43	40	65	0	0
7	Lafayette, Ind......-	Purdue School of Pharmacy	Arthur L. Green	5	0	52	0	15	48	10	5	5
8	Des Moines, Iowa...	Iowa College of Pharmacy	Lewis Schooler.	4.	0	${ }^{6}$	0	2	42	51	4	0
10	Iowa City, Iowa..... Lawrence, Kans	Department of Pharmacy, State University of Iowa--	Emil L. Boerner	11	0	40 39	1 3	0 7	48 80	66 0	5 0	10
11	Louisville, Ky .-......	Louisville College of Pharmacy .-...-...-...........-	Fred. C. Miller, sr., re-	4	0	68	0	18	22	55,85	5	10
12	..do	Louisville School of Pharmacy for Woman	J.P.Barnum	3	0	0	23	3	126	25	5	10
13	New Orleans, La .-.-	Pharmacy course in the Medical Department, Tulane University.	Stanford E. Chaille, M. D.-	3	0	39	2	10	46	60	5	20
14	Baltimore, Md.		John W. Geiger, secretary.	3	0	120	0	43	52	60	5	15
15	Boston, Mass.-.-.-.-	Massachusetts College of Pharmacy	C. C. Williams, secretary,	3	0	258	5	28	68	75	5	10
16	Ann Arbor. Mich.-	The School of Pharmacy of the University of Michigan.	Albert B. Prescott	8	0	82	1	34	\%6,114	25	10	10
17	Minneapolis, Minn.-		J. T. Moore....	6	0	$\stackrel{2}{2}$	1	1	5	40	5	10
18	Kansas City, Mo .---	Kanșas City College of Pharmacy.	E. Lanphear, M. D., PH. D.,	6	0	$3 \tilde{7}$	1	7	50	40	5	20
19	St. Louis, Mo.	St. Louis College of Pharmacy	James M. Good	5	0	144	0	42	48	65	4	10
20	Albany, N. Y	The Albany College of Pharmacy	Alfred B. Hursted, secre-	0	3	53	0	18	44	40-55	3	10
21	Buffalo, N. Y .-.....-	Department of Pharmacy, University of Buffalo.	Willis G. Gregory.	5	0	58	1	12	44	50	3	10
$\stackrel{22}{2}$	Ithaca, N. Y	School of Pharmacy, Cornell University	W. A. Viall, secretary	11	0	5	1	2	68	125	0	5
23	New York (209-213 E. 23d st.), N. Y.	College of Pharmacy of the City of New York........-	Samuel W. Fairchild,	9	0	279	3	90	50	60	0	10
24	Cincinnati (356-360	Cincinnati College of Pharmacy	C. 'T. P. Fenne	6	0	107	1	23	48	60	5	10

y．．	Geo．B．Kaufiman．									
	John W．Maisch	$\begin{array}{r}14 \\ 7 \\ \hline\end{array}$	0	595	7	187	117 44	45－125	5	${ }_{15}$
	${ }^{\text {Fred．W．Eggers }}$	3	0	${ }^{55}$	0	11	40	－53	4	10
Caro－	W．B．Burney，PH．	10	0	26	0	४	80	40	10	5
ty＊．－	L．C．Garland，LL．D．，chan－	0	0	28	0	6	60	25	10	5
Wis－	F．B．Power	4	0	34	1	8	54	0	5	0

Pittsburg College of Pharmacy．．．．
College of Pharmacy of the Univer lina． Departm
＊For 1888
on
ばタミล̊
Table 14．－Statistics of nurse training schools for 1889－90．

						Stud	nts．	8	
	Post－office．	Name of school．	Superintendent．	$\begin{gathered} \text { む゙ } \\ \text { ت్మ } \end{gathered}$		嶌			
	1	2	3	4	5	6	7	8	9
1	San Francisco（3\％00 Cali－	San Francisco Training School for Nurses	Eugenia A．Hurd．．－－．－．．．．．．－．．．－－	0	1	0	36	3	104
2	New Haven，Conn．	Connecticut Training School for Nurses attached to the New Haven Hospital	Mrs．L．W．Quintard．	0	8	0	67	22	78
3				7	0	0	24	6	72
4	Chicago，Ill．－．．．．		Vircinia S．Field．．．．．．．．．．．．．．．．．	0	3	0	100	29	101
5	Indianapolis，Ind	The Indianapolis Flower Mission Training School for Nurses ．	Miss Florence Hutcheson	4	$\stackrel{2}{7}$	0	35	6	108
6	l3oston，Mass	Boston City Hospital＇Iraining School for Nurses ．．－－－－．．－－．－．	Miss Lucy L．Drown．	$\stackrel{22}{2}$	7	0	128	28	100
8		Boston Training School for Nurses	M．B．Brown．．．．．．．．．．	19	3	0	90	2	104
8		New England Hospital Training School for Nurs	I．C．Rose	＊0	＊1	0	12	11	7
10	Somerville，Mass	The McLean Asylum Training School for Nurses	Edward Cowles，M．D	6	6	27	44	28	70
10	Worcester，Mass	Worcester City Hospital Training School	Chas．A．Peabody，M．D	14	1	2		7	100
11	Detroit，Mich	Detroit Emergency Hospital Training School for	Hal C．Wyman	14	0	8	0	2	104
12	－－．－．do	Farrand Training School for Nurses	Mrs．L．E．Guttor	2）	3	0	28	0	80
13	Grand lapids，Mich	Union Benevolent Association Home and Hospital．	Mrs．Lucy J．Chase	$\therefore 2$	3	0	17	0	80
14	Minneapolis，Minn－．．．．．．．	Northwestern Hospital Training School for Nurses	Cora B．Roberts，M．D	0	3	0	23	8	80
15	St．Louis（1224 Dillon st．）， Mo．	St．Louis＇Traiuing School for Nurses ．．．．－．．．．．．－－－－	Emma L．Warr	0	1	0	29	6	100
16	Orange，N．J	Orange Training School for Nurses．		0	2	0	40	16	100
17	Paterson，N．J	Paterson General Hospital and Training School for Nurse	Margaret Orr	1	1	0	12	4	48
18	Brooklyn，N．Y	Brooklyn Training School for Nurses	Miss．Mary A．Camp	11	6	0	34	11	100
19		Long Island College Hospital Training School for Nurse	Miss Ida L．Sutliffe	0	1	0	48	22	104
20	－－．－－－do	Brooklyn Homoopathic Maternity and New YorkState School for Training Nurses．	Miss S．A．Allen．．．－	7	1	7	7	0	52
21	do	Training school for Nurses of Brooklyn Homœopathic Hos－ pital．	Harriet C．Camp	10	2	0	53	10	104
22	Buffalo，N．Y．	General Hospital Training School for Nurses．－－－－－－－－－－－－	Lois M．Masten	8	1	0	27	10	100
23	－．．．do	Trainine School for Nurses of the Buffalo State Hospital	Dr．Judson B．Andrews	4	0	19	2：	18	48
24	New York（Sta．F），N．Y．	New York＇Training School for Nurses（Bellevue Hospital）－－．．－	Agnes S．Brennan．．．．．．	4	3	0	62	27	104
25	New York，N．Y	Charity Hospital．Blackwell＇s Island，Training School for Male and tremale Nurses	Louise Darche．	$a 2$.	2	30	71	33	104
20	．．．．．．－do	Mount Sinai Training School for Nurses	Miss A．L．Alston	5	3	0	80	20	100

Table 15.-Statistics of schools of veterinary medicine for 1889-90.

a This college was totally destroyed by fire December 3,1890 .
TABLE 16.-Statistics of schools of theology for 1889-90.

TABLE 16.—Statistics of schools of theology for 1889-90-Continu ed

44 Danville, Ky Lexington, Ky Louisville, Ky New Orles ave., La. he Sonthern School of Theology, Methodist Epis-
Gilbert Haven School of Theology, Methodist Epis-
copal.
Theological Department of Leland University, Baptist. Congregational.
Bangor Theological Seminary, Congregational
Cobb Divinity School, F'ree Baptist
Redemptorist House of Studies, Roman Catholic... Congregational.
Bangor Theological Seminary, Congregational
Cobb Divinity Schoo, F'ree Baptist
Redemptorist House of Studies, Roman Catholic... Mt. St. Mary's Theological Seminary, Roman CathWestminster Theological Seminary, 'Methodist Protestant.
Andover Theological Seninary. Congregational Andover Theological Seminary, Congregational -.
Boston University School of Theology, Methodist Episcopal Theological School …......................... Divinity School ot Harvard University nonsectaThe New Church Theological School....................... The Newton Theological Institution, Baptist......... School of Theology, Adrian College, Methodist The Theological Department of Hillsdale College, Free Baptist.
Western Theological Sominary of the Reformed (Dutch) Chnrel in A merica.
The Bishop Seabury Divinity Episcopal.
Angsburg Seminary, Lutheran.................................
Geor. Srich, president...
J. H. B. Bergsland. H. H. Bergsland..............
Very Rev.F.V. Nugent,C.m Rev. W. R. Rothwell, D. D.-
Francis Pieper
Rev. Louis Haeberle Kev. Louis Haeberle
H. A. Koch, D. Doede Smith
Alfred L. Riggs, D. D Alfred L. Riggs, D. D...---
1888-89.
The Theological Seminary of the Presbyterian College of the Bible, Chiristian.
 Rev. Eugene Grimm, rec-
tor.
Very Rev. E. P. Allen, D.D. Rev. J. T. Ward, D. D., T.
S. SC. Fgbert C. Smyth..........
W. F. Warren, S. T. D., hL. D. William Lawrence.
C. C. Everett
Rev. F. I'. Wright, secreAlvah Hovey, president .. G. B. NicElroy
George F. Mosher.----------------
N. F'. Steffers, senior pro-
fessor. The Rt. Rev. H. B. Whipple, \mathbf{D}. D., LL. $\mathbf{D .}$
Georgr Sverdrup.
TABLE 16.-Statistics of schools of theology for 1859-90-Continued.

TABLE 16. - Statistics of schools of theology for 1889-90-Continued.

Table 17.-Statistics of schools of law for 1889-90.

Table 17．－Statistics of schools of law for 1899－90－Continued．

				Profe	ssors．						
	Post－offle address．	Name of school．	Dean．								
	1	2	3	4	5	${ }^{6}$	7	8	9	10	11
	Boston，Mass	Boston University Law School	Edmund H．Bennett	19	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	180	52	102	$\$ 100$	0.	10
	Cambridge，Mass	Law School of Harv ${ }^{\text {\％}}$ d University＊	C．C．Langdell，LL．D．，dean	8		405	48 147				
28	Ann Arbor，Mich．	The Law Department of the University of Michigan	Henry Wade Rogus．	${ }^{3}$	3	${ }^{405}$	147 41	72	25 30		10
29	Minneapolis．Minn	The Minnesota Law School．	William S．Pattee	17	${ }_{0}$			30	50		
30	University，Miss ．	Department of Law，University of Mississippi	None	3	$\underset{\sim}{2}$	15	10	30	40	10	
31	Columbia，Mo．．．－－	Law Department of the University of the State of Missouri．	Alexander Martin－－．．．．．－	8	4 0	69 78	26 25	70 66	880	10	0
32	St．Louis，Mo．	St．Louis Law School，Washington University	William Gardner Ham－ mond，LL．D．	8	0	78	25	－60	80 20	5	0
33	Lincoln，Neb	Central Law College．	W．Henry Smith ．－	9		32 43		62， 124	\％ 30	5 0	10
34	Albany，N．Y	Albany Law School（Union University）＊	William L．Learned	${ }_{13}^{9}$	0 1	$\stackrel{43}{26}$			100	0	
35	Buffalo，N．Y	The Buffalo Law School－－－．－．－－－	Douglas Boardman	13	7	106	39	68， 102	125	0	
37	$\begin{aligned} & \text { 1thaca, N. } \\ & \text { New Yorlk (} 41 \text { E. } 49 \mathrm{th} \end{aligned}$ st.) N. Y.	School of Law，Columbia College	Theodore W．Dwight， warden，LL．D．	9	0	456	0	－98	150	5	25
38	New York，N．Y	University of the City of New York，Depa	David R．Jaques，	$\stackrel{2}{2}$	6	142	52	70	100	0	0
39	Chapel Hill．N．C	The University Law School	John Manning，LL．	$\stackrel{2}{4}$				， 80		10	
40	Cincinnati，Ohio ．－	The Law School of the Cincinnati College	Jacob D．Cox	6	0	166		${ }_{60}$	60	0	
41	Portland，Oregon	The School of Law of the University of Orego	Richard H．Thornton，LL．B．	4	0	33 6	9	60 80	60 50	0 0	10
42	Salem，Oregon	Willamette University－－．．．．．．．．．．．．．	Whos．Vanscoy－－．－．－．－．－－－	）	0	176	50	108	100	5	
43	Philadelphia，Pa	Law Department，University of Pennsy	Wm Pepper，M．D．，LL．D．－ Thos．A．Siaxon	5	0	17 10	50	64	35	20	0
44	Columbia，S． C	School of Law of University of South Caro	John D．Pope．A．M	1	0	18		7	40		
46	Lebanon，Tenn	Law School of Cumberland University ．－．	N．Green，chancello	2	0	66	33	40	100	$\stackrel{8}{0}$	
47	Nashville，Tenn	Law Department of the Central Tennessee Colleg	Edgar L．Gregory	3	0	8	－	72	30	0	10
48	－．－．．－do	Law Department of Vanderbilt University	Thomas H．Malone	3	0	50	9	80	100	0	
49	Knoxville，Tenn	Law Department of Universily of Tennessee	Thos．J．Freeman	1	0	14	3	72	100	0	0
50	Austin，Tex	Law Department of the University of Texas	No dean	$\stackrel{3}{7}$	0	79	30 19	72	75	~ 0	
51	Lexington，Va	Law Department of the Washington and Lee University	John Randolph，Tucker－－		0	57 151	19 50	74	75 80	25	15
52	University of Vir－ ginia，Virginia．	Law Department of University of Virginia－－－－－－－－－．．．．．．	J．B．Miner，senior profes－ sor．	$\underset{\sim}{2}$	0	151	50	74	80	25	15
53	Morgantown，W．Va	Law Department of West Virginia University	E．M．Turner，LL．D	$\stackrel{2}{6}$	${ }_{5}^{0}$	114		36 76	20		0
54	Madison，Wis．．．．．．．．	The College of Law of the University of Wisconsin．	Edwin E．Bryant．－．－－－－－－－	6	5	114	59	76	0	100	0

TABLE 18. -Statistics of schools of science endowed with the national land grant, for 1889-90.

TABLE 18.-Statistics of schools of science endowed with the national land grant, for 1889-90-Continued.

cTor buildings.
c This was for building and equipment.
Table 19.-Statislics of schools of science not endowed with the national land grant, for 1889-90.

	Post-office	Name of school.	President.	Preparatory.				Conlege-				Fees.			Income from-		
				$\begin{array}{\|l\|} \text { Instruct- } \\ \text { ors. } \end{array}$		Pupils.		$\overline{\text { Instruct- }}$ors.		Pupils.					State.	$\begin{aligned} & \text { Pro- } \\ & \text { Puc- } \\ & \text { five } \\ & \text { funds. } \end{aligned}$	
				$\stackrel{\leftrightarrow}{\text { ®. }}$			永	范									
	1.	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	
	Ontario, Cal	Chaffey College of Agricure Cogswell Polytechnic College State School of Mines The Corcoran Scientific School Georgia School of Technology Rose Polytechnic Institute.	W. T. Randall Jas. G. Kennedy Regis Chauvenet B. F. Koons J. C. Welling, LL. I) I. S. Hopkins C. A. Waldo, acting presi- dent. Chas. W. Eliot Charles W. Elioti Homer T. Fuller	57000000	$\begin{aligned} & 2 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 23 \\ 113 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\left.\begin{array}{\|c} 46 \\ 13 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 0 \\ 0 \\ 7 \\ 4 \\ 16 \\ 14 \\ 10 \\ 10 \end{array}$	00010000	$\begin{gathered} 0 \\ 0 \\ 54 \\ 41 \\ 107 \\ 108 \\ 158 \end{gathered}$	00000000	$\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 8 \\ \hline 8 \\ \hline\end{array}$	$\left.\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hdashline \\ \hdashline 0 \end{gathered} \right\rvert\,$	$\begin{array}{r} 830 \\ 0 \\ 0 \\ 0 \\ 25 \\ 90 \\ -900 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 833,000 \\ 58,000 \\ 18,000 \\ 18 \end{array}$	$\xrightarrow{88,000}$	
2	San Francisco, Cal..																
3 4 4	Golden, Colo -																
5	Washington, D. C .																
$\stackrel{6}{6}$	Atlanta, Ga--																
7	Terre Haute, Ind...															24,000	
	Cambridge, Mass	Lawrence Scientific School-		0	[$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$	00000	0	29 5 21 21 21	0 0 0 0 0 0	$\begin{array}{r} 65 \\ 3 \\ 168 \\ 49 \\ 71 \end{array}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	0 0 0 0 0 0 0 0 5 0 0 0		$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 0 \end{aligned}$	$\left[\begin{array}{r} 0 \\ 0 \\ 52,000 \\ 0 \end{array}\right.$	9,000	
9	Jamaica Plain, Mass			0													
110	Worcester, Mass	Worcester Polytechnic Institut															
12	St. Louis, Mo...	Polytechnic School of Washington University.	C. M. Woodward, dean Rev. Jas. Reid	-	0	0											
13	Deer Lodge, Mon	Chandler School of Science and the Arts Thayer School of Civil Engineering.		000	000	3700	2900		-	$\begin{aligned} & 12 \\ & 64 \\ & 10 \end{aligned}$	1000				150 60 60 0		0000
	Hanover, N. H		R.C. Bartlett Rev. S. C. Bartiett, D. D. LL. D Henry Morton									0					
15-do																
16	Hoboken, N. J	Stevens Institute of Technology John C. Green School of Science School of Mines of Columbia College			$0^{(a)} 0$							0	0	150		24,000	
17	Princeton, N. J						$\begin{array}{ll}0 \\ 0 & 0 \\ 0\end{array}$	30 39		${ }^{110}$	${ }_{0}^{0}$	5					
18	New York, N. Y		Henry Drisler, LL. D., acting president.J. Hudson Peck, A. м.,LL. D. Cady Staley	0	0	0	0	39									
Troy, N. Y														200			
								${ }^{11}$					0	100	0	5,000	
								67	0	443	36		2				
								3	174	43		0		26, 888			
								0	48	0		10	45	1,500			
								0							1,200		
									18	0	3	5	140	2,0c9			

TABLE 20.-Statistics of public normal schools for 1889-90.

	Post-omice address.	Name of school.	Principal or superintendent.		Students.						
					Normal, i.e., professional.		Other, i.e., nonprofessional.				
							帯				
	1	9	\$	4	5	6	y	3	D	11	11
1	Birmingham, Ala	Birmingham Normal Training School	Mrs. Mary W. Rode (for 1890-91, Mrs. E. N. Allen).	1	0	12	0	0	36	0	9
2	Florence, Ala	State Normal College	James K. Powers .-.	8					36-144		20
	Huntsville, Ala	State Normal and Industrial School	W. C. Councill.	5	40		60	99	-114	${ }_{8}^{0}$	13
4	Jacksonville, Ala -	State Normal School .-................	C. B. Gibson.--	$\stackrel{4}{9}$	17	28 43	60	75	120 144	\$5	7
6	Lrivingston, Ala	Alabama Normal College for Girls	J. W. A. Wright	9	- 6	43 88	${ }_{6}^{0}$	80	r 144	5	17
7	Tuskegee, Ala	Tusisegee Normal and Industrial Institute	B. I. Washington	15	127	101	128	91	15-156	0	16
8	Tempe, Ariz	Arizona Territorial Normal School .-......	Robert L. Long	1	12	18	2	1	80	0	2
9	Pine Bluff, Ark.	Branch Normal College of Arkansas Industrial University.	J. C. Corbin	4	100	76	0	0	80	0	
10	Chico, Cal		Edw. T. Pierce	6	93	19	0	0	120	0	0
11	Los Angeles, Cal	California State Normal School	Ira More	13	48	240	93	107	120	0	50
12	San Jose, Cal	State Normal School	Charles W. Childs	26	50	500	80	190	120	0	157
13	New Britain, Conn.	State Normal and Training School	Clarence F. Carroll	19	2	370	0	0	80	0	77
14	New Haven, Conn..	Welch Training School.-...........-	M. Virginia Fogle	,	0	35	0	0	40	0	30
15	Washington, D.C.-.	Miner's Normal	Miss Lucy E. Moten	5	6	34	0	0	40	0	$\left(a^{40}\right.$
16	De Funiak Springs, Fla.	State Normal School	H. N. Felkel	4	2	2	0	0	72	0	(a)
17	Tallahassee, Fla	Florida State Normal School for Colored Teachers .	T. De S. Tucker.	3	7	3	29	36	72	0	0
18	Fairburn, Ga--	Fairburn High School *	Robert L. Paine		75	40	50	65		10	
19	Carbondale, Ill	Southern Illinois Normal University	Robert Allyn--....	15	231	$\begin{array}{r} 183 \\ +130 \end{array}$	175	147	$\begin{array}{r} 117-156 \\ 40 \end{array}$	0	${ }_{8}^{11}$
20	Englewood, 111	Cook County Normal School.	Francis W. Parker		*3	*130	0	${ }_{205}^{0}$	40 117	\%	8% 36
22	Covington, Ind.	Indiana Normal College	W. R. Hunuphrey		$\stackrel{2}{2}$	11	$\stackrel{2}{2}$	24	96	33	
23	Indianapolis, Ind	Indianapolis Normal School	M. E. Nicholson	9	0	27	0	0	57	0	27
24	Terre Haute, Ind....	Indiana State Normal School	William W. Parsons	£	316	507	0	0	39-156	0	41
25	Cedar Falls, Iowa..	Iowa State No mal School.	Homer A. Seerley.	12	217	440	0	0	72-144	0	61
26	Sioux City, Iowa.	Sioux City Training School for Teachers*	Mrs. Eva D. Kelloge								
27	Storm Lake, Iowa	Storm Lake Normal and Business School*	L. Greenwood and C. Whiting -	3	22	30	5	5	120	32	
28	Wood bine, Iowa .-.	Woodbine Normal School	W. O. Riddell, C. C. Matter, H. A Kinney	3		150	110				
29	Epmoria, Kan.	Kansas State Normal School		15	362	546	80	132	120-160	0	53

 | 00 | 0000 | 00000000000000000 p 002 R 000000000000000000 |
| :--- | :--- | :--- | :--- |

П1

 Hiram Roberts....Thomas D. Boyd Mary Stampss.......
A. R. Richardson.
George C. Purington W. J. Corthell-...
 Aibert G. Boyden. g
0
0 d
 Miss E. M. Reed-aigh

 Thomas J. Gray-
Miss J. L. Terry

L.H. White -...-.
Janes M, Green-
William. J.Milne
Euretta Crannell

 Thomas Hunter James M. Milne
\qquad
 State Normal Teachers Training School.

Waithall Normal School-.........ira District Missouri State Normal School, Third District St. Louis Normal School....-.
State Normal Scliool, Second District State Normal Schiool,
State Normal
School....................... Training Schol for Teachers
State Normal School

Newark City Public Normal and Training School
Normal Training Class. Ntate Normal School Training Ciass Training School lor Teachers......
State Normal School
State Normal and Training School State Normal School

Normal College - Tate Normal and Thing Schooi
TABLE 20．－Statistics of public normal schools for 1889－90－Continued．

－66－6881＇as．mnoo trau 			d	
 			$\stackrel{\text { ® }}{=}$	
－SYəәม แ！as．nnoo โセuoṭssojoxd Im，H			－	
			∞	
		－อโセJT	¢	
		－әт吅边	옹	あれかの一円
		＇əセエ	18	000% 品
－ －s．tnoo terotssejoxd 			स	
			\％	$\text { (} 1 \text { 手 }$
			¢2	
Post-office address.			\cdots	

113	Knoxville, Ten
	Morristown
15	Nashrille, ${ }^{\text {T }}$
$\begin{aligned} & 116 \\ & 1117 \end{aligned}$	Hemistea
	Huntsv
	Joh
19	F2
	Farmvile
122	Petersbiurg, V
123	Williamsburg, V
124	Fairmont, w.
	Glenvill
126	Harpers Ferry, W.
	Huntington, W.
8	Shepherdst
	WestLib
	Milwaukee,
	Oshkosh, Wi
	Platteville
135	White Water, W is

Table 21．—Statistics of Private Normal Schools for 1889－90．

06－688I＇əs．tnoo โหи．			비＝	
			θ	留유쇼
＇sңәәм 			\bigcirc	
		әг¢итө木	0	0000 m 人
		－əreIt	\＄0	$000 \text { 年 }$
		－твиәя	－	
		－近依	13	
－әs．xnoo โruoțs －səjoxđ əपұ แ！s．xołְon．xisuI			\cdots	
Principal or superintendent．			\bigcirc	
		－	$6)$	
			\cdots	

Table 22．－Statistics of Private Manual Training Schools（see also Public Manual Training Schools，under City Schools Systems，Part III）for

					Ins	ruct			upils		ఠ			Expen	atures．
	Post－office．	Name of school．	Director．	Year of opening	号	氷	$\begin{aligned} & \text { oi } \\ & 0 \\ & \text { 贷 } \\ & \text { 范 } \\ & 0 \\ & B \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { ذ } \\ & \text { ت゙ } \\ & \text { Ïn } \end{aligned}$					Receipts．		
	1	9	3	4	5	6	g	8	（2）	11.	11	12	13	142	15
1	Denver，Colo	Haish Manual Training School of Denver University．	E．L．Brother ．－．．．．－．．．．．．－	1885	5	4	2	35	10	45	3	160	82， 200	\＄0	\＄8， 143
2	Chicago，Ill．	ChicagoManualTraining School	II．H．Belfield，A．M．，PH．D＿	1884	12	1	7	278	，	$27 \% 8$	48	120	23， 703	637	23，066
3	New Orleans，La ．．．	Manual Training Department of＇I＇ulane University．	John M．Ordway－－－－．．．．－－	1884	0	0	7	191	0	191		160			
4	McDonogh，Md．．．．－	McDonogh School．．．．．－．．．．．．．．－	Duncan C．Lyle	1873	5	0	2	109	0	40	19		40，110	7，000	14，900
5	Minneapolis，Minn．	School of Practical Mechanics and School of Wood Carving and Design．	William A．Pike	1883	7	0	5	85	25	110	0	76			
6	St．Louis，Mo．．．．．．－	Manual Training School of Washington University．	C．M．Woodward	1880	12	2	6	252	0	252	46	114	20，000	0	20，000
7	Brooklyn，N．Y．．．．．	PrattInstitute（＇Technical High School Department）	William O．Pratt．	1887	18	6	16	64	10	74	9	111	2，4\％0		
8	New York，N．Y	Hebrew Technical Institute	I．M．Laipziger，PF． D ．－．		8	1	${ }_{5}^{6}$	120	0	120	16	138		0	
9	Cincinnati，Ohio．．．．	The T＇echnical School of Cincin－ nati．	James B．Sitanwood．．．．．．．．	1886	8	1	5	113	6	116	9	120	21，687	1，297	$15,863$
10	Pbiládelphia，Pa．．．	Manual Training Department of Girard College．	T．M．Mitchell ．．－．－－－－－－－．－	1882	8	0	8	550	0	550	19	180	22，133	10，861	
		Total			83	15	64	， 788	51	1，776	169		148，835	19，795	96， 405

CHAPTER XII.

METHODS EMPLOYED IN THE REFORMATION OF JUVENILE OFFENDERS. ${ }^{1}$

In all actire measures for the reformation of the disreputable portion of society there is noticeable an element which, for want of a better term, may be called faith in human nature. Yet it is not mere faith in human nature that is to be sg much noticed as the faith in the power of reason to sway and of habit to mould a human being into the course of conduct that society finds necessary for its preservation and approves. It is quite natural that in a Christian community this belief in the permanent possibility of redemption of the vicious should find its strongestsupport. It is not improbable that the very origin of the belief was due to Christianity. The stages of the growth of the effort to prevent crime seem to be these: To prevent the orphan or the child abandoned by its parents from coming in contact with vice: then to reform those contaminated by such contact; and finally the reformation of grown criminals.
At first the efforts made in this direction were a matter of charity, though conducted under church, or at least clerical auspices. But finally the State, solicited to lend pecuniary aid, has assumed or is assuming complete or partial charge of the work. In the early efforts of the church, enthusiasm supplied the place of method which was gradually developed as experience showed the way. State control was particularly favorable to this development of the art, so to speak, of reformation, as the expense of giving form to new ideas is more readily borne, generally speaking, by the public purse than by the purses of many charitably disposed persons.
But with the growth of the conception of the interdependence of the physiological and psychological phenomenain man as shown by the removal or mutilation of the sense organs of other animals, an attempt has been made to ascertain the laws which govern criminality. To scientists, therefore, the reformatory is a laboratory of investigations; to the public, on the other hand, it is a place for obtaining certain results. In this chapter we are wholly concerned with the latter view.
From a practical, that is to say, administrative, standpoint the key to the conundrum "What shall be done with these children that they may be saved" seems to be in providing them with a good home, which is universally allowed to be the best possible place of discipline for them. To this end two methods have been employed, one old and requiring the serrices of an agent to visit the boys at the farmsteads where they have been received, the other, of comparatively recent origin, which consists in furnishing a similitude of a home to a few boys selected from a moral point of view for their fitness to consort with one another.

夏。

The first of several general questions asked on the form of inquiry annually sent out by this Bureau was conceived in the following terms:

[^65]${ }^{1}$ Prepared by Mr. Wellford Addis of the Bureau, specialist in professional education.

To these questions the superintendents of the several institutions have replied as follows:
Superintendent Hatch, of Colorado: (a) No data. (b) No changes.
Superintendent Howe, of Connecticut: (a) The cottage stystem admits of any desirable classification. The natural classification is not by age. The natural family is composed of children of all ages. One o: two boys or girls ("deeply tainted with vice and crime") can safely be placed in a family of good boys or girls and thereby be cured by the contact. Nothing is soefficacious in converting the wayward as to make them feel that they are a part of good society. (b) The cottage system has been adopted and carried into effect in Connecticutwithin the last twelve years.
Superintendent Haines, of Delaware: (a) I consider it very desirable to separate those more deeply tainted with crime from the other inmates and think that the cottage system answers the purpose to a certain degree. (b) No change.

Superintendent Shallenberger, of the District of Columbia: Ours is the cottage or family system and consists of three separate divisions. The separation consists in a division of the older from the younger boys. In each family there are two school grades. Out of school session the family is a unit for both work and play. Each family has two dormitories, one for the older and one for the younger boys. Classification other than this, in my judgment, is notimportant enough to justify the additional expense attending further or special separation. (b) Several years since another, the third, family was organized and placed in our new building. This made it possible to secure a separtion of our older from the younger boys-as indicated under (a) above. This has been a decided improvement, although our families are still too large. With another building we could make the association in each still more satisfactory.
Superintendent J. D. Scouller, of Illinois: (a) We have both the cottage and the congregate system. There should be no mixing of good and bad, vicious and virtuous in an institution when you can draw the line from personal knowledge. The cottage system is perhaps the best for the separation of pupils by age and character. There should be a central cottage or building where all pupils newly committed (or a large per cent of them) should be on probation before being classified according to the commitment, as information given by interested parties generally furnishes a reliable clue to the true character of the boy committed.
(b) We have added one family building or cottage.

Superintendent Mary Lyons, of Illinois: There is no doubt that the cottage system has many advantages over any other, but for rarious reasons we have not been able to adopt it.

Superintendent Sarah F. Keeley: I think that the cottage system is the better. However, we have not introduced this system, but classify our children by age, keeping the younger ones separate from the older.
Superintendent T. J. Charlton, of Indiana: (a) I do consider the cottage system entirely adequate to secure the separation of the more "deeply tainted" from those inmates who are less vicious. I do not consider the classification by age as nearly so good as the method in use here of classifying them upon the basis of character. We have four families of large boys. Two of these families are all criminals; the other two, however, are boys of a much higher moral grade.
(b) None, except that we are more particular to classify boys as to character.

Superintendent C. C. Cory, of Iowa: (a) We have two families; one in general dormitories in one building, one in single dormitories in another building, and much favor the latter. We have no girls that are what would be termed extremely " vicious," and have as yet no necessity for segregation. Only for brief periods is anyone subject to unusual restraint. The more intractable are more benefited by associating with the good than the latter are injured by the contact, contamination being prevented simply by family orersight.
(b) None. Next year we expect to erect another family building with single dormitories, making three families.
Superintendent Buck, of Kansas: (a) If properly classified the cottage is preferable.
(b) Formed a family of smali boys.

Mother Matron of St. Scholastica, Newport, Ky.: According to our rule it is absolutely necessary to have these classes separate; butas we have as yet received none of the vicious class there has been no need of segregation.

Superintendent Farrington, of Maine: (a) I think the cottage system partially answers the purpose mentioned above. I do not believe that the segregation of the more vicious amounts to very much the same thing as the classification of all the pupils by age.
(b) No change in the general system of classification. Our first cottage is nearly completed and will soon be ready for occupancy.
Brother Dominic, Carroll Slation, Md. : (a) We have not tried the cottage system yet and hence can not say much for or against it. But from my experience it is of vital importance in the reformation of those children who are not so deeply tainted to separate them from those more vicious; and in this case the cottage system is preferable, and certainly preferable to classification by age.
(b) None. We have always endeavored to keep the younger boysseparated as much as is practicable from the older. This we do in the dormitories, in the playgrounds, and to a great extent in the shops and class rooms.

Superintendent Mrs. Brackett, of Massachusetts: (a) We have the cottage system, and believe that all inmates should be classified according to the past record of the inmate and not according to age. I do not think the segregaiion of the more vicious amounts to the same thing as classification by age. Some of our younger pupils are more ricious than some of the older ones.
(b) No data.

Superintendent Risk, of Massachusetts: I think the cottage system is the best as far as my experience goes, and it is upon this system that our school is conducted.

Superintendent Eldridge, of Massachusetts: (a) Think favorably of the cottage system and more of separation on the kasis of character than classification by age. Think truant schools should not be maintained in alms houses.
(b) None.

Superintendent Johnson, of Massachusetts: (a) The cottage system answers the purpose better than any other system. The segregation of the more vicious answers a much better classification than can be done by age.
(b) No changes, as we have had but one family of 30 boys.

Superintendent Chapin, of Massachusetts : (a) There should be. I think, more care in the separation of the two classes named; but in general classification by age and by school attainment serves the purpose with the cottage system to help.
(b) In 1885 the school was remodelled on the cottage plan. It started with an administration building, where the superintendent and the most unmanageable boys were to be located, and three cottages to accommodate 30 boys each. Two years ago the large building was remodelled for two groups and at present the school consists of six cottages as nearly independent as it is possible to make them and have them supervised by one superintendent. The main mode of arriving at a classification is to grade them according to proficiency in knowledge. Superintendent Margaret Scott, of Michigan: (a) I think it does.
(b) This institution was organized under the cottage system and no change seems desirable.
Superintendent Gower, of Michigan: We have the cottage system.
Superintendent Brown, of Minnesota: (a) I believe that division of the children into families of 40 to 50 each, according to age, answers all purposes and with proper supervision the danger of contamination by the more vicious will be reduced to the minimum.
(b) Have always been working on the cottage plan, but when we occupy our new buildings the classification will be more perfect, as the families will not be so large.
Superintendent Shaffer, of Missour1: (a) Separation is good, say into three classes: (1) Those entirely good, (2) the large vicious, (3) the small vicious; the latter divisions being, of course, by age.
(b) Separation into two classes, to wit, good and bad, on the congregate system.

Superintendent Otterson, of New Jersey: Classification by age is not the proper way to classify. Classification should be made according to the moral condition of the inmates; that is to say, the separation of the more vicious from the less, irrespective of age. The cottage or family plan presents an opportunity to accomplish this as no other plan can.
(b) Our institution was founded on the cottage system in 1865. Of late years a more rigid separation has been tried.
Superintendent Mrs. McFadden, of New Jersey: (a) I do think it answers the purpose in a great measure. I think the classification should be made with regard to crimes committed rather than age, as many young in age are old in vice.
(b) None: as our school only numbers about one family.

Superintendent Corrigan (Brooklyn Truant Home), of New York: For our institution, no. The boys confined in this institution are not vicious, only mischievious, and I consider that the dormitory system is the best.

Superintendent Carpenter, of New York: (a) I consider it highly desirable to separate those more deeply tainted with vice and crime from the other inmates of the institution. The segregation of the more vicious amounts to very much the same thing as a classitication of all the inmates by age.
(b) The school has been classified as follows: (1) Senior department, oldest boys and two other subdivisions, according to age. (2) Primary department, boys from 7 to 10 . (3) Girls' department. Each department is complete in itself and is entirely separated from the other departments.
Superintendent Jones, of New York: (a) There appears to be no appreciable difference in the results of the two systems.
(b) None.

Superintendent Brother Leontine, New York Catholic Protectory: (a) I admit that the cottage system-that is, separating the really vicious from the otherscertainly has good moral results, but without strict supervision on the part of the prefect or master the cottage system is a failure.
(b) None.

Superintendent Crawford, of Ohio: (a) The cottage system does fairly well. The segregation of the more vicious is much the same as classification by age. (b) None.

Superintendent Hite, of Ohio: (a) Yes; the cottage esystem is the only system that is in any sense reformatory, and its plans of separating the smaller inmates particularly from the larger ones is specially beneficial to both small and large pupils. We do not think the separation of the more vicious from the same ages of the vicious is beneficial to the vicious; but, on the other hand, have experienced that the contact of this vicious class with a better class, who are in the ascendency as to number, is helpful to the vicious and but very little harmful to the better class, if harmful at all.
(b) In 1878 all the smaller boys were classed by themselves and completely isolated from the larger boys. There has been much improvement in the housekeeping at the cottages during the decade.

Superintendent Laverty, of Pennsylvania: (a) We regard the cottage system as manifestly to the adrantage of the pupils by separating and classifying them according to age and moral condition, with a more critical supervision and more intimate influence exerted by their care-takers.
(b) None. A new institution is now being erected at Glen Mills, Delaware County, Pa., for the transfer of the departments of boys, to be reëstablished on the most approved methods of the cottage or family system.

Superintendent F. H. Nibecker, of Rhode Island: (a) I consider the family system, when fully carried out-aach family having its own dining room, play grounds, and school, the pupils of the different families coming in contact with one another only during hours of actual labor and when they are under constant supervision and instruction-as of vital importance to reform school work. In a small school classification by age is the nearest to moral grading pessible. In a schcol of sufficient size to allow more than one family of same age a closer and truer moral gradation may be had.
(b) During the decade this school has been changed from a refuge or close school to a family school with congregate dining room and families, not classified by age. Within the last four years the school has been closely graded into four families. those of like age being in same family, etc., as noted above.

Superintendent Ainsworth, of South Dakota: (c.) As a rule the cottage system will do the work, provided the cottages are under the charge of suitable persons. Our boys, good and bad, are kept together; but there are always one or more persons with them of good character.
(b) When more buildings are needed cottages will be erected with a capacity of from 30 to 35 children and the proper number of attendants, etc.
Superintendent McCulloch, of Texas: Ithink that the cottage system answers the purpose.

Superintendent Andrews, of Vermont: (a) I think the cottage system is better than the congregate.
(b) None.

Superintendent Sarah E. Pierce, of Wisconsin: Yes. Hare adopted the cottagesystem, classified older pupils according to morals; younger pupils according to age and sex, the boys being under 10 and composing one familv.

Superintendent Sleep, of Wisconsin: (a) We have what is termed the cottage system. but do not classify with respect to vice and crime to any extent. We class with some respect to age and size. I am of the opinion that a classification with respect to vice and crime properly done would work for good.
(b) None.

II.

Without discussing the case in which a reformatory is a mere temporary place of detention until the boy can be properly located in a home, it is interesting to inquire what efiorts are made for his future welfare when the time has come for his being dismissed from an institution or otherwise discharged. Invariably places are secured for the boys by the school authorities. Sometimes these are in the country, at others in the city. One institution of the East has an agency in Illinois to care for the boys. The usual mode of obtaining information as to the manner in which the student is deporting himself is by periodical reports in writing, but in several States a more rigorous and reliable method is employed. Thus the Lyman School for Boys at Westboro, Mass., reports that in 1889 a special agent was appointed whose sole. business is to visit the "probationers," to encourage them, right their wrongs, adjust their disputes with employers, find more suitable homes if they are not doing well, and in general make them feel a sense of continued rejronsibility to the State to do well. The result of erery visit is reported to the central bureau and to the superintendent of the school. At another reformatory institution, the State Primary Scheol of Massachusetts, the boys are frequently visited by agents in the employ of the State. For the care of the girls placed out in families from the Massachusets school for girls, ninety ladies ase employed by the State board. In New Jersey a regularly employed "visiting agent" visits the boys three or four times a year, with power to recall to the school any who are relapsing. In the Now York Juvenile Asylum there is a visiting agent for such pupils as are returned to friends, and the school has ever exercised as close a supervision as mems would allow. The House of Refuge at Philadelphia has a competent officer visit the paroled pupils every six months.
At the New York Catholic Protectory the visitation is annual, but the organization of the church carries aid in this business of supervision. The pastor of the parish in which the boy resides is corresponded with and presumably is interested in the welfare of the boy. In Ohio, on the other hand, the State organization becomes the o"gan of supervision, for the judges of the courts are required to appoint supervisory committees in every county, who are to ove see the boys that are sent from the school. In Kansas the county superintendent of public instruction is the visiting agent.

III.

Two other questions of considerable importance remain. These are so connected that they may be discussed together. They relate to the time the papil may be detained in the school and the trade taught him while so detained. The following discussion is based on the replies to these questions:

Assuming for convenience that certain disadrantages of the contract system tend to reutralize its undoubted adrantages as a substitute for the manual work easential to teaching. habits of industry and a trade, what effort, if any. have your trus ${ }^{+}$ees made during the decade 1880-90 to supplant the substitute by real technological instruction, and do you think such purely technical instruction feasible ir view of its nonremunerative character?
Assuming further that the instruction of the delinquent at the institution is of no avail unless he is under its instruction for a sufficient time, what change, if any. in the way of lengthening the time the pupil is consigned to your care has been inagurated by the courts or instituted by law?
Superintendent Hatch, of Colorado: No effort made by trustees. Theopetically, I believe purely technical instruction feasible. Have had no experience. Possible term of detention has been shortened from minority to three years. Bad change.

Superintendent Howe, of Connecticut: In my opinion it is not practical to give technological instruction to an entire institution. A few of the older boys may be so taught, but it is necessarily expensive. We have not introluced technological training, but hope to soon to a limited extent. We teach habits of industry, but oure industry is remunerative, which is always an incentive to labor. The law of definite sentences has been changed to indefinite or during minority. A boy can grade out of the institution by uniform good conduct in twelve months ; but he goes on probation and may be returned to the institution at any time his conduct may not be good.

Superintendent Haines, of Delaware: We have no technological instruction in this institution as yet. I do think such instruction very valuable, and ought to be in every institution of this kind, without regard to its remunerative character.

Superintendent Shallenberger, of the District of Columbia: We have never contracted the labor of our boys, much preferring piecework at a fixed rate. This gives the school authorities entire control of both the work and the discipliné. The trustees have repeatedly urged the propriety of establishing workshops under skilled foremen in order to teach useful trades and thus fit the boys to take their places when discharged as first-class mechanics. Every reformatory institution or industrial school should be provided with means to such an end, whether remunerative or not. Our boys are all committed during minority, unless sooner discharged by the board of trustees; hence they could regulate the time required for any boy to remain at his trade. No boy should be forced to learn any special trade, and there would be no necessity for so forcing him, as a large number are always anxious to acquire some handicrafts and would undergo any ordinary discipline to secure the means of becoming first-class mechanics.
Superintendent Scouller, of Illinois: The contract system is supplanted here by State-account plan. Have made no effort until recently to introduce technological instruction. It may not be feasible with State legislatures, in view of its nonrenumerative character, but we believe that it is a move in the right direction, though it must be borne in mind that such training will never make a mechanic ; it can only develop a taste for some industry. Sentences are fixed by law.

Superintendent Sarah F. Keely, of Indiana: Our manual labor is simply to teach the girls the common industries of life, thus fitting them for lives of usefulness. We do not aim to make money, but work for the reformatory power there is in work. Under our old law girls were committed until 18 , while under the new law of 1888 they are committed until 21.
Superintendent Charlton, of Indiana: Our trustees ten years ago abandoned the idea of making money out of the labor of the boys. They are now working to instruct boys and not to make them a source of revenue. I most certainly regard technical instruction as feasible. We have detained boys on an average about twenty months. I think that two years would be better.
Superintendent Cory, of Iowa: As yet we have no productive industry. Only domestic economy and common school work receives attention in the instruction of the girls.
Superintendent Buck, of Kansas: We have never had the contract system. All are committed during minority.
Superintendent Farrington, of Maine: I think such technical instruction is feasible, notwithstanding its nonremunerative character. We have established a mechanical school, where the elements of carpentry are taught. Boys are sentenced during minority, and trustees may discharge boys whenever they believe them to be reformed.

Brother Dominic, Carroll Station, Md.: Though we have eight or nine indusries or trades-printing, shoemaking, tailoring, floriculture-we find that our boys do not and can not remain long enough in the institution to teach them the trades thoroughly. One advantage, howerer, is that they learn habits of industry and how to work. I think, so far as remuneration in shops in reformatory institutions is concerned, it is a failure. Nothing of the kind ever undertaken by us has paid. The board, or rather the committee having the matter of supervision of the shops, have established this rule within the last year, that any boy entering a shop for the purpose of learning a trade must remain there four years. This supposes him to enter at 13 and upwards.
Superintendent Johnson, of Massachusetts: No effort has been made except to give instruction in carpentry. I think boys should be placed out to get special instruction and should not remain in an institution more than two years. Truant boys are now committed for two years instead of one year as formerly.
Superintendent Chapin, of Massachusetts: Last year the Swedish system (Sloyd) was introduced, and during the last year all pupils have been instructed in it. Growing boys can not be used to carry on a profitable contract system without defeating the ends for which a reform school is established. Boys are sent here during their minority. Formerly the practice was to release boys after fifteen months' stay on good behavior, i.e., as long as good conduct continued. This time has been found insufficient, and the shortest period will probably be hereafter two years.
Superintendent Margaret Scott, of Michigan : We have no contract labor that interferes or retards in any way the plan of the institution, which is to teach every girl domestic work, including sewing, and the half-day's training in day school. No change in the way of lengthening the time the pupil is consigned to the school is required.

Superintendent Brown, of Minnesota: Have always managed our manuiacturing on the State-account plan and with special reference to the benefit of the children. I believe purcly technical instruction to be feasible. We have not been able to lengthen the time, because of limited accommodations, but believe the time of detention should be increased when accommodations will permit.
Superintendent Shaffer, of Missouri: No change during the last ten years. Teaching habits of industry simply is not of so much importance as teaching them a trade by which they can earn their living after leaving institutions.
Superintendent Otterson, of New Jersey: A printing office has been established, where 8 to 12 boys are taught all parts of the work. We issue a paper to enable them to have regular work. We also printed our last annual report and do all our job printing. Boys are taught in all trades that can be made useful to the institution, though none are purely technological. To be of value there should always be a purpose. All boys committed were committed during minority, but by good conduct could earn their release in 14 months. The trustees hare just had an act passed which requires that all boys should remain not less than three years. This to the end that we may do more trade-teaching as well as school work.

Superintendent Mrs. McFadden, of New Jersey: Shirt work was carried on to some extent, but we give our girls instruction in all branches of housework. They are also adrantageously employed on the farm in weeding, harvesting, etc. The time of maximum detention has been changed from 18 years of age to 21 .
Director Round, of New York: We pay each boy 1 cent each day, providing he earns his 3 mills for education work, 3 mills for morals, 2 for deportment, 1 for care of person, and 1 for care of clothing. His failure to earn 70 per cent of his mills for any month puts him diown one month. He is compelled to go through three grades of six months each before being released. The boy really controls the time that he remains at the institution after eighteen months.
Superintendent Carpenter, of New York: Our older children make all the shoes and clothing of the inmates and do all house and farm work. Nothing is sold. Much like a boarding school, where the children work for their board and clothing and go to school. Thirty years' experience has taught us that children should seldom be discharged in less than one year or be retained longer than about two years; bence children are retained here from one to two years.
Superintendent Jones, of New York: They have established all the industries on State account. The object of labor in the institution is regarded for its disciplinary power rather than for profit in money values. No chance in length of commitment. All commitments are during minority, though at the discretion of the managers the pupil may be discharged before he has reached his majority.
Brother Leontine, of New York: We have no contract system here. We manufacture the material for the employés, and are the sole masters of the labor of our inmates, which labor is more for the benefit accruing to them than for the gain to the institution. Rather than deprive a girl or boy of learning a trade or business that will be of use to him after leaving the institution, we make it a rule to retain such inmates at our own cost. In addition, we pay or put by for them a sum each month, so that on leaving they will have something to rely on for support. Within the last five years many have had as much as $\$ 50, \$ 75$, or $\$ 100$ to their credit on leaving.
Superintendent Hite, of Ohio: Since 1884 a polytechnic building has been erected and has shown that it would be better to discontinue such industries as brush-making, knitting by machinery, cane-seating cbairs, etc., and adopt manual training instead, even in view of its unproductireness. There has been no law compelling an inmate to remain a definite length of time. The rule adopted at this institution is that no inmate will be sent home under one year from the fime he enters. All the courts commit during minority or until reformed.
Superintendent Laverty, of Pennsylvania: Technological instruction has not been adopted to any extent. When we have reëstablished ourselves at the new location in Delaware County rudimentary instruction in standard trades will be introduced. We believe a more lengthened period of detention is important. The managers have been unable to adopt it, owing to the overcrowded condition of the boys' departments.
Superintendent Nibecker, of Rhode Island: In 1885 printing was introduced and has been successfully prosecuted. Many competent printers have been turned out, who have always found good places. In May, $1890, \$ 25,000$ was appropriated for the introduction of other trades in the school. Technological instruction is feasible. It is improper to consider that children should be made a source of revenue.

Superintendent C. W. Ainsworth, of South Dakota: The contract system is a political move more than anything else. Our time is mostly spent on the farm and in the garden, aside from the three and one-half hours aday in the schoolroom. We have a small printing office, in which are nine boys. Boys take care of stock and assist in the household duties, etc. No child should be released until the rudiments of a good education have been obtained and a knowledge of some kind of industry that will enable him to obtain an hnest livelihood.
Superintendent McCulloch, of Texas: Only have the farm.
Surerintendent Andrews, of Vermont: Yes; I do consider purely technical instruction feasible.

Superintendent Sleep, of Wisconsin : I think that we never have had the contract system. Ten years ago this winter the law changed the system of releasing from 21 to 18 years of age, but after 6 years it was restored to 21 years. Supervisors have authority to remove at any time.

Table 1.-Summary of statistics of reform schools for 18s9-90.

Dirision and State.			Pupils.							Expenditures.	
			Sex.			Race.		During year.			
			$\begin{aligned} & \text { © } \\ & \text { 芑 } \end{aligned}$		$\begin{aligned} & \text { Wi } \\ & \text { مin } \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\oplus} \\ & \stackrel{3}{3} \end{aligned}$	$\begin{aligned} & \text { ס్మ } \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$				
1	2	3	4	5	6	\%	8	9	10	11	12
United States ...-N 'th Atlantic division .	54	1,113	11,668	3,056	14,734	12,283.	1,404	6,911	7,560	\$369,043	92, 322, 498
	27	577	5,729	1,656	7,385	6,665	658	4,712	4,683	178,833	1, 454, 735
Maine.	$\begin{array}{r} 1 \\ 1 \\ 1 \\ 12 \\ 1 \\ 1 \\ 5 \\ 3 \\ 2 \end{array}$	15	115	0	115	112	3	40	53	8,500	26,377
New Hampshire		12	93	14	112	110	2	34	30	1,500	18, 0×0
Vermont ---		15	70	13	83	78	5	38	29	1,000	11,725
Massachusetts		113	991	348	1,342	1,261	59	1, 549	1,105	8,414	476, 329
Rhode Island.		20	238	0	238	214	24	150	120		31, 717
Connecticut		42	458	0	458	415	43	219	188	15, 871	59, 480
New York.		201	2,424	955	3, 379	3,165	214	2,247	2,154	117, 733	549,598
New Jersey			363 969	- 52	415 1,243	319 991	$\begin{array}{r}56 \\ 252 \\ \hline 2\end{array}$	173 8.27	141 863	2,915 22,900	60,632 220,877
S'th Atlantic division.											
	4	45	645	0	645	508	187	301	268	21,416	80,575
Delaware	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	4	41		41	19		18	${ }_{17}^{4}$		7,884
Mist. of Columbia		16	198	0	406 198	105 83	115	172	176. 98	10,116 1,300	34,095 38,596
South Central division-	3	35	202	33	235	70	49	112	19	2,450	15, 302
Kentucky Louisiana Texas	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	20	16	32	32	32	0	10	4	0	
		${ }^{8}$	116	0	116	0	0	0	0	0	
		9	86	1	87	38	49	102	15	2,450	15,302
North Central division.	18	434	4.683	1,286	5,969	4, 909	554	1,648	2,587	156,224	701,317
	3222	124	1,012	421	1,433	1,220	213	345	568	9,957	159. 554
		29 39	469	144	613 492	523	90	$\stackrel{249}{250}$	${ }_{2}^{279} 174$	10,10.69 17	88, 603
Wichigan	$\stackrel{3}{3}$	83	1,345	237	1,582	1,511	71	333	1,181	6,103	172, 45%
		20	469	149	618	606	12	180	107	2,630	22,527
Minnesota	1	30	252	23	275	264	11	106	105	39, 327	54, 888
Mowa	1	12	0	115	115	102	13	33	24	3,700	4,059
	1	27	202	74	275	195	81	166	145	1,706	39, 034
South Dakota	1	12	46	13	59	57	2	16	4	500	15, 150
	1	32	219	0	249					60, 000	52, 688
Kansas...-.-..........	1	26	257	0	257					3, 701	23, 852
Western division	2	22	409	91	500	131	6	108	103	10, 1.20	70,569
Colorado California	1	16 6	${ }_{274}^{135}$	$\stackrel{2}{89}$	137 363	131	6	108	103	$\begin{aligned} & 9,000 \\ & 1,1,1: 0 \end{aligned}$	$\begin{aligned} & 34,000 \\ & 36,569 \end{aligned}$

Table 2.-Statistics of reform schools for 1889-90, or thereabout.

TABLE 2.-Statistics of reform schools for 1889-90, or thereabout-Continued.

Post-office address.	Name of school.	Name of superintendent.		Sex.		Race.		During year.		Expenditures.	
				岕	$\begin{gathered} \stackrel{\oplus}{\tilde{\sim}} \\ \text { ష. } \\ \text { む } \end{gathered}$	¢ d a	$\begin{aligned} & \text { ró } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Buildings and im-provements.	Other.
1	9	3	4	5	6	y	3	9	113)	11	12
Lansing, Mich	State Reform School	C. A. Gower	a11	471	0	436	35	254	244	- 0	\$62, 765
St. Paul, Minn.	Minnesota State Reform School	J. W. Brown ..	30	25	23	264	11	106	105	\$39, 327	54,888 39,034
St. Louis, Mo..		John T. Mallalieu	27	$20 ;$ 219	74 0	195	81	166	145	1,706 60,000	-39,031
Kearney, Nebr	State Industrial School for Juvenile Offenders $a_{\text {- }}$.	John T. Malla	$3{ }^{3} 10$	219 98	14	110	2	34	30	1,500 1,500	18,000
Manchester, N. H. .-	State Industrial School ---.---1--	John C. Ray	16	988	14 0	110	48	145	128	2,000	53, 000
Jamesburg, N.J	State Reform School for Juvenile Delinquent	11a Otterson	10	303	0	310	48	145		2,000	53,
Newark, N.J	Newark City Home -----	Mrs. M. A. McFadden	5	0	52	44	8	28	19	915	7,632
Trenton, N. J -	State Industrial School Brooklyn Truant Home.	Patrick H. Corrigan	2	356	0	336	20	356	277	0	18,183
Canaan Four Cor-	Burnham Industrial Farm	W. M. F. Round....	6	48	0	48	0	33	5	0	12,800
ners, N. Y.		Elisha M. Carpenter	70	788	188	879	97	638	702	58,000	123,224
New York,	New York Juvenile Asyuge	Israel C. Jones .-. .	70	48\%	73	462	93	397	384	3,757	115,371
West Chester, ${ }^{\text {N. }}$	New York Catholic Protectory	Brother Leontine	53	750	694	1440	4	823	786	55, 976	280, 0:0
Delaware, Ohio .-.	Girls Industrial Home .-.....	J. M. Crawford	33	0	289	256	33	72	68	1,075	39,984
Cincinnati, Ohio	Cincinnati House of Refuge $a^{\text {a }}$	Henry Oliver	35	412	132	464	80		237	6, 392	45,573
Lancaster, Ohio.	Boys Industrial Home	J. C. Hite .-.....	56	600 337	0 112	500	100 71	-273	263 306	2,500 12,488	75,997 85,997
Morganza, Pa	Pennsylvania Reform School	Jerome A. Quay -------	42	337	112	438	181	484	557		85,997 134,880
Philadelphia, Pa	The House of Refuge --...-.-	J. Hood Laverty	c96 20	54, 238 28	16:	553 214	181	484 150	120	10, 412	131,717
Howard, R. I	Sockamosset School for Boys	C. W. Nibecker	12	238 46	13	214	21 2 2	150	120 4	500	a31, 15 15 158
Plankinton, S. Dak	South Dakota Reform School -..-...-	C. Wj. Ar. McCullough	12 9	86	13 1	38.	4	102	15	2,450	15,302
Vergennes, Vt	Vermont Reform School .-...............	S. A. Andrews.....-.	15	\% 70	13	$\begin{array}{r}78 \\ \hline 1 \% 4\end{array}$	5	38 180	$\underset{\sim}{39}$	1,000	11,7\%
Milwaukee, Wis....-	Wisconsin Industrial School for Girls	Sarah E. Pierce	20	31 438	149 0	174	6	180	107	az, 660	a2̇, 5\%7
Waukesha, Wis .-...-	Industrial School	W. H. Sleep		438	0	432	6	--			

CHAPTER XIII.

EDUCATION OF THE COLORED RACE.

I.-THE COMMON SCHOOLS.

The former slave States have a white population of $15,493,323$, and a white school enrollment of $3,422,785$, or 22.1 per cent of the white population.

The same States have a colored population of $6,954,840$, and a colored school enrollment of $1,289,944$, or 18.5 per cent of the colored population.
The colored form 30.98 per cent of the total population, but colored pupils form only 27.37 per cent of the total school enrollment.

These figures show that the colored school enrollment is not relatively equal to the white. It exceeds the white, as compared with the population, in the District of Columbia, North Carolina, and Texas; in the remaining States it falls behind the white-in Alabama, Georgia, Louisiana, and West Virginia far behind.

The ratio of average attendance to enrollment is 63.3 for white and 62.4° for colored in twelve States.

ED $90-68$
Table 1.-White and colored schools compared-1889-90.

State.	Population.			Pupils enrolled in common schools.					Average daily attendance.				Teachers.	
	White.	Colored.	Propor-tion of colored persons.	White.	Colored.		Per cent of population enrolled.		White.	Colored.	Ratio of attendance to enrollment.		White.	Colored.
							White.	Colored.			White.	Colored.		
1	2	3	4	5	C	\%	8	9	10	181	18	13	14	15
Alabama	830,796	682,221	Per cent. 45. 09	186,125	115,490	Per cent. 38.30	Per cent. 22.4	Per cent. 16.9	110, 311	\%2,	Per cent. 59.3	Per cent. 62.5		
Arkansas	816,517	311,662	27.63	163, 603	59,468	26.66	20.0	19.1					3,770	1,246
Delaware	139,429	29,064	17.25	26, 778	4,656	14.81	19.2	16.0	10,798	2,851	69.7	61.2	${ }^{605}$	96
District of Colu	154, 352	76,040	33. 60	23,574	13,332	36. 12	15.3	17.5	18, 105	10,079	76.9	75.6	495	250
Florida	224,461	166, 961	42.65	55, 191	37, 281	40.32	24.6	22.3					1,849	661
-Georgia.	973, 462	863, 891	47.02	230,595	150,702	39.53	23.7	17.4					5,009	2,500
Kentucky	1,585,526	273, 109	14. 70	354, 250	54,716	13. 38	22.3	20.0	200, 543	30,690	56.6	56.1	7,791	1,250
Louisiana	554,712	563, 875	50.41	a 84, 456	a 48, 137	a 36.31	a 15.5	a8.9	50,891	36,645	$a 64.2$	$a \% 8.6$	1,875	801
Maryland.	824,149	218,241	20.94	147, 879	36, 372	19.74	17.9	16.7	85, 149	17,202	57.6	47.3	3,210	616
Mississipp	539, 703	749, 897	58.15	149, 321	176,541	54.17	$2 \% .7$	23.5	94, 336	106,454	63.2	60.3	4,190	3,131
Missouri	2,524, 468	154, 716	5.77	587, 510	32, 804	5. 29	23.3	21.2					13,065	720
North Carolina	1, 0.19, 191	568,756	35. 15	205,844	116,689	36. 18	19.6	20.5	134, 108	68,992	65.1	59.1	4,544	2,523
South Carolina	458,454	692, 695	60. 17	89, 377	111,888	55.59	19.5	16.2	67, 185	80,614	75.2	72.0	2, 688	1,676
Tonnessee	1,332, 971	434,547	- 24.58	348,941	99,009	22.10	26.2	22.8	256, 669	66, 879	73.5	67.6	6,438	1,790
Texas V -	1,741, 190	491,333 641,300	2.211 38.73 2.	$36 \pm, 401$ 220,210	104,471 122,059	2. 38	20.8	21.1			59.0		8,418	2,462
West Virginia	-729,262	33, 533	4.40	186, 735	12, 6,329	39.68 3.28	25.6	18.9	1217,711	68,317 3,989	59.0 63.0	56.0 63.0	5, 550 5,313	1,973
Total	15,493, 323	6, 954, 840	30.98	3, 422, 785	1,289, 944	27.37	22.1	18.5			$b 63.3$	${ }^{6} 62.4$	78, 992	24,009

Table 2.-White and colored teachers' salaries.
 a Country schools only,
b Not classified by color.
c Annual salaries.
$d \operatorname{In} 1888-89$.

ALABAMA.

Apportionment of funds between the races in Alabama.-The Alabama State distributable school fund has heretofore been apportioned among the townships and districts according to the number of children of school age, the fund of each race being kept separate. This has caused much dissatisfaction. "It is alleged that in portions of the State the colored race gets well-nigh all the school fund, whilst that race pays a very small per cent of the taxes that make up that fund; also that the colored race is as yet, in general, only capable of receiving and profiting by an elementary education, which costs comparatively much less than that suitable for the white race in its more ad vanced stages of civilization." The State superintendent, without discussing whether these complaints are well grounded or inot, says that there are individual cases of peculiar hardship, and suggests the following plan: "Let the school fund be apportioned by this office to the different counties and townships in proportion to the number of children without regard to race, and let the township officers apportion the fund to the schools of the township in proportion to the number of children who will probably attend cach school. They, being on the ground and acquainted with the wants of the different neighborhoods, can do this to better advantage than it can be done by this office. In addition to this, there should be fixed by statute. a gradation of teachers' licenses, so that well-qualified and successful teachers should receive greater compenzation than the teacher who can barely stand an examination for a third-grade certificate. In all other departments persons are paid in proportion to the quality a_{s} well as the quantity of work done by them, and why should not this rule apply in the payment of teachers? Under our present apportionment of funds such is frequently the case--that the poor teacher of the colored race gets much better salary than the well-qualified white teacher. If this were left to the local school authorities such injustice and inequality would not be allowed."

This is practically what is done at present in the larger Southern cities with the local school funds (city appropriation); the municipal school boards apply the local funds to the rarious schools, white and colored, in their discretion. It is believed that the city colored schools are amply provided for under this system. Whe ther it would work as well throughout the country districts, administered often by trustees prejudiced against negro education, and especially against negro education at the white man's expense, is problematical. That SuperintendentPalmer does not think it would work injustice is evident, when he declares:
"Allow me here to say that I have no sympathy with those who would deprive the colored race of an equal participation in the benefits of the public-school
fund. I believe that it is not only our solemn duty but best interest to see that the colored race is educated and elevated so as to fit him for good citizenship, of which, in my opinion, there is not the slightest probability that he will be deprived. Nor am I in sympathy with those who would apply only the tax raised from our race for the education of that race. Such a law or provision of a State constitution would be declared by the courts unconstitutional as being against public policy and as contravening the letter and spirit of the Fourteenth Amendment of the Constitution of the United States. The plan herein suggested will go far towards remedying the evils complained of, and that, too, upon sound prin-ciples-that teachers should be paid in proportion to the quality of the work performed by them."

Superintendent Palmer's suggestion adaopted-The law amended.-The legislature in 1891 changed the law so as to provide for three township trusteas (instead of one) who are to dispose of the school funds derived from the State virtually as Superintendent Palmer has suggested. Mr. J. N. Hutchinson, himself a township trustee, explains their duties relating to the disposition of funds under the new law, as follows: They are required to "establish and apportion to each school just such an amount of the public funds as they deem just and equitable to carry on the schools in their township, not according to number of scholars pro rata as heretofore, but apportioning and giving unto schools as they deem best to promote free education in their township with due regard to all neighborhoods. For as the law was, where one school could get only ten pupils, in pro rating it was not sufficient to enploy a suitable teacher to teach those children, and other schools had the advantage, especially the colored, which generally outnumbered the whites, receiving the most money, and the colored people paying less taxes. Hence some neighborhoods were deprived to a great extent of the benefit of schools, not being able to procure a suitable teacher on account of insufficiency of funds.
"I take the position that one teacher"s time is worth as much to them as another teacher, without regard to the number of scholars they teach in the public schools, and the trustees should sea that all children are offered the benefit of schooling, and that this is the intention of the law, which was wise in our legislature in so changing it, and now it becomes the duty of the trustees to carry out the law without regard to the whims and complaint of some."

The new State superintendent, Hon. John G. Harris, further explains the situation as follows:
"It is the duty of the township trustees to establish a sufficient number of schools in their township to meet the necessities of school children according to justice and equity, having reference to the amount of money apportioned to such township, paying to the teacher of each school an amount which will secure continuation of all the schools of both races, the same length of time.
"This law confers upon the township trustees the power to contract with teachers at an agreed amount per month for three months or more. The entire amount belonging to each township must be divided among the white schools and colored schools by the trustees according to 'justice and equity,' not per capita. One teacher may be secured to teach a cartain school at one price, while another teacher may be employed to teach a different school at a greater or less sum. Trustees must use their very best judgment, looking to the highest interest of all the children to be taught. The greatest good to the greatest number must govern. Such, in my judgment, is the spirit of the law. 'Equal rights to all, special favors to none." "

The words italicized, "same length of time," are evidently designed to be the watchword under the new order of things.

The law only covers the State school fund proper. The apportionment of the State poll tax remains as before-poll tax collected from the whites goes to white schools exclusively, ditto colored.

Colored education in Alabama.-W. B. Paterson, conductor of colored teachers institutes in Alabama, says in his report to the State superintendent: "The county superintendents and other white citizens attended the sessions of the institute, and showed much interest in the education of the colored race. I find that where a colored teacher is competent and devotes himself strictly to the work of teaching, that he can depend upon the support of the best people of the community. The county superintendents, too, discharge their duty regardless of race, and everywhere they expressed a desire to get the very best teachers possible for the colored schools.
"The colored people are being encouraged to build school-houses, and their white neighbors are contributing liberally towards this object.

These facts are given to make more forcible the following statement: The schools are retarded in their progress by a want of unity and harmony among the colored people themselves. Desiring to get contirol of the schcols, they are imposed upon by incompetent teachers, who establish a denominational or a high school, with an absurdly long and very illogical course of study, and the means of the people, which might be used very profitably to double the public-school term, are wasted. I have reference here only to the efforts made in small towns to build up a college on local patronage at a tuition of $\$ 1$ per month. It would be good policy for the present to let Talladega College, Selma University, Payne Institute at Selma, and the State normals at Huntsville, Tuskegee, and Montgomery attend to the higher edugation and let the efforts of the people be directed to improving the public schools. Not one-tenth of the pupils entering the above institutions from the public schools are prepared to take up a normal course of study."

ARKANSAS.

Apportionment of funds between the races in Arkansas.-A statement in the Annual Report of this Office for 1888-89 was calculated to create an erronecus impression as to the distribution of the State school moneys. With reference to this subject State Superintendent Josiah H. Shinn writes to the Office:
"The law apportions to all children irrespective of color. Each child in Arkansas, black and white. of school age receives the same amount of money by State apportionment. Each county in the State, irrespective of color, gets an amount of money equal to the sum of the amounts given to its children of school age : or the multiple of the equal pro rata per child into the number of children of school age in the county. The county judge then apportions the fund received from the State in the same way to the districts. Each district gets from the State a sum of money in every case equal to the multiple formed by the pro rata into the number of children in the district.
"So far the money has been apportioned as though no color line existed.
"The money is now in the hands of the county treasurer, subject to the order of the [dist ict] directors. Each district may have three funds, and must hare two: (1) The State apportionment made by the State superintendent; (2) the poll-tax apportionment made by the county judge; (3) the local tax voted upon the property of the district and paid by the collector to the treasurer of the county for the use of that district alone.
"I desire to emphasize this point again. Up to this point in our financial management-the point when the directors are to open the schools-no distinction whatever has been made. It has been a question of cold̃ calculation without one drop of blood. If any discrimination is made now, the fault will lie with the directors. The law requires them to hold separate schools for the races. There is no restriction upon the black man's right to hold the office of school director. In eastern Arkansas in a large majority of the districts the directory is black. Two plans have been adopted by directors, irrespective of color.
"1. To hold a three months' school for \in ach color, and as much longer as their proportionate share of the district funds will continue it. This share is determined by taking the ratio of the black and white children of school age, respectively; to the whole number of children.
" 2 . To hold two schools of equal length, irrespective of these proportions.
"(a) As to the first proposition, the division is always more favorable to the colored race than to the white. Where but eightor ten children of either color were to be found in any district a trouble followed in nearly every case. Black directors caw little use in running a school for less than ten white children; so did the white ones. The legislature cured this last winter by permitting any number less than ten to transfer to the adjoining district.
"(b) The second proposition is on the broadest basis of fairness, and reaches the widest stretch of justice. No more can be claimed. It would be unjust to my fellow-citizens not to say further that the great majority of our school directors follow the second plan.
"In the following cities and towns the terms and all the other arrangements are equal: Little Rock, Helena, Marianna, Pine Bluff, Monticello, Lonoke, Camden, Texarkana, Hope, Nashville, Washington, Prescott, Malvern, Conway, Moulton, Newport, Augusta, Russellville, Fort Smith, Van Buren, and Hot Springs."

DELAWARE.

The colored schiools of Delaxcare.-"There are only 46 [colored] schoolhouses in the State and 79 schools. Thirty-three of the schools are held either in private houses or churches, mostly the latter. All the schoolhouses occupied have been built by the colored people themselves, and some of the buildings are in the last stages of dilapidation. Some of the cchools find it necessary to charge a tuition fee and others raise funds by subscription in order to secure sufficient money to pay the teacher's salary."

The State superintendent suggests " that it would be wise to increase the State appropriation to these schools in order that they may be made free schools in fact. If education is a safeguard it would seem to need no argument that the colored schools should be made as efficient as possible."

The sum of $\$ 6,000$ was appropriated for these schools in $1889-90$, or a little over $\$ 1$ for each colored child of school age in the State.

FLORIDA.

Capacity of colored students-Appreciation of school adrantages.-The principal of the Florida State Normal College for Colored Persons reports: "The students are specially drilled in the abstract sciences in which they are the weakest, while their strong linguistic powers are given the fullest exercise. The imperfect attainments in the common studies which they bring to the institution are displaced by a severe training in the same studies, when they are carried through algebra to quadratics and through several books of geometry. In all these studies they can compete favorably with scholars of similar grade anywhere. In the Latin, the only classic thus far taught, they are carried through several books of Cæsar's Commentaries, just enough to give them a proper foundation to continue the study of the thoughts of the iron-hearted masters of the ancient world after graduation. Although it is less than two years since the senior class began the study of Latin, several of them can now read Cæsar with an ease and elegance that would do credit to scholars who have been engaged twice the length of time in studying this language.
"The surest test for the appreciation of the race for the school is in the sacrifices made by patrons in sending and maintaining scholars here, and the eagerness of the latter to avail themselves of the opporiunity offered them for instruction. With limited means or from daily earnings parents send their children to this school from distant parts of the State and meet all the financial engagements incident to the education of a young person during the entire session of nine months. Although this is the second rear since the schcol has had dormitory halls, not only has every patron met all his obligations, but the demand for more room in the dormitories is rastricted by our inability to provide for any more new-comers.
"The promptness and regularity of attendance at the daily sessions of the school is another proof of high appreciation. No severer punishment for breach of discinline can be inflicted on any of them than to be ordered to leave school for even rant of a day. They seem to feel that every day and hour are too preciovs to be lost from the prosecution of the purpose for which they have come hither from their homes. This strong regard and attachment for a school but lately established is one of the mest pleasing features which promise for it, let it be hoped, a long career of usafulness."

GEORGIA.

State School Commissioner James S. Hook: "It is due the colored people to say that everywhere in Georgia, as far as they have come within my obseryation, they are anxious for improrement, and in proportion as they become interested in the schools I note growth in moral sentiment, less interest in partisan politics, and more anxiety to make themsel ves useful and respected citizens."

The Unirersity of Atlanta, as is well known, has, under the provision of the State constitution forbidding the coeducation of whites and colored, forfeited its State grant. Some of the prominent colored educators of the State are setting on foot a movement to obtain this suspended grant in order to establish \boldsymbol{g} normal school for training colored teachers.

What the county superintendents say.

Cirauforl County.-Colored schools were well attended, but a decrease in number of schools, on account of not being able to get teachers that could make the required percentage in examination.

Houston County.-The colored people manifest a great desire to have their children educated; their schools were kept full and the average attendance was good. The colored children of our county outnumber the whites almost 4 to 1 , and all their schools are full to overflowing whenever opened. In some parts of the county the white people are so sparsely settled that it is impossible for them to hare schools.
Jasper County.-There is not a child of school age in the county, white or black, but what has a schoolhouse conveniently located and can attend school most any kind of weather.

Mitchell County.-The colored people of our county are very manifest in their interest of education. Many of our colored schools, if allowed, are crowded beyond accommodations.
Oconee County.-By no means tax the whites to educate the blacks. This has made a" skeleton" of what otherwise would have been a corpulent and muscular man-a giant [referring to the school system].

Putnam County.-We should have more money, negro or no negro. Something isnecessarily obliged to be done or the whites will not keep up with the darkey.

MARYLAND.

The colored schools of Maryland.-Dr. James L. Bryan, school examiner of Dorchester County, Md., reports as follows: "There is great pleasure and just pride in stating that our colored schools are a credit to our system. When I began my work in this county in 1867 there were no colored schools connected with the public-school system. There were two or three run by friends outside of the State. The school board of that day made a small appropriation to two of those schools, and gradually increased the amount until the new school law of 1872 placed such schools directly under the control of the school board. Since that day these schools hare increased from two or three to forty, and the teachers compare favorably with the white teachers, considering the poor advantages they have had to make themselves expert teachers. With two or three exceptions these schools occupy houses belonging to the school authorities, built generally for school purposes, and with comfortable furniture, blackboards, etc. One house, in Cambridge, used by colored pupils, cost nearly $\$ 2,500$; another, in East Newmarket, cost over $\$ 1,000$.
"There is small but a steady increase in the numbers attending the schcols, and the results are quite gratifying.
"It is a great credit to the powers that be that this work has been done so well. It is honorable to the authorities, and should dispel all doubts of fairness in the matter of educating this class of our people."

And the examiner of Harford County says: "In a number of cases we lack suitable houses and furniture for the colored schools; but our greatest drawback in this line is an efficient corps of teachers. I do not hesitate to say thatI have more difficulty in securing twenty-two suitable colored teachers than one hundred and fourteen white ones. I anxiously look forward to the day when we may rely upon the colored normal school of this State for our colored-teachers.
*In many cases, too, it is difficult to secure prompt and regular attendance of colored children. Having satisfied their ambition by enrolling their names at school, the very ones most in need of its benefits are the ones most apt to be absent. Recognizing the large factor they have become in some sections, I see no higher duty the State has to periorm than to do what she can to educate this large class of her citizens."

NORTH CAROLINA.

Causes of opposition to negro education.-State Superintendent S. M. Finger, of North Carolina, says: "There is much opposition to public schools in the State, and in the South generally, because of the small amount of the taxes paid by the negroes. The opposition is intensified by the belief, that is more or less prevalent, that education spoils the colored people as laborers, to their own damage and the damage of the white people. It is said that when you 'educate a negro you spoil a field hand.'
"On this point it may be said with truth that the negro's sudden freedom and citizenship, for which he was unprepared, the privileges of education, and all the new experiences he had at and soon after the war, including much bad leadership, completely turned his head, so to speak. Forced labor to him had, during slavery, been his peculiar hardship. In his ignorance he thought the new conditions, and especially the privilege of education, were to relieve him from this curse of labor. The old negroes went earnestly to work to learn to read. They failed, but attributed their failure to lack of early opportunities. But they resolved that they would secure education for their children, and, with this special end in view, the escape from manual labor. The present generation of younger negroes has been educated too much with this purpose in view, and, because of this wrong idea, it is true that a smattering of education to many of them has caused idleness and laziness. If education is to be given them in any liberal sense by the State they must show a much higher appreciation of it. They must recognize it not as a means of relief from labor, but as a help to successful labor.
"Many of their best teachers are striving now, by precept and example, to correct these wrong ideas as to what education is to do for them, and my earnest advice to school committeemen is that they do not employ teachers who are above manual labor. A man or a woman who depends upon the money he can make by teaching a three or four months school per annum and will not apply himself to some useful labor during the balance of the time is not fit to direct the education of children and should not be employed to teach.
"The colored people must not lose sight of the fact that manual labor is the lot of almost all people, white and colored, and that this is now and will be their lot to a lavger degree than that of the white people, because of the peculiar conditions and circumstances that surround them. The destiny of the negroes of the United States is in their hands, with the powerful help of the white people as they may show themselves worthy of it. Let them pay their taxes and show that education doas not spoil them as laborers, at least to any greater degree than it does the whites, but that it does add to their efficiency as laborers and to their usefulness as moral and upright citizens, and all the help they need that the State can, in her financial condition, reasonably afford will be extended them.
"The white people must not lose sight of the fact that it is the labor of a country that makes its wealth, and that, therefore, the education and eleration of the children of the laborers is a proper charge upon the property of any country. If we did not have the negroes we would have some other poor people, whose children would have to be educated in the public schools. But, whatever may be said about educating the negroes, we can not afford not to improve our educational facilities, whether we consider our financial condition and progress or the perpetuation of our civil and religinus liberties.
"If it is said that we are too poor, then I reply that the way to get rich is to educate our people intellectually and industrially, so that they may be able successfully to apply labor to the development of our many resources. The history of the world points out this way, and we can not fail if we walk in it. With good schools in the country districts there will be less incentive for the country people to crowd into the cities and towns to educate their children, much of the discontent and restlessness will disappear, and better success will attend their labors."

TENNESSEE.

Reports of Tennessee county superintendents.

Marshall County: Our colored schools are improving rery fast. At their institute this year there was an increase of teachers and an increase in interest. All of them seem to be striving for an education, and we have some very bright minds in the colored race.

Mc Natiry County: I have held four institutes-three for the whites and one for the colored. They were all well attended. We had some excellent workers at the normal institute at Purdy in June. I have the colored teachers better organized than the whites.

Morgan County: There are only forty-seven colored population, and they are promiscuously scattered along the railroads; hence no colored schools.
Tipton County: There seems nothing at present that promises to discourage the advancement of the public schools in this county further than that there is a growing disposition on the part of the white people of the county, who pay
ninety-five one-hundredths of the taxes, to discontinue the public education of the "brother in black," who, notwithstanding the fact that he pays less than five one-hundredths of the taxes of our county, receives more than 50 per cent of the public-school moneys. This, the white people argue, is wrong, and should be remedied; and I heartily agree with them, and join them also, in the further opinion that the negro should bear the burden of his own education.

Wayne County: Our colored schools are progressing very well. We have some very good teachers among the colored population of our county. They are creating quite an enthusiasm among their race of people for education.

Abstract

"We can build our ourn schoolhouses."-The New York Age (edited by a colored man): Vast sums have been given by philanthropists to sustain such moral, religious, and intellectual work in the Southern States as are usually supplied from the general tax funds of the State affected and by the charity of the benevolently disposed citizens of such State. The past and the present generations of Afro* Americans have, therefore, been educated to look to the Federal Government for the protection usually afforded to the citizen by the State in which he resides and which does not inhere at all in the Federal authority as one of its conceded rights; and, worse yet, they have been educated to look to others to think and do for them to such an extent that self-reliance has been hampered in its development, so that if we want money for educational, religious, or other laudable purposes, we appeal too often to white men or to the Federal Government, instead of relying upon ourselves for it and working in combination and coöperation to secure it as others do. We can build our own churches and colleges and schoolhouses, and support them, if we would do so, out of the money wasted by us upon unnecessary pleasures and upon downright humbug; and we hate got to do it in the not remote future, because the opinion is steadily gaining vantage that we are getting old enough to stand upon our own heels in this matter of self-help.

> II.-SECONDARY AND HIGHER EDUCATION.

OCCUPATIONS OF GRADUATES.

The question is sometimes asked, What does the colored man do after completing a regular course in one of the universities or colleges? In order to answer this question somewhat definitely, a table has been prepared showing upon what lines of business the graduates of 17 institutions reporting this item had entered. These 17 institutions represent verỳ fairly the work of the colored schools. Howard University is not included in this statement, as a considerable portion of its graduates are white.

The first thing to attract attention is the large number engaged in teaching, more than one-half being thus employed. As these institutions were mainly founded to supply the demand for competent colored teachers and preachers, they seem to have well accomplished their purpose. The whole number of graduates of these 17 institutions is 1,542 . If from this number we subtract 82 deceased, 46 engaged in post-graduate studies, 97 married women, and 74 not reported, of the remaining 1,243 there are 720 , or 58 per cent, engaged in teaching, 27 of these being professors in colleges and universities. Of preachers there are 117, or 9 per cent; of lawyers, 116; doctors, 163. Five have their whole time employed as editors of papers, while others are partly engaged in editing. There are 30 in the United States Government service, emploved as clerks in the departments at Washington, as postmasters, as custom-house inspectors; as mailcarriers, etc.

Although in all of the institutions given in the list, without exception, instruction was given in different kinds of industrial work, such as carpentry, tinning, painting, brickmaking, plastering, shoemaking, tailoring, blacksmithing, farming, gardening, etc., and in many of them special attention was given to such instruction; still out of the 1,243 graduates only 12 are farmers, only 1 a carpenter, and 2 mechanics. The painters, tinners, brick-makers, shoemakers, plasterers, tailors, and blacksmiths seem to have graduated from their trades when they left their alma mater. It should not be inferred, however, that their handicraft availed them nothing, for it is frequently stated in the catalogues that those graduates who are engaged in teaching solong as the school term continues immediately enter upon their trades at the close of the term. The evidence of the table, however, is that a full collegiate education tends to draw away the colored student from the class of pursuits mentioned and to lead him into professional work; and as greater opportunities are annually being offered him for medical and legal education the number in these professions is yearly increasing.
TABLE 3．－Occupations of graduates of universities and colleges．

		\％
－pz7e7s 70 N		茫
－sıỊns．mad тәप70		8
＊suวpnıs əาenpexp		$\stackrel{3}{7}$
－sxวчววng		\sim
－Sวฺ世ยบววTN		63
－GIVITIT．		62
＇s．xəđәəサイ00¢		02
－S7SITH2C		\pm
		10
	－	¢
		－
－S．İturex		$\stackrel{1}{2}$
		12
＇s．tol！p．		12
＊SJPSATI		$\stackrel{\square}{\square}$
－sumTois		E0
		こ
－S．tขपอษәL	คニッ๙	$\stackrel{0}{6}$
＇ขəsセวうวவ		88
－Sə7飞 		会

COLLEGIATE STUDENTS.

The number of universities and colleges for the education of the colored race given in the tables of 1889-90 is 22 , with an attendance of 811 students. The number of institutions is the same as reported in 1888-89, but in the number of students there is quite a reduction. This reduction is orring to the fact that students in the preparatory departments have been classed under the list of institutions for secondary instruction. It is well known that in many of the colored universities and colleges there are only a dozen or so of students in the college grade, while there are, perhaps, soveral hundred in the preparatory and primary grades. To include the latter among university and college students would be misleading.

On this point President Horace Bumstead, of Atlanta University, says: "It is a mistake to suppose that the higher education of the colored people is being overdone. There is a very grave misapprehension on that point among the good people of our land. We have so many institutions in the South that are named universities and colleges that the idea prevails that all the students in these institutions are learning Latin and Greek and the higher mathematics and getting in general the higher education. This is not so. Dr. Haygood a few years ago investigated this matter with some care and arrived at the conclusion that in these institutions with the high-sounding names not over 5 per cent of the pupils are really getting a strictly 'higher education.' Commissioner Harris thinks there may be as many as 10 per cent, but even that is a rery small proportion.
"Take Atlanta University, for instance. We have had this last year about 600 students enrolled, whose names are printed in our catalogue. How many of these are getting the higher education? Just 20 of them are in the college course; 51 more are in the college proparatory course ; 71 out of 600 are getting the higher education, and this is probably a larger proportion than can be found in almost any other institution in the South. When one remembers the comparatively small number. of the colored people who are in these schools and then considers the small proportion of those in them who are getting the higher education it does not seem as though the thing were being overdone."

In 1888-89 the number of institutions for secondary instruction was 53 and the number of students 11,480 ; in 1889-90 the number of institutions was 71 and of students 12,420 , an increase of about 1,000 . This increase is to be accounted for, to some extent, in the same way as the decrease in the number of university and college students, viz, the including college preparatory students in the tablez of secondary institutions.

Hence, although there was apparently a decrease in the number of collegiate students, it was oniy ar apparent one; but at the same time the actual number given is so small that it may well serve to stimulate the friends of colored education to renewed efforts in their behalf.

In the number of theological students there was apparently a decrease, but there was an increase of about one-third in the number of both law and medical students.

The value of the grounds and buildings of the 22 universities and colleges, as reported, was over $\$ 2,700,000$, but only a few of them had any endowment fund, the endowment funds of all of them only aggragating $\$ 807,425$. Benefactions to the amount of $\$ 167,591$ were received during the year. Only three of them received any State aid-Southern University, New Orleans, $\$ 7,500$; Wilberforce University, Ohio, $\$ 6,000$; and Clafin University, South Carolina, $\$ 10,800$. The tuition fees received by all of them only aggregated $\$ 17,216$. Without the aid extended by missionary societies and other bənevolent funds they would have labored under great difficulties. The American Missionary Association was one of the largest contributors towards the support of these schools. It gave help to six chartered institutions-Fisk University, Atlanta University, Talladega College, Tougaloo University, Straight University, Tillotson Normal Institutewith 2,871 students in all the departments; also to 21 normal and graded schools, with 5,797 students, and to 53 common schools, with 4,727 pupils. The Freadmen's Aid and Southern Education Society of the Methodist Episcopal Church also contributed a large amount towards the education of the colored race, but it is impossible to determine the amount accurately, as the expenditures for institutions of the white race and for ministers' salaries are included in the same accounts with those for colored schools. The whole amount disbursed from the Slater fund from 1883 to 1891 , inclusive, was $\$ 321,991$.

The apportionment among the institutions receiving aid from the John F. Slater fund in 1889-90 was as follows:

Atlanta University, Atlanta, Ga
Ballard Normal School, Miacon, Ga Benedict Institute, Columbia, S. C Biddle University Charlotte N
Brainerd Institute, Chester, S. C
Central Tennessee College, Nashville, Tenn
Claflin University, Orangeburg, S. C....
Clark University, Atlanta, Ga. (general appropriation)
 appropriation)
Fisk University, Nashville, Tenn
Gilbert Seminary, Winsted, La
Hampton Institute, Hampton, Va. (general appropriation)
 (special appropriation)
Harishorn Memoial Institute, Richmond, Va
Jackson Coilege, Jackson, Miss
Tacksonville Graded School, ville, Fla
Leonard Medical School, Raleigh, N. C . Le Moyne Institute, Memphis, Tenn ... Livingstone College, Salisbury, N.C... Meharry Medical College, Nashville, Tenn

1,600
1,000
1,000
81,600
1,000
1,000
1,800
6 $|$

1,100
1,800
1,800
3, 200
1,800
800
1,500
1,000
650
800
800
$\begin{array}{r}800 \\ 1300 \\ \hline 100\end{array}$
1,300
700

1,000

Mount Hermon Female Institute, Clin-
ton, Miss ...
$\$ 1,000$
New Orleans University, New Orleans, La.

1, $0 \leqslant 0$
Paul Quinn College, Waco, Tex --..-...--
Payne Institute, Augusta, Ga -.......-.
Philander Smith College, Little Rock, Ark
Roger Williams University, Nasivile, Tenn
Rust University, Holly Springs, Miss.
Schofield Normal Institute, Aiken, S. C
1, 100
500
Scotia Female Seminary, Concord, N.C 700
Shaw University, Raleigh, N. C.........
Spelman Female Seminary, Atlanta, Ga
State Normal School, Montgomery, Ala
State Normal School, Tuskegee, Ala...
Straight University, New Orleans, La -
Talladega College, Talladega, Ala
$1, \therefore 00$

Tillots Tnsitute Austin Tex
Tougaloo University, Tougaloo, Miss.
Training School, Knoxville, Tenn .-....
To special objects.

The sum of $\$ 47,428.27$ was received from the income of the Daniel Hand fund, and was used in extending aid to deserving and promising students, in providing good school buildings atdifferent places, and in securing teachers for places where they could not otherwise be obtained.
The Daniel Hand fund at the ti.ne it was granted consisted of interest-bearing securities to the amount of $\$ 1,000,894.25$. It was placed in charge o the American Missionary Association, and only the income of it is to be used. The bonds and property are "to be received and held by said American Missionary Association upon trust, and for the following purposes, viz: To safely manage the said trust fund, to change investments whenever said association may deem it necessary or advisable, to reinvest the principal of said trust fund in such securities, property, and investments as said association may deem best, and to use the income thereof only for the education of colored people of African descent residing in the recent slave States of the United States of America hereinbefore specified.
"Such income to be applied for the education of such colored people as are needy and indigent, and such as by their health, strength, and vigor of body and mind give indications of efficiency and usefulness in after life."

In December, 1891, at his home in Guilford, Conn., occurred the death of Mr. Daniel Hand, the donator of the above fund, who with intelligentforesight gave from the living hand that which probably for years to come will confer its benefits upon deserving youth. ${ }^{1}$
1 "Daniel Hand was born in Madison, Conn., July 16, 1801, and was therefore in the eightyeighth year of his age when he made his gift for the education of the colored people at the South. His ancestors resided in that town for several generations, and were always landholders. industrious, quiet, and respectable. To this ancestry Mr. Hand is probably indebted under God for his physical vigor, long life, strength of character, and success in business. He was the fourth son of seven, and was on the farm under his father's direction until he was 16 years of age, when he was put in charge of his second brother, Augustus F. Hand, who was then a merchant at Augusta, Ga., and whom he succeeded in business. In 1854 Mr . Hand went to New York in connection with his Southern business, and remained there in that capacity until the beginning of the war in 1801 . He resided in some portion of the Southern Confederacy during the entire war, and was never treated with violence in any way, and no Confederate officer ever offered him indignity or even an unkind word.
"Mr. George W. Williams, a native Georgian, was, at about the age of 16 , employed by Mr. Hand as a clerk in Augusta, and in a few years was taken in as partner. Mr. Williams suggested a branch of the business in Charleston, and conducted it successfully. When the war came on Mr. Hand's capital was largely engaged in the Charleston business. which Mr. Williams, as a Southern man, continued, having the use of Mr. Hand's capital, which the Confederate government vainly endeavored to confiscate by legal proceedings against Mr. Hand as a Northern manof pronounced antislavery sentiments. After the war Mr. Hand came North and left it to his old partner, Mr. Williams, to adjust the business and make up the accounts, allowing him almost unlimited time for so doing. When this was accomplished Mr. Williams came North and paid over to Mr. Hand his portion of the long-invested capital and its accumulations.
"Mr. Hand, having been early deprived by death of wife and children, decided to devote a share of his large fortune to benevolent purposes. At one time he intended to make bequests to some Northern colleges, but at length, recalling the fact that his property was accumulated in the South, and knowing so well the needs of the ignorant negroes, he turned his attention to them.
"The well-known and magnificent gift of $\$ 1,030,894,25$, October $24,183 \mathrm{~S}$, to the American Missionary Association, for the benefit of the colored people of the Southern States, was the result.

Gcorge R. Smith College, Sedalia, Mo.-On March 27, 1888, two daughters of Gen. George R. Smith, Madams Swith and Cotton, donated 25 acres of land, valued at $\$ 25,000$, in Sedalia, Mo., for the establishment of an institution of learning for the colored race, on condition that a $\$ 25,000$ building should be erected on it by January 1,1892. The building was partially erected within the required time, but the donors kindly extended the time to January 1,1894. As the institution is to be in charge of the Freedmen's Aid and Southern Education Society of the M. E. Church, it will very probably ke completed within the required time. It will be the first institution of higher grade in Missouri for colored people.

INDUSTRIAL TRAINING.

In nearly all, if not all, of the institutions for the secondary and higher education of the colored race of the South industrial training forms a very important part. It is one of the conditions required before aid can be received from the John F. Slater fund. The cost of its introduction was very considerable, in the purchase of sufficient grounds, in the erection of suitable buildings, and securing the necessary machinery and apparatus for the different kinds of work. And not only was its introduction expensive, but its maintenance as well, for it has not bzen the purpose to make profits, or even in many cases to meet expenses, but to impart the largest amount of useful and practical knowledge and to train in habits of carefulness, diligence, and order. But at the same time many indigent students were instructed in branches of industry by which they were soon able to contribute largely towards defraying their expenses, and afterwards to earn a good lirelihood. It was found, too, that the physical exercise and the temporary mental diversion from studies was very conducive to health and vigor and was a source of enjoyment to students, while it in no way hindered progress in their studies. It also indicated that hard labor on the farm or in the workshop was not to be confined to the ignorant, poverty-stricken wretch, but that there was nothing in it inconsistent with an educated, progressive, Christian character.
As to industrial training, Dr. A. G. Haygood, general agent of the Slater fund, says: "The essential goodness of industrial training in connection with the ordinary schcol training is now universally admitted by experienced and practical people. In the schools aided by the Slater fund during the school year 1889-90 as many as ten thousand young people were taught in books and in some branch of useful industries. This sort of training is vital now. Mere book schooling with poor and illiterate people breeds wantsfaster than it develops the ability to provide for them. The outcome is misery. Tool-craft helps to realize the aspirations that book learning inspires."

TABLE 4.-Amount and distribution of the sums disbursed from the Slater fund, from 1883 to 1891, inclusive.

States.	1883.	188.	1885.	1885.	1887.	1888.	1889.	1890.	1891.	Total.
$\xrightarrow{\text { Alabam }}$ Arkans	82, 100	82, 450	\$5,000	\$3,800	81,400 600	\$4, 800	\$3, ${ }^{800}$	83,600 800	$\$ 4,900$ 1,000	$\begin{array}{r}\text { \$34,450 } \\ 4,000 \\ \hline\end{array}$
Florida						1,000	800	800		
Georgia	6,200	500	6,814	5,100	6, 200	6,850	9,700	9,700	10,500	61, 464
Louisian		592	1,400	1,000	3,100	3,500	4,100	3.100	$3 \cdot 700$	- 20,492
Mississipp	1,000	2,600	2,000	2,000	4, 450	4, 800	4, 400	4, 400	5,300	30,950
North Carolina	$\stackrel{2}{2}, 000$	740	4, 400	3 3,600	4, 200	5,300	5,100	4, 700	5,700	35, 740
South Caroil	2, 950	4,325	7 7, 600	5,800	6,500	${ }_{6}^{4,500}$	6, 800	${ }^{6}, 800$	7,400	29, ${ }_{52}$
Texas		coo	600	600	900	1,360	1,360	1,360	1,500	8,280
Virginia	2,000	2,000	3, 000	3,650	4, 190	4, 180	3,150	3,150	3,150	28,480
District of Co										
Special.		550	450	450	500	500	500	500	500^{-}	$\stackrel{3}{3,950}$
Totals	16, 250	17, 107	36, 764	30, 030	40, 000	45, 000	44,310	42,910	49, 650	321,991

TABLE 5.-Distribution of money derived from Daniel Hund fund in 1889-90.

Alabama:			Mississippi:			
Student aid.	¢2, 592.85		Student aid.....-.-.----- \$2, 100.00			
Teachers	4,100.55		Teachers.-..---....---.-- 1, 088.20			
Buildings	T28. 21			1,500. 60		
Florida:			North Carolina:			
Teachers		1,037. 66	Teachers.	3,564.44		
					4, 736.44	
Student aid	2,116.44		South Carolina:			
Buildings	7,154. 62		Student aid	115.00		
		9,271.05	Building	7, 719.91		
Kentucky:Student aid.............- 86.95			Tennessee: \quad 7,834.91			
		1,345. 53	Teachers.-.-.-.-.-.-.-.-.-----			
Louisiana:Student aid.............- $2,000.00$			Virginia:		3,23?. 42	
					4 CO 00	

Table 6.-Statistics of institutions for the instruction of the colored race, for 1889-90.

Location.	Name.	Religious denomination.	$\begin{aligned} & \text { In- } \\ & \text { struct } \\ & \text { ors. } \end{aligned}$	Students.
	NORMAL SCHOOLS.			
Huntsville, A	Central Alabama Academy	M. E	5	25
Do-	State Colored Normal and Industrial School.	Nonsect	5	89
Mobile, Ala	Emerson Institute*	Cong	10	289
Montgomery,	State Normal School for Colored Students--	Nonse	18	$a 836$
Talladega, Ala	Normal Department of Talladega College*--	Cong		35
Tuskegee, Ala	Tuskegee Normal and Industrial Institute-	Nons	15	225
Little Rock, AI	Normal Department of Philander Smith College.	M. E		13
Pine Bluff, Ark	Branch Normal College of Arkansas Indus-	Nonsect	4	176
hington,	Miner Normal Schoo	Nonsect	5	40
Do.	Normal Department of Howard University-	Nonsect	14	136
Tallahassee, F	State Normal College for Colored Teachers	Nonsect	3	10
Atlanta, Ga-	Normal Department of Atlanta University--	Nonsect		81
Augusta, Ga	The Paine Institute	M. E.	6	50
New Orleans, La	Normal Department of New Orleans Uni- Versity.	M. E		36
Do.	Normal Department of Straight University.	Nonsect		9
Holly Springs,	Mississippi State Colored Normal School	Nonse	3	75
Jackson, Miss		Bapt	8	263
Tougaloo, Mis	Normal Department of Tougaloo University.	Cong	3	33
Ashboro, N. C	Ashboro Normal School	Friends	2	86
Fayetterille, N.	State Colorea Normal Scho	Nonsect	3	140
Franklinton, N.		Nonsect		137
Gcldsboro, N. C		Nonsect	4	115
Plymouth, N.		Nonse	3	47
Salisbury, N.		Nonse	4	119
Do.	Normal Department of Livingstone College.	A. M. E. Z		33
Aiken, S. C	Schofield Normal and Industrial School		8	185
Charleston, S	Arery Normal Instit	Cong	7	260
Greenwood. S. C	Brewer Normal School	Cong	6	300
Knoxville, Tenn	Training School of Knoxville Colleg	Nons	12	37
Memphis, Tenn.	Le Moyne Normal Institute	Cong	5	155
Morristown, Tenn	Morristown Normal Academy	M. E	12	201
Nashville, Tenn	Normal Department of Central Tennessee College.			21
	Normal Department of Fisk University	Con	8	37
	Normal Department of Roger Williams Uni-	Bapt	6	221
Austin, Tex	Tillotson Collegiate and Normal Institute	Con	8	98
Hempstead, Tex	Prairie View State Normal Sc	Non	5	138
Hampton, Va	Hampton Normal and Agricultural Insti-	Cong	40	559
$\begin{aligned} & \text { Petersburg, Va } \\ & \text { Harper's Femy, } \end{aligned}$	Virginia Normal and Collegiate Institute Storer College Colored normal students in varions Northern schools. Total	Nonsect Nonsect...	11	320
			8	176
				144
			256	6,201

* In 1888-89.
a In all the departments.

TABLE 6.-Statistics of institations for the instruction of the colored race, for 1889-90Continued.

Location.	Nazme.	Religious denomination.	$\begin{array}{\|c\|} \text { In. } \\ \text { struet- } \\ \text { ors. } \end{array}$	Students
	INSTITUTIONS FOR SECONDARY INSTRECTION.			
Athens. Ala	Trinity School.	Cong	5	40
Prattrille, Ala	Prattville Male and Female Academy --.....-	Nonsec	3	44
Selma, Ala	Preparatory Department of Selma University.	Bapt	5	530
Talladega, Ala	Talladega College	Cong	2	33
Little Rock, Ark-	Preparatory Department of Philander Smith College.	M. E.	2	28
Washington, D. C...-	Preparatory Department of Howard University.	Nonsect.-.	5	40
Jacksonville, Fla		M. E	7	100
Key West, Fla	Convent of Mary Immaculate	Cath	3	60
Live Oak. Fla	Florida Institute	Bap	5	118
Athens, Ga	Jewel Normal School		2	90
Do	Knox Institute .		1	20
Do	Pierce Chapel*		1	77
Atlanta,		Bapt	2	56
Do	Preparatory Department of Atlanta University.	Nonsect	21	436
	Preparatory Department of Clark Unirersity.	M.E.	8	430
Do	Spelman Seminary --..-------	Bapt	12	288
Cave Spring,	Mercer Female Seminary	Bapt	1	25
La Grange, G	La Grange Academy		3	229
Macon, Ga	Ballard Normal Scho		13	584
Thomasville, Ga	Industrial Institute	Cong	9	263
Waynesboro, Ga	Haren Academy.		2	177
Berea, Ky --	Preparatory Department of Berea College.-	Nonsect	10	324
Lexington, IK	Lexington Colored Normal School*	Cong	7	300
New Castle, Ky	Christian Bible School	Chris	1	27
Wiiliamsburg. K	Williamsburg Colored Academy	Cong	7	307
Alexandria, La	Alexandria Academy.		3	150
New Iberia, La	Mount Carmel Convent		1	15
New Orleans, I	La Harpe Academy .-.		2	89
- Do	Preparatory Department of Leland University.	Bapt	6	328
Do	Preparatory Department oi New Orleans University.	M. E.-..	12	380
Do	Preparatory Department of Southern University.	Nonsect	9	407
Do	Preparatory Department of Straight University.	Cong	16	545
Winsted, L		M. E	14	379
Baltimore, Mc	Morgan College.--	$\mathrm{M} . \mathrm{E}$	10	151
Clinton, Miss	Mt. Hermon Female Seminary -------------	Nonse	$\stackrel{2}{2}$	29
Holly Springs, Miss.-	Preparatory Department of Rust University.	M. E	10	225
Meridian, Miss ...--.-	Meridian Academy ---------------------.---.	M. E	2	95
Tougaloo, Miss	Tougaloo University		13	35%
Beaufort, N. C	Washburn Seminary	Cong	4	218
Blowing Rock, N. C.-	Colored Academy.--	Cong		107
Charlotte, N. C---	Preparatory Department of Biddle University.	Pres	4	105
Concord. N. C		Presb	4	112
Greensboro,	Bennett Seminary	M. E	6	172
Raleigh. N. C	Preparatory Department of Shaw University	Bapt		42
Salisbury, N. C	Preparatory Department of Livingston Unirersity.	A. À. E. Z	4	174
Winton, N		Bapt	1	42
South New Lime, Ohio	New Lime Institute		7	161
Wilberforce, Ohio....	Preparatory Department of. Wilberforce University.	A. AI.E	9	109
Lincoln University, Pa .	Preparatory Department of Lincoln Unireisity.	Presb	4	77
Oxford, Pa		Nonsect.	3	63
Charleston,	Wallingford Academy	Presb	2	51
Chester S.	Brainera Institute		11	383
Columbia,		Bapt	τ	203
Do	Preparatory Department of Allen University.	A. M. E	4	2%
Frogmore, S. C.	Penn Industrial and Normal School	Nonsect.	2	35
Orangeburg, S. C-.--	Preparator'y Department o: Claflin University.	M. E	9	131
Bells, Tenn	Bells Male and Female Academy -	Nonsect	2	52
Knoxville, Tenn	Knoxville College.	U. Presb	12	54
Mason. Tenn	West Tennessee Preparatory School*	M. E	3	149
Morristown, Tenn.	Morristown Seminary and Normal Institute.	M. E.	7	286

Table 6.-Statistics of institutions for the instruetion of the colored race, for 1889-90Continued.

Location.	Name.	Religious denomination.	$\begin{aligned} & \text { In- } \\ & \text { struct- } \\ & \text { ors. } \end{aligned}$	Students.
	INSTITUTIONS FOR SECONDARY INSTRUC-tion-continued.			
Nashville, Tenn	Preparatory Departmentoi Central Tennessee College.	M. E.	4	43
	Preparatory Department of Fisk.University	Cong	4	400
	Preparatory Department of Roger Williams	Bapt	8	185
Hearne, T		Bapt	2	11
Marshall, Tex	Bishop College.-	Bapt	4	25
Do.	Wiley University	M. E	9	292
Waco. Tex	Paul Quinn Colleg	A. M. E-	13	185
Walnut, Tex	Central College ---	Nonsect	5	83
Norfoll, Va -.........-	Norfoll Mission School --	U. Presb	5	160 95
Richmond, Va			4	95
	Hartshorn Memorial College Colored pupils attending various other sec-	Bapt	5	86 82
	ondary schools. sec-			
	Total		415	12,420
	UNIVERSITIES AND COLLEGES. a			
Selma, Ala	Selma University	Bapt	5	9
Little Rock, Ark	Philander Smith Co	M. E.-	3	12
Washington, D. ${ }^{\text {c }}$	Howard University	Nonsect	6	22
Atlanta, Ga	Atlanta University	Nonsect	7	18
Berea. Ky	Clark Unirersity	M.E...-	5	7
New Orlea	Leland University	Bapt	7	21
Do	New Orleans University	M. E...--	4	
Do	Southern University	Nonsect	3	
Holly Springs, Miss.-.	Straight University	Cong-....--	5 4 4	3 4 0
Rodney, Miss-	Alcorn Agricuitural and Mechanical Col-	Nonsect	7	62
Charlotte, N. C.........	Bidale Universit	Presb	9	45
Raleigh, N. C	Shaw University	Bapt	4	42
Salisbury, N.C	Livingstone College	A. M. ${ }^{\text {E }}$	4	20
Wilberforce, Ohio	Wilberforce University	A. M. E	6	7
Lincoln University,	Lincoln Unirersity	Presb	10	96
Columbia, S. C.	Allen University	A. M.		14
Orangeburg, S. C	Claflin University	M. E	6	16
Nashville, Tenn	Central Tennessee Colleg	M.E	2	9
Do.		Cong	5	49 34
Do.	Roger Filliams University Colored students attending various North-	Bapt	5	-34
	ous Northern unirersities and colleges.			
	Total		3122	811
	SCHOOLS OF TEEOLOGY.			
Selma, Ala Talladega, Ala	Theological Department of Selma Univer-	Bapt .-.-.--	4	25
	Theological Department of Talladega Col-	Cong ---	1	10
Tuscaloosa, Ala...... Little Rock, Ark......	Institute for Training Colored Ministers	Presb	2	29
	Theological Department of Philander Smith College.	M. E.	3	20
Washington, D.C....	Theological Department of Howard University.	Nonsect	7	40
Do	Wayland Seminary	Bapt .-.-.--	3	40
An Do -	Atlanta Seminary	Bapt	3	47
	Gammon Theological Seminary ------....-.-	M. E	3	75
	Gilbert Haven School of Theology (New Orleans University).		3	17
	Theological Department of Leland University.	Bapt	2	20
	Theological Department of Straight Univer-	Cong	2	19
Holly Springs, Miss.. Charlotte, N.C	Theological Department of Rust University.		4	26
	Theological Department of Biddle Univer-	Pres	3	9
Raleigh, N. C.	Theological Department of St. Augustine's	P. E	2	12
	Theological Department of Shaw University.	Bapt	2	50

a Students in preparatory departments are not included here. See Secondary schools.
6 Many of these gave instruction to students in the preparatory departments also.

Table 6.-Statistics of institutions for the instruction of the coloredrace, for 1889-90Continued.

Location.	Name.
Schoors or	

Wilberforce, Ohio
Lincoln University, Pa.
Columbia, S. C
Do -...-.-.........
Orangeburg, S.C
Do
Do
Richmond, Va

Washington, D. C...
Raleigh, N. C.
Wilberforce, O
Columbia, S. C
Nashville, Tenn

Washington, D. C...-

New Orleans, La
Raleigh, N. C.
Nashville, Tenn

Little Rock, Ark Do
St. Augustine, Fian
Cave spring, Ga.
Macon, Ga
Danville, Ky
Louisville, Ky
Baltimore, Md
Jackson, Miss
Raleigh, N. C.
Cedar Spring, S. C.-
Knoxville, Tenn

Law Department of Howard University
Law Department of Shaw University Law Department of Wilberforce University Law Department of Allen University
Law Department of Central Tennessee College.
Colored students attending law schools designed for whites.

Total

SCHOOLS OF MEDICINE, DENTISTRY, AND PHARMACY.

Howard University:
Medical Department
Pharmaceutical Department
Dental Department
Medical Department of New Orleans University.
Leonard Medical College, of Shaw University.
Central Tennessee College:
Meharry Medical Department
Dental Department
Pharmaceutical Department
Colored students attending schools designed for whites.

Total
SCHOOLS FOR THE DEAF AND DUMB AND THE BLIND.

Arkansas School for the Blind (colored department).
Arkansas Institute for Deaf Mutes
Florida Institute for the Deaf and the Blind Georgia Institute for the Deaf and Dumb (colored department).
Georgia Academy for the Blind (colored departinent).
Kentucky Institution for the Education of Deaf Mutes (colored department).
Kentucky Institution for the Education of the Blind (colored department).
Maryland School for Colored Blind and Deaf Mutes.
Institution for Education of the Deaf (colored department).
North Carolina Institution for the Deaf and Dumb and the Blind (colored department).
South Carolina Institution for the Education of the Deaf and Dumb and the Blind (coloreal department).
Tennessee School for the Deaf and Dumb (colored department).

TABLE 6.-Statistics of institutions for the instruction of the colored race, 1839-90Continued.

Location.	Name.	Religious denomination.	$\begin{aligned} & \text { In- } \\ & \text { struct- } \\ & \text { ors. } \end{aligned}$	$\begin{aligned} & \text { Stu- } \\ & \text { dents. } \end{aligned}$
Nashville, Tenn.. Austin, Tex	SCHOOLS FOR THE DEAF AND DCMB AND THE BLIND-continued. Tennessee School for the Blind (colored department). Institution for Deaf and Dumb and Blind Colored Youth. Colored students in various institutions designed for whites. Total \qquad		610 2	1. Co 96
			100	488

a Instructors in both white and colored departments.
TABLi 7.-Summary of statistics of institutions for the instruction of the colored race, for 18s9-90.

a In 1889.
TABLE 8.-Summary of statistics of institutions for the insiruction of the colord race, for 1889-90.

States.	Universities and colleges.			Schools of theology.			Schools of law.		
	Schools.	Teach ers.	Pupils.	Schools.	Teach ers.	Pupils.	Schools.	Teach ers.	Pupils.
Alabama.	1	5	9	3	7	64			
Arkansas District of Columbia	1	$\begin{array}{r} \\ -\quad 3 \\ -\quad 6 \\ \hline\end{array}$	12 22	$\stackrel{1}{2}$	3	80	1	5	20
Georgia..............--	2	12	25	- ${ }^{2}$	7	122			
Kentucky	1	9	33						
Louisiana --. Mississippi.		19	$\begin{array}{r}38 \\ 102 \\ \hline\end{array}$	3 1	7	26			
North Carolina.-	3	17	107	3	7	71	1	1	8
Ohio ---	1	6	7	1	4	18	1	2	3
Sennsylvania	$\stackrel{1}{2}$	10	96 30	1 3	7	20 69			
Tennessee	3	14	92	3	5	73	1	2	8
Virginia -.......				1	4	64			
Other States ..			23			46			6
Total	22	130	811	24	71	734	5	11	63

TABLE 9.-Summary of statistics of institutions for the instruction of the colored race, for 1889-90.

States.	Schools of medicine.			Schools for the deaf and dumb and the blind.		
	Schools.	Teachers.	Pupils.	Schools.	Teachers.	Pupils.
Arkansas.-				2	15	22
District of Columbia	1	16	121			
Florida.-..........-.				1	2	11
Georgia .-.	--			2	16	50
Kentucky .-				2	26	63
Louisiana.	1	4	11			
Maryland	1			1	5	48
Mississippi...	-			1	8	18
North Carolina	1	7	44	1	10	56
South Carolina				1	5	${ }^{5} 23$
Tennessee.--..-	1	25	71	2	20	36
Texas .-...-				1	2	65 96
Other States			63			96
Total	4	52	310	14	169	488

Table 10. - Number of schools for the colored race and enrollment in them by institutions without reference to States.

Class of institutions.	Schools.	Enroll- ment.
Public schools		1,289, 944
Normal schools	39	6,201
Institutions for secondary instruction	71	12,420
Universities and colleges....-.........-	22	811
Schools of theology	24	734
Schools of law .-.-.	5	63
Schools of medicine	4	310
Schools for the deaf and dumb and the blind	14	488
Total	179	1,310,971

NEED OF GREATER ACCOMMODATIONS.

The number of students in the colleges and schools for secondary instruction of the colored race does not show the rapid increase from year to year which would naturally be expected, when we consider the large number of children that have been attending the common schools, many of whom should now be qualified for entering higher institutions. But an examination of the reports of colored schools and of journals devoted to colored education soon discloses one reason why there is not the increase expected, viz, the want of accommodations for more students. Many of the colored schools of higher grade are already badly overcrowded; some of them are so crowded as to seriously endanger the health of the studentsand hundreds of othershave been refused admission on account of want of room, while others still have not applied because they already knew there was no place for them. Very few new schools of the higher grades are established for colored students, as the colorad people themselves have not the means for doing so, and the missionary societies generally content themselves with sustaining or at least strengthening the institutions they have already established. Many of the schools adopt all sorts of expedients to make room for applicants begging for admission, allowing them to s'eep on cots in the halls, making use of old buildings which had been discarded as no longer fitfor occupancy, and very generally crowding the students in excessive numbers in the buildings designed for them. Judging from the accounts giren it would seem reasonable to suppose that the number of colored students would be largely increased immediately if there were accommodations for them. A want of accommolations is especially to be regretted when it is conside el how anxious the young men and womenare to receive an education and what sacrifices both students and parents willingly make in order that they may receive one.

A few quotations on this subject are given from various sources. Dr. C. H. Parkhurst, editor of Zion's Herald, says: "We should have ten schcols where
we now have one. Every institution is crowded to orerflowing. If God is saying anything in this jubilee hour to the church it is, enlarge, enlarge, enlarge your beneficence; enlarge the scope of operation: enlarge the teaching and boarding capability. We rejoice over the achievements of these twenty-live years; but at the same time we are humbled that the church has done solittle."

Morristown Normal Academy, Tennessee; number of students, 306.-"This institution is situated in the midst of a colored population of not less than 250,000 . To meet the educational requivements of this vast number of people, there is only one other school of a similar grade within a radius of 300 miles. The people are realizing, as never before, tieir great need of an education, and are crowding every room to its utmost capacity. Last year scores of bright, earnest, and self-sacrificing young people were sent away for want of room."
"The present dormitory is entirely too small for the number of students crowded into it. For the last two years we have been compelled to put three students in each bed, and to place cots in the halls. Even then it was difficult to sa isfy applicants that we were crowded and could not accommodate them."

Grand Vieu, Tenn.-"The classes are full and the accommodations inadequate.
The school numbers one hundred and eleven. It is necessary to crowd four boys into each room of the boys' hall. Four boys are boarding themselves in a shackly \log building at the foot of the hill. Their grit is admirable."

Touguloo, Miss.- Both the dormitories are crowded. The ladies hall is sup-p-sel to accommodate 75 girls. One hundred and six are crowded into itto-day. We have turned away nearly one hundred more because we had not room for them. Erery indication is that the crowd of applicants will be greater next year than ever. Already applications are coming in."

Meridian, Miss. -"The work of the school is hindered by lack of room. We have enrolled this jear 232 pupils, and many hare been turned off because we could not seat them. We opened in December of 1888 with 28 pupils. A school for more adranced pupils is needed in this part of Mississippi. We have 30 young people in school who come from the five adjoining counties."

Straight University, ${ }^{1}$ New Orleans. - "It has been a golden year for Straight University. Financially it has been our best year. A larger proportion of students able to pay came to us. We want to grow, and have every opportunity io do so sare that our quarters are too small. We hare turned away during the year probab y 200 applicants, many of them for the boarding department. We have had to put cots in nearly all the rooms, packing them too full for comfort, as it was rery hard to say No to young people who came hundreds of miles and kegged tearfully for admission. The school has grown during the last eight years from 200 to 600 and is not 1,000 only because we had no room for them. Our graduates are filling important positions all over the South. Several are superintendents in Texas, Kansas, Mississippi, and Louisiana. One holds en important office in Honduras ; others are doing good work in Cuba and Mexico. Eight are filling important positions in this city. We have no trouble in getting positions for our young people. Indeed, we can not supply as fast as demanded. Often as many as twenty are called for when we have none to send."

Eennett College. Greensboro, N. C.-"Our chief need is a new dormitory building. The present building, though large, is far too small for the increasing demanis upon us for more commodious quarters. "Students aire pouring in upon us every cay, and still we hear of others coming."

Wiley University, Marshall. Tex.-"There should be at once erected a large central building, which would be at once filled with students."

Gilbert Academy, Winsted, La.-"We could hare an attendance of a thousand students within a year if we had buildings to accommodate them."

Central Ternessee College.-"The attendance during the past year (1889-90) is such as to encourage the thought that the desire for education, and that more advanced, is growing rather than diminishing among the colored people. The number in attendance during the past year has tested our buildings to their utmost capacity. We need additional accommodations. This educational work has really just begun. and the outlook is that all our schools will be crowed more and more. We need a new chapel. Our present one is not sufficiently large to seat our students. We have been compelled to fill up the platform and crowd every seat, and yet have not room for all our students. We need a larger chapel for our ordinary purposes, and a much larger one for our public occasions."

[^66]"For our young women we need dormitories: and for the purpose of teaching, cooking, nursing, domestic economy, we need enlarged facilities. We need these, not for our necessary scbool purposes only, but to create a desire for neatness and pleasant surroundings in the homes that these young women are to make in the future. The need of additional buildings is more especially evident when it is. understood that every room on the grounds is occupied by students or teachers."
From the Daniel Hand School, New Orleans.-It is the old story-200 turned away for lack of room. A few have come from the country without ever thinking that they might not find a place, and stand hopelessly on the street corner talking it over.

Another teacher says: "We are crowded to overflowing in every grade of the school but one, in which we have three unoccupied seats. In the normal department twenty pupils are without desks. Yesterday one of the ministers of the city applied for admission of his two daughters, who had completed the course in the public schools-just the class of pupils we like to have come-but I could not admit them for want of room."

From report of President T. D. Tucker, of Florida State Normal College for Colored Students. -"The surest test of the appreciation of the race for the school is in the sacrifices made by patrons in sending and maintaining scholars here and the eagerness of the latter to avail themselves of the opportunity offered them for instruction. With limited means or from daily earnings parents send their children to this school from distant parts of the State, and meet all the financial engagements incident to the education of a young person during the entire session of nine months. Although this is the second year since the school has had dormitory halls, not only has every patron met all his obligations, but the demand for more room in the dormitories is restricted by our inability to provide for any more newcomers.
"The promptness and regularity of attendance at the daily sessions of the school is another proof of high appreciation. No severer punishment for breach of discipline can be inflicted on any of them than to be ordered to leave school for even part of a day. They seem to feel that every day and hour are too precious to be lost from the prosecution of the purpose for which they have come hither from their homes. This strong regard and attachment for a school but lately established is one of the most pleasing features, which promise for it, let it be hoped, a long career of usefulness. * * * Wherever the services of our undergraduates have been once had, there they are held most in demand-a testimonial to their efficiency and the need of them as workers in the common schools."

From report of the American Missionary Association committee in 1891.- "The total number under instruction during the year has increased by sereral hundred, and almost every school is crowded to overflowing, compelling in many cases the sad necessity of sending away great numbers of applicants from lack of room for their accommodation. It is evident that the thirst of the colored people for knowledge, shown so remarkably from the moment of their emancipation, has not diminished, but is constantly increasing."

INDUSTRIAL TRAINING.

At Clafin University, South Carolina, a large number of students were instructed in trades and industries; in agriculture, including gardening and horticulture, 40 students; in architectural drawing, 13; in art needlework, 20: in blacksmithing, 98; in brickmaking, bricklaying, plastering, and frescoing, 92 ; in carpentry and cabinetmaking, $1: 5$; in cooking, 35 ; crocheting and lacemaking, 120 ; domestic economy, 13; dressmaking, 35 ; mechanical engineering, 15; merchandising, 1 ; nurse-training, 14 ; painting, graining, and glazing, 81 ; printing, 69; steam laundrying, 50; steam planing, sawing, turning, 26; steam milling, grinding cereals, 4 ; shoemaking, 21 ; plain sewing, 150.

President L. M. Dunton, of Claflin University, says: "In the past the negro has been a laborer. For years to come he must be a laborer. A few of course will be educated and will enter the ministry, the law, the medical profession; but the vast majority must labor with their hands. It is therefore very important to give them this manual training. We are very enthusiastic about this, and we do not allow any young woman to graduate until she can measure. cut, fit, and make a dress, and make it in style. They alsolearn cooking and artistic needlework. The young men are required to learn the principles of difierent trades, and to learn one trade thoroughly. We require a certificate from some
one of the industrial departments that they have accomplished the required work before they can graduate from the institution. During the vacations these young men and women work at these trades that they have learned at the institution. We have boys now earning a dollar and a half a day at house painting, others earning $\$ 2$ a day laying brick or at carpentry. In our blacksmith department they make all the tools they use ; they even make their own razors. This industrial feature has been an inspiration to the literary department."
At Gilbert Academy, Winsted, La., there are 12 students in the printing office, 14 in the carpenter shop, 16 on the farm, 53 girls in the sewing room, 3 in the bakery, besides a large number in the laundry.
Philander Smith College, Little Rock, Ark.-"The industrial department is carried on in a two-story frame building erected by the students. In this department there are 114. The citizens of Little Rock have given over $\$ 800$ towards paying for the building. A large number of young men have been taught the use of tools. In the printing department several young men and young ladies have been taught."
Rust University, Mississippi.-In the carpenter shop 35 young men were instructed in the use of tools and methods of construction, from the most common articles in use in home and on farm to fine cabinet work. Twenty-seven were taught shoemaking, from the making of cheap shoes to the finest French kia boot. Eleven were instructed in the printing office, and a monthly paper was published. The young men below the college course, who were not assigned to some trade, were put in the department of agriculture. In the sewing department 102 girls received useful instruction in that line.

Clark University, Atlanta, Ga.-"At Clark University we have one of the best located as well as one of the best equipped industrial schools south of the Ohio. We have one large brick building, Ballard Hall, 100 by 40 feet. The first floor is divided into two parts: one-half is occupied by the wheelwright shop. The second floor is divided into four rooms, one occupied by the printing office, one by the varnish and finishing department, another by the harness and trimming shop, while the remaining one is devoted to an office and mechanical drafting. The machinery is driven by a 30 horse-power engine. We have a blacksmith shop 40 by 30 feet, brick, three forges, drills, benches, etc. We have afoundry, 60 by 40 feet, supplied with the latest improved cupola.
"The Woman's Home Missionary Society has a building worth $\$ 6,000$, built after the best models and thoroughly equipped with appliances for teaching in the culinary department, needlework, dressmaking, and all that a wife in a wellrepulated home ought to know. The university physician has a class in nursetraining in this home also. A shoe shop and a machine shop are among the things now under contemplation."

Central Tennessee College.-"On October 15, 1890, the mechanic arts shop was dedicated to the training of young men for useful work in wood, iron, brass, and steel ; in the manufacture of steam engines, scientific, and philosophical apparatus. Rev. H. G. Sedg.wick, M. s., who is a genius himself in mechanics and can readily impart instruction to others, has during the year had excellent work done by students in wood-turning, shaping and planing, castings. steel, and brass. One engine has been built and considerable repair work done. This is the best shop, and the only one of the kind, open to colored youth in this country."
Dr. Atticus G. Haygood, general agent of the Slater iund, says: "It has been demonstrated that an hour or two a day in the workshop or the sewing room does not hinder in the least education in books. It has been found, as a rule, that the best men in the shop are the leaders in the class room. Experienced teachers say that industrial training fosters good discipline and the upbuilding of strong and reliable personsl character. Outside the important fact that a great number have learned enough of the trades to pursue them profitably, it is cortain that thousands have learned enough to be independent as citizens and far more capable as heads of families. That 'head, heart, and hand training' should go on together in these institutions is now the accepted doctrine in all quarters.
"It can not be doubted that the success of industrial training in the negro schools has had much to do with the development of opinion throughout the Southern States of the importance of this part of education in the white schools of the country."

Gen. S. C. Armstrong on industrial training.-"Labor is a great moral and educational force. Next to the grace of God, hard work, in its largest sense, is the most vital thing in Christian civilization. Subtract from any neighborhood,
within a radius of ten miles, all industry, and in six months, inspite of churches and schools, what would become of order and decency? Look at the fairest civilization, and you will see that the worst lives are at the top and at the bottomthose who are too rich and those who are too worthless to work. Wherever you find industry you find character and morality.
"The main thing, then, in the industrial system is to open as widely and broadly as possible opportunities for agricultural, mechanical, and household industries, which shall provide negro students means to support themselves and to derelop character. Character is the foundation. The training that our pupils get is an endowment. An able-bodied student represents a capital of perhaps a thousand dollars. We propose to treble that. When they learn a trade they are worth threefold more in the labor market. Last Saturday I gare my final words to our graduating, c'ass. I said to those 45 scholars, 'How many of you can go out into the world, and, if you can not get a school, how many can work in some line of industry and so support yourselves?' There was a roar. Erery one said, 'I can,' and every one laughed. They go out into the world smiling at difficulties, happy in their pluck and purpose and skill.
"We are convinced that the negro needs physical as well as mental and Christian training. He needs the ten hours drudgery which he gets in the shops to puthim in shape for the struggle of life. He must go to his work with an appetite."

Rec. R. H. Allen, Concord, N. C.-"We have now a large boarding school for colored girls. If you ever sare the negroes you must save the girls and women. You will not elevate any race until wives and mothers can teach the gospel in their families. You must sare the daughters of the freedmen. They are to be the wires and mothers and home-makers of the future. At Concord you will see 234 girls in a seminary, with all the appliancesfor education and the industrial arts. They do the whole work of the school-all the washing, ironing, cooking, scrubbing, and dressmaking. We take a girl for $\$ 45$ a year. We say to her, Go to work during the vacation and make $\$ 15$ or $\$ 20$ and we will help you to the balance of the $\$ 45$. In such schools, by a practical education of the head, hand, and heart, the girls are all well prepared to take their part in life. We help them to make character."

Rer. Frank G. Woodworth, president Tougaloo Unirersity, Mississippi.-"The ordinary laborers on plantations do not often receive more than from 75 to 90 cents per day. I want to speak of the value of industrial education. Boys who come to us untrained, often able to earn only 75 cents a day, are sent out as carpenters, blacksmiths, or tinsmiths, able to earn from $\$ 1.25$ to $\$ 2.50$ a day. We are having that repeated constantly. That is the bread-and-butter view of industrial education, and it is worthy of mention. The mechanics who receive $\$ 2$ a day do not live in a one-room cabin. They are getting to have good little homes of their own."

The higher education helps the elementary.-President Horace Bumstead, of Atlanta University: "It is a mistake to forget that the higher education of the few is contributing most efficiently to the elementary education of the many. What are the graduates of these higher institutions doing? Are they going out and enjoying their culture, and making a selfish use of it? Take Atlanta University. We have sent out, in the last 16 or 18 years, over 200 graduates from our collegiate and normal courses, two-thirds of whom are to-day engaged in teaching. They are doing this very work that we are reminded is the most important work to do-helping up the masses, educating the people. One must remember the relationship between the higher and the more elementary work. Where would these Southern States get their teachers for the colored public schools if it were not for these higher institutions?"

Colored teacher's wanted.-President E. C. Mitchell, of Leland University, New Orleans: "More colored teachers must be educated. The appeals made to our institution to furnish teachers qualified for the higher work, or even the common work, are far beyond the power we have to meet. If we had four times as many graduates, we should not be able to meet the demand made upon us for teachers of the higher grade. All the institutions of the South must be carried on by colored teachers."

What kind of education the negro needs.-Dr. A. G. Haygood: "That many halftaught and unwisely-taught negroes 'go to the bad' and seek money by 'shor't cuts' is not surprising. In these matters the negro's weakness illustrates his brotherhood to his white neighbors. The prisons show enough half-educated white people to prove that merely learning the rudiments does not secure virtue.

In all races it is true that with new knowledge new temptations come; strength to resist comes after, if at all. In all this a man of sense finds no argument against the education of the negro, but a demonstration of the need, for him and for the white race, of more and better education.
"' Better' is not the same as 'more;' the imminent need for the negro is to find out what education is now fittest for him. Nothing in these siatementr means the exclusion of the negro from the highest and widest studies of which some of them are capable; it does mean, as I see it, that the 'regulation college curriculum' is not what most negro students need. I would exclude, by arbitrary and prescriptive rules, no negro from whatever he can achieve, but J am persuaded that, in overlooking the hard facts of this case and in pressing the 'college' idea overmuch, there has been much waste of money, labor, time, opportunity.
"The educated negro man gravitates to the pulpit or the schoolroom. To the pulpit first, because here he may gratify, without hindrance, his inborn love of speaking. He is oratorical by instinct, and this race will more and more develop great orators. The educated negro woman goes to the schoolroom by preference, butshe would rather be wife to the preacher. Along here are perils that wise negroes understand.
"Why should such indications and tendencies surprise us? No man lives by the labor of his hands who can live by his wits, least of all American white men. The negro's dangers are greater because his opportunities outside the labor of his hands are few. No arguments, nor frettings, nor denunciations, nor laws, nor force can multiply them; time and new conditions, possible only to the 'time element,' can increase them.
"The educated negro finds it difficult to succeed in the practice of law. White people employ attorneys of their own race, and a negro will have none but a white man for lawyer when large sums are at stake, or life or liberty are imperiled. But he has 'made a beginning' in the law.
"Next to teaching and preaching, medicine among professional pursuits offers the best field and the best opportunity for the capable negro. The reason is, there is a generally recoonized and felt need of negro doctors. Two of the institutions in connection with the Slater fund-Meharry Medical College, Nashville, Tenn., and Leonard Medical School, Raleigh, N. C.-are thoroughgoing schools of medicine and command the respect of the medical profession. The large majority of the graduates of the schools are doing admirably in the practice of medicine. They are a blessing to their race and are successful and useful citizens."
The following, from the Charleston (S. C.) News and Courier, gives some idea of how the negro appreciates an education at Claflin University, South Carolina: "The students come from all parts of the State, and a better class of colored families are represented than usual. From the number of students (902), their condition and their work; it would seem as if the colored people are taking more than ordinary interest in the cause of education. Many parents are making great sacrifices to send their children to Clafin, and many of the students are in much better circumstances than their parents at home. The students lack early home training. They do not have access to daily papers, magazines, or books like most white children. As a rule subjects of importance and interest are not discussed in the family circle, and on account of these drawbacks the colored student labors under disadvantages. A lack of general info mation is noted by the professor. Their behavior is, as a rule, very good. There is not, in the knowledge of the officials of the institution, a single student who visits a barroom, smokes in the campus or in the streets.
"A student probably has less expense at Claflin than at any other educational institution in the country. Think of it-all actual expenses for a session covered by $\$ 52!$ What can be cheaper? This is popular education. The figures seem to be hardly credible. Here is the itemized bill for a month: Rent, $\$ 1$; incidentals, 50 cents; tuition, 50 cents; board. $\$ 3.50$; washing, $\$ 1$; total, $\$ 6.50$ per month and $\$ 52$ per session. You may think that dormitory rent at $\$ 1$ and washing at $\$ 1$ are reasonable. But you, as many others, will ask how can a living working being be fed for $\$ 3.50$? Well, it is done at Claflin, and here is how it is accomplished. Fifty students club together and get a table at the dining hall for which they pay no rent. They are not afraid of work and agree to do all the washing, waiting, and setting of tables in turn. A purchasing committee is appointed, and they have potatoes, meat, corn, and rice at the cheapest market price. The only expense besides the food is that of a cook. It seems almostincredible, but the students eat substantial meals and the bill of fare shows what they eat."

From the report of the American Missionary Asscciation committec in 1891.-"One of the greatest neads of the colored people is coming to be that of competent, educated, Christian leaders of their own race, preachers, teachers, and other professional mะn, a need not likely to be adequately supplied except by the colleges and higher schools sustained by this and other Christian bodies. It may be safely assumed from the history of other races that no leadership will be permanentiy accepted by the colored people except such as shall come from their own ranks. In furnishing through its higher institutions such a thoroughly equipped leadership to take the place of its own at the earliest moment, this association will make one of its best contributions to the welfare of the colored race. Another encouraging fact in the same direction is the growing interest in the theological department. As an ignorant ministry has been and still is the curse of the colored people, a thoroughly educated ministry is the highest boon we can possibly confer upon them."
"Straight University has numbered 582 students, who come from a wide area. It is not uncommon for students who can speak no English to seek this institution from Cuba, Central America, Mexico, or some parts of Louisiana. It is an inspiring thought that they will return to their homes, as some have returned, with Christ in their hearts and thrifty thoughts in their heads to radiate good influences in those revolutionary states. This institution has been more than filled. Hundreds have been refused admission. Every year shows marked improvement in the quality of student life in this, as in all our schools. Pupils come better prepared. They are more earnest and more energetic. The demand for teachers from this institution is greater than the supply. Seventeen of its former students are now teaching in the city schools of New Orleans. Many others are filling important places as teachers, superintendents, and preachers in neighboring States. Various industries for men and all kinds of needlework and housework for women are well taught."

Temperance is taught in all the higher colored schools.-Rev. J. C. Roy: "In all of these schools the principle of temperance is taught and the students go out and propagate these sentiments among their people. In this way they ,produce an immense amount of temperance sentiment among the colored folks."

The Negro Conference at Tuskegee, Ala.-A negro conference made up of representatives from that district of the South known as the "Black Belt" was held at Tuskegee, Ala., on February 23, 1892. About 450 colored farmers, ministurs, and teachers were present, and a full and candid discussion was had of questions affecting the industrial, moral, educational and religious future of the negro population.

In dealing with the question oif the proper means to be adopted for the correction of the existing unsatisfactory order of things, the conference suggested various remedies, which may be summarized, in the language of those assembled, as follows:
"(1) That, as far as possible, we aim to raise at home our own meat and bread. (2) That as fast as possible we buy land, even though a very few acres at a time. (3) That a large number of our young people be taught trades and that they be urged to prepare themselves to enter as largely as possible all the various avocations of life. (4) That we especially try to broaden the field of labor for our women. (5) That we make every sacrifice and practise every form of economy that we may purchase land and free ourselves from our burdensome habit of living in debt. (6) That we urge our ministers and teachers to give more attention to the material condition and home life of the people. (7) We urge that our people do not depend entirely upon the State to provide schoolhouses and leng then the time of the schools, but that they take hold of the matier themselves where the State leaves off, and by supplementing the public funds from their own pockets and by building schoolhouses bring about the desired results. (8) We urge patrons to give earnest attention to the mental and moral fitness of those who teach their schools. (9) That we urge the doing away with all sectarian prejudice in the management of schools."

The Lake Mohonk Confercice.-In June, 1891, there was held at Lake Mohonk, N. Y., a conference of distinguished editors and educators on the negro question. It was presided over by ex-President Hayes, and among those present were Dr. Lyman Abbott, of the Christian Union; Dr. W. H. Ward, of the Independent; Dr. W. T. Harris, United States Commissioner of Education; Gen. O. O. Howard, Dr. Charles H. Hall, Mr. Morris K. Jessup, and Rev. R. T. Middleditch, of the Christian Enquirer. At the conclusion of the conference the following platfo:m was adopted.

1. The accomplishing of the primary education of the negro by the States themselves, and the further development of means and methods to this end, till all negroes are creditably trained in primary schools.
2. The largely increased support of schools aided by private benevolence, which shall supply teachers and preachers for the negro race.
3. The grounding of the vast majority of these teachers and preachers in common English studies and in the English Bible, with the further opportunity for any of them to carry on their studies as far as they may desire.
4. The great extension of industrial education for both men and women.
5. The encouragement of secondary schools established, maintained, and conducted by negroes.
6. The purchase of homesteads by as many negro households as possible, with an increased number of decent houses to replace the old one-room cabin.
7. The establishment by the Government of postal savings-banks, in which negroes can be encouraged to save their earnings until they can purchase homes.
8. The aid of public education by the National Government for the special benefit of those sections in which illiteracy most prevails.
9. The removal of all disabilities under which negroes labor by the sure forces of education, thrift, and religion.

HAMPTON NORMAL AND AGRICULTURAL INSTITUTE.

A pamphlet has been published giving a sketch of the twenty-two years' work of the Hampton Normal and Agricultural Institute, Hampton, Va., a full and extended account of which is soon to be issued. As this institution has a very important part in the work of educating the colored race, having been one of the pioneer colored schools, and having at the present time nearly 1,000 students in attendance, 650 of whom are boarding pupils, it may be well to learn from this pamphlet something of the character which was so active in its establishment and also of the early history of the enterprise.

Dr. S. C. Armstrong, who has had charge of the institute from its foundation, was born in the Hawaiian Islands in 1839. His parents had been missionaries there for eight years at the time of his birth, and his father was the minister of public instruction from 1847 till the time of his death, in 1860. Dr. S.C. Armstrong, then a young man, left the islands and went to Williams College, Massachusetts, to complete his education, and he attributes whatever measure of success he has attained to the instruction there received from Dr. Mark Hopkins. When he undertook the work. at Hampton his purpose was to put in operation there the same plan and system of education that he had become acquainted with in the Hawaiian Islands under his father's superintendence. His statement of the disordered condition of the country at that time shows that he had many serious difficulties to contend with.
"In March, 1866, I was placed by Gen. O. O. Howard, Commissioner of the Freedmen's Bureau, in charge of ten counties in eastern Virginia, with headquarters at Hampton, the great contraband camp, to manage negro affairs and to adjust, if possible, the relations of the races.
"Colored squatters by thousands and Cen. Lee's disbanded soldiers returning to their families, came together in my district on hundreds of abandoned farms which Government had seized and allowed the freedmen to occupy. There was irritation, but both classes were ready to do the fair thing. It was about a two years' task to settle matters by making terms with the landowners, who employed many laborers on their restored homes. Swarms went back on passes to the old plantation' with thirty days' rations, and nearly a thousand were placed in families in Massachusetts as servants through the agency of a 'home' in Cambridgeport, under charge of a committee of Boston ladies.
"Hardest of all was to settle the ration question; about 2,000, having been fed for years, were demoralized and seemed hopeless. Notice was given that in three months, on October 1, 1866, all rations would be stopped, except to those in hospital, for whom full provision was made. Trouble was expected, but there was nota ripple of itor a complaint that day. Their resource was surprising. The negro in a tight place is a genius.
"It was my duty every three months to personally visit and report on the condition of the ten counties; to inspect the bureau office in each in charge of an army officer; to investigate troubles and to study the relations of the races. The better class of whites were well disposed, but inactive in suppressing any misconduct of the lower class. Friendliness between the races was general, broken
only by political excitement, and was due, I think, to the fact that thoy had been brought up together, often in the most intimate way, from childhood; a surprise to me, for on missionary ground parents, with the spirit of martyrs, take overy pains to prevent contact of their children with the natives around them.
"Martial law prevailed; there were no civil courts, and for many months the bureau officer in each county acted on all kinds of cases, gaining generally the confidence of both races. When martial law was over and the rest were everywhere discontinued, the military court at Hampton was kept up by common consent for about six months.
"Scattered families were reunited. From even Louisiana-for the whole South was mapped out, each county officered, and as a rule wisely administered-would come inquiries about the relatives and friends of one who had been so'd to traders years before ; and great justice and humanity were done in bringing together broken households.
"Gen. Howard and the Freedmen's Bureau did for the ex-slaresfrom 1865 to 1870 a marvelous work, for which due credit has not been given; among other things, giving to their education an impulse and a foundation, by granting three and a half millions of dollars for schoolhouses, salaries, etc., promoting the education of about a million colored children. The principal negro educational institutions of to-day, then starting, were liberally aided at a time of vital need. Hampton received over $\$ 50,000$ through Gen. Howard for building and improvements.
"On relieving my predecessor, Capt. C. B. Wilder, of Boston, at the Hampton healquarters, I fcund an active, excellent educational work going on under the American Missionary Association of Nerv York, which, in 1862, had opened, in the vicinity the first school for freedmen in the South, in charge of an ex-slare, Mr. Mary Peake. Over 1,500 children were gathering daily: some in old hospital barracks-for here was Camp Hamilton, the base hospital of the Army of the James, where, uuring the war, thousands of sick and wounded soldiers had been cared for, and where now over 6,000 lie buried in a beautiful national cemetery. The largest class was in the Butler School Building; since replaced by the fine John G. Whittier Schoolhouse.
"Close at hand, the pioneer settlers of America and the first slares landed on this continent; here Powhatin reigned; here the Indian was first met; here the first Indian child was baptized; here freedom was first given the slave by Gen. Butler's famous 'contraband' order' ; in sight of this shore the battle of the Monitor and Merrimac saved the Union and revolutionized naval warfare; here Gen. Grant based the operations of his final campaign. The place was easily accessible by railroad and water routes to the north, and to a population of $2,000,000$ of negroes ; the center of prospective great commercial and maritime development-of which Newport News, soon to have the largest and finest shipyard in the world, is beginning the grand fulfilment-and, withal, a place most healthful and beautiful for situation.
"I soon felt the fitness of this historic and strategic spot for a permanent and great educational work.
"The suggestion was cordially receired by the American Missionary Association, which authorized the purchase, in June, 1867, of Little Scotland, an estate of 125 acres (since increased to 190), on Hampton River, looking out over Hampton Roads.
"Not expecting to have charge, but only to help, I was surprised one day by a letter from Secretary E. P. Smith, of the American Missionary Association, stating that the man selected for the place had declined, and asking me if I could take it. I replied, 'Yes.'
"Till then my own future had been blind; it had only been clear that there was a work to do for the ex-slaves, and where and how it should be done.
"The thing to be done was clear ; to train selected negro youth who should go out and teach and lead their people, first by example by getting land and homes; to give them not a dollar that they could earn for themselves; to teach respect for labor, to replace stupid drudgery with skilled hands; and to these ends, to build up an industrial system for the sake not only of self-support and intelligent labor, but also for the sake of character. And it seemed equally clear that the people of the country would support a wise work for the freedmen. I think so still.
"The missionary plan in Hawaii had not, I thought, considered enough the real need and weaknesses of the people, whose ignorance alone was not half the trouble. The chief difficulty was, with them, deficient character, as it is with
the negro. He is what his past has made him ; the true basis of work for him and all men is the scientific one-the facts of heredity and surrounding : all the facts of the case.
"There was no enthusiasm for the manual-labor plan. People said, 'It has been tried at Oberlin and elsewhere, and given up; it don't pay.'
" 'Of course,' said I, 'it can not pay in a money way, but it will pay in a moral way, especially with the freedmen. It will make them men and women as nothing else will. It is the only way to make them good Christians.'
"The school has had from the first the good fortune of liberal-minded trustees, who accepted its unformulated, practical plan when it opened, in April, 1868, with 2 teachers and 15 pupils, and adopted my formal report of 1870, the year of its incorporation under a special act of the assembly of Virginia.
"By the act of incorporation the school became independent of any association or sect and of Government. It does work for the State and General Government, for which it receives aid, but is not controlled or supported by them.
"From the first it has been true to the idea of education by self help, and I hope it will remain so. Nothing is asked for the student that he can provide by his own labor, but the system that gives him this chance is costly. The school depends on charity for $\$ 60,000$ a year; the student gets nothing but an opportunity to work his way. While the workshops must be made to pay as lar as possible, instruction is as important as production.
"Steadily increasing, its full growth, just reached, is 650 boarding students, from twenty-four States and Territories, averaging 18 years of age, 136 of them Indians; 80 officers, teachers, and assistants, of whom half are in the eighteen industrial departments and shops; 300 children in the Whittier (primary) department.
"The school is maintained at a total annual cost of about $\$ 155,000$. Deducting the labor payments of negro students (say $\$ 55,000$), $\$ 100,000$, which is $\$ 154$ apiece, is the net annual cost to the public. This is provided, first, by annual appiopriation from Virginia of $\$ 10,000$, interest on the State Agricultural College land fund (act of Congress, 1862); second, by an appropriation of $\$ 20,000$ by Congress for the maintenance of 120 out of our 136 Indians at $\$ 167$ apiece; thit d, by an income of about $\$ 10,000$ from our endowment fund (of $\$ 194,000$) and from rents; fourth, by about $\$ 50,000$ contributed by the people, in the form of $\$ 70$ scholarships, donations for general purposes and occasional unrestricted legacies. The school is never closed, but reduced nearly one-half in the summer ; many colored students go out to find work, and 60 or more Indian students have 'outings' among Massachusetts farmers.
"A great stimulus to this institute and to all like work has been the 16,000 negro free schools of the South-nearly 2,000 in Virginia alone-costing the exslave States nearly $\$ 4,000,000$ a year in taxation.
"Northern charity, at the rate of about $\$ 1,000,000$ a year, with liberal Southern State aid in some cases, is supplying over twenty strong normal and collegiate institutes, mostly under church auspices, where not far from 5,000 adult select negro youth of both sexes are being fitted to teach and lead their people-industrial education being more and more appreciated and introduced. The Slater fund has been a great stimulus to their technical training. The negro girl has proved a great success as a teacher. The women of the race deserve as good a chance as the men.
"So far it has been impossible to supply the demand for negro teachers. Sch olhouses and salaries, such as they are, are ready; but competent teachers are the great and pressing need, and there is no better work for the countiy than to supply them.
"But the short public school sessions, of from three to seven months, do not give full support, and skilled labor is the only resource of many teachers or over half the year. As farmers and mechanics they are nearly as useful as in the schoolroom. Hence the importance of industrial training.
"Hampton's 720 graduates, discounting 10 per cent as disappointing, with half that number of undergraduates, are a working force for negro and Indian civilization. To fit them for this field has cost, since April, 1868, the round sum of $\$ 1,350,000$, not including endowments, of which over $\$ 500,000$ is represented by the school's 'plant,' which is good for generations to come.
"Every year an account of funds received has been rendered in detail.
"It was not in the original plan of the school that any but negrees should be received, though the liberal State charter made no limit as to color; but when, in 1878, a 'Macedonian cry' came from some Indian ex-prisoners of war in Flor-
ida-once the worst of savages-through Capt. R. H. Pratt, whose three years' wise management of them in Fort Marion had resulted in a wonderful change, seventeen were accepted at private expense, Bishop Whipple providing for five of them. The Hon. Carl Schurz, then Secretary of the Interior, was quick to appreciate the success of their first few months at Hampton, and sent us more Indians from the West; then Congress, on the strength of the results at Hampton, and of Capt. Pratt's proved capacity, appropriated funds to start the great work at Carlisle, where over five hundred Indian youth, under Capt. Pratt, are being taught the 'white man's way.'
"The annual Indian attendance at Hampton is now 136, of whom 120 are aided by Government, the rest by charity. The death rate, once alarming, has, for six years, been not quite one a year. Of the 345 returned Indians, but 25 are reported as unsatisfactory, but 4 of them bad; the rest are employed as farmers, catechists, preachers, teachers, mechanics, clerks, etc.; 35 seeking further education, 6 of them in Eastern normal schools and colleges, and 42 of the girls are married, in good homes.
"The old homesickness of Indians at eastern schools is nearly over. The three years' period at school, which was formerly too much like a prison term, is more and more ignored, and the idea of fitting for life, whatever time it takes, gains strength. Indians are no longer coaxed to come. Twice as many as we can take wish to come; yet the really desirable ones are not very many, and we do not care to increase our numbers. Our Indian work is illustrative rather than exhaustive.
"In the twenty classes-of 1871 to 1890 , inclusive- 723 graduates have received diplomas, 280 young women and 443 young men. Of these, 25 are Indians- 8 young women and 17 young men-the first Indians graduating in 1882.
"Of the 723 graduates, 604 report as teachers; 80, a trifle over 11 per cent, report failure to teach. Of these 80, 9 are Indians, which brings down the per cent of colored graduates failing to teach to almost exactly 10 per cent. That 16 out of the 25 Indian graduates have taught is a very good showing for them, considering the fewer opportunities to teach which have been open to them.
"Of 39 graduates (colored) we have been unable to obtain any report.
"The tjtal number of those who report having other regular occupation than teaching is 271 . Of these, 191 have taught as well. While the balance-413do not report other regular occupation than teaching, the great majority find employment as they can-at farming, trades, or service-betweon school terms, or cultivate their own land and keep house.
"The principal regular occupations reported besides teaching and the number reporting in each are as follows:
Of the young men:

Missionaries in Africa
39
2
2

Mechanical trades | 43 |
| :--- |
| 36 |

Agriculture (as an exclusive occupation) $\begin{array}{r}36 \\ 23 \\ \hline\end{array}$

In Government or civil service (U.S. Army, United States Department clerks, customhouse clerks, postal clerks and carriers, policemen, light-house keeper, county sur-
veyor, superintenãent of schools)

Music -.. 4
Of the young women:
Physician (an Omaha Indian)
Missionary in Africa -....................
In business for selves (store, millinery, laundry, gardening)
Dressmaking and sewing
Printing
Music (organist and singing)

Matron
1
"The total number of children reported as having been taught by our graduates is 129,475 . This number is, of course, approximate.
"Some light on the frequent question as to the comparative mental endowment of black and 'colored' in the negro race is perhaps to be gathered from the unforeseen and rather striking result of an investigation of the distribution of the highest class honors since 1874, when they were first awarded.
"At Hampton, salutatory and valedicto:y are equal honors, the one for the young women, the other for the young men.
"Leaving out the Indian salutatorian of ' 86 and valedictowian of ' 89 , and one year when the programme was made up from graduates of previous years, we find that, of the fifteen colored girl salutatorians, four were black, three dark, seven light, and one 'apparently white.' Of the fifteen young men valedictorians, seven were black and one dark, and seven were light. In other words, of young women, seven were dark and eight light; of young men, eight were dark and seven light; which divides the honors as nearly equally as possible; fifteen to the dark and fifteen to the light. After the first decade of the school, investigation was made with a precisely similar result. That it should again appea: over the whole period of seventeen years is surprising and seems significant."

CHAPTER XIV.

THE SWEDISH OR LING GYMNASTICS.

By G. B. Putvam, Principal of Franklin School, Boston, Mass.
The third wave of popular interest in physical culture has been rising rapidly of late in this country, and it is to be hoped that it may reach and effectfor good all our public schools.

It is said: "We grant that gymnastics should be introduced at once, but what system shall be employed?" There is no American system. This is confirmed by Dr. Edward Hitchcock, of Amherst College, who says: "I have been working at physical culture for a quarter of a century. I do not, however, think that we hare a system," and by Proí. E. M. Hartwell, of Johns Hopkins Unirer"sitr, who says: "It is not calling a thing by a name that makes a system, and that is the point I wish to urge in regard to the so-called American system. We have noze."

The Germans have a system dereloped by "Father Jahn," who from love of Fatherland introduced turning throughout Germany, producing wonderful results among its youth in the early part of the present century.

His system was imported into this country, as early as 1826, by Dr. Charles Beck, at the Round Hill School, Northampton; by Dr. Follen, at Harvard University, and by Dr. Francis Lieber, at the Gymnasium in Boston. These were able, enthusiastic men and good teachers. All three were pupils of the illustrious Jahn, who said of the latter that he " possessed good moral behavior, was ingenious and clever, as well as a good leader and teacher of gymnastics," and yet their efforts failed of lasting success.

Many of the good features of Jahn's system have been appropriated by numerous teachers in our higher schools and colleges, as well as by those in charge of our city gymnasia. They hare introduced them at random, with others from England, France, or Sweden, or among devices of their own invention, in order to establish a so-called American system. Some good results have followed, but there remains a crying demand for a system which is adapted to the felt necessities of public schools from primary to high-school grades.

I am persuaded that the Ling system of Sweden, as it stands to-day, is just what we nced.

It has stood the test of seventy or eighty years, and its effects have long been visible.

A correspondent of the New York Tribune, traveling in Sweden thirty years ago, wrote as follows: "I attribute the superior physique of the inhabitants of this country, in a great measure, to the gymnastic exercises which they receive in the public schools. This kind of training is universal. Erery school building has its large high room with earthen or matted floor, with all sorts of gymnastic implements. The scholars are not allowed to exercise on what they wish, but there is a regular scientifically arranged system. They are trained in squads and move and march at the word of command. The smaller or weaker boys begin with the lowest grade of exercises and follow up according to a scientific system arranged to promote health. They all seem to go into it with the greatest relish and show well-trained muscular power."

A lady from Finland recently remarked that at her home they could always distinguish a lady from Sweden, for she walked a queen. Thirty years ago John D. Philbrick, the sagacious superintendent of Boston schools, saw clearly the needs of the pupils in the way of physical culture, and in his report of September, 1860, dwelt at length on these needs, and made suggestions for meeting them, saying, among other things, "The principal remedy I would suggest is
the introduction into all grades of schools of a thorough system of physical training as a part of school culture, in which every pupil shall be required to participate. I fully agree with an able author, that a universal course of training of this kind, scientifically arranged and applied, in connection with obedience to other laws of health, might, in one generation, transform the inhabitants of this land from the low development now so extensive to the beautiful model of the highest form of humanity."

The report was referred to a subcommittee of five of the ablest mon in the school board, and they, largely through his influence, recommended the appointment of a competent teacher and the daily practice of gymnastics, and they say: after speaking of the injurious effects of certain violent exercises: "The system invented by Prof. Ling, of Sweden, which is called free gymnastics, is not liable to this objection. It consists of a variety of motions of the head, chest, trunk, and limbs, performed with energy and vigor, without the use of fixed apparatus. Indeed, most of the exercises, and perhaps sufficientfor the purpose of our public schools, require no apparatus whatever, and no special room set apart for its practice. This syst m, in a modified form, it is deemed both desirable and practicable to introduce into all our schools, and it is recommended that it be made an obligatory branch of education."

But the school board was not then ready to follow the advice of their subcommittee, and a golden opportunity was lost.

Nearly thirty years have passed and Mrs. Mary Hemenway, who, in the establishment of cooking schools and the introduction of sewing, has been a real bsnefactor to the children of Boston, has turned her attention to the introduction of a system of physical culture that she may thereby benefit the schools of the city.

In the autumn of 1888 she secured a hall and employed as instructor a graduate of the Royal Central Gymnastic Institute of Sweden, which Prof. Hartwell pronounces the best school for training teachers of gymnastics in the world.

Classes were formed from among the teachers of the public schools, and they entered earnestly upon the task of fitting themselves to teach the Ling system.
The first public exhibition of it was given by a dozen ladies of the normal class at the conference on physicial training, in Huntington Hall, Boston, in November, 1889. Again its peculiar features were exhibited at Mechanics' Hall before some four thousand people on the afternoon of April 5, 1890, by a normal class and also by pupils of the first and fifth classes of the Franklin Grammar School. This exhibition was under the auspices of the American Association for the Advancement of Physical Education, which was holding its annual meeting in the city.
"But who was Ling?" I am often asked. Peter Henrik Ling was born in Ljunga, province of Smaland, Sweden, November 15, 1776.
His father was a clergyman, but young Peter was soon left an orphan, and in early manhood, prompted by a love of adventure, traveled over Europe. His journeys were apparently aimless and he was often reduced to extreme want.

He succeeded, however, in mastering several modern languages and finally returned to Sweden.
Soon after, while suffering from an attack of the gout in the elbow, he thought to cure it by exercise, and to this end he learned the art of fencing.
The remedy proved effective, and his success led to the idea that other diseases might yield to proper exercise. Hence the origin of the Swedish movement cure, as the author of which his fame has become world wide. It has been practiced not only in the leading countries of Europe, but in the United States as well. That he might be able the better to apply his theories he became proficient in anatomy and physiology, and not content with healing the sick he derote himself to inventing and arranging a system of exercises adapted to the harmonious development of the bodies of children and also the physical perfection of those destined to the life of a soldier.
In 1805 he became professor of fencing in the university at Lund and later was appointed master of fencing in the Military Academy at Caricerg.

In 1813 the Royal Central Institute of Gymnastics was established at Stockholm for the purpose of extending the application of his theories, and he becams its director. Here he remained until his death, which occurred in 183..
He received the rare honor of baing made a member of the Swedish Academy, and the king conferred upon him the title of Knight of the Order of the North Star. The work which he laid down has been perfected by his pupils and successors, and, during these many years. patients have flocked thither for healing, and students for normal training in the three departments of gymastics.

Again, it is asked, "What is the Swedish system?" Let us first asis, "What is its aim?" It is based on the following proposition: "The object of educational gymnastics is to train the pupil to make his body subservient to his own will." This can only be accomplished by practice, regular and systematic. If the proper practice is secured, then activity, dexterity, strength, and health are quite sure to follow.

The Ling system has three departments, medical, military, and educational, and of the latter only do I write.

The exercises are classified as follows:

1. Introductions, or orders to gain attention and good position.
2. Arch flexions, or movements for the back and chest.
3. Heaving movements, or exercises in lifting the body by the arms or in extending them.
4. Balance movements, to give a correct carriage and general equilibrium.
5. Shoulder-blade movements, to flatten the back and pull the shoulders backward in their proper place.
6. Abdominal exercises, to strengthen the muscles of the abdomen and to aid digestion.
7. Lateral trunk movements, to strengthen the lateral parts of the trunk.
8. Slow leg movements, to increase the circulation in the lower limbs, to quiet the action of the heart, and to counteract palpitation.
9. Jumping and vaulting, to cultivate speed of motion and to effect the coördination of movements.
10. Respiratory movements, to increase the capacity of the lungs, to restore breathing to its normal rhythm, and to help counteract the evil effects of precipitate movements.

In each of these classes there may be scores, if not hundreds, of exercises of varying strength. From these a selection is made for a "day's order" or p.ogramme for the day. This provides exercise for the whole body. Nerves, muscles, and internal organs, as well as the blood vessels, have all received due attention.

Teachers do not usually take the exercises in their exact order, but make such selections as the special needs of particular classes seem to require.

Suitable exercises are available from these classes for years of work in free gymnastics, but as pupils become more advanced fixed apparatus may be desired even in our schools, and no objection would be made to a well-equipped gymnasium in connection with each, but this is not essential.

One of the features of special value in this system is that a "fundamental position" is first assumed, and whatever may be the subsequent positions taken or movements executed there is an immediate return to this. Hence there is constant practice in taking and holding that position which presents the best pose and carriage that can be secured.

Another marked feature is its progression. It begins with the simplest movements which could not harm an invalid or the feeblest pupil, and by years of practice it leads on gradually, by movements stronger and stronger and of longer duration, to feats before which an athlete might stand appalled. Of course these would never find a place in the school room.

As has been shown, each "Day's Order" has its progression also. One cardinal principle is that not every possible motion or position is of value or to be permitted. Only such are selected as are adapted to accomplish some specific end. That end is clearly seen and its attainment provided for. No exercise is performed simply because it is "pretty."

Another is that movements are made in response to words of command, no music being emploved. Ling's belief was that "there is a rhythm of movement as well as of music, but there is an essential difference between them, and often no adjustment is possible. The rhythm of the movement must be sacrificed to that of the music if the latter is introduced, and for a large part of the movements music is an impossibility, since no musician could ever adapt it to them.

The use of words of command is to me one of the marked excellencies of this system, for if there is any one thing which our American children need it is the habit of obsdience, and obedience so prompt that they are hardly aware that they are obeying.

I have read of a stalwart band of rebellious slaves, who once attacked their master, who was sick, alone, and unarmed. In tones of command he exclaimed: "Lay down your arms, you rascals, go instantly to your work or I will have every one of you flogged within an inch of his life." He was completely in their power, and yet, so confirmed was their habit of prompt obedience, that, to a man, they threw down their arms and fled from his presence.

Our pupils are not our slaves, butit is for their good and ours that they render instant and cheerful obedience.

The habit early formed in their physical exercises will have its effect all along the line of school work.

A former major of a school battalion, recently informed me that he considered this habit of prompt obedience the best part of the military drill in waich he had had so conspicuous a part. Because "dictation is contrary to the American spirit," is an argument in favor of "commands" rather than a valid objection against them.

In my student days muscle was the end and aim, and a poweriul biceps flezor was the pride of its possessor and the envy of all who failed to secure it. Not so in the Swedish system. The nerves, respiratory organs, etc., receive even more consideration. The aim is not to acquire the strength of a giant, but that symmetry of proportion and harmony of development which shall best fit for a life work.

A distinguished physician recently said, "Show me one who has keen an athlete, who is now more than 42 years old, and I will show you a prematurely old man." There is some justice in the remark, for of those of my associates who were excessively trained for the development of muscle not one is alive to day. From the Swedish system no such results need be expected.

To the bast of my knowledge, the teachers, both male and female, who have received drill in this system are unanimous in praise of it, both for its good effects upon them, personally, and for its adaptability to the neads of the schcols.

At a recent meeting of the masters, where for the third evening this subject had been under consideration, Mr. Watirhouse, head master of the English high school, said that in his opinion a system of exercises for our public schools should bs, 1, simple; 2, light; 3, safe ; 4, comprehensive; 5, progressive; 6, varied; 7, lively, and that, after a careful investigation, he was satisfied that the Ling system furnished all of these requisites, and was therefore what should be introduced. Thatit the system will soon be authorized by the school committee of Boston I have no doubt.

Several cities in the vicinity have already adopted it.

ADDENDUM.

[Extracts from the report of the director of physical training in the Boston, Mass., public schools (Dr. E. M. Hartwell), December, 1891.]

Boston has earned the right to be considered the most influential center in America of the movementfor promoting Swedish educational gymnastics. This result, which has been brought about within the last three years, is primarily due to the wisdom, generosity, and public spirit of Mrs. Mary Hemenway, and secondarily to the discussions, reports, and votes of your honorable board precedent to its adoption of the Ling gymnastics for the public schools on June 24, 1890. The establishment by Mrs. Hemenway of the Boston Normal Schocl of Gymnastics, which already has no equals and few rivals in the country as rega־ds the genuine and thoroughgoing character of its training, is an event of capital importance in the history of physical training in America, and may well ke ranked beside the gift to Harvard University of the Hemenway gymnasium, by Mr. Augustus Hemenway, her son.

The Boston Normal Schooi of Gymnastics had its beginning in October, 1883, when, at Mrs. Hemenway's invitation, a woman's class, composed of twenty-fire public-school teachers, was formed for the purpose of testing, under the instruction of a trained Swede, the adaptability of the Ling gymnastics to use in the Boston schools. The experiment proved so satisfactory that on April 25, 1889, Mrs. Hemenway offered to provide similar instruction for one year, without expense to the city, for one hundred teachers of the public schools who should be permitted to use the Ling gymnastics in their several schools. June 25 the school board voted to accept this offer, and in the ensuing September the class was formed. On Septemb3r, 1889, the board accepted " with gratoful appreciation the generous offer of Mrs. Mary Hemenway to provide a teacher of the Ling system of gymnastics, for service in the normal school, free of expense to the city." Mrs. Hemenway's further offer to provide fre s instruction "for those masters and submasters who may desire to make a thorough study of the Ling system for the benefit of the Boston public schools," was accepted by the board
on October 22. Mrs. Hemenway continued to maintain the " masters" class" and to provide the normal school with a special teacher of Ling gymnastics throughout the school year 1890-91. The "masters' class" numbered 50 in 1889-90 and 57 in 1890-91. In 1859-90 there were 190 women engaged in teaching in the public schools who received instruction in the Boston Normal School of Gymnastics. In 1890-91 the number was 140 . Its first class of graduates, numbering 33, was graduated June 6, 1891. The demand for the services of graduates and pupils of this school, as special teachers of Ling gymnastics, greatly exceeds the supply.
October 8, 1889, the committee on hygiene, which had been given full powers in the department of physical exercises (on March 12), presented a well-considcred "report of the board of supervisors on physical training in the public schóols." (School Doc. No. 10, 1889.) The concluding recommendations of the supervisors were as follows:
"1. That the Ling system of gymnastics be the authorized system of physical training in the public schools and that it be introduced into them as soon as t:achers ape prepared to conduct the exercises.
"2. That a competent teacher of this system be employed to train the pupils in the normal school and the teachers in the public schools.
"3. That for the coming year provision be made for training at least the pupils in the normal school, and the teachers of the first and second classes of the primary schools, snd the fifth and sixth classes of the grammar schools."
These recommendations were approved by the majority of the committee on hygiene and a minority report was made by Miss Hastings. Both reports were tabled. December 10, "the whole subject of physical training in the public schools was referred to the next schcol board."
Meanwhile on November 29 and 30, 1889, Boston was the scene of the largest and most notable conference on physical training ever held in the United States. Dr. W. T. Harris, the United States Commissioner of Education, presided over its deliberations. The call for it was signed by John W. Dickinson, secretary of the Massachusetts board of education; E. P. Seaver, superintendent of the Boston public schools; Francis A. Walker, president of the Massachusetts Institute of Technology; and by the presidents of Boston University, Collby University, Maine, and Wellesley College, as well as by many members of the Bosion school committee and a large number of physicians and others prominent in educational circles. The audience at each of the four sessions of the conference numbered from fifteen hundred to two thousand persons. * * *
The programme, which embraced papers, discussions, and illustrative class exercises in gymnastics, was a varied and interesting one, and served not only to set forth the general nature and effects of muscular exercise, but also the salient principles and characteristic methods of the German and Swedish and so-called "American" systems of school gymnastics. Similar discussions and illustrative gymnastics on a large scale signalized the fifth annual meeting of the A. A. A. P. E., held in Boston in April, 1890. The public and educational mind was much awakened and not a little enlightened by reason of so much discussion and exposition.
January 16, 1890, a standing committee on physical training was appointed. Dr. W. A. Mowry, its chairman, made an exhaustive report on June 24, embolying the results of a wide tour in the West and South to observe the peculiarities and workings of various systems of physical training in public schools. The committee, without a dissenting vote, racommended the following:
Ordered, That the Ling or Swedish systom of educational gymnastics be introduced into all the public schools of this city.
Ordered, That the appointment of one director of physical training and four assistants be authorized.
Ordered, That the salary of the director of physical training be $\$ 2,640$ a year and that the salary of each assistant be $\$ 1,080$ a year.
The following order was substituted for the second and third orders appended to the report:
Ordered, That a director of physical training and one or more assistants be employed, the total salaries for the same not to exceed the sum of five thousand dollars $(\$ 5,000)$ per annum and that the committee on physical training be authorized to mominate suitable persons for these positions, to commence at the beginning of the next school term.
In accordance with the above orders, the present director of physical training was elected on November 25, 1890, at a salary of $\$ 3,000$ per annum, and the present assistant instructor was elected March 10, 1891, at a salary of $\$ 1,680$.
I re sintered the service of the city of Boston on January 1, 1891, after an inter-
val of $13 \frac{1}{2}$ years, and at once began visiting schools of all grades, from the kindergarten to the high school, having a twofold purpose in view. In the first place, I was desirous to familiarize myself with the main features of the organization and administration of the schools and, secondly, [wished to obain an idea of the character and extent of the physical training which had been introduced into the schools, in accordance with the vote of the school committee, on June 24, 1890.

Toward the end of February I addressed a circular letter to the principals of schools, in response to which I received a statistical return, covering the month of January, 1891, regarding all high, grammar, and primary schools.

The returns showed that upwards of 1,100 teachers were giving gymnastic instruction, for some 17 minutes daily, to their classes. In some schoois the old memorized gymnastic drill had been continued, pending the appointment of a director of physical training ; but the greater number of teachers, in the grammar and primary schools, were engaged in an honest attempt to teach the Ling free standing movements. Counting the masters of the 50 grammar schools, 1,120 teachers, in the grammar districts, were returned as teaching gymnastics, of which number, below the grade of master, 844 were teaching Ling gymnastics and 221 teaching what may be termed not inaptly " mixed gymnastics." The best results were observed in those schools whose masters had attended the t achers' classes of the Boston Normal School of Gymnastics and had taken particular pains, besides, to lead, assist, and criticise their teachers in the work of class instruction in gymnastics. In certain schools extremely creditable results had been attained, especially in those where the teachers had formed themselves into classes and hired special instructors in the Ling system to give them normal lessons.

It gives me pleasure to say that I have been much surprised and gratified by the interest, zeal, and intelligence shown by the teachers of the grammar and primary schools, as a body, in the subject of physical training.

Since April 1, 1891, I have availed myself of the invaluable services of Mr. Hartvig Nissen, who was elected assitant instructor in physical training, March 10, 1891. Mr. Nissen has assisted me in visiting and inspecting schools and has cinducted normal classes in the Ling gymnastics for the teachers of the grammar and primary schools. Two inspections of the grammar schools have been made since they opened on Septembar 9. On the basis afforded by the first inspection, 8 were rated "excellent," 18 " good," 17 "passable," and 12 "poor." The result of the second inspection is as follows: 8 were marked "excellent," 20 "good," 20 "passable," and 7 " poor."

I propose to continue such classes until the class work in the schools shall show that the average teacher has grasped the main principles of the Ling school gymnast cs and is able to carry them into effect.

Early in 1890 I was engaged by Mrs. Mary Hemenway to deliver a course of lectures on physical training before the students of the Boston Normal School of Gymnastics. These lectures were given in the Oid South Meeting-House, at noon. on six Saturdays, viz, March 21 and 28, April 18 and 25, and May 2 and 9. Through the kindness of Mrs. Hemenway the lectures in question were thrown open to all teachers of the Boston public schools. I was thus enabled to meet so many of the teachers as cared to consider the salient facts regarding the origin, development, and characteristic features of the principal types and systems of physical training.
I also addressed the masters of the grammar schools upon "Physical training in the Boston schools " at the May meeting of the Masters' Association.
In accordance with an order of the school committee, which was passed May 12, Mr. Nissen gave special normal instruction to the teachers of the primary and grammar schools of some forty districts during May and June. This form of instruction has been contin:ed, though in a less formal way in all grammar districts, from the opening of the schools in September last until now. In accordance with an order passed by the school committee on December 8 , arrangements have been made to provide for the normal instruction, twice a month, in the Ling free standing movements, of all teachers of the primary and grammar schcols, not especially excused by the committee on physical training, during the remainder of the present school year.

CHAPTER XV.

DISCUSSIONS OF EDUCATIONAL QUESTIONS.

I.-Civic instruction. II.-Compulsory attendance. III.-Courses of study-Adjustment of school programmes. IV.-Education. V.-Higher education. VI.-Kindergartens. VII.-Manual and industrial training. VIII.-Methods of instruction. IX.-Physical training. X.-Private and parochial schools. XI.-Public schools. XII.-Reading and titerature. XIII.-Religious and moral training. XIV.-School management and discipline. XV.-Secondary education. XVI.-Teachers. XVII.-Text-books.

I.-Civic Instruction.

The truer meaning of patriotism.-Hon. William A. Poste, New York civil-service commissioner: Patriotism, as an impulse, like all the enthusiasms. counts for nothing in the every-day life unless its deep and truer meaning is fully perceired. The ideal of citizenship can not rise higher than the moral nature. The flag may wave from every school-house, and the boy may know on how many battle fields it led the way to glory, but unless behind all is the thought that a man is as much bounden to his country to vote thoughtfully as to fight for the flag if the country calls, that flag to him is indeed but striped bunting. Unless he can understand that for a man to sell his vote * ** is moral treason, what boots it to him that in every age men have gone to their deaths for truth, for fatherland, and that their babes might breathe free air.

Beliefs that are individual and inherent.-Hon. William A. Poste: The beliefs that men live by and die for are not to be drilled into the boy like the rule for long division. The genesis and growth and persistence of political opinions are often beyond analysis and, to the theorist, unscientific, illogical. It is well that this is so. These convictions are matters very largely of personal dispositions, intangible but persistent as the traits of race. If they are individual and inherent, they are of more positive personal force throughout the multitude than any dogma nurtured in the schools. Let the boy come to his political faith as Thomas Jefferson, Andrew Jackson, and Abraham Lincoln came to the principles that made and saved the State. It is out of the clashing of such individualisms, spear against shield, that the will of the people works. Its roice is heard above them. The roice is not always the voice of God, but in times of trial, in hours when great and solemn questions are asked and answered, the thunder of Sinai is in it.
"Patriots" Day" proposed.-Superintendent J. R. Preston, Mississippi: One school day should be set apart every year as Patriots" Day. Planting trees and flowers to adorn school premises-an engaging practice now in vogue in most of the States-is undoubtedly a potent means of establishing attractive associations and of endearing the school, and through it the State, to the heants of future citizens. If this be a laudable practice, how much more worthy and significant to utilize a day to implant in their natures the seeds of genuine patriotism. Just as ground is prepared to nourish tree and flower, so may hear'ts and intellects be quickened to cherish high resolve.

So let us have Patriots' Day dedicated as a national holiday, on which to focalize the light and grandeur of our country and photograph its glory upon the hearts of the children. Let parents and the community at large congregate at the school, and in song and recitation and patriotic sreeches revive their love of country and deepen their spirit of fidelity to its principles.

The highest patriotism.-W. D. Atkinson: True patriotism is the endeavor to elevate my country's standard of honor up to that which is right and true, and I should love my country for that in her which is devoted to righteousness. I should love the truth and righteousness which God has given us, and seek to bring my country up to it. I am not to make patriotism, therefore, the end, but rather the means by which I may hope to bring the nation to a love of righteousness. I do not think the observance of any patriots' day will ever attain that result. The time wasted or spent in that could be better spent in educating the young men in these moral truths and principles which will make the citizens seek that which will be for his country's highest good; hence it is not patriotism itself we are striving to attain, but it is love of truth, of right, and righteousness. Patriotism is nothing more than this; that is the highest patriotism.

A great difference.-Principal George M. Grant, Queen's University (Ontario): The school should teach patriotism, and let us not forget that there is as great a difierence between patriotism and the blatant, arrogant spread-eagleismwhich in Europe is called Chauvinism-as there is between enthusiasm and fanaticism. The one is healthy and full of generous inspirations and the other unhealthy and the destroyer of true patriotism and morality. The one teaches us to love our own land and race first, because it is ours, and we believe that it has done and that it promises to do most for man and for that which is best in man, especially for the good old cause of liberty, peace, and righteousness. The other teaches us to hate men for the love of God or the love of country.

II.-Compulsory Attendance.

Compulsory education in Ontario.-Hon. George W. Ross, minister of education: By an act of last session the police commissioners of every city, town, and incorporated village are required to appoint truant officers. This act came into effect on the 1st of this month [July, 1891]. It may take a year or two to acquaint the paople of the province with its requirements. It may also take some time to train the truant officers to the proper discharge of their duties. As the schools of Ontario have been free for orer twenty years, there is no doubt the people will gladly accept their natural complement, compulsory education, as indispensable.

The most effective agency for securing school aitendance.-Report of Committee of National Council of Education, D. L. Kiehle, chairman: Everyone, and very cartainly every educator, will place the first stress upon the natural, self-commanding, and assimilating power of a public free-school system, and will agree that this should be perfected to meet every demand of the highest standard of physical, intellectual, and moral training; that it should be protected from every corrupting influence and every political or religious entanglement, and that its true value by every means should ke impressed upon the public mind.

Next, as to the necessity and practicability of applying the compulsory feature for the general enforcement of attendance, there will be various opinions, according to points and circumstances of observation.

In some large cities, and especially in manufacturing districts where children are at the mercy of soulless corporations, the State has successfully enforced a compulsory law; but in the State at large, and especially in agricultural districts, your committse are not aware of any enforcement of a compulsory law, which proves that it can be made an effectire part of our educational system.

Our system ought to be extended by educational methods.-Superintendent D. L. Kiehle (Minnesota): The Government ought to look to the limitation and improrement of its citizenship, and we as educators ought to put more stress upon the improvement and extension of our educational system by educational methods. Our system ought to be perfected. We ought to do more for our young people. We ought to make our system less objectionable. We ought to introduce the moral element as perfectly as possible, to meet the demands of that class of people who have been accustomed to associate religious instruction with secular instruction. Now, coming to the legislative part, theoretically your committee has no doubt thatit is perfectly legitimate that men be required to do these things; but practically it questions whether it is not better to enforce the compulsory law in our towns and cities moderately, watching the development of circumstances, and not relying on the law to effect very much at present in agricultural districts or over the country at large, but at all times holding it as a subordinate feature of our educational system.

The labor unions approve it.-Hon. B. G. Northrop (Clinton, Conn.): It is a significant fact that the labor unions in this country and in Europe approve obligatory education. Both political parties favor it. So far as I know, no suggestion for the repeal of our rigid law has been made in the legislature, nor in any caucus or public meeting in the State (Comnecticut).

III.-COURSES or Study-Adjustment of School Programmes.

On the necessity of colleges to supplement high schools.-W. T. Harris (from an address delivered before the Ohio Teachers' Association, June, 1889): The course of study preparatory for college omits for the most part those branches of study which bear the name of "moderns." Modern civilization has developed three great increments and added them to the inherited wisdom of the race. These increments are modern natural science, modern literature, modern history. Thess three moderns had no well-recognized existence in schools of higher education a century ago. A knowledge of them was not demanded or expected from the educated man, unless he wasoa specialist. The condition of things has changed so materially through the influence of the newspaper and periodical within the past fifty years that no man can pass for educated without more or less minute acquaintance with these three phases of modern activity. They have become recognized as conventionalities of intelligence. This is the all-sufficient reason for introducing the rudiments of these things into the most elementary schools and for continuing their study in all grades of higher schools. Nothing can mak? up for the student, who shall receive a higher education, the deficit in his culture caused by a neglect of the study of the three "moderns" in early life. They ought to exist in his mind through the period of his primary education as well as in his secondary and higher education. Without these the disciplinary efect of classical study must necessarily be weakened through the want of modern facts to explain, for the classic lore is related to these moderns as embryonic presupposition, and this is why it helps to understand ourselves.

If this be true, the modifications that have been made in the course of study pursued in college in recent times (say in the last twenty years) are not for the most part based upon a correct insight into the difficulty to be met. The management of college education in this country has answered the ob:ection which charges it with neglect of the three "modern" branches until the last two years of the college course, by raising the standard of admission sufficiently to corer the work of the first two years of the former college course, and thereupon it exhibits a programme in which the three moderns are represented throughout the course either as "required" or "elective" studies.

The question in dispute did not concern the length of time devoted to higher education, but the early introduction of the moderns into the course of study, so that these moderns stand side by side with the disciplinary studies through the whole course. If four years of preparation and two years of college work, or six years in all, were devoted to the exclusive study of the classics and mathematics, with an almost entire neglect of moderns, the case would not be altered if these six years should be relegated entirely to the preparatory school. In order to meet the difficulty discussed here, the college should have changed the conditions required for admission, and thus have compelled the preparatory school to introduce the moderns in a proper manner side by side with the classical studies. Of course the elevation of the standard of the collage can be justified on its own grounds. It obliterates the mischievous distinction that existed between the standards of American and English colleges. But this is not so important as the readjustment demanded of the college in order to bring it into harmony with primary education, founded on a true appreciation of the demand of modern studies in education. As is usual in the discussion of political and social reforms, the parties to the dispute are busied, each, with bringing forward his own partisan view of the case. There is little that is judicial and impartial, going to the root of the question and confirming and establishing what is of permanent worth on either side. The advocates of the "moderns" wish to dispense entirely with classical study while the defenders of the college system refuse to yield place for the "moderns."

In the colleges of the Northwestern States, Ied by the State universities, there has been some substantial progress made towards a modification that will recognize the received high-school course of study as a preparation. But such modification only makes these colleges a separate phase of education, differing more and more widely from the standard college of the Atlantic States. To reach the high standard of admission required by the Eastern colleges the
public high school ought to add two years to its course. This would make the course of study in the common-school system fourteen years instead of twelve, as at present, and is impracticable. The average age of the high-school graduate at present being eighteen and a half years, it would manifestly pe unwise to demand six years instead of four years to complete his college course. The colleges that have raised their standards of admission, therefore, have done much to widen the breach between high-school and college education.
In the signs of the times I do not discover any promise of the reform of this state of things on the part of the management of colleges. Even the cloud "no bigger than a man's hand" in the Northwest does not indicate so much true appreciation of the necessity of moderns in primary and secondary education as it indicates a wise insight into the desirability of connecting the college with the public school as it is. It surrenders its convictions in behalf of the old régime, and lowers its standard in order to adapt itself to unpropitious circumstances. In better times it hopes a reform in the public school that will devote more attention to the classics and mathematics at the expense of the "moderns.". Meanwhile, the influence of the college is felt in the building up of preparatory courses within the high school, fastening upon the public-school system a recognition of the necessity of private, separate, and distinct secondary education in order to fit for a college education.

What is the remedy?
One must turn to the teachers of public high schools and to superintendents of public instruction for the adoption of the only means of relief. Unusual efforts must be made on the part of public high schools to induce their pupils to complete their education in colleges. The personal influence of the teachers, in one year's time, will avail to double the number of high-school graduates who ssek a college training. The greater maturity of mind which comes from a well-balanced preparatory course will furnish a prevailing argument in favor of a more symmetrical system. Within a few years, when the colleges have come to derive a large majority of their pupils from public high schools, this question will receive its due consideration for reasons of private interest, if for no other. The numerical streng th of high-school graduates who have subsequently received a college education will assist in the solution of this question.

But no solution will be more than a makeshift if it does not secure the recognition of "moderns" as an essential portion of the course of study in all elementary and preparatory schools and a like recognition of the necessity of classic study in all secondary and higher education.

In the "moderns" one finds the expression of his present civilization; in the classics, its embryonic forms and evolution.

After the presentation of these special discussions of the elements of our problem we may draw the following conclusions:

1. If the universities and colleges of the country shall more and more depend on special preparatory schools for their students, then it will follow that college graduates are less likely to be in sympathy with the system of common schools.
2. If the high-school teachers, on the other hand, continue to be lukewarm toward college education, and perhaps go so far as to discourage their pupils from completing their education in colleges after graduating from the high school, it will follow that the men of amplest directive power, the leaders in literature and the molders of public opinion, especially on the subject of education, will not be furnished by the common-school system.

It will follow, too, that the numbers who resort to college will not increase in proportion to our population. These dangers, in brief, I hold in this paper, may be averted by earnest personal endeavor on the part of high-school teachers and the superintendents of city schools to influence high-school pupils to present themselves in large numbers for admission to college. Extra efforts will double and treble the high-school quota in college, even under the present disadvantages of course of study.
This first step being taken, it will become possible, then, to secure the desirable changes in the higher course of study.

The gap between the elementary schools and colleges.-President Eliot, of Harvard University : Only nine Massachusetts high schools send pupils to Harvard College every year. In 1889, out of 352 persons who were admitted to Harvard College as candidates for the degree of bachelor of arts, 97 , or $27 \frac{1}{2}$ per cent, were prepared at free public schools; but these schools were only 30 in number from the whole country, 23 of them being New England schools. The plain fact is that not one-tenth of the schools called high in Massachusetts habitually maintain a course of study which enables the pupil to prepare himself for admission
to Farvard College, or to any other college in the State which enforees its requirements for admission as stated in its catalogue.

If this is the condition of things in what may be called an urban State, what must it be in a rural? If a patriot were compelled to choose between two alternatives, one that the less intelligent half of his countrymen should be completelly illiterate, the other that half of the select children capable of receiving the highest instruction should be cut off from that instruction, which would he choose? He would find the decision a dreadful one to make; for either alternatire would entail an incalculable loss upon his country. Yet in the p:esent condition of secondary education one-half of the most capable children in the United States, at a moderate estimate, have really no open road to colleges and universities. I rehearse these well-known facts that we may appreciate the gravity of the problems presented by the subject. * * * Recognizing the plain fact of to-day that secondary schools are sufficient in number and defective in quality, what can colleges do, under these adrerse circumstances, to make themselves as useful as possible to the population while awaiting a better organization of secondary education? Is it not their plain duty to maintain two schedules of requirements, one for the degree of bachelor of arts, the other for the degree of bachelor of science (or some equivalent), the latter demanding much less prepa:atory study than the former? The American colleges have been severely criticized for offering to receive students of confessedly inferior preparation to that required of candidates for the degree of bachelor of arts; but even the oldest and strongest of them have done this, and from a genuine desire, as I beliere, to be serviceable to as large a proportion as possible of American youth. One lower grade of admission examination, leading to a distinct degree, is an expedient concession to the feeble condition of secondary elucation throughout the country. That grade of secondary schools which can not prepare pupils fo: the bachelor of arts course, but can prepare them for the bachelor of science course, will so be brought into serviceable connection with the colleges. * * *

I renture to think that some colleges have gone unnecessarily far in offering different courses with descending requirements for admission and different degrees. They seem to say if a candidate can not get into our classical course, perhaps he can enter the literary course; if not the literary, then the scientific; if not the scientific, at any rate the agricultural. The value of all degrees seems to me to be diminished by this unnecessary multiplicity of titles and conditions, and the standards of good secondary schools must needs be unfavorably affected by a long sliding scale of admission requirements to the sereral courses offered by a single institution.

Turning now from the consideration of the palliatives which colleges may resort to in the present feeble and distracted condition of secondary education, I pass to the more attractive study of the remedies for existing evils and defects.

To improve secon̉ary education in the United States two things are necessary: (1) More schools are needed, and (2) the existing schools need to be brought to common and higher standards, so that the colleges may find in the school courses a firm, broad, and reasonably homogeneous foundation for their higher work.

1. More schools.-Secondary schools are either day schools or boarding schools, the urban school being primarily a day school and the rural a boarding school. The public secondary school is now urban almost exclusively, and it must be admitted that it is likely to continue so, for no promising suggestion has as yet been made of a rural area of support for a highly organized secondary school. It is admitted that neither a rural township nor a union of contiguous rual districts can support such a school. The county has been suggested as a possible area of support, but there is no sufficient evidence that a rural county, apart from its town or towns of dense population, could support a good high school. To increase the present number of secondary schools which can really fit pupils for college, what are the most hopeful lines of action? In the first place every effort should be made by school authorities, the press, and all leaders of public opinion to promote the establishment of secondary urban day schools, both public and private, and to adapt the programmes of existing schools to the admission requirements of some college course which leads to a degree. It is noticeable that in the older cities, and to some extent in the younger also, the best private schools exist right beside the best public schools. The causes which produce one class of schools simultaneously produce the other. Secondly, rural communities ought.to be authorized by suitable legislation to contribute to the es ablishment (including in that term the provision of building) and annual support of urban secondary schools which are conveniently situated for their use.

Thirdly, there should be created by law special secondary school districts much larger than the areas which support primary and grammar schools and taking account of railroad communications. It is much easier for a boy or girl to go to school 15 miles by rail than to walk to school in all weather 2 miles by country lanes. The rural population has something to hope from legislatire recognition of railroads as chief features in secondary school distriets. The Massachusetts normal schools illustrate this principle, for they are really high schools, partly boarding sehools, and partly local and railroad day schools. Fourthly, every effort should be made to stimulate private benevolence to endow rural secondary boarding schools or academies under corporate management. A bjarding school ought always to be in the country and a rural secondary school would almost necessarily be, in part at least, a boarding schcol.
2. Common schools. -The existing means of elevating and regulating secondary school instruction may be conveniently considered under two heads: (a) State aid and supervision, and (b) college admission requirements. Both agencies are already useful, but both may be greatly improred and extended.
(a) State crid and supertision.- It seems to have been the object of high-scheol legislation in some States, as, for example, in Massachusetts and in Maine, to encourage the creation of a large number of low-grade high schools without really expecting them to effect any junction with colleges. Such at any rate has kezn the effect of the mandatory legislation of Massachusetts, and such must be the general result of the aid offered to free high schools by Maine. This unprosperous State now offers to give any free high school as much money per year as its supporting area annually appropriates for instruction in the school, provided the State grant shall notexceed $\$ 250$ in any case. Noinspection or examination of aided schools is provided for. Such legislation encourages the es'ablishment of numerous weak schools, without helping appraciably the scicols already stoong.

Much wiser is the legislation of Minnesota, which established twelve yea"s ago a State high-school board, and offered $\$ 100$ a year to any high sciool which was found by the board aftar competent inspection to fulfill the following conditions: The aided school must receive both sexes free, and nonresident pupils alco without fees, provided such pupils can pass examinations in all commonsshool subjects below algebra and geometry, and must maintain "regular and o:derly courses of study, embracing all the branches prescribed as prerequisite fo: admission to the collegiate department of the University of Minnesoia not lower than the subfreshman class." * * * This high-school legislation seems to me the wisest which has been adopted in the United Statas. It encourages cnly schools which are already well organized; insists that aided schools shall connect directly with the university; avoids expensive examinations, provides any needed amount of inspection; grades schools by their programme and geneal efficiency, not by individual examination results; gives no pecuniary advantage to a large school over one equally well conductod but smaller; requires aided schools to take nonresident pupils without charge; and applies almost the whole of the State:s grant to the direct development of instruction, which is by far the most productive application of any money intended to benefit schools.

It is unquestionable that the New York State regents' examinations have tended to raise the average standard of instruction in the academies and high schools, to extend and improve school programmes, to bring schools and colleges together by doing away with useless diversities of programmes in secondary schools and useless diversities of admission requirements in colleges, and to stimulate some of the communities which maintain these schools to give them better support and to take pride in their standing. These are great services which deserve the respectful attention of the other States of the Union and of all persons interested in the creation of an American system of secondary education. The regents have proved that a State examining board can exercise a stimulating, elevating, and unifying influence upon hundreds of institutions of secondary education scattered over a large State, and can wield that power with machinery which, considering the scale of operations, may fairly be called simple and inexpensive.
(b) Let us turn now to the consideration of coliege admission requirements as means of raising and controlling secondary school instruction.

College requirements for admission act effectively only on those secondary schcols which prepare some of their pupils for college; upon that large proportion of high schools and academies which do not they have only an indirect although sensible effect. For the broad purposes of the State the influance of
colleges, even if they were associated togathor, could not be so immadiate and potent as the influence of the State, whether the lattor were exerted by inspection or by examination. It is in anarrower field, therefore, that the higher institutions of education can act on the lower. At present they act in three ways.
The feeblest way is by prescribing for admission a knowledge of certain boo's or of certain well-defined subjects, and then admitting candidates on the certificate of any schoolmaster that they have gone over all the prescribed books or subjects. If the prescriptions of the college are judicious, they are not without some farorable effect on the curricula of the certifying schools; but it may be reasonably objected to this method that it gives the college very inadequate protection against incompetent students and the public no means of forming a just cstimate of different schools. Certificates are apt to be accepted from good and bad echools alike, the anxiety to secure students in a struggling college overriding erery other consideration. Particularly is this apt to be the case in a small college in which the president has succeeded in getting the subject of admission out of the hands of the faculty and into his own. Under this system a really good school hasno means of proving itself good, and a bad school is not promptly exposed. Within a few years the feeblest of all methods has come into use, withoutany safeguards whatever, in the large majority of New England colleges, no system of State inspection or examination existing there, and no pretense being made that the certifying schcols are examined, or even occasionally visited, by the colleges. A more demoralizing mothod of establishing a close connection between secondary schools and colleges it would be hard to imagine. Nerertheless, even under this loose and unguarded method, which only the two largest New England colleges have completely resisted, some good has resulted from coöperative action between preparatory schools and colleges to make admission requirements, on papar at least, uniform for the same subjects. The uniform requirements in English, which prevail all over New England except at Yale University, and have lately been adopted by some institutions in the Middle States, supply a noteworthy case in point.
The method just described is a corruption or degradation of a somewhat safer method of securing close connection between secondary schools and colleges which was first adopted twenty years ago by the University of Michigan. This safer method, as developed by that university, amounts to this: The university admits candidates on the diplomas given by any schools, near or remote, within the State or without, which are visited once in three years by a committee of the faculty, or by other persons designated by the university. The visit may be repeated if any important changes take place in a school within the three years. The diplomas must specify that the candidates have sustained examinations at school in all the studies prescribed for admission to one or other of the university courses leading to a degree. There were in 1889 seventy schools holding this : diploma relation" to the University of Nichigan. It can not be doubted that this method is well adapted-for recruiting rapidly a single cominant State university; but its value as a method for general adoption obviously depends on the thoroughness, impartiality, and publicity of the inspection which it provides. To me the inspection seems to fail on all threa points. Considering the rapidity with which teachers are changed in American schools, an inspection once in three years seems too infrequent. I am wholly at a loss to understand how a busy college faculty can get time to inspect properly any considerable number of secondary schools, or how it can furnish a sufficient number of inspectors competent in all secondary-school subjects. * * * It is also obvious that the method is not public enough in its processes to demonstrate its fairness and sufficiency, and therefore to command general confidence. The single acting authority obviously has interests of its own to serve. I am not maintaining that this diploma method, as conducted in Michigan, has not worked well, or even that it has not worked so well as the method of admissionoby examination, as conducted in Michigan. It is come gain to establish friendly relations between seventy secondary schools and any university. I am urging that it lacks adequate securities, and is therefore not fit for general adoption. The Minnasota method, which provides in the State high-school board an independent inspecting authority, is in my opinion greatly to be preferred.

There remains the most effective mode in which colleges act on the spperior sort of secondary schools, namely, the method of conducting careful examination in all the subjects acceptable for admissicn. These examinations have a fair degree of publicity; for the most colleges circulate frealy their guestion papers. Harvard College also publishes in detail the rasults of its examinations for admission. Such examinations are no longer, as formerly, he'd only at the seat of
the college conducting them, but may be held simultanejusly at as many places as the convenience of candidates may require. Sereral Eastern colleges now conduct examinations at numerous places widely distributed over the country. Yale University distinctly announces that it will hold an admission examination "in any city or at any school where the number of candidates and the distance from other places of examination may warrant it." The method can easily be given a national application by any institution which has prestige and a numerous staff. In the long run it grades schools fairly, and it is very stimulating to the older classes of secondary schools. Like all examinations conducted by an authority independent of the schools, it also protects the masters of schools, beth public and private, against the unwarrantable importunities of parents, trustees, and committeemen. Nevertheless it is open to some serious objections. In the first place it is not sufficiently public. The question papers may look well; but the standard for passing may be unreasonably low, the public having no means of estimating the degree of strictness with which the answer papers are marked. Secondly, the colleges hare, until lately, acted singly, each for itself, without consultation or concert. Each college or university is, therefore. naturally sup-posed-to be seeking its own interest rather than the common welfare. Thirdly, in a small college a few men, who perhaps hare peculiarities or whims, may control all the admission examinations for many years to the disadvantage of the college and the annoyance of schools. All these evils would be remoied or reduced by a system of coöperation among several colleges.

At the conclusion of this rapid survey I venture to suggest that there are three directions in which patriots who desire to see American secondary schools improved and connected more closely with colleges may look for progress:

1. I may expect State examining and inspecting systems to improve and extend, for they have demonstrated their utility; and remembering the extremes to which examination methods have been carried in England, we may reasonably hope that State boards will inspect institutions more and more thoroughly, as well as examine individuals. In this connection we expect that the profession of school inspector will become well recognized as a separate and honorable calling.
2. We may hop to sea formed a combination of four or six of the universities which have large departments of arts and sciences to conduct simultaneously, at well-selected points all over the country, examinations in all the subjects anywhere acceptable for admission to colleges or professional schools, the answer papers to bo marked by persons annually selected by the combined universities and announced to the public, all results to be published, but without the names of candidates, and certificates to be good anywhere for the subjects mentioned in them. We see reason to believe that such a cöpperative system would be simple, though extensive; that it would present no serious difficulties, mechanical or other; that it would be very convenient and economical for candia a'es, and self-supporting at a molerate fee; and finally that it would be authoritative, flexible, stimulating, unifying, and just.
3. We may expact to see a great extension of the scholarship system, whereby promising youth are helped through secondary schools and colleges. States, citizs, towns, and endowments provided by private benevolence will all contribute to the development of this well-proved system.

Principles which may govern an attempt to bring about uniformity of college admis-sion.-From a report to the National Council of Education, James H. Baker, chairman of committee (1891):
(1) By comparison of the requirements of leading colleges a standard classical course may be selected which could at once be adopted without essential modifiestion by those colleges.
(2) A preparatory course omitting Greeiz may also be recommended in which the substitution for Greek shall fall within regular high-school work. Such a course may be made up from the catalogues of those colleges which do not require Greek. It may here be noted that in this country, in Germany, and in England there are indications that Greek is no longer to be compulsory for college and university degrees. But at the same time the advantage of taking at least one classical language, especially the Latin, is strongly urged. The head master of Harrow, while he would not make Greek a compulsory study, urges the desirability of retaining Latin about as follows: "For scientific study a dead language possesses an advantage in that it does not invite the sacrifice of accuracy to utility. Latin is the language of law, of liberty, of religion. It is the parant of half the languages in Europe. It is strong and precise in grammatical idioms. It is furnished with the necessary means and appliances for
teaching. I can not help thinking it would be an educational mistake of serious magnitude to lose the universality if the Latin language as an element of the higher education." We may add that Latin is required or adrocated by most scientific schools and that its retention is generally desired,
(3) Colleges and preparatory schools not at present able to adopt standard preparation in full should pursue standard lines so that the work would all count toward the desired end, if the pupil wished to supplement it for an institution of the best class.
(t) A complete adjustment of the relation between high schools and colleges should be soaght on the basis of a general high-school course. This idea will be subject to special consideration.

The committee will renture to suggest a classical preparatory course made up from the catalogues of several of the best colleges. In this course a little is taken from the Latin required by some colleges, and a concession is made to those which demand a modern language and some science and literature. Physics is selected because it includes more generic principles than any other science. The committee belieres that this course thus made up is not a jumble of fragments, but that it has a natural coherence in plan and purpose, as much as any one of the courses upon which it is based. It should be especially noted that this course is suggested, not as the best possible one, but rather as an example of a course that might be established. It is also intended to show the folly of the present variations.

CLASSICAL COURSE.

Mathematics.-Algebra (elementary, complete); Plane geometry (with exercises).

Greek.-Four books of Anabasis; 3 books of Iliad; limited amount of sight reading ; composition.

Latin.-Four books of Cæsar ; 7 orations of Cicero; 6 books of .Æneid; limited amount of sight reading; composition.

French.-Easy translation.
Science.-Physics, with experiments and notes.
History.-Greece and Rome (geography incidental).
English.-As recommended by the New England Association.
The colleges admitting without Greek substitute increased amounts of mathematics, of science, or of the modern languages. Therefore the following substitutes for Greek may be suggested, the rest of the course remaining the same as the regular classical course. The additional sciences selected hare the prestige of influential recommendation.

COURSE-OMITTING GREEI.

[Substitutions for Greek.]

Solid geometry and plane trigonometry.

Additional year of French.
Chemistry (with experiments and notes) and botany.
Remainder of course same as classical.
A careful comparison of the courses above suggested as a provisional basis for uniformity with the courses of standard colleges will show that most colleges, high and preparatory schools could at once afford to agree to some such uniform requirements, and that the changes necessary for an adjustment would in no instance be vital or even important. Could uniform courses once be recommended by an influential convention of colleges and schools, every fitting school could adopt the one standard and say to the colleges, "Take our students if you wish them." Most colleges would be compelled to adopt the courses recommended.

But by far the most important and most troublesome problem is the compete adjustment of higher to secondary education. In the opinion of the committee the connection must be made by adjusting the colleges to the secondary schools and not the secondary schools to the colleges. President Eliot some years since pointed out that a good high-school finishing course must become more and more a good preparatory course. Mr. Harris is understood to maintain that the studies adapted to the age of secondary education should also furnish a good college preparation. This is in accord also with Mr. Hill's principles in the "True order of studies." It would be unsafe to deny that secondary education, which is adapted to the development of the mental powers and the enlargement
of knowledge in the given period, is a good preparation for higher education. If elementary science and history and literature and art, as well as mathematics and classical languages, are adapted to the period of secondary education, then they are excellent as a basis for college work.
From the tendency of our institutions we must believe that more and more will the high schools become feeders of the colleges. The interests of colleges and high schools will be greatly enhanced by the closest union, and one important result will be an increase in the number who will seek higher education. There is one greatadvantage in postponing to as late a day as possible the necessity of decision regarding a college course. Whenever a boy decides to go to college he should find himself on the road thither.

Already Michigan University and the University of Califormia admit to a four years' general course without any foreign language, while Northwes'ern University admits students with only one foreign language, ancient or modern. The State universities, we think, can afford to meet the regular work of the high schools. It is understood that there are some troublesome adjustments arising from the union of classical and English students in college classes. In large colleges the problem is notserious, because classes are divided. In smaller institutions a list of electives will make the necessary adjustment possible. Even in an inflexible course some substitutions are possible, as solid geometry and plane trigonometry for freshman mathematics. This phase of the problem, howerer, is not the most serious one.

We will proceed to suggest a high-school course that might be generally adopted. We include it in the five "fundamental disciplines" pointed out by Mr. Harris-a selection in general harmony with Mr. Hill's analysis. Since this theory of studies is now widely adopted we expect no opposition to our basic principles. In choice of specific studies, in arrangement, and amounts we are governed in part by comparison of many courses of study, as well as by thought upon relative values. The committee indorses the custom of requiring a foreign language in a high-school course, and for reasons previously cited would give the preference to Latin. The committee does not advance a definite opinion that more than one course is necessary for a high school or that the preparatory and the finishing courses might be identical. We simply suggest a basis for present uniformity and adjustment under existing conditions.

GENERAL HIGH-SCHOOL COURSE.
Mathematics.-Algebra, plane and solid geometry, plane trigonometry.
Foreign Languages.-At least three years of some foreign language, Greek or Latin or French or German, but preferably Latin.
Science.-Physiology, physics, chemistry, and at least botany or zoölogy, and geology or astronomy, and mental science.

History.-Greek, Roman, English, and epochs of modern civil government; political economy.
English.-History of literature, study of selections, rhetoric, compositions.
Art.-Drawing and music.

WHAT HAS BEEN DONE TOWARD UNIFORMITY.

In the interest of uniformity the "Association of Colleges and Preparatory Schools" and the "Commission of Colleges" in New England have been formed, and progress has been made in recommending and securing the adoption of uniform requirements in English, in Greek and Latin, and in modern languages. The State of Ohio has secured an agreement between the colleges and high schools through the mediation of the State Teachers' Asscciation. The plan there adopted tends to make a perfect connection between high schools and colleges. The report of Prof. King and that of Mr. White, made during the consideration of the problem, contain many valuable suggestions. Many other States through their associations or their State universities are aiming at uniformity and at a closer relation between the colleges and the high schools. But it should be noted that State uniformity may hinder rather than aid national uniformity. State boundaries have nothing whatever to do with the choice of a college. As soon as possible educators should make the question a national one, instead of wasting energy in creating organized differences.
Plans of adjusting high-school and college courses of study in Ohio.-From report prepared by Superintendent E.E. White, of Cincinnati, and adopted by Ohio State Teachers' Association and Association of Ohio Colleges:

LIMITATIONS OF THE HIGㅍ SCHOOL.

Before submitting plans for full adjustment, your committee dosires to state as c'early as possible the limitations of the high school as a preparatory schcol. These limitations are both economic and pedagogic. The fact that more than three-fourths of the pupils in our high schools will never enter higher institutions establishes the necessity of making the training therein the best possible as a final school course, whaterer this may be. If this best possible high-school cour - e is an adequate preparation for college, the proper articulation of the high school and college is secured. If, however, an additional course must ke provided for the few who may wish to prepare for college, an additional demand is maje on the resourcas of the high school-a demand which a large number of high schools may not be able to meet.

Besides, it is not possible for pupils, with few exceptions, to determine, on $\in \mathrm{n}-$ tering the high school, whether the way will be clear for them to go to college. Many who start with such a hope fall out by the way, and others, as they proceed in their studies, awaken to the desire for a higher education and see an opportunity to acquire it.
These facts show the impossibility of wisely classifying high-school pupils with resreet to their future participation in college advantages. Whenever the desire to go to college takes possession of a pupil-and every high school should be a most potent awakener of such a desire-he should find himself in a direct rcad to the college gate.
Butit is not enough that the high-school course looks directly to the college. It should also furnish the great body of its pupils with the best possible training, and, to this end, its course of study must be based on sound pedagogical principles. These principles clearly teach, as Dr. W. T. Harris has ably shown, that a true course of study must include all of the five great divisicns of human knowledge, to wit, mathematics, language and philosophy, natural and physical science, history and government, and literature and art. It must also recognize the fact that each of these great divisions oi knowledge has its natural sequence or development, corresponding to the mind's development, and this sequence cr order must be observed, not only in the course of study, but in school instruction. To adopt Dr. Thomas Hill's famous simile, in his "True order of studies," a true course of study is like a spiral stairway surrounding the fire great columns of human knowledge and cutting off a section of each at each round of its ascent. The special weakness of too many high-school courses is that they attempt to cut ofĭ sections of these columns that belong to a higher phase of mental developmentthat fall in the period of college training.
In harmony with these principles, a high-school course of study may properly include (1) algebra, geometry, trigonometry, and arithmetic (review); (2) language, including English and Latin or German or French; (3) science, including physical geography, physiology, and the elements of botany or zoollogy, physics, and chemistry ; (4) history, including United States history and general history, and civil government; and (5) English literature and art, the latte: including at least drawing, music, and vocal culture.
The experience of the high-schools of the country shows that itis not possible to give these several branches of study due proportionate attention if one-half of the time of the pupils is devoted to language, and this must be the case when the course includes both Latin and Greek in addition to English. The daily programme of a high school may wisely provide four daily class exercises for each pupil, provided these exercises do not exceed forty minutes each, and this is sufticient time for the best class work in high schools. When only one daily pariod is devoted to, say, Latin, in addition to English, it is not difficult to arrange a programme that will give due attention to the other four great branches of knowledge.

Your committee desires to emphasize the importance of making Latin one of the daily studies of the high school. A wide experience has shown that this is not only the best possible way of meeting the demand for language training. the best ideal training in language as logic, but it is the most fruitful element in the best fossible preparation for higher courses, whether classical, scientific, philosophic or technological. It is regretted that there is not time to cite some of the conclusive evidence on which this claim for Latin as a high-school study is based. When Latin is omitted, either German or French should be taken. A true course of high-school training requires that the pupil take at least one language in addition to English.

When we have found the best possible course of stury for high schools we have found, as a consequence, what ought to be an adequate preparation for college, whatever the course to be pnrsued therein. A true college course ought to rest upon a true high-school course. In a philosophic scheme of education there is no occasion to adjust higher and secondary courses of study. The former rests upon and articulates with the latter.

PLANS OF ADJUSTMENT.

I. - On the side of the high school.

The general or regular course of study in the high schools of Ohio should include:

1. Latin, its study beginning with and extending through the entire coursecertainly not less than three years. It is not meant that all pupils in the high school should be required to take Latin, butefficient instruction in Latin should be provided, and as many pupils as possible be induced to take it. A conscientious effort should be made by all high-school teachers to induce at least all pupils who enter with the intention of completing the course to take Latin as the best possible course for them, whatever may be their future education or occupation. What is needed is an enthusiastic appreciation of Latin on the part of high-school teachers. When Latin is not taken, German or (for temporary pupils) a wider and more practical course in English may take its place.
2. Mathematics; elementary algebra being taken the first year; geometry, plane and solid, the second year; and spherical geometry, higher algebra (at least one-half year) and trigonometry and arithmetic (reviewed) in the third and fourth years. The putting of so-called "higher" arithmetic at the beginning of the high-school course is a serious mistake-a clear violation of sound principles of teaching, and a consequent waste of effort and opportunity. Eight years of training in arithmetic cer lainly ought to prepare the pupil for the succe sisful study of the elements of algebra. It is also a mistake to put-the study of higher algebra before geometry. The mathematics of form, as Dr. Hill has clearly shown, is easier and more elementary than the mathematics of abstract relations.
It will be observed that the mathematics here assigned to the third and fourth years (arithmetic excepted) belong properly to the college courss; but highschool pupils, if well taught and not hurried, can master these branches in the last two years, and this, as will be hereafter seen, will make feasible a needed change and adjustment in the college course. When instruction in Greek is provided in the high school it can take the place of these higher mathematical branches in the third and fourth year, the mathematics of the first two years, with arithmetic, being sufficient for admission to college.
3. Physical science, including physical geography, physiology, and the elements of at least two of these four sciences, viz, zoölogy, botany, physics, and chemistry. When physiology is taught in the grammar grades, zoulogy or boany and the elements of physics and chemistry may be readily taught in the high school. This instruction in science should begin with and extend through the entire course, with three or four exercises each week. The aim of the course should be to make the pupils familiar with those concepts and facts that constitute the elements of these sciences, and to this end the pupils should study, as far as practicable, things and phenomena and not text-book language about these things. In science the study of things is a necessary preparation for the study of books, and hence science instruction in the high school should be largely objective. This is the significance of the modern laboratory and museum, appliances greatly needed in all high schools.
4. History and civil government, the former including United States history (if not taught in grammar grades) and general history. Fully one year, three to four lessons each week, should be devoted to general history, and not less than half a year to civil government.
5. English literature and art, the former including composition and rhetoric and literature proper and the latter at least drawing, music, and vocal culture. It is the general testimony of college teachers that college matriculates are deficient in English, and especially in the power to express their knowledge clearly and accurately. To remove this defect pupils should not only study the great masters of expression, but synthetic training in the art of language should receive more attention.

It is believed that the general course of study outlined above is within the resources and reach of the high schools of the State, and especially of those schools which employ two or more teachers. It is based on the actual experience of the best schools. The changes made for the purpose of adjustment relate chiefly to mathematics and Latin, and these features have already been tested by school experience.
Your committee desires, in this connection, to emphasize the importance of a wiser concentration of energy in high-school instruction. The undue multiplication of branches of study and text-books is a serious dissipation of power. The principal aim of the high school is to give its pupils efficient training in the fundamental studies-what Dr. Harris calls the "fundamental disciplines."
II.-On the side of the college.

The course of study outlined above is an adequate preparation for all bachelor courses in college, the A. B. course alone excepted, and here the difficulty relates exclusively to the Greek. The colleges are at liberty to require for admission to all bachelor courses (1) requisite knowledge and skill in the common branches; (2) Latin, at least three years, and for technical courses either Latin oi German; (3) the elements of algebra and plane and solid geometry ; (4) English and English literature (character and amount to be announced at least one year in adrance); (5) United States history and general history (limited); (6) physioogy, physical geography, and the elements of at least two of these four sciences-botany, zoölogy, physics, and chemistry; and (7) drawing, music, and vocal culture.

In place of the Greek now required for admission the A. B. course, they may call for spherical geometry, higher algebra (full one-half year), and trigonometry, at least plane-in other words, for present freshman mathematicsand also for some extra Latin, if necessary, and for one year of present college instruction in botany and zoölogy and physics and chemistry, now provided for in the high-school course.

Your committee suggests the following plans for meeting the absence of Greek preparation:

1. An acceptance of preparation in freshman mathematics (outlined above for third and fourth years of high school course) as a full substitute for one year of Greek. This change can be met in the college in two ways. Students who enter without Greek but with freshman mathematics can be permitted (1) to devote in the first year two recitation periods daily to Greek, omitting mathematics, or (2) what may be better, one period daily in freshman year to Greek and one to sophomore mathematics, and in the second year two periods daily to Greek, omitting mathematics.

It is believed that either of these plans will bring the student who matriculates without Greek, but with extra mathematics, to the junior year regular in all his studies, and this, too, without serious loss or inconvenience. To the college it involves the expense of two extra daily exercises in Greek for one year or one extra daily exercise for two years; and every fairly endowed college ought to be able to furnish this extra instruction.
2. A more radical plan of adjustment and a better one in the bringing of Greek wholly within the college course, as has been done successfully by several State universities. This change brings all the college courses into harmony with the high-school course outlined above. The adjustment of the courses is complete. Students who enter with two full years of Greek preparation can enter the junior class in Greek, and those with one year of Greek the so phomore class in Greek, the only changes required being in the recitation scheme or programme. No extra instruction in Greek is required.

Four years ought to be sufficient for the thorough mastery of the present Greek course, now requiring as a rule five years. It is believed that a year can easily be saved by making the Greek instruction continuous and more enthusiastic, and, as John Stuart Mill once clearly pointed out, time can also be saved by the use of better methods of teaching. (Besides, extra Greek as an elective can easily. be provided in the senior year.)

AGENCY FOR EFFECTING PROPOSED ADJUSTMENTS.

It is clearly not sufficient to devise and adopt plans for adjusting high-school and college courses of study. What is also needed is the providing of an efficient agency for carrying these plans into effect; and here the experience of ED $90-71$
sereral of the States is suggestive-notably of New York, Michigan, and Minnesota.

The following plan for Ohio is recommended:

1. Let the association of Ohio colleges, or, if preferred a league of those Ohio colleges that may be willing thus to coöperate, formulate and prescribe the minimum requirements for admission to the sereral courses in each of the colleges associated, the same to be announced at least one year in advance. These requirements should be made definite, and they should fall within the general course of study above outlined for the high schools of the State.
2. Let committees be appointed by the college association, each representing at least two colleges, to visit the high schools within easy reach, and by personal inquiry and inspection determine whether such high schools are able to furnish the necessary preparatory training for one or all of the college courses, as indicated in the prescriced requirements for admission, the results and conclusions to be reported to a general committee of the association.
3. Let the high schools found worthy of such indorsement be put on a list of approved high schools and to give increased interest and weight to such approral let the graduates of these schools be admitted on application to any of the associated colleges without examination, save it may be in one of the more disciplinary branches, as Latin or algebra and geometry. These examinations might be helpful in securing greater attention to these studies and also in establishing a higher standard of attainment in them.

The visits of these examining committees should be improved to interest teachers and pupils in higher education and also to create a livelier interest in the community in the character of its high schools. It is easy to see how such visits could be made important occasions for strengthening the high schools as well as increasing interest in college education. The fact that these committees represent the colleges of the State and no particular institution would largely remove embarrassment on the part of the examining visitors. Of course no school should be visited without prior permission.

The faculty of the University of Michigan has for many years carried out a plan similar to the one commended above, and it is the testimony of all concerned that it has brought the high schools into closer relations with the unirersity and headed many young people toward its halls. It has also greatly improved and strengthened the high schools of the State in public interest. Citizens take a special pride in seeing the high school of their city or town on the approved list and the visits of the university committees are made occasions of special interest.

The demands of the colleges on the secondary schools.-School and College: The problem of earlier graduation from college has in New England led to a somewhat odd result, a positive demand for a reform in the curriculum of the elementary schools. The colleges having in recent years appreciably increased their demands upon the secondary schools, are not now so inconsistent as to call for the accomplishment of the greater rate of labor in a shorter period, but are joining in a claim that more of the preparation for college should be done before the fifteenth year of the pupil's life. Two methods of accomplishing this are suggested-the "clipping-down process," by which the pupils who are to go to college shall be taken out of the elementary schools at the age of 11 or 12 and transferred to schools which shall specially prepare them for college: and the "enrichment" method, by which certain subjects essential in preparation for college may be begun three or four years earlier than they now are, and may be taken in the elementary schools. There are difficulties in both the proposed methods.

The relation of grammar and high school education to collegiate.-Frank A. Hill, head master Cambridge English High School: The great majority of pupils in the two hundred and fifty high schools of Massachusetts are pursuing a course of study that does not connect with the college. For such pupils the high school is a cul-de-sac, leading nowhere. Harrard College welcomes connection with all good high schools. It has provided avenues by which they may hope, one of these days, to prepare pupils without Greek. Unfortunately, it is harder to fit pupils for Harvard without Greek than with it. The greater demand is made on those less able to meet it.

It stands to reason that a training suited to a person whose course must cease after four years in the high school cught to be worth following up in college should the high school graduate desire to go higher. I urge most strongly the connection of the college with the public-school system all along the upper line,
not simply at those farored points where the classically trained touch the college. This connection would reduce the age of admission of many a bolated pupil. This connection once established, a certain absurdity would disappear. Who would have dreamed, in advance of knowledge of this absurdity, that sensible men were capable, first, of raising barriers between the high schcol and the college; secondly, of removing them between the high school and the professional school, and then, thirdiy, of woudering why our youth so numerously skip the college to enter the professional school. Such inconsistencies are due to independent groups of men working at cross purposes, consequences natural enough under the intense localism of our educational systems, but impossible under the strong central authority of France or Germany. If both routes to the peofessional school are to be kept open, it is more pressing duty to lengthen and stifien the secondary courses for the benefit of those who take the short route than to shorten and probably weaken them for the benefit of those who take the long route.

The pupil who begins at 6 and moves along normally may enter college at 19. This is young enough for average minds. Quick, strong minds may profiiably enter a year or two earlier. For such the way should be shortened, but not by contracting the whole system. It should be shortened, not solely for the purpose of keeping active minds sufficiently busy. The Harvard Grammar School, of Cambridge, is trying an interesting experiment in this direction.

The time has come to consider the wisdom of increasing the range and the grade of scholarship within the pursuit limits of the grammar school. When We note how much the boys of the gymnasium and the lycée have accomplished by the time they reach 15 , the question comes home whether our grammar-school pupils are working on a basis sufficiently liberal and with a spirit sumfiently serious. There are strong reasons, howerer, why they can not do as much as the pupils abroaj. We should be temperate in our suggestions of possible impoovement.

The arithmetic course should be reduced to make room for algebra and geometry, algebra through equations of the first degree, and geometry in a way to test the observing, inventive, and reasoning faculties, but with recognition of the fact that its prineiples can be grasped for practical purposes long before it is possible for the average pupil to give the formal and rigorous demonstrations of Euclid.

Elementary science should have a place. There is something seriously defective in our teaching if under it pupils do not gain in power to sea and to think. Geography should be made an observational study to an increased extent. This can be effected with the aid of the porte-lumiere, a darkened room, and stereopticon views.

I hesitate to recommend an additional language for the grammar schools. Latin would hardly be tolerated. I fear it would be difficult, except in highly intelligent communities, to convincs the public that French or German ought to be taken up in our grammar sehools, although it is the practice abroad to begin a modern language very early. The additions proposed-they would be largely substitutions-should be worked out in a tentative way, some single school in an adranced community being selected for the experiment.

The changes proposed would require more teachers of a high range of attainments. This is the coming opportunity for the young women of the colleges as well as for the grammar schcols. The proportion of liberally educated young women is increasing; the supply of such women for high schools promises before long to exceed the demand. It will be a glad day when the public shall demand as gensrous preparation for the teachers of the lower schools as for those of the upper.

The difficulty is with the preparatory schools.-H. L. Stetson, president Des Moines (Iowa) College: If the proper preparatory work could be accomplished I think there would be no complaint with reference to the leng th of our present college courses. If the student could be started at 13 or 14 years in his preparatory work, and if it could be made to cover the subjects most essential for him to enter his college course, he would be able to graduate at the end of the four years at about the age of those young men who enter the various professions without the college training; and the result of my investigation has led ms to this conclusion. that the whole difficulty is not in the college course, but is in what leads to it. Our preparatory work is in such chaotic condition; we have so few thoroughly good preparatory schcols. Some of them are engaged in teaching the classics and ot'z ers entirely in teaching the sciences. Their pupils come to us withoct any rejular pecparation, and they are compelled to spend more time in
preparing themselves for the four years than frequently is necessary to accomplish the entire course in college. In answer to these demands which have been made for increased scientific instruction the high schools-of the West particu-larly-and very many of the academies are devoting more and more time to the sciences and to English literature; and it may be, if this instruction is increased and made what it might be, our colleges may have to readjust their courses of study to this fact, requiring less of the classics for entrance and giving more attention to them and more attention to advanced work in the sciences, and in this way possibly we may be able to meet all the demand that is made for less time to secure an education.

Suggestions.-D. C. Gilman, president Johns Hopkins University: (a) The autho ities in our educational system should really, as well as nominally, disinguish between the requirements of three scholastic periods, namely, the school, the college, and the university; or, in other words, between what is essential, what is liberal, and what is special in a prolonged education.
(b) The period of college life, which of late years has been carried forward so that it extends on the average from 18.5 years to 22.5 years (in many, perhaps in most of the older colleges) may be brought back to an earlier age, say from 16 to 20 years.
(c) The significance of the baccalaureate-degree school should be restored, so that it may be at least a trustworthy certificate, an approximate measure, both of the capacity and of the acquisitions of the possessor. In one way or another a consensus should be reached as to the "dignities, rights, and privileges to that degree appertaining."
(d) The rigidity of the class system should be relaxed, so that those who are exceptionally farored or exceptionally strong may, if they choose, run the course in less than the average time; and likewise so that any who are embarrassed by ill health, the necessity of earning a support, or the inadequacy of their early opportunities may spend more than the usual time without any implied discredit; indeed, without attracting any attention. The exaggerated emphasis given to the class system in our colleges seems to me most unfortunate.
(e) The enormous waste of time and energy at the school period, the time of preparation for college, must be arrested.

If these remedies could be adopted, what would be the result? School life would usually end at 16 years of age, when "matriculation" in a college would indicate that the scholar was ready for higher studies. College life would usually end at 20 years of age, when a bachelors degree would denote the attainment of a liberal education. Those who are fleet would go over the course in less time, and those who are handicapped would proceed at a slower rate. The hare would generally win; but, sometimes, the turtle. Professional or special education would then continue as long as the scholar might wish, three years being probably the usual period in schools of law, medicine, and theology. The young man would thus receive at 23 years or upwards his professional certificate or his diploma as a doctor of philosophy. He would have finished his university pupilage. An education like this would usuaily extend over eleven years-four in the preparatory school (from 12 to 16), four in college (from 16 to 20), and three in a professional school (from 20 to 23); but the period might be shortened or lengthened according to individual abilities or disabilities. If, then, the stronger universities would take the ground that, as a rule, none should be admitted to the professional courses, or to the freecom of university instruction, until they had attained a bachelor's degree, or in some other way acquired a corresponding preparation for advanced work, the reproaches of which we are conscious would soon disappear, and higher education would be more generally diffused, more wisely ordered, more serviceable to the public.

Changes in the grammar-school programme. -The Association of Colleges in New England, at its annual meeting, November 5 and 6,1891, resolved to recommend for gradual adoption the following changes in the programme of New England grammar schools: (1) The introduction of elementary natural history into the earlier years of the programme as a substantial subject, to be taught by demonstrations and practical exercises rather than from books; (2) the introduction of elementary physics into the later years of the programme as a substantial subject, to be taught by the experimental or laboratory method, and to include exact weighing and measuring by the pupils themselves; (3) the introduction of elementary algebraat an age notlater than 12 years; (4) the introduction of elementary plane geometry at an age not later than 13 years; (5) the offering of
opportunity to study French or German or Latin, or any two of these languages from and after the age of 10 years. In order to make room in the programme for these new subjects the association recommends that the time allotted to arithmetic, geography, and English grammar be reduced to whatever extent may be necessary. The association makes these recommendations in the interest of the public-school system as a whole; but most of them are offered more particularly in the interest of those children whose education is not to be continued beyond the grammar school.
Discussion of the changes recommended in the foregoing paragraph.-George H. Martin, agent of the Massachusetts board of education, in an address before the Massachusett́s Schoolmasters' Club: In discussing the proposed reforms I shall certainly limit myself to the class of pupils referred to in the memorandum issucd by the college association, viz, pupils who are to leave school at 14. Concarning the first proposition to introduce elementary natural history in the earlier years there is practical unanimity among all public-school men. It was discussed by this club six years ago, and then the club was wholly in its fa vor. It is already a "substantial subject" in the best schools, and no school cur riculum of recent construction would be considered complete without it, an d it is taught everywhere objectively and not from books. It is true there is much crude and desultory work, but this is growing less as the limitations are removed. The subject is everywhere recognized as a most efficient instrument of training and is being used for that purpose. To say that it is in all schools in all communities would be to err, but the work is rapidly gaining, and its momentum will not be sensibly increased by the belated impulse from the colleges.
I am prepared to indorse heartily the proposition to introduce elementary physics into the later years. It should be taught by experiment, and is already so taught in some grammar schools. but the "laboratory method" is not practical for grammar schools, nor is "exact weighing and measuring by the pupils themselves." This requires individual opportunity and time, neither of which the pupils in the grammar schools can have, and a degree of self-control which chiidren under 14 have not acquired. Nor is this work desirable. What these children do need is some knowledge of the simple principles of natural philosophy which will enable them to understand the natural phenomena about them and the varied applications in modern industrial life-the pump, the steam engine, and the telegraph.

The third proposition is to introduce elementary algebra at 12 or earlier. From this I dissent. Elementary algebra has neither practical nor disciplinary value for pupils not going in to the higher mathematics. Its relations are purely numerical, and with most pupils in the high schools its operations are chiefly mechanical. As a discipline it has no advantage over arithmetic. In fact, it has infinitely less value than the analytical processes of Warren Colburn's first book. It is true children may learn early to juggle with x, and they may be pleased to see how nicely the "sum comes out," but this is not algebra in any true sense. I have found by experience that real algebra is severe discipline for students from 16 to 20 who have had full high-school training. To learn to solve numerical problems in the easiest way is neither the end nor an end to be sought with much solicitude.
Tne next proposition is to introduce elementary plane geometry at an age not later than 13 years. By this the association doubtless meant demonstrative geometry of the Euclidian type. The mental discipline derived from this study is of great value, but such discipline can not be acquired by classes of children 13 or younger. They can, as so many older students have done, memorize theorems and demonstrations, and recite them glibly. But this is not geometry ; it is only words. The question is not whether children can be put into geometry, but whether geometry can be putinto them. But there is a kind of geometry which is already everywhere in use in the well-organized public schools, and which is being developed as far as the capacities of the pupils will admit. It is not called geometry, but industrial drawing. It is throughout a study of form, its properties and relations. It is form in the concrete; it deals with geometrical relations experimentally and constructively. Its logic is inductive rather than deductive, and it looks directly toward the practical necessities of handicraft as well as to the broader culture which is a uriversal need.

Coming to the proposed study of Latin and the modern languages at the age of 10 , time will allow but brief consideration. I can not see that Latin for children from 10 to 14 would have advantages either for discipline or use sufficient to justify its introduction. All that part which exercises chiefly the memory, and which constitutes the drudgery of the study, could doubtiess be done earlier
than 14, but only by dint of severe labor and by much displacement of other studies. I can not see how the children would get beyond the drudgery and receive any impulse from Latin as literature, nor would that nice linguistic work be possible on which the value of the study as mental discipline chiefly depends. This has some maturity as its necessary condition. Of modern languages, it is doabtless true that they can be learned colloquialiy more easily at 10 than at 14 . But this argument proves too much, for they can be learnea better at 6 than at 10 , and better at 2 than at 6 . If ease of learning is the end sought they should be putinto the kindergarten. To this I should assent if there were teachers all along the line who could continue the work; but for children who are going to work at 14 it seems of doubtful utility to require or to allow them to occupy themselves for four years with either French or German.

In place of these that more extended work in the literature of their own language which is becoming so general in the best grammar schools, of which the association of colleges has evidently never heard, is infinitely more valuable. It has all the elements of culture for immediate purposes. It will be more likely to develop into a continuation study than any other subject, and to project itself into the post-school life and to influence it for good. Speaking for myself, I have no hesitation in saying that the present movement in grammar-school work in nature study, in drawing, in literature, and in music is sufficiently enriching, is more philosophical educationally, and will prove more practically and generally beneficial under the direction of the public-school men who have originated it than the lines of work proposed by the association of colleges.

Foreign languages in the grammar schools.-William C. Collar, Roxbury Latin School: That the presidents of a dozen New England colleges should unite, as they have lately done, in a recommendation that one or two foreign languages should be made a part of a regular grammar-school course, strikes me with astonishment. Ong would like to know whether the prodigious success that we have attained in the pursuit of foreign languages in our high schools prompted this sapient suggestion. Did they consider well the general competoncy of grammar-school teachers to give such instruction? Have they weighed the intellectual profit to be derived from pottering a year or two with the elements of another tongue?

Shortening and enriching the grammar-school course.-Charles W. Eliot, president Harvard University. ${ }^{1}$-I. We may properly use the term shortening in either of two senses. In the first place, the number of grades may be reduced from 10 to 9 or from 9 to 8 , so that the combined primary and grammar-school periods shall end at 14 or 13 ; or secondly, the studies of the present course may be rediced in volume or in variety, or in both, so that there shall be room for the introduction of new subjects. I observe that both kinds of shortening have actually been begun in various towns and cities, and I believe that both are desirable, if not universally, at least in most localities. The argument for the first kind of shortening is a compact and convincing one-averaging the rates of progress of bright children with those of dull children being the great curse of a graded school. It is safer to make the regular programme for 8 grades and lengthen it for the exceptionally slow pupils than to make it 10 grades and shorten it for the exceptionally quick. In other words, since holding back the capable children is a much greater educational injustice than hurrying the incapable, the programme should be so construed as to gire all possible chances of avoiding the greater evil. Without altering the nominal length of the programmeain years, a great shortening of the course can be effected for part of the children simply by permitting the capable ones to do two years' work in one. I heard a grammar-school master testifying a few days ago in a teachers' meeting that nearly one-quarter of the pupils in his school (which numbers about 650 children) were successfuliy accomplishing this double task. Such a statement opens a cheerful vista for one who desires to see the grammareschool course both shortened and enriched.

With no more words about the first kind of shortening, I turn to the second kind, namely, the desirable reductions in the volume and variety of the present studiej. The first great reduction should. I believe, be made in arithmetic. I find that it is very common in programmes of the grades to allot to arithmetic from one-eighth to one-sixth of the whols sshool time for nine or ten years. In many towns and cities two arithmetics are used during these years-a small one of perhaps 100 pages, followed by a larger one of 203 or 300 pages. Now, the small book ordinarily contains all the arithmetic that anybody needs to know; indeed,

[^67]much more than most of us ever use. Before a body of experts like this it were superfluous to enlarge on this proposition. On grounds of utility geometry and physics have stronger claims than any part of arithmetic beyond the elements; and for mental training they are also to be preferred. By the contraction of arithmetic, room is made for algebra and geometry. In a-few schools these subjects have already been introduced, with or without mention in the official programmes, and they have proved to be interesting and intelligible to Ameriean children of from 11 to 13 years of age, just as they are to European children. Moneover, the attainments of the pupils in arithmetic are not diminished by the introduction of the new studies, but rather increased. The algebraic way of solving a problem is often more intelligible than the arithmetical, and mensuration is easier whon founded on a good knowledge of elementary geometry than it is in the lack of that foundation. The three subjects together are vastly more interesting than arithmetic alone pursued through nine consecutive joars. Secondly, language studies, including reading, writing, spelling, grammar, and literature, occupy from one-third to two-fifths of most grade programmes. There is ample room here for the introduction of the optional study of a foreign language, ancient or modern, at the fourth or fifth grade. Here it is to be observed that nothing will be lost to English by the introduction of a foreign language.
In many schools the subject of grammar still fills too large a place on the programme, although great improvement has taken place in the treatment of this abstruse subject which is so unsuitable for children. In the Beginner"s Latin Book, by Messrs. Collar and Daniell, I noticed five years ago an excellent description of the amount of knowledge of English grammar needed by a pupil of 10 or 12 years of age about to begin Latin. Of course, the pupil who is not to begin Latin needs no more. All the grammar which the learner needed to know before beginning Latin was "the names and functions of the parts of speech in English and the meanings of the common grammatical terms, such as subject and predicate, case, tense, voice, declension, conjunction," etc. Manuals have now been prepared in considerable variety for imparting this limited amount of grammatical information by examples and practice rather than by rules and precepts; so that the greater part of the time formerly spent on English grammar can now be saved for more profitable uses. Thirdly, geography is now taughtfrom books and flat atlases chiefly as a memory study, and much time is given to committing to memory masses of facts which can not be retained and which are of little value if retained. By grouping physical geography with natural history, and political geography with history, and by providing proper apparatus for teaching geography, time can be saved, and yet a place made for much new and interesting geographical instruction. Fourthly, asmall saving of time can be made for useful subjeats by striking out the bookkecping which in many towns and cities is found in the last grade. This subject is doubtless included in the grammar-schcol programme, because it is supposed to be of practical value; but I believe it to be the most useless subject in the entire programme, for the reason that the bookkeeping taught is a kind of bookkeeping never found in any real business establishment. Every large business has in these days its own forms of accounting and bookkeeping, which are, for the most part, peculiar to itself. Almost every large firm or corporation has its own methcd, with printed headings, schedules, bill-heads, invoices, and duplicating order-books, adapted to its own business and intended to simplify its accounts and reduce to lowest terms the amount of writing necessary to keep them. What a boy or girl can learn at school which will be useful in after-life in keeping books or accounts for any real business is a good handwriting, and accuracy in adding, subtracting, multiplying, and dividing small numbers. It is a positive injury to a boy to give him the impression that he knows something about bookkeeping when he has only learned an unreal system which he will never find used in any actual business. At.best, bookkeeping is not a science, but only an art based on conventions. As trade and industry have been differentiated in the modern world, bookkeeping has been differentiated also, and it is, of course, impossible to teach in school the infinite diversities of practice.
II. I have thus indicated in the briefest manner the reductions which may bs conveniently made in some of the present subjects in order to effect a shortening of the present grammar-school programme. My next topic is diversifying and enriching it. The most complete statement of the new subjects proposed for the grammar-school programme is that made by the Association of Colleges in New England at their meeting at Brown University last November. That association then invited the attention of the public to certain changes in the grammar-school
programme which it recommended for gradual adoption. These changes are five in number.

The first is the introduction of elementary natural history into the earlier years of the programme, to be taught by demonstrations and practical exercises rather than from books. The term natural history was doubtless intended to include botany, zoölogy, geology, and physical geography. Some room for these subjects is already made in most grammar-school programmes, and the recommendation of the association refers as much to methods of teaching as to time allotted to the subject. The assoriation recommends that the teaching be demonstrative, and thatadequate apparatus be provided for teaching these subjects. There is a lamentable lack of the proper apparatus for teaching geography in the public schools. Indeed, in many schools there is no proper apparatus for teaching geography or any other natural-history subject to young children. Natural-science apparatus has been provided in some exceptional high schools, but as a rule grammar schools are still destitute in this important respect.

The second recommendation is the introduction of elementary physics into the later years of the programme, to be taught by the laboratory methcd and to include exact weighing and measuring by the pupils themselves.

The third and fourth recommendations cover the introduction of algebra and geometry at the age of 12 or 13.

The fifth is the offering of opportunity to study French or German or Latin or any two of these languages from and after the age of 10 .
III. Such are, in brief, the proposals for shortening and enriching the gram-mar-school course. I want to use the rest of the time allotted to me in discussing the objections to these various changes.

The first objection I take up is the objection to a reduction in the time devoted to arithmetic. Many teachers are shocked at the bare idea of reducing the time given to arithmetic, because they believe that arithmetic affords a reculiarly valuable training, first, in reasoning, and secondly, in precision of thought and accuracy of work. They perceive that the greater pait of the school progamme calls only for memorizing power and they think that arithmetic derelops reasoning power. The fact is, however, that mathematical reasoning is a peculiar form of logic which has very little application to common life and no application at all in those great fields of human activity where perfect demonstration is not to be obtained. As a rule, neither the biological nor the moral sciences can make use of mathematical reasoning. Moreover, so far as mathematical reasoning is itself concerned, variety of subject is very useful to the pupils. The substitution of algebra and geometry for part of the arithmetic is a clear gain to the pupil so far as acquaintance with the logic of mathematics goes. Again, practice in thinking with accuracy and working with demonstrable precision can be obtained in algebra, geometry, and physics just as well as in arithmetic. It is quite unnecessary to adhere to the lowest and least interesting of these exact subjects in order to secure adequate practice in precision of thought and work.

The second objection is that there are children in the grammar schools who are incapable of pursuing these new subjects. Assuming that this allegation is true of some children, I have to remark, first, that we shall not know till we have tried what proportion of children are incapable of pursuing algebra, geometry, physics, and some foreign language by the time they are 14 years of age. It is a curious fact that we Americans habitually underestimate the capacity of pupils at almost every stage of education, from the primary school through the university. The expectation of attainment for the American child or for the American college student is much lower than the expectation of attainment for the European. This error has been very grave in its effects on American education all along the line, from the primary school through the university, and till within twenty years the effects were nowhere worse than at the college grade. It seems to me probable that the proportion of grammar-school children incapable of pursuing geometry, algebra, and a foreign language would turn out to be much smaller than we now imagine, but though this proportion should be large it would not justify the exclusion of all the capable children from opportunities which they could profit by. At the worst this objection can only go to show that it will be necessary to adopt in the grammar schools a flexible instead of a rigid system-some selection or choice of studies instead of a uniform requirement. Those children who are competent to study a foreign language should certainly have the opportunity of doing so at the proper age, that is, not later than 10 or 11 years; and those who are competent to begin geometry at 12 and algebra at 13 should have the chance. If experience shall prove that
a considerable proportion of grammar-school children are incapable of pursuing the higher studies that fact will only show that the selection of appropriate studies for children by their teachers should be adopted as a policy by the publie grammar school. To discriminate between pupils of different capacity, to select the competent for suitable instruction, and to advance each pupil with appropriate rapidity will ultimately become, I believe, the most important functions of the public-school administrator-those functions in which he or she will be most serviceable to families and to the state.

Another objection to the changes proposed of ten takes this form-they are said to be aristocratic in tendency. The democratic theory, it is said, implies equality among the children, uniformity of programme, uniform tests for promotion, and no divisions in the same schoolroom according to capacity or merit. I need not say to this audience that these conceptions of true democracy in schools are fallacious and ruinous. Democratic society does not undertake to fily in the face of nature by asserting that all children are equal in capacity or that all children are alike and should be treated alike. Everybody knows that children are infinitely diverse; that children in the same family even are apt to be very different in disposition, temperament, and mental power. Erery child is a unique personality. It follows, of course, that uniorm programmes and uniform methods of instruction, applied simultaneously to large numbers of children, must be unwise and injurious-an evil always to be struggled against and reformed, so far as the material resources of democratic society will permit. It is for the interest of society, as well as of the individual, that every individual child's peculiar gifts and powers should be developed and trained to the highest degree. Hence in the public schools of a democracy the aim should be to give the utmost possible amount of indiridual instruction, to grade according to capacity just as far as the number of teachers and their strength and skill will permit, and to promote pupils not by battalions, but in the most irregular and individual way possible. A few days ago I heard an assistant superintendent in an important city declare that many grammar-school teachers in his city objected to any division among the fifty or more pupils in each room; any division, that is, according to the attainments and powers of the individual pupils. They wanted all the pupils in a given room to be in one grade, to more together like soldiers on parade, and to arrive at examination day having all performed precisely the same tasks and made the same progress in the same subjects. If that were a true portrait of the city graded school it would be safe to predict that the urban public school would before long become nothing but a charity school for the children of the dependentclasses. Intelligent Americans will not subject their children to such discipline when they once understand what it means. The country district school, in which among forty or fifty pupils there are always ten or a dozen distinct classes at different stages and adrancing at different rates of progress, would remain as the only promising type of the free school. Not only is it no serious objection to the new propozals that they must diminish uniformity in schools-it is their strongest recommendation.
So far from the changes proposed being of aristocratic tendency, they are really essential to a truly democratic school system ; for they must be adopted and carried into effect before the children of the poor can obtain equal access with the children of the rich to the best education they are capable of, whatever the grade of that education may be. Accessibility of appropriate opportunity is the essence of democratic society ; not equality of gifts, attainments, or powers, for that equality is unnatural and impossible; not abundance of inappropriate opportunities, for such abundance is of no avail ; but accessibility of such appropriate opportunities as the individual can utilize for his own benefit and that of society. The American grammar-school programme now actually prevents an inte ligent child from beginning the study of a foreign tongue at the right age. We all know that that age is very early, long before the high-school period. It prevents him from beginning the study of algebra and geometry at the right age. It makes it impossible for him to get a chance at the right kind of study of netural science. If a boy is not to go to the high school, he loses that chance forever under our present system. If he is going to the high school he does not get the chance till much too late. The poor boy in the United States should have as good a chance as the child of a rich man to obtain the best school training which his character and powers fit him to receive.

Is not that a fair statement of what democratic society may reasonably aim at and seek to effect 1hrough its own grammar schools? Yet the existing gram-mar-school programme actually prevents the poor boy from getting that clance. The rich man can obtain for his children a suitably varied course of instruction,
with much indiridual teaching in a private on endowed school; but the immense majority of American children are confined to the limited, uniform, machine programme of the graded grammar school. A democratic society was norer more misled as to its own interest than in supposing such a programme to be for the interest of the masses. The grades for pupils from of to 15 years of of age are an obstruction to the rise through democratic scciety of the children who ought to rise. Uniformity is the curse of American schools. That any cchool or college has a uniform product should be regarded as a demonstration of inferiority-of incapacity to meet the legitimate demands of a social order whose fundamental principle is that every carcer should ba open to talent. Selection of studies for the individual, instruction addressed to the indiridual, irregular promotion, grading by natural capacity and rapidity of attainment, and diversity of product as regards age and acquisitions must come to characterize tho American public school if it is to answer the purposes of a democratic society.
Fourth. It is further alleged that the changes proposed are chiefly for the adrantage of the well-to-do children whose education is to be carried beyond the grammar school to the high school, and possibly to the college above the high school. They are indeed for the interest of this class of children; but they are more for the interest of the children who are not going to the high school, and for whom therefore the grammar school is to provide all the systematic education they will ever receive. The Association of Colleges in New England distinctly says that it makes its recommendations in the interest of the publicschool system as a whole; "but most of them are offered more particularly in the interest of those children whose education is not to be continued beyond the grammar school." Take, for example, the subject of geometry. It has many and very important applications in the arts and trades. Every mechanic needs some knowledge of it. Its applications are as important as those of arithmetic, if we except the very simplest and commonest arithmetical operations. That the great mass of American children should leave school without ever having touched this subject, except perhaps in arithmetic under the head of mensuration, is a grave misfortune. To introduce variety into the grammar-school programme is in itself likely to proit the children who are never to go to school af er they are 14 years of age even more than the children who are. A child who is dull in one subject may be bright in a different subject. Thus a child who has no gift in language may be keen and quick in natural-history studies. A child who has no tasta for arithmetic may prove unusually strong in geometry. One whose mind is not easily moved through purely mental exercisas may be intellectually developed through drawing and manual training. In college we are extremely familiar with these diversities, and the elective system is now giving in most American colleges free play for the profitable exhibition and cultivation of these diverse gifts. In a similar manner the grammar school will be better for eren the dull and slow children if its studies are made more various and its whole system more flexible.

A fifth objection to the introduction of new subjects is that children are already overworked in school. In an address which I gave rather more than a year ago I pointed out that there are two effective mechanical precautions against the ill effects attributed to overwork at school, precautions which it is delightful to see are more and more adopted. They are gcod ventilation and the systematic use of light gymnastics at regular intervalsduring school hours. School time ought to be the best managed of all the day from a sanitary point of view, excepting those hours which the children pass out of doors. If the schoolroom were invariably healthier in every respect than the average home we should hear less about overwork at school. There is, however, a third precaution against overwork which is quite as important as either of those already mentioned: it is making the school work interesting to the children. Four years ago I asked the attention of this department of the National Educational Association to the depressing effect which lack of interest and. conscious progress in school work has upon children. To introduce new and higher subjects into the school programme is not necessarily to increase the strain upon the child. If this meajure increases the interestand attractiveness of the work and the sense of achierement it will diminish weariness and the risk of hurtful strain.

Lastly, there is an apprehension lest the introduction of the new subjects recommended should increase existing difficulties with regard to promotion. Parents are sensitire about the prometion of their children. They want the dull ones and the bright to be promotid at the same rate. Their synipathies are quite as apes to be with the sow caildren as with the quick. I believe that this practical
difficulty should be met'in part by the abandonment of uniform attainment or of a standard of required knowledge as ground of promotion. In Harvard College, where there is no such thing as a uniform programme of study for all students, and where, indeed, there is small chance that any 2 students out of 1,450 will pursue the same course of studies during their four years of residence, we have long since abandoned uniform attainment as ground of promotion from one class to another. The sole ground of promotion is reasonable fidelity. I venture to beliere that this is the true ground of promotion in grammar schools as well, and that by the sole use of this principle in promoting the difficulty now under consideration would be much alleviated, if not done away with. The right time for adrancing a child to the study of a new subject is the first moment he is capable of comprehending it. All our divisions oí the total school period into years, and into primary, grammar, and high schools, are artificial and in most cases hurtful or hindering to the individual. The whole school life should be one unbroken flow from one fresh interest and one new delight to arother, and the rate of that flow ought to be different for each different child. Economical schcol administration inevitably interferes somewhat with the desirable continuity and variety of motion, but the most skilful and wisest administration is that which interferes least.
On reriewing the progress of this reform since I had the honor of discussing the question, "Can school programmes be shortened and enriched?" before this department of superintendence four years ago, I see many evidences that a great and beneficent change in public-school programmes is rapidly advancing. The best evidence is to be found in the keen interest which superintendents and teachers take in the discussion of the subject. Through them the proposed improvements will be wrought out in detail, their influence will be successfully exerted on parents, committees, and the public press; and their reward will be, first, the daily sight of happier and better-trained children, and secondly, the elevation of their own profession.

Algebra and geometry in grammar schools-President Eliot criticised.-Edward Brooks, LL. D., surerintendent of schools, Philadelphia ${ }^{1}$: The frogramme for "eight grades," as recommended by President Eliot, is almost universally adopted in our graded schools. In Philadelphia pupils enter the primary schools at 6 years of age, and have an eight years' course to complete the grammar schools. Very bright pupils are allowed to do it in less time. The same thing is generally true of the cities of the country; very few have a nine years' course ; almost none a ten years' course. His suggestion of combining studies has also been adopted in many of our public schools. With primary grades it is a rery common practice to unite geography and history, and with more advanced grades political and physical geography have usually been taught together for many years.

I doubt very much whether there is any alvantage to be derived from the introduction of algebra into the grammar-school course. To the ordinary citizen in practical life a knowledge of algebra will be found of little value. No ons buys or sells by algebra; and a knowledge of polynomials or the quadratic equation would be of little use to the housewife in the discharge of her duties. Indeed, no one of the mathematical branches would be of solittle value in the ordinary practical affairs of life as algebra. Besides, we can not advocate the study of algebra on account of its disciplinary ralue, for no mathematical branch gives so little mental discipline that the ordinary business or professional man would find of use. As a disciplinary study the elements of algebra will be found to be far inferior to either arithmetic or geometry. Nuch of algebra is a mere calculus, and the aim of the student is to become expert with the manipulation of symbols, a form of mental operation entirely removed from that of ordinarylife. In place of algebra I would urge a more general introduction of arithmetical analysis, usually known as mental arithmetic. This form of reasoning, originating with Warren Colburn, is better adapted to sharpen and strengthen the analytical powers of young students than any other branch of the grammar-selcol curriculum. It is far superior to algebra in developing the thought power of the student. It is also generally simpler and shorter in its methods of reasoning and operation than algebra. Take the problem that President Eliot gives, "The sum of 2 numbers is 24 , and one is twice the other." I can obtain the resuits by the simple process of arithmetical analysis before the algebraist could write his equations. A problem like the following: "If A can do a piece of work in four days and B in six days, in what time can both do it?" is much more simply
worked by arithmetical analysis than by algebra. And the same is true of a large number of problems. I urge, therefore, in place of algebra, that the beautiful system of arithmetical thought known as mental arithmetic be more ful. y introduced into our grammar schools than it is to-day.

The study of geometry as a science should not be introduced into our grammar schools. Concrete and practical geometry is already taught in most of our grammar schools under the head of drawing and mensuration. In most of these schools the pupils are made familiar with all the ordinary geometrical figures and their properties or principles. These principles include the methods of obtaining the areas of plane surfaces, the area and circumference of the circle, and the surface and rolume of the parallelopiped, pyramid, cylinder, cone, and sphere. These principles are obtained, not by demonstration, but by concrete illustration, and they are applied by the children until they a:e familiar with them. This is all that it is practicable to do with geometry in the grammar schools. The pupils are not prepared for the logical processes of abstiact geometry and can not understand them. The method of reasoning from axioms ard established principles by the logical methods of geometry is too difficult for the ordinary student of the grammar schools. It is said that abstract geometry, with its demonstrations, is taught in the public schools of Germany and France; but in my examination last summer of the elementary schools of Paris corresponding to our grammar schools I did not find a single pupil studying the science of geometry. They apply the principles reached concretely, as we do in our grammar schools.

That the work of the grammar schools can be improved by shortening the course of study is a proposition that needs demonstration. That it may be enriched is a most desirable object, though it is a question whether this enrichment may not be attained by other means than the addition to or subtraction from the present coursa of studies. The broader question is, how shall the best results of culture and knowledge be attained in our grammar schools? The object can be attained by having a correct course of study, as rich in materials for intellectual, monal, and spiritual culture as is possible, and by having welltrained and skillful teachers to use this ccurse of instruction to the best adrantage.

Those German and French schools.-John T. Prince, agent Massachusetts board of education: President Eliot is clearly wrong in his impression of what is done in the elementary schools of France and Germany. Algebra and geometry are not in the sehools that compare in any regard with our grammar grades. Algebra nowhere precedes geometry. The geometry tanght is not demenst ative, but is more like that taught in the grammar and even in the primary grades here. The colloquial speaking of the Komance languages has no such value as these later reformers would place upon it. The whole difficulty lies in the fact that the grammar schools of Europe and Americaare compared by men who have not studied either.

The two ideals of the course of study.-W. T. Harris, commissioner: In the schools of the United States there prevail two different ideals of the course of study; the one originating with the directors of higher education and the other a growth from the common elementary school. These two ideals clash in quite important particulars. The common-school course of study, as it appears in the elementary sohool and in the public high school which gives secondary instruction, does not shape itself so as to fit its pupils for entrance to the colleges. At least, if we admit that as an actual fact many high-school pupils do enter college, we must also admit that there is a constant tendency in the pub ic high school to diverge in its course of study and follow a path that does nct lead to the college.

The older colleges of the States, following the traditions brought over from Europe, built their course of study on mathematics and the classical languages, Latin and Greek. They accordingly demanded of the preparatory schools a preliminary training or preparation along these lines and neglected all else.

Human learning at one period did not include much that was not conceired and expressed in Latin or Greek words. But within the past 300 years there has arisen a modern tributary stream of human learning, and it has some time since begun its demand for recognition in the cours? of study. This modern side of human learning includes the natural sciences and modern literature. These two contingents are almost wholly the products of the past 300 years.

The demands of the sciences and the demands of the literature of the modern languages to a share in the course of study were met in one way by the college
and in another way by the common school. The directors of higher education affirmed that Latin, Greek, and mathematics furnished the truly disciplinary studies fit for the foundation of all literal education. Modern literature and the sciences on the other hand were not and could not become culture studies, although they might be useful in the way of accomplishments in practical life.
Accordingly, the colleges proceeded to recognize the moderns by admitting them into the course of study at the end. During the fourth or senior year of college the student was given a rapid survey of the sciences and of some of the great works of modern literary art. But the college did not encourage the introduction of modern literature and natural science into the preparatory school: Consequently the pupil who left school during his preparatory course or before the senior year of college found himself ignorant of these two great and rapidly growing provinces of human learning.

But the public-school system has taken a differentdirection in the matter. It has been under the supervision and management of less highly educated menthat is to say, of men less thoroughly instructed in the forms of the past, and as a result less conservative. When the moderns appealed for a place in the course of study some concession was at once made to the demand. A tendency has been established to recognize the moderns throughout the course of stuay. First, modern literature was admitted in the shape of a graded series of school readers containing many of the gems of English and American literature, and much, too, that was written in mere colloquial English, and much that was trashy in its style and thought.
In the geographical text-book there was an attempt at a survey of the physical world in its relations to man, the world in its mathematical features of size, shape, and motions, in its physical aspects of interacting forces of light, heat, moisture, and gravitation, and finally, in its biological aspects of plantlife, animal life, and the races of men.
This geographical text-book also drew on the social sciences and introduced scraps of information regarding political economy, the occupations of men, and also the political institutions, the laws and customs and religion. Geography has therefore developed from the beginning into a sort of compend of natural sciences, affording the pupil a surrey of the results of the modern sciences, both in the physical and social world.
Having conceded to the dernands of the moderns in the elementary school in these respects and in the introduction of a history of the fatherland, it remained next to emphasize this tendency still more in the secondary public school, and to make the high-school course of study include more thorough work in English literature, unjversal history, three or four selected sciences like geology, astronomy, physiology, and chemistry, in addition to the mathematics and some modern or ancient language.
It might be claimed that the graduates of the high school had a broader education : his education, under good teachers, might even be thorough, but certainly in his preparation in Latin and Greek the amount was not sufficient to give the high-school pupil a fair chance by the side of the graduate of the special preparatory school.
The directors of the common schools have therefore been compelled to establish a double course, a classical and an English course, in the public high school, a procedure so foreign to the spirit of the entire common-school course of study that it has only partially succeeded.
Adapt the high schools to the colleges.-Superintendent N. C. Dougherty, of Peoria. Ill.: What could be more natural than that the higher should reach down and adapt the lower to itself? The high schools are here to stay. If the education given by them in the past is not in all respects just what is needed, let us improve upon it. Let us make it better and better, as the years go by, until it shall supply just what is needed. Let us remember that we do the best for the boy who stops with a high-school education when we do nothing to impede the progress of the other boy who goes on to a college graduation.

The specific problem at the present time.-Nicholas Murray Butler : The marked difference at the present time between the general educational organization in this country and in Europe is to be found in the fact that in Europe the elementary school is not as a rule in complete coördination with the secondary school and the university; while in the United States the connection bstween the elementa"y and the secondary school is complete, but that between the secondary. school and the university is wanting. Therefore the specific problem in educati nal organization that the American people hare to deal with at the prisent
time is the coördinating of the secondary and the superior instruction. This will be done by the high schools, the academies, and the colleges. In this organization the American college will always continue to occupy a prominent place. * * * The college should rest upon the high school, and should not raise its requirements for admission to such an extent that high school graduates may not pass easily and naturally into it. The contemporary demand for a shortening of the time deroted to obtaining both a college and a professional education is a sound one, and must be heeded. The shortening, however, should not take place at the expense of residence in college. That is in many ways the most valuable feature of American higher education. It can not bo sacrificed without gravest loss. The problem can best be met by welding the college and the professional school together, and admitting certain preliminary professional studies, as electives, into the course leading to the degree of bachelor of arts.

Shortening the preparatory course.-President E. E. Webster, of Uuion College (N. Y.): Nothing can be better established than that the colleges are entirely dependent on the secondary schools for their support and success. If the schools are weak, inefficient, the college that draws from them can not have a high standard. The eastern colleges have been for many years demanding more and more of the preparatory schools. The requirements for admission to college hare been increased; the age of graduation for the average student is much greater than it was in the past. Meantime, competition for places in liie has become sharper than ever. And now the cry goes out, college graduates are too old; the course must be shortened; men must get into life earlier. And so they ought. But if a change is to be made, let it be in the requirements for admission to college, not in the length of the college course. Any college man will maintain that college life is worth more to a young man thanlife in a preparatory school, no matter how well conducted. As it seems to me, no greatar mistake can be made than to shorten the college course. This, of course, for the average man. Every college course is arranged for the average man. The exceptional man-let him graduate whenever he has done his work.

There is one great trouble with the high schoo's. They are doing much of the work that ought to be done in colleges, and for this they have good grounds. Only a small number of students in high schools expect or intend to enter college. It is well that those who can not enter any higher institution of learning should receive instruction in many branches which properly belong in the college course. But in every such school there ought to be a course arranged for roung men and women who do intend to "go up higher." The tima of preparation would then be much shortened, because many subjects would be omitted. This would encourage students to go on with their education. For many years I was a teacher of natural science in various colleges. I say without hesitation that better work can be done (in colleges) with a student who comes fresh to the subject than with one who through his high-school training thinks that he understands the subject. I conclude in this wise:

In our high schools the teaching is excellent. All honor to those who give their lives to it. But there ought to be preparatory courses for colleges, including only such subjects as are required for admission in colleges.
That if any change is to be made so as to shorten the time for college students, it should be made in the preparatory course.

There comes a "moment of instinctive readiness" for every subject of sturty.-William James, professor, Harvard University : In all pedagogy the great thing is to strike the iron while hot and to seize the ware of the pupil's interest in each successive subject before its ebb has come, so that knowedge may be got and a habit of skill acquired-a headway of interest, in short, secured on which afterward the individual may float. There is a happy moment for fixing skill in drawing, for making boys collectors in natural history, and presently dissectors and botanists; then for initiating them into the harmonies of mechanics and the wonders of physical and chemical law. Later, introspective psychology and the metaphysical and religious mysteries take their turn; and, last of all, the drama of human affairs and worldly wisdom in the widest sense of the term. In each of us a saturation point is soon reached in all these things; the impetus of our purely intellectual zeal expires, and unless the topic be one as o iaied with some urgent personal need that keeps our wits constantly whetted about it, we settle into an equilibrium, and live on what we learned when our interest was fiesh and instinctive without adding to the store. Out:iae of their own business the ideas gained by men before they are twenty-fire ara practically the only ideas they shall have in their lires. They can not get anything new. Disinterested curiosity is past, the mental grooves and channels set, the power of assimilation
gone. If by chance we ever do learn anything about some entirely new topic we are aftlicted with a strange sense of insecurity and we fear to advance a resolute opinion. But with thingslearned in the plastic days of instructive curiosity we never lose entirely our sense of being at home. There remains a kinship, a sentiment of intimate acquaintance, which, eren when we know we hare failed to keep abreast of the subject, fiatters us with a sense of powerover it and makes us feel not altogether out of the pale. Whaterer individual exceptions to this might be cited are of the sort that "prove the rule."
I' detect the moment of the instinctive readiness for the subject is, then, the first duty of every educator. As for the pupils, it would probably lead to a more earnest temper on the part of college students if they had less belief in their unlimited future intellectual potentialities, and could be brought to realize that whatever physics and political economy and philosophy they are now acquiring are, for better or worse, the physics and political economy and philosophy that will have to serve them to the end.
Modern studies may furnish a liberal education.-J. E. C. Welldon, head master Harrow School, England (in the Academy): Speaking generally, with the experience of a school in which a modern education has been tried on a large scale, I may give it as my clear opinion that the boys who have been educated in modern subjects deserve to be accredited with a liberal education in the same sense and to the same extent as other boys. In their intellectual characteristics, so far as I can estimate them, they are not altogether like the classical boys; but they are not inferior. ${ }^{*} * *$ They are, in many instances, boys of keen and active intelligence. In the range of their culture and the discipline of their mental powers they are the equals of boys who have received a classical education; in the intellectual interest which they feel in their studies they are not infrequently superior. They win their share of the prizes and distinctions which are accorded to intellectual merit in public schools. If it is necessary to mention one particular point in which they sometimes fall below their classical rivals it may bo said to be the habit of accuracy, of perseverance, and of sustained and concentrated attention to a subject which is not at once interesting and attractive and demands a large amount of patient, painstaking effort if it is to be effectively pursued.

Flexibility in courses of study-F.W.Parker, Cook County Normal Schcol: A course of study is an arrangement of topics and subjects in the line of development. It shows the teachers the direction of work and is a general guide in the preparation of lessons. A course of study should be adapted to the abilities of tashers. An ironclad course of study that demands compliances in every detail is a dire means of compelling uniformity. The differing circumstances of pupils demand flexibility in the adaptation of a course of study. A class badly taught through several grades can not be made to follow a course of study without disastrous results. A course of study should be under constant discussion and should be changed when necassary. It should aid teachers in doing their best work.

IV.-Education.

Education should be adapted to individual requirements-Influence of heredity and environment.-President D. C. Gilman (Johns Hopkins), in the Cosmopolitan Magazine: Every boy differs from every other boy in character as he does in appearance. Even twins, while they closely resemble one another in many respects, may differ essentially in fundamental tastes and talents. Mr. Grafton says that extreme similarity and extreme dissimilarity are nearly as common between twins of the same sex as moderate resemblance. If this is confirmed, what becomss of heredity?
The corollary is obvious that plans of education should as far as possible bs adapted to individual requirements; but as every boy is preparing for life among his fellows, and as Providence has so ordered it that he is strongly influenced by other boys, it follows that to treat him alone, away from comrades, in the backwoods, in a cell, under exclusive instruction, is only justifiable under extraordinary circumstances. He comes into the world not only as an individual with his own responsibilities and possibilities, but as one of a family, a neighborhood, a race, from which he can not be extricated except by death. Isolation is therefore as unnatural as it is undesirable and difficult.

Erery boy is influenced both by his inheritance and his environment; yet the laws of heredity in the human species are not well enough known to give
us any certain indications of what the child of any parents will become, while the conditions in which a person lires are as complex as the elements that nourish his body, the air he breathes, the water he drinks; as subtle and insinuating as the tones of the voice, the glance of the eye, the nod of the head, the pressure of the hand; as influential as religious faith, the forms of civil gorernment, the habits of society, the lessons of antiquity, the examples of good men; and as trifing as a careless word, a thoughtless joke, a timely hint, a friendly warning, or a loving smile.

Seeking wisdom rather than knowledge.-Prof. C. A. Collin (in the Unirersity Magazine): The student undergoing the process of liberal education ought to pursue some studies in which he can not see any practical utility. His soul should grow and expand under the influence of quiet and unforced reflection and meatitation which has no reference and in which he can see no reference to bread and butter. In this overpractical age the student's mind sometimes needs to be forcibly turned away from the pursuit of the practically useful to the cultivation of higher wisdom of greater value than is included within the range of what is ordinarily denominated practical. There is a certain influence from the study of Greek for which there is no equivalent. In every college or university there should be at least a small body of teachers and disciples to whom the life is more than meat, who are seeking wisdom rather than knowledge, and who, from the pursuits of philosophy, the reverence of the Lord, and the culture of the soul, gain the breadth of view, the clearness of vision, the warmth of heart, and the soundness of judgment which make the strong man; and who despise the mere keenness and agility of intellect which makes men shrewd and smart. There is no danger that men taking such courzes of liberal education will be too numerous. By all means encourage every man who can take such a course and has the soul capable of receiving it to do so, whether afterwards he is to pursue a professional or a business career.

The bearing of heredity upon education.-Philadelphia Ledger: One of the most important truths which science has disclosed to us, and one which is replete with suggestions as to the conduct of life, is that of heredity. Instead of conceiving, as some have done, that each child came into the world like a blank sheet of paper, on which could be inscribed at will whatever characters we chose to imprint, we now know that he is a reproduction of past generations-the result of many combinations of character, with certain aptitudes, tastes, powers, faculties, and tendencies derived from his rarious ancestors. Just as some of his features are said to resemble father or mother, or more distant relatives, and some are combinations of several, so in his character will be represented certain qualities of one or of another, and often a mingling of many, which together produce an individuality all his own, yet gathered from past sources. It may be thought that if this be so there can not be much left for us to cio. If each child is to reproduce the past in various forms, and under laws orer which we can have no control, how can we hope to alter, by our interfsrence, what is so irrerocably settled? How can we trace fresh characters on tablets already so full of permanent inscriptions? If heredity were the only element in the building of humanity, there might be force in such an inquiry; but this is not the case. Prof. Braduford, in the last number of the Educational Review, says: "Evolution works by two factors, namely, heredity, or that which tends to permanency, and environment, or that which tends to variation. The characteristic of the first is that it reproduces the past; of the second, that it adapts to new conditions that which has come from the past." This nature, so wonderfully complex, and so faithfully bearing within it the records of the past, is yet responsive to every touch from without. The environment or surroundings of the child or man always exert a potent sway over him. The influence of the air and the sunshine, of the climate, of town or country, of wealth or porerty, of civilization or barbarism, of care or neglect, of affection or indifference, of everything external, in fact, with which he comes in contact, is momenta ily molding him into new forms, and modifying in various ways the nature which he has derived from the past.

Some of these influences are beyond our control, but many of them are within our power, and it is on this well-grounded truth that all our efforts at training, education, and self-culture should be based. Many of our failures in these atte npts come from not bearing constantly in mind these two elements in every life. Every intelligent workman must have some appreciation of the materials with which he works. He must know what can and what can not be doae with them if his skill is to be effective. To deal with them all alike and to expect
that the same treatment will produce the same results would appeal even to the most ordinary laborer as an utter absurdity. Yet in the infinitely more intricate and complex nature of man, where no two minds or hearts or dispositions are exactly similar, how common it is to apply the same methods, to urge the same motives, to exert the same influences, to use the same drill, and then to be utterly astonished that the same results do not supervene. If the builder gave no more attention to the different varieties of wood than we give to the varieties in human nature we should justly deem him incompetent and untrustworthy. It is for this reason, far more than for any curious research, that the great principle of heredity should be studied in its manifold bearings by those who aim to train children, to influence men, or to improve themselves. If it is true, it is full of meaning to us all. It suggests that if we would make impressions, or form habits, or instill virtues, or correct faults, we must know something of the nature we thus attempt to influence. What may be effectual in one instance may be powerless in another and ruinous in a third, for the needs are as varied as the natures. It is because that which the individual inherits from past ages, while ineradicable, is yet being constantly modified by what comes to him from without, and because these two forces are always coöperative that he who would direct the one must understand the other. If it be said that this view fills the whole subject of education with difficulty, it can not be denied. But if it is a real and honest difficulty, who would bury it out of sight? Must it not be faced courageously and grappled with earnestly? The possible has always sprung out of what seemed at first impossible, and this is no exception. So far from producing discouragement, it opens up new fields for thought and for work, which afford the richest promises for future harvests.
The true ideal of education.-President O. D. Smith, of the Alabama Educational Association: The highest end of education is not the advantage of the power it gives a man for his own selfish uses or gratification, but it is to enable him to discharge the immutable obligations laid on him by his position in the world, by his relation to God and his fellow-man in all complex relations and activities of life. He who pursues knowledge solely for the sake of knowledge is little better than he who pursues money for the sake of money.

In our ideal of education and in our processes of working to that ideal we must not ignore the individuality of the pupil, his special talents and aptitudes. For his success and usefulness in life will be in working in fields of labor indicated by these special endowments. Therefore in his education those subjects should be selected as instruments of discipline and drill which will best develop them. Why waste time and effort to make a musician of one who has little musical talent or a mathematician of one who has no aptitude for mathematics? There is no Procrustean mold by which mind may be fashioned like castings in a foundry. It is not to be beaten, like iron, into a desired form by sledge-hammer blows of drill. Let the teacher also remember he can not create a faculty, or a power, or an aptitude that does not exist. Rather let the teacher direct his efforts to the development of those powers and faculties that respond most readily to discipline and drill in a vigorous growth and give promise of most fruitful results. This principle is being recognized in our educational institutions by wider latitude of selection in elective studies and in the differentiation of courses.
But in the selection of courses of study we should always be guided and limited by the true ideal of growth and development, and not sacrifice it to the mere acquisition of knowledge, however desirable. Let the teacher never forget that in real education we seek for results in the man himself. The object of disciplinary mental training is not to amass knowledge, but to enlarge, strengthen, and sharpen the mental powers.
While education and the acquisition of knowledge are generally coincident, they are by no means necessarily identical. It is a fact of common experience that a man may be educated in the true sense of the term without having acquired much knowledge. In fact, the amount of knowledge of any subject one can acquire at school is necessarily limited. So on the other hand a man may be a walking encyclopedia and jet have but little education, because such a man can not transmute his knowledge into power, into dynamic intellectual and moral force.
The question the busy, bustling, rustling world asks is not, How much does a man know? but, What is he? Erery avocation and profession has a place for the man that is.most, not the man that knows most. It is a matter of comparatively little importance whether he was educated at this or that school, or any school, whether he graduated from this or that college, or any college. The plain
blunt question the world asks and has a right to ask is, How much is there of the man, how much to him, and in him? What can he do? Do in felds of lator, in the pulpit, at the bar, in the shop, on the farm, do in all the multiplied activities of life? This popular demand is playing havoc with certificates and diplomas.

The questions that confront the young men of to-day on the threshold of active life are not, Have you studied this, that, or the other brand of knowledge? but, What have they done for you? not, Have you been to schcol, the college, or university? but, What hare these institutions accomplished for and in you? Hare they made you men of thought, of persistent purpose, of executive ability, of mo:al and intellectual force, men whose capacities are so developed, so disciplined, under such command that you can put them to the bast service in dcing the world's work?

The world needs such men and will find a place for them. It is quick to recognize genuine education; as quick to reject the counterfeit, by applying the crucial test of power, the ability to do.

It seems to me, then, that the true ideal of education is the training, discipline, and development of the germ faculties of man existing in embryo in the child. It has been comprehensively defined, "the harmonious and equable evolution of the human powers." In a broader and deeper sense than we generally understand, "the child is father to the man."

A true ideal of education will correct the prevailing misapprehension as to what constitutes a "practical education." There is no gainsaying that our marvelous material development, the rapid increase of wealth, the abnormal thirst for accumulation, are seriously and dangerously affecting our ideals and methods of education. Cui bono? is the question on the ready tongues of pupils and parents. This question expresses a prevailing theory of education. It is the more dangerous because there is a modicum of truth in it, an apt illustration of the aphorism that "half truths are the most dangerous errors."

That the chief end of education is not to qualify a man to get a living is obvious, because life was given for a higher purpose than to toil for its own prolongation. It is, then, a grievious mistake to throw away life in the effort merely to get a living, or to throw away the preparation for life in the preparation to get a living. Real education sends one into the world tenfold better equipped to attsin the very objects deemed so desirable by the advocates of the so-called practical education.

It is claimed to be especially adapted to the "industrial classes," a vague, illu:sive, and misleading expression, based upon the pernicious idea of class distinctions. So far as it has any meaning it includes all who do not belong to the "professions," i. e., law, medicine, and the ministry. But I insist if there is any form of education that makes men stronger, wiser, nobler, the farmer, the artisan, the merchant, he who in any capacity is to be the director of labor, the controller of men, needs that education to its fullest extent. What the world needs and is asking for is not technical training and manual skill alone, valuable as these are, but, in the various industries, men of good brain, well-trained intellect, of stalwart vigor, men of conscience, of fair culture, of sound judgment, ready in business, in the market, in the forum, in the workshop, on the farm, to meet the obligations and discharge the duties pertaining to family and society, state and church. The true ideal of education recognizes and emphasizes the truth that bzhind the merchant, the mechanic, the farmer towers the man, and the man is more than his business or profession.

The distinction between practical and any other kind of education is unphilosophical. All real education from beginning to end is practical. Is not that education practical that develops a man's capabilities, that reduplicates him : Is it not of practical benefit to subject the intellect to those forms of study and training which will evoke its latent resources? Just so long as manhood is a force of practical value in whatever his business or professicn, just so long must we account that education practical which augments and enriches it.

Let mere information take a secondary place.-James P. Munroe, in the Educational Review : It is not what we teach, it is how we teach, that is essential. In attempting to improve the public schools the mistake has been made of increasing the curriculum instead of the teaching force. Given the tools of reading, writing, and figuring, the good teacher will make one further study, if need be, serve every purpose of primary education. The mental vice of these newspaper days is superficiality. This vice the schools are doing much to encourage. Make the child accurate, thorough, persistent, logical, and let mere information take a secondary place. If he has acquired these qualities he has
learned how to study; in taching him how to study the school has done its work. Beyond giving him the tools of knowledge the primaly teaching can do little toward increasing the child's stock of information. That will come to him outside the schoolroom. As said above, and as can not be too often said, the school is a gymnasium for making the child's mind acauisitive and receptire. The teaching of many subjects does not conduce to this. The immature brain is naturally restless and roving; it is for the schcol to give it the power of concentration. A child's mind is impatient and easily diverted; it is for the school to teach it patience and persererance. A hasty clutshing at many things is easier and pleasanter to both teacher and pupil than thorough mastery of one thing; but the child who has really conquered one subject is he who, in manhood, will win the knowledge of a thousand.

The constituents of a sound education.-President E. B. Andrews, of Brown University: Speaking succinctly, the constituents of a sound education are, first, cbaracter; second, culture ; third, critical power, including accuracy and also sympathy with all the various ages, nationalities, and moods of men; and fourth, power to work hard under rule and under pressure.

We see that here mere knowledge is left out of the account. It is quite incidental and relatively insignificant. Yet, this is what most people have been wont to regard as the sum and substance of education. We see, too, that the question what studies are to be pursued is not mentioned, although many continually place it first. It is not unimportant. It would be pleasant to go into it deeply. Were we to do this, however, we should not enter the lists for the classics on the one hand, or for the sciences of nature on the other, but should urge rather the propriety of giving a much larger place in the curriculum than has ever been given hitherto to the political sciences. But the structure and material of the curriculum is not to-day the most pressing educational question.

The definition makes character part of education, and even gives it the first place. All reflecting persons are coming to feel that unless schooling makes pupils morally better, purer within, and sweeter, kinder, stronger in outwawd conduct, it is unworthy the name.

Culture comes next, by which is meant the power to apprehend and relish the beautiful in conduct, in ast and literature, and in nature. Education must enrich life, not enlighten it merely. Culture stands in importance close to character, to which it is also very intimately related in essential nature, ard it is far more to be sought than mere mental ability.
Third comes critical power, and mainly in the two great elements of accuracy and sympathy. Memorable ever is the thought of Cardinal Newman, that the principal part of a good education is accuracy. That one's mind is full signifies nothing unless the contents are definite and analyzed. A little knowledge well grouped and ordered comes much nearer the ideal education than infinite funds lying unassorted in the mind like so much raw ore.
To be accurate requires that of many things a finite mind should deliberately remain in ignorance. To read all the books relating even to a subject in which one is especially interested would be a positive disadvantage. Too much information in detail confuses the mind, confronting it with a blurred, indefinite picture that can be of no service to it, instead of thcse c'ear, crisp, comprehensible outlines which are so valuable. Large newspaper reading is deleterious to clear thinking beyond perhaps any other of the numerous caiuses operative in that direction at the present day.

Accuracy must be accompanied by sympathy, the power to draw near to men of all the different ages, civilizations, and temperaments, knowledge of the race, of the world, and of God. Here is where the importance of historical study comes in. "There is one mind," says Emerson, "common to all individual men. Every man is an inlet to the same and to all of the same. He that is once admitted to the right of reason is made a freeman of the whole estate. What Plato has thought, he may think; what a saint has felt, he may feel; what at any time has bafallen any man, he can understand. Who hath access to this universal mind is a party to all that is or can be done, for this is the only and sorercign agent." The true scholar must enter into this mind ; the door to it is sympathy; the latch, history.

An important element of sympathy is freedom from prejudice; the power not to dismiss unstudied or contemned a view which at first sight strikes you as strange or even as false. This power is one of the very bast tests of a truly educated man. If you can not to a good extent feel with your opponent, you duly weigh his argument; and without this your disputing with him will but saw the air.

With all these qualities must go self-mastery for each important purpose of life, the power to put and hold oneself to work, and to turn off large relays of intellectual or other work in a short time. This, too, is an essential ingredient in education.

We ask too much from [school] education. -Frederic Harrison, in the Forum: Many things work delightfully for good while they are spontaneous and unorganized, butwhen they are stereotyped into an elaborate art and evolve a special profession or trade of experts they produce unexpected failures and end in more harm than good. We ask too much from education, we make too much of it, we monstrously overorganize it, and we cruelly overload it. Education can do for us infinitely less than we have come to expect, and what little it can do is on the condition that it be left simple, natural, and free. I have known very few men who were made into anything great entirely by their education; and I have known a good many who were entirely ruined by it and were finally turned out as pedants, prigs, or idiots. . Struggling to win prizes in examinations, thinking always about the style current to-day, being put through the regulation mill, and poring over some little corner of knowledge for some material object, may give a one-sided appearance of learning, with nothing behind it; will turn out mechanical eccentricitics like calculating machines; may change an honest fellow into a selfish, dull brute, or leave a weak brain softened and atrophied for life. And the more we organize education the greater is the risk of our finding this result.

The school reverses the plan of nature.-James L. Hughes, inspector of Toronto public schools (Canada) : In the school of the future the pupil will originate most of the problems. The solution of problems is not so difficult as their conception. The power to recognize problems definitely is infinitely more important than the power to solve them. The most marked characteristic of childhood is its power to recognize the multitudes of new problems by which it is surrounded, and because this power is so strong it is therefore possible to develop it rapidly and definitely, and it was intended that it should so develop through the recognition of our material environment to the power of clear conception of all the problems connected with our intellectual and spiritual life.

Yet this power grows weaker instead of stronger as we grow older. The schools absolutely reverse the plan of nature. Before the child goes to school he discovers his own problems and solves most of them unaided. The few that he can not comprehend he brings to his seniors. When he goes to school his teacher brings the problems to him. Nature made a questioner, a seeker after truth; the school makes him an answer. Nature made his mind to think; the school makes it a receptacle for other people's thoughts. Nature gave him power to see the relationships between himself, and his environments, and his fellow-men, and his Creator; the school dwarfs this power by preventing its activity. We are often startled at the simplicity of new discoveries and inventions, and we wonder why we did not make them ourselves. Every new discovery or invention is merely the solution of a new problem in the relationship of natural forces. The power of solution depends on the power of recognition. We could have solved the problems if we had been definitely conscisus of them. They were near us but we did not see them. If we had the power to see clearly the thousands of physical, intellectual, and spiritual problemis that are ever near us, how swiftly the world would move onward; how definite would be our conscious growth towards God. But the schools train men to solve, not to find problems; to answer questions, not to recognize the mighty questions that need answering, and so there is not so much power of original investigation and independent growth in the world as there should be. The school of the future will preserve and develop the child's conceptive relationship to nature and God, intellectually and spiritually.

Fear has its place in the training of the will.-Report of committee of National Council of Education, George P. Brown, chairman: There is a prevailing sentiment that incentives suggestive of pain are to be abolished from our curriculum of will-training. The anticipated pleasures of rightdoing are to be substituted everywhere for the anticipated pains of wrongdoing. This finds expression in some large cities in the abolition, by order of the school authorities, of all punishment. The pulpit is influenced by this sentiment of tentimes to the extent of ignoring punishment for sin. The family is often dominated by the child's impulses for the reason that it is unable to make desire, reverence, or interest effective in giving dominance to ideas of obedience, and it rejects the incentive of pain as brutal. It is the conviction of the writer of this paper that fear has its place among the incentives in the early training of the will.

Original thinking wanted.-G. Stanley Hall: I would rather have a boy who has but little training in college attempt to add something to the world's knowledge than to attempt to attain a high state of learning.

What the young should know in advance and realize.-William James, professor Harvard University: Attention and effort are, as we shall see later, but two names for the same psychic fact. To what brain processes they correspond we do not know. The strongest reason for believing that they do depend on brain processes at all and are not pure acts of the spirit is just this fact, that they seem in some degree subject to the law of habit, which is a material law. As a final practical maxim relative to these habits of the law we may then offer something Iike this: Keep the faculty of effort alive in you by a little gratuitous exercise every day. That is, be systematically ascetic or heroic in little unnecessary points, do every day or two something for no other reason than that you would rather not do it, so that when the hour of dire need draws nigh it may find you not unnerved and untrained to stand the test. Asceticism of this sort is like the insurance which a man pays on his house and goods. The tax does him no good at the time and possibly may never bring him a return. But if the fire does come his having paid it will be his salvation from ruin. So with the man who has daily inured himself to habits of concentrated attention, energetic volition, and self-denial in unnecessary things. He will stand like a tower when everything rocks around him and when his softer fellow-mortals are winnowed like chaft in the blast.
The physiological study of mental conditions is thus the most powerful ally of hortatory ethics. The hell to be endured hereafter, of which theolegy tells, is no worse than the hell we make for ourselves in this world by habitually fashioning our characters in the wrong way. Could the young but realize how soon they will become mere walking bundles of habits, they would give more heed to their conduct while in the plastic state. We are spinning our own fates, good or evil, and never to be undone. Every smallest stroke of virtue or of vice leaves its never so little scar. The drunken Rip Van Winkle, in Jefferson's play, excuses himself for every fresh dereliction by saying, "I won't count this time." Well! he may not count it, and a kind Heaven may not count it ; but it is being counted none the less. Down among his nerre cells and fibers the molecules are counting it, registering and storing it up to be used against him When the next temptation comes. Nothing we ever do so is, in strict scientific literalness, wiped out. Of course this has its good side as well as its bad one. As we become permanent drunkards by so many separate driniss, so we become saints in the moral, and authorities and experts in the practical and scientific spheres, by so many separate acts and hours of work. Let no youth have any anxiety about the upshot of his education, whatever the line of it may be. If he keeps faithfully busy each hour of the working day, he may safely leave the final result to itself. He can with perfect certainty count on waking up some fine morning to find himself one of the competent ones of his generation in whatever pursuit he may have singled out. Silently, between all the details of his business, the power of judging in all that class of matter will have built itself up within him as a possession that will never pass away. Young people should know this truth in advance. The ignorance of it has probably engendered more discouragement and faint-heartedness in youths embarking on arduous careers than all other causes put together.

What every boy is entitled to know.-President D. C. Gilman in the Cosmopolitan: Until he reaches maturity every boy requires positive guidance from those who have had a longer experience in the ways of the world. It is always cruel, and it may be criminal, to allow a youth to experiment for himself upon conductto say that he must sow his own wild oats, that experience is the best teacher, that he must choose his own course. Every boy is entitled to know what older persons have discovered of the laws of conduct, and to receire restraint, caution, and warning until his eyes have been opened and his power of judgment developed. Nobody questions that he ought to be taught the laws of health, of diet, of poisons, of climate, or the laws that protect his person and his property ; and it is surprising that anybody should question his right to initiation, by stringent discipline, into the laws of intellectual and moral well being. Every boy, whether he wishes it or not, should be trained. Yet the contrary doctrine is covertly held, if not openly avowed, by many a tender mother and by many a generous father. Note the autobiography of John Stuart Mill.
Too intense introspection not wanted.-President Gilman (Ib.): The influence of modern psycho-physiological inquiries upon the coming generations is still undetermined. The good that is aimed at may perhaps surpass the evil that is
done. Certainly, in these days when morbid self-consciousness, extreme sensitiveness, bashfulness, shyness, and timidity are so frequently apparent, the wise parent, the wise teacher will hesitate before encouraging in his own family or his own school too intense and too prolonged introspection. Give the boys plenty of open air, and when they can not have this, encourage within-doors exercise in handcraft, the use of tools, and knowledge of the book of sports, not to the exclusion of other studies, but as collateral security that the mind and the body shall be simultaneously dereloped.

Healthy, out-of-door lives, directed toward objects of enjoyment, of obserration, of sport, of acquisition, are better for boys than exclusive devotion to books, and especially than habits of introspection, self-examination, casuistry, journal writing.

Home and school training contrusted.-James P. Munroe, in the Educational Review: The home and the schcol are two wholly different forces brought to bear upon the growing child. Each has its proper sphere, and the methods of the one have no place in the system of the other. Judiciously exerted, one supplementing the other, these two influences should produce patriotic, moral, wellbalanced citizens. No argument is needed to prove the unfitness of school methods to home training ; there should be no need of proof that home methods have little or no place in the school. The child whose parents treat him from the standpoint of the pedagogue is a pitiful creature, starved morally, surfeited mentally. A child who has been trained in a" home" school, by methods which have no right beyond the walls of a house, is even less well fitted for good citizenship. Home training should be always indirect, persuasive; school training direct, authoritative. Home must be suggestive; school training, mandatory. Home training should be mainly by example; school training by fact and precept. Home training must leave free play to the child's mental growth; school training must prune and control that growth. The home fits the child to be a man, the school prepares him to be citizen; one is natural, common to humanity, the other artificial, peculiar to the state. It is seldom that the proper combination of these two elements is reached. * * * The right moral training tempers love with duty and duty with love. This moral training can be perfected only within the home. School life is but a mental gymnasium in which to make the child receptive and acquisitive.

To be preferred to any sort of learning.-Locke: Under whose care soever a child is put to be taught during the tender and flexible years of his life, this is certain, it should be one whothinks Latin and languages the least part of education; one who, knowing how much virtue and a well-tempered soul is to be preferred to any sort of learning or language, makes it his chief business to form the mind of his scholars and give that a right disposition, which if once got, though all the rest should be neglected, would in due time produce all the rest; and which, if it be not got and settled so as to keep out ill and vicious habits, languages and sciences and all the other accomplishments of education will be to no purpose but to make the worse and more dangerous man.

The gieat end of all teaching.-Tate's Philosophy of Education: Without losing sight of the importance of practical knowledge, especially at the later stages of elementary instruction, the truly enlightened educator will ever regard the development of the faculties as the great end of all his teaching; but from the various useful matters of instruction he will always select that which is best caiculated to secure this end, and his mode or system of teaching will always hare a reference to the same great end. The question with him will not be, Have I conveyed the greatest amount of technical knowledge in the least time? Have I engrafted the ideas of the man upon the mind of the boy? but it will rather be, Have I awakened any element of intellectual or moral vitality which had hitherto lain dormant? Have I invigorated or purified any faculty which had hitherto existed in a feeble or in an imperfect state of development? And has all this been attained with a due regard to the future pursuits and destiny of the pupil?

As to self-education.-Charles A. Dana: The worst school that a man can be sent to (and the worst of all it is for a man of genius) is what is called a selfeducation. There is no greater misfortune for a man of extraordinary talent than to be educated by himself, because he has of necessity a very poor schoolmaster. There is nothing more advantageous to an able youth than to be thrown in to contact with other youths in the conflict of study and in the struggle for superiority in the school and in the college.

V.-Higher Education.

College-bred men in the business world.-Androw Carnegie: The total absence of the college graduate in every department of affairs should be deeply weighed. I have inquired and searched everywhere in all quarters, but find searcely a trace of him. Nor is this surprising. The prize-takers hare too many years the start of the graduate; they have entered for the race invariably in their teens-in the most valuable of all the years for learning anything-from 14 to 20 . While the college student has been learning a little about the barbarous and petty squabbles of a far-distant past, or trying to master languages which are dead, such knowledge as seems adapted for life upon another planet than this as far as business aftairs are concerned, the future captain of industry is hotly engaged in the school of experience, obtaining the very knowledge required for his future triumphs. I do not speak of the effect of college education upon young men training for the learned professions; but the almost total absence of the graduate from high position in the business world seems to justify the conclusion that college education as it exists is fatal to success in that domain. The graduats has not the slightest chance, entering at 20, against the boy who swepi the office, or who begins as shipping clerk at 14. The facts prove this.

Henry Clews: I have given it some thought, and my conclusions are the result of experience. I might say in beginning that I do not employ college mon in my banking office. None need apply. I don't want them, for I thinik they have been spsiled for business life.

After spending several of the best years, the years when the mind is most active and most open to impression, in learning a lot of things which are utterly useless for business, they come to the cities to make their way in the world. They are perfectly ignorant of business methods. Their whole education has tended to shut their minds to knowledge oif this kind. While they have been at college other men have been in the business offices, have begun att the bottom and have worked up, learning all the details, getting that knowledge which can not be set down in books.

Now, the college graduate is not willing to begin at the bottom. He looks down on the humble place which he is fitted to fill. And, indeed, he looks down on all business as dull and unattractive. He wants a place such as his education and his years seem to command. This place he can not get, for he has as yet the A, B, C's of business to acquire.
And even if he does bring himself to accept the place, which he must accept if he would have any measure of success, he does not utilize it in a way to advance. His thoughts are not with his business, but with his books, literature, philosophy, Latin. Now, no man can approach the exacting business life in this half-hearted way. Business requires the undivided mind.

Winthrop D. Sheldon, in the New Englander and Yale Review: ${ }^{1}$ It is not less education, but more and better, that is needed in business life, an education that is so all-around as to give a larger success than the mere accumulation of a fortune. Hitherto such have been the unexampled opportunities for fortune-making, always to be found in a new and undeveloped country, that multitudes of men have "stumbled" into wealth, not because of any special capacity of their own superior to that of their neighbors, but by some happy accident. The attainment of riches by no means proves that a man possesses superior ability in any la:ge sense of the term. Indeed, it has been well said that very often the rich man in a community is conspicuously stupid, ignorant, and narrow-minded outside of his special sphere. This is the natural result of a lifetime's "moneygrubbing," when all of a man's thoughts and energies are concentrated upon the one object of making money for money's sake. If it be true that comparatively few of the college-educated win a great fortune, it is doubtless due in great measure to the fact, which is much to their credit, that such men have too many and diversified intellectual interests to be able or willing to turn themselves into mere money-making machines. Thereby the community at large is greatly the gainer and its common life is preserved from becoming mercenary and sordid. * * *
Does it not involve a serious impeachment of the standards of business capacity to maintain that a youth of 14 , who goes at once into a store, his mental powers as yet comparatively undisciplined, and spends the next few years in

[^68]sweeping it out, running of errands, and tying up bundles, is more likely to achieve a pronounced business success than the college graduate, who meanwhile has been schooling himself to accurate thinking, cultivating his powers of observation and reflection, storing his mind with a wide range of knowledge and bringing it into permanent relation with those things which adorn and dignify our lives and make them really worth the living? The education of the store and the counting room or the shop, exceedingly valuable in its way, is in the comparison essentially narrow in its scope; and, narrow and narrowing, it is going on during the very years when the question is being determined in the case of most persons whether their future life is to be of a narrow or of a broad gauge pattern. The great mass of business men are men of mere routine; they are made such by their lack of a thorough general education and by the narrow lines of their early training, and the trend of their lives is to confine them in this mental bias. The man who brings to the routine of his work a broadly trained intelligence will be worth in the long run a great deal more than he who for lack of such intelligence is a slave to routine.

President Seth Low, of Columbia College (who has been himself a business man): While itis harder for a college graduate to getstarted in business than for one who enters it as a boy, in five years from the time he does start, other things being equal, the college graduate will be the peer in business of his friend who began as a boy, and while equally successful in business he will fill a much larger place in the community than the one-sided man can ever hope to fill.

James W. Alexander, a Princeton graduate and vice-president of the Equitable Life Assurance Society of New York: However it may be with the boy whose talents, temperament, and environments are such as to limit his prospects and ambition to a life of physical labor in a subordinate capacity, who can doubt that the boy who has within him the germ of some future master in affairs will be all the more of a leader by reason of a thorough college education and even that he will outstrip in the mere matter of time boy whose only training was sweeping theshop or adding up columns of figures at a desk? It is the successful men we are talking about. And when the shop-bred boy reaches the high station to. which his abstention from college education has assisted him, does it require argument to prove that he would be a more useful, a more influential, a more attractive man if he could have added to and combined with his industrial training that knowledge, science, literature, and philosophy to the mastering of which the college is the open door?

Mr. Charles L. Colby, a graduate of Brown University and president of the Wisconsin Central Railroad: I admit a man may succeed in banking or business without an education, but I earnestly believe that if two men of equal ability start together in the race, one an educated man and the other without college training, the college man will win every time in the long run. Machinery and methods are constantly changing. The uneducated do not readily comprehend them and must be instructed step by step. The more a man is educated, the more readily he adapts himself to these sudden changes in business methods. When it comes to the scientific, technical, brain requirements of a calling, the college man moves easily ahead.

Mr. Daniel Heald, a Yale graduate and president of the Home Insurance Company of New York: I believe the success I may have attained in the world is directly due to my college training. I there acquired system, analysis, and methods of thought that have been of inestimable value in life. If nature has given a man fair talent education will make better a man of him and positively aid him in his daily work. Suppose a boy is going into any manufacturing busi-ness-making pumps, for example. Give him an education. He will make better pumps because of it. Strip the rich, uneducated man of his wealth and what is left? What we want in American life is the ripe, well-rounded man of affairs.

Gen. Brayton Ives, a Yale graduate: Given a boy with a natural aptitude for business, his college training, particularly in methods of thought, will afterward be of such practical aid as more than to offset the loss of those years in business. Observe that learning how to learn is the summarized advantage of a college training; that is, it is the discipline which the boy obtains at college that enables him to learn after he leaves college and learn more rapidly, readily, and intelligently than his uneducated competitors. I can trace every step in my own career to the influence of my college course, and as every man can, of course, speak best of his own life, it is not egotistical to be personal. I was graduated from Yale in 1861, entered the Army, and instantly found my training of the utmost benefit. Being accustomed to study, I mastered the tactics more easily and in less time than was required by men whose minds had not been trained.

This enabled me to compete with men who had been there much longer than I and was the cause of much more rapid promotion than I could have gained otherwise. All the progress I have since made in civil life, including that of my present occupation-banking-is directly traceable to the special advantages afforded by my education. A man of ability educated is better, no matter where he may be placed, than a man of ability uneducated.

Chauncey M. Depew, a Yale graduate: Have the eight years passed in the preparatory school and the university, acquiring many things which would be useless in the factory or store, been thrown away? My observatisn leads me to directly the contrary opinion. The college-bred man, under equal conditions of capacity and health, has a trained intellect, a disciplined mind, a store of information, and a breadth of grasp, with the fearlessness which it entails, that enable him to catch up with and pass his rival. Hundreds of college graduates within the last five years have begun in the various departments of railway work at the bottom. They were firing on the locomotives, working in the machine shops, switching in the yards, keeping books in the treasurer's office, serving in the freight and passenger departments, and my observation of them for this period has demonstrated the value of a college education. It used to be a popular theory that strong men who had won great places in the business world would have been ruined if they had been educated. The better belief is that on account of genius and special capacity they succeeded in spite of their disadvantages. It is the old question of the trained boxer, runner, athlete, debater, soldier, as against unskilled strength and courage. Whatever the popular delusions, in the trials there never has been but one result.

Winthrop D. Sheldon: Mr. Carnegie must have been gazing at the mountains and craters of the moon, inquiring and searching there, when he asserted the "total absence of the college graduate in every department of affairs." Had he taken pains to look about him he would have found successful college-bred men of business almost under the eaves of his factory in Pittsburg itself. If inquiry were to be made every important commercial or manufacturing center would furnish some conspicuous examples of the college man of affairs. Mr. James W. Alexander, from whom we have already quoted, reënforced his views with a list of 65 college graduates prominent in business circles and selected at random, mostly from New York and vicinity, and other names almost if not equally as significant will occur to every observant person. From an analysis of the list we notice that there are 15 railroad officials, including, besides vice-presidents and general managers, 6 presidents, among them Chauncey M. Depew, of the New York Central system; Charles Francis Adams, of the Union Pacific; Austin Corbin, of the Philadelphia and Reading, recently chosen president of the New York and New England; and to these we may add the late Frederick Billings, at one time president of the Northern Pacific; the late Levi C. Wade, of the Mexican Central, and Presidents Bishop and Watrous, of the New York and New Haven Railroad. There are also 18 bankers, including a number of bank presidents, 10 manufacturers, 10 merchants, 7 heads of prominent trust and insurance companies, and 5 heads of leading publishing houses. Certainly neither the late Alexander T. Stewart, the prince among dry-goods merchants, nor the late John Jacob Astor, who had the reputation of being an excellent business man, found the education which they obtained, respectively at Dublin University and Columbia College, any impediment whatever in the way of their success. It is said of the former that he retained his interest in his college studies to the latest years of his life.

Mr. Sheldon sums up as follows: The great mass of those who enter the various occupations of the business world could not, if they would, receive a college education. Most of them would not improve the opportunity if they had it, and it would be of no advantage to most, because they are not fitted to profit by it. But the youth who can have such an education, and is fitted to profit by $i t$, is on no account justified in rejecting the opportunity for fear it will incapacitate him for a successful business career. Let him get all the education he can, in the full assurance that he will be more of a man, and therefore, more of a business man; not a man of an affair, but a man of affairs. For what men are in any one phase or province of their lives is largely determined by what they are in every other. No part of the individual life can escape the uplift which a thorough education gives to the entire being. And the young graduate who decides to set his face towards a business career has no occasion to look upon the four years of his college life as thrown away or to feel that he is handicapped in the race for success. It is not necessary for him to begin where the boy of fourteen begins, whose age and lack of training unfit him for anything higher than plying the broom and
running of crrands. His age, mental training, and general maturity enable him to apply himself at once to the study of business methods themselres, Nor can any fixed rule be laid down as to the length of his novitiate. That will vary according to his ability, industry, and power of adaptation, and also according to the nature of the business which he has undertaken to learn. It may, in some instances, be only months; it may require years to master all the dotails. But as ho proceeds the practical ralue of his education will become more and more apparent. The success of college-bred men who have adopted a business carcer will compare farorably with that of business men in general. They have been successful, not in spite of their education, but in part because of it. Education is no magic key that of itself unlocks the doors of succass in any department of life; but in business, as in other occupations, if joined to heaith, industry, energy, and common sense it will win a success of finer mold and more enduring, more satisfying quality; it will be its own justification.

Old vs. new institutions of learning.-President G. Stanley Hall, of Clark University: Age which brings wisdom may bring infirmities. In a time and land where change is so rapid trustees, alumni, and even faculties sometimes fall behind. Time is lost in administratire details better left to one. Young men are held back, and talent not held to its best thing, but kept doing the work of cheaper men, and the question may become pertinent why, with vast resources, so little is done for culture and for the adrancement of knowledge by old institutions or comparatively so much by new ones. There is much to foster complacency and an unfortunate absence of competent criticism from without, whence all university reforms in history have really come. Prejudices may accumulate from without, and student custom and ideals grow up-within that are as inveterate and ineradicable as they are vicious and absurd, but which make progress slow and hard. There is sometimes an excess of conserrations, routine, and machinery. Saddest of all, perhaps, departments of endewed knowledge, like professors, sometimes cease to be productive and grow dry, formal, sterile, but they can not be displaced. It may be harder to regard an old institution as a means, precious only as it broadly serves the highest culture-interests of the whole nation, and not as an end precious in and for itself. We know how wasteful and unproductive the vast resources of Oxford and Cambridge had become in 1854, and what old abuses had to be corrected in Italy and Holland by such and other somewhat drastic outside means. In this new country we need new men, new measures, and occasionally new universities : and we, like England, have in later years experienced their amazing good. In the field of experimental science, unlike some other departments, what is there of importance, that a few centuries can afiord, that can not be at least as well provided in a few jears?

The differentiation of higher educational institutions urged.-G. Stan'ey Hall: We [at Clark University] duplicato almost nothing in other universities in this country. A full department of physics, chemistry, or mathematics even. to say nothing of biology, the complexity of which is more obvious, as sketched for us by several European leaders in their field, would each require several professors, each with one or more assistant professors to represent its several sections or departments of the subject. Thus, to say nothing of difference of grade or standard, it does not follow, because we have physics, chemistry, and other departments found in other institutions, there is duplication. The contrayy is, in fact, the case. The best professors in their fields, howerer authoritative they may ba in the entire department, excel in and contribute chiefly to but a few chapters of it, leaving ample space for other directions of excellence elsewhere.

In the new era of university development, upon which this country is now entering, it is of fundamental importance for economy and for the success of a great movement that, in place of the monotonous uniformity, duplication, and servile imitation that has prevailed, institutions should freely differentiate and should be known to do so ; that above the commendable loyalty to local institutions by their graduates, there should arise the same comparative and critical discrimination of institutions as of courses in the same institutions under the elective system. Perhaps the chief benefit of the latter has been the stimulus it gave to every professor to make his course so profitable that it should prove attractive to the most of the best students. The same stimulus could be given to institutions by the extension of the elective system to them.

What a real university is.-Nicholas Murray Butler: The university is a wholly diferent institution from the college, and while in this country we hare scores
of nominal universities, the real ones may be counted on the fingers of a single hand. A college in which the course of study is elective wholly or in part is not § university. A group of professional or technical schools is not a university. A college and a group of professional and technical schools taken together is not a university. A university must have for its heart and soul the great philosophical faculty of the Germans; the faculty which finds its reason for existence in the preservation of the humanities and in a careful and loving study of philosophy, philology, and letters. A university is marked by the time-honored freedom in teaching and freedom in study; it knows no trammels, no compulsion. It is not a disciplinary institution, but rather a field for research and investigation. At the university the bounds of knowledge will be continually widened and the leaders of the future generation in science and literature trained to their work. Professional schools or faculties, apart from the philosophical faculty, have always become technical and narrow-it is the philosophical faculty that is the real university center. Its spirit and insight must regulate and inspire all of the associated faculties.

VI.-Kindergartens.

The kindergarten the great remedy for formalism in the primary school.-W. T. Harris: The school teaches the conventionalities of life; it gives the child ac cess to the wisdom of the race, but it often errs in making its experiences to the child too formal. It is too rigid and unsympathetic, and the child is expected to throw off the freedom of the family at once, and all too soon assume the formalities of the world. Thus did the great need of a connecting link between the two call for some noble-hearted lover of his kind to suggest a change, and Froebel, whose memory all kindergartens, all true educationalists reverence, came to the rescue and supplied the need. The kindergarten takes the little one in his tenderest years, and by placing within his reach symbols and games suited to his comprehension, enables him to naturally, and without undue or forced effort, grasp and assimilate the ideas and teachings desired. It makes him notice what is going on in the great world around him, and seeing begets the desire to imitate. Itileads him up from the initial stage of feeling to thinking, and from thought to action. But the games and plays are only a portion of the work; there are gifts and occupations. These are less symbolical and more logical, and train the quantitative faculties. A child does not readily realize what it means to think quantity ; it is a hard and awkward step for him to take, and the idea of number for instance, must be learned not by starting at a rnit and adding, but by taking a divisible unit and dividing it; and thes Froebel, who perceived this point, introduced the divisible block. The kindergarten is the great remedy of this century for the formalism of the primary school, and it had been badlv needed before it came to the rescue.

What children have a right to expect from the kindergariner.-W. E. Sheldon: Children hare a right to expect that their individuality shall be recognized and respected; that their natural and hereditary traits shall be taken into account in their training; that all manifestations of interest in their development and culture shall ke genuine; that an active and progressive intelligence shall be supplemented by a well-balanced self-poise of the trained kindergartner which the child will soon discover to be an element of true manhood or womanhood worthy of imitation; that their many questions shall be regarded as of importance and that the replies shall stimulate further respectfulinquiries. Questions are the natural openings of the child's mind, which natural inclination prompts, and aid the teacher in the work of instruction. You should convince the learner that all proper inquiries are in order at suitable times and that it is a pleasure for you to answer them. If the inquisitiveness becomes unprofitable in character or in frequency use your best tact as the means of restraining it. Let the child appear to exercise the right of personal liberty and yet not gratify what may be really an unworthy curiosity.

Some straws.-The report of Superintendent Cassidy (Lexington, Ky.) declares the greatest need of the schools to be kindergartens.

Dr. James Mac Alister: To my mind to-day no problem is so important as the kindergarten universal.

Superintendent W. H. Love (Buffalo, N. Y.): The first change to be attempted in our school reform is to bring in the kindergarten or subprimary work.

VII.-Manual and Industrial Training.

Effect of industrial education upon general education.-Prof. Felix Adler: During an experience of 12 years in the application of manual training in the teaching of children between 6 and 14 years of age, I have observed that manual training in the ordinary school is the means of saving those children who are plainly and obviously deficient in what may be called literary quality. There are many children who are very slow in reading, in arithmetic, and in history, and it has been my observation that these children, especially numerous among the poorer classes, are at once stimulated intellectually by the opportunities of the school workshop. It has been my invariable experience that children who are slow in their progress in reading and history and mathematics are very quick in natural history and in drawing and in the workshop. Especially has the conjunetion of a talent for natural history and for manual training frequently impressed itself upon me. The effect has been to stimulate these children not only in manual training and in natural history, but, awakening their self-confidence and self-respect, to stimulate them generally. Those boys who, in an ordinary public school, would be set down as dunces because they make no progress, and who would begin to consider themselves dunces after a while, find themselves facile princeps in the shop and in natural history, and gain the respect of others and take a new start. The best work in modeling and manual training in the school of which I have charge has been done by such pupils. Surely, therefore, this is an argument in favor of introducing manual training from the point of view of general education. If manual training can promote the intellectual training of a very large number of children defective on the intellectual side, that is a sufficient reason why it should be introduced.

Another result of my observation has been that the school-workshop is a means of strengthening the mathematics, the drawing and the elementary physics teaching. Although the main object, as the president has said, should be to educate the eye and the hand, nevertheless this education should not be unassociated with the other studies of the curriculum. The object should be to connect the manual training with the work of the class-room, and this can be accomplished ky close connection between the work of the shop and the drawing, mathemstics, elementary physics, etc. The pupils are asked to make their own physical apparatus, and geometrical figures are of course constantly brought before them, and many opportunities are offered for making their space perceptions more efinite and clear. Another advantage in such a school brings me to what Professor Patton has said as to the function of the teacher taking the place of the military officer. It is very difficult for the teacher in the ordinary school room to discharge that function, but the teacher in the shop can do it. The pupils must present themselves before him before they go to work. He inspects their clothing and sees that they are neat, that they are neat in their work, that they put away their tools and keep them properly; he gives that personal supervisien to the habits of his little workmen which should be given, but which the other teacher can not give.

In all respects I can say that we have found after 12 years of observation that the regular work of the school has been strengthened by the introduction of manual training, and especially the English work and the compositions. The great difficulty lies in controlling the expression of the pupil's thoughts, of knowing what is in the pupil's mind. The teacher must know this in order to be able to control the pupil's thought. By introducing shop teaching and requiring the pupil to describe the operations which he has performed in the shop, and to describe the work in the factories he visits, the master of the shop is enabled to know approximately the content of the pupil's mind and to control his manner of expression.

VIII.-Methods of Instruction.

The best methods of teaching modern languages.-Ex-President E. H. Magill, of Swarthmore College: What then do I recommend to the students of the modern foreign languages in our colleges? First, that they should rid themselves, once for all, of the idea that a little smoothly flowing, trivial conversation, upon topics of daily interest, in another tongue, is the sine qua non, and that they should not spend, not to say waste, their valuable and overcrowded time in acquiring this fluent speech. The "natural method" (so called) of teaching the modern languages, in its unadulterated state, I consider to be one of the greatest popular fallacies of modern times. The very expression, "natural
method," is in itself misleading and a misnomer. If it really wero the natural method, it would surely commend itself to all educators. But it should be remembered that what may be natural for young children, in acquiring their own tongue, is by no means natural for more mature minds. Children acquire their language by simple imitation, often repeated, with little or no exercise of the reasoning powers. No such method is possible with older persons in acquiring a foreign tongue. I say that no such method is really possible, after the reasoning powers have made any degree of development; and I will add that, if it were so, there is not time in this short life for its successful application. How much of written and spoken language does a young child learn in two months? I need scarcely say that it learns nothing in this time except how to utter a few common words and phrases, and, of course, nothing whatever of written or printed speech. And yet, in two months a mature mind may acquire enough knowledge of a foreign tongue to enable him to begin to read it with pleasure, and in two more months to read with considerable rapidity, and begin to make the acquaintance of authors whom it is a privilege to know. The "natural method," I say then, for mature minds, is wholly unnatural and irrational.
Observe that I do not say that the ability to converse intelligently in a foreign tongue is a knowledge to be undervalued and despised; but I do say most emphatically that this knowledge can never be acquired except by daily association with those to whom the language is their mother tongue, without the expenditure of an amount of time entirely incommensurate with its real value. Those who are never to mingle with foreigners can have no practical use for the language as a medium of conversation, and for those who are to do this there is no more valuable preparation than that obtained from reading and hearing read by a competent linguist the language to be learned. That this reading may be extensire, even in the short courses which our colleges can afford, there must be a thorough ground work laid by becoming rapidly familiar with the forms and cosstructions of the language and the principal common idioms and a vocabulary should be acquired as fast as possible, after the forms become somewhat familiar, by reading the language even superficially at first; and reading not in the ordinary readers of mere fragments from various authors, but reading some complete selections from authors of unquestioned reputation.

Hence, I say, make the grammatical drill short, sharp, incisive; reduce the amount of grammar needed for reading to a minimum ; and by all means never waste time in the bootless and wearisome task of turning good English into poor French in the early stages of the course. It is quite early encugh for a student to begin writing original French when he becomes familiar, after a great amount of reading (partly superficial, for rapidity, and partly critical, for thoroughness of knowledge) with the manner in which other persons write it! But this is by no means to be understood as ruling out dictée exercises, which should be practiced almost daily from the beginning. It is excellent practice for a student to write out translations in English of the language studied, and then restore it to the language from which it was taken. Many points, which would escape notice entirely if merely translation into English were followed, would thus receive attention and be rapidly and firmly impressed upon the memory.

The one panacea in teaching Greek.-Thomas D. Seymour, professor of Greek at Yale: The most foolish thing in education is the suffering of words to be forgotten as soon as they are learned. For this evil but one cure can be foundreview. If I am ever pronounced a monomaniac this is the subject which will be found uppermost in my mind. This is the one panacea which I offer for all ordinary ills and troubles in learning Greek: If the student learns with difficulty or forgets easily, if he has weak eyes or an aching head, if he has but little time for study or is behind his class, whether he wants to excel in Greek or wishes to take as little pains as possible with the language, let him review!

The principle of reviewing, of course, is this: If I am introduced to a man on the train and have a casual half-hour's conversation with him to-day I may be able to identify that man at once a year hence, or, having rear-sighted eyes and thus a dull memory for faces, I may be compelled to say: "I remember your face very well, but I confess I can not say where I have met you before." But if I have a ten-minutes' talk with that man to-day, meet him on the street and exchange greetings with him next week, talk with him again for five minutes a month hence, see him and some of his relatives for a few moments in the spring, I could identify that man with cartainty a year or ten years hence, although I had never spent in all more than half an hour with him. So with words. If a student meets a word to-day and is introduced to it, has a little
chat with it, as we may say, but does not meat thet word again for two months, he is obliged to say: "Your face is familiar, but I can not call you by name. I must apply to my nomenclator for information about you."

The plan of reviewing which students should be urged to adopt, and which they must be stimulated constantly to follow, is to reriew the day's lesson as soon as possible after the exercise in the classroom. Only thus can the corrections which have been inculcated be fixed firmly in the mind. Othewwise when the student takes up that work after an intermission of one, two, or three days he is apt to remember only that something has been said on this or that point. Often he is not quite sure whether a member of the class gave one rendering and the teacher strongly preferred the other, or whether the case was just reversed. But if he reviews the work soon after the lesson is read he can not fail to remember the circumstances and the exact point that was made. Now, if once a week the student takes time (perhaps half an hour) to review all the Greek he has read during the week no special effort is required: he remembers the meaning of the words and phrases and the whole situation. Again, if once a month the student takes the time (perhaps an hour or an hour and a half) to review all the Greek he has read during the preceding month, no great effort is required; the words and constructions are familiar. Then the general review at the close of the term becomes what it should be, a look from a superior position over the whole field which has been traversed. Most of the details of that workare fixed in the memory for life, and even if they should become dimmed they may be easily brightened.

The only objection that can be raised to such a system of reviews is that it takes time. And so it does at first; but the time which is invested in that way kears the heaviest interest from the very outset. The advantage gained from the thorough appreciation of the situation, through the familiarity with the earlier portions of the work will be felt at once. The same words and constructions are constantly recurring, as the student will remember in his vexation when he is obliged to look up a word for the fifth or tenth time.

How to learn to read Greek as a living language.-Prof. Thomas D. Seymour, of Yale University (in school and college): If the teacher has not time to have the Greek both read aloud and translated, he should omit part of the translation and have all read aloud. * * *
This practice in pronouncing Greek words until they are as familiar to the ear as they are to the eye, should begin with the very beginning of the study of Greek. If this is neglected then the loss can never be made good.

Probably many of you are familiar with what the well-known archæologist, our countryman by adoption, who died less than a year ago, Dr. Heinrich Schliemann, has written with regard to his experience in learning foreign languages, in which he had unusual success. When he, as an errand boy in Hamburg, saw that his promotion in business could be gained only by a knowledge of the Russian language, he could find no teacher, but set to work with an old Russian grammar and a copy of a Russian translation of Télémaque, which he found at an old book stall. He read this Russian Telemachus aloud, and in order to force himself to persist in this, he hired, for a few cents a night, an old man who knew not a word of Russian to hear him read this work aloud for three hours every evening! Schliemann afterwards learned about a dozen other languages in a similar way, and believed with all his heart that his success in this matter was due solely to his patience and persistence in reading aloud.

If from the first the Greek is made thoroughly familiar to ear and torgue, the easy, oft-recurring words like those for house, boy, man, ucman, horse, etc., would demand no more effort of mind for their apprehension than many English words, like mansion, steed, etc., which the school boy does not himself ordinarily use. And if the most frequent words require no efiort of the memory the more time and strength are reserved for the rarer and more difficult words.

But the reading of the Greek aloud not cnly aids materially in fixing the meanings of words in the memory; it also renders important service in assisting the mind to grasp a clause or a whole sentence as a complex, and to receive the thought of the whole as a unit, rather than in separate details, each of which has to be disentangled from the rest. Thus, and thus only, does the beginner learn to read Greek as a living language, and he will find true literary enjoyment as he gains increased facility in reading without conscious translation.

The home-study of pupils.-Margaret W. Sutherland, in the Ohio Educational Monthly: The giving of work to pupils simply to give them home-work seemed a strange thing to me. In 22 years of teaching, that phass of my duty had never
presented itself. I had always detormined what I thought a proper anount of work to require from my pupils and then allowed it to be done at any tims they coald do it. I believe rery thorowhly in giving them work to do and thea holding them responsible for the doing of it. *** But I do not like the teacher to assume that she has the control of an hour, an hour and a half, or two hours, out of school time. Indeed, when one is among teachers, the que tion sometimes seems not to be "Have teashers any rights that parents are boand to respect?" but "Have parents any rights at all in their children?"

In the earlier years of school lite, I can saarcely see the two sides to the quistion, "Shall a child study out of school hours?" It may be that my range of ricion is narrow. I am ready to have it wiadened by any one who will give me more light. But these early years are so evidently a period for physical growth ; nature so plainly points out the necessity for play; there is so much to $\mathrm{b} \ni$ leanned through childish investigation of the world lying about, that more than fire hours of the day that ought to be much shorter than the grown persons day on account of the amount of sleep so necessary for proper growth, to be spent on school-work is eminently unwise. Psychologists and physiologis:s both warn us against the danger of overstimulation of the brain, which leads to -"an increased activity of the organ due to an unfair distribution of the physical energy, the organ of the mind being enriched at the expense of the vital organs." I deprecate the requiring little children to do school-řork at home, not only on account of the possibility of injury to the body, but because it does not seem to me best for the mind. There is danger of the mind's becoming jaded from continuing too long at the same kind of work. It loses its interest in a subject; and the strength of will is not sufficient to hold the attention firmly and habits are formed detrimental to concentration, that secret of success in all mental labor in later life.

There seem to me still other reasons why the teacher should not claim too much of the child's time out of school hours. I recognize the fact that our children come from a great variety of homes. Surely, many of them have work to do at home. This is particularly true of our girls in the cities and of both our boys and girls in the country. This work is often manual training of a valuable kind: and when there is not too much of it, it affords a healthful variety to the child.

There are parents-and I do not want to think their number pitiably small-(if it be, our schools must hare done lamentable work in the past and are responsibe for miserable failure) who can advise good reading for their children, and who wish them to have some time for acquiring that taste for good books that is rarely acquired if not in childhood or youth. Some one suggested that our schools were doing this work in literature as part of the regular school work. The amount done in this line in even our best schools is pitiably small. What cultivated parents would be at all satisfied with it? We shall do well if we teach the children in our schools how to read a good book and then direct them to some good books. It is a noble thing to inspire a love for good books in the child who has no one at home to be to him an inspiration. To guide and inspire is the design of the "Reading Circle for Children." Shall we interfere with its good work by sending home so much spelling to be studied or so many problems to be solved?

The girls in our higher grammar grades must receire our special thought when we are considering this question of home study. We are either criminally ignorant or cruelly thoughtless if we do not give our girls special care at the transitional period of their lives. They so especially need plenty of fresh air, sleep, and all attention of those interested in their well being to keeping them free from anxiety and nervous feeling. Let them pass this period in safety, and they develop ints strong women, capable of a great amount of mental labor, and of wonderful endurance where love demands it. Of a bright and sunshiny disposition, they scatter blessings wherever they go. On the other hand, if they are given work that curtails the sime that ought to be spent out of doors, work that prevents their being sound asleep before the grown members of the household, or worse than all, if they are worried about class standing or high per cents, they are apt to carry through life seeds of suffering that will render impossible prolonged mental effort without serious danger, seeds of suffering that will make them break down under any severe trial or make them peevish and fretful or selfish and despondent.
A grievous defect of our system.-President O. D. Smith, of the Alabama Educational Association: I am satisfied that too much stress is laid on results achiered by pupils and far too little on the efort and labor bestowed. One of the griev-
ous defects of our sytems of marking, rewards, and distinctions, is that it takes no account of earnest, conscientious effort, of severe, persistent labor, unless they have been successful. The dull pupils, those hampered by an adverse environment, by want of preparation for work required, feel the-injustice of such systems; to their other obstacles is added the discouragement of unappreciated efiort. I insist that honest, hard work rank highest in all estimate of school work. Let the student feel that work is the valuable thing to him in its results in achieving a real education.

There is danger also that our improved methods, superior appliances, the processes of the new education will insensibly infuse into the minds of teacher and pupil the fatal notion that there is an easy road to education, over level plains, by the still waters, through rosy bowers; that the old, rugged road, up the hill Difficulty, with its briars and brambles, rocks and rough places, traveled with toil and sweat, has been abandoned.

The schoolmaster of the olden time had one qualification worthy of imitation, he believed in and exacted work.

Just so far as the improvement in processes, methods, and appliances have stimulated and facilitated work, so far as they have made a given amount of work effective, they are a positive good; so far as they supersede the necessity of work they are an evil. One must work out his education as well as work out his salvation.

Ticious modes of recitation.-President E. B. Andrews, of Brown University: A vicious mode of handling your class will do very much to develop inaccuracy, more perhaps than a perfect curriculum can overcome. A recitation which is morely that, only a text to the pupil, embodying no instruction, is sure to promote superficiality. There is a knack of reciting which many will acquire; a habit of mere glibness and parroting will follow, and the mind be turned away from real attainments. Here lies one of the teacher's chief temptations. We are forced to cherish rapid and fluent class exercises, because they save us time, which is so precious. We are thus beguiled into treating, if not considering, those as the best scholars whose tongues wag the fastest in the class. Next, our own ideas as to what a recitation should be become confused and faulty, the final result being that the appearance of attainments is substituted for attainments themselves, and that the pupil is actually aided by us to lose sight of his own real growth, only to be awakened, perhaps too late, when out in active life he is called to match himself with those trained upon a more thorough plan.

Every day's lesson an examination.-William A. Mowry, in Education: In primary and secondary schools almost every day's lesson is an examination, not merely of what has been prescribed to be learned for that special occasion, but indirectly and incidentally of all that has been taught before on the subject. It is, in truth, the mark of a good teacher to keep a perpetual informal review on foot, and to cause his classes to feel that any past acquisitions are always liable to come up in new connections.

College entrance examinations.-President D. C. Gilman, in the Cosmopolitan: I believe that the day is coming when there will be a revision of our educationai creed, when the colleges will not make their entrance examinations such rigid tests of memory as they are now, but will contrive to make them tests of power. Is a boy capable of carrying forward the studies of the college? That must be found out. His capacity to retain and repeat what he has learned is one sign of his qualifications, but there are many others which a nicer analysis may employ. The qualitative test is quite as important as the quantitative. Not the size of the brain, but its structure determines its worth. The possession of $10,000 \mathrm{facts}$ may distinguish an idiot, but an idiot gives no proper emphasis; he does not perceive the difference between the trifling and the fundamental.

IX.-Physical Training.

A just medium can be secured.-President D. C. Gilman, in the Cosmopolitan: One of the first requisites of a good preparatory school is bodily discipline. This is partly to be secured by watchfulness in respect to posture, diet, repose, gymnastic, within the school walls: it is to be still further promoted by abundant exercise in the open air. Manly sports with the bat and the oar, running, jumping, bowling, swimming, rowing, riding, fencing, boxing, and, if possible, sailing, are all to be encouraged. Nor is military training to be underrated. The systematic exercise of every limb and every muscle is desirable, not under rules too rigidly laid down by the higher authorities, but under regulations
spontaneously dereloped by the youth. It is generally conceded that just now, in England and this country, there is danger of intemperance in sport. This may be less disastrous than intemperance in drink or meat: nevertheless there is such a thing as inebriety in athletic games. I do not refer to the danger of broken limbs and bruised faces, for they are rarely enduring injuries, but to the danger of unfair rivalries, of bad associations, of peculiar temptations in the anticipations and enjoyment of victory or in the depression of defeat, in the neglect of other and higher scholastic duties, in the waste of time and money upon costly journeys, perhaps in extravagant hospitality. The boys themselves must be encouraged to correct these tendencies. but they have a right to expect that we older boys will remind them of their highest obligations and encourage their fulfillment. With the reasonable control which players, teachers, parents can readily exercise, and which the young ladies and the newspapers might greatly encourage, the just medium can be secured, and athletics continue to be an essential factor in the training of American boys.

The place of games in education.-James L. Hughes, inspector of Toronto public schools (Canada): In physical development, as in all other departments of human culture, the law holds good that the informal is better than the formal, giving asit does not merely greater power, but greater spontaneity and freedom also: so the games of the yard and field will be recognized as forming one of the most important departments of physical, intellectual, and moral training. New games will be derised by the highest medical councils of the world, in consultation with the best minds in the teaching profession. Games may be improved without limiting the freedom and spontaneity of the playground. The games are really the best means provided in the schools of to-day for the exercise of the complete self-activity of the pupils; the only agencies for the full development of executive power ; the only school process that completes the essential sequence of feeling, thought, decision. action, in application to the threefold nature of the child. The educators will not continue long to be mad enough to leare so potent an educational agency as games to chance.
Play, and plenty of it.-Principal George M. Grant, Queen's Unirersity (Ontario): Physical development does not demand gymnasium apparatus or a drill sergeant. As a rule children will see to this matter for themselves, in the best ways, if only opportunities are allowed. The games of children are, for the great mass, the very best means of securing good physical culture. Play, and plenty of it, is indispensable in education. Play means harmonious derelopment of the body without fostering the self-consciousness that is apt to be induced by modern pretentious substitutes in the shape of military drill and gymnastic exercises.
There is no substitute.-Clara Conway, chairman of committee National Council of Education: Any plan or system of physical training which gires no attention to individual needs is defective. But here lies the chief danger, namely, that the lack of wisdom or skill in the use of apparatus may lead to serious results. There is no doubt that ill-chosen or ill-directed exercise in the gymnasium is a cause of deformity. The frequent and prolonged performance of unnatural morements is a fruitful source of enfeeblement and nerrous disease. There is fortunately a strong reactionary movement against excessive work in the gymnasium, and the wisest are those who see that no morement they can prescribe can take the plase of free voluntary out-of-door exercise, in which the activities have full play and in which the emotion of pleasure is a strong element. The law of will must be in force, hence there is doubt if physical exercise imposed upon pupils under protest of the will can be effective. On the other hand, in dealing with nervous or orertaxed students care should be taken to aroid exercise which requires sustained attention, and more still to aroid excessire exercises, the results of which are as serious as those of orerwork.

The relation of mental to physical work.-Clara Conway, chairman of committee National Council of Education: The relation of mentaland physical work is very close and rital, and yet in a careful study of the question how to give at the same time work to the inactive muscles of the child and repose to his orer taxed brain there seems to be a kind of contradiction which makes the solution of the problem very difficult. The conditions of the work are the same for the brain which thinks and the muscle which contracts, and in both these organs greater activity of function is accompanied by greater production of heat. In the laborer and in the thinker alike there is an increased flow of blood toward the organ which works, and a greater vibration of heat within the active element.

In difficult gymnastics there is a strong exercise of the will, judgment, and other psychical faculties, and if there is economy in the expenditure of muscular force it is at the expense of the nerves and the brain. Therefore, it is impossible that the nerve centers gain repose under the influence of movements which excite the whole nervous system. The orerworked student requires economy of nervous energy, perfect repose of the brain, and rest of the psychical powers. A run in the green fields will free the mind and rest the head better than any system ever invented, because the head has no part in the lively exercise of running. All thoughtful teachers with gymnasia at command have noticed the indiference and apathy of intellectual students in the matter of difficult exercise. The reason is physiological and ought to be regarded. The tired brain makes strong and instinctive protest against an exercise requiring as much effort of the brain as of the body. In every case of this kind the discriminating teacher will prescribe exercise producing muscular and not nervous fatigue. Exercises which have been long practiced and have been mastered are performed automatically and require no brain activity, while at the same time they quicken the blood current, regulate the respiration, and give tone to the digestive functions. There are conditions of mental sluggishness for which one remedy is the performance of physical exercises requiring the concentration of will power and sustained attention; no system of education is complete which ignores the fact. But for the overworked child help comes best from long walks with mother over the hills, from the old popular games, and, indeed, from anything rather than difficult gymnasties.

The general principles of physicaltraining.-Clara Conway (from the same report as the preceding): Our first duty as the guardians of the child is to see with all po sible care that the growth of childhood be not disturbed or distorted by any in uences adverse to nature. But how? By such a nice adjustment of mental and physcal work that one be not made to suffer at the expense of the other; by systema ic daily exercise in order to acquire the aptitude. To this end we place walking first; well-selected games, second; gymnastics, third. Walking, as a physical exercise merely, is a perfect exercise, because it taxes the whole system: every muscle, every nerve and fiber is brought into play. And when to this is added the interest awakened by the love of nature, a study of birds, a hunt for flowers, a search for insects, the temper is sweetened, the imagination brightened, the mind broadened, the spirit lifted near to God. It is something, sais John Burroughs, to press the pulse of our old mother by mountain lakes an 'str ams and knows what health and vigor are in her veins.

Games rank next. There seems to be a close relation between pleasure and high vitality or the vigor of the system, and between pain and the feebleness of the system. Hence the law of self-conservation. But the games should be carefully selected. Girls and boys left to themselves in this matter make their choice without considering the importance of quality and quantity. Gymnastics have a value, too, which we must not underestimate in the general summing up; but in this day and generation, when the worla is alive to the supreme importance of a healthy body and physical culture is the latest fashionable " fad," not many words are needed here. The first derived from the practice of gymnastics, says an eminent physiologist, is the education of movements. The country boy, rough, clumsy, and uncultured, rapitlly gains ease, grace, and polish. His muscles. hitherto used to slow obedience, learn to obey with rapidity and precision, and thus undergo a discipline to which they had been strangers. The gymnastic work, carefully done, gives strength, and strength gives confidence. There is a way of standing, walking, and sitting, notonly easy and graceful, but requiring least expenditure of force. "Strength at the center and freedom at the surface" should be a precept of the gymnasium. "Let soul demand and body respond"should be another. Much of the work of the gymnasium is reformatory or hospital work. There is a patient uprooting of physical faults growing out of inheritance and out of environment and habits of life, and in their stead are established fine, graceful carriage, ease of manner, new and correct habits. In the hands of skill and wisdom the gymnasium is a powerful means for the freeing of the body, until it becomes not only the fit temple of God, but the expression of his best thought.

Should boys and girls engage in the same exercises? Dr. Sargent answers the question in these words: Up to 10 years of age any exercise that will be beneficial to a boy will be just as valuable to a girl. Between 10 and 14 girls should take lighter exercise, with more frequent intervals of rest. After that age it is simply a question of time, amount, and degree, rather than of quality. As a general rule, he says, girls need more muscle, making exercise than they
get, not so much for the sake of acquiring greater strength as for the influence that well-developed muscles have upon the brain, nerve centers, and other parts of the system. For this reason many of the so-called calisthenic morements do not meet the demands of the female organism. They weary and exhaust without giving anything adequate in return. These matters can safely be left to the judgment of a well-trained teacher. The corset should be taken off and kept off, or, what is better, never put on, in order that the body may be built up with the new material that will come to it as the result of the exercise, and to eliminate the old, broken-down tissue from the system.
Should the schools be furnished with the apparatus of the gymnasium?
We answer that no gift in the power of the State is too rare or precious for the child in its keeping, and no expense too great for the process of preparation for American citizenship. If the eminent specialists, who are doing so much for the causes of physical educatipn, will demonstrate beyond question their ability and power-and we think they can-to remedy the evils of imperfect physical organizations, then the State owes it to the child, through the school, not ouly to provide the necassary means, but to furnish also the teacker, wise by natural fitness, and skilled by the best training of the schools.

What system?
The answer is brief. Any system that is good, or a combination of the best in every system.

Should not become a will iraining.-W. T. Harris: I think that physical exercise ought not to be set as a task when it is intended to serve as recreation. It seems to me that it has been one of the great defects in physical education that it has been brought into the schools and made a will training, so that the child who has been exhausting his nervous energy all the morning at his lessons in school is then called upon to exhaust it even more rapidly in set fo ms of exercise instead of relaxing, as he ought to. The child must stand up: he mustnot lean. He must pay strict attention and imitate precisely the motions prescribed. This is a strain on the will power, and calisthenics, as practiced in many cases, exhaust nervous energy faster than a class exercise in Latin or Greek. * * Now I am a great stickler for the old-fashioned recess, the wild recess, the pupil bursting out of the schoolroom, running about, shouting, and pushing his fellows. It is this recass that recreates the pupil and restores his nervous energy. After the enjoyment of a little freedom and a run the child returns to the schoolroom and does his work better; but these set exercises which strain the attention of the child are hurtful. . $\%$. There is great danger in this matter of physical exercise of overstraining in certain directions and producing permanent weakness. When one looks at the danger of half knowledge in this matter, one is almost frightened.

A vast problem.-G. Stanley Hall: If the object of the [physical] exercise is to increase the strength and physical derelopment, it should always be when the body is rested and fresh. But if the object is divergence, in order to further intellectual work, it is a totally different thing. Then it should come when they are fatigued. Physical exercise is not one thing, but it is a great many things. I do not,think we.realize what a vast problem it is.

In case of fatiqued pupils.-Clara Conway: I have frequently, in the schoolroom, seen pupils object to the physical exercise when the hour came, and upon investigation I find that the pupil is tired. In such a case I think it common sense that the pupil be allowed to rest, or sentout in the air and sunshine, where she may hare the best rest. I think it would be cruel, I think it would be an outrage, to compel a girl to take physical exercise under those circumstances. On the other hand, I am not prepared to state that physical exercise should be dispensed with. I believe in physical exercise, but if it is observed that physical exercise is harmful it should be abandoned.

There are times when physical exercise should be given to tired pupils who are mentally fatigued, and in that case it should be such exercise that the attention of the student is not required, and where no concentration of the mental faculties is necessary, but in which the exercise is merely automatic.

Preservation of health a sine qua non.-G. Stanley Hall: Some of us have progressed to the point where we feel thatno system of education is beneficial if the young person leares the schoolroom in worse health than he entered. it.

X.-Private and Parochial Schools.

Questions to be approached slowly.-Superintendent E. E. White, Cincinnati: The imperative need is that the people be educated, no matter where. If the private schools are imperfect they will be improved through the very necessities of the case ; the parents will not continue long to send their children to inferior schools. I think this compulsory education should be an English education; that American children should be taught the language of the country; and I do not see any difficulty in securing this in all public schools. We have had such a law thirty years in Ohio. I am told that there are localities in some of the Western States where the instruction in the public school is not in English. No one can object to stopping that; but the difficulty is in demanding that instruction in private schools shall be in English. This may be right, but it brings an element into the question that gives trouble. In many private schools the teachers themselves can not speak English, and for that reason English in private schools and the State supervision of private schools are questions that I would like to see approached slowly. The paople in most of the States are not yet familiar with the compulsory system.

State authority over private schools.-Governor H. W. Ladd, of Rhode Island: In a State so small and compact as ours it should be the aim to so systematize and correlate all our activities in this line as to be able, each year, to give an accurate and intelligent review of the whole field, and to show exactly what has been expended, what has been accomplished, and what are the various channels through which the work has been carried on, with such details of the plans and methods employed as may be necessary to an intelligent understanding of the whole situation. To this end the powers of the State Board should be enlarged to give them a definite connection with each and every educational institution carried on by the State; and they should also be clothed with authority to secure from each and every private school in the State such an annual return as shall show how many children are taught therein, and also what grade of instruction is given. These changes will at once place the board in a position to exercise its supervisory and directory powers with an effectiveness impossible in the present condition of affairs. Then, conclusions and recommendations will be based upon complete and accurate information from every section of the State and from all grades and forms of instruction.

How far the State may take cognizance of private schools.-Superintendent A. P. Marble, of Worcester, Mass.: A compulsory school law, then, implies that the State (which is only an organized form of public opinion) may take cognizance of private schools far enough to see that no child is deprived of that small amount of education on which the State insists; that is, ability to read and write in the English language, and a moderate knowledge of arithmetic and geography, for example.

But so much of oversight is not hostility to private schools, nor any infringement of parental control any more than the law requiring parents to clothe and feed their children. On the contrary, such an oversight is a positive help to a private school; since parents would not patronize it if the children could not receive certificates to entitle them to be employed, or if their children did not receive a fair amount of education, such as the law requires.
The public-school authorities, if wise, would not undertake to inspect private schools in any other than a friendly spirit and for the purpose of learning what is indispensable for them to know. They would be receired cheerfully, since all schools are presumed to aim at good education; and they would soon be welcome in making friendly criticism. And parents would not long patronize a school which refused to allow the public-school authorities to ascertain what is so important for them to know, where the principle is acted on that all children have a right to a moderate amount of education. On any other principle than that outlined above, a compulsory school law-it would be better to call it a law for securing to each child his birthright of intelligence, since compulsion is a harsh term to American ears-on any other principle, such a law would be a dead letter: for if the school authorities can not inquire into the character of any school, then by means of a fictitious school the law might be successfully and easily evaded. Examination of each pupil applying for a certificate is only an indirect and practically very cumbersome way of inspecting the school which he has attended. This is not a merely theoretical question. In my city a private or parcchial school for French children has invited with great cordiality an inspection for the purpose indicated above; and in a few instances certificates have been refused to children who had not acquired a knowledge of the English language.

What the private school should be measured by.-F. W. Parker, Cook County Normal School : The work of all private schools oi any kind, whether sectarian or secular, should be measured entirely by their direct influence for good upon the common school, into which they will one day all be merged as soon as democratic growth demands that step.

Status of separate schools in Ontario.-Hon. George W. Ross, minister of education: The public schools of Ontario are undenominational. Fifty years ago the Roman Catholics were granted separate schools, and by a more recent act, in settlements where a Roman Catholic population predominated and a Roman Catholic was employed as a teacher in the public schools, Protestants were allowed to form themselves into Protestant separate schools. These classes of schools number as follows : Public schools, 5,380; Catholic separate schools, 243: and Protestant separate schools, 11. The department has not the same authority under the statute over Roman Catholic separate schools as it has over the public schools. Yet in the main features, such as the qualification of teachers, excluding those in religious orders, the selection of text-books, except those required for religious exercises, the authority of the department may be said to be the same.

Transfer of parochial schools to school boards in Minnesota.-Circular of State Superintendent D. L. Kiehle (October 20, 1891): The transfer of parochial schools to the control of a board of education has deservedly attracted much attention. It is important as an experiment in uniting all American children in the system of state schools; satisfactory to a large class of our fellow-citizens who have hitherto expressed great distrust of the influence of the public schools upon the religious character of their children; and also important in the possible danger of putting the public school administration in compromising relations with a religious body. Therefore such an experiment requires on all sides a spirit of intelligent confidence and entire frankness. It is in this interest and in answer to many questions that I call attention to such matters as may be helpful in studying and directing this experiment.

1. The State has made ample provision fort' he education of her youth. It is her policy to make them satisfactory to her best citizens and helpful to them in their highest ambition in training their children for the duties of life. She therefore requires all the people to share the expense and desires above all else that all the youth of the State enjoy the advantages afforded.
2. The attitude of the State is one of entire organic separation from religion as represented in denominations; and she therefore requires that the distinctive work of the churches be entirely excluded from the public schools. The language of the constitution is very explicit, and is as follows: "But in no case shall the moneys derived as aforesaid, or any portion thereof, or any public moneys or property be appropriated or used for the support of schools wherein the distinctive doctrines. creeds, or tenets of any particular Christian or other religious sect are promulgated or taught." (Article VIII, sec. 3.)

To take this as showing indifference, or still more, opposition of the state to matters and institutions religious, is farthest from the truth, for in every way possible the state expresses the greatest interest in those religious bodies whose purpose, with that of the family, is to elevate and purify the character of the people. While the state must forego the exercise of authority in matters religious, in order to protect the rights of all religious bodies, she speaks in no uncertain sound requiring that the principles of the purest type of morality be carefully inculcated in the minds and habits of youth. It is her purpose in the administration of her public schools to express the spirit of the ordinance of 1787 for the government of the territory of the Northwest: "Religion, morality and knowledge being necessary to good government and the happiness of mankind, schools and the means of education shall be forever encouraged."

So decided is this attitude of the state as the superior importance of character building that she allows to those of her teachers who fully appreciate their high cailing all possible liberty in their choice of methods.

With this preface I proceed to define the limitations within which the public schools must be conducted.

LIMITATIONS BY STATUTE.

A board of education may not lawfully bind themselves to require or apply any religious test in the selection of teachers; neither may they distribute or classify pupils in departments, grades or classes, according to their religious
faith. To do so could have no other explanation than the purpose to propagato the tenets of a distinctive Christian sect. And what may not bs done directly may not be done by indirection; that is, the boar. may notoccupy the apartments of a parochial school and have control of it with an implied or unextressed understanding that the teachers shall be selected from those of a particular religious body, or that the children of a particular sect shall be sent there. Such an understanding must be regarded as saciedly binding by all honorable persons, and in the eye of the law and its enforcement at the bar of public sentiment would be condemned as a violation of the law, and would the efore work a forfeiture of all rights to any share in the public funds. The board of education must be absolutely free in the exercise of its authority for the organization and conduct of a good public school; and if the results are not satisfactory, the board must not be able to say that they were limited by implied conditions which the public understood and approved.

QUESTIONS OF EXPEDIENCY.

Beyond limitations and duties determined by statute, there are many other questions which must be determined by the judgment of the board consistently with the purposes for which the school is maintained. Some of these hare religious elements and others have not. For example :

1. The Bible is a religious book, and as such it has no place in the public schools to promulgate religious cloctrines ; but, having merit of great historical, moral, and literary value, it may be used for these qualities. If, however, to any class of persons this is obnoxious, the board should require the discontinuance of its use.
2. Sisters of Charity are religious persons, and as such have no place in the public school to propagate religious doctrine; but if they be women of education and teaching ability, it lies wholly within the authority of the board of education to employ them to do the legitimate work of the school. If, however, to any class of patrons their presence is obnoxious or unacceptable by reason of the significance of their religious garb, the board must either retire them or require them to wear the usual garb of teachers in the schoolroom.
3. The same principle requires that in case the color, or nationality, or personal peculiarities of a teacher, otherwise well qualified, make him so unacceptable to patrons as to interfere with the purposes of the school, his employment must be discontinued.
4. While public funds and public property may not be used to propagate religious doctrine, the interest which the state has in all voluntary organization of a benevolent and philanthropic nature, has always disposed to allow such bodies any use of its buildings that would in no wise interfere with their public use. In country districts it has been customary from time immemorial to allow the use of schoolhouses for religious worship and Sabbath schools as well as other meetings. This practice is one of expediency and propriety, to be decided by the judgment of the board.

THE FARIBAULT SCHOOLS.

In view of the public importance of the action at Faribault, I have visited the schools there, and by the courtesy of the board of education and the city superintendent, have become acquainted with the plan and purpose of the board in accepting the pupils of the parochial schools under their supervision. I feel warranted in expressing to the public my entire confidence that the board have acted intelligently and in no way comprise their authority as public officers; that they have used theirindependent and best judgment in the choice of teachers, in grading and promoting pupils, and that they are determined to give the children in thesa grades advantages equal to others of the city.

This experiment, for such itis, is being conducted in such a spirit of consideration that if at the end of the year the Catholics conclude to resume the education of their own childrren it will be done without disturbing the friendly relations of mutual respect that now prevail.-St. Paul, October \%io, 1891.

XI.-Public Schools.

Relation of the State to public education.-From the message of Governor R. P. Flower to the New York legislature, January 5, 1892: Reports receired by the Superintendent of Public Instruction indicate that the number of children in the State of school age (i.e., between 5 and 21 years) in 1891 was 1,821,773.

The number of children attending the common schools in the same year was 1,054,044. More than 767,000 children of school age therefore were either not in school at all or received instruction elsewhere than at the public schools. The proportion of public school children in 1891 consequently was about 57 per cent of the total number hetween the ages of 5 and 21 . The total cost of supplying this education to somewhat more than half the children of school age in the State was $\$ 20,209,118.20$. The greater part of this amount was raised by State and local laxation.

Considered with other statistics these figures suggest some serious reflections. In 1851, forty years ago, 75 per cent of the entire school population attended the public schools. During these forty fears the State has dene much to improve and streng then its common schools, to increase their effciency and to compel attendance, yet during all that time there has been a steady decrease of attendance in proportion to the school population, and nearly 20 per cent fewer children, proportionately, attend the public schools now than attended them forty years ago. In the same interval the expense has increased from $\$ 1,884,823$ to $\$ 20,269.118$. For each pupil who attended the public schools any part of the year in 1851 the average cost was 82.26 ; in 1891 it was 819.22 -the increase being 750 per cent.

If these figures are accurate, and they are based upon oficial statements and reports, they are startingly suggestive. If true, they mean retrograding influences and greatly increasing extraragance in management. Much of the increased cost per capita is undoubtedly explained by the erection of new school buildings, possessing greater facilities, better accommodations, and more attractire surroundings. But the surprising thing is that this sort of expenditure has not increased the proportion of children who avail themselves of these privileges, but has been accompanied by an actual diminution. Should the same ratio of decrease in numbers and the same ratio of increase in expense be maintained, the State in a few years will be actually taxing its citizens many millions of dollars each year-more than is ne ded now for all other purposes of gorernmentto supply an education to a minority of its children.

This is neither democratic nor right. The State must, for its own protection and interests, see that the opportunities for a common-school education are offered to its children, but it will not be justified in raising large sums of money by taxation for this purpose without accomplishing a corresponding emount of good. If there is waste in the present larishexpenditure it should be discorered and checked. If the present compulsory education law is not effectire, and the evidence is clear that it is not, it should be strengthened by wise amendment. Certainly the Statecan notafford to permit thousands of its children to grow up in ignorance. only to increase that population which crowds our jails, our reformatories, and our poor-houses, and menace the integrity of our public service and our institutions with the weapon of an unintelligent ballot.
No one believes more thoroughly in our common-school system than do I. It is the great hopper into which the untrained jurenile minds of Irish, English, Italian, German, Swedish, Bohemian. or American pa:entage, with their hereditary ideas and tendencies, are tumbled together and shaken up to form the substantial qualification of the American citizen. It is to the American ideas implanted in our youth in the common schools that our country owes her prosperity in the past and must look for the preservation of her institutions in the future. Every schoolhouse may be made a stronghold of defense against the spread of Socialistic and un-American ideas. No more morthy task therefore can be undertaken by the legislature than to strengthen and bulwark our common schools and make them centers of widening rather than diminishing infuence. It will first be necessary, howerer, to ascertain the causes of the present unwelcome tendencies which statistical comparisons demonstrate. It may be found that much of the proportionate falling off in general attendance (aside from that which is explained by the increase of private schcols), and certainly the increase in expenditure, arise from the modern tendency to so enlarge the curriculum of the public schools that they at empt too much and invulve the State beyond its proper measure of responsibility. Certainly advccates of higher oducation at State expense can expect little sympathy from lawmakers, when the State, eren with liberal appropriations, seems unable to compel merely rudimentary instruction, and thousands of children are growing up without any education whatsoever. Within the past two years the movement known as "University Extension" has assumed considerable importance and great popularity in this country. Its nature I understand to be the bringing of means of culture and higher education within the reach of persons who are unable to get a collegiate or university education, or, as it is more authoritatively described by one of its
prominent supporters, "The purpose of the university extension morement is to provide a means of higher education for persons of all classes and of both sexes engaged in the regular occupations of life." Its methods are by lectures, class exercises and examinations, conducted in various "centers" under the supervision of a central head.

The morement has caused great enthusiasm in England and in this country, and seems to have accomplished much good in stimulating intellectual tastes among the people. It has received the cordial support of mostleading educators and the generous encouragement of press and pulpit. While those who expect it, when fully developed, to fill the place of actual training in colleges and univarsities are quite likely to be disappointed, there is every reason for believing that it will raiss the intellectual standard of the people and diffuse more broadly the benefits of higher education. With such purposes and aims every good citizen must be in cordial sympathy.

Heretofore, however, university extension efforts have been carried on under the supervision of some established university, or of some association or cociety organized for the purpose. For instance, in England there have been four great movements-one under the direction of Oxford University, one under that of Cambridge Unirersity. one under that of the Victoria University, and the fourth under that of the London Society for the Extension of University Teaching. In the United States successful movements have been associated with the University of Pennsylrania, later with the American Society for Extension of University Teaching, with Brown University, with the New York and Brooklyn Society for School and University Extension, and with other educational bodies or associations.

For the first time in the history of the movement, however, direct government aid and encouragement have been given, in the statute which was enacted by the last legislature of this State, authorizing the regents of the university to act as the central head for the promotion of this work and appropriating $\$ 10,000$ for their expenses.

Inasmuch as this work is quite likely to be still further brought to your attention and another appropriation asked for, I do not hesitate to express my opinion that the assumption of this duty by the State was not only unwise in principle, but that if the movement is as successful here as it has been elsewhere it will involve the State in unreasonable obligations and be a constantly increasing object of public expense.

I am aware that it has been the policy of the State to encourage higher education, and that public moneys have been appropriated for that purpose, but I respectfully submit that beiore the State should enlarge its field of usefulness in that direction. whatever views we may have as to the propriety of that enlargement, it should first perfect its system of common-school education. The already excessive taxation of the people for this latter purpose and the lamentably inadequate results I have pointed out above.
Reform is necessary before extension.
My fears that the State will eventually find the control and supervision of university extension an enormously expensive undertaking, wrong in principle because it taxes the majority for the benefit of the fer, and indefensible as State policy except under the broadest view of public welfare, are based chiefly upon the testimony of those who have been most closely identified with the new movement and upon the tendency of the movement where it has been longest tried. Thus far our State has committed itself merely to the obljgation of meeting the expense incurred by the regents under their granted authority "to coöperate with localities, organizations, and associations in this State, where such education shall be desired, and to aid therein by recommending methods therefor, designating suitable persons as instructors, conducting examinations. granting certificates thereupon, and otherwise rendering assistance in such educational work." The statute, moreover, expressly provides that no part of the appropriation shall be used in paying for the services or expenses of persons desionated or appointed as lecturers or instructors, it being the intent of the act that such expenses shall be borne by the localities benefited.
Yet if the State were to stop there the annual expense must be largely in excess of the present appropriation if the morement is to be successful, the tendency of every State commission or bureau being towards an increased expenditure. But will the State stop there? Experience and testimony in England do not give much encouragement of an affirmative answer to this question. Prof. R. G. Moulton, who is a Cambridge University extension lecturer, and who has been explaining the movement to audiences in this country, says in a published address:
"We in England havo tried, have ransackad every form of contrivance in order to make the movement pay itself-I mean pay itself out of the fees and tickets of the students whoattend the lectures-and we have failed." So general has been this failure in England that dependence has been largely had upon private benerolence and endowment, and now the promoters of the movement are turning to the Government for financial assistance. In 1889 a national committee was appointed "for obtaining a grant in aid of university extension." In 1890 the local taxation act gare permission to English county councils to apply a certain part of the proceeds of a tax on spirits to technical education under university extension courses, and one county alone has this year appropriated £1,500 for this purpose. Even this indirect government assistance has not satisfied the friends of the movement, however, and in June last, at a meeting attended by many prominent educators and others, it was resol red to petition for a government grant to properly organized local bodies for the conduct of unirersity extension teaching. This direct grant is desired not merely to pay suparvisory expenses, but to meet part of the cost of teaching. Thare seems every possibility that the governmentin England will soon be bearing the greater part of the expense of this movement.

Is the prospect any better for abstention from seeking a larger share of government aid in this State, especially when the entering wedge has already been inserted?

Clearly it is not the intention of the promoters of university extension in this country to make it "pay itielf." The American Society for the Extension of University Teaching says: "No great work in education along higher lines has ever been self-sustaining, in the ordinary sense of that term, and the society will be obliged to rely on the public spirit of all citizens, rich and poor, for funds to carry on the work." A writer in the Popular Science Monthly for November last, after discussing the cost of the movement, says: "The possibility of enlisting Goverment aid opens a larger question. University extension is a national movement which is intended to reach all classes and to promote the most vital interests of the nation. It has, then, as large a claim upon the national pocketbook as any interest which the Government can recognize." Even the regents of the university, in their extension bulletin, invite contributions to the movement, saying: "Whils the feeling seems to have generally prevailed that the funds of the State, raised by taxation, should not be used for the expenses of local work, however beneficent, and in that spirit the legislative appropriation in behalf of university extension was limited to general supervisory uses, still the cause of public education could be greatly advanced if it were possible to supplement and aid the work with judicious appropriations of money in the poorer and sparsely populated localities."

With such conditions prevailing further recourse to State assistance would not be unnatural, and I submit the question to your practical judgment whether it is wise for the State to continue to bear this questionable and in the future perhaps awkward responsibility.

The limit of public free education.-W. T. Harris: In America we explain our public-school system by saying that a nation of voters must be an educated nation. Where ignorance prevails, either an absolute monarchy is necessary to restrain the poople, or else in case of a democratic form of government the demagogue will have the political control. We say that in a democracy each person is interested in the eniightenment of all his fellow-citizens. In a monarchy all the people are interested in the education of the monarch; their welfare depends on his goodness and wisdom. In a republic, where each is gorerned by all, it is the interest of each that all shall be wise and good.
W'ithout education in literature, in science, and in history, the individual will be prone to superstition and intolerance. The selfishness of sectionalism and the selfishness of individuals will triumph over patriotism and personal integrity. It is a necessity for us to see to it that our rulers, the voters, are enlightened by schools and other civilizing influences.
This idea determines also the limit of public free education. Where the people are to obey laws made for them by an hereditary ruling class it may be necessary that the people shall be taught in the schools so much as will enable them to read and understand those laws. But where the people are to make the laws as well as obey them, what limit can there be to the school education required except the full preparation of the individual citizen to carry on his education for himself?

No person completes his education at school. For the nature of spiritual life is to be a perpetual education unfolding eternally. Man's ideal is the divine-
himan Exemplar-all-knowing, all-poweriul to do, and all-benerolent. The most the school can do, there'ore, is to teach the individual how to carry on his education by the aid of the printed page and the proper use of his social opportunities.

Extent to which the authority of the State should be exercisect.-State Superintendent A. S. Draper, of New York: The legislative power in our several States has been content to exercise very little general or decisive control over the schools, Provision has been made for schools, but little or nothing has been done by the lawmaking power to determine the character or direct the work of the schools. If you will examine the statute books of all the States of the Union with this matter in mind, you will stand amazed at the almost entire lack of enactments, directing what shall be taught in the schools, or insuring instruetion by persons of sound character and established competency, and you will wonder, as I have, that voluntary associated effort, unauthorized and practically unsustained by law, should hare been able to accomplish what it has in the way of srstematic organization and intelligent advancement.

Now, suppose we take our system of public instruction as we find it, and inquire what needs to be done to qualify it for the thorough and complete work which the developing circumstances of the country seem to require. I apprehend we shall not differ widely in our conclusions.

BUILDINGS AND APPLIANCES.

In the first place, the whole subject of school buildings and grounds, furnish ings and appliances, needs attention. The people fail to appreciate the moral and educational influence which a good house has upon the school. A comfortable, wholesome, attractive building is certainly a condition precedent to the best school work. Yet our educational plan, the country over, leaves this matter wholly to the intelligence, the wealth, the generosity, the business thrift, or the poverty, the ignorance, the parsimony, the whims and caprices of local settlements. Does experienceshow that it may be safely leit there? In some cases, yes. In more, no. In our largest and weathiest cities there is frequently lack of suitable school accommodations. Eren at the popular centers buildings are found to to be out of date, badly worn and defaced, imperfectly warmed and ventilated, poorly lightod, deficient in furnishing, wanting in appliances to do with. And how is it in the country? How many towns and districts have schoolhouses and outbuildings unfit for any use, houses which are a constant menace to health and morals, because of indifference, or because to build new ones will increase the tax rate? How many lack proper seats and desks and blackboards, and globes and maps, and all the things which contribute to the efficiency of a school? Of course, this is not so in all places, but that it is so in some places is enough and too much. A chain is no stronger than its weakest link. Will any of us admit that any where in America a public schoolhouse should by any less comfortable and complete than the arerage American home? But there is another consideration. This matter doas not rest upon sentiment alone. There is responsibility somewhere. When the public takes the children of the people into its keeping during six hours of each day for forty weeks of the year, it is bound to give them the best possible care. It is bound to make the environment súch as will promote the normal and healthful development of their bodies, while it cultivates their minds and hearts. Again, when the public maintains any building, it is bound to make it a model-one which will attract attention and cultivate æsthetic tastes, one which will stimulate a desire for improvement and lead out in the way of progress.

Who of us does not know that the schoolhouses of the land do not in general come up to these standards? So long as they are wholly left to ward aldermen, village boards, or district school meetings, they never will. What reason exists, in law or in fact why the buildings of a public and common school system should not be subject to public and general inspection and supervision? Why should not competent general authority inspect all the schoolhouses of the commonwealth, and require that in size, manner of construction. condition and equipment, all shall conform to such regulations as modern experience and scientific knowledge hare shown to be necessary to the fullest accomplishment of the purposes of the State in providing by law for a public school system? * * *

TIE TEACHING SERTICE.
If the American school system is to sucesssfully cope with the circumstances which confront it, and the still more trying circumstances which will confront it, it must be equipped with a more substantial teaching service. Porhaps one teacher in five or ono in four is a professional. The force is too largely constituted of young girls or persons who are unable to prosecute any other employment successfully. "Changes are frequent and constant. Two-thirds of the number who are now teaching will have ceased to teach in five years. Fourfifths of the newcomers are immature, physically and mentally, and are inadequately prepared for such a trust.

You may tell me that the law regulates this thing; that it determines who may teach in the schools. It assumes to, but it does not. A law is good for nothing that does not operate effectually. What does the law do? Ordinarily it confers upon city boards of education and county or district commissioners power to certify teachers. The members of the city board are not professional school men. How are they to intelligently determine who are qualified to teach school ? But that is not all, nor isit the worst of it, for if it was they could employ a competent person to determine for them. They have the authority to employ teachers. They have aunts and cousins and daughters and nieces who want employment. And they also have personal and political friends with retinues of relatives, friends and acquainiances. They are human. They like to please. Only the strongest of them dare confront the misunderstandings and enmities in which a refusal to aid their friends will involve them. The greater number will use their opportunities to help those about them, even at the expense of the school system. And how much of a breakwater is the county commissioner against immaturity and incompetency in the schools? He is nominated at a political convention and chosen at the general election. He is under political obligations. If he does not pay them on demand, he is considered mean. The more honest and efficient he is, the more people there will be to engage in the enterprise of taking off his official head. He, too, is human, and he will ordinarily and almost necessarily be influenced by these considerations.

But that is not all in hiscase. What reason is there to suppose that the county commissioner is competent to examine and determine who may properly teach in the schools? He may be, but there is nothing to assure it. Everybody is eligible to the office. The qualifications which secure it are the ability to compass a nomination and gather in enough votes at the polls. These are not the qualifications requisite to the efficient administration of the commissioner's office. It would be as sensible to elect a man at a general election to manage a railway or construct a cantilever bridge.

There are no effectual statutory limitations upon the action of this commissioner. Possibly he may be required to certily teachers only upan examination. But what sort of an examination? Except through the constant and strenuous exercise of the legal authority of the state superintendent, it may be only a form; it may be conducted in the roadway. The world has no statutory guaranty of its substantial character and good faith. If experience in this connection has proved anything, it is that belore an examinationcan be credited with any value it must be held at a stated time, in a public place, upon papers which are preserved, and by comperent authority.

Indiscriminate licensing must cease. The age at which a person may begin teaching must be advanced. Professional training must be insisted upon whenever praciicable, and where not, then at least a minimum standard of intellectual qualifications must be attained at a stated public examination. Examinations must be in competent professional hands. The authority to certify and the power to employ must never be lodged in the same persons. The certificate must be gained before employment is legal. Teachers must be treated better and their rights must be more thoroughly protected. They must be paid as well as equally qualified persons in other employments. Their tenure of position must be more secure. More men must be kept in the work. In short, a policy must be pursued, a plan must be devised, which will cause the teaching service to become broader, more substantial, more self-respecting, and equal to all the demands which may be made upon it no matter how exacting those demands may be.

THE WORK OF THE SCHOOLS SHOULD BE DEFINED.

Again, it seems to me, it is important that there should be an authoritative determination of what the common schools should do. The statutes are nearly silent in this connection. This matter is also left almost entirely to local author-
ties. We are liring in times of marked activity, if not of fererish unrest. Experimentation seems to be the order of the day, and everybody has something new to propose. The schools do not escape these influences. Indeed, they reflect any popular disposition or caprice moze quickly than any other of our public institutions. The result is indefiniteness and confusion in the public mind. This must be corrected or the end will be uncertainty and distrust.

The authority to levy and collect taxes is a high governmental power. It can not be exercised capriciously. The purpose for which it is exercised must be clearly understood and the object to be attained must be of such transcendent importance to all the people as to unmistakably justify the proceeding. One may properly gratify his fancy, he may speculate and experiment to his heart's delight, with his own money. But he has no right to do so with the money of the people. That must be put only to uses which benefit all, and then it must be used in sufficient quantity, and in such a way as to accomplish the object in view. These trite propositions relate to public educational work as to any other public undertaking.
I apprehend there are certain things which the schools must do to justify their existence, that there are other things which they need not do and yet may do with propriety, and that there are still other things which they ought not be permitted to undertake.
The schools must be within reach of every home, and they must provide at least the fundamentals of an education to every child. They must put every child in possession of enough learning to enable him to act intelligently and understandingly in his social relations and as an American citizen. They must train his mind to act for itself, and they must, at least, go far enough with the work to enable that mind to stand alone and begin to walk on its own account. * * *

I entertain no doubt of the right and propriety of the support of high schools at common cost at the option of the qualified electors of each municipality. But there are evils resuiting from the introduction of public secondary schools which need attention and which it will take time to correct. They attract public attention. They gratify local pride. They absorb the best teachers. Service in them is more remunerative and deemed to be more honorable than in the elementary schools. Their buildings are more magnificent, their equipment is more complete. Their curriculum rivals that of the best colleges thirty years ago, and what they do not feel justified in undertaking is not mentioned ineven the Sunday newspapers. In the minds of educators, in the public esteem, they too frequently overshadow and dwarf the necessary and essential schools of the rea'm. The educational pyramid had better stand upon its base and not undertake to poise upon its apex. The best building and equipment, the best teacher, the best methods, should be provided for the beginners. The most generous support and the most alert attention should be given to starting the multitude rather than to decking out and polishing off the individual. The relationship should be more evenly and nicely adjusted by law, and the great mass of pupils who never get beyond the grammar grades should have most serious consideration of the lav makers and of all interested in the well-being of the masses.
There are some things which have nolegitimate place in our educational work yet which wedge their way into it. The educational theorist outruns all other theorists. The educational philosopher reaches after the unattainable and dives into the unfathomable even more than other philosophers. Speculation is without limits. There is no breakwater. He will suffer no layman to dispute him. He will speculate with other doctrinaires, and each will, in his own estimation, get the advantage in the contest. Then he will insist on his distillations being condensed at public expense. Commonly they refuse to materialize atall. All changes and innovations crowd along together in the name of progress and reform. The result is confusion and sometimes chaos.
The waste of educational energy and effort in consequence of the speculative mania and because of the clashing of different interests is great. The cost is greater than necessary, if not unreasonably abnormal. At least there is no reason why better and more telling work should not be performed with the money at the disposal of the system.
In my opinion this subject is one of pre ت̈minent importance. The school sys tem must settle down and become a system in fact as well as in name. When it does it will the more effectually perform the work expected of it, and it will disarm the critics or be the better able to withstand the assaults which will be made upon it. It never, will until competent general authority interrenes to define and limit the scope of its operations, to say what it must do in all places, what it may do in some places, and what it shall not undertake anywhere.

I offer one more suggestion in support of my general proposition. After providing the means to do with, after securing a competent teaching service, after defining the work which the schools shall do in order to justify their existence at gensral cost, it is imperatively necessary to exact the attendance of the children for a sufficient time to accomplish the object in view.

Of course, if any parent prefers to educate his child at home or in a private school, no one can object, if this is not a mere pretext and a sham, and if the education so provided is at least cquivalent to what the public requires. But the public has the right to know that it is equivalent and to exact information which will justify a public acceptance of its work. No responsible institution can have the least difficulty in establishing this fact. There is no other way of insuring general results.
We have legislated upon this subject, it is true; but we have legislated in a dilettante, milk and water fashion, which has been practically barren of results. There is almost an entire failure to appreciate the importance of the subject,or how to meet it. Legislators fear that they may offend some one who has a vote. America is not to be the refuge and stamping ground of socialists and communists and anarchists. It may be well to hang bomb-throwers and murderers, but is is better to prevent boys from growing up into thugs and outcasts.

Troublesome social disorders can be best met by early and alert legal regulations, and by none more effectually than by such as will bring all children under the instruction and discipline of the schools. The children of the depraved and indifferent are the very ones whom it is most important we should reach, if we expect to accomplish the end we aim at, and justify the theory upon which we are proceeding. It can be done, but only through practical and stringent legislation. We hare had enough compulsory attendance laws with no one to execute them, and which no one could executs ; let us hare some which will compel, and will provide that some one shall compel.

Now, these four matters which I have mentioned, viz, suitable buildings and appliances, a professional teaching service, a defined course of study, and compulsory attendance upon the public schools, or upon other instruction of equivalent value for a fixed time, are vital to the success of our educational plan, and the safety of a social compact based upon the principle of unirersal suffrage.

Where is the authority which is competent to regulate such matiers and insure decisive and necessary action? It is not in the Federal Government. Our governmental plan does not cede the control of educational interests to the national organization. It is not in county, or town, or district authorities. It is wisely and fortunately so, for many and obvious considerations. They are mere creatures of statutory law without original legislative or executive powers. The only authority which can act for this people is the imperial Commonwealth of New York, through the law making power which sits at Albany.

Functions of the State in velation to education.-President Seth Low, of Columbia University: It is every way becoming that the State, not the locality, should make the standard and should see that the standard which it makes is everywhere upheld. The question becomes, in substance, the practical question, what part of the work can the State do best, and what part the locality? It would seem to be clear that the minimum standard should be fixed by the State. If any locality cares to carry its work beyond this general standard, that privilege may cheerfully be conceded. But the general standard certainly should be fixed by the State; first, because the State is likely to fix it most intelligently; second, because only in this way can there be any uniformity of result, and third, because when education is shaped with reference to the work which is to follow, a result which the State alone can secure, the best results are reached.

The scholar is threatened at every stage of his school life with an uneconomic use of his time, unless the steps of his progress be timed as well as directed by the best wisdom of the Commonwealth. There is always danger that the effort will be made to teach too much, to teach a smattering of too many things, instead of laying solid foundations broad and deep, and instead, above all, of teaching the pupil himself to observe and to think. I plead for an active oversight, at least, on the part of the regents, of the curriculum of every school in the pub-lic-school system of the State, I would have it a part of their duty to maintain such an oversight of the system in every locality that the results obtained in all places should measure up to the ideal, at least as well as the results in any other State; or rather, as a citizen of New York, I prefer to say, such an over-
sight that the results obtained in this great Commonwealth should be the recognized standard in all our sister States. It is not an idle dream, this ideal that there should be practical uniformity of results in all the schools of the State of similar grade. Germany accomplishes it through the benign infiuence in that particular of the central government. The only question with us is, whether we will let the State, which is ourselves, do a similar work for us with similar efficiency.
There is another element in the problem besides the shaping of the curriculum and the oversight of the work, in which the voice of the State must be clear and decisive. It must define, and define adequatelv, the qualifications of the teachers in the various grades, and, if necessary, test these qualifications. I do not mean that the State should in any way interfere in the actual selection of teachers. That by all means belongs to the localities who are to employ them. But the State should define the training and equipment which the teacher must have before he is eligible to enter any one of the public schools. Similarly the State might well fix the minimum educational requirements for the difie:ent positions of responsibility throughout the schools.
The General Government may stimulate public education.-W. T. Harris: It is c'ear that education is of vital interest to our form of government. The inhabitants of Mississippi have an interest in the education of the people of Pennsylvania because the roters of the latter State help to make laws which affect Mississippi. So Pennsylvania is vitally interested in the education furnished in Mississippi for the reason that Pennsylvaniais national interests are partly controlled by the votes of Mississippi cast for Presidént and for Congressmen.

Here is a text for a sermon on national aid to education and for national compulsory educational laws. But I trust that no person will draw the conclusion that we ought to adopt the centralized educational system of France, no matter how strongly he belieres in the duty of the nation to look after education. Our doctrine of local self-government tends to increase the directive power in all places outside the centerz. But this does not necessitate a "let-alone" policy. For the General Government may stimulate local action by subsidizing it, or it may pass laws compelling a minimum provision for schools.

The limit of the function of the State.-Jas. P. Monroe, in the Educational Review: Once having established the machinery oif free schools, once having placed proper safeguards for its maintenance and protection, the State should determine the least that it must do to preserve its integrity and provide for its healthy growth. It should then rightly exclude from the school all that belongs to the parent as well as all that, being nonessential to the life of the State, ought to be left to individual effort.

Mischierous interference with the schools.-Educational News: Unfortunately for the poor teacher, nearly everybody, from the chief officer of a city or other school district, down to the man who drives a garbage cart, believes that he knows better how to manage the children and conduct a school than do those who have made it a life work, and for this reason both individuals and organizations offer their uncalled-for criticisms and push their mischievous interference.

Oh, for something for idle hands to do! The idle child is the mischievous child in school; he is also the mischievous child at home. Keep him busy and you are safe. But what shall we do with the idle man? It is he who concocts the mischief of the neighborhood. It is he who says "they say" and destroys men's reputations. It is he who too often is the critic of our educational work, and while he lounges on the store boxes of the village can tell just how the school ought to be kept and where its greatest weakness is to b found. Is there no plan by which this man can put the energies to work in profitable channels? How much better our schools would succeed; how much better off the whole community would be if we could only keep the idler busy!
Also this from across the water, same subject.-Rerue Pédagogique Belge: For ages, the progress of school education was retarded by general indifference; today, on the contrary, the most formidable obstruction it encounters is the itch, or the passion, for innovations. In all countries, monarchic and demceratic, everybody, from emperor to pastry ccok, has upon the subject of education ideas which in his view will regenerate humanity. Naturally, the ministers of public instruction have their ideas too, and endearor to put them into practice. Almost every one wishes to break away from what he is pleased to call the old usages, that is to say, from the experience of centuries, and to build up the course of study on a new basis. The lack of practical experience causes people to get
astride of some of the strangest hobbies. One is wholly engrossed with gymnasties, another with chemistry; this one is inflexibly bent upon teaching anatomy and physiology to future seamstresses, that one is of the opinion that the youthful residents of the Rue du Temple will not be able to get along without some well-grounded knowledge of farming.
With the best intentions in the world, they would (in Paris) have turned the courses of study topsy turry a score of times, and have completely ruined the public school instruction, if they had not had to moderate and guide them the learned and unpretentious Académie of Paris, with its inspectors and its active and energetic rector, M. Octave Gréard.
So, while no really useful innovations in the course of study, the methods, or the text-books, have been rejected, the literary basis upon which elementary instruction was founded, has been wisely retained.
The scheol of the future rill not usurp the functions of the parent. -Superintendent A.P. Marble, Worcester, Mass. The school, having undertaken to train the intellect of boys and girls, is now quite generally expected to take entire charge of their education, intellectual, physical, and moral. This is beyond the original contract, and if so broad and general an end is to be attempted, then time must be given to enlarge the plant, to reorganize the system, and adapt it to such an aim.

If the school of the future is to take of the parent, and attend to the entire training of children-to be responsible for bodily health, intellectual training, and moral culture, if the duty of parents is to cease when once the child is old enough to enter the kindergarten, and the school is to turn him out fully equipped for the battle of life, and for entrance into a blissful hereafter, then we must have a good deal more time and more funds. It would seem as if so broad an aim would need to include dormitories, clothing, stores, and refectories. Such was the Spartan scheme of education. It is not likely to be repeated. It is not desirable. Nothing of a public and institutional nature can supply the place of parents. They were ordained of God : and no incubator of modern science or education should ever supplant them. The duty of rearing and disciplining their children ought to be thrown back upon them to the largest possible extent; any institution or any school which tends to beget in the parental mind a feeling of irresponsibility is evil and only evil, and that continually. The school of the future will not usurp the functions of the parent.

The aim of the school.-Principal George M. Grant, Queen's College (Ontario): We must remember that the object of the common school is not industrial. It should not regard children as the raw material of craftsmen, and aim at making infant mechanics. Children are organisms in the flower of life, and the best fruit will ke had if you give the flower free play and do not expect it to be fruit. The fruit will come in due time, if you do not handle or test the flower too often. The aim of the school is to make children happy, healthy, and natural; to give them a love for their country and for one another; to open their eyes to the beauty of nature and the meaning of life; to give them a love for reading, and a taste that will enable them in some degree to discern good reading from bad; and to form in them habits that will make the end of their school days to ke but the beginning of their education. It may be said that all this and more too is being done now. Possibly it is in some places. Improvement, too, there has been of late years, in the general diffusion of education and educational appliances, and, above all, in the increase of popular interest in the common school. But no one will say that the influence of teachers or society, or the influence of school on the formation of character, is what was at one time hoped for; and how, then, can we profess to be satisfied? Unless the people are becoming more intelligent and more moral, the school has failed. Unless there is a higher political life the state can not be satisfied. So great are the possibilities of the public schcol, however, that despair must not be thought of.

What socialism in education tends toward.-James P. Munroe, in the Educational Review : If the State, that nonentity for which each one of us and therefore none of us is responsible, is to bring up my children for me; if morality, good manners, and the domestic virtues are to be taught by some one else while I am but to provide the material things of life: then, forsooth, I will lay aside such sums as may meet these temporal wants and with the balance, large or small, will eat, drink, and be merry; for surely I have no better use in the world. The fact that in a few generations the State will fall to pieces is not for me to consider, since 1 am credibly informed that the sacred duty of maintaining it is taught in the schools. This wicked and absurd result of socialism is, of course, extreme.

There are, fortunately, human tendencies retarding such a mad carear as this. Of these are avarice, making us save even when there is no direct motive for saving; family pride, unwilling to resign the task of chaping its heirs; and above all, parental love, refusing to deny itsell to its offspring.

What the public schools can and can not do-kindergarten training.-State Superintendent A. S. Draper, of New York: The business and industrial world is in a ferment. The educational world is no less so. All manner of schemes are on - foot. Everything is expected and demanded of the schools. Specialization and experimentation are the order of the day. The schools are sympathetic with this spirit. In my opinion there is danger in it. It is a tendeney which is to be resisted. The schools can not specialize. They can not undertake to fit a child for any particular field of labor for they can not cover all the fields. They can not teach him all he is ever to know. They can arousa his faculties. They can give him the elements of an education upon which he can build for himself and they can stimulate his ambition so that he will want to build for himself. If they do this they will do much. This much will not be accomplished if the schools attempt to do special things or if the work of the schools is allowed to become involved in uncertainty and confusion.

In so many cases as to be practically universal the child will remain in the school but a few years. He may be expected to withdraw at any time. Then the most scientific and painstaling work must be done in the first years. If there is unusual care or large expənse it must be there. The idea that persons of little learning or who are without professional training can teach the youngest children, must be discarded. The greatest expertness must be placed where it will reach the greatest numbers and perform the best and most lasting work. We must proceed as though each year may be the last in which the child will have the benefit of the schools.

The child is to live in contact with affairs. He is to live by his hands and his eyes as well as by his ability to reason. His value as a citizen and his success as a man depend as much on his ability to do as on his ability to think and perhaps as much on his sense of right as on either.

Then he is to be educated practically. He is to be taught to put his hands and his eyes to their best uses. More than this, he must be disciplined. His moral sense must bs aroused. He must be brought into sympathy and harmonious relations with nature and with affairs. We can not neglect this until we arrive at the age at which children may advantageously handle tools, and then expect to accomplish much. Something must precede the handling of tools. Half the children will have left school before that time. A carpenter shop connected with a high school is a feeble thing with which to bestow a practical education upon the children of a sizeable city. But the kindergarten will do it. It is at the right end of the course. It may reach every child. It harmonizes with the other work of the sshool. Children love it. It lengthens their time in school. Otherwise its results are extraordinary. It arouses an interest in natural objects, as stones and trees and animals. It cultivates social amenities and asserts mutuality of rights and obligations. It quickens the moral sense. It sharpens the observing and perceptive faculties. It forms and develops the constructive powers. It cultivates the æsthetic taste. The laying of straws, the weaving of mats, the folding of papers, the blending of colors, the molding of sand and the modeling of clay, train the eye to exactness and the hand to deftness at an age when such training is effective and influences the whole after life, If beyond this children are taught obedience, punctuality, neatness, some knowledge of themselves, if they are taught to spell correctly, to speak grammatically, to write legibly, to read understandingly, if they are taught the fundamental principles of mathematics, and if it is done in a cheerful way so that the teacher will be looked upon as a friend and helper, the public schools will have met measurably the responsibility resting upon them. If the attendance can be general and regular the schools will make the citizenship of the State industrious, well-disposed, and safe.

XII.-Reading and Literature.

Classical literaiure the basis for ethical training.-President Charles de Garmo, of Swarthmore College: The advantage of the classical, imaginative literature for the young is that it portrays the ethical lessons of life in a form that most powerfully appeals to the child s natural interests. To many it is a familiar thought that the stages of a child's mental development correspond to the stages of culture through which the world has passed. If this is true, as it must be in some
sense, then thoughtful experiment with classical literary forms will enable us to find that best adapted to any given stage of child development. All education is a process of attaining intellectual and moral freedom. The true fairy tale not only embodies an ethical truth, but it frees the puny child from the iron bands of time and place and circumstance. The child of penury may dwell in marble halls with princes of the blocd and eat the food of the gods. Mrs. Burnett has beautifully illustrated this power of the imagination in "Sara Crew." The curlyheaded lad at his father"s knee may quickły become the armed hero, doing mighty deeds for the right. This emancipation from the physical limitations may soon be transformed to the moral field. I have said that it is the mission of literature to enable the individual ideally to pass through the experience of the race without the pain that the original experience cost. What a weary round of scourgings the race has gone through to arrive at its presentstate of material, political, and ethical freedom! All this is portrayed figuratively in literature, and literally in history. The child is born now, as ever, with all his experiences before him. Must he, for the lack of education, tread again the thorny path of his race? We do not ask it with regard to his material or intellectual welfare; why should we with the moral? Shall we not rather portray the inevitable struggle in forms that he can understand, teaching him to win the victory before the battle is fought.

The basis for ethical training in elementary education is to be found, therefore, primarily in a graduated course in classical literature, beginning with fairy tales, myths, legends, and folklore, and culminating with the higher dramatic literature; and secondarily, in the conerete biographical and narrative elements of history.

The best literature for children.-Principal George M. Grant, Queen`s University (Ontario): The difficulty of teaching literature to children is very great, perhaps greater than of teaching history itself; and the usual mistake is in being too formal, too didactic, too analytic, and too ambitious. The children must be interested only through their imaginations. Mr. Gradgrind would give them "faets." I vould give them stories and tales instead-books like Hans Andersen`s and Grimm's tales, the Arabian Nights, Robinson Crusoe, and the Synoptic Gospels, to begin with, to be followed by Scott's poems, selections of ballad poetry and selections from Scripture. "The best literature for children from their seventh to their fourteenth years," says Rosenkranz, "consists always of that which is honored by nations and the world at large," and if the books I have mentioned are objected to, choose at any rate others that hare stood the test of time and a jury that may be said to comprise universal humanity.

Should not anatomize in teaching chiidren literature.-Miss N. Cropsey : A rast amount of time is wasted by presenting the common and the crude in reading and literature, because we fail to understand the poetic spirit in which the child interprets the world. It is not necessary to know the exact meaning of each word in a poem in order to be instructed and inspired by its general sentiment. The world comes to us first as a general impression; it may ba dim and obscure; its diversity is interpreted in relation to this whole. Our primary schools ought to teach the best that literature has to offer, not the most complex or the most ob=cure in meaning, but some expression of other than the literal and disconnected view of things.

The analytic processes may entirely absorb the time of the child in school, and completely obscure his poetic view of th 3 whole which he brought to us out of the land of early childhood, leaving him on a barren plain of facts, cut off from the living spring of imagination and reason. The eye of the poat integrates the parts and feels the living spirit which animates and unifies nature, though he may not be able to give a scientific classification of its forms.

He will get much more than we imagine. -Intelligence : Reading should be encouraged with the earliest ability of the child to read, ank continue through all his public school career. There is slight danger of the child reading beyond his depth. What if he does not seize all the thoughts if he only begets a tasts for ennobling literature? He will get much more than we imagine, and will grasp it with a firmness we little suspect.

The teaching of English literature.-The following ramarks upon the methods of teaching English literature were written by a graduate of the Worcester (Mass.) Normal School and read by Hon. A. P. Narble at a meeting of the New York State Teachers' Association :

If I am to teach literature to a class of boys and girls, I must have my target, just as truly as the child with the bow and arrow in his hands must have his. I
must know at what my teaching is aiming, or I shall be as likely to fire into the ground as at the stars.
I begin with the hypothesis that literature is to be studied in our high schools as a form of culture and education beneficial to our growth, though, it may be, not directly helpful аз a preparation for bread-earning. If one were to ask a class of boys and girls, after a year's study of literature, in what way they expected to use their knowledge, I imagine he would get some such answers as these: "I shail bs able to make a great many pat quotations." "I shall be able to talk on literary subjects." "I shall be able to use better language." "I have got startzd in reading and in thinking formyself;" or, perhaps, " I don't suppose I shalle ver use it at all."
These answers, with the exception of the last, are reducible to two purfoses: To show off what one has accomplished, and to be abIe to accomplish in the future.
If one's education is to be only an end, and not a means to something further, it is a poor thing to waste fifteen years of work for, and not usually worth trying to show off. It is what one is, or is able to become as the result of the work he has done, rather than the exact measure of knowledge he has gathered together, that is of value to him. Things plastered upon the outside of a person soon wear off and show the old texture through. That which is taken in as a germinating force, fostered and helped to grow, changes the very fiber of the mind, and makes it able to be and to produce that which it could not have been or produced otherwise.
The activity of the mind is of course thought. And just in proportion as we canincrease the thoughtfulness, the habit of thinking deeply and independently, just in that proportion can we give vitality and strength to the intellect of a youth.

Young people think, of course. But what about? Take a class of boys and girls $150: 16$ years old. What sort of thoughts are making thems lives at home in their minds, to order their affairs? There is the last ball game, the tennis match, the new spring dresses, the next dancing school, endless novels, with many tedious school books from which to economize time for more interesting things. Here is much thinking. but little thought. Much of it a very healthful kind of thinking, but not just the kind that is going to bring them out men and women, intellectually wide-awake, serious, and clear-sighted, the kind of men and wom n we need.
Take this class of young paople and get them deeply interested in a play of Shakespeare. The plot itself can bs trusted to get their interest. Then just make these characters live to those boys and girls; and if Iago and Othello, Macbeth, Portia, and Hamlet do not teach them some lessons about themselves and their relations and duties to their fellow-men I am greatly mistaken.

Make them hear a little of the music of Milton, entertain them with some of Dickens and Scott, get them up to their ears in discussions over the philosophy of Raleh Waldo Emerson. In each case pick out the great gift, the leading characteristic of a writer, and just make that one point tell on the thoughts of the pupils. Above all things, do not discourage the pupils from making their own comments and expressing their own opinions. They will often seem ridieulous to the teacher ; but youth is the time to be ridiculous, and mistakes are the surest way to correct ideas.

Would I have them learn quotations? Certainly. Things committed to memory are seen in the many different lights of after reffections, while a thing read once has but th $\mathfrak{l i g h t}$ of a passing mood.
But committing to memory should not be the chiei work oi a class, and pupils should bs tempted and praised, rather than driven and scolded, to quotationlearning.
It is very common, too, I think, in the study of literature, to require a pretty full biographical account of the life of each writer studied. This would do very well for a psychologist or a philosouher, or even for a man of mere general culture, provided he were 60 years old. And so with long criticisms and books about books: they are well for the writer of 40 . But give these young loys and girls the works of great men, pure and simple, and let them feed on them and grow mentally and monally.

In my opinion it is better, too, not to include very many writers in a school literary course. Just as it is better to have a good talk with one intellectually great man than to have an introduction to 40 . so it is better to know 1 poet than to know 40. To study literature and to study the history of literature are two different things, and they should not be exchanged for one another. But the life is in the literature, not in its history.

NiII.-Religious and moral Training.

Religion in cducation.-Brother Azarias: Religion is sacred, and because it is so sacred a thing it should not be excluded from the schoolroom. It is not a garment to be donned or doffed at will. -It is not something to be folded away carefully as being too precious for daily use. It is rather something to be so woven into the warp and woof of thought and conduct and character, into one's rery life, that it becomes a second nature and the guiding principle of all one's actions. Can this be effected by banishing religion from the schcolrcom? Make religion cease to be one with the child's thoughts and words and actsone with his very nature - at a time when the child's inquisitiveness and intellectual activity are at their highest pitch: cause the child to dispense with all consciousness of the Divine Source of light and truth in his thinking; eliminate from your text-books in history, in literature, in philosophy, the conception of God's providence, of His ways and workings, and you place the child on the way to forget. or ignore, or mayhap deny that there is such a being as God and that His proridence is a reality. The child is frequently more logical than the man. If the thought of God, the sense of God's intimate presence everywhere, the holy name of Jesus be eliminated from the child's consciousness and be forbidden his tongue to utter with reverence in prayer during school hours, why may not these things be eliminated eutside of school hours? Why may they not be eliminated altogether? So may the child reason; so has the child reasoned; and therefore does the church seek to impress upon it indelibly the sacred truths of religion in order that they may be to it an ever-present reality.
Not that religion can be imparted as a knowledge of history or grammar is taught. The repetition of the catechism or the reading of the gospel is not religion. Religion is something more subtle, more intimate, more all-pervading. It speaks to head and heart. It is an ever-living presence in the schoolroom. It is reflected from the pages of one's reading books. It is nourished by the prayers with which one's daily exercises are opened and closed. It controls the affections; it keeps watch over the imagination: it permits to the mind only useful and holy and innocent thoughts; it enables the soul to resist temptation; it guides the conscience; it inspires a horror for \sin and a love for rirtue. The religion that could be cast off with times and seasons were no religion. True religion may be likened to the ethereal substance thatoccupies interstellar space. This substance permeates all bodies. There is nomatter so compact that it does not enter, and between the atoms of which it does not circulate. Eren so should it be with religion. It should form an essential portion of our life. It should be the very atmosphere of our breathing. It should be the soul of our very action. We should live under its influence, act out its precepts, think and speak according to its laws as unconsciously as we breathe. It should be so intimate a portion of ourselves that we could not, even if we would, ever get rid thereof. This is religion as the church understands religion. Therefore does the church foster the religious spirit in every soul confided to her, at all times, under all circumstances, without rest, without break, from the cradle to the grave. Place yourself, at this point of view, and say, if believing all this, child of yours should receive any other than a religious education.

How piety can not and can be taught.-Carlyle : Piety to God, the nobleness that inspires a human soul to struggle heavenward, can not be "taught" by the most exquisite catechisms or the most industrious preachings and drillings. No: alas, no.: Only by far other methods, chielly by silent. continual example, silently waiting for the favorable mood and moment, and aided then by a kind of miracle, well enough named "the grace of God." can that sacred contagion pass from soul into soul. How much beyond whole libraries of orthodox theology is, sometimes, the mute action, the unconscious look of a father, of a mother, who had in them "devoutness, pious nobleness !" in whom the young soul, not unobservant though not consciously observing, came at length to recognize it, to read it in this irrefragable manner-a seed planted thenceforth in the center of his holiest affections forevermore.

Can morality be taught in our public schools apart from religion and theology?Nicholas Paine Gilman : The great facts and the main laws of the moral life are obvious to all mature men and women; certainly they are not dependent, for their clearness and their binding force, upon any notions as to the origin either of the universe, of mankind, or of the perception itself of these facts and laws. The facts of astronomy which affect men's daily life-such as the so-called rising and setting of the sun, the phases of the moon, and the phenomena of the ocean
tide, for instance-are plain to every one; the explanation of them given by the astronomer to the farmer and sailor, whether correct or not, will not essentially change the arts of agriculture and navigation. So the common practical duties of human beings have long been familiar. Each new generation must learn them afresh, indeed, but it learns every day morality as an art, not as a science. The difficulty lies in the practice, not in the theory. Philosophers may dispute as to the exact reason why a man loves or should lore, his mother; but the duty of loving one's mother is not a question considered open to discussion in common life. The same may be said of the other obligations which make up the substance of their duty for the great mass of mankind, in all but exceptional times and situations.

When, then, we have in mind as a subject for public school instruction, not the science of ethics, not the speculations of moral philosophers, but the orderly presentation of the common facts and laws of the moral life which no one in his senses disputes, we perceive how the religious or theological difficulty at once disappears, to a large degree. There is possible a theistic explanation of the moral law; there is possible an atheistic explanation; but there is a third course open here to the common-school teacher-to attempt no such final explanation at all. It is not necessary for him to teach that morality rests upon religion as its ultimate foundation; it is just as unnecessary for him to teach that religion, on the contrary, reposes upon morality as its basis. Let the relation of religion and morality be as it may be; the teacher is not called upon to decide an issue of this magnitude. He can teach the duties of ordinary life, showing their reasonableness and their interdependence in a consecutive, orderly manner, without appealing to religion; he can use the plain and usual consequences of actions, good or bad, as reasons for morality, without being open to a just accusation of irreligion. These consequences, as he shculd tach them, are admitted by all.

Such a limitation bars out all matters of theological controversy. The sectarian difficulty and the religious difficulty in moral education disappear when we keep to conduct and its common laws, and stop short of theological or philosophical explanations why right is right or wrong is wrong.

General method of moral instruction in public schools.-Nicholas Paine Gilman: The one principle to keep firmly in mind is to avoid didacticism ("preaching") as much as possible, and to hold fast to actual life as children already know it, or may be led to comprehend it. Concrete instances of right-doing or wrongdoing, happening in the schoolroom itself, or just outside, within the immediate knowledge of the boys and girls, afford the best starting point for talks about the moral points involved. It will be easy to bring the children's minds, through a consideration of actual examples, to recognize in some degree the general principles involved. The same caution needs to be urged here as in the case of other general notions, against haste and consequent disregard of the immaturity of the childish mind. But if the teacher will shun formality and generality, and keep mainly to the particular and the concrete, he will find that few subjects interest children more than these questions of right and wrong in common conduct. These men-and-women-to-be find people the most attractive matter, just as they will find them later in life. Man is not only the "proper," but also the most engaging "study of mankind," large or small. Conduct is to children, who have not yet entered upon the great activities of business, art, or science, much more than "three-fourths of lifie," and the lines of it on which they are beginners will continue unbroken through all their years. Elaborate casuistry. hairsplitting about imaginary situations, anything and everything in the line of pure ethical theory, should be utterly tabooed in the school room. But with these precautions observed, and under the guidance of a teacher of well developed moral sense, boys and girls ketween 8 and 14 years of age (in the grammar schools, where moral education has its most fruitful field) will reason about points of ethical practice with interest, and often with a freshness and an acuteness that are surprising. If this be not so, then these children in school differ very much from these same children out of school.

If the course of study is, anywnere, so full or crowded as not to allow time for the occasional talks (one or two a week) about conduct, which I should advise as the best method, then that course should be shortened by the omission of some branch of much less useful knowledge sure to be found in it. I would avoid set times for these conversations; in them, question and answer should play a large part ; the more easily (if not very frequently) the teacher "drops into" one of them for a few vivacious minutes, the better. Some incident of the schoolroom life that has just occurred, or some matter in the lesson in read-
ing or history may well interrupt the routine of the ordinary recitation, as the teacher asks the opinions of the class or of the school on the moral point in question, incites them to think more carefully about it, and indicates the conclusion to which long experience has brought the world the starting point, at least, for the majority of these ethical talks, for, like every other social institution, it has its moral law which must be obserred by all its members in order to attain its end. The plainly visible chief function of the public school is to impart the elements of knowledge. To this end there must be full obedience to the natural authority, the teacher; the prescribed conditions of quiet, order, and studiousness must be obserred by the pupils. Punctuality in attendance and readiness for all the exercises; truthfulness in regard to absence from school, tardiness, or any other failures to comply the regular order; honorable conduct with respect to methoas of passing examinations; polite ireatment of the other scholars; attention and courtesy to the teacher, such are some of the moral necessities of the schoolroom to be met by the scholars.

The pupils have no duties which should not be met by an equal faithfulness to his duties on the part of the teacher, who should not be there teaching unless interested in his work, qualified for it, and industrious in improving his practice of it. He must be just and impartial in his treatment of the scholars: he must, having the authority, exhibit the virtues of a ruler. Teaching politeness and honor, the instructor should be an honorable gentleman. * * * The teacher has no direct influence over the pupil except in the school hours, and hisearnest efforts may be rendered almostuseless by the indifference, or the hostility even, of parents. But none the less must he strive to connect the morality of the schoolroom, which he can enforce, with the morality of life outside, as resting on the same general principles of reason. While the first rudiments of common sense will keep him from speaking of any rice, such as lying or stealing or drunkenness, in such a way as to proclaim his knowledge that it prevails in any scholar*s home, he is still free to enlarge upon the manifold evil consequences of it. Thus his word may help somewhat to keep children pure in the midst of a bad home atmosphere, which he is otherwise powerless to change.
"Words"-this will usually be easy for the teacher to give in attempting moral education; but nowhere else does word amount to so little compared with example. If the worł is not reミnforced by the example, its influence will be small.

Practice fortified by theory.-George P. Brown, chairman committee of National Council of Education: It is probably evident to all that the writer belieres in inculcating morality by practicing it rather than by theorizing about it. But the time comes in the education of the child when the doctrina that has guided the teacher in fixing dominant ideas in the mind of his pupil shall ke made known to the pupil. Although, as in many other matters, the theory of morals may well be left until the pupil is well on |his way, in the practice of morality this does not preclude the formulating of moral principles and laws which are exemplified in conduct whenever the child is prepared to recognize them in this form, and the organization of these into a system of ethics at a later period would be the culminating act of an ideal method of educating the will. A failure to reënforce the practice of right-doing by a rational theory of one's relations and consequent obligations would be to omit the most effective defense against the erer-recurring attacks of passion and sense.

Moral habits induced by school work.-State Superintendent Richard Edwards, of Illinois: The schools must develop moral power. In this world there is just one thing that has absolute worth, and that thing is character in men and women. These surroundings of ours which we so much value are after all only means to a loftier end. They have worth, these outward things, because they contribute to the good of man: otherwise they are without value. ** .*

What is this childs aim in going through an arithmetical process? What is he seeking for, when, for example, he is attempting to cast the interest on a note or to add up a long column of numbers? He is seeking to know the truth. He is not inquiring what somebody would like. He is not seeking to find an answer that will please a sect, or a party, or advance his own pecuniary interests. What he is seeking is the absolute truth. If he is casting the interest on a note, he desires to know what absolute justice requires to be done. If he is adding up a column of figures he is yearning to ascertain the precise and actual amount which they represent. In the study of history he is striving to ascertain what events have actually occurred, not what someone would like to make someone else believe has occurred. In short, the purpose of all school investigation is
to find the truth. Is not this a good motire? Is not the habit engendered by this work a wholesome labit? Suppoze the same motive should govern the actions of all adults. Suppose that every editorial in a newspaper, every speech delivered from the stump, every sermon delivered from the pulpit, should be animated by the same desire. Would it not be something of an improvement upon the existing order of things?

The crowning purpose of education.-George P. Brown, shairman of committee, National Council of Education : The crowning purpose of education is to make the will follow the lead of conviction in all matters involving the idea of duty. The moral will is the significance, so to speak, of all the other activities of the mind. Institutional life is the moral will as it has realized itself. The ethical ideal is actualized in human society to the extent that it is common to the particular members. The principle of conduct in the ethical world is what is known as the moral law. This law is the unirersal conriction thaterery act of each particular member of the ethical whole should be such that when unirersal, that is, becomes the act of all, it will return upon the doer to bless and not to curse him. In this way the institutional world becomes a ministration of grace, each citizen receiving a return for every good deed, the good increased a thousand fold.

Religious instruction in the schools of Ontario.-Hon. George W. Ross, minister of education: Every school is required to be opened by the reading of Scripture and by prayer, and closed with prayer. In the Roman Catholic separate schools the religious exercises are subject to the direction of the trustees. "No pupil is required to attend upon the religious exercises of the public school whose parelus or guardians notify the teacher of their desire that he should absent himself. Provision is made for religious instruction by arrangement with the trustees of any denomination at such hours as may be agreed upon.

Reform the home first.-Popular Science Monthly: If the clergy, ins ead of making futile demands for the teaching of theological dogmas in the schoo's, would try to rouse the minds of their adherents and followers to a sense of their personal responsibility for their childrens' characters, they might accomplish a more useful work. This is something which they should preach in season and out of season; and if they would do so with the earnestness which the occasion demands, the effect might in a few years be seen in the altered moral tone of a portion of the public-school teachers themselves; and thus, concurrently with the elevation of the home, we should have a notable improvement in the work of moral education as carried on in the schools. Reform the home, and the whole face of society will be reformed.

Catholic ricus on the right of the state to cducate.-Declaration of principles by Cardinal Manning (English): 1. The children of a Christian people hare a richt by divine law to a Christian education. 2. Christian parents have a twofold right and duty, both natural and supernatural, to guard this inheritance of their children. 3. Christian children are in no sense the children of a state that has no religion. 4. Their tewhing and training or formation as Christians is of higher moment than all secular instruction and may not be postponed to it or risked to obtain it. 5 . In the selection of teashers by whom their children shall be instructed Christian parents have a right and a duty which excludes all other human authority. 6. To deprive the poor of this right and liberty, which is claimed by and vielded to the rich, is a flagrant injustice.

These also from Cardinal Manning ${ }^{1}$: State education is the worstform of education, fatal to the independence of national conscience, energy, and character. * * Y You can force us to pay your rate, but you can not rob our children of their religion. * * * [The] moral unity of a people drilled by state education and state pedagogues and state policy is spectral and lifeless. * * To compel the parents of a Christian people to send their children to schools where no religion is taught, as in America, or where the Bible is only read, withoutinterpretation, or without its true interpretation, or, still worse, with erroncous interpretation, and by interpreters untrained and incompetent to interpret, is a violation both of natural and political justice. It is an outrage on the natural rights of parents and on the religious conscience of a Christian people. The common-school system in America is a case in point.

Rer. Thomas Bouquillon, professor of moral theology, Catholic University of America:2 Civil authority has the right to use alllegitimate temporal means it

[^69]judges necessary for the attainment of the temporal common welfare, which is the end of civil socicty. Now, among the most necessary means fcr the attainment of the temporal welfare of the commonwealth is the diffusion of human knowledge. Therefore, civil authority has the right to use the means uecessary for the diffusion of such knowledge, that is to eay, to teach it, or rather to have it taught by capable agents.

John A. Mconey. in the Educational Review. in reply to the foregoing syllogism of Dr. Bouquillon: All that is neccesary to the welfare of the State is not within its competence. If it were otherwise, then the State could claim a right to teach religion. for religion is necessary to the welfare of the State. There are legitimate and temporal means necessary for the temporal common welfare, and not within the States right. The procreation of children, an able critic safely claims, is necessary for the welfare of the State, and a means both legitimate and temporal. Still no one will concede that the State may compel all the citizens to procreate children. Logically the state, in whose behalf the reverend doctor argues, is the socialistic state. The diffusion of human knowledge which he concedes to the State is, as we have seen, that large diffusion possible within the boundless limits of the three \mathbb{E} 's, Ore might as reasonably deny that this "education" is sufficient as to claim that it is necessary. And by what authority, some one will ask, does he determine that "the right to use the means necessary for the diffusion of human knowledge " is to be understood as "the right to teach it, or to hare it taught?" Why shall not we define the "means necessary for the diffusion of human knowledge" as a something more or less than teaching?" The professor's conclusion agrees with his own views. It is, however, not a logical conclusion, but an assumption added to the various assumptions made in his premises. His critics have called Dr . Bouquillon's attention to these and to other defects in his method of reasoning. Haring based himself on premises not true, and on a conclusion doubly illegitimate. was he safe in "affirming that the larger number of theologians admit that the State has the right to educate?" With perfect safety it may ke affirmed that if the larger number do admit such a right, most certainly they base their admission on some more flawless syllogism. As a matter of fact, no theologian to whom the reverend doctor has appealed admits the right of the State to educate.
Right Rev. Thomas A. Becker, D. D.. Bishop of Sarannah: We do not doubt that the time is fast approaching when the State will confine herself to herlegitimate duties, of the which there are enough, and those sufficiently onerous. without undertaking to supply us with a secular instruction which we do not want in any other manner than as a handmaid to religion. and with which, so accompanied, no governnfent can furnish us. Were it even possible, such a power is too liable to abuse to be left in any gorernmental hands: and finally, upon parents, as such, devolves the responsibility for the souls of their offspring, and we dare not. even if we could, shift it from where the Almighty has rlaced it.
Hon. E. F. Dunne (in an address at the Catholic Congress, Baltimore, 1889) : Morality is the only foundation of order. Therefore the State not only may but must assist in the production of morality. It must do it or die, for without morality order is impossible, and without order the State can not live. There can be no morality without religion. Therefore the State which wars upon religion undermines its own foundation-precipitates its own destruction. Noral culture is of more importance to the State than any other ; instruction which does not give it is not education. Therefore the State should encourage education full and complete. To aid in education the State may endow schools and assist teachers, but-itself to teach? No! That is beyond its charter, beyond its rights, beyoud its power.
Compulsory teaching is of inferior quality.-The School Journal : That teacher who is throwing out the strongest moral influences in her school is the least conscious of it. It is unconscious radiation, as fiowers fill the air with fragrance. There is a certain benefit to a school, from carrying out a programme of mor-als-that is, a programme that has certain times and occasions and ways laid down for the imparting of moral instruction. But like all compulsory teaching it is of inferior quality compared with that which flows out naturally from every pore of the teacher's soul.

Not new.-H. C. Hardon, master Shurtleef School (Boston): That old lie that there is no religion in the schools.

XIV.-School Management and Discipline.

Uniformity and freedom.-F. W. Parker, Cook County Normal School: Uniformity may be anecessity in the evolution of a school system, or any other system; but there comes a time when this rough staging should be torn away. The next period of evolution must be a period of liberty, that liberty so restricted that it will lead to freedom. Merit in fixing uniformity is complete skill in routine duties, a strict compliance with conventional demands, the order that keeps pupilsstill; the teaching that complies with the letter of a course of study; the drill that passes classes en bloc from grade to grade; the spirit that humbly bows to dogmatic rules. Under uniformity, teaching is a business and not an art. A business is governed by fixed rules; an art by eternal principles.

Think for a moment of a great corps of teachers, each imbued with a divine enthusiasm of study and a firm devotion to the highest interests of humanity; each striving to find more and more of truth, and to apply it for the weal of the child. Think of each giving freely to all the treasures and truths that he finds, and receiving as freely from all, their discoveries. Under such circumstances we would not have to search with a Diogenesolantern for a first-class teacher.

XV.-Secondary Education.

Free high schools unwise.-James P. Munroe, in the Educational Review: The maintenance of free high schools is unwise; first, because it obliges a whole community to pay for what only a limited number can enjoy ; second, because, necessarily expensive, it robs the lower schools offunds essential to them; and, third, kecause it offers to boys and girls wholly unfit for secondary education a temptation to exchange the actual benefits of remunerative work at 15 years of age for the doubtful adrantage of a training that can have no direct bearing upon their life work, and which, at the time of life it occurs, may do decided harm. The State must, of course, take the initiative in providing secondary schools separate fromor in connection with those already established by private enterprise, and it must maintainsuch course of study as the needs of the community demand; but for these courses there should be a graded system of fees, regulated by the nature and extent of the studies pursued, and, while a certain proportion of the cost of their support might be assessed upon the taxpayers, the larger share should be borne by those in attendance. When such a school ceases to be mainly self-supporting, the town or school districtshould have power to suspend it until the demand for reopening justifies its revival. In this way only can the high school do the work that should be required of it; only by such a pruning can the primary and grammar schools receive the money and attention they deserve; and after such a bold first step can a real reform of the public-school system be begun.

Public high schools rs. academies.-Intelligence: The public high schools, especially those of New England, are steadily coming to the front as the schools which give the most thorough and useful preparation for college. Three times within a few years the valedictory at Yale has been awarded to a student whose preparatory studies were in the New Haven High School.

The rise of the public high school as the crowning feature of the system of common school education is a most interesting fact. In several of the New England States these schools have caused the delay of most of the old-time academies which were once flourishing institutions, or at all events their relative decay. Except a few which, by reason of their large endowment or some especially favorable condition, have grown with the growth of population, they have fallen into comparative obscurity.

Suggestions as to the curriculum of the preparatory school.-President D. C. Gilman (in the Cosmopolitan): Whenerer the time comes for arerision of the curriculum of the preparatory school, three subjects should receive much more attention than is now giren to them. The study of science should be so pursued that the habit of close observation and of reasoning upon ascertained facts shoald at least be initiated. Nature should be approached by the schoolboy as a willing and ever-present teacher. Her lessons should be the delight of every adolescent. When we remember that in contemplating the heavens, in watching the life of plants and animals, in the observation of the modes of motion and in studying the inorganic world there are innumerable and infinitely varied opportunities to awaren curiosity, to train the eye and the hand, to exercise the judgment, to reward investigation-how strange that so little progress is made in the introduction of scientific studies in elementary education! Modern lan-
guages also, especially French and German, are nowadays indispensable in a liberal education; and they are much more readily acquired in childhood than maturity. How are they to get just recognition in the preparatory schools? An acquaintance with the Bible should also be required of erery schoolboy. College professors hare lately been showing how ignorant the youth of America are of the history, the geography, the biography, and the literature of the sacred books. I do not now refer to its religious lessons, but I speak of the Bible as the basis of our social fabric, as the embodiment of the mostinstructive human experiences, as a collection of poems, histories, precepts, laws, and examples, priceless in importance to the human race. These Scriptures hare pervaded our literature. All this inheritance we possess in a version which is unique. Its marvelous diction, secured by the revisions of many centuries, and its substantial accuracy, the care of many generations of scholars, are beyond our praise. But how little study does the schoolboy gire to this book in secular or sacred hours; how ignorant may he really bo of that which is supposed to be his daily counselor ! Science, modern languages and the Bible have been so long neglected in preparatory schools that it is extremely hard nowadays to find effective teachers for these subjects. There is no consensus as to books, no tradition respecting methods. Perhaps we are waiting for the waters to be disturbed by the angel of deliverance, but we shall wait in vain unless we put forth efforts of our own to reach the true remedies. The day will come for better things; we can see its approaches.

XVI.-Teachers.

Is special preparation for teaching indispensable?-Superintendent Henry Sabin (Iowa): Shall we say that special preparation for the teacher's work is not desirable? Certainly it is very desirable, but it is not indispensable. There are only four indispensable requisites-knowledge of subject-matter, uprightness of character, a desire to improve, and common sense. With these as a foundation we may build an Arnold, an Agassiz, or a Philbrick. If any one of these requisites is wanting, no amount of professional study or reading of educational books can supply the deficiency. There has broken out lately a mania for high intellectual development, which the teacher expects to attain by reading a book a month. Teachers sometimes become gormandizers of books. Dickens says of one of his schoolmaster characters, after enumerating a long list of his requirements: "Ah. rather overdone, Mr. Choakumchild. If he had only learnt a little less, how infinitely better he might have taught much more !"

Superintendent J. M. Greenwood (Kansas City, Mo.): It might be as well to state clearly that all this talk about making good teachers without professional training is of little value to the schools. There is no equivalent for professional training. * * * Let us understand it, and not beguile ourselves into longwinded discussions in the rain search for temporary substitutes.

Superintendent Draper, of New York, remarked on this subject that he was sorry to note a disposition on the part of one or two speakers to disparage professional training altogether. It wastoo late in the history of educational progress to do this. Such sentiments are outlawed-are back numbers. It was not worth while to argue with men who had been enjoying a Rip Van Winkle slumber and were out of touch with the general educational sentiment of the country.

Four propositions worthy of consideration.-Superintendent Henry Sabin (Iowa): 1. Pedagogical research, educational inquiry, the study of methodology alone, can never constitute a man a teacher. The machine which makes the teacher a mere automaton is already producing alarming results in this direction. In many of our schools we are approaching the danger line of killing off individuality, of crushing out spontaniety, of dwarfing the teaching ingenuity by reducing ererything to the dead level of certain so-called philosophical methods. We are training the teachers to follow the ruts.
2. There is a failure with teachers, if I may use the expression, to distinguish between an individual method and a representative method; between an arrangement which is the invention of the person using it, partaking largely of the nature of a device, and a method which is typical in its nature-which exemplifies the essential characteristics of all related methods. A device is the creation of the teacher-a method is based upon eternal truths.

Our schools of methods are rery often only schools of devices.
3. The school which gives its students power of thought, clearness of expression, aptness of illustration, and a desire to grow, is a good fitting school for its teachers. What branches are taught there is of secondary importance.
4. To build a wall of partition in the normal school or in the college and say that the studies on this side are purely academic and those on that side purely professional is the concentration of stupidity. The most successful normalischool is that which most closely combines in its daily work educational thought and educational practice. The attempt to separate them combines the worst elements of a blunder and a crime.

It is a fact that the colleges and normal schools do not realize that it is their province to prepare teachers for high-school work. When they reach this point certain results will follow. They will no longer attempt to prepare teachers for their work by reading and studying a few books during the last half of the course. The science and art of education will be taught during every exercise. There will be no less academic work, but it will be of a very different kind. Each lesson will be taught as based upon educational principles; the student will be required to study it with two ends in view-as he would teach his pupils to study it, and as he himself should study it if he were to teach it. Arithmetic or geography should be just as much a professional study in the normal school as psychology or the history of education. Every exercise should have a schoolroom side.

Of the ralue of scholetrstip.-Superintendent Henry Sabin (Iowa): The normal schcol which makes excellency of scholarship a subordinate aim makes a very grave mistake. On the other hand, the instructor whose only aim is to induce excellence of scholarship has no place whatever in a normal-school faculty.

Superintendent A. P. Marble (Worcester, Mass.) : The young can not be well trained by an untaught teacher. It is not merely the prescribed curriculum that the pupil must be made acquainted with. This is the framework, so to speak, the skeleton, upon which must grow the parts that make up a symmetrical whole; and this symmetry is produced out of the well-stored mind of an educated teacher. The daily lessons must be enlivened and vivified by related facts and suggested ideas. This can be best done from the storehouse of a mind running over with knowledge, broad and deep, encompassing the subject-matter of the daily tasks.

To such broad culture the teacher should, if possible, by all means add an acquaintance with the science and the art of teaching. But valuable as this professional training is, it caunever take the place of the indispensable qualification just named.

Theory and experience declare for scholarship.-B. A. Hinsdale: Which is better, much scholarship and little method, or little scholarship and much method? The answer to thisquestion can not for a rooment be held in doubt. Both theory and experience declare for scholarship. In fact, the enthusiasm of knowledge is a prime requisite of the best teaching. Few school spectacles are more painfulthan that of a poor teacher eking out slender learning with an excess of method. The good scholar without professional training will commonly stagger a good deal at first, but if he have the root of the matter in him he will soon find his feet; while the teacher of an ill-organized mind and small equipment gives little promise of ever overcoming his limitations. The what will catch the how long before the how will overtake the what! And this is why all sound educators plead for the improvement of the intellectual equipment of the teachers of the country.

The function of the normal school.-Edward T. Pierce, principal Chico State normal school (Cal.): The first requisite of good teaching is a thorough knowledge of the subjects taught; the second is an insight into the principles of education and the methods of applying them. If the subject matter is slighted, method is purposeless; and knowledge of methods presuppose an understanding of the subject in the teaching of which the methods are to ba applied. Therefore the normal schools of this State must, at present, pursue two lines of workacademic and professional-and should slight neither.
J. W. Dickinson, secretary State Board of Education (Mass.): A normal school may be khown from any other institution of learning by the character of the exercises to which it may be properly limited. If it devotes its whole attention to teaching the objects and subjects of knowledge in an academical way it has no claim to a distinct existence. Other schools are doing the same thing. If it teaches the philosophy of teaching and the method founded upon it, and the history of teaching from the earliest times to the present day, it is doing its legitimate work. If , at the same time, it attempts to teach the facts and truths of the various sciences, then it imposes a burden upon itself which circumstances may render necessary to a limited extent, but which should not be allowed to interfere with professional teaching beyond the necessity.

What may be required of all candidates.-State Superintendent A. S. Draper (Ner York): In our cities, the number of candidates for teachers positions is so great, and the facilities for acquiring profcieucy so many, that it is prfectly practicable to require that all candidates shall hare conipleted the high school course and spent a year in a normal school or training class before being given authority to teach. We passel such a law in our State last winter. It was retoed. Butwe will hare it yet. "Some of our cities are doing precisely this now without law. All can do it and have plenty of teachers. It is no hardship to young candidates. It will work incalculable advantage to the schools.

Fou a high school may prepare teachers.-Superintendent Henry Sabin (Iowa): Occasionally we find a high school which is recowned in all the sumounding country for sending out successful teachers. In such a school, if we investigate, we always find certain conditiors:

1. Pupils are taught how to study with a view of getting the most out of a subject, not simply out of the bock. They practice vivisection on every subject they take up.
2. They are taught to exhaust the means at their command. If it is only a dictionary, an encyclopædia, a few reference books at home or at school, they make the best use possible of them. Supe abundance of means is sometimes a source of waste to the student.
3. The pupils are expected to ask questions as well as answer them, and the teachers are expected to answer questions as well as ask them. The independence, which the pupil thus gains, goes with him into his school, and serves him well in the absence of strictly professional training. It enables him to solve, without the aid of a key. the innumerable p:oblems which present themselves almost daily in the schoolroom.

Enthusiasm is the life of gooa school work. Thus the pupils during four years acquire so great derotion to their work, they become so aglow with the deligbt of acquiring and imparting knowledge that it becomes an appetite, as it were, and they are not happy except when under its influence.
Of catremeiy doubtful value.-The best psychoingy.-H. C. Missimer (Erie, Pa.): The young girls that go into cur training classes fresh from the bigh school are too immature to understand mental philosophy or psychology. It will only befuddle them. The power to analyze. to dissect, to connect mental processes in their proper relations. is the last and highest achievement of the intellect. It is the result of much obzervation and wide experience. For a young girl to psychologize, to philosophize about the mental process of the child-mind, without knowing anything about children. or coming into actual mental contact with them is, if not the purest nonsense, of extremely doubtful ralue.

Again, the abstract study of psychology, as a preparation for teaching, is rery apt to send the young teacher into the school with a tendency to impose and practice upon the children a theory instead of a disposition to study actual conditions out of whichshe ought to develop her own theories and her own methods.
Eren the discussion of methods, before we are engaged in teaching, is of little ralue beyond conveying an idea of the nature of the work. The method of somebody else is of no value to me unless it quickens and expands ideas already existing in my own mind.

The best fsychology for the teacher-the beginning teacher-is the psychology of rulgar practice. It is the right kind of psychology to rid our minds o: folish, impracticable, and short-sighted notions. It is the psychology that shows us where we shall probably fail. and where to concentrate our energies in order to succeed. Professional psychology should come after the teaching is begun, after common-sense study of the children after the study of actual conditions. Then it will develop, enlarge, and widen the teaching mind.

Special preparation may be excated exen in the country.-Superintendent A. S Draper (New York): We can not expect that all teachers will be as thoroughly prepared for their work as they may and ought to be in the cities. Yet experience shows that some special preparation may be exacted even in the country. Candidates will comply with what is required. Send all you can to the regularly established normal schools, but remember that there can never be enough normal schools maintained to supply all the teachers needed in the common schools, and also that all candidates can not afford to take a complete normal course for the sake of the mere chance of being employed at fire or six dollars per week. with the likelihood of being turned out at the next turn of the political wheel. We need short-term training classes throughout the rural districts.

The use of teachers' examinations.-Superintendent A. S. Draper (New York): It is quite the fashion to discredit examinations. It is a foolish habit. The examination has its legitimate use. We do not use it to determine who shall be certified, but who shall not be. We do not say that all who pass an examination shall be certified by any means. We say that the local officer may withhold certificates from any candidate, no matter whether he passes the examination or not, and without giving any reason. We only say that he shall not issue a certificate unless the candidate attends upon a prescribed course of processional instruction or passes the prescribed examination. In the next world we may be able to accomplish ends without means but we can not in this world.

We will continue to talk about innumerable things, but nothing can be of such supreme importance as the institution of efficient agencies for promoting the professional training of teachers and for preventing the certification of such as are not so trained.

The essential conditions of effective teachers' examinations.-George William Curtis: Teacherships in the schools are not popularly regarded as subjects of patronage. But are they not so practically, and is it wise that they should remain so? What is the present system? I bslieve that the requirement of certification or license before appointment is universal in all the States of the Union. The examination upon which the certificate or license issues is, then, the cardinal point. What are the vital, essential conditions of effective examination? To be properly effective the examinations must be uniform, entirely competent, and wholly independent of the appointing power. The examiners must be sincerely interested in education, familiar with the duties of a teacher and with the requirements of the art of teaching, and capable of conducting an examination to ascertain both the scholastic attainments and the specific professional fitness of the candidates. Wherever thes conditions do not exist, the public school system, and therefore the whole community, suffers.

A reserve corps of teashers-The Millucalkce plan.-Supérintendent Wiliiam E. Anderson, of Milwaukee, Wis.: Some three or four years ago an inquiry into the frequency of teachers' absences, and the average number of substitutes employed to fill such absences, suggested a change whereby a larger number of well-qualified teachers than those assigned to places should be kept at the command of the board. In Milwaukee it was found that of a corps of 400 teachers employed at that time there was an arerage absence of 12 to 15 teachers a day, the absences some days exceeding 20. This includes alt vacant places, permanent and temporary. It frequently happens that two or three vacancies exist for which there is no appointee at hand. It was customary, as in other places, to occupy these by so-called substitute teachers having no certificates, or by those having the certificate, but no experience. A rule was adopted empowering a committee and the superintendent to appoint a number of supernumerary teachers, to be called the reserve corps. These teachers were the best that could be obtained during the summer vacation. Their appointment was regular and their salary the same as that of assistant teachers, no deduction being made when their services were not required, providing they reported for service at the office. Members of the reserve corps have their predilections and aptitudes. These, known to the superintendent, are regarded when temporary assignments are made. A racancy in a seventh or an eighth grade is supplied by a teacher who is supposed to hare the capacity for teaching higher grades. A racancy in the primary grade is supplied by a teacher who is supposed to be adapted to primary work. In the mean time the members of the reserce corps, being selected upon grounds of general efficiency, experience, and training, are eligible for appointment. Their service in temporary classes commends them for appointment, and their detail to occupy recently created racancies is a kind of preparation for appointment. If the principal is satisfied, a resolution of transfer from the reserre corps to the corps of the school is all that is required. In this way we have been able to satisfy the prerogative of local commissioners who select their own teachers and with the improvement of the plan hope to introduce a larger number of capable teachers to fill vacancies. As the reserve corps is depleted it is recruited by the committee and the superintendent, whose business it is to keep a record of applicants and to hold frequent meetings for interviewing applicants for admission to the reserve corps. The corps was first organized under rules which prohibited the employment of any teachers who had taught in the schools previously. The restriction was. however. remored, and perhars not for the best interests of the schools. Experience has shown that soms teachers were kept drifting about upon the reserve corps for a
whole year without finding, in the good opinion of principals and commissioners, a transfer to a permanent place. It is best to discontinue such teachers from the service. Otherwise the reserve corps may become occupied by a class of professional substitutes and become an invalid corps instead of a reserve to supply capable and vigorous recruits. There ave many good features and some unexpected drawoacks connected with the plan; but as a plan to enable the school board to establish a standard of professional training, to provide itself with a sufficient number of teachers duly qualified to receive appointment when such teachers are obtainable, it is abundantly successful.

Regardless of the interests of the school.-Supsrintendent William E. Anderson, Milwaukee, Wis.: The more widely the power of appointment is distributed the greater the weight and influence exercised in behalf of the would-be teacher and regardless of the interests of the school. We are all acquainted with the commissioner who would bz good enough to give all persons certificates whose fathers are taxpayers, who look upon the maintenance of schools first of all with reference to the support of teachers, and who sees no farther into the problem of licensing and selecting instructors than what appears to be a charitable mission of giving to as many deserving young women as pissiblea chance to earn a decent living. The good man who feels that the place should be given to the applicant who comes first, to the girl who has a mother to support, to the graduate of his own school, the daughter of a local politician, or a member of the same church with himself,-will always flourish in city school boards. He is frequently a good man for other purposes but hiring teachers, and there is no reason for disqualifying him for exercising that function, when his generous predilections may be rendered harmless by a little wise legislation.

The best way for teachers to acquire control.-J. W. Beeson (in the Educational Exchange, Alabama): There should be a love for children on the part of a teacher. It is a fact, recognized by all good educators of the present day, that the most successful way to govern a child is with love; that when a teacher wins the respect and love of a pupil he has no trouble in controlling or in teaching him. The best way to win this love of children is to love them first. "Love begets love" is a law of human nature. Besides, it seems impossible for one to do the greatest amount of good for those for whom they have no special lore.

Guard the teaching force against incompetency.-Superintendent A. S. Draper (New York): I lay down the proposition as true that in nine-tenths of the cities of this country the board of education will be influenced in the appointment of teachers, and will appoint whomever the law and the existing regulations of that city will permit them to appoint as teachers, regardless of the peculiar fitness or adaptability of the applicant for the position. The conditions should be regulated by statute law. Yoil must guard the teaching service against incompetency. I undertake to say that in nine-tenths of the cities of the country you will get a stronger corps of teachers from regulations which provide that only graduates of the city high school or the city normal schools or the training schools are eligible to appointment than you will if you throw the matter open and let the board select and bring in "the new blood," because the board, as a rule, will abuse the opportunity thrown open to them.
How shall he learn these things?-Principal George M. Grant, Queen's College (Ontario): That every future citizen shall be taught to read is much. That he shall be taught to observe and to think is more. But that he should learn to love, admire, and revere that which is worthy, and hate that which is unworthy, is most of all. But how shall the average boy learn thes highest things save through the voice, tones, and whole life of his teacher?

Better even than mere learning.-Superintendent A. P. Marble (Worcester, Mass.): Better even than mere learning and professional skill is a sincere love for children and an earnest desire to lift them up. The teacher, filled with love for the fittle ones, will find a way to help them and improve them, far more than one filled with all knowledge and stuffed to repletion with methods, psychology, and the science of pedagogy, if in attaining all this the juice of human kindness has been squeezed out of her. Children must not be looked upon as specimens upon which to practice the arts of the profession. They are human souls to be developed and made manly and womanly.

Wasting their efforts.-Superintendent Henry Sabin (Iowa) : I honestly believe that very many of our teachers are wasting their efforts and failing to do their best work, because they are neglecting to regard the things which pertain to
the present wants of their schools, in their desire to attain an undefined, intangible, impalpable something, of the nature and use of which they have no definite idea. I wish we had more institute instructors whose instruction is luminous with the light of common things.

The relations between teacher and pupil.-President E. B. Andrews, of Brown University, in School and College: We need, more than we have as yetdone, to get upon a level of friendship with our pupils, not standing off from them, not looking down upon them. Present yourself to your pupils as their guide, friend, adviser, elder brother-one who, having the advantage of age and larger study, is able to assist them. The in loco purentis idea of the teacher's office is sometimes urged as an argum nt in faror of pedagogical sternness and sererity. Not so. Parental authority itself is no longer exercised in the old way. How many civilized fathers horsewhip their boys nowadays? In the lower grades, and to an extent in all, authority must exist, but it should be kept as much as possible in the background. Never coerce a pupil save as a last resort.

Kindness to pupils is never exercised in vain. Strive by unselfishness and perfect uprightness to make your pupils regard you the finest may on earth. To this end do not assume infallibility, but, if mistaken erer, admit it. Be an original thinker, an authority in your department, no mere expositor of a book; yet if you pretend nerer to err, your dullest scholar knows better and puts it to your diseredit.

Never use sarcasm toward a pupil or make fun of him. You are a coward if you do, taking advantage of position to enable you to hurt a fellow-being as good as yourself, and you will be despised as a coward deserves. But worse. when you treat a pupilso, you can teach him little more. The inclination on that learner's part to question you is gone forever, and has given way to timidity, or perhaps to a sullenness or obstinacy, which you can never overcome.

Until he withers into a machine.-Rev. Smith Baker: A teacher who simply hears children recits will grow less of a man or woman until he withers into a machine, like a circus clown or a magic-lantern lecturer, repeating the same performance: but the living teacher, though he remain in the same humble school for a generation, will, like a tree, grow broader and highe: and deeper each jear. His teaching will expand his manhood.

What the teacher is imparts itself.-Rev: Smith Baker: Every teacher is a picture. Eyes are following her while she is silently imparting ideas of life. Every teacher should be such a man as we want our boys to be; such a woman as we want our girls to be. No teacher can help being a character builder. What he is imparts itself to others. The teacher of my boy is doing more for my boy by what he is than by what he says.

The most powerficl lesson.-Supsrintendent T. F. Wilsôn (Stillwater, Ninn.): Set lessons are of but little value. The most powerful lesson by far is unconsciously given by the teasher whose life is a true type of noble manhood or womanhood. A teacher must live a life above reproach. This alone secures respect. Without respect nothing can be don 3. Oncэ secure this respect and the frown of dissatisfaction or the smile of approval will cause deeper lessons to sink into a young heart than hours of admonition.

Women as sehoat teachers.-Hon. John L. Buchanan, of Virginia: Among persons liberally educated more women than men. find employment as teachers in the public schools. In fact, in a good many States public-school education is already largely in the hands of womon teachers, as is shown by late school reports. In some. States there is still an excess of male teachers. but it is constantly diminishing. * * * This preponderance in the number of female teachers is easily explained. The arenues of remunerative employment for women are more numerous at the present day than formorly. They are proving themselves faithful and efficient workers in many positions which in former days were thought to be unsuited to them or to which they were thought not adapted. Public sentiment has materially changed touching this matter and moie liberal views prevail. Butstill the sohe "e of woman is much more restricted than that of the other sex, her range of ocerpation much more limited. Again, it is almost, if not quite, a universal custom to discriminate against her in the matter of compensation. Why the same service equally well cerformed should in onecase have a different money value from what it has in another is hard to explain on any principle of justice. Yet such is the fact. But woman is the natural guardian of childhood. Her delicate sensibilities, quick perceptions, active sympathies, and unselfish affections peculiarly fit her for training and managing
children. Hence her success, especially in the primary departments of school work, suffers nothing by comparison with that of the other sex. And in higher departments also, and in pcsitions requiring executive or administrative talent, her work is often at a premium rather than at a discount. Doubtless the best results in education are to be secured under the influence of accumplished teachers of both sexes. As skilled artists, the delicate feminine touch of the one and the rigorous masculine touch of the other are both necessary to give the highest beauty of form and finish to the plastic nature of youth.
The smail proporion of maie teachers to be deplored.-State Superintendent John W. Dickinson, of Massachusetts: The standard of qualifications for teaching has considerably advanced in ten years, so that the demand for men and women fitted to take important positions far exceed the supply. As a consequence women of experience are now called to positions formerly occupied by m who taught for a brief term to obtain pecuniary aid in preparing for other pursuits. The policy is doubtless as wise in many instances as it is economical, but the small proportion of male teachers is certainly to be deplored.

Why so?-The Chicago Evening Post: Shall a woman of strong character and great ability, who has made a long and honorable record in the public schools of Chicago, be refused promotion because she is a woman?

Why should they not do so?-Educational News : A New York journal publishes it as a fact that the Mercantile Library of New York has but one member who reads educational books, and adds that teachers ask for novels. Well, probably teachers find a better supply of novels in the Mercantile Library than elsewhere. If so, why should they not entoy them? Probably, also, these same teachers have a supply of pedagogical literature at their homes, and they seek for the lighter and more entertaining reading elsewhere. If so, why should they not do so? The statement might mean much, and it may mean but little. We know of no class of people who would more fully enjoy the classical fiction or even the lighter literature of our language than teachers. Surely the constant strain which they suffer during the working hours of the day entitles them to whatever inno_ cent recreation they can get, even if it be the novels of the Mercantile Library.

The supreme question.-Superintendent Henry Sabin (Iowa) : Except only the question of moral training, all other questions sink into insignificance compared with this of supplying the schools in our smaller cities and towns and in our country districts with competent teachers.

The pensioning of teachers recommended. -The following resolution was adopted by the department of superintendence of the National Educational Association at its Philadelphia meeting (February, 1891):
Justice, as well as the best public service, requires the retirement and pensioning of teachers after a service of thirty years and upon carefully devisel conditions. We recommend the enactment of laws in the several States to permit and to regulate the retirement and pensioning of professional teachers.

Against pensions.-C. W. Bardeen (Syracuse, N. Y.): Pensions after a certain amount of service will make it only the more difficult to get rid of incompetent teachers who wish to complete that term of service.

Master teachers wanted-How to secure them.-President D. C. Gilman in the Cosmopolitan : The tendency of our times is not toward the fostering of such teachers [as Arnold, Thring, Abbott, Taylor]. Many of the brightest Americans are attracted by business. The three professions traditionally called learned and the modern scientific pursuits enlist great numbers. Of those who derote themselves to teaching the most prefer to enter the service of the college or the university. Few only, so far as my acquaintance goes, seek permanent careers in the service of boys' schools; few declare that they will ba satisfied with the opportunities and emoluments of a good and faithful teacher. Hence one of - the most delightful of intellectual pursuits, one of the most useful, one of the most honorable, one of the most sacred, is in danger of falling into the hands of inferior men. The only remedy that I can see is for the head masters, trustees, and parents to be on the watch, and when a born teacher appears engage him, reward him, encourage him, retain him. See that his path is free from stones, that he is not overworked or harassed, and that he is kept contented in his lot. Let him be sure that as much respect and as much income will be his as would fall to his portion were he to enter the pulpit or be called to the bar. Let it never be forgotten that the teacher's gilts are as rare as the poet's. The methods of education can make scholars, pedants, specialists, and a very narrow man
may live in his den and benefit the world by patient observations and minute researches. But no process has been discovered for making teachers. They are like gems, that must be found, for they can not be produced. I would rather place a schoolboy under one "all-round man" whose manners, morals, and intellectual ways were exemplary, and who was capable of teaching him Homer and Euclid, than under a group of specialists selected simply as mathematicians, physicists, and linguists. Later on, when the character of a boy is established, when his habits are formed, when he knows how to study, when he has learned the art of acquiring knowledge and the graces of expression, let the specialists take hold of him. Even then let it be provided that the specialists shall not be too narrow.

XVII.-Text-Books.

The ralid objection to fice text-books.-S. S. Parr: All things considered, free books promise most to our schools. There is but one valid objection to this system, and that is the communistic one. The State undertakes to do what the individual should be left to do for himself. Doubtless, free books would be a long step towards solving the knotty problem of how to more efficiently educate the children of foreign-born parents, who are deterred from the full benefit of the public schools by the cost of books and appliances. They would also solve the questions of cost and economy.
A warning roice from out of the past.--Azariah C. Flagg (State superintendent, New York, in 1830): Great improvements are constantly going on in the character of school books. The greatest experience and much of the best talent of the country are enlisted in this business, and the fruits of their labors ara constantly giving them new claims to the approbation of the public. The adoption of a particular book would amount to a prohibition upon all improvements and subject the inhabitants to a loss of the prohibited bsoks on hand. The interests of the common schools may be seriously endangered and can not be essentially benefited by the adoption by law of any book or set of books.

The text-book system of Ontario.-Hon. George W. Ross, minister of education : No text-books can be used in any public or high school of the province until sanctioned by the department. There is now but one text-book in each of the subjects taught in the public schools. In the case of high schools more than one text-book is used in some of the subjects, although the tendency is towards the same limitation as prevails in the public schools. When a text-book ceases, in the cpinion of the department, to serve its purpose it is set aside and a more advanced one substituted. The price of the text-book, the quality of the paper, style of binding, typography, etc., are all regulated by the department. Under a statute, boards of trustees may provide free text-books fo: pupils in cities, towas, and incorporated villages.

CHAPTER XVI.

EDUCATION ABROAD.

NOTES FROM EUROPEAN EDUCATIONAL PERIODICALS.

Abstract

A ssociations.-2, Bibliography.-3. Classic Languages.-4. City School Systems.-5. Compulsory Altendance.-6. Crime-7. Exhibitions.-8. Hygiene.-9. Illiteracy-10. Language Study-11. Libraries for Pupils and for Teachers.-12. Manual Training.-13. Medical Supervision.-14. Jis-cellaneous.-15. Museums.-16. National School Systems.-17. Pensions.-18. Psychology.-19. Religious and Moral Instruction.-20. Salaries.-21. Secondary Education.-22. Secular Sunduy Schools.-23. Special Schools.-24. Superior Education.-25. Teachers.

1.-Associations.

Denmark:-From the 6th to the 8th of August, 1891, was held the sixth Scandinavian school meeting in Copenhagen. These meetings were at first frequented chiefly by primary teachers, as the topics discussed concerned primary schools solely, and secondary teachers had their separate philologists' meetings; but at the last two meetings there have been also lectures and -discussions on subjects concerning secondary schools, the result of which has been a discontinuation of the previous philologists' meetings. The last conference numbered 5,300 visitors, 3,000 of whom were from Denmark, 1,100 from Norway, 1,000 from Sweden, and 200 from Finland. (Allg. D. Lztg.)

Germany. -The German National Teachers' Union haß 44,449 members on July 1, 1891. Seventeen local teachers' associations joined the union during the last half year. (Paed. Ztg.)

Saxony. - The "Pedagogical Circle" of the women teachers in Dresden has closed the twenty-sixth year of its existence. The number of its members exceeds 300. The society has listened to sэveral courses of professional lectures, and special courses in botany, French, drawing, and gymnastics that were arranged for the younger memkers. The socisty maintains a bureau of information for teachers without positions. It has a sick fund from which during the year 1893 eight members were supported for several weeks and even months. (Die Lehrerin.)
Prussia.-The pastoral letter of the bishop of Ermland (province of Prussia), in which he objects to independent teachers' associations, has had quite the contrary effect to what he aimed at. The teachers are clubbing together more than ever before. In resolutions couched in respectful terms, they say that while they shall never be found wanting in respect for the clergy, they energetically protest against ecclesiastical interference, and all inroads made into their natural and political rights. (Allg. D. Lztg.)

France.-The first timid attempts at holding national teachers' meetings in France for the purpose of discussing professional affairs date back to the year 1840; they were kept up for ten years, and then ceased, until revived in 1871. Not until that year did these meetings show a firm organization, adapted to promote the successful exchange of professional ideas and practical coöperation. The example of other states was decisive. The great educational meetings in Germany, Belgium, and Switzerland induced the French teachers to attempt similar meetings, and they were well and readily supported by the centralized state authority.

The first large teacher, meeting was held in 1878 in Paris. Though the elementary or common school claimed the lion's share of attention, it did not occupy the meeting exclusively. The elementary sshool did not then have the
excellent organization which to-day we have reason to admire; on the other hand, owing to several important events, political personages had to be drawn into the proceedings, persons who carried the discussions into the domain of higher education. Here, naturally, principles of pedagogy and general educational questions claimed the attention. The claim to an equal education for all citizens was urged. Upon this basis it was thought the endeavor to combine the different branches of instruction, as well as the different kinds of schools, might be successful. The result of this discussion was the adoption of ideas indicating fundamental reforms, according to which education was to be conducted " with motires of justice, freedom, and love for the young." Besides these questions, others relating to gratuitous, obligatory, and secular instruction were discussed.

As the work which had been laid out for this congress could not well be finished within the prescribed limit of time, another session was held in Paris in the jear 1879 , in which questions were discussed touching the protection of children, freedom of instruction, moral education, and instruction in cirics, also concerning the teaching of language, drawing, and manual lakor.

Although it can not be denied that the members of this congress were actuated by a great love for the cause of youth, one is on the other hand obliged to admit that their demands were pushed rather too far. They put in the claim that every school should possess a workshop, a garden, a library, a museum, and a laboratory; also a panorama of history and geography, and a hall for musical and other entertainments. They further insist that the site of the school buildings should be as attractive as possible, and that the buildings should have a handsome exterior. All these demands were naturally shipwrecked on the rock expense, especially as instruction was gratuitous; howerer, the congress had this good result: that public attention was directed towards the school question, and the school officers and functionaries spurred to renewed activity in this department, in which so much remained to be done. The school authorities henceforth gave much closer and more constant attention to the subject of instruction in manual labor, since "they recognized how very important to a comprehensive education is the early training of hand, eye, and taste.

The next congress, which also held two sessions in Paris in the years 1880 and 1881 , owed its existence to private initiative exclusively. It met to give expression to the wishes of the friends of education in France and other countries, who were joined by a small number of French public school teachers. Theidea of educational congresses periodically meeting had not taken root very deeply among teachers of the public schools, and yet it was necessary to make teachers of the primary schools acquainted with important educational questions and to afford them an opportunity for exchange of opinions. Moreover, there were brought to discussion in parliament, owing to the interposition of the minister of instruction, Jules Ferry, legislative questions relating to school matters, the solution of which was anxiously looked for in every direction. The French Government, particularly at that time, voluntarily favored the wishes and endeavors of teachers.

Formerly, the national administration of education had been satisfied with assembling certain teachers to hold a sort of professional conference in which the wishes and projects of the government were submitted and discussed. But now the administration frequently called together conventions of teachers; their opinions were asked, and they were invited to propose principles and methods for the better regulation of instruction; but the administratire officers held themselves far aloof from all direct influences of teachers. This mode of procedure is still in rogue at the present time, and although the learned and far-famed M. Gréard, vice-rector of the Paris Academy and as such the representative of the government, constantly appears as the chairman of the teachers' convention in France, this surely is not done with the idea of winning the teachers over to the views of the government, or to allure them into the gorernment's camp. The honorable character of the great savant is a sufficient guaranty againstall that. The respect which is so universally manifested toward his experience and his stately presence, excludes anything like underhanded actions. He endeavors most strenuously to exclude every parsonal matter from the debates, and to insure free discussion to all. His work consists chiefly in devoting his ripe experience and his talents to the service of the good cause. He only takes partin debates in order, as he himself once remarked, "to obtain result (by means of rotes) which may be recognized as the expression of the common views of those present."

Animated by this truly liberal-minded spirit the congresses met in the years

1850 and 1881, but their work not being finished, it was resolved to hold a third congress in the following year.

The first assembly united the male and female principals of the normal schools and a number of public schcol inspectors. The second consisted of the public school teachers, whilst the third saw in its midst the faculties of all the normal schools and the practice departments connected with them.

The questions discused were as follows:
In the year 1880:

1. The educational organization of ungraded public schools.
2. The methods of obtaining a better preparation of students for the normal schools.

In the year 1881:

1. Means for improvement of school attendance.
2. Instruction and education in the lower grades of public schools.

In the year 1883:

1. What are the experiences that have been made up to this time with the newly organized normal schools in regard to teaching force, supervision, and dormitories?
2. What difficulties are encountered in carrying out the new courses of study, especially in regard to psychology and morals?
3. Organization of practice schools and their extension.
4. Questions concerning the service which a normal school can render the teachers of the province.

All these questions were discussed in a practical and definite manner; most of them had already been considered in the assemblies of the cantons and departments. After the congress had disbanded, its proceedings were given to the public on the part of the ministry. Cours Pédagogiques de 1881 et 1883 (Paris, Imprimerie Nationale).

The reproach has been cast upon this congress that it was entirely official; but although we recognize the importance of conventions perfectly independent and free from any official interference, yet, on the other hand, we must also admit that a liberal ministry not disinclined to reform will surely avoid everything that might arouse a suspicion of partiality. Judging by the spirit which chaiacterizes the French educational administration, it can no ${ }^{\circ}$ be doubted that its aim was and is merely to learn the views of its most important fellow-workers in the great cause of education, and these most assuredly are the teachers. It invites them to conferences, follows their labors, tests their results, and carries out their plars as far as it is practicable. Although financial difficulties often frustrate the good intention of the French Government, we must for that reason not think that the government in its coöperation with superiors and subordinates fails to see the best solution of the difficult educational problems.

Thus, then, the first step toward inaugurating large teachers' meetings was made. Thos3 who participated in the congress returned to their homes with the consciousness of having fulfilled their duty, but also with the wish that they might soon again take part in such an assembly; for they had the satisfaction of seeing that Parliament and school authorities hastened to embrace in legislative bills some of the requests which had been brought up in the congress. It was not long before the next great convention was held. It took place in the city of Havre, in the year 1885.

Havre had always been noted for her friendliness to the schools, as well as her excellent school institutions. Her public end business schools are considered the best in the whole country; her school buildings, as far as elegance and stately architecture are concerned, are unequaled in France. The city from time to time sends teachers to foreign countries in order that they may learn other systems of education, and it was first in Havre whera a "Society for Objective Instruction " displayed in cchools and societies by means of lantern slides the most important discussions of modern times, the miracles of nature and industry, in a manner suited to the ordinary understanding.

The suggestion to hold an International Congress of Teachers was made by the mayor of the city, M. Jules Siegfried. In his resolution relating to this measure, he emphasized the importance of congresses in all the departments and especially in that of education, because it was only in this way that valuable and tried improvements could find entrance. All partake of the benefit derived from them, teachers, pupils, families, and the country itself. The resolution was adopted, and a committee composed of representatives of the teaching profession and of the state officials was intrusted with the preparatory work. The assembly was to take place at the end of September, and at the beginning of August
twenty-five hundred persons had signified their willingness to participate. M. Gréard was asked to occupy the chair at the opening of the congress, which was to be divided into three sections; the minister of instruction had also promised to be present at the opening.

The assembly, which was well attended, was principally occupied with the consideration of four questions, to wit: (1) The benefit derived from national and international educational congresses; (2) instruction in manual labor in the public schools, and organization of schools for mechanics; (3) teachers' salaries in different countries; in what proportion should state and community contribute to the salaries of teachers? (4) the question of practical preparation of candidates for the position of teachers in the normal schools.

The discussions of the third question excited the greatest degree of interest, because the law of the 16th of January, 1781, relating to gratuitous instruction in the public schools afforded some natural advantages to the older teachers, but contained some rather unfavorable passages for the younger men. A rectification of this matter was demanded as far as the finances would permit. The demands of the assembly on this point were comprised in these, which were submitted to the government. The second and fourth numbers of the programme were also thoroughly considered; and again, a renewed interest was manifested in the question of manual training, the plan of which had been determined by the law of December 11, 1830, and by that of March 23, 1882. This subject, which, like no other one, is in need of the warm advocacy of inspired enthusiasts and requires as low penetration into the consciousness of the people at large, was also brought up before the international congress of the year 1889; yet even now it has not been settled in an entirely satisfactory manner, though all are convinced of the importance of this discipline in the educational work of the public schools, and would not agree to abandon it as a branch of instruction?

The question of the benefits of national and international congresses naturally could not be disposed of in one session; the discussion therefore ensued as to the intervals after which such conventions should be held; what personsshould be invited as deputies, and what means should be employed for defraying the expenses. It was proposed to elect a permanent committee from the assembled delegates for the purpose of organizing congresses; but the idea was dropped at the request of the minister of education, who had himself expressed his willingness to convene such an assembly in case of necessity.

Mention should here bs made of another, namely, the international, technical, commercial, and industrial congress, held in Bordeaux in 1886, which fell between the international congress of Havre and that of Paris in 1887, and enjoyed the patronage of the ministers of commerce and instruction and other high officials. The first subjects brought up were those relating to technical and commercial instruction; the next under consideration was that of the means of promoting the interests of the merchants and tradesmen of the future through public school instruction.

The Congress of Havre had expressed a strong desire to hold a similar congress in Paris in 1887. A journal entitled "Les Congrés Instituteurs" had been started in 188 , which had assumed the task of preparing the way for the Congress of Paris. The first appearance of this journal, issued by an educational society, atonce opened the campaign for the idea suggested in Havre of forming a central union composed of the entire body of teachers in France. This journal desired to assemble a congress independently, although it was wellknown that the minister had expressed his willingness to act in the matter. The result of the numerous meetings which were held for the purpose of preparing a national congress, was the unanimous adoption of the following resolutions:
First. A friendly league should be formed of all the teachers in each depart-" ment. These unions collectively, are to form the "Union of Teachers of France,"
Second. The delegates, and all taking part in the congress of 1887, were to take upon themselves the organization of these unions. Third. The "union of the teachers of France" shall endeavor the establishment of permanent international educational congresses.
The most determined adversary of the project of a permanent congress was the minister of education at that time, M. Spuller. In a circular of September 27,1887 , addressed to the prefects, he announced his firm intention to oppose this idea, and also any confederation designed to carry it out. In his opinion the congress would not subserve the purposes of progressive thought, or afford a place for the free interchange of opinions, but would degenerate into a mere wrestling place of passions and a scene of disorder. The circular met with the most violent resistance. The teachers were of the opinion that as they were in
-no sense state officials the rights to protect themselves against all political interference should at all times be permitted them.

It may easily be imagined that this delicate matter was broached at the Congress of Paris, yet, as the element of prudence was a prominent one, very little time was devoted to it. Besides, the work bafore the congress was of such a a serious nature as to absorb all the time and attention of the delegates. The work was divided into five sections, viz, pedagogy, professional interests, provision for old age, the organization of congress, and gratuitous instruction. As the greater part of the questions had been prepared at former discussions the congressional debates could be essentially shortened. The questions submitted to debate were those that occupied the teachers all over France, and their selection had been made by preliminary inquiries, so that from the beginning these topics met the approval of the majority.
The next and latest international congress in the interest of common-school affairs was held, opportunely, during the Paris Exposition of 1859. It was the result of efforts of the earlier educational congresses, and took the shape of an earnest manifestation of sympathy on the part of foreigners for the aspirations of the promoters of the educational system of France. The resolutions of this congress are still well remembered by aH. (After L. Fleischer, Vienna.)

2.-Bibliography.

Book production.-The London publishers' circular presents the following analysis of the business done by the publishing t:ade in England during 1889:

| | | |
| :--- | :--- | :--- | ---: | ---: | ---: |
| Divisions. | | |

In looking over the analytical table of books published during 1889, which was printed on the last day of that year, an exceptional literary activity was revealed. The figures for 1889 are not quite so large, but still they mark a production of between three and fqur hundred books more than were counted up and classified in 1888. In other words, the statistics go to show that the year 1889 has produced about one work per diem, Sundays included, more than the output of 1888 . Comparing or contrasting the number of publications in 1889 with those of 1888, we find in theology a slight decline, both in new books and new editions. In educational works, also, 1889 has fewer works to show than its predecessor. Books for young people, on the other hand, show a good increase. Of novels and stories there are noted no less than 1,010 new books, besides $36 t$ new editions. This gives the ardent novel-reader as many as three novels for each week day, with a balance to spare, and one new edition for every day.

Germany.-The following table of new publications is from the Berliner Bör-senblatt:

	1889.	1890.		1889.	1890.
Collected works, History of Lit-			Mathematics, astronomy -...--	228	215
Theology	1,582	1, ${ }^{519} 6$	Military, hippology	${ }_{8}^{525}$	569
Law, politics, statistics, etc	1, 594	1, 638	Building, machines, railways,		
Medicine, veterinary --.-.-....	1,248	1,353	mining, etc.--.---.-.-.........-	383	446
Naturalhistory, chemistry, pharmacy	852	909	Forestry and sports .-.-.........--	109	100
Philosophy	188	152	horticulture	430	464
Education, school books, etc.	2,111	2,132	Belles-lettres	1,715	1,831
Juvenile works .	591	521	Fine art, shorthand	768	787
Classical and Oriental, archæo-			Folk-lore, almanac	723	796
logical, mythological	644	626	Freemasonry	22	19
Modern language; old German			Miscellaneous	558	691
literature	591	602	Maps	421	509
History, biography, memoirs Geography, travel	${ }^{893}$	874 600	Total	17, 986	18,875

It is significant that the book production in Germany since 1885 has been steadily increasing, and that the increase is altogether in the direction of the more solid branches of literature, as theology, law, medicine, and natural history. In fiction the advance is almost impercoptible, the increase in the whole department of socalled Schöne literatur (Romane, Gedichte, Theater, etc.) bèing but sixteen new works.

3.-Classic Languages.

Germany.-In Germany, during late years, the conflict between the gymnasia (classical high schools) and the realschulen (modern high schools) became heated, because all petitions for admission of realschulen graduates to the university were refused by the Government and the university faculties. This is a vital point if we consider that the conditio sine qua non of a professional man (no one speaks of women in this connection in Germany) is to have gone through the classical high echool, i.e., to have spent in the study of Latin and Greek respectively nine and six years. People that opined that one may become, if not a philologist and theologist, at least a physician or scientist and lawyer, without the knowledge of Greek, laid more stress on modern languages and insisted upon a combination of gymnasia and realschulen under the name of real-gymnasia. This kind of school was a hybrid which could not expect to live long, considering the capacity of the juvenile brain. The real-gymnasium endeavored to combine the advantages of the classical and modern high schools, and, of course, overburdened the pupils.

For twenty years the authorities permitted the problem to stand unsolved. Almost unbearable hardships resulted from the fact that the surricula of the high schools were inflexible, non lastic, cast-iron. Ambitious parents of small means made heroic efforts at securing for their sons a better future than thought possible in modest occupations, such as trades and commerce. When the boys failed during their protraeted course of professional training (i e., three years in preparatory classes, nine years in the classical high school, and four years in the university), their future was blighted; being "studied men" they were considered "spoiled" for trades and commerce, and thought themselves too good for manual work. Hence they joined the army of malcontents. Every kind of high school in Germany has special aims in view, hence shapes its course and modes of training accordingly. That a school, and even a college, should be what it is in England and America, a school of general culture, and not a place in which to obtain an education ad hoc, was vigorously preached by Dr. Wichard Lange, Dr. O. Frick, and many others. The educational press devoted much space to plans for a simplifications of curricula and a unification of schools. The literature of Germany on the subject of secondary schools, especially the "Einheitschule" (common school) is quite copious, but the reform made little if any progress.

Conservatism embodied in the highest sehool authorities of the leading states of Germany adhered to time-honorad customs, until recently Emperor. Wilhelm II, who has himself bean a pupil of a gymnasium, and is fully aware of the un-
bearable conditions arising from the attempts at education all hoc, and chiefly prompted by his desira to counteract the socialistic tendencies (centrifugal, destructive tendencies, as he calls them) of the present time, took the initiative in his capacity as King of Prussia, and called together a number of well-reputed educators. journalists, ssientists, legislators, and representatives of the church for a special inquiry into the conditions of secondary instruction in his kingdom. This commission held its sessions from December 4 till Decemb 2r 17, 1890, in Berlin, and formulated a number of propositions for reform of higher education, a nong which are some that materialize a portion of the hopes of the adrocates of "Einheitschulen."

In future, this commission decided, only two kinds of the sample card of secondary schools now existing shall be preserved: The Gymnasium and the realschule; that is, the classical and modern high school. The former is to prepare for entrance into the university where the learned professions are recruited: the latter to prepare for polytechnicums, for administrative officers, for commerce, agricultural, and technical colleges, etc. The hybrid form, "realgymnasia." is to be abandoned, all other secondary schools shall in due course of time conform writh either of the kinds mentioned. "Instead of a uniform, a dual system is advocated, not an "einheitschule,"buta "zweiheitschule." Where not enough pupils are found in a small town to construct the entire nine years' course, the upper grades of the high schools of sereral towns are to be combined in one school in the most centrally locaied town. But in order to enable these two kinds of high schcol to follow their course undisturbed. it is thought best to gire each its own prepayatory classes. This latter measure makes illusory the efforts at unifying or fusing at least the lower classes, and the fiat has gone forth to establish a gulf between those who hare means, inclination, or ambition to obtain a higher education and those who hare not.

While the work performed by the commission may be said to ba a step in the right direction, it does notseem in harmony with the democratic tendencies of the age, since it still necessitates an early decision on the part of the parents as to what the boy (mark the word boy, for the girls are not considered in this connection) is to become. It reëstablishes the predestination theory as it were, especially so, because a common substructure for both kinds of high schcol in form of a common preparatory department is rejected. When we see that the French Republic, with true insightinto the best means for its perpetuation, establishes a common school which terminates in a high school and brings the lycées into organic connection with elemnentary schools; when we see the same organization adopted in the Swiss Republic we conclude that Germany will have a common school ("einheitschule") as soon as it becomes a republic, and not until then. [R. K., in Ed. Review.]

Suitzerland.--The pastoral conference of the Canton Granbuenden, Switzerland, recently expressed its views concerning the teaching of the classic languages by adopting the following series of theses presented by Rev. Truog:
(1) Latin has become thelanguage of learned men through schcol, asceticism, and humanism; but since the natural sciences have made their astonishing upward start the classic languages as a study have lost their position. Despite of that they have remained, or rather were kept the leading study in high schools, because they were, or their acquisition was, thought of peculiar pedagogical ralue.
(\%) But the pedagogical ralue of (particularly) Roman classics is, as far as their contents areconcerned, questionable. For the purpose of formative training of the mind, other branches of study are much better suited: moreover their acauisition will aim at general culture, a thing that can not be said of the contents of Latin authors.
(3) For theologians a certain limited quantity of Latin and Greek, however, seems an indispensable thing on account of the necessity of referring to original texts. The same may be true of other learned professions. But while we grant that a knowledge of Greek and Latin is desirable it would seem as though "less would be more "-that is to say, the knowledge referred to could be acquired during the last two years of the course.
(4) If, howerer, we can not do without the classics we might introduce them in translations. All church authorities who have written in Latin hare been translated almirably, and there seem; to b_{3} no urgent necessity for the physicians and lawrers either to surround themselres with a high wall of Latin.
(5) It is in our opinion best to replace Latin and Greek in the lower grades of secondary schools by other branches of study, such as stand in close relation to the urgent demands of modern life.
(6) Every high-school course should be so arranged as to offer during the first
two-thirds of the course a general culture desirable for everybody, and only during the last third of the course the demands of the learned professions should be heeded by offering Latin and Greek. (It must be borne in mind that European high schools have a six to eight, or even nine years' coursa, baginning with 9 or 10 years, and terminating rarely before the nineteenth year of age.)
($\overline{4}$) If the school is thus designed it will be able to do more for citizenship by teaching history better; more for man himself by teaching hygiene and physiology; more for the business career of thousands of young men by teaching commercial geography, bookkeeping, and mokern languages; more for literary culture by teaching the literature of modern times, and more for the prosperity of the country by teaching physics, chemistry, mathematics, and engineering more thoroughly than heretofore; finally, something might be done in the way of technical and industrial training. But as long as the classics claim time and energy of teachers and students, we rear generation after generation of discontented men who can not find a place in this busy li e of modern times.

We refrain from all reflections, and leave the thinking reader to rhyme these theses with his own views. Many will find it hard work; others will chime in readily. At any rate, there is no half way shilly-shallying about these theologians. And a decided view, be it right or wrong, is better than no vew at all; hence the expressions couched in the foregoing seven paragraphs have a peculiarly refreshing flavor. (Schweitzer-Schularchiv.)

VIEWS CONCERNING THE PEDAGOGICAL VALUE OF LATLN AND GREEK-A

 SYMPOSIUM. ${ }^{1}$Since this subject is still a point of pedagogical controversy, a few recent utterances of noted men may be quoted. (Editor "Paed.")
I. Joham von Asboth. (Proceedings of the Hungarian Parliament, Budapest, 1890.)
"If it is the policy of the State to eliminate the study of Greek, if it excludes the antique world from the secondary schools, that is from general national education, it robs the nation of that which can not be replaced. From that moment, especially since the religious ideas of the people are already shaken, a generation will arise that has no contact with the past; a society in which people will think it useless to know where their grandfathers are buried, and still more useless to know what they lived and died for. A generation will spring up which from its lofty summit of enlightenment will look down with derision upon its ancestor's piety and prejudices; it will, with strict logic, come to the conclusion. sooner or later, that reverence for parents has a practical justification only so long as the parents may be immediately useful to us. A generation will grow up indifferent to the past, indifferent also to the future, knowing no other interests than enjoyment, comfort, and tangible gain.
"And when this American view of things, this extreme of Western spirit, meets with the spirit of the East; when this Western longing for enjoyment and profit is not coupled with the feverish activity of the West, when Oriental indolence is not coupled with Oriental temperance and want of pretension, bat when the longing for pleasure and gain meets with Oriental indolence and want of habits of industry-as they do with us, alas, so frequertly-then this match will result in a degenerate and ever-sinking society, under whose guidance we shall beccme a depraved race, but never a nation.
"The proud-spirited Hungarian nation can not, in its present numerical relation to others, be satisfied with playing a subordinate rôle. My opinion is that it will be one of the most fatal errors to nurse the illusion that we, with our numerical strength in this portion of Europe, surrounded as we are geographically and ethnographically, could be able to maintain a state of the second or third rank-a state that need not trouble itself about others, and about which others would not trouble themselves. Such a so-called neutral middle state has never been able to be preserved in the southeast of Europe. The Hungarian nation will either occupy a prominent position in the empire which it supports (and that was the policy of the Arpades, the Anjous and the Hunyadys, and I venture to say was the fundamental principle of Francis Deák's policy), or it will be nothing but an oppressed and degenerate nationality. An intellectual prominence, or the most energetic exertion toward reaching it, is that with which we supplement our unfavorable numerical proportion.
"With this mission it in no way accords that we should eliminate from our national education those studies in which intellectual prominence is represented;

[^70]studies which give knowledge of the humau heart and soul, and teach how to guide and govern the human being.
"We need not depreciate our own time. This cra has its admirable acquisitions, its marvelous inventions which revolutionize material existence from day to day, and on account of its feverish activity this era is worthily called great. But it is obvious that the era of electricity, lightning trains, nerve-killing telephone, etc., can not be the time of intellectual concentration. It can not be a time of harmonious contemplation of men and the world. The antique world, with its simpler conditions of life, its incomparably fewer complications, was much more able than we to riew the human being from a human standpoint. That is the reason why the sources of wisdom, of law, and art, are found in Greek culture, compared with which the Latin is only an imitation, a second-hand civilization. From these sources is fed, even to this day, our own material development; for, though we hare acquired much new knowledge and are acquiring it daily, we can scarcely say that we are acquiring new ideas.
"Throagh this mental concentration history, legislation, and art of the ancients became instructive and sublime: through it the knowledge of the human heart and soul became profound and true. But all that can be acquired only in youth; that is, before life's combat robs us of the faculty to receive deep impressions and prevents mental concentration. Afterward, when greater maturity comes with its fever of passion and hot blood, the battle for subsistence opens, and the everyday humdrum business, the prose of debit and credit, overtakes us-then it is too late to asquire all that; and he who would endeavor to do so at that age could acquire it only with very much greater trouble, exertion, and loss of time, or by means of pale-complexioned and insufficient translations.
"It is a demoralizing argument, one that undermines the national ambition of youth, that we should throw out these studies to which all nations cling, great and insignificant alike, only because the mental exertion is too great for us Hungarians. That would not bo a proclamation indicating intellectual superiority, but inferiority; it would be an abdication of the mission to guide other nations, and, indeed, an abdication of the p'ace Hungary has in the galaxy of nations."
II. From a recent debats in the Norwegian Storthing (lower house of parliament).
Prof. Horst (of Tromsö): "The classical high school of to-day can not be regarded as a school of general culture. It may seem curious how a man who is himself a philologist, and who from early youth has been brought up entirely in the atmosphere of classical study; furthermore, one who has honestly endeavored to enter deeper into antiquity, how such a man can occupy a standpoint such as I do to-day. But I wish to remark that twenty years of teaching the classics has brought it about that I arrive at the conclusion mentioned before. I have also had ample opportunity to notice how little classic culture is serviceable in life. By the term 'general culture 'we understand such branches which are necessary for life, and Latin and Greek are in this regard not any more essential than other branches, unless it be for such persons whose intention it is to spend their lives in studies of a similar kind. As far as Greek is concerned, too little of it is read to learn the language, and too much in comparison with the waste of time it necessitates." The speaker said he could scarcely find wo"ds strong enough to express the usefulness of the study of Greek. And yet he did not intend to abolish the study of the dead languages at once; "that would be a revolution, and in matters of school one should proceed with the spirit of reform, not in a revolutionary manner." Hence he suggested to do away with Greek in order to make a beginning with reform. "Nonprofessional men will be astonnished not a little if I tell them that this opinion is generally shared by the younger philologists. I was struck with the fact that wherever I discussed this question with younger colleagues I found ready assent. You will find this to be the case all over the country and in small towns. What the weight of opinion is in the capital I have had no means of ascertaining as yet."

Prof. Koht (of Skien) said: "I, too, have arrived at a similar conclusion in consequence of my occupation in school. Classical study does not give what those need who from the threshold of schosi enter practical life. Development proceeds with inexorable logic, and it can not be prevented; that it will eventually exclude what is commonly called classical culture. What we need are schools of culture which are active in the sorvice of the present time, not in the service of the past."

Rev. Weelsen pleaded for the abolishment oi both Latin and Greek, saying: "Latin has no place in a school for general culture. It must be reserved for the university, and there taken up by those who need it for their processional studies. There is absolutely no reason why this language should be kept in the second-
ary schools. Its literature is antiquated and, according to my opinion, not only not beneficial but eren dangerous under cartain conditions. The importance ascribed to it in formative culture may be found in other branches. I believe that Latin as a requisite component of our higher education is a thing of the past."

Jacob Srerdrup (minister of education) also was of the opinion that the way to general higher culture for the majority in the future would be through the elements of modern education. According to his opinion there is no sense in abolishing Greek only. "Why put the ax to the root of the Greek tree and not to that of the Latin also? A common high school with a strong Latin tendency, that I consider a step backward." As a common foundation for higher education the speaker thought he would propose the native language, in connection with history. However, he did not think the time had come to suddenly dispense, scornfully, with classical educatior.

Ullmann: "I am thoroughly convinced that the only correct thing is to make a beginning: to abolish Greek entirely and to retain Latin as an optional study; that ineritably Latin will drop out of the foundation of higher education in the future and be only a secondary study for those who for practical reasons require a Latin rocabulary, for at present this is all the majority of persons need of Latin.
"If they know enough to understand a little about prescriptions and apothecary Latin and a few Latin proverbs it is really about all that the majority of per'sons have retained of Latin at the present day, unless one is a scholar and a specialist. In the treatment of this matter one constantly meets with the peculiar fact that the adrocates of the classical languages constantly coniound the subject of which they treat with the object in riew. People talk as though to abolish Latin would be leading the people back into the times of barbarism. They are mistaken. To do away with Latin would not be detrimental to education. Latin is spoken of as if it were a great educational medium, and it is a mistake to imagine that this special study possesses such an importance, while, on the contrary, there are other studies from which more profit can be derived during the same length of time.
"It is a great misapprehension that it is really Latin which produces philanthropists, and should lead to human culture. For one may know Latin and still be a thoroughly brutal nature. But that which human education does give is the ability to participate in the great thoughts of culture and civilization of mankind : but one can not do that through Latin as the only means. On account of the study of Latin many other studies must be set aside that are most prilific sources of culture. I say this because I have heard rumors that possibly a direct proposition is to ke made to adopt new school regulations-namely, such aэ are based upon the oider that Latin be optional without exception.
"To such a motion I, for my part, shall gire my consent with great pleasure, for I must admit that owing to the small remainder of philological conscience, which has nearly beea ground up in the mill of my examinations, if there is anything unprofitable and foolish in the world for us Germanic people to do it is, abore all things, the study of I.atin. There is nothing gained by it, but a certain formal education which can be acquired as well through other studies, while in the mean time life and raality derive no benefit from this study."

Hertzberg (from Christiania, a former minister of education, a theologian): "So far as the two gentlemen are concerned who, as professors, occupy such important positions in our high schools, I must admit that their utterances have surprised me not a little. They are both, to my knowledge, men who not only work with zeal in the interests of the high schools, and especially as teachers of the classical languages, but they also understand how to awaken interest for these studies in their pupils. They must either fail to comprehend themselres, or they are in a very unenviable position, having to perform a task the value and importance of which they doubt. In opposition to this point of view, allow me to say, that I believe that classical education has withstood many a test and storm, much stronger and sererer than that of to-day, and I trust that, also, in the future it will go through ordeals without being injured. Classical study has taken such firm root in the general European culture, that it has become a member oí it, so to speak. And it will not do to pretend that this classical education is something antiquated.
"No, classical education can not become antiquated, it can not die, for it has grown up with the history of man from its infancy. The classical languages mark the way to learning that the generations must take, if they strire to reach the height of the culture of to-day, in case they do not wish to exclude them-
selves from this great work of general education that is now in progress in all civilized countries. Permit me to draw your attention especially to the importance of classical studies for our church. In case Greek should be omitted from our high schools, preparatory to the university, or in case it be postponed until the university years, I fear that this will give a mortal blow to the Protestant Church."

Ullmann: "When the delegate from Christiania, Mr. Hertzberg, tells us that classical education had stood many tests and weathered many a storm, and will continue to do so, I deny most positively the supposition from which he proceeds. Classical education has not withsto od a single blow. All the assaults that hare been made on this education have only caused philologists to open the door to the demands of the times, in that they have admitted first ons and then another of the modern branches, and have given them a place by the side of their muchbelored Latin and Greek. They have dons this with con tinual warfare and constant fear that they would lose their Latin and Greek, because mankind has become so godless that it wishes for other things than to wander in Ciceronian fields. No, classical education has stood no tests and warded off no ajsaults, but it has understood how to accommodate itself, and in this respect it has been rery clever. It has filled the course with such a number of branches, beside Latin and Greek, that it succeeded in meeting the most pressing needs and demands, and hence we have obtained an organization which suffers from a multitude of studies. Never were the schools so crowded with studies as now. This condition is ample proof of the fact that classical education is 'piping on the last hole.' What remains to ba done is to give a last decisive blow, so that the latest modern changes become the dominant influences. The mozern branches hare found their way into school, and now they are there by right and to be extended, while the clasiic branches become subordinate ; their final elimination is only a question of time."
III. Dr. Karl Walcker (in Politik der constitutionellen Staaten. Karlsruhe, Germany, 1890):
"The Greeks were at least as much indebted to Oriental culture as we are to the Græco-Roman, but it did not occur to them to require of every gentleman
 Old Testament are more beautiful and important than all Greco Roman classics taken together; but for this reason the students of gymnasia are not compelled to learn the Hebrew language (excspting, perhaps, futura theologians). Furthermore, one must not forget what all European nations owe to the ancients, including the Egyptians, the Hindoostanees, and especially the Assyrians. Shall our students for this reason learn Egyptian, Sanscrit, and Assyrian? It is worthy of notice that a philological professional man of conservative political tendency, the celebrated national economist, W. Roscher, justly asserts that on 3 may become acguainted with the classics through good translations in the same manner in which most learned and educated men know the Bible from Luther's translation. Even future theologians, phiiosophers, nonclassical philologists, jurists, national economists, and physicians need not pursue the ancient languages in the way in which professors of secondary schools pursue them. Latin and Greek compositions are not necessary for them.
"Latin has long ceased to be the international language of the learned. For international intercourse, at the present day, English and French are usəd. The Berlin Labor Congress in the spring of 1890, for example, held its discussions in French. As far as I can sse, future Christian theologians and scholars in Hebrew will never make Hebrew compositions. It would be absurd to assərt that a country parson needs no English; that the Assyrian researches of the Englishmen and Anglo-American works and periodicals have no interest for him. Every intelligent person, generally speaking, must understand at least as much English as German students of gymnasia on an average understand French. It is to be regretted that English is not an obligatory study in gymnasia. In consequence of this 95 to 99 per cent of German students of law and national economy, prepared in classical gymnasia, understand no English. They make blunders in the pronunciation of the most ordinary words, and can not translate even the shortest, easiest English sentences. For philologistss national economists, jurists, naturalists, etc., the knowledge of English is indispensable."
IV. Professor Dr. Herman Cohn (Breslau, Germany) in Ilie Schule der Zukunft, Hamburg, 1890:
"That the ancient languages will claim much less time in the future than at - present is quite certain. In the Middle Ages Latin and Greek were quite in place; to-day their details have become quite superfluous. It has be эn calculated that students of gymnasia spend 4,066 hours in the schools in the study of

Latin and Greek alone, not including work done at home. The student of medicine, on the contrary, spends only 2,160 hours for his preparation, even when he attends the clinics four hours every day for five somesters. And what has the student gained by his 4,033 hours? He knows bad Latin, which with genuine joy he strives to forget, and he knows less Greek, which hэ succeeds in forgetting without effort.
'The grammatocrats, as Prof. Esmarch so beautifully calls them, of course maintain that the grammatical exercises are mental gymnastics. I do not believe, however, that anyone can prove that the mental gymnastics are stronger when the beginner memorizes 'amo, amas, amat," that when ho learns 'j'aime, tu aimes, il aime,' or 'I love, thou lovest, he loves.' Virchow justly affirms, 'that the ancient languages have somewhat of an ideal purpose, is only an opinion of obstinate philologists.' They naturally will always stubbornly uphold an idea which seems to live like an eternal malady, namely: 'The ancient languages sharpen the mind more than the modern,' for these men gain their livelihood by teaching the ancient languages. Grammatical instruction in general, however, does not afford mental gymnastics at all in any language, as is so brilliantly proven in the writings of Prof. Lowenthal ; for memorizing grammatical rules is not brain work, but only cramming with words without meaning, which positively none of the present needs of children demand.
"I am far from wishing to deny the beauties of the Latin and Greek classics; but who will not acknowledge that there are also many beautiful things contained in Sanscrit and Hebrew books? And yet we are contented with good translations of these. It is also true of the ancient classics that only he who completely masters the languages can appreciate their beauty, and students of gymnasia do not progress as far as that. Gutzkow is quite correct in his theory that ' one will not discover the treasures of antiquity until one reads the classics in the schools in good translations, and leave the study of the original texts to scholars.'
"But as things are now, the most important time is squandered in studying grammatical and philological vexations of the dead languages, and especialiy in superfluous inverted translations from German into Latin and Greak, which in the schools of the future will have to give way to much more important thingsthe modern languages (French and English, which the citizen of the nineteenth and twentieth centuries finds absolutely necessary for life), mathematics, history, literature, geography, physics, chemistry, all of which for training the mind are incomparably more important than all the dead languages taken together. Also drawing, athletic sport, and manual labor will receive more attention than formerly. For in a harmonious development the hand will demand more consideration than is bestowed upon it now."
V. Dr. Paul Giissfeld (Berlin) in Die Erziehung der deutschen Jugend, Berlin, 1890 :
"Graduates of the se condary school of the future who enter the university will be lacking much knowledge with which at present the students are quite familiar. They will not be masters of Greek and Latin grammar, nor be able to read the ancient authors in the original. This concerns philologists first, then lawyers, historians, and theologians. As Hebrew is a professional study of the theologians which is acquired in the university, so Latin and Greek will intime to come be taught there, and there only. It would seem best for that purpose to establish seminaries in connection with universities for the special benefit of those students only who have a vital interest in learning the classical languages. Their diligence will be greater, their progress much faster, for the simple reason that by virtue of their general intellectual culture they will be able to understand the grammar the more easily.
"The modern language which as a medium of culture and as a substitute for Greek and Latin deserves consideration above all others is the French. Its advantages are chiefly found in the grammar, which resembles in lucidity a Code Napoleon. Its rules are strict and clear. One does not venture to violate them, but enjoys following them. This feature may be traced through the entire French literature, and no revolution could effect any change in this. There is nothing holy and sublime in France that has not been dragged into the mud by party or faction; but no one dared to touch the language with unholy hands. Respect for the French language is shown everywhere in France, from the hastily penned advertisement of the merchant to the orations of the immortals in the French Academy, and every violation of the rules of that language is punished severely with ridicule. There is no room left for arbitrary construction in syntax, as is claimed in German and Latin by every writer and speaker. But
as a substitute for that want of liberty there is offered a wealth of words signifying similar things, so that the finest shading in expression is made possible. Thus it comes that the French language is equally well fitted for the presentation of mathematical theories and the expression of the most charming play of poetic thought.
"To master such a language, so that one may be able to express one's thoughts fluently in it without violating its grammar or groping for proper terms, is an object worthy of the highest human intellect and the most cultirated taste. The way to it, moreover, has the advantage of leading through alternately charming and grand but ever beautiful sceneries-French literature. He who sees in French litsrature only an accumulation of novels full of adultery betrays himself by his unjust and distorted judgment. Nor need we restrict ourselves in school to contemporaneous literature. If we exclude it there' would still remain the works of many centuries to choose from."
4.-City School Systems.

Germany-The city of Berlin had in 1890-91, 290 public elementary schools and 82 private and Jewish schools; together, 352. An increase of 3 schools, 111 class rooms, and 3,518 pupils. The Protestant population in Berlin has increased 18 per cent within the last 5 years, the Catholic population 36 per cent, and the Jewish 23 per cent. The actual increase is 210,038 Protestants, 35,825 Catholics, and 14,881 Jews. Fourteen per cent of the Protestant population were found in the lower public schools; only 10 per cent of the Catholic, but 15 per cent of the Jewish population. Of the 3,141 classes in the lower schools, 3,021 had their own class rooms; 120 had to share class rooms with other classes; this was done by introducing half-day schools. Since 1889-90, the number of classes in houses belonging to the city has increased by 202, while the number of classes in rented quarters has decreased by 133. Half day instruction is given to children in primary grades and to those employed in factories. The schools of Berlin, though fully graded, have not as with us 8 , but 6 , grades. The following figures are instructive: of all the pupils there were in the lowest grade (1 year) 19 per cent; second grade (1 year) 19 per cent; third grade (1 year) 19 per cent; fourth grade (1 year) 18 per cent; fifth grade (2 years) 14 per cent; sixth grade (2 years) 11 per cent.
This is a distribution which few American schools can equal. What American school has still 11 per cent of its school population in the seventh and eighth grades? Toward the close of the year the average number of pupils to the teacher was 55 . Besides the 3,141 teachers and 352 principals there is another corps of teachers ongaged in the city schools, namely, the women who teach the girls to knit, embroider, sew, etc. Since 1863, when the first women teachers were employed, 1,325 have been in active service. Of these 956 were still in active service in 1891; 369 have dropped out (273 resigned, 222 of them have married, 32 were promoted to higher schools, $2 \tilde{5}$ were pensioned, 39 died). It is found that the women teachers were absent on an average $8 \frac{1}{3}$ days per year within the first 5 years of service. The absence increased to $22 \frac{1}{2}$ days per year up to the fourteenth year of service. Up to the nineteenth year the average annual absences ampunted to $8 \frac{1}{3}$ days; up to the twenty-ninth and thirtieth it increased to $8 \frac{1}{2}$ days, until in the forty-second years of age the absence amounted to 15.8 days. The calculations are not a good basis, for they offer too slender a premise. An anomaly is the fact, that in 35 Protestant city schools of Berlin instruction in Hebrew religion is given to the children of that faith. Another notable fact is that 18 principals, 91 male and 109 female and 16 industrial teachers asked for and received leave of absence or prolongation on account of impaired health. (Paed. Ztg.)

Austria.-Vienna has recently annexed its suburbs and thereby increase the number of its primary schools from 170 with 2,300 teachers, to 285 schools with 3,800 teachers and 140,000 pupils. Berlin had, in 1890 , $18 \pm$ schools with 3,800 teachers and 172,778 pupils.

5.-Compulsory Attendance.

The following countries have laws on their statute books which decree compulsory attendance at elementary schools. In many of these countries the law is of recent origin, hence has not had the results it will show 10 or 20 years hence. In England the law leaves it to local authorities to decree compulsory attendance at school, if they see fit.

-(Accord. to Statesman' s Yearbooik.)

Equador.
Guatemala.
Mexico (in most states).
Paraguay.
Peru.
Salvador.
Santo Domingo.
Uruguay.
Venezuela.
III -In Australiut
New South Wales.
New Zealand.
Queensland.
South Australia.
Tasmania.
Victoria.
Western Australia.

> IV.-In Asia.

China (indirect compulsion by means of examinations).
Japan.

Germany.-In Berlin 1,900 pupils of the public elementary schools were, in 1891, definitely excused from schocl at the close of the seventh year (at 13 years of age), owing to the poverty of the parents, who needed their children's aid. In 50 families, it was conclusively shown, the misery was so great that the children had to be excused at 12 years of age. The compulsory attendance law leaves such cases to be decided by the supervisory authority, to whom is given a wide margin of discration. (Fr. pacd. Blaetter.)
England.-Concerning compulsory attendance at school in England, there is little known in this country, hence a plain statement of facts may be welcome. The "elementary educational act" of August 9, 1870, provides as follows :
"Every school board may, from time to time, with the approval of the education department, make by-laws for all or any of the following purposes: Requiring the parents of children of such age-not less than 5 years, nor more than 13 years-as may be fixed by the by-laws, to cause such children (unless there is some reasonable excuse) to attend school; imposing penalties for the breach of any by-laws. Any of the following grounds shail be a reasonable excuse: namely, (1) that the child is under efficient instructions in some other manner; (2) that the child has been prevented from attending school by sickness or any unavoidable cause; (3) that there is no public elementary school open which the child can attend within such distance-not exceeding 3 miles, measured according to the nearest road from the residence of such child-as the by-laws may prescribe. Thes by-laws were issued by the difierent school boards sanctioned by Her Majesty in council and published in the appendices to the annual reports of the education department. There still existed boroughs and parishes enough which did nothing at all in this matter.
To amend this elementary act, other acts were passed in 1873, 1876, 1879, and 1880 , among which that of 1876 is most important as to compulsory attendance. Sections 4 and 12 of chapter 79 run as follows: (4) It shall be the duty of the parent of every child to cause such child to receive efficient elementary instruction in reading, writing, and arithmetic, and if such parent fail to perform such duty, he shall be liable to such orders and penalties as are provided by this act. (12) Where an attendance order is not complied with without any reasonable excuse, a court of summary jurisdiction, on complaint made by the local authority, may, if it think fit, order as follows: In the first case of noncompliance, if the parent of the child does not appear, or appears and fails to satisfy the court that he used all reasonable efforts to enforce compliance with the order, the court may imposs a ponalty not exceeding, with the cost, $5 s$.: but if parent satisfi s the court that he has used all reasonable efforts as aforesaid, the court may, without inflicting a penalty, order the child to be sent to a certified day industrial school. Moreover, this act provides for the appointment of a school attendance committce for every borough and parish for which a school board has not been elected. The act of 1880 , which is rery short, provides that the education department may make by-laws for those districts which have not made them for themselves. By it compulsion was first fully and universally established. All public elementary schools are administered by thess acts, as well as by codes, of which a new one is issued every year. (Gust. Lenz.)

6.-CRIME.

Germany.-The numbers annually published by the German statistical bureau concerning crimes in Germany, or the number of convictions, may, in a sense, be considered a barometer of public morals. For several years a gratifying satisfaction was entertained at the decrease in the number of crimes against property, and it was concluded that the economic conditions of Germany were steadily improving. On the other hand, it was considered an ominous sympton that the number of crimes against state, public order, and religion, as well as against the person was steadily increasing. It was regarded as a ray of hope when, in 1835, a check in the increase was noted. That year was (since 1882) the first in which a notable decrease in the number of crimes of the second kind could be recorded.
At present the result of the statistical labors for 1389 is before us, but, alas, it does not show a continuation of the tendencies marked in 1883, for not only the number of crimes against state, public order, religion, and person has increased beyond expectations, but also the seemingly constant tendency toward decrease in crimes against property has ceased, and the yea: 1859 exhibits a deplorable increase.
Some characteristic numbers may illustrate the foregoing statements. Ths crimes against state, public order, and religion in 1832 numbered 51,623 (convictions are meant); this number rose until 1887 , when it reached 62,348 . The year 1885 showed a decrease, namely, 61,806 convictions. But the year 1889 again records an increase, the sum total during that year being 62,815 . This increase is chiefly found in the great number of cases of breach of peace (16,244 as against 14,851 in 1888), inducement to perjury (292 as against 221), public resistance ($36 \pm$ as against 163), while the number of escapes from service in the army decreased from 21,421 to 19,683 .

The number of convictions for crimes against the person was 107,393 in 1882. It rose to 137,745 in 1887 . In 1888 it fell to 134,670 , but in 1889 it again increased to 139,639. Especially the conrictions on acount of rerbal offens3 (43,600 against 42,959 in 1888), assault and battery (19,730 as against 18,374), and inflicting wounds (57.191 as agiainst 55,223) show a deplorable increase.

The crimes against property also exhibited a constant decrease in number from 1852 till 1887, namely, from 169,334 to 152,652 . But the year 1889 again shows a remarkable increase, namely, to 165,623. In this increase may be recognized the characteristic feature of the criminality of 1889. It indicates a different direction from that illustrated by the numbers of 1882. The numbers especially interesting are 71,881 cases of petty larceny, (as against 65,030 in 1888); same with second conviction, 11,085 (as against 10,185); larceny, 7,978 (as against 6,972); burglary, 2,412 (as against 2,160); embezzlement, 15, 838 (as against 14,781); defraudation, 15,205 (as against 13, 493).

The increase of crimes against property is frequently considered to stand in intimate relation to the adrance in prices of commodities and necessities: but it should be remembered that the prices of provisions did not rise until the second half of the year 1889, and that the general economic conditions of Germany were better in 1889 than in any previous jear. Of course, though one is inclined to think that the rise in prices has something to do with causing the increase in the number of crimes against property, it can scarcely fully explain it when the increase in these crimes is taken in connection with that of others. One thing should be noticed, that during the reign of "protective tariff" a constant reduction in the number of crimes against property was noticeable.

How unfarorable the statistics of crime for the year 1889 are, may be seen from these totals:

7.-Exhibitions.

Italy. - An exhibition was held in Milan in the first week in May, 1891, for the education and hygiene of children. The character of the exhibits is best seen from the programme. In Class I, toys of every description; in Class II, children's implements, musical instruments for children, etc.; Class III, under the title "The Little Artist," a collection of tools for every kind of handiwork; Class IV, contains room games; Class V, little theaters; Class VI, garden games; Class VII, apparatus for gymnastics, fishing, hunting, swimming, etc.; Class VIII, velocipedes, carrousels(merry-go-rounds), swings, and hammocks. While this part is an international exhibition, the following is strictly national. It contains in section 1, text-books and other publications, drawings, models, apparatus for object lessons, furniture and tools for schools and kindergarten; in section 2, education, apparatus for teaching how to walk, food and clothing for children, etc.
France.-The commission charged with viewing the biennial exhibition of design and manual work in the primary schools of the Sarthe district, France, has made its report. It states that the teaching of design shows a marked tendency to become more rational. The copies of models are rarer and the designs are less illassorted. Linear design is not proportionally represented, and there are many patterns beyond the capacity of the child. The teaching of sewing has made a greatadvance in the line of common sewing and the making of simple garments for daily use. The method of teaching and the arrangement of the programmes is in need of improvement and revision. Too many teacherssucceed in giving the little girls a taste for luxury and frivolity, besides causing them a loss of precious time. (Lond. Ed. Times.)
Monsieur Jules Simon has inaugurated a norel and interesting exhibition in Paris, organized by the hygienic society for children, a body established four years ago for promoting the health and welfare of the young. The exhibits consist of various kinds of hygienic, orthopedic, and surgical appliances, clothing, toys, industrial products, and other articles intended for the use of children in health or in sickness. The most remarkable feature of the exhibition is a very curious and complete collection of quaint cradles, chairs, and gocarts, dating, some of them, from extremely remote periods. One of these gocarts affords a most curious illustration of primitive ingenuity, having been made by hollowing out the trunk of a tree. There are also specimens of baskets and bags used by miners' wives for hanging up their babies while at work and a wosden "crềche," used for the reception of foundlings at Lille during the Middle Ages. (Lond. Jl. of Ed.)
The Pedagogical Museum of Paris is a permanent exhibition of all kinds of teaching material from abaci and alphabet cards up to the most delicate and complicated apparatus, and all the civilized nations of the world are laid under contribution. The minister of public instruction has lately decided to enlarge its scope by the addition of a section devoted to sample copy books and exercise books to show the handwriting of the French youth. The Revue Pedagogique characterizes the new departure as a happy idea. It quotes at length the official circular inviting the cooperation of the chief inspector in preparing for the exhibition. Every district of France is to be included, but both, the class (or grade) of pupils represented, and the variety of schools are to be changed from year to year. The caligraphy of both boys and girls is to be shown, and each primary inspector is charged to submit threa specimen books from his district. The minister is careful to direct that the books should be the ordinary samples, and not specially prepared for transmission to the capital. At the option of the inspector the books may contain the teacher's correction of the day's work. (Schoolmaster.)

8.-Hygiene.

Germany.-The subject of mental overpressure is important not only for parental consideration, but for scientific investigation. The capacity of the child, the number and nature of the studies, and especially the length of the recitations, are features which ought not to be overlooked or be left to the discretion of educators. That much can be gained by experimental study of overpressure is shown by a paper read by Dr. Burgenstein, of Vienna, before the congress of hygiene in London, upon The Working Curve of an Hour. The writer had' for his object the study of the mental power of children, and he arranged his experiments with a view to demonstrating the fluctuations of brain power in
children during one hours occupation with a familiar subject. Simple addition and multiplication sums were given to two classes of girls, of an average age of 11 years and 11 years and 10 months, and two classes of boys of the average age of 12 years and 22 months, and 13 years and 1 month. After ten minutes' wo k the sums were taken away from the children; after a pause of ten minutes the work was resumed, the alternation continuing for an hour, so that there were three periods of work. The results were interesting. During the experiment 162 children worked out 135,010 figures, making $6,50 \pm$ mistakes. It was found that the number of mistakes increased in the different periods and that during the third period thequality of work was at the lowest. The general result showed, according to the investigator, that "children of the ages stated become fatigued in threo-quarters of an hour ; that the organic material is gradually exhausted; that the power of work gradually diminishes to a certain point during the third quarter of the hour, returning with renewed force at the fourth quarter." The recommendation was made that no school lesson should last longer than three-quarters of an hour, and should be followed by a quarter of an hour's rest. Such a study is of especial benefit at the beginning of the school year. Children ase often reprimanded for inattention when they are overfatigued, and are spurred forward when their minds need rest. "Mental overpressure" is the usual result. (London Journal of Education.)
In Germany an experiment was tried upon 162 children from 11 to 13 years of age, who were set to work out sums in simple addition and multiplication for ten minutes; then after five minutes' rest, for ten minutes more, and so on for four periods of ten minutes each in all. The result was that the total number of mistakes made was 6,504 , the number increasing in the second and third period, but diminishing again in the fourth, which appears to have been better than the second. Regarding this as an experiment upon overpressure, the first thing that suggests itself is, that forty minutes of simple arithmetic, divided into periods of ten minutes each, with an interval of rest between, seems such a small amount of work to produce symptoms of fatigue that one is led to ask whether there may not have been some other cause to account for the deterioration observed? How were the intervals of rest employed? Is it not probable that such frequent interruptions may have produced a feeling of distraction and loss of concentration sufficient in itself to account for the falling off in the quality of the work? Again, 6,504 mistakes gives an average of one mistake per minute for every child; surely work so careless can not have been the cause of much mental pressure. It seems strange, too; on the evidence, that three-quarters of an hour should be proposed as the limit, taking no account, apparently, of the revival of energy in the last ten minutes of the hour. (London Ed. Times.
France.-A convention of school physicians in Paris has unanimously recommended to the city school authorities to provide every school with a set of surgical instruments for cases of emergency. Injuries, as they sometimes occur in schools, could then be attended to without delay by the teachers.
Sweden.-Dr. Wertlind, physician in the schools at Gotenburg, Sweden, has weighed the pupils of three girls' schools twice a year since 1870. During his observations, for the period of twenty years, he found that the increase in weight during the three vacation months (June, July, and August) was comparatively greater than during the remaining nine school months. The following table gives the exact average increase in Swedish pounds:

The Prussian Pädagogische Zeitung says:
From this table it is seen that after the eighth year of age the development of girls during the nine school months is not proportional to that which takes place during the three racation months. Up to 9 years of age the girls are not materially checked in their bodily development, but from that year on the development is checked the more the older the pupils are. We must also, in scanning this table, remember that, as a general thing, the summer is not conducire to an accumulation of flesh and fat; hence these figures are more eloquent than would seem at first. But it does not follow from the facts here presented that-it would seem better to keep the pupils out of school. All that follows is that school instruction should be attended by less worry and more cheerful play. If our girls must acquire mental developnent at the cost of nervous prostration, as is done so frequently, it certainly is too costly an article. (Paeả. Ztg.)
Denmark.-A Danish school principal in Copenhagen, Dr. Vahl, publishes the result of his similar observations through a period of nine years. He weighed his pupils twice a year, on April 1 and October 1. His observations are very valuable, since they embraced children of prescholastic age. The remarkable fact was found that during the six summer months the increase in weight was on an average about one-third greater than through the winter monthis. Here are the figures:

Increase in weight.

	Ages.	-	In Daniş pounds.		In per cents.	
			$\begin{aligned} & \text { In win- } \\ & \text { ter. } \end{aligned}$	In summer.	In winter.	In summer.
4 years			1.45	1.94	4.58	5.99
5 years.			1. 81	2.23	5.06	6.23
6 years.			1.85	9.45	4.63	6. 29
7 years.			1.99	2.61	4.49	5.97
8 years.			2.14	2.83	4.39	5.91
9 years.			2.33	3.15	4.42	5.89
10 years.			2.87	3. 43	4.85	5.89
11 years.			3. 50	4. 10	5.34	6. 82
12 years.			4.17	5.12	5. 72	7.08
13 years.			4.93	5.63	6.04	6. 92
14 years.			3. 79	6.23	4.16	6. 86
15 years.			4. 08	4.25	4.22	4.41

-(Paed. Ztg.)

9.-Illiteracy.

Italy.-Mr. Bodio, director of the Central Statistical Bureau in Rome, has recently published a memorial upon the subject of elementary education in Europe, and particularly in Italy. In this book we find a complete summary of the results of education measured by the number of illiterates in the army during the last fifteen years. "This summary," says Mr. Bodio, "may cause us some mortification."

Per cent of illiterates.

Germany. - While the German nation has the smallest per cent of illiteracy of any nation in the world, yet neither the Catholic nor the Protestant element has the lowest rate of illiteracy. This belongs to the Jewish element. Of 100 Protestant children 91.63 per cent attend the elementary, 4.87 per cent the middle, 3.25 per cent the high school, and .25 per cent the university. For 100 Catholic children the 4 departments run respectively $97.21,4.18,1.48$, and .13. While for the Jews the per cent in 100 children is $53.71,24.40,21.20$, and 1.69. That is, of Catholic and Protestant children about 10 in 100 go beyond the first or elementary grade, while 47 in 100 of the Jewish children go beyond the first grade. These figures apply only to the city of Berlin, however, where the Jews are both numerous and wealthy. This is a mostremarkable revelation, and the advantage is with Jewish children, not in Berlin alone, but also throughout the empire. It is said that the same fact holds true in our American schools. Why is it that the Jewish mind aspires to the highest plane in education? It would look as though the higher average of health among the Jewish race leads to a greater measure of mental activity and sustainsit. The greater average in wealth also helps to the same end. The study is an interesting one, and a comparison of statistics covering all nations would be desirable.
The following comparative columns are highly instructive, inasmuch as they illustrate the eflect of compulsory education in Germany :

Ratio of illiteracy.

Province.	18\%-76.	1888-89.	Province.	1875-76.	1888-89.
	Per ct.	Per ct.		Per ct.	Per ct.
Saxony			Meinengen.......		0.24
Bavaria	1.29	0.03	Mechlenburg-stielit	3.5	0.25
Würtemburg	0.02	0.03	Hamburg	0.45	0.32
Hessia.	0.35	0.12	Waldeck	0.95	0.38
Mecklenburg	1.09	0.14	Reuss	1.42	0.44
Lippe .-	0.78	0.23	Prussia	3.19	0.94

The figures repesent the ratio of illiteracy found among army recruits. (Centr. Archiv.)

General surcey.-A French educational journal contains the following items of information. Some of these statements are not quite correct, compared with statistical information available in the Bureau of Education (see Annual Report of the Commissione: of 1888-89), but it is reasonable to suppose that the figures here presented are obtained by omitting (a) private, (b) secondary instrustion; hence they are here reproduced as probably representing public elementary schools only.

I.--School Poptlation.

The proportion oî the total population that was enrolled in school in the principal countries of the civilized world was as follows:

Country.	Per cent.	Country	Per cent.	Country.	Per cent.
Europe.		Africa.		America-Cont ${ }^{\text {a }}$.	
Prussia	18.25	Cape Colony	23.00	Ecuacior	2.00
England	16. 20			Uruguay	5. 00
Switzerland	15. 00	America.		Venezuela	5.00
Holland	14.00	Canada	21.50	Oceanica.	
Austria-Hungary	11.50	United States	20.20		
Belgium	10.00	Jamaica	11.00	Australia	18.00
Italy	9.00	Trinidad	9.00	Tasmania-.-	12.00
Russia	1.80	Costa Rica	7.00 3.00	New Zealand ...-	19.00
Asia.		Guatemala	3. 00	Sandwich Islands	11.00
		Argentine	6.50		
Japan..	9.00	Chile.	3.00		

II.-Illiteracy.

(a) In general.-Russia, Roumania, and Servia, about 80 per cent; AustriaHungary, 42 per cent; Ireland, 21 per cent; France, 15 per cent; Belgium, 15 per cent; Holland, 10 per cent; United States (white), 8 per cent; Scotland, 7 per cent; Switzerland, 2.5 per cent. In Sweden, Denmark, Bavaria, Würtemburg, Saxony it is very rare to find a person that can not read.
(b) Can read only.-Germany, 94 percent (evidently too low a figure); England, 91; Austria, 88 (does not agree with statement under "Illiteracy" a) ; France, 88 per cent; Italy, 74 per cent; Spain, 69 per cent ; Russia, 53 per cent.
(c) Can compute.-Germany, 89 per cent; England, 81 per cent; France, 77 per cent; Austria, 75 per cent; Italy, 53 per cent; Spain, 49 per cent; Russia, 39 per cent.
(d) Know another language than the mother tongue.-Germany, 69 per cent; Austria, 61 per cent ; England, 34 per cent; France, 29 per cent; Italy, 28 per cent; Spain, 13 per cent. (These statements are, to say little, very extravagant.)
(e) Have received a classical education.-Germany, 32 per cent; England, 21 per cent; France, 20 per cent; Italy, 17 per cent; Austria, 13 per cent; Spain, 7 per cent; Russia, 2 per cent.
These statements vary but little from similar ones published a year ago. (Revue Pedag.)

10-Language Study.

Learning langr:ages through self-instruction.-In an age like ours that brings people of foreign tongues into contact so often, an age in which the polyglot literaiure of periodicals and books plays an important rôle, the number of adults who learn foreign languages through self-help is by no means small. Each of these self-made linguists is likely to have his own method and reach the goal he sets for himself in his own inimitable way. But though every road leads to Rome, a sensible pilgrim will want to know several to choose from. For this reason such quiet indefatigable workers may be reminded of the methods of two men who, by means of self-instruction, acquired an unusually great amount of linguistic kowledge and have become famous in this respect-Schliemann and Macaulay.
Schliemann, the distinguished German archæologist, who "first served as a commercial clerk, then, when he became head of a commercial house doing an extended and successful business, learned English, French, Dutch, Spanish, Portuguese, and Russian; later on, modern and ancient Greek: lastly, Latin." He writes of himself in his Ilios: "Then I occupied myself for two years exclusively with ancient Greek literature and, I may say, I read cursorily during this time nearly all the classics, and the Iliad and Odyssey several times. Of Greek grammar I merely learned the declensions and the regular and irregular verbs; but with grammar rules I lost not a minute of my precious time, for when I saw that not a single one of all the boys who had been tortured with tedious grammar rules for more than eight years was able afterwards to write a Greek letter without making hundreds of the coarsest errors, I concluded that the method followed in the high schools was radically wrong. My opinion is that one can gain a thorough knowledge of Greek or any grammar only through practice, i. e., through thoughtful and attentive reading of classic prose, and through memorizing some of its best model pieces. Following the primitive method, I learned ancient Greek, and now can use it like a living language. Ifluently write in it, and orally express my thoughts readily and without difficulty on any given subject, provided always I have thoughts to express on that subject. I am familiar with all the rules of grammar, though I rarely know whether the rules I follow in speech and writing are recorded in grammar or not." Schliemann fails to tell us how he read the first Greek work. Doubtless he dià it with the aid of a translation, and not with a dictionary.
Lord Macaulay, the greatEnglish historian, learned modern languages in like manner. "When I want tolearn alanguage," he wrote from Calcutta in 1836, "I always begin with the Bible, which I can read without a dictionary (Macaulay knew the English New Testament by heart). In the course of a few days I know the patch words (prepositions and conjunctions), and the commonest syntactical rules, and come into possession of a pretty large vocabulary. Then Iattack some good classic work. Thus I learned Spanish and Portuguese, and a similar method Ishall some day employ in learning German." A year later he wrote: "On my way home I intend to learn German. I am told that is a difficultlanguage, butI do not bolieve that there is any language which I can not master in four months,
working 10 hours daily." And a few months later: "When I arrive in England I mean to have mastered German. In my leisure hours I have broken the ice by realing Luther's translation of the New Testamenthalf through, and I am now quickly making my way through Schiller's history of the Thirty Year's War. Schillers style pleases me very much. His history is rich in very correct and profound thoughts, expressed in so simple and pleasing a language that only blockheads can think him superficial.
The prodigious knowledge of languages of a Macaulay or Schliemann are usually explained by the supposition that they possessed anextraordinary licgnistic talent. However. that may be a fallacy. If wa consider that these linguistic genuises were always rersons who permitted themselves no other recreation and pleasure than reading, and consequently employed every available moment in reading, we shall look upon the wonderful results mentioned rather as a feat of enormous diligence and incessant practice. What Macaulay, outside of his professional and literary activity read, is truly fabulous. It seems as though he had read every English book published; the bad and unimportant books once, classic works repeatedly, and the historians (both English and foreign) incessantly. Hence the English saying: "A book which has not been read by anybody, save Macaulay."

On his way home from India he read Schillerss and Gcethe's complete works, Müller's Swisj History, some works of Tieck and Lessing, as well as the works of other less noted German authors. In a letter to his sister he writes: "I have during the entire voyage read with grand enjoyment, having devoured Greek, Latin, Spanish. Italian, French, and English; folios, quarto, octavo, and other volumes." And to a friend he mrote more in detail: "I have read with a truly veracious appetite the Iliad and the Odrssey, Virgil, Horace, Caesar’s Memoirs, Bacin’s De Augmentis, Dante, Petrarch, Ariosto, Tasso, Don Quixote, Gibbon's Decline and Fall of Rome, Mill's India, all the 70 volumes of Voltaire, Sismondi's History of France, and the seren thick fo'io volumes of the Biographia Brittanica." Critical and æsthetic views, together with notes upon the impressions some of these works had made upon him, or upon the rising or sinking of an author in his estimation after having read him, form the conclusion of his letter.
Concerning the manner of his reading, he says "I do not read any longer as I read in college. but like a man of the world. If I come across a word I do not know I pass it unless it be that its sense is essential for the comprehension of the sentence."
Bulwer-Lytton, the romance writer, dramatist, and politician, expresses himself in a schcol oration concerning regular work as preferable to inborn linguistic talent by saying: "Only he can really accomplish much who does not attempt too much at one time. I hare traveled much, have occupied much of my time with politics and other public and private business, and besides, have written more than 60 volumes, some on subjects which required much study and searching investigation. And now, how much time do you believe, my young hearers, I spent in study on an average, that is, in reading and writing? Three hours a day. and when Parliament is in session, even less. But during these hours my heart and soul are enlisted. It is therefore not necessary, that in order to accomplish much intellectual work, one should attempt to do much at a time; but it is absolutely essential that he work regularly and every day. If once a week you pour a whole tub full of water on a stone, no impression is made, but if you continually let a drop fall on it, the proverb tells you that the stone will be worn away."
From the foregoing we may take two lessons: (a) Do not base the study of a foreign language upon a grammar (with rocabulary, rules, etc.), but upon a work written in the respective language. (b) Work regularly and daily.
To use the same method with adults and young people would, however, not seem advisable. The school method must needs ke different from the method of the adult "autodidact," self-teacher. The pupil is young and has a teacher who stimulates him: the autodidact has a mature mind and learns without a teacher and without stimulants. He who stands between the two as a link, is the student of the upper classes of secondary schools, the young man of 16 to 20 years of age. This youth is ripening in judgment and character and may, or ought to be led to treat himself as the autodidact does. When he enters life or a university he will be the better enabled to cope with difficulties, the more he has 'earned to help and teach himself. The "joy of learning" this wonderful stimulus must not be quenched by too much assistance. (After SchweizLehrerztg.)

France.-The French minister of pubiic instruction, noting that in learning English it is the pronunciation that is the most difficult part, has decreed, in accordance with arrangements made with the minister of posts and telegraphs, that in future the Paris-London telephone line is to be placed at the disposal of students of languages. Other international lines as erected are to be used in the same way.

11.-Libraries for Pupils and Teachers.

School Libraries in France. -There can be no doubt that the inhabitants of large cities can find the necessary and desirable books for recreative and instructive reading without difficulty, even though they may not hare a well arranged public library such as nearly all American cities have. But it is quite a different thing in the country. Both the collection of books as well as the proper persons to adrise in the purchase of books, are often wanting. This is the case in France more than in other countries. The inconveniences-want of books for those who have left the schools, and a proper person who could make a suitable selection in the purchase of books-have beenmet in France by establishing libraries in the city and village schoolhouses, the use of which is free for pupils and adults.

As early as the year 1860, M. Roland, the then minister of instruction, ordered that in the building plans of schoolhouses, the expense of which is partly borne by the state, should provide for a suitabla library room, This order inJirectly stimulated the establishment of school libraries. Previous to that, books had been procured, but despite liberal expenditures, the collection had melted away, owing, no doubt, to the want of proper supervision and administration.

A ministerial order of June 1, 1860, which with slight changes is still in force regulated the organization of new libraries. Article 1 of this order made it obligatory to establish a library in every public school which should contain (a) the books used by the pupils in the schoolroom and others to aid them in their studies; (b) instructive and entertaining works for the use of adults. The library should be placed under the supervision and management of a teacher of the school, and should at all times be subject to the inspection of the supervisory school authorities.

Of course the selection of books to by purchased offered various difficulties, hence it was determined that the school inspector of the district should pass judgment over the selection. Ho:vever, it was soon found that this unduly increased the duties of the inspectors, burdened as they were, with the supervision of instruction and the keeping of records. Hence the minister of instruction created a permanent library commission, who were instructed to make and publish lists and catalogues of books suitable for pupils as well as for rural communities. This commission entered into an agreement with one of the largest publishing houses in Paris, which was to furnish the books mentioned in the catalogue to communities at reduced prices. The first catalogue of this commission appeared in 18 ©8.

Aside of this action on the part of the Government, several bequests of prirate persons and subsequent State appropriations have made the rapid growth and spread of these libraries possible. While in 1864 France had only 4,873 of such school libraries. it had in 187820,871 ; and in 1889 their number had increased to 36,326 . The number of volumes borrowed was 5,576,586 in 1889. The money derived from private persons, communal and provincial authorities, amounted to $4 ; 680,689$ francs in 11 years, from 1878 until 1889. During the same time the minister of instruction spent $2,250,000$ francs for the establishment and maintenance of these libraries from appropriations made by the state for his depariment.

Now, as regards the rules and regulations in force, they date from the year 1862. as has already been stated, and have not since essentially changed, except the law of June 16, 1851, which decreed abolishment of tuition fees, affected these libraries; for since the school assumed the character of gratuitiveness a great number of very poor children entered it. Hence, the number of free textbooks had to be materially increased, which necessitated strict economy and even tomporary cessation of the purchase of books for adults until the stato came to the rescue.

It is quite interesting to peruse the catalogues published by the permanent library commission, the last one of which was published in 18s8. It mentions 2,591 works, among which we find alphabetically and topically arranged diction-
aries, biographies, histories, books of travel, literature, national ceonomy, morals, hygiene, agriculture, history of art, and miscellancous books. Authors and publishers submit their works for examination, if they wish to have them recommended by the commission. The titles of those inspected and found suitable are first published in the bulletin administratif of the minister; after that they are inserted in the catalorues of the commission.

In order to cause the local school authorities as little expense as possible the mails transmit the books without postage, just as the United States Government does its orwn publications. Usually several communities combine to send one order blank filled out to the minister, who hands it over to the publisher with whom the agreement has been made.

According to the last census France had 36,121 communities. If we compare with this number the number of school libraries in existence, namely 30,336 , it would seem as though every community of France had one or more of such libraries. That is, however, not the case. A great many large communities have several schools, while in some places a common library exists for two schools. In 1889 France had 25,402 boys', 23, $1 \mathrm{~N}_{2} 2$ girls', and 18,681 mixed schools, a total of 67,515 . Now, if we compare the numbər of school libraries with this total number of schools we find that there are still 31,189 schools without a library.

The reports, which we have quoted at length, demand establishment of new libraries and increased purchase of books in order to promote the intellectual culture of the people. We read, "Every government of France, since the year 1789 , has bestowed attention upon intellectual liberation of the people. Since the decree of the year 1894, which ordered that common gratuitous instruction should be introduced for all citizens and all stata of society until Jane 16, 1881, which brought the famous law that was the crowning of the work begun nearly a hundred years ago, the most distinguished men of France and lawgivers have occupied themselves with the necessity of intellectual development of the people through instruction and education. But school instruction can have an abiding result only when the pupils. after leaving school, are offered opportunities for further development." This correct, although not everywhere appreciated idea, gave rise to the establishment of continuation schcols. However, this course of instruction, excellent as it may be, can not do all that is desirable, because French children go to work at a much earlier age than is customary in other countries; hence the absolute necessity of libraries. The countryman in the hamlet, the laborer in town, all find in them sources of instruction and recreation. Books at home are the most natural coinplement of school instruction. (After L. Fleischer.)

Pedagogical libraries in France. -The French pedagogical libraries, intended for the exclusive use of teachers, are in organic connection with the cantonal (or township) school conferences. A statute of February 10, 1837, mentions them first, and article 15 orders that they be preserved and increased by means of contributions of teachers, or other gifts and bequests. But when in $18 \frac{1}{1} 9$ all educational meetings were prohibited, on account of apprehension of their becoming political clubs, the libraries "melted away." In 1875 they were revived. A ministerial decree of January 4,1876 , promised active assistance on the part of the central government, which "recognized the just demands of many teachers for professional libraries." A later order, dated May 15, 1879, created a commission which was charged with designing a plan of organization for libraries, the object of which was to acquaint teachers with the best books and methods of teaching for elementary schools. This commission, of which the minister of public education was chairman, resolved to leave the establishment of such libraries to private enterprise, and confined its labors to issuing a catalogue containing the titles of books that deserved to be studied. This catalogue was published in 1880; a second, much larger, edition appeared in 1888. (Memoires et documents scolaires publiés par le Musée pedagogique" (1. serie) fase. No. 22, contains this catalogue). Sinco 1880 the credit opened by the central government for teachers' libraries that had been made available by placing them in school houses, was raised 20,000 irancs (81,000); besides this sum, the minister of education allows the management of these libraries 30,000 francs ($\$ 6,000$) annually.
The management of these teachers' libraries is not uniform throughout the many departments of France. The different rules and regulations in foree vary considerably. Hence. in order to obtain an insight into the working of the libraries the different regulations would have to be compared. Most of the libraries are the result of coöperation on the part of teachers. When a respectable nucleus is formed the Government recognizes the institution and subsidizes it. The following are the leading rules:

Art. 2. This library is designed to supplement the private collection of books owned by teachers; it shall contain chiefly podagogical works. It is under supervision of the school inspector of the "arrondissement" or "canton" (or school district as well as communal unit); a teacher of the district acts as librarian and treasurer.

ART. 3. The library is empowered to accept gifts and bequests in form of funds or books, but no book is to be placed on its shelves without the sanction of the "inspector of the academy" (or provincial school inspector).
ART. 4. A "founder of the library" is every one who pays an annual fee of at least "0 francs. A "contributor" he who pays an anndal fee of at least 5 francs. The names of founders and contributors ave placed in a conspicuous plase in the hall of the library.
ART. 5. All teachers of public schools who desire to make use of the library are members after the payment of 2 francs per annum.
ART. 6. The library is managed by a committee of the school inspector, the librarian, and three teachers, annually elected by the members. Their functions are performed without remuneration.
ART. 7. This committee meets at least four times a year ; it determines upon the purchase and acceptation or rejection of books given to the library; it reports upon its negotiatio:1s with authors, publishers, and private persons, etc. Its ascounts are submitted to discussion of the teachers' conference.

ART. 8. At the meeting of the conference which takes place in December, the annual report of the treasurer is submitted.
ART. 14. The period for which a book may be borrowed must notexceed four weeks; 5 centimes fine are to be paid for each additional day.
These libraries are generally found at the central town of a"canton," in which the meetings are held; they are placed in schoolhouses centrally located. The minister of education presents each library annually with thirty to forty books selected from the official catalogue mentioned above. Certain city governments hare recognized the importance of these libraries and opened an account for them in their budgets. Thus the city authorities of Toulon pay 600 francs per year to enable the teachers' library to subscribe for the most distinguished educational periodicals. The catalogue referred to contains three divisions, namely, (1) scientific works, (2) works upon education (theory and practice, psychology ard history of education), and (3) reference books, to which division belong all official reports on education, home and foreign.

A desirable extension of the usefulness of these libraries is found in the socalled pedagogical reading circles. In some cities the authorities have reserved a room in the city hall for the teachers' libraries, which serres also for meetings of the "library society" or "reading circle." In Luneville a circle was organized in 1881 by the teachers then assembled in annual convention. The name adopted was "Pedagogical and Literary Circle of Lunerille." It had the nucleus of a library, and now added a school museum. The annual dues were fixed at 2 francs. The teachers serve voluntarily as librarians and custodians. One of them is always found at specially designated days and hours in the hall of the circle. The city council defrays the expenses for furnishing, heating, and lighting the hall, and, besides, contributes to the institution a sum of money for the express purpose of subscribing for the six best educational journals of France. All substitute teachers and such as are not definitely employed are exempted from paying fees, but must, when needed, render aid to the librarian and custodian. The library consisted in 1889 of 1,308 volumes; the number of books borrowed and taken home was 245 . The museum had 875 articles. The first Saturday evening of every month is devoted to lectures on pedagogical subjects which are in close connection with the practical work in school. For young men preparing for the teachers'examination speciai aid is offered in lessons and lectures. The first list of pedagogical libraries of France was published in 1879. In that year France had 926 such libraries, with 113.997 volumes. In 1880 the number was 2,038 , with 361.898 volumes, and in 1888 the number had reached 2,683, with 895,367 volumes. The reports of the minister of education, however, reveal a surprising fact, namely, that the number of books borrowed is comparatively very small; in some piovinces it sank to 5 in a year. In most of the others it varied between 20 and 40 per year, and only a few of these libracies are frequently used. The general impression gained from the official reports is that the present condition of the pedagogical libraries is not a satisfactory one ; progress is shown only in isolated places. The causes may bs found in circumstances of material nature, partly in the quite remarkable indifference on the part of the teachers.

Lately several attempts at improving the conditions of these libraries have been made ; reforms were proposed from different sides. Thus, for instance, it
has boen suggested to centralize the many cantonal (or district) libraries and establish departmental (or provincial) ones; öthers proposed a partial change by combining all small libraries of one school inspectorate to one good-sized one. Still another projec swas promulgated in 1874. A benevolent gentleman offered to give 30,000 francs in case the libraries were established according to the following plan: Each inspectorate should establish a central library containing all the more valuable books and books of reference, while the small local district libraries be kept intact. In thess small libraries should be examined all the educational works published, and the approved ones be placed in the central library. But this plan found no approval, and the Government began to take other measures which found much praise in Europe, i. e., it laid the foundation of good private libraries by offering and presenting books to individual teachers.

A circular letter of the minister of education of April 3, 1882, reads as follows: "In order that the teachers' normal schools should exercise an abiding influence upon the teachers, I am willing to present every graduate of a normal school who enters this year upon the profession a number of books selected from among those which appeared to him indispensable during his time of study. This small collection of books which he takes with him shall awaken and preserve in him a love for his profession; shall console and constantly aid him, even though fate may send him to the remotest corner of the country. If the young man adds to these books others, such as he can borrow from the pedagogical library of his schcol district and canton, as well as by mail from the 'Musée pedagogique' in Paris, he will never feel lonely, forsaken, and condemned to inactivity. He will be enabled to continue his studies and increase his knowledge. In order that this object may be secured without delay I empower the faculties of the normal schools to provide each graduate with a number of educational books that each may solect himself, but the sum total of which must not exceed 70 francs for one teacher." It is to be regretted that subsequent legislative bodies did not provide for the requisite appropriation to carry out this plan, but the teachers in France hope that another year will see the plan of the minister revived and adopted by the Chamber of Deputies.

It is generally acknowledged as the best policy to leave the cantonal libraries intact, but to improve their management (1) by allowing the teachers the selection of books to be purchased, (2) by giving these libraries the franking privilege (through the mail), (3) by paying the librarians a salary, and (4) by interesting all the teachors through making them pay a compulsory annual fee. This last proposition has, however, found violent opposition, since its execution would violate the letter and spirit of the law which created these libraries. It is said that a reduction of the membership fee from 2 francs to 1 franc would be a wiser step.
The severest criticism these libraries have found is to the effect that they are exclusively pedagogical, i. e., contain nothing excapt professional works, while "the truest pedagogical lib"ary is any well-stocked library," says one departmental report, which suggests the acquisition of other than purely professional books. This consideration seems to have prevailed, for the catalogue published in 1888 contains a number of titles of books of fiction and others. It is supposed that teachers who have performed a hard day's work in the schoolroom are not inclined to subject themselves to difficult scientific study. And in connection with this the normal schools are severely criticised for failing to awaken a love for reading in their pupils. "The study of literature suffers from the exclusive attention paid to professional studies in these schools." Some inspectors have succeeded in gaining a kind of control over the reading of their teachers by reguiring a report of the names of books they have read, a statement as to their contents, and some criticisms, which are discussed in their regular monthly conferences.
In general the statistical data given show that the pedagogical libraries in France have made progressduring the last ten years, and the interest exhibited by local authorities in their establishment and preservation is an encouraging sign. The authorities hope that the present indifference of teachers and school officials will slowly give way to greater professional activity. To this end the central departmental and cantonal authorities are joining hands. (After L. Fleischer.)

12.-Manual Training.

Germany.-Manual training at Leipsic. So much attention has been drawn to the Lloyd Seminary at Näus that the similar institution which is carried on in the old Thomas School at Leipsic, under the direction of Dr. W. Gotze; hardly gets the attention which it deserves. But to those who wish to pursue their
manual training studies, to those who can readily follow the lectures on the subject given once a week at the university at Leipsic, and to those again who, besides studying manual training, wish to perfect themselves in German and to see German life a little more from the inside than is possible in ordinary traveling-to all such we venture to think the Leipsic institution will prove more and more attractive every vear. To a doctrinaire of the Näăs school Leipsic yields an admirable corrective. A list of subjects of the lectures given last August will suggest the bill of fare provided for those who have a good knowledge of German. "Herbart's Relation to the Manual Training Morement," "The History oi Chip-Carving","and "Voices from the Middle Ages and from the Eighteenth Century in Aid of Our Contention," were among the subjects treatad of last August. But even more stimulating were the addresses given by Herr von Schenckdorff and Dr. Gotze on their return from the Strasburg conferenoe at the end of the month. Those who are less proficient in German may acquaint themselves with the history and objects of manual training in Germany by borrowing from the library of the institute some interesting documents by Dr. Gotze which have been translated into English, and they may in the mean time increase their knowledge of German by assiduous attendance at the excellent city theater, at which the cost of students' seats, numbered and reserved, is not more than $7 \frac{1}{2} d$. a night. Prominence is given to these particulars respecting the theoretical side of manual instruction, because it is the part which is most frequently neglected, especially in England, and because, too, contrary to the common opinion, it is hopeless to expect any useful results from manual training unless teachers attend as carefully to theory as they do to practice. With regard to the five subjects in which practical instruction is given at Leipsic-carpentry, light metal work, chip-carving, cardboard, and (for the first time this year) gardening-full particulars will be found in the prospectus. Any additional information will be readily given by Dr. Gotze, whose address is 19 Kaiser Wilhelm strasse. (Lond. Ed. Times).

The German Society for Manual Training has made extensive statistical inquiries concerning the present status and extent of manual training in Germany. The results of these inquiries are published by Mr. Sontag in pamphlet form. We cull the following items:

The greatest number of manual training schools in Germany are found in the Kingdom of Saxony, namely, 42; then follows the province of Silesia with 17 ; then the Thüringian principalities with 16, the Free Cities with 13 , the province of Saxony with 10 , the provinces of Hanover and Brandenburg with 9 each, Alsace-Lorraine with 7, and Bavaria with 6. Besides, there are over 50 of such schools in other parts of Germany; Rhenish Prussia has 5. The sum total is 186, situated in 120 cities and towns. The following parts of Germany have no manual training schools at all: Anhalt, Brunswick, Mecklenburg, Lippe, Hessia, Oldenburg, and Waldeck; neither the provinces of Pommerania and Westphalia. From this it is seen that most manual training schools are found in and around industrial centers. 'Schools for boys' hand work have been established in mountainous regions, where they are designed to aid the people to overcome the miserable industrial conditions under which they are suffering. In agricultural regions, on the contrary, the need of establishing such schools has not been felt.
Of the 186 manual training shops enumerated only a few in Silesia and Saxony have industrial purposes. The majority serve educational purposes. Sixtyseven of these, in 62 cities, were independent; 107 of them stood in some relation with the public or private institutions. Thus, for instance, 12 normal schools have introduced manual training (6 alone in Saxony). All these normal schools work according to their own plans, and harmony batweon the different schools in course of study and action is not found. Fifteen orphan asylums have introduced manual training, 12 private and public schools train in the use of tools, also 55 Knabenhorte asylums for boys after school hours. It is remarkable that of the institutions for abnormal pupils 24 have adopted manual training, namely, 10 reform schools, 2 schools for idiots, 5 blind asylums, and 7 asylums for deafmutes. That for the pupils of such institutions training in hand work is an essential requirement of success is seen from all the reports received from these institutions.
The establishment of manual training shops began about 1879. At this time manual training recaived a notable impetus in Germany by the vigorous action of Capt. Clauson von Kaas, who, in 1880, in Emden, and later in Dresden, trained a number of teachers in this new branch of study. Since that time several factors have been active as founders of manual training schools. Societies and private persons in some places, in others communal and state officials, are inter-
ested in promoting manual training. While in the year 1854 the number of shops was about 50 , in 1888 the number had nearly quadrupled; in like manner the number of pupils increased from 2,080 in 1884 to 5,678 in 1888. The majority of these pupils, namely, 67 per cent, were less than 14 years of age, while 24 per cent were pupils of intermediate, high, and normal schools.

Concerning the subjects taught in these shops the report says that pasteboard work, wood-carving, and joiner work are everywhere taught first. These seem to be the chief occupations. In 188877 manual training shops had taken up pasteboard work, 61 wood-carring, 60 joiner work. Of the pupils 43 per cent were occupied with pasteboard work, 32 per cent with wood-carring, 31 per cent with joiner work. Seven of these schools teach forging, molding, and other light metal work ; in three of them modeling is taught. Here and there are found painting on wood, scroll-saw work in wood and metal, turning, canebraiding, brash and broom making, basket-braiding, straw-mat braiding, filletnetting as branches of the course. These latter branches are offered only in places where the school is intended to aid the home industry.
It is pleasing to notice that most of the schools follow courses which are founded upon pedagogical principles; the models are made by teachers themselves or copied from the well-known Leipsic models.

Instruction in these manual training schools is given by 208 professional teachers and 48 artisans. The question whether artisans or teachers should be employed in manual training schools has been successfully solved by experience. Since 1880 the ratios of artisans and teachers in manual training schools have - been :

	1883.	1881.	1832.	1883.	1884.	1885.	1886.	188\%.	1888.
-	Pcrcent.	Percent.	Percent.	Percent.	Percent.	Percent.	Per cent.	Percent.	Percent.
Teachers	29	39		¢6	61	64	\%2	\%9	81
Artisans .-.-.-.-.-.	71	61	50	41	39	36	28	21	19

The number of professional teachers instructing in the workshops has gradually increased to 81 per cent, while the number of teaching artisans has decreased accordingly. In training shops maintained solely for educational purfoses professional teachers only are employed. Several reports state that in schools where artisans are still employed teachers a:e greatly to be preferred. In schoo's, however, that are intended for industrial purposes it is found that skilled artisans are preferable, becaus they have an eye towards practical utility such as professional teachers are not likely to have. Special courses for teacher's in the Normal College of the German Society for Manual Training hare been rery successful in supplying schools with toachers preparing to teach manual work. Since the year 1880 about 1,000 persons have gone through a course of study in that school, which is situated in Leipsic.

The German teacher's have been repeatedly charged with indifference toward the cause of manual training. This charge is only too true, but in a measure this indifference has its cause in stolid opposition to manual training. Manual training claims the assistance of the teachers, and very essentially changes and modifies the time-honored limits of a teacher's activity. Manual training has nothing to fear from oppesition; on the contrary such opposition as it finds among the teachers proves to be a benefit. This is partly proved by the statistical data before mentoned. Any one who introluces manual training into his school is obliged to sacrifice time, and energy, and eren means. Yet, whererer it has been introduced the initiatory steps were taken by schoolmen. Nine of the trelve independent workshops have keen established by educato"s.

As far as the time of instruction is concerned most manual-training schools admit twice a year, in the spring and fall. The sehool is better attended during the winter than the summer semester. In Berlin, Posen, and Halle, vacation caurses are ofered. Generally 2 hours per day are devolved to hand work in the shops: in a few places 1 to $1 \frac{1}{2}$ hours; in othe:s $2 \frac{1}{2}$ or 3 hours per day are set aside for it. The number of pupils in a class for pasteboard work is from 12 to 20: for wood carving, 10-24: in joiner work from 12-16. Tuition fee is charged in almost all schools. Very few offer gratuitous instruction. In some places the fec has to be paid in advance, in others a monthly fee is charged. Tha fee raries between half a mark and 10 marks per month ($12 \frac{1}{2}$ cents to 8.20). The The average fee is between 1 and 2 marks (25 and 00 cents).

A number of manual-training teachers teach without special salary; others are satisfied with the small sum remaining after material, rent, and gas are paid for. Fixed salaries to teachers are paid here and there, and 1 to 2 marks per hour is about the usual price paid. The annual salaries range from 75 marks (\$19) to 105 marks (\$26).

The sums expended for the establishment and maintenance of manual-training shops are not very large if measured with an American standard. During the year 1888 the sum total raised and used for this purpose is estimated to have amounted to 50,000 marks, or $\$ 12,500$. This insignificant sum was raised by schcol authorities, societies, private persons, subscriptions, tuition fees, and bequests. Pitiably small as the sum may seem to us, we must bear in mind that a mark goes as far in Germany as a dollar does in America; buteven that would not come up to the sums spent in this country. Manual training has assumed enormous proportions in the Jnited States, where entire city-school systems have adopted it. (After Paedagogium.)

13.-Medical Supervision.

Medical supervision of the schools in Paris.-The present institution of medical supervision of the schools in Paris does not date further back than 1884, although previous to that year the schools were notentirely without supervision by physicians. The law of 1833 (June 28) had charged the school committees of the respective towns and cities with the care of keeping the schoolhouses clean, while a royal orainance of 1837 (December 22) made it a special duty of the female supervisors of maternal schools (kindergartens) to watch over the health of the little children in the infant asylums.
For the city of Paris separate governmental decrees had been issued, while the two decrees mentioned had reference to all the schools of France. The decrees of 1842 (December 20) and 1843 (May 19) ordered that every public boys' and girls' school should be visited by a physician who was to inspect the localities and the general health of the schcol children. For private schools and maternal schools similar regulations were issued. These school physicians of public institutions and the lady inspectors of maternal schools were appointed by the "prefect" of the department selected from nominations made by the mayor.

However praiseworthy this arrangement was, it had a great drawback. In the annual budgets of the communities no provision was made for paying these physicians, hence an appeal to the generosity of the medical fraternity was necessary. Many offered their services and acted gratuitously for many years.
In January, 1878, Messrs. Lauth and Harant, members of the general council of the Seine department, moved a reorganization of the medical service in school. Their endeavors were not without speedy success, for during the session of April 23,1879 , the council roted in favor of paying for medical supervision of the schools during the last six months of that year. The sum appropriated was 34,200 francs. New regulations issued by the prefect determined certain mooted questions and defined the duties of the physicians. The Seine department was divided into 114 medical districts, of which 85 were within the city of Paris. Each district contained between 20 and 25 schoolrooms.
The medical inspectors, who had to be graduates of well reputed schools of medicine, were nominated by the mayors of the differentarrondissements (wards), and appointed by the prefect of the department.
Their term of office was three years, at an annual salary of 600 francs. They were obliged to visit the schools of their district at least twice a month, carefully inspect the localities, and remove any children found to be suffering from contagious or infectious disease. They even were empowered to order a school closed in time of epidemics.

During the absence of the physician, the principals of the schools had to watch over the health of the pupils in their respective buildings. In order to assist them in this, the authorities provided them with instructions issued by the supreme sanitary council of Paris, according to which they could detect the symptons of contagious and infectious diseases. In Paris the medical service in school stood under the immediate supervision of the mayor of the " arrondisse-ment," while in the surburbs and the country the head of the "canton" watched over the faithful discharge of duty on the part of the physician.

Up to the year 1882, the entire expense for the new institution was defrayed by the "Department," but in that year the communal budget of Paris contained the item of 53,000 francs for salaries of school physicians.

The expenses made during the first period of three years of service had taught the authorities valuable lessons, which led to the following reforms: It was found that the number of schooltooms (20 to 25), given to one physician to supervise, was too large; the consequence was that the examination of indiridual children with reference to their eyesight, ears and teeth (the seats of most children's diseases), could not be minute and exact enough, hence the city council appointed a commission.which worked out and submitted a new statute, or set of regulations; this was adopted on November 7, 1883, and went into effect January 1, $183 t$.
The most important points of these regulations, which are still in force, are as follows:
Art. 2. The public schools of the city of Paris are for the purpose of medical supervision to be divided into groups of from 15 to 20 schoolrooms. Any maternal school is to be reckoned as two rooms. A redistricting takes place every three years. The prefect performs this duty. Newly opened schools are assigned to the nearest " medical group."

ART. 3. The salary of a school physician is 800 franes per annum ($\$ 160$).
ArT. 4. The physicians are nominated by the mayors and appointed by the prefect of the department.
ART. 5: The tenure of office of these physicians is for three years.
ART. 8. Every school physician must announce to the mayor his address of residence or office, and the hours at which he can be found there. This statement is published at a conspicuous place in the respective schools.
ART. 9. A book must be kept in every public school and maternal school, in which the school physician notes down his observations. This book must be submitted to the inspection of officials and supervisory authorities.

Art. 10. The school physician is obliged to visit every public and maternal school twice a month, but he must also appear there when the mayor or prefect may see fit to order a visit.

ART. 11. When visiting a schoolhouse the physician shall first thoroughly inspect the "localities" (corridors, stairs, waterclosets, etc.). In doing so the principal of the schcol is to accompany him, so that he may receive suggestions from the physician. Then the latter visits each class-room, and after he has inspected them with reference to light, heat, ventilation, and furniture, etc., he must proceed to examine the pupils separately, especially those who are pointed out by the principal and teachers as showing symptoms of indisposition. After the examination of a schoolroom and its inmates is completed, the physician enters the results into his book intended for this purpose. He answers the different questions and tabulates his answers in the columns provided for them. In the column "ad hoc" he enters the names of those children in whom he has noticed symptoms of approaching disease, states that their withdrawal from school proves necessary, and especially notes whether the disease is contagious. Finally he enters the number of pupils absent on account of sickness on the day of his visit, and inquires of the teachers what sickness, if any, seem to be prevalent at that time.
ART. 13. At least once a month a thorough examination of each child is to be made with reference to eyes, ears, and teeth, if the physician finds an inclination to disease, or if the general state of health of a child needs special attention on the part of the parents these must be notified by the physician's certificate, which is to be handed to the child.

Art. 14. Children in whom the physician disfoovers the symptoms of a contagious or infectious disease are to be sent home at once with a sealed letter, in which the physician states the cause of this step. In this letter the parents are notifi-d that the child is not permitted to attend school until it comes with a certificate signed by a school physician announcing its complete recovery.

ART. 15. The principal of every school keeps at hand a series of instructions issued by the supreme sanitary council, in which the symptoms of contagious and infectious diseases are stated. If a child gets ill during the absence of the school physician, the teacher of the respective class room notifies the principal. If the latter finds symptoms of a contagious or infectious disease, he must send the child home with a sealed letter, in which he asks the parent or guardian to call at the office of the respective school physician during his office hours, which are mestioned.

ART. 16. A certificate of recovery may even be required of children who have been absent for any length of time on account of sickness, without having been sent home. In this case the nature of the illness is to be stated unless the child is subjected to a special examination by the school physician, and thus acquires a certificate of recovery.

Art. 18. Within twenty-four hours after each sanitary and medical inspection the physician is obliged to report to the mayor of the arrondisssment (ward) about the sanitary condition of the school. Blanks for this purpose are furnished him.

ART. 19. The mayors of all arrondissements prepare summaries of the various individual reports, and submit to higher authority all those propositions and suggestions which seem of special importance. Propositions which are of a more general nature, and not very pressing, are referred to medical committees for deliberation and subsequent report. In case an epidemic breaks out, the mayor has the right, upon motion of the school physician, to close a sehool; but he is obliged to give notice of his action to the school inspector and his own superiors.

ART. 20. The mayor is required to report regularly every three months to his higher authority (the prefect of the department) concerning the sanitary and medical condition of the schools in the arrondissement. Semiannually he must send in a more elaborate report, containing suggestions for changes and improvements, such as are made by the physicians in their reports to him. Advice regarding changes and "adaptations" in buildings is equally welcome.

This supervision of the Paris elementary schools was, in 1839, performed by 128 physicians. The budget of the city for that year contained the sum of 100.800 francs for this institution. Medical supervision of schools in Paris has served as a model for similar arrangements in other French cities. By means of a m:nisterial order of November 14, 1879, the attention of all prefects was called to the instruetions quoted above at length. But sinee then, through the school law of October, 30, 188s, as well as through ministerial decrees and orders dated November 18, 1887, modical and sanitary inspection has been made obligatory for alI the schools, public and private.

A few years ago, the city council of Paris expressed the desire that with this institution of supervision be connected a free school dispensary. This suggestion is under advisement at present. These dispensaries, so it is intended, shall go further than the school physicians who are watching over the health of the children. These dispensaries shall take sick children and treat them in hospital wards, srecially arranged for children, and provide them with medicine and surgical assistance.

As early as 1862, a few froe dispensaries were in existence in Paris supported by charitable societies, notably the "Société philanthropique." These dispensaries were connected with the hospitals for children, but there is a differenc 3 between institutions founded and maintained by charity and those by law. In these private dispensaries children could not always have the desirable special treatment, medicine, shower baths, etc. To the city of Havre belongs the honor and credit of haring founded the first public free dispensary for children. This institution is equipped with all the most desirable conveniences and all necessary appliances. In 15 TJ a physician, Dr. Giebert, aided by contributions of charitable persons, established an institution of this kind which had astonishing results, and was subsequently made a city institution.

In Paris the first children's dispensary was opened in the first arrondissement upon urgent solicitation of Dr. Dubrisay and M. Baudof. It found a home in Jean Lantier street, No. 15, in a house which was offered by the owners free of charge. Since the date of opening, April 1,1833 , the consultations in this institution have reached the enormous number of 60,000 ; in the first year the number was 5,037 , then steadily increasing, it reached 19,000 in 1889. The expenses during 1889 were 5,980 francs, but the annual donations amounted to 8,205 francs.
The example set by the first arrondissement soon found imitators. To-day (in 1890) eight arrondissements have children's dispensaries partly supported by pricate persons (like those in the thirteenth and fourteen th arrondissements), partly by the city. The excellent infuence these few institutions have exerted has awakened the desire of increasing their number and to provide every ward of the city with one, hence a credit of 100,000 francs was opened for that purpose in the city budget of 1890 , and all indications point toward an early fulfilment of the desire mentioned above, namely, that the medical and sanitary inspection of the schools be supplemented by a great number of free dispensaries in which children will find the treatment needed in cases of sickness. (After L. Fleischer.)
14.-Miscellaneous Notes.

Concuda.-A new feature has been introduced into some Canadian public schools, this being what is called "grade conventions." It is carried out by the teacher of one grade visiting the room of a teacher of the same grade and ob-
serving the work in the room during the afterncon. At the conclusion of the teaching, when the pupils are dismissed, the teachers and inspector hold a consultation to talk over any points of interest they have obser ved, with a view to improving the methods of teaching. Some of the benefits of these conventionsare obvious. The teachers observe the points of excellence and the defects in the room they visit, and all are benefited by the experience and exchange of ideas. Besides, they bring about uniformity in teaching and management, which is an essential feature in graded schools, where pupils pa-s from one teacher to another. The similarity in teaching saves much time, as the pupils do not have to learn or be taught new methods when they enter another room. (Schoolm.)

Belgium. - The Stato Caving3 Bank, of Belgium, in its report of 1880 contains a few interesting points concerning the mooted question of savings banks. Belgium had in 1890, altogether, 7,637 elementary schools attended by 896,787 pupils (449,497 boys and 447,290 girls). In 4,965 schools the custom of collecting savings has been fostered. The pupils own 167,690 savings books (92,975 boys and 74,721 girls). Besides these there are 38,907 pupils whose savings are so small that they have not acquired their own bank book. The amount saved by the children in 1890 was $\$ \$ 08,430$ (of which the boys contributed $\$ 443,344$, the girls $\$ 365,086)$, an increase of $\$ 24,296$ over the previous year. The province of Hennegan has the greatest number of juvenile savers, while Limberg hats the smallest. The teachers are generally opposed to the institution of school savings banks, and expressed this in unmistakable terms at their last annual meeting. At the general meeting of the clementary teachers in Brussels, the school savings bank has been condemned by a vote of 117 yeas and 86 nays, on the following grounds: (1). What is saved is never sufficient to provide aid in case of sickness or accidents. Insurance companies and workmen's unions would be much better. (2) Saving makes young children-selfish; the teaching at school ought to develop charity, not grasping. (3) As it is, it is seldom the children that save-it is the parents, who give their savings to the children to take them to the schoolmaster, who thus becomes the banker for the parents. (4) Several parents sare from a desire to please the schoolmaster. (5) The practical good of the school savings bank, after a trial of twenty-five years, may be said to be nil. ${ }^{\text {. }}$ (Different educ. journals.)

Austria.-The annual report concerning the schcol kitchens in Vienna during the winter of $1889-90$ shows that indigent pupils wera provided with a good dinner (soup, vegetables, and bread). The number thus provided for was 2,869 a day; but the real number is much greater. Many pupils come with their little brothers and sisters, and the cook is told to help the older children, who thus " provide for the family " more plentifully. Often children come to school who are not enrolled and ask for a dinner which is never refused. In one hundred and thirty-two days $381,5: 7$ dinners hare been served, but if the foregoing is considered the number is more than 400,000 . Lately these kitchens can not supply all the children who come; poverty and starvation are spreading in Vienna. (Oestr. Schulbote.)

Egypt.-In the gorernment schools of Egypt it has been the rule for years that, in addition to Arabic, every pupil must learn English or French at his option. This is not merely as a linguistic study, but is gradually bsing made the medium of instruction in the ordinary curriculum and in science. In 1889 only 14 per cent of the pupils chose English in preference to French, but last year the proportion rose 1023 per cent. In order to meat the increased desire to learn English, a normal school for native teachers has been opened, and it has 30 students: Also 6 young Egyptians have been sent to normal colleges in England to qualify themselves as teachers in the government schools. On the other hand, about 100 pupils are studying in France at the expense of, or recommended by, the Egyptian Government, and a Government normal school exists in Cairo under French management. Hence, it would appear that the French have the inside track in Egypt. (Lond. Jl. of Ed.)
England.-The money-lender and the betting man are never greater curses of their race than when their wiles entrap school boys who have expectations of coming into the possession of property when they are of age. The English legislators have, to some extent, restrained the evils in other places, but the circulars of the betting agent and money-lender seem to have found the way without hinderance into both public and private schools. Recently Lord Herschell brought the matter before the House of Lords; and archbishops and bishops, the lord chancellor and lords justice, dulses, earls, and other lords were absolutely unanimous in supporting the measure for rendering it penal to send out
such circulars to boys at school and youths at college. Lord Herschell in introducing the bill said its object was to render penal the sending of what were known as touting, betting circulars to boys at school and youths at college; and it proceeded upon the assumption, in this case quite justifiable, that the receivers at schools and colleges were prima facie persons who were infants and knvwn to ke such, learing it to the sender to show that in any particular case the person to whom a circular was sent was not an infant. He added that if he received encouragement he should be prepared to extend the scope of the bill by including the sending of money-lending circulars. (Schoolm.)

Germany.-The school board of Berlin has ordered the purchase of an ample number of cuspidors for use in the schools. The committee on science and medicine had recommended this on the ground that tuberculosis (consumption) is transmitted through germs in the air, hence that the expectorations of sick children are apt to cause contagion if not confined to spittoons filled with water. The vessels are placed in every class room, on stair landings and corridors, and are attended to twice a day. (Allg. Dr Lztg.)

England.-In 1849 a royal commission investigated the accounts of the eight so-called public schools of England, namely : Eton, Harrow, Winchester, Rugby, Shrewsbury, Charterhouse, Westminster, Merchant Tavlors. The report of this commission revealed the following facts: Column 1 states the income of the principals; column 2, that of the first assistants; column 3 states the amount it takes to keep a boy at these schools a year:

a This signifies only the tuition fee per year. In all the other cases board and lodging are included. (Zeitschr für Geeundhpfe.)

Various alphabets.-The Sandwich Islands alphabet has 12 letters; the Burmese, 19; Italian, 20; Bengalese, 21 ; Hebrew, Syrian, Chaldee, and Samaritan, 22 each; French, 23; Greek, 24; Latin, 25; German, Dutch, and English, 26 each; Spanish and Sclavonic, 27 each ; Arabic, 28; Persian and Coptic, 32 ; Georgian, $3 \overline{5}$; Armenian, 38 ; Russian, 41 : Muscovite, 43 ; Sanskrit and Japanese, 50 ; Ethiopic and Tartarian have 202 each.
Germany.-School gardens, of which there are more than 9,000 in Austria, are being laid out in different parts of Germany. Their object is to give methodieal instruction in the cultivation of fruit trees and to be used in the teaching of botany.

The minister of education has senta notice to the provincial councils, requesting them not to refer candidates for positions as school superintendents to him, but themselves to take the initiative in recommending suitable persons to him. "It is of extreme importance," he writes, "for the proper derelopment of education in elementary schools, that the responsible office of school superintendent should be only in the hands of especially trustworthy men, those who have proved themselves to be efficient elementary schoolmasters. This applies equally to masters who have enjoyed a university edscation. I expect that the local authorities will notrestrict themselves to an examination of those candidates who present themselves for election, but will, without regard to expected vacancies, keep themselves conscientiously informed of specially suitable candidates. The school inspections, and an understanding with the provincial school board, will of er ample opportunity to discover such persons." (Lond. J1. of Ed.)

How to treat stutterers.-Dr. Schellenberg, in Wiesbaden, gives the following advice to teachers as to how to treat stutterers:
(1) Treat the stutterer most kindly, and try to win his entire confidence. (2) Prevent other children from making fun of his trouble, and if necessary punish them for it. (3) Infuse him with courage and self-reliance. (4) During the first few weeks of school ask him no questionsin recitation; then begin with such easy questions that he can answer without reflection and hesitation. (5) Direct your attention away from the stutterer as soon as he betrays confusion and disquietude in his attempt at sreaking; repeat your question when he has regained
composure. (6) Urge him to assume a straight posture when speaking. (7) See to it that while speaking he breathes through the mouth, not through the nose, and that he takes a deep breath when he comes to a period or other convenient full stop. He should also take breath before he attempts to answer a question. (8). Advise him to begin his speech slowly and in a lower pitch than usual. (9) If the first word of his sentence begins with a vowel, let him begin that vowel faintly and increase it in strength thus, A-sia. If the word begins with aconsonant, lethim blur over it to reach the vowel, dwell on that, and then go on thus, ba-thing. (10) The stutterer must learn to run his words into one another so that no hiatus occurs, which would, of course, facilitate or cause stuttering. He should at first speak thus: "A-ll'swellthatendswell," until he has to some extentmastered his infirmity.

These points are exceptionally well taken, and the present writer can confirm them, since he has found them of excellent use in the school room. The English language does not breed so many stutterers as the German, but there are still cases enough in our schools to make advice like the foregoing welcome to teachers of little experience, and of them, alas ! we have more than is desirable. (Allg. D. Lztg.)

Saxony.-In the Kingdom of Saxony the lower schools have on an average 73 pupils to the teacher. The greatest number is found in inspection-District Loebau, namely, 95 ; then Chemnitz, with nearly 94 ; then Schwarzenberg, 92 , and Marienberg, 91. The smallest number is found in Leipzig, where it is 43 ; in Dresden itis 44 ; other districts have respectively 67, 70, 71, 72,73 , and 74 pupils to the teacher. There are still 128 schools of three grades with but one teacher, and averaging 132 pupils. In 1,117 continuation schools (post-graduate courses of elementary schools) instruction is given all the year round; in 712 only during the winter. (Allg. D. Lztg.)

Germany.-The Society for the Promotion of Public Games for the young and for the people in Germany, which was founded in May in Berlin, has already begun to make itself felt. Committees have been formed under the direction of Dr. Eitner, of Görlitz, and Dr. Schmidt, of Bonn. The latter, who is also a member of the Committee of the German Gymnastic Society, announces that the latter society is ready to join in active coöperation for the promotion of healthgiving games for the people. The minister of education, Graf Zedlitz, has expressed his heartiest sympathy in the aims of the society. In June, 1891, a course of instruction in public-school games was held in Görlitz for the benefit of the teachers. Dr. Eitner and Herr Jordan, the head teacher of gymnastics, conducted the classes, which were numerously attended.
Görlitz, a very progressive town in the province of Silesia, which was one of the first cities in Germany which introduced manual training, again comes to the front with normal courses for teachers in public games. Public play, supplementary to gymnastic exercises, has recently become an object of much attention of the Government as well as educational circles. (German Ed. Press.)

Frunce.-Levasseur, the noted French statistician, makes the following statements concerning the population in France: France (or Gaul) had at the time of Cæsar $6,700,000$ inhabitants, estimated according to the size and number of Gallic tribes. Roman Gaul during the time of the Antonines is said to have had $8,500,000$, but this is a mere hypothesis. At the time of Charlemagne Gaul is said to have had only $5,500,000$ inhabitants, according to Irmions Polyptique, but $8,000,000$ or $9,000,000$ according to an estimate made at the time. During the first half of the fourteenth century Gaul had $20,000,000$ or $22,000,000$, estimated by means of the number of hearths. At the end of the sixteenth century Froumenteau credited Gaul with $20,000,000$ inhabitants. In 1700 the number is said to have been $21,136,000$, estimated in the "Memoirs of an administrative officer." In 1715 the estimate was $18,000,000$. Numerous positive statements go to show that in 1770 the number of inhabitants was $24,500,000$, and in the great memorable year of the revolution, 1789 , it was stated to be $26,000,000$. In 1801 a rectified census proved the inhabitants of France to be $27,347,800$; in 1866, $38,067,064$ (with Alsace-Lorraine) ; in 1872, $36,102,921$ (without Alsace-Lorraine), and in 1886, 37,930,759.

Germany.-Recently statistics have been published concerning suicides of children in Prussia. The Neue Freie Presse of Vienna on May 26 published a statement which permits a comparison between Prussia and Italy. Since in population the two countries are nearly alike, a comparison seems just. The cases mentioned are all committed by children below 15 years of age.

Causes of suicides.	Boys in-		Girls in-	
	$\begin{aligned} & \text { Prussia, } \\ & 1869-\cdots 2, \end{aligned}$	$\begin{gathered} \text { Italy } \\ 1868-7 \% . \end{gathered}$	$\begin{aligned} & \text { Prussia, } \\ & 1899-72 . \end{aligned}$	$\begin{gathered} \text { Italy } \\ 1888-\% 7 . \end{gathered}$
Insanity.	117	138	91	300
Illness			45	
Being tired of life	25	28		
Passion .-.---...	24			200
Home trouble.	67	250	45	300
Financial losses	8	28	91	
Shame, fear of punishment	300		409	
Other causes....-.--.	435	528	319	200
Vice.	8	28	------..-	

Notice that in Prussia shame, fear of punishment, drives children to commit suicide, while in Italy the strongest motive is family or home trouble. The figures for Italy appear to be somewhat unreliable. The last column, particularly, looks suspiciously regular.

15.-Museuma in School.

France. - In the year 1883, at the general teachers' meeting in Frankfurt-amMain, a speaker claimed that every school should have its own local museum, in which should be kept not only the tools of all the trades and industries, but also the raw material necessary for those trades, as well as the finished products in their development from the smallest and simplest beginnings to their completion. This demand, made in all earnest, has been recognized as just in France for some years, at least partly. The school museums in that country (called local museums) form an indispensable means for object lessons. Their establishment was an unavoidable consequence of universal application of oijjective teaching, which had been advocated by such men as Montaigne, Rabelais, Fenelon, and Rousseau and others, especially after the great revival of popular elementary instruction (since 1871). Men of science and educational leaders were eloquent in advocating the teaching of visible things and processes in preference to empty words.

The French school museums contain natural and art productions. which are suitable for offering clear concepts of things surrounding the child. All these objects are systematically and methodically arranged, and adapted to each grade of school. It is most instructive to learn the history of these museums. Their beginning dates back to the year 1867. At the "World's Exposition" in Paris a few collections of objects were exhibited and Madame Pape-Carpentier gave lectures in which she dwelt on the good use to which these collections might be putin schools. This suggestion fell upon fertile soil, and when in 1873 M. Buisson reported upon the Vienna Exposition he could already state, that France was not behind other countries in matters of school museums, and that some provinces (departments) possessed more than a hundred of them filled with agricultural and industrial objects. Their number has increased rapidly. It is noteworthy that most of them had their origin in the initiative of the teachers who bogan, aided by their pupils, to collect models and natural objects, and arrange them systematically. In 1890 France had over 14,000 school museums, which are to be distinguished from simple collections of beetles, mineral and the like, such as may be found in almost any school where natural history is the hobby of the teacher.

Legal provisions for the establishment of school museums are notin existence in France. It was not a question of introducing a new branch of study or a new method of teaching, but simply a question of procuring the means for teaching object lessons. The authorities merely issued some suggestions for managing the instructions and exhibited a lively interest in them. A new impetus was given the idea of school museums through the report of M. Buisson, mentioned above, in which the various collections for school purposes exhibited in Vienna were minutely described. This report did much to awaken interest among local authorities, so that a few years later-in 1882-all the inspectors (superintendents) reporting on the schools of their districts and provinces were unanimous in acknowledging the usefulness of these collections for elementary school instruction.

Through public lectures to teachers on the subject of objective teaching, M. Buisson, in 1878, succeeded in awakening great enthusiasm among teachers. On
returning home they resolved to follow the example setand establish museums. Soon after there was scarcely a province of France (department in which teachers did not from the rostrum and through the press agitate the introduction of object lessons and school museums.
Nost of the muscums were established by teachers and pupils themselres, who bore the expense ; hence material aid on the part of the state was not necessary. Some communities defrayed the cost of original establishment, others brought collections offered by private citizens. All were agreed upon the principle that instruction in things without having the things to show is irrational, and that both in the kindergarten and primary school the same method of object lessons should be followed which a mother applies in order to create ideas, namely, by means of objects and not words. The child must be led to know the objects pithin its vicinity distinctly. This is best accomplished by means of the intuitive method for whose application the reading lesson offers the best opportunity. During a reading lesson a great rariety of objects are mentioned, and if they can be given into the children's hands attention is secured, the mind is being sharpened, the porrer of judgment dereloped : in short, the child is accustomed to distinct seeing and clear comprehension. The teacher is enabled to abridge rerbal explanations where he has objects to show; he can thereby make his lessons more interesting, banish the ghost of indifference from his class room and keep alive the joy in work. After the children hare left school they are not apt to lose the desire to obserre, to reflect, and to judge. If the school museum had no other result than this that one alone would justify its establishment and maintenance. A school museum offers no little adrantage also to the study of language; the child learns to express its ideas better; its rocabulary is increased more rapidly; it replies more fluently when it sees and handles things, and it certainly remembers technical terms more easily than in the utter absence of objects.
Experience has shown all this in schools where museuins are kept, while in schools which are without museums the teachers have great difficulty in accustoming their pupils to a clear and distinct expression and flow of thought. It is generally considered best to have the museums established by the pupils themselres under the guidance of their teachers, aided by friends of popular education outside of the school. Care must be taken to proceed methodically, for it is not a question of preparing for exhibition some apparatus or objects of luxury or "curios," which must not be touched from fear of breaking or injuring them. The museum should contain those objects which illustrate the teacher's instruction; objects should be selected which cost little or nothing and may easily be procured by the pupils. The more the pupils participate in gathering the objects to be placed in the museum, the more intense will be the interest in the lessons, for every one wishes to riew the objects his comrade has contributed. If these suggestions are followed the museum will be made by the school, for the school. It was a wise remark of M. Buisson when he said: "The great adrantage of a school museum is, not in having it, but in making it."
In order that the objects brought to school be safely placed where they are protected from dust and remain risible and easily accessible, a with glass doors is recommended. In case the school authorities refuse to procure it, an appeal is made to a iriend of the school, or to some wealthy parents of pupils. Such an appeal is rarely made in rain in France. In most schools a cupboard is used large enough to accommodate the jurenile library of the schools, as well as the museum of objects.
At first mistakes were made in getting school museums. Some teachers went too far in their zeal by collecting objects which stand in no relation to elementary instruction. Others, not intending to be surpassed, bought and procured more or less complete collections, instead of letting their pupils bring the objects as they were needed. It is evident that the true purpose aimed at was missed. Large museums which dazzle the eve of the children are injurious rather than useful in school ; for since the children do not know all the objects exhibited they care little for them, and interest turns into indifference. Costly museums in which the "wonderful objects on exhibition" bear the label" Hands off "' are not in their proper place in the elementary school, which is to be a workshop for mental work. Neither will ready-made collections suffice: they serve for decoration more than for actual study.
Howerer, these mistakes were soon rectified. The teachers now proceed methodically, generally classifying the objects ascording to the natural kingdoms. In Havre, one of the most progressive cities in France in educational affairs, another classification has been adopted. The school museums in that city are
divided into: (1) Objects of food; (2) objects of clothing ; (3) objects pertaining to the dwelling ; (4) miscellaneous objects. Each group has a number of divisions. This classification has recently been adopted by other schools, because it seemed more practical and suitable than the other, affording an easier finding of objects and also an easier cataloguing.

It goes without saying that the teacher is the chief custodian. He must not refuse a single object, in order not to hurt the feelings of his pupils. Fe must urge them all to bring objects for exhibition, so that they are able to say "our museum," not "the museum."

A chief characteristic of the school museum is that it is never complete. The pupils must know that there is always something missing. When, during geography lesson, for instance, it should be said, "Such and such a thing is needed to fill a vacancy in the museum," the pupils either individually or collectirely procure it. Thus the museum remains an object of interest. Of course, every object found worthy of preservation is to be described, numbered, labeled, and placed in its proper compartment. The name of the donor may be attached, and this naturally incites further efforts. Many objects are collected during excursions which the teacher makes with his school into the country and the mountains, through factories, along wharves, and through parks. Thus it becomes possible to gather in these school museums all the objects illustrating the natural and artificial products of the town or village in which the school is situated. Commerce, various industries, agriculture, forestry, all are represented.

The law of July 27, 1882, prescribes for the elementary schools, "instruction in the elements of agriculture, horticulture, physics, and natural history." Though the mere rudiments is all that can be expected, the study of physics requires some apparatus. Some normal schools induce their students to get practice in making such apparatus themselves in their schooi workshops and then allow them to take these objects with them, if they are appointed to a teachership, to use them as a ground stock at their collection of apparatus. In the Grenoble Normal School every student is required to make a certain number of objects for illustrating the study of physics. The State pays for the material about 10 francs (or $\$ 2$) per student.

To the legitimate contents of a good school museum belong pictures, charts, photographs, etc., for they aid instruction essentially: Generally, pictorial illustrations play an important rôle in French school instruction. Recently magic lanterns (solar and calcium light cameras) are used, owing to the active work of the "Society for Promotion of Object Lessons." These cameras are sold at rery reasonable prices.

If the museums are thus provided with all the necessary and useful objects, selected according to pedagogical principles and local circumstances, an agricultural population will have a differentcollection in its schools from that of an industrial population, and a girls' school is apt to have a different collection from a boys' school. It goes without saying that the institution will be a prolific source of incentivers to study.

The idea of school museums is not a new one. It was first carried out in Germany, but at present France has left Germany far behind in fostering and supporting the institutions. Victor Cousin once said: "The true greatness of a nation does not consist in not imitating others, but on the contrary, in borrowing good ideas from them and adapting them to the existing conditions of the culture at home." (After L. Fleischer.)
16.-National School Systems.

Argentine Republic.-When the Argentines freed themselves in 1810 from the yoke under which they had bowed for three centuries there was practically no education in the Republic. There certainly was a somewhat decayed university (for Spaniards and Indians) founded in 1622 at Cordoba, but its influence was as valueless as its work. The early history of the Republic was hardly favorable to the establishment of a regular educational system, but the clouds were gradually clearing away; and from the promulgation of the constitution of 1853 , which received its final form in 1860 , the progress of public instruction, until the temporary financial disturbances of a year ago, has been uninterrupted. There are 2 universities, Cordoba and Buenos Ayres (1821), 15 secondary schools, 35 normal schools, 2,396 primary schools, and 831 private schools. Primary instruction is free and obligatory for all children between the ages of 6 and 14 years of ages. Urban districts of between 1,000 and 1,500 inhabitants and rural districts of from

300 to 500 have a right to a public school. If the obligations laid upon the community by the state are satisfied by existing private schools, or by an individual family, there is no compulsion to attend the public schools. In such cases the progress of the children is regularly tested by the state by means of periodical examinations. If found unsatisfactory the aid of the law is invoked.

Besides the usual subjects of instruction in primary schools, it is worth noting that the Argentine curriculum involves instruction in morals and manners, hygiene, the duties of the citizen, and gymnastics. Girls are taught domestic economy and manual work; in the country lessons are given in agriculture. If a minimum of 15 parents claim religious instruction for their children the law authorizes the engagement of ministers of the different creeds for this purpose, the teaching to take place of the school hours. But the claim has never been advanced, so it may be said that instruction in the Republic is wholly secular. The administration of the schools is in the hands of a naticnal council, guided by the minister of public instruction. Each province has a council with limited powers and each district a school council, generally composed of teachers, professors, and local dignitaries, the latter being appointed by the national council.

Hygienic inspection is undertaken by a body of doctors, under the direction of the Gorernment. The teachers are as a rule trained in the normal schools; no one is allowed to teach in the public schools without the normal diploma, or if a foreigner without satisfying the authorities of the normal school as to his or her abilities, and in addition passing an examination in pedagogy. The teachers are allowed to retire after twenty years' service on their full pay at date of retirement; with three-quarters of their pay after fifteen years, and with half pay after ten years' service, or after accident or injury suffered in the service of the state. There is no corporal punishment. The hours are from 11 in the morning to 4 in the afternoon, broken by four periods of from ten to fifteen minutes each. The classes are not allowed to be larger than forty. Women are preferred to men as teachers, and where the schools are mixed there are only women employed; the head of the boys' schools is always a man, but most of the teachers are women. In 1888 there were 825 teachers- 616 women and 209 menemployed in the capital alone. So much for primary instruction.

The oldest of the fifteen "national colleges,", or secondary schools, was founded more than two hundred years ago ; that of La Plata was founded in 1884. The secondary schools are under the immediate control of the minister, who appoints the principals and arranges the curricula. The principals only teach from four to eight hours a week, and after ten years'service may retire with half, after fifteen with two-thirds, and after twenty-seven with the whole of their pay as pensions. The boys on entry must hare passed through the highest classes of the primary schools, or an equivalent, and on leaving they pass the baccalaurate examination; the whole course professes to be a complete preparation for the university. No Greek is taught, Latin is the subject of much dispute, and the whole level of the instruction given is very low. State scholarships have been suppressed, but a private association has founded eighty. There are 2,626 pupils at the schools, 927 of whom are at Buenos Ayres. In the capital there is a large foreign element in the faculties employed in secondary schools. The administration of the schools is in the hands of the national council, assisted by three superintendents.

The plan upon which the two universities are organized is uniform ; there are only three faculties-law and social science, medicine, and physical and natural sciences. There is, however, a distinct feeling in favor of the establishment of a faculty of letters. The age of entry is 18, and the course is one of six years. Women are allowed to attend lectures in the faculty of medicine-one, in fact, recently took her M. D. with honors. (Lond. Jl. of Ed.)

Austria.-The latest data concerning the Austrian elementary schools are published by the Austrian statistical bureau. Austria had, in 1890, $3.335,674$ pupils of school age (6 to 14 years); of these 21,895 could not attend school owing to mental or physical incapacity, while 365,593 normally endowed children were successfully withheld from being enrolled in school. The enforcement of the compulsory-attendance law made 185,464 judicial actions necessary; of these 68,590 were sentences imposing imprisonment of a few hours or days, while 116,874 imposed fines. Eighty-eight per cent of all lower schools in Austria proper, that is, the western half of Austria-Hungary, are for both sexes; 6.8 per cent were for boys only ; 5.2 per cent for girls only ; 12,465 schools were open all day ; 3,210 were half-day schools, and 1,239 were partly half and partly whole-day schools. The number of male teachers was 44,838 ; that of female teachers, 13 ,913. The average number of pupils to the teacher was $72 \frac{1}{2}$. Eighty-three and
seven-tenths of the teachers were normal graduates, 11 per cent had only a diploma, and 5.3 per cent had not yet acquired their diploma. Of the 16,688 olementary schools more than one-half, or 8,400 , were ungraded, 3,916 were divided into classes of two grades, and the rest up to six, seven, and eight grades.

Belgium.-The School Guardian (English), says of Belgian primary schools: "The buildings are two stories high, having a gallery on the first floor running round the quadrangle. Each class has its own separate room, lofty, well lighted, and ventilated, but only from one side. The furniture consists of small tables and benches, each sufficient for two or three scholars, and all facing the slightly raised platiorm for the teacher's desk. The tables have slates fixed horizontally in them. Blackboards are carried around the walls with compartments for the use of each scholar, on which he copies with chalk the sums or geometrical figures or sentences dictated to the class. This is done with a view to enabling the master or mistress to see at a glance the work of each without having to pass round the room. In this way, too, the children have the advantage of a change of posture and find relief from the monotony of the lesson. The teaching is in all cases simultaneous. As no reading is taught in the 'Jardins d'Enfants' or Infants' Schools, the lowest classes hare to learn the letters and their simplest combinations. These they enunciate together, and great pains are taken to make them give each letter and syllable its full and correct sound. Writing is learned from a copy set on the blackboard. A round, vertical hand is taught without any distinction botween the up and down strokes. Elementary drawing is obligatory in all the primary schools, and is taught by the ordinary teachers, who have no difficulty in teaching it, having practiced it in the normal schools as well as previously in their own school days. Some ordinary object is put before the class or drawn on the blackboard.

Botivia.-Bolivia has four universities. The following figures are giren for 1888: Primary schools, 506 , with 707 teachers, and 24,583 pupils, of whom 8,822 are girls; secondary schools and colleges, 22 , with 2,234 pupils; 774 students of law, medicine, and theology, with 55 professors in the universities. The Government's contribution to public primary schools in 1883 was 43,900 bolivianos.

Bulgaria.-In 1890 Bulgaria had 3,844 elementary schools, with 129,777 boys, and $42,206 \mathrm{girls}$ as pupils. The total number of boys of school age is 275,756 ; of girls, 261,968 . For education the state grants a yearly subvention of $2,000,-$ 000 lev . Education is free and nominally obligatory for a period of four years. About 81 per cent of the population can not read or write. There is a university at Sofia, with gymnasia in the principal towns, including four for girls, besides several Iower middle-class schools. There is a free public library at Sofia. (Statesman's Yearbook.)

Ceylon.-The Buddists of Ceylon have taken a new departure. Hitherto their energy had been directed towards the welfare of the boys, for whom no less than forty schools had been opened within recent years under the auspices of the Theosophical Society. But it had been long ago pointed out by Col. Olcott that the Sinhalese girls should have a school of their own, where they might be brought up in harmony with their religious and national instincts. This idea was zealously worked out by a devoted Buddhistlady, Mrs. Weerakoon, and a band of her countrywomen, who, with praiseworthy activity, organized the Woman's Educational Society, now numbering over 1,800 members. Within one year this society opened four girls' schools-the Blavatsky school at Wellewatte, with about 100 children in daily attendance, and the girls' schools at Kandy, Gampola, and Panedura. (Lond. Ed. Times.)

China.-Education of a certain type is very general, but still there are rast masses of adult countrymen in China who can neither read nor write. There is a special literary, or lettered class who alone know the literature of their country, to the study of which they devote their lives. Yearly examinations are held for literary degrees and honors, which are necessary as a passport to the public service; and in 1887, for the first time, mathematics was admitted with the Chinese classics among subjects of the examinations. Recently, Western literature and works of science have been introduced in translations, and schools for the propagation of Western science and literature are continually on the increase. The principal educational institution for the purpose is the "Tung Wen Kwan," or College o" Foreign Knowledge at Peking, a Government institution, where the English, French, German and Russian languages, and mathematies, astronomy, meteorology, chemistry, natural history, physiology, anatomy, and Western literature are taughtby European and American professors, while the Chinese education of the pupils is intrusted to Chinese teachers. There are besides several colleges under the control of some of the numerous

Roman Catholic and Protestant missionary bodies at Shanghai and other parts where the English languages and lower branches of Western science only for the subjects of study. The Chinese Government has of late years established naval and military colleges and torpedo schools in connection with the different arseanals at Tientsin, Shanghai and Foochow in which foreign instructors are engaged to teach such young Chinese as intend to make their career in the army and navy off their country, Western modes of warfare, beside Western languages and literature. The Clinese newspapers have for several years flourished at Shanghai, and the success they have achieved has led to the establishment of others at some of the other treaty ports. (Statesman's Yearbook.)

Colombia.-In Colombia the religion of the nation is Roman Catholicism, other forms of religion being permitted, so long as their exercises are "not contrary to Christian morals, nor to the law." There are two universities and numerous colleges and special technical schools in the Republic. In 1839 there were 14 normal schools with 393 students, and 1,734 primary schools with 92,794 pupils. Primary education is gratuitous but not compulsory.
Costa Rica.-Education in Costa Rica is compulsory and free. In 1890 there were 300 primary schools with 15,000 pupils, besides 90 private schools with 2,500 pupils. In $188 \pm$ the number of children between 7 and 14 years of age was 27,245 . In the budget for 1889-'90, $\$ 350,000$ were devoted to education.

Denmaik.-Elementary education is widely diffused in Denmark, the attendance at school being obligatory from the age of 7 to 14 . Education is afforded gratuitously in the public schools to children whose parents can not afford to pay for their teaching. The University of Copenhagen has about 1,300 students. Connected with the university is a polytechnic institution with 20 teachers and 200 students. Between the university and the elementary schools there are 13 public gymnasia or high schools, in the principal towns in the Kingdom, which afford a "classical "education, and 27 modern high schools. There are five teachers' training colleges. Instruction at the public expense is given in parochial schools spread all over the country, to the number, according to the latest official statistics, of 2,940, namely, 28 in Copenhagen, 132 in the towns of Denmark, and 2,780 in the rural districts; with 231,940 pupils in all, or 123 per thousand of population. (Statesman's Yearbook.)

Egypt.-In a recent work on Egyptian education (" L'Instruction Publique en Egypte," by Yacoub Artin Pacha) is the following account of education that is pursued by the Egyptians-in iact, the education which has been in rogue with them for many centuries:

Reading and writing are the first steps taken by the child, who is at the same time set to learn a portion of the Koran by heart. As soon as he knows his letters and can read syllables he reads and writes the part of the "Koran" committed to memory, and so on, until the Holy Book is finished, a task generally taking 2 or 3 years. These exercises of the memory are carefully graduated according to the child's age and ability. Then comes the study of grammar, the rules being set in rhyme, a plan for facilitating the work of the pupil not confined to the Mussulman world. The study of grammar, logic, rhetoric, etc., takes 3 or 4 years. Then follow 8 or 10 years of commentaries on the "Koran," and after this period is completed the boy, who began at 6 or 8 , is now, at 20 or 22, a full-blown moindarris (professor) or cheikh (doctor). Most children leave school at 10 or 12 to take up a trade; those who are intended for a profession or for business leave after the grammar course ; only a few remain to pursue the higher course in religion and law. Of the latter some become kadi (judges) or mufti (lawyers); the rest become teachers. The ideal of the founders of the " "Tiversities had been to preserve the language of the elect, the language of the "Koran."

Arabic was reserved as the language of religion, tradition, and law. Beyond these three subjects all other instruction was intrusted to foreigners, with the single exception of mathematics, which was in the hands of the Copts, who had distinguished themselves from early times as financiers. Mehemet Ali was the first to attempt to introduce European method into Egyptian pedagogy. In 1816 he sent a body of young Mamelukes to England and Italy to learn engineering, etc., and in 1825 he founded a school of medicine, restricted to Egyptian students. From 1826 to 1834 large numbers of young men were sent to France to complete their studies; and to the general spread of European culture, resulting from these wise measures of Mehemet Ali, Egypt owes her 50 primary and secondary and her 16 technical schools. A council of public instruction was instituted in 1836, but for 30 years the conservative influence of El Azhar was too strong, and progress was infinitesimal. Ismail Pacha undertook a general reorganization
of the educational system of the country, and founded schools of law, language, science, and art, and a normal school. Since 1885 progress has been as rapid as could be expected, as will be seen from the tables at the end of this volume.

A modus vivendi has been established between the state schools and the university and the divergence between the two systems is being gradually narrowed down. Artin Pacha looks forward, "patient in his impatience," to see the seed sown by the great political and intellectual regenerator of Egypt bearing its fruits; nor does he hesitate to express his belief that the "ancient and illustrious university mosque of El Azhar, animated by the scientific spiritwhich is urging us forward, will take its place by the side of its younger and more justly celebrated sisters, the universities of modern Europe, who have outstripped us in the past." The education of women is: First, religion, given by chiekihs or women teachers; and, second, domestic, i.e., teaching, housekeeping, manners, embroidery, singing, and so on. Dancing, of course, is not a custom of respectable orientals. The age at which girls are married, viz, between 12 and 16 , is a serious impediment to a complete system of instruction. Cariously enough, even the limited instruction given at present is partly due to the establishment of a midwifery school in 1836 ; the sages femmes were the partially innocent cause of the creation of a thirst for knowledge; at any rate they taught the elementary principles of hygiene in countless native families and this widening of the horizon was productive of immediate good.

France.-M. Antoine Albalat, in an article in the Nouvelle Revue, draws a most harrowing picture of the results of the purely theoretical educational system, which, until a few years ago, was looked upon as a panacea of all evils. France, nowadays, he says, is nothing but a large civil-service employment agency. And the struggle for life with us means the race for government and other posts. Thanks to political equality and free education, which have reduced all to a dead level, the French nation, once so fertile in ideas and so original, threatens to become nothing but a nation of civil servants and pedagogues. Just count the number of place seekers! The prefect of the department of the Seine published a few months ago the following list of racancies and applicants in that department: Junior clerks, 4 vacancies, 4,398 applicants; male teachers, 42 vacancies, 7,139 applicants; drawing masters, 3 vacancies, 147 applicants; customhouse clerks, 165 vacancies, 2,773 applicants; surveyors, 1 vacancy, 1,338 applicants. The civil service, the post-office, the telegraph office, and the schools have all greatly increased their teaching force, and they are at present the bane of our country. France may be roughly divided into those who hold positions and those who seek them. The vast majority of Frenchmen have only one dream, to be kept by the state, to live on the public taxes. Parents have no other ambition for their children-the civil servant, the young man who draws Government pay, is their ideal son-in-law.

Even the sons of the soil are streaming into the towns, be it only to sit behind the pay desk. But the women are more to be pitied. In default of marriage, they are seeking work, especially as teachers. But how soon they are undeceived! Read the bitter plaints with which they continually fill the ears of the minister of education. The state promised them a peaceable, respectable iife, with a secure income; and thousands of them are without positions, on the verge of despair, and fall an easy prey to temptation. No one will ever know the number of these victims of arithmetic and French history that are swallowed up by the great gulf of vice. "I know nothing more sad than this," exclaims M. Albalat. Here is the result of our theoretical, Utopian, and modern education! We talk of a fourth estate. There is a fifth estate, namely, the women who have to earn theirliving by their brains. (Lond. Jl. of Ed.)

Germany.-Prof. Weber, of Steglitz, near Berlin, who acted for some time as assistant principal in English schools, answers the question: "Do English schools deserve to be considered models for German schools?" in the negative.
"Any observant foreigner who has lived in England," says he, "even if only for a short time, must have been struck with the great self-consciousness of the Englishman, which quality is already developed to a high degree in the little boy. The Englishman is proud of the language of his country, of its riches, and of its institutions. As a consequence it is a common fault with him to depreciate other nations and to overrate himself and his own people. To thisnational selfreliance he adds a great love of individual liberty and self-dependence. He will not under any circumstances be deprived of them, either by the state or by the church, and he hates all bureaucratic ways, or, as he calls it, 'red-tape business.' Then he possesses a profound respect for the law and for the existing institutions of the state, as well as in general a true sense of religion, which sense is
greatly fostered and enhanced byhisfamily life. Moreover, we find in the Englishman the singular inclination to ask first of allineverything he undertakes: 'Of what use is it?' 'Englishmen can not take anything easy,' says Karl Hildebrand in 'Briefe aus England,' 'neither can they take anything idealistically. They transpose everything at once into the practical. English idealism is always practical, in contradistinction to the German, which manifests itself in artistic contemplation.' To this practical sense the English partly owe their supremacy upon the seas, and we Germans, who but a short time since began to acquire colonies, may learn very much in this respect from the practical Englishman.
"These different peculiarities of the English character are distinctly expressed in the English schools; they exert a mutual influence upon each other and are mutually dependent upon one another.
"As the whole life of the Englishman is chiefiy based on the principle of utility, so also in his school life he places this principle in the first rank.
"The average Englishman does not, as a rule, strive after knowledge if he does not see his way to make practical use of it; in other words, he does not pursue knowledge for her own sake. This principle is very dangerous and pernicious to the intellectual progress of a people, and it is not to be wondered that a notion or a true idea of the elements of science is unknown to the great masses.
"'For the language, literature, and the history of other nations,' Mr Brennecke rightly says, 'for efforts in art which adorn and cheer the inner life, the average Englishman, deducting, of course, amateurs, the upper 10,000, and specialists, have no time in life,' because, I add, he does not understand nor appreciate them. We Germans are, however, only too easily inclined to lay too much stress upon the scientific side of things, and in so doing to forgetoften the practical use of the results we obtain.
'The English system cares little about the acquirement of manifold knowledge by the pupils and the scientific treatment of the subjects, butit tries, before all, to fulfill two tasks: Firstly, to develop the physique of the pupil, to make him in all respects healthy and capable of resistance, and to harden him against physical and moral injury. This having been accomplished, the teacher.s aim is to develop in the vigorous body an independent, firm character; he will accustom the boys to absolute truth, candor, and resoluteness; they must quickly and independently find the right thing and learn to execute. In aword, the English master educates; the German rather instructs.
"A great difference between English and German school arrangements consists in this: The English Government pays no attention to the higher and middle schools. An organization and superintendence of the schools by the state, as in Germany, does not exist; these schools are either a private commercial speculation or they have been founded by old and often very rich endowments or by corporations. The Englishman is far too independent to allow the state the right of prescribing for him the education of his children. But there are already reasonable Englishmen enough who believe that a firm organization of all schools by the state can do more for education in general than the doubtful trade of private schools, and they demand the same institution as in Germany. In Scotland state superintendence was introduced in 1885.
"Thus the state can give no prerogatives to schools, and that at least is very good, for the prerogatives given to our schools do a great deal of harm in hindering their free development.
"I will not, however, forget to mention that a certain supervision of schools is exercised in England by the press and literature, and the power of the press over the masses is much greater in England than with us.
"A certain uniformity in scholastic matters between th \geqslant more superior public and even private schools is to be seen in the local examinations, which are held annually by the universities.
"Some secondary schools also submit voluntarily erery year to regular examinations, for their own credit's sake, 'so as to give the world confidence in them.' But in comparison to a firm organization these examinations can be but a miserable makeshift. Mr. Raydt informs us that for some time there have been held regular meetings of school principals, which might, indeed, have a good influence upon the formation of a uniform plan of teaching; but why are the debates of these meetings not published, as in Prussia? By these means they would become of common service to every teacher. In this regavd I can not sufficiently praise the reports of the school inspectors on the elementary schools inspected by them in their districts. These reports are printed in the Parliamentary papers and contain many interesting and useful points.
'It is the German elementary school work by which the English should learn how salutary is the supervision of schools by the state, and how they should especially reform their middle-class or secondary schools."
Guatemala.-Primary education in Guatemalais obligatory, maintained by the state, free and secular. The sum spent on education in 188i-88 (ending June 30) was $\$ 525,625$, of which $\$ 253,927$ were for primary education. In 1887° there were 93,627 children of school age. At the end of 1889 there were, according to official statements, 1,327 primary schools of all kinds, attended by 47,907 pupils, and 66 higher schools, with 3,677 pupils. There were in addition 7 high and normal schools, with 1,185 pupils (315 females).
Montenegro.-Schools for elementary education in Montenegro are supported by Government; education is compulsory and free ; there are (1889) T0 elementary schools, with 3,000 male and 300 female püpils. All males under the age of 25 years are supposed to be able to read and write. There is a theological saminary and a gymnasium or college for boys at Cettinje, and a girls' high school maintained at the charge of the Empress of Russia.

Havaii.-The Kingdom of Hawaii (comprising eight large productive and thirteen small desolate islands), with 80,000 inhabitants, is of special importance for commercial intercourse between North America and East Asia. It is well known that the recently deceased King Kalakaua, in 1881, made an extensive tour through America and Europe. European institutions and therewith Christianity were introduced in Hawaii at the beginning of our century and special attention was given to education. The United States exert the greatest influence upon the administration of this Kingdom and covertly aim at the protectorate over the Kingdom. Its annexation on the part of the United States is only a question of time.
From the main island public education was diffused over the whole Kingdom in a comparatively short time. At the beginning of the second decade of our century the chieftain and his most distinguished subjects diligently studied reading and writing. This awakened everywhere the desire tolearn these wonderful arts. The most able men among the adult students were sent as teachers to all parts of the country, and the throng to their schools was so great that in 1827 there were 52,000 persons studying in 900 schools, or more than half the number of the inhabitants were eagerly engaged in acquiring the elements of learning. In 1832 the number of natives who could read amounted to 32,000 , of whom nearly all were also able to write. At present there is in operation in Lahainaluna a normal school for the training of preachers and teachers, who alternately derote themselves to intellectual and physical work, as the students earn their living by the tilling of a farm belonging to the institution. Manual work takes a prominent place in all schools of the little Kingdom. Education is obligatory for both sexes from 6 to 15 years of age (formerly 4 to 14). A peculiar feature is the regulation in force that anybody who can not read or write is prohibited from obtaining public office and also forbidden to marry.

The Kingdom is divided into twenty-three school districts, each of which is under the supervision of an inspector. This official superintends the management of the schools, both the instruction and the buildings and sites. He is required to furnish quarterly a report to the central authority. The school year has forty-one school weeks. The daily sessions are from 9 to 2 oclock, with one or two intermissions. Sunday and Saturday are holidays. There are different classes of schools :

1. Primary schools (common schools), where the entire instruction is given in the Hawaiian language.
2. English schools, where the English language is the means of instruction.
3. Private schools, in which both languages are used.

The school at Lihue, on the island of Hawaii, in which German and English are taught, belongs to the third class and is attended by children of German workingmen only. For children of the aristocracy there is a kind of secondary school that took its name from the street in which it is situated, "Fort Street School." Protestant missionaries established near Honolulu, on the island of Qahu, the principal city of the country, the "Qahu College," after the pattern of French schools. Catholic missionaries also established schools whose textkooks are, with few exceptions, printed at Honolulu in the native language.

The direction of the entire educational system has been assigned to a "bureau" or "board," consisting of five members, of which three are natives who were educated in the country. The president, at present Mr. Bishop, was formerlysecretary of the state department: previous to that, a member of the house of nobles and president of the legislative body. This bureau appoints the teachers and superintends the expenditure of the money appropriated by the representatives of the
people. It nominates a general suparintendent for the whole educational system, who visits each school of the country twice a year to examine the pupils and the condition of the school. He reports to the bureau or board. In order to fulfill his duties the general superintendent is obliged every year to travel 800 miles on horseback and 1,600 miles by water. During the school year 1838-89, there were in the Kingdom 179 schools, 63 primary, 69 English and 47 private schools, with 8,760 pupils (4,952 boys, 3,818 girls), with a teaching force of 334 members ($177 \mathrm{men}, 157$ women). At the last exposition in Paris, in 1889, there was on exhibition pupils' work from Hawaii, nearly all of which was expressed in good Enclish and in pleasing form.
Tho educational system in Hawaii furnishes proof of how much one can do if stimulated by earnestness of intention. Scarcely sixty years have passed since the first pioneers of public education-commenced their work in Hawaii, and already its public school system can compare with that of Europe.
The state, however, has easy sailing because it has the schools, and no obstacles are raised by the church, since religious societies and the clergy are excluded from the management of school affairs. (Freie päd Blätter.)

Hungary. - Count Albion Casky, the minister of public instruction in Hungary, has recently issued in the German language a synopsis of his annual report, in which he says that he considers processional supervision and a thoroughly trained corps of teachers the most important factors of progress in any school system. So far as figures can speak, certainly Hungary has made rapid progress during the last twenty years. The report shows acomparison between the state of affairs in 1899 and 1889 , from which we cull the following items:
I. Elementary schools.-In 1889, 2,015,612 children attended school, while in 1869 only $1,152,110$. In comparison with the number of children of school age between 1869 and 1889, an increase of attendance from 50.42 per cent to 80.65 per cent is recorded. While in 18691,598 communities were without any schools, that number had decreased to 244 in 1889. The number of schools in 1869 was 13,798 ; in 1899 it was 16,702 . In 1869 the number of teachers was 17,792, while in 1889 it had increased to 24,645 . The expenditures for maintaining elementary schools in 1869 were only $\$ 1,342,363$, but in 1889 they amounted to $\$ 5,396,777$. While in 1869 the state's subrention to elementary schools was only $\$ 14,556$, it was $\$ 6,505,315$ in 1889 . The great increase recorded above is found only in those portions of the Kingdom inhabited by people of the Hungarian, German, and Ruthenian tongues. The attendance of Roumanian, Servian, and Slavakish children is in a rather backward condition.
II. Secondary schools.-The Kingdom has 180 secondary schools; that is, 151 gymnasia, or classical colleges, and 29 realschulen, or modern colleges. One hundred and thirteen are complete in their organization, while sixty-seven had not quite completed their organization, lacking the senior classes. The classical schools were attended by 36,367 students, or 83.3 per cent; the modern by 7,303 students, or 16.7 per cent. The minister remarks that the attendance in modern schools is increasing faster than in the classical schools.
III. Superior schools.-Concerning universities, technical and other superior institutions, the minister reports that the candidates for the profession of teaching and students of technical, agricultural, and military schools are increasing in number faster than those of the universities. In the universities he notices that the law faculties and academies are still overcrowded, as in former years, while the number of candidates for theology, medicine, forestry, and mining is decreasing. An interesting feature of the superior education in Hungary is this: The examination for graduation must be exceptionally rigorous, for of 877 candidates for the legal profession only 521 (that is, $59 \frac{1}{2}$ per cent) passed the examination; of 297 medical students, only 207 (or 69 per cent); of 140 students of the philosophic faculty, only 38 (or 27 per cent); of 210 students of the Polytechnicum, only 80 (or 38 per cent) passed.
Italy.-A new sohool for Italy is now under the consideration of the council of public instruction, and its provisions are foreshadowed in the "New Educator" of Rome. It is proposed to transfer the charge of the infant schools from the minister of the interior to the minister of instruction, and the age of compulsory attendance is raised to twelve years. The appointment of teachers is left in the hands of the communal boards. Teachers under 21 years of age will only be prorisionally appointed; on coming of age their status will be improved, and at the age of 24 they will be recognized as fully responsible teachers. Thenceforth they will be removable only for grave offenses specified in the bill; their dismissal will have to be approved by the provincial board of education, and an appeal to the minister will probably be allowed.

School-inspector Gen. Pisani has recently published a book on the Italian schools which is designed to show what progress public education has madeduring recent years in Italy. The number of elementary pupils in 1889-90 was $2,102,615$ (or $1,094,467$ boys and $1,008,148$ girls); this is an increase of 55,000 over the previous year. Of the sum total, $1,966,988$ pupils were in public schools, 135,627 in private schools. The number of classes in the public schools was 78,675 , hence the average number of pupils per class room was 25 . The private schools had 8,791 classes, which is an average of 15 pupils per class room. The number of teachers, however, is not equal to the number of classes; it is only 41,336 for public and 5,063 for private schools. The number of teachers shows an increase of 1,500 over the previous year. It is evident that most of the teachers teach two classes a day. The hygienic conditions of the schools and the school furniture are said to be anything but satisfactory. The teachers are not well prepared for their profession and their standing in society is very inferior. The communal authorities are said to be irregular in paying their teachers. A law is being prepared which will protect the teachers from arbitrary action on the part of the local authorities, and securing the payment of a minimum salary by the state.

Japan.-The house of representatives in the new diet of Japan is extremely anxious to cut down the budget, and a conflict is imminent between it and the government on this subject. Its proposals are sweeping, and if carried out would cause no little consternation in the education department. The grant for schools would be reduced from $\$ 800,000$ to about half that sum. Some five years since the late Viscount Mori, who perished by an assassin's knife on the day of the declaration of the constitution, just two years ago, established five great secondary schools in different centers throughout the Empire, to act as feeders for the university and to serve as a check on the growing congestion of students in the capital. These institutions are specially threatened by the parliamentary reformers, many of whom hold Spencerian views and dislike government control in education. Generally speaking, this is a critical time for education in Japan. The rising generation is growing up without those habits of instinctive obedience and reverence which characterized the previous civilization, and the capable teachers are all young and comparatively untried men. The question how to preserve sound morality and discipline in the schools is causing grave concern at headquarters. There is a conservative government at full flow just now; the demand for foreigners as teachers is at ebb, the schools in most cases preferring Japanese who can help them to translate. Foreigners have never been so unpopular since the great revolution.

There is a troublesome class in the capital known as soshi, a word which is difficult to translate so as to convey an adequate meaning. They are not students, though so described sometimes, but rather political unattached meddlers who wouid right all wrongs by use of the sword, sticks, and bombs. They profess to be intense patriots, and are certainly in many cases reckless of their lives and most deliberate in carrying out their plans. The only school in which anything of the soshi spirit has appeared is the secondary school of Tokio, some of the students in which have once or twice disgraced themselves. (London Journal of Education.)

Mexico.-The Pædagogium (Dresden and Vienna) of March, 1891, contains an interesting account of recent educational movements in our neighbor republic, written by a resident, whose name is withheld by the editor, Dr. F . Dittes.

For a number of years both the central government, as well as the officials of the separate states, have made praiseworthy efforts to promots public instruction, and particularly to bring the education of the masses to a level worthy our century, and by doing so to lift the degree of culture of the nation in morals, science, and material welfare, so that Mexico might occupy a place among the civilized nations of the world corresponding to its advantageous natural conditions and resources.

However, these efforts and the willingness to make grand sacrifices have not been crowned with the success which one would justly be entitled to expect, if the enormous sums are considered that were expended for the purpose.
The main causes of this lamentable fact are, the want of well-trained professional teachers; frequent misunderstanding of educational theories taken from foreign pedagogical works; the blind acceptation or rejection of newideas, methods, and theories in accordance with the first impression; finally, the chaosarising from the fact that every state, however small it may be, and although all are subject to the same central government, has its own school legislation. Hence, in the preparation of teachers in the studies of elementary and secondary
schools there is no uniformity in the curricula, and from year to year, even within the course of one school year, changes are made which prolong or shorten the course. The student is obliged, under such circumstances, to lose time and means in order to adjust himself to the same conditions in case he moves across the border of his little state. More frequently he loses confidence in science and its teachers. The same chaos prevails in the philosophic fundamental principles according to which science is taught in the higher seats of learning.

While here pedagogy is taught after Herbert Spencer and psychology a priori after Jaime Balmes, at another place psychology is taught after Spencer and logic after Tiberghien; here flourishes the positivism of August Compte side by side with the rationalism of Krause and Ahrens, and again at another place we find the philosophy of St. Thomas of Aquino luxuriating under the shadow of Charles Darwin.

Orange Free State.-The system of education in Orange Free State is national. Small grants are also made to the Episcopal and Roman Catholic Churches. The government schools are managed by elected local boards, which choose the teachers, who are appointed by the President if he is satisfied with their qualifications. Education is not compulsory nor free, except for very poor children. In 1890, 17.000 livres was allotted to education, being a portion of interest on a capital of 200,000 livres set apart by the "Volkssaad" for this purpose. In 1889 there were 49 government schools, inclusive of the two higher schools and the infant school at Bloemfontein, with 2,139 pupils and 74 teachers. Grants are made to private schools on certain conditions. In 1889 there were 14 such schools with 211 pupils. The Grey College, the highest school for boys, prepares candidates for the matriculation of the Cape University. There is a similar school for girls. (Statesman's Yearbook.)

Ecuador.-The religion of the republic of Ecuador, according to the constitution, is the Roman Catholic, to the exclusion of every other. Primary education is gratuitous and obligatory. There is a university at Quito and university bodies at Cuenca and Guyaquil. There are 37 secondary schools and 856 primary schools, with, according to official statistics, about 60,000 pupils. There is a scientific institution in Quito with 11 professors and 50 students. There are commercial, technical schools, and military schools.

Persia.-In Persia there are a greatnumber of colleges (medresseh) supported by public funds, in which students are instructed in religion and Persian and Arabic literature, as well as in a certain amount of scientific knowledge, and many schools for children, while private tutors are very common, being employed by all families who have the means. A polytechnic school with a number of European professors, opened in Teherân forty years ago, has done much towards introducing the knowledge of Western languages and science into Persia. There are also military colleges at Teherân and Tabriz; but the bulk of the population are taught only to read the Koran.

Peru.-In Peru elementary education is compulsory for both sexes, and is free in the public schools that are maintained by-the municipalities. High schools are maintained by the government in the capitals of the departments, and in some provinces pupils pay a moderate fee. There is in Lima a central university called "Universidad de San Marcos," the most ancient in America. Its charter was granted by the Emperor, Carlos V. It has faculties of jurisprudence, medicine, rolitical science, theology, and applied science. Lima possesses a school of mines and civil engineering, created in 1874, with good collections and laboratories. There are in the capital and in some of the principal towns private high schools under the direction of English, German, and Italian teachers. Lima has also a public library with a rich collection, besides the one of the university and school of mines. There are two minor universities at Cuzco and Arequipa. (Statesman's Yearbook.)

Portugal. - In Portugal the superintendence of public instruction is under the management of a superior council of education at the head of which is the minister of the interior. Public education is entirely free from the supervision and control of the church. By a law enacted in 1844, it is compulsory for parents to send their children to a place of public instruction; but this prescription is far from being enforced, and only a very small number of children of the middle and lower classes really attend school. According to official returns of the total population at the close of 1878 the number of illiterate inhabitants in Portugal and its islands is stated to be $3,751,774$, or 82 per cent of the total population, including, however, young children. The total school population in 1885 was $332,-$ 281. In the year 1887 there were 3,739 public primary schools with 179,089 pupils, and 1,608 private primary schools with 60,725 pupils. The total day school at-
tendance oî 329,800 gave an average of 50.9 per cent per 1,000 inhabitants. For secondary instruction there were 22 lyceums with 215 teachers; 74 private schonls and a royal military college with 272 students. For higher instruction there are (1887) the following schools and colleges: The University of Coimbra, founded in 1290, with faculties of law, medicine, mathematics, and philosophy, 774 students; the polytechnic schools of Lisbon, and Oporto, 354 students; the medical schools at Lisbon, Oporto, and Funchal, 286 students; a military and a naval school at Lisbon, an agricultural and veterinary institute at Lisbon, and a higher school of literature. For special instruction there are: The industrial and commercial institutes at Lisbon and Oporto with (1887) 1,222 pupils; 14 other industrial schools with 1,078 pupils, 4 artillery and 2 naval schools (corvettes) With together 314 pupils; and 15 teachers' seminaries with 3,838 students. The clergy are educated in 22 establishments, where most of them receive gratuitous instruction. Schools of agriculture are being established in various parts of the country.

The expenditure of the ministry of public instruction, according to the budget of $1890-91$, is $1,102,283$ milreis, exclusive of 643,223 milreis to be expended through other ministries. (Statesman's Yearbook.)

Russia.-The Government is making strong efforts at Russifying the Grand Duchy of Finland. All the secondary schools have received a new course of study in which the Russia, language predominates. Thus the Baltic provinces with their almost exclusive German population and Finland with its Swedish population are to be made Russian provinces in fact as they are now in name. (Paed. Zte.)
Roumania.-In Roumania edueation is free and compulsory "wherever there are schools," but is still in a very backward condition. There are about 3,000 primary schools with 130,000 pupils, or about 2 per cent of the population (in Great Britain the proportion is 12.3 per cent). There are 8 normal schools with 800 pupils; $5 \frac{1}{4}$ high schools with 8,000 pupils; 2 universities (Bucharest and Jassy) with faculties in law, philosophy, science, and medicine, and having about 100 professors and teachers and 800 students.

Salvador.-Education is free and obligatory in Salvador. In 1888 there were 732 primary schools with 27,000 pupils; 18 higher schools (including 2 normal and 1 polytechnic school) with 1,293 pupils, and a national university with faculties of jurisprudence, medicine, natural sciences, and engineering, attended by 180 students.
In the capital is a national library and museum, and in the republic 13 newspapers are published.

Transuad.-There are 10 English schools in Pretoria, and one or more in each of the other towns. According to the report of the acting superintendent of education for the year 1888 , the sum of $£ 24,987$ was spent for the education of 5,475 pupils. In 1889 there were 28 village schools and 196 ward schools, besides a gymnasium with 173 pupils at Pretoria. The establishment of a university is contemplated and $£ 20,000$ were voted for the purpose by the Volksraad.
Santo Domingo.-Primary instruction in Santo Doningo is gratuitous and obligatory, being supported by the communes and by central governments. The public or state schools are, primary, superior, technical schools, normal schools, and a professional school with the character of a university. On December 31, 1884, when the last, school census was taken, there were 201 municipal schools for primary instruction, with 7,708 pupils. It is estimated that there are now 300 schools with about 10,000 pupils.
There are soveral literary societies in the capital and other towns, and in the republic there are published about forty newspapers. (Statesman's Yearbook.)

17.-Pensions.

Scotland.-Glasgow has a scheme for the pensioning of teachers which it will be interesting for American leaders to study. The actuary has worked out the details with great care. It applies to all employés of the school board. There are six classes-headmasters, assistant male teachers, assistant female teachers, office staff, janitors, and compulsory officers. The first three classes only are considered in detail, and the assessments of salaries are made at the following rates: Headmasters, 8 per cent; assistant male teachers, 5 per cent, and assistant female teachers, $8 \frac{1}{2}$ percent, the total amount of the capital fund required to be found at present being $\$ 300,000$, or, including the other three classes, $\$ 350,000$. There were in June, 1889 , in the employment of the board 67 headmasters, ranging in age from 35 to 65 : the average scale of salary ranging from $\$ 1,250$ to $\$ 2,000$
per annum. Of assistant male teachers, there were 216 who drew salaries ranging from $\$ 300$ to $\$ 650$, and areraging $\$ 465$, and whose ages ranged from 20 to $59-$ only 6 , howerer, being above $\frac{1}{4} \frac{1}{2}$ years. The assistant female teachers numbered 335 , and the arerage scale of salary was from $\$ 250$ to $\$ 450$. Of these only 25 were orer 40 years of age, the largest class being that between 25 and 29 years. Although, as a general rule, the rate of salary increase. with age, that rule is not invariable. Among the female assistants the highest arerage salary is between the ages of 40 and 44 , in which class the average is $\$ 455$; and amongst male assistants the same class stands highest, with an average salary of \$635. (Schoolmaster.)
England.-"It is indisputable," says the Birmingham Daily Gazette, "that a large percentage of school masters and mistresses would not be able to put by eren a shilling a week without feeling the loss of it. In rillages the salaries of mistresses range from $\$ 1$ To to $\$ 300$ a year, and of masters from $\$ 200$ to $\$ 350$. It is by no means uncommon to find that on these earnings a man is keeping a wife and family, and, as is well known, it would be greatly to his lisadrantage not to keep up the appearance of being fairly well off. To compel these people to make provision for old age is only to increase their present difficulties, and if any such scheme was adopted which required a pension premium, its operation would hare to be limited to those cases in which fair salaries are paid. Take them altogether, teachers are not a particularly provident class, and considering that they are aware that old age and infirmity must disqualify them from performing their duties, it is remarkable that they so seldon think of the future and prepare to meet emergencies."
The leading exponent of the opinion of the Church of England has been turning to the subject of paying pensions to elementary teachers, and declares itself in faver of government interference. If one could "put back the clock" just 45 years to the time when licensed teachers were just being called in to being, it would be easy, in the opinion of many, to say that each licensed teacher should pay $\$ 10$ a year into a pension fund, to be met by a similar sum out of the Parliamentary grant, and thus secure a valuable sum, payable on death, should that event occur tefore the teacher has reached the age of 65 , and an income of $\$ 200$ a year forever afterward. And if some such rule had been adopted our English elementary teachers would now all of them be in the position of their fellowworkers in almost every continental European country, where, as Mr. Arnold testified, pension schemes for primary teachers are practically universal.
It is, of course, perfectly possible for Parliament (adds the Guardian) to enact such a rule in the case of ail persons who in future shall join the ranks of the teaching profession. But what in the mean while is to be done with the 43,500 existing teachers for whom no such rule was made when it was possible for them to observe it? In the interest of education as well as humanity we plead for an early consideration of this question. Teachers who go about their tasks with a feeling of security as to the future will do infinitely better in their trying work than those for whom the future is a blank, unrelieved by any prospect but that of a cheerless old age in the workhonse. If the state assumed the whole responsibility for finding pensions at the age of 65 (still further contends the Guardian) for every licensed teacher, inasmuch as with the present total of 43,500 teachers there would probably never be more than about 6,000 over 65 years of age, the whole cost of pensioning those persons of at $\$ 200$ a year would be less than a quarter of a million pounds. And what is a quarter of a million pounds (in this case $6,000 \times 200=\$ 1,200,000$) for the worn-out teachers by the side of the $£ 2,000,000$ a jear with which Parliament has just endowed the parents of elementary scholars?

18.-PSECHOLOGY.

Synopsis of "Hisiorical Sketch of the Idea of Apperception."-(1) Leibniz, who first used the term "apperception" gives it the significance of consciousness or distinct, conscious conceiving, coupled with remembrance, in contradistinction to weak perceptions which make impressions on the senses, butnotin consciousness : and again he defines it as an act of taking hold of the contents of a concept by arbitrary attention or as a reflexive cognition of our inner conditions, or, in short, as self-observation. Apperception with Leibniz has the characteristic of spontaneity, only dependent upon the determinative influence of the existingi.e., accumulated-contents of the soul.
(2) Kant finds that the sense impressions and inner emotional experiences ofier the raw formless material of cognitions. With the aid of imagination these cog-
nitions are fitted into forms of space and time already existing in the soul. But in order that they may obtain the significance of concepts, certain innate pure notions of the understanding are added so as to connect them. He assumes the existence of certain categories grouped under the heads of quantity, quality, relation, and modality. As he assumes two sources of knowledge, (1) sensual and emotional experience which offer the material, and (2) our self-active interior which molds the material into forms, so he assumes two faculties corresponding with these sources: (1) the faculty to receive impressions, (2) the faculty to call fcith representations. The former is termed "receptivity of the senses," the latter "spontaneity of the understanding." But previous to all this are, "a priori" the pure concepts of space and time, as well as the pure notions of the understanding which we add to the experience as something inborn. This spontaneous activity, which combines in self-consciousness the various impressions entering through the senses, is called "apperception." He also calls it "selfconsciousness."
(3) Herbart thinks that every perception entering consciousness through the senses acts upon the concepts present as an irritant or stimulant, pressing back everything contrary to it and attracting all similar concepts. All concepts in consciousness are grouped, and a new perception induces new conditions among them, i. e., fusing or arresting a fusion of concepts. It is like a light casting its shine all around upon the existing mass of concepts. The new percept in the center at first has a controlling influence, and attracts similar and repels dissimilar concepts. It joins those with which it establishes relation and is assimilated by them. At times it is so powerful thatit changes the complexion of the already accumulated group of concepts which it joins. This assimilation of the new matter by concepts already existing is apperception, and hence Hierbart finds no spontaneity in it. Even the categories (see Kant) are to him results of adjustment beiween the simple concepts and groups of related concepts. Searching for the conditions of apperception, he recognized and emphasized the importance of that residue or store of concepts acquired in the course of life; that is, its importance for the acquisition of new impressions and experiences. With that the definition of apperception as a resultant of gradual development of the mind is given.
(4) Lazarus claims that in the process of apperception two stages must be distinguished: that of action and reaction. The soul may react upon sense impressions in two ways: first, according to its original nature, then according to the nature acquired by its previous activity. In the former case the result is perception, in the latter apperception. Every perception is also an apperception; that is, a reaction of the soul filled more or less with the contents of former processes (concepts). The soul, as a sensible being, perceives according to its original nature, and it apperceives according to the elements acquired through earlier actions. An apperception is not added to complete a perception, but perception is formed under the assisting and essentially determinative influence of apperception. Hence, generally speaking, apperception may be considered as a reaction of the soul(filled with contents of former action) against outer and inner perception. He also calls a.ttention to the importance of unconscious perception, as well as that of feelings and tendencies, moods and volition.
(5) Steinthal sees in apperception a result rather than an astion. The new percept entering consciousness through the senses meets masses of concepts and thereby cognition is generated (that is apperception takes place). The new percept seeks, as it were, memory images of the same or similar objects of observation, being interpreted by them, measured, and put in rank and file, to speak figuratively. Like nther philosophers he lays much stress upon the emotional action of the soul in facilitating or checking these processes of degenerating, which by him are termed apperception. The soul's contents consisting of well articulated groups of concepts and series of thoughts react with different force. Some groups which are reproduced regularly, such as one's professional ideas, apperceive more readily. That group always apperceives which either absolutely, or only in the special case, proves the most powerful. A chief condition for the relative power of the concepts is interest which causes attention.
(6) Waitz speaks of residua, remainders, that is, after effects of perceptions in the soul by which all subsequent conditions of the soul are modified. In earliest childhood a confused mass caused by simultaneousness of different impressions, apperceives all separate sense impressions; but in later years no pure and isolated perception can take place because the interior is always preoccupied by a greater number of remainders of previous processes with which the new perception has to make terms.
(7) Wundt, using a simile, says: The concepts which at a given moment exist in consciousness differ with regard to their distinctness. This fact may be compared with a similar phenomenon observed in the act of seeing. The pictures of outer objects which are formed on the retina are mostdistinct at the point called the focus. Their clearness diminish ϵ s more and more the farther away they are from that point. Taking consciousness as an inner seeing it may be said that all concepts present at one moment are within the field of vision, while only one is in the focus of consciousness. The entrance of an image into the field of rision he defines as perception; its entrance into the point of vision (focus) as apperception, and to bring it to that point a definite psychical action is necessary, namely this: The image being present with others in consciousness as a percept is seized upon and brought to greater clearness by attention. But attention is an act of the will. Hence, apperception is an act of volition, a determinative acticn of the will upon the concepts. The will being an inborn faculty makes apperception a spontaneous action. He briefly defines apperception as conceiving activity of the mind, the sum and substance of our intellectual activity. (After Lange's "Apperception.")

19.-Religious and Moral Education.

Netherlands.-At the annual general meeting of elementary teachers, held this year at Sneek, in Friesland, the president made a reference to the state of primary education, as affected by the revision of the school law in 1859. The revised act provides for State aid to voluntary schools, or, as they are termed in Holland, schools with the Bible. At first the gravest fears were entertained by all the lovers of enlightenment and progress that the act would be interpreted in the narrowest sense, as has been the case with a somewhat similar cha ge in Belgium. But thus far such apprehensions have proved groundless. The president called the new act one of pacification. It had been honestly ard impartially administered by the government. There were, howerer, still some defects to be remedied, the principal of which was the abnormal size of the classes in some districts. When one teacher had charge of sixty children, as was too frequently the case, all talk of intelligent teaching was mere mockery. (Lond. Jl. of Ed.)

France.-Several voices are being raised against the nonreligious instruction by the public elementary schools. M. Keller, formerly member for Belfort, adjures the Catholics to come to the rescue, and open schools in opposition to the public schools. "The time is not far off," he writes, "when all the public scholls, like the high public offices, will be in the hands of the freemasons, and when the children will receive an education no longer neutral in its character, but downright bad in its tendency:" He advocates schools of a more pronounced religious character, in which religious instruction shall have the first place, and in which all the books, classics, prize books, and recitation books included, shall bear testimony on every page to God and his wonders. No science must be taught that is not illustrated from a religious point of view. Statistics, however, do not give such a desponding account of voluntary schools. In $18 \% 8$ there were 8,110 ; in the following year 12,426 , and at present there are about 13,000 Catholic voluntary schools. (Schoolmaster.).

At the instance of M. Causeret, a school inspector at Poitiers, the prefect of the district has lenthis sanction to a plan for encouraging the moral derelopment of children by establishing permanent records in the schools of notable acts of courage or devotion performed by pupils of the school. The proposal is universally approved. One teacher enlarges on the desire for praise existing among children, and considers that the plan will "inspire the pupils with the love of that which is good," while another affirms that " the best definition of virtue is a roll of the virtuous." The promoter has decided to enlarge the original scope of his plan so as to include not only present pupils, but those old pupils who have distinguished themselves by obtaining a medal or a diploma of honor for any act of courage or devotion. It is hoped by this means to "arouse in the children and develop all those civic virtues which make the strength of armies." The children will be stimulated against the time when they are called upon to serve "la patrie " by the example of those who, upon the battlefield have performed some striking deed or who have died for their country. In establishing the record of the brave the following order of procedure is laid down: (1) When the inspector reports a special act of bravery, the prefect should present a board and a book of honor to the school ; (2) the young hero's name is to be written on the board $a^{\text {nd }}$ the official record of his deed, after publication in the local official journal,
is to be duly inscribed in the book of honor; (3) the pupils who have secured a medal or diploma for an act of bravery, or whose military service may have entitled them to the cross of the Legion of Honor or a medal shall have their names inscribed on the board; (4) the names of old pupils who have perished on the battlefield shall be carefully preserved, and, if possible, engraved on a stone or marble tablet conspicuously placed in the schoolroom. (Lon. JJ. of Ed.)

Germany.-The Prussian minister of education has reversed the decision of a provisional council and declared that children of parents who profess no religious faith are not to be compelled to attend scripture lessons in schools, even when they receive no religious instruction in gymnastics at home. Moreover, such children are not to be refused admission to high schools and normal schools.

20.-Salaries.

England.-In England, out of 12,087 head masters, only 357 (less than 3 per cent) receive salaries of over $£ 300(\$ 1,500)$ per year; and of 16,308 head mistresses, only 449 (less than 2.8 per cent) receive over $£ 200(\$ 1,000)$. The average salary is $£ 134$ (about $\$ 670$) for head masters and $£ 82(\$ 420)$ for head mistresses.

Germany.-A new scale of salaries for teachers of elementary schools in Germany has been adopted by the city government of Bremen. In the primary schools of the city the salary of a principal will be hereafter from $\$ 875$ to $\$ 1,120$; that of teachers from $\$ 375$ to $\$ 750$; the higher salary mentioned to be reached after eighteen years' service. In the country districts of the city (it must be remembered the free city of Bremen, like Hamburg and Lubeck, own a limited territory outside of the city limits, analogous to Washington and the District of Columbia) the salaries of the principals are slightly less than in the city, but those of teachers are the same as those in the city. The principal of the normal school in Bremen has $\$ 1,500$, rising to $\$ 1,650$ in seven years, the professors begin with $\$ 650$ and reach $\$ 1,125$ after twelve years.

France.-The principals of boys' primary schools who formerly, that is, before the great revival of public education, had only from $\$ 500$ to $\$ 700$ annually, now have from $\$ 820$ to $\$ 1,060$. The principals of girls' primary, who formerly had from $\$ 160$ to $\$ 710$, now have $\$ 580$ to $\$ 910$. The male teachers, who had formerly had salaries ranging from $\$ 340$ to $\$ 480$, have now from $\$ 520$ to $\$ 720$. The female teachers, who had formerly salaries ranging from $\$ 340$ to $\$ 420$, now have from $\$ 380$ to $\$ 620$. The city appropriation for 1889 for current school expenses was $\$ 4,914,881$, while in 1871 it was only $\$ 1,920,179$; and during the years 1871 and 1887 the city paid $\$ 17,000,000$ for the erection and remodeling of school buildings. (Allg. Dr. Lztg.)

Spain.-The library of Madrid has published a general view of the delays in the payment of Spanish teachers. A large number have not seen for twenty years a third or a half of their salary. More than 25,000 teachers have not received their regular payments. In all, the sum due to teachers amounts to $3,055,033$ pecetas, or considerably over $\$ 700,000$. A teacher in Benjarin, Grenada, was owed 2,124 pecetas, but as he could not get any money he took to selling matches, while his wife and daughters sought positions as domestics. Many teachers have been obliged to receive public charity. Many have closed their schools, not having the streng th to continue their work. A teacher in Torviczon, to whom the commune owed 6,000 pecetas, was shut out of the schoolroom because the proprietor could not get his rent. While she was able she had paid the rent, aduing this to the amount due her from the Government. The report leaves one wondering if all the public spirit in Spain is confined to public school teachers. (Freie päd. Blätter.)
Germany.-The Statist. Jahrbuch für höhere Schulen states that normal school teachers are paid:

Nalaries for normal school teachers for 1890-91.

It must be remembered that these are not the salaries of teachers of primary and grammar schools, but of normal and training schools. In view of that fact, Americans are apt to consider these salaries pauper wages.

In Prussia the arerage salary in the country is $\$ 256$, in the cities $\$ 319$. To these cash salaries should be added 20 per cent for rent and fuel, which are free to teachers. They either live in dwellings especially built for the accommodation of teachers or in lieu of a dwelling a supplementary payment is made; hence the salaries may be said to range between $\$ 300$ and $\$ 370$. Principals of buildings, of course, get more, between $\$ 100$ and $\$ E 00$.
In Saxony the beginning is $\$ 190$. If the school has more than forty pupils the salary is raised progressively to $\$ 323$. Principals receive a minimum salary varying according to the population; thus in towns with less than 5,000 inhabitants, $\$ 450$; in towns of 5,000 to 10,000 inhabitants, $\$ 563$; in towns of more than 10,000 inhabitants, $\$ 675$.
In Wïrtemberg the scale of salaries rises from $\$ 225$ to $\$ 500$.
Hessia gives its teachers in the cities of less than 10,000 inhabitants from \$225 to $\$ 450$, and in larger cities from $\$ 300$ to $\$ 550$. Women get between $\$ 225$ and $\$ 150$.
The minimum salary in Bavaria is $\$ 200$, the maximum $\$ 211$, according to the size of the town. To that is added an annual increase, according to length of service, which ends when $\$ 300$ per annum is reached.
In Beden the communities are divided into five classes with reference to salaries: I, $\$ 195 ;$ II, $\$ 210$; III, $\$ 240 ;$ IV, $\$ 270$; V, $\$ 300$. In large cities higher salaries are paid.
Here are mentioned a few cities of Germany with two columns, showing minimum and maximum salaries of teachers (not principals) of elementary schools:

Lïbeck	225 to \$800	Mayence.	482 to \$\%03
Bremen	225821	Heidelberg	$480 \quad 705$
annl	517667	Darmstadt	420600
Crefeld	45066	Zwickat	371 \%n0
Chemnitz	$412 \quad 750$	Brunswick.	325714

Karlsruhe, Duisburg, Osnabrück, Freiburg (in Baden), and several other cities pay like Brunswick. Others, notably the wealthier and larger cities, like Hamburg, Frankfürt, and Berlin, treat the teachers better. The minimum in Frankfürt is $\$ 430$; in Berlin, $\$ 390$; the maximum in Frankfürt is $\$ 850$; in Berlin, $\$ 810$. The rectors or principals in Berlin get from $\$ 795$ to $\$ 971$. In Frankfurt the principals are all on a level with regard to salaries, they receive $\$ 1,050$. Dresden pays to teachers $\$ 484$; to principals, $\$ 1,200$. To all these sums about 20 per cent should be added for rent and fuel.

Basil averages $\$ 643$; Zurich, $\$ 446$; Geneva, $\$ 438$; Neuchâtel, $\$ 388$; Wallis, $\$ 369$; Schafthausen, $\$ 350$; Glarus, $\$ 322$; some cantons make additional payments.

In Belgium, minimum for teachers $\$ 240$, assistants $\$ 200$.
Law fixes the minimum for principals in Netherlands at $\$ 294$, for teachers at $\$ 252$, for assistants $\$ 169$.

Salaries rise in Sweden from $\$ 140$ to $\$ 168$ within five years of service. In some localities tsachers get $\$ 380$.

The lowest salary in Norway is $\$ 185$, the highest $\$ 400$.
The lowest in Denmark is $\$ 224$, the average is $\$ 280$, in some localities $\$ 392$ is paid.

Salaries in Gresce are $\$ 16, \$ 20$, or $\$ 28$ per month, independent of an annual sum of from 20 cents to $\$ 1$ per capita of pupils.
In Turkey a monthly salary of $\$ 37$ if licensed, but only $\$ 22$ if without diploma.
Italy brings us back to low averages : $\$ 112$ and $\$ 244$, with an increase of 10 per cent every six years.

In Spain salaries range according to population: $\$ 111$ is the minimum, $\$ 370$ the maximum.

In Russia the average salary is $\$ 97$ per annum.
Minimum salary in Portugal is $\$ 113$ per annum and an addition for regular attendance. After the first six years an increase of $2 \overline{5}$ per cent of the minimum salary is given.

In England, of 15,243 male teachers only 211 had the minimum salary of $\$ 250$. The others ranged between $\$ 250$ and $\$ 1,500$. Of 22,434 women 1,394 had "the minimum of $\$ 200$. The others ranged between $\$ 200$ and $\$ 1,000$.

In Scotland and Ireland substantially the same salaries are paid to teachers which are paid in England.

Of course the fact must be considered that the purchasing power of money is greater in Europe than with us, but even with dus regard to that a teacher's salary may be said to be low in Europe. (Revue Pedagogique.)

21. Secondary Schools.

Germany-Classical and modern high schools.-The facts presented here are gleaned from secondary schools in Prussia only; but the lessons they seem to teach are applicable to other states of Germany, though there are ficwer classica! and more modern high schools in southern Germany, notable in Würtemberg and Baden.
On February 1, 1890, more than 100 classical high schools (secondary schools) of Prussia ${ }^{1}$ had in their lowest grades less than 25 pupils each, or an average of 18. Of these 20 had only an average of 10 pupils in the "sexta" (lowest grade). The school in Lauenburg needed a teacher for 6 "sextaners," that in Münstereifel 1 for 7, those in Hadamar and Rheinbach 1 for 8, those in Gentheim and Marue 1 for 9, those in Attendorn, Dramburg, Otterndori, and Riethburg, and other towns 1 for 10 pupils. All these schools are classical high schools or gymnasia, in which the ancient languages claim the lion's share of time and energy.
A different picture is presented when we look at the high schools without Latin. Where all circumstances are equal, that is to say, where the number of inhabitants and the industrial, professional, artistic, and commercial pursuits of the people are about equal, we find that the classical school has an almost empty "sexta," while that of the modern school without Latin is overcrowded.
A comparison of a few cities may prove this. Take, for example, the high schools of Lüdenscheid and Bockenheim. In these cities of equal size and similar conditions of life, we find that Lüdenscheid, with 15,000 inhabitants, has only 17 pupils in the lowest grade of its gymnasium, the classical high-school, wiile Bockenheim, with 17,500 inhabitants, does not show the relative number 20, but 58 pupils in the lowest grade; but then its high school is one without Latin. Even in cities that have both kinds of schools, the same fact may be observed. Emden, for instance, has 20 pupils in the lowest grade of its gymnasium, and 34 in that of the modern school without Latin, which school is only a few years old.

Precisely the same facts are noticed in larger cities, and they prove most convincingly that though the people turn away from the classical languages, they do not mean to desert higher education. Merseburg, for instance, has 16,800 inhabitants, but only 23 pupils in the lowest grade of its classical high school. But annually 190 boys in that city reach the age of nine years, hence might enter the high school (the course of which covers the years from nine to eighteen), but 167 of them do not. It is reasonable to suppose thatmany of them would do so if a higher school without Latin was founded. Compare this with Emden. This city has only 14,000 inhabitants, but 56 pupils in the lowest grade of its high school without Latin, or about one-third of the boys of that age in that one year.
Here is another instance: Memel has 18,800 inhabitants and only 23 pupils in "sexta" of the high school, which is a classical one. How many of such pupils it might have may be seen from Graudenz, which has 17,300 inhabitants but 113 pupils in the lowest grade of its high school without Latin. Görlitz has 55,600 inhabitants and only one high school, a classical one. It has 55 "sextaners," while Potsdam, with 51,000 inhabitants and a modern high school, has 175 "sextaners."

How little the gymnasia answer the demands of modern life is seen from the way the people are deserting them. The gymnasium at Memel had in 1882 49, in 1890 it has 23 ; that at Friedberg had in 188235 , in 1890 it has 18 ; that at Gumbinnen had in 1882 40, in 1890 it has 17; that at Havelberg had in 1882 46, in 1890 it has 19 ; that at Marne had in 1882 25, in 1890 it has $9 ;$ that at Oldesloe had in 1852 30, in 1890 it has 16 pupils in the lowest grade. Since the number of inhabitants of these towns has not decreased, but, on the contrary, increased during the eight years mentioned, it is plain that the cause is to be sought in the schools and the trend of the time. "If thesa towns had high schools without Latin more boys would aspire to a higher education," says the Zeitung für das Höhere Unterrichtswesen. "Despite the facts set forth, the Government of Prussia aids the establishment of new classical high schools and discourages that of modern schools. This is seen from the fact that during the school year 1889-90 eleren new classical schools have been opened and only one modern high school with Latin." (Ztg. f. d. höh. Unterrichtswesen.)

England.-"We think that the time has come when the state might usefully take some degree of responsibility for the entire educational system of the country. What the degree should be will necessarily be a matter for discussion

[^71]whenever action is taken; but we entirely fail to see why only one class of schools should have the advantage of Government examination and encouragement. There is no reason to doubt that most of the secondary schools of the country are doing excellent work; but there are also some which might do far better work than they are now doing, and many which provide an education but ill-fitted for the necessities of the day. In addition to this, education in the middle and higher class schools is terribly expensive, and we do not at all see why one section of the community should have freeeducation provided fortheir children while all the other sections, which find most of the money, get no benefit whaterer. Our present educational system is entirely a class system. It benefits one class only; but it is easy to see that there are great numbers of people, such as professional men, tradesmen, farmers, and persons of small independent means, who want help in the education of their children much more than the well-paid artisan or mechanic. The classes we have named find alarge portion of the money now spent upon elementary schools, which are of no use to them, and paying so heavily as they do for the benefit of other people, they are entitled to ask for a little advantage to themselves. We may rely upon it also that they will be certain to get an advantage if they ask for it with sufficient persistency." (Nott. Daily Guardian.)
France.-M. Dupuy, in his financial report to the chamber on public instruction (France), set forth as follows the chief causes of the decline of colleges and lycées: (1) The increase in the cost of board and teaching; (2) the incessant change of text-books, and the expenses thereloy imposed upon parents; (3) the constant change in the programmes and the method of teaching ; (4) the general state of instability in th seinstitutions, which causes discouragementamong the teachers. But to these causes must be added another not mentioned in the report, namely, a growing dislike of the French parent for the whole system of barrack-like education in the secondary schools of France.

Germany.-In the Kingdom of Prussia the classical high schools (gymnasia) are so well patronized that there is one student of a classical high school to every 384 inhabitants of the entire population. How greatly favored these schools are generally may be seen from the following list of citics in which the ratio of population is less than 100 : Kiel has 1 student to every 99 inhabitants; Halberstadt, 1 to 81 ; Munster, 1 to 63 ; Treves, 1 to 62 ; Stolp, 1 to 60 ; Hildesheim, 1 to 58; Tilsit, 1 to 55 ; Ratibor, 1 to 47 ; Murbury, 1 to 40 ; Padeborn, 1 to 29 ; Freienwalde, 1 to 27; Ostrowo, 1 to 24 ; Marienwerder, 1 to 21 . The number of university students has increased in entire Germany from 17,631 in 1869 to $34,-$ 118 in 1888. While the ratio of increase in the population during the same period was only 20 per cent, that of the number of students was 100 per cent. (Paed. Ztg.)

The Berlin city council sympathizes in the feeling against the abolition of the realgymnasium, and has presented a petition on the subject. They point out that the 11 gymnasia in Berlin were attended by 5,569 pupils in December, 1890, the 7 realgymnasium by 3,451 . Consequently, the realgymnasium has on an average 58 pupils more than a gymnasium. This number is all the more remarkable when all the attractions and privileges of the gymnasium are taken into consideration. Again, the decrease in numbers in the year was in the gymnasium 219 , and in the realgymnasium only 26 . (This decrease is probably due to the erection of higher Burgerschulen.) Finally, it seems very probable that when the realgymnasium is abolished the gymnasium will be considered the more aristocratic school, and that the great social danger of sharply defined class schools will arise. The petition closes with this request: "To preserve the realgymnasium, and give the graduates the right to study medicine." (Allg. D. Lztg.)

The mayor of Brandenburg, Herr Reuscher, has sent to the magistrates of all the $2 \varepsilon 0$ towns in Prussia, in which only one high school exists a document in which he calls their attention to the resolutions arrived at by the school conference in Berlin of December last, and to urge upon them to join in a petition on the subject to the Emperor. "In the towns," he writes, "where the realgymnasia is called in question by the sweeping decision of the conference the city authorities have already taken steps to prevent an utter annihilation of these institutions. The numerous Prussian towns, numbering almost 300 , which have only one high school have urgent need of understanding the import of the conference resolutions and of averting the danger which threatens their interests in the immediate future. Not only is the existence of the nine-class realgymnasia, the seven-class progymnasia, and prorealgymnasia threatened in these towns, but also the three upper classes are concerned, in which the number of the pupils "does not justify their existence." This, naturally enough, is very
often the case in small communities. In order to attain this end a petition has been drawn up demanding the introduction of a common six-class lower school for all kinds of schools, thus directly opposing the resolutions arrived at last December by the schcol reform conference. (Allg. D. Lztg.)

During the summer of 1889 the gymnasia (classical high schools) In the Prussian province of Silesia had 51 per centProtestants, 34 per cent Catholics, 0.2 per cent other Christians, and 14.8 per cent Israelite pupils. The realgymnasia (modern high schools) had 64.4 per cent Protestant, 22.7 per cent Catholic, 0.2 per cent other Christians, and $1 \frac{12.7}{}$ per cent Israelite pupils. In the citizens' schools (middle schools without Latin) the number of Protestants was 71 per cent, that of the Catholics 13.6 per cent, that of other Christians 0.7 per cent, and that of Israelites 14.7 per cent. Or, taking all these high schools together, the number of Protestants was 56.5 per cent, that of the Catholics 22.8 per cent, that of other Christians 0.2 per cent, and that of Israelites 14.5 per cent. (Allg. D. Lztg.)

In Germany parents are obliged to determino early whether their sons are to pursue higher studies or whether they are to limit their education to the elementary branches, for the high school has its own "feeder" (elementary classes), and rarely takes its pupils from the public elementary school. Noreover, the parents must determine before the boys have reached their eleventh year whether they are to pursue a course which will land them at the gate of the university or of a polytechnical or other professional school. Once fairly started in their career, there is no return possible, except at the sacrifice of some years which they must waste in order to "adjust themselres" to the different conditions, should they or their parents determine upon a change. This inflexibility is the reason why in Germany so many "miss their natural calling." It is the effect of conditions arising from the differentiation in society. An aristocracy of birth, education, or wealth seems a necessity as long as a monarchical form of government is maintained. A monarch must needs have a pedestal, which is found in an ascending scale of society. Hence there is in Europe no such exponent of modern civilization as our common school, which is the most powerful leveler of social inequalities yet devised. While it lifts the lower strata of society, it also drags downward those standing on an elevation; and it is quite immaterial whether this eleration be a money bag, or a pedestal of culture, or a genealogical tree. (Z. R. K. in the Teacher.)

Dr. Viereck, of Berlin, maintains that the educated proletariat is due to the excessive privileges granted to the gymnasiums. He says, "The conclusion is irresistible that the root of the evil is to be found in our scholastic system, which treats the secondary school merely as a step in preparation for the university. The development of political and commercial conditions has had an unmistakable influence in greatly increasing the number of students preparing for a professional career. The force of competition has brought about a more efficient mental training among men of business; for those possessing it are able to succeed where those without it fail. All these influences have worked together to send more students than ever before to the secondary schools. And here lies the difficulty. The students, as a rule, do notselect the kind of secondary schools best suited to their wants, but the gymnasium, because of the marked privileges conferred by law upon its graduates. As a result every profession is overcrowded, and thousands of highly educated young men are unable to earn a decent living.
It has finally been decided that the graduates of the Oberrealschulen of Prussia are to be admitted to the university study of mathematics, natural science, architecture, engineering, mining, and forestry, with the prospect of obtaining posts as teachers. Moreover, they are qualified as candidates for posts in the telegraph and postal service and naral architecture and machinery. Realgymnasia receive the same privileges. The final certificate from the Bürgerschulen will qualify for admission into all civil-service posts, instead of only for the lower legal posts. The right to the one-year military service will be so arranged that for the pupils of the nine-year as well as for the seven-year institutions the privilege is discontinued of obtaining the right through mere promotion into the Obersecunda without examination. In the future an examination conducted by a commissioner of the government will be held at the end of a six years' course, and the certificate for the one year's service will depend on this examination. (Lond. Ed. Times).

Secular Sunday Schools.
Germany.-Sunday schools (nonreligious) are found all over Germany (notably in Prussia, Saxony, Bavaria, and Würtemburg), Austria, and Switzerland. Their purpose is either (1) to gire pupils who have left the elementary school an ad-
ranced grade of elementary instruction; also, in certain cases, to mend that which was neglected by absence from day schools, in cases of sickness, or otherwise; or (2) to offer technical instruction ad hoc; that is, for special purposes, such as preparation for trades, agricultural, horticultural, and commercial pursuits. domestic economy (for girls). The character of these schools varies in accordance with the varying industrial and economic conditions of the towns. While in the Erzgebirge, in Saxony, straw-weaving and metal work are taught, in Switzerland it is clockmaking and designing, while in Dresden and Leipsic, again. schools of languages for hotel waiters, and in Berlin commercial Sunday schools are established.

Both kinds of schools are called "fortbildungs-schulen" (continuation schools), really postgraduate courses of the "volks-schule." They are partly evening schools, partly Sunday schools. The statistical sources at hand fail to show how many of these schools are open on Sunday. Bits of information, however, may be welcome.

Prussia.-'The Handwerker-šchule in Berlin had 16 Sunday classes in 1884. The industrial art schools (schools of design) in Rhenish Prussia and other provinces are all open on Sunday from 8 a. m. till noon, as I know from personal inspection. Gewerbe-museums (museums of industrial art). Also fine art museums are open on Sunday.

Saxony.-This is the only country from which exact, though meager, data are at hand, to wit: Trade schools open on Sunday, 13 out of 65 . Those not open on Sunday for regular instruction have occasional lectures on Sunday. Technical continuation schools open on Sunday, 22 out of 28. Agricultural schools ditto, 2 out of 9 . Commercial schools ditto, 1 out of 32 . Many private Sunday schools not accounted for. While these may not be considered formidable numbers, it must be understood that the elementary continuation schools (postgraduate courses) are not enumerated because they belong to the regular day-school system and have the same teachers who teach in day schools.

Austrict-(Cisleithania) had in 1889 122,968 pupils and 8,678 teachers in technical, trade, professional, and other special schools, but the official reports fail to state which are open on Sunday. As a matter of fact I know that many utilize the Sunday morning either for regular instruetion or for lectures.

Würtemberg.-The 173 continuation schools in Württemberg had in 1890 12,271 pupils in arithmetic, 8,459 pupils in language and composition, 2,935 pupils in bookkeeping, 2,921 pupils in calligraphy, 10,705 pupils in freehand drawing, 4,531 pupils in geometrical drawing, 6,316 pupils in technical drawing ; namely, 1,627 woodwork, 857 metal work, 3,410 various trades, 326 industrial art, 126 lettering. A great number of these are apprentices and study on Sunday. The city of Stuttgart alone has a Sunday technical school, with 27 teachers and 334 pupils (1890).

Hungary.-(Transleithania) had in 188962,220 pupils and 2,4 49 teachers in similar schools. Same remark regarding Sunday.

Suitzerland.-Here the continuation schools and courses are attended by 34,817 pupils, partly regular Army recruits. Time not stated, but it is will known in Europe that Switzerland isfamous for its secular Sunday schools, being a poor country.

Since most of the technical and eiementary continuation schools (both evening and Sunday schools) are supported by societies, trades unions, and only rarely subsidized by the state, centralized official statements as to their attendance and course of study are wanting. (L. R. K.)

23.-Spectal Schools.

Suitzerland.-The Royal University at Geneva is to open a school for practical training of travelers, giving instruction in geography, geologý, botany, geodesy, and other subjects required to fit them to make scientific observations and intelligently form collections of natural objects in distant lands. Similar work was undertaken some years ago by the Royal Geographical Society of London and the Berlin Geographical Society, and arrangements are also provided in Paris for giving such instruction.

Germany.-A number of the professors in the technical universities in Prussia hare published a counter declaration to the one issued on December 1, 1890, that the course of study in a gymnasium or classical high school was not a fitting preparation for the studies of a technical university. The supporters of the counter declaration are of the opinion that the Realschulen do not fit the pupils any better than the gymnasia for the technical schools, and that when certain
defects are removed both kinds of schools will be on a level. Among the supporters of this declaration are Profs. Müller, Jürgens, Damert, and Lüders, in Aachen; Jacobsthal, Dobbert, Schäfer, Hauck, and Wintergarten, in Berlin; Hase, Köhler, Stier, and Backhausen, in Hanover.

Industrial Schools in Europe.-In almost all of the manufacturing towns of Europe during the last half century schools have been opened for apprentices in the industrial arts. In Russia there are no less than 1,200 of these schools with 20,000 pupils. Among justly celebrated preparatory schools are found the Ambats school at Amsterdam, the technical school of Birmingham, Heriot's Hospiial of Edinburg, and the St. Luc schools of Belgium. All agree that industrial education can only be really given in a workshop where teachers will be able to instruct pupils by means of practical demonstration and by sketches of design. At Birmingham and Edinburg pupils are admitted to technical schools, which are considered merely as a sort of primary industrial school, where very fine chemical and physical laboratories are at their disposal and in which they acquire a certain practice in preparation for industrial work. The general result is that at the end of their studies the pupils are engaged by industrial superintendents as future apprentices.

In Ireland there is another kind of preparatory schools, to which are admitted only children who have lost both parents, and who are destined for domestic or rural professions. They here receive primary instruction, some knowledge of science and of art, and a sufficiently complete manual training. These institutions combine the two characters of schools and asylums. Beside the primary schools there is a superior kind called industrial and technical. These exist for the object of giving to apprentices and workmen some knowledge of science and art, which will increase the financial value of their work. This is the complete theory and practice of the industrial workshop. Belgium has founded 36 industrial schools, in which are given every evening and on Sundays the elements of a scientific and artistic knowledge corresponding to the profession of those who frequent them. The number attending exceeds $25,000$.

In both England and Belgium the number of pupils in proportion to the population is about the same; that is, 4.2 for each 1,000. But instruction in the United Kingdom is better than anywhere else; it has a more scientific and practical character on account of the well-equipped laboratories and workshops, which are placed at the disposition of the pupils. In Holland there are 32 industrial schools and 25 professional schools, attended by about 7,000 pupils. The proportion of these is about 2 to every 1,000 ; but Holland, so cut up by canals, and with the sea continually breaking bounds, is rather a maritime than a manufacturing nation, so that there is nothing surprising in this proportion as compared with that of Belgium. Switzerland has no less than 87 schools, giving to apprentices and workmen professional instruction. The pupils number 8,000 . There are others said to be highly developed, where drawing is a branch of instruction. Thus, in one of the poorest cantons, that of Appenzell, institutions of that class are met in every community, and the attendance is as obligatory as the snows will permit. The industrial population of the cantons is 200,000 persons in a total of $2,846,000$ inhabitants, and this balances that of Belgium, where metallurgic and other manufactures are carried to a high point of development.

In Denmark, a country of $2,096,467$ inhabitants, there are 77 schools for professional instruction of workmen with more than 6,000 pupils. The technical school of Copenhagen alone numbers no less than 2,000 . In Sweden there are 23 industrial schools; that of Stockholm has 800 pupils, more than one-half per cent of the population of the town. Italy, which in 1885 had 136 industrial and art schools, with 16,274 pupils, has since then made great progress; but she is suffering, as England sometimes suffers, from an excess of manufactured articles, and these must be disposed of at any price in order to avoid a ruinous embarrassment. The school at Hamburg, under the direction of Marius Vachon. is the best institution in Germany, both on account of the principles which inspired its creation and the methods of instruction. In entering there, if the pupil is neither an apprentice nor workman he must choose a trade; these two classes of pupils constitute the principal number of the school population.

A law of the Hamburg senate imposes on all industrial superintendents the duty of sending their apprentices to this school for six hours every week. They are thus enabled to attend during three, four, or eren fire years, according to their disposition and abilities. The first part of the first year is exclusively devoted to the study of the primary elements of drawing. All drawings must be made from nature. After that comes instruction from professional designs. As
soon as the pupil can sketch he is given as models the objects which belong to his trade. In succeeding years professional drawing goes hand in hand with artistic instruction. Each pupil receives instruction, personal, varied, and rapid according to his temperament and tastes. The discipline is very severe, so that a pupil becomes accustomed to conduct himseli as a serious man and to consider work as a social duty. The Hamburg school has served as a model to the schools of design in various parts of Europe. (English Educational Press.)

The Prussian Government has recently, more than in former years, bestowed much attention upon the promotion of so-called continuation schools (post-graduate courses of the elementary schools), as well as trade and technical schools. This is plainly seen from the increase in the sums annually approp:iated for these institutions. In the state budget of $1885-83$ the sum of $\$ 142,266$ was designated to support these institutions, which in the nature of the case are directly benefiting the working. In 1880-91 the appropriation rose to $\$ 431,716$, and in 1891-92 to $\$ 445,27$. The Government makes the announcement that it is not satisfied with the system of industrial schools as it now exists, but wishes to see it extended over most of the various trades and occupations found at industrial centers. Especially the continuation courses will find encouragement. Through these the Government can reach a much greater number of pupils than through special technical schools. Naturally the latter will be able to offer a higher grade of technical education, and in due time there will, side by side with elementa:y or peoples schools, spring up at convenient centers asystem of elementary technical or trade schools, that will feed the secondary technical schools.

The Government intends to establish new elementary architectural schools, deroted to the building trades-one in Königsberg; one in Silesia, and one in Brandenburg. The city of Cottbus is negotiating with the royal government to hare one of these institutions located within its precincts. The bureau of technical instruction in the department of public works is of the opinion that to open schools for the training of foremen, and technical schools for the promotion of shipbuilding in Danzig, Stettin, Berlin, Hannover, and Altona, will prove of incalculable benefit to the nation. The Rhenish-Westphalian mining school it is contempleted to remove from Bochum to Duisburg, with branches and "feeders" in the coal districts on the Ruhr-River. Gleiwitz, in Silesia, another mining district also, is to have a new mining school. The existing weaving school of Crefeld and Berlin are to be enlarged, and new schools, with courses for the training of foremen and experts for the cloth and buckskin manufactory, are in process of erection in Sommerfeld, Forst, and Finterwalde, and other centers of the cloth industry. Malhausen, in Thurengia, and Bleichrode, near Nordhausen, are each to have an elementary weaving school. The nezotiations with the city of Bunzlau, with a view toward the establishment of a caramic technical school, have been reopened. For the training of engineers and machinists on ocean steamers schools are to be opened in Stettin and Bremen. In Schmalkalden a school for the preparation of foremen in the so-called variety ironworks is to be established. This institution will have extensire shops for a great number of apprentices.

Schools of design and industrial art the Government intends to establish in all cities of 33,000 or more inhabitants. Where one is in existence others are to be added. Prussia has, according to the last census, 49 of such cities. Of thess the following have each a flourishing school of design and industrial art: Aix-la-Chapelle, Cassel, Dusseldorf, Halle, Magdeburg, Hannover, Frankfort, and Berlin. Berlin needs another without delay. But Danzig, Elbing, Bromberg, and Posen have made no claim for such schools. They lean rather toward agricultural and forestry schools. The plans so far determined upon contain 18 new schools within the next six years; others are to be extended. Institutions which have been called into existence by the enterprise of the local authorities are well subsidized by the state and enlarged to meet the growing demands of the times.

The state authorities direct in every case where a subsidy. is granted that the teachers" salaries be increased and new talent be drawn into the schools. Whenever the funds allow, these technical schools are made state institutions. The entire state subsidies for the establishment of new and extension of existing technical and trade schcols are estimated at $1,078,0$ co marks ($\$ 269,500$); this sum is not included in the annual current expenses mentioned in the beginning of this article.

The administration of continuation schools (post-graduate course of elementary schools), so far as they are technical or trade schools, will be turned over to the minister of agriculture, since most of these schools are situated in rural districts, and it is the intention to enlist the interest of agricultural people in these schools.

The recently subinitted bill regulating trades (especially \& $_{1} 120$) is thought to be the best incentive to trade schools, and it would seem that the state, by promoting such schools, is obeying tendencies which may drive itfurther and further toward socialism as advocated by Marx. As soon as the bill becomes a layv, the annual appropriations for technical schools will need to be increased to meet the requirements of the law. From all this it is plain that Prussia if following the illustrious example of the Kingdom of Saxony in preparing a great number of thinking artisans, foremen, designers, masterworkmen, and inventors, in order not to fall behind in the race with other nations, notably with France, in industrial and wealth producing pursuits. (Engl. Educ. Press.)

24.-SUPERIOR Institutions.

Germany.-The number of students in the polytechnicums of the German Empire, in the winter term of 1890-91, was 3,567 as against 3,372 in the previous year ; the number oif nonmatriculated students, 1,273 as against 1,106 ; and the number of casual attendants at single courses of lectures, 522 as against 343 ; on the whole, then, 5,362 as against 4,821 attendants at lectures. Of these Aachen numbers, 197; Berlin, 1,640; Brunswick, 273; Darmstadt, 316; Dresden, 480; Hanover, 580; Karlsruhe, 585; Munich, 882 ; Stuttgart, 486.

Hessia.-The Hessian Government has laid a bill before the Landtag for the erection of magnificen tnew building, for the polytechnicum in Darmstadt. The cost amounts to $\$ 3,912,500$. The town has offered to pay $\$ 3,000,000$, and the Gorernment will supply the rest. The Grand Duke has consented to the appropriation of a part of the palace grounds for the erection of the new buildings.

Frunce.-The French minister of public instruction has issued a circular in accordance with which young men and women who are preparing for the profession of teachers, and for diplomas generally, are to go through a solid course of "sound French literature of the nineteenth century stamp." "This means," says a Paris correspondent, "that they are to give up the old classical authors from Montaigne to Chateaubriand, and to devote their attention in preference to Thiers, Michelet, Victor Hugo, and Alfred de Musset."

Suxony. - The theological faculty of the University of Leipzig, Germany, have, by desire of the minister of education, posted a notice on the university notice board, calling on the students of theology to attend lectures on pedagogy more regularly than they have hitherto done, and also not to neglect the practical side of their training. "A more thorough study of pedagogy and satisfactory practical training is more necessary to theo!ogians now than it ever was."

Germany.-Latest statistics concerning German universities:

	$\left\|\begin{array}{c} \text { Theol- } \\ \text { ogy. } \end{array}\right\|$	Law.	Medicine.	$\begin{gathered} \text { Philos } \\ \text { ophy. } \end{gathered}$	Total.
Russia-	10.9	10.4	17.9	13.2	52.4
Savaria	10. 1	30.6 16.8	176.2	112.8	66.9
W urttenberg	22.8	17.1	12.9	8.5	61.3
Baden	17.9	${ }_{23,3}^{19.2}$	19.8	${ }_{29}^{19.0}$	75.9 79.5
Meeckienburg	16.5	16.3	23.1	18.5	74.4
Thuringia	16.1	15.4	-16.8	${ }_{10}^{18.2}$	51.
Oidensurg	11.0	-8.4	$\stackrel{18.2}{2}$	14.7	67.4
Anhalt.	13.4	17.6	19.9	19.6	\% 0.5
Hamburg	5. 3	12.8	18.1	19.6	55.8
Bremen.	12. 1	16.2	${ }^{30.6}$. 8	${ }^{90.7}$
Alsace and Loraine	11.6	14.3	17.7	13.5	57

The foregoing table shows the ratio of students from the different German States for every 100,000 inhabitants. In other words, it tells that of every 100,000 inhabitants Germany has 571.10 in the universities, or 5.71 students of every 1,000 inhabitants, or 0.571 per cent. That of these, 0.116 per cent study theology, 0.143 per cent study law, 0.177 per cent study medicine, and 0.135 per cent study philosophy. The numbers are given for the winter semester, 1889-90. (Statist. Archiv.)
Algiers.-The Academy of Algiers had, in 1888, 223 students. In 1858 there were 1,047 pupils at the lycées of Algiers and Constantins; 8 communal colleges with 1,254 pupils; in 1889,958 (113 private, mostly clerical) primary schools,
with 78,001 pupiis: and 154 infant schools, with 24,354 pupils. There are 76 public primary schools for the natives, with 8,963 pupils (910 girls). Of the total children of school age (6 to 13) 611,720 receive no instruction; of these 535,389 were Musselmen.

> 25.-TEACHERS.

Prussia.-The proportion of female to male teachers in Prussia is very small. Of the 68,765 elementary teachers only 7,869 or 11 per cent are female teachers. In the private middle schools (private lower schools are very rare) 2,626 of the 3,459 teachers are women. Protestant Germany seems to have a much greater dislike to intrust women with teaching than Catholic Germany. In the whole of Prussia there are only 442 female teachers in the Protestant village schools, whereas over the same area there are 2,304 women teaching in Catholic schools. (Lond. Jl. of Ed.)

Berlin has at present in its public elementary schools 3,200 teachers, 2,182 men and 1,018 women. Of the men, 96.38 per cent had gone through a course of normal school training, 2.29 per cent were university graduates, and 1.33 per cent had prepared themselves privately and then passed the required examination. Three of the normal school graduates had afterward acquired a university education. Only 537 of these teachers were graduates of the normal school in Berlin, 1,640 came from other parts of the Kingdom of Prussia and 5 from other German states. Of the 1,018 women 883 were prepared professionally in Berlin, while 135 came from other parts of the kingdom. (Paed. Ztg.)

England.-Mr. Grasby, the English educator who recently so thoroughly examined the American school system, says of American teachers: "The special feature of the English teacher is technical skill in practical teaching; that of the American, an educated and cultured mind. The time one has spent in teaching or learning to teach the other has spent in study. The one has all along been subject to the influence of a narrowing occupation, and now of tentimes considers himself well-nigh perfect in his art; the other has been under the influences of a liberal training, is well versed in the principles of education, has had little practice in teaching; but is fully conscious of the fact, and therefore, ready to take advantage of every means to compensate for hislack. A conscious ignorance is often better than a self-satisfied knowledge. The average American teacher maintains better discipline with less force; is a superior educator, but less an adept than her English compeer in filling the pupil's head with facts."

CHAPTER XVII.

EDUCATION IN ALASKA.

REPORT OF THE GENERAL AGENT FOR THE YEAR 1889-90.

DEPARTMENT OF THE INTERIOR, Bureau of Education, Alaska Division, Washington, D. C., June 30, 1890.

SIR: In compliance with the rules and regulations for the conduct of schools and education in Alaska, approved by the Secretary of the Intarior, April 9, 1890, I have the honor of submitting the following, as the annual report of th 3 general agent of education for the year ending June 30, 1890 :

A.-Number and General Condition of the Schools in Alaska.

Alaska has 15 day schools, supported wholly by the Government, with a total enrollment of 1,110 pupils; 9 contract schools, containing 30 pupils, which are supported jointly by the Government and the missionary societies; 10 mission schools, with an enrollment of 297 pupils, which are supported wholly from the funds of the churches, and two schools sustained on the Seal Islands by the North American Commercial Company, under contract with the Treasury Department, and containing 79 pupils, making a total of 37 schools and 1,788 pupils.

I.-PUBLIC SCHOOLS.

1.-UNALASKA DISTRICT.

Unalaskia (John A. Tuck, teacher).-Enrollment, 30; population largely Aleuts.
Prof. Tuck reached Unalaska in September, 1889, and renting a house from the Alaska Commercial Company, opened school with an average attendance of 6 pupils. In the absencz of any school building, one end of his residence was fitted up as a schoolroom. So much interest was developed in the school that the pupils, with butfew exceptions, continued at school during the Russo-Greek Church festivals, which are very numerous. Among the pupils were the grown-up daughters of the Russian priest.

Prof. Tuck reports that the rate of progress was almost all that could be desired.
With the opening of the next school year it is expected that the ladies of the National Home Mission Society of the Methodist Episcopal Church will enter into an agreement with the United States Bureau of Education to take charge of the school, several thousands of dollars having already been raised for that purpose.
The building they propose to erect will be known as the " Jesse Lee Memorial Home."

Unga (John H. Carr, teacher).-Enrollment, 24; population, Russian and Aleut.
Gratifying progress was made in the usual school studies and in temperance hygiene by those who were regular in their attendance.
The teacher pleads earnestly for some rule to secure more regular attendance.
The ladies of the National Home Mission Society of the Methodist Episcopal Church have purchased and shipped to Unga the materials for a teachers' residence, to be known as the "Martha Ellen Stevens Cottage."

2.-KADIAK DIStrict.

Kadiak (W. E. Roscoe, teacher).-Enrollment, 67 ; population, Russian.
At the solicitation of the parents, Mr. Roscoe commenced his school a week in advance of the regular time of opening. The progress of the pupils proved very satisfactory. and the attendance fairly so.

Much inconvenience resulted from the number of holidays of the Russo-Greek Church. These are more than 200 during the year, and they greatly interfere with the regular attendance of the pupils.

During the year the Government erected a comfortable schcol building, which was greatly needed.

Afognak (John Duff, teacher).-Enrollment, 38 : population, Russian and Eskimo.
The Rev. James A. Wirth, who had taught the school from the beginning and was greatly beloved by parents and pupils alike. resigned on account of the health of his wife. His resignation was received so late in the season that there was no time to procure a teacher from ihe states, and Mr. John Duff, who was already in that region, was appointed.
School was resumed on the $3 d$ of October with 16 pupils, the attendance increasing to 24 during the first week.
From the first many of the parents took an interest in the school and scarcely a day passed that one or more were not visitors.
Geographical exercises on the map were an unfailing source of interest: pupils that did not know half of their ietters could point out the States of the United States and give their names correctly.
The ordinary school books speak of so many things that neither the children nor their parents have ever seen that it is difficult for them to understand what they are reading about. To remedy this somewhat Mr. Dufi proposes to form a museum of common things in connection with the school and thus gire the pupils object lessons in connection with their books.
An interesting feature of the year was the attendance of a number of children from outside villages.
The school has suffered greatly from intemperance, many of the children being on the rerge of starvation because the parents had traded off the living of the family for liquor.
Frequently, in risiting his pupils, the teacher found them hungry and shivering in the corner of the room, and both the parents dead drunk.
A comfortable school building and teacher's residence were erected by the Government during the year.

Karluk.-A good school building and teachers residence were erected during the year at this important point, and a school will be opened at the beginning of the next school year.

The number of villages of civilized Russians in this district requires many more schools than can be established with the amount appropriated by Congress for this purpose.
Professor Duff. of Afognak, estimates that there should be at least twenty additional schools in the Kadiak district.

3.-Sitka District.

Sitka, No. 1 (Miss Ann D. Beatty, teacher).-Enrollment, 68 , or one more than the total number of white children of school age in the village; population, American and Russian. Among the pupils of this school are the children of the civil and naral officials who are stationed at the capital of the Territory.

Sitka, No. 2 (Miss Gertrude Patton, teacher).-Enrollment, 83; pupils, native Thlingets.

With 280 native children between 5 and 17 years of age in the village, there ought to be some way of securing a larger attendance than 83. A simple obligatory attendance law would work a great improvement in school attendance among the native population.

Juneau, No. 1 (Miss Rhoda A. Lee, teacher).-Enrollment, 33 ; pupils, Americans.

This is one of the most advanced schools in the Territory. Year by year the public sentiment of Juneau is improving. More families are moving in, and the white school reaps the benefit of this growth.
Juneau, No. 2 (Miss Cassia Patton, teacher).-Enrollment, 51 ; pupils, natives.
The best portion of this school and the pupils that made the most rapid and gratifying progress in their studies were those that came from the Model Home,
conducted by Rev. and Mrs. E. S. Willard and their assistants, Miss E. Matthews and Miss Jennie Dunbar, of the Presbyterian Mission.

Douglas City, No. 1 (Mrs. W. S. Adams, teacher).-Enrollment, 50 ; pupils, Americans.

During the year a comfortable school building was erected by the Government. Owing to delay in its completion the school was not opened until the 1st of February, 1890. The opening of this new schoolroom for the whites allayed the friction of last year, when the children of the whites and natives were compelled to use the same room or not go to school at all.

Mrs. Adams reports that her adranced pupils, in addition to their ordinary studies, have taken up natural history, botany, and simple lessons in mental science.

Douglas City, No. 2 (C. H. Edwards, teacher).-Enrollment, 92 ; pupils, native.
Douglas Island being the principal center of the mining interests, many natives come from distant villages to secure work for a longer or shorter period. They are constantly coming and going.

This creates great irregularity in the attendance of the children and greatly increases the work of the teacher.

Killisnoo (Miss May Ransom, teacher).-Enrollment, 32 ; pupils, Russians and natives.

Wrangell (Mrs. Lyda McA. Thomas. teacher).-Enrollment, $8 t$; pupils, natives.
During the year the chief of the village acted as special policeman to look after all truants from school. The result was good, securing greater regularity in the attendance and more rapid advancement in their studies.

Klauack (Mr. Henry C. Wilson, teacher).-Enrollment, 66 ; pupils, natives.
After the resignation of Mrs. Currie, in the summer of 1889, no teacher was secured until the following spring, when Mr. Wilson reopened the school on the 1st of May, 1890.

Juckson (Miss Clara A. Gould, teacher).-Enroliment, 87 ; pupils, natives. During the winter a number of parents moved into the village for the purpose of placing their children in school.

Metlakahtla (William Duncan, teacher).-Enrollment, 179; pupils, natives.
This school is of more than ordinary interest from the fact that this settlement is composed of Tsimpseans, who, a few years ago, came over in a body from British Columbia to Alaska in order to secure greater religious and political freedom.

Mr. Ivan Petroff, special agent for Alaska of the Eleventh United States Census, in his report to the Census Bureau, commenting upon the school attendance of the Sitiza district, says: "Considering the nature of the population, widely seattered in small settlements, the showing of 1,049 scholars in attendance out of a total of 1,75 persons between the ages of 5 and 17 years is certainly a remarkable one. The number of natives speaking English does not much exceed that of the scholars enrolled."

> II.-CONTRACT SCHOOLS.

> 1.-SITKA DISTRICT.

Sitka Industrial Training School, Presbyterian Prof. W. A. Kelly, principal with 17 assistants).-Boarding pupils, 16t; natives.

Professor Kelly reports: "The past year has been one of marked progiess, both in the schoolroom and in the industrial department. It is surprising how quickly the pupils learn English when deprived of their native tongue.
"Our school is distinctively coeducational. The boys and girls recite in the same classes, dine together in the same dining-room, and, under wholesome restraint, have opportunities for social intercourse.
"A few years of sedulous training have dereloped in some of our oldest pupils a spirit of emulation, a sense of personal responsibility, self-respect, self-reliance. and self-helpfulness which command respect. Mcst of our large boys, advanced far enough to read intelligently in the second reader, are learning a trade (all being in school half of each day and at work half a day), and the diligence with which they pursue their studies, the zest with which they enter upon industrial work day after day is most praiseworthy of them and encouraging to their instructors.
"All of the shoes for the pupils of our school are hand-made in our shop, under the direction of a competent foreman. Considerable custom work is also done.
"Our supply of barrels and half karrels far exceeds the demand, yet we con-
sider coopering an excellent trade for our young men. Owing to high freight, barrels are usually made at the fishing stations where needed, and coopers are in demand at those places.
"We are always pressed with work in carpentry. The variety and scope of work have proved a most valuable source of instruction to the boys, most of whom are aptly adapted to mechanical industry. The boys have made commendable progress during the past year. Young men who can do carpenter work fairly well can find opportunity to ply their trade in any of the villages of Alaska.
"We have eight model cottages, six of which are occupied by young married couples from the school. These young folks have been thrown entirely upon their own responsiblitiy and resources, and they are doing right well in earning a lirelihood, while their honses are kept clean, neat, and homelike. The environments of family life among the young folk, in contradistinction to that in rogue among the natives, tend to create new conditions and inspire new impulses among their own people.
"The general work of the school, patching, mending, refitting, making new garments (aprons, towels, underwear, dresses), is no light task. Each girl 8 yeass old and upwards knits her own stockings, and the large girls find time to learn useful tidy work in order that they may be able to beautify their own homes with the work of their own hands.
"The girls are trained in every department of household industry, kitchen, dining-room, teachers' room, etc. Our girls numbering but fifty, the matron and her assistants find time to give each girl individual care in the details of hous keeping, thus gradually inculcating and developing a sense of personal responsibility.
"Our boys do the bread baking for the school, while the girls in turn are taught how to bake and cook for a family. This special instruction in the art of cooking is given in the teachers' kitchen, the cooking for the teachers and employés bying dona by our native girls. They are also trained to wait upon the table, and they serve the teachers and guests with grace and manners. Our young boys are also trained in our school kitchen and dining room.
"Our pupils, from the children to the adults, sing with a spirit and understanding that outrivals many of the public schools.
OUr brass band of 20 members dispenses music for the school and for the town on public occasions.
"We have a military company of 35 members. The guns were kindly loaned us by the governor of the Territory.
"Lessons in patriotism are constantly inculcated. The Alaskans are a loyal, patriotic people. Rev. A. E. Austin, the veteran missionary of the school, has charge of the religious and devotional exercises."
The time has fully come when a normal department should be added to this important school, and a beginning be made in training native teachers.

2.-Kadiac District.

As yet there is no contract school in this important district, but the establishment of one on Wood Island is urged by the teachers of the several day schools.

Prof. Duff, of Afognak, writes, under date of March 21, 1890: "We must have, and that very soon, an industrial school in this district, into which can ke gathered and taught, the hundreds of orphans and neglected children. They a nearly all as white and as capable of improvement as the children of New England, or any other part of the country."

Prof. Roscoe, of Kadiak, writes, under date of September 29, 1890: "In every s?ttlement through this part of the country may be found poor, defenseless children, clothed only in rags, with no one to provide suitable food or clothing, and living entirely on such charity as may be found among a heathen people. There are many destitute children, made so by the drunkenness and hence vagabond character of their parents. In addition to a kind of beer which the natives themselves make from sugar and graham flour, they succeed in buying large quantities of whisky from sailors and the more reckless class of traders. The salmon canneries are, generally speaking, a curse to the natives. The Chin se employés bring, or rather smuggle, immense quantities of "samshu" into the country, and peddle it out to the natives. In the Aleut settlement of Afognak, the natives have sold the very fur bedding from their huts to obtain this vile stuff. The winter is upon them, and until recently they had been so demoralized with liquor that they had not laid in the usual winter's supply of dried fish, their main subsistence. Without money and provisions and cloth-
ing, what misery and want will there be in that village this winter, all because of intoxicating liquor !
"White hunters, recently arrived from the westward, tell me it is the same out there. The natives are demoralized by drink. Now, the future of this race is that, practically, they will perish from off the face of the globe unless they are Christianized-and that soon. It is a fact that the children do not generally show this terrible craving for strong drink. The pupils of my school are ashamed of their parents` drinking, and we never see them drink any. It seems, therefore, to be rather an acquired habit than an inherited appetite. It is only right and just that our Government take orphan children and inebriates' children and put them in a good industrial school under religious teachers, who, in addition to moral and intellectual training, will teach them the cultivation of the soil, the rearing of cattle, sheep, hogs, and poultry, the elements of some of the mechanical arts; and the girls the arts of sewing and cooking. Such a school can be and should be established in this vicinity."
The establishment of such a school is under consideration by the Woman's American Baptist Home Mission Society.

3.-UNALASKA DISTRICT.

The great distance of this district from the Bureau of Education, its remoteness from a post-office (2,500 to 4,000 miles), and its inaccessibility, portions of the field having communication with the outside world but once a year, have led to the very general establishment of contract schools in this section of Alaska. In these schools well-known missionary societies share with the Government the expense and responsibility:

Unalaska.-The ladies of the Woman's Home Missionary Society of the Methodist Church are raising funds for the establishment of a school at this point.

Carmel (Moravian, Rev. Frank E. Wolff, principal, with 4 assistants).-Boarding pupils, 20 ; day pupils, 15 ; Eskimo. Of the boarding pupils 14 were boys and 6 girls. It isexpected that additional buildings will be erected by the opening of the next school year.

Bethel (Moravian, Rev. J. H. Kilbuck, principal, with 4 assistants).-Boarding pupils, 30 ; day pupils, 9 ; Eskimo.

With regard to the school, Rev. J.H. Kilbuck reports, under date of May 28, 1890: "This past school yaar has been our best, more scholars having been enrolled, and in consequence a better average attendance.
"The great drawback we find to be the runuing back and forth of scholars to their homes, which is not conducive to progress. We are compelled to acquiesce at present in order to hold scholars who have parents. The orphans, of course, we have full control of, and we keep them steadily at school.
"The migratory habits of the people are the root of irregular attendance. The parents as a rule take out their children to help them in getting food and fur. It is only during the season of rest that we can hope to keep a large number of scholars. Of course it is absolutely necessary that the boys be trained early to get their living, hence we can not seriously object to the parents taking their children for this purpose.
"There are instances where parentssend their children to school for the sole purpose of having them clothed, and then take them away after a short stay. This, however, never occurred before this year, and we will see to it that it will not happen again.
"As regards behavior we can not complain. There was a case or two of immorality, but severe and speedy measures soon put an end to that, and the general conduct of the boys has been more manly. Several of the boys have been taking music lessons during the year. They have made reasonable progress under the teaching of Signor Weber.
"From the reports you will see that brother Weber has taught the school all winter. Whenever I was at home I kept the boys in in the evening, when I would give them general instruction in descriptive and physical geography and physiology. These evenings were pleasant to teachers and scholars, and many of the latter took a deep interest in the lessons.
"In speaking English the boys, as a rule, make but slow progress. We will have to resort to compulsory measures before they will take up English in earnest.
"As in other years, the boys help in fishing, getting wood, and sawing and splitting firewood, and in general work they are quite a factor. As play is more pleasing to boy nature than work, it sometimes takes a good command of patience to keep them busy. The boys learn to get their food, as they supply us ED $90-79$
with fresh meat during the winter and spring, with the aid of snares, powder, and shot, and traps."
Anrik (Episcopal, Rev. John W. Chapman, teasher).-Day pupils, 35 ; Indians.
During the summer of 1889 , the school room was furnished with desks for 24 children, which to the gratification of the teacher, were filled. The progress of the scholars proved most satisfactory.
Rev. O. Parker writes, in connection with this school: "In closing this letter, I would say that both Mr. Chapman and I are still of the opinion that a boarding schcol is a neceszary thing for the more successful carrying on of this work, and though we realize that a common school education should underlie all instruction in other branches, yetwe feel itall necessary that mechanical branches should ke taught as soon as possible. Perhaps a dozen boys' chests of tools and three or four sewing machines would enable us to make a beginning in that direction."

Kosoriffsky (Roman Catholic, Rev. P. Tosi, principal, with 6 assistants).Boarding pupils, 29; Eskimo.
Nulato (Roman Catholic, Rev. A. Robaut, principal).-No report received.
Kingegan (Cape Prince of Wales), (Congregational, Messrs. H. R. Thornton, of Hampden Sidney, Va., and W. T. Lopp, of Valley City, Ind., teachers).-Population, Eskimo.
The teachers report: "The natives are peaceable, friendly, and intelligent, instead of ferocious, hostile, and stupid, as we were led to expect. We do not now entertain any fear of violence from them, and they already seem attached to us. In appearance they are a fine-looking set of people-robust and healthysomething like very good looking mulattoes, but with better features, and of en brilliant color. In school they show as much intelligence as white children would under similar circumstances. We have now 65 pupils enrolled, although five-sixths of the populatioz are absent on trading voyages. In fall, winter, and spring we think we shall have at least 300 pupils. This is the largest settlement on the coast and would form a valuable center of missionary work for the neighhoring settlements atPort Clarence, the Diomede Island (middle of strait), Kotzebue Sound, Kings Island, etc.
The children are very sweet and attractive. We have never seen any signs of a fight or even a quarrel among them; nor have we seen any of them show any inclination to disobey their parents, a most remarkable fact, we think.
Point Hope (Episcopal, Mr. John B. Driggs, teacher).-Population Eskimo.
Point Barrow (Presbyterian, Mr. L. M. Stevenson, of Versailles, Ohio. teacher).-Population, Eskimo.
These last three schools are in Arctic Alaska, and will be noticed more at length later on in the report.

III.-OTHER SCHOOLS.

Unalaklik ("Swedish Evangelical Mission Covenant in America," Messrs. Axel E. Karlson and Aug. Anderson, teachers).-Pupils enrolled, 40 (31 boys and 9 girls) ; Eskimo.

Yakutat ('Swedish Evangelical Mission Covenant in America," Rev. Albert Johnson and Rev. K. J. Henrickson, teachers).-Population, Thlinget; pupils 30.
Nuklukahyet ("Church Missionary Society," London, England, Rev. and Mrs. T. H, Canham, teachers).-Population, Athabaskan Indians; pupils, 40.

This school was established in the summer of 1888, and has been taught in the Indian tongue. Drawing all of their supplies from England by way of Hudsou Bay and across the continent by dog train the teachers have been much hampered by the want of suitable books and other facilities. Arrangements are in progress to transfer this mission to the Protestant Episcopal Mission Society of the United States and reorganize the school on an English speaking basis as one of the contract schools of this department.
Hconah (Presbyterian, Rev. and Mrs. John W. McFarland, teachers).-Population, Thlinget; pupils, 126.
Juncau (Presbyterian, Rev. Eugene S. Willaid in charge with 3 assistants).Attendance, 21 Thlingets.
This is a home where these children are taken from their parents, or received as homeless waifs, and lodged, fed, clothed, and trained as in a Christian family. It is a practical exhibition of Christian philanthropy, and is accomplishing much grod.
Juneau (Roman Catholic, Sisters of St. Ann, Sister Mary Zeno, superior, with 2 assistants).-Attendance, 40 ; mainly white children.

Douglass City (Friends, Mr. and Mrs. S. R. Moon in charge).-No statistics received.

Jackson (Presbyterian, Mrs. A. R. McFarland in charge with 1 assistant).This is a home similar to the one at Juneau.

St. Paul Island (North American Commercial Company, Simeon Milevedoff, teacher).-Population, Aleut; attendance, 50.

St. George Island (North American Commercial Company, Dr. A. L. Noyes, teacher).-Population, Aleut; attendance, 29.

This and the preceding school on St. Paul are the two that are maintained on the Seal Islands in accordance with the terms of the lease issued by the U. S. Treasury Department.

Through the influence of the priest of the Russo-Greek Church, the people are reluctant to have their children learn the English language.

Mr. Charles J. Goff, Treasury agent in charge of the Seal Islands. Writes in his annual report to the Department: "Mr. Milevedoff was energetic and untiring in his efforts to adrance the pupils, but there is very little interest taken by them in English speaking schools, so that there was but little progress made."

Russian.-In addition to the abore are a number of Russo-Greek parochial schiols, supported by the imperial Government of Russia, which will be enumerated in the tables of school attendance.

The statistics of these schools hare been furnished by Mr. Iran Petroff, special agent for Alaska of the Elerenth Census.

B.-Rules and Regulations for the Conduct of Schools and EduCation in the District of Alaska.

During the winter of 1890 the rules and regulations for the conduct of public schools in Alaska, approved by the Secretary of the Interior, June 15. 1887, were revised and amplified by the Commissioner of Education, and approved by the Secretary of the Interior, April 9, 1890, and are as follows:

By virtue of the power conferred upon the Secretary of the Interior by act of Congress of May 17, 1884, authorizing him to make needful and proper provision for the education of children oi school age in the Territory of Alaska, without reference to race until such time as permanent provision shall be made for the same, the following rules and regulations for the government of the public schools in Alaska are hereby promulgated:

GENERAL MANAGEMENT.

SECTION 1. The general supervision and management of public education in Alaska is hereb committed to the Commissioner of Education, subject to the direction and control of the Secretary of the Interior.

SEC. 2. The Commissioner of Education is authorized-
(a) To appoint district superintendents and local school committees.
(b) To establish common schools in every settlement where there are children in sufficient number, and at least one school in erery tribe or large settlement of the natives.
(c) To enter into agreement with missionary societies for the maintenance of boarding and industrial training schools, especially among the wild tribes and more inaccessible regions.
(d) To provide plans and contract for the erection of school buildings, and where necessary, lesidences for the teachers.
(e) To approre of the appointment of teachers and regulate the amount of their salaries.
(f) To provide necessary books and other school supplies.
(g) To make such recommendations to the Secretary of the Interior as the interest of education in Alaska may seem to require.

SUPERVISION.

SEC. 3. A superintendent of education, to be known as the general agent of education for Alaska, shall be appointed by the Secretary of the Interior, upon the recommendation of the Commissioner of Education, and shall hold the position during the pleasure of the Secretary, and until his successor be appointed.

He shall receire from the Government for his services as general agent an annual salary of $\$ 1,200$.

SEC. 4. The general agent of education shall have a desk in the Bureau of Education; but during the six months of the year (summer) when it is possible to go from place to place in Alaska, he shall give his personal attention and supervision to the school work in the Territory.
SEC. 5. He shall be allowed necessary traveling expenses while on duty.
SEC. 6. It shall be the duty of the general agent to exercise special supervision and superintendence over the public schools and teachers in the Territory, subject to the approval of the Commissioner of Education.

SEC. 7. He shall have power, subject to the approval of the Commissioner of Education-
(a) To select and appoint the teachers of the pubiic schools, to prescribe their duties, and to fix their salaries.
(b) To provide general rules for the government of the schools and the attendance of the children.
(c) To prescribe the series of text-books to be used in the public schools and to require all teaching to be done in the English language.
(d) To select the location of schoolhouses, to provide plans for the same, to draw up contracts for the erection of said buildings for the approval and signature of the Commissioner of Education, and to lease houses for school purposes.
SEC. 8. Requisitions for all materials for the erection of school buildings, articles of school furniture, supplies of books, stationery, and other necessary materials for the use of the schools shall be made by the general agent upon the Commissioner of Education, and when such requisitions are approved by the Commissioner they shall be transmitted to the Secretary of the Interior for his approval, and when approved by him the supplies will be purchased by the Commissioner of Education, and paid for as hereinafter provided.

SEC. 9. The general agent of education, a^{\dagger} least three months in advance of the close of the scholastic year, shall submit to the Commissioner of Education detailed estimates of the probable necessary expenses for the support of the Territorial schools for the next fiscal year, including the ein the erection of school buildings, the pay of school officers and teachers and other employés, traveling expenses of the general agent and the district superintendents, rents, fuel and lights, furniture, school books, appanatus, and all other necessary expenses for the maintenance of the schools.

SEC. 10. All salaries, expenditures, and other claims for the payment of educational expenses in Alaska must be audited by the general agent of education, oi in his absence by the assistant agent (hereinafter provided for), approved by the Commissioner of Education, and when approved by him transmitted to the Secretary of the Interior for his approval, and when so approved, will be paid o t of the funds appropriated by Congress for the education of the children of the Territory.

SEC. 11. In cases of special emergency the general agent, district superintendent, or local school committee, may incur expenditures for immediats necessary school purposes in advance of the approval of the Commissioner of Education, butsuch liabilities shall be only for unforeseen and necessary purposes, and shall in no case exceed $\$ 100$.

SEC. 12. Whenever such extraordinary expense is incurred the general agent, superintendent, or local committee making the same, shall make an immediate report thereon in writing, to the Commissioner of Education, setting forth the reasons for incurring said expense, and transmitting properly signed and audited vouchers for the payment thereof.

SEC. 13. In the preparation of estimates, vouchers, and other official forms and papers, the blanks approved by the Treasury and Interior Departments shall be used.

SEC. 14. As far as possible the general agent shall visit each school district once in two years.

SEC. 15. The general agent shall make a report at the end of the school year to the Commissioner of Education, which report shall embrace-
(a) Number and general condition of all the schools in the Territory.

1. Public schools inUnalaska district. Kadiak district. Sitka district.
2. Contract schools.
3. Other private and church schools.
(b) Rules and regulations prescribed by the general agent for the government of the schools and the duties of the teachers.
(c) School census, monthly attendance, etc.
4. Census of population and of children of school age.
5. Statistics of enrollment, average attendance, etc.

3 . Branches of study taught and number of pupils in each.
4. Other statistics when possible.
(d) Personnel.

1. General agent, district superintendents, school committees, and clerk; their pay.
2. Gorernment school teachers and their pay.
3. School policemen and their pay.
(e) School houses.
4. The number, location, and seating capacity of the school buildings owned by the Government.
5. The number, location, seating capacity, and rental of rented buildings.
6. The number, location, seating capacity, and cost of school buildings erected during the year.
(f) Any and all information, suggestions, and recommendations that may
be useful for the advancement of education in Alaska or that may be required by the Commissioner of Education.
SEC. 16. The Commissioner of Education is hereby authorized to employ a person, to be known as the assistant agent, at a salary of $\$ 100$ per month, to be paid out of the fund appropriated by Congress for education in Alaska, whose duties shall be, under the direction of the general agent-
(a) To attend to the Alaska correspondence.
(b) To take care of the Alaska files.
(c) To keep the accounts with the Alaska fund.
(d) In the absence of the general agent to audit the accounts of the teachers.
(e) And to prepare Alaska papers, vouchers, etc., for submission to the Commissioner of Education, and in every possible way to assist the Commissioner and the general agent.

SCHOOL DISTRICTS.

The Territory of Alaska is divided into three school districts, which shall conform to the geographical divisions known as Sitka, Kadiak, and Unalaska, as follows:
SEC. 17. Sitka, comprising all southeastern Alaska, with an area of 28,980 square miles.
SEC. 18. Kadiak, comprising the region from Mount Saint Elias westward to Zakharoff Bay, with an area of 70,884 square miles.
SEC. 19. Unalaska, comprising the region from Zakharoff Bay westward to the end of Aleutian Islands and northward to the Arctic Ocean, with an area of 431,645 square miles.
SEC. 20. In the Sitka district the Commissioner of Education shall appoint a district superintendent of schools at a salary of $\$ 40$ per month, and he shall hold the position during the pleasure of the Commissioner and until his successor be appointed.
SEC. 21. It shall be the duty of the district superintendent to exercise local supervision over the Government schools and teachers in his district.

SEC. 22. He shall visit all the schools of his district at least twice a year and keep the general agent informed of their condition and wants as to school buildings, repairs, and supplies, the manner in which teachers perform their duties, and make such recommendations as may seem important to the best interests of the schools.
SEC. 23. He shall make an annual report to the general agent of education of the condition of schools in his district.
SEC. 24. He may once a year hold a teachers' association at such time and place as in his judgment will best promote the interest of the schools.
SEC. 25. He shall be allowed necessary traveling expenses in the discharge of his offcial duties.
SEC. 26. Until the schools become more numerous and the means of communication more frequent, the general agent of education shall be ex-officio district superintendent of the Kadiak and Unalaska districts.
SEc. 27. In any village in Alaska containing a sufficient number of suitable persons the Commissioner of Education may at his discretion appoint three persons who shall act as a local school committee.

SEC．28．The duties of the school committee shall be－
（a）To visit and inspect the schools of the village，advise with the teachers， and make such recommendations to the district superintendent with re－ gard to the schools as may seem proper．
（b）With the written approval of the Commissioner of Education，they shall provide fuel，make repairs on buildings，and purchase local supplies．
（c）If a school building is under contract in the village，it shall further be their duty to act at the building committee and see that the contractor fulfills his agreement．At the completion of the said building they shall examine the same and certify to the Commissioner of Education that the building has been erected and finished in accordance with the terms of the contract and in a workmanlike manner．
SEC．29．The children shall be taught in the English language，reading，writ－ ing，arithmetic，geography，oral history，physiology，and temperance hygiene． No text－books printed in a foreign language shall be allowed．Special efforts shall be put forth to train the pupils in the use of the English language．

SEC．30．All public schools shall be open to all children without reference to race．

SEC．31．In suitable weather，at the opening of each school in the morning，a United States flag shall be raised，and at the close of school in the afternoon the the same shall be taken down．

SEC．32．The Sitka training school shall teach the primary branches of indus－ trial education．The boys shall be taught shoemaking，carpenter and cabinet work，printing，and such other trades as are of use in the Territory，while the girls shall be instructed in intelligent housekeeping and household industries．

Pupils in the Government day schools developing unusual aptness in learning and wishing increased advantages，shall be received into the Sitka training school upon the written request of the general agent or district superintendent．

The above＂Rules and Regulations for the Conduct of Public Scchools and Ed－ ucation in the Territory of Alaska，＂in sections numbered from 1 to 32，inclus＇ve， are hereby approved to take effect July 1， 1890

John W．Noble， Secretary of the Interior．

Hon．W．T．Harris，ll．D．，
Commissioner of Education．
Washington，D．C．，April 9， 1890.

Table 1．－Enrollment and monthly attendance，1889－＇90．

Station．			Septem－ ber．		October．		Novem－ ber．		$\begin{aligned} & \text { Decem- } \\ & \text { ber. } \end{aligned}$	
			F	$\begin{aligned} & \dot{8} \\ & \text { en } \\ & \text { Ein } \\ & \stackrel{y}{0} \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 刃in } \\ & \text { Hi } \end{aligned}$		$\begin{aligned} & \text { ज⿹⿺㇉一⿰丨丨丁心} \\ & \text { H } \end{aligned}$	－		
St．Paul，public day school	120	50	50	17	50	17	50	17	50	17
Unalaska，public day schoo	184	30			17	6	19	16	17	15
Urega，public day school	179	24			19	14	18	14	17	13
St．George，，public day school	120	29	29	20	29	20	29	20	29	20
Auvik，contract school	102								31	21
Kozoriffsky，contract school	273	29	25	25	25	25	25	25	25	25
Bethel，contract school	150	39	35	25	29	26	31	25	31	25
Carmel，contract school	191	35	13	7	31	22	29	28	30	$\stackrel{20}{6}$
Unalaklik，Swedish school	157	40			30	29	30	23	30	26
Nuklukahyet，Episcopal scho	200	40								
Total，Unalaska district	1，676	351		－－						
Kadiak，public day school	196	67	4：	21		40	52	37	53	32
Afognak，public day school．	180	38			26	21	26	22	30	23
Total Kadiak district	376	105			$\varepsilon 1$	61	78	59	83	55
Sitka No．1，public day school	190	68	45	28	44	34	45	39	43	31
Sitka No．2，public day school	190	83	33	13	34	13	34	20	35	16
Killisnoo，public day school．	175	32	12	10	30	22	25	19	12	9

Table 1．－Emrollment and monthly attendance，1859－＇90－Continued．

Station．			Septem－ ber．		October．		Novem－ ber．		Decem－ ber．													
					$\begin{aligned} & \text { ت゙ } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { ت⿹勹⿰丿丿心 } \\ & \text { Ë } \end{aligned}$		त－	¢ E0 ¢ ¢ 4												
Juneau No．1，public đay school	136	33	23	25	26	21	23	20	20	18												
Juneau No．2，public day school	192	51	19	13	27	21	28	20	30	23												
Douglas No．1，public day school	192	92	57	23	46	20	41	21	45	27												
Wrangell，public day school．．．．．	192	84	36	25	50	30	52	35	49	40												
klawack，public day school	30	66																				
Jackson．public day school	189	87	45	27	51	26	91	32	80	54												
Metlakahtla，public day scho	169	179	112	52	148	88	146	96	151	101												
Sitka，contract school．	261	164	148	136	150	138	150	138	150	138												
Hoonah，Presbyterian school	155	126			12	10	80	50	100	68												
Juneau，Presbyterian school	200	21	21	20	21	20	21	20	21	20												
Juneau，Roman Catholic scho																						
Douglas，Friends school．．．．．																						
Jackson，Presbyterian school	200 312	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	3	3	3	3	3	3	2	2												
Total，Sitka district．	3，093	$1,{ }_{101}$																				
Total reporte	5，145	1，788																				
Station．	January．		Feb－ ruarr．		March．		April．		May．													
					$\begin{aligned} & \text {. } \\ & \stackrel{3}{0} \\ & \text { : } \end{aligned}$		$\begin{aligned} & \text { تi } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \text { \& } \\ & \stackrel{0}{0} \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ii } \\ & \text { Ni } \\ & \text { En } \end{aligned}$	－												
St．Paul，public day school		47	50	17	50	17	50	17	14	11												
Unalaska，public day scho		10	14	$\frac{12}{12}$	$\begin{aligned} & 17 \\ & { }_{29} \end{aligned}$	12	19	11														
Unga，public day school			${ }^{16}$			${ }_{20}^{12}$	$\begin{aligned} & 20 \\ & 29 \end{aligned}$	${ }_{20}^{12}$	18	15												
St．George，public day sc		17	$\begin{aligned} & 29 \\ & 31 \end{aligned}$																			
Anvik，contract school－i		17		${ }_{26}^{15}$	$\stackrel{20}{24}$	${ }_{26}^{11}$	$\stackrel{27}{ }$	$\begin{aligned} & 14 \\ & 28 \end{aligned}$	29	28												
Bethel，contract school		${ }_{24}^{19}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \\ & 2 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 23 \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \\ & 20 \end{aligned}$	19	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	23													
Carmel．contract＇school										17												
Unalaklik，contract school		36	40	37	33	30	19	17														
Nuklukahyet																						
Total Unalaska District																						
Kadiak，public day school		$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 31 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 51 \\ & 28 \end{aligned}$	$\begin{aligned} & 34 \\ & 23 \end{aligned}$	$\begin{aligned} & 51 \\ & 28 \end{aligned}$	$\begin{aligned} & 25 \\ & 24 \end{aligned}$	$\begin{aligned} & 50 \\ & 24 \end{aligned}$	35 20											
Afognak，public day sch																						
Total Kadiak Di	80	53	70	55	79	57	79	49	74	55												
Sitka，No．1，public day schoo	$\begin{array}{r} 42 \\ 33 \\ 9 \\ 22 \\ 33 \end{array}$									22												
Killisnoo，public day school		7	24	19	23	18	25	20	11													
Juneau，No．1，public day school		18	32	21	32	20	32	23	24													
Juneaia，No． 2 ，public day school		29	34	26	31	26	32	25	30	24												
Douglass，No．1，public day school		17	23	\cdots		20		20														
Douglass，No．2，public day school	3530		313		30	18	29		25	2117												
Wrangell，public day school				12			18	15	20													
Klawack，public day school	77165145100	$\begin{array}{r} -77 \\ 83 \end{array}$	41				30	16	66													
Jackson．public day school				${ }_{2}^{22}$	35	19	32	15	24	14												
Metlakahtla，public day school			129		100		99	42	164	28												
Sitka，contract day school．．．		140	145	14065	145	14040	164	148		148												
Hoonah，Presbyterian school									－－－－－－－													
Juneau，Presbyterian school		6	－．．．－	－．．－－－	－－．．－－	－－	－－－	－．．．－－														
Yakutab，Swedisk school	28	20	2	－		－－－	－－－－－	－－－－－														
Total Sitka District． Russo－Greek parochial schools																						
Total reported．																						

Table 2.-Number in sundry branches of study.

Table 3.-Table showiny highest enrollment 1855-1890.

	1885-86.	1886-87.	1887-88.	1888-89.	1889-90.
Public schools.					
	51	55	60	51	68
No. 2		70	71	46	83
Juneau:					
No. 1	75	93	25	29	33
No. 2					
Douglas City:			67	52	50
No. 2 ------.					92
Killisnoo	50	58	44	22	38
Wrangell	70	89	106	59	84
Jackson	87	96	110	91	87
Klawack		124	81	31	66
Kadiak	105	1	81	52	67
Unga.		29	25		24
Unalaska	45				30
Kurluk					
Afognak		30	24	47	38
Contract schoois.					
Sitka.		100	186	170	164
Carmel		13	${ }_{2}^{17}$	$\begin{aligned} & 26 \\ & 20 \end{aligned}$	39 31
Nulato.					
Kosoriffsky					29
Anvik.				30	35
Metlakahtla			170	166	179

CONTRACT SCHOOLS.
Table 4.-Amount contributed by the churches to supplement the work of the Governmont. Amount apportioned by the Government to the contract schools for 1891-92.

* Three-day pupils are considered as equivalent to one boarding pupil.

D.-Personnel, Salaries, Etc.

General agent of education for Alaska, Dr. Sheldon Jackson, Alaska, \$1,200.
BOARD OF EDUCATION. ${ }^{1}$

Name.	State.	Salary.
Governor Lyman E. Knapp	Vermont	8200
Judge John H. Keatley	Iowa --...-	200
Hon. James Sheakiey	Pennsylvania	200
Mr. William Duncan		200 200

TEACHERS OF PUBLIC SCHOOLS.

Name of teacher.	State.	School.	Salary.
John A. Tuck	Maine	Unalaska	\$1,009
John H. Carr	Washington	Unga	1,000
W. E. Roscoe	California	Kaniak	1,000
Anna D. Beatty	New York	Sitka, No. 1	1,720
Gertrude Patton	Pennsylvania	Sitka, No. 2	720
May Ransom.	California	Killisnoo	720
Rhoda A. Lee	New York	Juneau, No. 1	900
Cassia Patton	Pennsylvania	Juneau, No. 2	72.
Mrs. W. S. Adams	Alaska.	Douglass, No. 1	720
C. H. Edwards	Kansas	Douglass, No. 2	720
Mrs. W. G. Thomas	West Virginia	Fort Wrangell	900
H. C. Wilson	Ohio	Klawack	1,000
Clara A. Gou	West Virgin	Jackson	900

${ }^{1}$ In the new rules and regulations approved by the Secretary of the Interior A prili9, 1890, this Board created in $18 \varepsilon 7$ was discontinued, experience having proved that it did not work well, and a system of local school committees was inaugurated.

Anvik (Episcopal).-Rev. John W. Chapman, Vermont.

Point Pope (Episcopal).-John B. Briggs, M. D., Delaware.
Kosoriffsky (Roman Catholic).-Rev. Paschal Tosi. Mr. B. Cunningham, Mr. John Negro, Sister Mary Stephen, Sister Mary Joseph, Sister Mary Paulina.
Cape Vancouver (Roman Catholic).-Rev.Joseph Treca, Rev. Paul Muset, Mr. John Rosati.

Nulato (Roman Catholic).-Rev. Robaut, Rev Ragaru.
Bethel (Moravian).-Rev. John H. Kilbuck, Rev. Ernst L. Weber, Mrs. John H. Kilbuck, Mrs. E. L. Weber, Miss Lydia Lebus.

Carmel (Moravian).-Rev. Frank E. Wolff, Mrs. F. E. Wolff, Miss Mary Huber, Miss Emma Huker, Rev. J. A. Schoechert.
Cape Prince of Wales (Congregational).-Mr. H. R. Thornton, of Virginia; Mr. W. T. Lopp, of Indiana.

Point Barrow (Presbyterian). -Mr . Leander M. Stevenson, of Ohio.
Sitka (Presbyterian).-Mr. William A. Kelly, principal, Rev. A. E. Austin, chaplain, Mrs. A. E. Austin, Miss Anna R. Kelsey, Miss Mate Brady, Mr. J. A. Shields, Miss Carrie E. Delph, Miss Ida M. Rogers, Miss Kate A. Rankin, Mrs. A. T. Simson, Mr. A. T. Simson, Mrs. M. C.Devore, Mrs. Josie Overen ${ }^{2}$, Mr. Ernest Struven, Mrs. Tillie Paul(native), Mr. William Wells (native), Mr. Edward Marsden (native), William F. Arnold, M. D.

Metlakahla.-Mr. William Duncan, teacher, with several native assistants.

TEACHERS IN PRIVATE AND CHURCH SCHOOLS.

Unalaklik (Swedish Evangelical).-Rev. Axel E. Karlson, Aug. Anderson.
Yakutat (Swedish Evangelical).-Rev. Alb. Johnson, Rev. K. J. Henrickson.
Hoonah (Presbyterian).-Rev. John W. McFarland, Mrs. M. D. McFarland, Miss Dora Davis (native).
Juneau (Presbyterian).-Rev. Eugene S. Willard, Mrs. E. S. Willard, Miss Elizabeth Matthews, Miss Margaret Dunbar, Rev. S. H. King, Mrs. S. H. King. Jackson (Presbyterian).-Mrs. A. R. McFarland, Miss C. A. Baker, Rev. J. Loomis Gould, Mrs. J. L. Gould.
Junear (Roman Catholic).-Rev. John Althoff, Sister Mary Zeno, Sister Mary Peter, Sister Mary Bousecouer.

Douglas (Friends).-Mr. S. R. Moon, Mrs. S. R. Moon, Mr. E. W. Weesner, Mrs. E. W. Weesner.
North. American Commercial Company.-Simeon Milevedoff, St. Paul Island; A. L. Noyes, M. D., St. George Island.

E.-School Buildings.

During the year a comfortable frame schoolhouse and teacher's residence combined, 31 by 55 feet in size, were erected at Kadiak, Karluk, and Afognak, at a cost of $\$ 2,700$ each; at Douglas a substantial frame schoolhouse, 20 by 30 feet in size, at a cost of $\$ 1,200$, and at Chilikat a \log schoolhouse, 20 by 30 feet in size, for $\$ 350$.

EDUCATION IN THE EAST.

Of the Alaskan children at Eastern schools, Miss Frances Willard graduated in June, 1890, at a young ladies' seminary at Elizabeth, N. J. She will raturn to Alaska this summer, and be appointed assistant teacher in the industrial school at Sitka.

Mr. Frederic Moore, of the Hoochinoo tribe, whom I brought East in the fall of 1886, and placed in the school at Mount Hermon, Mass., will also return to Alaska this season as Government teacher of the school at Hoonah.

In the fall of 1887, at the expense of Mrs. Elliott F. Shepard, of New York, I brought to Eastern schools Frederic Harris, Henry Phillips, Minnie Shotter, Flora Campbell, and Florence Wells, native children, and Olga Hilton (Russian) from the industrial school at Sitka, and Blanche C. Lewis, native, from Fort Wrangel.

The two boys were placed in the Indian training schools at Carlisle, Pa., and the five girls at the young ladies' seminary, Northfield, Mass.
Frederic Harris, after making good progress in his studies and in learning the
tinsmith business, was taken sick from peritonitis, and died in the school hospital on the 10th of June, 1890.
Henry Phillips, having learned the printer's trade, has now gone into the machine shop, where he is making good progress.
Florence Wells, Blanche Lewis, and Olga Hilton are still at Northfield. Flora Campbell has been changed from the school at Northfield to one at Orange, N. J., where she is receiving drill as a kindergarten teacher.
Minnie Shotter having developed a weakness in her eyes, will return home to Douglas, Alaska, where she will teach instrumental music.

This coming fall, Darid Skuviuk and George Nocochluke, Eskimo boys from the Kuskoquim Valley, will be taken East by Mrs. Bachman, and placed in the Indian training school at Carlisle, Pa .
George and William Fredericks, of the Yukon Valley, will be sent by the Episcopalians to the Episcopal Institute at Burlington, Vt., Edward Marsden of the Presbyterian training school at Sitka, to Marietta College, Ohio, and Shawan Sheshdaak of Fort Wrangel, to the Educational Home at Philadelphia.
Through the liberality of Mr. Rudolph Neumann of the Alaska Commercial Company, I have arranged to send to the California normal school for teachers at San Jose, Miss Mattie Salamatoff, orphan daughter of a former Russo-Greek priest at Belkoffsky.
When Alaska secures much needed laws to increase regular attendance of the natire children at school, then there will be room and a call for many native teachers.

SCHOOLS ESTABLISHED IN ARCTIC ALASKA.

In the extension of the school system over all Alaska a commencement has been made within the Arctic Circle. Contract schools have been established at Point Barrow, Point Hope, and Cape Prince of Wales, the three principal rillages on the Arctic coast of Alaska.
This commencement involves much that is new and unusual in school work. The location of the schools is in a region so remote and inaccessible that they are outside the world's commerce. In August, when the ice will permit, a few whalers sail by, and a United States revenue marine steamer makes an annual call, bringing the yearly mail and supplies. With the departure of the steamer the settlement is cut of for another eleven months from the world. There are years, however, when the northernmostschool, Point Barrow, can not be reached at all during the season, and the teacher will be two years without a mail or a fresh supply of provisions. And there is always the liability that a succession of severe seasons will isolate him for sereral years.

- Under the shadow of this possibility it is a relief to know that at this station, where the greatest danger is, the Government has a refuge station for shipwrecked whalers, with provisions in store sufficient to last 20 men 5 years. If this supply should be exhausted before relief came, the teacher would be compelled to adopt the diet of the country, to wit, whale blubker and seal meat.
The food, clothing, and supplies for the teachers and the supplies for the schools must needs be taken annually on a Government vessel or a chartered schooner from Sain Franciso, between 3,000 and 4,000 distant.
In an area as large as all of the New England and Middle States combined, the three schools recently established occupy only the strategic places, separated hundreds of miles from each other. They are the central points from which future schools may be established.
The location of these schools in a region where the winter term is one long night presents new problems. The constant need of lamps in the schoolroom is a matter of course. But a greater difficulty is experienced in the confusion of time which arises from the absence of the sun to mark the alternate periods of day and night.

Without a marked difference in the light between noon and midnight, all knowledge of time among a barbarous people becomes lost. . They know no difference between 90° clock $\mathrm{a} . \mathrm{m}$. and $9 o^{\prime}$ clock p. m. Consequently, when the school bell rings out into the Arctic darkness at 9 oclock a. m. some of the pupils have just gone to bed, and are in their first sound sleep. Roused up and brought to the schoolroom, they fall asleep in their seats. Many of the pupils have come to school without their breakfasts; with sleepy bodies and empty stomachs they are not in the best condition to make progress in their studies. Then, bearing in mind the fact that these children are wholly undisciplined and unaccustomed to restraint, the greatness of the task before the teacher begins to be appreciated.

The schools are for the Arctic Eskimo, with their strange tongue and unwritten language. Consequently at the opening of school the teacher could not understand what the pupils said or the pupils understand the instruction of the teacher. In two or three schools the teachers were unable to secure interpreters.

The schools being located among an uncivilized and barbarous people, living in earth huts and disregarding all the laws of health, it became necessary, not only to erect the schoolhouse, but also the teacher's residence, and, as far as possible, make both cold-proof with double walls, floor, and roof.

The materials for these houses had to be taken from San Fransisco on a chartered vessel, landed through the breakers on a coast without a harbor, and carried on the shoulders of men and women to the site of the buildings.

Again, the schools were located among a people who were not only uncivilized, but also were reported by the whalers to be savages. At one of the stations whalers have for years been afraid to drop anchor lest they should be attacked and murdered by the natives. At that station two young men are in charge of the school. They are the only white men in that region and thousands of miles from troops or even a policeman. Further, the schools are located among a famishing population where the teachers have to do not only with the intellectual training, but also with the physical well-being, the general uplifting of the whole population out of barbarism into civilization. This involves questions of personal cleanliness, health, diet, improved habitations, drainage, and above all at present an increased food supply. The people are on the verge of starvation, and the schools must provide and instruct them in new industries which will furnish a better support.

As the schools will necessarily be much of the time out of the reach of control and supervision, the coöperation of well-known and responsible missionary organizations was sought, with the result that the American Missionary Association of the Congregational Church took charge of the school at Cape Prince of Wales, on Bering Straits, the Episcopal Missionary Society the one at Point Hope, and the Presbyterian Home Missionary Society the one at Point Barrow.

The money for the establishment of the school at Point Barrow and the erection of the buildings was contributed by Mrs. Elliott F. Shepard, of New York; that for Cape Prince of Wales by the Congregational Church of Southport, Conn.

Cape Prince of Wales is the most western school in America, and Point Barrow the most northern. Point Barrow is farther north than the celebrated North Cape of Europe. These schools are assisted by the United States Bureau of Education. While negotiations were in progress with the missionary societies, an appeal was published in a number of the newspapers of the United States for volunteer teachers for the schools to be established at Point Barrow and Cape Prince of Wales. The call set forth the facts that the schools were beyond the pale of civilization, where communication with the outside world could be had but once a year; that they were among a barbarous and perhaps savage people, where the risks were so great that ladies would not be allowed to go, and where the lives of the men would not be guarantied. Notwithstanding the hazardous and trying nature of the work, there were 24 applicants for the schools, some 12 of whom were ladies.

Prof. L. M. Stevenson, of Versailles, Ohio, was selected for Point Barrow; Dr. John B. Driggs, of Delaware, for Point Hope; and Mr. H. R. Thornton of Hampden Sidney, Va., and Mr. W. T. Lopp, of Valley City, Ind., for Cape Prince of Wales.

A vessel, the Oscar and Hattie, was chartered at San Francisco to take up the materials for the buildings and supplies for the teachers and schools. The teachers found passage as far as Port Clarence, Bering Sea, on the steamer Jennie, tender to the whaling fleet, and from Port Clarence to destination on the whalers.

I was kindly furnished transportation on the U. S. R. M. S. Bear.
At noon on the Fourth of July the Bear dropped anchor in the open roadstead off the village Kingegan, Bering Straits. That afternoon, on the shores separating the Arctic Ocean from Bering Sea, and in front of the snow-capped mountains of Asia, plainly visible for miles, we celebrated our Fourth of July by laying the foundations of the first public-school building in Arctic Alaska.

Upon the completion of the school building the Bear* weighed anchor, sailed through Bering Straits into the Arctic Ocean, and 200 miles to the northward dropped anchor under the light of the midnight sun at Point Hope.

Here again all hands that could be spared were sent ashore to work at the
school building. After completing the building we again turned our faces toward the North Pole.

After rarious detentions by the great ice field of the Arctic, on the 31st day of July we reached Point Barrow, over 800 miles north and east of Bering Straits. The next day, running before a gale, we rounded the northern end of the continent and anchored on the eastern side of the Point.

On the northernmost bluff of the continent was established probably the northernmost school in the world.

SUPERVISION.

Through the special permission of Hon. William Windom, Secretary of the Treasury, and the courtesies of Capt. L. G. Shepard, Chief of the Revenue Marine Service, Capt. M. A. Healy, commanding the U. S. R. M. S. Beur, and Capt. A. C. Coulson, commanding the U. S. R. M. S. Push, I was able to inspect, for the first time in four years, the schools at Afognag, Kadiak, Unga, and Unalaska, and also visit the settlements on the Bering Sea and Arctic coasts of Alaska.
Mr. Windom, in furnishing me with transportation, recognized the fact that the revenue vessels visiting the native settlements of Alaska had, "in addition to routine duties, the philanthropic work of caring for and assisting the native peoples."

In a letter concerning the trip he says: "The ordinary duties of the revenue marine have been greatly augmented on the North Pacific and Arctic station by the service which it renders in affording aid and protection to the natives, who are often in peril and distress from the rigors of the climate, the exposed condition of the country, and their lack of knowledge in the ways of civilization. The service is doing good missionary work, and is an important factor among the instruments which are being utilized to improve the interests of these people."

The trip of the U.S. R. M. S. Bear was the ordinary annual cruise of one of the U. S. Revenue Marine steamers in Alaskan waters.

Season after season she goes north in the spring to enforce the revenue laws and practically do police duty around the seal islands of Bering Sea and the native settlements stretching from Kadiak 1,500 miles to Attu, and from Unalaska 1,200 miles northward t) Point Barrow. In rast stretches of coast (from 10,000 to 12,000 miles is a season's cruise), unknown ts civilization, the flag of the revenue steamer is the only evidence of the authority of the Government ever seen and the only protection afforded. When Capt. Healy commenced cruising in these waters, schooners loaded with rum, were risiting every native settlement along the vast coast; and even some of the whalers were notabove trafficking in the accursed stuff. The temptations were great, when a bottle of whisky would purchase $\$ 200$ worth of furs, and the profits were a thousand fold. At that time intemperance was threatening the extinction of the native race. Through the vigilance and tact of Capt. Healy this trade has be n almostentirely broken up.

It is also the duty of the revenue cutter, as far as possible, to be on hand to assist when disaster or shipwreck overtakes the whalers, to search after missing vessels, to note the bearing of different points of land, islands, etc., to det=rmine the position of all bars and reefs encountered, to keep a record of tides and currents, to take meteorological and astronomical obserrations for the benefit of commerce, to investigate scientific phenomena, and inquire into the mode of life, political and social relations of the native population, and make collections for the Smithsonian Institution, and to perform many other services beneficial to commerce, science, and humanity.

This year, in addition to the ordinary routine, the commanding officer is charged with several special duties. In 1887-88, Congress voted $\$ 1,000$ for presents to the natives near Cape Navarin, Asia, as a reward for having fed and cared for some American sailors wrecked on their coast. These presents were to be distributed on this trip.

Then, scattered through Bering Sea and the Arctic Ocean are islands and lands so remote and inaccessible that the ordinary census taker can not reach them; hence the commanding officer of the revenue cutter was appointed a special agent for the taking of the Eleventh Census in those places. This gave me an opportunity of visiting these little known regions.

Again, the steamer was charged with the duty of conveying the material for a storehouse and a supply of provisions for the Government refuge station at Point Barrow; and last, but not least, the commanding officer was authorized to
furnish such assistance as he could in the erection of school buildings at Cape Prince of Wales and Point Hope, and give the general agent of education for Alaska every facility for visiting the native settlements on the coast.
At 40° clock on the morning of the 3d of June, 1890, we steamed out of the harbor of Seattle. At 9 o'clock that evening we swept by the light-house at Cape Flattery and passed out to sea.
For nine days and nights we sailed steadily west, without seeing land or sail and scarcely a bird or fish. On the evening of June 12 land was sighted, which proved to be Unimak Island. The next morning, rising early, we were passing through Akutan Pass. The storm and fogs and rough waves of the preceding days were gone: the water was as quiet as a millpond. Pinnacles of rocks, isolated and in groups, were to the right and to the left of us ; bold headlands thousands of feet in height; mountain slopes covered with mosses of every variety of shade and great patches of snow: volcanoes with their craters hid in the clouds were on either side, and all lighted up by the morning sun made a scene of surpassing loveliness and beauty. In due time we swept by Cape Erskine, rounded Priests Rock, and were in Unalaska Bay. Twelve miles up the bay and we were at Iliuiuk, better known as Unalaska, the commercial metropolis of the Aleutian Islands and Bering Sea.
The Aleutian Archipelago consists of a narrow chain of islands, extending from the end of the Alaskan Peninsula in a general westerly direction for a thousand miles to Attu, the westernmost limit of the land possessions of the United States. This chain of islands separates Bering Sea from the Pacific Ocean, and gires coloring to the Russian claim of a "closed sea."

The discorery of these islands by Europeans is due to the unbounded ambition of Peter the Great of Russia, who, having founded a Russian empire in Europe and Asia, would also found one in America.
The western coast of America had been explored as far as Cape Mendocino, California, but from California north it was a vast unknown region-"the great northern mystery, with its Anian strait and silver mountains and divers other fabulous tales."
To solve these mysteries, to determine whether Asia had land communication with America; to learn what lands and people were beyond his possessions on the eastern coast of Sikeria, and to extend his empire from Asia to America, Peter the Great, in 1724, ordered two expeditions of exploration and placed them beth under the command of Vitus Bering, a Dane in the Russian service. The expedition set out overland through Siberia on January 28, 1725, under Lieut. Chirikoff.
Three days later the Emperor died, but the expeditions were energetically pushed by his widow and daughter. The first expedition, from 1725 to 1730 , explored Bering Straits, and settled the question of separation between Asia and America.
The second expedition was fitted out by the Empress Catharine, and consisted of two vessels, the St. Puul, commanded by Bering himself, and the St. Peitr, in charge of Alexei Ilich Chirikoff, second in command. The expedition was accompanied by several scientists and sailed from Avatcha Bay, Kamtschatka, on June 4, 1741. This ill-fated expedition discovered the mainland of Alaska and the Aleutian Islands. But the remnant that brought back the news of the discovery of northwestern America, also brought with them the beautiful furs of the sea otter, and wide-awake merchants were not slow to see their opportunity. As the adventurous hunt for the little sable had led the hardy Cossack and extended Russian dominion from the Ural Mountains across Asia to Kamtschatka and Bering Sea, so now the hunt for the sea otter was to extend Russian settlement 2,000 miles along the coast of America.

A few months after the return of Bering s expedition in the spring of 1743, Emilian Bassof formed a partnership with a wealthy Moscow merchant, built a small ressel named the Kupiton, and commenced the fur trade of the newly discovered islands. On his second trip, in 1745, he collected 1,600 seat otters, "2,000 fur seals, and 2,000 blue Arctic foxes.

This was the commencement on the part of the merchants of Siberia of a mad race after the furs of Alaska-a race so mad that they could not wait the securing cf proper materials for the building of safe vessels and the procuring of trained seamen. Boats were hastily constructed of planks fastened together with raw hide or sealskin thongs. In these unseaworthy boats, without charts or compass, they boldly ventured to sea, and the half of them found a watery grave. Those that did return in safety with a fair cargo received from 2,000 to 3,000 roubles each as their share of the profit.

On the 26th of September, 1745, for the first time the discharge of firearms was heard on the Aleutian Islands. A native was shot on the island of Agoto by a party of Russians under Chuprof.
Then commenced a reign of lust, robbery, and bloodshed, which lasted for 50 years. One Feodor Solovief is reported to have alone killed 3,000 Aleuts. Veniaminof, who was the leading Greek priest and first bishop in Alaska, declares that during that dreadful period Aleuts were used as targets for Russian practice in firing ; that one Solovief, finding the inhabitants of several of the Unalaska villages assembled on Egg Island, made an attack, slaughtering men, women, and children, until the sea was covered with the blood of the slain.
One Lazaref threw over precipices, cut with knives, and split open with axes a number of Aleuts.

Whole villages were massacred by the Russians, so that Lieut. Sary, chief of the Russian nary, who accompanied Capt. Billings's expedition in 1790, declares that it was a rery moderate estimate to place the number murdered at 5,000 .
This first half-century of Russian occupation can be roughly summarized as follows: On the credit side, from $\$ 15,000,000$ to $\$ 20,000,000$ worth of furs; on the debit side, thousands of Russians drowned, died of scurvy, and killed by natives, and thousands of natives needlessly murdered by the Russians.

A batter day dawned for the poor natives of Alaska in the coming of Grigor Ivanovich Shelikof, a merchant of Okhotsk, who has been justly styled the founder of the Russian colonies in Alaska. He introduced reforms in the methods of hunting, redressed abuses, formed permanent settlements, and procured concessions and power from the Emperor.

The work commenced by him was afterwards enlarged by Alexander Baranof.
The largest and most important of the Aleutian Islands is Unalaska. This island is $1: 0$ miles long and 40 wide. It contains three separate groups of mountains. It also has an actire rolcano, Makushin, 5,474 feet high. From a cave at the southern end of the island were taken eleven mummies for the Smithsonian Institution.

It also possesses several deep bays, oĩ which Unalaska is one of the longest. In their season codfish, salmon, halibut, and herring abound in those waters.
The island was first sighted by Lieut. Chirikof, of Bering's expedition, on the 4 th of September, 144. The first landing was made by a merchant of Turinsk, Stepan Glottof, in the vessel Yulian. This was in the fall of 1759. Glottof gave the world the first map of that region, and is said to have baptized many of the natires into the Greek faith.

To the average American the Aleutian Islands seem so remote, and concerning them so little is known, that but few think of them as having been the theater of stirring events and as having a history extending back one hundred and fifty years, but sucb is the case.

Unalaska shares with the other islands in that history. For thirty years it was a struggle between the rapacious, cruel, and bloody fur-trader and the Aleuts striving to preserve their homes and freedom. The end was the complete subjugation of the natives.

In January, 1762 , a party of fur hunters, under the leadership of Golodof and Pushkaref, landed upon the island. Owing to their excesses against the natives, several were killed and the rest fled the island the following May. But the island was too rich in furs to be given up. That same fall another party came under the leadership of Drushinnin. Outraging the natives, the latter commenced on the 4th of December a series of attacks which resulted in the breaking up of the Russian settlement, only 4 out of 150 men escaping with their lives.

In August, 1763, Capt. Korovin, of the vessel St. Troitska, formed a settlement. This also was broken up by the natives.

In $176 f^{\circ}$ Capt. Solovief formed a settlement. His stay on the island was marked by such bloody atrocities that the few who survived were completely subjugated. His name has come through a hundred years of local tradition as the synnnym of cruelty. Among other things, it is said that he experimented upon the penetrative power of his bullets by binding 12 Aleuts in a row and then firing through them at short range. The bullet stopped at the ninth man.

In 1770, when the American colonists were preparing themselves for the struggle for independence, the struggle of the Aleuts was ending. They had given their lives in vain. The few who were left could no longer maintain the unequal conflict and were reduced to practical slavery.

But Unalaska has since seen better days and been visited by a better class. On the 16 th of September, 1768 , Capt: Levashef, in charge of a Russian scientific expedition, droppel his anchor and wintered on the island.

In 1778 it was visited by the celebrated Capt. Cook with his ships Resolution and Discovery. On the 21st of July, 1787, Capt. Martine, in command of two Spanish vessels on a tour of exploration, landed and took possession of the island in the name of the King of Spain.
In 1709 Unalaska was visited by one of the most remarkable men of the day, Alexander Baranof, who was to rule Alaska for the next twenty-eight years, bring order out of confusion, and, carrying out and enlarging the plans of the merchant Shelikof, create a Russian empire in America.

On the 30th of September of that year, the ship Trekh Sviatiteli, upon which he had embarked for Kadiak Island, was wrecked and he was compelled to spend the winter at Unalaska. He improved his time by studying the character of the people with whom he had to deal, and forming the plans which he afterwards so successfully executed. In 1808 a rude log chapel was erected for the worship of the Greek Church. This was torn down in 1826 and a better church built in its place. In or about 1795 a Greek priest, Father Makar, took up his abode on the island, and had great success in baptizing the natives.

He was followed in 1824 by Innocentius Veniaminof, who was made bishop of all Alaska in 1840. He was subsequently recalled to Russia and made metropolitan of Moscow, the highestecclesiastical position in the Russo-Greek Church.

On the 25 th of June, 1791, the island was visited by Capt. Billings, in charge of the R’assian " astronomical and geographical exposition for navigating the frozen sea and describing its coasts, islands," etc.

In August, 1815, the place was visited by the Russian exploring expedition in search of the "Northwest passage" on the Rurik, Otto von Kotzebue commanding.

In 1827 a Russian exploring expedition, under the command of Capt. Lutke, visited the island.

From the beginning of Russian rule to the present day, it has been the commercial metropolis of the Aleutian Islands and Bering Sea.
But after all this stirring history of a century and a half, it is rather disappointing to learn that up to twenty years ago, when the Americans took possession, it was still a small village of barabaras or dirt huts, partly under ground, the Russian conquerors having largely adopted native ways of living. Since then the village has been greatly improved and almost rebuilt at the expense of the Alaska Commercial Company. They have erected 18 small, but comfortable frame cottages for their employés, together with residences for officers, store, wharf, and warehouses. The village has a population of from 14 to 20 white men, two white women, and about 400 Aleuts and Creoles. The Greek Church has a church and parsonage and school-house.

Upon landing, I was met by Erof. John A. Tuck, who, with his estimable wife, is in charge of the Government school. The three days that the steamer remained at Unalaska were given to the work of the school.

The first year of their work has been unexpectedly successful, and I felt, with the teachers, that the time had come for the commencement of the "Home," which the Methodist Woman's Home Missionary Society of the United States have had under advisement for two or three years, and for which, under the leadership of Mrs. L. H. Daggett, of Boston, they have been raising funds.

During my stay I had the satisfaction of seeing the "Home" commenced by Professor and Mrs. Tuck taking into their family two orphan girls from the island of Attu. A suitable building for the "Home" will be erected by the Methodist ladies this coming spring.

On Sabbath morning I attended the Greek Church and saw the services in connection with the baptism of children. Fourteen infants were presented before the altar of the church. The priest had in his hand a silver spoon with a handle about a foot long, and a bowl about the size of that of a spoon for a saltcellar. With this spoon the priest dipped water from a silver cup into the mouth of the babe, the attendant priest holding a napkin under the child's chin. After receiving the water, the cup was pressed to the lips of the babe. The mother or godmother then carried it to a side table, where it received a small piece of bread, and if old enough, a drink of water to wash down the bread. From the bread table, the child was carried to the altar platform, and its lips pressed to a picture of the Virgin and Child. The babe was then kissed by its god-mother. These babes were dressed in long white dresses, with a blue or red silk ribbon or sash around the waist.
On the morning of the 17 th of June the Bear sailed for Bogoslof Island.
Four or five miles west of Unalaska Island is that of Umnak. From its northern side, stretching out for miles into Bering Sea, is a reef. At the time of

Capt. Cook's visit in 1778, the northern end of this reef was marked by a rock 875 feet high rising from the sea in the form of a tower. This he named "Ship Rock."
On the 18th of May, 1796, during a violent storm, from the northwest, the inhabitants of Unalaska and Umnak Islands were startled by distant explosions and rumbling shocks of an earthquake. On the morning of the third day, when the sky had cleared, it was found that an island $1 \frac{3}{4}$ miles long, and three-fourths of a mile wide, in the form of a cone 2,240 feet high, had been thrown up out of the sea 1,200 feet distantfrom Ship Rock. Eight years afterwards, some hunters visiting the spot found the adjacent sea still warm and the rocks too hot for landing. The island continued to grow in circumference and height until 1823. Since then it has gradually decreased in height until in 1884 it measured but 324 feet.

In 1882 the natives reported Bogoslof as again smoking. On the 27 th of September, 1883, Capt. Anderson, of the schooner Mathew Iurner, sailed partly around the island. He reported that a new island had appeared one-half of a mile in circumference, and was throwing out great masses of rock and smoke and steam.
On the 20th of October, 1883, a shower of volcanic ashes fell at Unalaska, and was supposed to come from thisisland. The firstlanding and official investigation was made on the 21st of May, 1884, by Capt. M. A. Healy, commanding United States Revenue Steamer Corwin.
The new cone proved to be about 1,760 feet from the old one, the two being connected by a low sandspit 326 feet wide, with Ship Rock on the spit between the two cones. The extreme length of the island was found to be 7,904 feet, its general trend SE. by E. and NW. by W.
From the 17 th to the 22d of last February the sky was obscured with a cloud of ashes, a liberal shower of which fell in the village of Unalaska, 50 miles away. A pillar of flame and smoke ascended high into the heavens. It has been rariously estimated from 4 to 15 miles high.
The first white man to pass by was Capt. Everett E. Smith, of the steam whaling bark Balcena, who reported the appearance of four new islands in the vicinity.
It was therefore with feelings of more than ordinary interest that in the early morning of Tuesday, June 17, we steamed from Unalaska, bound for Bogoslof. Long before we reached the island, great white clouds of steam were seen upon the horizon. As we approached nearer all eyes were eagerly bent and glasses trained upon the land looming above the horizon. But the captain was puzzled. He could not make out his landmarks. The two volcanic cones were all right, but where was Ship Rock? Soon we were among myriads of birds which had chosen these inaccessible and warm rocks for their breeding ground.
Capt. Healy with his glass went to the masthead. Two men were placed in the chains to throw the lead. We steamed on and on until it seemed as if we would steam into the volcano itself; sulphurous smoke enveloped us, almost strangled us. Amid the roar of the breakers and the screaming of the birds the leadman called out, "No bottom at 17." Where previously the captain had anchored in 8 fathoms of water, no bottom was now found at 100 fathoms. Apparently the bottom of the sea had fallen out, carrying with it the four islands reported only a few weeks before by Capt. Smith. We steamed in safety over their former sites. More than that, the center of the island had dropped out, and where for centuries Ship Rock had stood, a well-known mark to the mariner, was now a lake.

It was with peculiar sensations that we steamed partly around the island, so close that we could look into the sulphur-lined steam vents, and, enveloped in its steam, could almost imagine that we saw "fire and brimstone."
The captain had intended making a landing and an investigation of the phenomena, but failing to find an anchorage, and the wind having freshened so that it was unsafe landing through the breakers, he reluctantly turned away and steamed for the Seal Islands.

For years the careful observers of the movements of the seal among the early hunters on the Aleutian Islands had noticed that they went north in spring and returned in the fail, accompanied by their young, and a tradition existed among the natives that an Aleut had once been cast away upon islands to the north, which they called Amik. When in 1781 the usual catch of furs began to decrease upon the Aleutian Islands, efforts were made to discover this supposed island. In 1786 the search was joined by Master Gerassim Gavrilovich Pribylof, in the vessel St. George. But so well has nature hidden these islands, the favorite home of the fur seal, among the fogs of Bering Sea, that Pribylof cruised three weeks in their vicinity, with every evidence of being in the neighbor-
hood of land, and yet unable to discover it. But at length the fog lifted, and early in June land was sighted, which he called St. George. A party of hunters were left on the island for the winter and they in turn discovered the larger island of St . Paul.

Over 500,000 skins were taken during the year, and the islands early began to be the "bank" from which Baranof raised the funds to carry on his government in Alaska. If he needed a ship's load of provisions and supplies for his colonies, all he had to do was to kill more seal and pay in seal skins. So great was the slaughter that the Government was compelled to interfere and in 1805 prohibited their killing for a period of five years. From 1820 to 1867, the year of the transfer, 49,000 skins were annually exported to England, the United States, and Canada.

The first years after the transfer of Alaska to the United States again witnessed an indiscriminate slaughter by different firms, until Congress was compelled to interfere and authorize the Treasury Department to lease the islands under suitable restrictions to a responsible company.
This was the origin of the Alaska Commercial Company of San Francisco, which has held the lease for the past twenty years, paying the Government annually a rental of $\$ 55,000$, and a royalty of $\$ 2.62 \frac{1}{3}$ on each of the 100,000 skins allowed to ba taken. This produced a revenue of $\$ 317,500$ per year. Last spring the islands were relet for another twenty years to the North American Commercial Company of San Francisco. By the terms of the new lease the Government will be the recipient of about $\$ 1,000.000$ per year.
At 9:30 p. m. on June 18, the captain dropped anchor in Southwest Harbor, St. George Island. Being unable to land through the breakers, the next day the ship sailed around the southernend of the island and anchored at noon in Garden Cove. The chart said that there was a trail to the village, 2 or 3 miles distant. At the village they called it 4 miles; the young officers that walked it came to the conclusion that it was nearer 14 miles.
At 9:15 p.m.the anchor was weighed and westeamed northward for St. Paul Island.

Going on deck about 6 o'clock on the morning of June 20, the ship was abreast of St. Paul Island, in full sight of the village. Behind us was Otter Island with its bluff shore, and still further behind in the hazy distance the Island of St. George. To our rightwas Walrus Island, and to our left St. Paul, with its gentle slopes of green grass and moss, its bleak rocks and sand beaches covered in the season with the fur seal. To the right of the rillage were seen men driving a herd of seal to the killing grounds. Upon a hill near the village fioated the stars and stripes, together with the flag of the North American Commercial Company, the lessees of the island. The stars and stripes also floated over the building occupied by Mr. Charles J. Goff, the United States Treasury agent.

From the bay the village presents a more pleasing and inviting appearance than any other in Alaska. The large houses occupied by the North American Commercial Company for their own use, the house of the Treasury agent, the Greek church and the priest's residence, the schoolhouse and the neat white cottages of the people, with their orderly arrangement by streets, ranged as they are on the gentle slope of a hill, make an attractive picture. Before we rose from an early breakfast, Messrs. Goff, Tingle, Redpath, and Elliott were announced. They had come to get their mail, which Capt. Healy had brought up for them. After breakfast I went ashore with Mr. Goff, who with his assistant, Mr. Nettleton, of Mineapolis, also Mr. H. W. Elliott, of Washington, and Mr. Tingle, the company's agent, did all in their power to make the day pleasant and profitable to me.

Soon after landing Mr. Goff announced that a killing had commenced, and we walked over to the grounds to witness the process. A band of 200 or 300 seals were huddled together in the care of keepers. From this band 15 to 20 seals would be taken at a time, and driven a few yards from the main band. Four or five men with long clubs then took charge of the small band, and selecting those of suitable size and age, killed them by one blow on the head. The men with clubs were followed by others with knives, who stabbed the seals to let out the blood. They were followed by the skin men, who took off the skin with the layer of fat adhering to it. These in turn were followed by those who separated the fat from the skin. The skins were then carried to the salting house, where they were carefully counted and salted down. While this was going on, a score of women and girls were filling skin bags with masses of fat, which were carried on their backs to their homes, and then fried out into oil (butter) for winter use. The flesh was also carried home, cut into thin strips, and hung on poles to dry.

After being dried, it is stuffed into the stomachs of the sea lion, which have been cleaned and prepared for the purpose. After filling it with the dried meat, seal oil is poured in, filling up all the vacant spaces. You then have a huge sausage between two and three feet in diameter. This is stowed away for winter use.
In passing through the village we saw women at work cleaning the intestines of the sea lion, very much as eastern farm-wives prepare intestines for sausages. After being cleansed they are hung out to dry; when dry they are slit lengthwise and form a band 3 or 4 inches wide and from 75 to 100 feet long. From these strips are made the famous kamileka, or waterproof coats worn by these people. These coats are much lighter, stronger, and dryer, resisting rain longer and better than the rubber goods of commerce. Among the Eskimo of the Arctic the larger intestines of the walrus are used, making a correspondingly wider band.
The Greek church at this place is the best painted and neatest kept of any that I have seen in the Territory. The silver candlesticks and other ornaments when not in use were kept from the dust by bag coverings. The church is rich, being supported by a certain percentage of the wages of the whole population. In the adjoining graveyard a large Greek cross made from 2 -inch plank stood at the head of each grave. With but two or three exceptions, these contained no name or date, nothing to indicate who was buried there. A gentleman who has attended many of their funerals says he never saw any, even the nearestrelative of the deceased, shed a tear.or give any outward sign of grief. They say it is good to die. After the burial all the friends are invited to the former residence of the deceased to tea.
With Mr. Goff I also visited the company's schoolhouse. It is well built, commodious, and well furnished in its appointments. Owing to the opposition of the Greek Church, which does not wish the children to learn English, but little progress has apparently been made. The school has been in operation for twenty years, and yet I could not find a child who could converse in the English language, although I was informed that some of them understood what I said to them. I greatly regret that it was vacation time and that I could not see the school in session.
Mr. H. W. Elliott, who is here under appointment from the Secretary of the Treasury to report on the present condition of seal life, pointed out to me the location of the leading seal rookeries, and lamented the seeming fact that the seal were greatly decreasing in numbers. At dinner we were all the guests of Mr. Tingle; the principal fresh meat being roasted seal. I found it very palatable.
The population of the island consists of 5 whites and 217 natives. There are 23 boys and 41 girls between the ages of 5 and 17 .
About 4:30, the tide favoring, we returned to the ship after a very enjoyable day on shore. At 5 p. m. the steamer got under way. We rounded the southern end of the island and fetched our course for Asia.

SIBERIA.

Siberia, the battle-ground of conquering Cossack and free-booting Promyshlenki in their century's march across Asia, is, in its northern and northwestern section, a dreary waste of low-rolling and frozen tundra or rugged, snowcovered and storm-swept mountains, the land of the fierce howling poorga, of wild beasts and scattered tribes of brave, hardy, and half-civilized people.
Its bleak, ice-skirted, snow-covered shore north of Kamchatka was our next landing place. Off thiscoast on the 5th of May, 1885, the whaling bark Napoleon was caught and crushed in the ice. The disaster came so suddenly that the crew had barely time to spring into the boats without provisions or extra clothing. There were four boats with nine in each. Four days after the wreck two of the boats were seen by the bark Fileetwing, and their crews rescued, five of them dying from the effects of the exposure. The remaining eighteen men after seven days' tossing about in the sea, took refuge upon alarge field of ice, where they remained twenty-six days. During this time one-half of their number diedfrom exhaustion and starvation. While on the ice all they had to eat were two small seals, which were caught. One of the men, Mr. J. B. Vincent, being unable to eat the raw seal, had not a mouthful of nourishment for eleven days.

On the 7th of June the nine survivors again took to the boat, and in three days effected a landing on the Siberian coast, to the southwest of Cape Navarin. The day after they landed, five of the remaining died, being so badly frozen that their limbs dropped off. Rogers, the mate, Lawrence, a boat steerer, and Wal-
ters, the cooper, were also badly frozen and helpless. These were cared for by the natives, who, though in a half-starving condition themselves, divided their living with them. The three men lived through the winter, subsisting on dried fish until March, when Lawrence died, followed the next day by Rogers, and shortly afterwards by Wallace, leaving Vincent the sole survivor of the party. Vincent, being in better physical condition than the others, was adopted by a family having a herd of domesticated reindeer, and therefore had more to eat. With them he remained for over two years until found and rescued July 15, 1887, by Capt. M. A. Healy, commanding the United States revenue marine steamer Bear.

While among the deer men, Mr. Vincent carved on a board with a knife the following message, and asked his new made friends on the coast to give it to the first ship they saw. On one side was "1887 J. B. V. Bk. Nap. Tobacco give." On the reverse side was "S. W. C. Nav., 10 M. Help Come." This piece of wood ultimately reached Capt. Healy and told the story, "1887, J. B. Vincent of the bark Napoleon, is 10 miles southwest of Cape Navarin. Come to his rescue. Give the bearer some tobacco for his trouble."

Capt. Healy was at Port Clarence when he received the message. With his usual promptness, he steamed over to the coast of Siberia, and after some difficulty in the fog, finally found and rescued the wrecked sailor.

During the following winter Congress made an appropriation for the purchase of presents with which to reward the natives for their care of Mr. Vincent and his comrades. Capt. Healy was delegated to distribute these presents, and for that purpose we were en route to Siberia.
Monday, June 23, opened very foggy, but about 8 o'clock the fog lifted, and Cape Navarin and the coast of Siberia were in full view. A more desolate and dreary scene it is hard to conceive of. A range of mountains with an elevation of about 2,000 feet lined the coast. Cape Navarin itself ended in a precipice 2,512 feet in height, the base of which descended into the sea. Although it was solate in June, the whole country was still covered with snow, except bare spots here and there. Sleds drawn by dogs and reindeer were still in common use. Even while approaching the ccast, snow storms were seen sweeping through the canons of the mountains. The temperature on deck at noon was 45°. A sharp lookout was kept for the native village which was located upon the map, but which was not found upon the coast. At length two tents were seen on the beach, and abreast of them we anchored at 2 p . m. The Captain and Mrs. Healy, Lieut. Dimmock, and myself went ashore. The captain at once sent messengers in every direction on dog-sleds to gather the people together. The main distribution of presents took place on the afternoon of the 24 th, and consisted of 1,000 yards of drilling, 500 yards of calico, 100 packages of glovers' needles, 8 dozen hand looking-glasses, 1,500 pounds of ship bread, 2 half-barrels of sugar, 2 barrels of molasses, 1 chest of tea, 6 dozen combs, 5 dozen packages of linen thread, 4 dozen tin pails and pans, 1 dozen iron pots, 2 kegs of nails with hammers, files, gimlets, saws, braces, and other carpenter tools, 1 dozen rifles and one-half dozen shotguns, 125 pounds of powder, 300 pounds lead, 2 bags of shot and $20,000 \mathrm{caps}$, 1,000 cartridges, axes, hatchets, and butcher knives, 2 dozen fox-traps, 4 dozen pipes, tobacco, snuff, 1 box goggles, one package fish-hooks and lines, beads, and 1 box children's toys. Total value, $\$ 1,000$.

There are three tribes or families of natives on the Bering Sea coast of Siberia: the Kamtchatkans, occupying the peninsula of the same name, the Tchuctchees, occupying the general region west of Bering Straits and the Gulf of Anadir, and the Koriaks, occupying the country between the former two. Our visit was to the Koriaks, although I afterwards met the Tchuctchees at East Cape. The Koriaks can be divided into three classes : the civilized ones that have come more or less under the influence of the Russian settlements in the interior, the coast men, who mainly subsist on the whale, walrus, and seal, and the deer men, who live off their herds of domesticated reindeer. The latter two classes are more or less nomadic and pagan. They are said to offer sacrifices of dogs.

We met the deer and coast Koriaks. They are a good sized, robust, athletic, and fleshy people, with prominent cheek bones, broad noses, black eyes, and a pleasant, good-natured expression. The men shave the crown of their heads, leaving a fringe of coarse, black hair round the forehead and sides, giving them the appearance of so many monks. They are said to do this that the flying of the hair in the wind may not frighten the wild reindeer when hunting.

The women wear their hair parted in the middle, the two braidshanging down the back. Some braid strings of beads around their necks or pendant from their ears.

The women are very generally tattooed down the center of the forehead and along each side of the nose to the nostril, and elaborate designs cover the cheek. I also saw tattooing on the hands; wrists, and arms. One girl had two waving lines from the forehead to the nostrils, and nine in a fan shape from the lower lip to the chin. Another, with the other marks, had an "X" on the chin at each corner of her mouth. Occasionally the men were tattooed. I saw a husband and wife marked exactly alike. They were dressed exclusively in skins and furs. Neither on their persons nor in the construction of their tents, furnishings, or bedding did I see as much as a thread of wool or cotton. Their clothing, tents, and bodding are made from reindeer skins. Their food is largely dried reindeer meat, supplemented with whale and seal blubber. Their thread is reindeer sinew, and from the reindeer horns are made many household implements.

The dress of both men and women is made of a large skin shirt, so constructed that the fur can be worn outside or next to the skin, as may be desired, and a pair of skin pants with the fur inside. These extend to the knee. Those of the women are wide, so that when tied at the knee, they present a baggy appearance similar to Turkish trousers. Then a pair of fur boots soled with seal or walrus hide. The tops of the boots are tied closely around the bottom of the pants. Suspended by a string around the neck is a fur hood, which can be pulled over the head when needed. The babe is carried inside the parka, or fur coat, on the back of the mother. A belt around the waist of the parka keeps the babe from slipping down too far. The dress of the babe consists of a single garment of reindeer skin, but this garment combines hood, coat, pants, shoes, and mittens all in one. When dressed, only a small portion of the face of the child is visible.

The sleds are made of birch runners. Over these are a half-dozen arches made of reindeer horns. These arches connect the runners and support the floor of the sled. At the rear end of the sled is a slight railing to support the back of the traveler. Noiron is used in making the sled ; all the parts are firmly lashed together with whalebone strips or rawhide. The runners are shod with bone. Before these are harnessed six dogs in pairs, or two reindeer. The reindeer are also driven side by side. The harness of the reindeer is very simple, being astrap around his neck connected with a trace between his legs.

The tents we saw are conical, like those of the Dakota Indians, the poles being corered with reindeer skins or walrus hides. In some portiens of the country, where straight poles can not be had, whalebones are used for frames, and the tents are oval in shape. Within the tents for the sake of greater warmth are small inner inclosures made by hanging reindeer-skin curtains. Thess small inclosures are the sleeping places. As they follow their herds from one pasturage to another these tents are easily taken down, loaded on the sled, removed to the next camp and set up again.

They have two kinds of boats, consisting of a light frame of birchwoood, over which is stretched seal or walrus skin. The large, open boat is called by the natives oomiak, by the Kamtchatkans bidar. These will carry from 25 to 50 people. The smaller boat is intended for from 1 to 3 men , and is entirely encased in skin, except the openings left for the men to sit in. These are called kyaks, kaiak, or bidarka.

In hunting whales, walrus, and seals they use spears with ivory points set in bone sockets. Small birds and animals are trapped. Their gun is a miniature rifle with a barrel not over 2 feet long. To the stock are fastened by a hinge two light sticks, which are used as supports to the gun when firing. Powder and lead are so difficult to obtain and so expensive that the hunter runs no unnecessary risk in using it. It is said that sometimes they hunt to recover the bullet in order to use it again. I tried in vain to purchase one of these guns. They seem to have no chiefs, their organization being largely patriarchal. If one man accumulates more deer than his neighbors, he secures a certain amount of infiuence on account of his wealth. Poor men, who have no deer of their own, join his band, and assist in caring for his herd, in return for food and clothing. The only law that governs the community seems to be the natural law that is found in all barbarous tribes, that of retaliation. A few years ago a feud started between a band living on the coast, and a band of deer men living in the neighborhood, during which the latter band was exterminated.

They impressed me as a very unselfish people. In the distribution of the presents none seemed to think that someone else was receiving more than he. The more frequent expression of anxiety seemed to be that no one should be overlooked. They also called attention to some who were unavoidably absent, and offered to take them their share. Evidently some of them had never been
upon a ship before, and they were naturally curious to look all over it. Sometimes when a family came of in their boat, at first only the men came aboard. After a while, as if gaining confidence, the women and children would venture. Frequently as soon as they were on deck they would sit down as if afraid to stand up. One woman reaching the deck in safety expressed he: joy by throwing her arms around her husband's neck and they rubbed noses (their method of salutation in the place of kissing).

I secured from them for the museum of the Society of Natural History and Ethnography at Sitka, a number of things to illustrate their manner of living.

There being a herd of some 1.500 reindeer a few miles up the coast, in order that we might risit them and the ship procure some fresh meat, after the distribution of the presents the captain got under way and sailed up to the reindeer herd, where he again anchored. Going ashore, we found the herd on the beach, some of them apparently drinking the salt water. The winter with its unusual amount of snow had been severe upon them, so that they were very poor. They were also shedding their hair and their horns were in the relvet, so they did not make a very impressive appearance. Off to one side two sleds werestanding with two deer attached to each. Getting upon one of the sleds, by motions I made them understand that I wanted a ride, and a short one was given me. The reindeer were much smaller than I had expected to find them, the majority of them being not much larger than the wild deer of other sections. The captain purchased four deer, which were slaughtered and dressed for him. When getting ready to lasso the deer the owners family seated themselves in a circle on the ground, where probably some rites connected with their superstitions were observed. Upon attempting to approach the circle we were motioned away. After a little while the men went out and lassoed a selected animal, which was led out on one side of the herd. The man that was leading it stationed himself directly in front of the animal and held him firmly by the two horns. Another with a butcher knife stood at the side of the deer. An old man, probably the owner, went off to the eastward, and placing his back to the setting sun seemed engaged in prayer, upon the conclusion of which he turned around and faced the deer. This was the signal for knifing the animal. With apparently no effort, the knife was pushed to the heart and withdrawn. The animal seemed to suffer no pain. and in a few seconds sank to his knees and rolled over on his side. While this was taking place the old man before mentioned stood erect. motionless. with his hand over his eyes. When the deer was dead he approached, and taking a handful of hair and blood from the wound, impressively threw it to the eastward. This was repeated a second time. Upon the killing of the second animal the wife of the owner cast the hair and blood to the eastward. I did not remain to the slaughter of the other two. While the animal was bleeding to death several women and girls gathered around and commenced sharpening their knives on stones preparatory to skinning the animal, which they proceeded to do as soon as the deer were dead. Engineer Meyers photographed the herd.

At $4: 15$ on the morning of the 25 th the ship was gotten under way and we started northward. After proceeding about 20 miles we ran into a large field of floating ice. The sun was shining brightly. Off upon the western horizon, clear-cutagainst the sky, glistening and sparkling in their covering of snow, were the Siberian mountains, while all around us, as far as the eye could reach, were great masses of heavy ice, rubbing and grinding against one another. We were six hours steaming through this ice. While in the ice the captain shot three, and secured two, hooded seal. Great numbers of waterfowl were in the open spaces among the ice.
It was here that the whaling bark Sappho was crushed and sunk in 1882, and the barks Rainbow and Napo'eon in 1885, and the bark Ladoya in 1889. This last vessel escaped destruction and was repaired. Just to the northward, between us and our destination, St. Lawrence Island, in 1885 the bark Gazelle was crushed and sunk.

On Saturday afternoon, June 28, we sighted the snow-covered coast of St. Lawrence Island, and dropped anchor off the village Chib-u-chak on the northwest corner of the island. We are now in latitude 64 degrees north. The sun rises at 1:55 o'clock and sets at 10:05 p.m. Temperature at noon 40 degrees. This is the largest island in Bering Sea. It was discorered and named by Bering.s expedition in the summer of 1728. In 1715 the island was sighted by Captain Cook and named Clark Island. On the 10th of July, 1817, it was visited by Kotzebuej ${ }^{\text {s }}$ expedition in the Rurik, and in 1830 by Etolin in command of the brig Chicagof. Etolin found five native villages on the island. In 1878 the island was the scene of a great tragedy. Starvation and pestilence carried away over 400 of the people.

When the revenue cutter visited the island in 1880 not a man, woman, or child was left to tell the tale. In four villages the corpses of the population alone were found. All the villages on the island with the single exception of Chib-uchak had been swept out of existence.

In 1884 Capt. Healy reports, "At the villages along the north shore no sign of living beings could be found, but the still decaying bodies of the unfortunate Eskimos were lying in and about the falling houses."
Before we dropped anchor four or five umniaks, loaded with natives, were waiting to board us. As soon as the anchor went down they paddled up to the

gangway, and from sixty to seventy men, women, and children came aboard, prepared to barter walrus tusks, ivory carvings, fur clothing, native boots and shoes, seal skin, etc. The women were more highly tattooed than any we have before met. As the captain wished to take the census of the village he had to go across to Indian Point (Cape Tchapalin), Siberia, for an interpreter.
It was a five-hours run. We reached Indian Point about 60° clock in the morning. The natives were soon off in force with the usual things for barter, and a few to secure the services of the ship's physician. The riliage consisted of some 2 dozen skin tents, also a few underground huts and one small frame house. Above the tide on the beach along the whole front of the village lay
the unbroken ice and snow. The village itself is on a low sandspit that projects out into the sea. The mountains back and above the village were covered with snow, and even while we were anchored there, a driving snow storm was sweeping over them. Small cakes of floating ice weredrifting around the vessel.
Going ashore, I was greatly impressed with the number of the children. In all the journey I hare not met so large a number. Being in Russia, our Alaskan school system can not reach them. They are an Eskimo colony, speaking the same language as the natives of St. Lawrence Island. Perhaps they could be induced to remove over there for the sake of schooling their children.

At Indian Point we had eider ducks for dinner, and found them good eating. Securing an interpreter, Tommy Tough by name, the captain, on the morning of June 30, returned to St. Lawrence Island. On our way across, although an allowance of 5 miles had been made for the current, the vessel was carried 10 miles farther out of its course, making a drift of 15 miles in a distance of 40. A dense fog having setin, the ship passed north of the island without seeing it. The fog lifting at 10:30 a. m., we retraced our course and soon after dropped anchor abreast of the village, and I went ashore with Lieut. Dimock, Dr. Holmes, and the interpreter.
The houses are from 20 to 40 feet insize. For a distance of 5 or 6 feet above the ground the walls are built of driftwood, whalebone, or timbers and planks from shipwrecked vessels. These are placed on end side by side, forming an inclosure in a circular or oblong form. The cracks between these planks are stuffed with moss. From the top of these walls rafters made of poles are extended across, meeting in the center. These are supported in the center by a ridge pole resting upon posts. These rafters are covered with walrus and seal skins, forming the roof. Some roofs are in the shape of a cone and others of a dome. Inside they are partitioned of around the sides with deer skin curtains. The spaces curtained off form the sleeping places. All around, inside and outside, are filth, dirt, sleds, spears, snowshoes, and household utensils. The houses and tents are located with no reference to order or street lines. The sleds are shod with bone. On a few small ones, the whole runner was made of a wal rus tusk.
If the building is a very large one there is a row of supporting poles on each side, midway between the center and sides. Over the rafter poles are stretched walrus hides. These are held in position by rawhide ropes, attached to which and hanging down the sides of the building are the vertebræ of whales, large stones, and old iron from shipwrecked vessels. This anchorage both stretches the skins and prevents them from being blown off. These skins being translucent let in a great deal of light. There are no windows in the house, and buta small opening, from 2 to $2 \frac{1}{2}$ feet above the ground, for a door. Fire, when they have any, is made on the dirt floor in the center of the room. Each building is occupied by several families. Near the house is a scaffold made of posts of the jaw bones of the whale. These are 7 to 10 feet high and 10 feet wide. A series of these make the scaffolds from 20 to 30 feet long. On these are placed the skin boats, harness of the dogs, meat, etc., so as to be out of the reach of dogs. Upon one of these, attached to the whale bone cross beam, was a child's swing made of walrus thong rope.

I saw several excavations where underground houses had once been, and one such house still standing with the roof partially fallen in. The sides were composed of walrus skulls laid up like a New England stone wall. In this house were some corpses, together with the spear and arrowheads and personal belongings of the dead.

Large patches of snow and ice still remain in the village, some of them being from 3 to 4 feet deep. As we passed from house to house we were followed by a crowd of dirty, but bright-looking children. From the eldest to the child which was just able to talk, they asked for tobacco, which is used by both sexes and all ages down to the nursing child. Five little girls, from 4 to 10 years of age, gave me a native dance. They commenced with a swinging motion of the body from side to side, throwing their weight alternately upon each foot. This was accompanied by an explosive grunt, or squeak, as if the air was being violently expelled from the lungs. As they warmed up, they whirled around, writhed and twisted their bodies and distorted their faces into all manner of shapes and expressions, until they would fall down with dizziness.

The census revealed a total population of 270 , of whom 70 were boys and 55 girls, living in 21 houses. This is a good village for a school. One established here ought to draw to it some families from Indian Point, Siberia. They are the same people, and the two villages are about 40 miles apart. During the summer of 1891 the Reformed Episcopal Missionary Society will establish a mission school at this village.

KING ISLAND.
Returning the interpreter to Indian Point, the captain steamed away for King Island, which we reached about5 p.m. on July 1. This is one of the most remarkable settlements in America. The island is a great mass of basalt rock, about a mile in length, rising from the sea with perpendicular sides from 700 to 1,000 feet above the water. On the south side the wall is broken down by a ravine rising at an angel of 45 degrees, and is filled with loose rock. A great, permanent snow bank filled the bottom of the ravine from the water to the top of the mountain. On the west side of the snow is the village of Ouk-i-vak, which consists of some 40 dwellings or underground houses, partly excavated in the side of the hill, and built up with stone walls. Across the top of these walls are large poles made from the driftwood that is caught floating around the island. Upon these are placed hides and grass, which are in turn covered with dirt. A low tunnel or dirt-covered hallway, 10 to 10 feet long, leads directly under the center of the dwelling. This is so low that we had to stoop and often creep in entering. At the end of the hall directly orerhead is a hole about 18 inches in diameter. This is the entrance to the dwelling above.

Frequently in summer, these cares become too damp to live in. The people then erect a summer house upon top of the winter one. The summer house consists of walrus hides, stretched over a wooden frame, making a room from 10 to 15 feet square. These summer houses are guyed to rocks with rawhide ropes, to prevent them from being blown off into the sea. The entrance is an oral hole in the walrus hide, about 2 feet above the floor. Outside of the door is a narrow platform about 2 feet wide, leading back to the side of the hill. Some of these platforms are from 15 to 20 feet above the roois of the huts below them. Across the ravine from the village, at the base of the perpendicular sides of the island is a cave, into the mouth of which the surf dashesand roars. At the back of the care is a large bank of perpetual snow. On the side of the mountain above there is a perpendicular shaft from 80 to 100 feet deep, leading down in to the cave. This cave is the storehouse for the whole village. Walrus and seal meat is dropped down the shaft, and then stored away in rooms excavated in the snow. As the temperature in the care never rises above freezing point, meat so stored soon freezes solid and keeps indefinitely. The women gain entrance to their storehouse by letting themselves down the shaft, hand over hand, along a rawhide rope.

Capt. Healy had a census taken with the foliowing result: Total population 200 , of whom 33 were males and 45 females under 21 years of age. Here, as at the other native villages, I secured a number of articles of interest for the museum of natural history and ethnology at Sitka.

THE WHALING FLEET.
At 3:15 a. m. on the 2 d of July the ship anchored at Port Clarence, in the midst of the Arctic whaling fleet. Eight steamers and eighteen sailing vessels, all flying the American flag, were an inspiring sight in this far off, uninhabited bay ; almost within the Arctic Circle ; and the more so, as a few months ago, in Washington, I heard a gentleman who had just returned from a trip around the world, say in a public address that in all his trip, he had seen but one vessel flying the Stars and Stripes. Many of the whalersleave San Francisco in January, and it is their custom to gather at this point about the 1st of July before entering the Arctic Ocean, to meet a steamer sent from San Francisco with a fresh supply of provisions, coal, etc.

Soon after anchoring, the captains of the whalers began arriving in order to get their mail, for the captain of the revenue steamer, among other good offices for humanity, brings up the yearly mail for the 2,000 whalers, trader's, teachers, and missionaries, and whoever else may be living in the Arctic regions of the United States. For those who have had no tidings from their loved ones at home or returns from an important business transaction, the coming of the revenue steamer is an important event. Great bundles of letters and papers were piled upon the captain's table, and again and again they were carefully scanned, each captain picking out those that belonged to himself or his crew. Some of them did this so nervously, that though they personally looked over the packet three or four different times, they still missed some, which would be detected and handed out by some one following.
A few visiting Eskimos were camped upon the beach, some of them being dressed in bird instead of deer skins.

The day before we arrived the mate of one of the ressels had died, and an officer on another vessel was very sick, dying a few weeks afterwards. In a fleet with hundreds of sailors ar some accidental cuts, bruises, etc., so that there were many calls for the professional services of the Government physician. This is another feature of the beneficent work of the revenue steamer. In Arctic Alaska in summer are 2,000 sailors on the whalers, a hundred traders and thousands of natives, covering an area of tens of thousands of square miles, and no physician except the one carried around on the annual cruise of this vessel. The value of such services can not be estimated.

During our stay at Port Clarence Capt. Healy, in the discharge of his official duty, as usual, sent officers on board of every ressel to search for liquo s. The large majority of the captains of the whaling vessels are opposed to the trading of liquors to the natives for furs; but there are some who believe in it, and boldly say that if the cutter did not come and search them they would engage in it, and that they do engage in it on the Siberian coast, where the cutter has no jurisdiction. The result of the search was that 11 barrels of alcohol and 6 cases of gin were seized upon one schooner and emptied into the ocean. One captain, seeing the officer coming, emptied a barrel of liquor over the side of his ressel and threw three gallon cans after it. The cans, instead of sinking, floated by the searching officer. He, doubtless thinking them empty kero ene cans, did not take the trouble to pick them up. During the past ten yea s hundreds of barrels of vile liquors have been emptied into the sea as the result of the vigilance of Capt. Healy and the officers of the revenue cutter. The amount of crime, suffering, and destitution thus prevented can not be overestima ed. The country and all who are interested in saving the natives of this coast from the d moralization of rum owe a large debt of gratitude to Capt. Healy, who has practically broken up the traffic on this northwest coast.

One of the captains reported a case of assault and battery with intent to kill. On the 30th of June his steward had dangerously wounded one of the sailors, cutting with a razor a gash $8 \frac{1}{2}$ inches long and to the ribs in depth. The steward had been in irons ever since. It was a small schooner and there was no suitable place for keeping the prisoner, who had threatened to kill the mate and fire the ship when he regained his liberty. Under the circumstances the captain was very anxious to get rid of him, and wrote Capt. Healy, as the nearest Government official, an urgent letter asking him to take the man of hishands. This is another phase of the manysided work of a Government cutter in this vast land without law or courts. The steward being equally anxious to claim the protection of the Government., he was brought alongside in irons. The irons were taken off and he was assigned work. The commanding officers of all the revenue vessels visiting these outlying portions of the country should be clothed with the powers of a justice of the peace, so that ofienses could be investigated, testimony taken, and offenderi arrested and bound over for trial at the United States district court at Sitka. As it is, the captain could not legally hare taken this man against his will, and when the ressel arrives at San Francisco the man can go ashore a free man, escaping not only all punishment, but even an official investigation.

In the harbor awaiting our arrival was the schooner Oscar and Hattie, Capt. J. J. Haviside master, laden with building material and supplies for the schoolhouses at Cape Prince of Wales, Point Hope, and Point Barrow. The schooner got under way that same afternoon for Cape Prince of Wales, about 30 miles distant. Upon the following day the schooner Jennie arrired with supplies for the whalers. She had on board the four teachers, Messrs. H. R. Thornton and W. T. Lopp for Cape Prince of Wales, Dr. John B. Drigg for Point Hope, and Mr. L. M. Stevenson for Point Barrow. At midnight we witnessed one of those gorgeous sunsets for which the Pacific coast is so famous.

On the morning of the 4th of July all the vessels "dressed ship" in honor of the day. At 8 oclock a. m. we got under way, reaching Cape Prince of Wales at $1: 25 \mathrm{p} . \mathrm{m}$. The captain very kindly sent Prof. Thornton and myself ashore at once, and we celebrated the 4 th of July, 1890, by locating at this extreme western end of the western hemisphere the site and laying the foundations of the first schoolhouse and mission on the Arctic coast of Alaska. From this school is visible to the north, the Arctic Ocean; to the south, Bering Sea. and to the west, Bering Straits, the coast of Siberia, and Diomede Islands. The cape is a boid promontory crowned with groups of needle rocks. As we had a teacher on board, we could trace the resemblance of one group to a teacher and pupils. Back of the coast the mountain peaks rise to the height of 2,596 feet. At the base of the promontory is a low sand spit, upen which is built the natire village of King-e-gan. This school is one of the contract schools of the U. S. Bureau of Education and is in charge of the American Missionary Association of the

Congregational Church. The money needed for its establishment was contributed by the Congregational Shurch of Southport, Conn., Rev. William H. Holman, pastor.

At Port Clarence volunteers were called for and through the courtesy of the several captains the following carpenters offered their services without pay in the erection of the schoolhouses at Cape Prince of Wales and Point Hope: Charles Johnson, of the steam bark Thrasher; James Hepburn, of the Balena; Edward E. Norton, of the Orca, and A. S. Curry, of the Grampus. Capt. Healy sent off 2 carpenters and 10 or 12 men from the Bear.

While the house was building Capt. Healy took the ship over to (Krusenstern) Little Diomede Island to take the census of Imach-leet. Upon our arrival it was storming so badly that he was compelled to continue on over to the Asiatic side for a safe anchorage. On the third day, the storm having abated, we started for Imach-leet, calling at East Cape on our way. We also passed close to Inug-leet, on Ratmanoff Island, but did not go on shore.

Bering Straits, which separate the American and Asiatic continents, are 40 miles broad. These straits were first passed by Capt. Bering in August, 1728, who demonstrated the fact that Asia was separated from America. It remained for Capt. Cook, in August, 1778 , to complete Bering's discoveries and give to the world the exact relations of the continents to each other. - Nearly in the center are Big and Little Diomede (Ratmanoff and Krusenstern) islands. The former belongs to Russia, and the latter to the United States. As these islands are only 2 miles apart, Russia and the United States are here close together.

Imach-leet, like Inug-leet and Ouk-i-vak, is built upon the steep side of a mountain, and is the filthiest place yet visited. Being so close to the Asiatic settlements, it is the gateway of much of the liquor smuggled into this section of Alaska. A school with an efficient teacher at this place would prevent much of this illicit traffic and accomplish a great work.

As we returned to King-e-gan we sailed close to Fairway Rock, the Indian name of which is Oo-ghe-e-ak, and is said to signify, "Thanks to God," because there is room to shelter two native boats which may be overtaken in this part of the sea by a storm. Fairway Rock is a quarter of a mile in circumference and from 300 to 400 feet high. It is one of the natural danger-signal stations of Bering Sea and the Arctic, being occupied by myriads of birds, which, by their continual cries in thick and foggy weather, warn the navigator of his proximity to the rock.

At King-e-gan the captain picked up his carpenters and sailors, who had finished the school building, and on the afternoon of July 12 we started northward through Bering Straits into the Arctic Ocean. Twenty-four hours later we crossed the Arctic Circle and were in "the land of the midnight sun."

July 13 Capt. Healy anchored off Schishmaraff Inlet to take the census. At the time of Capt. Beechey's expedition in 1826 there was a large native village here. Now it is reduced to a very small number.

In visiting the camp upon shore I came across the oldest-looking native that I have seen this season. A number of the natives visited the ship. Wild ducks were so plentiful that the captain bought a couple of dozen for the table at the rate of a cent apiece. The next morning we anchored off Cape Blossom, in Kotzebue Sound. This sound was discovered on the 1st of August, 1816, by Capt. Kotzebue, in command of the Rurik, fitted out by Count Romanoff, of Russia, to discover the northwest passage. In September, 1826, it was visited by Capt. Beechey in the British ship Blossom, who was coöperating with Sir John Franklin, Franklin working from the eastern side toward the west, and Beechey from the western side eastward. The two expeditions failed to make connection. While in the sound Capt. Beechey buried a cask of flour. In July, 1850, the ships Herald, Capt. Hellett, Plover, Capt. Moore, and the Investigator, sent by the British Admiralty in search of Sir John Franklin, and the schooner yacht Nancy Dawson, under her owner, Robert Shedder, visited the sound. The flour buried nearly a quarter of a century before was found in good condition, and a dinner party given, at which were cakes and pies made from it. In Eschscholtz Sound, the southwest arm of Kotzebue Sound, are cliffis from 20 to 80 feet in height, which rise into hills between 400 and 500 feet above the sea.

At the time of Kotzebue's visit this cliff was supposed to be an immense iceberg, covered with a foot of soil and grass, but was found by Capt. Beechey to be frozen earth. The interesting feature of the cliff is that it contains a large deposit of fossil ivory, mammoth tusks, teeth, and bones. I secured portions of two mammoth tusks and two teeth.

One afternoon Lieut. Buhner and myself started to risit some of the native villages. After going about 15 miles we got on the shoals and were compelled
to return to the ship. While absent we landed and visited some native graves. There is a row of them extending for miles along the beach. As there is a frozen subsoil, rendering it very difficult to dig graves, the dead are wrapped up in seal skins, which are securely tied and then deposited above the ground in the forks of poles or elevated platforms so high above the earth that the wild animals can not reach them.

The whole landscape out from under the snow was covered with beautiful wild flowers, and we were covered with mosquitoes that swarmed around us in clouds. We saw very few natives on the beach, they being largely at Sheshalik, on the north side of Hotham Inlet. When the ice leaves Kotzebue Sound in the summer the beluga, or white whale, comes in, and the natives come down the rivers by hundreds from the interior to hunt him and later on to barter with the coast tribes. About the middle of July the run of the whales is over, and that of the salmon commences on the Cape Blossom side of the inlet. The population then change their tents from the north to the south side of the inlet. In the mean time the Alaskan and Siberian coast natives are arriving day by day, until in August from 1,500 to 2,500 people are gathered on the spit north of Cape Blossom, fishing and trading. This is the great international annual fair and market of Aretic Alaska.

The natives of the interior here barter their beautiful furs with the natives of the coast for seal oil, walrus hides, and seal skins, and with the natives of Siberia for reindeer skins, whisky, and breech-loading firearms, cartridges, etc. Formerly these gatherings were visited by schooners, fitted out at San Francisco and Sandwich Islands, with cargoes of liquor in bottles labeled "Florida Water," "Bay Rum," "Pain Killer," "Jamaica Ginger," etc. This traffic has largely been broken up by the visits of the revenue cutters.

A schooner was at anchor off Cape Blossom when we arrived. Seeing the cutter it weighed anchor and sailed away, but not before an officer had been sent on board to search her. Although no unusual supply of liquor was found on board, yet that afternoon a native and his wife were found drunk from liquor received from this vessel. They were brought aboard the cutter, testified where they secured the liquor, received a reprimand, and upon the promise of not drinking again, were let go.
On the north side of the sound is the entrance to Hotham Inlet into which empty two large rivers, the Kowak and the Noatak. Although the existence of these rivers was known in a vague way by reports from native sources, they were first explored and mapped in 1883, 1884, and 1885 by expeditions fitted out by Capt. Healy, commanding the Corwin. As the larger number of natives whom I wished to see had not yet arrived the captain concluded to go on and fulfill his duties farther north and return here before the people should separate, consequently, on the morning of the 16 th, with a fair wind, he sailed northward. We were soon abreast of Cape Krusentern, where, in July, 1886, the John Carver was crushed in the ice. On the morning of the 17 th we dropped anchor off Cape Thompson to water ship. The ship's boats were taken ashore and filled with fresh water from a creek. The boats were then rowed back to the ship and the water pumped from them into the ship'stanks. By noon the tanks were full and we had on board a month's supply of water. In the afternoon the sailors were allowed to go ashore and wash their clothes. Soon after anchoring the natives began to come on board and the deck was covered with them all day.
Cape Thompson is a bold, rocky bluff 1,200 feet high. It is a remarkable cliff geologically, showing a great fold of the earth's crust. The face of the cliff is also a great bird rookery, birds by the thousand and tens of thousands nesting in the cracks and upon the projections of the rocks. Wishing some egg shells a party of natives were hired for a few crackers to get some eggs. Taking a rope with them, they scaled the cliffs, and letting one of their number down the face of the precipice with the rope he soon gathered two bushels and a half of eggs.

Leaving Cape Thompson at 5 o'clock p. m. we reached Point Hope about 11 p . m., and dropped anchor in the midst of iwelve vessels, largely belonging to the New Bedford whaling fleet. The captain immediately dispatched a boat for mail to the bark Thomas Pope that had come up from San Francisco with supplies to the whalers from Now Bedford. In due time the boat returned with a batch of papers as late as June 10, but noletters. It then being nearly midnight I concluded to remain up and see the midnightsun, which dipped about half way into the water and then commenced to rise again. Atthe setting it was partially obscured by a cloud, but the rising was cloudless and beautiful.

Point Hope is a narrow stretch of land extending out into the Arctic Ocean, some 16 miles from the general line of the coast. This gives it its native name Tig-e-rach (Finger.) It has evidently been formed by two great fields of ice
grounding on the bottom and pushing the sand in a ridge bofore them, until the ridge rises above the ocean. Between these parallel ridges is a lake extending nearly the entire length of the peninsula. Formerly the cap 3 extended still farther in to the ocean, but one year the ice pack came along with such force as to cut the end off, sweeping away with it a number of underground houses.

For three days we lay at anchor riding out a southern gale. Ten days later (July 28), at the same place, in a similar storm, the Thomas Pope, having not yet finished discharging her freight was driven into the breakers and wrecked, and her crew was received on board the revenue cutter by Capt. Healy. On Mondav, July 21 , the storm having abated, the ship was moved nearer the village and I went ashore to inspect the school building, which was in process of erection by Capt. Haviside and the volunteering carpenters who had preceded us from Cape Prince of Wales, where Capt. Healy had remained to finish up the work on that school building. Capt. Healy sent his carpenter and a number of sailors on shore to assist in the work. By night the building was finished and ready for occupancy. This is the second of our new schools in the Arctic. It is a contract school under the supervision of the Mission Society of the Protestant Episcopal Church. The teacher is John B. Driggs, M. D. The advisability of the establishment of a school at this point was represented to mo last fall by Lieut. Commander Charles H. Stockton, U. S. Navy, who had just returned from a cruise on this coast. Bringing the matter to the attention of Hon. W. T. Harris, LL. D., United States Commissioner of Eaucation, and through him to the honorable Secretary of the Interior, I had the privilega of securing the establishment of schools for the Arctic Eskimo at that place.

While at Point Hope I visited the native village, but few of the people being home. I also visited the cemetery; the dead, tied up in deer and walrus skin blankets, are laid on platforms above the reach of dogs and wild beasts. The present population is about 300 . But in the year 1800, wh on this was the leading tribe on the Arctic coast, the village is supposed to hare had a population of about 2,0c0. In that year their power was broken by a greatland and sea fight near Cape Seppings, between them and the Ncoatoks of the interior. In this disastrous battle their leading hunters being killed, a famine set in which carried away half of the remaining inhabitants. During the day a number of natives came on board. Among them were three from Cape Prince of Wales. Last winter while out on the ice after seals, the ice broke loose from the shore and floated out to sea, carrying them with it. They were on the ice drifting helplessly about in the Arctic Ocean for a month or six weeks, when the floe finally went ashore at Cape Thompson, 150 miles north of where they started from. The party of five were reduced to the greatest straits for food, even eating up their boots. One died on the ice, and a second soon after landing, learing three to be returned on the cutter to their friends and homes. Last winter two men on the ice hunting were drifted away from this place and have never been heard from.
Four ships have been wrecked here in late years. The Louisa and the bark John Howland in 1883; the Thomas Pope in 1890, and the Little Ohio in 1888. In connection with the latter wreck, the officers and 30 men were drowned. Among those that were saved was a sailor, who took a position at the whaling station. Last winter while en route from Cape Lisburne coal mines to Point Hope, he froze his feet so badly that mortification setin. Upon the arrival of the Bear he was received on board for medical attendance, and his toes were amputated by the surgeon.
In 1887 a San Francisco firm established a whaling station several miles from the village, the influence of which has been demoralizing. The natives are now recruiting their numbers by purchasing children from the interior tribes, which children, as they grow up, become a part of the tribe. The market price for a child is a seal skin bag of oil, or a suit of old clothes.

Having attended to everything that was necessary at Point Hope, and paid off the natives who assisted in the erection of the schoolhouse, our mail was sent over to the Thomas Pope, which was soon to sail for San Francisco, and at 10 o'clock a.m. on the 22 d of July we sailed north with a fair wind, passing Cape Lisburne at $1: 35 \mathrm{p}$. m. From Cape Lisburne the coast turns to the eastward at almost a right angle, the general trend being to the northeast until Point Barrow, the most northern limit of the continent, is reached. Cape Lisburne, 849 feet high, is a bold bluff of flint and limestone, abounding with fossil shells and marine animals. It is also in its season a noted rookery for birds. The immediate vicinity is said to be the flower garden of the Arctic (KoogMoote) on account of the number and variety of the wild flowers. From Cape Lisburne there is a uniform descent and breaking down of the hills for 50 miles
to Cape Beaufort. At Cape Beaufort is the last point where the hills reach the coast. Soon after leaving the cape, the ice has pushed up the sand, forming a shingle or outer coast, running parallel with the real coast. This outer coast is a strip of sand with a varying width of 900 to 1,000 feet, about 6 feet above the level of the sea, and extending 120 miles north. The body of water inclosed between the two coasts is from 2 to 6 miles wide. From Cape Lisburne to Cape Beaufort are extensive coal mines, at which some of the steam whalers replenish their exhausted supplies. This season over 500 tons have been mined by the whalers. At Cape Beaufort the geological formation is sandstone, inclosing petrified wood and rushes, with reins of coal. Drift coal was found on the beach almost

up to Point Barrow. During the night the wind gradually grew stronger until towards morning, when we encountered a heavy southwest gale, causing the ship to roll until it was almost impossible to keep in bed.

At 11 o'clock a. m., on the 24 th of July, we were in the midst of floating ice, and at noon anchored off Cape Collie. Soon the musquitoes began to swarm on board, and the captain moved his anchorage farther out to sea.

We were again in the midst of the whaling fleet, and at the edge of the ice pack which prevented farther progiess to the north. The Arctic "pack" is the name given to that large body of perpetual solid ice in the Arctic Ocean extending from the coast of Alaska across to Siberia. Its southern limit is constantly
changing with the severity of the season, and the course of winds and currents. Its southern edge is also irregular, sometimes containing openings or canals extending in to the pack for miles, these are called "leads." A wider and shorter opening is called a "pocket."
In August, 1778, Capt. Cook found the southern edge of the pack resting on Icy Cape, 40 miles south of our present anchorage. It was a compact wall of ice, 10 feet above the water and from 70 to 90 feet under the surface, extending west of north and east by south, from continent to continent. In 1826 Capt . Beechey did not meet it until near Cape Smyth, 120 miles farther north. August 20, 1879, the fleet reached the pack at Blossom Shoals, off Icy Cape. August 10, 1885, the pack was at our present anchorage. Cape Collie is at the north side of the entrance to Wainwright Inlet, an extensive lagoon into which empties a considerable river from the interior. After lunch I accompanied Lieut. Dimock and the interpreter ashore, on a visit to the native village of Koog-moote. On account of the shore ice making out some distance from the beach, we had great difficulty in landing and still greater danger in embarking again. Along the outer edge was a mass of detached pieces of ice that under the influence of the waves were bobbing up and down and constantly shifting their position. The greatest care had to be taken lest our small boat should be caught and crushed. And when we got upon the ice and attempted to make our way from one cake to another the peril was still greater. Although our heads and faces were covered with musquito netting, the little insects managed to get inside and make our stay a,shore a torment. Arctic ptarmigan were abundant. The first party of natives we met were eating reindeer meat. Taking a large chunk in the left hand and fastening upon it with the teeth, a knife held in the right hand was passed upward close to the mouth, severing a piece as large as could be conveniently chewed. I think a beginner at this method of carving meat would slice off the end of his nose.
I counted twelve underground huts in the village, none of which were occupied. The larger portion of the people were inland hunting reindeer. The few remaining at the village were living in tents, their winter houses baing partly filled with water. While on shore I walked out on the ice to the hull of the George \& Susan. This bark was wrecked on the 10th of August, 1885, together with the Mabel. Three of the crew were drowned in getting ashore, and some of thos that escaped were in an exceedingly critical condition for several hours after they were rescued by Capt. Healy and taken aboard of the revenue cutter Corwin, which was anchored in the neighborhood.
Early on July 25 we started in search of the "ice pack," which we found 5 miles away. After skirting the pack a short distance, the captain returned in shore and anchored off Point Belcher. At this point is another small village (She-rah-rack) of twelve winter hunts, which I visited. But three or four families remained in the place, the others being off hunting the reindeer.
On July 26 it snowed nearly all day. At 11 p. m. the captain again started out to examine the condition of the ice. After skirting the edge of the pack for some distance we returned and anchored of Cape Franklin. In the afternoon the captain changed his anchorage a few miles north, off Sea Horse Islands. While lying here at anchor Capt. Healy secured for me two nests and eggs of the eider duck.
We are now in the midst of the Arctic graveyard of ships. In the last 20 years from 75 to 80 vessels connected with the whale trade have been wrecked on the American side of the Arctic coast, and from 15 to 20 on the Asiatic side. In 187133 ships were caught in the ice near here and abandoned, and 1,200 sailors were cast helplessly oin this sterile coast, with an insufficient supply of provisions, and for 100 miles the ice pack was solid between them and escape. There was then no refuge station at Point Barrow, but fortunately they were able to get south along the coast until they met some ships that took them off. Again, in 1876, 13 whaling vessels were caught in the ice off these same Sea Horse Islands and drifted helplessly to the north of Point Barrow, where they were abandoned. To the northward the Daniel Webster was crushed in the ice in 1881, the steamer North Star in 1882, and schooner Clara Light in 1885. A little to the south of this point the bark John Howland was stove in by the ice off Point Lay in 1883, steamer Bow Head off Point Belcher in 1834, the Mabel and George and Susan off Point Collie. A little west of this point the barks Mt. Wollaston and Vigilant were caught in the ice in 1879, and no tidings have ever come from vessels or crews. On the 8th of August, 1888 , the barks Fleetwing, Young Phœenix, Mary and Susan, and schooner Jane Gray were lost in the ice off Point Barrow, 160 of their crew being rescued by Capt. Healy, who was in the vicinity. It is when a ship reaches the ice that extreme watchful-
ness and care is demanded ; the smallest change of wind, currents, or ice being noted and weighed, which means to the commanding officer days and nights of sleepless anxiety. It was in one of these seasons of anxiety that Capt. Healy spent 75 consecutive hours in the crow's nest at the masthead, his food being takon up to him.
On the 30th of July we were getting tired of our enforced delay. We had been a week off Point Belcher and Sea Horse Islands, waiting for the ice pack to swing off the shore and let us forward. That night, as we were upon deck watching the midnight sun, a large field of shore ice was seen drifting toward us. For a little the good ship held fast as the great cakes broke on her bow and ground against her sides; but by and by the pressure became too great and she dragged her anchor, and commenced drifting toward the shoals. Steam was at once raised, the anchor weighed, and the ship set at work bucking her way through the ice. Once under way the captain concluded to go on until again stopped by the ice. Threading his way carefully through masses of floating ice, he reached and anchored on the morning of July 31 off the village of Ootkearie, near Point Barrow. Upon communicating with the shore it was found that the ice had left two days previous, and that the first vessels had arrired a few hours before. Masses of ice were still floating by in the currentand grounded icebergs lay between the ship and the beach. Ootkeavie, next to Cape Prince of Wales, is the largest village on the Arctic coast, numbering about 300 people. In 1881, 1882, and 1883 it was occupied as one of the stations of the International Polar Expedition. The house built by Lieut. P. H. Ray for the use of the expedition has been leased to the Pacific Steam Whaling Company, and is used by them as a whaling station and trading post, the gentleman in charge being Mr. John W. Kelly, who has given the world an interesting monograph on the Arctic Eskimo, together with an Eskimo-English vocabulary. Both were published last spring by the United States Bureau of Education. This is also the location of the Government refuge station for shipwrecked whalers.

Within the past 10 years some 2,000 sailors have been wrecked on this Arctis coast. So far they have been fortunate in finding vessels within reach to carry them south to civilization, but the occasion is liable to come any season when they will be compelled to winter here. This to a large body of men means slow star vation and death. They could not subsist on the country, and there is no adequate provision within 1,500 or 2,000 miles; and when the long Aretic winter sets in no power on earth could reach them with help. To provide against any such horrible tragedy Capt. Healy early saw the necessity of having an ample supply of provisions stored at some central place in the Arctic. The plan grew and took shape in his own mind. He enlisted his friends and the men interested in the whaling industry, particularly in New Bedford and San Francisco, and finally, after many vexatious delays that would have discouraged a less persistent man, Congress voted the money for the erection of the buildings and the procuring of the provisions.

Last year Capt. Healy brought up the materials and erected the main building, which is a low one-story building, 30 by 48 feet in size. The walls, roof, and floor are made double, as a protection against the intense cold of this high northern latitude in winter. It will accommodate 50 men comfortably; it can shelter 100 if necessary. The house has provisions for 100 men 12 months, and is apmirably adapted for its purpose. This year Capt. Healy had on board the material for the construction of a storehouse, also an additional supply of provisions, clothing, and coal.

The Ootkearie is one of the villages selected by the United States Bureau of Education for the establishment of a school, the contractfor which was given by Dr. Harris to the Board of Home Missions of the Presbyterian Church. The money necessary for its establishment was generously contributed by Mrs. Elliott F. Shepard, of New York. The teacher is Prof. L. M. Stevenson, of Versailles, Ohio, who reached the place on July 30,1890 . Owing to the shortness of the time and the great distance from the source of supplies, and the dangers of Arctic navigation, I was able to secure material this season for only two of the school buildings and teachers' residences to be erected in the Arctic. These were placed at Cape Prince of Wales and Point Hope. Next season I hopo to erect one at Point Barrow. In the mean time, through the courtesy of Capt. Healy, representing the Treasury Department, I secured a room for the school in one of the Government buildings. This is the most northern school in America, and with but one exception in the world, being in latitude ${ }^{1} 1^{\circ} 23^{\prime}$ north. At this point the trend of the continent turns to the eastward. However, on this point the ice has pushed a low ridge of sand, which exIends from 8 to 10 miles farther north. On the end of this sand spit is a small village called Nu-
wuk. On the sand spit midway between the villages is a hunting station, where the natives congregate for weeks in summer to kill ducks, as they pass to and fro from water to water over the sand spit. Thousands upon thousands are killed here every season.
On the day of our arrival I spent the whole time on shore arranging for the school. That evening the wind that had been freshening up all afternoon increased to a gale. The barometer was going down, down, down : heavy masses of ice were driiting by when the captain gave orders to weigh anchor and make a lee on the northeast side of Point Barrow, whither 16 vessels of the whaling fleet has preceded us. In a similar storm last summer, shortly after the Bear left her anchorage at Ootkeavie, the ice came in and piled up 30 feethigh on the very spot the vessel had left. The storm proved the severest we had encountered this season, changing the configuration of the coast line for miles. At Ootkeavie, 20 tons of coal just landed for the use of the Government school, was either swept out to sea or buried deep under the sand-no trace of it could be found.
All day long, on the 1st of August, the gale howled and shrieked through the rigging, but the Bear rode it out in safety. In the evening a new danger presented itself. It was found that the great ice pack, which was only 5 to 7 miles distant was closing in upon the shore, and soon we would be prisoners shut up in an ice trap. From this there would be no escape until the wind changed and drove the ice again off shore. This was the condition of things on August 1, 1888. A number of the whalers had shifted, for protection, their anchorage from the west side of Point Barrow to the east side. The wind that had increased to a gale suddenly veered around from the southwest to the north, causing a heavy sea to break upon the bar. At 90° clock that night, the schooner Jane Gray, parted her cables and drifted against an ieeberg-knocking a large hole in her side. She filled rapidly and sank, the crew taking to the small boats. The next to slip her moorings was the bark Ploenix. She struck the bar and sunk. Her crew drifted about in small boats for six hours in that terrible storm before they were picked up. Then the barks Mary and Susan, and Fleetuing went on to the bar and pounded to pieces. Several other vessels parted their cables, sustaining more or less danger.
In that fearful storm, when the waters of the Arctic were lashed into billows of foam, hurling masses of ice about like driving snow fiakes, in the midst of snapping chains and crushing spars and tattered sails, when it seemed certain destruction to lower a small boat, the revenue cutter Bear rode the storm in safety, and her trained crew, under the direction of Cap. Healy, were venturing their lives and performing prodigies of valor in rescuing shipwrecked sailors. When the storm abated, 160 rescued men were on the decks of the Bear. On this occasion, fortunately for us, the storm abated before the ice reached us, and August 2 gave us a beautiful aiternoon, of which I availed myself to go ashore.

The western and northern coast of America terminates at Point Barrow in latitude $71^{\circ} 23^{\prime}$ north and longitude $156^{\circ} 10^{\prime}$ west. Beyond this the coast trends to the eastward and southward. On the east side of the point is the native village of Nuwuk, which consists of a number of underground houses. Butfew families were home at the time of our visit, and they were mainly living in tents outside of their winter huts. The first white man to risit this place was Master Elson, of H. M. S. Bossom (Capt Beechey's expedition), in August, 1826. One hundred and forty-six miles to the eastward in Return Reef, the westernmost pointreached by Sir John Franklin in his journey to form a junction with Capt. Beechey's expedition. The next visit by white men, was that of Capt. Simpson, of the Hudson Bay Company, who, in 1837, made the journey from the Mackenzie River.

During the winters of 1852,1853 , and 1854 H. M. S. Plover wintered in Elson Bay to the east of the point. Now a United States revenue marine vessel and many whaling ships visit the place annnally.

Soon after returning to the Bear from the village, the captain was visited by Capt. Sherman, of the steam whaler William Lewis, and informed that the tender of the New Bedford whaling fleet, the bark Thomas Pope, which we had left but a few days before at anchor at Point Hope, was wrecked in the breakers at that point, on the 28th of July, and that the crew wished to be received on board the Government vessel and taken back to civilization. Consent having been obtained, the ten shipwrecked men were soon after sent on board. As the captain had on board the Bear the materials for a Government storehouse at the Point Barrow refuge station, he concluded to return at once to that place, and discharge his freight, that more comfortable quarters might be made for the shipwrecked sailors.

The weather was beautiful, the ocean smooth, and the sail exhilarating. At midnight the sun was visible in the northwest, and the full moon in the southeast. At 1 a. m., August 3 , the ship anchored at Ootkeavie, where we remained a week while the ship's carpenters were building the Government storehouse, and the captain inspecting the refuge station. During the week, among the callers was Mr. J. B. Vincent, the hero of the shipwreck of the bark Napoleon, off the cost of Siberia. Mr. Vincent is now second mate on the whaling bark Abram Barkcr.

Onc afternoon Capt. Gifford, of the bark Abram Barker, came on board and represented that his engineer, a Russian, had made two or three attempts to disable the engine, upon which the safety of the ship depended, that he had the man in irons, and requested Capt. Healy to take him off his hands, as a dangerous character. The accused man himself joined in the request, and was received on board. This is another instance of the many sided and anomalous character of the officers of a revenue ressel in these waters beyond the reach of courts and law. This is another instance where the commanding officer of the revenue serrice should have power to investigate, arrest, and commit criminals to the United States district courtfor trial. As it is, a man who endeavored to wreck a ship, and endangered many lives, goes free.

In 1882 Lieut. Ray's party dug a well to the depth of 37.5 feet for observing the temperature of the earth. The entire distance was made through frozen sand and gravel. At the bottom of the shaft the temperature remained, winter and summer, uniformly at $12 \circ \mathrm{~F}$. At the depth of 20 feet a tunnel was run 10 feet and then a room 10 by 12 feet size excavated for a cellar. In this room the temperature never rises above $22^{\circ} \mathrm{F}$. Birds and meat, placed in this room, freeze solid, and remain so until taken to the kitchen and thawed out for cooking. While at the station I descended into this unique storage house. The carcasses of several reindeer and dozens of eider ducks were taken from it, and presented to the ship, making a very welcome addition to our table fare.

In the spring of 1883,500 ducks were stored there at one time. At Ootkeavie the captain, at the request of the father, received on board a half-breed Eskimo boy, about 5 years of age, who is to be forwarded to the industrial training school at Sitka, for an education.

On Saturday, August 9, the inspection of the refuge station being completed, the storehouse finished, and arrangements for the school perfected. preparations were made to return southward. At 4:10 p. m. the anchor was weighed and the vessel steamed north a few miles to procure the last letters of the whaling fleet. The Stars and Stripes were hoisted to the top of the mainmast as a signal that we were about sailing. Soon after anchoring in the midst of the fleet the boats began arriving, bringing off packages of letters. At $9: 15 \mathrm{p} . \mathrm{m}$. the fiag was lowered, the anchor weighed, and the Bear steamed slowly away en route to civilization. As we passed by the ships, one after another dipped their flags and bade us an Arctic farewell, with many wishes for a safe voyage. Great masses of heary black clouds lay along the whole northern horizon, like a curtain to hide the unknown regions keyond. To the east of us lay the low land spit that marks the northern limit of the continent, the native village of underground huts, and the white canvas and skin covered tents of the visiting natives from the interior. To the west of us the sun was preparing, at 100° clock p. m., for a most gorgeous sunset; and south of us, as if symbolical of the lands of light, privilege, and comfort, to which we were to return, there was not a cloud to be seen in the beautiful sky. At 10 oclock p. m. we passed the school and refuge station, and soon they faded from sight and were left far behind us, in their Arctic solitude, until the Bear again visits them a twelvemonth hence.

On the 11 th of August the captain anchored off Cape Sabine to water ship. In this ricinity are extensive and valuable coal banks. On the beach were several deserters from the whaling ships, who begged hard to be received on board and taken out of the country. One of their number had been drowned. Every year ${ }^{\circ}$ men desert from the whalers; some of these die from exposure, others are picked up by the Bear, as in the present case, and a few remain in the country, descending at once to the level of the natives, demoralizing and doing them much more harm than a missionary can do good.

On the 12th, in rounding Cape Lisburne in a gale, the jib boom and sails were carried away, and the ship ran back and anchored in the lea of the cape. The country in the vicinity of the cape has been called the flower garden of the Arctic, on account of the number and variety of beautiful wild flowers. On the 13th, although the storm had not fully subsided, the Bear was got under way, and that afternoon anchored by the hull of the wrecked Thomas Pope, abreast of the schoolhouse at Point Hope. I went ashore, but found the schoolhouse locked up, and Dr. Driggs, the teacher, absent.

On the morning of August 15, we bade good-by to Point Hope, and the following morning, at $8: 100^{\circ}$ clock, dropped anchor off Cape Blossom, Kotzebue Sound. The day being pleasant I accompanied an officer to the great international fair of the Arctic, some 12 miles distant from our anchorage. There were about 1,500 natives assembled from many and widely separated sections of the country-from Alaska and Siberia. Many were living in tents, but fully half had constructed shelters by turning their umiaks or boats upside down. As I passed their shelters, my attention was again and again called to the sick. To be sick beyond the reach of a physician, with poor care and poorer accommodations, and without knowledge of even the commoner remedies, is distress itself.

As I see these people, so kindly disposed in life, with a smile of welcome to the stranger, and then see them languishing in their comfortless shelters, with but a few days or weeks removed from death, my heart goes out to them in inexpressible longing, and I wish I could tell them the story of the Cross and introduce them to the hopes and joys of the gospel. Perhaps I may, at no distant day. secure for their children a mission and boarding school.

The beach was covered with racks, upon which hung long rows of salmon, drying for winter food. At $3: 35 \mathrm{p}$. m., on the 27 th , having a fair wind, the captain weighed anchor and sailed for Cape Prince of Wales. On the afternoon of the 19th, we passed through Bering Strait, and bade good-by to the Arctic Ocean. The sea was so rough that the captain gave up all hope of being able to land at the cape. But during the afternoon the wind died out and the sea calmed down; so that he was able to run in shore and anchor abreast of the village at 60° clock p . m. We could not have landed through the surf the day before, the day after, or at any other time that day. God's providence stayed the waves sufficiently long for us to risit the shore and transact our business.

Had we passed by withoutstopping the teachers would have been unable to send down their orders for the annual supply of provisions, and next year they would have been unsupplied. As it was I had four hours with them. The wind increasing, at $10 o^{\circ}$ clock we were again under way. On the 20th we steamed by King and Sledge islands (the sea being too rough to land), and at noon on the 21 st dropped anchor off St. Michael, Norton Sound. Soon after we had a call from Mr. Henry Newmann, agent of the Alaska Commercial Company, and Rev. William H. Judge, a Jesuit priest, who has lately come to the country to engage in the school work of the Roman Catholic Church on the Yukon River.

St. Michael is located on the first good site for a trading post north of the delta of the Yukon River, and is the headquarters of the trade of the Yukon valley. To this point the furs collected at the trading posts in the interior, some of them 2,000 miles distant, are brought for reshipment to San Francisco. About half a mile from the trading post is a small native village. The trading post was established by the Russians in 1835, and is now occupied by the Alaska Commercial Company. A blockhouse and some of the original buildings are still standing. Through the courtesy of Mr. Henry Newmann, two small Russian cannon, one of which was originally used in the defense of the place and the other in protecting the boating expeditions up the river, were sicured for the collection of the Alaska Society of Natural History. At St. Michael l received a good account of the schools, nine of which receive their supplies and mails at this point.

It is said of one of the missionaries, who is some 2,000 miles, more or less, up the river, that when he saw his freight bill of $\$ 125$ per ton for transportation from St. Michael to his station, he added a petition in his prayer that freight might be reduced. During the stay at St. Michael two interesting boys, William and George Frederickson, from Anvik, on the Yukon River, were received on board to accompany me East. Their father, a trader, is sending them to New York for an education. After a pleasant visit of two days, the Bear took her departure for Nunivak island. On the following Sabbath night, and through all Monday, we were steaming around the island, that the captain might secure the census. Finding that the people were scattered, hunting and fishing, and being warned by the few natives he met of dangerous rocks and reefs, and the waters being uncharted, on Monday evening the captain turned around and steamed for St. George Island, which we reached on the morning of August 27. Nearing the island, a schooner was seen crowding on all sail to get out of our way. As the captain had not yet received his instructions, which were awaiting his arrival at Unalaska, and had no authority to make any seizures, the schooner was allowed to proceed unmolested. She was one of the many piratical vessels that are fitted out at Victoria, British Columbia, and San Francisco, to hunt seals in Bering Sea contrary to law. In 1886 there were 21 such vessels from Victoria alone, and the catch was $35,5 \tilde{5} 6$ skins. In 1887 there were

20 ressels from Victoria, 8 of which were seized; the catch was 27,624 skins. In 1888 there were 19 British vessels, with a total catch of nearly 30,000 skins. In 1889, 23 British ressels, and this year 22 British and 12 American vessels engaged in seal piracy. Their methods of operation are so wasteful that the number of skins taken does not begin to represent the number of sealskilled. They necessarily hunt out to sea, where they largely kill the females heavy with their young. A large percentage of the seals shot sink before they can be secured, so that many authorities state that the 20,000 to 30,000 secured representfrom 150,000 to 200,000 seals destroyed. This wasteful method israpidly annihilating the fur seal, so that if our granddaughters are to have seal-skin sacques the Government will need to take more stringent measures for the protection of the seal. The indiscriminate slaughter of the seal while passing to their breeding grounds has caused such a scarcity on the seal islands, that while the Government allows 100,000 males to be taken annually, this year the vessels have been able to secure but 21,000 skins.

The piratical vessels fitted out at Victoria, British Columbia, to hunt seal have caused the international complications known as the "Bering Sea difficulty," which are now the subject of negotiations between the State Department and Great Britain.

WHALING INDUSTRY.

As early as the year 1841 fifty whaling vessels had found their way from New Bedford and Boston to Bering Sea. From 1842 and onward for a number of years annual complaints were made to the Russian Government by the RussianAmerican Fur Company of the encroachments of the Yankee whalers. In 1852 the whaling fleet had increased to 278 vessels, and the value of the catch to $\$ 14,000,000$. This was probably the most profitable year of the whaling industry in Alaska. Since then it has, in the main, decreased, until in 1862 the value of the catch wasless than $\$ 800,000$. This increased again in 1867 to $\$ 3,200,000$. In 1880 the first steamer was added to the whaling fleet, being sent out from San Francisco. Last year there were 26 vessels from San Francisco and 23 from New New Bedford engaged in the trade. They captured 151 whales, which yielded 213,070 pounds of whale bone and 12,243 barrels of oil. This season there are 10 steamers and 38 sailing ressels employed in these northern waters with a very light catch up to midsummer. The whaling vessels are manned upon the cooperative plan; the men instead of being paid regular wages receive a percentage of the profits. The captain on the sailing vessels receives a twelfth, the first mate a nineteenth, the second mate and boat headers each a twenty-fifth, the third mate a thirtieth, the fourth mate, carpenter, cooper, and steward each a fiftieth, and the sailors each a one hundred and saventy-fifth. On steamers the rates are a little lower. A captain's wages range from nothing to $\$ 7,000$ or $\$ 8,000$, according to the number of whales taken. If the ship gets six whales during a cruise the captain will have about $\$ 1,400$ and a sailor $\$ 100$. The sailors usually receive an advance of $\$ 60$, and during the cruise are allowed to draw clothing, tobacco, etc., from the ship's supplies (called the "slop chest") to the amount of $\$ 60$ to $\$ 80$. Consequently if there are no profits to divide the sailor is sure of about $\$ 140$. The captains and higher officers are usually men of more than ordinary character and intelligence-typical American seamen of the best kind. The common sailors on a whaler are made up largely of Portuguese, Italians, South Sea Islanders, and others of an inferior grade, some of them being, emphatically, hard cases.

A few years ago whales were plentiful in the North Pacific, Bering, and Okhotsk Seas. Then they were followed through Bering Straits a little way into the Arctic. Then farther and farther the whales have been driven into the inaccessible regions of the North, until now the whaling fleet annually rounds the most northern extremity of the American continent, and this year, for the first time, a few of them. will winter in the Arctic, at the mouth of the Makenzie River. To escape this deadly pursuit the whales try to hide in theice, and after them the whalers boldly force their way. The business is so dangerous that during the last 20 years more than 100 vessels have been lost. The value of the whale fisheries consists not so much in the oil taken, as in the whale-bone, which is taken from his mouth; this is worth between $\$ 1.50$ and $\$ 5$ per pound. The product of a fair sized, bowhead whale, at present prices, is worth about $\$ 8,000$. A good sized whale weighs about 150 tons, and contains about 2,000 pounds of whalebone after it is cleaned. His tongue is 15 feetlong, from 6 to 8 feet in thickness, and contains 12 barrels of cil. His open mouth is from 15 to 20 feet across;
his tail from 15 to 18 feet across. The blubber forms a coat around him from 10 to 22 inches thick. It is 4 feet from the outside of the body to his heart, and the heart is 216 cubic feet in size, while the brains will fill a barrel.

While lying at anchor at St. George, the United States Revenue Marine steamer Rush, Capt. Coulson commanding, dropped anchor near us, and we receired two and one-half months later news from the outside world. With visiting on shipboard and on land, the day slipped by very rapidly and pleasantly, and the following morning we were under way for Unalaska. reaching there on the 29 th of August. At Unlaska I received letters from Eastern friends, the latest being dated June 3 .

THE ESKIMOS OF ALASKA.

During June, July, and August, I cruised 5,000 miles along the coasts of Asia and America, from the Aleutian Islands to Point Barrow, the northern limit of the continent, and back to Unalaska. I visited all the principal seitlements of the coast, and saw much of the native people. These people all belong to the Innuit or Eskimo family. They occupy not only the Arctic and Bering Sea coasts, but also that of the mainland coast of the North Pacific, as far east as mount St. Elias, and number in all about17.c00 to 20,000 . In the extreme north, at Point Barrow, and along the coast of Bering Sea, they are of medium size. At Point Barrow the average height of the males is 5 feet 3 inches, and average weight 153 pounds; of the women, $\frac{1}{2}$ feet 11 inches, and weight 135 . On the Nushagak River the average weight of the men is from 150 to 167 pounds.

From Cape Prince of Wales to Icy Cape, and on the great inland rivers emptying into the Arctic Ocean, they are a large race, many of them being 6 feet and over in height. They are lighter in color and fairer than the North American Indian, have black and brown eyes, black hair (some with a tinge of brown), high cheek bones, fleshy faces, small hands and feet, and good teeth. The men have thin beards. Along the Arctic coast the men cut their hair closely on the crown of the head, giving them the appearance of monks; this is done so that when crawling up to the deer, the latter will not be frightened away by the flutter of the hair in the wind. Some of the young are fairly good looking, but, through exfosure and hardship, become old at 30 years of age. They are naturally intelligent, ingenious in extricating themselves from difficulties, fertile in resources, and quick to adopt American ways and methods when they are an improvement on their own. Physically they are very strong, with great powers of endurance. When on a journey, if food is scarce, they will travel 30 to 40 miles without breaking their fast. Lieut. Cantwell, in his explorations of the Kowah River, makes record that upon one occasion when he wanted a heavy stone for an anchor, a woman went out, and, alone, loaded into her birch bark canoe, and brought him a stone that would weigh 800 pounds. It took two strong men to lift it out of the canoe.

Another explorer speaks of a woman carrying off on her shoulder a box of lead weighing 280 pounds. This summer, in erecting the school buildings in the Arctic, there being no drars or horses in that country, all the timber, lumber, hardware, etc., had to be carried from the beach to the site of the house on the shoulders of the people. The women carried the same loads as the men. They are, as a rule, industrious; men, women, and children doing their individual part toward the family support. The hard struggle for a bare existence in the sterile region where they live compels it. In a general way they are honest. Property intrusted to them by the whites iskeptsecure. Property stowed away in a cache or tent needs no lock or watchman-it is safe. Small articles left lying around uncared for are soon picked up and carried off. Perhaps ther look upon them as if they had been thrown away. A white man can leare with oue of them who is an entirestranger to him $\$ 100$ or $\$ 200$ worth of goods, saying, "Buy me some furs and I will be back here next year." The following season the native, with the furs, is in waiting for the expected arrival. This is done every season. I have the account-book of one of these native traders in which he has recorded every skin purchased, and how much of each article paid for it. As the native can neither read, write, nor speak English, and his own language is an unwritten one, of course the accounts are kept by symbols and signs. They are shrewd traders. No matter how much is offered for an article, they ask for more. If they set the price themselves, and the purchaser accedes toit, they frequently attempt to raise it. They are exceedingly dirty and filthy in their persons and clothing. But perhaps this is somewhat excusable in a country where, in winter, water is scarce and soap scarcer. I remember once hearing a very successful missionary, who had spent many years north of the Arctic Circle, say that he
tried to make it a rule, when traveling with a dog sled, to wash his face at least once a week, but that he had not always been able to do it. The Alaska Eskimo is a good-natured, docile, and accommodating race. Wherever I met them, and under whatever circumstances, they had a smile of welcome, and in many ways showed a friendly spirit. They have also manifested an unexpected interest in the establishment of sciools among them, which promises well for the future.

ORNAMENTATION.

Among the Thlinket people of southeastern Alaska the labret is worn by the women only. Among the Eskimo of northwestern Alaska, on the contrary, it is worn by the men alone. The use of it is almost universal.

During boyhood a hole is cut through the lower lip below each corner of the mouth and an ivory plug inserted until the wound heals. After healing, the hole is stretched from time to time until it reaches about half an inch in diameter. Into this they insert the labret.

These labrets are made of stone, jade, coal, ivory, bone, and glass. They are shaped like a silk hat in miniature. The labret is three-fourths of an inch in diameter, 1 inch in diameter at the rim, and 1 inch long. The rim is kept inside of the mouth and holds the labret in place.

Many wear this form of labret on the one side of the mouth, and on the other a much larger one, resembling a large sleeve-button, $1 \frac{3}{3}$ inches in diameter on the outside, $1 \frac{1}{4}$ inches on the inside rim, and one-half inch neck.

Formerly they wore a large labret in the center of the lower lip. I secured a beautiful one of polished jade that has an outside surface $2 \frac{1}{3}$ inches by 1 inch.

The girls have their ears and sometimes their noses pierced, wearing pendant from them copper, ivory, and bone ornaments, also strings of beads. Sometimes these beads extend from one ear to the other, either under the chin or back of the head.

Both sexes tatoo, more or less elaborately, their faces, hands, and arms. Both sexes wear bracelets, amulets, and sometimes fancy belts.

DRESS.

They make waterproof boots of seal skin, with walrus or sea-lion hide soles. For cold weather the boots are made of seal or reindeer skin, tanned with the hair on, and walrus-hide soles.

The foot portion is made many times larger than the foot, in order to give room for a padding of̂ grass. These boots are so much warmer and more comfortable than the ordinary leather ones that they are almost universally used by whalers and others who have occasion to visit Arctic regions. A fur shirt and a pair of fur pants complete the toilet. The shirt is called a parka, and frequently has a hood attached, which can be pulled over the head in a storm. Others have a fur hood which, when not on the head, hangs around the neck. Ordinarily in summer the head is uncovered.

In winter two suits are worn, the inner one with the fur next to the body, and the outer one with the fur to the weather.

The difference between male and female attire is in the shape and ornamentation of the parka. Among some of the tribes the pants and boots of the women are in one garment. There is also a fullness in the back of the woman's parka to make room for the carrying of the baby inside between the shoulders of the mother. These clothes are made largely of the skins of the reindeer, squirrels, and birds. From the intestines of the seal and walrus and also from salmon skins are made the famous kamleika, a waterproof garment, which is worn over the others in wet weather. The kamleika is lighter in weight and a better waterproof garment than the rubber garments of commerce.

The native dress, when well made, new and clean, is both becoming and artistic.

FOOD.

They live principally upon the fish, seal, walrus, whale, reindeer, and wild birds of their country. Latterly they are learning the use of flour, which they procure from the Government revenue vessels or barter from the whalers.

They have but few household utensels. A few have secured iron kettles. Many still use grass-woven baskets and bowls of wood and stone. Oceasionally is found a jar of burnt clay. In these native dishes water was boiled by dropping in hot stones.

Among the more northern tribes much of the food is eaten raw, and nothing is thrown away, no mattor how rotten or offensive it has become.
Some of their choicest delicacies would be particularly disgusting to us. Having, at one of the bird rookeries in the Arctic, gathered a number of eggs, it was found that many of them contained chickens. When about to throw them overboard, the native interpreter remonstrated, saying: "No! me eat them. Gcod!"
All classes have a great craving for tobacco and liquor. Even nursing babes are seen with a quid of tobacco in their mouths.
Dering the summer large quantities of fish are dried, and the oil of the seal, walrus, and whale put up for winter use. The oil is kept in bags made of the skin of the seal, similar to the water-skins oí Oriental lands. The oil is kept sweet by the bags bsing buried in the frozen earth until wanted for use.

DWELLINGS.

The coast Eskimo hate underground permanent houses in villages for winter, and tents that are frequently shifted for summer.
The Eskimo of the interior, being largely nomads, live in tents much of the time. The tents are covered with reindeer skins, walrus hides, or cotton canvas. In making a winter house, a cellar from 20 to 25 feet square is dug, from 3 to 5 feet deep. At the corners and along the sides of the excavation are set posts of driftword or whalebone. On the outside of these, poles of driftwood are laid up one upon another to the top. Other timbers are placed across the top, forming the roof or ceiling. Against the outside and upon the roof, dirt and sod are piled until the whole has the appearance of a large mound. In the center of the dome is an opening about 18 inches across. Across this is stretched the transparent bladder of the seal or walrus. This opening furnishes light to the room below. A narrow platform extends along one or more sides of the room, upon which are stowed the belongings of the family and the reindeer-skin bedding. The platform is also the sleeping-place of the family.
Large, shallow dishes of earthenware, bone, or stone, filled with seal oil, are the combined stove and lamp of the family. Some lighted moss makes a dull line of flame along the edge of the dish. Frequently a piece of blubber is suspended over the flame, the dripping of which keeps the lamp replenished.
Many of the houses were so warm that we found our usual outdoor clothing burdensome.
At one side of some rooms, and in the floor near the center ot the room in others, is a small opening about 20 inches square. This is the doorway, and leads to a hall or outside room. If the opening is in the side of the room, a reindeer skin curtain hangs over it. This outer place is sometimes a hall 12 to 15 feet long and 2 feet wide and high, leading to a well or shaft. This shaft is 6 or 7 feet deep, and leads up a rude ladder into the open air. In other cases it is a large room 12 or 15 feet square, containing, on either side of the passageway through the center, a place to store the winter supplies of oil, fish, and flour. The exit from the storeroom is similar to that from the hall, up a ladder and through a small hole. When a storm is raging outside this hole is covered with a board or flat stone or large, flat whalebone.

All villages of importance contain a public room or town hall. This is built in the same manner as the private dwellings, only much larger. Some of these are 60 feet square, 20 feet high, and contain three tiers or platforms. This building is called the kashima or kashga. In them are held the public festivals and dances. They are also the common workshop in which the men make their snowshoes, dog sleds, spears and other implements.
The villages, from the deck of a coasting vessel, have the appearance of so many hillocks or dunes along the beach.

IMPLEMENTS.

The Eskimo of Arctic Alaska are still in the stone age. The manufacture of arrows and spear heads from flint is a living industry. Stone lamps, stone hammers and chisels, and to some extent stone knives, are still in ordinary use among them. Fish lines and nets and bird snares are still made of whalebone, sinew, or rawhide. Arrows, spears, nets, and traps are used in hunting, although improved breach loading arms are being introduced among them, and will soon supersede, for the larger game, their own more primitive weapons.

For transportation on land they have the snowshoe, dog team, and sled; and on the water the kiak and umiak.

The kiak is a long, narrow, light, graceful, skin-covered canoe, with one, two, or three holes, according to the number of people to be carried. It is the universal boat of the Eskimo, and is found from Greenland around the whole northern coast of America, wherever that people are found.

The umiak is a long, skin-corered boat. This is the family boat or carryall. Those in use around Bering Straits are about 24 feet long and 5 feet wide. They will safely carry 15 persons and 500 pounds of freight, coasting in the sea. Those on Kotzebue Sound, in the Arctic Ocean, are 35 feet long, 6 feet wide, with a capacity of 3,000 pounds of freight, and a crew of 6 . There are exceptionally large ones that will carry from 50 to 83 people. Both the kiaks and umiaks are made of walrus, sea lion, or white whale hides stretched over light frames of spruce wood.

MARRIAGE.

There seems to be no special ceremony among them connected with marriage. If the parties are young people, it is largely arranged by the parents.

Among some of the tribes the husband joins his wife's family and is expected to hunt and fish for them. If he refuses to give his father-in-law the furs he takes he is driven out of the house and some one else more active or obedient is installed as husband of the girl. Sometimes a young woman has ten or twelve husbands before she fairly settles down. Under this condition of things it is not strange that the women become indifferent and of ten untrue to their husbands. Love and mutual affection has so little to do with the relation that upon occasion husbands and wives are interchanged.

For instance, in one of the northern villages dwelt a family of expert fishers and another that was successful at hunting the reindeer. One year the fisherman thought he would like to hunt reindeer. Finding that his neighbor would like to try fishing, they exchanged wives for the summer. The woman who was a good hunter went off with the fisherman and vice versc. Upon reaching home in the fall, they returned to their respective husbands.

Again a certain man wished to make a long journey into the interior. His wife bsing sick and unable to endure the hardships of the trip, he arranged with a friend. who had a strong, healthy wife, for an exchange until he should return. This was done with the consent of all parties. Wives are frequenily beaten by their husbands, and sometimes, to escape abuse, commit suicide. In the winter of 1889 a woman at Point Hope who had been beaten and stabbed by her jealous husband one night during a raging blizzard harnessed the dogs to the sled, then fastening one end of a rope to the sled and the other as a noese around her neck, she started up the team and was choked and dragged to death. Occasionally a wife resists, and, if physically the stronger, thrashes the husband. Polygamy prevails to a limited extent. Frequently the second wife is looked on and treated as a servant in the family. Among some of the tribes the custom prevails of the sons having the same number of wives as the father, without reference to their ability to maintain them. No more, no less, than a species of hereditary polygamy.

Among the Eskimo, the same as amorig all uncivilized people, woman's is a hard lot. One of the missionary ladies writes: "My heart aches for the girls of our part of Alaska. They are made perfect prostitutes by their parents from the time they are 9 or 10 years old until that parent dies. And yet, notwithstanding all their disadrantages, they hare a voice in both family and village affairs. The husband makes no important bargain, or plans a trip, without consulting and deferring to his wife."

The customs pertaining to childbirth are barbarous, and it would not be strange if both mother and child should perish. Large families of children are the exception; few have above four. The drudgery of women is such that they often destroy their unborn and sometimes born offspring, particularly if the child is a girl. A missionary gives the following incident: "Some one tied a helpless little child of about two years down to the water's edge at low tide. Its cries attracted the attention of a passer-by, who found the water already nearly up to his back. The man took it to his home and carez for it. It was recognized as a child that had been left in the care of an old woman; the child was sickly, and doubtless was too much of a care for her. The only surprise expressed by the people was that any one should want to drown or kill a boy."

If a family is very poor they sometimes give away to childless neighbors all their children but one. Thus, during childhood, a boy may pass from one to another to be adopted by several families in turn. Children are also sold by their parents, the usual market price of a child being a sealskin bag of oil or an
old suit of clothes. During infancy children are carried under the parka, astride of the mother's back, being held in position by a strap under the child's thighs and around the mother's body acioss the chest. When out from under the parka, they are carried seated on the back of the mother's neck and shoulders, with the child's legs hanging down in front on both sides of the neck. The children are given the names of various animals, birds, fish, sections of country, winds, tides, heavenly bodies, etc. Sometimes they have as many as six names. Children are rarely punished-generally have their own way, and are usually treated with great kindness by their own or foster parents. Prominent events in the life of a boy, such as having his hair cut for the first time, like a hunter-his first trip to sea in a kiak-his first use of snowshoes, etc.-are celebrated by a feast if the family are not too poor.

FESTIVALS

Different tribes have different festivals. Among others there is usually one for every animal hunted by the people. A whale dance, seal, walrus and reindeer dances, etc. There are festivities for the spirits of wives, land and sea, dead friends, sleds, boats, etc. Some of these ara held during the long winter darkness, and others, with dancing, wrestling, and foot-racing, at the great annual gathering in summer.

SUPERSTITIONS.

Like all other ignorant people, they are firm believers in witchcraft and spirits generally. They also believe in the transmigration of souls. That spiritsenter into animals and inanimate nature, into rocks, winds, and tides. That they are good or bad according as the business, the community, or the individual is successful or unsuccessful, and that these conditions can be changed by sorcery. By suitable incantations they firmly bolieve that they can control the wind and the elements, that they can reward friends and punish enemies.

The foundation of their whole religious system is this belief in spirits and the appeasing of evil spirits. This demon or evil spirit worship colors their whole life and all its pursuits. Every particular animal hunted, every phenomerion of nature, every event of life, requires a religious observance of its own. It is a heavy and burdensome work that darkens their life-it leads to many deeds of unnatural cruelty. At the mouth of the Kuskokwine River an old woman was accused of having caused the death of several children-of being a witch. This was so firmly boliered that her own husband pounded her to death, cut up her body into small pieces, severing joint from joint, and then consuming it with oil in a fire.

SHAMANS.

The head and front of this great evil is the Shaman, or sorcerer. He is believed to be the only one that can control the evil spirits and protect the people from them. Mr. John W. Kelly, who has written recently an interesting monogram on the Eskimo, represents the Shamans as divided into seven degrees, being graded according to their knowledge of spiritualism, ventriloquism, feats of legerdemain and general cunning. It is claimed that those of the seventh degree are immortal, and can neither be killed nor wounded; that those of the sixth degree can be wounded, but not killed. The ordinary Shaman belongs to the lower degrees and only claims to go into trances, in which state his spirit leaves the body and roams abroad procuring the information his patrons are in search of.

As a rule the Shamans are unscrupulous frauds, thieves, and murderers, and should be put down by the strong hand of the General Government.

SICENESS.

The prevailing diseases among the Eskimo are scrofula, diphtheria, pneumonia, and consumption, and the death rate is large. They have a superstitious fear with reference to a death in the house, so that when the sick are thought to be nearing death they are carried out of the home and placed in an outhouse. If they do not die as soon as they expect, they ask to be killed, which is usually done by the Shaman stabbing them in the temple or breast. The aged and help-
less are also sometimes killed at their own request. A prominent man in a tribe not long since tried to hire men to kill his aunt, who was insane and dependent on him. Failing to have her killed, he deliberately froze her to death. The cruelty of heathenism is almost beyond belief. The dead are wrapped up in reindeer or seal skins and drawn on a sled back of the village, where they are placed upon elevated scaffolds, out of the reach of animals, or upon the ground and covered over with driftwood, or, as among some of the tribes, left upon the ground, to be soon torn in pieces and devoured by the dogs of the village.

GOVERNMENT.

The Eskimos have no tribal organization and are without chiefs. The most successful trader among them becomes the wealthiest man and is called Umailik. By virtue of the influence that riches exert he is considered the leader in business transactions. In special exigencies, affecting a whole village, the old men assemble and determine upon a plan of action. The Shamans also have great influence among the people. It often happens that the Umailik and Shaman are the same person.

FOOD SUPPLY.

From time immemorial they have lived upon the whale, the walrus, and the seal of their coasts, the fish and aquatic birds of their rivers, and the caribou or wild reindeer of their vast inland plains.

The supply of these in years past was abundant and furnished ample food for all the people. But fifty years ago American whalers, having largely exhausted the whale in other waters, found their way into the North Pacific Ocean. Then commenced for that section the slaughter and destruction of whales that went steadily forward at the rate of hundreds and thousands annually, until they were destroyed and driven out of the Pacific Ocean. They were then followed into Bering Sea, and the slaughter went on. The whales took refuge among the ice fields of the Arctic Ocean, and thither the whalers followed. In this relentless hunt the remnant have been driven still farther into the inaccessible regions around the north pole, and are no longer within reach of the natives.

As the great herds of buffalo that once roamed the western prairies have been exterminated for their pelts, so the whales have been sacrificed for the fat that encased their bodies and the bone that hung in their mouths. With the destruction of the whale one large source of food supply for the natives has been cut off.

Another large supply was derived from the walrus, which once swarmed in great numbers in those northern seas. But commerce wanted more ivory, and the whalers turned their attention to the walrus, destroying thousands annually for the sake of their tusks. Where a few years ago they were so numerous that their bellowings were heard above the roar of the waves and grinding and crashing of the ice fields, this year I cruised for weeks without seeing or hearing one. The walrus as a source of food supply is already practically extinct.

The seal and sea lion, once so common in Bering Sea, are now becoming so scarce that it is with difficulty that the natives procure a sufficient number of skins to cover their boats, and their fiesh, on account of its rarity, has become a luxury.

In the past the natives, with tireless industry, caught and cured for use in their long winters great quantities of fish, but American canneries have already come to one of their streams (Nushagak) and will soon be found on all of them, both carrying the food out of the country and by their wasteful methods destroying the future supply. Five million cans of salmon annually shipped away from Alaska-and the business still in its infancy-means starvation to the native races in the near future.

With the advent of improved breech-loading firearms the wild reindeer are both being killed off and frightened away to the remote and more inaccessible regions of the interior and another source of food supply is diminishing.

Thus the support of the people is largely gone and the process of slow starvation and extermination has commenced along the whole Arctic coast of Alaska. Villages that once numbered thousands have been reduced to hundreds; of some tribes but two or three families remain. At Point Barrow, in 1828, Capt. Beechey's expedition found Nuwuk a village of 1,000 people; in 1863 there were

309; now there are not over 100. In 1826 Capt. Beechey speaks of finding a large population at Cape Franklin: 1o-day it is without an inhabitant. He also mentions a large village of 1,000 to 2,000 people on Schismareff Inlet; it has now but three houses.

According to Mr. John W. Kelly, who has written a monograph upon the Arctic Eskimo of Alaska. Point Hope, at the commencement of the century, had a population of 2,000 ; now it has about 350. Mr. Kelly further says: "The Kavea county is almost depopulated owing to the scarcity of game, which has been killed or driven away. * * * The coast tribes between Point Hope and Point Barrow have been cut down in population so as to be almost obliterated. The Kookpovoros of Point Lay have only three huts left; the Ootookas of Icy Cape one hut; the Koogmute has three settlements of from one to four families; Sezaro has about 80 people."

Mr. Henry D. Woolfe, who has spent-many years in the Arctic region, writes: "Along the seacoast from Wainright Inlet to Point Lay numerous remains of houses testify to the former number of the people. * * * From Cape Seppings to Cape Krusenstern and inland to Nounatok River there still remain about 40 people, the remnant of a tribe called Key-wah-ling-nach-ah-mutes. They will in a few years entirely disappear as a distinctive tribe."
I myself saw a number of abandoned villages and crumbling houses during the summer, and wherever I visited the people I heard the same tale of destitution.

On the island of Attou, once famous for the number of its sea-otter skins, the catch for the past nine years has averaged but 3 sea-otter and 25 fox skins, an annual income of about $\$ 2$ for each person. The Alaska Commercial Company this past summer sent $\$ 1,300$ worth of provisions to keep them from starving.

At Akutan the whole catch for the past summer was 19 seaotters. This represents the entire support of 100 people for twelve months. At Unalaska both the agent of the Alaska Commercial Company and the teacher of the Gorernment school testified that there would be great destitution among the people this winter because of the disappearance of the sea otter. At St. George Island the United States Treasury agent testified that there was not sufficienteprovisions on the island to last through the season, and asked that a Gorernment vessel might be sent with a full supply. At Cape Prince of Wales, Point Hope, and Point Barrow was the same account of short supply of food. At the latter place intimations were given that the natives in their distress would break into the Government warehouse and help themselves to the supply that is in store for shipwrecked whalers. At Point Barrow, largely owing to the insufficient food supply, the death rate is reported to the birth rate as 15 to 1. It does not take long to figure out the end. They will die off more and more rapidly as the already insufficient food supply becomes less and less.

INTRODUCTION OF REINDEER.

In this crisis it is important that steps should be taken at once to afford relief. Relief can, of course, be afforded by Congress voting an appropriation to feed them, as it has done for so many of the North American Indians. But I think that every one familiar with the feeding process among the Indians will devoutly wish that it may not be necessary to extend that system to the Eskimo of Alaska. It would cost hundreds of thousands of dollars annually, and, worse than that, degrade, pauperize, and finally exterminate the people. There is a better, cheaper, more practical, and more humane way, and that is to introduce into northern Alaska the domesticated reindeer of Siberia, and train the Eskimo young men in their management, care, and propagation.

This would in a few years create as permanent and secure a focd supply for the Eskimo as cattle or sheep raising in Texas or New Mexico does for the people of those sections.
It may be necessary to afford temporary relief for two or three years to the Eskimo, until the herds of domestic reindeer can be started, but after that the people will be self-supporting.

As you well know, in the Arctic and sub-Arctic regions of Lapland and Siberia the domesticated reindeer isfood, clothing, house, furniture, implements, and transportation to the people. Its milk and flesh furnish food: its marrow and tongue are considered choice delicacies; its blood, mixed with the contents of its stomach, is made into a farorite dish called in Siberia " manyalla;" its intestines are cleaned, filled with tallow, and eaten as a sausage: its skin is made into clothes, bedding, tent covers, reindeer harness, ropes. cords, and fish lines; the hard skin of the forelegs makes an excellent covering for snowshoes.

Its sinews are dried and pounded into a strong and lasting thread; its bones are soaked in seal oil and burned for fuel; its horns are made into rarious kinds of household implements, into weapons for hunting and war, and in the manufacture of sleds.
Indeed, I, know of no other animal that in so many different ways can minister to the comfort and well-being of man in the far northern regions of the earth as the reindeer.

The reindeer form their riches; these their tents,
Their robes, their beds, and all their homely wealth supply;
Their wholesome fare and cheerful cups.
Under favorable circumstances a swiftreindeer can traverse 150 miles in a day. A speed of 100 miles per day is easily made. As a beast of burden they can draw a load of 300 pounds. They yield a cupful of milk at a milking; this small quantity, howerer, is so thick and rich that it needs to be diluted with nearly a quart of water to make it drinkable. It has a strong flavor like goat's milk, and is more nutritious and nourishing than cow's milk. The Laps manufacture from it butter and cheese. A dressed reindeer in Siberia weighs from 80 to 100 pounds. The reindeer feed upon the moss and other lichens that abound in the Arctic regions, and the farther north the larger and stronger the reindeer.

Now, in Central and Arctic Alaska are between 300,000 and 400,000 square miles (an area equal to the New England and Middle States combined, together with Ohio, Indiana, and Illinois) of moss-covered tundra and rolling plains of grass that are specially adapted by nature for the grazing of the reindeer and is practically useless for any other purpose.

If it is a sound public policy to bore artesian wells and build water-storage reservoirs, by which thousands of arid acres can be reclaimed from barrenness and made fruitful, it is equally a sound public policy to stock the plains of Alaska with herds of domesticated reindeer, and cause those vast, dreary, desolate, frozen, and storm-swept regions to minister to the wealth, happiness, comfort, and well-being of man. What stock-raising has been and is on the vast plains of Texas, Colorado, Wyoming, and Montana, reindeer-raising can be in northern Alaska. In the corresponding regions of Lapland, in Arctic Norway, and in Sweden and Russia are 27,000 people supporting themselves (besides paying a tax to the Government of $\$ 400,000$, or $\$ 1$ per head for their reindeer) and procuring their food and clothing largely from their 400,000 domesticated reindeer. Also in the corresponding regions of Siberia, with similar climate, soil, and environment (and only 40 miles distant at the straits), are thousands of Chukchees, Koraks, and other tribes fed and clothed by their tens of thousands of domesticated reindeer.

During the summer I risited four settlements of natives on the Siberian coast, the two extremes being 700 miles apart, and saw much of the people, both of the Koraks and Chukchees. I found them a good-sized, robust, fleshy, well-fed, pagan, half-civilized, nomad people, living largely on their herds of reindeer. Families own from 1,003 to 10,000 deer. These are divided into herds of from 1,000 to 1,500. One of these latter I visited on the beach near Cape Nava:in. In Arctic Siberia the natives with their reindeer have plenty; in Arctic Alaska without the reindeer they are starving.

Then instead of feeding and pauperizing them let us civilize, build up their manhood, and lift them into self-support by helping them to the reindeer. To stock Alaska with reindeer and make millions of acres of moss-covered tundra conducive to the wealth of the country, would be a great and worthy event under any circumstances.

But just now it is specially important and urgent from the fact that the destruction of the whale and walrus has brought large numbers of Eskimo face to face with starvation, and that something must be done promptly to sare them.

The introduction of the reindeer would ultimately afford them a steady and permanent food supply.

INTRODUCTION OF CHRISTIANITY.

In the Tenth United States Census Report, on page 2, it is recorded: "That no trace or shadow of Christianity and its teachings has found its way to these desolate regions: the dark night of Shamanism or Sorcery still hangs over the human mind. These people share with their Eastern kin a general belief in evil
spirits and powers, against whom the Shaman alone can afford protection by sacrifices and incantations. No philanthropic missionary has ever found his way to this Arctic coast, and unless some modern Hans Egede makes his appearance among them in the near future there will bo no soil left in which to plant the Christian seed."
Such was the dark but true picture in 1880, but the dawn was near at hand. The nceds of the Eskimos had long been upon my mind, and various plans for reaching them had been considered. In the spring of 1888 , having an opportunity of visiting Bethlehem, Pa., I secured a conference with the late Edınund de Schweinitz, D. D., a bishop of the Moravian Church, and urged upon him the establishment of a mission to the Eskimo of Alaska. A few days later the request was repeated in writing, which letter, on the 23d of August, 1883, was laid before the Moravian Society for Propagating the Gospel among the Heathen. The request was favorably considered, and Rev. A. Hartman and Mr. Wm. H. Weinland were appointed a committee to visit Alaska and report on the advisability of commencing a mission. This tour of exploration was made in the summer of 1884, and is given in my annual report for 1885-'86. Upon their return they recommended the establishment of a mission on the Kuskokwim River, near the native village of Mumtreklagamute, 75 miles above the mouth of the stream. In the spring of 1885 Rev. and Mrs. Wm. H. Weinland, Rev. and Mrs. John H. Kilbuck, and Mr. Hans Torgersen were sent to the Kuskokwim River as the first missionaries to the Eskimo of Alaska. The present mission force consists of Rev. and Mrs. John H. Kilbuck, Rev. and Mrs. ErnstL. Webber, and Miss Lydia Lebus. In the summer of 1886 the Moravians sent out the Rev. Frank E. Wolff, who located a station and erected a mission station at the mouth of the Nushagak River. He then returned to the States for the winter. The mission was formally opened in the summer of 1887 with the arrival of Rev. and Mrs. F. E. Wolff and Miss Mary Huber. To the original number have simee been added Rev. J. H. Schoechert and Miss Emma Huber. Both of these schools have been assisted by the United States Bureau of Education.

On the 1st of July, 1886, an agreement was entered into between the Commissioner of Education and the Missionary Society of the Protestant Episcopal Church for the establishment of a school in the great Yukon Valley. Owing to the impossibility of getting the supplies into that inaccessible region the school was maintained for 1886-87 at St. Michael, on the coast, by Rev. and Mrs. Octavius Parker.
In the summer of 1887 Rev. John H. Chapman was added to the mission and the station was removed to Anvik. The present force of teachers consists of Rev. John W. Chapman and Mr. Marcus O. Cherry.
In 1886-'87 the Roman Catholics entered the Yukon Valley, and have established missions and schools at Nulato, Kosoriffsky, and Cape Vancouver.
In 1886 the Evangelical Mission Union of Sweden established a station among the Eskimos at Unalaklik with Rev. Axel E.Karlson, missionary. He isnow assisted by Mr. August Anderson, and it is proposed that next year the school will be assisted by the United States Bureau of Education.

The new stations among the Arctic Eskimos at Point Barrow, Point Hope, and Cape Prince of Wales, have already been mentioned. During the summer of 1890 I established three schools and missions in Arctic Alaska. One at Point Barrow, with Mr. Leander M. Stevenson, of Versailles, Ohio, in charge. This is, next to Upernavik, Greenland, the northernmost mission in the world. Its establishment was made possible through the liberality of Mrs. Elliott F. Shepard. Mr. Stevenson, who volunteered to go to that distant point, organize the mission and erect the necessary buildings, will return in the summer of 1892 to his family. A permanent missionary for that place is desired. He should be a young married man, and both his wife and himself should be of sound constitution and good bodily health. They should be of a cheerful disposition, "handy" with various kinds of tools and work, ready in resources, and possess good practical common sense. A consecrated Christian physician accustomed to evangelical work would be more useful than an ordained minister without the medical training. Applicants can address me at the United States Bureau of Education, Washington, D. C. They will not be expected to leave home until the spring of 1892. The Point Barrow Mission is under the auspices of the Presbyterian Board of Home Missions.

The second school in the Arctic is at Point Hope, and is under the supervision of the Protestant Episcopal Church. The teacher is Mr. John B. Driggs, M. D. The third is at Cape Prince of Wales, Bering Straits, with Messrs. H. R. Thornton and W.T.Lopp, teachers. It is under the control of the American Missionary Association of the Congregational Church.

In the harbor at Unalaska, in September, 1890, lay at anchor the revenue cutters Bear and Rush. The Bear was soon to return to the northward and cruise around the Seal Islands; the Rush to arrest two men accused of murder, and convey them to the United States district court at Sitka. As the Rush was to call in at the principal villages en route, and would afford ine an opportunity of inspecting the schools at Unga, Kadiak, Afognak, and Southeastern Alaska, Capt. W. C. Coulson kindly invited me to take passage with him. Accordingly on the 6th of September, I removed my quarters from the Bear to the Rush, taking with me the boys William and George Fredericks, and M. Healy Wolff. We were to have sailed at 3 p. m., on the 7 th, but a sontheast gale prevailing outside, the captain concluded to remain at anchor. It was nearly a week before the storin abated and we got started. After getting outside of the harbor the fog shut down so thick that the ship ran into the harbor of Akatan. This is a small rillage of 87 souls, 34 of whom are children, and greatly in need of a school. They live in the barabaras, or native sod houses. The Alaska Commercial Company hare a small store at the place. The people are exceedingly poor; their whole catch for the pastsummer was 19 sea otters. This represents the moneyed support of the whole village for 12 months. In addition to the clothing and supplies which the otter skins procure them at the store, the bay yields them fish, which is their principal food. The next day we started out, but found the fog so dense that the ship again returned to anchorage. The second attempt was more successful, and we passed from Bering Sea into the North Pacific Ocean. Turning to the eastward, we steamed past the volcano of Shishaldin, its beautiful top covered with snow and its smoking crater alike hid in the clouds. On Sabbath we were abreast of Belkofski, at one time the richest village in Alaska. With the decline of the sea-otter trade its people are much impoverished. The population is about 250 . This is one of the villages where a good school should be established as soon as the annual appropriation will justify it. Our stay at this place was just long enough for the surgeon to go ashore and visit the sick. That night we dropped anchor in Coal Harbor. Monday morning found us at Pirate Cove, a cod-fishing station of Lynd \& Hough, of San Francisco. It was understood that a Mr. Clark, accused of murder, was there waiting to give himself up. Not finding him at that place we passed on to Sand Point, another fishing station, and from thence to Unga, where he was found. At Unga I made a thorough inspection of the school property and school supplies. The school was not in session, but a number of the children were brought together and examined. A meeting of the parents was also called and a general conference had with regard to school matters. Monday evening, with the prisoner and two witnesses on board, we sailed for Kadiak, which we reached early Wednesday morning. In company with Mr. Roscos, the teacher, an inspection was made of the new schoolhouse, and many educational matters discussed and considered. During the forenoon, a pilot having been secured, the captain steamed over to Afognak, in order that I might visit that school also. The school being in session, an opportunity was afforded of seeing the good work done at that village by Mr. Duff, the teacher. A comfortable school building and teacher's residence had been erected during the summer. Returning to Kadiak, the evening was spent with friends. At Kadiak a creole accused of assault with intent to kill was taken on board, to be conveyed to Sitka for trial. His rictim was taken along for medical treatment and as a witness.
Mr. M. L. Washburn, superintendent of the interests of the Alaska Commercial Company, gave me for the collection of the Alaska Society of Natural History an ancient Eskimo stone lamp that had bean dug up on one of the islands. The traditions of the people are that 400 years ago their fathers came from Bering Sea and settled Kadiak Island, which they found uninhabited. The Eskimo settlements of the North Pacific coast extend from Nuchek Island on the east to Mitrofania Island on the west. On the trails between two settlements are frequently found at the highest point two heaps of stones, from 50 to 70 feet apart. These heaps are from 4 to 6 feet high, and were many yearsin building. Their purpose is not known. Every passer-by was expected to add a stone to the heap, but the custom of late years seems to have fallen into disuse.
There is a rery pleasant custom connected with the stone heaps and stone lamp. A couple engaged to be married select a stone suitable for the manufacture of a lamp. This stone, with a flint chisel, is deposited at the foot of one of the stone heaps. Parties carrying loads or traveling from one city or another naturally sit down to rest at the stone heap at the top of the hill. Spying the stone, the trareler says to himself, "My hands may as well work while my feet rest. As some one worked my lamp, I will work for some one else." And picking up the flint, with a song, he chisels away at the stone. When he is rested,
he lays down the stone and chisel and goes on his way. The next traveler repeats the operation, and the next, and the next, until in about two years the lamp is done which will last hundreds of years. Thus the whole community shows its good will to the young couple. In these lamps they burn seal oill, witis a cotton wick. If the cotton can not be procured, then the wick is a bit of moss. In former days, as soon as one lamp was finished and removed, another stone was placed there, so that one was always in process of making. These lamps furnish both light and heat.

Early Thursday morning, September 17, the captain weighed anchor and put out to sea, bound for Sitka. During the day the wind increased to a gale, and orf Friday night the sea was so rough that the ship was hove to, and cil was strained over the bows into the sea to lessen the force of the waves. Nearly the entire trip of a week across to Sitka was in the face of a heavy equinoctial storm. It was so rough that several times the table could not be set in the captain's cabin, and we took our meals in our hands in the pilot house as best we could. Off Mount Edgecombe, the ship was again compelled to heave to. However, we finally reashed the quiet harbor of Sitka on Thursday, September 25 , and the rough part of our journey was over. The remainder of our journey was made in the smooth waters of the Alexandrian Archipelago.
I remained two weeks at Sitka, attending to school matters. Then being joined there by the Hon. James Sheakley, superintendent of schools in the Sitka district, we made a tour of inspection through southeastern Alaska, visiting, either separately or together, every school in that district, except those at Metlakahtla and Klawack.

At Chilkat a location was selected and arrangements completed for the erection of a cheap but substantial log schoolhouse. On November 11 I reached Washington, after an absence of seven months, having traveled 17,825 miles.
The success of the long trip was greatly promoted by the many facilities that were extended by Capt. Michael A. Healy, of the steamer Bear, and Capt. W. C. Coulson, of the steamer Rush, with whom I sailed, also of the several officers of their command.

NEW OFFICERS.

In accordance with the provisions of the rules approved by the Secretary of the Interior April 9, 1890, the following persons have been appointed to commence service on July 1, 1890 :

The members of the school committees will continue in office until June 30 of the year set against their names.
Assistant agent, William Hamilton ; superintendent for Sitka district, Hon. James Sheakley.

LOCAL SCHOOL COMMITTEES.

Sitka.-Edward De Groff, 1892: N. K.Peckinpaugh, 1893; John C. Brady, 1894.
Junzau.-Karl-Koehler, 1892 ; John G. Heid, 1893 ; Eugene S. Willard, 1894.
Douglas.-P. H. Fox, 1892; G. E. Shotter, 1893; S. R. Moon, 1894.
Fort Wrangel.-William G. Thomas, 1892; William Millmore, 1893 ; Allan Mackay, 1894.
Jackson.-James W. Young, 1892; W. Donald McLeod, 1893; G. Loomis Gould, 1894.
Metlakahtla.—David J. Leask, 1892 ; Dr. W. Bluett, 1893; William Duncan, 1894.

Kadiak.-Nicolai Kashavaroff, 1892 ; Henry Bowen, 1893: Charles Brown, 1894.
Unga.-Nehemiah Guttridge, 1892; John Caton, 1893; Edward Cashel, 1894.
Unclaska.-N. S. Reesoff, 1892 ; Nat. B. Anthony, 1893 ; Rudolph Neumann, 1894.

VISITORS.

Of late years tourists have commenced to learn of the attractiveness of the trip from Puget Sound to southeastern Alaska, and increasing numbers from year to year are availing themselves of it. This season over 5,000 round-trip tickets have been sold. As the steamer fare from Puget Sound up and return is $\$ 100$, only the wealthier and better classes make the trip.

It is a cause for regret that the tourist season occurs during the vacation of the schools. If the tourists could see the schools in actual operation it would greatly assist in creating a healthy public sentiment that would react in faror of larger appropriations by Congress. As it is, the industrial school at Sitka, which is in continuous operation, is the only one visited. This, however, shows what can be done, and is an object lesson that will not be forgotten by tourists.

One of them, after describing her visit to the homes of the natives and the sickening filth and squalor which she witnessed in Alaska, writes:

And now, quite by accident, I had the most interesting experience of my whole trip, certainly one that has made an everlasting impression on my mind; an object lesson which often and often will set me thinking, a subject which would require a volume to do it approximate justice. The joyous shouting of half a hundred boys, some of them dashing across the road in pursuit of a football; well-clothed, well-fed boys; healthy, vigorous, intelligent boys; Indians, half-breeßs, Muscorites, and a few Americans. What did it mean? From whence had they so suddenly come? From school. These were the beneficiaries of the Presbyterian Board of Home Missions, and the large building on the right of the road is the schoolhouse.
"Of course I had read about this mission. All the books on Alaska refer to it more or less. Yet the knowledge of its existence had brought no special desire to risit the place. To me Sitka was the restige of a departed empire; the home of a decaying race of aborigines; a depot for the sale of Russi-Indian relics and curios; a pretty little town timidly hiding away in among the mountains, and for that I had come to sea it and had been amply repaid. But the mission I had never thought of. Perhaps the book-writer had failed to attract me to it; perhaps my faith in missions generally was not very confirmed; perhaps I did not beliere what I read about them. Be that as it may, hereafter no man, nor woman either, shall outdo me in words of praise and thanks for the glorious, godlike work which is being performed by the good people who are rescuing the lives, the bodies, and the souls of these poor creatures from the physical and moral deaths they are dying. I am not a Christian woman; my faith is that of a chosen people who were led out of Egyptian tyranny and darkness by the pillar of fire and the pillar of cloud; but my whole nature is in accord with these Christian men and women, whose immolation and sacrifices to regenerate their fellow-creatures will surely meet with hearenly reward, no matter what their creed. I wish I had had more time at my disposal to spend with the teachers and the scholars, so that I might now give eren a skeleton outline of their daily life.
\because There are about 100 boys and 50 girls in the institution, some of them being only 3 years of age and others as old as 22 . The boys are instructed in carpentry, shoemaking, and blacksmithing; the girls are taught dressmaking and the use of the sewing machine. I went first into one of the class rooms, where I saw perhaps 20 dark-skinned Siwash Indian boys, whose Mongolian faces and almondshaped eyes had assumed an expression of intelligence so different from the stupid, blear-eyed appearance of the same age and race whom I had seen in the rancherie that it was difficult to realize that they could possibly be twigs of the same tree. Upstairs we found the dormitories, like ererything else about the establishment, orderly, neat, clean, due regard being paid to the number allotted to each room and to the subject of heating and ventilation. In the sewing department were several girls operating skillfully upon the sewing machine, others cutting from the piece, and younger ones basting for the sewing girls.
"It is said somewhere that it is only a single step from civilization to barbarism. Perhaps so; but I, and those ladies and gentlemen who accompanied me through the rancherie and the schools at Sitka, can vouch for the fact that it is only half a mile from savage, uncivilized ignorance, superstitution, filth, and immorality to education, deportment, thrift, domestic felicity, and all human happiness."

NEW BOOKS.

The growth of the public interest in Alaska is manifested by the number of books which are issuing from the press.
Since the list given in my report for June 30, 1888, the following books hare come under my observation:
"Fifth Avenue to Alaska," by Edwards Pierrepont, B. A. Published by G. P. Putnam‘s Sons. New York, 1884. Maps and illustrations. 329 pages. Price, 81.75.
"Letters from Alaska," by Horace Briggs, PH. D. Published by Mrs. Dora B. North. 51 Park Place, Buffalo, N. Y., 1889. 87 pages. Paper cover. Price, $\$ 1$.
"Cruise of the Rush, 1889," by Isabel S. Shepard. Published by The BancroftCompany, San Francisco, 1889. Maps and illustrations. 257 pages. Price, \$1.50.
"Picturesque Alaska," by Abby Johnson Woodman. Introduction by Whittier. Published by Houghton, Mifflin \& Co., Boston. Maps and illustrations. 212 pages. Price, $\$ 1.50$.
"New Eldorado," by Mr. M. Ballou. Published by Houghton, Mifflin \& Co., Boston, 1889. Price, $\$ 1.50$.
"The Wonders of Alaska," by Alexander Badlam. Published by the Bancroft Publishing Company, San Francisco, 1890. Maps and illustrations. 151 pages. Price, $\$ 1.50$.
"Pacific Coast Scenic Tour," by Henry T. Finck. Maps and illustrations. Published by Charles Scribner's Sons, New York, 1890. 309 pages.
"A Woman's Trip to Alaska," by Mrs. Septima M. Collis. Published by The Cassel Publishing Company, New York, 1890. Maps and illustrations. Heavy paper. 194 pages. Price, $\$ 2.50$.
"Arctic Alaska and Siberia," by Herbert L. Aldrich. Maps and illustrations. Published by Rand, McNally \& Co., Chicago, 1889. 234 pages. Price. $\$ 1.50$.
"Thirteen Years of Travel and Exploration in Alaska," by W. H. Pierce. Published by J. H. Carruth, No. 1312 Ohio street, Lawrence, Kans., 1890. 224 pages. Illustrated. Paper, 60 cents. Cloth, $\$ 1$.
"From Yellowstone Park to Alaska," by Francis C. Sessions, president of the Ohio Historical and Archæological Society. Published by Welch, Fracker \& Co., New York, 1890. 186 pages. Price $\$ 1.50$.
"Reconnoisance in Alaska, 1885," by Lieut. Henry T. Allen, U. S. A. Maps and illustrations. 172 pages. Government Printing Office, Washington, 1877.
"Contributions to Natural History of Alaska," by L. M. Turner. 1866. 226 pages. Illustrated. Government Printing Office. Washington, 1886.
"Report on Natural History Collections made in Alaska, 1877-'81," by E. W. Nelson. Illustrated. 337 pages. Government Printing Office. Washington, 1887.
"Fur Seal and other Fisheries of Alaska." Maps and illustrations. 324 pages. Government Printing Office. Washington, 1889.
"The Coast Indians of Southern Alaska," by Ensign Albert P. Niblack, U. S. Navy. Maps and illustrations. 158 pages. Published by the Smithsonian Institution, National Museum. Government Printing Office. Washington, 1890.
"Cruise of the Revenue Marine Steamer Corwin in the Arctic Ocean, 1884." Maps and illustrations. 128 pages. Government Printing Office. Washington, 1889.
"Cruise of the Revenue Marine Steamer Corwin in the Arctic Ocean, 1885." Maps and illustrations. 202 pages. Government Printing Office. Washington, 1887.
"Bean"s Report on the Salmon Fisheries of Alaska." Maps and illustrations. Government Printing Office. Washington, 1890.

From Yellowstone Park to Alaska, by Francis C. Sessions. 8vo. 196 pages. Illustrated. Published by Welch, Fracker \& Co. New York, 1890.
"California and Alaska," by William S. Webb, M. D. Quarto, 190 pages. Vellum paper. Illustrations, India proof etchings, and photogravures. Price, \$25; popular edition of the same, $\$ 2.50$. Published by G. P. Putnam's Sons. New York. 1891.
"Alaskana. The Legends of Alaska," in verse, by Prof. Bushrod W. James. Iliustrated. 368 pages. Published by Porter \& Coates. Philadelphia, 1892. Price, $\$ 2$.
"Kin-da-Shon's Wife. A Story of Native Customs Among the Chilkats of Alaska," by Mrs. Eugene S. Willard. Illustrated. 281 pages. Published by Fleming H. Revell. New York and Chicago.

Recommendations.

The three most urgent needs of education in Alaska at present are:

FIRST-LARGER APPROPRIATIONS.

Fifty thousand dollars is a sum wholly inadequate for the establishing and maintaining of good schools for the 10,000 children of Alaska. The utmost care is taken to make it go as far as possible, and yet a number of communities are asking for schools, which can not be granted because of the insufficiency of the appropriation. I would most respectfully recommend that an appropriation of $\$ 75,000$ be asked for the coming year.

The efficiency of the school service would be greatly increased if a permanent appropriation could be made for a term of five years, which would increase in regular amounts up to $\$ 100,000$. This would enable the Bureau of Education to keep pace with the steady growth of the work. It would also enable the Commissioner of Education to more wisely plan his work.

The appropriation for education in Alaska is placed in the sundry civil bill. Every alternate year during the long session of Congress this bill is nutenacted into law before July, August, or September. But the last vessel for the year that communicates with the teachers in northwestern Alaska leaves San Francisco about the 1st of June. Consequently the Commissioner of Education can not appoint teachers for thatsection until ten or twelve months of the school year have expired. Or, in other words, the teachers are compelled to teach the entire school year without knowing whether any appropriation has bien made to pay them. This is an injustice to the Commissioner of Education and to the teachers.

SECOND-OBLIGATORY ATTENDANCE.

There is no one subject connected with the Alaska schools that teachers, superintendents, committeemen, and citizens are more united upon than that the highest interests of the ehildren and the schools require that there should be some authoritative regulations that will secure the more regular attendance of the native children. Attention has been called to this in every annual report.
Mr. John H. Keatley, ex-judge of the United States district court of Alaska and ex-member of the Territorial board of education for Alaska, in an article in the Atlantic Monthly for August, 1890, on "The Race Problem in Alaska," says:
"The natives of Alaska realize that everything is changing about them, and are anxious to pattern after the whites in hetter dwellings, more comfortable clothing, and a greater diversity of food, but they fail to realize jet the importance of education. The adults are serious obstacles to the education of the children, and no radical change is possible until attendance at the Government schools is compulsory. It is not enough to provide schools and teachers at the public expense, but Congress must go further and authorize the employment of Indian policemen at every village to compel the attendance of the children.
"Some of the native schools have an enrollment of 60 pupils, ${ }^{1}$ with an average daily attendance of 10 . This is due to the total lack of means of enforcing attendance. The race problem presented in the subject of their education and possible participation in the political affairs of the country is of too serious a character to be thus ignored by those who are now responsible for their future development."

THIRD-AGRICULTCRAL EXPERIMENT STATION.

Passing from northern Alaska. with its adaptation to reindeer-raising, we find the whole southern coast, stretching for thousands of miles, to possess a temperate climate. This is due to the "Kuro-siwo" or !"Japan Current" of the Pacific Ocean. In this "temperate belt" it is probable that there are areas of greater or less extent that are adapted to agriculture. At least it is known that there are small farms or regetable gardens on Kadiak and Afognak Islands, on the shores of Cook's Inlet, and in southeastern Alaska. It is also known that wild berries grow in great profusion and abundance in many sections. But no intelligent and continued experiments have been made to test the agricultural and horticultural capabilities of the country.

Until a quite recent period (1867) the European population were fur-trading Russians. They were followed by fur-trading Americans, and more recently by the gold-szekers. No one expected to remain long in the country, and there has been no incentive to carry forward intelligent experiments in agriculture.

As early as my first report to the Commissioner of Education (1885) I called attention to the fact that there was a very wide diversity of views concerning the agricultural and horticultural capabilities of Alaska, and necessarily very great ignorance; that no systematic effort intelligently prosecuted had ever been made to ascertain what could or what could not be raised to adrantage; that it was of very great importance, both to the people of Alaska and the country at large, that careful experiments should be made, extending over a term of years, to ascertain the regetables, grains, grasses, berries, apples, plums, trees, flowers, etc., best adapted to the country; the best methods of cultivating, gathering, and curing the same; the planting and grafting of fruit trees; the development of the wild cranberry ; cattle, hog, and poultry raising; butter and cheese-making, etc. In 1886 my recommendation was taken up by the U.S. Commissioner of Agriculture, who, in his annual report for that year (page 20) says: "Something in the line of experimental work might also be undertaken

[^72]in Alaska, possibly with profit. It is well known that the Department of the Interior has established an agency for the promotion of education in that territory."
"It has been suggested that a line of experiments, to be undertaken by this Department, would easily prove whatever of agricultural and horticultural capability may exist in the Territory. No careful attention seems to have been given there, as yet, to this branch of industry, and the resources of the country are quite unknown and undeveloped.
"The industrial training school at Sitka would furnish an admirable basis for a station, where could be conducted careful experiments to ascertain the agricultural products best adapted to the climate and soil of the Territory, and what breeds of cattle and other domestic animals are most suited to its climate and soil.
"Such an experiment ought to extend over a series of years, and the result would amply repay any expenditure that Congress may choose to make in this direction."

In view, therefore, of the national importance of introducing the domesticated reindeer of Siberia into northern Alaska, and testing the agricultural capacity of southern Alaska, I most earnestly recommend that you secure the establishment of an "agricultural school and experiment station" in connection with the system of industrial education in Alaska.

By an act approved July 2, 1862, Congress made provision for schools for the "benefit of agriculture and the mechanic arts." By an act approved March 2, 1887, provision was made for "agricultural experiment stations" in connection with the agricultural schools. And by the act approved August 30, 1890, certain of the proceeds of the sale of public lands were set aside for the better support of these agricultural schools.

These acts of Congress require the assent of the legislature of the State or Territory in order that their provisions may become available.
But Alaska has no legislature, and is governed directly by Congress. On this account, and partly because nineteen-twentieths of the children to be benefited belong to the native races, Congress has committed to the Secretary of the Interior the duty of making "needful and proper provision for education in Alaska."
would therefore recommend that an application be made to Congress to direct Ihe Secretary of the Interior to extend to Alaska the benefits of the agricultural tacts of 1887 and 1890, and secure the establishment of a school that can introduce reindeer into that region, and teach their management, care, and propagation, and also to conduct a series of experiments to determine the agricultural capabilities of the country.

To reclaim and make valuable vast areas of land otherwise worthless; to introduce large, permanent, and wealth-producing industries where none previously existed; to take a barbarian people on the verge of starcation and lift them up to a comfortable self-support and civilization, is certainly a work of national importance.

In the closing year of the existence of the Territorial board of education the fullowing rules were enacted, viz:
First. From and after this date (October 27,1888), corporal punishment in the public schools of Alaska is entirely and wholly prohibited.
Second. All religious services are prohibited in all the public schools of Alaska exceptHowkan Klawack, Metlakahtla, Fort Wrangell, Juneau No. 2, and Haines.

The above rules were carried by the deciding vote of the chairman. If Mr. Duncan, the absent member of the board had been present, they could not have been passed.
With the reorganization of the Alaska school system on April 9, 1890, the above rules were rescinded, and both school punishments and religious exercises left discretionary with the teacher and the local school committee.

To still further popularize the schools and create in the several communities a feeling of responsibility for the conduct of the schools and a personal interest in their success, I would recommend that in the villages containing a number of white people, such asJuneau, Sitka, and Douglas, the voters be allowed to elect their local school committee. and said committee be authorized to select teachers of the white schools, subject to the approval of the Commissioner of Education.

I remain with great respect, yours, truly,
Hon. W. T. Harris, LL. D.,
Commissioner of Education.

CHAPTER XVIII.

EDUCATIONAL NECROLOGY. ${ }^{1}$

1887.

Eliot, W. G., D. D., at Pass Christian, Miss., January 23, aged seventy-five; was born in Massachusetts, descended from the same family as President C. W. Eliot of Harvard; graduated atColumbian University, Washington, D. C., and at Harvard Divinity School ; during hislong pastorate of the Unitarian Church in St. Louis, he was one of the most effective promoters of the social, intellectual. and moral uplift of his city and State. He was specially active in establishing Washington University, and finally became its chancellor.
1888.

Callahan, Henry, died at Franklin, N. Y., February 7, aged seventy-seven; born in Andover, Mass., graduated at Union College 1836; studied at Andover Theological Seminary 1836-40, taught in New Hampshire, pastor in New York, and became chaplain of the One hundred and fourteenth New York Volunteers, and was on duty in hospital in New Orleans; taught two years in Delaware Institute, Franklin, N. Y., conducted Callahan Institute there for fourteen years.
Wadleigh, Miss Lydia F., October 27, in Brookiyn, N. Y., aged seventy-one. She was born in Sutton, N. H., educated and taught at New Hampton, Hanover, Derry, Concord, Georgetown, D. C., Philadelphia, Pa., and Freehold, N. J.; in 1856 kecame principal of the senior department of the Girls' Twelfth Street Grammar School, New York City; here she advanced the course, won the girls to larger study, at her own expense provided text-books and diplomas, and in spite of criticism inaugurated annual commencements, prepared the public to demand and establish the Normal College, of which she became vicepresident and professor of ethics in 1871, and so remained until her death, which occurred on her return from a visit to Europe.
1859.

Abвотt, Amos, M. D., in England April 24, aged seventy-eight; born in New Hampshire: educated at Phillips Andover and Andover Theological Seminary, and in medicine in Philadelphia; missionary in India, 1834-47 and 1857-69; author of mission text-books; his arithmetics have been used forty years.
Brace, Chas. Loring, in Germany, August 17, aged sixty-three; was born in Connecticut; graduated at Yale in 1816; studied theology there and at Union Theological Seminary; he went to Europa for study and observation; while in Hungary he was arrested for expressions of sympathy with the Patriot cause, and was only released on appeal of the American minister and the arrival at Trieste of two American frigates; returning, became interested in an effort to reduce the misery at Five Points, New York City, but declared it as he saw it a Sisyphus' work' began to form the plans which resulted in the Children's Aid Society in 1853 , in which he sought to arrest degradation at its source in

[^73]childhood. Some of the wisest philanthropists joined him, and"he found his life work. Boys and girls in need were taken in, and an effort made to elevate them. Lodging houses, newsboys' homes, night schools, free reading rooms, fresh air fund, and summer resorts were established. In his last report it appears that over $200,000 \mathrm{had}$ been received at the lodging houses, over 70,000 had been transplanted to country homes, and not a few had risen to places of responsibility. The expenditure for that year reached \$366,998.26. He was a correspondent of this Bureau and the Commissioner appealed to him to plant similar organizations in all of our large cities, but he did not see his way to the undertaking.
Brighans, Miss Mary A., in a railroad ascident at New Haven, June 29, aged fifty-nine years; born in Massachusetts; graduated and taught at Mount Holyoke Seminary; was principal of Ingham University, Leroy, N. Y., in 1863 ; assistant principal of Brooklyn Heights Seminary: was offered the presidency of Wellesley, but accepted that of Mount Holyoke, whose charter as a college she had been active in securing.
Burnham, Jonas, March 9, aged ninety years; born in Maine; educated at Phillips Andover, and Bowdoin College, 1823; teacher of academies at Saco, North Bridgton, Bath, China, Bridgton, Kennebunk, Hallowell, Augusta, Winthrop, Strong, and Farmington, Me.
Canfield, Mrs. S. A. Martha, May 11, at Bristol, R. I. Her husband, a lieu-tenant-colonel, fell at Shiloh, and she devoted herself to the relief of the sick and wounded soldiers. She founded the colored orphan asylum at Memphis, Tenn. On the suggestion of President Grant she became a clerk in the Bureau of Education in 1873 and so remained until she resigned in 1885, giving special attention to child-saving institutions and the industrial education of girls.
Cookr, George, in Florida, March 10, aged seventy-eight; born in New Hampshire; graduated at Dartmouth, 1832; studied theology at Andover; president University of Tennessee at Knoxville, 1852-59; teacher at Amherst, 1859-63.
Fairchild, Edward H., in Berea, Ky., October 2, aged seventy-three; born in Massachusetts; graduated at Oberlin; principal of preparatory department, Oberlin, 1853-69; president of Berea College, Kentucky, from 1869 till his death ; was a brother of President Fairchild of Oberlin and of President Fairchild of Manhattan College, Kansas.
Gage, William L., May 31, aged fifty-seven; born in New Hampshire; educated at Phillips Andover Academy and at Harvard (1833) and abroad ; lectured before Lowell Institute ; editor of Ritter's Geographical Studies, Ritter's Life, Ritter's Lectures on Geography, and a Historical Atlas, also of relief maps ; author of some twenty other publications.
Hall, J. D., February 16, aged seventy ; was born in Connecticut: graduated at Yale 1837, and in theology in 1842; was teacher at Hartford, Conn., 1859-64; principal of the Murray Hill Institute, New York City, 186t-81; teacher at West Hartford, Conn., 1881-81.
Higbee, Elnathan Elisha, D. D., LL. D., December 13, aged fifty-nine; born in Vermont; graduated at University of Vermont; taught in Woodstock Academy, Vermont, in 1849 ; accepted position of teacher in Emmetsburg, Md.; graduated at Reformed Theological Seminary, Mercersburg, Pa.; was one year teacher of mathematics in the high school, Lancaster, Pa.; was professor of Latin and Greek in Heidelberg College, at Tiffin, Ohio; in $186 \pm$ accepted the professorship of Church History and New Testament Exegesis in Mercersburg Theological Seminary; 1871-90 was president of Mercersburg College, which be had been instrumental in founding; in 1881 he became State superintendent of public schools for Pennsylvania, and so remained until his death.
Hosford, H. B., February 27, in Illinois, aged seventy-one; born in Williamstown, Mass.; graduated at Williams, 1843; principal Hopkins Academy, Hadley, Mass., 1843-44; tutor at Williams College, 1844-48; professor Western Reserve College, 1854-60.
Kendrick, John, Ll. D., at Marietta, Ohio. July 29, aged eighty-six ; born in Lebanon, N. H.; graduated at Dartmouth in 1826, first in a class of which Chief Justice S. P. Chase was a member; professor at Kenyon, intellectual and moral philosophy, rhetoric, logic and history, also of Greek language and
literature, 1820-40; professor at Marietta College, 1840 , rhetoric and political economy, Latin and Greek languages, and emeritus until his death: his brother, Col. Kendrick, was professor at West Point; his son is bishop of New Mexico and Arizona.
Lossing, Benson J., at Chestnut Ridge, N. Y., June 3, aged seventy-six; from watchmaker he became editor ; he made himself proficient with the pencil and was one of the first wood engravers in America; was specially known for his illustrated historical writings.
Loonis, Elias, LL. D., died at New Haren, Conn., August 15, aged seventy-eight: born in Connecticut: graduated at Yale 1830; teacher in Maryland and student at Andover Theological Seminary, 1830-33: tutor at Yale, 1833-36; professor Western Reserre College and student abroad, 1836-41: profe:sor University of the City of New York, 1844-48, 1849-60; professor Princeton, 1818-49; professor at Yale 1860 until death.
Mitchell. Miss Maria, Ll. D., at Lynn, Mass., June 28, aged serenty-one; born in Nantucket, Mass.; was daughter of William Mitchell; acquired her education under her father, who was an astronomer, and became an assistant in the school of Chas. Pierce, Nantucket; received a gold medal from the King of Denmariz and one in copper from the Republic of San Marino, Italy, for the discovery of a comet (1847); was employed on the Nautical Almanac for many years : in 1865 was called to the professorship of astronomy in Vassar College; was the first woman elected to the American Academy of Arts and Scierces.
Morley, L. B. at Pittsfield, Mass., aged eightr-five : was principal of Winsted A cademy 1829-31, and of Springfield High School 183t-36. Prof. EJward W. Morley, of Western Reserve College, is his son.
Patton, William Weston, D. D., LL. D., December 31, at Winsted, N. Y., aged sixty-aight: was born in New York City; graduated at University of New York 1839, and Union Theological Seminary 1842: and became editor of the Advance 1867-72; western secretary of A.M. A. 1873-i4; lecturer Chicago and Oberlin theological seminaries 1874-77; president of Howard University 1877-89; was pastor in Connecticut, Massachusetts, and Illinois; his separate publications number thirty-seren.
Perry, S. Joseph, S. J., F. R. S., December -, a distinguished astronomer.
Pettibone, Ira, June 11. Winchester, Conn., aged eighty-seren; graduated at Niddlebury College 1828; teacher at Utica, N. Y., 184-46, and at Cornwall, Conn., 1853-57.
Robbins. Elijah, June 30, aged sixty-one ; born in Connecticut; graduated at Yale 1856, and at Hartford Theological Seminary in 1859; Missionary A. B. C. F. M. among the Zulus, teacher of Umzumbi school till 1872, when he returned to America and was principal of school at Adams from 1874 until his death.
SHAW, Henry, St. Louis, August 25, aged eighty-nine; born in England, received his primary education at Thorne; spent six years at Mill Hill, a dissenting school 20 miles from London. He was noted for his readiness in mathematics; came to Canada with his father in 1818; landed at St. Louis May 3, 1819, with a small stock of cutlery; he accumulated wealth rapidiy and early retired from active business. In 1851 he attended the World's Fair in Lonãon, and while walking through the grounds of Chatsworth, the most magnificent privats residence in Europe, he exclaimed, "Why can not I hare a garden, too." From that on his ideas took shape, and St . Louis has the result in the Shaw botanical garden, richly endowed, and the Shaw school of botany, with an annual income of $\$ 5,000$ from improred real estate. To the preparation and completion of these plans he devoted the last forty years of his life.
Southworth. Alden, February 7, in Connecticut; was born in Vermont; graduated at Dartmouth 1840, at Bangor Theological Seminary 1843; was teacher at Woodstock, Conn., 1845-46, at Nicholas Academy, Dudley, Mrass., 1846-49 and 1853-54, and in California 1849-53.
Stebbins, M. C., September 12, Cornwall, Vt., aged sixty-one: graduated at Amherst, 185.: teacher in New Hampshire, 1851-52; principal of High School, Springfield, Mass., 1865-74; principal Collegiate Institute, $1874-81$: instructor at Middlebury College, $188 \pm$.

Thompson, Wm., D. Do, February 27, aged eighty-three; was born in Connecticut; graduated at Union College 1827, Andover Theological Seminary 1832: was Nettleton professor of Hebrew language and literature in (E. W.) the present Hartford Theological Seminary 1834-81; emeritus and dean of faculty until his death. Pros. Chas. O. Thompson, PH. D., first principal of Institute of Technology at Worcester, Mass., and of Rose Polytechnic Institute at Terre Haute, Ind., was his son.
Vail, W. K., June 18, in Pelham, Mass., aged seventy-four, was born in Massachusetts; graduated at Amherst in 1833; was teacher at Chicopee 1842-46; at Pickering school, Salem, 1849-54; and teacher and chaplain 1854-66; was superintendent of schools at Shutesbury 1867-69; and Pelham 1876-77.
Ward, Joseph, D. D., Decemker 11, aged fifty-one, was born in New York; graduated at Brown University; settled in Yankton 1869 ; was a member of constitutional convention of South Dakota; was founder of Yankton College, and president from 1883 until his death.
Woolsey, Theo. Dwight, D. D., LL. D., July 1, in New Haven, aged eighty-seven; was born in New York City, graduated at Yale 1820; was at Princeton Theological Seminary 1821-23; tutor at Yale 1823-25; student in Europe in 1827-30; president of Yale 1846-71. Thirty-six separate publications are enumerated, among them five Greek text-books, and study of international law which has reached five editions.

1890.

Allen, Dr. J. A., August 15, at Chicago; was born at Middlebury, Vt.; graduated from Middlebury College in 1845, received the degree of M. D. in 1846 ; was president of Rush Medical College and afterward its dean.
Atkinson, George H., D. D., at Portland, Oregon, February 25, aged sixtynine; was born in Massachusetts; graduated at Dartmouth 1843, at Andover Theological Seminary 1846 ; went to Oregon 1848 by sailing vessel via Cape Horn and Hawaiian Islands; pastor at Salem and Portland, and general Congregationalist missionary 1872 for Oregon and Washington until his death; was wise in the establishment of schools and churches; founder of Forest Grove University and Whitman College; was special correspondent of the Bureau of Education; gave it information of Alaska before Dr. Sheldon Jackson's efforts began; by request gave shape to the first gubernatorial message of the governor of the Territory upon education, and also to the educational clause of the constitution of the State.
Atkinson, Wm. P., in Boston; emeritus professor of English and of history, Institute of Technology.
Barrows, Simon, January 12, aged seventy-eight years; graduated at Dartmouth; principal of Des Moines Academy 1862-64; trustee of Gates College and curator of cabinet.
Bishop, Robert H., July 5; professor of Latin at Miami University, Oxford, Ohio, 1852-73; professor emeritus and secretary board of trustees until his death, and trustee Lane Theological Seminary.
Bizzel, W. D., M. D., at Norcross, Ga., June 30, aged forty years; was born in Alabama; graduated from Alabama Medical College; went to Atlanta in 1881, and at the time of his death was professor in the Atlanta Medical College.
Burleigh, Dr. Joseph, in almshouse, Baltimore, December 23. He was known as the founder of the Newton University, Baltimore.
Butler, Calvin, June11, aged eighty years; graduated Dartmouth College 1834, and at Andover Theological Seminary 1837; was principal of Washington Academy, Salem, 1848-51; principal of the academy at New Saltz 1848-51; principal of Young Ladies' Seminary, Somerville, N. J., 18ã1-62; of Somerset Classical Institute 1863-64.
Collier, RobertLaird, Unitarian divine, author and lecturer, July 27, age fifty-- three.

Cowles, J. P., Ipswick, Mass., March 11, aged eighty-five years; was born in Colebrook, Conn.; graduated from Yale 1826, and Andover Theological Seminary 1829; was professor of language and literature of the Old Testament at Oberlin 1836-39; principal of Elyria Academy 1840-44; principal of Young Ladies' Seminary, Ipswich, Mass., 1844-74.

Cummings, Francis J., M. A., S. J., in Brooklyn, August 6, aged thirty-two; was principal of schools 1871. He had previously served as professor in Loyola College, Baltimore ; also at St. Marys Institute, Amsterdam, N. Y., and Seton Hall College, Orange, N. J.
Cummings, Joseph, D.D., LL. D., at Evanston, Ill., May 7, 1890 ; aged seventy-three; was graduated from the Wesleyan University, Connecticut; was president successively of Genesee College, New York, of Wesleyan University, Middletown, Conn., and of the Northwestern University, 1881, Evanston, Ill., which place he held at the time of his death.
Day, Henry Noble, LL. D., at New Haven, Conn., January 12; aged eighty-one years; was born in Washington, Conn., graduated from Yale College 1828, and from the theological school in 1834; was teacher at New Burlington, N. J., 1828-30; was tutor at Yale 1831-34; professor of rhetoric, Western Reserve College 1840-44, professor of practical theology 1844-58; was president of Ohio Female College, Cincinnati, 1858-64; was the author of a number of text-books and treatises on educational subjects.
Dwinell, Israel Edson, D. D., at Oakland, Cal., June 7, aged sixty-nine years; was born at Calais, Vt.; graduated at Vermont University 1843, from the Union Theological Seminary 1848; was professor of Homiletic and Pastoral Theology and New Testament Greek at Pacific Theological Seminary, Oakland. He published a few books.
Fanning, John H., in New York City, June 26, aged sixty-nine; was the oldest public school official in the city. In 1847 he was made principal of Madison street school, and in 1852 assistant principal of Female Normal School; in 1869, assistant superintendent public instruction, which place he held until his death.
Folsom, N. S., D. D., in Asheville, N. C., November 10, aged eighty-four years; was born in Portsmouth, N. H.; graduated at Dartmouth College 1828 and Andover Theological Seminary in 1831 ; was professor of language Lane Seminary 1833; professor of Biblical literature in Western Reserve College 1834-36; editor of Christian Register 1847-49; professor of Biblical literature in Theological Seminary, Meadville, Pa., 1849-61.
Goodwin, Miss Abby Moore, at Poughkeepsie, N. Y., April 24. For seventeen years she was instructor in Vassar.
Goodwin, Daniel R., ex-provost University of Pennsylvania, March 15, aged seventy-nine.
Hastings, Eurotas Parmelee, D. D., in Ceylon July 31, aged sixty-nine years. Born in New York; graduated at Hamilton College, 1842, and Union Theological Seminary, 1846 ; was president of Jaffina College, Ceylon.
Hedge, Frederick Henry, D. D., LL. D., Augusí 21, aged eighty-four years; was born in Cambridge, Mass.; studied in Germany; graduated at Harvard and Cambridge Divinity School; in 1857 was made professor of ecclesiastical history in Harvard and in 1872 professor of the German language. Besides magazine contributions and German translations he wrote Reason in Religion and The Primeval World of Hebrew Tradition.
Hill, Franklin C., D. L., PH. D., at Princeton, N. J., November 4, aged sixty-three years; a noted scientist and scholar. He was a nephew of ex-President Hill of Harvard, and graduated from Harvard school of science; was professor in Antioch College, Ohio, and curator of the Princeton museum, where he remained until his death.
Hobart, Leander Smith, at Springfield, Mass., March 8, aged seventy-five years. Member of Board of Visitors, Michigan University.
Hoyt, James S., D. D., at Keokuk, Iowa, March 6, aged fifty-nine years ; graduated at Yale, 1851, and at Andover Theological Seminary, 1858. Principal of Academy at Niagara Falls, N. Y., 1851-53; trustee and treasurer of Olivet College; trustee Iowa College: visitor Chicago Theological Seminary.
Howard, Virgil Maro, at Deerfield, Mass., September 30, aged fifty-seven; was born in Ware, Mass.; graduated Yale 1851 ; taught in New Salem and Barre Academies; for fifteen years principal of Academy, Deerfield ; superintendent of schools, Athol ; was called to Deerfield to settle estate of Mrs. Esther Dickinson, who bequeathed a large sum ior founding a school.

Kiddle, Henry, September, aged sixty-seren years: was born in England; was principal of several normal schools at different times; from 1856 to $18 \% 0$ was deputy superintendent of city schools, and in 1870 was made superintendent: in 1879 heresigned, owing to an adverse public sentimentcreated by the arowal of his belief in Spiritualism; in 1877, with Alex Schem, he edited the Cyclopedia of Education.
Lamb, Edward, at Waterville, N. Y., August19; aged sixty-seven ; was teacher in the Cherry Valley High School, and served on the board of education for some years.
Lambert, William H., PH. D., at Fail River, Mass., November 4 ; born in Maine; graduated at Waterville College, now Colby University, in 1874 ; was made principal of Fall River High School in 1879; was superintendent of schools at Malden, Mass.; in 1885 returned to his former position in Fall River.
Lane, Daniel, D. D., at Freeport, Me., April 3; aged seventy-seven; was born in Maine; graduated at Bowdoin College and Andover Theological Seminary; principal of preparatory department Iowa College 1853-55; professor of moral philosophy and metaphysics there in 1855-58: financial agent for Iowa College in 1872-78.
Leigh, Dr. Edwin, in Texas, April 9, aged seventy-three years; was born in Maine; graduated at Bowdoin in 1835 and at Andover Theological Seminary in 1838. Ill health preven ted his preaching, and he studied and received M. D. at Harvard; assisted Louis Agassiz two years; was seven years connected with the St. Louis public schools, during which he issued his "Prononucing Orthography," a phonetic system to improre primary instruction in reading, and to facilitate the acquisition of English by foreigners, to which he devoted the remairder of his life, and which was heartily commendeả by Dr. W. T. Harris and Dr. J.D. Philbrick and Hon. J. O. Wilson. For this purpose he prepared editions of elementary text-books. He also published Philosophy of Medical Science, Boylston Prize Essay, and other works. He made an elaborate computation of illiteracy in the United States, as shown by the census, which was printed in the Commissioner's special report by Dr. Barnard, 1870; also in the Annual Report, in which intelligence and illiteracy were presented to the eye in dotted squares as well as figures. This was the first effort among us to treat this subject graphically.
Lipscombe, A. A., D. D., in Athens, Ga., November 25 ; prominent Southern Methodist educator. Prior to the late war he was pastor of the Methodist Church at Montgomery, Ala. After the war he held successfully the positions of chancellor and professor in Vanderbilt University, and was literary editor of Harper's Magazine.
Lyman, Chester S., in New Haven; January 29, aged sarenty-six years; graduated at Yale and the Theological Seminary. Professor of mechanics and physics, Sheffield Scientific School, Yale.
McAfee, John A., D. D., organizer and first president of Park College, died June 12, aged fifty-nine. He was born in Missouri, and was for some time connected with Highland University.
McElroy, John E. R., at Philadelphia, November 26 ; was professor of rhetoric and English at the University of Pennsylvania.
Mangum, Adolphus Williamson, D. D., at Chapel Hill, N. C., May 12, aged fiftysix years; was born in North Carolina; educated at South Lowell Academy, and at Randolph Macon College, Virginia, entered the ministry in 1875; was appointed to the chair of mental and moral science in the University of North Carolina, which he held until his death.
Mather, Prof. Richard H., Ll. D., at Amherst, Mass., April 16, aged fifty-five. He graduated at Amherst in 1857; also studied in Berlin; taught a year in Williston Seminary; became tutor at Amherst in 1859, where he taught Greek thirty-one years, three years as instructor, six as adjunct professor, and twentytwo as professor. He also taught German and became lecturer upon Sculpture. He was a favorite preacher in many pulpits. He was specially efficient in securing funds for the college, and was the chief promoter of the art museum which may fitly be called the Mather collection. His several visits abroad were made specially tributary to the college. Prof, Mather of Williston Seminary is his son.

Monterth, James, in Brooklyn, September 11, aged sixty years; a well-known geographical writer and editor of atlases.
Morison, Nathaniel Holmes, in Baltimore, Md., November. He graduated at Harvard 1839; was prorost of Peabody Institute.
Noble, Edward Wolcott, D. D., at North Cambridge, February 4, aged seventyeight years; graduated at Williams College 1831 and Andover Theological Seminary; teacher at Amoskeag, N. H.
Noyes. Edward Follansbee, LL. D., died Cincinnati, August, 1890; born in New Hampshire; graduated at Dartmouth College 1857; was lawyer, judge, colonel Thirty-ninth Ohio Volunteer Infantry, brigade-general, Governor of Ohio, minister to France, and correspondent of the Bureau of Education.
Pallen, Montrose Anderson, M. D., in New York, October, aged ninety; was born in Vicksburg, Miss.; was medical director in the Confederate army ; served with France in the Franco-Prussian war; in 1874 was appointed to the chair gynecology in the University of the City of New York, where he assisted in forming the post-graduate college, was called in consultation with Sir Morrell Mackenzie to the Emperor Frederick III; he was the first physician to use the ophthalmoscope.
Park, Geo. Shepard, died in Lostant, Ill., June 6, 1890, aged seventy-nine : founder of Park College (18ĩ), Parkville, Mo.
Parmelee, Eliab Hariey, at Baiting Hollow, N. Y., July 30, aged seventy-three years; was at one time superintendent of schools at Killing worth, Conn.
Phelps, Austin, D. D., at Bar Harbor, Me., October 14, aged seventy years; born in West Brookfield, Mass. ; graduated at University of Pennsylvania. 1837; professor of sacred rhetoric, Andover Theological Seminary, 1848-79 and emeritus until his death; published theological and pulpit discourses and miscellaneous works.
Poole, Henry Ward, in the City of Mexico, October ; was scientist and author; was civil engineer by profession; was in Mexico during the Maximilian affair and contributed letters to the Boston Transcript and to various scientific magazines.
Schuyler, Eugene, LL. D., July 18, aged fifty. He was a scholarly writer; in diplomatic service most of the time from 1866 to 1886 , and was a correspondent of this Bureau. He graduated at Yale in 1859, and at Columbia Law School in 1863.

Smith, Henry H., M. D., April 11, aged seventy-five ; was emeritus professor of surgery, University of Pennsylvania.
Sterling, William, supervising school principal, Philadelphia, aged sixty-four, died January 4, 1890.
Stuart, George H., April 11, aged seventy-four. He was merchant philanthropist, president of Christian Commission called by President Grant in the formation of Indian Commission.
TAyLor, Dr. Franklin, April 16, aged sixty-one years; ex-president of Central High School, Philadelphia.
Thoms, Matthew Hueston, at Cincinnati, December 15, aged fifty-four ; was born in Cincinnati: graduated Yale 1862: bequeathed $\$ 75,000$ for the endowment of the William Thoms Professorship, University of Cincinnati.
Waldo, Seth Hardin, died at Geneseo, Ill., October 30, aged eighty-eight; graduated at Amherst 1831, and at Andover Theological Seminary 1834; became preacher, also teacher at Phillips, Andover, 1832-33, Oberlin, 1834-35, Grand River, Ohio, and Bellerue 1812-54.
Welch, P. Bethune, D. D., LL. D., was born in New York; graduated at Union College in 1846, at Auburn Theological Seminary in 1852; was professc r in Union College 1860-76, and in Aukurn Theological Seminary until his death, June 20, 1890, at Fealing Springs, Va., aged sixty-six. He was delegate to religious gatherings at Belfast and Berlin in 1854, and at London in 1888. He was noted as preacher and teacher.
Whittlesey, William, May 10, aged eighty-four years. Graduated at Yale; taught ayoung ladies'school at New Haven; taught also in Mobile, in Claverack, N. Y., and Berlin, Conn.

Wilson, Mrs. Sarah, in New Haven, April, 1890, aged eighty years. Her life was spent in the education of colored people in New Haven.
WIng, Paui, Sandwich, Mass., September 29, aged seventy-nine years. He was a member of the legislature, held a government position in South America, and for thirty years conducted a boarding school in New England.
1891.

Aiken, Edward, m. D., August 14, aged sixty years; was born in New Hampshire; graduated at Dartmouth, at Andover Theological Seminary and at Yale Medical School ; professor of Materia Medica and Therapeutics in the New England Medical College, 1864-67.
BAIRD, John Gunn, died in Connecticut, aged sixty-five; graduated at Yale, 1852 ; preacher, 1857-6̄̃, and assistant secretary Connecticut State Board of Education, 1867-83.
Bancroft, George, Ph. D., D. C. L., doctor juris (Oxford), at Washington D. C., January 17, aged ninety; was born in Worcester, Mass. ; graduated at Harvard; studied at Gottingen, where he received the degree of PH. D.; was tutor at Harvard; with Dr. Coggswell, founded the Round Hill (Mass.) School ; was Secretary of Navy, in which offica he established the Annapolis Naval Academy; is most widely known as one of America's greatest historians. He published a History of the United States, a History of the Formation of the Constitution of the United States. He was minister at various times to England, Russia, and Germany.
Barker, Fordyce, M. D., in New York, May 30, aged seventy-three years; was born in Maine; received his medical degree in Paris, 1841; was professor of obstetrics in Bowdoin Medical College; held a similar position in the New York Medical College, and since 1860 in the Bellevue Hospital College; was a member of several medical and scientific societies; was one of the most eminent physicians of the country and the author of monographs on medical subjects which have been widely translated.
Bennett, Charles Wesley, in Evanston, Ill., April 17, aged sixty-two years. Graduated from Wesleyan University; was principal of Stanstead Seminary, Quebec, and later principal of Genesee Wesleyan Seminary, New York; assistant principal of FortPlain Seminary, New York; superintendent of public schools, Schenectady; principal of Louisville Seminary, New York; in 1871 was appointed professor of history and logic in Syracuse University, and in 1885 professor of historical theology in the Garrett Biblical Institute, Evanston, Ill.
Bill. A. D., at Cambridge, Mass., in November; was for many years principal of Boston Commercial College.
Blackinton, James F., in Winthrop, Mass., January 8, aged seventy-one ; was a graduate of Brown University; submaster of the Lyman School, Boston, 1848-61; in 1865 was elected master of Prescott School, which position he held till his death.
Blanchard, Miss Elizabeth, in Boston, November 29, aged sixty-one ; was born in New Hampshire ; graduated at Mount Holyoke, 1858; was soon appointed an assistant, and remained with the seminary until 1888, excэpt when her teaching was interrupted by sickness; visited Europe twice, onca specially in the interest of the seminary; in 1883 was elected principal, holding the office five years; was president one year, being the last principal and the first president; was related to Dr. Howard Crosby.
Bovard, M. M., D. D., died December 24 ; native of Ind̃iana; graduate of De Pauw University, and was president of South Carolina University.
Burchard, Samuel D., at Saratoga, in September, aged seventy-nine; graduated at Center College, Kentucky; was chancellor of Ingham University, Le Roy, N. Y., 1839-79; was afterward president of Rutgers Female College.

Carter, Samuel P., May 26, rear-admiral, U. S. Navy ; ex-superintendent Annapolis Naval Academy.
Crosby, Howard, D. D., in New York City, March 28, aged sixty-six ; was for eight years professor of Greek in the University of New York: 1859-63 was professor of Greek in Rutgers College; was chancellor for some years of the University
of New York; a prolific writer, and besides magazine contributions, produced "Notes on the New Testament" and a life of Christ: one of the American revisers of the New Testament; an eminent preacher, and a profound scholar.
Curtis, Leonidas Arthur, died Waukegan, Ill., June 19; born, Belvidere, Ill; graduated at Dartmouth, 1884; principal Ironton, Ohio, high school, 1884-85; teacher southern division high school, Chicago, Ill., 1885 until death.
Darling, Henry, D. D., LL. D., at Clinton, N. Y., April 20, aged seventy-seven; was born in Pennsylvania: graduated at Amherst, 1842 ; was elected president of Hamilton College in 1881.
Dennett, Daniel, at Brookharen, Miss., January 5, aged seventy-eight; was born in Maine; was a school teacher both North and South; at one time was chief editor of the New Orleans Picayune, and for the past fifteen years has been its agricultural editor.
Donamdson, Frank, M. D., a noted specialist, and professor in the Maryland University of Medicine.
EADS. John R., A. M., at Ashland, Ky., December 25, aged sixty-one; was born in Kentucky ; was educated at College Hill, Cincinnati ; while pastor at Augusta, Ky., taught natural science and history in Augusta Collegiate Institute; in 1887 opened a school at Ashland, Ky., and soon became medium of donations to Board of Education of Kentucky Conference; founded Ashland Collegiate Institute, of which he was president when he died. He was chaplain of the Fourth Kentucky U. S. Volunteers.
Fessenden, Charles P., at Bangor, Me., November 29; was forty years an instructor in penmanship in the public school.
Fredininck, John, July 31 ; a professor at Bluffton, Ala., and dean of the University of the South.
Furman, James Clement, D. D., in Greenville, S. C., March 3; was educated at Charleston College; in 1843 was made professor in Furman Theological Institute, and when that institution was expanded into a university he became its president; was for several years an editor of the Baptist Courier.
Gale, Ezra White; died at St. John, New Brunswick, March 13; born in New Hampshire May 9, 1824; graduated Dartmouth, 1843; taught South Hampton, N. H., 1843-46; Amesbury and Ipswich, Mass., 1884-88, then in Derby Academy and Malden, Mass.; four years in Erie, Pa. ; United States consul St. John, New Brunswick, 1881-85.
Goodman, Jacob; in Denver, November 22 ; aged thirty-six; was born in Baltimore; graduated Yale, 1876 ; teacher in the Baltimore public schools, and became principal of grammar school, which place he held till his last illness.
Hancock, John. A. m., PH. D., at Columbus, Ohio, June 1, 1891, aged sixty-six; was born in Ohio, near birthplace of Gen. Grant ; educated in district schools; became assistant grammar school principal, Cincinnati, in 1853. Mr. Hancock became principal and so remained till 1864 when, on a large salary, he taught in a business college and edited News and Education; after this, was assistant editor in the house of Sargent, Wilson \& Hinkle; for seven years superintendent public schools, Cincinnati; for a number of years superintendent of schools, Dayton; in 1886, had charge of the Ohio Educational Exhibit, New Orleans Exposition; became superintendent of Chillicothe schools: in 1883 was appointed, and in 1890 by election became commissioner of common schools for the State of Ohio; trustee of McNeely Normal school, and of the Ohio State University, Athens, Ohio; from 1852 was an active member of the Ohio State Teachers' Association and its president in 1859; member of National Educational Association and its president in 1879; was also member of the Council of Education and of the noted Round Table, a man of high moral purpose. an enthusiast and optimist in education, a lover of good literature; his kindheartedness toward everybody always won him friends.
Hand, Daniel. at Guildford, Conn., December 17, aged ninety; was one of the greatest philanthropists of the decade; his gifts and bequest to the American Missionary Society amounted to over a million dollars: the fund is to be held in trust for the education of the colored people of the South.
Hasselguist, T. N., D. D., at Rock Island, Ill., February $\frac{1}{\lambda}$, aged serenty-five; was born in Sweden ; came to America in 1852, and was for thirty years president of Augustana College.

Hill, Thomas, D. D., LI. D., at Waltham, Mass., Novembor 21, aged seventythree; was born in New Brunswick, N. J.; graduated from Harvard 1843, and the Divinity School 1853; in 1859 succeeded Horace Mann as president of Antioch College, Ohio; 1862-68 was president of Harvard; accompanied Louis Agassiz in his South American survey expedition; invented an astronomical instrument, the occultator; edited mathematical text-bcoks; published poems and addresses, and contributed to many periodicals; had great influence in shaping the order of studies for many students, and was a man who thought for others.
Hodge, Caspar Wistar, D. D., in Princeton, N. J., Septennber 27; graduated at Princeton and appointed instructor of Greek in the college; in 1861 accepted the chair of New Testament Greek and Biblical Literature in the Theological Seminary ; in 1879 was appointed professor of New Testament Greek and Exegesis.
Joy, Charles Arad, PH. D., at Stockbridge, Mass., May 28, aged sixty-eight, was born in Ludlow, N. Y.; graduated from Union College 1844, and from the Harvard Law School, 1847 ; studied chemistry abroad, and at Gottingen received his degree of PH. D.; was professor of chemistry in Union College : was professor of chemistry in Columbia, 1857-77; was president of the Lyceum of Natural History, chairman of the Clinic Association of the American Institute, and foreign secretary of the American Geographical Society ; was editor of the Scientific American at one time, and of the Journal of Applied Chemistry.
Kendrick, Čol. Henly Lane, A. m., LL. D., in New York City ; born in New Hampshire, graduated at United States Military Academy; for twelve years was assistant professor of chemistry, mineralogy, and geology at West Point; in 1857 was appointed professor, which place he held until he was retired, 1880. Prof. John Kendrick, of Marietta, Ohio, was his brother.
Kinloch, R. A., M. D., in Charleston, S. C., December 23; was dean of the faculty of South Carolina Medical College, ex vice-president of the American Medical Association, and member of the Association of Surgeons.
Lain, Lewis Flanders, died in Canisteo, N. Y., December 9, aged eighty-five; bornin New Hampshire : graduated Dartmouth, 1830; teacher Academy of Sanbornton, N. H., 1830-31; studied at Andover Theological Seminary; preached in Ohio and New York; one of the founders of Canisteo Academy.
Leach, Daniel. D. D., LL. D., in Providence, R. I., May 16, aged eighty-five ; was a graduate of Brown University and Andover Theological Seminary; became principal of a classical school in Roxbury, 1838; was agent of the Massachusetts Board of Education 1848-55; superintendent of public schools in Providence, $18505-84$; a member of the Rhode Island Board of Education, a life trustee of Brown University, and the author of several text-books.
Le Conte, John, LL. D., in April ; was born in Georgia; graduated from Franklin College, 1838, and College of Physicians and Surgeons. New York ; professor in Franklin College, 1845-55 ; lecturer to the Medical College, New York, 1855-56; in 1856 became professor in South Carolina College; was appointed professor of physics and industrial mechanics in the University of California, acting president, 1869-70, and president1870-71. Joseph Le Conte, LL. D., of the University of California, is his brother.

Leidy, Joseph, M. D., LL. D., at Philadelphia, April 30, aged sixty-seven; was born in Philadelphia; graduated at the medical college of the University of Pennsylvania, 1841 ; was pro-sector to the chair of anatomy in the university, 18 $15-45$; demonstrator of anatomy in Franklin Medical College; in 1853 was elected professor of anatomy in the University of Pennsylvania; in 1876 was appointed professor of natural history in Swarthmore College; was a member of the American Academy of Natural Sciences, and published a number of scientific books.
Lincoln, Prof. John L., LL. D., of Brown University, Providence, R. I., October 17; he studied in the Boston Latin School, and graduated at Brown in 1836; studied at Newton and was then appointed tutor at Brown; spent three years in German universities and in $18 \not 5$ became professor of Latin and held that position until his death; for eight years during this time was principal of Kingsbury Seminary for Young Ladies; edited Livy and Horace.

Lindsley, Aaron L.. D.D., LL. D., at Portland, Oregon, August 12, aged seventyfour years ; was born in New York; graduated at Union College and Princeton Theological Seminary ; in 1885 was appointed to the chair of practical theology in San Francisco Presbyterịan Theological Seminary.
Lockett, Col. Samuel H., in Bogota, United States Colombia. South America, October 12; was born in Alabama; graduated at West Point; was several years professor in University of Louisiana, afterward professor in the University of Tennessee; was first assistant under Gen. Stone in the construction of the Bartholdi Statue of Liberty.
Lowell, James Russell, Ll. D., died at Cambridge, August 12, aged seventytwo : was born at. Elmwood, where he died; graduated at Harrard in 1838, and at the law school in 1840; was admitted to the bar in same year. From 1841 he devoted himself specially to literature; was poet, essayist, teacher, and statesman. His Bigelow papers, which appeared in the Boston Courier $18460^{-}+18$, were at once pronounced a masterpiece. In 18j5, on Longfellow's resignation, was appointed professor of modern languages and belles-lettres in Harvard ; in 1863 became joint editor with Prof. C. E. Norton, of the North American Reriew, and remained so until 1872; in 1857 was the first editor of the Atlantic Monthly; was presidential elector in 1876 ; in 1877 was appointed to the Spanish mission; in 1830 transferred to the Court of St. James, from which he was recalled in 185j. His oratory was graceful and natural, as was his pen.
Lowell, Robert T. Spence, D. D., at Schenectady, N. Y., September 12, aged seventy-four years; was the older brother of James Russell Lowell; graduated Harvard; entered the Episcopal ministry; was headmaster St. Mark's school, Southboro, N. Y., in 1873-79: was also professor of Latin language and literature in Union College.
McIver, Stimson, in New York City, September -, aged sizty-eight; was Irish by birth; for twenty-eight years he had been principal of Grammar School No. 46 .
Marshall, J. L. B., at Kendall Green, Mass., May 6; he was associated with Gen. S. C. Armstrong in Hawaii, and ardently supported him as trustee and treasurer of Hampton Institute.
Metcalf, Caleb Buffum, at Seabright, N. J., July 31, aged seventy-seven; was born in Royalston, Mass.; graduated Yale, 1842; was teacher in Boston public schools; for ten years principal of Thomas Grammar School, Worcester; in 1856 opened Highland Military Institute, where he remained till 1888; a member of public school board, 1869-81.
Moen, Phillip L., at Worcester, Mass., April 23, aged sixty-seven; benefactor to education.
O'Connor, Jeremiah, s. J., in New York City, March -, aged forty-nine: was born in Ireland ; educated at St. Joseph's College, Philadelphia; was for five Jears president of Boston College.
Packard, Miss S. B., Washington, D. C., June 25. One of the founders and associate principal of Spelman Seminary, a school for colored girls in Atlanta, Ga.
Paddock, Benj. H., D. D., bishop of Massachusetts, March 9, aged sixty-three; founder of schools.
Parton, James, Newburyport, Mass., October 17, aged sixty-nine: began to write while a teacher in New York and Philadelphia; was born in England; of worldwide fame as biographer.
Peck, William Henry, died at Madison, Wis., December 6. Born in Vermont; graduated at Dartmouth, 1864; taught in Union, Wisconsin, 1863: Stoughton, 1863-64; principal of high school, Mineral Point, 1864-67; also, 1865-70. Superintendent of schools there in 1871-72, and professor of Iowa College, 1872-73.
Pratt, Charles, in New York City, May 4, aged sixty ; was born in Massachu-

- setts; was a successful merchant, and out of his large accumulation gave the Pratt Library building to Amherst College; gave also to many charities, the church, Rochester Theological Seminary, the Adelphi Academy, and founded Pratt Institute, and the Asa Pratt Free Reading Room in Wilbraham, his native town. His son is director of the Pratt Institute.

Savage, Joseph, at Lawrence, Kans., December 30 ; pioneer in planting churches and schools in Kansas; one of the organizers of the Lawrence Academy of Science ; special promoter of arboriculture, etc.
Seymour; Nathan Perkins, Ll. D., at New Haven, December 28, aged seventyeight; was born in Hartford; graduated at Yale, 1834 ; rector of the Hopkins Grammar School, Hartford ; tutor at Yale ; in 1840 accepted the chair of Latin and Greek at Western Reserve University ; resigned in 1870, but was made professor emeritus; appointed lecturer on English literature, which place he held till his death.
Shackelford, C. C., at Brookline, Mass., formerly professor in Cornell University.
Sherman, Miss Miriam Stannardi, St. Louis, April 12, was born in Connecticut; a life-long school teacher in different States, and for twenty years in the St. Louis High School.
Sherman, Gen. W. T., LL.D., lawyer, teacher, February 14, aged seventy ; was correspondent of the Bureau of Education.
Smith, George C., D. D., in Carmel, N. Y., December 17, aged sixty-one ; born in Vermont; graduated at Wesleyan University, 185̃ ; professor at Tilton, N.H.; president Newbury (Vt.) Collegiate Institute till appointed president of Drew Theological Seminary, founded by Daniel Drew in 1866.
Soldan, Frederick J., Peoria, Ill., November, aged thirty-nine; was born in Frankfort, Germany; came to this country when seventeen, having had the advantage of the thorough training of the German schools; was for some time actuary of the St. LouisPublic Library; became librarian of the Peoria Public Library in 1890. The library was his love and grew greatly in efficiency under his management. He was a model librarian and was a great favorite among its patrons. He was brother of Prof. Louis F. Soldan, principal of the St. Louis High and Normal School.
Spencer, Henry C., in Washington, D. C., August 30, aged fifty-three; was born in Geneva, Ohio. His whole life has been devoted to business teaching: in 1859 superintendent of penmanship in Buffalo ; in $186 t$ superintendent in the forty Bryant \& Stratton colleges; for twenty-five years was president of the Spencerian Business College in Washington; was one of five brothers who published the Spencerian copy books, and was known as "the prince of blackboard writers."
Spencer, J. Wesley, in Northfield, Vt., November 28 ; principal of the high school.
Stuart, Alex. H. H., February 13, aged eighty-four ; ex-Secretary of Interior Department and member of Peabody board of trustees.
Swan, Isaac, at Stoughton, Mass., May 2.5, aged seventy-six: was for forty years master of Stoughton School at Dorchester, and taught also in his native town.
TAFT, Alphonso, LL. D., aged eighty, lawyer, judge, minister to Austria, and also to Russia; attorney-general, trustee of Yale; was correspondent of the Bureau of Education.
Thacher, Dr. James K., at New Haven, Conn., April 20, aged forty-three years; graduated from Yale in 1865; was professor of physiology in Yale University; had charge of the medical work of the Century Dictionary; his great reputation was made in the comparative anatomy of fishes.
Tolman, Albert, died August 17, Pittsfield, Mass., aged sixty-seren; born in Massachusetts; graduated Amherst, 1845; taught in Montague and Wayland, Mass.; tutor in Amherst, 1848-51; teacher Maplewood, 1851-55; founder and principal Taghonic Institute; teacher Pittsfield High School, 1868-is.
Tourjee, Eben, Doctor of Music, in Boston, April 21, aged fifty-fire years; was born in Rhode Island; in 1859 was called to East Greenwich Academy, to eştablish in connection with it a musical institute; established the Providence Conservatory of Music, and in 1867 the New England Consarvatory in Boston; organized the chorus of the Peace Jubilee. His "Plea for Music in the Public Schoois" " before the National Teachers' Association was published by the Bureau of Education.

TuFts, Col. Gardiner, at Concord. November 23, aged sixty-three; in December, 1869, was elected principal State primary school at Mouson and five years later resigned to accept the superintendency of the new State reformatory, whose system he developed and operated. This position he held until his death.
Wickersham, James Pyle, A. M., LL. D., in Lancaster, Pa., March 25, aged sixtysix years; was born in Pennsylvania, graduated at Unionville Academy; principal of Marietta Academy, Pennsylvania, 1845; in 1854 was elected the first superintendent of schools of Lancaster County : in 1856 was chosen first principal of the Millersville Normal School, the first State normal school; in 1866 was appointed State superintendent of public instruction which position he held for nearly fifteen years: aided in organizing the Pennsylvania State Teachers' Association and the National Educational Association; was the seventh president of the latter; was twice elected president of the National Department of School Superintendents; for ten years was editor of the Pennsylvania School Journal, and published a work on "School Economy," and "Methods of Instruction:" his last literary work was the history of education in Pennsylvania: in 1882 was appointed minister to Denmark; was the most influential man after. Dr. Burrows in forming the public school system of Pennsylvania and in fixing its methods: an able writer, ready speaker, effective organizer and one of the foremost of his day among the educators of America.
Wiley, Rev. Dr. Philander, at Denver, Colo., September 23, for many years professor of Greek in De Pauw University.
Willson, Z. G., at St. Cloud. Minn., May 21, aged sixty-nine; was connected with the St. Louis public schcols for many years, and at one time edited the Western, an educational and library journal.
Winchell, Alexander, Ll. D.. at Ann Arbor, February 19, aged sixty-six: graduated at the University of Michigan, 1854; professor of geology, zoölogy, and botany; occupied the same position in the University of Kentucky 1866-69; in 1873 accepted the chancellorship of the University of Syracuse; in 1874 resigned to become professor of geology, botany, and zoollogy in the same institution, which he held until 1879; from 1873-79 held a similar position in Vanderbilt University; in 1879 was recalled to his old chair at Ann Arbor, which he held till his death. His bibliography numbers 200 titles; established seven new genera and 001 new specimens, most of which were fossil; his name has been given to 14 new species.
WOODFORD, John Beach, at Syracuse, N. Y., April 27, aged seventy-six ; was born in Avon, Conn.; graduated at Yale 1839 ; was principal of private school in Middletown; in 1846 was elected principal of Southington Academy, Conn.; for thirteen years princiral of academy at Windsor: Conn.

FOREIGN.

1839.

Quesneville, Dr., November 14, aged eighty years; an eminent French chemist, and founder of the Moniteur Scientifique.
1890.

Becker, Miss Lydia, at Geneva, July 18; had deroted her life to the saving of children in Manchester, England; was seven times elected to the school board ; called the "pioneer of woman's suffrage in England."
Boellinger, John Ignatius, in Munich, January 10, aged ninety; a professor and theologian.
Brüllow, Dr. Friedrich, ia Berlin, September 15; founder of the Diesterweg fund.
Carruthers, John, D. D., September 1, aged eighty-nine; called the father of the English Congregational Church.
Delitzsch, Francis, D. D., at Leipsic, aged seventy-eight years; was professor in ordinary in the University of Rostock and that of Erlangen, professor of ED 90- 83

Old Testament Exegesis in the University of Leipsic, and author of Old and New Testament commentaries.
DuFF, David, D. D., in Edinburgh, August - ; professor of church history.
Feullet, Octave, in Paris, December-; brilliant writer of the ideal school, and last imperial librarian.
Fricken, von, Dr. William, in Wiesbaden, December 29 ; councillor of education. Gerber, von, Dr., in Germany, December - ; minister of education in Saxony.
Humbeck, von, Pierre, July 5 ; first minister of public instruction in Belgium; author of the Liberal Education Code, which effected such progress before the reaction of 1884 .
Joule, Dr. James Prescott, an eminent scientist, noted for his treatment of the conservation of energy and the mechanical equivalent of heat.
Lidden, Henry Perry, September 9, aged sixty-one ; canon cf St. Paul's Cathedral.
LUTz, von, Baron, ex-premier and minister of education, Bavaria; correspondent of the Bureau of Education.
McGregor, ——, April 25 ; principal ô̂ McMaster College, Ontario.
Neesima, Joseph Hardy, LL.D., at Oiso, Japan, January 23, aged forty-seven ; in his youth, desiring to learn of Christianity, he escaped from Japan, when such an act was punishable with death, and came to America on a vessel owned by Alpheus Hardy; was educated at Phillips Andover Academy, Amherst, and Andover Theological Seminary, at the expense of Mr. Hardy ; was interpreter to the Iwakura Special Embassy on its visit to this country; was offered a place in the Japanese ministry, but declined; became missionary to Japan under the American Board; founded the Christian school in Kioto, under great difficulties, which was finally made a university.
Rogers, James Thorold, in Oxford, England, October 13; was professor of economical science and statistics in King's College and professor of political economy at Oxford; was the author of a number of works, inciuding Aristotle's Ethics, Economic Interpretation of History, Six Centuries of Work and Wages, and a history of agriculture and prices in England.
Schliemann, Dr. Henry, at Naples, December 26; aged sixty-nine; was bornin Mecklenburg-Schwerin; was famous as an explorer of Greek archæology; he made a fortune in trade and expended it in the study and collection of Greek antiquities, which he has described in his general works; has greatly contributed to the increase of interest in Greece and in old Troy.
Schmitz, Leonard, in England, June; formerly instructor to Prince of Wales; rector of high school, Edinburgh ; was named for the professorship of Greek, Edinburgh University ; classical examiner to the University of London.
BERG, -, in Copenhagen, December 2; a teacher, and leader oî the radical wing in Parliament.
Bobies, Rector, in Vienna, November 13 ; president of the Austrian Teachers' Association.
Budozis, Dr. Friedrich, in Berlin, March 11; historian of Brandenburg.
Ciriacy-Wantrup, von, Dr., in Arnsberg, Germany, July ; school councilor and leader of the conservative party in school affairs.
CHADwICK, Edwin C. B., July 5; aged eighty-nine ; an English social economist and lawyer; was assistant commissioner of the poor law commission; a member of the commission of inquiry into the labor of young persons in factories; in 1838 he made an inquiry into the causes of local diseases and the improvement of habitations in the metropolis.
Collins, George, at London, April 2; was a member of the London school board, master of model school and of methods in the borough training school, Borough-Road, and member of the editorial staff of the Schoolmaster.
Corct, Carlo Maria, June 10 ; aged ninety-one ; a Roman Catholic professor of theology at Rome.
Cossack, Dr. K. W., in Dantzic, November ; author of literature for schools.

Dietlein. Waldemar, Rector, in Dortmund, Germany, Octobar 31; author of the best German readers.
Esser, Dr., in Berlin, October: chief of division in the ministry of education.
Fischer, Dr., in Potsdam, July 19; well-known teacher of gymnastics.
Fricke, F. William, in Weisbaden, March 28 ; promoter of spelling reform.
Frischbier, Hermann, at Königsberg, December 8; a promoter of the teachers' association.
Gabelli, Aristide, at Padua, October 7, aged sixty-one; a prominent educator.
Gautier, Col. Emile, at Genera, November 24, aged sixty-eight; an eminent astronomer and director of the Observatory, Geneva.
Hasner, Dr. Leopold (Ritter, von Artha), at Ischl, Austria, June 5; the father of the modern school in Austria.
Haupt, August, in Berlin, July 4; professor of music.
Häuselmann, J., in Biel, Germany, March 18 ; a promoter of drawing.
Heumann, G., in Gorlitz, Germany, Narch 21 ; superintendent of schools.
Kennedy, William, m. A., in Scotland, December; clerk to the school board of Glasgow.
Kern, Dr. Hermann, at Bruneck in the Tyrol, July 4, aged sixty-eight; was for many years director of the Friedrich Wilhelm Gymnasium in Berlin; was a scientific student and educator, and published several educational books, and for many years was a member of the board of examiners for positions in higher schools.
Korowosky de, W., Lieut. Gen., September ; founder and director of the Russian Museum of Pedagogy.
Kuenen, Abraham, in Germany, December 10, aged sixty-three; a professor of theology.
Langenberg, Eduard, in Berlin, February 16 ; pupil and biographer of Ad. Diesterweg.
Magalhaes, Benjamin Constant Botclho, January 22; a prominent Brazilian educator and scientist, and founder of the Republic.
Moseley. Henry Nattridge, November 10, aged forty-seven ; professor of anatomy at Oxford.
MÖWING, Regborg, in Königsberg, August6; founder of the teachers' association.
OEHLWEIN, Dr., in Weimar, Octobar 10; a promoter of deaf-mute education.
Pachecho, D. Carlos, formerly minister of education, Mexico.
Patrick, Brother (John P. Nurphy), in Paris, April 25, aged sixty-nine; was born in Ireland; entered as novitiate into the order of the Christian Brothers at Montreal: was director of the Brothers' School, St. Louis, in 1861; was transierred to Manhattan College, New York, which institution prospered greatly under his care; his last position was that of second assistant to the su-perior-general of the Christian Brothers' schools.
Pedro, Dom, II. ex-Emperor of Brazil, in Paris, December 4, aged sixty-six; became sovereign at the age of six, and abdicated in 1889. His tastes were scholarly, his ideas of government liberal ; he established justice, encouraged schools, libraries, and colleges, traveled extensively, visited the United States, and was interested in the Bureau of Education, to whose chief he offered a decoration of the Empire.
Peruzzi, Ubaldino, in Italy, September 9; called the Modern Pericles.
Pressense, de, Edmond D., at Paris, April S, aged sixty-seren.
Prange, William, in Breslau, March 25; school councilor and editor of Lübens Pädag. Jahresbericht.
QUICK, R. H., M. A. in Surrey, England, March 9; was educated at Cambridge; assistant master at Harrow and Cranleigh, lecturer at Cambridge ; writer of pedagogics; is known among teachers the world over by his Educational Reformers.

RJedinin, Peter, iL. D., in St. Petersburg, March 7, aged eighty-three; an eminent Russian scholar: was a graduate of the universities of Dorpat and Moscow; became the first professor of the Cyclopædia of Law at the University, Moscow; in 1863 was called to be professor ordinarius at St. Petersburg, published a History of Law and a History of Philosophy.
Ree, Anton, Dr., in Hamburg, January 1; the well-known champion of the common schools.
Schlaikier, in Meiningen, March 14; school councilor.
Schubert, Otto, Rector, in Haynan, Germany, July 9; superintendent of schools.
Thomissen, Dr., in Brussels, November; ex-minister of public instruction.
Tichelmann, Rector, in Königsberg, July 17; promoter of Pestalozzi societies.
Töpler, F., in Berlin, December 10; editor of educational journals.
Velhagen, Auguste, in Laipsic, December, aged eighty-two; a publisher of books and atlases on the principle of "good and cheap."
Wächter, Robert, in Rudolstadt, Germany, March 28; school councilor.
Widgery, William Henry, M. A., England, assistant master in University College school, August 26; was born at Exeter, March 11, 1857; entered at St. John's College, Čambridge, 1874, and graduated seventh senior optime in the mathematical tripos; taught at Dover College; gained the Harness prize for essay on Hamlet, which was commended in the Atheneum; was second master at Brewer"s School,E. C., London, and gained "prizesfor Icelandic and Gothic ;" in 1883 assumed the work which he continued until his death, meantime having studied in Berlin in 1886. His tract on teaching languages was republished and translated into other languages. His sketch of education at the Paris Ex-- position appears in this Report. He was librarian and an active member of the council of the Teachers' Guild. Friends have joined in creating a fund for a memorial to his memory.
WolfF, Emil, Rector, in Apolda, Germany, February 16; a pedagogical author and editor of Allgemeine Schulblatt.
Wulkow, August, in Stettin, Germany, October 9 ; president of teachers' association.
Zahn, Franz, Dr., in Mörs, Germany, July 9 ; the successor of Ad. Diesterweg in the Normal School at Mörs, and author of a Biblical history.

PART III.

STATISTICAL TABLES.

TABLE 1.-Statistics of population, private schools, and public school enrollment, containing over

attendance, supervising officers, teachers, and accommodations in cities and villages 4,000 inhabitants.

TABLE 1.-Statistics of population, private schools, and public school

[^74]c First six divisions-principally white.
enrollment, attendance, supervising officers, teachers, etc.-Continued.

Table 1．－Statistics of population，private schools，and public school

	City．			Number of children of school census age．			ॐ范念家 g． る路 ๙．켜 듴울龁会	Number of different pupils enrolled in public day schools．		
				$\stackrel{\oplus}{\dddot{Z}}$						
	1	2	3	4	5	6	7	8	9	10
	ILLINOIS－continued．									
98	Ottawa	9，985	6－21	1，469	1，459	2，928	402	814	683	1，497
99	Paris	4，993	6－21	673	690	1，363	40	512	575	1，087
100	Pekin	6，347						588	648	1，236
101	Peoria＊	41，024	6－21	6， 350	6，184	12，540	1，500	3， 377	3， 627	7，004
102	Peru	5,550 31,431	6－21	6200	5 650 1	${ }_{3}^{1,270}$	350 2,300	＋360	2，107	$\begin{array}{r}75 \% \\ 4,095 \\ \hline\end{array}$
104	Rock Islan	13，634	6－21	2， 107	1，994	4． 101	－825	1，160	1，180	2，340
105	Rockford	23，584	6－21	3，130	3，631	6，761	670	1，812	1，943	3，755
106	Springiel	24， 683	6－21	3．702	4，005	7，707	1，200	1， 852	1，797	3，659
107	Sterling	5，824	6－21			838	100	330	365	695
108	Streator	11，414	6－21	2，03t	1，996	4，030	＊390	1，137	1，145	2，282
109	Waukegan	4，915	6－21	485	595	1，080	150	436	452	888
	indiana．									
110	Anderson．	10，741	6－21	（2， 5		2， 582	200	542	638	1，180
111	Bloomingtor	4，018	6－21	619	581	1，200		410	419	－829
112	Brazil	5，905	6－21	928	1，030	1，964	250	603	649	1，252
113	Columbus	6.719	6－21	（2，		2，133	200	675	723	1，398
114	Connersville	4，518	6－21	632	604	1，236		358	389	747
115	Crawfordsvi	6，089	6－21	1，357	1，375	2， 732	100	599	654	1． 253
116	Elkhart	11，360	6－21	1，615	1，599	3， 214	250	1，031	1，074	2，165
117	Eransville	50，756	6－21	8，177	8.144	16，321	1，600	3，278	3，198	6， 476
118	Fort Wayne	35， 393	6－21	6，226	6，235	12，461	3，800	2，184	2，380	4， 564
119	Frankfort	5，919	6－21	780	1，090	1，780		630	731	1，361
120	Goshen	6，033	6－21	920	880	1，800	100	705	655	1，360
121	Huntington	7， 328	6－21	1，099	1，066	2，165	400	688	686	1，374
122	Greencastle	4，390	6－21	891	915	1，806	150	383	439	822
123	Indianapolis	105， 436	6－21	（48，	79）	48，079		（23，	3）	23， 163
124	Jeffersonvill	10，665	6－21	3，035	3，385	6，420	400	1，016	1，041	2，057
125	Kokomo	8，261	6－21	1， 067	1，041	2，108	50	709	747	1， 456
126	Lafayette	16，243	6－21	3， 524	3，615	7，139		1，583	1，775	3，358
127	Laporte	7126	6－21	1，335	1，362	2， 697	800	（1，2		1，230
128	Lawrenceburg	4，284	6－21	855	870	1，725	200	388	420	${ }^{808}$
129	Logansport	13， 328	6－21	2， 465	2，465	4， 931	736	1，004	1，069	2，073
130	Madison	8，936	6－21	1，884	2,010	3，891		1，012	975	1.987
131	Marion－－．－．	8,769 10	6－21	1，217	1， 166 1,550	2， 3,128	750	683	700 509	1，383
133	Mount Vernon	4，705	6－21	1，103	1，150	2，253	100	526	576	1，102
134	Muncie	11，345	6－21	1，319	1，329	2，648	125	1，004	1，031	2，035
135	New Albany	21，059	6－21	3， 644	3， 666	7， 310		1，662	1，667	3，299
136	Peru．	7，028	6－21	1，249	1，209	2，458	350	600	668	1，268
137	Richmond	16， 608	6－21	3， 013	3，3：2	6， 333	850	1，283	1，407	2，¢ $¢ 9$
138	Seymour	5，337	6－21	882	900	1，783	250	526	560	1，086
139	Shelbyville	5，451	6－21	1，007	1，106	2， 113	200	538	586	1，124
140	South Bend	21，819	6－21	3，411	3，403	6，814	800	1，303	1， 518	2，881
141	Terre Haute	30，217	6－21	7， 370	6， 668	14，038	700	2， 506	2，506	5，01：
142	Valparaiso	5，090	6－21	821	848	1，669	400	489	485	974
143	Vincennes	8， 853	6－21	1，559	1，576	3，135	835	597	${ }_{597}^{634}$	1，231
144	Wabash	5，105	6－21	788	738	1，526		591	597	1，158
145	Washington．	6，064	6－21	1，171	1，151	2，322	354	592	608	1，200
	1									
146	Atlantic	4，351	5－21			1，480	20	646	662	1，308
147	Boone．	6， 520	5－21	790	780	1，570	125	700	650	1，350
148	Burlington	22，565	5－21			8，451		2，200	1，988	4，199
149	Cedar Rapids＊	18，020	5－21	2，175	3，124	5， 299	500	（3，	3）	3，563
150	Clinton	13，619	5－21	2，296	2，418	4， 714	350	1，247	1，230	2，577
151	Council	21，474	5－21	4，119	5． 386	9， 505	700	1，592	1， 768	3，360
152	Creston．	7，200	5－21	1，200	1， 213	2，413	200	（1，81		1， 810
153	Davenport．	26， 872	5－21	4， 697	4， 95%	9， 9554	1，000	2， 364	2， 2,265	
151	Des Moines，East	50，093	5－21	$\stackrel{2}{2,653}$	2，641	5， 294	300 900	1， 1,923	$\stackrel{1,857}{2,152}$	3,630 4,074
156	Dubuque	30， 311	5－21	5，289	5，563	10，852	2，500	2，358	2，383	4， 741

＊Statistics of 1888－89．
enrollment, attendance, supervising officers, teachers, etc.-Continued.

a Including four years' course in the township high school located in Ottawa.
b Estimated.

TABLE 1.-Statistics of population, private schools, and public school

* Statistics of 1888-89.
enrollment, attendance, supervising officers, teachers, etc.-Continued.

TABLE 1.-Statistics of population, private schools, and public school

*Statistics of 1888-89.

a This report includes the entire town.
b Some schools were in session but 180 days.
enrollment，attendance，superrising officers，teachers，etc．－Continued．

			Number oi su－ pervising offi－ cers．			Number of regular teachers．						
			䓞		$\begin{aligned} & \text { ت⿹\zh26灬 } \\ & \text { En } \end{aligned}$	吾		$\begin{aligned} & \text { Nĩ } \\ & \text { Ni } \end{aligned}$				
11	12	13	14	15	16	18	18	19	20	21	22	
$\begin{aligned} & 180 \\ & 186 \\ & 160 \\ & 181 \\ & 185 \end{aligned}$	$\begin{aligned} & 327,680 \\ & 868,062 \\ & 186,400 \end{aligned}$	1,876 4,667 1,165	1	0 1 1 0 0	1 6 2 1 1	4 6 4 7 2	64 155 27 22 22 26	68 161 31 29 28	21 18 11 16 10	2,600 7,000 1,550	14 13 14 14 14	211 212 213 214 215
$\begin{aligned} & 193 \\ & 174 \\ & 152 \end{aligned}$	$7,722,702$ 135,720 208,792	40,014 780 1,371	4	5 0 0	9 1 1	112 4 8	1,068 16 29	1,180 $\quad 20$ 37	103 5 7	55,000 1,000 2,400	13 7 10	216 217 218
6195	c266， 251	1，471	1	0	1	4	38	42	9	2，014	13	219
180	c126， 000	700						28			13	220
175	173， 630	970	2	2	4		32	34	14	1，440	12	221
190	264， 480	1，392	0	0	0	3	39	42	9	1，820	11	222
190	10，216， 300	53， 770	6	1	7	203	1，169	1，372	183		$d 12$	$\stackrel{223}{2}$
200	c632， 000	3， 160	1	0	1	7	＊ 81	$\begin{array}{r}\text { ¢0 } \\ \times 4 \\ \hline 19\end{array}$	26	c4， 000	13	224
200	c310， $1,865,080$	1， 550	3	4	7	6	＊43	＊ 49	12		14	225
200	1， 707,800	$\stackrel{3}{3,539}$ ，${ }^{\text {a }}$	1	${ }_{0}$	1	7	85	263	11	4，931	15	${ }_{227}^{226}$
192	c199， 622.4	1， 039.7	2	1	3	4	29	33	6			228
196	234， 094	1，194	1	1	2	1	32	33	11		12	229
185	183， 150	990				4	24	28	11	1，300	12	230
189	c205， 632	1，088	2	1	3	4	32	36	13	1，434	13	231
189	250， 141	1，346	0	0	，	2	36	38	6	2，029	13	${ }_{23}^{23}$
195 187	$1,433,445$ 497,897	7， 351 2，662．5	－ 2	2	4	14	221 71	235 78	41 22	10,667 3,450	13	233 234
190	280， 440 C	1， 476	1	0	1	3	39	42		3，450	13	$\stackrel{235}{235}$
195	184， 080	944	0	0	0	1	27	28	10	1，519	13	236
191	671， 365	3， 515		1	5	2	98	100	23	4，620	13	237
200	508， 200	2，541	3	1	4	5	88	93	28		13	238
197.6 198	$596,781.6$ $c 239896.8$	3，091 6	9	7	16	3	84	87	15	3，174	13	239
198 20	c239， 896.8	1， 211.6	0	0	0	8	33	41	6	2，000	12	240
195	1，431， 105	5，${ }^{\text {¢ }} 339$	13	1	14	${ }_{0}^{6}$	128	134 189	20	6，000	13	$\stackrel{241}{242}$
189.5	1，293， 951	7，265	8		11	12	158	170	32	8，550	13	243
191	512， $0 \mathrm{tr}_{1}$	2，681	3	1	4	6	82	88	13	4，165	13	244
200	206， 800	1，034	2	0	2	3	26	29	11	1，288	13	245
193	336,350 303,889	${ }_{1}^{1,922} 1$	1	1	2	2	52	54	12	2,400 2,200	13	246
190	234， 220 c	1， 238		0	1	1	30	46 31	12	2，200	13	248
172	202， 272	1，176	1	1	2	1	35	36	17	2，192	13	249
180 195	274，${ }_{787}$	1，508	1	1		$\begin{array}{r}3 \\ 7 \\ \hline\end{array}$	43	46	25			220
200	787,615 200,000	1，250	1	0	1	5	${ }_{33}$	30 38	12	1，766	13	${ }^{251}$
195	696， 150	3，570	1	0	1	17	89	106	22	4， 712	13	$2 \overline{3}$
190	369， 740	1，946	1	1	${ }^{3}$	2	59	61	11	3,000	13	254
e190 200	363,708 c3．11，200	1，908	1	1	－${ }_{-}$	4	67 39	71	25	2， 700	13	${ }_{255}^{25}$
200 195	${ }_{c}^{\text {c }}$ c 421,200		0 2	0	$\begin{array}{r}0 \\ -3 \\ \hline\end{array}$	5	39 80	44 87	88	2,310 3,296	13	${ }_{257}^{256}$
200	237， 400	1，187	1		1	4	34	38	27	1，600	10	258
200	c437， 600	2， 368	2	1	3	6	53	59	8			259
205	681，625	3，325	0	0	0	8	94	102	16	4，661	13	260
192	1， $012,396.8$	5，585． 4	1	3	5	10	128	138	25	6，827	13	261
193	$131,585.9$ 277,900	720.7 1,545	1	0	1	${ }_{5}^{1}$	$\stackrel{22}{45}$	23 50	11 17	869 1,848	14 9	${ }^{262}$
188	c904， 956.8	4，813．6	5		9	0	144	144	31	6，250	13	264
184	c142， 784	\％ 766	2	1	3	2	24	26	7	1，200	13	265
200	665,400 23,580	3，327	${ }_{3}^{1}$	1 1	1 4	$1{ }_{5}^{10}$	91 57	101 62	33 14	4,737 2,540	13	${ }_{266}^{266}$

c Estimated．
d Not including the kindergarten course．
ϵ The Center High School was in session 200 days，and the Florence High School 195 days．

TABLE 1.-Statistics of population, private schools, and public school

[^75]a Grades X to XIII were in session 200 days.
enrollment，attendance，supervising officers，teachers，etc．－Continued．

			Number of su－ pervising offi－ cers．			Number of regular teachers．				$\begin{aligned} & \text { Total number of seats } \\ & \text { or sittings for study } \\ & \text { in all public schools. } \end{aligned}$		
			$\begin{aligned} & \text { 玉் } \\ & \text { 玉̇ニ } \end{aligned}$									
11	12	13	14	15	16	17	18	19	20	21	22	
$\begin{gathered} 197 \\ a 180 \\ 193 \\ 195 \\ 181 \end{gathered}$	137,506 6250,960 344,312 365,625 $1,849,296$	698 1,379 1,784 1,875 10,216	1 2 2 1 1 1	0 0 0 0 0	1 2 2 1	5 6 6 9 28	26 38 50 46 278	31 43 56 56 55 306	8 20 20 13 48	2,550 2,250 13,916	13 13 13 13 14	268 269 270 271 272
195	186	964	1	0	1	2	29	31	5	1．780	12	3
196	207，274． 5	1，058	1	1	2	3	26	29	9	1，200	12	274
192	305， 472	1， 591	2	2	4	8	41	49	7	1，750	12	275
196	73， 421	347	1	0	1	1	10	11	3	600	12	276
191			1	1	2	2	46	48	7	2，200	13	277
195	567， 214.5	2，917	1	2	4	2	83	85	10		12.5	278
195	148，788	875	1		，	1	24	25	5	1，200	12	279
196	128， 380.8	644.8	1	1	2	2	21	23	5	850	12	280
194.	108， 126	557.4	1	0	1	5	12	${ }_{23}^{17}$	7	${ }_{1}^{750}$	11	281
200	3， $\begin{array}{r}163, \\ 59,080\end{array}$	17，646	13	18	31	${ }_{0}$	485	485	50	22，239	12	283
196	－686， 637	3， 503	2	2	4	8	101	109	13	4， 535	12	284
195	96，915	497	0	0	0	1	11	12	3	650	12	585
195	277，165	1，407	1	0		2	37	39	7	1，905	12	286
195	194， 851	－973	1	1	2	${ }_{7}$	23	25	7	1，325	12	287
195	$1,450,514$ 154,817	7.476 775	1	12	$\stackrel{4}{2}$	7 3	220 21	$\begin{array}{r}227 \\ 24 \\ \hline\end{array}$	23 4	10,361 1,015	${ }_{12}^{12} 5$	288 289
200	127， 200	636		0	1	1	16	17				290
200	b102， 600	513	0	0	0	2	10	12				291
196	202，468	1，033				1	22	23	4	1，250	12	292
193	280， 140	1，451． 5	1	2	3	2	40	42	8	1， 800	12	293
189．5	2177， 810.5	1，109	1	2	3	1	66	${ }_{67}^{22}$	8	1，250	12	295
187	b 243， 100	b 1，300	2	0	2	5	41	46	8	1，807	12	296
183． 5	249， 009	1，357	1	0	2	1	33	34	6	1，800	13	\％97
${ }_{195}^{197}$	282,151 200,253	1,483 1,024	1	0 1	$\stackrel{2}{2}$	7	41	48	5	1.236		${ }_{299}^{298}$
196	196， 744	1，966	1	0	1	1	${ }_{27}^{21}$	28	6	1，232	12	300
194	81，092	418	0	0	0	1	11	12				301
200	106， 000	530	1	0	1	2	12	14	3		12	302
200	655， 621	3，265	3	2	5	8	93	101	16	4，100	12	303
192	121，823	650	1	1	2	1	20	21	4	1，000	12	304 305
192	118，${ }^{1038}$	1，065	1	0	1	4	${ }_{23}^{17}$	${ }_{27}^{19}$	5	1，345	12	300
195	166， 563	1，854	2	0	2	2	20	22	6	1，023	12	307
195	281，277． 5	1，573	1	0	1	1	39	40	8	2，000	12	308
200	407， 800	2， 039	1	0	1			59	9	3，600	12	309
180	－1177，000	${ }^{6} 5$	1	0	1	1	${ }_{20}^{15}$	${ }_{21}^{16}$	6	763	12	311
193.5	337，781． 5	1，785	1	1		5	46	51	10	2，100	12	312
200	126， 608	631	1	0	1	5	18	23	4	1，000	12	313
177	119，408	663.6	1	0	1	1	18	19.	5	850	12	314
170	136， 510	803	1	0	1	3	19	22	5	900	12	315
190	b406， 410	2，139	1	2	3	3	72	75	12	3， 300	12	316 317
180	122,965 176,400	702 980	1	0	1	$\stackrel{2}{3}$	19	$\stackrel{21}{25}$	7	850 1,100	112	317 318
183	2，782， 616	15，282． 5	8	38	46	19	490	509	46	19， 100	12	319
177	－198，240	1，120	1	0	1	1	25	26	5	1，350	12	320
186	139,106 113,742	757 639	1	1	2	0	22	22	4	1，003	12	321
186	1，997， 314	10，854	14	18	32	38	363	401	41	20， 530	11	323
176 200	241,296 423,684	1,371 2,134	2 1	1	3 3	$\stackrel{4}{3}$	39 57	43 60	7	1,500 3,000	13 12	324 325

b Estimated．
The population of East Saginaw is included in that reported for Saginaw．
ED $90-84$

TABLE 1.-Statistics of population, private schools, and public school

*Statistics of 1858-89.
enrollment, attendance, supervising officers, teachers, etc.-Continued.

TABLE 1.-Statistics of population, private schools, and public school

* Statistics of 1888-89.
enrollment, attendance, supervising officers, teachers, etc.-Continued.

TABLE 1.-Statistics of population, private schools, and public school

				Number of of school cens	ildren us age.		$\begin{aligned} & \text { Numbe } \\ & \text { pupil } \\ & \text { publi } \end{aligned}$	$\begin{aligned} & \text { r of di } \\ & \text { eno enro } \\ & \text { c } \end{aligned}$	fferent lled in chools.
	City.				$\begin{aligned} & \text { ت్స゙ } \\ & \text { Eै } \end{aligned}$				
	1	2	3	5	6	7	8	9	10
	NEW YORK-cont'd.								
433	Hudson	9, 9\%0	5-21	1,906 1,091	3,700	450	691	635	1,326
434	Ilion--	4,057	5-21						-888
$43 \hat{6}$	Jamestown	16,038	5-21	(4,519)	4, ${ }^{\text {4, }} \mathbf{7} 19$	282	1,358	1,371	2, 721
437	Johnstown	7,768	5-21	1,025 1,118	2,143		718	745	1,463
438	Kingston, Dist. No. 5	21, 261	5-21	1,448 1, 452	2, 500	211	842	906	1,748
439	Lansingburg......--	10, 550	5-21	$(3,326)$	3,326	430	872	834	1,706
410	Little Falls	8,783	5-21	(2, 476)	2,476	150	659	694	1,353
441	Lockport	16,038	5-21			800	(2, 7		2,730
442	Long Island City ...-	30, 503	4-21	(9, 5c0)	9, ${ }^{\text {co }} 0$	¢0	(611)	3) 490	6,403
443	Ljons	4,475	5-	(2,038)			411	490	901
445	Matteawan*	4, 2 4	${ }_{5-21}^{5-21}$	(1,08\%)	1,087	200	327	385	712
446	Medina	4,492	5-21	6371680	1,317		573	607	1,180
447	Midaletown	11,977	5-21	(3, 35\%)	3, 357	305	989	962	1,951
448	Mount Vernon	10,830	5-21	($\stackrel{2}{ }, 363)$	2, 363	80	697	766	1,463
449	New Brighton*	16, 423	5-21	(3, 958)	3,958	70	(2,057)		2,057
459	New Rochelle	8:217	5-21	(2, 706)	2,705	239			
451	New York	1, 515, 301	5-21	242,000 237, 000	479,000	65, 000	109, 797	02, 505	212,302
452	Newburg	23, 087	5-21	(7,01)	7,021	1,384	(3,	7)	3,437
453	Niagara Fall	5, 022	5-21	$(1,583)$	1,583	225		486	789
454	Norwich	5, 212	5-21	*583 * 750	*1,336				894
455	Ogdensburg	11.662	5-21	(3, 850)	3, 850	800	943		1,812
456	Olean.	7,358	5-21	(2, \%08)	2, 708	30	1,039	1,169	$\stackrel{2}{2}, 208$
457	Owego	21,812	5-21	3,839 ${ }^{\text {P }}$ 3, 904	\%,743	1,187	1,751	1,958	3,709
	Feekskill:	66,000		$700 \quad 700$	1,400	200	408	408	816
459	Drum Hill district			$514 \quad 643$	1,157	100	247	257	514
460	Oakside district...	9, 6.0 \}	5-51	490548	1,038	38	345	374	19
461	Penn Yan*	4,254	5-21	$(1,209)$	1,209	173			
469	Plattsburg	7,010	5-21	1,221 1, 197	2,418	90	791	711	1,502
463	Port Chester	5,2i4	5-21	(1, 432)	1,432	230			
464	Port Jervis.-	9,327	5-21	1,355 \| 1,521	2, 876	60	991	1994	1,985
465	Poughlzeepsie	$\begin{array}{r}\text { 22, } \\ 133,896 \\ \hline 1\end{array}$	5-21	$(6,000)$ $(44,000)$	6,000 44,000	10,000	1,441 9	1, 563	3,004
467	Rome.	14,991	5-21	(1,000)		360	1,099	997	2,096
468	Saratoga Springs...-	11, 9\% ${ }^{\text {a }}$	5-25	(2,750)	2,750	75	1,123	1,150	2,273
469	Schenectady	19,902	5-21	(5, \%00)	¢, 780	1,200	(2,415)		2,415
470	Sing Sing	9,352	5-21	(1,831)	1, 831		(1,10)		1,107
471	Syracuse	88, 143	5-21	(24,600)	24,600	3,000	6,651	6,750	13, 401
472	Troy	60,956 44,007	5-21		14,549	1, 1,200		3, 323	7,401 6,853
474	Water100	44, 4 - ${ }^{\text {a }}$	5-21	$(14,519)$	14,349	1,250		3, ${ }^{3,3}$	${ }^{6} 8800$
475	Watertown	14, 725	5-21	(4,0\%0)	4,0 0	200	1,213	1,217	2,430
476	Whitehall	4,437	5-21	$(1,431)$	1,431	150			
477	Yonkers	32, 033	5-21	$(9,719)$	9,719	1,900	$(3,3$		3,384
	NORTH CAROLINA.								
478	Asheville	10,235	6-21	$1,121 \mid 1,304$		200	692	754	
479	Charlotte	11, 557	6-21	(2,818)	2,878	200	700	800	1,500
480	Durham	5.485	6-21	$600{ }^{607}$	1,287	*80	320	380	700
481	Fayetteville.	4,223	6-21	290 310	-600	175	200) 190	390 1,159
482	Goldsboro--	4,017 7 7	6-21	$(1,808)$	1,808	* 300	*300	*350	1,159 $* 650$
484	Raleigh*.	12, 6 \% 8	6-21	2,151 2,397	4,548		1,192	1,342	2,534
485	Salisoury	4,418	6-21	$425 \quad 380$	805	75	, 214	200	414
186	Winston.	8,018	6-21	1,000 1,200	2,200		*590	*670	*1, 260
	NORTH DAKOTA.								
487	Fargo	5,664	7-20	(1, 274)	1,274		(1,0	4)	1,074
488	Grand Forks .--------	4,979	7-20	643 \| 681	1,324	400	458 \|	475	933

a Estimated.
enrollment，attendance，supervising officers，teachers，etc．－Continued．

筞	＊＊＊＊）			＊	Number of days the public schocls wer actually in session．
		HUq2 		2	Aggregate number of days＇attendance day schools．
${ }^{2}$				芯	Average daily attend－ ance in public day schools．
	！			H	Male．\quad 荡艺
	200 00000	wovoluro r－H0000－0	H0Mr000芯：	${ }_{51}^{60}$	Female．
	OU：ールールが			¢	Total．
or				$\stackrel{4}{4}$	Male．
4				¢	Female．
UT\％	二の¢\％			$\stackrel{\square}{6}$	Total．
nor	Noweremoronem			8	Number of buildings used for school pur－ poses．
品管		－co ary joxo－प゙刀口－ 		泡	Total number of seats or sittings for study in all public schools．
	$0 \infty 00000000$			\＄	Number of years re－ quired to complete en－ tire course of study．

b Estimatea；not separately reported by the census enumerators．

Table 1.-Statistics of population, private schools, and public school

	City.			Number of children of school census age.				Number of different pupils enrolled in public day schools.		
				$\stackrel{\dot{\sim}}{\stackrel{\circ}{\mathrm{N}}}$					$\begin{aligned} & \dot{0} \\ & \text { ※̈ } \\ & \text { g్ర } \\ & \text { F } \end{aligned}$	$\begin{aligned} & \text { స్త゙ } \\ & 0 \\ & \text { ®-1 } \end{aligned}$
	1	2	3	4	5	6	7	8	9	10
	OHIO.									
489	Akron	27, 601	6-21	4, 031	3,993	8,024	1,025	2,424	2,483	4,907
430	Alliance	7, 607	6-21	926	993	1,919	125	785	821	1,606
491	Ashtabula	8,338	6-21				150	540	474	1,014
492	Avondale	4,473	6-21			1,235				1,650
453	Bellaire*.	9,934	6-21			3,346	425	894	945	1,839
494	Bellefontaine*	4,245	6-21		577	1,127	100	401	392	793
495	Broolzlyn	4,585	6-21		7)	1,307				719
496	Bucyrus	5,974	6-21		858	1,703	120	574	611	1,185
497	Cambridge	4,361	6-21			1,390				1,032
498	Canton -	26,189	6-21	3,461	3,634	7,095	1, 000	2,155	2,237	4,392
499	Chillicothe	11,288	6-21	1, 720	1,676	3,396	, 325	1,071	954	2,025
500	Cincinnati	296, 908	6-21		38)	84,338	10, 221	18,751	17,908	36,659
501	Circleville	6,556	6-21			2,106	- 218	624	1830	1,254
502	Cleveland	261, 353	6-21	37, 129	3土, 644	71, 773	*14, 013	18,964	18, 677	37, 641
503	Columbus	88, 150	6-21	12,866	12,559	25, 425	4,122	6,128	6, 333	12,461
504	Dayton*	61,220	6-21	7,795	7,671	15, 466	1,821	3, 854	3, 651	7,505
505	Detiance	7,694	6-21	1,193	1,076	2,274	- 500	674	628	1,292
500	Delawar	8,224	6-21	1,103	1,098	2,201	268	720	880	1,600
507	Delphos	4,516	6-21	816	874	1,690	250	450	500	950
508	East Liverpo	10, 956	6-21	1,850	1,805	3, 655	*307	1,196	1,135	2,331
509	Elyria --..--	5, 611	6-21	813	-838	1,651	325	$4 \pi 2$	582	1,054
510	Findlay	18,553	6-21	2,000	2,014	4,014	160	1,592	1,635	3,227
511	Fostoria	7,070	6-21	832	977	1,809	228	634	654	1,288
512	Fremont	7,141	6-21	1,142	1,284	2,426	477	599	587	1,186
513	Galion	6, 326	6-21	930	915	1,845	300	679	701	1,380
514	Gallipolis	4,498	6-21	947	953	1,900	110	547	610	1,157
515	Greenville	5, 473	6-21	606	602	1,208	105			952
516	Hamilton	17,565	6-21	2,829	2,705	5, 534	930	1,154	1,215	2,369
517	Ironton.	10,939	6-21	1,716	1,726	3,442	200	1, 099	1,122	2,221
518	Jackson*	4, 3:0	6-21	(1,5	23)	1,523			$78)$	1,178
519	Kenton*	5,557	6-21			1,394			03)	1,103
520	Lancaste	7,555	6-21	1,113	1,116	2,229	225	731	741	1,472
521	Lima	15, 981	6-21	512	500	1,012	500	1,252	1,230	2,482
$5 \% 2$	Lorain	4, 863	6-21		60)	1,360				825
523	Mansfield	13,473	6-21		03)	3, 603		1,226	1,281	2,507
594	Marietta	8,273	6-21		988	1,947	50	509	619	1,128
525	Marion	8,327	6-21		22)	1,622	150	529	450	979
526	Martins Ferry	6,250	6-21	(1,		1,830	200		3)	1,430
527	Massillon*	10,092	6-21	(3,4		3, 461		897	865	1, 762
5.28	Middletown	7,681	6-21	1,000	1,200	2,200		575	638	1,213
529	Mount Verno	6, 027	6-21	(1,6	$51)$	1,651	130	597	639	1,236
530	Nelsonville	4,558	6-21		800	1,597	45	590	647	1,237
531	New Philadelp	4,456	6-21	(1,4	3)	1,403				889
532	Newark.------	14,270	6-21	1,877	1,980	3, 857	300	1,228	1,360	2,588
533	Niles.	4,289	6-21		0)	1,420	200			901
534	Norwalk	7,195	6-21	1,143	1,165	2,308	308	651	659	1,310
535	Oberlin	4,376	6-21	(1,	23)	1, 323			8)	918
536	Painesville	4,755	6-21	574	542	1,116	200	385	376	761
537	Piqua..	9,090	6-21	1, 424	1,455	2,879	*312	724	639	1,363
538	Pomeroy	4,726	6-21	882	767	1,649	100	522	512	1, 034
539	Portsmouth	12,394	6-21	1,887	2,240	4,127	400	1,065	1,143	2,208
540	Salem --..	5,780	6-21	1. 769	- 786	1,555		+641	+592	1,233
541	Sandusky	18,471	6-21	2, 973	3,149	6, 122	1, 100	1,599	1,500	3, 029
542	Sidney	4, 850	6-21	781	756	1,537	160	518	- 466	-984
543	Springfield	31,895	6-21	4,840	4,481	9,321		2,583	2,515	5,098
544	Steubenville	13, 394	6-21	2,302	2,255	4,557	600	1,114	1,178	2,292
545	Tiffin.	10,801		1,494	1,494	2,988	700	(1,	0).	1,500
546	Toledo	81, $43 \pm$	6-21	12,610	13,2\%8	25, 888	4,000	5, 454	5,423	10,877
547	Troy	4,494	6-21	662	638	1,300	60	415	444	859
548	Urbana	6,510	6-21	956	898	1,854	200	583	542	1,125
549	Van Wert	5,512	6-21	801	866	1,667		637	698	1,335
550	Warren*	5,973	6-21	(2,	0)	2,340		575	598	1,173
551	Washington C .	5,742	6-21	782	829	1,611	*10	590	630	1,220
55.	Wellston ..	4,377	6-21	769	674	1,443	0	564	590	1,154
553	Wellsville	5,247	6-21	(1,		1,505			10)	1,010
551	West Cleveland	4,117	6-21	(1,		1,261				605

*Statistics of 1888-89.
enrollment，attendance，supervising officers，teachers，etc．－Continued．

－Kpuls jo esxnoo oxty 		Q								
 		$\stackrel{\rightharpoonup}{2}$	웅장 							
＇sesod －．nd jooyos dol pesn ssuipitinq jo requonn		e								
	＇те7о，	Q								
	＇өjeurait	$\stackrel{\infty}{\square}$								
	＇วセ⿺𠃊	\pm	மomनmmamay							
领安 or on 䓂品	${ }^{\prime} \mathrm{TC7O}, \mathrm{~L}$	$\stackrel{0}{6}$								
		19								
	－ 0 －	\pm								
К飞p गఛiqnd sooqos 		$\stackrel{90}{9}$	R							
stooyos Kep onqud u！stidnd ne до өоичриәтา ，sאep 		$\stackrel{e}{\pi}$	윤 							
өдөм stooyes pigiqd өч7 SKとp jo roqumn		F								

Table 1.-Statistics of population, private schools, and public school

enrollment, attendance, supervising officers, teachers, etc.-Continued.

c The number belonging at the end of the jear was 114,306 .
d Including one year in the kindergartens.

Table 1.-Statistics of population, private schools, and public school

*Statistics of 1888-89.
b Some schools were in session but 187 days.
enrollment, attendance, supervising officers, teachers, etc.-Continued.

[^76]d Estimated.

Table 1.-Statistics of population, private schools, and pullic school

[^77]a Estimated.
b The population of the State scholastic age, $8-16$, is 1,485 .
enrollment, attendance, supervising officers, teachers, etc.-Continued.

d The attendance of the pupils is very irregular, and but fow teachers are required.
e Population of the town.

TABLE 1.-Statistics of population, private schools, and public school

*Statistics of 1888-89.
enrollment, attendance, supervising officers, teachers, etc.-Continued.

[^78]ED 90 \qquad

TABLE 2.-Statistics of public evening schools in cities and villages containing over 4,000 inhabitants. \dagger

[^79]Table 2.-Statistics of public evening schools in cities and villages containing over 4,000 inhabitants-Continued.

[^80]TABLE 2.-Statistics of public evening schools in cities and villages containing over 4,000 inhabitants-Continued.

Table 2.-Statistics of public evening schools in cities and villages containing over 4,000 inhabitants-Continued.

* Statistics of 1888-89.
a Approximately.
b Estimated.
c Very few, if any, evening-school pupils attended day schools.

Table 2.-Statistics of public evening schools in cities and villages containing over 4,000 inhabitants-Continued.

[^81]TABLE 3.-Statistics of manual training in city public schools.

TABLe 3.-Statistics of manual training in city public schools-Continued.

TABLE 3.-Statistics of manual training in city public schools-Continued

Table 3．－Statistics of manual training in city public schools－Continued．

	City．		Branch of instruction．				Grades in which instruc－ tion is given．	Number of lessons a week．	Length of each lesson．	Total amount expended for manual training in 1889－90．			
													永
	1	2	3	4	5	6	7	8	9	10	11	12	13
32	Tidioute，Pa．－Con－ tinued．		Wood turning Blacksmithing Wood carving Mechanical drawing	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	12 -8 75 7	3	Eighth and ninth years Tenth year Ninth and tenth years Sixth to tenth years ．．		1 hour ．－．－．－．．．．．－－	\＄450	－		\＄43
33	Westchester，Pa－．．		Wood working		80	5		Two and one－ half．	1 hour		\＄14	\＄28	
34	Enoxville（Slater	80214	Sewing	2	154		Second and third．．．．．．－	Two．．．．．．．．．－	$1 \frac{1}{2}$ hours．	1，638	251	245	
	Training School），		Carpentry－－．．．	1 3	60 154	4	－－－．－do ．－						
			Housekeeping Cooking	3 2 2	$\begin{array}{r}154 \\ 80 \\ \hline\end{array}$		Second－．．．－．－－－．．．－－－－－	One－－－－－－．．．．－	1 hour－－－－－－－．－－－－－				
		3070		2 1 1	80 40	5 4 4	Second and thir	Two－．－－－－－－－－－－－－	$1 \frac{1}{2}$ hours．－．．．．－．－－ $1 \frac{1}{2}$ hours．－－－－－－				
35	Appleton，Wis．		Bench work in wood．－．－－ Wood carving．．．．．．．－	1	23 6	1	High school			450	150	$\omega_{6} 6$	
			Drawing	1	15	1							
	Eau Claire，Wis．		Bench work in wood．．．－－	1		4	Seventh，eighth，and high school．	Four		765	100		
				1	8 12	1	－High school．．．．．．．．．．．．．．．－	Four	11．hours．．．－．．．－－－－				
			Mechanical drawing．－－－－－－	1	60	4	－－－－－do	Three－－－－－－－－－－－	14，hours－－－－－－－－－－－－－				

Table 4.-Statistics of property, receipts and expenditures of public

* Statistics of 1888-89.
a Expenses of evening schools are included in columns 14 and 15.
b Salaries of teachers for half month of July, 1886.
c Estimated.
d This report includes the entire town.
e Value of real estate only.
schools of cities and villages containing over 4,000 inhabitants.

f Includes town and district taxes.
g No balances are carried over.
h Town and district taxes.
i Principally town appropriations.
j District taxes.

Table 4.-Statistics of property, receipts and expenditures of public

*Statistics of 1888-89
a Receipts from State taxes are included in column 7.
b This report includes the entire town.
c Town appropriations.
a District taxes.
schools of citics and villages containing over 4,000 inhabitants-Continued.

TABLE 4.-Statistics of property, receipts and expenditures of public

* Statistics of 1888-89.
a Receipts from State and city taxes are reported with county taxes in column 7.
schools of cities and villages containing over 4,000 inhahitants-Continued.

			Expenditures for the school year 1889-90.								
							$\begin{aligned} & \text { స్ } \\ & \text { n } \end{aligned}$				
10	11	12	13	14	15	16	1 \%	18	19		
$\left\|\begin{array}{rr} \$ 310 \\ 1,225 \end{array}\right\|$	$\begin{array}{r} \$ 19,166 \\ 2,231 \\ 2,475 \\ 6,956 \\ 6,500 \end{array}$	$\begin{array}{r} \$ 55,25 \% \\ 35,970 \\ 62,675 \\ 21,013 \\ 34,300 \end{array}$	$\begin{array}{r} 811,346 \\ 1,175 \\ 2,750 \\ 889 \\ 4,091 \end{array}$	824,94020,891					\$9, 961	8990	
					6, 950			…-.--			
				32,000	18,190 3,884		$\begin{aligned} & 28,816 \\ & 52,940 \end{aligned}$	$\$ 9,000$ $3,225$	7 1,735 1.949	91 92	
				11, 052	3,810 3,410		18,553		$\begin{aligned} & 1,949 \\ & 5,747 \end{aligned}$	93	
7,800	$\begin{array}{r} 530 \\ 1,910 \end{array}$	63	$\begin{array}{r} 644 \\ 3,337 \end{array}$	$\begin{array}{r} 8,474 \\ 22,774 \end{array}$	$\begin{array}{r} \tilde{3}, 612 \\ 16,320 \end{array}$		12,730			9596	
							42,431	$\begin{aligned} & 7,800 \\ & 3,500 \end{aligned}$	$\begin{array}{r} 116 \\ 17,592 \end{array}$		
		20,000 41,139	$\begin{array}{r} 11,303 \\ 3,480 \end{array}$	$\begin{aligned} & 19,742 \\ & 10,014 \end{aligned}$	$\begin{aligned} & 4,712 \\ & 3,487 \end{aligned}$		$\begin{aligned} & 15,000 \\ & 35,757 \\ & 16,981 \end{aligned}$	0	$\begin{aligned} & 8,382 \\ & 5,237 \end{aligned}$	989999100	
0	8,385	22,218									
41,000	2,163		6,314	70,431	-..--..-----		98,889		-...-...--	100 101	
		-12, 173		9,750			$\begin{aligned} & 11,400 \\ & 54,087 \end{aligned}$	500		- 423.102	
34,918	5,817	-79, 727			1,200	.-			16,267 104		
	12,130		22,000	36,260 26,260	10, 000		$\begin{aligned} & 54,087 \\ & 68,260 \end{aligned}$	5,000			
	13,641	-66, 881	$\begin{array}{r} 8,339 \\ 12,696 \end{array}$	$\begin{aligned} & 39,980 \\ & 51,843 \end{aligned}$	$\begin{array}{r} 11,798 \\ 3,417 \end{array}$...	67,756			106	
	5, 948	17,038		$\begin{aligned} & 7,637 \\ & 18,992 \\ & 10,090 \end{aligned}$	$\begin{aligned} & 1,608 \\ & \mathbf{5}, 943 \\ & \mathbf{2}, 575 \end{aligned}$	-		2,000	5,793	106108108	
	8,189	40,200					24,935		14, 765		
		44, 515	31,850				44,515			109	
15, 200	5,384	38, 026	15,896	8, 5,585	6,5163,108	0	30,46788	0	7,559	110	
	3, 229	11,702									
	1,799 14.744	33, 338	3,070	5,580	2, 892		13,952	-.--	2,051 112		
	14,744			10,980 7,548	3,393 1,895 3		17,443	0	$\begin{array}{r}15,995 \\ 9,465 \\ \hline 113\end{array}$		
0	14, 300	184,930	2,000	12,00121,284	$\begin{aligned} & 3,897 \\ & 6,319 \end{aligned}$	- 0	$\begin{gathered} 17,898 \\ 27,603 \end{gathered}$.--	17, 32.115		
	7,462	$\begin{array}{r} 38,341 \\ 147,643 \end{array}$								116117118	
	20,881			81, 390	10,924	-...---	122,485	--...--	$\begin{aligned} & 10,158 \\ & 25 \end{aligned}$		
	40, 805	153,847		59, 350					79, 373118		
	6,556 9,089	31,120 28,627	3,048	10, 880	4,587 3 3		18,515		12,605 9,812	119 120	
	- 9,088	28,627	600	12,542	3, 323		17,015 13,546	1,800	-9,812	120	
$-725,450$220,00012,000	10, 031	57, 962	1,82550,797	$\begin{array}{r} 12,883 \\ 204,927 \end{array}$	$\begin{array}{r} 3,489 \\ 66,595 \end{array}$.-.	$\begin{array}{r} 18,197 \\ 32,289 \end{array}$	126, 268	c35, 397123		
	28,641	63, $\mathbf{3 5}, 681$	3, 887	15,484 13,018	6,372 3,794	-	21, 856	0	41,995 124 14,998 125		
	38,779	30, 94,163	3,887 28,159 800	-27,787	7,219 5,060	-.--	63,165 22,218	0	30,998 126		
0	19,844	18,388		16,806	$\stackrel{5}{2}, 854$		9,660	0	15,969 8,728 128 128		
40, 000	6,905	32,039	12,651	19,598	3,595		35,844			128 129	
	13,706	34, 600		13, 817	5, 638		19, 455		15, 145	130	
	7,444 10,912	69,841 33,621	19,800	$\begin{array}{r}11,538 \\ 11 \\ \hline\end{array}$	6,134 4853		37, 4 172		32, 369	131	
	10,912 8,142	33, 621		11, 8 , 268	4,853		13,121		17,984	133	
19,985	17,949	65, 603	26,026	16, 192	5,669		47, 887		17,716	134	
0	32, 565	74,074		26, 610	9, 538		300, 148	0	37, 926	135	
		11, 405		11,700	1,400		13, 100			136	
	28,013	90, 923	4,078	34, 320	13, 179		51, 577	5,000	34, 346	137	
0	3,955 6,714	13,783 21,660		8.769	2,505 3,330		11, 11.74	0	2,509 9,930	138 139	
	38,919		10,000	26,942			43, 703	0		140	
	13,159	139, 997	23, 414	67, 704	17,534		103, 752		31,245	141	
				10, 250	4,165		14, 416	0	4,203.	142	
	$\begin{array}{r} 20,596 \\ 9,73 \bar{i} \end{array}$	33,150 27,110		12,831	2, 4 4,831		15,692 $14,8 \pm 8$	0	17,458	143 144	
		10, 493	150	7, 815	1,924		14, 9,889	-	12,601	145	
10,050	7,874	31, 438	2,700.	11,185	7,062		20,947		10,491	146	
		19,000		16,00u	2,000		18,000		1, 000	147	

b For a high school building.
c Includes $\$ 25,450$ raised for anew building.

Table 4.-Statistics of property, receipts and expenditures of public

	City.	Total taxable property in the city.			Receipts for the school year 1889-90.				
									जึ -1 -1
	1	3	3	4	5	6	7	8	©
	IOWA-contid.								
148	Burlington*	\$5,000, 000	\$16,666, 667	\$150, 000					
149	Cedar Rapids								
150	Clinton	1,890,000			¢5, 192	\$33, 266		\$90	¢33, 548
151	Council Blufis	5,869,523	14, 673, 897		2,712		22,626		65,338
152	Creston*	1,000,000	2,500,000	103,500	2,500	(26,0			23, 5 C0
153	Darenport	4,614, 630	$13,843,890$	$310^{\circ} 000$	a10.633	69,999	(a)	1,195	81, 828
154	Des Moines, East.	2,756, 820	5, 513, 640	207500	8,179	49, 018		260	59,487
15.5	Des Moines, West	8,122,410	20,306, 250	500,000	10,729	102, 468		802	113, 999
156	Dubuque ----	17, 000, 000	42, 500, 000	230,000	10,516	55, 771		79	66, 366
15%	Fort Lodge*.	802,743	2, 403, 2\%9	50,100	2,850		13, 027	$3 \geqslant 3$	16, 210
158	Fort Madison	1,850,000	7, 400, 020	44,000	3,100	11,225	175		15, 500
159	Iowa City	1,800, 000	3, 600, 000	60, 000					28,564
160	Keokuk	3, 320,408	6, 640, 816	110,000					
161	Le Mars	787, 298	2,361,894	52,000	1, 813	0	14, 134	121	16, 008
162	Lyons .---...	632,487	1,897, 461	43, 000	2,114		9,435		11,549
163	Marshallton	2, 450, 190	7,350,570	100,000	3, 527	31,312		442	35, 281
161	Mason City								
165	Muscatine			112,255	4,162	(28,		139	32,566
166	Oskaloosa	1,182,759	2,956, 888	118, 674	2,392		16,814	9,229	28, 436
167	Ottumwa	3, 487, 508	6, 975, 016	125,000	4,976		35, 461		40, 437
168	Sioux City			500, 000	17,518	(70,8	5)	79,348	167, 672
169	Waterloo (east side).	612,924		42,000	1,681		12,102	121	13.904
	KANSAS.								
170	Atchison	3, 094, 480	12, 377, 920	166, 000	5,662		32,363	516	38,541
171	Emporia	1, 500, 000	- 2,500,000	135, 967	3,283		21, 258	93	24, 634
172	Fort Scott	2,250,000		110, 000	2,365	28, 453		421	31,243
173	Hutchinson	1,963, 558	7,854,202	150, 000	2,463	18,705			21,169
174	Junction City			56, 840					
175	Kansas City-	10,624, 000	35, 113,333	255, 350	10,544	65, 818			76, 362
176	Lawrence .-.-.-. -	1, 896,021	6, 320, 070		3,847	20,967		3, 142	27, 956
177	Leavenworth	5, 361,800	13, 404, 500	198,000	7,404	47,667		3, 148	58, 219
178	Newton	1, 423, 008	7, 115, 043	100, 000	1,910	(28,4)	918	32, 318
179	Ottawa.	1, 427,512	5,710,168	55, 000	2,241	18,914	4, 016		25,174
180	Parsons			125, 000					
181	Pittsburg	765, 000	2,295, 000	84,000					
182	Salina	1,546. 742	6, 186, 969	87, 500	2,166	23,5\%5			25,741
183	Topeka	9, 434, 858	37, 739, 432	400, 000	11,737		72, 973	239	84,949
181	Wellington	1,200,000	3, 600, 000	65, 000	1, 850	(16,5		150	18,500
185	Wichita	9, 815, 792	29, 447, 376	395, 050	8,159	72,561		3,510	84, 230
186	Winfield........ KENTUCKY.	1,152, 978	3,458,934	80,000	2,106			169	25,280
187	Ashland			17, 971	1,541			4,0\%2	5,613
188	Bowling Green	2,750,000	2,750,000	38,000	4,500	9,000			13,500
189	Covington .-.	14,000,000	21,000,000	205, 800					68,874
190	Dayton----	1,150, 000	1, 150, 000	20,000	2,948	5,398			8,346
191	Henderson	3, 000,000	4,500, 000	64,800	5, 000	10,000		2,700	17,700
192	Hopkinsville	1,312, 000	1,968, 000	15,000	2,100	6,500		300	8,900
193	Lexington	12,000,000	16,000,000	150, 000	13, 000	27, 000			40, 000
194	Louisville	76, 269, 200	114, 400, 800	1,042,645	142, 930	226,755		7,574	377, 259
19.5	Newport	8,000,000	8,000,000	185, 000	16,671	20,169		11	36, 851
186	Owensboro	3,000,000	6,000,000	100, 000	5, 443	17, 026		618	23, 087
197	Paducah*			90, 600	10,179	10,000	0	600	20,7\%
198	Paris*			d11, 000	1,000	6, 000			
	LOUISIANA.								
199	New Orleans				37, 606	142,083		8,338	188,027

* Statistics of 1888-89.
a Receipts from county taxes are included in column 5.
b Account overdrawn.
c The receipts are for the year ended January 1, 1890; the expenditures for the year ended July $1,1890$.
schools of cities and villages containing over 4,000 inhabitants-Continued.

d One building was recently destroyed by fire.
e Overdraft, $\$ 113$.

Table 4.-Statistics of property, receipts and expenditures of public

* Statistics of 1888-89.
 a Deficit, 8.242.

6 Deficit, $\$ 525$
c This report includes the entire town.
schools of cities and villages containing over 4,000 inhabitants-Continued.

d Value of real estate only.
e The amount expended for evening schools, $\$ 62,641$, is included in columns 14 and 15.
f Fuel is not included.
g Deficit, $\$ 197$.
h Balances are turned into the city treasury.

Table 4．－Statistics of property，reccipts and expenditures of public

	City．	Total taxable prop－ erty in the city．			Receipts for the school year 1889－8．				
	1	2	3	4	5	6	\％	8	9
	MASSACEUSETTS－ continued．								
257	Pittsfield	\＄9，920， 149	¢9，920， 149	8200，000	\＄130	\＄86， 319		\＄461	39
$2 \overline{2} 8$	Plymouth	5，755， 400	5，755， 400	79，500					
259	Quincy＊	9，757，960			0	50， 950	0	90	51， 010
$2 \% 0$	Salem	26，055， 551	26，055， 551	380，500		97， 201	\＆2， 539	1，143	100， 873
261	Somerville	30，004， 600	30，004， 600	452， 825		183， 897			183，897
262	Southbridge ．－．－－	3，217， 294	4，289， 724	57， 100		17， 250		151	17，401
263	Spencer－－．．．－－－－－	4，065， 516				16，458			－－－：－
264	Springfield	44，493， 633	44，493， 633	650， 645		183，703		648	181， 357
205	Stoneham	3，406， 871	3，406， 871	76，500		16， 200		36	16， 233
256	Taunton	17，823， 032	17，823， 032	320，000		73，500		553	74， 053
267	Waltham．	13，958， 330	13，958， 330	265， 664					
268	Watertown	8，000，000	8，000，000	200，000		22， 205			
259	Westfield．	6，576，514	9，395，020		69	29，416			29，485
270	Weymouth	6，441， 845	6，441， 845	157， 030	58	37， 800		1，203	39， 031
271	Woburn	8，918， 306	8，918， 306	200，000	89	32， 148		197	32， 434
272	W orcester MICHIGAN．	69，403， 251	69，403， 251	1，200，111		251，948		722	252， 670
273	Adrian	3， 979,600	3，979，600	130，000	7， 081	13，478		962	21，521
274	Alpena	3，853， 775	5，780， 663	55， 000	4，136	28， 024			32， 160
275	Ann Arbor－－－－－－	6，154， 130	6，154， 130	193， 000	3，895	30， 915		7，679	42，489
276	Au Sable．－．	1，900， 000	1，900，000	8，000	1，300	10， 000			，
277	Battle Cree	4，250， 000	4，250， 000	200，000	4，487	39， 698		368	44，553
278	Bay City	10，117， 205	10，117， 205	204， 000	11， 779	59， 085	315	307	
279	Big Rapids．．．．．．．－	2，01\％， 410	2，017， 410	50，000	2，216	10，452	75	170	12，913
280	Cadillac．－	1,	1，781，-761	30,000 12,000					
282	Coldwater	3，767， 000	5，022， 666	75，000	1，857	16， 234	0	5，914	14，005
283	Detroit．	156，505， 790	156，505， 790	1，591， 100	83， 483	449， 796	0	14， 357	547，636
284	East Saginaw			235， 949	12，557	82，512	157	2，137	97， 363
285	Escanaba－	1，110， 877	3，33） 2,62	50，000	4，376	6，610		360	11， 346
285	Flint．	4，659，550	4，659，560	125， 000	3，142	28， 985		1，397	33， 524
287	Grand Haven ．－．－	1，649，635	1，649， 635	50，000	2，440	12， 654		531	15,147
288	Grand Rapids．－．－	21，625， 202	64，875， 606	710， 000	19，932	165， 140	13，502	8，450	207， 521
289	Ionia－－－－－－－－－－－			60，000	1，742	14，582		1，18？	17，505
290	Iron Mountain＊－－			25， 000					
291	Ironwood．			45，000					
292	Ishpeming	5，423， 320	10，816， 640	110， 000					
293	Jackson，district No． 1.			125， 000					
294	Jackson，district No． 17.			55， 000					
295	Kalamazoo ．－．－．－	7，101， 650	9，468，867	210， 000	6，761	40，318	1，976	1，593	50，678
296	Lansing			120， 000					
297	Ludington	1，410，000	3，525， 000	$\begin{aligned} & 15,000 \\ & 88,000 \end{aligned}$	3， 010	27， 135		740	30，916
299	Marquette			94， 000	1，754	49，000			50，754
300	Menominee	2，540，074	4，233，457	50，000	1，763	19， 947		14	21，724
301	Monroe＊－－－－－－－			32， 000					
302	Mount Clemens．－	1，600，000	3，200， 030	35， 000					
303	Muskegon．	6，103， 080	18，327， 240	425， 000	16， 000	61，761	386	75， 423	153，570
304	Negaunee	7，200， 000	10，800， 000	48，000	5，164	14，000		144	19， 308
305	Niles	1，646，750	2，195， 667	45， 000	1，565	11， 145	66	279	13，055
305	Owosso	1，250 000	3，750， 000	118， 000					
307	Pontiac	2，550，550	2550,550	100， 000	4， 198	13， 011		689	17，898
303	Port Fiuron．．．．－．	4，094， 300	4，094，300	110， 000	5，400	22， 23.3		627	28，259
309	West Saginaw			205， 704	7，745	42， 393		1，132	51，290
310	Sault Ste．Marie．			37， 000	1，884	11，653	0	767	14， 304
311	Traverse City ．－－－			40，000					
312 313	West Bay City．－－	2，200，000	4，400，000	90，000	6，799	28，670	163	168	35， 800

＊Statistics of 1888－89．
schools of cities and villages containing over 4,000 inhabitants-Continued.

TABLE 4.-Statistics of property, receipts and expenditures of public

* Statistics of 1888-89.
a Expenses of evening schools are included in columns 14 and 15.
b Receipts from city and county taxes are included in column 5.
schools of cities and villages containing over 4,000 inhabitants-Continued.

[^82]e From fines and liconses.

Table 4.-Statistics of property, receipts and expenditures of public

schools of cities and villages containing over 4,000 inhabitants-Continued.

TABLE 4.-Statistics of property, receipts and expenditures of public

schools of cities and rillages containing over 4,000 inhabitants-Continued.

c Amount due treasurer, 82,553 .
d Real estate only.
e Receipts from county taxes are included in column 5.

TABLE 4.-Statistics of property, receipts and expenditures of public

	City.	Total taxable property in the city.			Receipts for the school year 1883-90.				
	1	2	3	4	5	c	7	8	9
	$\begin{aligned} & \text { NEW YoRE-con- } \\ & \text { tinued. } \end{aligned}$	$a \$ 1,480,000$$6,300,000$741,889	$\begin{array}{r} a \$ 2,466,667 \\ 8,400,000 \\ 741,889 \end{array}$	$\begin{gathered} 810,000 \\ 137,000 \\ 250,000 \\ c 325,325 \end{gathered}$	$\begin{array}{\|c} 9944 \\ 3,029 \\ 1, \\ 11,759 \end{array}$		820		$\begin{aligned} & 845929 \\ & \hline 49,370 \\ & 158,028 \end{aligned}$
474	Waterloo-								
476	Whitehall.								
477			6,337,500						
478	Asher	4,225, 000		$\begin{aligned} & 35,000 \\ & 2,5000 \\ & \text { on } \end{aligned}$	$\begin{aligned} & 2,719 \\ & 2,500 \\ & \hline, 50 \end{aligned}$	$\begin{array}{r} 12,375 \\ 4,500 \end{array}$	7,000	900	15,994 14,000
480	Durham.					7,437		106	
481	Fayettevilie		2,000,000	e 100	700		500		3,200
${ }_{483}^{482}$	Goldsboro -		1,800,000	15,000 6,500		5,955	2,217	166	8,338
484	Raleigh*				548			39	1,693
$\begin{aligned} & 485 \\ & \hline 480 \\ & \hline 80 \end{aligned}$	Walisbury			8,000	600				2,800
	No								
	Fargo --...	$2,513,630$	3,770,415	$\begin{gathered} 210,000 \\ 80,000 \end{gathered}$	3,595	15, 003		420	19,018
488	Grand Forks..... онго.								
489 490	Akron Alliance	$\begin{array}{r} 10,889,050 \\ 1,855,000 \end{array}$	$\begin{array}{r} 18,148,416 \\ 3,091,667 \end{array}$	$\begin{aligned} & 532,500 \\ & 125,000 \end{aligned}$	$\left.\begin{gathered} 12,437 \\ 2,928 \end{gathered} \right\rvert\,$	99, 437	20,541	1,974	$\begin{array}{r} 113,848 \\ 24,330 \end{array}$
491	Ashtabula.-.								
492	Avondale			${ }^{75}, 000$					
493	Bellairo*	2,000,000	3,000,000	75,000 50	1,7	10,			2,581
495	Brooklyn				-----	--			
${ }_{497}^{496}$	Bucyrus			110,000 100	2,640	9,667		530	12, 837
498	Canton-	10,000,000	10,000,000		10,997	67,770			78,704
499	Chillicothe			2,000,	5,618	(800, 042)	29		
500 501	Cincinnati		4, 877\%000$159,870,975$$88,000,000$						822,170 19,25 712
502	Cleveland			3,800, 000	104, 384	232, 2675		14,245	277,754
503 504	Columbus			$\begin{array}{r} 1,464,350 \\ 1 \quad \begin{array}{r} 700,000 \\ 100 \end{array} \end{array}$	$\begin{aligned} & 39,409 \\ & 23,920 \\ & 2,92 \end{aligned}$			1,431	
505	Dayton*--		88, 000,000			10, 156	-----	1,307	15, 24 \%
5	Delaware			100,000 130,500 50	3,784				
	Dast Liv	2, $12 \overline{4}, 430$	$2,124,430$	$\begin{aligned} & 50,000 \\ & 82, \\ & 8,0,50 \\ & 8, ~ \\ & 8, \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6,000 \\ 5,665 \end{array} \end{aligned}$	\cdots	3,000	$\begin{array}{r} 1,000 \\ 1,701 \end{array}$	$\begin{aligned} & 10,000 \\ & 23, \\ & 320 \end{aligned}$
509	Elyria					49,506		$\begin{array}{r} -1,130 \\ 4,120 \end{array}$	
510	Findlay	$4,120,000$	$12,360,000$	266, ${ }^{\text {2, }}$ 200	${ }_{\text {¢ }}{ }^{6}, 108$				56,744
512	Fremont	2, 250,000$2,35,290$$2,421,695$	$\begin{array}{r} 3,750,000 \\ 2,35,9090 \\ 2,421,695 \end{array}$	60,000115,000	3,760	17, 852	339		21,95116,60516,172
513	Galion							------- ${ }^{-1}$	
514	Gallipolis.			53, 950	2,945	12,75	431		
515	Hreenvillo ---	$6,459,110$$3,000,000$	-12,918,220	9,104100,000100	$\begin{array}{r} 9,401 \\ 29,178 \end{array}$		--.-----	--7 6 -	$\begin{aligned} & \begin{array}{l} 56 \\ 29,819 \end{array} \end{aligned}$
517	Ironton								
	Jackson			\% 57,000	3.058	17\%,0¢0			
519	Kenton*	2,875,000	-..				---148		$\begin{aligned} & 20,5 \overline{502} \\ & 36,860 \end{aligned}$
521	Lancaster								
5	Lorain			100,000	5,918	30,92			
	Manstiel	$\begin{array}{r} 2,415,126 \\ 94,000 \end{array}$			2,770	13,375	----.-.	583	16,728
524	Marietta		-------.-...---	$\begin{gathered} 40,000 \\ 97,000 \\ 60, \end{gathered}$					
	Marion ${ }_{\text {Martins }}$				--7-7-7				
527	Massillo	--...-...-..--		$\begin{array}{r} 60,0,0 \\ 140,000 \\ 114,800 \end{array}$		$\cdots \bar{i} 2,5$	511)	712	17,041
28	Middletown								

[^83]schools of cities and villages containing over 4,000 inhabitants-Continued.

d No buildings are owned.
e The buildings usea as school houses are owned by churches.
f Deficit, $\$ 4,413$.
g Overdraft, \&8,065.

Table 4.--Statistics of property, receipts and expenditures of public

*Statistics of 1888-89.

a Interest on bonds is included in column 18.
schools of cities and villages containing over 4,000 inhabitants-Continued.

[^84]cAccount overdrawn.

Table 4.-Statistics of property, receipts and expenditures of public

		Total taxa erty in	ble prophe city.	Fis	Recei	for th	sch	yea	889-90.
	City.								
	1	2	3	4	5	6	7	8	9
	PENNSTLVANIAcontinued.								
586	Easton	\$8,417, 000	\$8,417, 000	\$269,229	\$4,706	¢50,207	$\$ 949$		\$55, 862
587 588	Erie			*356, 700	8,529	100, 473	1,493	\$334	110,829
589	Greensburg				1,693	20,474		1,222	14,763
590	Harrisburg	19, 916,435	19,916, 435	420,098	9, 177	82,597		4,835	96,610
591	Hazleton.			75, 000	2,597	23, 116		330	26,043
592	Homestead				842	14,724			15,566
593	Huntingdon			*66,000	1,709	(\$10,			12, 130
594	Johnstown-				3,216		0	11,760	14,976
595 596	Lancaster.	11,000, 000	11,000, 000	276,600	9,795	49,424		607	59, 826
597	Lebanon			250,000	3,454	23,032		2	26,488
598	Lock Haven	1,600,000	4,800,000	65, 000	2,593	12, 751		1,290	16,632
599 600	McKeesport			140, 000	3. 229	38, 372		637	42,238
600 601	Mahanoy City			60,000	7, 311	15, 943			23, 283
601	Mauch Chunk				1,309	11,421	0	0	12, 733
602	Meadville	2,000,000	4,000,000	175,000	3,271	28,200 8,491		1,428	32,859 9,644
604	Milton				1,129	6,393		1:139	8,661
605	Monongahela				1,227	10,580		806	12,613
605	Mount Carmel	7000			1,563	10, 310			
608	New Brighton	2,500,000	2,500,000	50,000	1,408	13, 652		938	16, 608
608	New Castle.	3,650,000	5, 475, 000	15,000	3,013	25, 140		880	29,033
610	Norrisown	7,250,000	9,666, 667	180, 000	5, 063	35, 044		1,153	41, 260
612	Olyphant				2, 742	23, 7 , 874		1,526	10,142
613	Philadelphia.	688,713,518	765, 237 , 242	8,150, $2 \overline{3}$		2, 962, 795			962, 795
614	Phoenixville	3, 002, 693	4, 504, 533	50,000	2,475	16, 962		423	19,860
615	Pittsburg	182, 000,000	182, 600, 000	2,230, 000	51, 802	597, 516		11, 829	661,148
616	Pittston	760,000 678,000	$3,040,000$ $6,780,000$	80,000 45,000	$\stackrel{2}{2,565}$	14,366 13,996	8	433 22	17, 372
616	Pottstown	$4,581,855$	$9,163,710$	115, 164	3, 657	26, 969		2,944	33,507
619	Pottsville	4, 011, 915	12, 035, 745	220, 000	2,786		31,730	1,645	38, 151
	Reading.-	23, 500, 000	35, 250, 000	414, 800	20, 544	105, 100	95	5	125,739
622	Renova-	467 ,	1,401, 053	500, 000	17,696	88,574		7,127	219,308
623	Shamoki	850,000	4,250,000	89,000	3,582	35, 145			38,727
624	Sharon.			50,000	1,748	13,280			15, 028
625	Sharpsburg				966	5,922			6,888
626	Shenandoah -----	1,866, 050	5,593,150	91,000	4,047	26, 077		729	30,853
628	South Easton...-	2,227,000	3, 340,500	53,000	1,557	13, 300		129	14,986
629	South Chester.				1,268	15, 819		7, 045	24, 132
630	Steelton	3,452, 495	3, 452,495	100, 400	1,594	16, 753		70	18, 418
632	Tamaqua	*1,939, 685	*2, 399,370	* 46,600	2,024	9,097		2,411	13,532
633	Tarentum				601	7,510			8,111
634	Titusville	1,372,753	2,287, 922	65,775	2, 852	26,290		1,938	31,080
6335	Towanda				1,143	11,201			
637	Uniontown	*1,800,000	*3,600,000	50,000	1,682	9,741			1
638	Warren	1,925, 154	2, 887, 731	30,002	1,314	10,975	691	77	13,057
639	Washington --	*2,921,077	*2, 921, 077	45, 150	1,597	16,826		508	18,931
640	West Chester	5, 802, 000	5, 802, 000	100, 000	2,342	21,021		194	23, 557
641	Wilkesbarre, district No. 1.				3, 180	38,801			
642	Wilkesbarre, second district.	719,231		75,000	1,200		18,000	150	19,350
643	Wilkesbarre, third district.	2,800,003	16, 800, 000	170,000	3, 88	43, 799	216	17,049	61,916
644	Wilkinsburg.				769	13,770		23,538	44,077
646	York -..---.--	$8,200,000$	12, 266, 667	184, 500	6,119	43, 498		306	49,923

schools of cities and villages containing over 4,000 inhabitants-Continued.

Table 4.-Statistics of property, receipts and expenditures of public

a This report includes the entire town.
 6 From town taxes
 c From school district taxes.

d Receipts from State taxes are included in column 7
schools of citics and villages containing over 4,000 inhabitants-Continued.

e Receipts from State and city taxes are included in column 7.
f Receipts from county taxes are included in column 5.
$g \$ 530$ transferred to the sinking fnnd.
$h \$ 7,452$ expended in excess of receipts.
i Deficit, $\$ 285$.

TABLE 4.-Statistics of property, receipts and expenditures of public

* Statistics of 1888-89.
a Teacher received no extra compensation for service in night schools.
b The items amount to $\$ 42,427$.
schools of cities and villages containing over 4,000 inhabitants-Continued.

c Under control of board of public works.
d Does not include repairs made by board of public works.

Table 4.-Statistics of property, receipts and expenditures of public

*Statistics of 1888-89.

Table 5-List of cities and villages containing over 4,000

City or village.	Population.	City or village.	Population.
Alabama:		Illinois:	
Anniston	9,998	Alton.	10,294
Bessemer	4,544	Austin	4, 051
Florence	6, 012	Charleston	4,135
zona:	5,150	Dixon ${ }^{\text {Duain }}$	4,161
Arkansas:		Kewanee	4, 569
Hot Springs	8,086	Macomb	4, 052
Pine Bluff	9,952	Mattoon	6, 833
California:		Oak Park	4, 771
Alameda	11, 165	Pana	5,077
Berkeley	5,101	Indiana:	
Fresno --	10,818 4 4,395	Hammond Kansas:	5,428
San Bernardino	4,	Argentine	4,732
Colorado:		Arkansas City	8, 347
Highlands	5,161	Kentucky:	
Trinidad	5,523	Frankfort	7,892
Florida:		Maysville	5,358
Jacksonville.	17,201	Richmond	¢, 073
St. Augustine	4,742	Winchester	4,519
Georgia:		Louisiana:	
Brunswick.	8,459	Maryland:	
Thomasville	5,514	Annapolis.	7,604

${ }^{1}$ In the preparation of the summaries on pp. 613-615 the statistics
schools of cities and villages containing over 4,000 inhabitants-Continuod.

inhabitants, concenrning which no school data are at hand. ${ }^{1}$

City or village.	Popula-	City or village.	Popula- tion.
		North Carolina:	
Cambridge	4,192	Concord	4,339
Cumberland	12,729	Henderson	4,191
Missouri: Sedalia		Wilmington	20,056
Sedalia	14,058 5,013	Oklahoma: Oklahoma	4.151
New York:		Oregon:	
College Point	6,127	Albina	5,129
Corning .Glens Falls	8,550 9,509	Virginia: ${ }_{\text {Newport News }}$	4,449
Greenbush	7,301	Washington:	
Hempstead	4,831	Fairhaven	4,076
Jamaica	5,361	Olympia	4,698
North Tona	4,793	Port Townsena	4,558
Nyack...	4, 111	Whatcom	4,059
Oneida.-	6,083	Wisconsin:	
Port Richmond	6,290	Ashland	9,956
Saugerties	4, 237	Beaver Dam	4,222
Seneca Falls	6,116	Kaukauna	4,667
Suspension Bridge	4,405	Manitowoc	7,710
Tonawanda	7,145	Superior.	11,983
Warerty	4,123 12,987	Watertow	8,755
White Plains	4,042	Laramie	6,388

of these cities were estimated. See font note on page 613.

Table 1.-Summary of Statistics

Noтe.-The figures in the " total" columns do not always represent the addition of the "male" alone, and the separation into sex could not be made, hence in the " total" columns there may
of Public High Schools，1889－90．

Number prepar－ ing for college． Classical course．			Number prepar－ ing for college． Scientific course．			Number of stu－ dents who gradu－ ated or completed their studies in 1889－90．						
$\stackrel{\dot{\sim}}{\stackrel{\rightharpoonup}{c}}$		$\begin{aligned} & \text { लై } \\ & \text { さे } \\ & \text { से } \end{aligned}$	$\stackrel{ \pm}{\infty}$	$\begin{aligned} & \text { © } \\ & \text { స్ } \\ & \text { ష్ర } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { స్ं } \\ & \text { さ̀ } \\ & \text { E } \end{aligned}$	$\stackrel{\dot{1}}{\stackrel{\circ}{\mathbf{T}}}$						
12	13	14	15	16	17	18	19	20	21	22	23	24
7，984	6，915	14， 969	6，946	7， 374	14， 320	7，692	14，190	21，882	956，832	\＄19，171， 512	\＄4，354， 092	\＄404，973
4，163	2，406	6，641	2， 575	1，828	4， 403	3，275	5，466	8，741	417， 165	17，258， 712	1，253， 478	148，893
， 508	${ }^{2} 512$	1，020	－164	1， 139	， 303	${ }^{3} \mathbf{3}$	5， 637	8， 974	18，558	1，605，545	1，303，200	24， 247
393	457	850	316	285	601	265	552	817	28， 027	1，986， 595	414，169	53， 148
2，636	3，270	5.906	3， 479	4， 637	8， 116	3， 476	7，108	10，584	468， 442	25，627， 008	1，976， 284	170，093
281	268	552	412	485	897	339	＋ 427	1766	24， 640	2，693， 682	406， 961	8，592
346	214	560	198	150	348	224	354	578	13，184	528，511	39，657	4，303
114	86	200	100	30	130	126	199	325	5，500	667， 470	5，241	3， 695
159	134	291	85	89	174	88	140	228	11， 064	444， 395	60，736	9，853
1，560	922	2， 482	626	161	787	1，037	1，753	2，790	56， 517	4，853， 197	172， 749	14，812
65	51	116	14	2	16	81	109	190	5， 040	417，610	11， 124	6，860
354	132	486	225	71	296	207	277	484	19，953	1，237， 707	187， 110	12， 089
995	593	1，588	979	979	1，958	845	1，217	2， 062	232，431	4，986， 720	494， 433	74，655
112	44	228	117	172	－ 289	178	1，370	1，548	12， 282	746， 414	77，751	4，317
460	230	690	231	174	405	489	1，047	1，536	61， 194	3，376， 688	204， 677	18，309
7	8	15	11	16	27	14	29	43	330	131，720	25，027	262
122	152	274	48	46	94	40	59	99	987	116， 970	21， 218	2，046
12	15	27	6	0	6	134	222	356	6，750	333， 500	175， 140	7，429
178	98	276	32	18	50	52	110	162	1，541	499， 240		
						18	60	78	450	82， 500	16， 328	110
37	31	68	8	0	8	14	23	37	3， 900	34，500	13，281	1，141
13	17	30	3	2	5	7	34	41	450	34， 575	8，926	2，459
67	135	202	48	41	89	33	72	105	2，250	298， 800	28，930	8，120
72	56	128	8	16	24	25	28	53	1，900	76， 740	14， 320	2，680
37	15	52	26	29	55	69	81	150	9，321	315， 670	73，849	4，070
21	21	42	64	47	111	35	73	108	2，230	151， 400	11， 557	4，447
38	45	83	22	5	27	9	50	59	2，252	135， 050	23， 659	4，083
19	48	67	27	40	67	17	20	37	673	129， 375	31，205	2，340
4	7	11	3	5	8	20	98	118	1，060	57， 770	2，060	
189	241	430	144	128	272	92	189	281	9， 694	994， 255	256， 194	31，855
85	80	165	30	31	61	23	41	64	2，797	203， 075	15，645	6， 353
517	374	891	694	811	1，505	744	1，529	2，273	77， 220	5，141， 189	367，502	33， 993
231	325	556	61	74	1， 135	292	1，576	2，888	60， 976	2，246，982	303，902	9，592
275	374	619	388	672	1，060	501	1，243	1，744	52，548	3，294， 887	192， 214	29，811
335	252	587	574	656	1，230	403	1， 660	1， 063	103， 614	3，021，878	382，158	25， 416
146	248	394	339	427	1， 766	310	507	817	44， 536	1，843， 852	106，185	18， 152
160	171	331	449	630	1， 079	199	338	537	40，868	2，167， 165	97， 782	3，891
308	473	781	333	370	703	478	1，094	1，572	37， 503	2，458，392	130，370	24， 734
187	455	642	220	348	568	183	498	1，681	21，668	1，608， 835	121， 382	8，906
2	0	2	1	5	6	1	6	7	765	129，600	23， 389	250
20	23	43	9	7	16	3	13	16	910	143， 050	＠，500	860
212	241	453	168	290	458	180	303	483	11，452	1，937， 383	119， 098	5，796
243	334	577	243	347	590	182	341	523	16，382	1，633， 795	122， 802	8：692
20	16	36	12	13	25	14	11	25	1，785	180， 660	18，360	565
16	26	42				0	2	2	50	25，500	5，881	
19	29	48	55	66	121	15	23	38	4，809	546，700	51， 073	1，065
1	1	2	1	0	1	2	2	4	400	55， 475	7，500	0
0	0	0	0	0	0	0	0	0	350	85， 300		
0	0	0	4	3	7	10	31	41	1，080	75， 592	20，926	$12 \frac{1}{2}$
0	0	0				3	6	9	1，157	112， 430		275
35	47	82	9	6	15	1	7	8	841	276， 050		
8	12	20	4	3	7	10	37	47	800	232，750	153， 623	1，539
185	137	322	327	394	721	284	308	592	13，368	1，103，2\％5	149，598	5， 024

and＂female＂columns，as in many instances the school officials reported the total number be figures that do not appear in the other parts．

Table 2.-Summary of Number of Students

	Latin.			Greek.			French.			German.		
		$\begin{aligned} & \dot{\oplus} \\ & \text { డ్ } \\ & \text { g్ß } \\ & \text { E1 } \end{aligned}$	$\begin{aligned} & \text { స్ं } \\ & \text { डे } \\ & \text { EH } \end{aligned}$	$\stackrel{\text { ® }}{\underset{\sim}{c}}$		$\begin{aligned} & \text { స్ } \\ & \text { さे } \\ & \text { H. } \end{aligned}$		$\begin{aligned} & \dot{\oplus} \\ & \text { స్ } \\ & \text { g్ } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { تें } \\ & \text { N0 } \\ & \text { H. } \end{aligned}$	水		
1	2	3	4	5	6	7	8	9	10	11	16	13
United States	28,778	41,633	70,411	4,108	2,094	6,202	4,080	\%,7\%8	11,858	8,698	12, 640	21,338
North Atlantic Division	11,782	15, 081	26,843	2,872	1,411	4,283	3,457	5,413	8, 870	$3,15 \%$	4,476	7,633
South Atlantic Dirision	2,000	3,218	5,218	212	37	249	93	759	852	649	918	1,567
South Central Division-	1,149	1,733	2,882	187	104	291	98	240	338	502	335	837
North Central Division.	12,993	20, 628	33,621	755	498	1, 253	411	1,251	1,652	4,272	6,671	10,943
Western Division.	854	993	1,817	82	41.	126	21.	115	136	118	240	358
North Atlantic Division: Maine $\begin{array}{lllllll}817 & 1,143 & 1,960 & 258 & 128 & 386\end{array}$ 153 426 $5 \% 9$ 12 17 29												
New Hampshire	471	680	1,151	78	87	165	161	245	406	15	22	37
Vermont.	420	517	937	125	59	184	64	131	195	24	27	51
Massachusetts	3,799	5,343	9,142	1,054	741	1,795	2, 275	3,428	5,703	434	923	1,357
Rhode Isiand	381	501	882	114	67	181	101	178	279	15	32	47
Connecticut	813	1,029	1,842	280	66	346	143	310	453	315	430	745
New York	2,541	3, 081	5,622	539	196	735	383	603	986	1,289	1,489	2,778
New Jersey--	400	660	1,060	70	17	87	4	36	40	246	473	1,919
Pennsylvania --.-.-.	2,140	2,107	4,247	354	50	404	173	56	229	807	1,063	1,870
South Atlantic Division: Delaware	156											
Maryland	241	321	562	33	18	51	26	27	53	26	36	62
District of Columbia	381	622	1,006							261	377	638
Virginia	513	852	1,365	11	U	11	34	146	180	133	252	385
West Virginia	15	28	43							211	231	442
North Carolina	43	64	107	4	0	4	0	3	3			
South Carolina	79	110	189	2	1	3	7	130	137	1	0	1
Georgia.	417	934	1,351	101		108	14	422	436	12	20	32
Florida ------	152	157	309	61	11	72	12	31	43	5	2	7
South Central Division: 10												356
Tennessee	111	258	369					1		13	38	51
Alabama	86	110	196	4	0	4	0	9		10	15	25
Mississippi	80	101	181	1	0	1	2	0	,			
Louisiana	243	334	577				0	127	127			
Texas	509	731	1,240	113	104	217	86	99	185	150	216	366
Ohio	3,506	5,124	8,630	266	133	399	49	204	253	1,139	1,635	2,774
Indiana	1,489	2,106	3,595	11	9	20	3	15	18	1,285	1, 472	757
Illinois	2,091	3, 806	5,897	159	126	285	131	326	457	683	1,365	2,048
Michigan	1,046	1,525	2,571	90	72	162	70	221	291	497	819	1,316
Wisconsin	654	1,017	1,671	33	25	58	19	28	47	454	619	1,073
Minnesota	1,032	1,443	2,475	79	49	128	81	177	258	294	473	767
Iowa	1, 018	1,800	2,818	7	6	13	36	102	138	364	516	880
Missouri	855	1,777	2,632	62	45	107	10	159	169	119	205	324
North Dakota	29	168								6	10	16
South Dakot	30	58	88							,	11	12
Nebraska	482	752	1, 234	22	19	41	4	4	8	176	225	401
Kansas	761	1,152	1,913	26	14	40	8	15	- 23	254	321	575
Western Division: ----												
Wyoming	15	29	44									
Colorado.	61	106	167							11	26	37
Arizona	,	5	10									
Utah												
Nevada												
Idaho												
W ashington	23	25	48							22	32	54
Oregon.	27	48								14	60	74
California	694	735	1429	82		126		115	135	66	108	174

pursuing Certain Studies－Public High Schools，1859－90．

Algebra．			Geometry．			Physics．			Chemisury．			General history．		
灾		$\begin{aligned} & \text { స్ } \\ & \text { さे } \\ & \text { से } \end{aligned}$	$\stackrel{\oplus}{\stackrel{y}{c}}$		$\begin{aligned} & \text { స్ं } \\ & \text { + } \\ & \text { H. } \end{aligned}$	$\underset{\sim}{\stackrel{\omega}{4}}$	$\begin{aligned} & \text { © } \\ & \text { స్ } \\ & \text { は̈ } \\ & \text { E. } \end{aligned}$	$\begin{aligned} & \text { స్ } \\ & \text { 土० } \\ & \text { H. } \end{aligned}$	$\underset{\sim}{\Phi}$	$\begin{aligned} & \text { © } \\ & \text { స్ } \\ & \text { ష్ల } \\ & \text { En } \end{aligned}$	－	$\underset{\sim}{\text { ® }}$		－
14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
38，684	53，466	92， 150	18，539	24，755	43，294	19，231	26， 953	46，184	8，437	12，066	20，503	22， 018	33， 3 \％9	55，487
13，737	17，619	31， 356	7，406	7，789	15， 195	7，112	8，899	16，011	3，691	4，612	8， 303	8， 358	12， 449	20，807
2，240	3，404	5，644	1， 069	1，569	2， 638	1，170	1.842	3，012	372	412	8， 784	1， 4.52	2，263	3，715
2，354	3，146	5，500	894	1，377	2，271	1，241	1，73？	2，973	335	550	885	1，371	2，236	3，607
18，622	27， 137	45， 759	8，125	12，818	20，943	8， 964	13，515	22， 509	3,508	5， 984	9， 492	9， 638	14，926	24，614
1，731	2，160	3，891	1，045	1，202	2，247	744	935	1，679	531	508	1，039	1，179	1，505	2，684
1，054	1，276	2，330	531	627	1，158．	527	659	1，186	255	376	631	653	821	1， 474
435	550	985	249	359	608	281	337	618	158	167	325	215	328	543
463	576	1，039	204	274	478	213	229	442	106	147	253	224	279	503
3，492	4，306	7，798	2，127	636	2，763	2，092	2，606	4，698	1，314	1，795	3， 109	3， 022	4，445	7，467
398	423	821	183	281	464	185	218	403	74	109	183	197	423	$9: 0$
733	999	1，732	450	586	1，036	353	501	854	171	245	416	455	603	1，058
3，382	4，174	7，556	1，739	2，267	4，006	1，364	1，659	3， 023	710	826	1，536	1，168	2，165	3，333
7744	1，468	2，242	1，301	712	1，016	1，356	， 670	1， 026	156	296	1， 452	1， 485	－996	1，481
3，006	3， 847	6，853	1，619	2，047	3， 666	1，741	2，020	3，761	747	651	1，398	1，939	2，389	4，398
105	128	233	59	72	131	81	107	188	23	5	28	32	27	59
333	412	745	219	296	515	220	268	488	5	4	9	245	204	449
288	520	808	158	282	440	115	234	349	100	100	200	53	254	307
596	694	1，290	229	298	527	236	319	555	78	92	170	633	817	1，450
197	268	465	122	147	269	119	144	263	89	107	196	37	80	117
56	89	145	19	25	44	21.	26	47				70	109	179
59	268	327	15	135	150	25	292	317	，	4	5	47	307	354
481	904	1，385	190	225	415	282	361	643	45	74	119	208	336	544
125	121	246	58	89	147	71	91	162	31.	26	57	127	129	256
437	342	779	89	163	252	223	183	406	41	9	50	225	286	511
243	318	561	84	141	225	66	117	183	23	38	61	117	215	332
92	112	204	35	62	97	37	59	96	12	43	55	66	98	161
132	185	317	13	32	45	60	101	161	16	15	31	52	111	163
14	282	295	7	116	123	8	171	179	4	93	97	30	282	312
1， 211	1， 575	2，786	589	726	1，315	754	942	1，696	231	337	568	722	1，017	1，739
225	332	557	77	137	214	93	159	252	8	15	23	159	227	386
4，772	6， 233	11，005	2，019	2，848	4，867	1，801	2，595	4，396	706	1，138	1，844	1，900	2， 568	4，468
1，808	2，652	4，460	668	1，034	1，702	797	1，208	2，005	293	633	932	901	1，434	2，335
2，633	4，440	7，073	1， 394	2，601	3，995	1，512	2，555	4，067	663	1，303	1，966	1，697	2，964	4，661
1，733	2，705	4，438	655	983	1，638	－926	1，317	2，243	435	1， 587	1，022	1，124	1，678	2，802
1，348	1，758	3，106	742	939	1，681	631	895	1，526	148	193	341	621	8.0	1，441
868	1， 370	2，238	491	679	1，170	553	622	1，175	219	266	485	329	568	897
1，926	2，322	4，248	862	1，520	2，382	1，033	1，665	2，698	348	573	921	1，282	1，889	3，171
1，429	2，598	4，027	420	827	1，247	534	1，041	1，575	317	715	1，032	588	1，092	1，678
78	92	170	8	14	22	15	18	33	14	20	34	20	1 39	59
54	82	－ 136	29	50	79	30	52	82	7	11.	18	32	65	98
$8 \% 0$	1，216	2，035	346	577	923	473	671	1，144	195	309	504	466	$69 ¢$	1，162
1，153	1，669	2，822	491	746	1，237	659	906	1，565	157	236	393	730	1，112	1，842
86	112	198	32	43	75	30	43	73	12	14	26	33	66	99
28	40	68	7	18	25	7	18	25	4	2	6	9	15	24
135	213	348	51	93	144	82	140	222	16	29	45	120	207	327
	7	14	3	3	6	11	6	17				11	6	17
4		15				8	88888	16				15	20	35
50	100	150	14	21	35	39	58	97	14	33	47	38	28	68
26	43	69	26	36	62	－ 29	39	68	21	35	56	26	45	71 50
87	120	207	22	31	53	31	41	72	6	9	15	22	28	50
＋ 124	173	297	41	71	112	32	46	78	29	38	67	170	221	391
1，184	1，348	2，532	849	886	1，735	475	536	1，011	429	348	777	735	869	1，604

Percentage of male and female students in public secondary schools pursuing certain studies-1889-90.

Table 3.-Stutistics of Public

		Name of institution.	Name of principal.	Number of "secondary" instructors.	
				官	
	1	2	3	4	5
	alabama.				
	Alexander City.	High School	C. C. Slaton	2	2
	Auburn		Miss Annie W. Brockman-	0	${ }_{6}^{6}$
3	Birmingham		W. K. Brown.	2	2
	Chance........	Bethel High School.........-	C. C. Johnston, reporting officer.		
5	Decatur	High School (department)	H.C. Gilbert-.------------	2	0
6	Eufaula--.-..........	High School --.........-...--	J. J. Kilpatrick..............	1	0
7	Gaylesville	High School .-.-.-...-----..	S. L. Russell, reporting officer.		
8	Greensboro.	Tullibody Academy .-.-...	H. Johnson --------------	2	1
9	Marion .	Marion Academy	H. Y. Weissinger -......--	1	3
10	Mobile	Girls' High School.-----.---	E. R. Dickson, superintendent.	1	4
11	New Decatur	High School (department)-	Henry D. Wood .-......-.	2	5
12	Uniontown ... ARIZONA.	Uniontown Academy-.-....	J. H. Armstrong.	1	2
13	Mineral Park	High Schoo	Miss Alice D. Campbell.-.	0	1
15	Prescott		D. A. Lambright --....-...-	1	0
	Tucson		W. C. Bowman	1	
	ARKANSAS.				
	Belleville	Belleville Academy	J. G. Smyth	4	
17	Eureka Springs....-	High School .-................	C. S. Barnett	1	0
18	Fort Smith.........-	--...-do .-.......................	D. P. Nicholson-.--.....--	2	
19	Harrisburg.	do	R. L. Cowan-	$\stackrel{2}{2}$	$\stackrel{2}{2}$
20	Hazen -	-do	Thos. H. Wheat	2	$\stackrel{2}{2}$
21	Helena.	Jefferson High School.	J. Caldwell Davidson	1	0 2
23	La Grange.	Lee High School	J. E. Wheat	1	1
21	Little Rock	Scott High School	R. H. Tarham	1	2
25	Lonolke --	High School ---..---....----	J. J. Doyne -	2	5
26	Malvern	High School (department)	W. D. Leiper	1	0
27 28	Marianna.	Male and Female Institute-	T. A. Futrall	$\stackrel{2}{2}$	$\stackrel{2}{2}$
29	Ozark..	College or High School -.--	G. D. Turney .	$\stackrel{2}{2}$	
30	Paris	Paris Academy--	J. W. Parker	3	2
31	Salem	High School	C. T. Torryson	1	1
32	Springdale	do	Geo. A. Cole.--	$\stackrel{2}{2}$	2
34	Van Buren		E. H. Carson, A. M., M. B.-.-.	$\stackrel{1}{1}$	7
	CALIFORNIA.				
35	Arroyo Grande...	Grammar School (course	A. F. Parsons .-.-..-.....	1	3
36	Berkeley.-...........		Henry Veghte.		
37	Colton .-.................	Grammar School (course	Frank Matthews	1	6
	Colusa		Jno. L. Hayman	3	0
38 39	Fresno		T. L. Heaton, superin-	1	2
40	Gilroy		tendent. W. S. Hall	1	
41	Grass Valley		Granville F. Foster, M.A.-	2	1
42	Hollister .-.-		James W. Cutler.........		
43	Linden	Grammar School (course	F. G. Baird.	1	2
44	Lodi	Salem Grammar School	C. C. Adams	1	4
	Los Angeles..........	(course school). High School		1	
	Martinez .-............-		Miss C. K . Wittenmyer...	0	2
	Marysville	do	Mrs. Emma Hapsood.....	1	3

High Schools for 1889－90．

$\begin{aligned} & \text { Stude } \\ & \text { in sec } \\ & \text { aryg } \end{aligned}$	nts ond－ ade．	$\begin{aligned} & \text { Colo } \\ & \text { pup } \\ & \text { in } \\ & \text { clud } \end{aligned}$	red	$\begin{aligned} & \text { Num } \\ & \text { pre } \\ & \text { ing } \\ & \text { coll } \\ & \text { clas } \\ & \text { cou } \end{aligned}$	$\begin{aligned} & \text { lber } \\ & \text { par- } \\ & \text { for } \\ & \text { ege } \\ & \text { sical } \\ & \text { rse. } \end{aligned}$	$\begin{gathered} \text { Num } \\ \text { prep } \\ \text { ing } \\ \text { coll } \\ \text { scie } \\ \text { tifi } \\ \text { cour } \end{gathered}$	$\begin{aligned} & \text { aber } \\ & \text { far- } \\ & \text { for } \\ & \text { ene } \\ & \text { ic } \\ & \text { rse. } \end{aligned}$	Num of den whog uate com ple the studi 1889	$\begin{aligned} & \text { ber } \\ & \text { tu- } \\ & \text { ts } \\ & \text { rad- } \\ & \text { d or } \\ & \text { n- } \\ & \text { ted } \\ & \text { irr } \\ & \text { esin } \\ & -90 \text {. } \end{aligned}$							
$\underset{\sim}{\underset{\sim}{5}}$	$\begin{aligned} & \text { Ф. } \\ & \text { డ్g } \\ & \text { は̈ } \\ & \text { En } \end{aligned}$		通		盛	$$		$\stackrel{\oplus}{\stackrel{\oplus}{\aleph}}$	$\begin{aligned} & \dot{\oplus} \\ & \text { డ్ } \\ & \text { ష్ఠ } \\ & \text { En } \end{aligned}$			$\begin{aligned} & \text { :̈ } \\ & \text { O } \\ & \text { g } \\ & \text { Z } \end{aligned}$		Amount	$\begin{aligned} & \text { \&in } \\ & \text { O } \\ & \text { O } \\ & 0 \\ & \text { A } \end{aligned}$	
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
21	20															
2	17	0	0	7	10	1	1	0	3	No．	NO．－	1	－$\$ 1,000$	\＄803	\＄800	2
21	75	0	0	3	0	15	0	2	4	No．－	No．－	2，000	\％ 20		1，520	3
11	25							1	4	Yes．	No		9，300	4，150	113	5
15	10							0	0	Yes．	No．－	0	13，000	2，000	50	6
13	2							0	0							7
15	10	15	10					0	0		NO．－	0	1，500			8
11	9	0	0	10	8	1	1	6	6	Yes．	NO－－	50	2，500		0	9
									29	Yes	No．－	200	78，000	8，000	0	10
31	23	31	23	8	15	5	3	0	0	Yes．	No．－	1	25，050	7，500	200	11
15	20	15	20	10	12			0	4	Yes＿	No．－	0	4，500	1，206	1，400	12
2	6	0	0	0	0			0	0	NO．－	No．－	50	125	500	0	13
11	7			1	1	1	0	2	2	Yes．	No．－	200	10，300	7，000	0	14
3	13							0	0	Yes－1	NO．－	150	45， 050			15
30	24	0	0	12	5	0	0	1	0	Yes．	NO．－	500	5，000	400	1，200	16
7	11															17
30	63	0	0	2	10	2	10	2	4	NO．－	NO．－	100	40，300		75	18
10	12	0	0	0	0	2	0			No．－	No．－	0	1，025	0	2， 105	19
45	50			20	25	8	0			No．－	NO．－	0	1，500	1，350	700	20
11	17	0	0	2	10	4	0	4	3	Yes．	Yes．	200	30，150		100	21
28	26	0	0	4	6	1	0	0	0	No．－	NO．－	75	3，500	0	425	22
15	14	0	0	4	0			0	0	No．－	No．－	0	1，200	1，260	200	23
35	82	0	0					3	10	Yes．	NO．－	200	75， 200			24
16	11	0	0	2	3	0	0	6	3	No．－	No．－	30	6，000	3，800	90	25
2	21															． 26
20	30	0	0	5	0	0	0	1	1	NO－－	NO．－	1，500	6，000	2，500		27
13	20	0	0	2	2			3	4	No．－	NO－－	1， 0	5，000	1，450	175	28
24	19			1	1			0	0	No．－	NO．－	0	9，000			29
30	28	0	0	3	2	0	0	0	0	No．－	No．－	42	1， 600	1，500		30
15	8	0	0	3	0			0	0	No．－	NO．－	0	1500	1，385	827	31
18	19	0	0	7	4	11	15	0	0	No．－	No．－	0	4，000	1，100	200	32
6	10			6	8			3	14	No．－	No．－	100	10， 100	1，400	16	33
17	24	0	0	12	4	2	6	0	2	NO．－	NO．－	50	3，000	， 500	240	34
26	21	0	0	0	0	4	4	0	0	Yes．	NO．－	350	10，050	2，700		35
40	50	0	0	0	0			7	8	No．－	NO．－	200	180		150	36
5	7	0	0	4	2	0	0	1	3	Yes．	NO．－	200	25，000	5，770		37
18	20	0	0					9	9	No．－	No．－	1，000	10，100	3，060		38
39	50	0	0			14	7	0	0	No．－	No．－	217	3，500	4，000	270	39
16	31	0	0	0	0	0	0	5	6	NO．－	No．－	450	13，150	－8，000	468	40
31	60	0	0					10	22	Yes．		240	5，300			41
6	11	6	8	0	0	6	11	0	2	Yes．	No．－	300	6， 200	15,000	400	42
6	2	0	0	0	0			3	1	Yes．	No．－	350	4，690	2，400		43
2	7			0	0	0	0			Yes．	No．－	300.	10，100	4，000		44
122	133	1	0	6	2	116	131	12	10	Yes	No．．	350	82，500		275	45
15	17	0	0	3	0	2	3	0	0	No．－	No．－	600				46
69	103	1	2	0	0	0	0	5	6	Yes．	Yes．	1，000	20，500		100	47

Table 3.-Statistics of Public

High Schools for 1889－90－Continued．

Students in second－ ary grade．		Colored pupils in－ cluded．		Number prepar－ ing for college classical course．		Number prepar－ ing for college scien－ tific course．		Numberof stu－dentswhograd－uated orcom－pletedtheirstudiesin$1889-90$.		Is drawing obligatory？				Amount of State and munic－ipal aid．	Income from tuition fees．	
官		帚		$\stackrel{\dot{A N}}{\stackrel{\rightharpoonup}{\omega}}$	$\begin{aligned} & \dot{\text { ®. }} \\ & \text { స్ } \\ & \text { ష్ } \\ & \text { En } \end{aligned}$	$\stackrel{ \pm}{\text { 玉is }}$		$\begin{aligned} & \stackrel{\oplus}{心 .} \\ & \stackrel{y}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \text { Ф゙ } \\ & \text { డ゙ } \\ & \text { g్ } \\ & \text { 出 } \end{aligned}$							
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
12	45	4	5	0	0	0	0	0	11	Y es．	No．－	650	\＄40，150	0	\＄150	48
26	47	0	1	4	0	θ	0	5	7	Yes．	Yes．－	500	－ 250		100	49
24	14	0	0	4	3	20	11	0	0	Yes．	Yes	250	5，150	2，500		50
274	335	0	2	10	3	16	4	33	37	No．－	NO－－	50	40，750	0	1， 400	51
40	53	0	0			3	5	2	4	Yes．	NO．－	176	30，200			52
14	16	7	10	0	0	2	2	0	1	No．－	NO．－	175	7，575	4，632	81	53
23	30	0	0	4	0	2	4	6	4	No．－	NO．－	40	9， 200	3，500	296	54
10	20	3	7	0	0	10	20	0	0	Yes．	NO．－	350	35,100	19，439		55
56	58	0	0	3	6	9	5	3	3	Yes．	NO．－－	300	115，600			55
63	148	1	1	3	7					No．－	NO．－	254	13，000			57
24	24	0	0					1	1	Yes．	NO．－	883	10，005	2，568	534	58
46	55	0	2					3	5	Yes．	NO－－	250	105， 300	18，783		59
46	47															60
323	124	0	0	100	30			58	17	Yes．	NO－－	823	31，000			61
145	154	2	1	18	22	127	132	1	0	Yes．	No．－	675	150，000			62
58	47	0	0	0	0	58	47	85	91	Yes．	No．－	0	10，000			63
84	102	1	0					8	13	Yes．	NO－－	680	51，000	20，000	400^{-1}	64
21	20	0	0	0	0	4	4			Yes．		600	20，350			65
35	41															66
10	21	0	0	1	1	2	3	4	8	NO．－	NO－－	425	16， 300	2，000	100	67
33	40			12	38	21	0	8	8	Yes	NO．－	0	15， 200	7，000	200	68
49	79	0	0	10	18			11	28	Yes－	NO－－	600	40，500	7，000		69
19	17	2	1	3	2	0	0	4	2	Yes．	NO－－	100	35， 025	9，246		70
15	15	0	0	0	3	13	1	0	1	NO．－	NO．－－	30	30， 300	1，500	$10{ }^{-7}$	71
10	19	2	3					0	0	Yes．	NO．－	300	50， 150	1，000	0	72
3	6															73
18	16	10	0	3	5	2	1	0	0	NO．－	NO－－	800	61，200	18，000	200	74
5	9	0	0	0	0			0	2	Yes－	NO－－	400				75
15	28	0	0	0	0	15	28	2	6	Yes	NO．－	150	30,100	1，800	300	76
5	6	0	1	0	0	0	0	4	4	NO－－	NO．－	215	32， 000	3，000		77
38	40	0	0	4	5	34	35	1	3	Yes－	No．－		32，000		0	78
23	45	0	0	0	0	0	0	0	0	Yes．		150	125， 100		100	79
11	31	2	3					0	0	Yes．	NO．	800	40，500			80
19	38	0	0	0	0	0	0	0	0	NO．－	No．－	700	22，650	173		81
5	10	0	0	2	0			0	0	Yes．	NO．－	177				82
23	46	0	0	1	2	0	0	3	3	NO．－	NO．－	300	25，300		190	83
21	56	0	0	2	2			2	1	Yes－	NO－－	69	20，400	6，000	175	84
5	17	0	0	3	9	0	0	3	2	No．－	No．－	100	20，200	， 900	100	85
20	22									No．－	No．－	98	5，000			86
23	17	0	0	0	3	3	0	0	0	Yes．	NO．－	200	10，075	200		87
25	46															88
30	37															89
6	13	0	0					0	0	NO．－	NO．－	150	8，000			90
20	32	7	5	4	2	1	2	0	0	No．－	NO．－	200	58，400	20，000	0	91
4	5	0	0					0	2	No．－	No．－		5，625			92
25	35											2，500				93
10	10	0	0	0	0	0	0	8	3	No．	No．	16	8，050			94
16	24							3	5	Yes	No．	600	12，200	1，800		95
107	192	1	0	47	2	8		9	33	Yes	No．	300	100，500	92， 566	1，000	96
52	49	0	0	6	4	2	0	8	9	No．	No－	300		3，867	0	97
17	12							3	0	Yes	No－	125				98
16	18	0	2	0	0			8	7	No．	No．	43	7，018		60	99
30	27	0	0	4	0	5	0	8	7	Yes	No．	2，200	75， 300	0	500	100
21	11		1		0			2	1	No．	No－	300 60	5，010	20	441	101 102

Table 3.-Statistics of Public

	State and post-offle.	Name of institution.	Name of principal.	Number of 'secondary" ${ }^{\text {In- }}$structors. structors			
				彥	品		
	1	2	3	4	5		
	CONNECTICUT-con'd.			1	200021		
103	Danielsonville.	Killingly High School High School do	A. P. Somes John Haynes. Wm. E. Atwater Geo. N. Goddard Arthur M. Hyde.				
105	Enfiela --...						
106	Gildersieeve	Guilford Institute and High School. High School.					
107	Guilford.						
108	Hartford		Joseph Hall Elmer E. Randali Robt. L. Zink Miss A. C. Elliott	121110	10 4 4 1		
1109	Hazardaile....	Center High School-........					
111	Madison	$\begin{aligned} & \text { Cant High Schol High } \\ & \text { School. } \end{aligned}$					
112	Manchester	High School, eighth district.	C. S. Lyman..	1	0		
113	Meriden.		S. M. Frost, A. M.	233			
114	Middletown	High School	W. B Ferguson H.I. Mathewson John P				
116	New Britain	Hilihouse		1 3 8	- ${ }^{4}$		
	New Haven-		John H. Peck James D Whitmor.	8011			
1119	${ }_{\text {New }}^{\text {Nilford.- }}$	$\begin{aligned} & \text { Young Ladies High Hehool } \\ & \text { Center School............... } \end{aligned}$	Miss Marion A. Greene F. N. Hanchett.		$\begin{array}{r}3 \\ 7 \\ \hline\end{array}$		
120	Norwalk.	High School-.-...............-	Chas. A. Tucker--........Miss M.	1 0 0 1 1 1			
121	Orange ${ }_{\text {Plainvile }}$						
123	Rockville...		Isaac M. Agard, A. M-.....	1	${ }_{3}^{1}$		
124	Southington--....		Horace W. Rice Wm. C.Foote	1			
126	Stafford Springs...	High School	M. M. Elliott F. A. Verplank	1	${ }_{2}^{2}$		
	Thomaston -i-			111	${ }_{2}^{2}$		
128 129	Thompsonville	\qquad -	F. A. Verplank E. H. Parkman				
130	West Hartford			1			
131 132	Wethersfield.		J. O. Huriburt..........--		13311		
133	Windham						
134	Windsor		W. G. Mitchell	1111			
135	Winsted \qquad delamare.	--.-.-do...-................-					
136	Delaware City.	Academic Department of Public Schools. High School	T. E. Gardner .-.-.......--	1	0		
137	Felton		Roman Tammany Daniel S. Ells D. B. Jones A. Duncan Yocum	11111			
138	Lewes-....	Union High School North Milford High School. High School			26630013		
139 140	New Castie --.						
141	Smyrna						
142	Wilmington	do					
	DISTRICT OF COLUMBIA.						
143	Washington	High School \qquad High School, seventh and eighth divisions.	Dr. F. R. Lane F. L. Cardozo	${ }_{6}^{16}$	${ }^{26}$		
	Florida.						
145	Gainesville -	East Florida Seminary ... Duval High School..........	Edwin P.Carter-..........	52111	1 3 4 1 6		
147	Jacksonvie						
148	Lady Lake	High School (department)-Jefferson Collegiat Insti-tutete.latka Heights and Pa-latka High School.	Noble Harter W.B. Grifin B. L. Mullen and Miss P. T. Chamberlain				
149	Monticello......			1			
150	Palatika.				0		

High Schools for 1889-90—Continued.

Table 3.-Statistics of Public

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

		Name of institution.	Name of principal.	Number of "secondary" instructors.	
				遃	¢
	1	2	3	4	5
	Iflinois-cont'd.				
249	Harvard	High School	J. L. Curts .-.-.-............	1	1
250	Henry		J. W. Hartnett, superintendent.	1	1
251	Highland Park....	Deerfield Township High	Edw. W. Chase.	1	1
252	Hillsboro --.-.....	High School	H. M. Anderson, superintendent.	1	1
253	Hinsdale		J. S. Stanley .-...........-	2	0
$\stackrel{254}{255}$	Ipava ..-.	Washington High School.	J. E. Lnckey	$\stackrel{1}{2}$	0 3
256	Jersey ville	High School .-.-...........-	J. Pike, M. A.	3	0
257	Kankakee		Chas. W. Groves	1	2
258	Kewanee	-do	J. B. Russell	2	3
259	Lacon-...-..........-.	High School (department).	Ira M. Ong --	1	
260	Lanark	High School .-.-...-.-.-.-	F. T. Oldt. --.-.-.--	1	1
261	La Grange.	Lyons Township High	Henry W. Thurston		
262	La Salle	High School .-.-.-...........	L. A. Thomas	2	1
263 264	Lena.-		C. F. Philbrook	1	1
265	Lewistown	do	James W. Adams ---	1	1
266	Lincoln.	do .-.-........................	Ambrose M. Miller.	1	2
267	Litchfield.	do	Miss J. F. Rogers .-	1	1
268	Lockport	do	Charles Curtis .	1	1
269	Loda...--		I. H. Yoder	1	3
270	Macomb		J. M. Clenahan	1	1
271 272	Marengo	-	C. W. Hart --	1	6
273	Marseilles	do -...-.-.-.......................	J. P. Yoder -	1	1
274	Marshall	do --.......................	L. A. Wallace...	1	,
275	Martinsvilie.	do -----..........................	Wm. Randebaugh.	2	4
276	Mason City	do	S. B. Roach .-.-.	1	1
277	Mattoon-...........-	--.do ---------------	Miss Mary A. Port	2	${ }_{2}^{2}$
278	Mayfair.-............-	Jefferson Township High School.	Chas. A. Cook	2	2
279	Mendota.............	Blackstone High School ...	Wm. Jenkins.	1	${ }_{2}$
280	Meredosia	High School .-...............	B. E. Decker	2	2
282	Milford .-.		Frank Harry	1	1
283	Minier	do .-..............................	T. S. Davy .		0
284	Minonk	do --...........................-	L. J. Hancock	1	1
285	Moline	do	B. C. Caldwell	1	2
286	Momence	do .-..-...-...............		1	1
287 288	Monmouth	-----do --------..-............	James C. Burns .-.-.-.----	$\stackrel{2}{2}$	0
288	Monticello.		J. H. Martin, superintendent.	2	0
289	Morris .-.	.do	Geo. Blount --------	1	2
290	Morrison	do	Mrs. B. F. Burtch.	1	2
293	Nashville	do	Robt. Pence	1	1
294	Nauvoo.	do	Chas. E. Smith	1	0
295	Newman.	do	G. O. Moore	1	
296	Newton.-	do	N. S. Scovell	1	2
297	Nokomis	High School (department)	W. B. Davis	1	1
298	Normal	High School	Mrs. H. S. Hoffman ...	0	2
299	Nunda	Nunda and Crystal Lake.-. High School	S. W. Grimes	1	1
301	Oak Park		H. M. Clemens.	0	4
302	Odell.	-.do	Fred. Barton		1
303	Olney		H. W. Shreyock		
304	Onarga .-..............-	do .---..-............--...-	J. R. Freebern, superintendent.		
305	Oregon	do	J. W. Gibson		7

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1859－90－Continued．

		－゙ニポ	\bigcirc	Male．	
שix			4	Female．	
（0）0：woolo		（1N000 0 － 000	∞	Male．	
o：oforno		0： 0000 0： 00 － 100	－	Female．	
0 0000			$\stackrel{\ominus}{\theta}$	Male．	
 ： 0000		（\％AN：	E	Female．	
1 ®000			${ }_{6}$	Male．	
0： $1:$ \＄000		： 1 ¢	感	Female．	
river	Novernn		害	Male．	
			$\stackrel{\square}{4}$	Female．	
			${ }_{8}$	Is drawing obligatory？	
		$\begin{aligned} & \text { zu kuz } \\ & 0 \\ & 0 \\ & \text { on } \\ & 1 \end{aligned}$	4	Has the school a gymnasium？	
		\%	${ }_{\infty}^{1}$	Number of volumes in 11 － brary．	
	 		${ }_{6}$	Value of grounds，buildings， and apparatus．	
			$\stackrel{*}{*}$	Amount of State and munic－ ipal aid．	
			N	Income from tuition fees．	

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1889－90－Continued．

Students in second－ ary grade．		Colored pupils in－ cluded．		Number prepar－ ing for college classical course．		$\begin{aligned} & \text { Number } \\ & \text { prepar- } \\ & \text { ing for } \\ & \text { college } \\ & \text { scien- } \\ & \text { tific } \\ & \text { course. } \end{aligned}$		$\|$Number of stu－ dents whograd－ uated or com－ pleted their studies in 1889－90．			解					
$\begin{aligned} & \dot{\oplus} \\ & \text { 玉゙̈ } \end{aligned}$						号		官								
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
6 5 28 28	$\begin{array}{r} 25 \\ 8 \\ 32 \\ 26 \end{array}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	0	0	0	2 4 4	$\begin{aligned} & 0 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { NO-- } \\ & \text { No.- } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { NO:- } \\ & \text { NO.- } \\ & \text { NO. } \end{aligned}$	40 350 7	$\begin{aligned} & \$ 2, \\ & 40,200 \\ & 43,10 \end{aligned}$	862	＋ 132	367 368 369 370
27	23	0	0	1	3			1	3	N0	No．－	50	8，050		70	371
35	50	1	0	0	0	5	0	7	9	No．－	No．－－	0	¢0，100			${ }_{372}$
18	17	0	0	0	0	0	0	1	9	No．－	No．－	350	5，000	2，500	18	373
16	30	0	0	0	1	2	0	0		No．－	No．－	500	50， 300		125	374
21	42	0	0					0		No．－－	No．－	285	30， 200	5，859	134	375
12	42	0	0			0	0	3	3	NO－－	No．－	200	1，020		70	${ }_{377} 37$
23 42 42	50 46	31 0	37 0	20	20			3	12	Yes．	No．－	1，200	50， 000	5， 321 1,195	160 50	377 378
12	18	0	0					1	13	No．－－	No．－－	1，200	250	1，200	85	${ }_{379}$
30	27	0	0	0	0			1	3	No．－	No．－	203	15， 050		\％	380
18	43	0	0	6	24	12	18	6	11	No．－	No．－	242			60	381
16	15	0	0	0	0	1	0	4	2	No．－	No．－	50	6，150	1，936	42	389
41	37			13 0	4	2 0	8			NO－－	No．－－	20 100	12， 100			383 384
21	17	0	0	0 1	0 3 3	0	0 3	2	3	No．－	No．－	100	12，050	4,000 3,000	65	${ }_{385}^{384}$
18	${ }^{6}$	1	1	1 2	3 0	3 0	3 0	2	0	Yes－－1	No．－－	200 250	5，025	3， 2,700	15	385 386
30	45	11	8	5	7			6	9	Yes．	No．－	400	30， 300	6，553	86	387
22	10	0	0						0	No．－	No．－	200	8，000			388
7	21	0	0	0	0	4	12	，	6	No．－	No．－	25	12，100		300	389
26	35	0	0	0	0	0	0	5		No．－		150	48，333	9，369	40	390
16	30	0	1					5	3	No．－－	No．－	250	40，250	15， 000	150	391
13	21	0	0	5	${ }^{3}$	0	0	4	，	Yes．	No－－	500	7，600	3， 000	150	392
＋ 3	12	0	0	0	0			0	，	No．－	No．－	100	37， 050	800		393
11	34							2	3	No．－	No．－	200	29，110	3，112		${ }_{395}$
17	19	0	0					4	4	No－－	No．－	850	7，100	480	164	396
22	31	1	2					5				150	15， 200		208	397
12	17			3	6			1	5	No．－	No－－	200 2,600	3,200 21,000	1， 3 357	10	398 399
14	＋83							0	0	No．－－	No．－－		21，000	2， 3 ， 021	125	399
64	149															401
74	184	0	0	4	1	1	0	0	29	Yes．	No．－	500				403
40	83	0	1	40	83			2	5	No．－	No．－－	1，150				404
37	53	0	6					1	1	No－－	No－－	200	15， 025	2，500		405
18 40	24 59	0	1					1 6	1	Yes．	No－－	1，500	20，000	18，000	100	406
52	54															408
25	42	－	0					3	3	NO－－	NO－－	1，200	－25，200	8，200	200	409
36 20	64 31	3	1	12	16			7 0	11	No．－	No．－－	1,50 400	20， 200 12,050	2，000	230 100	4110
20	20										No．－	400			400	12
10	0			1	1			2	2	No．－	No．－－	164	7，050			413
25	43	－－－	1		$\stackrel{1}{2}$	1	0	2	6	No．－－	No．－	4， 463	70， 200	－22， 7×1	0	414
285	55.7	${ }^{6}$	12	5	5			20	53	No．－	No－－	2，000	116， 000	18，022	114	415
51 11	128	3	3			6	8			No．－	No－－	416 15	20，650			416
21	47	0	1	0	5	－	8	2	10	No．－	No：－	100	35， 500	1，200	210	418
39	47			2		0	0	2	10	No．－	No．．	400	75， 300			419
24	108	0	5	0	0	0	0	3	11	No．－	No．．	11，000	40，300		0	420
25	31	0	0		3			7	4	Yes．	No．－	200	35， 100	4，800	400	421
12	14							2		No．	No．．	565	12，100		95	422

Table 3.-Statistics of Public

	State and post-offce.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				-	¢
	$\underline{1}$	2	3	4	5
	IndIANA-continued.				
423	La Porte.-	High School-...-................			3
424	Lawrenceburg		T. H. Meek	1	1
426	Lewisville	Richsquare Academy	Philip B. Nye	$\stackrel{1}{2}$	$\stackrel{2}{2}$
427	Ligonier	High School (department)	Miss Cora Mather	1	2
428 429	Lima.-.	High School.----------.---	C. M. Leib-	2	3
430	Lynn..--	Graded School	Aibert H. Hunnicut.	1	1
431	Marion	High School.	Mrs. E. C. Gear	2	1
432	Martinsville	.-...-do-.-....	Miss U. M. Woodword...-	1	13
433	Mishawaka		B. J. Bogue--.........	2	1
434	Monticello	do	G. W. Martin	2	0
435	Moorefield		Miss Della Culbertson.	0	1
436	Mount Sterling.	do	W. E. Gleason....	1	,
438	Munice Nappanee		B F Deahl		
439	New Albany	Scribner High School (col-	W.O. Vance		1
440	do	ored. High School (white)	Joseph P. Funk	1	2
441	New Carlisle	High School (department)	A. H. Barber	1	1
442	New Castle	High School	Rosa R. Mikels	2	1
443	Noblesville		F. J. Greenwood --.......--	2	8
444	North Vernon		Charles N. Peak, superintenuent.	1	a8
445	Oakland Gity	do	J. M. Robinson -----	1	1
446	Oxford.		M. F. Orear, superintendent.	1	4
447	Patriot..	High School (department)-	J. W. Noel	1	2
448	Pendleton	High School	J. D. White.- A. D. Moffett	1	3 3
450	Petersburg		A. E. Crouch	2	0
451	Portland.	-----	C. M. McDaniel	1	0
452	Princeton		Miss Anna Small	2	0
453	Rensselaer.	do	F. W. Reubelt	2	0
454	Richmond		O. L. Kelso --..-------	5	3
455	Rochester		J. F. Scull, superintendent	1 3	1
456	Rockport		B. F. Jones -....	3	0
457	Rockville		L. H. Hadley .-.	1	1
458	Rushville	Shields High School.-....--	Wm. S. Whaod, superin-	3 1	1
	Sheridan	High School (department)	tenđent.	2	0
461	South Bend.	High School .-.-.-....-.....-	E. F. Lohr	2	,
462	Spencer.	...---do .-.-.-.-...-	Harvey Lantz	3	5
463	Sullivan	do	W. R. Nesbit, superintendent.	2	0
464	Terre Haute.	-- do -----	A. L. Wyeth.--		
465	Thorntown	High School (department)	A. E. Malsbary	$\stackrel{2}{2}$	0
466	Tipton --	High School	J.F. Pylee.	${ }_{2}^{2}$	0
468	Valparaiso		Miss S. M. Skinner ----.---	1	2
469	Vevay--...		Wm. R. J. Stratford	1	2
470	Vincennes	do	Phillmer Day .---	,	3
471	Wabash		Miss A. Bayfor		2
472	Warsaw		T. J. Landers, súpeifntendent.	1	2
473	Washington.	do	Wm. F. Axtell. .-.-........	2	1
474	Waterloo ---		H. H. Keep ---	1	4
475	Williamsport	do	S. C. Hanson .-.-.-.-.-..--	1	1
476	Winchester.-.		C. H. Wood, superinterdent.	4	1
477	Wolcottville....-.-.	High School (department).	H. S Gilhams	2	
478 479	Worthington	do.	Miss Jennie J. Throop ...- M. D. Avery	1 1	1

a Also give instruction in other departments.

High Schools for 1SS9-90-Continued.

Table 3.-Statistics of Public

	State and post-office.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				永	通
	1	3	3	4	5
	IOWA.				
480	Ackley	High School	C. H. Cole	1	1
481	Adel	----do.-.-.	W. J. Dobson	1	6
482	Afton	do	Albert G. Owen, A. M	1	3
483	Akron	do	I. C. Hise -...-...............-	1	3
484	Algona		W. H. Dixon	1	4
485	Allerton	Normal and Graded School		2	0
486	Alta.	High School	G. F. Ostrander	1	4
487	Anamosa	-....-do..-..	Park Hill.	1	1
488	Atlantic	do	Miss Ellen M. Austin....-	0	2
489	Audubon	do	Z. T. Hawk.	1	1
490	Avoca.	do.	W. C. Davis .	1	1
491	Bediord	High School (department) -		1	2
492	Belle Plaine	-----do.-.-.-------------------	G. W. Sampson, superintendent.	1	2
493	Blairstown	do	L. E. Goodwin ------ - - - -	1	3
494	Bloomfield	High School		2	0
495	Bonaparte		Miss A. E. Packer .-.-.---	0	1
496	Boone .-. -	High School (department)-	Geo. I. Miller, superintendent.	1	3
497	Brooklyn	High School .-.-..............-	Will C. Rayburn..........-	1	2
498	Burlington		E. Poppe -	4	4
499	Cedar Falls		Miss May Bly	1	2
500	Cedar Rapids	do	Albie S. Abbott	0	8
501	Centerville	do	Miss Josie Parsons	1	1
502	Chariton.-	Independent High School.-	M. M. Perry, secretary ..-	1	1
503	Cherokee	High School (department)-	J. C. Yocum	1	3
504	Cincinnati	High School --...--...-----		1	2
505	Clarion	High School (department) -	G. T. Eldridge ----- --	1	3
506	Clarksville	Independent Public School District.	Edgar M. Green.............-	1.	3
507	Clear Lake	Public Schools-	G. N. Sabin	1	1
508	Clinton .		Miss Julia J. Sweet........	0	4
509	Corning	----do----------------------	Ira P. Clark	1	1
510	Corydon	High School (department).	Louis Begeman	1	1
511	Council Bluffs	High School .-.-...-....-. --.	Arthur Stevens	4	1
512	Cresco		E. G. Cooley -----.............-	1	1
513	Creston	do.	O. E. French .-.-. .-.	2	3
514	Davenport.	do	F. E. Stratton	3	5
515	Decorah .-.	do	C. W. Boutelle .-.-.-.....-	2	4
516	Des Moines (east side).	do	Frank E. Plummer	2	7
517	Des Moines (west side).	High and Industrial School	Miss Celia Ford .-........	3	5
518	Des Moines .-.-.-. ---	Forest Home Independent District.		1	2
519	Dubuque	High School ---------------	D. Compton	2	4
520	Dunlap -----....-----	High School (department) -	M. A. Reed -...	2	6
521	Dyersville .-.	High School .-.....-..-. --. -	B. J. Horchem.--------------	1	2
522	Eagle Grove.		J. G. Grundy --------------	1	1
593	Eddyville...		M. D. Hayes -................-	1	5
524	Eldon.---.-	-----do	Fred. S. Robinson........--	1	2
525	Eldora-	--.-do ----	C. F. Woodward .-....-...-	1	2
527	Emmetsburg	High School .-	H. S. Gemmill	1	1
528	Essex ---.-.-		David Williams.	1	0
529	Estherville	-do	H. H. Davidson..-----.....-	1	1
530	Fairfield	-do	L. Derby ---	1	1
531	Farmington.	do	Sam. B. Allison	1	1
532	Fayette...	do	F. H. Bloodgood	1	4
533	Forest City.	do	B. W. Hoadley	1	5
534	Fort Dodge-.-.-----	do	E. N. Clark --------.-. --	2	1
535	Fort Madison .-.....-	do	N. C. Campbell, м. A., superintendent.	2	1
536	Gilman	High School (department) .	perintendent. J. H. Morgan	1	$a 3$

High Schools for 1889－90－Continued．

Students in second－ ary grade．		```Colored pupils in- cluded.```		Number prepar－ ing for college classical course．		$\begin{gathered} \text { Number } \\ \text { prepar- } \\ \text { ing for } \\ \text { college } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$		Numberof stu－dentswhograd－uated orcom－pletedtheirstudies in$1889-90$		Is drawing obligatory？						
$\underset{\underset{\sim}{\oplus}}{\underset{\sim}{\Phi}}$	$\begin{aligned} & \dot{\text { ® }} \\ & \text { な్ష } \\ & \text { © } \\ & \text { E } \end{aligned}$	$\stackrel{\oplus}{\underset{\sim}{心}}$	$\begin{aligned} & \text { థ. } \\ & \text { స్ } \\ & \text { d్ర } \\ & \text { E } \end{aligned}$	$\stackrel{\oplus}{\stackrel{\circ}{心}}$	¢	$\begin{aligned} & \stackrel{\Delta}{3} \\ & \underset{\sim 1}{3} \end{aligned}$	$\begin{aligned} & \dot{\oplus} \\ & \text { స్మ゙ } \\ & \text { థ్ } \\ & \text { © } \end{aligned}$									
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
23	37	0	0	0	0	0	0	2	5	No．－	No．－	380	\＄10，150	8707	\＄55	
33	51	0	0	1	1			2	12	Yes．	NO－－	200	20，100	3， 562	81	481
45	90	0	0	12	20	25	20	9	19	No．－	No．－－	300	10，150		325	482
3	4	0	0	0	0	0	0	3	2	Yes．	No－－	32	14， 100		40	483
17	41	0	1	2	3	0	0	4	6	Yes	No－－	100	25， 317		25	484
14	18	0	1	14	18			8	6	No．－	No－－	400	10，500	180	453	485
20	26	0	0	0	0	0	0	0	1	No．－	NO－－	200	6，000	346	100	486
33	47	0	1	6	10	2	0	0	0	No．－	NO－－	40	30， 275	150	76	487
61	94	1	1	0	0	0	0	4	15	No．－	NO－－	200	100	1，960	229	488
15	26	0	0	6	6			－ 1	2	No．－	NO－－	205	19，125	388	135	489
8	16	0	0			2	9	1	4	No．－	NO．－	100	2，100		200	490
35	54	9	15	5	15	8	2	2	4	Yes．	Yes．	500	25， 250	8，737	700	491
30	45	2	0					0	17	Yes．	No．－	250	30， 010	1，200		492
6	8							4	4	Yes．		100	1，025			493
11	27	3	0					3	4	Yes．	NO．－	0	25， 150	1，099	40	494
13	14	0	0	0	3	2	0	0	0	No．－	NO．－	12	6，150	275	125	495
64	57	10	6					6	10	No．－	No．－	1，680	55， 125	1，000	300	496
24	33	0	0					5	9	No．－	NO．－	300	300		350	497
93	177	2	0	9	5	3	0	5	18	Yes．	Yes	531	45，000	10，792	150	498
32	4.5	0	0	0	0	0	0	3	10	Yes．	Yes	150	25， 200	7，000	150	499
100	173	0	2	8	2	3	20	20	22		Yes	800	15， 325		300	500
21	32	0	0	0	0			0	6	NO．－	NO．－	125	40，075		150	501
17	53	0	0	0	0			3	11	No．－	NO．－	400	20，000		25	502
72	74	1	2	0	0	7	9	6	7	Yes．	NO－－	216	40， 050	5，045	134	503
10	15	0	0	4	6			3	2	No．－	NO－－	175	5，010	150	160	504
10	14	0	0	0	0	3	4	0	0	No．－	NO．－		10，160		158	505
17	21	0	0	1	1	1	1	3	4	No．．	NO．－	35	5，100			505
24	36	0	0	0	0	0	0	1	6	No．－	NO．－	0	15， 000	3，000	21	507
40	95	0	2					8	10	No．－	NO．－	800				508
16	30	0	1			8	8	4	5	Yes．	No．－	200	5，500	1，000	150	509
24	41	0	0	0	0			2	4	Yes	NO．－	200	12， 140	3，100	200	510
42	121	0	3	0	0	8	－12－	3	13	NO．－	NO－－	40	45， 800	3，100	220	511
8	10							3	1	NO．－	NO．－	225	4，200		167	512
57	137	0	2					2	15	NO．－	Yes．	200	32， 350	5，000	400	513
105	208	1	1	2	5			6	41	Yes．	NO－－	260	65， 150		264	514
23	41	0	0	0	0			0	2	No．－	NO－－	300	100		135	515
81	160	3	3					6	27	No．－	Yes．	600	50，950		200	516
80	135	1	3	3	1		－－－	2	17	No．－	Yes．	460	83， 500		470	517
10	15	0	0	0	0			0	0	Yes．	NO．－	300	30，150			518
100	170	0	0	3	2	1	0	11	21	No．－	NO．－	350	30，5¢：0			519
30	30	0	0	0	0	5	4	1	4	No．．	NO．－	300	17， 250		80	520
10	14					3	5	C	1	No．．	NO－－	86	6，100		26	521
4	14	0	0	2	2			0	1	No．－	No．	25	16， 200		50	522
23	50							1	3	Yes．	NO．－	300	17，000	2，292	250	523
21	26					21	26	0	0	No．－	NO－－	217	8，150	1，530	60	524
22	34					3	4	7	11	Yes．	NO－－	150	25，150	1，600	96	5\％5
37	33			2	1	3	0	5	6	Yes．	NO－－	200	15， 175	3，418	261	526
8	9			4	0			0	0	No．－	NO．－	74	10，025	574		527
6	3	4	1					1	0	No．－	NO．－	60	4，005		35	528
13	26	0	0	0	0	13	26	0	0	Yes．	NO．－	155	5，200			529
14	33	0	0	3	10	3	4	1	13	No．－	NO．－	100	， 300	1，150	25	530
34	26							3	6	Yes．	NO．－	200	5，100			531
30	40							1	0	Yes	NO．－	100	10，100			532
22	42	0	0					5	3	No．－	NO．－		10， 075		18	533
41	60	0	0	16	42	20	13	5	6	No．－	NO．－	100	40， 250		150	534
14	60	0	1	2	3	1	2	2	7	Yes．	No．－	150	15，500	74	36	535
8	16			2	2			1	5	Yes＿	No．－－	150	2，020		25	536

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1889－90－Continued．

の「出式			\bigcirc	Male．	
Nরীస్儿			＊	Female．	
ooor			∞	Male．	
OON0	（00－00\％0000 - woo：	w：00：-1.000000000000000	＊	Female．	
Cro		witrnw	$\stackrel{\text { 学 }}{6}$	Male．	
－\square_{0}°			复	Female．	
			${ }_{4}^{40}$	Male．	
－00t			${ }_{6}^{6}$	Female．	
Orover			Δ	Male．	
Oण－入゙		－rworotio	$\stackrel{1}{60}$	Female．	
	 		皆	Is drawing obligatory？	
	oooo oo oooooooooooo		$\underset{4}{201}$	Has the school a gymnasium？	
		N－100 \％	∞	Number of volumes in 1i－ brary．	
	 	ర్ర్ర \％	탕	Value of grounds，buildings， and apparatus．	
\vdots \vdots \vdots \vdots \vdots			$\underset{\theta}{20}$	Amount of State and munic－ ipal aid．	
\％8\％			$\stackrel{N}{2}$	Income from tuition fees．	

Table 3.-Statistics of Puoblic

	State and post-offlce.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				¢	込
	1	2	3	4	5
	IOWA-continued.				
597	Perry	High School.------------------	C. M. Pinkerton, superintendent	2	1
598	Postville.	High School (department).	J. F. Smith --....-----------	1	5
599	Red Oak	High School.-----.----------		2	1
600	Riverton.	..---do.-.-...	Morris Dailey	2	2
602	Sabula.	do	E. A. Howe...	1	2
603	Sac City	do	ii. H. Fellows.	1	1
604	St. Charles	do	J. D. Phillips -----	2	2
605	Sanborn		W. J. Simpson ------------	1	1
606	Seymour	High School (department)-	W. Wagner .-.-.-.	2	3
607	Sheffield	High School.---------------	Geo. F. Thompson	1	2
608	Shelby-..	do.	H. A. Field --	1	3
609	Sheldon ${ }^{\text {Shana }}$	do	W. S. Wils Margaret Rees	1	1
611	Sigourney .	do	J. P. Dodds....-. - -	1	1
612	Sioux City	do			
613	Sioux Rapids	do	J. E. Durkee -------------	1	3
614	Spencer.		F. E. Williard....-.-.-.-.--	1	1
615	Spirit Lake	High School (department)-	F. E. Palmer --.-.-......--	1	4
616	State Center		Miss Lucy Curtis .--...-.----	0	2
617	Storm Lake.	-----do ------	H. G. Lamson -........----	1	1
618	Stuart .-.-.	do	O. A. Shotts, superintendent.	1	$a 14$
619	Tabor	High School (department).	E. H. Hamilton	1	0
620	Tama	High School	Horace M. Rebok.--------------	1	$a 0$
621	Thurman	High School (department)-		1	3
622	Toledo Traer	High School..... .-.-.-.....--	J. B. Young--.-------------	1	1
624	Union.		W. W. Rodwell.	1	4
625	Victor	do	S. T. May	1	a3
626	Villisca	do	J. A. McLean	1	2
627	Vinton.	-..---do	J. W. McClellan............-	1	3
628	Washingtor			1	2
629	Waterloo ..	High School (East)	Miss Lydia Hinman	1	3
630	Waukon		C. P. Colgrove.----	1	1
631	Waverly	-.-.--do	S. H. Sheakley -----------	3	0
632	West Branch	-----do	A. T. Hukill, A. M.-.-------	1	1
633	West Liberty	--.-. do	Miss L. Lewis. -..-----.---	1	2
634	West Union........-.--	------do	F. P. Hocker.	1	1
635	Williamsburg	do	C. R. Zimmerman	1	4
636	Wilton Junction	do	A. L. Brower --	1	1
637	Winterset.-.-...	High School (department) -	C. H. Carson---------------------	1	2
638	W yoming---------.......			1	1
	KANSAS.				
639	Abilene	High School	W. S. Jenks .-----------...-	2	1
640	Almena		Frank H. Baker.	1	2
641	Anthony.			1	1
642	Ashland -	-.do	D. A. Tear	1	3
643	Atchison	- do	J. T. Dobell	1	2
614	Belle Plaine	do	D. A. Iliff	2	3
645	Beloit	..-do	J W. Hullinger	1	1
646	Blue Mound.	--do	E. A. Allen --..		
647	Brookville..	High School (department) -	T. J. Rollman.-	2	2
648	Burrton.	----- do ---------------------	N. C. Stott, A. B	1	0
649	Cawker City	High School	F. C. Perkins.	2	0
650	Chamute .-.	-----do .-----	S. W. Black.-	2	0
651	Chapman	- do	S. M. Cook	3	2
652	Cherokee .-.......-....-	------------------------------------	T. B. Mosher, county superintendent.		

a Also give instruction in other departments.

High Schools for 1859－90－Continued．

	NTONTHNW			3	\bigcirc	Male．	
	NO出			合	4	Female．	
：0weroo 0000000	： 1 H00000000：oro：0n000	00000w：	No：00000000N0	\bigcirc	00	Male．	
（00w00：	（000000000：0－0 HN000		Ho：00：00000000	\bigcirc	－	Female．	
（0）000 oonocroo	！			＇	稫	Male．	
0000 00NOOOO		－： $\mathrm{ol:l}^{\text {a }}$		＋	2	Female．	
¢		：o！ow	onot		－	Male．	
：01worveroooeroo		：oi：os：			$\underset{\omega}{G}$	Female．	
			veroo：OOMNNNWHO	ω	览	Male．	
Owercos		Heonocos：	Veroc：OONNDCNOO	\pm	Gr	Female．	
\＆OO OO OO OOQOO	OOO OOOODOOOOOOODOO	 	OOOOOOOQOOOOO	M $\substack { \text { O } \\ \begin{subarray}{c}{2{ \text { O } \\ \begin{subarray} { c } { 2 } } \\ {1} \\ {\hline}$	查	Is drawing obligatory？	
○OOOO：OOOOOO	00000000000000000000		 	号	白	Has the school a gymnasium？	
				W	ω_{∞}	Number of volumes in 1i－ brary．	
 \％రO88	 		 808ర్II		$\underset{0}{6}$	Value of grounds，buildings， and apparatus．	
	（：A w w onorn			！	0	Amount of State and munic－ ipal aid．	
	8ర్రు			舛	$*$	Income from tuition fees．	

Table 3.-Statistics of Public

High Schools for 1859-90-Continued.

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1859－90－Continued．

$\begin{aligned} & \text { Stude } \\ & \text { in sec } \\ & \text { ary gi } \end{aligned}$	ents cond－ rade．	$\begin{aligned} & \text { Colo } \\ & \text { pup } \\ & \text { in } \\ & \text { clud } \end{aligned}$	red ils ed．	$\begin{aligned} & \text { Num } \\ & \text { nrep } \\ & \text { ing } \\ & \text { coll } \\ & \text { class } \\ & \text { cour } \end{aligned}$		$\begin{aligned} & \text { Num } \\ & \text { prep } \\ & \text { ing } \\ & \text { colle } \\ & \text { scie } \\ & \text { tif } \\ & \text { cour } \end{aligned}$	$\begin{aligned} & \text { ber } \\ & \text { are } \\ & \text { for } \\ & \text { ene } \\ & \text { ic } \\ & \text { rse. } \end{aligned}$	Num of den who uate co ple the stud 1889	$\begin{aligned} & \text { lber } \\ & \text { tu- } \\ & \text { ts } \\ & \text { rad- } \\ & \text { dor } \\ & \text { ted } \\ & \text { eir } \\ & \text { esin } \\ & \text {-90. } \end{aligned}$		器					
$\frac{\dot{8}}{\stackrel{5}{2}}$	$\begin{aligned} & \stackrel{\oplus}{\text { స̈ }} \\ & \text { g్ర } \\ & \text { En } \end{aligned}$			$\stackrel{\dot{D}}{\stackrel{\omega}{c}}$		$\begin{aligned} & \text { ®. } \\ & \text { 空 } \end{aligned}$		皆	$\begin{aligned} & \dot{\oplus} \\ & \text { ढ゙ } \\ & \text { घ్g } \\ & \text { © } \end{aligned}$				$\begin{aligned} & \text { 끙 } \\ & \text { ® } \\ & \text { శี } \\ & \gg \end{aligned}$	Amount	$\begin{aligned} & \text { O } \\ & \text { o } \\ & \text { B } \\ & \text { O } \\ & \end{aligned}$	
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
20	24	0	0	0	0	0	0			No．．	No．－	77	84，075	$\$ 163$	834	704
4	5	0	0	0	0	1	0	0	5	NO．－	NO．－	15	1，000	1，100	0	705
23	24	4	2	15	16	0	0	4	5	Yes．	NO－－	CO	30， 200	3，500	60	706
25	39	0	0					4	5	Yes．	No．－	75	30，150		80	707
45	48	0	1	0	0		－－	5	4	NO．－	NO．－	0	15，000		200	703
15	21	0	0					0	0	No．－	No．－	1，000	35， 000	11，000	22	709
20	18	10	8	4	5	11	7	5	6	No．－	No．－	0	15,150	1，000		710
25	48	0	0	0	1	0	0	1	4	NO．．	No．－	200	18， 300	5，890	400	712
39	100			0	0	0	0	6	11	Yes．	NO．－	150	55， 150			713
20	31	0	0	0	0	30	45	2	0	Yes．	No．－	10	50，000	1，240	68	714
19	49															715
45	35	1	3	7	8			6	8	Yes．	No．		20，200	600	120	716
22	32	0	0	0	0	0	1	0	1	Yes	No．－	500	25， 150	1，700		717
20	15	0	0	2	1	0	0			No．－	No．－		11，500	400		718
14	16	5	6	0	0	14	16	8	4	Yes．	No．－	150	20，120	3，680	60	719
2	6	0	0	3	5			2	5	Yes．	No．	150	6，500	165	60	721
18	29	1	1	2	0	1	0	5	4	No．－	NO－－	4	10，000			722
34	38	0	0	4	6	15	40	4	12	Yes．	No．－	60	12，050		155	723
20	47	0	2	6	13	8	14	1	2	No．－	NO．－	853	87，675	25， 741	0	724
14	26	0	0	0	0	2	2	2	4	Yes．	No．－	600	10，050	3，771	62	725
38	59															726
3	9															727
7	26	0	0	2	6			0	1	NO．－	NO．－	500	7，200	400	100	728
22	23	0	0	0	0	13	8	0	1	Yes．	No．－	230	200		30	723
26	23	15	18	3	4		－－	0	1	Yes．	No．－	100	5，050		50	730
80	170	12	20	40	79	40	91	13	36	Yes．	No．－	250	350		125	731
13	14															732
12	25	0	0	0	0			0	0	No．－	NO－－	60	15,085			733
21	39	0	0	1	0	0	0	4	9	No．－	NO－－	900	65， 150	1，850	125	734
54	122	0	0	2		1	10	3	14	NO．－	NO．－	150	3，250		45	735
18	34	0	0	0	0	0	0	5	2	NO．－	NO．－	200	40，075	1，400	60	733
10	18	2	4	0	3	0	3	0	4	Yes．	NO．－	400	10，075		29	737
15 6	8 28	0	0	0	0	0	4	0	0	NO．．	No．－		2，000	270		738 739
30	35	0	0	0	0	0	0	10	6	No．－	No．－	0	4，010	715	450	740
18	30	0	0	0	0	4	5	0	0	No．－	No．－	0	2，000	600	500	741
60	103	3	3			0	0	3	9	Yes．	No．－	2，090	50，500	27，020	372	742
17	30	0	0			0	0	1	2	No．．	No．－	103	8，000	1，131	600	743
20	15	0	0	3	2	10	8			No．．	NO．－	0	2，030	300		744
20	34	0	0	3	2	0	0	7	7	No．－	NO．－	ᄃ00	10，300	1，034	323	745
43	37	0	0	0	0			0	0	No．－	No．－	0	1，350	1，500		746
5	18															747
35	44	0	0					0	0	No．－	No．－	105	4，000	1，800	100	748
18	14														670	749
12	2	0	0	12	2			0	0	Yes．	NO．－	4，000	4，000	3，000		750
7	11	0	0	0	0	6	11	0	0	No．－	NO．－	0	2，000	1800	15	751
316	0	0	0					30	0	No．－	NO．－	300	37,000	15,000		752
3	19	0	0					0	0		No．－	16	20，000			753
14	8	0	0	3	2	3	0	0	0	Yes．	No．－		8，035	1，800	90	754
61	108	0	0	4	5			5	24	No．－	No．－	800	60，025	3， 000	0	755
30	10	0	0	12	2	3	1	4	1	No．－	NO．－	0	15，200	2，800	350	756
40	48							7	18	No．－	No．－	1，200	25， 150	579		757
18	69							2	14	No．．	No．．	300	40，100	12，000	200	758

Table 3.-Statistics of Public

	State and post-office.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				¢゙	
	1	2	3	4	5
	KENTUCKY-cont'd.				
$\begin{gathered} 759 \\ 760 \end{gathered}$	Shelbyville Versailles	High School (department) High School	B. P. Teris John L. Patterson, A. M.-	1	3 43
761	Donaldsonville	Ascension Academy--------	A. W. Meadows	1	a3
763	New Iberia New Orleans	Migh School ${ }^{\text {McDonogh }}$ High School,	Joseph V. Calhoun	$\frac{1}{6}$	1 0
764	-do	McDonogh High School,	Mrs. M. Stamps.	0	8
765	do	McDonogh High School,	Miss C. Hubbara	0	7
766	Sugartown .-	High School	M. E. Shaddock-	2	2
767	Acton	High School	Harry L. Springer	1	0
768	Alfred		Fred. W. Freeman	1	1
760	Augusta	Cony High School	J. H . Parsons	2	${ }^{-}$
771	Bangor	High School .-..............---	Chas. A. Byram	2	6
772	Baring.		E. F. Bates .-		
773	Bath --				
774	Belfast		F. W. Chase	1	
775	Berwick	Sullivan High School .-.-.-	J. R. Perkins --.-	1	$\stackrel{2}{3}$
776	Biddeford	High School .-...-. - .-......-.	John P. Marston John Cone	3	3
777	Bowdoinham		John A. Cone Miss E. C. Abbot	1	1
779	Bridgton		C. H. Wardwell	1	1
\% 80	Brownsville	do	Frank S. Hamlet.	1	0
781	Brunswick	do	Charles Fish .-.	2	2
78.	Buxton Center		George H. Larrabee	1	1
783	Calais...	M-- do ---.-	S. E. Webber --.	1	2
785	Cape Elizabeth--------	Megunticook High School	R. W. Howinson-	1	1
786	Caribou...-.-.-.-....-	-----do .	W. S. Knowlton, A. M	1	1
787	Castine	do	Miss R. E. McIntire.	0	1
788	Charleston	Charleston Academy .-.....	W. J. Rideout.	1	,
789	China \qquad Columbia Falis	High School.-...-.-..........	N. A. Webb	1	,
791	Cornish --...-.	do	W. C. Whelden	1	0
792	Dennysville	do	Miss L. B. Hatch	0	1
793	Dexter --		F. A. Spratt-	1	,
794	Dresden		Thomas C. Spiliane	1	
795	Eastport	Boynton High School......	Preston I. Merrill	1	2
796	Ellsworth -------.---	High School	W. R. Whittle.	1	2
797 798	Fort Fairfiela	--.-.-. do	Weo. M. Hurd --	$\frac{1}{2}$	0
759	Foxcroft.	Foxcroft Academy-........-	E. L. Sampson.	1	1
800 801	Freeport Garland	High School...-.-.-...-....-	W. B. Mitchell	1	2
802	Gorham		W. W. Woodman	1 2 2	$\stackrel{2}{2}$
803	Greenrille.	do	Charles Daridson, report-	1	0
804	Guilford	-do	ing officer. Fred. F. Hayes	1	2
805	Hallowell.	do	R. H. Brainard.	1	2
806	Harmony	do	P. P. Beal....-	1	0
807	Hartford.	do	A. D. Park	1	1
808	Kennebunk	do	John R. Clark.	1	0
E09	Lewiston	do	Geo. B. Files..	3	3
810	Limerick	do	F. J. Allen-	1	2
811	Lisbon....-		D. L. Whitmarsh, A. B.	1	0
812 813	Livermore Falls		Everard C. Megquier	1	3

a Also give instruction in other departments.

High Schools for 1859－90－Continued．

Students in second－ ary grade．		Colored pupils cludea．		Number prepar－ ing for college classical course．		$\begin{gathered} \text { Number } \\ \text { prepar- } \\ \text { ing for } \\ \text { college } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$		Number of stu－ dents Whograd－ uated or com－ pleted their studiesin 1889－c0．			Has the school a gymnasium？		$\begin{aligned} & \text { Value of grounds, buildings, } \\ & \text { and apparatus. } \end{aligned}$		Income from tuition fees．	
$\underset{\leftrightarrow=1}{\underset{\leftrightarrows}{5}}$		莹				$\stackrel{\oplus}{\text { ®゙ }}$		$\begin{aligned} & \text { 追 } \\ & \text { B゙ } \end{aligned}$								
6	7	8	9	10	11	$\underline{12}$	13	14	15	16	17	18	19	20	21	
15	8	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					0	0	$\begin{array}{\|c\|} \text { No.. } \\ \text { NO.. } \end{array}$	No．－		$\begin{aligned} & \text { E5j, } \\ & 1000 \end{aligned}$	\＄500	\＄400	759 760
［ $\begin{array}{r}4 \\ 16 \\ 233\end{array}$	16 35 0	0 0 0	0 0 0	0	0	0	0	0 0 20	20	No．－	No． No．－ No．－	0 0 500	1,000 4,000 50,400	1，600		761 762 763
0	322	0	0					0	72	Yes．	No．－	500	150			764
0	186	0	0	0	0	0	0	0	17	Yes	No．－	60	1，500			785
10	15	0	0	4	7	3	5	0	0	No．－	No．－	0	720	460		766
	0	0	0	0	0			0	0	No．．	No．－	0	300	200		767
11	7	0	0	0	0	2	4	，	6	No．	No．－	107	2，500	250		768
90 50	70 65	0	0	16	1	3	0	5	4	NO．－	No．－	200	26， 003	4，650	60	769 770
135	170	0	0	20	20	25		6	26	No．－	No－	600			132	771
18	17			1	－	17	17		．－－	No．－	No．．		2， 555	75	21	772
98 19	82 39	0	0	5	7			2	2	No．－	No．－	200	17，050	250	75	
7	20		0	0	0			0	0	No．－	No－－	0	12，010	250	3	
70	109	0	0	14		1	0	13	22	No．－	Yes．	2，000	51，030		12	${ }_{7}^{776}$
27	54		0										2，560	250		777
21 19	32 26	0	0	0	O	0	0	1	8	NO－－	No．－	100 487	7,100 1022	250 250	35	778 779
23	17	0	0	3 3	1	3	0	33	69	NO．－－	No．－	0	－	150		789 780
40	55		0	14	2	0	0	3	8	No．－	No．－	275	8， 300	250	200	781
32	23	0	0	9	5	0	0		0	No．－	No．－	50	2，550	1，050	48	782
27	52		0	11	5	2	0	3	5	Yes．	No．	74	8，100	2，000		783
18	42	0	0	，	0	2	14	2	14	No－－	No．－	0	6， 075	140	45	784
34 60	54 40	0	0	12		25	35	5	17	NO－－	No．	200	16,250 15,010	1,650 1,250	50	785 788 78
13	13	0	0	0	0	0	0	${ }_{0}$	4	No．－－	No．－	25	15，000	1，250	5	785 787
26	20	0	0	0	5	10	10	6	8	Yes．	No．－	175	2，200	250	50	788
25	31	0	0	0	2	3	1	2	3	No．．	No．．	30	3，000	250	120	783
17	23	0	0	0	0		0	0	0	No．－	No．－	30		195	16	790
51	32	0	0	2	0	0	0		4		NO－－	25	8，040	750	125	791
16 17	16 26	0	0	0 1 1	0 4	2	0	4	5	NO．－－	No．－	0 428	12，2\％5	501 250	150	792 793
9	9	0	0	0	${ }_{0}^{4}$	0		4	5	No．－	NO－－	4280	12，075	250	150	${ }_{794} 7$
11	31	0	0	0	0	0	0	0	3	No．－	No．－	300	3， 150	250		795
37	53	0	0		2	1	0	7	8	No．－	No．－	25	2，1c0	2，050	0	${ }_{7} 795$
16	19	0	0	0	0	${ }_{0}$	0	3	5	No．－	NO．－		8，050	250	17	${ }_{7}^{797}$
40	50 30	0	0	9	8	2	0			No．－	No．－	－	8，250	250	20	798
34 36 36	30	0	0	9	8			1	2	No．－	NO－－	400	100	620	500	799
36 16	31 19	0	0	17	3	0	0	5	7	No．－	NO－－	400 375	13,000 1,125	1， 650	56	801 801
45	37	0	0	12	5	0	0	7	5	Yes．	No．－	200		1，568	84	802
16	22	0	0	0	0	0		3	2	No．．	No．－	0	2，600	500	0	803
20	21	0	0	3	1	0	0	0	0	No．－	No．－	0	3，000	188	30	801
40	58	0	0	4	3	2	0	3	6	No．－	No．－	30	8，400			805
17 9	24	0	0	0	0	0.	0	0	4	NO．－	NO－－	0		63		806
20	18 2 2	0	0	7	r 14	13	8	5	4	No．－	No－－	50	3． 550	173	49	888
74	73	0	0	24	17	21	0	11	15	Yes．	No．－	529	20，500	250	239	ع03
29	28	0	0	4	4	0	0	3	0	No．	No．－	18	10	250	65	810
22 20	28 2	0	0	10 2	5	5	0	4 0 0	2	Yes．	No．－	50	6， 005	1， 000	25	811
18	15	0	0	2	0	7	${ }^{-1}$	－ 0	0	Yes．	No．－	0	4，000	125		813

Table 3.-Statistics of Publi:

a Also give instruction in other departments.

High Schools for 1889-90—Continued.

Table 3.-Statistics of Public

High Schools for 1889-90-Continued.

Students in secondary grade.		Colored pupils included.		Number preparing for college classical course.		Number preparing for college scientific course.		Numberof stu-dentswhograd-uated orcom-pletedtheirstudies in1889-90.		Is drawing obligatory?	Has the school a gymnasium?	\dot{y} 			Income from tuition fees.	
		$\stackrel{\oplus}{\underset{\sim}{⿷ 匚}}$		$\stackrel{\dot{\sim}}{\stackrel{\rightharpoonup}{c}}$	¢		¢	$\stackrel{\dot{3}}{\stackrel{ \pm}{3}}$								
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
33	46	0	0	5	15	20	23	2	4	No.-	NO.-	0	\$15,100	\$300	\$720	868
11	19	0	0	7	13	4	6	2	7	Yes	No.-	0	3,500	2,410		869
24	8	0	0	1	0	0	0	0	0	No.-	NO--	0		459	261	870
11	31	0	0	0	0	0	0	0	4	NO.-	No.-	0	6,000		115	871
27	31	0	0	10	30			0	0	Yes.	NO.-	0	10,000	2,700		872
43	55	0	0	0	0	0	0	3	4	Yes.	No.-	0	4,000	2,250		873
10	18	0	0	0	0	0	0	2	6	Yes.	No.-	0				874
5	15	0	0	3	2			0	4	No.-	No.-	200	7,500			875
17	18	0	0	0	0	0	0	0	0	Yes.	No.-	100	¢00			876
10	17	0	0	3	5	0	0	0	2	No.-	No.-	150	1,000	300		877
30	42	0	0	8	3	1	1	0	0	Yes.	NO--	175	3,500	2,500		878
34	34	0	0	1	0	0	0	6	2	Yes.	No.-	100	10,000			879
34	48	0	0	0	5	0	0	3	8	No.-	No.-	40	18,300	79	70	880
40	70	0	0	3	8	4	0	4	17	Yes.	NO.-	100	8,150	60	0	881
35	85	0	0	18	18	1	3	3	9	No.-	NO.-	350	10, 025		100	882
35	. 45	0	0	8	6	4	0	3	5	No.-	No.-	1,000	10, 800	5,000		883
20	25			1	6	0	0	3	4	NO.-	No.-		3,150			884
14	45															885
20	30		0	1	19	12	0	3	3	Yes.	NO--	200	5,200	167	12	886
- 2	-6	0	0	0	0	0	0	0	0	No.-	No.-	0				887
21	26	0	0	0	0	0	0	2	3	NO.-	No--	0				888
18	36	0	0	0	0	0	0	2	7	Yes.	NO--	50	15,050	163	30	889
95	95	1	0	4	2	10	0	23	23	No.-	No.-	350	150, 300		240	890
8	21	0	0	0	0	0	0	0		No.-	No.-	0	1,500	128		891
0	649							0	193	No--	No.-	2,500	1,000			892
506	0	3	0	505	0			38	0	No.-	Yes.	4, 050	639,300	47,887	3,200	893
128	204	0	0	0	0	0	0	20	46	Yes.	No.-	1,000				894
24	24	0	0	0	1	0	0	9	7	Yes.	NO.-	1, 75	1,650	1,650		895
33	40	0	0	5	3			2	0	Yes.	NO--					896
33	48	0	0	0	0			4	19	Yes.	NO.-	0				897
33	35	0	0	0	0	1	5	4	13	No..	NO.-		10, 300	2,700		898
24	63	0	0	0	0	0	0	3	10	Yes.	Yes.	200	25,500			899
101	142	0	0	22	18	3	0	15	17	Yes.	NO.-	150	45,500		36	900
24	41	0	0	3	1	0	3	0	5	No.-	Yes.	100	10, 100	170	24	901
44	71	0	0	6	10	11	0	6	4	Yes.	NO.-	600	30,500			902
123	102	3	0	120	98			13	7	No-	NO--	, 500	31,000		200	903
190	292	2	12	0	0	22	0	12	25	Yes.	NO--	2,500	67,000	0	200	904
19	28	0	0	0	0	0	0	12	6	Yes	No --	60	7, 300	31		905
66	136	2	0	0	0	5	0	9	41	Yes.	No.-	3, 000	76, 000			906
7	26	0	0	1	0	1	0	0	1	No.-	NO.-	0	2,550	3,500		207
19	17	0	0	0	0	0	0	2	7	Yes.	No.-	200	5,000			908
103	179															909
13	23	0	0	0	7			1	3	Yes.	NO.-	600	12,400	2,100		910
52	63	0	0	6	8	3	0	13	13	Yes.	No.-	300	60,500	200		911
27	42	0	0					4	2.	Yes.	No.-		10, 150			912
60	60	0	0	15	5	2	0	11	9	Yes.	No.-		20,800	3,900	800	913
26	33	0	0	0	0	0	0	2	4	No.-	No.-	0	2,035	, 540		914
55	73	0	0	0	0	2	0	12	15	Yes.	No.-	30	14,100	3, 065	50	915
50	70			8	4			6	10	Yes.	No.-	200	30, 800			916
99	136	0	0	0	0	0	0	20	24	Yes.	No.-	2,000	102, 000			917
8	7	0	0	0	0	0	0	0	0	Yes.	No.-	30	2,500			918
30	45		0	3	2	4	0	3	2	Yes	Yes.	2,120	106, 030	1,000	480	919
55	64	0	0	0	0	2	0	14	15	Yes.	No.-	384	60,300			920
27	46	0	0	0	0	0	0	3	7	Yes-	No.-	300	8,200			921
8	21	0	0	0	4	0	0	2	6	No.-	No.-	150	3, 050	166	82	922
10	27	0	0	0	5	3	1	3	3	Yes	No.-			15	393	923
8	18	0	0					0	0				1,025			924
24	38	0	0	4	2			10	3	Yes.	NO.-	300	20,250			925

Table 3.-Statistics of Public

	State and post-office.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				-	
	I	2	3	4	5
	MASSACHUSETTScontinued.				
926	Fairhaven	High Scho	H. H. Tucker	1	1
927	Fall River	B. M. C. Durfee High School	Wm. H. Lambert	6	8
928	Fitchburg	High School --.-.-...-	H. W. Kittredge.	4	4
929	Foxboro.	-----do-------	W. E. Horton	1	1
930	Framingham.....-.--	Academy and High School.	F. S. Hotaling	1	2
931	Franklin..-.-....-.-. --	High School. -------.-.-. --	C. A. Brodeus	1	1
932	Georgetown		E. S. Fickett.	1	1
933	Gloucester	do	A. W. Bacheler	2	8
934	Grafton.	do	Wm. D. Baker	1	3
935	Great Barrington.	do	E.E.Wentworth	1	1
936	Greenfield	do	W. H. Whiting .-	1	3
937	Groton--	Butler High School	J.H. Manning	1	1
938	Groveland	High School..-...	N.E.Adams	1	0
939	Hadley	Hopkins Academy	Elmer Case.-	1	2
940	Haverhill	High School.--	Clarence E. Kelley	2	6
941	Hingham Center	-----do------	Jacob O. Sanborn.	1	2
942	Hinsdale..	do	J. F. Roache	1	0
943	Holbrook	do	John Haynes	1	1
944	Holden .-	do	Alonzo K. Learned	1	1
945	Holliston	do	Carl E. Holbrook.-	1	1
946	Holyoke	do	W. E. Judd.		
947	Hopedale	do	Miss M. E. H. Barrows	0 \|	2
948	Hopkinton	do	F. W. Alexander --.	1	1
949	Hudson .-.	do	Walter H. Small	1	2
950	Huntington .-.-.-.-.--	do	John G. Fryer	1	0
951	Hyannis -.-	Barnstable High School	C. D. Meserve	1	1
952	Hyde Park	High School	J. M. Hill.	3	2
953	Jamaica Plain	West Roxbury High 5 chool	Geo. C. Mann	1	3
954	Lancaster .-.	High School. .-.-.-.-.--------	Walter Mooers	1	3
955	Lee-.		Abner Rice	1	1
956	Leominster	Field High School..-...-.-.---	Joel D. Miller	2	3
957	Lexington.	High School .-.-------------------	J. Nelson Ham	1	2
958	Littleton .	-----do .--	C. H. Harriman	1	1
959	Lowell.	--do -------------------------	F. F. Coburn	3	11
960	Lynn	Classical High School.--.---	J. A. O'Keefe	6	10
961	----do.-.---.--------------	English High School--------	Geo. H. Cary	2	2
962	Malden	High School --------------------	Geo. E. Gay	2	5
963	Mansfield	-.-do	Fred. C. Hardon	1	1
904	Marblehead	do	Fred. S. Sawyer	1	2
965	Marlboro	do	Geo. H. Rockwood	1	4
966	Medford	do	T. L. Dame.-	3	5
967	Melrose.		A. G. Whitman	2	4
968	Mendon.-	do	H. Whittemore.	1	0
969	Merrimac	-.do	E. H. Brackett	1	1
970	Methuen.	do	D. M. Spaulding	1	2
971	Middleboro	.-do	Walter Sampson	1	2
972	Milford	--do	H. W. Lull	1	3
973	Millbury.		S. J. Blaupied, A. M	1	2
974	Milton -	do	Hiram Tuell.........	1	2
975	Nahant.	. do	C. L. Judkins	1	1
976	Needham	Kimball High School	Fred. L. Smith, A. M	2	1
977	New Bedford.-.-...--	High School	R. G. Huling, A. M --	6	8
978	Newburyport .---.-.-	----do --------------	E. C. Adams, A. M - -		
979	Newtonville.	Newton High School	E.J. Goodwin, master	6	10
980	North Adams	Drury High School..........	James F. Eaton ----	1	3
981	Northampton	High School ----.-.	C. B. Roote --	2	3
98.	North Andover...-..-	Johnson High School	David Kinley	1	1
983	North Attleboro	High School .	H. B. Nevens	1	3
984	Northboro	-----do .-.	Albert Gray, jr	1	0
985	North Brookfield	do	W. A. Hoyt.	1	1
986	North Dartmouth .--	Dartmouth Hjgh School.--	Job S. Gidley.-	1	0
987	North Easton -------	Easton High School.-..----	M. C. Lamprey	1	2
988	North Hanover-------	Hanover High School.-....-	Melvin S. Nash	1	1
989	North Reading-------	High School .--..........-. --	Frank E. Sanborn	1	0
990	Norwell.---.-----------		Arthur O. Burke .-	1	0

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

	State and post-office.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
	1	- 2	3	4	5
	MASSACHUSETTScontinued.				
991	Normood	High S	Wm. G. Goldsm	1	1
992	Orange .	---.do	Ira A. Jenkins	1	1
993	Oxford	do	Geo. A. Willey	1	1
994	Pepperell	do	Geo. W. Ransom.	,	1
995	Pittsfield	do			
996	Plymouch	do	Miss Carrie E. Small	1	5
997 998	Randolph	Stetson High School	Hugh J. Molloy --...	1	2
998	Reading	High School.	W. R. Butler .-	1	3
999	Rockland	-----do .-.-.	Theo. P. Farr	1	2
1000	Rockport	- do	W. C. Houghton	1	1
1001	Salem...-	Classical and High School.	A. L. Goodrich	4	7
1002	Saugus	High School .-.-....-. --	Wilbur F. Gillette	1	1
1003	Saxonvill	-----do .----	Chas. A. Guild	1	0
1004	Scituate	- do	H. C. Macgowan	1	1
1005	Sherborn	Sawin Academy and Dowse High School.	Warren ${ }^{\text {F }}$. Gregory	1	1
1006	Shrewsbury	High School ---------------	H. K. Munroe	1	1
1007	Somerset..-		E. Homer Rice	1	0
1008	Somerville	do	Geo. L. Baxter	4	8
1099	Southboro	Peters High School	B. W. Tinker.--	1	1
1010	Southbridge	High School .-...-	F. E. Corbin	1	2
1011	South Hadley --.-.-	----- do --------------------------	Wm. P. Kelly .-.	1	1
1012	South Weymouth	South High School -----------	Edgar R. Downs	1	2
1013	Spencer------..--	David Prouty High School.	Edwin S. Pirrell, A. M	1	2
1014	Springfield	High School	W. W. Colburn	3	10
1015	Sterling -...---.......	-----do --.-.---------------------	W. J. Merriman	1	1
1016	Stockbridge --------	Stockbridge High School and Williams Academy.	A. J.Hoages.---	1	1
1017	Stoneham	High School	J. W. MacDonald	1	2
1018	Stoughton	----do ----------------------------	Wm. L. Burdick	1	2
1019	Stow	Hale High School	Geo W. Snow, A. B	1	0
1020	Sunderland	High School	D. F. Carpenter	1	0
1021	Sutton ----	-----do ----	Miss L. S. Taylor	0	1
1022	Swampscot	.-do	G. B. Balch .-.....	1	1
1023	Taunton ---	--do	J. P. Swinerton	3	3
1024	Templeton .-...-.		H. F. Lane -.--	1	1
1025	Tewksbury Center	do	M. H. Jackson	1	0
1026	Townsend .--------	do	A. T. Averill	1	0
1027	Uxbridge	do	Charles H. Bates	1	1
1028	Wakefield	do	C. T. C. Whitcomb	1	4
1039	Waltham		E. D. Russell	2	5
1030	Ware ---	do	Samuel W. Hallett.	1	2
1031	Warren.	do	Edward Ayres .-..	1	1
1032	Watertown		G. R. Dwelley	3	1
1033	Wayland .-.-......--	Center High and Grammar School.	Chas. S. Hartwell.	1	0
1034	Wellesley Hills .--		Seldon L. Brown	2	3
1035	Welltleet		J. A. Russell..	1	1
1036	West Boylston.	- do	John C. Worcester	1	1
1037	Westfield	do	W. M. McLaughlin	5	3
1038	Westminster.	do	Miss C. M. Deming--	0	1
1039	West Newbury --. --	------ do	Myron H. Goodwin, porting officer.	1	0
1040	Weston	. do	B. J. Hinds ------	1	1
1241	Westport Point	do	G. H. Eldridge	1	0
1042	West Springfield	do	F. W. Pease	1	2
1043	Whitinsville	.-do	S. A. Melcher.	1	1
1044	Whitman.	-do	H. E. Henderson	1	3
1045	Wiliiamstown	. do	E. H. Botsford	1	1
1046	Wilmington.	- do	Walter I. Weeks	1	0
1047	Winchendon	do	F. M. Collester	3	3
1048	Winchester	do	E. W. Lovering	1	3
1049	Winthrop	do	E. R. Harding	1	1
1050	Woburn.	.-.do	Herbert B. Dow, A. M	2	3

High Schools for 1859－90－Continued．

Stud in sec ary g	nts	$\begin{gathered} \text { Colo } \\ \text { pup } \\ \text { in } \\ \text { clud } \end{gathered}$	red ils ed．	$\begin{aligned} & \text { Num } \\ & \text { prep } \\ & \text { ing } \\ & \text { coll } \\ & \text { class } \\ & \text { cour } \end{aligned}$	$\begin{aligned} & \text { ber } \\ & \text { for } \\ & \text { ege } \\ & \text { sical } \\ & \text { se. } \end{aligned}$	Num prep ing colle scie tifi cour	$\begin{aligned} & \text { lber } \\ & \text { for } \\ & \text { fore } \\ & \text { ne } \\ & \text { ic } \\ & \text { rse. } \end{aligned}$	Num of de whog uate co ple the stud 1889	$\begin{aligned} & \text { aber } \\ & \text { tu- } \\ & \text { nts } \\ & \text { grad- } \\ & \text { d or } \\ & \text { m- } \\ & \text { ted } \\ & \text { eir } \\ & \text { ies in } \\ & -90 \text {. } \end{aligned}$		hool a gy mnasiu：n？					
$\begin{aligned} & \stackrel{0}{\mathrm{~N}} \\ & \stackrel{1}{\mathrm{~S}} \end{aligned}$	$\begin{aligned} & \dot{9} \\ & \text { ت゙ } \\ & \text { ت̈ } \\ & \text { ज } \end{aligned}$	$\stackrel{\oplus}{\underset{y}{\aleph}}$	$\begin{aligned} & \dot{0} \\ & \text { స్ } \\ & \text { व్ర } \\ & \text { 品 } \end{aligned}$	$\underset{\sim}{\text { 玉in }}$		$\stackrel{\oplus}{\stackrel{\omega}{c}}$	$\begin{aligned} & \text { ®. } \\ & \text { స్ } \\ & \text { は̈ } \\ & \text { En } \end{aligned}$					$\begin{aligned} & \text { B } \\ & \text { o } \\ & \text { g } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & \text { 우 } \\ & \text { © } \\ & \text { ® } \\ & \text { ® } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 走 } \\ & \text { O } \\ & \text { B } \\ & 4 \end{aligned}$	$\begin{aligned} & \ddot{A} \\ & 0 \\ & \text { H } \\ & \text { O } \\ & \text { B } \end{aligned}$	
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	61	
18	27	0	0	3	5			0	2	No．－	No．－	79	\＄17，550	\＄1，809		
16	28	0	0	0	0	2	0	0	5	No．－	No．－		15， 050			992
9	17	0	0	0	0			2	8	No．－	Yes．	245	1，150			993
18	27	0	0	0	0			3	3	No．．	No．	30	17，000	1，000		994
74	110															995
69	100	1	0	1	3	15	5	13	21	No．－	No．－	562	4，800	5，000		996
16	32	0	0	5	10	0	0	3	9	Yes．	No．－	75	15， 300	2，000		997
39	62	0	0	2	5	1	0	3	9	No．－	No．－	197	6，350		\＄48	998
47	50			6	4	2	0	4	17	Yes	No．－	94	6， 200		90	999
23	37	0	0	5	9	8	2	3	4		No．－	150	5，150			1000
155	147	0	1	47	58	25	0	20	22	No．－	No．－	1，181	21，000		1，120	1001
17	20	0	0	1	0			4	0	No．－	No．－	150	350			1002
13	7	0	0					7	1	Yes．	No．－	25	100			1003
42	36	0	0	0	0	1	0	6	6	Yes．	No．－	24	1．235			1004
25	26	0	0	1	4	12	0	2	7	Yes．	No．－	50	40，050		43	1005
10	23	0	0	0	0	0	1	1	6	No．－	NO－－	160	10，140	1，200		1006
19	15	0	0	0	0			0	0	Yes．	No．－	333	6，060	165	20	1007
186	264	0	1	82	45	28	0	25	37	No．－	No．－	200	50，600			1008
27	24	C	1	4	1	5	0	3	4	NO．－	No．－	100	5，100			1009
34	45	－	1	7	13			1.	7	NO．－	NO－－	67	30，285			1010
12	26			0	2			0	3	No．－	Yes．	20	－ 20		15	1011
31	61	0	0	0	4	，	0	0	5	Yes．	NO：－	1，000	100			1012
50	58	0	0	8	2	3	0	6	8	No．－	No．－	40	58，600			1013
138	207	0	2					17	27	No．－	No．－		171，000		535	1014
23	18	0	0	0	0			1		Yes．	No．－	50	3，075	30	20	1015
15	14	0	0	0	0	0	0	1	2	No．－	NO．－	100	10，020			1016
25	46	0	0	5	10	3	6	9	8	Yes．	No．－	450	60，500			1017
21	46	0	0			10	25	0	1	Yes．	Yes．	400	15，500			1018
21	21	0	0	1	1	0	0	0	3	No．－	No．－	25	3，075			1019
5	6	0	0			6	2	2	2	No．－	NO．－	0	－－－			1020
15	12	0	0	1	5			2	2	NO．－	No		4，050	174		1021
20	43	0	0	0	2	2	0	2	2	Yes．	No．－		10，025	12		1022
106	143	0	0	21	6	4	0	10	30	No．－	No．－	150	75， 700		225	1023
28	25	0	0	1	0	0	0	4	2	Yes．	NO－－	0	50		20	1024
5	10	0	1	0	0			0	0	Yes．	No．－	25	15			1025
7	24	0	0	0	0	0	0	4	5	No．－	NO．－	80	4， 025	250		1026
22	23	0	0	0	1			0	7	Yes．	NO．－	200	100		6	1027
40	69	0	0	7	11	5	0	8	13	Yes．	No．－	2，000	41，503	－－－－5－	65	10こ8
95	111.	0	0	23	22	24	2	20	32	Yes．	No．－	235	44， 800		400	1029
25	40.	0	0	4	12	16	28	2	8	Yes	NO．－	100	200		100	1030
21	22	0	0	1	0			，	1	NO．－	No．－	\％5	20， 100			1031
29	65	0	0	6	3	5	0	6	7	Yes．	NO．－	437	42，000			1032
9	11	0	0	1	0	0	0	0	0	Yes－	No．－	50	3， 000			1033
31	55	0	0	1	15	7	0	3	10	Yes．	No．－	100	5，100	4，000		1034
34	24	0	0					3	11	No－－	NO．－					1035
12	24	0	0	5	5	0	0	2	7	Yes．	NO．－	390	5， 200	171	30	1036
73	102	0	1		4	3	2	6	12	No．－	No．－	300	100，500		280	1037
12	30	0	0	${ }^{-}$	0			1	6	No．－	NO．－	0	4，000			1038
19	18	0	0	1	0	0	0	2	2	No．－	No．－	163	1，050	800		1039
18	15	0	0	0	0	0	0			Yes．	No．－	25	5，0\％5	159		1040
11	12	1	1	0	0					No．－	NO－－	0				1041
40	47	0	0	8	4			5	9	NO．－	NO．－		300			1042
17	15	0	0	0	0	$\overline{2}$	0	4	2	Yes．	No．－	60	55， 500	1，300	60	1043
40	55	0	0	3	4	2	0	1	7	Yes．	No．－	50	12，300	700	64	1014
11	22	6	6	6	1	6	0	2	4	Yes	No．－		18， 050			1045
11	18	0	0	0	0			3	6	No．－	No．－	0	9，000	1，000		1016
40	42	0	0	3	4	3	0	5	7	Yes．	Yes．	250	127， 000		240	1047
34 14	28	0	0	9	10	4	0	$\stackrel{4}{2}$	7	Yes	NO．－	1，600	15， 500		15	1048
14	23	0 0	0	0 7	12	5 0	7 0	r	4 16	Yes．	No．－ No．	1，200	100 35,500		120	1019 1050

Table 3.-Statistics of Public

High Schools for 1889-90-Continued.

Students in secondary grade.		Coloredpupilsincluded.		Numberprepar-ing forcollegeclassicalcourse.		$\begin{array}{\|c} \text { Number } \\ \text { prepar- } \\ \text { ing for } \\ \text { inloge } \\ \text { college } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{array}$		$\|$Number of stu- dents whograd- uated or com- pleted their studies in 1889-90.		Is drawing obligatory?						
菏	$\begin{aligned} & \text { ä } \\ & \text { an } \\ & \text { an } \end{aligned}$					$\stackrel{\dot{\Xi}}{\stackrel{\pi}{3}}$		$\begin{aligned} & \dot{\oplus} \\ & \text { ت゙̈̈̉ } \end{aligned}$								
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$\begin{array}{r} 345 \\ 18 \\ 22 \end{array}$	$\begin{gathered} 356 \\ 20 \\ 20 \end{gathered}$	$\left.\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\left.\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{array}{r} 114 \\ 0 \\ 0 \end{array}$	$\left.\begin{array}{r} 60 \\ 2 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} 100 \\ 0 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{r} 48 \\ 3 \\ 3 \end{array} \right\rvert\,$	$\begin{array}{r} 56 \\ 3 \\ 1 \end{array}$	$\left\|\begin{array}{l\|} \text { No-- } \\ \text { No.- } \\ \text { Yos.- } \end{array}\right\|$	$\left\|\begin{array}{l\|} \text { No.-. } \\ \text { No.-. } \\ \text { No. } \end{array}\right\|$	$: \begin{aligned} & 2,000 \\ & 21 \\ & 1,090 \end{aligned}$	$\left[\begin{array}{c} 168,173 \\ 15,500 \\ 12,525 \end{array}\right.$		870	1051 1052 1053
$\begin{aligned} & 58 \\ & 68 \\ & 32 \end{aligned}$	$\begin{gathered} 94 \\ 81 \end{gathered}$		0	1	1	3	5	${ }_{8}^{4}$	${ }_{13}^{6}$	Yes.	No--	$\begin{aligned} & 8,322 \\ & 1,000 \end{aligned}$	$\begin{gathered} 75,300 \\ 50,300 \\ -\cdots, 30 \end{gathered}$	(822,603	${ }_{405}^{495}$	1054 1055 1056
339	305	5	3	128	72	135	155	49^{-1}	-34	No.-	Yes.	$\overline{3}, 5 \overline{0} 0^{\circ}$	101,500		6,452	1057
16	22	0	0					0	3	Yes.	No--		5,075	429		1058
$\begin{array}{r}8 \\ 50 \\ \hline\end{array}$	100		${ }_{2}^{0}$	1	${ }_{2}^{1}$	${ }_{4}^{0}$	${ }_{6}$	- 8	10	No--	No--	10,000	20, 500	40,000	20,000	1059 1050
100	202	2	2						23	Yes.	No.-		206, 000	71, 303	187	${ }^{1061}$
14	11	0	${ }_{0}^{1}$	4	2	6	1	1	9	No.-	No--	244	9,000	151	20	${ }_{1063}^{1002}$
25	50															1064
					0	0	2				No.					1065
48 40	52 45	0	0	${ }_{0}$	0			- $\begin{array}{r}1 \\ 4 \\ 4\end{array}$	10	No.-	No--	50	20,100	350 307 317	300	${ }^{1066}$
42	38		0					- 4		Yes.	Yes.		7,100 2,505	317 207	145	${ }_{1068}^{1067}$
24	40	0	0	0	1	15	18	1	6	No.	No--	60°	2,500		32	1069
	85	0	0						10	Yes	No.-	1,200	14,300	3,250		1070
33 20	25	0	0	4	${ }_{0}^{2}$	5	${ }_{3}^{3}$	2	\%	No.-	No.-	+ 180	2,850 15,075	758 200	330 75	${ }_{1071}^{1071}$
47	40	6	9	${ }_{3}$	0			-->		No	No	200	15,075	200	75	${ }^{1072} 10$
21	23	0	0	1	1		2	2 4		Yes.	No--	1250	25,010	532 250	132	1074 1075
$\begin{array}{r}9 \\ 10 \\ \hline\end{array}$	${ }^{3}$	0	${ }_{0}$	${ }_{0}^{1}$	${ }_{0}$		${ }_{0}$		${ }_{2}^{3}$	Yes.	${ }^{\text {No.-- }}$	1,000	10,000		30	1076
30 24 24	42 27	0	0	1 0	${ }_{0}^{1}$	9	${ }_{0}^{6}$	2 1 1	1	Yes.	No-	386 0	7,220 3,000	368 538 58	337 132	1077 1078
$\stackrel{24}{62}$		0	0	0				- 1	8	No.	No-		3,000	538	132	${ }^{1078} 10$
18	26	0	0					2	6	No.-		0	10,000		200	1080
21		0	0	1	8	11	34			No--	No--	1,300	50, 3co		120	1081
1	128	1	${ }_{0}^{6}$	0	0		$\stackrel{0}{3}$	${ }_{0}^{1}$	$\stackrel{3}{2}$	No			1,400 8,000			
12	11	1	0	-	0	2	4	1	${ }_{2}$	-		137	7,700	--12	91	103
12	${ }_{23}$		1				2			No.-				443	$2 i 0$	1085
			1	3	2	6	0		11	No.-	No.-	333	18,000	43	140	1087
$\begin{array}{r}40 \\ 65 \\ \hline\end{array}$	25 48	3	-			4	2	-2 3	${ }_{4}^{2}$	Yes.	${ }^{\text {N }}$	300 100	30,025 $2+700$		125 325	1088 1089
18	48		${ }_{0}^{2}$	0	0			${ }_{0}$		Yes-	No-	1100	2, 200 3,500	${ }_{340}^{493}$	${ }^{3} 5$	1090
- 21	${ }_{31} 1$	0	${ }_{0}^{0}$	0	0			${ }_{3}^{0}$	${ }^{0}$	No-	No-		3, 3100	- ${ }_{178}^{476}$	62	${ }_{1091}^{1092}$
20	25	1	${ }_{0}$	0	0			${ }_{0}$	${ }_{0}$	Nos.	$\stackrel{ }{\text { No- }}$	1,200	${ }_{8,150}$	${ }_{2}^{1,740}$		1093
21	40	0								Yes.	No-	400	16, 150	3,400	70	1094
47	34	0	0	1	3	2	3	3	3	No.	No.	500	51,000	6,972	128	1095
20	25	2	1			7	7		4	N	--	500	1,500	338	380	1096
	${ }_{38}^{32}$	0	${ }^{2}$	-	0		12	${ }^{9}$	0		No--		120, 500			1098
30	$\begin{aligned} & 38 \\ & 15 \end{aligned}$	0	0 0	0 3 3		- ${ }_{2}^{0}$	4				No--	240 10	10,050 10,025		380 30	11090
25	${ }^{38}$	0	0			15	10			No..	No.-	2, 100	35, 800	,7i1	21	1101
273	20	0	-						3	No.-	No--	1310	25, 100		160	${ }_{1103}^{1103}$
2	116	0	1			5	0	2		Yes.	No	${ }^{1,400}$	70,000		296	1104
47 37	48 3	4	-	26	21				6			${ }_{5}^{501}$	10,200 3,100	1,880 169	400 289	${ }_{1105}^{1105}$

Table 3.-Statistics of Public

	State and post-offlce.	Name of institution.	Name of principal.	$\begin{aligned} & \text { Number of } \\ & \text { "second- } \\ & \text { ary" in- } \\ & \text { structors. } \end{aligned}$	
				※゙	Ф
	1	2	3	4	5
	MICHIGAN-cont'd.				
1107	Hancock.	High School	H. Z. Brock	1	1
1108	Hanover	High School (department)	L. E. Miller	1	3
1109	Hart	Union School ---------------	F. E. Younge---------	1	4
1110	Hastings	City School	Wellington D. Sterling-	2	1
1111	Hersey.-	High School -----.-...------	B. E. Scott	2	1
1112	Hesperia	High School (department)	Well S. Millard.	1	3
1113	Hillsdale	----do ---------------------	S.J. Gier	3	1
1114	Holly	High School	S. B. Wood	1	6
1115	Homer	----- do ...---	W. F. Mercer.	1	5
1116	Horton		F. W. Wheaton	1	2
1117	Houghton	do	F. W. Arbury	2	1
1118	Howard City	do	Geo. D. Papson	1	4
1119	Howell ---...	do	W. H. Hawkes, superin tendent.	1	2
1120	Hubbardston.	High School (department)	Eugene Straight.-.-.-.	1	2
1121	Imlay	---- do -----------------------	G. H. Broesamble.	1	1
112\%	Ionia ----------	High School	Miss J. A. Williams	3	4
1123	Iron Mountain	do	Miss Flora Wilber	1	2
1124	Iron River.	do	M. R. Parmelee .-.	1	3
1125	Jackson.	High School, district No. 1.	Elmer E. Brown	1	5
1126	----do -	High School, district No. 17	Lada Wilson	1	2
1127	Jonesville	High School ----------------	J. N. Mead	1	1
1128	Kalamazoo	-----do .----	S. O. Hartwell	1	7
1129	Lake Linden	.do	C. G. White...	1	2
1130	Lakeview..	do	W. H. Davis	1	0
1131	L'Anse..	do	C. E. Tuck.	1	0
1132	Lansing	do	O. H. Carson	3	5
1133	Lawton	do	W. D. Hill	1	1
1134	Litchfield	do	W. H. French	1	1
1135	Lowell.	do	C. S. Larzelere	1	1
1136	Ludington.	do	Mrs. Van Laird	1	3
1137	Luther---	High School (department)-	Evan Essery .-	1	1
1138	McBride's		C. E. Peabody	1	2
1139	Manchester	do	G. W. Loomis	1	1
1140	Manistee	High School	- Whitehead	1	3
1141	Manton	-..---do	Wm. A. Hearn	1	0
1142	Marine City	do	Elmer Fisher	1	2
1143	Marlette.	do	H. W. McArdle	1	3
1144	Marquette	do	Wm. McCracken	1	3
1145	Marshall ----.-......	do	W. E. Goddard, A. B	3	2
1146	Mayville	do	E. D. Dimond .-......	$\stackrel{1}{2}$	2
1147	Memphis	do	F. H. Sooy --.	1	3
1148	Menominte	do	Miss M. F. Stringham	0	3
1149	Midland	do	F. E. Stroup --------	1	1
1150	Milan	- do	G. A. Dennison	1	1
1151	Milford	do	A. P. Cook	1	1
1152	Monroe .-----...-. --.	do	Walter Dennison	3	4
1153	Montague ----------	High School (department)-	Jas. C. Bryant.	1	,
1154	Morrice.--.---------	High School .---------------	- Slack ---.	1	0
1155	Mount Pleasant...--	-----do -----------------------------	James L. Skinner	1	$a 11$
1156	Muskegon	do	J.H. Sheffield --.-	1	2
1157	Napoleon .----------		W. W. Armstrong	1	2
1158	Nashville ------------	High School (department) -	O. M. McLaughlin	0	1
1159	Negaunee .-.-. --..-	High School .---------------	Fi. D. Davis, superintend ent.		
1160	Newaygo		Joseph Biscomb .-----	1	1
1161	Niles...	do	L. H. Stewart --.-........	1	2
1162	Northport	do	Miss Eva Smith	1	2
1163	Northville.	High School (department).	J. A. Sinclair	1	1
1164	Norway.	High School .-...-.-.--------	S. B. Tobey	1	1
1165	Otsego.	------ do .--	G. A. Oringa	1	1
1166	Ovid.	.-do	E. M. Plunkett	1	1
1167	Owosso		H. H. Frost.-.-......-.	2	

a Also give instructions in other departments.

High Schools for 18S9－90－Continued．

Students in second－ ary grade．		Colored pupils in－ cluded．		Number prepar－ ing for college classical course．		Number prepar－ ing for college scien－ tific course．		Number of stu－ dents whograd－ uated or com－ pleted their studies in $1889-90$.		Is drawing obligatory？	Has the school a gymnasium？					
$\stackrel{0}{\text { © }}$	$\begin{aligned} & \dot{0} \\ & \text { ご } \\ & \text { gi } \\ & 0 \end{aligned}$	$\underset{\sim}{\text { ® }}$	$\begin{aligned} & \dot{0} \\ & \text { ㄹ } \\ & \text { B } \\ & 0 \\ & = \end{aligned}$					$\frac{\stackrel{0}{\mathrm{~S}}}{\underset{\mathrm{~s}}{2}}$	$\begin{aligned} & \text { © } \\ & \text { ご } \\ & \text { g్ } \\ & \text { E } \end{aligned}$							
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
19	31	0	0					6	7	Yes．	No．	800	830，250	812，000	8299	1107
20	18							2	4	Yes．	No．－	253	（80， 50	1～，000	209	1108
15	18	0	1	2	7	8	10	2	4	No．	No．－	542	3，200	361	156	1109
		0	0	0		5	3	13	10	Yes．	No．－	1，250	40,220	10，129	778	1110
20	22	0	0	0	0	3	0	0	0	No．－	No．－	1，	4，020		10	1111
6	15	0	0			2	1			No．－	No．－	33	3，700	134	23	1112
58	83									Yes．	No．－		300		417	1113
40	47	0	3	1	2			2	1	Yes．	NO．－	135	15， 100	950	205	1114
35	20							1	1	No．－	NO．－	298	15， 100	830	155	1115
15	25	0	0	0	0			0	0	No．－	No．		3， 010			1116
6	15			3	0	3	0	3	3	Yes．	No．－	1，200	37， 500	13，054	$1 \% 5$	1117
11	11	0	0							NO．－		96	50			1118
30	43	2	4							Yes．	No．－		65， 460		300	1119
24	25	0	0	2	1			2	0	No．．	No．－	53	6，025		93	1120
9	16	0	0					1	5	No．－	NO．－	255	10，075	530	173	1121
66	76	1	0	10	10	20	20	4	10	Yes．	Yes．	500	6，500	1，742	1，062	1122
6	19	0	0	2	0	0	0	2	2	No．－	No．－	1，000	25， 150			1123
9	18	0	0	0	0			0	0	Yes．	NO．－		－5，			1124
94	148	0	0	7	9	18	25	13	14	Yes．	Yes．	1，500	27,500		85	1125
40	65	0	0	0	0	30	40	2	5	No．－	No．－	250	25， 300	14，000	75	1128
35	35	0	0	2	2	5	4	1	3	No．－	NO．－		25，500		250	1127
95	171	2	1	2	4	1	0	6	15	No．－	NO．－	375	36，000		500	1128
22	49	0	0	0	0	10	6	8	5	No．－	No．－	400	18，500	5，020		1199
28	34	0	0	0	0	10		2	4	Yes．	NO－－	57	18， 000	5，020	75	1130
21	23	0	0	0	0			0	7	Yes．	No．－	400	10，000			1131
74	149	1	0					3	6	No．－	NO．－	6，269	30， 100	5，000	309	1132
16	24	0	0							NO．．	NO．－	25	15， 050		150	1133
14	16	0	0	0	0			4	3	Yes．	No．－	75	9，100		210	1134
30	67	0	0	0	0	0	0	0	3	No．－	No．－	2，235	14，025	999	253	1135
29	49	0	0	0	0	3	0	3	3	No．－	No．－	2，200	65， 400	3， 040	140	1136
12	33	0	0	0	0	1	0	1	3	No－－	No．－	175	6，225	－ 367	200	1137
8	6	0	0	0	0	0	0	6	3	No．－	NO．－	12	2，060	367	6	1138
27	30	1	0					2	7	No．－	No．－	40	5， 300		284	1139
50	90			4	0	3	0	6	17	No．－	No．－	± 00	75， 500		160	1140
13	24	0	0	1		1		1	1	Yes	No－－	0	10,117	409	60	1141
18	17	0	0	0	1	0	$\overline{2}$	0	0	No．－	No－－	520	18， 100			1142
48	54	0	0					0	0	No．－	No－－	60	2，010		70	1143
22	51	0	2	1	4	0	1	4	8	No．－	No．－					1141
36	48	0	0	10	10	10	20	2	6	NO．－	No．－	1，013	100,500	13,986	385	1145
31	42	0	0	3		2		4	10	No．－	No．－	200	9， 050		250	1146
27	24	0	0	1		2		0	$\stackrel{1}{2}$	No．－	No．－	314	3，100	97	73	1147
40	49	0	0	0	1	0	3	5	6	No．－	NO－－	200	200		10	1148
22	26	3	2					2	2	Yes．	NO－－	1，300	37，200	5，200	89	1149
20	14	0	0		3		6	0	2	NO．－	No．－	600	4，350	389	75	1150
32	32	1	1	1	1	3	0	6	6	No．－	No．－	59	16，075	550	423	1151
46	52	0	1	5	4	3	5	3	5	No．－	No．－	2，642	37，150	2，280	596	1159
		0	2	0	0	0	0	1	5	No．－	No．－	110			119	1153
		0	0	0		0		1	7	No．－	NO－－	50			50	1154
17	32	1	2		8		－14	1	5	Yes．	No－－	360	20，100	1，960	103	1155
50	130	0	0	1	25	1	39	12	18	Yes．	No．－	500	15，500		48	1156
10	18	0	0	0	0	0	0	0	3	Yes	No．－		7，000			1157
40	60	0	0	4	10	4	10	3	5	Yes．	Yes．		20，100		250	1158
35	44															1159
12	16	4	2	2	2	0	0			No．－	NO．－	100	10， 150	4，000		1160
26	56	0	1	0	3	2	2	2	10	NO．－	NO－－	1，443	， 200		142	1161
25	26					5	6	0	0	Yes．	No．－	109	2， 050		35	1162
24	30	1	0					1	1	Yes．	NO．－	1，500	13， 150		300	1163
16	23			3	4	13	19	1	0	Yes．	No．－	\％ 29	4，750	8，500		1164
24	49	0	0	2	3	0	0	0	0	No．．	No．－	400	10，306	1，164	53.2	1165
29	29	0	1	0	0	0	10	3	2	No．－	NO．－	93	3，170	5， 529	215	1166
50	80	2	0	4	5	6	0	2	6	No．－－	No．－－	600	80， 300	Ј，	300	1167

Table 3.-Statistics of Public

High Schools for 1859-90-Continued.

Students in secondary grade.		Colored pupils included.		Number preparing for college classical course.		Number preparing for college scientific course.		Number of stu- dents whograd- uated or com- pleted their studiesin $1889-90$.		Is drawing obligatory?	Has the school a gymnasium?			Amount of State and munic-ipal aid.		
$\stackrel{\oplus}{\underset{\Sigma}{\mathrm{E}}}$		芯		${\underset{\sim}{\oplus}}_{\substack{\infty}}$				$\stackrel{\oplus}{\stackrel{0}{ت}}$								
6	7	S	9	10	11	12	13	14	15	16	17	18	19	20	21	
20	30							3	4	No.	No.	106	\$4,000	8811	\$152	1168
26	32	$1-$	0					5	8	No.-	No.-	295	30,075		365	1169
16	32	1	1		3	3	5	4	5	No.-	No.-	300	15,050		40	1170
32	37	0	0	2	0			1	3	No.-	NO.-	30	4,040	$2 \% 7$	180	1171
13	18	0	0	0	0					No.-	NO--	0	6,131	240	19	1172
30	44	0	0					0	6	No.-	No.-	264	12,100	4,200	301	1173
44	77							4	11	No.-	NO.-	1,378	100,500	17,210	610	1174
16	11	0	0	1	1	0	0	2	4	No.-	No.-	250	5,000	212	0	1175
3	0	0	0	0	0	0	0	2	2	No.-	No.-	35				1176
31	77	0	0	3	2			2	4	No.-	NO.-	1,600	26,000		68	1177
22	41	0	0			0	0	0	4	NO.-	No.-	50	8,030	260	65	1178
20	27	0	0	2	3	3	5	3	1	Yes.	NO.-	300	8,500	500	300	1179
126	192															1180
11	35	1	1			5	4	1	2	NO.-	No.-	625	35,150	9,071	91	1182
19	47							1	0	Yes.	No.--	200	12,200		165	1183
1	24					4	5	2	5	No.-	NO--	430	1,5,500			1184
8	22	0	0	4	2	3	12	1	4	Yes	NO.-	158	5, 350	3, 125	69	1185
3	8	0	0	0	0	0	0	1	0	No.-	No.-	220	6,100	500	25	1186
20	33							4	9	Yes.	NO--	850	18,250	466	392	1187
30	33	0	2			0.		3	3	No.-	Yes.	57	13,400	3,403	400	1188
30	25	0	0	0	0	30	0	2	6	NO..	NO.-	200	8, 010			1189
10	23	0	0	0	0	18	10	1	2	No.-	NO--	279	5,095	279	87	1190
19	32			1	2	14	17	1	2	Yes.	NO--	102	5,115	910	34	1191
19	17	0	0	0	0			1	3	No.-	NO.-	140	3, 000		120	1193
17	30	6	9	0	0			0	5	Yes.	NO--		5,010	1,535-	99	1193
25	40	0	0	4	9	21	31	3	4	No.-	NO--	623	21,360	6,610	87	1194
46	35	0	0	0	0	8	13	4	10	NO--	NO--	200	12,000	------	250	1175
20	25	0	0					2	3	NO.-	No.--	127	3,025	429	249	1196
35	40	3	2	0	0	0	0	2	5	NO--	NO--	17	7,650	352	317	1197
30	36							2	0	No.-	NO--		5,150		126	1198
20	26	0	0					1	7	No.-	NO--	150	20,150		210	1199
27	88	0	0	0	5	2	4	4	11	NO.-	No.-	16,000	400	3, 000	45	1200
25	35	0	0	0	0	0	0			NO--	NO--	- 350	2,850	, 700	99	1201
25	35	0	0	5	10	20	25	1	1	No.-	NO--	100	30, 100	600	180	1202
25	32	0	0					3	3	NO--	No--	2,000	50, 100	7,400	131	1203
15	25	0	0					0	0	Yes.	No.-	, 75	10, 100		400	1204
38	42	1	1					4	5	No.-	No.-	1,500				1205
5	8	0	0	0	0	0	0	0	0	No.-	No.-	1,200	4,025	2,633		1206
20	32					5	2	5	0	No.-	No.-	400	30,445	400		1207
45	55	1	0	0	0	35	40	6	4	Yes.	Yes.	250		400		1208
31	43	0	0	5	4	2	9		6	NO.-	No--	500	10, 250	400		1209
15	20	0	0	8	19			1	7	Yes.	No--	300	9,150	4,400	50	1210
38	27	0	0	0	0	9	13	4	2	Yes	NO--	219	13, 300	- 400		1211
16	19	0	0			0	4			No.-	NO--	150	10,120	597		1212
6	19			2	3					No.-	NO--	75	2,075	400		1213
15	40	0	5	0	0	15	30	2	8	Yes.	NO--	450	17,200	400	140	1214
27	35	0	0	10	11	12	29	0	0	No.-	No.-	284	30,225	400		1215
12	19	0	0	7	10	2	0			Yes	NO--	300	10, 150	400	12	1216
15	$\stackrel{21}{98}$	15	21	3	5	2	- 4	2	5	NO--	No--	-250	10,150		47	1217
67	98	0	0	5	10	10	23	6	7	Yes.	No--	1,200	41,500	400		1218
8 13	15	0	0	0	0	5	8	0	0	Yes	NO--	250	10,100	400	45	1219
13	19	0	0			13	19	0	1	Yes.	No.--	106	18,250	400	189	1220
41	46	0	0	5	1	15.	10	2	6	No.-	No--	552	34,750			1221
17	12										NO.-	600	10,400	3,595	25	1222
18	22	0	0	3	2	0	0	2	1	No.-	No.-	0	3,050		8	1223
23	35							0	0	Yes.	No..	208	4,650	550		1224

Table 3.-Statistics of Public

High Schools for 1859-90-Continued.

Students in secondary grade.		Colored pupils included.		Number preparing for college classical course.		Number prepar- ing for college scientific course.		Number of stu- dents whograd- uated or com- pleted their studiesin 1889-90.		Is drawing obligatory?	Has the school a gymnasium?					
$\underset{\sim}{\stackrel{\omega}{\omega}}$			$\begin{aligned} & \text { థ } \\ & \text { స్ } \\ & \text { ష్ల } \\ & \text { © } \end{aligned}$					$\stackrel{\dot{\sim}}{\stackrel{\sim}{c}}$								
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
26	32	0	0	8	7	5	0	4	4	No.-	No.-	600	\$11,000	\$100	\$20	12.5
20	22	0	0	0	0	2	3	0	0	No.-	No.-	215	10,150	800	112	1226
55	54	0	0	0	1			3	12	No.-	No.-	3, 081	31,000	14,000		1227
31	20	0	0	0	0	10	6	2	3		NO.-	350	12,200	, 400	60	1228
14	16	0	0	4	9	7	6	3	1	No.-	NO.-	500	25,500	400		12\%9
10	20	0	0	0	0	0	0	0	0	No.-	No.--	203	6,000			1230
24	35	0	0	0	0			1	7	Yes.	NO--	140	20,100	400		1231
21	28	0	2	0	0	0	0	0	0	No.-	No.-		7,000	608	57	1232
43	47	1	1	15	0	10	20	8	6	Yes.	No.-	650	1,500	400		1233
23	8			4	2			0	0	Yes.	No		12,000			1234
10	30	0	0	0	0	10	30	0	0	No.-	No.-	303	10,200	400		1235
21	28	0	0	0	0	15	30	0	0	Yes.	No.-	90	3,650	753	13	1236
14	25	0	0	5	7	9	18	2	7	Yes.	No.--	200	22, 000		100	1237
27	42	2	1			24	29	5	3	No.-	NO.-	380	25, 460	400	200	1238
19	36		-	$1-$	3	5	10	1	1	No.-	NO.-	200	30,500	400		1239
20	30	0	0	0	0	2	1	2	10	NO.-	NO.-	180	5,050	3, 324	202	1240
45	41	0	0	4	2	2	0	3	9	NO.-	NO--	820	17,200	- 400		1241
12	16	0	0	0	0	4	6	3	3	No.-	No.--	300	30,060	600	75	1242
14	16	0	0	6	8	8	8			No:-	NO.-	150	7,500	2,424	217	1243
23	34	0	2	8	19	10	5	7	6	Yes.	NO--	250	16,200			1244
294	514	0	1.					40	67	No.-	NO.-	8,000	220,000		200	1245
70	82	0	0					0	0	NO--	Yes.	1,000	80, 200			1246
25	30	0	0	0	0	12	15	0	0	YeS.	No.-	-119	15, 200	1,653		1247
16	31	0	0	0	0	1	4	0	3	NO.-	NO--	137	15, 175	1,211	273	1248
12	23	0	1	0	0			1	2	Yes.		1,700	30,300	3,200		1249
8	9	0	0	0	0	5	2	1	0	NO.-	No.-	50	25,150	400		1250
10	2	0	.	0	0	8	2	0	0	Yes.	NO---	522	26,600	60		1251
30	45			6	3	6	20			Yes.	NO.--	500	40,350	400	311	1252
12	14	0	0					0	2	NO.-	NO--	150	10,175	400		1253
50	49	0	0	2	2	18	12	8	6	No.-	No.-	1,000	40,700	700	175	1354
12	20	0	0					0	3	No.-	Yes.-	- 450	14, 300	400		1255
30	40	0	0	10	20	10	10	2	1	NO--	NO.-	300	25,700	400		1256
42	54	0	0			10	4	4	7	NO--	NO--	675	26,000			1257
16	33	5	6	0	0	6	2	6	2	Yes.	No.-	70	20,125	400	86	1258
24	35															1259
19	21	0	0					5	8	No.-	NO.-	300	200	400		1260
23	39	0	0	0	0	5	10	1	0	No..	NO--	367	17,709	400		1261
14	23	0	0	2	3			0	0	No.-	NO.--	250	20,500	400		1262
12	16	3	5	2	0	0	0	0	0	No.-	NO--	960	66,100	15,500	90	1263
245	416	3	4					29	49	No.-	Yes.	1,385	2\%0,000	967	300	1264
30	22	0	2							NO.-	No.-		82,460			1265
2	22	0	0	0	0	2	15			No..	No.-	0	75, 000			1265
14	26	0	0	3	0	11	26			No..	NO.--	315	66, 730		56	1267
15	34	0	0	0	0	13	25	0	8	No.-	NO.-	440	28, 450	15,000		1268
19	25	0	0			10	15	2	6	No.-	NO--	500	6,503	- 400	18	1269
5	${ }^{6}$	0	0					0	0	NO..	NO.-	38	3,540	490	35	1270
20	26	0	0	8	5	10	10	2	0	Yes.	No.--	500	15, 300	8,000		1271
52	80	0	0	0	0	1	3	1	15	No.-	Yes.-	800	52,500	8, 400		1273
28	22	0	0	0	0	28	22	4	4	Yes.	NO:-	2,125	8,300	1,800		1273
25	15	0	0					2	6	Yes	NO--	125	20, 100	1,750		1274
12	22	0	0	0	0	8	16	1	0	NO.-	NO--	249	12,200		56	$12 \% 5$
25	25	0	0					4	5	Yes.	NO--	. 500	26,000	400	250	$12 \% 6$
22	26	0	4					1	2	Yes.	NO.-	- 700	20, 150	400	90	1277
25	15	0	0	20	10	6	4	0	0	Yes.	NO.-	300	12, 200	400	20	1278
12	20					10	23			Yes.	NO.--	115	6,120	1, 000		1279
11	14	0	0	0	0	10	12	1	4	Yes.	No.-	201	13,275	400	154	1280
45	60			4	5	10	8	8	8	Yes.	Yes.	700	64,000			1281
20	31					1	7		7	Yes.	Yes	500	40,400	400	150	1282
22	30							1	4	No.-	No.-	125	9,000	400	25	1283

Table 3.-Statistics of Public

-	State and post-offlce.	Name of institution.	Name of principal.	$\begin{aligned} & \text { Number of } \\ & \text { "second- } \\ & \text { ary" in- } \\ & \text { structors. } \end{aligned}$	
				$\stackrel{\text { cis }}{\substack{\text { c- }}}$	-
	1	2	3	4	5
	MISSISSIPPI.			11331322121	
1284	Brandon	Male School	F. A. Hatton		1
1285	Brooksville	High School.-....-.-..........-	H. E. Harlan....-...........-		2
1286	Columbus .	Franklin Academy .-..-....-	J. M. Barrow		$a 8$
1287	Columbus	Union Academy..............	W. I. Mitchell..-..........-.		5
1288	Crystal Springs	High School	P. M. Tyler---		1
1289	Gillsburg.-.....	Collegiate Institute	Prof. W. K. Nettles.......-		2
1290	Holly Springs	Normal Institute............-	W. A. Anderson.......-. --		2
1291	Houlka-	High School	E. A. Smith		2
1292	Jackson	High School (department).	J. E. Erwin		0
1293	Macon.	----do -------------------	A. F. Moncreiff		2
1294	Natchez	Natchez Institute	W. H. Kee..		1
	MISSOURI.				
1295	Adrian	High School (department).	Prof. Frank Deerwester --	1	2
1296	Albany	High School -----.-..........-	W. T. Martin......--------	0	2
1297	Alton	Alton Academy --...-....-.---	W. Heiskell	1	1
1298	Boonville	High School (department).		1	0
1299	Breckenridge.........	High School.---...-...........	F. S. Lonsdale........-.	1	0
1300	Buffalo........	-....-do .-....	I. W. Wingo......---------	2	3
1301	Butler	do	J. F. Starr	1	1
1302	California	do	S. G. Landon	1	1
1303	Canton.	do	A. B. Price	1	0
1304	Carrollton.----.-.....	High School (department).	J. G. McVeight, superintendent.	2	1
1305	Carterville.	do ----.-.-................-	C. B. Davis ---..---.-.-.-.-	3	7
1306	Carthage.-.---.-.-....	High School...................--	J. M. White, superintend-		
1307	Cassville.	Collegiate Institute.-------	N. L. Maiden	2	2
1308	- Chillicothe	High School (department) -	W. W. Griffith.	2	1
1309	Clinton .-.	High School. --................	C. B. Reynolds	1	3
1310	Craig..		F. L. Maxwell.	1	3
1311	Curryville	High School (department)-		2	1
1312	Dawn .-.	High School --.-.----.------	G. T. Foster .-................-	1	1
1313	Dexter	High School (department).	A. E. Randal	1	3
1314	Golden City....-.-.-.	------ do ----------------------	A. R. McClelland	1	1
1315	Hamilton	do .-.-.-.-.------.-.-. --		4	$a 5$
1316	Hannibal	Douglass High School	J. H. Pelham .-..............	1	0
1317	Hannibal	High School.---.-.-.-.------	F. H. Loomis	2	2
1318	Hardin.	High School (department).	J. P. Cummings.............	2	$a 2$
1319	Harrisonville	High School .-..-.-...-------	H. F. Triplett	1	2
1320	Hermitage	------do .-......................-.	J. A. Woodford....-.-.	1	1
1321	Higginsville.		R. H. Emberson.	4	$a 6$
1322	Independence .-.....-	do	James M. Skinner	1	0
1323	Ironton .-.-.-	High School (department) -	A. P.Vance.	2	2
1324	Kansas City	Central High School	John T. Buchanan	9	7
1325	Kansas City --------	Lincoln High School-	G. W. Grisham...-........-	2	1
1326	Kingston ---------...-	High School.-----........-. --	S. C. Rogers -------- -- -- --	3	1
13.7	Kirksville	-----do .-.-.-	D. F. Gentry .-.............	4	$a 12$
1328	Lancaster	High School (department) -	G. H. Owen	1	4
1329	Lexington.-.........-	High School-	H. D. Demand, superintendent.	1	1
1330	Linn	do	L. W. Dallas.-.-.-.-------	1	1
1331	Louisiana		R. B. D. Simonson	2	0
1332	Maryville...-..........	High School (department).	B. F. Duncan .-....-.-. - - - -	2	2
1333	Memphis .-...........	High School --....----------	A. R. Morgan .-.............-	1	$a 7$
1334	Mexico.-	----do .-.-	D. A. McMillan	3	
1335	Miami	High School (department).	E.E.Barnett -	2	0
1336	Moberly	High School	D. E. Cloyd....	1	,
1337	Montrose	High School (department)-	J. B. Norman --.-...........-	1	0
1338	Mound City...........	High School --.-.-.---.-----	W. S. Dearmont.	1	1
1339	Neosho .-.-.-...-.---	High School (department)-	Wm. N. Vaughn..----...--	2	1
1310	.-.--do		Franklin P. Sever .-.-...--	1	

a Also give instruction in other departments.

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

	State and post-offle.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				灾	
	1	2	3	4	5
	MISSOURI-continued.				
1341	Nevada	High School --...-.-.-......-	F. N. Peters..	2	1
1342	Newtonia	High School (department).	S. L. Slane.	2	2
1343	Oak Ridge	High School .---.----------	Benj. F. Lusk.	2	1
1344	Odessa...	----do -------------------	Jas. A. Kemper	2	1
1345	Oregon-	High School (department).		1	1
1346	Osceola	High School ----.---.-.-.--		1	1
1317	Ozark		L. H. Crawford .-----------	1	0
1348	Pierce City	do ----------------------	Prof. Clark	1	1
1349	Pleasant Hill		George W. McCurdy	1	1
1350	Queen City .	High School (department) -	John W. McNaught, reporting officer.	1	1
1351	Rich Hill	High School .-.....-----.-----	J. C. Ryan, superintendent.	2	0
1352	St. Joseph St. Louis	Central High School	Frank Strong F. Louis Soldan	$\stackrel{3}{18}$	3
1354	Salem .-	High School (department).	S. S. Barrett....	2	0
1355	Sarcoxie	High School -..-........-. --	W. C. Sebring	2	1
1356	Savannal	-.----do .-...	G. W. Newton	1	1
1357	Sedalia.	do	W. A. Rawles.	1	3
1358	Slater.-	do	J. W. Bailey	2	2
1359	Springfield	do	W. T. Carrington	1	5
1360	Sweet Springs	do	George B. Cook.	1	1
1361	Trenton .-. -.	do	H. E. Du Bois .	1	1
1362	Webb City.		W. J. Sterens	1	1
1363	Weston	High School (department) -	C. W. Brown	2	2
1364	Windsor	-.---- do .-.-.----------------	George B. Sturgis.---------	2	0
	MONTANA.				
1365	Bozeman	High School (department) -	W. E. Harmon, superintendent.	1	1
13 C6	Butte	High School .-...........-.----	Eugene A. Steere.-. --.	1	2
1367	Deer Lodge		C. M. Foote ---- --..-.-. --	1	0
1368	Dillon ...-		Mary E. Hanks (Miss) .-.	0	2
1369	Helena	---- do .------------------1	S. A. Merritt ------ -- -- --		
1370	Lewistown	High School (department)	J. M. Parrent.-.-.-.-. --	1	2
1371	Livingston		M. R. Wilson .-..............	1	4
1372	Miles City		J. C. Templeton	1	1
1373	Missoula.	do	J. M. Hamilton.	1	0
1374	White Sulphur Springs.		D. Driscoll.....	1	3
	NEBRASKA.				
$13 \% 5$	Ainsworth	High School.--.-.----.-.-----	C. D. Mariner --.-.-.-.-.	1	0
1376	Albion		F. E. Jenkins....-.-.-.......-	1	1
1377	Alma		P. P. Bentley	1	1
1378	Ansley		S. McKitrick ...-....-...-.	1	2
1379	Ashland			4	$a 9$
1380	Aurora	High School (department).	J. M. Hussey	1	1
1381	Beatrice	High School --...-.-.....-.	O. H. Brainerd-	1	2
1382	Beaver City.-	High School (department)-	W. J. Lutton .-.-.-- -- --	1	$a 4$
1383	Bloomington .-.-----	------do ---.-------------------	J. H. O' Donoghue, reporting officer.	1	1
1384	Blue Hill	High School .-.-.-.-.-.-.-...-	J. R. Thornton	1	0
1385	Cambridge		Ira Doling	1	2
1385	Cedar Rapids....-.---	High School (department)-	G. W. Crozier, B. S .-...-.	1	3
1387	Chadron .-..-- --. --- --	High School	John O. Taylor	1	$a 7$
1388	Columbus	High School (department)-	A. N. Ballou. .-. --- -- -- --	1	2
1389	Craig.	High School-. --	Geo. L. Griswold...........	1	2
1390	Crete		W. H. Skinner, superin-	2	$a 11$
1391	Dawson.	High School (department).	tendent. R. L. Hoff	1	1

a Also give instruction in other departments.

High Schools for 1859-90-Continued.

Students in secondary grade.		$\left\lvert\, \begin{gathered} \text { Colored } \\ \text { pupils } \\ \text { in- } \\ \text { cluded. } \end{gathered}\right.$		Number preparing for coliege classical course.		Number preparing for college scientific course.		$\|$Number of stu- dents whograd- uated or com- pleted their studiesin $1889-90$.			器					
		.					$\begin{aligned} & \dot{\oplus} \\ & \text {. } \\ & \text { g్మ } \\ & \text { © } \end{aligned}$									
6	7	8	\pm	10	11	12	13	14	15	16	17	18	19	20	21	
						13										
28	38	12	11	4	11^{-}	1	3	1	5	Yes.	No.--	1,300	5,000	1,000	\$300	${ }_{1342}^{1341}$
25	15	25	15			0	0	0	0	No.-	No.--	10	3,500	1,690		1343
22	25								4	No.-	No.-	306	12, 048	1,200	176	1344
10	20	10	15			3	0	2	3	Yes.	No.-	50	20,075	1,014	274	1345
16	22	0	0	0	0	3	3	1	2	No.-	No.-	114	7,030		84	1346
18	9			1		0	0	0	0	Yes.			4,070	500	40	1347
19	3	0	0	0	0	0	0	0	0			50				1348
18	30							2	4	Yes.	No.-		13,800 1,600	1,510	110	1349
24	36										No.	0	1,600	875	112	1350
30	70	7	13	4	6	0	0	0	11	Yes.	No.	0	30,000	3,200	10	1351
74	149			4	0	4	0	9	17	No.-	No.-	250	30,600			1352
384	1,098	0	0	13	152			13	152		No.-		518, 194		500	1353
24	26	0	0		10	${ }^{6}$	7	4	4	Yes.	No--	300	100			1354
26	25	0	0	0	0	0	0			No--	No.-	150	5,000	386	125	1355
20	35 99	0	0			4	0	${ }^{0}$	5	No.-	No--	800	20, 300	4,341	137	1356
17	99 35	0	0	5	2	4	0	0	18	Yos-	NO--	800	20,100	5,350	90	1357
99	222	14	11	0	0	99	22	15	20	No.-	No.	200	40,100		320	1358 1359
26	10	15	10	3	10	2	4	2	4	Yes.	No.-	156	3,000	305	205	1360
23	64	0	0	2	4	6	5	0	6	No..	No.-	658			175	1361
9	16	0	0	0	0	0	0	2	4	No.-	No.	60	20,000			1362
12	26			2	3	1	-	1	3	No.-	No.-	0	12,150	5,049	300	1363 1364
16	20	4	3	0	0			0	3	No..	No.-	155	35,005		15	1365
33 9	41	0	0	2	0	1	0	7	4	No..	No.-	125	20, 100	4,300		1366
-98	23 32	0	0	0	0		3	2	1	No.-	N	300	20,005		75	1387
16	47							0	0	Yes.	No.	250			7	1368
14	13	0	0	7	6	5	4		0	No..-	No.-	${ }^{-}$	10,103	3,060	175	1370
38	34	2	1	5		4	6	5	3	Yes.	No.--	234	15, 100			1371
10 9	12	0	2 0		1	2	0	0	0	Yes-	NO--	350	15, 050	5,000	50	${ }_{1372}^{1372}$
16	20	2	4	6	2			0	0	Yes.-	No.--	250	30,300 10,000	6,000	250	1373
10	20	0	0	0	1	1	0	0	2	Yes	No.-	0	10,000			1375
17	23	0	0		10			0	5	No..	Yes.	265	22,040		160	1376
39	40	1	0	2	3			1	4	Yes.	NO.-	250	8,200		100	1377
20	13 25	0	0	0	0					No.	No.-	0	4,787	150	12	1378
41	40	3	5	41	40	3	9	3 7	7	Yes.	No.	300 20	12,300		150	1379 1380
19	47	0	2					0	8	No.-	No.-	400	17, 400		150	1381
17	17	0	0	0	0	0	0			Yes.	No.	75	8,000			1382
20	36			1	3		--	1	1	No.-	No.	150	6,150	4, 000	150	1383
18	18							1	0			100	6,160	2,500	50	1384
20	22	0	0					3		Yes.	No.-	30	7,525	350	69	1385
27	18	0	0		1	1	0	1	2	Yes.	No-	104	15, 040	250	75	1386
19	32	1	1	13 2	9	10	${ }_{35}^{14}$	1	6	No.-	NO--	84	40, 200	1,800	91	1388
25	13	0	0	0	0	0	0	0	0	No.-	No.	24	3,040	1,300	30	1389
59	54	0	0	1	1	4	4	8	7	Yes.	No.-	250	42,600	3,247	184	1390
12	9	0	0	5	0	0	0	0	0	Yes	N	25	2,525	1,000	65	1391

Table 3.-Statistics of Public

a Also give instruction in other departments.

High̉ Schools for 1889-90-Continued.

Table 3.-Statistics of Public

a Also give instruction in other departm ents.

High Schools for 18S9-90-Continued.

Students in secondary grade.		Colored pupils included.		Number preparing for college classical course.		Number preparing for college scientific course.		Numberof stu-dentswhograd-uated orcom-pletedtheirstudies in$1889-90$.		Is drawing obligatory?				Amount of State and munic-ipal aid.	Income from tuition fees.	-
			$\begin{aligned} & \text { © } \\ & \text { స్ } \\ & \text { む̈ } \\ & \text { Ex } \end{aligned}$	$\stackrel{\dot{\Xi}}{\stackrel{\rightharpoonup}{\mathrm{J}}}$	$\begin{aligned} & \text { ®. } \\ & \text { స్ } \\ & \text { gi } \\ & \text { Ey } \end{aligned}$	$\underset{\sim}{\underset{\sim}{c}}$	$\begin{aligned} & \text { Ф. } \\ & \text { స్మ゙ } \\ & \text { g్ } \\ & \text { E. } \end{aligned}$									
6	γ	8	9	10	11	12	18	14	15	16	17	18	19	20	$2{ }^{1}$	
25	27	3	2							Yes.	No.-	200	\$16,000		\$100	1452
4	4	0	0	0	0	0	0	0	0	No.-	No.--	200	15,500	\$350	15	1453
13	26	0	0	0	2	1	2	4	7	Yes	NO.-	450	14, 100	6, 089	30	1454
10	15	0	0	2	0	0	0	0	0	Yes.	NO--	25	5,150	75	27	1455
35	65	0	0					0	7	No.-	Yes-	50	27, 100			
23	80	0	0					2	14	Yes.	NO.-	500	20,292	4,218	124	1457
17	36	0	0	0	0	4	3	5	6	NO--	Yes.	225	20,150	14,208		1458
17	31	0	2					2	4	No.-	NO--	328	30,000			1459
13	7	1	1					1	7	NO.-	NO--	27	5,150	2,500		1460
10	15	0	0							No.-	No.-	20	7,000	183		1461
15	11	0	0	0	0	15	11	3	6	No.-	No.--	0	20,000			1462
25	30	0	0	4	3	0	0	1	0	No.-	NO--	0				1463
3	13	0	0	0	- 0			3	4	No.-	No.-					1464
16	19	0	0	0	0	1	0	2	0	No.-	NO--	50	1,100			1465
34	60	0	0	6	2	1	0	5	16	No..	No.-	200	3, 000	3,400	115	1466
100	119	0	0	8	14	2	0	6	10	Yes.	NO.-		100,000		450	1467
49	92	0	0	5	14	10	0	5	15	No.-	No--	100	10, 400	200	75	1468
45	0	0	0	12	0	6	0	5	0	No.-	NO--		7, 300		150	1469
20	60	0	0	4	0	0	0	4	3	No.-	NO--	200	50, 200	0		1470
11	21	0	0	0	0	0	0	1	2	Yes.	NO--	0	12, 050	0	125.	1471
9	24	0	0	0	0			2	6	No.-	No.--	21	4,515	0	12	1472
25	35	0	0	6	1			5	6	No.-	NO.-	1,000	500		96	1473
11	24	0	0	1	0	1	0	0	0	Yes.	NO---	125	3, 075	--600	15	1474
9	4	0	0	0	0	0	0	0	4	No.-	NO--	0	5,150			1475
21	25	1	0	0	0			4	2	Yes.	NO.-	0	125		250	1476
13	14	0	0	0	0			2	4	No.-	No.-	50	12, 200			1477
24	31	0	0	6	8	8	8	3	8	Yes.	Yes.	350	12,300			1478
8	12	0	0	0	0			3	5	No.-	No.-	200	8, 025			1479
47	51	0	0	8	5	14	0	7	9	Yes	NO--	300	50,580		270	1480
13	45	0	0	0	0	1	1	2	5	No.-	No--	0	27, 075		55	1481
25	25			1	0	9	0	9	6	Yes	NO--	100	20,100		450	1482
25	30	0	0	8	2	5	2	1	4	No.-	NO--	200	35, 200		200	1483
91	122	0	0	9	14	6	4	9	21	NO--	NO--	100	51, 000			1484
12	19	0	0	0	0	0	0	0	0	No.-	No--	0	20,000		12	1485
30	35	0	0	5	2	10	4	1	6	NO.-	No.-	250	8,100			1486
54	60	0	0	5	5		.-	2	12	Yes.	NO.-	227	111, 200		149	1487
12	21							3	4	No.-	NO--	0	8,100		150	1488
23	35	0	0	4	3	0	0	2	4	No.-	No.--	150	8,125		500	1489
27	33	0	0	3	0	10	0	6	6	No.-	NO--	10	17,300	108	5	1490
38	40	0	0	2	2	2	0	0	0	No.-	NO--	30	17, 000			1491
60	75	0	1	8	5			12	14	No.-	Yes.	500	700		250	1492
31	55							0	0							1493
16	¢9	0	0	0	0		-	0	0	Yes.	NO.-	25	25	500	8	1494
15	11	0	0	0	0			4	3	NO--	NO--	50	5,100		54	1495
29	48	0	0	5	0	0	0	3	2	No.--	No--	1,037	13,750		245	1496
10	10	0	0	0	1	0	0	1	1	No.-	NO.--	1,0	5, 025	250	24	1497
18	22	0	0					4	6	No.-	NO--	75	2,100	0	40	1498
20	34	0	0	4	2			6	5	NO--	NO--	100	10, 050			1499
30	58	0	1	0	0	10	5	6	2	Yes	NO.-	1,0\%4	35, 250			1500
22	30	0	0	4	6	4	6	1	0	Yes.	NO.-	1, 0	3, 000	1,195		1501
15	23	0	0	0	0	0	0	6	7	NO--	No.-	350	10,085	6, 000	78	1502
34	38			0	0	1	0	3	6	Yes-	No.	0	10,200	2,8\%0		1503

Table 3.-Statistics of Public

-	State and post-office.	Name of institution.	Name of principal.	Number of "secondary" instructors.	
				坔	
	1	2	3	4	5
	NEW JERSEY-cont'd. Caldwell	High School (department). High School		112002	
1504			C. E. Hedden		1
1505	Cranford.		R. E. Clement		1
1506	East Orange		E. R. Pennoyer		3
1507	Elizabeth	Battin High School	Miss L. H. Sayr		5
1503	Freeliold	High School (department) -	John Enright		0
1509	Gloucester-...	High School ---------------	Wm. Dougherty	1	3
1510	Hackettstown	- $\mathrm{Hightstown} \mathrm{Acaudemy} \mathrm{--...-}$.	A. H. Skinner	2	1
1512	Hoboken.	High School .-.......--	Wm. H. Elston	3	3
1513	Jersey City	--.-.do .-.....	W. S. Sweeny	4	8
1514	Keyport	High School (department)	S. V. Arrowsmit	1	1
1515	Millville	High School	T. D. School	1	1
1516	Montclair		Randill Spaulding	3	2
1517	Mount Holly	do	Chas. D. Kaine	1	1
1518	Newark..		E. O. Hovey -	(6)	
	New Brunswick.-.--	do	Ellis Apyar, Superintendent.		
1520	New Egypt	do	Geo. H. Johnson	1	1
1521	Newton	High School (́department)	J. D. Reynolds	1	a
1522	Orange	High School	Usher W. Cutts	2	1
1523	Passaic		H. H. Hutton, PH. D	1	2
15.4	Paterson		L. H. White	1	8
1525	Phillipsburg	do	Milton Aten.	2	
1526	Plainfield	Stillman High School.	Miss Julia E. Bulkley	1	3
1527	Rahway	High School (department)	C. B. Shallow-.--.	1	1
1528	Red Ban	High School --.-.-........	Richard Case, A. M	1	${ }_{2}^{2}$
$1 \overline{159}$	Roselle	High School, No. 25	Wm. C. Armstrong	1	0
1530		High School, No. 4	Irving P. Towne	1	1
1531	Salem	High School	E. S. Richards--	1	1
1532	Somerville	----do ------..-.......-	Jno. S. Haynes......------		$\stackrel{2}{1}$
1533	South Amboy --....-	High School (department)	Miss M. L. Thomas -------	0	1
$\begin{aligned} & 1534 \\ & 1535 \end{aligned}$	South Orange	High School (--..-.-.-.-.-	E. C. Sherman, A. m E. A. Chapman	1	1
1536	Toms River ------------	High School (department)	James D. Dillingham, PH.	1	0
1537	Trenton	High School	Wm., H. Brace, A. M	1	5
1539	Westfield		E. Francis.-	1	2
	Woodbridge	High School (department)	A. H. Wilson-------------	1	
	NEW YORK.				
1540	Afton	Union School and Acad-	A H. Knapp	1	1
1541	Akron.	Union School.	Orson Warren		1
1542	Albany.	High School.	Oscar D. Robinson	10	14
1543	Albion	---.-do --...	Freeman A. Greene	1	4
1544	Arcade	Union School	J. M. McKee.	1	1
1545	Attica.	Union School and Acad. emy.	Thomas B. Lovell .-.-...--	1	3
1546	Auburn --.--.-.-.-.--	Academic High School.		(11)	
1547	Bainbridge .-.-.-...-	Union School and Acad-	Fred. J. Turnbull, A. M..--		1
1548	Baldwinsville	Free Academy.	Isaac N. Failor.		3
1549	Batavia-......	Union School.-	Gardner Fuller	1	5
1550	Bath	Union Free School, dis- trict No. 6 .	Geo. H. Quay.	1	2
1551	Belfast.-	Genesee Valley Seminary	E. S. Redman	1	1
1552	Binghamton	and Union School. Central High School	Eliot R. Payson	3	6
1553	Boonville....	Union School and Acad-	James D. Rogers.	1	3
155	Brookfield.			1	5
	Brooklyn	The Central School	Calvin Patterson	20	39

a Also give instruction in other departments.

High Schools for 1889-90-Continued.

Students in secondary grade.		$\left\|\begin{array}{c} \text { Colored } \\ \text { pupils } \\ \text { in- } \\ \text { cluded. } \end{array}\right\|$		Number preparing for college classical course.		Number preparing for college scientitic course.		$\|$Number of stu- dents Whograd- uated or com- pleted their studiesin 1889-90.		Is drawing obligatory?	Has the school a gymnasium?			A mount of State and munic-ipal aid.		
$\begin{aligned} & \text {. } \\ & \text { ジ̉ } \end{aligned}$																
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
	16										No.-	86	\$20,050	\$3, 340	\$350	1504
9	16	0	0	0	0	1	0	5	8	Yes.	No.-	85	20,075	5,407		1505
95	69	0	0							No.-	No..-	500	-400	-400		1506
30	63	1	0					5	11	Yes.	No.-	230	50,040			1507
18	17			0	0	5	0		8	Yes.	No.--	75	23, 250	5,000	650	1508
20	25	0	0	0	0	0	0	0		No.-	No.-	10	5, 050			1503
18	32	0	0	0	0			0	0	No--	No.-	75	6200	3,850		1510
8 4 4 8 8	20 139	0	0		0	1	0	6	12	Yes.	No.-	50	6,000 48,225	3,000	100	1511
143	315	2	4	6	0	1	0	24	55	Yes.	No.-	500	7,000	10		1513
28	26	7	11	0	0			5	5	No.-	No--	808	25, 100	5, 300		1514
30	40							5	8	No.-	No.-	200				1515
60 31	76 31	1	0	8	5	3	0	4	13	No.-	No.-	506				1516
362	563	10	2	$8{ }^{-1}$	13	20		51	50	Yes.	No..	1,200	15, 150			1518
90	137															1519
40	35	0	0	1	3			2	3	Yes.	No.-	100	4,009	881		1520
12	6			3	,			0	0	No.-	No.-	0	50,075	5,150		1521
19	51	0	0	3	3			0	12	Yes.	No..-	427	40, 200		281	1522
35	65	0	0	0	0	35	65	5	6	Yes.	No.-	204	40, 200		300	$15 \% 3$
56	250	1	0	0	0	5	0	12	43	Yes.	No.-	1,800	100,075	13		1524
31	46	0	0	0	0			4	9		No.-	1,200	20, 020		-120	1525 1526
69 5	60 18	1	0	2	0	3	18	7	11	No..	No.-	1,050 100	32,500 40,200		1,848	${ }^{1526} 15$
18	24	0	1	0	0			0	6	Yes.	No.-	400			120	1528
7	8	0	0	0	0	3	0			Yes	No..	200	10,030	4,200		1529
$\begin{array}{r}4 \\ 12 \\ \hline\end{array}$	12	0	0					0	8	Yes.	No.-	24	15,085	10		1530
$\stackrel{12}{12}$	35		.	0			.-	2	8				100		108	1531
10	20	0	0		0			4	13	No	No.-	720	12, 129	2,500	198	1533
10	18	9	6	0	2	4	0	1	5	Yes.	No.-	200			72	1534
13	10	0	0	0	0			3	2	Yes.	No--	361	15, 20	5,000	20	1535
22	26	-	1	2	1	2	0	-		Yes.	No--	250	2,520	1,462	25	1536
16	77	2	5			16	77	3	22	No.-	No.-	300	30, 280	8,350		1537
20	25	0	0					2	2	Yes.	No.-	250				1538
12	18					3	1	3	7	Yes.	No.-	76	40,075	5, 014	60	1539
20	23	0	0					3	2	Yes.	No.	439	5,475	1,108	409	1540
24	42					2	2	2		Yes	No.-	450	13,000	833	141	
256	442	2	1					22	44	Yes.		6,448	20, 119	3,201	1,532	1512
48 21	57 22 28	0	0	33 6	46 0	15	11	5		Yes.	No.-	4, 133	3, 31,964 11,267	1,308 2,368	974 306	1543
21	30	2	0	6	0	1	2	0	0	Yes.	Yes.	1,606	23, 430	2, 355	534	1545
145	231															1546
28	35	0	1	1	0	2	3	1	3	Yes.	No.-	$8: 5$	13,7\%0	3,809	295	1547
36	31	0	0	5	8	6	10	3	3	Yes.	No.	941	17,850	549	300	1548
59	78	0	0	8	12	10	0	8	16	Yes	No.-	10,500	90, 800	6,000	625	1549
4	6	2	4	0	0	0	0			Yes.	No.	1,080	15, 300	1,461	51	1550
8	17	0	1	4	2	5	4	1	2	Yes	No.	300	6,1c0	801	369	1551
145	182	0	1	10		0	0	6	10	No.-	No.-	6, 736	80.980	9,989	644	1552
13	32	0	0	3	0	1	2	0	5	Yes	No.-	500	4, 300	1,700	650	1553
51	61	0	0	10	2	4	6	6	9	Yes.	No.-	500	4,654	1,165	400	1554
362	1, 167	11	23	25	30	25	40	64	0	Yes_	No.-	630	305,000	100,000		1555

Table 3.-Statistics of Public

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

	State and post-office.	Name of institution.	Name of principal.	Number of "second-ary"in-structors.		
				島	器	
	1	2	3	4	5	
	NEW YORK-cont'd.					
1609	Hancock	Union School and Academy Union Free School	Lincoln R. Long A. C. Almy A. G. Miller	111	212	
1610	Hempstead					
1612	Holland Patent	Union School, academic department.			${ }_{3}^{3}$	
$\begin{aligned} & 1613 \\ & 1614 \\ & 1614 \end{aligned}$	Holley --...-.		Willis E. Bond	1		
16	Hoosick Fails	Homer Free Academy....-.	Wm. H. Cummings John E. Shull		2 2 2 1	
1616	Hornellsville	Free Academy--		2		
1617	Hudson-1---	Union School	Romiett Stevens.-.-.-.	0	555	
1619	Ilion..	Iliion Academy-.-----		1		
1621	Ithaca-....	High School .--.---.------.	Lewis H. Tuthill, A. M.-.	 3 8		
${ }_{1622}^{1621}$	Jamestown		Wohn W. Snyder			
16	Jordon.			1		
1624	Keeseville .-.	Free Academ ${ }^{\text {Union Free School --..-.-.--- }}$	J. B. Flett	1		
1625	Kingston -ilo.-...	Kingston Free Academy Union Free School		1		
1627	Limestone.--	Union School and Academy Lisle Academy	Chas. H. Weller-.--.-.----	1		
1629	Listle Failis...		Geo. B. Benedict, A. M Prof. S. A. Watson G. W. Boyce	1	2	
	Little Valley	Union School. academicUniopartment.		4	${ }_{3}$	
1631	Lockport		Asher R. Evans .-..............			
1632	Lyons		C. M. Bean J. T. Badgley, A. B-...............	411	1222	
1634	Madison -..--	Union Free School and Academy. Franklin Academy				
1635	Malone .-		E.D. Merriman Geo. E. Bullis	1		
	Manlius	Union School Union School and Academy				
1637	Marathon					
1639	Mayville.	Union School-.............-.				
1640	Medina	Medina Free Academy Academy and Union School	W. M. Peirce -...........-.			
1641	Middleburg-		R. S. Keyser, A. M, PH. D Henry H. Roberts.........		6244	
1643	Monawk ...	$\begin{aligned} & \text { Academy and Union School } \\ & \text { Walikill Free Academy.... } \\ & \text { Union School and Academy } \end{aligned}$				
1644	Montgomery	Union Free School Union School	Reuben Fraser ------.-.----			
	Moravia			1	4 2 4 4	
1647	Mount Morris	Union School and Academy Union Free School and Academy.			${ }_{9}$	
1648	Naples	Union Free School.......---	F. Yale Adams James M. Crane	$\begin{array}{r}1 \\ 5 \\ 24 \\ \hline\end{array}$		
	Newburg					
1650	New York	East Side Evening High School (73 West 131st st.).	W. F. Hudson			
1651	do		Elijah A. Howland	26		
1652	do	Evening High School (124 Evening High	Jacob T. Boyle...........--	4		
	Niagara Falls		N. L. Benham -.............. F. W. Crumb, A. M.			
${ }_{1655}^{1654}$	Nichols ----------	Union School.................-.				
1656	North Brookfiela--	Union School and AcademyUnion Free School.-ademyUnion Schol and Achool.-......--Tree Achem		11111		
1050	Norwood .--------		Edward F. McDon			
	Nunda		W. A. Stewart--			
1690	Oj jensburg	$\begin{aligned} & \text { Free Academy } \\ & \text { Union School. } \\ & \text {---- } \end{aligned}$				
1661	Oneida--		F. W. Jennings, A. M N. N. Bull, A. M., acting C. Wrincipal. C. W. Richards	111	435	
1662						

a Also give instruction in other departments.

High Schools for 1889-90—Continued.

$\begin{aligned} & \text { Stud } \\ & \text { in sec } \\ & \text { ary } g \end{aligned}$	nts ndde.		red ils ed.	$\begin{aligned} & \text { Num } \\ & \text { prep } \\ & \text { ing } \\ & \text { coll } \\ & \text { class } \\ & \text { cou } \end{aligned}$	ber parfor ege sical rse.	Num prep ing colle scien tif cou	$\begin{aligned} & \text { noer } \\ & \text { par- } \\ & \text { for } \\ & \text { ege } \\ & \text { en- } \\ & \text { re } \\ & \text { rse. } \end{aligned}$	Num of s der whog uate com plet the studi 1889	mber stunts grador mted eir les in -90.							
				$\stackrel{ \pm}{\sum_{k}^{\text {cin }}}$:	$\begin{aligned} & \dot{\Phi} \\ & \text { ल̈ } \\ & \text { ష్ब } \\ & \text { ® } \end{aligned}$			$\begin{aligned} & \text { \& } \\ & \text { D } \\ & \text { 品 } \\ & \text { Z } \end{aligned}$		를 O 年 4		
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
18	27	0	0	5	1	3	1	4	0	Yes	No.	360	\$6,867	8961	8394	1609
25	35	28	20	0	0			3	5	Yes.	Yes.-	1,200	30,075	2.000	100	1610
40	33			2	3	2	0	3	6	No.-	No.-	300	25,405	1,972	65	1611
53	64	0	0	2	0	0	0	7	8	Yes.	No.-	1,100	10,250	647	600	1612
7	8	0	0	1	0	2	7			Yes	No.-	434	13, 300	1,215	243	1613
18	38	0	0	10	0	8	38	3	1	NO.-	No.-	1,500	50, 300			1614
32	45	0	0	4	3		---	7	13	Yes.	No.-	1,214	54, 984	4,973	472	1615
29	37			1	1			5	24	Yes.	NO.-	1,037	73, 629	6,727	219	1616
17	33	0	0	5	0	12	33	2	6	Yes	NO.-		28, 580	12.568		1617
30	55	12	18	5	0	1	0	4	3	Yes	No.-	1, 009	15,600	2,200	1,100	1618
34	63	0	0	0	0			19	3	Yes	No.-	1, 153	30,800	5,000	, 600	1619
113	157	21	12	6	2	59	19	16	29	NO--	No.-	1,816	61, 219	2,865	1,886	1620
87	129	3	2	19	10			9	19	NO.-	Yes.	2, 459	101, 540		1,205	1621
55	65	0	0	8	9	50	53	0	9	No.-	NO.-	3,500	50,250	1,000	203	1622
32	38	3	4	1	0	1	1	2	4	Yes.	No.-	1,140	9, 670	3,147	415	1623
10	20			1	0				4	No.-	NO.-	1,064	7,915	1,149	131	1624
72	114		1	10	2		1	$\overline{7}$	17	NO--	No.-	1,064	54,243	4,987	978	1625
10	27							2	4	NO.-	NO.-	126	3,000	630	75	1626
40	20	0	0	4	2	1	2	2	2	Yes	NO.-	500	7,215	950	115	1627
14	19	0	0	6	0			0	4	Yes.	NO--	309	6,731	755	103	1628
47	47	0	0	6	0	0	0	4	7	NO.-	No.-	2, 300	13,079	2,658	359	1629
10	15							3	4	Yes	NO--	300	15,000	400	$\begin{array}{r}90 \\ \hline 7\end{array}$	1630
99	132	0	0	7	5			4	8	NO.-	NO.-	527			2,738	1631
52	48	1	0	9	0	1	0	2	6	NO.-	NO.-	1,500	59, 649	3,601	333	1632
18	23					2	3	0	- 6	No.-	No.-	1, 168	5, 300	-624	91	1633
36	44	0	0	0	0	0	0	0	4	No.-	No.-	500	3, 300		374	1634
45	55	0	0	2	0	10	15	6	10	NO.-	NO.-		40, 780	1,280	1,005	1635
42	48	0	0	0	0	2	0	2	3	Yes	NO.-	571	5,125	1,183	843	1636
9	8	2	0	3	0	1	0	2	3	NO--	NO--	300	5,125	1,183		1637
10	15					3	0	4	5	Yes.	NO.-	400	20,000	1,230	301	1638
37	44	0	0	2	1	2	6	1	3	Yes-	NO--	650	20,275	1,182	276	1639
30	40	0	0	5	1	18	12	6	12	Yes.	NO.-	700	8,795	1,292	673	1640
40	33	3	5	6	1	6	0	4	4	Yes-	NO.-	750	21,500			1641
45	55	1	1	2	1			4	7	Yes.	NO--	5,000	15, 300	6,500	400	1642
10	20	0	0	1	0			2	2	Yes.	NO--	815	5, 695	1,542	88	1643
25	50	2	4	4	3			5	9	Yes.	NO--	500	10,500	900	1,000	1644
43	58	1	0	3	2			5	5	Yes.	NO.-	759	13, 200			1645
27	25	0	0	0	1	10	15	7	7	Yes.	No--	729	3, 045	1,096	557	1646
100	100	1	1	20	20	40	50	3	1	No.-	NO.-	1,200	20,100	2,500	150	1647
16	20	0	1	6	7			4	6	Yes	NO.-	1,433	26, 415	1,725	248	1648
93	110	1	0	10	5	3	0	19	22	Yes	NO--	17,000	81, 500	1,725	525	1649
1,7\%0	0	0	0	0	0					No.-	No.-	0	250, 300			1650
1,550	0	1	0							Yes	NO.-	0	175, 000	17,020		1651
1,906	0			0	0		--	31	0	No.-	NO--	0	165, 000			1652
53	78	5	2					2	3	No.-	NO.-	4, 000	41,029	2,910	147	1653
4	8	1	0					0	0	Yes	No.-	380	4,225	634	60	1654
49	69			5	2	1	0	2	0	Yes	No.-	400	4,200	490	196	1655
31	29	6	10	0	0	0	0	7	1	NO-:	NO.-	605	50, 180	2,000	106	1656
30	40	0	0	2	0	20	15	7	2	Yes	No.-	537	18, 575	3,275	265	1657
50	60	0	0	10	8	0	0	4	6	NO--	NO.-	500	5,300	9,50	450	1658
99	134	0	0					9	11	No.-	No.-	4, 053	39, 927	5,720	694	1659
102	166															1660
17	56			9	27			3	6	NO--	NO.-		15,650	2,819	565	1661
21	43	2	3	1	2			3	7	Yes.	No.-	1,350	30,695	4,977	148	1662
82	139															1663

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1859－90－Continued．

Stud in se ary g	nts nd－ de．	$\begin{aligned} & \text { Colo } \\ & \text { pup } \\ & \text { in } \\ & \text { clud } \end{aligned}$	red ils ed．	$\begin{aligned} & \text { Nun } \\ & \text { pre } \\ & \text { ing } \\ & \text { coll } \\ & \text { clas } \\ & \text { cou } \end{aligned}$	ber ar－ for ege ical se．	$\begin{aligned} & \text { Num } \\ & \text { prep } \\ & \text { ing } \\ & \text { coll } \\ & \text { sci } \\ & \text { tif } \\ & \text { cou } \end{aligned}$	$\begin{aligned} & \text { par } \\ & \text { par- } \\ & \text { for } \\ & \text { en- } \\ & \text { inc } \\ & \text { rse. } \end{aligned}$	Num of de who uat co pl stud 188	$\begin{aligned} & \text { aber } \\ & \text { stu- } \\ & \text { nts } \\ & \text { grad- } \\ & \text { d or } \\ & \text { m- } \\ & \text { ted } \\ & \text { eir } \\ & \text { ies in } \\ & -90 . \end{aligned}$	a 0 0 0 0 3 0 0 0 0		$\dot{\prime}$ 픅 				
		$\underset{\sim}{\stackrel{\oplus}{\underset{A}{E}}}$	$\begin{aligned} & \dot{\text { ®. }} \\ & \text { ぶ } \\ & \text { g్ } \\ & \text { En } \end{aligned}$	$\stackrel{\dot{\Xi}}{\stackrel{y}{s}}$	$\begin{aligned} & \text { © } \\ & \text { స్ } \\ & \text { © } \\ & \text { Eny } \end{aligned}$	$\stackrel{\Phi}{\stackrel{\omega}{心}}$		$\underset{\text { 玉ij }}{\text { 玉ij }}$	$\begin{aligned} & \text { D } \\ & \text { స్ } \\ & \text { व्न } \\ & \text { E } \end{aligned}$			$\begin{aligned} & \text { H } \\ & \text { o } \\ & \text { 最 } \\ & \text { Z } \end{aligned}$			$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { O } \\ & \text { O } \\ & \text { 1 } \end{aligned}$	
6	7	8	9	10	1 1	12	13	18	15	16	17	18	19	20	81	
25	34	3	2	0	0	4	4	1	3	Yes．	No．	1，200	\＄15， 600	83，356	6	1684
70	87	0	0	20	10	8	4	7	5	No．－	No．－	3，000	32，025	4，812	853	1665
11	4	0	0	5	0	1	1	0	0	Yes．	NO．－	1，000	5，500	600	30	1666
32	อิ5	3	2	8	7	3	2	7	8	No．－	Yes．	1， 542	30，400	2，100	450	1667
50	76	2	1	0	0	2	0	5	5	Yes	Yes．	850	20，350	2，000	358	1668
40	45	0	4	4	8	20	14	8	4	Yes．	No．－	610	7，900	1，600	400	1669
60	74	0	0	1	9	13	38	0	7	Yes．	No．－	490	16，997	2，500	230	1670
26	24	0	1			2	0	0	0	Yes＿	No．－	12	3，020	777	100	1671
46	43	0	0	6	4	2	0	2	9	Yes．	No．－	250	5，512	3，000	700	167 \％
28	33	0	0	1	1	3	3	6	7	Yes	NO．－	879	13， 717	1，682	514	$16 \% 3$
22	25	0	1	0	0			0	7	Yes．	No．－	2， 300	35,100	2，142	440	1574
49	113	0	0	6	8	5	0	2	11	Yes．	NO．－	4，142	32， 770	4，971	492	1675
25	33	1	0	8	10	16	20	1	0	NO．－	Yes．	555	3，567		132	1676
61	132	0	4	2	2	3	6	3	11	NO．－1	NO．－	16，287	43， 194	797	125	1677
35	40	0	0	2	0	3	1	2	2	Yes－1	Yes．	1，425	12，100	279		1678
15	19	3	1	0	0	4	6	2		Yes－	NO．－	602	12， 450	900	60	1679
30	46	4	5	1	10	0	0	1	0	Yes	No．－	477	25， 407	2，523	415	1680
254	449	0	0	80	20	20	30	54	121	No．－	No．－	1，653	159，139	26，741	864	1681
92	103															1682
20	28	2	2	0	0	1	0	1	0	Yes．	NO．－	250	3，224	530	245	1683
49	37	0	0	3	4	12	4	1	0	Yes．	NO．－	258	16，055	744	203	1684
11	33	5	4	0	0	1	0	0	4	Yes－	No．－	250	18， 280	1，400	15	1685
34	41	0	0	4	2		1	2	11	Yes	NO．－	769	42，600	3，300	300	1686
S0	40	0	0	1	1	1	0	2	6	Yes．	No．－	2，000	30， 800		600	1687
42	42	0	0	5	0			5	8	Yes．	No．－	， 615	16， 247	1，300	350	1688
40	60	0	0	10	0	10	10^{-}	7	1	Yes	No．－	1，004	25， 500	2，812	348	1689
64	80	1	0	4	0	3	0	10	9	Yes．	NO．－	1，285	50，500	5，075	40	1690
80	108	0	0	32	9	16	5	19	24	NO．－	No．－	515	16，934	4，655	1，200	1691
18	34	0	0	0	0	1	0	4	6	NO．－	NO．－	243	8，417	1，770	255	1692
37	21	0	0	10	7	7	0	3	2	Yes．	No．－	669	15，532		100	1693
15	19	0	0	Y	6			0	1	No．－	No．－	677	19，575	1，4022	635	1694
80	152	1	2	2	0	10	8	10	12	Yes．	No．－	1，500	36，500	5，200	372	1695
13	21	0	0					4	4	Yes．	No．－	1， 800	10， 400	1，469	369	1696
30	45	0	0	3	2	1	1	0	2	Yes	NO．－	800	9， 350	， 451		1697
45	51	0	0	5	2	14	7	2	4	Yes	NO．－	946	48， 600	1，927	192	1698
18	24	0	0	2	1	2	2	3	3	No．－	No．－	345	7，730	－918	422	1629
21	55							7	15	Yes．	No．－	2，558	7，100		125	1700
37	55	0	0	8	4	4	6	4	8	No．－	No．－	1，200	11，000		733	1701
37	40			13	8	24	32	6	6	Yes．	NO．－	625	4，300	1，255	300	1702
69	88	0	1	12	16	57	72	8	9	No．－	No．－	300	21，671	2，942	673	1703
30	39	2	3	3	3	10	20	2	1	Yes．	No．－	780	20，700	1，500	250	1704
20	25			0	0	5	3	3	3	No．－	No．－	600	10，600	809	252	1705
333	471															1708
40	54					2	3	1	7	Yes．	NO．－	1，200	39，000	3，200	76	1707
92	140	0	1	28	5	0	0	5	28	Yes．	No．－	1，000	20，500	2，200	1，130	1708
28	31	4	3	0	0	0	0	2	5	NO．－	NO．－	525	5，179	2，500	450	1709
15	20	1	0	3	3			2	3	No．－	NO．－	500	5，000	2550	225	1710
24	32	1	3	2	0	3	5	3	4	Yes．	NO．－	678	16，615	850	165	1711
102	141	0	0	26	5			9	24	No．－	NO．－	908	76，371	1，665	50	1712
14	12	1	1	0	0	1	0	0	0	Yes．	NO．－	685	2，595	643	20	1713
55	75	2	5	13	5			2	2	Yes．	NO．－	1，200	10，000		1，200	1714
49	55	0	0	2	1	6	11	0	0	Yes．	No．－	498	8，150			1715
71	82			17	9	8	10	5	9	Yes．	No．－	2，485	36,010	2，400	700	1716
10	16	6	6	1	0	0	0	1	7	Yes．	No．－	， 846	11，630	1，616	431	1717
13	27	3	2	3	0	0	0	2	7	Yes．	NO．－	1，600	47，150	3，500		1718
43	63	1	2	4	0	5	9	4	7	No．－	NO．－	1，500	30，500	2，176	777	1719
124	126	0	0	20	3			11	13	Yes．	NO．－－	4，000	23， 500	7，548	564	1720

Table 3.-Statistics of Public

a Also give instruction in other departmerts.

High Schools for 1859－90－Continued．

Stud in sec ary g	nts ond－ ade．	Colo pup clu	red ils ed．	$\begin{aligned} & \text { Nun } \\ & \text { prey } \\ & \text { ing } \\ & \text { coll } \\ & \text { clas } \\ & \text { cou } \end{aligned}$	$\begin{gathered} \text { nber } \\ \text { far- } \\ \text { for } \\ \text { ege } \\ \text { rical } \\ \text { rse. } \end{gathered}$	$\begin{aligned} & \text { Num } \\ & \text { prer } \\ & \text { ing } \\ & \text { colle } \\ & \text { scie } \\ & \text { tif } \\ & \text { cou } \end{aligned}$	ber par－ for ege n－ c－ rse．	Num of de whog uate co ple th stud 1889	$\begin{aligned} & \text { aber } \\ & \text { tu- } \\ & \text { ats } \\ & \text { rrad- } \\ & \text { d or } \\ & \text { m- } \\ & \text { ted } \\ & \text { eir } \\ & \text { esin } \\ & -90 . \end{aligned}$							
$\stackrel{\oplus}{\underset{\sim}{5}}$			込	灾		:			$\begin{aligned} & \text { © } \\ & \text { స్మ゙ } \\ & \text { ©్ల } \\ & \text { En } \end{aligned}$	E 荡 On on		$\begin{aligned} & \text { \& } \\ & \text { D } \\ & \text { 品 } \\ & \text { Z } \end{aligned}$		Amount	$\begin{aligned} & \text { B } \\ & \text { O } \\ & \text { O } \\ & \text { O } \\ & \text { 1 } \end{aligned}$	
6	7	8	9	10	11	12	13	14	15	16	18	18	19	20	21	
80	81	2	1	12	7	4	0	3	3	Yes	No．－	1，567	\＄31， 300	\＄2，413	\＄1， 165	21
47	60	3	5	0	2			0	4	Yes．	No．－	922	20，550	2，346	－ 200	1722
94	119	0	0	2	2	0	0	4	12	Yes．	No－－	722	27， 210	4，363		1723
40	33	，	0	2	2	2	6	2	0	Yes．	No．－－	210	5，500	－738	557	1724
35	54	0	0	1	0	12	15	4	14	No．－	NO－－	350	15，500	600	550	1725
30	60	0	3	6	3	1	1	5	5	Yes	No．－	715	17， 500	1，793	426	1725
20	21	7	5	0	0	20	21	8	6	Yes	NO．－	1，025	35，500	1，000		1727
60	80			2	0				7	Yes．	NO．－	2，000	79， 000			1728
25	33	0	0	2	0	0	0			Yes	No．－	111	1，550		314	1729
70	63	0	0	2	0	2	1	2	2	Yes．	No．－	472	7，775	674	234	1730
65	75	0	0	7	0	0	0	4	4	No－－	No．－	635		3， 387	1，200	1731
16	31					2	0	2	7	Yes		1，224	25， 420	10，748	66	1732
38	32	1	0	0	0	18	16	0	0	Yes	NO－－	486	3， 650			1733
43	51	0	0	2	0	1	2	3	2	Yes．	No．－	1，000	9， 600	1，150	370	1734
33	48	0	0	0	0			0	1	No．－	No．－	735	12， 000	2，500	230	1735
42	41	0	0	20	11	2	2	3	3	Yes	No．－	514	16，611	1，521	219	1736
20	25	0	0	2	0	0	1	3	3	No．．	No．－	100	4， 555		150	1737
20	41	0	0	2	4	0	1	2	4	No．－	No．－	383	3，550	885	250	1738
54	41	0	0	6	2	0	0	1	4	No．－	No．－	1， 004	6，600	567	300	1739
64	76	2	0	8	4	4	0	3	8	Yes．	No．－		500		200	1740
25	20	0	0	20	0			0	0	No．－	No．－	300	1，400		800	1741
37	52	0	0	－2	6			2	9	No．－	No．－	1，100	75		166	1742
60 38	65 52	0	0	15	25	8	0	12	14	Yes＿	NO．－	2，500	30，025	13,281	175	1743 1744
14	19	1	3					0	0	Yes	Yes．	75	40，050	1，957	43	1745
1	3	1	0	0	0			0	0	Yes	NO－－	300	5，050	2，833		1746
22	52															1747
23	57	0	0	0	0	1	5	1	6	Yes．	NO－－	240	80，500	18，599	194	1748
4	6	0	0	2	0	0	0	0	0	NO．－	No．－	150	4， 000		13	1749
42	59	0	0	12	15	8	6	7	9	No．－	Yes．	200	20，000	7，600	15	1750
171	268	1	3	9	2	3	9	20	44	Yes．	No－－	200	136，600	8，381	188	1751
51	81	0	0	0	0	0	0	8	18	Yes．	No．－	1，200	60， 150		36	1752
10	12	0	0	0	0	0	0	3	2	No．－	No－－	0	3，500	200	1，400	1753
35	30	0	0	2	1	0	0	3	5	NO－－	No．．		250	12， 000	163	1754
19	20	6	10							No．－	No．－		12，000	3， 600	7\％	1755
5	21	0	0	0	0			0	1	No．－	No．－	－ 60	22， 100	3， 862	100	1756
2	8	0	0	0	0	1	4	0	0	No．－	NO－－	100	8， 000	2，500	30	1757
15	19	0	0	0	0	0	0	0	0	NO－－	No－－	0	4，000		0	1758
20	25	1	0	3	2	0	0	3	10	No．－	No．－	600	10，020	1，900		1759
10	15	0	4					1	2	No．．	NO．－	40	5， 000			1760
17	33	0	0					3	6	No．－	No．－	300	700		392	1761
28	59	25	35	2	0	0	$\overline{2}$	2	8	Yes．	No－－	275	30， 100	8，000	85	1762
10	20	0	0	2	4	4	6	0	4	No．－	No．－	250	12， 250	2，500	160	1763
16	15			1	1			2	5	NO．－	No．－	0	8， 100			1764
20	17	0	0	0	0		1	0	3	No．－	No．－	3	4，515		27	1765
22	29	12	14	2	1	0	0	5	8	No．－	No．－	0	30，200	300	261	1766
5	4	0	0	0	0	0	0	4	2	No．－	No．－	0	5，050		45	1767
40	83	0	3	1	1			3	11	Yes．	No．－	30	25		92	1768
5	11	0	0	2	3	0	0	1	5	No－	No－－	150	2，200	1，200		1769
3	26	0	0	0	1	0	0	0	9	No．－	NO．－－	200	15，100	3，009	42	1770

Table 3.-Statistics of Public

High Schools for 18S9－90－Continued．

Stuãents in second－ ary grade．		Colored pupils cluded．		Number prepar－ ing for college classical course．		Number prepar－ ing for college scien－ tific course．		Number of stu－ dents whograd－ uated or com－－ pleted their studiesin 1889－90．		Is drawing obligatory？						
		$\begin{aligned} & \text { 玉゙ } \\ & \text { 玉゙ } \end{aligned}$		$\begin{aligned} & \text { ஹ } \\ & \text { ご } \end{aligned}$				$\begin{aligned} & \dot{\oplus} \\ & \text { む゙ } \end{aligned}$								
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
21	51	1	4	2	0	6	7	6	11	No．－	No	300	\＄20̌， 300		\＄200	1771
15	16	0	0					2	2	No－－	NO－－	250				1772
14	23	0	3	0	2							100	7，100		43	1773
20	32	0	，	0	0	0	0	5	7	No．－	No．－	475	22，050	\＄600	210	1774 1775
11	15 12 12	2 1 1	1		0	0	0	1	5	No．－	No－－	100 169	10,000 3,525	208	14	1775 1776
13	13	0	0	0	1			1	5	No．－	No．．	150	16，150	760	68	1777
23	17							2	3	No．－	No．－	24	36， 100		190	1778
40	30	0	0					7	8	No－－	No．－	600	4， 050		75	1779
22	40		0					6	4	No－－	No．－	400				1780
14	0	0	0	0	0	0	0	0	0	Yes．	No．－	150	6，000		38	1781
11	9	－	0	0	0	1	0	1	0	Yes．	No．－	130	8，050	2，000	100	1782
46	47	17	20	20	21	26	26	7	8	No－－	No．－	1，000	70,100 4 4			1783
12	11	，	－	8	6	，	0	3	0			125	4，200		50	1784
21	32	0	0	1	0			4	8	No．－	No．－	250	25， 100			1785
30	12	0	0	1	0	2	17			Yes	No．－		15， 1500			1786
30 18	80 18	1	0 0 2 0	1 2 2	0	15	17 0		20	Yes．－	No．－	1， 200	150， 400		100 150	${ }_{1788}^{1787}$
18	18 15	4	2 0	$\stackrel{1}{1}$	1	，	，	5	5	No－－	No．－	50 100	40，050	8，042	150	${ }_{1789}^{1788}$
2	3	0	0	0	0	0	0	，		No．－－	No．－	30	10， 660		105	1790
12	16	0	0	0	0	0	0			No．－	No．－	500	20，000		216	1791
22	36	0	0	0	0	22	36	0	－	No－－	No．－	25	20， 200	1，380	75	1792
25	15							1		No．－	NO．－	500	5， 200		140	1793
18 35	18 29	1	0	3	5	4	2	0		No－－	No．．	215	2,500 20,200	8，500	300	1794 1795
88	64	0	0					7	5	No．－	No．－	500	25，075	218	1，000	1796
19	11	0	0	6				2	0	No．－	No．－	75	6，650	1，250		1797
76	${ }^{67}$	8	8	3	0				6	Yes．	No．－	10，000	1，600		96	1798
10	18	0	17			1	0	3	0	No.-	No－－	175	6，080			1799
252 391	417 401	9	17	35	12	35	345	33	43	No.	Yes.	2,000 3,000	50，000		3，185	1800
34	401 64	7	17	61		335	34	36 1 1	13	Yes．	No．－	3， 101	109,700 3,700		259	1802
21	20	0	0		0	－	0	0	1.	Yes．	No－－	O	10，000	2，340		1803
11	10	3	0	5	2	1	0			No．－	No．－	0	5，010			1804
492	803	6	6	51	26			22	73	No．－			125， 000			1805
130	280	0	0	14	4	21	43	5	31	Yes－	Yes．	50	116， 500		600	1806
${ }_{22}^{13}$	23	8	${ }^{6}$	0	0	0	0	0		Yes．	No．－	${ }_{260}^{100}$	8,150 19,000	1，975		1807 1808
281	536							15	80	No．－	No．－		100， 000			1809
14	32	0	1					2		Yes．	No．－	350	18，100	4， 040	12	1810
15	30	0						1	3	No．－	No．：－	0	22，200		300	1811
9	10	0	0	0	0	0	0	0	1	No．－	No．－	261	7，030	480	20	1812
17	18	0	0	1	0	0	0	0	0				3， 075	189 8,790	70	1813
18	61 14 1	8	11	${ }_{0}^{4}$	5	3	3	，	5	No．．	No．－	847 107	75,350 2,000	$\begin{array}{r}\text { 8，790 } \\ \hline 200\end{array}$	85	1814 1815
24	33	0	0					3	1	No．－－	No．－		40， 100	2， 500		1816
30	31	1	2	4	1	0	0	1	1	No．－	No．－	0	3，050		40	1817
149	259	1	4					10	23	Yes．	N	100	20，500			1818
12	45 32 3	1	2	6		6	10		5	No．．	No．－	250	20，000		150	1819
60	120	1	1	25	40			14	20	No．－－	No．－	1，000			300	1821
25	30															1822
21	43	0	0							NO．－	No．－	20	22，040	500	135	1823
113	11	0	0	0	0	0	0	0	1	Yes．	No．－	12	2，510	500		1824
13 20	$1 \begin{aligned} & 10 \\ & 20\end{aligned}$		0	8	5	5	23		1	No－－	No．－	150	15，250	4，000	120	1825
24	30	0	－	4	2	5	5	1	1	No．－－	No．－	1，000	8， 350	2,200	75	1827
61	53	0	0	0	0				0	No	No．	0	10，500	2，160	150	1828

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

High Schools for 1859－90－Continued．

Students in second－ ary grade．		Colored pupils in－ cluded．		Number prepar－ ing for college classical course．		Number prepar－ ing for college scien－ tific course．		Number of stu dents whograd－ uated or com－ pleted their studies in 1889－90．		Is drawing obligatory？						
寍		$\begin{aligned} & \text { Ф゙ } \\ & \text { ฐ゙ } \end{aligned}$		$\stackrel{\text { ®. }}{\substack{5}}$	$\begin{aligned} & \dot{\Phi} \\ & \stackrel{\rightharpoonup}{\Xi} \\ & \text { \#̈ } \\ & = \end{aligned}$			$\stackrel{\text { ® }}{\text { ® }}$	$\begin{aligned} & \dot{\otimes} \\ & \text { जี゙ } \\ & \text { ت̈ } \\ & \text { キ } \end{aligned}$							
6	7	8	9	10	11	12	13	14	15	16	17	18.	19	20	21	
6	16	0	0	0	0	0	0		5	No．－	No．－	100	\＄10，200	88，433	8124	1888
10	8	3	5					3	4	No．．	No．		5， 050			1889
16	17	0	0					0	1	No．－	No．－	250	50， 300	5，760	85	1890
17	14	0	0	2	0			0	0	No．－	No．	100	15， 000	3，431	29	1891
13	13							0	2	Yes．	No－－	655	10，351	130	15	1892
22	$\Sigma 7$	0	0	0	0			1	6	No．－	No．－	25	4，050		¢0	1893
36	69	2	1	4	6	0	0	4	9	No．－	No．－	300	15，600	3，000		1894
20	18	，	1	0	0	0	0	0	0	No－－	No．－	0	5，300		19	1895
989	4 10	$\stackrel{2}{2}$	4	0	0	0	0	3 0	2	Yes．	NO．－	412	15,050 2,050		168 25	1896
15	25	0	0	2	0			1	1	Yes．	No．－	400	20， 100		300	1898
19	45	0	0	2	2	2	0	6	7	No．－	No．－	220	15，250			1899
25	45	2	2					6	11	Yes．	No．－	－	32，000	4，000	150	1900
32	30	0	1					2	6	No．－	NO－－	150	14， 020		9	1901
8	$2{ }^{9}$	0	0	0	0	2	3	0	0	Yo．－	No．－	0	23,050 12,050	700	30	1902
20	25							1	2	No．．	No．－	100	25， 000			1904
9	15	0	0	0	0	3	0	1	0	No．．	No．－		10， 100	3，900	40	1905
15	15	0	0							No．－	No．		4，035	171		1905
18	11	2	2	1	0			3	2	Yes．	No．	20	3，500		40	1907
5	14	0	0					0	3	No．－	No．．	43	18，250	531	40	1908
40	27			0	1			2	5	Yes．	No．．		30， 300		100	1909
12	${ }^{23}$	0	0					2	2		No．－		2，000	385		1910
24	38	0	0	2	3			1	14	No．－	No．－	400	5， 300	1，200	600	1911
22	$\stackrel{27}{27}$	0	0	1	1		－－	3	1	No．－	No－－	120	2，000		40	1912
16	24	3	3					${ }_{5}^{2}$		No．－	NO－－	100	8，010	4，500	50	1213
49 10	95	0	0	－	－	2	0	5	22	No．－	No－－	200	35， 010		96	1914
10	17	0	0	0	0	4	10	4	${ }^{5}$	No．	No－－	500	6，000	1，200	100	1915
25	105 61	0	0	0	0			2	19	No．－	No．－	500	97，${ }^{5}, 400$	27，	352	1917
25	35	0	0	0	0	0	0	0	0	No．．	No－－	200	10， 050	2，	175	1918
10	12	3	2					，		No．－	No．－	98			30	1919
35 48	${ }_{21} 6$	1	3					10	20	No－－	NO．－	300	8,200	1，800	187	1920
48	$\stackrel{21}{26}$			2	3	$\stackrel{3}{2}$	0	7		Yes．	No．－	100	8，125		420	1921
125	45	1	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	0	0	2	0	$\stackrel{3}{2}$	$\stackrel{3}{9}$	No．－	No．－	546		520	$\stackrel{24}{33}$	1922
18	19		2	2	4			3	6	No．－－	NO－－	60	18，000		200	1924
24	16	8	6			1	7	0	1	No．－	NO．－	400	10， 100			1925
33	34	0	0					1		No．－	No－－		25， 100	5，591		1926
10	9		0	1	0			1	6	No－－	No．－	150			30	1927
10	15	1	0	1	0			2	5	NO－－	No．－	150	5，075		ع0	1928
24 20	$\stackrel{26}{24}$	1	1					6			No．－	300 60	35， 250		200	1929
20 9	$\begin{array}{r}24 \\ 23 \\ \hline\end{array}$	1	1	－ 2	11	7	12	0	2	No．－	No．－	11	10，000	2,500 3,650	120	1930
17	35	0	0	6	8	3	5	1	5	No．－	Yes．	1	55， 200	9，100	104	1932
24	50															1933
13 56	18	0	0	0	0	2	0	2	3	N	No．－	0	15，100	2，500	95	1934
18	21	0	1	1	1	5		4		No．－	NO－－	100				1935
15	9	0	0	0	0	2	0	2	2	No．－	No．－	450	30， 300	1，862	92	1937
17	25	0	0					4	3	No．－	NO－－	125	20，125	1，200	50	1938
18	14	0	0	2	0	1	0	4	1	No．－	No．－	500	1， 1,000		18	1939
20	40	0	0	2	0		0	0 2 2	4	No．－	No．－	500	25,050 20,300	4，000	224	1941
24	22							3	3	No．	No．－	400	12， 100		110	1942
20	20	1	6	0		2	2		0	Yes．	No．－	300	12， 050	600		1943
19	21	0	0	5	9				6	No．	No－－	0	15， 300			1944
19	19	1	1	2	3 4		12	3	7	No．－	No．－	50	12，100	3,500 2,100	350 180	1945
15	43		1	0		8	12	$\stackrel{3}{2}$	5	No．．	No．－	120	18，240	2，100	180	1946

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1889-90—Continued.

	๑	Male.	
	\checkmark	Female.	
	∞	Male.	
	-	Female.	
	-	Male.	
	\#	Female.	
	2	Male.	
	䦎	Female.	
	$\stackrel{\sim}{4}$	Male.	
	-	Female.	
	\%	Is drawing obligatory ?	
	$\stackrel{\square}{4}$	Has the school a gymnasium?	
	${ }_{\sim}^{4}$	Number of volumes in 11-brary.	
\% 该	$\stackrel{*}{6}$	Value of grounds, buildings, and apparatus.	
	9	ipal aid. Amount of State and munic-	
	N	Income from tuition fees.	

Table 3.-Statistics of Public

aAlso give instruction in other departments

High Schools for 1859－90－Continued．

	－ 0 ¢¢゙った		↔のம	过运	マ（艹）		（\％）	Male．	
			${ }_{\substack{4 \\ \infty}}$	ట్ర్ర		ハ心N	Q	Female．	
20： 0 Oovno：ono：on	wo：0！		－0！	00	eririrs	Sos over Or	∞	Male．	
－o：ooovnoil ono：0n	OONOH		－o！	00	ヘロッ！ヘット		－	Female．	
	wer： 0	ゼッにゼ10NOON	Na！	00	（¢		萬	Male．	
0：00000N1000：00	Nっち： $\begin{aligned} & \text { NO }\end{aligned}$	0rreros	ーロー	00	0 0		\％	Female．	
¢：ovil wownonotorr	A：a	\具	の：	－	： $1: 10$		$\frac{104}{20}$	Male．	
	$\omega \begin{array}{l:l:l}\omega & 0 \\ \end{array}$	（	－10	－-	1 i 1	：oiow	通	Female．	
ONOWOणのWHNNOOちゃい	NOONO		ーツr	ヘレ	ーさせくべ	HW以NOCNON	部	Male．	
	－	合が氙尤 OONOOT	－roses	$\omega \sim$			$\begin{aligned} & \text { led } \\ & \text { or } \end{aligned}$	Female．	
OOO OOO OOQOOO：OO			$\begin{aligned} & 2 Z_{1}^{2} \not 厶_{1} \\ & 000 \\ & 1: ~ \\ & \hline \end{aligned}$	$\begin{aligned} & 814 \\ & 80 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$			0	Is drawing obligatory？	
			$\begin{aligned} & y_{1} z_{1} Z_{1} \\ & 00 \\ & 1: \end{aligned}$				$\stackrel{1}{4}$	Has the school a gymnasium？	
	008 잉․		凩		Hospor eri		${ }_{c o s}^{6}$	Number	of volumes in li－ brary．
						\％＂ㅇㅇㅇ엉ㅇㅇㅇ 88ర	$\underset{6}{6}$	Value o	rounds，buildings， apparatus．
		${ }^{1} \mathrm{C}$		：			8	Amoun	State and munic－ ipal aid．
			¢్ఞু\％	$8 \stackrel{1}{6}$			$\cdot d$	Income f	rom tuition fees．
ㅈํㅇํ Tis K్ర	Nisionio出岕出	ఝ్రీ 	Nox	なot	గ్రు 				

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1ss9-90-Continued.

Table 3.-Statistics of Public

High Schools for 1889-90-Continued.

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1889－90－Continued．

Students in second－ ary grade．		Colored pupils in－ cluded．		Number prepar－ ing for college classical course．		Number prepar－ ing for college scien－ tific course．		Numberof stu－dentswhograd－uated orcom－pletedtheirstudiesin1889－90．		Is drawing obligatory?	Has the school a gymnasium？			Amount of State and munic－ipal aid．		
	$\begin{aligned} & \text { ®. } \\ & \text { ત̈ } \\ & \text { は̈ } \\ & \text { En } \end{aligned}$	官	－	$\begin{aligned} & \dot{0} \\ & \sum_{i}^{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\tilde{1}} \\ & \text { ⿷్మ゙ } \\ & \text { © } \\ & \text { En } \end{aligned}$	$\stackrel{0}{\stackrel{0}{5}}$		$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\sim}}$								
6	7	8	9	10	11	19	13	14	15	16	17	18	19	20	21	
21	45	1	4	3	1	2	0	2	3	Yes	No．－	1，200	\＄100，240	82， 160		2182
20	35				2			4	10	No．－	No．－－	， 300	15， 000	300	8287	2183
30	40	0	0	7	10	1	0	4	5	Yes．	NO．－	2， 500	40， 275	800		2184
62	122		3	6	2	12	0	9	16	Yes．	No．－	3， 000	50， 300	8，000	135	2185
15	16			0	0	0	0			No．－	No．－	0	20，000		107	2186
48	71	2	3					1	12	NO．－	NO．－	350	30， 275		45	2187
12	12	0	0	0	0			5	4	Yes．	NO．－－	500	8， 500		40	2188
20	17	1	0	8	8	5	2	0	0	NO．－	NO．－	100	4，535	575		2189
9	15			0	0	0	0	0	2	No．－	No．－	30	25， 500	4，549	75	2190
24	32	1	2	3	0			2	6	No．．	No．－		300		25	2191
21	26															219\％
37	75	0	0	6	2			1	9	NO．－	NO．－	25	10，225	3， 000	30	2193
59	70	3	5	9	7			7	1	Yes．	Yes．	400	30.000		920	2194
27	25	0	0	5	5	1	0	1	3	No．	NO．－	200	20， 100	3， 000	0	2195
63	88			21	11	5	0	8	14	Yes．	NO．－	500	16， 200		480	2196
25	26	0	0	1	1	0	0	1	0	Yes．	NO．－	200	6，000		1，500	2197
316	541	4	1					45	61	No．－	No．－－	1，700	218， 500		2， 880	2198
16	31			3	8			4	2	No．－	No．－	650	5，300		150	2199
30	74	0	0	4	8			10	2	NO．－	No．－	985	40， 250		600	$2 \geqslant 00$
44	70	0	0	5	1	3	0	2	9	No．－	NO．－	250	40，700		200	2201
20	55	0	0			0		0	3	Yes．	No．－	0	5， 075	2， 050	1， 350	2202
3	7	0	0	2	2	3	2	3	2	No．－	NO．－	400	4，100	1，200	375	2×03
0	262							0	13	Yes．	No．－		21，000	4，000		2204
18	45	10	15					0	13							2：05
20	15	0	0	0	1			0	0	NO．－	No．－		350	150	250	2205
17	22	0	0	10	12			0	0	No．－	No．－	0	2， 050	185		2207
2	4	0	0	1	2			0	1	No．	NO．－	0	， 500	141	134	2208
24	10	0	0					4	2	No．－	No．－	50	1，500	1，200	350	2209
20	25	0	1	2	2	6	2			NO．－	No．－	300	40，100		500	2210
9	18	－ 0	0					0	0				20，000			2211
48	70	0	0	3	2	0	0	2	0	NO－－	NO．－	150	14， 300	3， 000	360	2212
9	32	0	0					1	5	No．－	NO．－	60	8，000	6，500	0	2213
26	57	0	1	0	0	3	5	0	3	No．－	No．－	300	50，150			2214
15	19	0	0	15	19			0	5	NO．－	NO－－	100	30，500			2215
4	10	0	0							NO．－	No．－	400	2，030			2216
26	24	0	0					0	0	No．－	NO．－	0	2，000	1，250	400	2217
50	92	6	14					6	25	Yes．	NO－－				322	2218
25	38							5	7	Yes．	NO．－	600				2219
15	23	0	0	0	0			7	5	NO．－	NO．－	0	15，200	3，800	300	2\％20
50	40	0	0	0	0	50	40	0	0	NO－－	NO－－	0	5， 050	480	250	2221
50	56	0	9	5	0	0	0	4	5	No．－	No－－	50	20， 500	2，600	303	2222
11	7	0	0	0	0	0	0	0	0	Yes．	NO－－	0	1，500	700	300	2223
10	28	0	0	5	7	0	0	3	5	Yes．	NO．－	50	6，100	1，250	1，300	2324
8	100	0	0	0	0	0	0	1	16	No．－	NO．－	872	38.200	0	1， 0	2225
19	15	0	0	3	2	6	4			No．－	No．－	105	3，500	424	397	$2 \geqslant 26$
60	135	0	0	0	0	0	0	1	7	NO．－	NO．－	0	53， 000		350	2227
7	6	0	0	2.	5	0	0	0	0	No．－	NO－－－	0	1．550	278	202	2228
2	5	0	0	2	5	0	0	0	0	No．－	No－－－	153	1，503	175	56	2229
27	23	0	0	4	2	8	3	8	3	No．－	NO．－－	0	1，300	600	300	2230

Table 3.-Statistics of Public

-	State and post-offce.	Name of institution.	Name of principal.	$\begin{aligned} & \text { Number of } \\ & \text { "second- } \\ & \text { ary" in- } \\ & \text { structors. } \end{aligned}$	
				号	
	1	12	3	4	5
	TEXAS.				
2231	Abilene	High Scho	C. G. Foust	1	1
2232	Anna	----do.	J. M. Robinson.	1	1
2233	Athens	Athens Institute	W. I. Cowles .-.	2	1
2234	Austin	High School.	I. H. Bryant.	2	3
2235	Banmmont	-.-.-do.....	C. F. Jolnnston	1	0
2236	Pellville	Hioh School (department)-	W. A. Trenchman	1	0
223%	Blanco	tioh School..-...-.-.-.-----	W. H. Bruce....	2	3
2238	Brackettville	Hirh School (department).	E. P. Lord, A. M.	1	3
2239	Bremond	Educational Institute......	J. 13. Wolte	1	1
2240	Brenham	High School.---.-. .-. -	Miss Mary Rial	2	2
2241	Pryan	-----do-----	A. L. Banks	4	0
20,2	Burnet	do	R. J. Richey	1	0
2243	Caddo Mills	do	H. M. Pile.	2	1
224.4	Calvert	High School (white)	A. W. Kinnard	2	0
2245		Hign School (colored)	--do	3	0
2245	Campbell		C. A. Neville, m. A	$a 2$	$a 4$
2247	Centerville	do	C. A. Leavertun.--	2	0
2248	Cleburne	High School (department).	J. M. Johnson	1.	2
$2 \geqslant 49$	Coleman		Z. B. Whitehurst	(2)	a3
2236	Colorado	High Schooil	Jacob I. Hill	1	0
2251	Comanch-	Iigh School (department) -	C. O. Smith	3	3
225\%	Corpus Christi		Chas. W. Crossby	,	1
2253	Corsicana	High School	Wni. Lipscomb.-	1	1
2554	Dallas	---.-do ---	T. G. Harris	4	2
2.255	Eidy	Literary and Scientific Institute.	A. B. Harmer	0	2
22.56	El Paso	High School --............-. --	Miss Ella B. Meekins	1	2
2257	Floyd.	--...do...--	W. A. Priest	1	1
2253	Galveston	Ball Figh School	Jno. W. Hopkins, A. M	3	3
2359	Gon\%ales	Hish School (department).	Oscar Chrisman.	1	0
2060	Graybill	Soren Points College.-.-.	J. M. Harder	2	0
2231	Hallettsville	High School (department, -	J. C. Florea..	1	3
22 C 2	Harwood	Harwood Academy .-...-.-	R. U. Barkley	1	1
23:3	Hempstad	High School.-.-.	S. H. Dean.	2	0
2:364	Houston..-	---.- do....-. .-	C. W. Welch	3	1
2265	İubbard	do	F. A. Jall.	1	0
2265	Itasea.	do	N. J. Foster	3	2
2267	Kingston	Cahoun College	T. E. Wallis, A. N .-----------	3	1
20 28	La Grange	High School .-.-......-.-.	T. R. Dunlap.	1	1
2269	Leesburg	East Texas Academic Institute	I. C. Lamar ----------------------	0	2
2270	Llano	High School (department) -	P. F. Hargon	1	4
2271	Lone Oak	High School.-.......-.-....-	W. H. Attebery	2	2
2372	Luling	Pierce Institute	F. G. Gambrilt.	1	0
23	MicGregor	High School (department).	J. N. Davis, reporting officer.	1	0
2274	McKinney	do	E. M. Faust, superintendent.	1	2
2575	Menardville	High School	J. W. Hunter -...-	1	1
29\%	Mexia.	do .-	J. C. Blair	1	1
2977	Mialothian	do	G. F. Taylor	1	2
2048	Milan	Milan lnstitute	W. A. Toole	1	1
2279	Mineola	High School	Jas. M. Skinner	1	3
2280	Montague	----- do ------	J. H. Vaughan	1	0
2281	Nevada .-	do	G. W. Guyer .-	2	1
$2 \geqslant 82$	Palestine	do	E. M. Pace	1	2
2283.	Paris	. do	W. S. V. Siebert	2	1
2:284	Pirtle	High School (department).	A. S. Baskett.. .	1	1
2285	Pottsboro	do	E. D. Macready---------------	2	3
2286	Ranger	---do	W. A. Dennis	1	2
228%	Rising Star	High School	B. F. Torry	2	0
$2 \geqslant 88$	Roby		D. Speer	1	2
2289	Rockdale	High School (department).	John W. Clark	2	0

High Schools for 1889－90－Continued．

Students in second－ ary grade．		Colored pupils cluded．		Number pirepar－ ing for college classical course．		Number prepar－ ing for college scien－ tific course．		Numberof strı－centswhograd－uated orcom－pletedtheirstudiesin$1889-90$.		Is drawing obligatory？		\pm \＃ 				
		$\begin{aligned} & \dot{\oplus} \\ & \text { ت゙ } \\ & \text { ت゙ } \end{aligned}$		逯	$\dot{\oplus}$ ت̈ In $=1$	䔍			$\begin{aligned} & \text { 玉゙ } \\ & \text { ت゙ } \\ & \text { E } \\ & \hline \end{aligned}$							
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
		0			10	2	0	2	8	Yes	No．	200	\＄1，550	810，	\＄150	2231
${ }_{6}$	7	0	0	0	0			0	0	No．	No．	0	12，000	720	175	2232
24	27	0	0	5	7	6	0	0	0	No．	No－－	0	$\stackrel{\text { r }}{ }$	487	1，180	2233
59	\％	2	3					1	18	No．－	No．	$\% 2$	300	，	114	2231
5	10	0	0	1	0	0	0	0		No．－		0	10.100	900	90	$\stackrel{2035}{2035}$
10	$\because 0$	0	0					4	7	No．－	Yes	200	2，350	2，300	3.50	$\stackrel{236}{2037}$
30	35	0	0					4	4	No．－	No．－	100	10，000	1，400	300	2237
24	24	0	0					1	3	No．－	NO．－	1	2，000	3，600	144	2238
12	18	0	0					3	2	No．－	No－－	0	6，010	1．800	75	2239
18	45			7	8	10	26	5		Yes．	No－－	357	27， 400	12， 650	1350	2240
37 18	54	16	$\stackrel{11}{29}$	2	13	5	10	7	10	NO－－	No－－		26， 350	7，961	1，575	2241
18	27	16 0	20	15	10	5	－	0	0	No．．	No－－	100	6，250 1,203	1，296	446 400	${ }_{224}^{224}$
24	21	，	0	5	15	4	0	0	0	No．－	No．－	400	12，150	1，800	220	2244
25	20	135	1\％0	，	4	3	0	0	0	Yes．	Yes．	300	12，600	5，600	768	2245
19	27	0	0	1	0	4	0	3	3	No．．	No．－	300	5， 010	900	2，150	2246
8	10	0	0	10	0	0	8	0	0	No．－	No．－	0	1，500	－800		2247
15	36	30	43	10	8	5	28	0	1	No．	No．－	415	3， 050	7，000	225	2348
15	20	0	0							No－－	No－－	325	8， 100	3，330	450	2349
4	18							4		Yes	No－－	0	5， 5 ， 000			2250
$\begin{array}{r}34 \\ 9 \\ \hline\end{array}$	12	－	45	3	2			4	3	Yes．	No－－ No．－	0	15,000 20,000	2,865 4,564	439	$\stackrel{2}{2} 251$
10	27							4	4	No．－	No－	100	35， 500	19，667	347	223
47	143							1	4	No．－	No		75， 500	6， 410		2254
3	4	0	0	1	1	2		0	0	No．－	No．－	100	3，0\％	400	800	2255
15	22	0	0	6	9			3	2	No．－	No．－	160	25，150	4，172	172	2356
20	15		0					12	13				1，230			2257
50	100	4	0					7	23	Yes．	No．－	1，500				2958
9	12	10	65					8	0	Yes．	No．－	200	33，820	18，660	$2,052$	2259
14	4	0	0	6	，	8	6	8	4	No－－	No－－		3，000	E00	$1,000$	$\stackrel{226}{\sim}$
13	22	0	0	0	0 0	${ }_{0}^{4}$	6 0	0	0	No．－	No．－－	0	4， 520	1． 350	50	$\stackrel{2261}{226}$
5		0	0	0	0	0	0	1	5	Yes．	No．	0	16，100	2，000	150	2203
22	$8{ }^{80}$	0	0					1	10		No．．	300	$30,700$	4，500	162	$2 \geqslant 64$
10	10	0	0					0	0	Yes．	No．－	0	12， $0=0$			${ }_{2}^{2285}$
29	39	0	0	4	8			0	0	No．－		0	4， 010	1，950		${ }_{2}^{2966}$
$\stackrel{25}{29}$	15 32	0	0	20	0	1	0	0	0	No．－	No．－	600	5,200 1,600	900 900	1,500 3,000	2267 2268
15	\bigcirc	0	0	2	3	0	0	1	3	No．－	No	0	1，500	375	－250	$\stackrel{2}{2}$
30	50	0	0	0	0	0	0	0	0	No．－	No．	0	10， 100	900	100	$22 \% 0$
24	27	0	0					0	0	No．－	No．－		2，000	785	1，182	${ }_{2271}^{2271}$
7 7	13	0	0	2	0			${ }_{2}^{0}$	0	Yes．	No．	326	12， 650	1，000	90	${ }_{2273}^{2272}$
23	44			3	17	5	2			Yes．	No．	250	35， 650	5，500	300	$22 \% 4$
20	20	0	0	5	8					No．－	No．	150	1，100	500		2275
40	35			5	25	35	10	2	3	No．	No．－	450	14， 300	5， 760	1，200	2276
10	12	0	，					0	0	No．－	No．－	0	2，015	750	250	2277
45	40	0	0	25	30	20	10	5	6	No．－	No．	2	10，020	1，000	000	2279
8	T	0	0	0	0	0	0	2	3	No．－	No．	0	6，575	935	1，0¢0	2980
14	6	0	0	0	0			0	0	No．－	No．	0	5， 000	533	165	2281
$\stackrel{35}{22}$	55	${ }_{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$							No．－	No．－	20	30，250			2282
		0	0	0	0	4	3	0		No．－	No．－	2	630	311		2284
125	110	0	0	0	0			0	5	Yes．	No．－	0	4，100	T10	1，050	2285
19	23	0	0	0	0	0	0	0	0	No．－	No．－	39	2，000	1，000	375	2286
16	14	0	0	4	0	6	0	0	0	No．－	No．－	0	2，500	1，000	505	2287
53 20	${ }_{24}^{68}$	0			6		$5-$	0 4	${ }_{6} 6$	No．－	No．－－	0	－2，000	1，258	${ }_{924}^{135}$	22888

Table 3.-Statistics of Public

2290
 2:91
 2.29
 2294
 2295
 2296
 2297
 2.98
 2299 2300
 2301
 2302

a Also give instructions in otner departments.

High Schools for 18S9－90－Continued．

Students in second－ ary grade．		Colored pupils cluded．		Number prepar－ ing for college classical course．		$\begin{array}{\|c} \text { Number } \\ \text { prepar- } \\ \text { ing for } \\ \text { college } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{array}$		Number of stu－ dents who grad－ uated or com－ pleted their studiesin $1889-90$.			荡					
$\begin{aligned} & \dot{\oplus} \\ & \text { む゙ } \\ & \text { In } \end{aligned}$			䫆	$\begin{aligned} & \dot{\text { ® }} \\ & \text { 岂 } \end{aligned}$		$\begin{aligned} & \text { ® } \\ & \text { د゙ } \end{aligned}$		$\begin{aligned} & \text { ® } \\ & \text { డ゙ } \end{aligned}$								
6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
8	12	6	0	8	12	0	0	0	3	Yes．	No．	25	\＄40，000	\＄2，500	8125	2290
11	27	0	0			0	4	0	4	No．－	No．－－	44	58， 500			2291
5	10	0	0					0	0	No．－	No．－－	0	3，575	1， 400		2292
10	4	0	0					3	2	No．－	No－－	0	2，600		1，200	2293
20	20	0	0	0	0	0	0	0	0	No．－	No．－	0	1，500	2，810	1，50	2294
15	25	0	0					1	7	Yes．	No．－	300	25， 050	5，000	1，000	2295
7	20							0	0				3， 000	4，500	1， 50	2295
25	15	0	0	15	20	5	10	0	0	No．－	No．－	50	30，580	2，000	100	2297
15	30	0	0	5	7	2	1	0	0	No．．	No．－	75	30， 100	9，000	50	2298
25	56	2	6					1	5	No．－	No．－	750	4， 650		150	2299
5	12	0	0	4	10			－	5	No．－	No－－	400	20， 150	2， 750	250	2300
20	23							0		No．－	No．－	200	3，500	1，350		2301
17	18	0	0					0	0	No．－	No．－	0	2，000	240	760	2302
15	20	0	0	0	0	0	0	0	0	No．－	No．－	350	85， 300			2303
10	15	0	0	0	0			0	0	Yes．	No．－	500	17， 500		25	2304
20	35	0	0	3	10	0	0	3	0	Yes．	No．．	0	5，000		225	2305
		0	0	0	0			0	0	Yes．	No．－	0	5，070	1，075	40	2306
12	$\stackrel{3}{25}$	0	0	2	0		－－－	6	6	No．．	No．－	200	5，000		150	${ }_{2308}^{2307}$
31	59	0	0	3	3	9	21	0	9	No．－	No－－	2，000	2，300	1，20－	140	2309
12	18	0	0	6	7	8	5	1	3	No．－	Yes．	2， 225	25， 150		200	2310
80	95	，	0	1	2	0	0	5	18	No．－	No．－	200	60， 300		500	2311
85	115	2	1	39	15	25	20	18	19	No．－	No．：	350	50， 200	5，000	900	${ }_{2}^{2312}$
31	51	0	，	2				0	6	No．	No．－	50	6， 000	1，300	42	2313
		0	0	．	0	0	0		0	Yes．	No．－	0	3，000	－100	25	2314
30	44	0	0	0	0	0	0		0	Yes	No．－	20	3，500	500		2315
25	19 30	0	0	0	0	3	0	${ }_{8}^{0}$	0	Yes．	No．．	150	10，125	5，000	180	2316
15	15	－	0	6	8	3	2			Yes．	No．－	150	1，050	， 275	150	2318
28	26															2319
26	24		1	5	3			0	－	NO．－	No．－	200	1，090		35	2320
62	87	0	0	5	3	17	21	$\frac{1}{5}$	5	Yes．	No－－	150	4,050 20,050	1，800	36 668	${ }_{2323}^{232}$
10	17	0	0	0	2			4	2	Yes．	No．－	35				${ }_{2323}$
20	34	0	0	14	2	0	0	3	4	Yes．	No．．	150	50，000		650	2324
6	4	0	0					2			No．－		1，000		36	$23 \% 5$
31	32	0	0	1	0	0	0	0	0	Yes．		0	2，500	364	123	2326
12	25	0	1	0	0			3	3	Yes－	No．－	3， 000	31，000	3，767	200	2327
59	57	0	0	6	2	3	4	1	2	No．－	No．－	500	15， 350	381	895	2338
32	23															2329
22	28	1	0			2	1	2	1	Yes．	No．－	0	12，250		430	2330
26	29	0	0	2	3	0	0	2	4	No．－	No．－	250			325	2331
12 9	16 26	0	1 0	0		2	2 0 0	0	0	Yes－1	No－－	25	15， 120	576	70	2332
		0	0	0	0	0	0	0	0	Yes．	No．－－	70	5，040	353	47	2334
	25	0	0	4	0	2	0	2	2	No．－	No．－	5	3，000		159	2335
40 39	58 68	0	0	18 3	$\stackrel{24}{3}$	0	0	0	0 3	No．－－	No．－	1,003 200	203 25,400	25,000 3,800	150 500	2336 2337

Table 3.-Statistics of Public

a Also give instruction in other departments.

High Schools for 1889－90－Continued．

Cusis			出が気		0.	Male．	
出ざき					\checkmark	Female．	
000	000：000 00 000：00 000	00000000	－0 ！	oo or：o	（ 0	Male．	
000			－o！	－0，oc：-	－	Female．	
טזוֹ	以上出：		ठ心！	\＃aionuo	\cdots	Male．	
20：0	coow 0000000 00		发10！	－0゙ -000	m	Female．	
リ1O4				－ 20040	${ }_{8}$	Male．	
0000	－00w： 0 000 00：0000	ovi $00: 10: 100)$		－00000゙	呇	Female．	
－00	0000000w 000000	0，	いい	voscouriv	$\stackrel{\mathrm{mad}}{\substack{\mathrm{n}}}$	Male．	
WOH	0000000n woncir 0	ownvo ovornmonoo 01000	asi	20゙N00001420	$\stackrel{\mathrm{Cr}}{\mathrm{Cl}}$	Female．	
	Oooooqoo Ooo o © oo		$\begin{aligned} & 4,4 \\ & 0 \\ & 0,0 \\ & 0 \end{aligned}$		$\underset{6}{6}$	Is drawing obligatory？	
$\begin{aligned} & \text { 24 4 } \\ & 0.0 \\ & i 1! \\ & \hline \end{aligned}$	oooooooooooo o o ooo	○o 	$\begin{aligned} & \text { Kタイ } \\ & \text { óó } \\ & 1 \end{aligned}$		4	Has the school a gymnasium？	
ㅇ․ㅇㅇㅇ	00001000 台 00 多० 80 80 000		느운	gizioㅇㅇㅇㅇㅇ	${ }_{\alpha}^{6 \times \alpha}$	Number of volumes in li－ brary．	
	＂以		$\begin{aligned} & -2 \infty \\ & \text { 200 } \\ & 0.010 \end{aligned}$	 	붕	Value of grounds，buildings， and apparatus．	
（			H		犬	Amount of State and munic－ ipal aid．	
\％			苓	\％	$\stackrel{\text { ® }}{ }$	Income from tuition fees．	
Neiditi i	 	た 		WTM 			

Table 3.-Statistics of Public

High Schools for 1889－90－Continued．

	氙刃心岱し	いが，	O	Male．	
	N00．08\％	ㅈㅇ心夊乐	4	Female．	
	¢ \vdots \vdots	000	∞	Male．	若荡边
		000	\bigcirc	Female．	ค ${ }_{\text {¢ }}$ \％${ }_{\sim}^{\circ}$
		∞	${ }_{0}$	Male．	of:
	，	出○	$\underset{y}{6}$	Female．	¢ \％Wix in
	－	：	$\stackrel{10}{6}$	Male．	
（0－00 \％r：		O	囫	Female．	
	onvo	000	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Male．	
	めひびー	000	$\underset{r}{\mathrm{H}}$	Female．	
o o o o ooo			㡙	Is drawing obligatory？	
oóo	$\begin{gathered} z_{41} \\ 00 \\ \vdots 1 \\ 1 \end{gathered}$	$\begin{aligned} & z z i 4 \\ & 000 \\ & 1: \end{aligned}$	4	Has the school a gymnasium？	
		¢18\％${ }^{\circ}$	$\underset{\infty}{\infty}$	Number of volumes in li－ brars＂．	
 			6	Value of grounds，buildings， and apparatus．	
	\square		0	Amount of State and munic－ ipal aid．	
			N	Income from tuition fees．	
 	సన్ర T్ め－웅	Eiditededied			

Table 3.-Statistics of Public

High Schools for 1S89－90－Continued．

$\begin{aligned} & \text { Stud } \\ & \text { in sed } \\ & \text { ary } \end{aligned}$	ents cond－ rade．	Col pu clu	ils	Nun pre ing coll clas cou	ber par－ for egé ical se．	N゙un prep ing coll sci tif coul	$\begin{aligned} & \text { nber } \\ & \text { par- } \\ & \text { for } \\ & \text { ege } \\ & \text { en- } \\ & \text { ic } \\ & \text { rese. } \end{aligned}$	Nur of de who uat co ple th stud 1889	ber stu－ nts grad $^{-}$ d or m－ ted ir esin -90.		范	\neq ． 				
		$\frac{\dot{9}}{\sum_{i}^{E}}$	$\begin{aligned} & \dot{9} \\ & \text { 玉 } \\ & \text { 玉̈ } \\ & \text { En } \end{aligned}$			$\frac{\stackrel{0}{3}}{\underbrace{3}_{2}}$		$\underset{\sum_{i}^{\circ}}{\stackrel{0}{5}}$				$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { Z } \end{aligned}$		Amount	$\begin{aligned} & \text { Bo } \\ & \text { B } \\ & \text { O } \\ & \text { O } \end{aligned}$	
6	7	δ	9	10	11	12	13	11	15	16	18	18	19	20	21	
30	28							3	8	No．	No．－	300	\＄10， 200	\＄345	890	2451
33	50	0	0	1	13			0	0	Yes．	NO．－	50	50.500	350	190	2452
25	30	0	0	0	0		2	2	5	No．	NO．－－	30	7，500	345	30	2453
37	22	0	0	0	0	0	0	2	3	No．－	NO．－	160	5，010	2，323	128	2454
86	125	0	0	3	7			5	8	Yes．	No．－	450	40， 750	10，695	103	2455
39	44	0	0						2	NO．－	No．－	600	39，300	9， 750	258	2456
24	30	0	0					3	3	No．	No．	$3 \div 5$	9． 100	31°	310	2457
19	24	0	1	1	2	3	2	1	4	No．－	No．－	150	20，100		30	2458
7	14	0	0	0	0	0	0	1	4	No．	NO－－	153	3， 050	218		2459
$3 \stackrel{ }{2}$	48	0	0	0	0	2	3	－ 2	7	No．－	No．－	60	9，700	345	279	2460
145	205	0	1	40	70	25	0	£0	15	No．－	No．－	800	60，750	345	450	2461
23	59	0	0	2	1	0	0	1	2	No．－	No．－	120	30， 400	441		2462
32	24	0	0	0	0			2	1	NO．－	NO－－	180	3，650	463	29	2163
18	26	0	0	1	0	2	0	0	0	No．－	No．－	40	23， 000	370		2464
33	46	0	0	1	0	4	2	5	2	No．－	No．－	50	25， 050	0	350	2165
13	20	0	0	0	0	6	7	2	6	No．．	No．－	100	10，250	345	111	2466
17	20												10，			2467
36	42	0	0					10	9	Yes．	NO．－	240	18，150		150	2468
16	20	0	0	0	0	，	1	0	0	Yes．	No．－	50	1，450	2，150		2469
10	13	0	0	0	0	0	0	0	0	NO．－	No．－	300	4， 550	175	30	2470
13	20	0	0	0	0	1	2	2	4	No．－	No．－	20	4，C0\％	500		2471
217	335	0	1					18	31	No．－	No．－	1，651	91，691		425	2472
12	C9	0	0	0	0					No．－	No．－	， 500	10， 30		300	2473
45	60	0	0					10	8	N0．	No．－	2，000	15，0\％5	345	168	2474
19	23	0	0	0	0	1	1	3	5	No－	No．－	100	－ 500		63	2475
15	16	0	0	0	0			3	$\stackrel{2}{2}$	Ies．	No．－	150	2，550	140	160	2476
35	15	0	0	0	0		0	0	0	No．－	No．－	50	5，005		96	2477
17	$\underset{\sim}{2}$	0	0	2	5	0	0	2	5	No．－	No．－	300	2，200			2478
35	76	0						0	0							2479
28	56	0	0	0	S	15	30	1	10	No	No	75	14， 050	325	180	2180
$2{ }^{2}$	27	0	0	1	0			2	2	Yes	No．	393				2481
22	52	0	0	0	0	0	1	1	2	No．－	No．－	350	25，125	200	200	2482
20	28	0	0	0	0	0	0	0	0	Yes－	No．－	325	4，200	200		2483
41	49	0	0					2	2	No．－	No．－	400	8，500	250	192	2484
20	30	0	0	0	0	3	1	3	1	Yes．	No．－	210	2，500	315	171	2485
－3	90	0	1	0	0	10	15	7	12	No．－	NO．－	616	50，400			2486
16	18	0	0	0	0	0	0	0	0	No．	No．	300	900	$6 \div 9$	74	2487
14	23	1	1	0	0	1	1	$\stackrel{2}{2}$	6	NO．－	No．－	10	15,100		50	2188
24	22	0	0					2	6	Yes．	NO．－	150	7，040	278	394	2189
25	27	0	0	0	0	0	0	0	4	No．	No．－	2 CO	4，100	750	60	2490
29	28	0	0	0	0			1	4	No．．	No－－	367	3， 400	600	225	2491
24	46^{3}	0	0	4	2	1	2	$\stackrel{\sim}{2}$	4	No．－	Yes．	500	5， 100	1，353	$\stackrel{2}{2}$	2492
18	26	0	0	6	6	$\%$	15	1	2	No．－	No．－	450	15， 530	3 ± 5	38	2493
50	63	0	0	0	0	4	0	5	10	Yes．	NTO．－	900	20，4C0	345	192	2494
31	35	0	0	0	0	31	36	6	2	No．－	Fo．－	225	5，075		205	2495
53	89	0	0	0	0			4	4	NO－－	NO．－	200	30，500	850	447	2495
23	－ 38	0	0	5	2	7	7	3	0	Ies．	Yes．	800	18， 200	1，550	147	2197
40	－ 44	0	0			－		3	0	No．－	No．－	2，600	15， 200	1,350 3 ~ 81	300	2498
42	28	0	0	0	0	2	5	2	5	Yes．	No．－	554	3， 550	781	50	2499
15	17	0	0	0	1	1	0	0	0	No．－	No．－	41	2，550	187	82	2500
5	13	0	0					3	0	NO．－	No．－	237	1，125	310	$5 \frac{1}{4}$	2501
15	30	0	0	1	1			0	2	No．－	NO－－	80	1，850	200	200	2502
13	22	0	0	2	1	2	2	0	4	Yes．	NO．－－	200	20，050		80	2503
14	24	0	0					1	3	Yes．	No．－	2，000	40，${ }^{\text {a }}$ C0		0	2504
25	29	0	0	0	2			0	$\frac{1}{2}$	No．－	No－－	249	4，040	1，800	125	2505
31	40	0	0	0	0	0	0	1	5	No．－	NO－－	125	4，025	345	200	2506
50	73	0	0	0	0	1	3	2	10	No．－	No．－	2，637	10，250	345	86	2507
23.	37	0	0					5	7	Yes．	No．－	300	15， 040		200	2508
14	14	0	0	0	0	0	0	$\stackrel{3}{0}$	1	NO－－	NO－－	400	11， 325	345	75	2509
12	33	0	0	0	0	3	6	0	0	No．－	No．－	25	10，050	1，600	100	2510
13	14	0	0					$\stackrel{\sim}{3}$	1	No．－	No．－	200	10，050	400	70	2511
13	24	0	0	0	0	4	5	3	4	No．－	No．－	600	4，050	225	65	2512
10	65	0	0	4	4	2	3	6	7	NO－－	No．－	125	10，050	400	600	2513
16	7	0	0	2	0		－－－	2	0	NO．－	NO．－1	216	2，540	99	42	2514

Table 3.-Statistics of Public

	State and post-office.	Name of institution.	Name of principal.	Number of "secondary" instructors	
				安	-
	1	2	3	4	5
	wisconsin-cont'd.				
2515	Waukesha Waupin.		Geo. H. Reed .-............- H. C. Curtis		
${ }^{2} 217$	Waupio-...............-	High School (South ward)-	F. C. Howard.-................		
${ }_{2519}^{2518}$	Wausau -.-.-.	High School	Hugh McIndoe ...--......	$\stackrel{2}{1}$	$\frac{1}{2}$
25.0	West Bend -.....-		D. T. Keeley	1	1
2521 2592	West De Pere		Chas. Mains, A. B........	1	1
2523	West Salem --..--...-	-.do --.-......................-	A. E. Buckmaster--......		
2594	Whitewater --.---.---	do .-----...............-.-.	C. H. Sylrester-..-.......	1	3
	wroming.				
2525	Cheyenne...	High School.	J. O. Churchill, superin-		
2526	Rawlins	do	J. B. Blazer	1	0

High Schools for 1889-90-Continued.

Students in secondary grade.		Colored pupils included.		Number preparing for college classical course.		$\begin{array}{\|l} \text { Number } \\ \text { prepar- } \\ \text { ing for } \\ \text { college } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{array}$		Numberof stu-dentswhograd-uated orcom-pletedtheirstudiesin$1889-90$.		Is drawing obligatory?				Amount of State and munio-ipal aid.		-
梁		$\stackrel{\text { ¢ }}{\substack{\text { TS }}}$	宊	$\stackrel{ \pm}{\mathbf{N}_{1}^{5}}$		$\sum_{\substack{\mathrm{N}}}^{\stackrel{1}{\mathrm{~N}}}$	¢									
6	7	8	9	10	11	112	13	14	15	16	17	18	19	20	21	
	58	0	0					3	4	No.-	NO.-	736	\$41, 855		\$325	2515
- 18	23	0	0	2	0	0	0	2	1	No.-	NO--	100	7,575	\$1,000	32	2516
49	59	0	0	3	2	2	1	2	6	No.-	NO--	327	12,100		478	2517
28	55	0	0					2	3	No.-	NO.-	540	18, 200		28	2.518
21	28	0	0	3	5	6	8	3	3	No.-	No--	250	15,150	345	427	2519
45	35	0	0	0	0	2	0	5	3	No.-	NO.-	100	27, 065	400	423	2520
15	28	0	0	4	5	2	3	1	4	No.-	No.-	803	10,100	345	75	25.1
15	41	0	0	0	0			0	5	No--	No--	35	9,000	349	162	25.2
20	18	0	0	0	0	2	3	2	1	No--	No--	100	5, 125	342	225	25.3
29	37	0	0	1	0	2	0	1	3	No.-	No--	800	500		79	25.4
33	57							0	0							2535
14	15	0	0	16	26			0	2	Yes.	Yes.	50	25, 500	5,881		2525

Statistical Tables-
Table 4.-Summary of statistics of endowed academics,

States and Territories.		Secondary in-structors.			Students.					
					Secondary.			Preparing for col- lege classical course.		
		$\underset{\sim}{\underset{\sim}{\mathrm{E}}}$:		-	$\stackrel{\dot{\oplus}}{\stackrel{\rightharpoonup}{\Sigma}}$		
1	$æ$	3	4	5	6	7	8	9	10	11
United States	1,63ヵ	3,2\%	3,937	17, 209	4i, 534	47, 397	94, 931	11,220	5, 429	16,643
North Atlantic Division	510	1,305	1,457	-,76\%	18, 707	15,531	34, 238	5, 143	1,310	6,453
South Atlantic Division	36.3	603	65\%	1,255	8,205	7, 870	16, 166	2, 281	1,343	3, 62\%
South Central Division	325	461	636	1, 097	7,3\%	8,076	15, 448	1,925	1,569	3, 494
North Central Division	279	602	738	1,340	8, 443	9,166	17, 609	1,467	967	2, 434
Western Division.---	156	301	454	755	4,716	6, 754	11, 470	401	210	641
North Atlantic Division: Mraine	21	38	55	93	897	865	1,762	306	93	399
New Hampshir	26	80	48	128	1,286	725	2,011	532	37	569
Vermont...-.	20	52	69	121	1, 004	952	1,956	277	100	3π
Massachusetts	72	156	211	367	2,350	2, 191	4,571	\%92	255	1,017
Rinode Isiand.	4	25	15	40	463	168	631	164	3	16%
Connecticut	36	76	100	176	751	872	1,623	100	159	259
New York	174	448	479	92%	6,221	5,481	11, 702	1,678	390	2,068
New Jers?	51	113	167	310	1, 812	1,195	3, 007	482	67	, 549
Pennsylvania	106	287	313	600	3, 893	3,08:	6,975	812	206	1,018
South Atlantic Division: Delaware \qquad	5	10	12	22	106	145	251	19	1	20
Mraryiand	34	94	90	184	1,005	783	1,793	313	89	432
District of Columb	16	48	49	9	425	500	926	115	10	125
Virginia	60	114	108	$23 ?$	1,472	1,272	2,744	624	262	886
West Virginia	4	6	7	13	80	48	128	22	0	22
North Carolina	88	138	111	249	1,888	1,44\%	3, 335	593	282	875
South Carolina	31	56	63	119	950	. 669	1,619	149	204	353
Georgia.	113	122	182	304	2,135	2,625	4,760	313	410	723
Florida	11	15	30	45	234	376	610	106	85	191
South Central Division:										
Kentucky	57	62	88	150	1,161	1, 246	2, 507	241	230	471
Tennessee	74	105	143	218	2, 038	1,702	3, 710	751	406	1,157
Alabama.	61	89	118	207	1, 312	1, 142	2, 454	288	139	427
Nississippi	41	53°	84	137	- 720	1,317	2,043	150	310	460
Louisiana	23	29	61	90	450	1, 674	1,124	123	134	257
Texas	47	84	96	180	1,166	1, 35 \%	2, 5\%3	189	278	467
Arkansas.	15	30	38	68	412	1,384	826	160	61	221
Indian Territory,	7	9	8	17	77	154	231	23	11	34
North Central Division:										
Ohio --	46	89	127	216	1,299	1,781	3, 080	277	187	464
Indiana	15	19	29	48	225	, 374	, 599	42	26	68
Illinois	37	59	148	207	693	1,268	1,961	165	159	325
Michigan	11	17	25	42	263	389	65\%	19	6	25
Wisconsin	20	63	44	106	773	568	1,341	85	21	105
Minnesota	17	52	31	83	88.2	490	1,372	71	30	101
Iowa ---	27	63	51	114	1, 093	892	1,985	123	76	199
Missouri	64	157	183	310	2,130	2,185	4,315	429	277	703
North Dakota	3	3	8	11	44	68	112	10	8	18
South Dakota	5	11	15	26	80	135	215	48	7	55
Nebraska	14	26	, 51	77	317	455	772	94	90	184
Kansas---.-...	20	44	26	70	644	561	1,205	103	80	183
Western Division: Montana. \qquad	2	1	6	7	23	35	58	1	13	14
Wroming	1	0	8	8	0	60	60	0	0	0
Colorado	7	14	32	46	78	246	324	27	51	\%
New Mexico	5	9	11	20	74	59	133	6	4	10
Utah.	14	30	30	60	392	312	704	107	42	149
Nerada	1	1	6	7	0	25	®5	0	0	0
Idaho	1	2	4	6	27	21	48	13	12	25
Washington	11	18	22	40	151	334	485	19	18	37.
Oregon	14	29	26	55	360	3:6	686	81	49	130
California	100	197	309	506	3,611	5,332	8,943	147	51	198

Private Secondary Schools．
seminaries，and other private secondary schools，for 1859－90．

Preparing for scientific course．			๘ 							$\begin{aligned} & \text { Gifts and benefac- } \\ & \text { tions. } \end{aligned}$
兄		$\begin{aligned} & \text { İ } \\ & \text { से } \end{aligned}$								
12	13	14	15	16	17	18	19	20	21	22
6， 326	3，323	9，649	8，070	961，268	37，521，576	17，052， 198	232， 029	4，057， 912	1，619，358	\％81，983
2，882	931	3，813	4，070	467，060	20，898， 842	15，131， 1	75， 056	2，238， 591	1，361， 010	411，179
2， 728	240	968	1，112	130，480	3， 428,463	910，465	53， 231	465， 844	128， 162	49， 163
1，144	1，045	2，189	891	95， 737	3，480，583	210， 375	88， 713	441， 832	42， 180	89，386
1，361	852	2，213	1，621	214，705	6，370， 183	518， 199	7，564	641， 188	57， 983	192，502
1，211	255	${ }_{4} 466$	376	53，286	3，313， 505	282， 000	7，465	270， 457	29， 993	39，353
78	88	165	237	12，328	\＄303， 700	\＄271，905	\＄3， 180	\＄24，306	\＄16，285	\＄9，503
158	84	242	323	33， 894	1，003， 225	1，149， 200	1，900	166，430	61， 711	27， 230
92	59	151	260	13， 678	860， 825	428，000	156	50，223	20， 818	20，250
439	152	591	68.	74， 100	2，817， 818	3，156， 065	7，250	301， 803	116， 391	123， 072
30	1	31	52	7， 800	450， 700	2，${ }^{\text {cou }}$	0	51， 507	13，000	
60		63	184	24， 875	855， 055	337， 000	，	142， 342	16， 450	2，665
990	204	1，194	1，185	163， 393	6，676， 759	622， 489	21， 513	887， 576	35， 545	24，414
464	58	52%	438	44，258	1，813， 882	670，500	41， 057	313， 387	15， 030	164，000
571	282	853	729	92， 734	6，056，878	8，494， 000	0	301， 011	1，055，780	40，044
9	0	9	27	3，700	209，600	21，000	，	21，243	1，100	7，000
60	1	61	$\stackrel{09}{ }$	39， 880	941，305	731， 100	9， 200	85，449	41，210	11，825
25		28	69	26， 675	564， 300	80， 000		31， 565	5，000	
155 0	83 0	241	188	22， 510	$\begin{array}{r}463,035 \\ 29,500 \\ \hline\end{array}$	25， 000	10，505	111， 133	5，500	10，455
－	31	217	231888	350 17,465	－ 29,500	18，095	2，${ }^{0} 18$	1,875 102,408	4，705	10，${ }^{0} 96$
95	17	112	117	6， 490	149， 955	1，420	6，277	27，793	1，838	798
189	80	269	239	8，458	521，013	33， 850	20， 011	－5， 810	68，809	6，880
9	22	31	31	4，952	175， 000	0	4，520	8，559	0	1，559
143	137	280	172	29，073	555， 997	43，500	4， 883	74，752	8，972	2，412
349	238	587	223	20， 676	457， 715	50， 600	15，422	93， 150	3， 315	4，450
170	80 308	250 495	137 90	$\begin{array}{r}13,063 \\ 9 \\ \hline 88\end{array}$	$1,090,050$ 255	42，375	$\begin{array}{r}14,034 \\ 8,320 \\ \hline\end{array}$	69,932 53 973	3,175 5,120	$\stackrel{2}{2,682}$
$\begin{array}{r}187 \\ 56 \\ \hline\end{array}$	$\begin{array}{r}308 \\ 22 \\ \hline\end{array}$	$\begin{array}{r}495 \\ 78 \\ \hline 8\end{array}$	90 68	9,868 4,518 4,5	255,933 172,985	41， 000	8,320 1,550	53,973 76,120	5,120 2,598	2， 735
187	138	3：5	139	11，594	541， 923	22， 600	19， 718	53， 553	17，000	2，675
52	118	170	45	5，120	237， 865	10， 000	1，057	16，524	1，294	72， 362
0	4		17	1，825	168， 115	0	23，729	3， 828	706	2，000
154	72	226	218	57， 395	1，128， 490	104， 200	－ 0	111， 833	9，665	36， 155
17	${ }_{98}^{56}$	73 169	77	5， 979	1，205， 700	26， 000	4，200	16， 263	1，600	300 $\times 76$
71	98	169	175	46， 412	1，115， 055	46， 200	－ 0	79， 656	3， 215	7，676
76.	12 46	88 154 1	－ 121	$\begin{array}{r}9,038 \\ 20,085 \\ \hline\end{array}$	388， 423	44， 5900		－ 88,204	2， 2 ， 750	
108	46 17	154	121	20， 085	443,260 693,567	59，000 100,000	0	78，204	6， 650	i8，783 9， 560
155	118	273	144	15， 988	293， 235	64，650	450	26， 706	11， 870	5， 824
388	182	570	321	255， 221	901， 860	14，000	2，167	160，543	4，569	15， 113
24	41	65	0	1，300	56，250		468	2，007		2，922
43	9	52	13	1，802	205， 120	1，000	279	4，631	3，500	1，123
84	80	164	55	10， 995	519， 316	26， 500	，	15， 831	9，850	25，702
109	121	230	109	5，723	419， 907	32， 225	，	31，943	2，108	8，743
8	0	16 0	～	250 300	14，000		0	1,600 0	0	1，000
8	30	38	4	4，400	456， 650	1，000	2，500	50,086	3， 000	1，720
6	13	19	15	1，150	99， 300		400	12， 100		4， 625
29	90	119	0	8， 505	448，530	14，000	1，200	27， 470	5， 000	24， 815
${ }^{0}$	10	0		600	60，100					2，000
11 5	10 39	21 44	－	1,000 5,560	11,000 339,225	$\begin{array}{r} 0 \\ 110,000 \end{array}$	0	$\begin{array}{r} 2,000 \\ 36,733 \end{array}$	6，750	1，300
49	22	71	62	12，560	450， 425	115， 500	890	22， 737	11，740	1，280
95	43	138	235	18，961	1，454，275	41，500	2，475	117，731	3，503	2，603

TABLe 5.-Ratio of male and female instructors and students in private secondary schools in the United States-1889-90.

	Male.	Female.
Total number of instructors	3,272	3, 937°
Percentage of instructors.		
Total number of students	47,534	47, 397
Percentage of students	50.07	49.93
Total number of students preparing for college classical	11,220	5,429
Percentage of students preparing for college classical course	67.39	3\%. 61
Total number of students preparing for college scientific cours	6,326	3, 323
Percentage of students preparing for college scientific course	65.56	34.44
Total number of students preparing for college classical and scientific course.	26, 298	8,752
Percentage of students preparing for college classical and scientific courses-	66. 72	33.28
Percentage of male and female students preparing for college, in both classical and scientific courses	63.30	36. \%0
Percentage of male students preparing for college, in both classical and scientific courses, to whole number of students	36.91	
Percentage of female students preparing for college, in both classical and scientitic courses, to whole number of students \qquad		18.46
Percentage of both male and female students preparing for college, in both classical and scientific courses, to whole number of students.	27.70	

Table 6．－Summary of certain studies pursued in endowed acade－

States and Terri－ tories．	Latin．			Greek．			Freach．			German．		
	ジ		$\begin{array}{r} \text { ت⿹\zh26灬 } \\ -1 \\ -1 \end{array}$			$\begin{aligned} & \text { S. } \\ & \text { H. } \end{aligned}$			$\begin{aligned} & \text { ए⿹\zh26灬 } \\ & \text { : } \end{aligned}$			F
1	2	3	4	5	6	g	8	9	10	11	12	13
United States	17，398	12，335	29， 733	5，746	921	6，6670	5，857	10，367	16，174	6，776	6，094	12，8：0
North Atlantic Di－ rision	8，091	4，8．29	12，920	3，559	390	3，949	3，775	5，067	8，842	3，542	2，855	6，397
South Atlantic Di－ vision	3，757	2，254	6，011	770	132	902	964	1，689	2，653	942	621	1，563
South Central Di－ vision	2，332	2，039	4，371	443	105	548	437	1，005	1，442	486	436	982
North Central Di－	2，581	2，631	5，212	871	251	1，122	444	1，607	2， 051	1，587	1， 631	3，218
Western Division ．－	637	582	1，219	103	43	146	187	999	İ， 186	209	551	700
North Atlantic Di－ vision：												
Maine．．－．．．．－．．．	331	239	570	173	32	205	93	140	238	17	19	36
New Hampshire	684	243	927	390	46	436	211	137	348	106	62	168
Vermont．－．．．．－－	4＊9	805	1881	15	－ 30	182	93	129	1， 2.21	37	72	109
Massachusetts	1，049	818 46	1.897 231	599	126 3	725	649 119	${ }_{802}^{80}$	1，551	316 26	431 33	$\begin{array}{r}747 \\ 84 \\ \hline\end{array}$
Connecticut	324	216	540	67	14	81	89	291	380	\％	144	219
New York ．－	2，3¢4	1，413	3，777	1，014	62	1，0\％\％	1，416	1，892	3，308	1，483	1，165	2，648
New Jersey	943	391	1，334	496	36	53.2	462	580	1，042	486	273	759
Delaware ．－．－．－－	$\% 0$	52	122	16	2	18	32	40	\％2	13	6	19
Maryland．	509	227	736	71	8	79	263	297	560	415	213	628
District of Co－ lumbia	209	110	319	81	1	82	90	365	455	14	58	72
Virginia．－	822	412	1，234	120	3	123	232	$3 \cdot 8$	610	202	139	341
West Virginia	40	10	50	19	2	21	9	9	18	15	4	19
North Carolina．	861	338	1，199	186	18	204	50	90	145	77	38	115
South Carolina－	418	206	624	58	7	65	177	193	370	132	71	203
Georgia．	769	852	1，621	199	77	276	57	275	332	20	35	55
South Central Di－												
Kentucky．．．．．．．	442	401	843	51	27	78	17	147	164	90	136	226
Tennessee	746	430	1，176	166	31	197	12	92	104	87	55	142
Alabama．	464	444	908	65	22	87	27	138	165	37	9	46
Mississippi	140	246	386	27	7	34	11	58	69	11	15	26
Louisiana	136	58	194	51	0	51	286	448	734	49	18	67
Texas	232	$3 \div 0$	55%	42	8	50	67	74	141	177	128	305
Arkansas	161	117	278	39	9	48	15	46	61	45	72	117
Indian Terri－ tory	11	23	34	2	1	3	2	2	4	0	3	3
North Central Di－ vision：												
	448	663	1，111	205	61	266	80	445	525	290	335	625
Indiana	124	245	$\bigcirc 69$	4	10	14	5	108	113	4	59	63
Illinois．	316	447	763	79	49	128	46	276	322	101	276	377
Michigan	57	54	111	9	0	1	19	55	74	42	54	96
Wisconsin	378	91	469	178	3	181	139	22	211	387	161	548
Minnesot	216	117	333	72	9	81	38	110	148	107	120	227
Iowa－	231	146	377	85	24	109	1	1	2	155	95	250
Missouri	518	599	1，047	153	47	200	102	394	496	367	290	657
Noith Dakota－－	14	16	30	，	0	，	0	${ }_{27}^{13}$	13	0	1	1
South Dakota－－	10	20	$\begin{array}{r}30 \\ 248 \\ \hline\end{array}$	$\stackrel{2}{2}$	${ }^{0}$	$\stackrel{2}{40}$	0	$\stackrel{27}{68}$	27 68	$\stackrel{4}{5}$	39 88	13 123
Nebraska	89 180	159 14	248	$\stackrel{26}{56}$	14 34	90	14	68 38	58	35 95	113	${ }_{208}^{123}$
Western Division：												
Montana．	3	5	8	0		0	0	5	$\stackrel{2}{5}$	1	12	13 0
Wyoming－．．．．．－	${ }_{15}^{0}$	$\stackrel{20}{93}$	20	3	0	0 4	0	5	5	1	${ }^{0} 5$	68
New Mexic	14	11	25	0	0	0			4	2	2	4
Utah	92	38	130	11	1	12	7	6	13	48	37	85
Nevada		15	15	0	0	0	0	0	0	0	12	12
Idaho	13	12	25	13	12	$\underline{6}$	13	12	25	13	12	25
Washington	60	43	103	11	7	16	$\stackrel{2}{8}$	93	95	24	80	94
Oregon California	130 310	111 234	241	44	${ }^{7}$	31 58	138	40 795	68 930	71 49	81 260	152 309

mies，seminaries，and other private secondary schools for 1859－90．

Algebra．			Geometry．			Physics．			Chemistry．			General History．		
范			$\begin{aligned} & \underset{\sim}{\dddot{J}} \\ & \underset{\sim}{1} \end{aligned}$			$\begin{gathered} \text { ボ } \\ \text { ت゙ゴ } \end{gathered}$						范	过	－
14	15	16	17	18	19	20	91	28	23	24	95	26	27	38
19，755	15， 492	35，247	10，005	6，482	16，487	8，954	8，506	17，4¢0	4，215	3， 347	8，152	12， 387	15， 095	27， 482
S，346	4，851	13， 197	4，870	2，423	7， 293	3，628	2，634	6， 262	1，989	1，365	3， 354	4，587	5，322	9， 909
3，901	2，758	6，659	1，776	1，001	2，777	1，542	1，396	2，938	623	646	1，268	3，233	2，839	6，072
3，506	3，445	6，951	1，430	1，344	2，774	1， 719	1，9：2	3，645	653	778	1， 431	2，080	2，797	4， 85%
3，122	3，274	6，396		1，228	2， 716	1，638	1，723	3， 364	771	813	1，584	1，940		
－ 880	1，164	2，014	， 441	186	${ }^{927}$	＋ 27	1， 824	1，251	180	345	1，585	${ }^{1} 567$	1， 822	2，389
404	300	704	264	379	443	213	165	378	112	117	229	259	208	467
419	203	622	329	89	418	260	86	346	157	70	227	487	111	598
369	290	659	153	107	260	158	112	270	104	73	177	243	211	454
1，264	677	1，941	731	379	1，113	421	246	667	243	200	443	424	720	1，144
142	37	179	108	22	130	43	25	68	21	16	37	220	57	277
299	217	516	144	78	222	117	123	240	55	100	155	135	241	376
2，542	1，539	4， 081	1，467	${ }_{9}^{918}$	2，385	1，077	1，024	2， 101	6.7	445	1，©72	1，929	1，941	3，870
1，180	435	1,615	580 1,091	208	788 1,534	352 987	${ }_{6} 191$	543 1.649	240 430	29	334 680	1，539	402	1， 948
1，727	1，153	2，880	1，091	443	1，534	987	652	1，649	430	250	680	1，086	696	1，782
53	41	94	28	24	53	25	18	44	10	8	18	14	10	24
604	166	770	374	80	454	260	164	424	132	54	186	503	332	835
207	180	387	103	80	183	84	102	186	31	57	88	108	306	414
799	549	1，348	509	160	669	276	258	534	136	122	258	454	565	1， 019
37	16		22	4	26	15	4	19	4	1	5	16	35	51
722	429	1，151	216	88	304	273	191	464	68	91	159	802	341	1，143
442	288	730	172	145	317	225	165	390	64	71	135	439	276	715
931 106	985	1，916	317	330	697	346	452	799	145	217	362	803	844	1，647
106	104	210	35	40	75	37	42	79	32	25	57	94	130	224
550	557	1，117	258	194	452	222	256	478	116	144	260	307	403	710
815	631	1，446	310	216	596	371	343	714	142	105	247	351	479	830
689	626	1，315	248	234	482	222	272	494	130	119	249	486	509	995
356	467	$8 \% 3$	127	172	299	294	434	728	90	127	217	237	467	704
181	220	${ }^{401}$	94	78	172	106	175	281	60	116	176	240	418	658
656	729	1，385	328	399	727	424	397	821	77	140	217	306	415	721
243	${ }^{-168}$	411	62	46	108	73	42	115	34	26	60	108	79	187
16	37	53	3	5	8	7	7	14	4	1	5	25	27	52
385	602	987	191	181	372	207	253	460	109	149	258	257	319	576
97	170	267	29	55	84	40	118	158	25	33	58	57	120	177
260	475	735	126	191	317	220	319	539	92	186	278	114	491	605
${ }^{116}$	118	234	33	46.	79	46	77	123	28	65	93	44	121	165
285	176	461	212	92	304	173	103	276	64	30	94	331	127	458
231	155	386	122	62	184	103	55	158	61	22	83	138	118	256
385	278	${ }^{663}$	191	112	303	153	109	262	50	40	90	214	191	405
1，005	868	1，873	397	279	676	528	480	1，008	258	184	442	582	418	1，000
10	32	42	5	11	16	6	26	32	0	6	6	2	4	${ }^{6}$
11 119	50	61	5	31	37	4	8	172	2	5	7	10	57	${ }^{67}$
119 218	160	279	57	94	151	67	106	173	31	49	80	76	$2: 3$	299
218	190	408	119	74	193	91	72.	163	51	44	95	115	126	241
0	7	12	0	1	1	0	0	0	0	0	0	1	23	24
0	20	20	0	0	0	0	0	0	0	0	0	0	60	60
${ }_{35}^{11}$	97	108	6	49	55	4	24	28	5	15	20	1	81	82
35 123	26	61	19	7	2゙6	3	10	13	3	4	7	21	26	47
123	75	198	52	27	79	53	27	80	46	16	62	109	58	167
0	18	18	0	15	15	0	0	0	0	6	6	0	25	25
11	10	21	11	10	21	11	10	21	11	10	21	24	22	46
49 171	80	129	22	32	54	16	38	54	10	22	32	15	150	165
171 475	141	312	58	46	104	76	115	191	22	38	60	79	151	230
475	690	1，165	273	299	572	204	600	864	83	234	317	317	1，226	1，543

Table 7.-Percentage of male and female students in private secondary schools pursuing certain studies.

Note. -50.07 per cent of the whole number of students are males.

TABLE 8.-Percentage of students in each branch of study to the whote number of students.

TAble 9.-Statistics of endowed academies, seminaries,

	State and postoffice.	Name of institution.	Name of principal.		$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { sec- } \\ & \text { ond- } \\ & \text { ary } \\ & \text { in- } \\ & \text { struct- } \\ & \text { ors. } \end{aligned}$	
					家	通
	1	2	3	4	5	6
	ALABAMA.					
1	Anniston	Noble Institute (boys)	R. H. Willis .-.----	Epis	4	0
2	-_--do	Noble Institute (girls)--	Miss E. V. Bristow.	Epis	0	8
3	Ashland	Ashland High School .--	Riddle \& Leveritt		3	2
4	Athens.	Trinity Normal School -	Miss Mary F. Wells..-	Cong --...-	0	5
5	Birmingham	South Highlands Academy.	Joel C. Du Bose, A. M --	Nonsect..-	2	0
6	Brewton	Brewton Institute.---.--	Bernard Awtrey	Nonsect..-	1	6
7	---do	East Side Academy	H. J. Seale.		1	1
8	Buena Vis	High School -----...	Claude Harrey, A. B.		1	2
9	Calera.	High School	W. W. Wilson.		1	
10	Centerville	Centerville Academy	J. D. Cooper	Nonsect..-	1	3
11	Chance...	Bethel High School.	C. C. Johnston, A. B .--	Nonsect	1	1
$1 \cdot$	Clanton	Clanton High School	A. J. Scott -	Nonsect	4	2
13	Collinsville	Collinsville High School	A. W. Tate	Nonsect	1	3
14	Cullman	Cullman District School	Wm. M. Wood		1	2
15	Dadeville	Dadeville High School.-	W. A. Vogeley	Nonsect	1	2
16	Demopolis	Marengo Female Institute.	G. F. Mellen, A. M....-		1	8
17	.-do	Marengo Military Academy.	G. M. Thomas, A. M -	Nonsect.	3	0
18	Fayette C. H......-	Male and Female Institute.	M. B. Du Bose.	Nonsect.	1	2
19	Flomaton	Flomaton High School -	John W. Agnew	Nonsect.	1	1
20	Fort Deposit	Bethel Academy.........	J. M. McIver .-	Bapt.-	1	,
21	Gaylesville	High School .-.	S. L. Russell		3	3
22	Gold Hill...	School House.	A. G. Dowdell --.- --. -	Nonsect	1	+
23	Greensboro	Female College	D. P. Christenberry, president.	Nonsect	1	,
24	Greenville ...-- .-.	South Alabama Female Institute.	Jos. M. Dill, president.	Bapt .-----	1	4
25	Grove Hil	Grove Hill Academy .-.-	W. A. McLeod ---------	Nonsect	1	2
26	Hamilton	High School.-....-------	W. T. Mitchell -----------		1	1
27	Harpersville.-	Ellen Hill Academy ----	S. J. Strock		1	1
28	Healing Springs..-	Industrial High School.	Rev. J. B. Hamberlin, A. M.	Bapt -------	1	1
29	Heiena.	High School...-.-.-.-. --	O. C. Hand	Nonsect..-	1	2
30	Hillsboro	----do --------------.---	Chas. E. Mitchell .-....	Nonsect..-	1	1
31	Jackson	Jackson Academy .-.---	R.L.Horris ----------	Nonsect.	1	1
32	Jasper -	Male and Female Academy.	Edwin H. Foster ------		1	3
33	Leighton .---.-....		Rev. Jos. Shackelford -	Nonsect...	2	2
34	Lineville.-.-.-......	Lineville Institute	E.J. Garrison ----....	Nonsect.	1	4
35	Livingston --....--	Military School	J.W. A. Wright	Nonsect.	2	0
36	Lower Peach Tree.	Lower Peach Tree Academy.	W. A. George .-..---...-	Nonsect.	1	0
37	Marion	Military Institute .-.-.--	James T. Murfee	Nonsect.	5	0
38	Mobile	Barton Academic High School.	B. S. Woodcock.		2	1
39	..do	Towle's Institute for Boys.	Amos Towle...........-.	Nonsect.	2	0
40	Mulberry	Mulberry School .-.-...--	Miss J. A. Howard, teacher.		0	1
41	Opelika	Opelilza Seminary	Rev. D. M. Eanlis ..-.--	Nonsect.	2	2
42	Perdue Hill	High School	C. H. Florey -----------		1	1
43	Pratt Mines	Crumly High School.-.	J. E.Strickland, A. B --	M. E. SO-.	1	1
44	---do _-----------	Fields' Academy	M. M. Fields		1	1
45	Prattville	Male and Female Academy.	E. Y. IIcNorries .-.-.-.	Nonsect	0	3
46	Ramer	High School	B. H. Boyd -...--.......	Nonsect.	1	1
47	Randolph	----do ---------------------	J. C. Hicks .-.-.-. --. --	Nonsect	1	1
48	Roanolie.	Normal College	Geo. W. Stevens, president.		2	3
49	Roberts	Elim Academy	J. A. Seale -..---.......	Bap	1	0
50	Roclkford	High School	C. C. Nall		2	$\stackrel{2}{1}$
51	Salitpa-.-.-.-......	Salitpa Academy ..	Eugene W. Coleman ..	Nonsect.	1	

and other private secondary schools for 1889-90.

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary sck.onls for 1889-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

	State and postoffice.	Name of institution.	Name of principal.			
	1	2	3	4	5	6
	CALIFORNIA-con'd.					
99	Oakland	Miss S. B. Brisbee's	Miss S. B. Brisbee .-..-	Nonsect...	2	3
100	do	Conrent of Our Lady of the Sacred Heart.	Mother Elizabeth.-.-.	R. C	0	3
101	do	Field Seminary .-....-	Mrs. W. B. Hyde	Nonsect.	1	1
102	.-do	Gibson's Normal Training School.	J. C. Gibson....-	Nonsect..	1	0
103	---do	Hopizins Academy	W. W. Anderso	Cong	4	3
104	do	Miss Horton's School	Sarah W. Horton.	Nonsect.	1	7
105	.-do	Saint Francis De Sales School (boys).	Brother Vivian.-.-.-.--	R.C.......		
106	do	Saint Francis De Sales School (girls).	Sister M. Celestine ----	R.@	0	2
107	-do	Saint Joseph's (boys) -. -	Brother Sabinian	R. C		
108	-...do	St. Jcseph 's (girls)-	Sister Mary---...------	R. C		
109	--..do	Saint Joseph's Institute (boys).	Brother Lascian .-----	R. C		
110	--.-do		Brother Leonard	R. C.		
111	.-do	Snell Seminary	Miss Mary E. Snell. Richard E. Snell.	Nonsect .-	5	8
112	Orland	Orland Normal-	Wm. Henslee	Nonsect .-	1	0
113	Pasadena	Classical School for Boys.	S. C. Clark.-.-.----------	Nonsect .-	2	2
114	Placerville	Placerville Aademy .-..	Miss Lizzie H. Tindall.	Nonsect	0	3
115	Petaluma	St. Vincent's Academy.	Sister M. Gonzaga	R. C	0	7
116	Pomona	Pomona College .-.....-	E. C. Norton -...	Con	3 0	3
117	-...do	Pomona Private School.	Cora T. Whitson	Nonsect	0	1
118	Rediands	Bellevue Academy .-.-.-	Horace A.Brown, Ll. B.	0	2	1
119	Redwood City-	Academy of Notre Dame.	Sister Louise de Gonzague.	R. C......-	0	5
120	Rio Vista	St. Gertrude's Academy.	Sister M. Camillus McGone.	R. C......-	0	10
121	Sacramento	Howe's High School and Normal Institute.	Edward P. Howe.-.-.-	Nonsect ..	$\stackrel{2}{2}$	0
19%	.-do	Sacramento Institute (K street).	Brother Bosonis-.	R. C.......	10	0
123	..do	Academy and Business College.	D. B. Sturges .---.-----	Nonseっt ..	0	1
124	San Bernardino.	St. Catherine's Academy.	Sister Carmen Dive--	R. C.......	2	6
125	San Diego	Southwest Institute...-	Miss Emma F. Way, Miss Mary F. Finney.		1	9
126	San Francisco	College of Notre Dame	Sister Aloyse of the	R. C	0	20
127	-d	of San Francisco. Irving Institute	Cross. superioress. Rev. Ed. B. Church	P. E	5	1
$1: 8$.-do	Miss Lake's School for Girls.	Miss Mary Lake..---	Epis ------	5	15
129	. do	Presentation Convent.-	Sister Josephine	R. C		
130	do	Sacred Heart College.-	Brother Genebern .-.-	R. C.	20	0
131	---do	Sacred Heart Conrent.-	Madame O'Mera .-....-	R. C........		
132	---do	Sacred Heart Presentation Convent.	Mother M. T. Augustine.	R. C.......-	0	11
133	--- do	St. Bendom's School ---	Sister Emanuel	R. C		
134	d	St. Hridget School.-....	Sister Maurice.	R. C		
135	-do	St. Francis (boys') -....-	Miss M. Latham	R. C		
136	-do	St. Erances (girls')	Sister Aloyse.	R. C		
137	---do	St. Joseph's (girls')...-	Sister Angela.-.-	R. C------		
138	--. do	St. Patrick	Sister Frederica	R. C.-.----		
139	. do	St. Peters, Christian Brothers (boys). St. Peters (girls)	Brother Euphrasius .- Sister Lorenza	R. C \ldots.....- R. C		

and other private secondary schools for 1889-90-Continued.

Stu-dentsinsecond-arygrade.		Num-berpre-paringforcol-legeclassi-calcourse.		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$			Is drawing obligatory?								$\begin{aligned} & \text { Income from productive } \\ & \text { funds, gifts, and Dequests. } \end{aligned}$	
		$\begin{aligned} & \text { ® } \\ & \text { む゙ } \end{aligned}$		$\underset{\text { ® }}{\underset{\sim}{\dddot{y}}}$												
7	8	9	10	11	12	1:3	14	15	16	18	18	19	20	21	22	
0	40												--.			99
0	25					10	No.-	No.-	1,350	Yes.	8500, 250					100
0	50	0	4			5	No.-	Yes.	1,000	Yes.	45,000			\$7,000		101 102
56 28	5									Yes.	75, 000	0,000		5, 500	81,800	103 104
142	0															105
0	40									Yes.						108
65	0															107
0	350															109
	0															
95	130	0	0			16	No.-	Y es	$2 \overline{6}$	Yes.	40, 203	0		9,000		110
12	15									Yes.						12
16	0															113
3	8															114
	111	---														115
10	5	---														116
12	11	6	1			2	Yes.	No.-	100	Yes.	70		\$500	2,375	500	118
14	86															119
45	72															120
20	0	1	0				Yes	No.-	250	Yes.	0		0			121
44	0	4	0	13	0	2	No..	No.-		Yes	27,000			3,800		122
48	15	14	12	8	0	5	No.-	Yes.	50	No.	7, 000			3,585		123
60	45	0	10				No.	Yes.	300	Yes.						124
2	25					3	No..	No.-	100	Yes.	18, 000					125
0	200	0	10	0	20	7	Yes.		1,200	Yes						126
0	76	0	0			16	Yes	Yes.	1,000	Yes	[45,400	0	0	15,000	0	127
0	160	0	,	0	0	8	No.-	Yes.	1,000	Yes.	c75, 100	0	0		,	128
${ }_{2}^{10}$	68	25	0			20	No..	No--	2,5c0	$\begin{aligned} & \text { Yes_ } \\ & \text { Yes. } \end{aligned}$	$1 \mathrm{0}, 260$		0	8,005		129
0	110															131
0	80									Yes.						132
0	-379															133
0	50									Yes.						134
140	0															135
0	2 i									Ves						136
347	0															138
29	0									Yes.						139
0	400															140

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1859－90－Continued．

$\begin{array}{r} \mathrm{St} \\ \text { der } \\ \text { in } \\ \text { seco } \\ \text { ar } \end{array}$	$\begin{aligned} & \text { u- } \\ & \text { nts } \\ & \text { n } \\ & \text { ond- } \\ & \text { ry } \\ & \text { nde. } \end{aligned}$	Nu be pr par fo co le cla c cou		Nu be pre par fo scie tifi cour	$\begin{aligned} & \mathrm{m} \\ & \mathrm{r} \\ & \mathrm{e}- \\ & \mathrm{ing} \\ & \mathrm{r} \\ & \mathrm{en}- \\ & \mathrm{ic} \\ & \text { rse. } \end{aligned}$							B B B 4 0 0 \vdots 0 0 0 0 0 0				
					$\begin{aligned} & \text { ভ́ } \\ & \text { む̈ } \\ & \text { d } \\ & \text { En } \end{aligned}$	$\begin{gathered} \text { a } \\ \text { H } \\ \text { ※ } \\ 0 \\ \text { EH } \end{gathered}$	$\begin{aligned} & \text { H } \\ & \text { 茿 } \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { D. } \\ & \text { N } \\ & \text { N } \\ & \text { 出 } \end{aligned}$	$\begin{aligned} & \text { du } \\ & \text { 合 } \\ & \text { Z } \\ & \text { Z } \end{aligned}$	Has the		$\begin{aligned} & \text { 吕 } \\ & \text { O} \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 呂 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sharp}{0} \\ & \hline \end{aligned}$		
7	8	9	10	11	12	13	14	15	16	17	18	19	20	921	22	
507	0															41
0	192															142
	537															143
35	0	0	0	0	0	9	NO．－	Yes．	100	Yes．						144
51	0	21	0	11	0	6	No．－	No－－	175	Yes．	\＄30， 750	0	0	\＄12，000	0	145
0	42						Yes．	Yes．								146
9	3	1					No．－	Yes		Yes．	25.150	0			0	147
0	63	0	3			2	No．－	Yes－	200	Yes．	35， 200	0	0	14，345	0	148
0	140															149
170	0															150
0	170															151
0	18															152
33	118															153
30	0	15	0	15	0	12	No．－	Yes	250	Yes－	43，000					154
40	0	9	0	2	0	12	No．．	Yes．	300	Yes．	2 CO	0	0		0	155
36	0															155
0	8	0	2			2	No．－	Yes．	む20	Yes．		0	0		0	157
0	153									Yes．						158
0	11					2	No			Yes．	23， 000		\＄1，975		\＄1，708	159
0	30	0	0	0	0	2	No．．	No．－	1，000	Yes．	8， 000	0	0	1，950	0	160
13	12	1	1	3	7	0	No．－	No．－	31	Yes．	17， 350			1，600		161
45	0															162
33	25															163
0	15	0	0	0	0	3	Yes．	No．－	1，009	Yes．	8,100	0		2，200	0	164
0	29					1	No．－	No．－	300	Yes＿	8，003	0	0	0	0	165
0	31									Yes．						166
0	66					1										167
25	0 -7		－－－		－		Yes	No	645	Yes．	200	0	0	1，200	0	168
75	75															169
149	0															170
0	14															171
0	20															172
－15	18															173
0	20															174
0	25	0	0	－－－		2	No．－	Yes．	0	Yes．	15，000	0	0	2，000		175
0	150															176
2	3	2	1	0	0		No．－	No．－	0	Yes．						177
40		15				0	No．－	Yes．	500	Yes．	100，000		0	18，206		178
0	150	0	50	0	30	4	No．－	Yes．	3， 000	Yes－	300，500			30，000		179
14	15	9	0							Yes．					3，000	180
10	15					0	Yes	No－－	200	Yes．	50， 000	＋1，000	0	900	1，700	181
r 12	40 23	1	0	8	0	0	Yes＿	Yes－	200	Yes．	16， 150		2，500	980	30	182
0	45	0	0			7	Yes．	No．－	3,000	Yes．						184

Table 9.-Statistics of endowed academies, seminaries,

	State and postoffice.	Name of institution.	Name of principal.	Religious denomination.	Number of sec-ondary in-structors.	
					$\stackrel{0}{\text { ¢ }}$	co
	1	3	3	4	5	6
	$\begin{gathered} \text { CONNECTICUT-con- } \\ \text { tinued. } \end{gathered}$					
185	Black Hall.	Black Hall School --...-	Charles G. Bartlett (per B.).	Non-sect.-	2	2
186	Bridgeport .-....---	Golden Hill Seminary for Young Ladies.	Miss Emily Nelson.-.-		0	6
187	do	Hillside Seminary .-...-	Miss A. T. Stone	Non-sect --	0	4
188	do	Park Avenue Institute -	Seth B. Jones		2	2
189	Brookfield Center	Curtis School for Boys -	Frederick S. Curtis ...	Non-sect --	1	1
190	Cheshire -.-....- --	Episcopal Academy of Connecticut.	Rev. Sanford J. Horton, D. D.	Epis.------	7	0
191	Colchester	Bacon Academy --------			1	1
192	Cornwall	Housatonic Valley Institute.	Mrs. C. H. Guion.-----	Non-sect.-	0	4
193	Darien	Elmwood School.-.---. -	Myra T. Davis	Non-sect	2	\pm
194	Fairfield.	Fairfield Academy --...-	Francis H. Brewer.-.-	Non-sect--	1	1
195	Farmington	Miss Porter's and Mrs. Dow's School.	Miss Sarah Porter and Mrs. M. E. Dow.	Non-sect..	5	13
196	Lyme	The Griswold School ...	Mrs. R. Griswold .-.--		0	2
197	Milford	Elmwood School for Boys.	Frank M. Howe --.-.-.		1	1
198	Mystic	Mystic Valiey English and Classical Institute.	Jno. K. Bucklyn, A. M. LL. D.	0	1	1
199	New Canaan ..	New Cannaan Institute-	Mrs. E. F. Ayres ------	Christian -	1	2
203	New Haven.-.-	Elderage School (136 Sherman avenue).	Misses Bangs .-.------	Metho	1	1
201	do	Miss Johnstone's School (97 Whitney avenue).	Miss Mary S. Johnson	0	1	4
202	do	Misses Orton and Nichols School (57 Eln street).	Miss Rebecca Orton.		0	8
203	do.	West End Institute (99 Howe street).	Mrs. Sarah L. Cady...	Cong ------	2	2
204	New London	Bulkeley School .-.....-.	Walter A. Towne	Non-sect.-	3	0
205	New Preston	Upson Seminary--.----	Rev. Henry Upson	Cong -...--	3	0
206	Norfolk-.-.---.-.	The Robbins School	Howard W. Carter, A. M.	Non-sect .-	2	1
20.	Norwalk	Miss Baird's Institute.-	Miss N. F. Baird	Epis .-...-	2	2
208	Norwich.	Free Academy -	Robert P. Keep.	Non-sect--	8	8
209	Simsbury	McLean Seminary --.-.-	John B. McLean	Non-sect--	1	7
210	Southport	Seaside Seminary --...-	Augusta A. Smith	Non-sect.-	4	3
211	Stamford	School for Boys	Hiram U. King --..---	0	8	0
212	Sufficield-.--	Connecticut Literary Institution.	W. Scott-.-...	Bapt .-..--	7	4
213	Washington .-.-.--	The * Gunnery', --.....-	J. C. Brinsmade --...-		3	4
214	Waterbury .-.----	St. Margaret's Diocesan School for Girls.	Rev. Francis T. Russell, Rector.	P. E.......	1	5
215	Westpor	Staples High School .-.	Henry S. Pratt. A. M --		1	3
216	Wilton.	Wilton Academy -------	Eaward Olmstead.----	Cong .-...-	1	0
217	---do..--	Wilton Boarding Academy.	Angustus Whitlock .-	Non-sect.-	2	0
218	Woodbury--------	Parker Academy --....--	Edgar H. Grout		1	1
219	Woodstock DELAWARE.	Woodstock Academy --	E. R. Hall -----.		1	1
220	Dover	Wilmington Conference Academy.	W. L. Gooding ...-.-.--	Meth------	5	3
221	Milford	Milford Classical Acad-	Alfred O. Arnold	Nonsect .	1	2
222	Newark.	emy. Academy of Newark and Delaware Normal School.	AlbertN. Raub, PH.D	Nonsect .-	1	1
223	Wilmington.. .-.-	Academy of the Visitation.	Mother M. Baptista Mack.	R. C--	0	4
224	-do	The Friends School......		Friends.	3	2

and other private secondary schools for 18s9-93-Continued.

$\begin{gathered} \text { Stu- } \\ \text { dents } \\ \text { in } \\ \text { second- } \\ \text { arry } \\ \text { grade. } \end{gathered}$		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { naring } \\ \text { for } \\ \text { col- } \\ \text { lege } \\ \text { cla si- } \\ \text { cal } \\ \text { course. } \end{gathered}$		$\begin{aligned} & \text { Num- } \\ & \text { ber } \\ & \text { pre- } \\ & \text { paring } \\ & \text { for } \\ & \text { scien- } \\ & \text { tific } \\ & \text { course. } \end{aligned}$					Number of volumes in library.							
$\stackrel{0}{\underset{\sim}{x}}$		$\stackrel{\odot}{\Xi}$	$\frac{\dot{5}}{\stackrel{5}{x}}$	$\stackrel{\circ}{\stackrel{y}{x}}$	俞											
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
20	0	. 10	0	4	0	1	No.-	No.-	800	No..	\$10,200	0	0	810,000		185
0	40						No.-	No.		Yes.	50,000					186
0	21	6	-			2.	Yes	No.-		Yes-	25,000	0	0	6,000	0	187
30 8 8	1	6		4	0	10	Yes.-	No.-	800	Nos-			0			188
\% 5	0	7	0	17	0	20	Yes.	Yes.	1,000	No.-	-0,000	0	0	3,500		190
24	20	3	1	1	0	6	No..	No..	400	No.-	5,200	\$32,000	0	42	81,200	191
10	15	3	4	1	0		No.-	Yes-		Yes.	15,003			1,000		192
18	13	2	2			2	No.-	No..		Yes	8,500			500		193
20	8	2	1	3	0	0	$N 0$	No		Yes.	1.505	0	0	1,509		194
0	118								3,000			0	0			
0 32	12	6	0			18		Yes.	800		25,000					196
39	21	12	8	1	0	2	No.	Yes.	600	No.-	10,330	0	0	503	0	198
$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	0	3	2	2		$\begin{aligned} & \text { Yes. } \\ & \text { No. } \end{aligned}$	No.-	600	$\begin{aligned} & \text { Yes. } \\ & \text { Yes. } \end{aligned}$	$\begin{array}{r} 8,000 \\ 20,000 \end{array}$	0	0	T50	0	193 200
0	21	0	19	0	1		No.-	No.		No.-	50					201
0	60															203
0	40	0	2				Yes.	No.		Yes.	16, 000					293
58	-		0	1	0	10	No..	No.-	103	No.-	T5, 000	65,000	0	0	4,003	$20 \pm$
$\stackrel{10}{20}$	8 13	${ }_{5}^{3}$	0 1	2	0	3	No..	Yes--	250	No.-	5,200	0	0	1,450	650	20.5
0	30						Yes.									20%
112	119					40	Yes.	Yes	1,000	No--	13.000	200,000	0	4, 4.50$)$	10,030	
5	54 38 3	$\stackrel{\sim}{2}$	4				No..	Yes.	1,000	Yes.	20.200 7,009	0	0	2,50)		- 29
60	0	5	0	30	0	3	Yes.	Yes.	231	Yes.	25. 603	0				211
75	๕0					5	Yes.	Yes.	1,600	No.-	16), 000	40,000	0	0	0	212
45	12						No.-	Yes:					0	\cdots		213
0	50					5	No.	No.-	500	les.	70, 00	0	0	20,700		214
20	20	5	4	1	0	0	No.-	No..	1,300	Yes.	25,300	0	0	1,200		215
$\begin{aligned} & 16 \\ & 20 \end{aligned}$	${ }_{0}^{4}$	${ }_{0}$	${ }_{0}^{4}$	1	0					Yes.	1,009					${ }_{215}^{215}$
$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{array}{r} 8 \\ 13 \end{array}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	1			1	$\begin{aligned} & \text { No.- } \\ & \text { No.. } \end{aligned}$	$\begin{aligned} & \text { No.. } \\ & \text { No.. } \end{aligned}$	$\begin{array}{r} 75 \\ 500 \end{array}$	$\begin{gathered} \text { No.- } \\ \text { No.- } \end{gathered}$	$\begin{array}{r} 2.000 \\ 2.3,000 \end{array}$	0	0	$\begin{array}{r} 1,600 \\ 606 \end{array}$	2, \mathbf{r}_{0}	218
46	18	. 8	0	4	0	9	Yes.	No..	1.800	Yes.	60, 100	0	0	4,000	5,000	$2 \because 0$
9	10					8	No..	No.	0	Yes.	21, 000			1,900		$2 \cdots 1$
16	20	6	0	3	0	8	No.-	Yes.	700	Yes.	1,500	6,000	0	2,343	300	292
0	60				0				1,000		T0,0,0					22
35	37	5	1	2		2	Yes.	Yes.	200	Yes_	22, 000	15,000	0	13,000	2,800	224

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

TABLE 9.-Statistics of endowed academies, seminarics,

and other private secondary schools for 1889－90－Continued．

	u－	Nu le pr par fo co leg clas ca cour	$\begin{aligned} & \mathrm{m} \text { - } \\ & \text { er } \\ & \text { e- } \\ & \text { ing } \\ & \text { or } \\ & \text { ol- } \\ & \text { ge } \\ & \text { ssi- } \\ & \text { al } \\ & \text { urse. } \end{aligned}$	Nu be pr par fo sci tili cou	m－ er e－ ing r en－ ic rse					lool an elementary		gin 品 0 0 0 0 0 0 0				
$\frac{\dot{3}}{\stackrel{3}{x}}$	－	$\frac{\stackrel{0}{x}}{\stackrel{y}{x}}$	$\begin{aligned} & \dot{0} \\ & \text { 彩 } \\ & 0 \\ & E \end{aligned}$		$\begin{aligned} & \dot{\circ} \\ & \stackrel{\text { ® }}{\tilde{E}} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { y } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { B } \\ & \text { B } \\ & \text { n } \end{aligned}$				$\begin{aligned} & \text { ㅇ } \\ & \text { 르﹎ } \\ & \text { O} \\ & \text { B } \end{aligned}$			
7	S	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
0	228	0	0	0	0	14	No．－	Ňo．－	1，000	Yes	800，500	0	0	82， 654	86， 909	258
0	95		7	5	0	2	Yes．	Yes．	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	Yes．	25,000 10,000			1，884		259 250
	30	0	0	0	0		No．－	No．－	150	Yes．	40，000		1，530			261
25	35	5	1	0	0	0	Yes	NO．－		Ies－	3,100					262
27	33	0	0	0	0		No．－	No．－	0	Yes．	1，000		200			263
$\begin{aligned} & \stackrel{25}{25} \\ & 2 ? \end{aligned}$	$\begin{gathered} 20 \\ 24 \end{gathered}$	0	2	0	0	3	No．－	No．－	150	Yes．	6，000		300	500		2254
5	25	4	6	2	0	10	No．	o．	0	Yes．	1，500		350	1，000		${ }_{268}^{268}$
${ }_{10}^{2}$	20	－	6	0	－	－	Yes．		100	Yes．	2.605		0	1，50－		${ }_{268}^{268}$
5	5	${ }_{2}$	3	1	1	0	No．－	No．－	，	Yes．						270
22	19	13	10	12	7	24	No．．	NO．－	0	Yes．	5，000		108	1，500		271
2	19	0	u	0	0	0		Yes．	0					460		${ }_{273}^{27}$
40	67 45		－．	．－－	．－．	13	NO．－	NO－．	0	Yes．	25,200 10,000	0	360	4，682	0	273 274 274
18	23	10	2			0	No．－	No．－	0	Yes．			400	1，000		$2 \pi 5$
23	24	12	6	3	4	0	No．－	No．－	0		1，009		169	900		2.6
11	τ															2π
10	20			0	0	3	No．－	No．		Yes．	7，000		472	4，500		278
0	30		16			0	No．－	No．－	0	Yes．	50，000	15， 000		2， 500	61，200	279
20	38					0	No．－	No．－	0	Yes－			4	67		280
8	10	3	2	0	0	0	No－－	Yes．	0	Yes．	1，000		223	600	0	281
18	2	4	3	3	1		No－－			Ies．			1，000			283
20	23															284
43	18					0	No．－	No．－	103	Yes－	8， 050	0	348	112	400	285
30	27 26	10 3	5	2	1	4	No．－	$\begin{aligned} & \text { No. } \\ & \text { Yes. } \end{aligned}$	$\begin{array}{r} 20 \\ 0 \end{array}$	Yes．	$\begin{aligned} & 5,850 \\ & 2,000 \end{aligned}$		350	1， 200		$\stackrel{288}{287}$
52	50															288
12	2															289
4	12															
29	34	4	3			3	No．－	NO－－			3，000			700		292
25	22	8	12	2	0	6	No．．	Yes	0	Yes．	3，250					
14	24	8	15	0	0	8	No．．	No．－	250	Yes．	4， 000	0	1，000	1， 400	0	294
20	25	0	10				No．－	No．－	0	Yes．	513		400	600	1，000	295
22	17	0	0			0	No．－	NO－－	0	Yes．	1，300	0	307	1，159	0	297
13	10	1	0	0	0	12	NO－－	No．－	0	Yes．	500		290	600		298
5	4		1	1	1	4		NO－－	0	Yes－	1，000		100	400	400	299
15	10	5	3	1	4		No．－	No－－	0	Yes－	1，500	300	285	700	600	300
10	13	10	13		－－	1	NO－－	No－－	50	Yes．	2，000	0	228			301
42	60	42	60	0	0	0	No．．	No．－	0	Yes．	13， 525	15，000	165	3，200	800	303
19	16	14	11	5	5	2	No．－	No．－	，	Yes－	3，050	15，000	250	1，300	，	304
14 30	12	0	18				No．	NO－－	0	NO－－	15， 500		200	． 500		305
25	20	15	10	10	6	0	Yes．	No．－	0	Yes．	15，00		200	1，500		307
30	23	3				0	No．－	No．．	0	Yes．	2，000	0	200°		0	308

Table 9.-Statistics of endowed academies, seminaries,

310
311

State and post-	Name of institution.	Name of principal.		Number of sec-ondary in-structors.	
				产	¢
1	2	3	4	5	6
GEORGIA-cont'd.					
Leesburg --	Leesburg Academ	J. R. Cain		1	0
Lexington.	Meson Academy .-. --.--	M.S. Weaver	Nonsect.	1	3
Lincolnton	High School	T.A. Nash ---.-----	Nonsect.	1	0
Lost Mountain	Lost Mountain Acaciemy	Walter McElreath		1	1
Macon	McDonough Institute---	J. G. C. Parke	No	1	1 1
McTyeire ------------	Young Harris' College.-	Chas. C. Spencer, president.		2	2
Madison	Male and Female Institute.	E. C. Merry --------.--	Nonsect..-	1	2
Marietta	Male Academy .-.-.-.-.--	J. E. Harris		3	1
Marshallvil	High School ...	J. W. Frederick		1	2
Maxeys	----do --..-	M. M. Kilpatrick		1	0
Midville	do	W. B. Crawford	Nousec	1	0
Milner.	do	Miss Olive E. Faw, pro temnore.		1	2
Monroe	Johnston Institute	Jno. Gibson ----------		2	2
Montezuma	Spaulding Seminary ---	Miss Oreola Cheves		0	1
Moreland	Moreland Academy .-.--	C. Hartsiel 1		0	1
Morven	Morren Academy .-.-.---	Wm. T. Gaulden, A. B-		1	1
Mount Airy	Sibley Institute..-------	J. M. Dennis .-.-------		1	2
Mount Zion	NIount Zion Seminary--	John F. Palmer	M.	1	2
Newnan --	Walker High School	Daniel Walker ----------	Nonsect.--	1	2
Norcross	High School and Collegiate Institute.	N. F. Cooledge -.-.-----	Nonsect	2	1
Norwood	Noi'wood Institute	Rev. J. W. Ellington --	Nonsect.	1	,
Paimetto	High School.	Thomas H. Meacham -		0	,
Pendergrass	Pendergrass Academy--	W. R. Hall---	Nonse	1	1
Penfield -..........-	Mercer High School ---	D. A. Cheney	Bapt	1	1
Powder Springs	High School	F. M. Duncan		1	2
Putnam	Glenn Holley Academy -	J. M. Collum		1	1
Quitman	Graded School	Noah W. Cooper		2	2
Reynolds	Male and Female Instituts.	C. E. McLaughlin		1	1
Riddlevill	Mount Vernon Institute	Geo. R. Dillon	Bapt	1	1
Ringgold	Ringgold Academy --.--	I. J. Woods		1	2
Roscoe...	Alexander Stephens Academy.	W. L. Stallings, B. PH		1	1
Rutledge	High School	A. J. Burruss	Nonsect.-.	1	2
Savannah	Savannah Academy ----	John Taliferro	Nonsect..-	2	0
Schley -	Concord High School ---	C. A. Thompson.		1	1
Sharon	Sacred Heart Seminary-	Sister Clemence.	R. C	0	4
Sharpsburg	Sharpsburg Academy --	G. B. F. Stovall		1	1
Smithville.	High School.-----------	G. M. Patterson		2	0
Snow	----- do -----------------------	J. E. Kemp	Nonsect	1	2
Social Circle ------	Social Circle Academy --	John A. Saye -.......-- --		2	0
Spring Hill.--------	Eastman District High School.	C. C. Hines .--	M.E.SO..-	0	2
Stone Mountain	High School	S. H. Lindsay		2	2
Sumach --------	Sumach Seminary.------	C. H. Humphreys	Nonsect.--	1	2
Temple.	Temple Academy -------	E. L. Connell	Nonsect.--	1	1
Tennille	High School	W. F. Dykes		1	2
Thomaston	R. E. Lee Institute ------	G.F. Oliphant-	Nonsect	2	3
Thomson .-	Geo. F'. Pierce Institute-	Isaac A. Gibson, A. M. M. D.		1	2
Walthourville....	Walthourville Acaddemy.	M. W. Witchum .-.-.-.	Presb .-.--	1	0
Washington.-.-.	Female Seminary	Miss Ida A. Young .-.-		1	2
.-.-do Whignam	St. Joseph's Academy --	Mother St. John-.-----	R.C	0	2
White Plains	Whigham Academy ----	L. F. Shuford.--------	Nonsect	1	1
White Plains	Dawson Institute --.----	J. E. Purks	Nonsect	1	2
Williamson	High School -------------	C. W. Richter		1	1
Winterville...	Winterville Academy --	Geo. B. Atkisson		,	1
Wrightsville --.-.-	"Nannie Lou Warthen" Insti:ute.	M. A. Morgan	M. E. So	2	1

and other private secondary schools for 1889-90-Continued.

TABLE 9.-Statistics of endowed academies, seminaries,

and other pricate secondary schools for 1889-90-Continued.

$\begin{array}{r} \mathrm{S} \\ \mathrm{de} \\ \mathrm{j} \\ \mathrm{sec} \\ \mathrm{a} \\ \mathrm{gr} \end{array}$	u-	Nu ber pr par fo co le cla cial cou		Nu be pr par fo scie tif cour	m- er e- ing r n- ic rse.	m 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3						0. 0 0 0 0 0 0 0 0 0 0 0				
$\sum_{i}^{\stackrel{\otimes}{s}}$				$\stackrel{\dot{9}}{\stackrel{y}{c}}$	$\begin{aligned} & \text { D. } \\ & \text { 릊 } \\ & \text { E } \end{aligned}$				$\begin{aligned} & \text { H } \\ & \text { D } \\ & \text { B } \\ & \text { Z } \\ & \text { B } \end{aligned}$	Has thes				$\begin{aligned} & \text { B } \\ & \text { oun } \\ & \text { O} \\ & \text { B } \end{aligned}$		
\%	8	9	10	11	$1 \geqq$	13	14	15	16	17	18	19	≈ 0	21	22	
27	21	13	12		11	10	Yes.	NO.-	1,000		811, 000		0	\$2,000		365
0	30					3	No.-	No.-	200	Yes.						356
50	53	3	3		3	2	Yes.	No.-	400	Yes	7,760	81,700	0	2, 160	$\$ 300$	367
6	24	0	0		12	1	Yes	Yes	200	Yes.	5, 025	0	0	600	0	368
49	51	7	3	10	15	24	NO--	No.	500	No.-	61, 500			3,400	300	369
30	10	9	2	3	0	$\stackrel{2}{13}$	NO-	Yes	500	Ves	2. 500	0	0	$\stackrel{2}{2}, 000$	---	370
0	56	0	2			8	No.	No		Yes.	300	0	0	0	0	372
1	27	1	0			2	NO.-	NO.-	1,500	Yes		0	0	0	0	373
0	50	0	10			4	No.-	Yes.	500	Yes	500				200	374
100	0	50	0	10	0	20	Yes.	No.	300	Yes.	2f, 000	0	0	0	0	375
2	80	2	12			5	No.-	No.-	200	Yes.	25,150			8,000		$3 \% 6$
0	48					0	No.-	Yes	1,000	Yes.	25,100					377
0	40	0	5	5	0	2	Yes.	No.-		Yes-	50,800					378
0	45	0	0		6	8	NO--	No.-	200	Yes.	25, 2:0					379
0	C6						Yes	NO.-								380
82	0	45	0	20	0	10	NO.-	NO.-	150	Yes.	22,000			17, 500		381
10	40								430							382
16	14	10	0			10	NO.-	NO--	5,000	No.-	21,000			1,050		383
30	29	8	4	1	1	6	NO.-	No.-	260	No.-	$35,3 \mathrm{C} 0$			2,350		384
0	23					1	Yes.	NO.-	150	Yes						385
49	51	7	1			20	NO.-	NO--	300	NO--	25,150	7,500		1,000	162	386
0	109	0	100				NTO.-	Yes.	2,000	Yes.	250,500	1,000			0	387
2	12								1,500		50,200			4,000		388
25	0	1	0	10	0	6	No--	Yes	300	Yes	50,025					389
0	37	----					Yes	NO.-	690	Yes	120, 150	0	0	0	0	390
0	25				20	1	Yes.	No.-	612	Yes	32,300	0	0	5,250	0	391
19	18	2	2	0	0	1	NO--	No.-	0	NO.-	1, COO	0	0	555	0	392
50	20	15	5	9	11	3	No..	Yes.	400	Yes.	4,150			2, ${ }^{\text {2 }} 9$		393
32	18						Yes	Yes	25,000	Yes-	C0, 500	10,000	0	0	600	394
0	50	0	0		30	3	Yes	NO--	100	Yes.	40, 100	4,000	0	3, 000	900	3.45
7	15	1	2	3	0	0	NO.-	NO.-	20	Ño..	10, 060	0	0	1,000	1,700	396
7	15					3	No.-	NO.-	50	No.	9,050	13,000	0	465	1,202	397
2	28					1	No.-	No.-	325	Test	30. 500	0	0	3. 000	0	398
0	30	0	0			9	No.-	Yes.	250	Yes.	20, 100	0	C	3, 445	30	399
29	21	5	8			2	NO.-	NO.-	0	No.-	850	0	0	755	1, 120	400
23	44					5	No.-	No.-	300	NO.-	4,095	9,000	0	137	700	401
0	17					0		Yes	2,575	Yes.	65,200	0		11,876		402

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889－90－Continued．

St den in s＝co ar gra	tu－ nts n ond－ y de． 						Is Grawing obligatory?		Number of volumes in library．						\odot $\stackrel{\infty}{0}$ －2 OO 앙 0 O 4 － คష్డ \＆逯烒	
8	5	9	10	是是	12	18	14	15	16	${ }^{1} 8$	18	$\underline{15}$	20	21	2®	
15	14	0	0			4	No．	Yes．	400	Yes						03
23	12	0	0	5	1	3	No．－	No．－	100	Yes	10，200		\＄1， 200	600		404
0	40				5	5	Yes	No．－	29	Yes	70，125					405
10	20	0	0	0	0	2	No．．	Yes．	1，000	Yes．	12，000		－	4，000	100	406
0	100	0	0			11	NO．－	Yes		Yes．	15， 150					407
31	0	0	0	4	0	6	No．－	Yes	0	Yes．	7，000					408
0	40	0	0			6	Yes＿	No．－	200	Yes	20， 100			3，000		409
0	2.3			0	12	5	No．		300	Yes．						4 i 0
40	0	15	0	0	25	8	No．－	Yes	450	Yes．	40，000	10，000			600	411
5	1	2	0	0	0	0	No．－	No．－	100	Yes	2，000			563		412
33	34	5	5			0	Yes	No．－	300	NO．－	2，100			1，400	200	413
7	1	0	0			0	No．－	No．－	100	Yes	2，500			600		414
36	40	20	15			5	No．－	No．－	2，500	Yes	11，000	5， 000	3，000	2，500	200	415
0 25	25	0	5	8	10	1	Yes＿	No．－ No．－	300 200	Yes＿－	－－025	5，000	－－－－	．2，000	400	416 417
1	6	0	0			0	No．	No．－	100	Yes	5，615	0	579	1，700	2，000	418
50	29					3	Yes	No．－	500	Yes	30， 000			1，228	481	419
5	28	12	10			0	NO．－	No．－	375	Yes	2，500					420
10	0	10	0				No．	No．－		Yes＿	20，000					421
0	29	0	0	0	4.	10	No．	No．－	150	Yes	20，000		10，000	0	0	423
0	43					3	No．－	No．－	400	Yes．	80，000		13， 150			423
11	19	1	1			1	No．－	No．－	300	Yes．	10，000			900	225	424
10	10	3	4			2	No．－	No．－	300	Yes．	5， 050			465		425
14	11	3	$\stackrel{2}{2}$			1	No．－	No．－			3，000			400		426
18	23	10	13	10	8	0	No．－	No．－	2，000	Yes	25，250	15，000	0	1，000	900	427
40	30	8	0	0	5	4	No．－	No．－		No．－	15， 000	0	0	1，100	1，200	428
45	0	19	0	4	0	6	No．－	Yes	3，340		20， 000				5， 015	429
41	29					0	No．－	Yes	400		3，600					430
20	24	5	0			1	No．－	No．－	2，000	No．－	25， 750	17，000		750		431
0	57						No．－	Yes＿								432
3	5	0	0	0	0	0	No．－	No．－	60	Yes．	8，000			676	174	433
37	30	12	10	25	20	9	No．－	No．－	1，000	No．－	20，400			3，000	2，000	434
65	$3:$	5	3	60	29	9	No．－	NO．－	0	No．－	10，500			1，400	1，200	435
16	20						Yes	No．－		Yes＿	4，000		450	265		436
35	38	7	2	5	10	1	No．－	No．－	1，050	No．－－	12，025	21，000		1，200	2，000	437
125	100	0	0			22	No．－	NO－－	300	Yes	2，300			3， 800		438 439
6	10	3	1	3	1	0	No．	No．－－	300	No．－	20，000			800		439
28	39					6	No．－	No．－	500	No－－	25					440
8	10	2	0	5	8	5	Yes	Yes．	198	Yes－	2，250			500	600	441
57	44					14	Yes	No．－	250	No．－	9， 100			2，003		442
42	37	8	5	2	0	11	Yes	No．－	400	No．－	5， 050			1，400		443
33	9	0	0			5	NO．－	No．－	1，200	No．－	6，930	3，650			3，755	444

TABLE 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

TABLE 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

Tablee 9.-Statistics of endored academies, seminaries,

	State ${ }^{\text {and }}$ office. post-	Name of institution.	Name of principal.			
	1	2	3	4	5	c
	Louisiana-cont'd.					
535	New Iberia.........	Graded Scho	Miss M. Louise Fas-	Nonsect.	1	
536	do	Mount Carmel Convent.	Sisters of Mount Car-	R.C.		
537		Rectory School	Rev. C. ${ }_{\text {mel. }}$	Nonse	1	
538 539	New Orleans	CrarmatzIn Intitute........-	T. De Varenne .-.		-	
		Engish and Cassical	T.W. DJ			
540	.co	Home Institute (No. 154	Miss Sophie B. Wright			
541	do	Leche's Graded Insti-	Am			
	do	Picard Institute				12
$\begin{aligned} & 543 \\ & 544 \\ & \hline \end{aligned}$	do	St. Isidare's Colle ene...-	Rev. P.P. R. Klein, C.s.C.-	R.C.	6	0
545	do	St. Joseph's Institute ${ }^{\text {School }}$ (for Young La:-	Mrs. L. A. Fortier...... Misses Dykers	Christian	0	5
		dies (429 Carondelet street).				
546	do	Southern Academic In-	Mrs. J. E. Seaman .	Nonsect.		
547	Opelousas	A caismin of the Immac-	Sister M, of St. Al-	R.C	0	2
		Female Institute..	Mrs. M. M. Mayes.	Meth		
$\begin{aligned} & 549 \\ & 500 \end{aligned}$	Thibodeaux	Mount Carmel Conrent.	Sister St. Gabrie	R.C		
551	Washington.	Mount Carmel Convent.	Mother Hyacinthe			7
	matse.					
$\frac{559}{553}$	Athens.	Somerset Academy	F. W. C. Wiggi		1	
${ }_{5}^{553}$	Bethel Bucksport...	Gost Maine Conference	A. D. Hall A. Chase	N. E	5	2
555	Deering-	St. Joseph's Acrdemy .-	Sister M. Adelaide .	R. C		
${ }^{556}$	East Machias	Washington Academy ${ }^{\text {Aboott }}$ Family School	A. Horey Robinson..		1	$\frac{1}{3}$
	Fryeburg	Fryeburg Academy	J. E. Dinsmor	Nons		
${ }_{5}^{559}$	Gray - -	Pennell Institute..	Lee B.	Nonsect		
${ }_{561}^{560}$	Hampden..	Hampden Acaderny	W. R. Hunt..........-		2	
	Limington.	Lininington Academy	W. G. Lo			
563	Monmouth	Monmouth Academy.	B. M. Avery			
564	New Castlo	Livcoin Academy.	Henry II. White, A. M-	Nonsect.-		
566	Pittsfield ...	Maine Central Institute-	O. H. Drake	Bapt .--		
${ }_{5}^{557}$	Saco - .-..	Thornton Academy	Edwin P. Sampson			
569	Strong.-.....	Berwick Academy ...	Geo. A Mickiey	Nonsect		
${ }_{570}^{570}$	Wateriord.	Dourlass Seminary-	Miss. H.E. Douglass	Cong --		4
571	Waterville	Coburn Classical Institute.	James H. Hanson.	Bapt ...		3
572	Wilton.	Wilton Academy	Clinton J. Richards.		2	
	maryland.					
${ }_{574}^{573}$	Ammendale	Normal Institute --....-	Bro. Romwald -....-	${ }_{\text {R. }}^{\text {C. }}$ C	7	25
574	Baltimore	Academy of the Visitation.				
575	-..do.	Eoys, ${ }^{\text {Paul }}$ School of Parish	C. L. C. Minor, m. A.,	P. E.-	2	0
	-	Pant Eranklin street).				

and other pricate secondary schools for 1889－90－Continued．

	u－	Nu be pr par fo c le cla cal cou		$\begin{gathered} \text { Nu } \\ \text { be } \\ \text { pr } \\ \text { pari } \\ \text { fo } \\ \text { scie } \\ \text { tid } \\ \text { cour } \end{gathered}$				플 先								
		宒				$\begin{aligned} & \text { 플 } \\ & 0 \end{aligned}$	$\underset{\sim}{\text { eٌ }}$	$$	$\begin{aligned} & \text { 合 } \\ & \frac{1}{z} \end{aligned}$		$\stackrel{9}{7}$	0 0 0 4	$\begin{aligned} & \text { 茄 } \\ & \text { 品 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Z్ } \\ & \text { Õ् } \end{aligned}$		
7	8	9	10	113	12	13	14	15	16	$\underline{17}$	18	19	20	21	22	
\bigcirc	22.	0	2			0			400	Yes	81，\％00					535
0	15					2	No．－	No．－	200		7，000			\＄1，800	870	530
3 0	54	1	0	1	0	0	No．－	No．－	0	Yes．	1，000	830		300	300	53% 538
55	0	5	0	0	0	7	Yes．	No．－						7，420		539
0	25	0	10	0	0	6	No．－	Yes．	450	Yes．				3，000		540
58	0	12	0	10	0	12	Yes．	Yes．	500	Yes．	26，000			38，000		541
23	80	0	0			8	No．．	No．－	0	Yes．	15，000					42
100	0	30	0	8	0		No．－	NO－－	300	Yes	30， 000			6，500		543
0	40	0	15	10	0	${ }_{2}$	$\begin{aligned} & \text { No.. } \\ & \text { Yes. } \end{aligned}$	No．－	300	Yes．	10,000 8,000					545
0	30	0	10			6	No．－	No．－	300	Yes．	20，000					546
0	12					0	Yes．	No．－	275	Yes．	12，000			1，050	2，398	547
20	40	10	0			7	No．－	No－－	75	Yes．	5，060			1，000		548
こ0	0						No．－	No．－－		Yes．	8,000			1，200		550
0	45					1	No．．	No．－	120	Yes．	5，000			2，000		อ51
55	63	13	24				No．－	No．－	75	No．	4， 000	6，000	0	200	350	55.2
93	79	34	8			45	No．－	No．－－	4，000	No．．	31，500			4，275	8，400	554
0	14	0	0			1	No－－	No－－	300	Yes．	12，000					55.5
20	${ }^{2}$	6	1	4	0	11	No．－	Yes．	2，500	Yes．	6，000					557
10	16	13	4	1	0		No．－	No．－	800	Yes．	31，000	12，000		1，300	1，100	558
10	16	4	6	7	9	10	No．．	No－－	400	Yes．	20，500	25，000	\＄250		1，200	559
20	20	5	0	8	7	16		No．－	300	No．	2，600	1，000	260	1，100	， 60	560
60	40	14	2		－－	12	NO．－	No．－	500	Yes．	60，200	35，000	1，120	1，700	1，900	561
30	34	12	5			3	No．－	No．－	250		3，075	800		225	32	562
30	25	6	4			0	No．－	No－－		NO．－	5，040		200		550	563
75	70	20	5	5	34	12	Nos．	Yes．	800	NO－．	8，300	13，000		2， 800	750 1.800	${ }_{565}^{564}$
120	105	20	$\stackrel{3}{2}$	2	－	25	No．－	NO．－	700	No．－	8，300	10， 000	300	2，500	1600	556
49	¢3	11	5	5	6	8	No．．	Yes．	100	No．－	40，500	62， 300	250	2，303	3，800	567
43	48	25	5	10	5	25	No．．	Yes．		Yes．	8，100	20，000		1，600	1，200	568
35	15	15	3	0	1		NO．－	NO．－		Yes．				400		569
65	${ }^{12}$	${ }_{47}$	4	9	26	33	Yes．	No．－	535	Yes．	51，500	53， 805		1，993	3，883	5\％1
49	48	18	4	0	0	0	No．－	No．－	200	No．－	6，035		750	800		572
49	0	0	0	0	0	6	Yes．	No．－	3，000		135， 000					573
15	0	0	0			0	No．－	Yes．								575

Table 9.-Statistics of endowed academies, seminaries,

	$\begin{aligned} & \text { State } \left.\begin{array}{c} \text { ard post- } \\ 0 . c e . ~ p o s t ~ \end{array}\right) \end{aligned}$	Name of institution.	Name of principal.			
	1	2	3	4	5	6
	MARYLAND-cont'd.					
576	Baltimore	The Bryn Mawr School for Girls (cor. Cathedral and Preston sts.).	Mrs. Mary Colvin, secretary.	Nonsect..-	1	8
577	do	Friends' Elementary and High School.	Eli M. Lamb	Friends .-.	6	3
578	do	The Gymnasium School (608 North Eutaw st.).	E. Deichmann		8	1
579	.do	Milton Academy (114 Maãison ave.).	E. Parsons		4	1
580	do	Mount St. Joseph's College.	Brother Joseph.	R. C -------	6	0
581	do	Mount Vernon Institute (16 E. Mt. Vernon place).	Miss A. F. Shattuck, vice-principal.	Nonsect.--	2	3
582	do	Newton Academy (1114 W. Baltimore st.).	Thomas Lester.	0.	2	0
583	do	School for Boys (870 Linden ave.).	George G. Carey, A. M -	0.---.------	4	0
584	.. do	Southern Home School.	Cary \& Cary		3	8
585	.-do	University School for Boys (1021 Calvert st.).	W. S. Marston	Nonsect.--	7	0
586	do	Wilford School (909 Cathedral st.).	Mrs. Caroline Bullock-	Presb .-.--	0	3
587	Broolzeville --.-----	Brookevilie Academy-.-	I. D. Warfield, A. M., president.	Nonsest.--	1	1
588	Cambridge	Cambridge A cademy ---	Prof. J. F. Baugher-.--	Nonsect..-	1	3
589	Charlotte Hall----	Charlotte Hall School--	R. W. Silvester		4	0
590	College of St. James.	College of St. James Grammar School.	Henry Onderdonk..---	P. C -------	3	0
591	Colora...-.---------	West Nottingham Academy.	John G. Conner, A. M .--	Nonsect..-	2	0
592	Cumberland -------	Allegany County Academy.	J. Shiles Crockett-	Nonsect..-	2	3
593	Easton ------------	Friends' Select School --	Miss E. Lloyd --.------	Friends ..-	0	2
594	Ellicott City-.-...--	Maupin's University School.	Chapman Maupin, A. M		2	0
595	Embla --- --------	Notre Dame of Maryland.	Schooi Sisters of Notre Dame.	R. C .-...--	4	15
556	Fallston	Oakland Boarding School.	George G. Curtiss .-.--	Nonsect.--	2	2
597	Frederick--------	Frederick College.------	Miss L. S. Tilton	Nonsect.--	3	0
598	Frederick City ----	St. John's Literary Institute.	James A. Ward, president.	R. C	2	0
599	McDonogh.	McDonogh School	Duncan C. Lyle .-....-.	$0 .$	5	0
600	North East .-.-----	North East Classical Institute.	B. F. Flounders, A. M --	Presb -----	1	1
601	Reisterstown ..-.--	The Hannah More Academy.	Rev. A.J. Rich, rector-	P.E...-.--	1	5
602	Rockville --	Rockville Academy --.--	C. K. Nelson, D. D.-.---		3	0
503	St. George --.-------	St. George's Hall for Boys.	Jas. C. Kinear .----	Epis .-----	3	1
604	St. Marys City .-.-	St. Mary's Female Seminary.	Miss A. E. Thomas .---	Nonsect.--	0	3
605	Sandy Spring -..--	Rockland School for Girls.	Henry C. Hallowell -..-	Nonsect.--	1	1
606	Upper Marlboro.-MASSACHUSETTS.	Upper Marlboro Academy.	Thomas J. Grant.-----		2	0
607	Amherst.-	Mount Pleasant Institute.	Wm. K. Nash, A. M .-.-	Nonsect.--	1	0
608	Andover	Abbott Academy	Miss T. McKeen	Nonsect...	1	5
609 610	.do	Phillips Academy ---.---	C. F.T. Bancroft, PH. D.	Nonsect... Nonsect...	12	0 2

and other private secondary schools for 1889-90-Continued.

Table 9．－Statistics of endowed academies，seminaries，

	State and post－ offlice．	Name of institution．	Name of principal．			m－ of C－ d－ y － act－ S．
					产完	通
	1	2 －	3	4	5	6
	MASSACHUSETTS－ continued．					
611	Ashburnham	Cushing Academy	H．S．Cowe	0	5	3
612	Ashfield．．．．．	Sanderson Academy	Miss Martha E．HerseJ	Nonsec	0	2
613	Auburndale	Riverside School（Wel－ lesley Preparotory）．	Miss D．T．Smith ．－．－．－	Nonsect．	0	6
614	Bernardston	Powers Institute．．．．－．－－	E．L．Underwood，A．B－	Nonsect．．．	1	1
615	Billerica	Howe School－－－－．．．．．．．－－	Samuel Tucker ．－．．．．．	Nonsect．．．	1	1
616	Boston．	Academy of Notre Dame	Sister Mary Bernar－ dine．	R．C	0	10
617	－－－－do	Academy Sacred Heart	Sarah J．Randall ．．．．．－	R．C	0	$\stackrel{4}{7}$
618	－．．．do	Berkeley School ．．．．．．．－－	Taylor，DeMerritte， and Hagar．		7	7
619	do	Home and Day School for Young Ladies（18 New bury st．）．	Abby H．Johnson．．．．－－	Nonsect．．．	0	6
620	．－do	Misses Hubbard＇s School for Girls（112 Newbury st．）．	Misses Hubbard．．．．．．．－	Nonsect．	0	1
621	－－．do ．	Miss Ireland＇s School．．－	Miss Catharine I．Ire－ land．	Nonsect．－．	4	7
622	．．－do	School for Boys ．．－－－．－－	Albert Fiale		5	0
623	－do	Sears＇s School for Girls	Edmund H．Sears．	Nonsect．	3	4
624	．．do	Mr．and Miss Wessel－ hoeft＇s Home and Day School for Girls．	Mrs．Selma Wessel－ hoeft．		2	4
625	Bradford	Bradford Academy ．－．－－	George Cogswell．pres－ ident．		0	6
626	Brimfield	Hitchcock Free High School．	J．M．Russell ．－．－－－．．．－－	Nonsect．	2	3
627	Cambridge	The Cambridge School for Girls（ $\because 0 \mathrm{Mason}$ st．）	Arthur Gilman，M．A．， director．	Nonsect．	1	4
628	．－do	Private School for Boy and Girls ） 13 Bucking－ ham st．）．	Miss K．V．Smith ．．．．－－		1	5
679	Cambridgeport．	Day and Family School for Boys．	Joshua Kendall		1	1
630	Conway	Mrs．Perry＇s Family School．	Mrs．H．D．Perry－－．－．		0	2
631	Danvers	The Willard Home School．	Mrs．H．M．Merrill		0	6
632	Deerfield	The Deerfield Academy and Dickinson High School．	Robert H．Leland．．．．－		1	3
633	Dorchester	Shawmut School ．－．－．－－	Miss Ella G．Ives		0	3
634	Duxbury	Partridge Academy	Geo．R．Pinkham，A．M．	Nonsect．	1	1
635 636	Easthampton．	Powder Point School..- Williston Seminary	Fred．B．Ínapp Rer．Wm．Gallagher，	Nonsect．	2 7	0
036 637	Evasthampton－	Home School	PH．D． Mrs．A．P．Potter	Nonsect．	1	0
638	Falmouth	Lawrence Academy and Figh School．	S．A．Holton．．．．．－．－．	Nonsect．	1	1
639	Franklin	Dean Academy ．－．．－．．．．－	Lester L．Burington．－	Univ－－－	4	6
640	Great Barrington．	Sedgwich Institute－．－－－	Edw．J．Van Lennep－－	Nonsect．	3	0
641	Greenfield ．－．－．－．－－	Prospect Hill School for Young Women．	James C．Parsons ．．．－	Nonsect．	1	2
642	Groton－－．－．－－－－－－	Groton School－－．－．－．．－－	Rev．Endicott Pea－ body，LL．M．	P．E．－．	8	0
643	－do	Lawrence Academy ．－．－	A．O．Tower ．．．．－．．．．．．－	Cong．－．	1	－1
644	Hatfield	Smith Academy ．－．．．．．－－	S．L．Cutler	Nonsect．	1	2
645	Hingham－－－－－	Derby Academy－－．－．－．－－	Henry M．Wright ．－．		1	2
646	Jamaica Plain	Home and Day School．－	Mrs．B．W．Putnam．	Nonsect	0	2
647	Lavrence．	Private School－－－－－－－－－	Marcia Packard		0	2
648	Lowell．	English and Classical School．	Lucy A．Hill	Epis ．－．．	0	2
649	Marion	The Tabor Academy ．－．－	Clark T．Howland．	Cong ．－．	3	3

and other private secondary schools for 1899-90-Continued.

Students in secondgrade.		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { col- } \\ \text { lege } \\ \text { classi- } \\ \text { cal } \\ \text { course. } \end{gathered}$		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$			Is drawing obligatory ?		Number of volumes in library.	Has the school an elementarydepartment?						
7	8	9	10	11.	12	13	14	15	16	17	18	19	20	21	22	
$\begin{gathered} 86 \\ 26 \\ 0 \end{gathered}$	$\begin{aligned} & 96 \\ & 27 \\ & 20 \end{aligned}$	18 2 0	$\begin{aligned} & 8 \\ & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 10 \\ 1 \\ 0 \end{array}$	2 0 17	22 0 10	$\begin{aligned} & \text { Yes. } \\ & \text { No.- } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { Yes. } \\ & \text { No.- } \end{aligned}$	$\begin{array}{r} 2,350 \\ 120 \\ 800 \end{array}$	$\begin{aligned} & \text { No. } \\ & \text { No. } \\ & \text { No.. } \end{aligned}$	$\begin{aligned} & 1122,200 \\ & 11,500 \\ & 20,000 \end{aligned}$	$\begin{array}{r} 8103,471 \\ 3,500 \end{array}$	$\begin{array}{r} 81,000 \\ 5,000 \end{array}$	\$1, 623 20	$\begin{aligned} & 812,664 \\ & 10,000 \end{aligned}$	611 612 613
45	30	0	0	0	0	6	No.-	No.-	5,000	No.-	5,600	5. 000			100	614
16	24	0	0	1	0	1	No.-	No.-	100	No.--	6,200	25,000		242	2,000	${ }_{615} 6$
0	60			0	0	5	Yes.	No.-	2,000	Yes.	101,000					
0	39	0	10	13	0	3	Yes-		1,600	Yes-	65, 300			7,654		617 618
75	25	10	11	13	0	30	Yes.	No.-	4,000	Yes.	300, 250			20,000		
0	35								200					7,000		619
0	25					6	No..	No--	500	No.-	30,500			5,000		620
0	60	0	4	0	0	16	No.-	Yes	1,000	No.-				14,680		621
40	-	15	0	16	0	14	No..	No.-	200 700	NO.-	$12,500$			$9,000$		${ }^{822}$
0	40						No.-	No.-	400	Yes.						624
0	152					26			5, 050		144,000	50,000	0	9,400	2,500	625
32	33	4	2	3	3	10	Yes.	No.-	1,800	Yes.	12, 750	86, 427			4,544	626
0	50	0	30				-.	No.-		es.	25, 200			-8,000		627
4	10	5	7	2	0	2	No.-	No.-		Yes.				3,185		628
10	0	8	0	2	0	0	No.-	N	0	No.-	1,700			1,150		629
0	20	0	20	0	0	6	No.-	No.-	0							(3)
0	30	0	1	0	5	2	No.-	Yes.	350	Yes.	50			1,400		631
18	29	4	3	0	0	10	Yes.	No.-	3,000	No..	24,000			72		632
0	12	0	2				Yes.							3,000		673
32	41	0	0			11	Yes	No--	25	No.	$2,50$	20, 000	400	75	1,250	634
${ }^{8}$	0	${ }_{4}$	5	75	0	- 3	No--	Yes.	2,500	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO}-. \end{aligned}$	10,200 162,000	350, 000		1, C00	16,000	635
																637
27	$\begin{aligned} & 25 \\ & 24 \end{aligned}$	4	10 2 2	2	0	4	Yo.-	No.	200	No.-	3,200	1,000	850	2,000	500^{-1}	638
71	80	11	L12	18	0	21	No.-	No.-	700	Yes.	200,800	100,000		3,785	5,000	639
22	0		0	12	0	${ }^{\frac{4}{3}}$	Yes.	Yes-	0	NO.-						640
0	25	0	1	0	0	13	No..	No.-	300	No.-	30,300			2,400		641
51	0	45	0			5	No..	Yes.	500	No.-	120, 100			25, 500	30,000	642
10	16						Yes.	Yes.	2,500	No.-	41,000	28,000		600	1,600	643
16	21		3	---		0	Yes.	No--	300	No.	$\begin{aligned} & 32,000 \\ & 50 \end{aligned}$	53, 030		172	3, 200	614
13	32 17	2	0	2	0	$\stackrel{3}{2}$	Yes,	NO--	100	Yes.	5,000			$\begin{array}{r} 606 \\ 1,500 \end{array}$		645
	10	0	0	0	0	0	Yes.	No.--	100	Yes.	6,000					647
0	8							No.-	500	No.-	8,200			900		643
37	56	12	1	4	4	4	Yes.	No.-	350	No.-	25,500	291,000		400	15,000	649

Table 9.-Statistics of endowed academies, seminaries,

	State $\begin{gathered}\text { and post- } \\ \text { office. }\end{gathered}$	Name of institution.	Name of principal.		Nu bel S On a i str 0 	
	1	2	3	4	5	6
	MASSACHUSETTScontinued.					
650	Midaleถoro	Eaton Schoo	Amos H. Eaton	Nons	1	2
651	Milton	Milton Academy	Harrison O. Apthorp.-	Nonsect. -	3	3
65%	Monson	Monson Academy	D. M. Dustan	Nonsect..-	2	2
653	Mount Herm	Boys' School --.--	Henry E. Sawyer	Nonsect..-	4	4
654	Nantucket	Admiral Sir Isaac Coffin's Lancasterian School.	Edmund B. Fox		1	2
655	New Bedford	Friends' Academy .-....	Thomas H. Eckfelat.		1	4
656	New Salem	New Salem Academy .--	H. N. Durham	Nonsect	1	1
657	Newton..	Cutler's Preparatory School.	Edw. H. Cutler.	Nonsect. .-	1	1
658	Norfolk .-.---------	Higher Grade School .-.	Miss Annie C. Hitchcock.		1	1
659	Northampton .-.--	Classical School for Girls.	B. T. Capin ------------	Nonsect.	3	10
660	Norton.--.---------	Wheaton Female Seminary.	Miss A. Earn Stanton.	Cong .-.---	2	9
661	Plymouth	Home Schaol for Boys.-	Mrs. F. N. Kna		$\frac{1}{5}$	1
662	Quincy..	Adams Academy .-. .-.-	Wm. Everett	Nonsect.--	5	0
663	Roxbury	Notre Dame Academ ${ }^{\text {I }}$--	Sister Aloyse	R. C ------	0	8
$66 \frac{1}{4}$	--do-........-.-.	Private School---------	Elizabeth Curtis		1	1
665	Shelbourne Falls	Arms Academy ---------	F.A. Tupper	Nonsect...	2	2
666	Southborough --	St. Mark's School	Wni. E. Pestr	P. E ------	6	0
667 668	South Braintree.	The Thayer Academy---	J.B. Sewall	Nonsict..-	6	1
668	South Bayfield ----	Dummer Academy --.--	John W. Perkins --.---	Nonsect---	4	1
669	South Lancaster.-	South Lancaster Academy.	G. W. Caviness, A. M .-.	7 Day Ad.-	1	2
670	Springfield	Preparatoxy School for College.	Henry L. Coar .-.......-	Nonsect..-	1	0
671	Taunton	Bristol Academy .-. --. -	Wm. F. Palmer	Nonsect.--	3	3
672	Wellesley	Dana Hall Preparatory School.	Sarah P. Eastman, Julia A. Eastman.	Nonsect.--	0	13
673	West Bridgewater.	Howard Seminary --.-.-	Emma O. Conro --. --		1	4
674	Westiord --.-.-.---	Westford Academy -...-	Wm. E. Frost .-	Nonsect..-	1	1
675	West Newton.....-	English and Classical School.	Nath'l T. Allen.	Nonsect..-	2	2
676	Wilbraham	Wesleyan Academy...--	Rev. Geo. M. Steele, D. D., LLD.	M. E--.----	7	6
677	Worcester	The Highland Military Academy.	Joseph A. Shaw ---.-.-	P.E	4	0
678	.-.-do \qquad MICHIGAN.	The Worcester Academy.	D. W. Abercrombie, A. M.	Bapt ------	7	0
679	Adrian-	Raisin Valley Seminary.	F.R. Hathaway	Friends	2	1
680	Detroit	The Detroit Seminary--	Miss Annie M. Cutcheon, Miss H.B. Pope.		2	2
681	Grand Haven.	Akeley Institate for Girls.	Mrs. James C. Wilkinson.	Epis...-.--	1	3
682	Kalamazoo...-.-.--	Michigan Female Seminary.	Miss I. G. French...---	Presb .-..-	0	4
683	Marshall.	St. Mary's Academy ----	Rev. P.A. Baart, s. T. L.	R. C	1	4
684	Marquette	St. Joseph's Academy --	Sister M. De Pazzi ...-	R. C	0	2
685	Honroe------	St. Mary's Academy -..-	Mother M. Clotilda....	R. C	0	2
686	Orchard Lake .-..-	Michigan Military Academy.	W. H. Butts .---------	Nonsect.--	7	0
687	Owosso .-.-	Oakside School --.....--	Mrs. L. E. Gould.	Nonsect.--	0	$\stackrel{2}{3}$
688	Port Huron.	Academy of the Sacred Heart.	Sister Superior-.--.-.	R. C.-.-.--	0	3
689	Spring Arbor.....MiNNESOTA.	Spring Arbor Seminary.	Rev. A. H. Stillwell, A. M.	Meth .-...-	4	2
690	Albert Lea.....	Lutheran High School	L.S. Swenson -.-.-----	Luth	3	1

and other private secondary schools for 1889-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1859-90-Continued.

Fable 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889－90－Continued．

Stu－ dents in second－ grade．		Num－ ber paring for col－ lege classi－ cal course．		Num－berpre－paringforscien－tificcourse．					Number of volumes in library．				pie əqeวS do qunouxv			
$\begin{aligned} & \text { ボ } \\ & \text { む゙ } \end{aligned}$		$\begin{aligned} & \text { @ } \\ & \text { 㥻 } \end{aligned}$														
7	8	ค	10	11	12	13	14	15	16	17	18	19	29	21	22	
30	35					0	No．－	No ．－	0	Yes	\＄4，000		\＄400	\＄1，280	\＄25	733
7 42	30 53	5	1	29	80	0	No．．	No．－	300 12	Yes．	$\begin{aligned} & 2,000 \\ & 3,000 \end{aligned}$		500	23	25	734 735 73
25	30			6	8	10	No．－	No．－	300	Yes．			315	1，500		736
9	5	3	0	0	0	0	No．	No．	0	Yes．	7，060			3，000		737
20	20		10	0	0	6	No．－	No．－	500	Yes－	17，000					738
28	17					0							600	700		440
80	，	－	0	0	0	2	No．－－	No．－	2，000	Yes．	30，030	810， 000		2，500	4,000	741
10	15					0	No．－	No．		Yes．	1，503					42
25	21					0	No．－	No．－		Yes．	4，000					743
19	0					0	No．．	No－－	0	Yes	2，000		200	520		744
20	54	1	2	4	6	0	No．－	No．－	16	Yes．	1，500			800	160	745
20	28	6	3	4	6	0	No．	No．－	650	Yes．	1，040		350	1，680		746
0	128	0	73			3	No．	No．－	50	Yes．	2，035			2，500		747
40	35	5	6	20	10	3	No．	No．－	0	Yes．	2，125			3， 000		748
0	37	0	8			1			1， 000		25， 300			1，309		749
15	20	14	12	6		5				Yes－	5， 400					750
30 20	2	20	15			5	No．－	Yes．	300 500	Yes．	3,050 8	1，000	237	－ 9	769	751
30	2					2	Yes．	Yes．	1， 500	Yes．	40，500			6，100		753
45	50					0	No．－	No．－	300	No－－	2，500		330	180	40	754
67	69	21	15	16	17	4	No．	No．－	400	Yes－	15， 500			2，800	600	755
46	47			2	10	1	No．－	No．－	170	No．－	9，500			1，360	500	756
110	100	20	10	15	8	10	N	No．－	400	Yes．	30，500			5，000		757
13	20	4	2			2	No．－	No．－	0	Yes	2，000					758
45	42	20	30			0	No．－	No．－	200	Yes＿	11，400			35，000		759 760
											11， 40					760
65	50						No－－	No－－	600	No－－	5， 000					761
25	15	${ }^{0}$	0	8	$\stackrel{2}{5}$	11	No－－	No－－	1，000	Yes．	6，300					762 763
27	18	$\stackrel{16}{2}$	${ }_{2}$	9	5	7	No．－	No－－	0	Yes	4， 1503			3，000		763
21 80	19					6		Ye－－	200	Yes－	15，000		400	1，150	2，060	784 765
30	32	0	0	6	9		No．－	No．－	0	No．－	2，103			850		766
61	co						No．－	Yes	，	Yes－	2，000					767
47	63	30	20	30	0	8	No．－	No－－	500	Yes－	1，200			2，800	600	768
20	10	30	35			3	No．－－	No－－	100	Yes．	3,610 25,000					769 770
62	43	23	4	0	0	29	Yes－	No．－	1，000		4，500		1，200	1，800		771
75	75					22	No．－	No．－	100		6，000					772
40	80					9	No．－	No．－	1，200	Yes	16， 000					773
11	5	11	5			0	Yes．	Yes．	110	Yes．	25， 050			4，000		774
71	94	30	0	30	0	3	No．－	NO－－	1，200	No－－	20，200			2， 068	8721	775
60	0	12	0	20	0	11	No．－	Yes－1	200	Yes－	16， 050			4，500	8，000	776
24	16					10	Yes．	No．－	600	Yes	700					777
28	29	4	4	1	0	0	No．－	Yes．－	300 100	Yes－	6,050 5,000			1，105		778 779

Table 9.-Statistics of endowed academies, seminaries,

	State and post-	Name of institution.	Name of principal.		$\begin{gathered} \text { Num- } \\ \text { ber of } \\ \text { sec- } \\ \text { ond- } \\ \text { ary } \\ \text { in- } \\ \text { struct- } \\ \text { ors. } \end{gathered}$	
					鸰	-
	1	2	3	4	5	6
	MISSOURI-cont'd.					
780	Macon	St. James Military Academy. Mayfield Smith Academy. Collegiate Institute	C. G. Davis (Rev.) Miss. Jane R. Parke John Tunentine	P. E.-.---	4	0
781	Marble Hill			Bapt	1	2
782	Marionville			M.	3	2
783	Mill Spring-	Hale's College.........-.	W. H. Hale		2	0
784	Mount Vernon	Mt. Vernon Academy--	B. D. Rowlee	Presb--.--	2	3
785 786	Nevada	Christian University ---	Joseph F. Woolery	Christian	7	4 4 4
787	Odessa	Odessa College	W. N . G Grube, A. M		2	1
788	Olney	Olney Institute	W. F. Weltry-	Nonsect	2	3
789	Otterville	Otterville College	J. V. Curlin	Nonsect	3	1
790	Paynesville.	Pritchett Institute	W. H. Pritchett, A. M -	Nonsect --	5	5
791	Philadelphia	High School ${ }_{\text {,- }}$	Miss Dora Fletcher----		0	1
792	Pierce City .	Baptist College	J. M. Bent, reporting officer	Bapt	3	3
793	Plattsburg	Plattsburg College.	J. W. Elis, president.		3	3
794	St. Charles.	Sacred Heart Academy-	R. Conway	R. C	0	8
795	St. Joseph.	Academy of the Sacred Heart.	Madam A. M. Nieder-	R. C .-.---	0	9
${ }_{797}^{796}$--.do-.-.			Rev. Charles Martin.-	Nonsect	1	6
$\begin{aligned} & 797 \\ & 798 \end{aligned}$	St. Louis ---------	Educational Institute.-	Clara G. Shepard and M. H. Nathews \qquad	Nonsect---	7	0
	--- do -----------.--	Hosmer Hall .-----.----		Nonsect --	0	5
799 -...do		Loretta Academy .-..--	M. H. Mathew James H. Dillard	R. C .-...-	0	2
$\begin{aligned} & 800 \\ & 801 \end{aligned}$		Thery Institute -		0.-.........	1	7
		The School of the Good Shepherd.	Sister Catherine		1	6
802803	do	Smith Academy	Denham Arnold A. C. Burgdorf, president.	Nonsect .	13	7
						0
88	Sedalia ------	Seminary for Girls...---		Presb Nonsect -	2	2
	Sedgewickville	Sedgewickville Acad-	Mrs. R. T. Miller E. Miller		2	1
806	Sparta	Private Normal School.	J. M. Johnson, president.		2	1
	Spring Garden	Miller County Institute	H. M. Sutton ----------	-	${ }_{2}^{2}$	32
80 808	Sweet Springs	Sweet Springs Acad-				
809	Versailles	Male and Female Institute. High School	F. Gwynn-------------	0..--------	1	0
810811	Washington.		B. J. Specking John Whitaker	Nonsect -Christian .	2	2
	Weaubleau	Chiristian Institute				1
	montana.					
812813	Bozeman	Bozeman Academy --..Sacred Heart.	William W. Wylie.... Ursuline Sisters	$\begin{aligned} & \text { Presb } \\ & \text { R. } \end{aligned}$	1	24
	Miles City					
	NEBRASKA.					
814	Beatrice	Blake School --.--.-.-.-	Henry N. Blake .-...--	Meth	1	2
	Central City	North Nebraska Conference Seminary.	Rev. F.W.Ware president.			
8181	Chadron	The Chadron Academy St. Francis Academy and Parochial School. Franklin Academy	Frank L. Ferguson... Sister M. Josepha.....	Cong R. C	1	
	Columbus.					2
818			Alexis C. Hart, A. M-. Rev. W. H. Ringland M. F. Carey (Rev.) \qquad	Cong Presb	5	4
	Hastings	Franklin Academy...... Hastings College				
	Nebraska City	The Academy Academy of the Sacred Heart. Brownell Hall.............			2	
828282	Omaha		Madame Dunne Robetr Doherty, S. T. D_	$\begin{aligned} & \text { R. C } \\ & \text { P. E } \end{aligned}$	0	7
	..do .-				2	10

and other private secondary schools for 1889－90－Continued．

$\begin{aligned} & \text { Stu- } \\ & \text { dents } \\ & \text { in } \\ & \text { second- } \\ & \text { ary } \\ & \text { grade. } \end{aligned}$		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { col- } \\ \text { lege } \\ \text { classi- } \\ \text { cal } \\ \text { course. } \end{gathered}$		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$			Is drawing obligatory?									
$\begin{aligned} & \text { 运 } \\ & \text { 岂 } \end{aligned}$				㡙												
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
38	0	20	0	15	0	5	No．－	Yes		Yes．	\＄12，000			810，000		780
20	15						No．－	No．－	0	Yes	12，000			5， 000		781
71	43	4	0	4	0	4	No．－	No－－	600	No．	8，100			1，975	¢325	782
16	19	7	8	7	8	17	Yes．	No．－	0	Yes	1，500			500	1，135	783
23	19	7	5	12	18	－	No．－	No．－	0	Yes．	8， 000			1，600		781
						2	No－－	No－－	1，000	Yes－	100， 600					785
0	40	0	40			${ }^{6}$		Yes	400	Yes－	30， 100			3， 500		786
${ }_{28}^{17}$	${ }_{2}^{14}$	10	${ }_{0}^{3}$			${ }_{1}^{12}$	No．－	No－－	100	Yes．	6,050 3,000			2，250		787 788
55	50	0	0	20	10		No．－	No．－	200	Yes．	4，150			1，900		789
36	45	22	28	10	10	6	No．－	Yes．	1，000	Yes－	10，500	\＄3，000		3，000	3，000	790
9	9	5	3		0		No．－	İo．		No．－	2，550					791
20	20						No．－	No．－		Yes－	12，000					792
26	15	1	2	25	13	3	No．－	No．－	2，000	Yes	10，200			3， 000		793
0	50 51	0	0			12	No．－	Yes．－	1,200 1,500	Yes．	50，700			6，000		794
，	57					9	No．－		150	Yes	30，200			7，000		796
62	0	－	，			7	Yes－	Yes	500	Yes	32， 500			14， 300		797
0	60	0	2	0	6	7	No．－	No．－	300	Yes．						798
0	20	0	0	0	10	0	No．－	No．－	500	Yes	75， 250			6，000		799
0	220	0	0	0	0	17	Yos	Yes－	1，000	Yes．	400					800
233	0	34	0	23	0	13	Yes．	Yes．		Yes	78，200					802
74	0	38	0	29	0	15	No．－	Yes．	150	No．－	50，125			，021	503	803
0	15	0	3	，	10	3	Yes．	No．－	700	Yes	9，050			2，500		804
10	1			5	0	0	No	No	0	Yes	400					805
48	40	0	0	20	18	0	No．－	No．－	325		1，650			650		806
35	28	2	0	5	3	1	No．－	No－－	0	Yes	3，000			1，000		807
12	14	0	0	0	0	0	T	No．－	0	Yes－	2，500			800	100	808
7	6					0	No．－	No		Yes	3，800			2，000		809
$\begin{aligned} & 13 \\ & 29 \end{aligned}$	$\begin{aligned} & 15 \\ & 32 \end{aligned}$	1	0	3 46	${ }_{12}$	1	$\begin{aligned} & \text { Yes } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { No.. } \\ & \text { No.. } \end{aligned}$	100	$\begin{aligned} & \text { Yes. } \\ & \text { Yes. } \end{aligned}$	$\begin{array}{r} 10,300 \\ 3,100 \end{array}$			$\begin{aligned} & 1,475 \\ & 1,300 \end{aligned}$		$\begin{aligned} & 810 \\ & 811 \end{aligned}$
23	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	0	${ }_{10}^{3}$	0	8	0	No．－	No．．	$\begin{array}{r} 200 \\ 50 \end{array}$	$\begin{aligned} & \text { Yes. } \\ & \text { Yes } \end{aligned}$	$\begin{array}{r} 4,000 \\ 10,000 \end{array}$			1，600	1，000	812 813
17	23	8	4	8	0	3	Yes．	No．	$\begin{aligned} & 400 \\ & 225 \end{aligned}$	Yes． No．	$\begin{array}{r} 4,000 \\ 50,000 \end{array}$	5，000		$\begin{aligned} & 2,590 \\ & 1,200 \end{aligned}$	1，350	814 815
20	12	10	6	8	6	0	Yes．	No．－		Yes，	30，000			600	2，000	816
1	23						Yes．		100	Yes．	15，000			135		817
49	22	17	3	10	4	6	Yes．	No．－	1，900	No．－	16，006	2，500		1，250	3，500	818
40	47	20	20	19	27	4	No．－	No．－	2，000	Yes．	60，150	15，000		2， 675	29，000	819
25	15										5，000			2，500		820
0	60	0	35	0	0	12	No．－		1，800	Yes．	00， 500					821
	72						Yes．		3，000	Yes	131，000			996	2	822

Table 9.-Statistics of endowed academies, seminaries,

	State and post-	Name of institution.	Name of principal.		Number of sec-ondary in-structors.	
					皆	
	1	2	3	4	5	6
	NEBRASKA-cont'd.					
823	Omah	St. Catherine's Academy.	Sisters of Mercy .-....-	R. C	0	2
824	Pawnee City	Pawnee City Academy - -	Miss M. E. Campbell --	Presb	0	3
825	Plattsmouth ------	St. John's Parochial School.	Mother M. Alphonso.-	R.C.-	0	8
826	Wahoo--------.--	Luther Academy .-.-.-.-	S. M. Hill, A. M --..-----	Ev. Luth .-	4	1
827	Weeping Water .NEVADA.	Weeping Water Academy.	George Hindley .-------	Cong -----	4	4
828	Reno \qquad NEW HAMPSHIRE.	The Bishop Whitaker School for Girls.	Miss Julia Megquier --	Epis...-.--	1	6
829	Atkinson	Atkinson Academy	Freeman B. Fic	Cong	1	1
830	Cant-rbury	Kezer Seminary	W. E. Conant	Cong	1	0
831	Concorả...	St. Mary's School	Miss E.M. M. Gainforth	P. E	1	3
832	-.-do	St. Paul's School.-	Rev. Henry A. Coit...-	P.E	23	0
833	Derry	Yinkerton Academy	G. W. Bingham	Nonsect	3	3
834	Epping	Watson Academy .-...--	Asher Starkweather --	Nonsect	1	0
835	Exeter -...-	Phillips Exeter Academy.	G. A. Wentworth, acting principal.	Nonsect.--	13	0
836	do	Robinson Female Seminary.	George N. Cross, A. M -	Nonsect.--	2	4
837	Francestown	Francestown Academy -	Chas. S. Paige	Nonsect..-	3	2
838	Gilmanton	Gilmanton Academy...-	Sam. W. Robertson.--	Nonsect.---	2	2
839	Haverhill	Haverhill Academy .-..-	Ed. S. Boyd. -		1	2
810	Kingston	Sanborn Seminary .-..---	Chas. H. Clark	Nonsect----	$\stackrel{1}{\square}$	2
841	Lancaster	Lancaster Academy .-.-	D. T. Tumberlake		1	2
842	Meriden..	Kimball Union Academy.	D. G. Miller-----------	Cong ------	2	2
843	Mount Vernon	McCollom Institute .-.--	Oscar D. Davis-..-	Nonsect..-	1	1
814	New Hampton .-.--	Literary and Biblical Institution.	A. B. Meserrey-.-.....-	Free Will Bapt.	6	3
845	New London --.-.-	Colby Academy --...----	James P. Dixon .-.....-	Bapt	4	5
816	Northwood Center	Coe's Northwood Academy.	E. L. Blaine .-....-----	Nonsect.--	1	2
847	Northwood Ridge.	Northwood Seminary --	J. H. Hutchins	Free Bapt.	2	0
818	Pembroke	Pembroke Academy --.-	Isaac Walker .-.-.-----	Cong --....	2	2
819	Portsmouth .	Miss Morgan's School for Young Ladies.	Miss A. C. Morgan ..--	Cong --...-	0	2
850	do	Smith Academy and Commercial College.	Lewis E. Smith		3	2
851	Reed's Ferry-	McGaw Institute	F. E. Burnette--.--..--	Nonsect..-	1	3
852	South Eampton---	Barnard School	Miss Jane A. Darey ---	0	0	1
853	Washington-------	Tubb's Union Academy-	Walter Gee ----------	Nonsect.-. Nonsect	1	1 3
854	Wolfborough...... NEW JERSEY.	Brewster Free Academy	Edwin H. Lord, A. M .-	Nonsect...	3	3
855	Belvidere.-.......-.	Belvidere Academy.-.--	Geo. H. Hooper, M. A --	Nonsect...	1	2
856	Bererly.........-.-.	Farnum Preparatory Schcol.	James B. Dilks, A. M --	$0 .$	1	3
857	Blairstown .-...-.--	Blair Presbyterial Academy.	J.H.Shumaker ...-...-	Presb	4	4
858	Bloomfield .-.-....	Academic Department of the German Theological School of Newark, N. J.	Rev. Chas. E. Knor, D. D., president.	Presb .-..-	4	0
859	Bordentown.-....--	Adelphic Institute .-....-	Rev. Robert Julian, A. M.	Nonsect..-	1	0
860	-...do	Military Institute.-.-.-.	Rev. T.H.Landon, A. M	Nonsect. --	8	1
861	Bridgetown --------	Ivy Hail ------------------	Rev. Henry Reeves, PH. D.	Nonsect...	2	2

and other private secondary scliools for 1889-90-Contirued.

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1859-90-Continued.

TABLE 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

	State and post-	Name of institution.	Name of principal.			
	1	3	3	4	5	6
	NEW YORK-cont'd.					
942	Canandai	Granger Place School . .	Miss C. A. Comstock, president.	Nonsect..-	2	3
943			president. Mrs. S. D. Backus.		1	1
944	Caniste	Canisteo Academy	D. M. Estee, M. A		1	2
945	Carmel.	Drew Seminary and Female College.	Geo. Crosby Smith...-	M. E	1	2
946	Cazenovia	Cazenovia Seminary .-.-	Isaac N. Clements, A.M.	M. E	6	3
947	Chappaqua .-...-.--	Chappaqua Mountain Institute.	S. C. Collins	Friends..-	4	5
948	Cherry Valley	Cherrs Valley Academy	Arial McMaster	Presb	2	2
949	Cincinnatus	Cincinnatus Academy --	Elmore G. Page	Nonsec	1	1
950	Clarerack...	Claverick College and Hudson River Insti. tute.	Rev. Arthur H. Flack, A. M.	M E	4	3
951	Clifton Springs..---	Clifton Springs Female Academy.	Wm. A. Deering, A. B., A. M.	Nonsect..-	1	4
952	Clinton .---.-.-.-.-	Clinton Grammar School.	Isaac O. Best -----.-. -	Presb .-.--	3	2
953	do	Cottage Seminary......-	Rev.C.W.Hawley, A.m.	Nonsect.--	1	3
954	do	Houghton Seminary ---	A. Gardiner Benedict -	Nonsect.--	2	4
955	Cornwall-on-Hud- son.	Cornwall Heights School.	Carlos H. Stone .-.....-	Nonsect.-.	4	1
956	.--do --------.- -- --	New York Military Academy.	Chas. J. Wright, B. s., A. M., president.	Nonsect...	7	0
95%	Delhi.	Delaware Academy	W. D. Graves		3	4
958	Dobbs Ferry .-...-	Westminster School ...-	W. L. Cushing.		6	0
959	Dundee .--------.--	Dundee Preparatory School.	John Kline .		1	3
960	Easton	Marshall Seminary	Mrs. A. D. Cloud .-...-	Friends .--		2
961 962	East Springfield -- Eddy town .-..-.---	East Springfield Academy. Starizey Seminary	Mark Hollister, A. B.-- G. R. Hammond......--	Nonsect.-- Christian	1	1
963	Elba	Elba Private School	Miss Mary Hollister	0--------	0	1
964	Elbridge	Monroe Collegiate In- stitute.	T. K. Wright ------ -- -	Nonsect. .-	2	1
965	Fairfield ----------	Fairfield Seminary	D. D. and F.L. Warne.		2	
966	Fishkill-on-Hud- son.	De Garmo Institute...--	James M. De Garmo, A. N., PH. D.	Nonsect.--	2	2
967 968	Flatbush Flushing	Erasmus Hall Academy-	Rev. R. G. StrongE. A. Fairchild	Nonsect... Nonsect	$\stackrel{2}{5}$	1
969		St. Joseph's Academy --	Mother M. Teresa	R. C.	0	12
970	Franklin	Delaware Literary Institute.	Chas. H. Verrill, A. M., PH. D.	Nonsect.--	4	3
971	Franklinviile	Ten Broeck Free Academy.	Hamilton Terry---...-		2	2
972	Garden City, L. I.-	Cathedral School of St. Mary.	Miss J. H. Farwell .-.-	P. E.-...--	1	2
973	_do	Cathedral School of St. Paul.	Chas. S. Moore .-......-	Epis .-... -	10	0
974	Geneva	De Lancey School for Girls.	Miss H. N. Bridge.....	Epis .-.	1	2
975	Gilbertsville.......	Gilbertsville Academy and Collegiate Institute.	S. Dwight Arms, A. M.		1	1
976	Goshen .-.-........--	Miss Hogarth's School for Girls.	Miss M. O. Hogarth.--	Epis .-----	1	2
97%	Greenville	Greenville Academy	T. W. Stewart.....-.	Presb		1
978	Hamilton.	Colgate Academy --...--	Rev. JohnGreene, PH. D.	Baptist .	6	0
979	Hartwick Seminary.	Hartwick Seminary	Rev. James Pitcher, A. M.	Luth .-...	5	1
980	Havana.	Cook Academy -.........	A. C. Hill --....-.-.-...	Baptist .--	5	2
981 982	Hempstead	Hempstead Institute----	Prof. Ephraim Hinds.	Nonsect..-	1	2

and other private secondary schools for 1859-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889－90－Continued．

$\begin{array}{r} \text { Stı } \\ \text { den } \\ \text { in } \\ \text { seco } \\ \text { ara } \end{array}$	$\begin{aligned} & \text { u- } \\ & \text { nts } \\ & \text { n } \\ & \text { ond- } \\ & \text { cy } \\ & \text { de. } \end{aligned}$	Nu be pr par fo co leg clas cal coul	m－ e－ ing re r－ ge ssi－ al rese．	$\begin{gathered} \text { NuI } \\ \text { be } \\ \text { pre } \\ \text { pari } \\ \text { fol } \\ \text { scie } \\ \text { tifi } \\ \text { cour } \end{gathered}$	$\begin{aligned} & \text { lm- } \\ & \text { er } \\ & \text { e- } \\ & \text { ing } \\ & \text { or } \\ & \text { en- } \\ & \text { ic } \\ & \text { rse. } \end{aligned}$											－
$\begin{aligned} & \text { ® } \\ & \text { 㫕 } \end{aligned}$		㡙		䆚		$\begin{aligned} & \text { है } \\ & \text { त⿹\zh26灬 } \\ & \text { - } \end{aligned}$		$\begin{aligned} & \text { un } \\ & 0 \\ & \text { d } \\ & \text { N } \\ & \text { むun } \end{aligned}$	$\begin{aligned} & \circ \\ & \text { ö } \\ & \text { D } \\ & \text { Z } \\ & \text { Z } \end{aligned}$	Has the s			$\begin{aligned} & \text { 寻 } \\ & \text { 品 } \end{aligned}$		虺范	
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
40	0	0	0			30	Yes	Yes	0							
0	40						No．－	No．－	500		［－0， 35	0		8,	0	983
65	35	1	1	10	2	0	No．－	No．－	1，073	Yes．	13，941	®10， 700	\％312	2,851	＊${ }^{\text {a }} 41$	985
80	88		－	0	0	9	Yes．	Yes．	5，000	No．－	77，000	80，000	833		4，679	986
40	45	0	0	2	3	9	No．－	No．－	450	Yes．	4，250	0	658	700	0	987
59	63	16	4	0	0	8	No．－	No．－	567	No．－	15， 864	0	458	1，286	25	988
40	50	1	0	8	6	6	Yes．	No．－	3 CO	Yes．	8，565	25，000	400	350	1，500	989
0	35	0	11	－	0	0	No－－	No－－	2,000	Yes．	18，000		0	8，000	0	${ }_{991}^{990}$
0	10	－0	0	0	0	0	Yes．	No．－	0	Yes．						92
43	0	30	0	13	0	6	No．－	Yes．		Yes．	150， 000					993
26	1	18	1	0	0	6	No．．	No．－	2，500	No．．	23，000		0		0	994
0	42	0	0	0	0	6	No．－	Yes	4，800	Yes．	263， 900	0		25， 258	0	995
27	0	8	0	7	0	8	Yes．	Yes．	250	Yes．	50， 150			25，000		996
200	0	100	0	50	0	22	Yes．	Yes．	1，000	Yes．	351，500			90，000		997
0	152	0	0	0	0	0	Yes．	Yes．		No．	0	0	0	0	0	998
60	0	5	0	0	0	0	No．－	Yes．	200	Yes．				10，000		999
42	0			0	0	0	No．－	No．－		Yes．						1000
48	0	20	0	5	0	6	No．－	Yes．		Yes．						1001
110	0	50	0	25	0	18	No．－	Yes．		No．－						1002
270	0	60	0	65	0	42	No．．	Yes．		Yes．	100，000	0			0	1003
	87	0	0	0	0	6	Yes．		700	Yes．						1004
65	0	60	0	5	0	9	No．－	Yes．	500	Yes．		0	0	40，000	0	1005
153	0	103	0	50	0	0	Yes	Yes．	3，470	Yes．	300，900	0		23，000	0	1006
68	0	43	0	20	0	15	No．－	No		No．－		0	0	11，600	0	1007
0	166	0	0	0	0	5	No．－	No．－	103	Yes．	300	0	0	32，500	0	1008
17	39			0	0	8	Yes．	Yes						6，538		1009
3	140	0	0			9	Yes．		1，200	Yes．	0	0	0	0	0	1010
0 12	47 13	4	0 3			1	No．－	No．－		Yes				12，000		1011 1012
12	13	4	3	2	0	8	Yes．	Yes．	－－－－	Yes．	500			12，000		1012
0	75	0	40			8	Yes．	No．－	1，000	Yes．	500					1013
50	0	15	0	12	0	0	No．－	Yes．	2，000	Yes．	60，300	0	0	1，500	0	1014
22	18	8	6		，	0	Yes．	Yes．	500	Yes．	50， 500	0	0	6，000	0	1015
9	0	1	0	0	0	0	Yes．	Yes．	500	Yes．				1，130		1016

Table 9.-Statistics of endorocd academies, seminaries,

and other private secondary schools for 1889－90－Continued．

$\begin{array}{r} \mathrm{St} \\ \mathrm{dey} \\ \mathrm{i} \\ \text { i } \\ \text { sec } \\ \text { al } \\ \text { gra } \end{array}$	u－	$\left\lvert\, \begin{aligned} \mathrm{Nu} \\ \mathrm{~b} \\ \mathrm{p} \\ \mathrm{pal} \\ \mathrm{f} \\ \mathrm{~cd} \\ \mathrm{le} \\ \mathrm{cla} \\ \mathrm{cou} \\ \mathrm{cou} \end{aligned}\right.$	m－ er r－ ing or l－ ge ssi－ al rse．	Nu be pr par for sci tifi cour	m－ er ing ing ren－ en ic rse．											
	$\begin{aligned} & \dot{\oplus} \\ & \text { స్ } \\ & \text { ష్ఠ } \\ & \text { ⿷匚 } \end{aligned}$	$\begin{aligned} & \text { ®̇ } \\ & \text { డ్మี } \end{aligned}$						$\begin{aligned} & \text { g } \\ & \text { N } \\ & \text { Win } \end{aligned}$	$\begin{aligned} & \bar{Z} \\ & \text { 号 } \end{aligned}$			g 号 品	$\begin{aligned} & \text { + } \\ & \text { 号 } \\ & \text { 年 } \end{aligned}$	号 O 品	$\begin{aligned} & \text { © } \\ & \text { gig } \\ & \text { Ög } \\ & \text { an } \end{aligned}$	
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
0	10	0	4	0	0	0	Yes．	Yes．	200	Yes．				\＄2， 300		1017
0	39	0	4	0	0	5			963	Yes．	\＄35， 250			5，775	：11，000	1018
0	50	0	1	0	0	25	Yes．	No．－	1，500	Yes．	150，000	0	0	30，000	0	1019
200	1	45	1	8	0	20	Yes．	Yes．	500	Yes．	51，500					1020
0	30	0	3	0	0	4	No．－	Yes．	500	Yes．						1021
24	36	30	0	5	0	5	No．－	No．－	4，000	Yes．						1022
31	0	31	0	0	0	8	Yes．	No．－		Yes．	30，000			4，500，		1023
0	9	0	0	0	0	4	Yes．	No．－	500	Yes．	30，000			2，000		10.4
0	31	0	30	0	0	6	No．－	No．－	1，200	Yes．	75， 000					1025
20	0	1	0	17	0	12	Yes	No．－	350	Yes．	150			7，500		1026
40	0	14	0	6	0	5	No．－	Yes．	， 400	Yes	65， 000	0		12，000	0	1027
43	42	2	1	0	1	7	No．－	No．	947	Yes．	40，657	87， 500	\＄39	2，030	678	1028
35	44	4	2	1	0	2	No．－	No．－	1，345		22， 800		110	1，250	0	1029
61	37	2	1	10	0	6	Yes．	No．－	900	Yes．	12，200	2，000	900	1，000	0	1030
45	52	4	0	10	14	9	No．－	No．－	1，498	Yes	12，700	10	604	2，900	500	1031
138	0	10	0	${ }^{6}$	0	0	Yes－	Yes－	400	Yes．	10， 200	0			0	1022
138	0	25	0	10	0	13	Yes．	Yes．	1，000	No．－	41，000	0	0	40，000	0	1033
0	40	0	39	0	0		Yes	No．－	2，000	Yes．						1034
15	0	5	0	3	0	4	No．－	Yes．	200		15，100	0	0	3，000	0	1035
15	4		－－	0	0	0	No．－	No．－	250	Yes．	10，000	0	0	1，800	0	1033
35	0	15	0	12	0	8	No．	No．－	1，000	Yes．	25，700	0		2，000	0	1037
5	8			4	，	3				Yes．	6，000	15，000			1，000	1038
60	60	0	0	10	4	8	No．－	No．．	500	No－－	13，000	18，000	800	850	1，000	1039
18	12	2	2	2	0	2	No．－	No．－	417	Yes．	14， 064	0	165	1，929	0	1040
0	26		0	0	0	0	Yes	No．．	592	Yes．	19，610	0	1，713	550	0	1041
41	39 30	1	${ }_{0}^{0}$	0	0	2	No．－	No．－	475	No．－	6，181	250	325	735	15	1042 1043
0	90	0	10	0	0	12	No．－	Yes．		Yes．	35， 200	0	0		0	1044
140	0	50	0	8		12	No．－		300	Yes	75，500					
23	10	1	5	0	0	2 3 3	No．－	No．－	0 500	Yes．	15，500			2，500		1046
109	101	20	10^{-}	15	2	18	Yes．	No．－	1，400	No．．	61， 200	40， 000	500	4，000	2，000	1048
63	59	9	3	0	0	12	Yes．	No．－	400	Yes．	10， 500		1，025	900		1049
0	36	0	0	0	0	3	No．－	Yes．	700	Yes．	250	0	0	6，830	0	1050
21	0	6	0	2	0	3	No．－	No．－	0	Yes．	200			2，230		1051
18	3	6	1	14	0	6	No．－	No．－	300	Yes．				4，050		1052

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

$\begin{aligned} & \text { Stu- } \\ & \text { dents } \\ & \text { in } \\ & \text { second- } \\ & \text { ary } \\ & \text { grade. } \end{aligned}$		Num-berpre-paringforcol-legeclassi-calcourse.					Is drawing abligatory?		Number of volumesin library.	Has the school an elementarydepartment?		Amount of productive funds.				
		追		$\stackrel{\dot{9}}{\stackrel{\rightharpoonup}{\vec{E}}}$												
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
0	25	0	10	0	15	3	No.-	No.-	800	Yes.	\$35, 100	0	0	\$2,000	0	1053
0	36	0	2	0	0	7	No.-	N	300	Yes_	7,150	0	0	2,200	0	1054
40	0	0	0	0	0	9	Yes.	No.-	350	No.-	25, 000	\$4,000	0	1,000	0	1055
0	40					0	No..	No.-	250	Yes	20,045	0			0	1056
76	82	4	1	2	0	24	Yes.	No.-	980	Yes-	45, 330		\$614	564		105\%
15	0	14	0	0	0	0	Yes.	Yes	500	Yes.	75250	0			0	1058 1059
40	0	20	0	20					300			0				1060
30	0			${ }^{\circ} 0$	0	0			300	Yes	30,000					
20	30	2	10	18	20	0	No.--	No.-	0	Yes-	6,000	0		1,430	0	1062
30	8			0	0	0	No--	No.-	$2<8$	Yes-	3,917	0	146	1,065	0	1063
17	9			0	,	1	Yes.	No.-		Yes.	16, 400	0				1064
¢5	0	20	0	15	0	5	No.-	Yes.	1,000	Yes	31,000	0	0		0	1055
30	0					8	No.-	Yes.	1,000		75, 000					1066
40	30	1	0		2	6	Yes.	No.-	283	Yes.	1,239	0	898	950	0	1067
65	50		5	4		15	Yes.	No.-	2,150	Yes.	12,400					1068
21	18	2	0	10	0	0	Yes.	Yes.	3,700	Yes.	17, 400	0	110	12, 800	0	1069
45	0	12	0	8	0	7	No.-	Yes.	2,000	Yes'	100,753	120,000		0		1070
15	35	6	0	0	0	0	No..	No.-	1,500	Yes.	41,000	,		300	\$50	1071
50	30 5	7	3	0 10	0	2		Yes-	500							1072
33	0		0	15	0	8	No.-	No.-	621	Yes.	17,561	0	38	4,003		1074
0	74	0	0	0	5	4		Yes.	1,758	Yes.	10, 172	0	197	5,299	198	1075
17	11	5	8	11	5	6	Yes	Yes.	1,800	Yes.	42,400	10,000	0		500	1076
23	33	0	1	0	0	1	Yes.	No.-	200	No.-	8,750	800			48	1078
18	0	9	0	2	0	1	No.-	Yes.	1,200	No.-	35, 000	,	0	3,000	0	1079
70	0	15	0	20	0	14	Yes.	Yes.	1,000	Yes-	300, 000	0	0	22,000	0	1080
15	0	9	0	0	0	0	No.-	Yes.	1,000	No.-	25,600	0		2,000	0	1081
8	10	1	2	1	0	0	No.-	No.-	150	Yes.	5,000	0	0	700	0	1082
2	14	2	6	0	3	6	Yes.	No.-	600	No.-	32,000			5,000		1083
22	0	10	0	5	0	2	No.-	Yes		Yes.	25, 250					1084
25	30	10	15	0	0	12	No.-	No.	200	Yes-	1,000			1,200	600	1085
12	${ }_{1}^{6}$	8					No.-	No.-	0	Yes.	6,000					1086
104	0	8	7	0	${ }_{0}^{4}$	4	No.-	No--	1,500	Yes.	3,050 1,000	2,0		1,200	1,000	1087 1088
2	5			0	0	1	No.-	No.-			1,000			319	100	1089
183	0	40	0	40	0		No.-	Yes.		NO--	30, 000			12,000		1090
6	13	0	0	0	0	0	No.-	No.	0	Yes.	900	95			9	1091
16	19			0	0	0	No.-	No.-	0	Yes.	30			400		1092
20	25	10	10	8	10	0	Yes	No--	100	Yes	3,025	200		2, 500	100	1093
$\stackrel{2}{8}$	3	-	0	1	2	0	No.-	No--	0	Yes-	1,000		105	200	105	1094
1	8	1	4	0	0	0	No--	No.-	0	Yes.	3, 200			800	1,500	1095 1096
20	0	10	0	4	0	3	No.-	No.-	100	Yes.	1,515			1,300		1097
19	10	15	0	0	0	3	No.-	No.-	0	Yes.	3,000					1098
10		10	0				No	No.-	0	Yes.	\%0					1099

Table 9.-Statistics of endowed academies, seminaries,

	State and post- office.	Name of institution.	Name of principal.			m-
	1	2	3	4	5	6
	NORTH CAROLINAcontinued.					
1100	Como	Buckhorn Academy	Julian H. Picöt, LL. D.-	Nonse	1	0
1101	Concorà	Concord Male School ----	J. P. Cook --.-.-. - - - - -		2	0
1102	---do....	Scotia Sezuinary --------	Rer. D. J. Satterfield, president.	Presb -----	1	3
1103	Conover	Concordia College	Rev. R.A. Yoder, A. M--	Luth	4	0
1104	Conway	High School --..-	Paul J. Long .-.-.-.-.-	Nonsec	1	1
1105	Denver ----	Denver Acaderny	Chas. L. Coon.....-. -- --		1	1
1106	Elizabeth City	Elizabeth City Academy	S. L. Sheep		2	4
1107	Enochville.-.-	Enochrille Academy ---	Rev. W. A.Lutz, A.	Luth	1	1
1108	Farmville	Farmville Seminary	W. E. Mewborn.	Nons	1	1
1109	Fork Church	Fork Academy	J. T. Alderman		2	1
1110	Franklin	High School .-	Thos. C. Reese	Merh	2	1
1111	Franklinton	Classical Institute	Chas. N. Finnell	Nonsect	1	0
1112	-.-do ..-.--	Female Academy	Miss L. V. Morri	0	0	1
1113	Fremont	Hasd School ..--	W. H. Hand.	N	4	1
1114	Gastonia	do	W. F. Marshall	Nonsec	2	1
1115	Germanton	Germanton Institute	W. B. Harris	0	1	1
1116	Gibsonville .-------	Fairview Academy-	Wm. T. Whitsett, superintendent.	Nonsect..-	1	3
1117	Gold Hill	Bethany Academy	L.H. Rothrock --...-.		1	1
1118	Green vill	Female Institute.-	John Duckett	Nonsect	1	3
1119	Harlowe	Harlowe Academy .-...-	Mise S. Tempe Betts .-	Meth	0	1
1120	Hayesville .-..-.-. -	Male and Female College.	H. P. Bailey--.-.-.-...	M. E. So...	2	2
1121	Henderson	Male Academy .--...-.-.	W. V. Savage ---------	Nonsect...	1	0
1122	Hendersonvil	Judson College	Richard H. Lewis	Bapt	2	4
1123	High Point	Female College	J. N. Stallings, D. D.--	Bapt	3	3
1124	Hillsboro	Select School	Miss A. C. Heartt-.		0	2
1125	Holly Spring-	Holly Spring Academy.-	C. F. Siler -------------	Nonsect...	2	2
1126	Huntersville.-.-.-.	High School ----..- -- -- -	Rev. W. W.Orr, A. M., president.	Nonsect.--	2	0
1127	Huntley	Salema High Scho	Geo. E. Butler	Bapt .-..--	2	1
1128	Jackson	Male Academy -----	J. W.Fleetwood	Nonsect...	1	0
1129	Kinston.	Kinston Colleqe.	F. A. Millidge.-.-.-.-.-	Nonsect...	2	2
1130	Leicester	Leicester Academy	H. F. Ketron, A. M...--	M. E.-...-	1	1
1131	Lencir	Lenoir Academy ...	E. L. Barnes ----------	Nonsect...	2	1
113.	Lexington	Lexington Seminary	W. J. Scroggs, A. M	Nonsect.-.	2	2
1133	Lincolnton	Piedmont Seminary	D. M. Thompson, A. M--	Nonsect.	1	1
1134	Marshallberg	Graham Academy	W. Q. A. Graham, A.B -	II. E	2	2
1135	Moffitts Mills	Shiloh Academy .	J. R. Miller .-.-------.	Christian	1	1
1136	Mooresville.	Mooresville Academy.	Hugh A. Grey, jr ------	Presb .-.-	1	2
1137	--do ---.---.-.--	Oak Institute -----.-.	R. B. Clarke, A. M .-----	Meth.	1	1
1138	Moravian Falls	Moravian Fails Academy.	G. W. Greene .-.-.------	Bapt .-.----	2	0
1139	Morehead City	Swindell's School.-.-..-	J. H. Swindell	Nonsect	1	1
1140	Mount Holly-.-.-.--	High School...-.-.-.-.-.--	Brevara Nixon	Nonsect.	1	1
1141	Mount Pleasant.--	Female Seminary	Rev. J. A. Linn, A. M ---	Luth .-.	1	3
1142	Newbern --.-.----	Collegiate Institute	G. T. Adams		5	3
1143	Norwood	High School.-.--	R. L. Smith, PH. B.	Nonsect	1	2
1144	Oakdale.-	Oakdale Academy	J. M. Anderson	Nonsect.	$\frac{1}{5}$	0
1145	Oak Ridge	Oak Ridge Institute	J. A. and M. H. Holt	Nonsect..-	5	2
1146	Oxford	Horner School .-.-.	Horner and Drewry-..		5	0
1147	Pineville.-...-...--	Carolina Academy	L. Shurley .-.-.-..-.--	Nonsect-.	1	2
1148	Pleasant Garden .-	Pleasant Garden Acad. emy.	W. E. Fentress, РН. B.-	Nonsect.--	2	0
1149	Raleigh	Male Academy .-.........-	Morson \& Denson.-.--	Nonsect.-.	2	0
1150	--.do	St. Mary's School.---.---	Miss E. D. Battle....--	P. E --....-	1	5
1151	Rise.	Dover Academy--..---.--	Jos. O. Dixon.....	Nonsect.--	1	1
1152	Rock Rest.-.-------	Rock Rest Academy .-.-	H. E. Copple.-....-. --	Baptist....	1	1
1153	Scotland Neck -.--	Vine Hill Male Academy	William C. Allen.....-	Nonsect..-	2	0
1154	Seaboard .------.--	Seaboard and Roanoke Institute.	W. C. Parker.-.-------		1	1
1155	Snow Hill	Greene Academy	Jas. 3. Williams .-..--	Nonsect...	2	1
1156	Statesville....-	Home Schooi .-.-.-.........	Mrs. Fannie Morrow.	Nonsect..-	0	2

and other private secondary schools for 1889-90-Continued.

	tu- ents in cond rade.	$\begin{gathered} \mathrm{br}_{\mathrm{pr}}^{\mathrm{pr}} \\ \mathrm{par} \\ \mathrm{fo} \\ \mathrm{co} \\ \text { le } \\ \mathrm{cla} \\ \mathrm{caz} \\ \mathrm{cou} \end{gathered}$			$\begin{aligned} & \text { am- } \\ & \text { cer } \\ & \text { rer } \\ & \text { ring } \\ & \text { ion } \\ & \text { inf } \\ & \text { ince } \end{aligned}$		若		مٌon							
				露		$\begin{array}{\|c} \text { Ig } \\ 0 \\ 0 \end{array}$			$\stackrel{\rightharpoonup}{z}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 8 \\ & 0 \end{aligned}\right.$	$\stackrel{\text { g }}{\stackrel{\rightharpoonup}{\circ}}$	$\frac{7}{4}$	$\begin{aligned} & \text { an } \\ & \\ & \hline \end{aligned}$	$\stackrel{\ddot{g}}{ }$	을․․	
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
$\begin{array}{r} 20 \\ 15 \\ 0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 30 \end{array}$	$\begin{array}{r} 10 \\ 3 \end{array}$	0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \text { No.. } \\ \text { No.. } \\ \text { No.. } \end{array}$	$\begin{aligned} & \text { Yes. } \\ & \text { Nos.. } \\ & \text { No... } \end{aligned}$	$\begin{aligned} & 4,000 \\ & 1,000 \end{aligned}$	Yes.	$\begin{aligned} & 1,000 \\ & 1,000 \\ & 30,050 \end{aligned}$	$\begin{gathered} 81,009 \\ --4,800 \end{gathered}$	220	81,000 600	5,530	1100 1101 1102
40	21	16	5	0	0	5	N	N	300	Yes.	00			1,800		03
15 12	$\begin{array}{r}3 \\ 13 \\ \hline\end{array}$	3	$\stackrel{0}{2}$	0	0	0	No.-		0	Yes.	300		93	200	250	${ }_{1104}^{1104}$
60	45	12	20	${ }_{3}$	0	12			100	Yes:	5,050			3,000		${ }_{1105}$
18	${ }_{10}^{12}$	10	10		0	0				Yes.	400		-	450		1107
10	12	i0	8	0	0	10	No--		200	Yes.	2,050		70			1109
40	O 30	30	10	0	0	0	N0:-			Yes-	3,050			1,200		1110
14	20		5	${ }_{4}$						Yes-	1,500		130	50		1112
101	0	15	0	12	0	8	N0.-	Tee	250	Yes-	6, 600		150	5,000	250	1113
4	${ }_{6} 6$	3	4	0	0	2	N0		0		1,000		62	1,300 600		11115
20	25	10	15	10	10	25	No.-	No	50	Yes-						1116
12				0	0		No.-			Yes			161			
18	${ }_{24}^{40}$	4	2	0	0	7			100	Yes.	10,000			2,500	2,900	118
25	25	10	10^{-}	0	0	0	No-.	No--	0	es.	4,000		135	00^{-1}		1120
30		25	0	0	0	0	No.-	No.-	30	NO--	2,500			1,100		21
25	${ }_{33}^{43}$	2	${ }_{33}^{15}$	0	0	${ }_{3}^{0}$	No.-	$\mathrm{NO}_{\mathrm{NO}}^{\mathrm{NO}}$	1,000	Yes.	10, 000			4,000		${ }^{23}$
${ }_{3}^{2}$	2 4 30 3	11	9	0	0	${ }_{3}^{0}$	No.		50	Yes.				1000		124
31	19	20	6	0	0	13	No--	No-.	100	Yes.	6,000	10,000	200	1,575	80	1126
12	11									Yes						
10 30	0 30	1	a	0	0	0	No..	N	0	No-	0					28
16	6			${ }_{4}$	1	0	No		${ }_{0}$	Yes.	3,600			450	50	39
${ }_{17}^{2}$	${ }_{23}^{0}$			3	0	0	No--	No--	150 300	Yes-	2,000			500	30	31
15	510	2	5	${ }^{3}$	0	0	No.-	No.-1	150	Yes.	${ }_{6}^{8,000}$			2, 1,100		${ }_{113}^{1132}$
18	${ }_{17}^{18}$	${ }_{-}^{-}$	\cdots	0	0	0	N		60	Yes.	1,000			293	150	${ }_{1135}^{1134}$
15	15		5	2	0	${ }_{0}$	No-.	No.-		Yes.	1, 450		${ }^{90}$	1, $1,3 \overline{6} \bar{B}^{8}$		${ }_{1136}^{1135}$
${ }_{40}^{18}$	${ }^{8}$	10	5	1	0	1	N	N	00	Yes-	2,500		92	800		137
6	${ }^{6}$ O 114	5	2	1	1	0	No--	No.-	250	$\begin{aligned} & \text { Yes. } \\ & \text { Yes. } \end{aligned}$	$2,000$		150°	570		1141
60	65			0	${ }_{0}$	${ }_{0}$										${ }^{11414}$
20	024			0	0	0	NO-	N	50	Yes-			150	00		1143
110	${ }^{3} 15$	75	10	15	0	10	No.	No	000	Yes.	13,000			7,000	1,000	145
92	10	40	20	20	0	12	-	NO-			500			, 500		46
${ }_{6} 6$	610			${ }_{0}^{4}$		0	No.		50	Yes.	$\begin{array}{r} 520 \\ 1,000 \end{array}$			600		11148
							No.-	No.		Yes.						
${ }_{6}$	${ }^{0} 1100$	${ }_{5}^{0}$	1	0	0	13			1,000		50, 300			15,000		50
17	715			0	0	0	No.-			Yes.						${ }_{115}^{1151}$
38	8	6	0	0	0	0	NO			Yes.	5,000			1,179 ${ }^{\text {a }}$		1153
7	${ }^{7} 1$	4	1	0	0	0	No									
	$5{ }^{5} 7$	2	2	0	0	0	No	No.-	0	Yes.	300			500		1115

Table 9.-Statistics of endowed academies, seminarics,

and other private secondary schools for 1889-90-Continued.

TABLE 9.-Statistics of endoued academies, seminaries,

	State $\begin{gathered}\text { and } \\ \text { office. }\end{gathered}$	Name of institution.	Name of principal.		$\begin{gathered} \mathrm{Nu} \\ \mathrm{ber} \\ \mathrm{se} \\ \mathrm{on} \\ \text { ar } \\ \text { in } \\ \text { stru } \\ \text { or } \end{gathered}$	$\begin{aligned} & \text { im- } \\ & \text { of } \\ & \text { nd- } \\ & \text { n- } \\ & \text { net- } \\ & \text { uct- } \end{aligned}$
					帯	
	1	2	3	4	5	6
	OHIO-continued.					
1191	Cleveland	Miss Mittleberger's English and Classical	Augusta Mittleberger (Miss).	Nonsect.-	0	7
1192	Columbus	Miss Phelps's English and Classical School for Young Ladies (151 Broad st.)	Miss L. M. Phelps.	Epis ...-.-	1	5
1193	Damascus*-	Damascus Academy ----	Henry H. Goddard,	Frieuds	3	1
1194	Dayton	St. Mary`s Institute	Rev. Jos. Weckesser	R. C	3	0
1195	Ewington	Ewington Academy	F. F. Vale, A. M	Nonsect.-	1	1
1196	Fostoria	Classical Academy	W. L. Mathers	U. Breth-	3	1
1197	Gallipolis.	Gallia Academy	A. B. Dunlap, PE	Nonsect	,	3
1198	Gambier .-	Haircourt Place Semi-	Miss Ada I. Ayer, A. B.	Epis	0	6
1199	.-.do -	Kenyon Military Academy.	Lawrence Rust, LL. D., rector.	P.E.	5	0
1200	Greenfield	Normal School.	Rev. Robert Story		1	1
1201	Green Spring	Green Spring Academy-	Morris J. Hole, M. S.,	Nonsect.	4	1
1202	Harlem Springs..	Farlem Springs College	John R. Steeves	M. E.	2	3
1203	Hudson..	Western lits rrve Acad-	Newtor B. Hobart.	Nonsect --	4	1
1204	Middlepcint	Western Ohio Normal	R. Schuyler Morgan.		6	2
1205	Mrinster	St. Mary's Institute	Sister M. Salesia	R.C.	0	2
1206	Mit. Vemon	St. Vincent de Paul's School	Rev. L. W. Mulhane.-	R.C	-	3
1207	New Hagerstown.	New Harerstown Acad-	J. Howard Brown		2	0
1208	Ox:ord	Western Female Semi-	Miss L. S. McKee .	Presb. .-.	0	11
1209	Perrysville	Green-Town Academy --	J. C. Sample, A. M	Nonsect	2	
1210	Portsmouth.....--	Ohio Military Academy-	Col. A. L. Bresler ----	Nonsect	-	0
1211	Reading -----------	Mount Notre Dame Academy.	Sister Agnes Aloysia	R.C	0	4
1212	Rogers	Mount Hope Academy --	A. I. Tarlor	Nons	2	3
1213	St. Martin's	Ursuline Academy for	Sister M. Baptista...-	R.C		7
1214	Saramnah.	Savannah Academy --	J. W. Bowlus.	Nonsect.	2	
1215	South New L ¢ime-	sew Lyme Institute....	J. Tuckerman, PH.D.,			3
1216	South Salem.	Salem Ac ademy	E. H. Frank	Presb	1	1
1217	Springfield	Springfield Seminary--	Miss S. R. Longwell .-	Nonsect .-	0	4
1218	Steukenville	Female Seminary--...	Rev. A. M. Reid	Presb.-.	2	5
1219	Tiffin	College of Ursuline Sisters.	Sister Ignatius.	R.C.	0	2
1220	West Farmington	Farmington College	Rev.E.B. Webster,A.m.	M.E	1	a
1221	Zanesville.-------	Putnam Classical In-	Rev. S. M. Glenn, A.M.	Presb .-	1	3
	OREGON.					
1222	Albany .-----.-.-.-	Collegiate Institute ..--	Rev. E. N. Condit,	Presb .-.	3	2
1223	Baker City	St. Francis Academy --	Sister Mary Augustine		0	2
1224	Dallas .-...	La Creole Academic Institute.	Thomas C. Bell, A. M.-	Nonsect	1	2
1225	Forest Grove	Tualatin Academy	D. L. Edwards	Cong-...-	2	1
1226	Milton	Milton Academy	G. W. Colcord		3	0
1237	Mount Angel	Mount Angel Academy-	Mother M. Bernardine	R. C	1	3
122	Newberg----------	Friends Pacific Academy.	Edwin Morrison -----	Frier	1	1
1229	Pendleton	St. Joseph's Academy .	Sister Mars Stanislaus	R. C.	0	2

and other private secondary schools for 1889-90-Continued.

Students in secondary grade.		Num-berpre-paringforcol-legeclassi-calcourse.		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$				高				'spuny esţonpoxd so qunourv				
				㡙												
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
0	75	0	6	0	0	13	No.-	Yes.	1,000		880,000					1191
0	150	0	80	0	0	10	Yes.	Yes	500	Yes.	60,225					1192
31	36			0	0	- 5	No.-	No.-	100	Yes.	2,300	\$4,000		\$1,400	8550	1193
50	0	,	0	50	0	3	Yes-	Yes	3,000	Yes.						1194
20	20	2	1	2	0		No.-	No.--	1,000	$\begin{aligned} & \text { No-- } \\ & \text { Yes. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & 41,500 \end{aligned}$	0	0	250	0	1195 1195
34	10	4	2	0	0	0			2,000	Yes.	5,500	12,000		775	900	1197
0	60	0	5	0	1	7	No.-	S.	100	No.	50, 500	0		12,000	0	1198
87	0	50	0	37	0	16	No.-	Yes	0	No.-	60, 200	0	0	0	0	1199
14	8	3	1	11	0	0										1200
40	25	13	1	11	12	7	No.-	Yes.	150	No.-	20,300	0	0	799	1,596	1201
35	27	5	2	8	2	0	No--	No.-	1,000	Yes.	:5,000	0	0	1,000	0	1:02
52	10	52	10		0	17	No--	Yes.	900	No.-	49,000	3,000	0	2,200	3,100	1203
183	82	0	0	0	0	19	No.-	No.-	200		1,975	0			0	1204
0	10	0	0	0	0	0	NO--	Yes.	200	Yes.	20,000			2, 300		1205
14	26	1	0	4	9	9	Yes.	No--	200	Yes.	15,000	0		500	12,000	1206
17	8	3	1	0	0	0			100	No.-	1,000					1207
0	155	0	19	0	18	9	Yes.	No.-	5,050	No.	116,000	29,500	0	22,000	12,065	1208
60	40	20	2	0	0	0	No.-	No--	1,200	No.-	5,500	0	0	800	0	1209
29	0	18	0	0	0	0	Yes-	Yes.	500	Yes-	40, 010			4,000	150	1210
0	65	0	0	0	0	2	Yes.		1,000	Yes.		0	0	0	0	1211
40	50	25	20	15	30	6	No.-	No--	400	Yes.	10,400	0	0	3,150	0	1212
0	58			-	c	4	No.-	No.-	6,000	Yes.	76,500	0		12,000	0	1213
90	77	,	0	0	0	3	No.-	No--	650	No.-	5,500	2,500		1,800	300	1214
90	71	14	6	0	0	6	No	No.-	550		15,000					1215
25	20	8	5	0	0	4	No--	No.-	700	No.-	2,600			1,050	60	1216
6	43	0	0	3	0	1	No.-	Yes.	50	Yes.	100	0	0	4,000	0	1217
0	36				0	5	No.-	Yes.	5, 000	Yes.	41,000	0	0	3,000	0	1218
0	25			0	0	5	No.-	Yes.	700	Yes.	600					1219
150	50			0	0	14	No.-	No.-	300	No.-	18,600	2,800				1220
	35			0	0	,	No.-	Yes.	6,000	Yes.	12,000	10,000			600	1221
28	29	20	21	0	0	1	No.-	Yes.	2,700	Yes.	41,500			3,100		1222
	20	0	15	0	0	2	No.-		350	Yes.					30	1223
20	12	0	0	0	0	4	No.-	No.-	300	Yes	7,525	5,500		626	440	1224
35	37	9	4	8	14	12	N.J.-	Yes.	6,000	No.-	50, 200	100,000			9,000	1225
30	40			0	0	0	NO.-	No.-			12,050			3, 600		1226
${ }_{17}^{0}$	37	-		0	0	4	Yes.		150	Yes-	30,150			, 425		1227
17		2	3	4	2	8		NO.-	200	Yes.	-5,650	0	0	2,000	50	1228
0	24			0	0	5	Yes.		100	Yes.	10,500			500		1229

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

	State and post-	Name of institution.	Name of principal.		$\begin{gathered} \text { Num- } \\ \text { ber of } \\ \text { sec- } \\ \text { ond- } \\ \text { ary } \\ \text { in- } \\ \text { struct } \\ \text { ors. } \end{gathered}$	
					安	$\stackrel{\text { ¢ }}{\text { ¢ }}$
	1	2	3	4	5	6
	PENNSI TANIAcontinued.					
1274	Media	Brooke Hall Female	S. C. Shortlidge, A. M..	Epis.-	1	4
125	Mercersburg	Mercersburg College.	Geo. W. Aughin-	Reformed.	3	2
1376	Meyersdale	Preparatory School	John D. Meese, M. PH	Nonsect.	1	2
1277	Millville ...	Greenwood Seminary --	Miss E. H. Cutler	Friends.	0	3
1278	Mount Pleasant .-	Western Pennsylvania Classical and Scientific Institute.	Leroy Stephens, A. M., D. D., president.	Bapt....	2	3
1279	Muddy Creek Forks.	Pleasant Grore Academy.	James Yeats	Presb	1	0
1280	Myerstown	Palatinate College...-.-	Rev. Wm. C. Schaeffer, PH. D., president.	Reformed.	6	3
1281	Nazareth	Nazareth Hall.	Eugene Leibert.	Moravian.	,	0
1288	New Bloomfield..-	Bloomfield Academy.-	J. M. Arnold, A. M	Nonsect---	2	1
1283	Netr Lebanon.....	McElwain Institute St.	C. N. Moore --.........	Nonsect.	3	0
		St. Mary's Coll	rector. ${ }^{\text {R }}$, Schwarz,		7	0
1285	North Hope.-.....	North Washington Academy.	Prof. D. R. Sumstine, A. B.	Nonsect..-	1	1
1286	North Wales..	North Wales Academy and School of Susiness.	S. U. Brunner..........	Nonsect.	5	1
1287	Oakdale Station--	The Oaks -......-......--	Anson J. Dill, 'PH. D...	Nonsect.-	5	3
1288	Ogontz	Cheltenham Academy--	John C. Rice, A.	Nonsect...-	5 3	$\stackrel{2}{2}$
1290	Oxford	Oxtord Academy	Miss Anna F. Webb---1	Nonsect...-	5	3
1291	Parkesburgh	Parkesburg Academy --	James A. Clarke	Presb		0
1292	Pennsburg -	Perkiomen Seminary	James H. Griffth,	Nonsect.	1	2
1293	Philadelphia	Academy of the Protestant Episcopal Church (1324 Locust st.).	J. W. Pobins, D. D., head master.	P. E.-	6	0
1294do.	$\underset{\text { Boarding }}{\text { School }} \underset{(4112}{\text { and }} \underset{\text { Spruce }}{\text { Day }}$ st.).	E. F. Gorden.		1	8
1295	do.	Cooper's School for Young Ladies (4117 Walnut street).	Misses Annie and Sarah Cooper.		0	6
1296	.do.	Enclish, French and Music School (1700 Green street).	Miss Harriet Boyer.-	Nonsect..-	0	6
1297	..do.	The Forsythe School, (21~2 Locust street).	John E. Forsythe .-..-	Nonsect.--	6	9
1298	---.do.	French and English Home School (4313 Wainut street).	Miss Henriette V. Clerc, Marion L. Pecke.	Epis-	0	6
1299	do	Friends' Central High School (15th and Race streets).	George L. Maris and Miss Annie Shoemaker.	Friends .--	9	29
1300	-do.	Friends (Orthodox) Select School (140 N. 16 th street).	J. Henry Bartlett, superintendent.	Friends..-	3	10
1301	.do.	Miss Gibson's 'School (3106 Sprnce street).	Miss M. L. Gibson...-	Nonsect...	1	7
1302	-do.	Girar College for Orphans.	Adam H. Fetterolf, Ll.D., president.		5	2
1303	-do.	$\underset{\text { Miss Irwin's School }}{\text { (2011 De Lancey place). }}$	Miss Agnes Irwin...-		2	13
1301	...-do.------.......-	Martins Boys Street).	Geo. F. Martin		3	0

and other private secondury schools for 1889-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

State and post-	Name of institution.	Name of principal.	Religious denomination.	Number of sec-ondary in-structors.	
1	2	3	4	5	6
PENNSYLVANIAcontinued.					
Philadelphia	Mount St. Joseph's Academy (Chestnut Hill).	Sisters of St. Joseph	R.C.------	0	7
do	North Broad Street Solect School for Young Men and Boys (700 N . Broad street).	George Eastburn, A. M., PH. D.	Nonsect.--	8	0
d	Rittenhouse Academy--	De Benerville K. Ludwig.		7	0
	Rugby Academy	Caleb Allen..--.-.-.-.	Nor	8	1
do	School for Boys (401 S. $2 \because d$ street).	Wm. S. Blight, jr		4	0
d	School for Girls (5012 Elm avenue).	Mrs. L. M. B. Mitchell -		0	4
do	West Green Street Institute.	Miss Martha Laird.-.-	Luth .-.-.--	1	5
do.	West Walnut Street Seminary (2045 Walnutstreet).	Mrs. Henrietta Kutz --	Presb.-----	0	6
do	William Penn Charter	Richard M. Jones, M.	Friends ---	4	0
	School. Young La-	A., head master.			
Pittsburg	Ursuline Young Ladies' Academy.	Sister GertrudeBurns	R.C-------	0	4
Pleasant Mount	Pleasant Mount Academy.	Miss H. M. Miller, M. D.	0...-.-------	1	2
Pottstown	Normal Institute -------	A. H. Herbs		1	1
Prospect.	Normal and Classical Academy.	F. W. Magee, A. M	Nonsect --	1	1
Purchase Line .-.-	Purchase Line Academy.	D. R. Houk, reporting officer.	Nonsect --	1	0
Reading	Selwyn Hall.-.-.-----.--	Wm. J. Wilkie .-.----	P.E.-.----	4	0
Reidsburg	Reid Institute - ---------	Austin.W.Nichols, M.D.	Bapt .-...-	1	2
Riegelsville	Riegelsville Academy --	James R. Lewis A. B---	Nonsect --	1	1
Rimesburg	Clarion Collegiate Institute.	Rev. W. Wilberforce Deatrick. A. M.	Reformed.	3	2
Scran	The G een Ridge School.	Misses Snyder		0	4
-.-.do -	School of the Lackawanna.	Rev. Thomas W. Conn and Walter H. Buell.	Presb ----	4	4
Selins Grove	Missionary Institute (classical department).	J. R. Dimm, A. M., D. D.	Luth .-.---	6	1
S 3 wickley	Sewiskley Academy	John Way, jr	Nonsect --	5	3
Springtown..	Springtown Academy --	M. L. Horne	Nonsect --	1	0
Stewartstown.	English and Classical Institute.	John E. Bahn	Nonsect .-	2	0
Sugar Grore .-.-.-	Suga: Grove Seminary	Rev. R. J. White	U. Breth	1	4
Towanda.	Susquehanna Collegiate Institute.	Edwin E.Quinlan, A.M	P \cdot esb	4	4
Uniontown	Redstone Academy .-..-	Jas. H. Grifinth	Nonsect --	2	1
Ward	Ward Academy .-..-----	Benj. F. Les gett, A. M., PH. D.	Meth .-.---	1	2
Washington	Trinity Hall	Rev. P. S. Mesny, M. A.	P. E. -----	3	0
Waterford---	Waterford Academy .-..	T. R. Greene, A. B ...--	Nonsect .-	$\stackrel{2}{2}$	3
West Chester	Darlington Seminary for Young Ladies.	Richard Darlington.--	Friends .--	2	5
West Philadelphia.	Hamilton School.......-	Leroy B. Peckham, head master.	Nonsect .-	5	0
West Sunbury	W est Sunbury Academy.	Thos. E. Moffatt.-.-.--	Nonsect --	2	2
Wilkesbarre.-----	Harry Hillman Academy.	Edwin L. Scott, A. M. PH. D.	Nonsect .-	4	0
Williamsport	Dickinson Seminary	Edward J. Gray, president.	M. E-	7	8

and other private secondary schools for 1889-90-Continued.

TABLe 9.-Statistics of endowed academies, seminaries,

	State and post-	Name of institution.	Name of principal.			
	1 1	3	3	4	5	6
	PENNSYLVANIAcontinued.					
1340	Williamsport.-...-	Ladies' Classical Insti-	Miss J. M. Wilson		0	3
1341	Wyncote...	Chelton Hills Select Schcol.	Mrs. E. W. Heacock and Miss Annie Heacock.		1	6
	RHODE ISLAND.					
1342	Providence	English and Classical School.	Charles B. Goff, A. M--	Nonsect.--	8	0
1343	- do	Friends' School.........-		Friends .--	9	8
1344	do	La Salle Academy .-..--	Brother James	R.C.-.-	7	0
1345		School forYoung Ladies	Miss J. L. Abbott .	Nonsect.--	1	7
	SOUTH CAROLINA.					
1346	Anderson	Patrick Military Institute.	John B. Patrick......-	Nonsect.-.	7	0
1347	Charles	Avery Normal Institute	Morrison A. Holmes.-	Cong ------	1	4
1348	-.do	Female Seminary-..-.--	Miss E. A. Kelly .----	Nonsect..-	5	10
1349	do	German School	C. H. Bergman --	0	1	2
1350	do	High School of Charleston.	Virgil C. Dibble.-.		6	0
1351	do	Porter Academy	Rer. A. T. Porter, D.D., rector.	P. E. .-.---	5	2
1352	-do	Private School...-.-.-.-	Mrs. I. A. Smith.-....-		0	5
1353	--do	University School	W. D. McKenney		2	0
1354		Wallingford Academy--	Rev. T. A. Grove.	Presb	1	1
1355	Colsesbury	Conference School.-..--	C. C. Reed -...-	M. E.	1	1
1350 1357	Donaldsville .-.---	"The Donald's Schcol" --	J. E. Buzhardt	0 --...---	1	1
1357	Frogmore...-......-	Penn School, Normal and Industrial.	MissLaura M. Towne, Miss Ellen Murray.	Nonsect.	0	2
1358	Greenwood	Male High School.......	Rufus B. Wilson.-...-	Nonsect.--	2	,
1379	Kelton	Kelton Academy	E. R. Aycock	Nonsect.--	2	0
1360	Kershaw	High School.	Rev. G. A. Lowell.-.-.	Nonsect	1	1
1361	Kingstree.	Kingstree Academy .-.-	M. M. Lander.-		1	1
1352	Lancaster	Franklin Institute...---	Chas. Lovejoy ----------		1	1
1363	Leesville.	English and Classical Institute.	Rev. L. E. Busby, A. M., president.	Nonsect.--	3	5
1384	Manning -.-.-.-----	Collegiate Institute....-	S. M. Clarkson	Nonsect.--	1	2
1365	Moffettsville.	Moffettsville Academy.-	S. P. McElroy .-.......-	Nonsect.--	1	1
1366	Ninety-six.	High School	J. C. Cork --....-------	Nonsect...	1	2
1367	O.K...--.-.-....--	Tabernacle High School	C. A. Plyler, jr	Math -...--	1	1
1368	Orangeburg-..-	Sheridan Classical School.	Hugo G. Sheridan .-.-	Nonsect.--	2	2
1369	Raymond.-.-.-.-.--	Limestone High School.	Miss Annie Inabuit		1	1
1270	Reidville	Female C ll ge.-.-....-	A. Spencer, A. M -------	Presb -...-	1	3
1311	--do-...-............	Male High School-	A Spencer, A. M .-....---	Presb .-.---	2	1
1372	Sumter .-----.-.---	Sumter Institute.........	Mrs I. A. Browne and Miss E. E. Cooper.		0	7
$12 \% 3$	Townville	Townville Academy .-.-	Neil Macanley	Nonsect.--	2	1
1374	Union.	Clifford Seminary-...-.	Rev. B. G. Cilford .---	Nonsect.--	1	4
1375	Williamston ------	Male High Schrol.-....-	Earle Grady....-.-.-.--	Nonsect..-	1	0
1376	Woodruff \qquad SOUTH DAKOTA.	Bethel Male and Female High school.	F. B. Woodrufi	Presb	2	1
1377	Canton --	Augustana College.-..--	Anthony G. Tuve	Luth.....-	3	3
1378	Scotland	Scotland Academy --..---	John O. Duguid	Presb	3	3
1379 1380	Sioux Falls	All Sa nts' School	Helen S Peabody.	P. E	0	6
1380	--do --.-.--------	Sioux Falls University-	E. B. Meredith	Bapt	3	3
1381	Yankton....-.-.-.----	Academy of the Sacred Heart.	Very Rev. Mother Gertrude Leapi, O.S.B.	R. C.-.-...	2	0

and other private secondary schools for 1859－90－Continued．

NNoNO\％	20゙ローコ	0 OrO－	台認ずす。		Nさすがいい。	To	気気っ出	¢	\bigcirc	析	F	－	\checkmark	Male．	
	0\％00	\％08\％			いいーヅ\％	\bigcirc	－¢゙った！	\bigcirc	－1\％氝	\bigcirc	T	¢	∞	Female．	
01000	凶び可	年000	あ！びッす	○ちんいつげメ	－vons：		－0 ω	\bigcirc	－0゙す	$\stackrel{\infty}{+}$	，		＊	Male．	©
WOOMO	No 0	Oช゙ง		－oovrröo	O＂t－roi \％	\bigcirc	ondr	\bigcirc	－ON	\bigcirc	，		${ }^{10}$	Female．	
N－0N（\％	－6\％or	0000	$\infty 000$	00000 cos	0 O00000	¢	． 0000	\bigcirc	000	\％	－	\bigcirc	品	Male．	Oigin oixug z
200：00	00001	0000	rrovioo	000010	000000	\bigcirc	0000	\bigcirc	－00	\bigcirc	\bigcirc	\bigcirc	${ }_{20}$	Female．	慜
－べo 0	00－70	W－ON	Fo000	000000	200000	\bigcirc	こちオ゙ち	\bigcirc	ちゃヶ\％	§	ω	\bigcirc	$\stackrel{4}{6}$	Total number of graduates for 1889－90．	
MZ, 80000		ŽムそZ			$\begin{array}{ll} k_{1} z_{4} z_{1} \\ \text { mo } \\ \text { no } & 1 \\ \hline \end{array}$	$\begin{aligned} & \stackrel{4}{8} \\ & 0 \\ & \hline 1 \end{aligned}$		$\begin{aligned} & y_{1} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & y_{1} z_{4} \\ & o \\ & \vdots 1: \\ & \hline \end{aligned}$	容	$\underset{\substack{1 \\ 0}}{ }$	$\begin{aligned} & 1 / 4 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	药	Is drawing obligatory？	
®ロロ゚○						$\begin{aligned} & \stackrel{y}{8} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & z_{1} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & 4 Z A \\ & \infty, 4 \\ & 0 \end{aligned}$	$$	$\begin{gathered} 4 / 1 \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & y_{1} \\ & 0 \\ & \hline \end{aligned}$	$\underset{c}{\mathrm{~m}}$	Has the school a gymnasium？	
\％0్రర8\％\％\％	00	\％\％O		合00： 08	8008: 范	$\stackrel{\square}{8}$	웅		Ho	$\stackrel{-}{8}$	！	！	管	Number of volumes in library．	
44444 			$\mathbb{O}_{\mathscr{R}}^{\mathbb{O}_{2} \mathbb{O}_{2} \mathbb{O}_{2} \mathbb{D}}$			$\begin{gathered} z_{1} \\ \vdots \\ \hline \end{gathered}$		$\begin{aligned} & \mu \\ & 0 \\ & \hline \\ & \hline \end{aligned}$		$$		y_{1}	봉	Has the school an elementary department？	
								$\begin{aligned} & 5 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \text { 领 } \end{aligned}$	$\begin{aligned} & \text { 售 } \\ & \text { 8 } \end{aligned}$		$\underset{\infty}{1}$	Value of grounds，buildings， and apparatus．	
80000	！	008	\％	（ 100			0						$\underset{6}{6}$	Amount of productive funds．	
：	管氙：		－\％ibitu		－8\％\％		$\begin{array}{l:l} \hline 8 & \\ 80 & 0 \\ 80 & 0 \end{array}$		！	\bigcirc			${ }_{0}^{2}$	Amount of State add．	
Nis	：			Nit ris	号		Mr：		家景	$\begin{aligned} & 6 \\ & 8 \\ & 8 \\ & \hline 8 \\ & \hline \end{aligned}$			$\stackrel{N}{\sim}$	Income from tuition fees．	
	－${ }^{1}$ ¢	100	$\begin{array}{c:c} \circ \\ \hline 80 \% \\ \hline \end{array}$	：	出気穴：		$\begin{array}{l:c} 1 & \infty \\ \hline & \\ \hline \end{array}$				！		N	Income from productive funds，gifts，and bequests．	
	W్ష్Me	W్ష్tu			oultm 	范		茳	器窓器	㞿		茧			

Table 9.-Statistics of endowed academies, seminaries,

	State $\underset{\text { office. }}{\text { and }}$ post-	Name of institution.	Name of principal.		Nu bet s on a i str 0 -	
	1	2	3	4	5	6
	TENNESSEE.					
1382	Alamo	Thompson's Classical Institute.	R. S. Thompson...----		1	0
1383	Bellbuckle	Webb School. --	W. R. J. M. Webb	M.E.SO---	5	0
1384	Bells	Male and Female Acaderny.	M. Rose	Nonsect --	1	1
1385	Bloomingdale	Kingsley Seminary	Joseph H. Ketron, A. M-	M. E	3	1
1385	Bristol---	Sullin's Female College.	Daniel S. Hearon .-.--	M. E. So	2	7
1387	Carlock	Hoyle [nstitute	George Metcalfe.-----	Nonsect --	2	0
1388	Cedar Hill	Cedar Fill Academy .-.-	W. I. Harper ---------	Nonsect --	1	3
1389	Charleston	High School	M. R. Burke. A. M	Nonsect --	2	1
1390	Chattanooga	Caulkin's School	Wilford Caulkins, A. M.	Nonsect	1	2
1391	-...-do.---.--	Chattanooga College for Young Ladies.	John L. Cooper, A. M-		1	2
1593	Church Fiill	Church Hill Academy .-	P. L. Henderson, A.B.	Nonsect	1	3
1393	Clarksville	Female Academy ------	Mrs. E. G. Buford.---	M. E. SO-.	0	2
139.	Clifton	Masonic Academy	D. C. Stunkard........-	Nonsect	2	1
1395	Clinton	High School--------.---	E. E. Foster, reporting officer.	Nonsect -	1	1
1396	Columbia.	University High School.	Henry J. Fusch .-...-.	Nonsect .-	1	0
1397	Covington	Tipton Female Seminary.	George D. Holmes .-.-		1	4
1398	Culleoka	Culleoka Academy	Marvin West ----.-. --	M. E. So .--	1	1
1399	Danceyville	Brownsville District High School.	W. A. Tanner	Meth . .-.-	1	1
1400	Dayton	Masonic College --------	S. W. Tindell	0	2	3
1401	Decaturville	Decaturville Academy --	J. F. Hughes		1	1
1402	Eagleville	Eagleville School.-.-..-	J. N. Huff	Bapt	1	5
1403	Elizabethtown	Davies Academy	E. B. Waller		1	2
1404	Evensville..--	Tennessee Valley College.	C. C. Ferguson -------	Nonsect --	1	2
1405	Flag Pond.	Flag Pond Seminary .-.	W. T. Gillis	Bapt .-..--	1	1
1406	Floyds .---	Walnut Grove Academy	L. S. Fuller---------------		2	1
1407	Gordonsville	Gordonsville Academy -	N. L. Gold		0	2
[408	Grand View	Normal Institute .-.-...	R. E. Dickson	Cong	2	4
1409	Greenfield	Greenfield Institute.-.--	J. B. Reed --		2	2
1410	Howell	Howell Academy .-...-. -	Miss Sallie B. George.		0	2
1411	Jacksboro	Franklin Academy .-.-.-	J. H. and M. G. Walker	Nonsect.--	4	1
1412	Kyles Ford	Blackwater Seminary--	F. R. Sanderson.--.--	Bapt .-----	2	1
1413	Lexington	Lexington Academy --.-	S. A. Mynders, A. B.-.-		1	2
1414	KcKenzie	McTyeireInstitute ---.--	Joshua H. Harrison---	Meth	2	2
1415	Memphis	Clara Conway Institute.	Miss Clara Conway ---	Nonsect.--	0	6
1416	---do.	Memphis Institute.-.-.-	Wharton S. Jones-.---	Nonsect.--	3	4
1417	-..-do	St. Agnes Academy --.--	Sister Mary Thomas O'Meara.	R. C------	0	4
1418	--do	St. Mary's School---..--	Sister Superior-------	Epis	0	8
1419	Milan	College Schools	C. Ph. Kellogg, PH. D.-		0	2
1420	Nashville	Montgomery Bell Academy.	S. M. D. Clark, A. M...-	Nonsect.	3	1
1421	do	St. Cecelia Academy	Mother Ursula	R. C	0	8
1422	Newark	Walnut Grove Academy	D. L. Lansden....-....-		1	1
1423	Newbern.	Union Male and Female Seminary.	C. S. Brown, jr., B. S.--		1	2
1424	New Market.	Holston Seminary --.---	J. A. Kaull	M. E.	1	1
1425	--do	New Market Academy --	W. C. Broady		1	3
1426	Orlinda	Normal Academy ...--.	D. B. Borthick		2	1
1427	Orysa	Hatch Academy ---------	C. A. Folk	0	1	0
1428	Overall	Salem Academy - --......-	L. V. Ellington		1	1
1429	Paris..	Male and Female Select High School.	T H. M. Hunter		1	3
1430	Parrottsville	High School.---------	J. W. Lucas	Nonsect..	1	2
1431	Partinville	Male and Female Institute.	Hugh W. Long---....-	Nonsect...	1	1
1432	Readyville...--.	High School.-.............-	V. M. Fulton.-	Nonsect...	1	1

and other private secondary schools for 1589-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

State and postoffice.	Name of institution.	Name of principal.		$\begin{array}{r}\text { Nu } \\ \text { ber } \\ \text { s } \\ \text { on } \\ \text { a } \\ \text { in } \\ \text { stru } \\ \text { or } \\ \\ \hline\end{array}$	
1	2	3	4	5	6
TENNESSEE-cont'd.					
Rutherford	Male and Female Acad-	J. Stanley Wilhelm.--	Nonsect..-	1	3
Saltillo	Male and Female Acad. emy.			1	3
Savanna	Hardin College.-.---.-.	J. A. Hanna		1	5
Shelbyvill	Dixon Academy	T. Stiles Bell		1	0
Sneedville	McKinney High School	S. L. Carson.	Nonsect	1	1
Somerville	West Tennessee Military Academy.	E. A. Maddox	Nonsect.	2	0
Sparta	Andrew Jackson College	T. L. Mitchell	Nonsect.	1	1
Spring House	Sulphur Springs Academy.	Cummins C. Justus.	Nonsect.--	2	0
Stony Pcint	Maxwell Academy .-.-.-	R. M. Dewey	Presb	1	0
Sweet Water	Female Institute.---.-.-	Thos. L. Bryan		1	2
Sweet Water	Male College -----------	J. L. Bachman	Nonsect	2	2
Tiptonville .-------	Male and Female Academy.	Gearge Compton	Nonsect.-	1	1
Trenton	Laneview Academy-..--	J. W. Meadows		1	2
Troy	Obion Normal College.-	Fred J. Page, L.I		0	2
Union City --------	Crockett and Thomas School.	Crockett and Thomas.		3	0
Verona	Verona Academy -------	W. H. Beasley --------	Meth	1	1
Virtue	Union High School.....--	John P. Griffth, B.S.,		2	0
Washington Sollege.	Washington College ...-	J. W. C. Willoughby, -president.	Presb	5	1
Warerly .-.......--	McAdow Seminary --...-	W. E. Miller.-.-.-.-...-	Cum.Pres.	2	2
Well Spring--.-.--	Powells Valley Seminary.	Ed. R. Ling-------	M. E.------	3	1
White Pine..-.-...-	Edwards Academy	Rev. Mont. Groenendyke.	Unitea B'n	2	1
Williston	Williston Academy	T. T. Hardy	Nonsect.-	1	1
Woodbury ---.-....	Woodbury College.-..--	Alfred J. Brandon-.-.-	Nonsect..-	3	4
Alto.	Coöperative Educational Association.	J. B. Collins.-----------	Nonsect..-	1	2
Austin	German English Academy.	O. G. Neuman	0..	1	1
Belton	Male Academy .------.--	Chas. H. Wedemeyer --		2	3
Bunham	Fannin College	E. C. Hudson		3	0
.-do	Masonic Female Institute.	W. D. Allen--------...-	Nonsect..-	2	4
Brock	Olive Branch Collegiate Institute.	G. D. Adams.		2	1
Brownsville .-..-.-	Incarnate Word Academy.	Mother St. Ange .-.---		0	3
Brownwood .-.-.--	Howard Payne College.-	A. J. Emerson, president.		3	3
Cedar Hill	Central Institute.-.-...--	E. W. Dallas		2	1
Chico	Lee College.-------.-----	W. J. Haggard		1	2
Cold Springs	Cold Springs Academy --	J. H. H. Ellis		2	2
Commerce	Commerce College	H. P. Eastman		1	2
Corpus Christi ...-	Female College.-.-.-.-. -	J. D. Meredith	Nonsec	1	1
Dangerfield.--..---	High School.-.---	B. C. Chrisman		1	2
Galveston	Ursuline Convent	Mother St. Agnes	R. C	0	4
Geneva	Genera Academy	H. F. Killen....	Nonsect.--	1	0
Hearne -----------	Hearne Academy ---.-.--	H. M. Williams	Baptist .--	1	1
Jasper --------------	Southeast Texas Male and Female College.	D. C. Peacock.	$0 . .$	3	2
Kilgore .------ --- --. Lancaster	Alexander Institute .-.-	George J. Nunn, president. Ruluph Sebring \qquad	M. E. So --	1	4

and other private secondary schools for 1859－90－Continued．

To		贸	实	－o3m	15	$\stackrel{\text { ¢ }}{ }$	8	＊	®～	出	No	出医家	ぜったむ	－u＇t	En＊OC	10	§	4	Male．	
\％\％		＊	ザ	¢0\％	$\stackrel{\square}{\infty}$	－	gis	1	No	\％	$\infty \times \infty$	¢	Ь0రై	충	－ーット出	20	¢	（ 8	Female．	
	－－o wo vごち	－	\bigcirc	\bigcirc－	$\stackrel{\sim}{\infty}$	ω	光－	\bigcirc	－	刃	： 0	い边む	－O，How	∞－	Wや0゙の	$\stackrel{\square}{\circ}$	\bigcirc	\bigcirc	Male．	
		－	\bigcirc	莫00	穴	ar	$\infty 0$	\bigcirc	00	ภ	： 0	กニ゙ッ	000゙ィ	N	OHOA	＋	\bigcirc	－	Female．	
00		\bigcirc	$\stackrel{ }{*}$	－Pio	$\stackrel{\sim}{4}$	－	＊	－	あっ	－	00	$0=0$	0000	चit	ocrov	∞	\bigcirc	m	Male．	
00	No OT00弋00	\bigcirc	or	500	∞	\bigcirc	年。	－	い○	－	00	－6゙○	00 00	－		犬	0	${ }_{10}$	Female．	
$\bigcirc 0$	00出000N0		0	のカロ	$\stackrel{\sim}{\infty}$	－	ーロ	\bigcirc	00	∞	®o	000	OnOTO	\bigcirc	0000	\bigcirc	\bigcirc	$\underset{\omega}{\infty}$	Total number of graduates for 1889－90．	
				$\begin{gathered} 4 \sharp 4 \\ 04 \\ \vdots 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { M } \\ & \underset{y}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & y_{1} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & z_{1} 4 \\ & 04 \\ & \vdots 1 \\ & \hline \end{aligned}$	$\begin{aligned} & z_{1} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} \text { ry } \\ 00 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 1 / 4 \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & 74 \\ & 4 \% \\ & 1 \\ & \hline \end{aligned}$		$\begin{array}{l:l} z Z \\ 0 & \square \\ 0 & 0 \end{array}$	$\begin{aligned} & y_{1}^{1} \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & Z_{4} Z_{14} \\ & 00 \\ & 10 \\ & 1 \end{aligned}$	$\begin{gathered} \stackrel{4}{\infty} \\ i \\ i \\ \hline \end{gathered}$	宕	$\mathrm{K}_{\mathrm{k}}^{\mathrm{m}}$	Is drawing obligatory ？	
$\begin{gathered} 14 \\ 48 \\ 0 \\ 14 \\ i \end{gathered}$	oo ooooo			$\begin{aligned} & \text { ža } \\ & 0 \end{aligned}$		$\underset{\substack{4 \\ \underset{R}{2} \\ \hline}}{ }$	$\begin{aligned} & 4 y y_{1} \\ & 000 \end{aligned}$	4	$\begin{aligned} & \text { Yy } \\ & 0.0 \\ & 1: \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ \hline \end{gathered}$	$\begin{aligned} & y_{1}^{4} / 4 \\ & \vdots! \\ & \vdots! \end{aligned}$	$\begin{aligned} & y_{14} Z_{4} \\ & 00^{\circ} \end{aligned}$	$\begin{array}{c:c} 4 \\ \text { 年多 } \\ 0 & 0 \end{array}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 々ムそそ } \\ & 0.0 \\ & \vdots \\ & \vdots \end{aligned}$	${ }_{3}{ }_{0}$		${ }_{c}^{e r}$	Has the school a gymnasium？	
$\stackrel{4}{8}$	$\begin{array}{l:l} 0 \text { 炭0 } & 0 \text { 句00 } \\ \hline \end{array}$		잉 안	cil_{\circ}^{1}	\％	\bigcirc	00	O\％	운웅	\％ 0	－	-				\bigcirc		茴	Number of volumes in l1brary．	
				$\begin{aligned} & \text { Gifu} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \substack{1 \\ i \\ \hline} \end{aligned}$	$\underset{\sim}{\aleph}$	$\begin{aligned} & \text { Min } \\ & \text { Nin } \\ & \text { Min } \end{aligned}$	$\begin{aligned} & \stackrel{4}{8} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Wi4 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mu \\ & 0 \\ & i \end{aligned}$	$\begin{gathered} 1 \\ 0 \\ 1 \\ \hline \end{gathered}$		$\begin{array}{ll} \mu M \\ \hline \end{array}$	$\begin{aligned} & 4.4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\underset{\substack{\underset{O}{2} \\ \hline \\ \hline}}{ }$	$\underset{\substack{\underset{\sim}{2} \\ \hline \\ \hline}}{ }$	$\underset{4}{m}$	Has the school an elementary department？	
						$\begin{aligned} & 5 \\ & \text { \%̈ס } \end{aligned}$		$\begin{aligned} & \text { M } \\ & \text { ষ్రి } \end{aligned}$	$\begin{aligned} & \infty \infty \\ & \text { eriek } \\ & \text { encou } \end{aligned}$	$\begin{aligned} & \text { " } \\ & \text { io } \\ & 08 \end{aligned}$	రై		OU心080	당ㅎㅇ	10 wos 엉ㅇㅇㅇ융			$\underset{\infty}{\operatorname{H}}$	Value of grounds，buildings， and apparatus．	
\bigcirc	（1） 1010			$\begin{array}{l:l} 10 & \\ 0 & 0 \\ \hline 0 & 0 \end{array}$		\bigcirc	＋	\bigcirc		0			，	\％	－ 0			$\underset{\theta}{6}$	Amount of productive funds．	
\％${ }^{\circ}$（0్రㅇ	管:		\％			¢	！	W	N0．		0	－	\％	！			然	${ }^{20}$	Amount of State aid．	
No io			$\begin{gathered} \omega \\ \hline 8 . \\ \hline 0 \end{gathered}$			귱	$\begin{aligned} & \omega \\ & \text { coio } \\ & \text { © } \end{aligned}$	잉	\％	-	峆	$\begin{aligned} & \text { No } \\ & \text { 出 } \\ & \hline 0 \\ & \hline \end{aligned}$	\%ivisix		\％	9		$\underset{=}{\underset{\sim}{2}}$	Income from tuition fees．	
0				\bigcirc		\bigcirc	！	0	No	\％		－	1 		\％ 8 \％：	\bigcirc		$\begin{gathered} N \\ i v \end{gathered}$	Income from productive funds，gifts，and bequests．	
落 落		苍	恋 点		穿	参	$\begin{aligned} & \text { 㒴峾 } \\ & \text { ciw } \end{aligned}$	薄	华密	菻	霊	䖝㮱落	垒茁岕㑻	㒴華		憲	悳			

Table 9.-Statistics of endowed academies, seminaries,

	State ${ }_{\text {office. }}^{\text {and }}$ post-	Name of institution.	Name of principal.		Num-ber ofsec-ond-aryin-struct-ors.	
					完	号
	1	2	3	4	5	6
	TEXAS-continued.					
1476	Laredo.	Laredo Seminary ------	Miss W. E. Holding---		1	
1477	Marshall	Bishop College	S. W. Culver, A. M.,	Baptist	2	2
1478		Female Institute	H. M. Ivy		1	4
1479	Minden	Rock Hill Institute...-----	G. I. Watkins and C		3	0
1480	Moulton Institute.	Moulton Institute	N. H. Allis .-	Nonsect.	2	3
1481	Omen ---	Summer Hill Select School.	A. W. Orr, per sec	Nonsect.	4	3
1182	Plano	Plano Academy	M. C. Portman		2	3
1483	Plano	Plano Institute.	W. F. Mister and J. B.	Nonsect.	1	2
1484	Rusk.	Masonic Institute.	B. A. Stafford, presiàent		2	0
1485	Salado.	Thomas Arnold High School.	T. J. Witt, PH. B...-...		2	2
1486	San Antonio	German-English School	William Barbeck		2	2
1487	do	St. Mary's College	Rev. Francis Feith.	R.	3	0
1488	do	San Antonio Academy --	W. B. Seeley-----		3	1
1489	-do	Ursuline Academy .- .--	Sister M. Magdalen .-	R. C	0	5
1490	San Saba	Sail Saba College -----	George H. İagan.-	Nonsect	0	2
1491	Sequin.	Montgomery Instiiute.-	Rev. N. B. Fuller	P. E	1	1
1492	Sherman --.-.-....	Sherman Institute	J. G. Nash, A. M., LL.D.-	Bapt		2
1493	Springtown -------	Male and Female Institute.	B. F. Fronabarger.-.-		4	1
1494	Sulphur Springs.-	Central College.	J. W. Adkisson, A. M.-	M. E. So.	5	4
1495	Sunset	Sunset College	Bryant and Alexander		2	,
1496	Vernon	Jones's School	G. A. Jones	Meth	1	
1497	Victoria	High School	Melvin Hix-...-.-.-..--	Nonsect	1	1
1488	---do	Nazareth Academy .-...-	Mother Sister Claire..	R. C	0	3
1499	.do	St. Joseph's Coliege and Diocesan Seminary.	Rev. L. Wyer -.---- ---	R. C	3	0
1500	Walnut	Central College	T. W. Elliott	Nonsect	3	2
1501	Whitt	Seminary and Normal School.	J. N. Johnston		2	0
1502	Willis.----.	Male and Female College.	George H. Stovall ...-	Nonsect...	2	0
1503	Fillmore	Millard Stake Academy .	J. E. Heckman		2	1
1504	Logan	Brigham Young College.	James W. Tanner...	T.D.S	5	1
15	--do	New Jersey Academy ---	Miss S. E. DeGruff -..-	Presby	1	,
150	Mount Pleasant	Wasatch Academy ------	Miss Annie F.Handley.	Pres	0	3
1507	Ogden-------------	Ogden Academy .--------	H. W. Ring -----------	Cong .-.---	1	4
1508	Ogden City .-------	Ogden Military Academy.	C. L. Howard, superintendent.	Nonsect --	5	1
1509	Provo------------	Proctor Academy -.-----	F. E. Merrill	Cong ------	1	3
1510	Salt Lake City ----	All Hallows College.----	Rev. J. B. Chataigner, D. S. D.	R. C -------	4	0
1511	do	Later-Day Saints' Co lege.	James E. Talmage, PH. D.	L. D. S .-.-	4	0
1512	do	St. Mark's School .-.-.-.	Rev. R. W. Plant.......	Epis .-..--	1	1
1513	do	St. Mary's Academy .-.-	Sister Superior	R. C-...--	0	8
1514	do	Salt Lake Academy --.--	Edward Benner	Cong-.	3	,
1515	do	Salt Lake Collegiate Institute.	J. F. Willspaugh .-----	Presby -.--	1	2
1516	---do--------- VERMONT.	Section of Utah University.	C.L. Baxter -	Meth	2	1
1517	Bakersfield	Brigham Academy ---.--	F. E. Parlin	Nonsect --	2	2
1518	Barre	Goddard Seminary	D. L. Maulsby	Univ .-	4	6
1519	Burlington	Bishop Hopkins's Hall.-	Rev. Lucius M. Hardy	Epis	1	4

and other private secondary schools for 1889-90-Continued.

Table 9.-Statistics of endowed academies, seminaries,

State and post- office.	Name of institution.	Name of principai.		$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { sec- } \\ & \text { ond- } \\ & \text { ary } \\ & \text { in- } \\ & \text { struct- } \\ & \text { ors. } \end{aligned}$	
1	2	3	4	5	6
VERMONT-cont'd.					
Burlingtol	Vermont Episcopal Institute. Classical Institute \qquad	Henry H. Ross .-.------ Chauncey H. Hayden.-	P.E	4 1	1
Lyndon Cente	Lyndon Institute .-.-.---	Walter E. Ranger, A. M.	Nonse	6	4
Manchester.-	Burr and Burton Seminary.	Allan C. Ferrin .-.....-	Nonsect.	2	5
Montpelier	Vermont Methodist Seminary.	Rev. E. A. Bishop, A. M.	Mi. E--	5	7
Peacham	Caledonia County	C. A. Bunker.	Nonsect.	1	1
Poultney .----.----	Troy Conference Academy.	Chas. H. Dunton, D. D -	M. E	5	3
Royalton	Royalton Academy...---	Miss Celia Sherman, A. B.	Cong -....-	1	4
Rutland	English and Classical Institute.	G. W. and O. H. Perry-	Nonsect..-	3	4
St. Johnsbury	St. Johnsbury Academy.	Chas. E. Putney --...-	Nonsect.	8	5
Saxtons River	Vermont Academy -.-.--	Geo. A. Williams, A. M., PH. D.	Bapt-	4	7
South Woodstock	Green Mountain Perkins Academy.	Miss Carrie A. Walker-	Univ .-...-	0	2
Thetford	Thetford Academy .-...-	J. N. Mallory --.	Nonsect...	1	3
Townshend	Leland and Gray Seminary.	David G. Smyth	Bapt .-.-.-	2	3
Underhill.	Underhill Academy....-	E. S. Whitcombe, jr., president of the board of trustees.	Nonsect.--	1	1
Waterbury Center. virginia.	Green Mountain Seminary and Minard Commercial School.	Miss E. Colley, A. M.-.-	Free Bapt.	0	2
Abingdon	Abingdon Academy .---	ArthurP.Wilmer --..-	Nonsect.--	2.	0
---do .-...	Academy of the Visitation.	Sister M. Borgia Tubman, superioress.	R. C.....--	0.	10
Alexand	Claren's School for Girls	Misses Worthington.-	Epis	$\underset{\sim}{2}$	2
---do	Episcopal High School of Virginia. Potomac Academy	L. M. Blackford, M. A John S.	P. E ---.-.--	7 2 2	0 0
do	St. John's Academy -----	Richard L. Crane, A. M-	R.C--------	3	0
Arvonia	Seven Islands School...-	Philip B. Ambler.-.-.-	Nonsect.--	2	0
Ashland.	School for Children ----	Miss Willie W. Nolley	0---------	2	0
Bellevue	High School ------------	Wm. R. Abbott .-.-.---	P.E.-.-.--	3	0
Berryville	Shenandoah University School.	Wm.N. McDonald.....		2	0
Bethel Academy --	Bethel Classical and Military Academy.	Albert G. Smith .-.-.--	Nonsect.--	5	0
Charlottesville	University School --..--	Horace W. Jones.-.---	Nonsect.--	3	0
Dayton	Shenandoah Institute --	Geo. P. Hott, A. M ...-	U. B	6	1
F'armville.-.-.-.-.--	State Female Normal School.	John A. Cunningham -		1	7
Fincastle ...-	Botetourt Female Institute.	E. A. Luster.	Nonsect.--	1	2
Floyd C. H .-...-.	Jacksonville Normal School.	T. D. Sowers		1	1
do	Oxford Academy .-.-----	Rer. and Mrs. John K. Harris.	Presb	0	1
Fort Defiance.----	Augusta Military Academy.	Charles L. Roller*......	Nonsect.--	4	0
Greenwrood Depot.	Greenwood School	Wm. Dinwiddie, jr ...-	Nonsect.--	1	0
Hale Ford	Classical and Normal School.	Wıliam E. Duncan..--	Nonsect.--	1	1
Keswick \qquad do \qquad	Broad Oak School Edgehill Female School	Miss Frances M. Mead Miss C. R Randoiph..	Epis Nonsect...	1	2 4

and other private secondary schools for 1859-90-Continued.

Stu-dentsinsecond-arygrade.		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { col- } \\ \text { lege } \\ \text { classi- } \\ \text { cal } \\ \text { course. } \end{gathered}$		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { pre- } \\ \text { paring } \\ \text { for } \\ \text { scien- } \\ \text { tific } \\ \text { course. } \end{gathered}$			Is drawing obligatory?	高						$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { O } \end{aligned}$		
$\stackrel{\oplus}{\stackrel{y y y}{ت}}$		$\stackrel{\stackrel{\infty}{\pi}}{\stackrel{\rightharpoonup}{\Sigma}}$		$\stackrel{\dot{ت}}{\stackrel{\rightharpoonup}{ت}}$												
7	8	9	10	11	12	13	14	15	16	17	18	13	20	21	22	
44	0	6	0	4	0	8	No..	No.-	400	No.-	840, 150	0			0	$15: 0$
43	37		0	0	0	3	No.-	NO--	300		4,000			8900		1521
121	100	14	7	4	0	35	No.-	No--	800	NO.-	20, 000	\$30,000			181,500	$15 \% 2$
50	$3 \pm$	$\stackrel{1}{2}$	7	6	0	13	Yes	No--	500	Yes.	15, 200	30, 000		1,800	1.800	1523
136	177	51	21	0	0	24	Yes.	Yes.	1,500	No.-	85, 150	38,000		7,737	1,280	1524
37	33	3	2	0	0	1	No.-	No.-	180	No.-	5,075	10, 800		1,000	818	1525
48	57	9	10	0	0	3	No.-	No.-	1,500	No.-	10,500	15,000				
79	44	38	5	3	0	31	-	Yes.	2,560	Yes.	60,550	3,006		5,550	6, 180	1527
10	18	1	2	0	0	0	No.-	No.-	65	No.-	1,500	4,000			235	1528
40	37	10	2	5	1	3	No.-	No.-	1,000	No.-	11,200	0		2,110	0	1529
115	100	60	5	15	3	55	No.-	Yes	500	No.-	251,000	100,000		7,000	4,000	1530
94	8:3	30	24	37	43	23	Yes.	Yes-	800		96, 500	100,000		5,854	5,000	1531
16	15	9	9	7	5	0	N	No.-	323	No.	1,900	10,000			450	1532
40	45		1	1	0	(Yes.	No.-	0	No.-	5,050	5,000	804	1,000	300	1533
6	16	0	1	0	0	16	No.-	No--	300	Yes.	1,100	11,000		, 400	500	1534
12	14	6	0	0	0	0	Yes.	N	0	Yes.	1,100	0		-600	200	1535
25	35			0	0	20	Yes.	No.-	800	Yes.	25, 200	1,200		1,200	660	1536
35	0 30	10	0	5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \text { No. } \\ & \text { No. } \end{aligned}$	No.-	500	Yes.	12,500	0		1,500	0	1537 1538
0	12	0	0	0	0	3	No.-	Yes	50	Yes	7,000	0		1,080	0	1539
102	0	0	0	0	0	0	No	No	0	No	25,000	0		8,000	0	1510
37	0			0	0	0				No.-						1541
28	0	16	0	12	0	9	Yes.	Yes.	1,000	Yes.	9,500	0		1,500	0	1512
11	120	8	0	0		3	NO.-	No	1,000	Yes-	5,003 1,000	0			0	1543 1544
48	0	42	0	2	0	8	NO.-	Yes.	3,500	Yes-	25, 000			6,250		1545
49	0	38	0	5	0	6	No.-	No.-	3,	No.-	10,000			2,500		1516
63	0	55	0	3	0	0	No.	Yes.	2,000	Yes.	25,500	25,000		3,600	3,000	1547
50	0	50	0	0	0	9	No.-	No.-	0	No.-				3,700		1548
53	40	5	5	13	13	8	No.-	No.-	409	Yes-	6,300				800	1549
0	170			0	0	15	Yes.		500	Yes.	31,000		10,000	500	1,900	1550
0	14	0	0	0	0	0	O.-	--	0	No.	600	0	0		0	1551
31	23	18	10	15	12	6	Ses.	N	0	Yes.	2,500		225			1552
20	20	12	12	0	0	0	Yes.	No.-	0	Yes.	2,000	0		600	0	1553
71	0	38	0	0	0	20	No.		500	Yes.	9,600		0	2,500	2,500	1554
11	0	7	0	0	0	0				No.-						1555
22	30	18	23	5	6	10	No.-	Yes.	0	Yes.	800	0	0	1,500	0	1556
${ }_{0}^{4}$	$\begin{array}{r} 8 \\ 23 \end{array}$	0	0	0	0	0			1,000	Yes-	10,000			400		1557 1558

Table 9.-Statistics of endowed academies, seminaries,

and other private secondary schools for 1889-90-Continued.

$\begin{gathered} \text { Stu- } \\ \text { dents } \\ \text { in } \\ \text { second- } \\ \text { ary } \\ \text { grade. } \end{gathered}$		Number pre-paring for college classicourse.					Is drawing obligatory ?							0.0_{0}00$\vdots$$\vdots$$\vdots$B000000		
			$\stackrel{ \pm}{\square}$		-											
$\stackrel{\circ}{\text { cึ }}$	링	$\dot{\oplus}$	ష్g	$\dot{\Xi}$	ష్g											
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
10	6			0	0	0	No.-			Yes	\$2,500		\$240	\$364		1559
26	12	5	3	17	12	0	Yes.	No -		Yes	2.000	0	250	400	0	1560
0	30	0	0	0	0	0	No.-	No--	0	Yes-	10,000	0	0	0	0	1561
0	18			${ }^{0}$	0	5	No.-			Yes		0	0	1,000	0	1562
50	0	20	0	12	0	4	No.-	No.--	300	Yes.	4,050 6,035			1,800	0	1563
36	0			0	0	0		No.-	300	Yes.	6,035		0	1,200		1564
12	10	7	0	0	0	1	No.--	Yes.	500	Yes.						1565
12	0	7	0	0	0	1	No.-	Yes.	500		12,000					1563
10	6	10	5		0	0	No.-	No--	500	Yes.	2, 500	0				1567
68	92	68	92	0	0	7	No.-	No.-	500	Yes.	30,300			700	87,000	1568
0	6	0	5	0	0	3	No.-	No.-	300	Yes.						1569
31	29			0	0	7	No.-	No.-	750	Yes.	8,0c0	0		3,250	0	1570
10	17			0	0	0	No.-	No--		Yes.		0		1,000		$15 \% 1$
0	40	0	0		,	1	No.-	No.-	100	Yes	5,050	0		2,500		1572
104	0			0	0	0	No.-	No.-	5,000	Yes.	11,000					1573
0	30	0	30	0	0	4	No.-	No.-	200	Yes.		0	0	700		15.4
25	0	10	0	5	0	3	No.-	Yes.	,	Yes.	7, $\mathrm{C0}$			2,500		15\%5
0	10	0	0	0	0	7	No.	No.	300	Yes.	35,500	0		487	785	1576
96	0	50	0	16	0	8	No.-	No.-	37	Yes	5,100	0	0	6,500	0	1577
0	30	0	-	0	4	1	No.-	No.-	0	Yes	10, 000			3,009		1578
47	0	42	0	5	0	6	No.-	No.-	0	Yes.	7,000	0		1,876	0	1579
0	26	0	4	0	0	8	No.-	No.-	200		5,000			3,000		1580
18	23	5	7	0	0	9	No.-	Yes.	73	Yes.	600		165	500		1581
10	15	0	0	0	0	0	No.-	No.-	0	Yes.	6,000					1582
0	70			0	0	0										1583
117	0	0	0	0	0	0	No.-	Yes-	500	No.-	26,000	0		25, 000	0	1584
24	18	16	8	8	10	5		No--	800		10,000			$\stackrel{2}{2}, 100$		1585
2	75			0	0	4	No.-	No.-	300	Yes.	15,000			3,525		1586
50	0	40	0		0	0	No.-	No--	300	Yes.	6,300	0	0	3,000	0	1587
0	20	1	0	0	0	1	No.-	No.-	150	Yes.	4, 050	0	0		0	1588
0	35	0	25	0	0	0	No.-	No.-	600	Yes	8,000		0	2,500		1589
13	0	13	0	0	0	0	No.-	No.-		Yes	600	0	0	600	0	1590
0	65			0	0	3	No.	No.-	350	Yes	10,000	0	0	2,000	0	1591
0	85			0		1	No.-	No--	100	Yes.	10,000	0	0	3,500	0	1592
24	20	5	0	12	4	0	No.-	Yes-	200		3,200		165	600 400	0	1593
50	40	15	10	20	25	0	Yes.	No--	0	No	2,000			400		1594
0	44															1595
0	18	0	18	0	0	0	No.-	No.		Yes.	15,000			3,000		1596
9	12	6	3	2	0	1	No.-	No.-	800	No.-	10,100	\$7,000		1,417	500	1597
20	26	1	0	0	0	0	No.-	No.-	300	Yes.	12,000	0	0	1,200	0	1598
	6	0	0	0	0	0	No.-	No.-	30	Yes.	12,000	0		2,916	0	1599
10	19	0	0	0	0	0	No.-	No.	40	No.-	12,000	0			0	1600
0	20	0	0	0	0	0	Yes.	No.		Yes.						
13	27	2	4	3	5	20	Yes.	No.	40	Yes.	25, 025	0			0	1602

Table 9.-Statistics of endowed academies, seminaries,

and other private sccondary schools for 1859－90－Continued．

$\begin{array}{r} \mathrm{S} \\ \mathrm{de} \\ \mathrm{i} \\ \mathrm{sec} \\ \mathrm{ara} \end{array}$	u－	$\begin{array}{\|c} \mathrm{Nu} \\ \mathrm{be} \\ \mathrm{pr} \\ \text { par } \\ \text { fo } \\ \text { co } \\ \text { leg } \\ \text { clas } \\ \text { co } \\ \text { cour } \end{array}$	m－ er e－ ing ri l－ ge sivi－ al se．	$\begin{gathered} \text { Nux } \\ \text { be } \\ \text { pre } \\ \text { pari } \\ \text { fo } \\ \text { scie } \\ \text { tifi } \\ \text { cour } \end{gathered}$	m－ e－ ing r en－ c ce． se．											
$\stackrel{0}{\overrightarrow{3}}$	完	$\begin{aligned} & \text { @ } \\ & \text { む゙ } \end{aligned}$		$\begin{aligned} & \dot{\text { ® }} \\ & \text { ت゙ } \end{aligned}$			$\begin{aligned} & \text { g } \\ & \text { た } \\ & \text { たH } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 9 \\ & 97 \\ & 0 \\ & \text { a } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ф } \\ & \text { 年 } \\ & \frac{1}{z} \end{aligned}$				$\begin{aligned} & \text { 茄 } \\ & \text { 品 } \end{aligned}$			
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
	45	0	11	0	34	5	Yes＿	No．－	2，000	Yes						1603
0	162	0	0	0	0	13	No．－	Yes	1，000	Yes	8151.000	\＄00，000		\＄25，000	\＄3，400	1604
57	0	0	0	0	0	7	No．－－	Yes－	1， 400	Yes．	100200	50，000	0	3，521	3，300	165
30	0	10	0	0	0	2	No．－	Yes．	700	Yes．	10，800		0	1，230		1606
11	17	0	0	0	0	4	No．－	No．－	250	Yes	6，100	3，000	0	1，479	850	1007
39	0	22	0	0	0	0	No．－	No．－	0	No．－	1，500	0	0	0	0	1608
0	27	0	0	0	0	8	No．－	No．－		Yes．	500					1609
25	10		0	0	0	，	No．－	No．－	300	Yes．	20，500	0		675	0	1610
16	11	0	0	0	0	0	No．－	No．－	50	No．－	7，000	0		1，200	0	1611
75	50			0	0	5	No．	No．－	275	No．－	4， 050	6，000	0	1，300	6，000	1612
81	72	10	8	13	10	9	No．	No．－	500	No．－	50，100	35，000	0	4，000	2，500	1613
80	65	0	0	15	10	7	No．－	Yes	200	Yes．	25， 110	0	0	1，800	500	1614
0 30	56	0	5	0	0	${ }_{16}$	Yes	Yes．	1，800	No．－	100， 700			20，000		1615
16	24	0	0	12	16	6	No．．	No．－	260	Yes．	18，100	0	0	2，000	20	1617
60	15	15	5	25	10	1	No．．－	No．－	300	Yes．						1618
138	0	0	0	0	0	18	Yes．	Yes．	1，500	No．－		0	0	150	8，350	
23	21			0	0		Yes．	Yes．	1，000	Yes．	37， 200			4，800	60，000	1620
47	0	5	0	3	0	7	No．－	Yes．	300	Yes．	20，500	0	0	6， 600	30	1621
40	0	20	0	20	0	14	Yes．	No．－	2，000	No．－	40， 300	0	0	3，050	0	1622
0	48		－	0	0	0	Yes．									1623
53	38	10	${ }_{0}$	15	0	6	Yes．	No－	4，000	Yes－	10，000			4， 400	－	1624
0	30	0	0	0	0	2	Yes．	Yes．	$\cdots{ }^{-}, 750$		1，000	0			0	1626
12	3	0	1	5	0	1	No．	N	50	No．－	3，000	0		491	2，500	1527
65	0			0	0	3	Yes	Yes．	1，000							1628
0	80			0	0				2，000		1，000					1629
30	0	25	0	0	0	3	No．－	No．－	2，000	Yes．						1630
23	36		－	0	0	8	No．－	Yes．	500	No．．	41，000	18，000		2，113	1，633	1631
0	60		0	0	0	2	Yes．	No．－	300	Yes．						1632

TABLE1-Statistics of colleges for

	Location.	Name.	President.
	1	2	3
1	CALIFORNIA. Mills College MARYLAND.	Mills College and Seminary ---.--	
2	Baltimore \qquad MASSACHESETTS.	Woman`s College of Baltimore.--	William H. Hopkins, A. M., PH. D. a
3 4	Cambridge \qquad Northampton	Society for the Collegiate Instruction of Women. Smith Collere	Arthur Gilman, secretary --------
5	Nornaman	Mount Holyoke Seminary and College.	L. Clark Seelye, D. D. Louise F. Cowles, acting president. b
6	Wellesley \qquad NEW JERSEY.	Wellesley College .-.-. --. - .-. - - - -	Helen A. Shafer, A. м.
7	Princeton \qquad NEW YORK.	Eveiyn College--	J. H. McIlvaine, D. D .-.----.-. -- -
8	Aurora		Edward S Frisbee, D. ${ }^{\text {d }}$
9	Elmira.		Charles Van Norden, D. D.-.-.....
10	Le Roy .-.---------	Inghain Unirersity .-.-.---..--	W. W. Totheroh, D. D
11	New York (343 Madi son ave.)		Rev. Arthur Brooks, chairman of board of trustees.
12	Poughkeepsie О HIO .		James M. Taylor, D. D
13	Cieveland \qquad PENNSYLVANIA.	Cleveland College for Women....	Hiram C. Haydn, D. D., LL. D.c. - .-
14	Bryn Mawr .-....	Bryn Mawr College.......---.-.-. -	James E. Rhoads, M. D., LL. D
*Statistics of 1883-89.			
a Succeeded by John F. Goucher, D. D.			
women for 1889-90.-Division A.			
$\begin{aligned} & \text { Professors } \\ & \text { and } \\ & \text { instructors. } \end{aligned}$			Students.
:---:	:---:	:---:	:---:
$\begin{aligned} & \dot{0} \\ & \stackrel{y}{\leftrightarrows} \\ & \underset{y y y}{*} \end{aligned}$	$\begin{aligned} & \dot{\circ} \mathrm{O} \\ & \stackrel{1}{4} \\ & \stackrel{0}{4} \end{aligned}$		
4	5	6	7
6	20	26	56
12	12	24	120
57	0	57	0
14 5	18 39	32 44	0
7	\%2	79	0
9	4	13	18
4	9	13	22
7	9	16	87
8	16 1	16 9	27
8	27	35	0
15	3	18	
16	7	23	0
b Elizabeth Storrs Mead has been elected president.
cSucceeded by Chas. F. Thwing, D. D.

Table 1.-Statistics of colleges for

	Location.	Name.	President.
	1	2	3
	ALABAMA.		
	Athens.	Athens Female Colleg	M. G. Williams, D.
2	Huntsville	Huntsville Female Colleg	A. B. Jones, D. D., LL.D
3	-----do.	Huntsville Female Seminary	J. D. Anderson, A. M.-.
4	Marion	Judson Female Instjtute.....	S. W. Averett.....--
5	do	Marion Female Seminary	James D. Wade, A. M.
6	Tuscaloosa	Central Female College.	Sumner B. Foster, A. M. a
8	-.....do... Tuskegee	Tuscaloosa Female College \qquad Alabama Conference Female	Alonzo Hill, A. M John Massey, LL.D
8	Tuskegee \qquad CALIFORNIA.	Alabama Conference Female College.	John Massey, Ll.D
9 10	San José Santa Ro	College of Notre Dame	Sister Amélie de St. Joseph...-.-
	GEORGIA.		
11		Lucy Cobb Institute .-..--.-.-	Miss M. Rutherford
12	Covington	Georgia Methodist Female College.*	Rev. John T. McLaughlin, A. M.-
13	Cuthbert	Andrew Female College* --...-.	H. W. Ke
14	Dalton.	Dalton Female College	Rev. A. B. Warwickd
15	Forsyth .-.	Monroe Female College .-.	Pichard T. Asbury, A. M.e
16	La Grange	La Grange Female College	Rufus W. Smith, A. M
17do.	Southern Female College	Mrs. I. F. Cox
18	Macon	W esleyan Female College	William C. Fass, D. D
19	Marietta	Harwood Seminary -.....	Joseph S. Stowart, j1 .-...-.-.-.
20	Rome.	Shorter College --.-----------------	L. R. Gwaltney, D. D., and A. J. Battle, D. D.
21	Thomasville	Young Female College .-.-------.	John E. Baker, A. M.-------------
22	Chicago	Seminary of the Sacred Heart*.-	Madame Henrietta Spalding
23	Jacksonville	Illinois Female College.------.-.	William F. Short, A. M., D. i
21	$1-=--\mathrm{do}$	Jacksonville Pemale Academy.-	E F. Bullard, A. M
25	Innoxville	St. Mary`s School.----------------	Chas. W. Lefingाvell. D. D., rector
26	Moigan Pai	Chicago Fomale College	Gilbert Thayer, D. D
27	Rockford.	Rockford Seminary.....	Sarah F. Anderson ----------------
28	Oswego	College for Young Ladies-	Miss S. H. Johnson --.---.---.--
29	Topeka	College of the Sisters of Bethany -	Elisha Smith Thomas, S. T. D...-
	KENTUCKY.		
30	Bowling Green	Potter College for Young Ladies	Rev. B. F. Cabell, M. A. I. PH..-. .-
31	Clinton	Clinton College -----.---------------	Amanda M. Hicks .-.-.-----------
32	Danville	Caldwell College .-.-------.-.----	Charlotte A. Campbell
33	Georgetomn	Georgetown Female Seminary...	J J. Rucleer, LL. D
34	Glasgow --.	Liberty Female College .-.-.-.-.	Rev. T. S. P. McCall, A. M---....
35	Gleindale	Lynnland Female College	E. V. Elrod and E. W. White
35	Harrodsburg	Daughters College	John Augustus Williams
37	Lexington	Hamilion Female College	J. T. Patterson f-.....
38	---do	Sayre Female Institute	H. B. McClellan, A.M
39	Millersburg	:illersburg Female College --..-	Rev. Cadesman Pope.--.---------
40	Nicholasville.	Jessamine Female Institute*---	Miss M. F. Hewitt --.-.-----------
41	Pewee Valley --	Kentucky College for Young Ladies.	Erastus Rowley, D. D .-...---.---
42	Russellville	Logan Female College--	A. G. Murphy,
44	Stanford.	Stanford Female College.	J. M. Hubbard, A. M.
45	Winchester	Winchester Female College	S. W. Pearcy ...-
46	Woodburn.	Cedur Bluff Female College	Hoiace H. Epes, A.m

[^85]women for 1SS9-90.-DIVIsION B.

d Succeeded by Rev. Gustavus J. Orr.
e Succeeded by J. E. Powell.
f Succeeded by J. B. Slkiuner.
g Succeeded by Miss L. V. Sullivan.

Table 1.-Statistics of colleges for vomen

for 1889-90.-Division B-Continued.

c Succeeded by Rev. J. M. Durrell. d Succeeded by Mrs. Gertrude G. Bowen.

Table 1.-Statistics of colleges for women

	Location.	Name.	President.
	1	2	3
	NEW YORK.		
86	Brooklyn	Packer Collegiate Institute	Truman J. Backus, LL. D
87	Canandaigua	Granger Place School	Caroline A. Comstock...-
	NORTH CAROLINA.		
88	Asheville		B. E. Atkins, A, m
89	Charlotte	Charlotte Female Institute	
90	Dallas	Gaston College	Rev. M. L. Little $a_{\text {--.-. }}$
91 92	Greensburo.	Greensboro Female College *	T. M. Jones, A. M., D. D. b
92	Hickory Lenoir	Claremont Female College* Davenport Female College.	Will H. Sanborn John D. Minick, A. B
94	Lovisburg	Louisburg Female Collego	S. D. Bagley, A. M
95	Nutureesboro	Chowan Baptist Female Institute	John B. Brewer, A.
95	do	Wesleyan liemale College.	E. E. Parham
97	Osîold	Oxford Female seminary	Nathan Penick
98	Raleigh	Estey Seminary	H. M. Tupper. D. D
93	do	Peace Institute	James Dinwiddie, A.
100	Salem.	Salem Female Academy and College.	Rer. John H. Clewell
101	Thomasville.	Thomasville Female College.-.--	H. W. Reinhart c
102	Wilson .-------------	Wilson Collegiate Institute .-	Silas E. Warren
103	$\begin{aligned} & \text { Cincinnati (Law- } \\ & \text { rence and Third } \\ & \text { streets). } \end{aligned}$	Bartholomew English and Classical School.	George K. Bartholomew, A. M., PH. D.
104	Cincinnati (Wesley avenue).	Cincinnati Wesleyan College.----	W. K. Brown, A. M., D. D---------
105	Glendale...	Glendale Female College .-......-.	L. D. Potter, D. D
106	Granville	Granrille Female College .-...-.-	Rev. D. B. Hervey, PH. D
107	-.-do	Shepardson College...------------	D. B. Purinton, LL. D...
108	Oxford	Oxford Female College	Faye Walker, D. D
109	Painesville \qquad PENNSYLVANIA.	Lake Erie Female Seminary-..--	Miss Mary Evans
110	Allentown	Allentown Female College	Rev. William M. Reily, PH. D .---
111	Bethlehem....	Moravian Seminary .-------------	Rev. J. Blickensderfer-----.-.---
112	Chambersburg --------	Wilson College..--	Rev. John Edgar, PH. D-.--.........
113	Lititz .-- --.-------.	Linden Hall Seminary	H. A. Brickenstein -
114	Mechanicsburg	Irving Female College	Mary L. Kessler d....---....-. --.
115	Ogontz School -------	Ogontz School for Young Liadies	Frances E. Bennett and Sylvia J. Eastman.
116	Philadelphia	Philadelphia Seminary	Rebecca E. Jualrins
117	Pittsburg	Pittsburg Female College .-....	A. H. Norcross. D. D
118	W ashington ------------	Washington Female Seminary .-	Miss Nancy Sherrard...---------
	SOUTH CAROLINA.		
119	Anderson	Anderson Female College	Rev. A. A. Marshall .-.-- --- -- .-. -
120	Columbia	Columbia Female College .-.-. .-.	Samuel B. Jones, D. D.-.-.-.------
121	Due West..-	Due West Female College -	Mrs. L. M. Bonner--.--------------
123	Gaffney City.	Cooper-Limestone Instiiute..-...-	H. P. Griminh
123	Greenville .-	Greenville Female College .-	Alexander S. Townes.------.-.---
124	Walhalla	Walhalla Female College-	H. G. Reed, A. B
125	Williamston. TENNESSEE.	Williamston Female College...--	S. Lander, A. M., D. D -------------
126	Brownsville	Brownsville Female College	Th. Smith, A. M--...
127	-----do	Wesleyan Female College.	Rev. John Williams, A. M
128	Columbia	Columbia A thenæum	Robert D. Smith, A. M.-
129	Franklin	Tennessee Female College	MI. Thomas Edgertone
130	Gallatin	Howard Female College.	A. M. Burney, A. M
	* Statistics of 1888-89	a Died February 17\%, 1891.	b Succeeded by B. F. Dixon.

for 18S9-90.-DIvision B-Continued.

Table 1.-Statistics of colleges for women

	Location.	Name.	President.
	1	٪	3
	TENNESSEE-cont'd.		
131	Jackson.	Memphis Conference Female Institute.	A. W. Jones, A. M., D. D
132	McMinnville	Cumberland Female College .-.--	N. J. Finney, A. M
133	Murfreesboro	Soule Female College	Z. C. Graves, Lu. D
13.1	Nashville .-	Nashville College for Young Ladies.	George W. F. Price, A. M., D.
135 136	Pulaski	Ward's Seminary for Young Ladies. Martin Female College	J. B. Hancock, A. M. a John S. Wilkes b
137	Rogersville	Synodical Female Colle	William M. Graybi
138	Winchester \qquad texas.	Mary Sharp College .-.-.-----------	John L. Johnson, D. D., LI. D
139		Baylor Female College	John Hill Luther, D- ${ }^{\text {D }}$ D. c_{-}
140	Chappell Hill .-------	Chappell Hill Female College	Edward W. Tarrant, A. M
141	Waco \qquad virginia.	Waco Female College....-.-........	R. O. Rounsavall, A. M .--
142	Abingdon .-----------	Stonewall Jackson Femaie Institute.	Miss Kate M. Hunt ------
143		Martha Washington College-	D. S. Hearon, A. M., D. D. d.
144	Charlottesville	Albemarle Female Institute.	W. P. Dickinson
145	Christiansburg	Montgomery Female College	Mrs. E. T. Baird
116	Danville	Danville College for Young Ladies	R. H. Sharp, jr., A. M
147	----do -------	Roanoke Female College..-------	J. T. Averett, A. M ---
148	Glade Spring	Southwest Virginia Institute----	Samuel D. Jones, B. I
149	Gordonsville .-.-----	Central Female Instituie...-- .-.	Rodes Massie
150	Hollins	Hollins Institute	Charles L. Cocke, A. M
151	Marion	Marion Female College	Rev. J. J. Scherer, A. M
152	Norfolk	Noriolk College for Young Ladies	J. A. I. Casseily, B. s.
153	Petersburg	Southern Female College..-.-. .-.	Arthur K. Davis ------
154	Richmond.	Richmond Female Institute..	Miss Salley B. Hamner
155	Staunton	Sherwood Female Seminary*	Prof.J. L. Massey
156	do	Staunton Female Seminary ...--	Rev. James Willis, A. M
157	do	Virginia Female Institute.--	Mrs. J. E. B. Stuart.
158	Warrenton	Fauquier Institute.	George G. Butler. A. M
159	Winchester	Episcopal Female Institute.-.-.--	A. McGill Smith, A. M
160	----- do WEST VIRGINLA.	V alley Female College ----------	JohnP. Hyde, A. M., D. D -
161	Clarksburg	Broaddus College*---------------	Rev. J. L. McCutcheon, A. M
16.	Parkersburg	Parkersburg Female Seminary--	Mrs.H.L. Field
163	Wheeling. WISCONSIN.	Wheeling Female College .-.-...-	H. R. Blaisdell, PH. D., D. D.
164	Fox Lake.-----.-. --	Downer College	Mary E. Lyon, B. S., B. L.
165	Milwaukee ---------	Milwaukee College .---------------	Charles R. Kingsley, PH. D -

* Statistics of 1888-89. a Succeeded by B. H. Charles. b Succeeded by Rev. R. M. Saunders.
for 1889-90.-Division B-Continued.

$\begin{aligned} & \text { Professors } \\ & \text { and } \\ & \text { instructors. } \end{aligned}$			Students.										$\begin{gathered} \text { spunj } \\ \text { esṭonpoxd jo qunourv } \end{gathered}$		
$\underset{\sim}{\underset{\sim}{~}}$		$\begin{aligned} & \text { స్ં } \\ & \text { ก0 } \\ & \text { E- } \end{aligned}$													
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	11	11	25		150		175	0	0	4,000	\$1,000	\$45,000	0	0	131
4	5	9	25	25	65		115	0	0	1,000	1,500	50,000			132
3	7	10	30		120	3	153			500	1,500	25,000	---.--		133
		30					407	0	1	725		100,000	\$3, 000	0	134
2	17	19	48	60		4	475			3, 000	500	125, 000		\$400	135
:-	12	12	20	23	106		149	0	0	1,100	0	30,000	30, 500		136
3	8	11	60	40	55		155	0	2	1,000	350	40,000	0	2,000	137
4	18	22	100	100	20		220			1,000	100	125,000			139
2	5	7	35	25	55		115	0	4	400	75	15, 000		0	140
2	12	14	43	51	92		186	0	0	12,000	500	40,000	0		141
1	7	8	21	9	41		81	0	0	250	200	20,000	0	600	142
3	5	8					83								113
3	6	9	5		58		63	0	0	500		30, C09		0	144
2	5	7	25		54		79	1	0	100		15,000	0	0	145
3	6	9	42	0	71	0	128	0	0			40,000	0	0	146
4	5	9	25		75		100				1,000	35, 000			147
3	15	18	16		144		160	0	3	350	150	30,000	7,500	7,500	148
1	4	5					50	0	0						149
8	12	20	20		189		209	0	0	1,000	2,000	200, 000	0	0	150
2	6	8	33	20	60	3	116	0	0	250	200	20, 000	0	600	151
4	21	25	120		200		320	0	3	500	1,000	60, 000			152
3	5	8	10		47	7	64	0	0	2,000	1,000	10,000			153
	17	17	25	20	80		125	0	0	200	400	60,000			154
5	5	10					30								155
6	5	11		15	49	1	75								156
3	15	18	3	30	80		113		3	500		40,000			157
2	6	8	25	15	10		74			600		10,000			158
5	4	9	13	14	42	5	74			1,000	500	20,000			159
2	9	11	6	10	28		118			700	75	20,000			160
1	6	7	11		29		60			350		10,000			161
0	3	3					30					8,000			162
1	7	8	4		50		54			200	200	10,000			163
1	7	8	42		3		45	0	1	2,060		$25,000$	10,000		164
4	5	9	60		20	1	101	0	0	3, 000	3,000	100, 000	0	10,000	165

c Succeeded by P. H. Eager, A. M.
d Succeeded by Rev. S. N. Barker.
Universities and Colleges.

TABLE 2．－Statistics of universities and colleges for 1889－90．－PART I－Continued．

		Name．	President．	Professors and in－ structors．						Students．										
	－Location．						Totalnumber．			Num－ ber in prepar－ atory department．		Number in col－ legiate depart－ ment．		Num－ ber in gradu－ ate do－ part－ ment．		Number in profes－ sional depart－ ments．		Total number in all depart－ ments．		
										$\begin{aligned} & \text { 足 } \\ & \text { ت゙ } \end{aligned}$		華				$\begin{aligned} & \text { ボ } \\ & \text { 参 } \end{aligned}$			号	in －
	1	2	3	4	5	6	7	8	9	10	11	12	13	14.	15	16	18	18	19	20
	georgia－cont＇d．																			
42	Gainesville	Gainesville College				0				35		21		0	0	0	0			96
43	Macon ．－．－．	Mercer University	G．A．Numnally，D．D．－．．．．．－－			4	17	0	17	78	0	175	0			11	0	264	0	264
44	Oxford－${ }^{\text {South }}$ A－．．．．．．．－	Emory College	W．A．Candlor，D．D W．Hickman，D．		8 5	2	12	0	12	46 13	26	189	1	0	0	0	0	235 19	$\stackrel{0}{\sim}$	235 46
45	South Atlanta．．． illinois．	Clark University ．－－－－－－－－－－－	W．H．Hickman，D．D．－．		5		7	6	13	13		6						19		46
46	Abingdon	Hedding College	J．G．Evans，D．D．，LL．D		11）		8	5	13	37	20	16	14	0	2			$\left\{\begin{array}{c}\text {（97）} \\ 53\end{array}\right.$		186
47	Bloomington	Illinois Wesleyan University	William H．Wilder，A．M．，D．D．	7	8	8	21	7	28	113	63	73	43			42	0			a1，481
48	Bourbonnais Grove	St．Viateur＇s College ．－．．．．．．－	M．J．Marsile，o．S．v	5	12	3	26	0	26	80	0	75	0	5	0	25	0	${ }_{205}$	0	205
49	Carlinville－．－．．．．．．．－	Blackburn University－－－－－－－－－	E．L．Murd，D．D．b ．－．－．－．－．－．－－				7	3	10	45	23	16	14			1	0	67	46	113
50	Carthage	Carthage College．．．．－	Holmes Dysinger，D．D－	8	5	0	8	2	10	66	35	24	11	－	2	0	0	96	48	144
51	Chicago	St．Ignatius College－．．．．．．．	Edward A．Higgins，S．J ．－．．．	16	${ }_{5}^{9}$		25	0			0	68	${ }_{0}^{0}$	0	0	0	0	297	0	297
5	Elmhurst	Evangelical Proseminary	Rev．Dantel Irion		5	0	7	${ }_{6}$	7	151	－	68	${ }^{0}$	0	0	0	0	113	0	113
53	Eureka	Eureka College．．．－．－．．．．．－	Carl Johann，A．M．，LL．D				12	6	18	141	70	55	23	1	1	69	${ }^{0}$	214	94	308
54	Evanston．	Northwestern University ．．－	Joseph Cummings，D．D．，LL．DC	13	16	63	96	7	103	412	185	161	92	0	0	571		1，144	289？	1，484
55	Ewing	Ewing College－－．．．	Rev．J．A．Leavitt．．	2	2		3		11									（134）		134
56	Fulton	Northern Illinois College．－．－	Edmund E．Riopel，A．m．，M．D．，	3	8	0	4	7	11	20	34		118						152	243
57	Galena．	German－English Collegee ．－．	Rev．Frederick Schaub，A．M．		4	1	4	3	7	66	22	7	3	2	0	12	0		25	112
58	Galesburg	Knox College．．－－．．－－－－	Newton Bateman，A．M．，LL．D．	16	11		16	11	27	122	59	112	57		6			283		603
59	．－．．－．do	Lombard University	Nehemiah White，PH．D．，D．D．	2	6	4	6	4	10	22	20	40	24	0	1	7	4	$\left\{\begin{array}{l}\text {（1 } \\ 69\end{array}\right.$		137
60	Jacksonville	Illinois College．．	Edward A．Tanner，D．D ．．．．－	8	10	－－－	10	0	10	110	0	55	0	3	0					168
61	Lake Forest．	Lake Forest University	William C．Roberts，D．D．，LL．D．	20	16	62	85	11	96	93	103	56	26	6	0	947	0	（192）		1，423

TABLE 2.-Statislics of universilies and colleges for 1889-90.—PART I-Continued.

+			\bigcirc	008	0	$\stackrel{\square}{\square}$	\bigcirc	000	120	62 15
$\begin{aligned} & 10 \\ & \substack{9 \\ 6} \end{aligned}$			$\begin{aligned} & \infty \\ & \underset{\sim}{N} \end{aligned}$	俞会运	$\stackrel{12}{29}$	8		足三空	$\begin{gathered} 98 \\ 9 \end{gathered}$	$\stackrel{8}{9}$
∞	000	$001000:$	\bigcirc	000	！	0	\bigcirc	1	00	0
${ }^{10}$	00 0 0	00 000 ：	－	000	$!$	\bigcirc	\bigcirc	$\begin{array}{l:l}1 \\ \vdots & \\ \\ 1 & \\ 1\end{array}$	00	82
E	0 ios i i	00 ioo	\bigcirc	000	！	\bigcirc	\bigcirc	！ \vdots \vdots ！	00	$!$
0	0 00 i	00 iso iri	90	000	！	0	\bigcirc	1 1 1 1	00	！
10	C20	$\mp 00 \text { स }$	0	00%		T3	\bigcirc	00	$\hat{15}^{0}$	\bigcirc
$\underset{\sim}{8}$		踏雲:	8	콩ㅇ	，	$\stackrel{3}{6}$	家	:	iog	\square

TABLE 2．－Statistics of universities and colleges for 1889－90．－PART I－Continued．

		Te70世	\％		戓运梁		훙
			\％	Ni¢	－x：	00080000 N	00
		－\because TRIT	20	\％\％Eisieio			
			\％	0 － 00	000	$00: 10100$	00
		әг¢	\ddot{y}	\＆¢ ¢ \％	충	00 0 O 0	00
			10	100	0 O	00 0：0 0	00
		－ITIN		O\％	0 － 0	00^{5}	－0
			哭	๗\％O監	－¢్ల\％	000 0000㗔	00
		＇ӘГセIV	$\underset{Q}{\mathrm{E}}$	サッセ゚あ		๕윽	¢¢\％
		－өrıutas	d		000	00	00
		－ T ［TIN	$\stackrel{+}{9}$	19xiso	000		00
		¢¢¢7，	－	¢09？	차ำ9		${ }^{\text {人2，}}$
		－әгиядя	\pm	920응	000	00000000 －	00
		＇əTCIN	to	サ～O¢	スペッツ		ล2，${ }^{\text {c2 }}$
	－səృoxd u！ォәqum		－	1－\square^{-1}	$\Xi \begin{array}{\|cc\|} \\ \square\end{array}$	$00: 000$	00
	 		19	サーロパ	¢ロロ	∞ が，	
	 		F	9 900	000	サO	00
			8				
			C 2				
			－				（
				운순어억	風运运		※゙す

成0000	8 ¢ ¢	－9		\％\％
		¢\％\％	\％	
品0 0000	－ 1 ¢	－10－	！ 10	
		\pm－Ј	${ }^{\circ}$	
\％0：0000	00 ：	\bigcirc	${ }^{\circ}$	
昭 0^{-180}	－60：	\＆	：	
F0：0000			¢185	
蔡：		\＆		\％\＆

TABLE 2.-Statistics of universities and colleges for 1889-90.-PART I—Continued.

$\stackrel{\oplus}{=}$	$e_{\infty}^{\infty} \underset{\infty}{\infty} \frac{10}{\infty}$	8		$\mathrm{CiO}_{2}^{2} \mathrm{~S}$	$\underset{\sim}{\infty}$	$\underset{\sim}{7}$	8	O్ర	$\underset{-1}{13}$	ल
e^{6}		¢	Qen	－0\％	$\stackrel{\sim}{0}$	\bigcirc	Oo．	00	\％	会
8	$\mathrm{G}_{\mathrm{c}}^{\mathrm{G}} \mathrm{E}$	\cdots	N2	종ㅇㅇ	¢	$\underset{\sim}{\underset{\sim}{f}}$	825	${\underset{i d}{2}}_{\substack{\infty \\ \hline}}$	∞	$\stackrel{1}{60}$
	$: 10$	\bigcirc	io	10	！	0	00	0	！	0
	：	0	ion	：0	！	＋	SO	\bigcirc	！	ω
	i \vdots i	0	0 O： 0	：0	！	0	10	0	！	\pm
	\vdots i	\bigcirc	$\cdots:$	10	！	\bigcirc	：	$\pm!$	！	\bigcirc
15	$\stackrel{\square 108}{\square}$	\bigcirc	Hescm	$100=$	8	\bigcirc	00	00	！	\％
앙		＊	$\operatorname{och}_{62} \underset{\sim}{\sin }$	ONO	－	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	5∞	${ }_{0}^{10}$	！	\bigcirc

ber 2n， 81890 ．
Succeeded by Rev．F．H．Guicheteau，S．P．M．

$こ ち こ め$	$\stackrel{1}{2}$	$\infty^{\text {拢こ？}}$	80	F	－	00	00	F	Ξ
유ํ	¢	のー「ごら	198む	안	\bigcirc	¢0	－	∞	20
10 $\because \bigcirc 0$	∞	$\infty 000$	－3す	\bigcirc	－	二æ		\cdots	\cdots
∞ ¢ 160	${ }^{2}$	20－－－50	＋O10	Q2	－	00		18	

2	\bigcirc	15	＊	三	\bullet	020006	10000	∞	7	二69	150	62	0

＊Richard H．Jesse，LL．D．，has sinco been elected president f Succeeded by Rev．Joseph（irimmelsman，s．J． Succeeded by W．H．Owen，A．B．$\quad g$ Wintield S．Chaplin elected chancellor August，
d Succeeded by Charles C．Hemenway．

TABLE 2．－Statistics of universities and colleges for 1889－90．－PART I－Continued．

	Location．	Name．	President．	Professors and in－ structors．						Students．										
							$\begin{gathered} \text { Total } \\ \text { number. } \end{gathered}$			Num． ber in prepar－ atory ment．		Number in col－ legiate depart－ ment．		Num－ ber in gradu－ ate de－ part－ ment．		Number in profes－ sional depart－ ments．		Total number in all depart－ ments．		
							$\begin{aligned} & \text { 亗 } \\ & \text { む゙ } \end{aligned}$		$\begin{aligned} & \text { ت̃ㄲ } \\ & \text { Eे } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{c}} \\ & \text { L } \end{aligned}$				$\begin{gathered} \text { 玉゙ } \\ \text { ت゙ } \end{gathered}$		$\begin{aligned} & \stackrel{\text { ® }}{\text { In }} \end{aligned}$	盛号	$\begin{aligned} & \text { ® } \\ & \text { ت్మ゙ } \end{aligned}$	等	－
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	NEW YORK－cont＇d．																			
241	Allegany	St．Bonaventure＇s College．．．				6						60				35	0	161	0	161
242	Annandale ．－．．．．．．．．－	St．Stephen＇s College ．．．．－．－－	Robert B．Fairbairn，D．D．，		7		8	0	8	20	0	61	0						0	81
243	Brooklyn．－．．．－．．．．．－	Polytechnic Institute of Brooklyn．	David H．Cochran，PH．D．， LL．D．	28	14	0	40	2	42	589	0	218	0	7	0			794	0	794
244		St．Francis College．．．．．．．．．．．	Brother Jerome，o．S．F ．－．．－－				22	0	22	38	0	22	0					256	0	256
245		St．John＇s College ．－．．．．．．．．．．．．．	Rev．J．A．Hartnett，C．M		（10）		10	0	10									159	0	150
246	Buffalo	Canisius College	Rev．J．Ulric Heinzle，s．J			0－	16	0	16	33	0	240	0					298	0	298
247	Canton．	St．Lawrence University	Alpheus Baker Hervey，PF． D	0	8	4	12	0	12	0	0	47	21	9	5	24	－	80	28	108
248	Clinton－	Hamilton College	Henry Darling，D．D．，LL．D．a_{-}		14	0	14	0	14	0	0	153	0	0	0	0	0	153	0	153
249	Fordham	St．John＇s College	Rev．John Scully，S．J－－－．－．－－	12	19	0	31	0	31	190	，	139	0	0	0	0	0	329	0	329
250	Geneva	Hobart College	D．C．L．，LL．D． Eliphalet Nott Potter，D．D．，			0	12	0	12	0	0	67	0	0	0	0	0	67	0	67
251	Hamilton	Colgate University	Ebenezer Dodge，D．D．，LL．D．b	0	16	6	16	0	16	0	0	136	7	\％	11	56	0	192	0	192
253	Ithaca	Cornell University Cof St．Francis Xavier	Charles Kendall Adams，LL．D		100	4		0	$\stackrel{104}{21}$	${ }_{169}$	0	1979 323	175	73 0	11 0	105 0	0	1，143	186 0	
254	－－．．．．do．	College of the City of New	Alexander Stewart Webb，	13	29	0	42	0	42	756	0	675	0					1，431	0	1，431
255		Columbia College－．．．．．．．．．．．	Sth．D．	0	38	106	180	0	180	0	G	269	10	70	0	1，075	0	1，661	10	1，671
256		Manhattan College	Brother Justin，F．S．C．－	8	10	0	18	0	18	198		119	0	0	0	0	0	317	0	317
257		University of the City of New York．	Henry M．MacCracken，D．D．， LL．D．，chancellor．	0	24	58	82	0	82	－	0	125	0	95	5	775	0	995	5	1．000
258	Niagara University．	Niagara University ．－．－－．．．．．	Patrick V．Kavanagh，c．M．－	10	8	6	24	0	24	97	0	48	0	0	0	34	0	179	0	179
259	Rochester－．．．－．－．－．－	University of Rochester．－．．－	David J．Hill，LL．D．－．－．．．．．．－	0	13	0	13	0	13	0	0	185	0	0	0	${ }^{0}$	0	185	0	18.5
260	Schenectady ．－－－－－．	Union University－－－－－－－－－－－	Harrison E．Webster，M．D．，	0		35	50	0	50	0	0	124	0	0	0	2200	0	c324	0	c324
261	Syracus	Syracuse Universit	Charles N．Sims，D．D．，LL．D	0		25	43	4	47	0	0	202	90	d96	d10	40	4	375	289	664

TABLE 2.-Statistics of universities and colleges for 1889-90.-PART I-Continued.

$\begin{array}{r} \text { on स स } \\ 10 \text { H. } \\ \hline \end{array}$	0	$\bigcirc 000 \text { No }$	19	$\text { OQN } 00$	$\text { 为 } 00 \text { \% }$	No@	00	0
N-M M8	๗		$$	FAO NO NO	-o		Cim	10 0 0
100	\bigcirc	$000: 100$	\bigcirc	$0 \text { : }$	100 !	10 ir i	$\bigcirc 0$	\bigcirc
100	\bigcirc	oon	∞	$\bigcirc 0$			S°	\bigcirc
i io	\bigcirc	$00: 00$!	- : 100	:om	io ix 0	10	\bigcirc
: 0	-	$020:$0	!	\%	:	io im im	10	0
H WO-H	\bigcirc	$01001=0$	20	$0 N 20$	00019	$\prod_{4}^{\infty} \bigcirc 00006$	00	0

TABLE 2.-Statistics of universitics and colleges for 1889-90.-PART I-Continued.

TABLE 2.-Statistics of universities and colleges for 18S9-90.-PART I-Continued.

Table 2.-Statistics of universities and colleges for 1839-90-Part II.

[^86]Table 2.-Statistics of universities and colleges for 1889-90.-Part II—Cont'd.

Table 2.-Statistics of umiversities and colleges for 1859-90.-Part II-Cont'd.

Table 2.-Statistics of universitics and colleges for 15S9-90.-Part II-Cont'd.

[^87]Table 2.-Statistics of universities and colleges for 1889-90.-Part II-Cont'd.

Table 2.-Statistics of universities and colleges for 1889-90.-PART II-Cont'd.

Table 2.-Statistics of universities and colleges for 1889-90.-PART II-Cont'd.

*Statistics of 1888-89.
a Incidentalfee.

Table 2.-Statistics of universities and colleges for 1859-90.-Part II.-Cont'd.

TABLE 2.-Statistics of universities and colleges for 1889-90.-PART II-Cont'd.

TABLE 2.-Statistics of universities and colleges for 1889-90.-PART II-Cont'd.

*Statistics of 1888-89.
a Includes pamphlets.

Commercial and Business Colleges．

Table 1．－Summary of statistics of commercial and business colleges for 1889－＇90．

Division and State．		Instructors．			Students．							
		$\begin{aligned} & \text { © } \\ & \text { ⿷匚 } \end{aligned}$		$\begin{aligned} & \text { స్ర゙ } \\ & \text { H: } \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { 畐 } \end{aligned}$	氷						
1	2	－ 3	4	5	6	7	8	9	16	11		
United States．－－．－－－North Atlantic Division．．．	263	1，113	460	1，593\}	$4\left(\begin{array}{c} (11,255) \\ 49,901 \mid 17,764 \end{array}\right.$		\} 78,920	$\left\{63,014{ }^{(930)} 14,976\right.$		\} 24,994		
	86	407	159	560\％	$\begin{gathered} (3,189) \\ 19,054 \\ 6,339 \end{gathered}$		\} 28, 282	21，288	7，294	8，022		
Maine New Hampshire Vermont	324163628519	$\begin{array}{r} 17 \\ 6 \\ 8 \\ 53 \\ 12 \\ 10 \\ 157 \\ 29 \\ 115 \end{array}$	28343424578840	$\left.\begin{array}{r} 21 \\ 8 \\ 16 \\ 87 \\ 14 \\ 14 \\ 14 \\ 214 \\ 57 \\ 57 \\ 155 \end{array}\right\}$	230 181 1288 50 193 138 (295) 2,195 1,253 447 294 612 200 $(1,288)$ 7,422 2,327 1,481 412 $(1,606$ 6,046 1,481		7141783313,743741812$11,03 \pi$1,8939,133	$\begin{array}{r} 665 \\ 160 \\ 273 \\ 2,934 \\ 6: 1 \\ 458 \\ 8,111 \\ 1,342 \\ 6,674 \end{array}$	491858809793242,9265512,459	$\begin{array}{r} 625 \\ 200 \\ 233 \\ 1,118 \\ 58 \\ 5 \% 0 \\ 2,620 \\ 1,000 \\ 1,581 \end{array}$		
Massachusett												
Rhode Island． Connecticut．．												
New York												
New Jersey												
Pennsylvania												
South Atlantic Division ．	14	48	18	${ }^{60}\{$	${ }_{2,358}^{(117)} \overline{735}$		$\} 3,110$	2，236	774	2，426		
Delaware	1 4 1 1 2	41813347	2091115	67224512	（117）		1175831,083211349318	$\begin{aligned} & 117 \\ & 477 \\ & 646 \\ & 123 \\ & 2222 \\ & 318 \end{aligned}$	$\begin{array}{r} 106 \\ 437 \\ 88 \\ 127 \\ 0 \end{array}$	2146241500		
Marsland												
District of					675 176							
West Virginia					273	76						
North Carolina					281	37				038		
South Carolina										191		
Georgia Florida－－－		10	0	10	440	9	449	433	16	319 254		
South Central Division	27	113	34	147 \}	$4(1,534)$		\} 6,646$\}$	$4,995$	$\text { 5) } 946$	3，158		
Kentucky	2		117	$\begin{aligned} & 13 \\ & .47 \end{aligned}$	$\begin{array}{cc} 957 & 249 \\ (304) & \\ 1,114 \mid & 224 \end{array}$		$\left\{\begin{array}{l}1,206 \\ 1,642 \\ -\cdots-\cdots---1\end{array}\right.$			597		
Tennes							491					
Alabama							29					
Mississi	5	27	3	$\left.\begin{array}{c} 30 \\ 20 \\ 31 \\ 6 \end{array}\right\}$	$6(87)$ 35 (550) 3891 51 (155) $1,11)^{(438)}$ 335			$\left\{\begin{array}{c} 763 \\ \\ 990 \\ 1,60 \pi \\ \\ 438 \end{array}\right.$	711 52 (550) $386 \mid 1$ 54 (155) 1,321 131 438 $\ldots-\ldots$		310	
Louisiana	4	16	4				715					
Texas	6	23	8				\} 600					
Arkansas	1						15					
North Central Division．．．	122	499	210	703\｛	$\begin{gathered} (6,265) \\ 21,633,8,780 \\ \hline \end{gathered}$			$\{36,678\}$	$\begin{array}{\|c\|c\|} \hline 31,1200 \\ \hline \end{array}$		9，279	
Ohi	23	62	32	$\left.\begin{array}{c} 94 \\ 73 \\ 73 \\ 83 \\ 63 \end{array}\right\}$	$\begin{gathered} (1,808) \\ 2,051 \mid 1,112 \\ (25) \\ 3,031 \mid 1,597 \\ (793) \\ 5,0681,289 \\ (2,2) \\ 1,9621 \\ (370) \\ 7801 \\ (149) \\ 9621) \\ (979) \\ 2,8581,319 \end{gathered}$		$\left\{\begin{array}{l}\left\{\begin{array}{l}4,971 \\ 4,883 \\ 7 \\ 7,150 \\ 3,1582 \\ 3,446 \\ 1,40 \\ 1,423 \\ 3,250\end{array}\right\}\end{array}\right.$	3,918 1,053 4,437 446 6,006 1,144 2,377 $525)$ 1,260 186 1,167 256 4,734 522		$\begin{array}{r} 1,501 \\ 245 \\ 1,355 \\ 602 \\ 677 \\ 350 \\ 1,458 \end{array}$		
Indiana	11	51	22									
Illinoi	12	67	16									
Michigan		43	20									
Wisconsin	8	26	17									
Minnesota	521	1281	$\begin{aligned} & 11 \\ & 43 \end{aligned}$									
Iowa												

Table 1.-Summary of statistics of conmercial and business colleges-Continued.

Division and State.		Instructors.			Students.					
		$\stackrel{0}{\underset{Z}{z}}$		$\begin{aligned} & \text { ※ỉ } \\ & \text { Ei } \end{aligned}$				Oi 0 0 - ⿵	0 0 0 0 0 0 on 㤟 8	
1	2	3	4	5	6	7	8	9	10	11
North Central DivisionContinued. Missouri	131167	$\begin{array}{r} 96 \\ 4 \\ 1 \\ 25 \\ 30 \end{array}$	$\begin{array}{r} 32 \\ 1 \\ 1 \\ 7 \\ 8 \end{array}$	$\begin{gathered} 128 \\ 5 \\ 2 \\ 33 \\ 38 \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} (325) \\ 2,972(1,156 \\ (54) \\ (74) \\ (350) \\ 1,00 \pm \\ (883) \\ 835 \\ 835 \end{gathered}$		4, 85354741,76772,013	$\begin{array}{r} 3,661 \\ 54 \\ 65 \\ 1,693 \\ 1,758 \end{array}$	732$\cdots-7$9474295	$\begin{array}{r} 1,193 \\ 27 \\ 86 \\ 482 \\ 1,293 \end{array}$
North Dakota.. South Dakota..										
Nebraska.										
Kansas.										
Western Division.	14	66	39	1053	$2,639^{(1)}$	$1,115$	\} 3,904	3,375	525	1,609
Montana										37
Colorado New Mexico	2	9	1	10	20	94	381	252	132	442
Indian Territory Ctah										
Washington	2	7	2	9			203	165	38	232
Oregon .	2	8	4	12\}	1		693	514	179	20
California	8	42	32	74	1,815	809	2,624	2,448	176	463

TABLE 2．－Statistics of commercial and business colleges for 1889－90．－PART I．

		Name．	Superintendent or principal．		Instruct－ors．			Students．						Average daily attend－ ance．		Annual charge for tuition．	
								Day course．			Evening course．						
	Post－oflice．				$\begin{aligned} & \text { ভ் } \\ & \text { ت゙ } \end{aligned}$		$\begin{aligned} & \text { تٌ } \\ & \stackrel{0}{0} \\ & \text { H. } \end{aligned}$			$\begin{aligned} & \text { تin } \\ & \text { Hi } \end{aligned}$	$\begin{aligned} & \stackrel{\text { ت゙ }}{\text { ت゙ }} \end{aligned}$		$\begin{aligned} & \text { ت్లై } \\ & \text { È } \end{aligned}$				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Little Rock，Ark ．－．－	Little Rock Commercial College＊－．．．．．．．	W．A．Stone	1874						438 109						$\$ 50$ 60	$\$ 50$
2	Auburn，Cal ．－．－．－．－．－	Sierra Normal College and Business Institute．	Moses W．Ward ．．．．－	1883	3	3	6	58	51	109	0	0	0			C0	
3	Los Angeles，Cal．．．－	Woodbury＇s Business College．．．－－．－－－．－－	F．C．Woodbury－．．．－	1884	5	1	8	356 60	119 20	475 80	－ 0	5		175	0	100 75	
5	Oakland，Cal－－．－	Oakland Business College	D．C．Taylor－－．－．－－－	1876	$\stackrel{2}{2}$	$1{ }_{3}$	3 6	147	98	245		${ }_{14}^{5}$	40		36	75	5
5	Sacramento，Cal－－－－	Bainbridge Business College and Nor－ mal School．	J．C．Bainbridge－－－－	1887	3	3	6	147	98 190	245	26	14	40	223	36	75	
${ }_{7}^{6}$	San Francisco，Cal－－	Commercial High School－－．．．．．．．．．．．．－－－－	Walter N．Bush	1884	$\stackrel{4}{12}$	9 4	13	214 350 3	$1 \begin{aligned} & 190 \\ & 150\end{aligned}$	404 500	0	0	0	388 250	0	125	
8	do	Heald＇s Business College	T．A．Robinson	1863	${ }_{7}$		10	300	90	390	85	21	106	125	27	150	90
9	San Jose，Cal	Gardner City Business College	H．B．Worcester－－－	1871	6	6	12	194	51	245	${ }_{6} 0$	0	${ }_{96}$		28	85	
10	Denver，Colo	Denver Business College	Varnum \＆Benton ．－	1889	6 3 3		6 4	$\begin{array}{r}160 \\ 3 \\ \hline\end{array}$	${ }_{23}^{32}$	192	${ }_{27}^{66}$	30 9	${ }_{36}^{96}$	60	28	a50 $b 10$	${ }^{3} 5$
11	Pueblo，Colo－－．．－	Pueblo Business College－－．．－	G．C．Warden－－．．．－．	1887	3 3 3	1	4 3 3	37 97	13	${ }^{60} 110$	27	98	89	50	45	b10 $a 100$	－ 835
12	Bridgeport，Conn	Bridgeport Business College ．．．．．．．．．．．．．．	G．H．Turner	1887	1	0	1	10	${ }_{32}$	142	12	15	${ }_{27}^{89}$	40	20	－ 10	－${ }^{25}$
13	－－－－－do－．．．－－－－－	Martin＇s Shorthand and Typewriting School． Hannum＇s Business College \qquad	W．W．Hannum－－．．－－－－	1887 1877	1	1	1	10 125	40	165	34	15	37	80	20	75	$a 18$
15	－－－－－－do ．－．－．－－－	Huntsinger＇s Business Coilege and	E．M．Huntsinger	1888	2	1	3	79	32	111	37	9	46			103	25
16	Hartford，Conn．，（774	Robertson＇s Shorthand School ．－．．．．．．．	Ella M．Olmstead	1887	0	1	1	10	20	30	35	15	50	25	37	60	60
17	New Haven，Conn	Gaffey＇s Shorthand School．	John T．Gaffey－．．．－－	1884	1	2	2						60			$\begin{array}{r} b 10 \\ 80 \end{array}$	65 20
18	Wilmington，Del．－．－	Goldey＇s Wilmington Commercial Col－ lege．＊	H．S．Goldey－－－－－－－－－	1886	4		6		117			90					
19	Washington，D．C．．－	Business Department，Washington High School．	F．R．Lane	1882	2	0	2	119	85	204	0	0	0	192	0	0	
20	do	Columbia College of Commerce－－．．．．．．．．	Charles K．Urner－．－－	1889	3	2	5 3	64	$\begin{aligned} & 37 \\ & 41 \end{aligned}$	101	127	41 0	168			50 610	40
21		H．C．Tanner＇s Shorthand and Type－ writing Bureau．	Hudson C．Tanner ．－	1889	1		3	20	41	61	0	0		47		b_{10}	
22	－－－－do	Spencerian Business College－－－－	Henry C．Spencer	1864	7	5	12	170	111	281	175	94	269	120	115	70	60
23	Atlanta，Ga．－．－．－．－－－	Moore＇s Business College and School of	Benjamin ${ }^{\text {F．Moore }}$	1868	2		2	120	5	125				50		75	
24	Augusta，Ga．	Osborne＇s Business College．．．－．．．．－．－．	S．L．Osborne	1882	3	0	3	100	3	103	15	1	16	40	12	50	

TABLE 2．－Statistics of commercial and business colleges for 1889－90．－PART I－Continued．

	Post－office．	Name．	Superintendent or principal．		$\begin{aligned} & \text { Instruct- } \\ & \text { ors. } \end{aligned}$			Students．						Average daily attend－ ance．		Annual charge for tuition．	
								Day course．			Evening course．						
					$\begin{aligned} & \text { ※゙ } \\ & \text { デ } \end{aligned}$		$\begin{aligned} & \text { In } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { ब̈ } \\ & \text { త్̉ } \end{aligned}$	－	$\begin{aligned} & \text { ت゙ } \\ & \stackrel{\text { H}}{1} \end{aligned}$							
	1	2	3	4	5	6	7	8	¢	10	11	12	13	14	15	16	17
67	Marshalltown，Iowa	Connor＇s Business College	Chas．J．Connor	1890	3	1		10	28	32						\＄50	\＄50
68	Muscatine，Iowa－－－－	Muscatine Commercial College	J．B．Harris	1886	1	$\stackrel{2}{2}$		57		65	0	${ }_{5}^{0}$	0	30	0	50	
${ }_{70}^{69}$	Oskaloosa，Iowa - －－－－ Ottumwa，	Oskaloosa Business College ．－．－．－．－－－	Chas．J．Connor J．W．O．Bryan．	1866	3	2	5 4 4	103	175	${ }_{355}^{152}$	19	100	290	74 401		50 60	15
		hand Institute．															
71	Sioux City，Iowa．	Northwestern Business College＊－－．．．．．	O．S．Davidson－－－${ }^{\text {F－}}$	1883	3	${ }_{2}^{2}$	5			122			63			75 30	18
72	Waterloo，Iowa－－－－－	W aterloo Collegiate Institute and Com－ mercial College．	A．F．Harvey and W． II．Brown．	1886	3	2	5	80	70	150				45			
73	Atchison，Kans	Atchison Business College ．－－－－－－－－－－－－－	Coonrod \＆Smith ．．．	1885	4	1	5	90	48	138	38	13	51	50	25	50	25
74	Arkansas City，Kans	Gate City Business College	C．E．Lowe－	1889	5		3			49						40	40
75	Emporia，Kans ．－－－－	Emporia Business College＊	O．W．Miller	1881	5	3	8			285			75			40	20
76	Lawrence，Kans ．－．－	Lawrence Business College	E．L．Mcllrary	1869	8	$\stackrel{2}{1}$	10			423						50	
77	Leavenworth，Kans．	Central Business College		1887	$\stackrel{2}{2}$	1	3	45	20	65	25	5	30	30	20	50	25
78	Topeka，Kans ．－．－．－－	Pond＇s Business College	M．A．Pond	1867	2	0	2	106	22	128	78	15	93	40	29	100	30
79	Wichita，Kans	Southwestern Business Colle	1．H．Fritch	1885	6	1	7	415	194	609	38	8	46	340	22	67	45
80	Louisville，Ky	Bryant \＆Siratton Business Colle	Enos Spencer	1864	9	1	10	607	178	785	110	11	121	218	76	125	35
81	－－－－do	Southern Business College	Ben．C．Weaver	1878		0	3	180	20	200	50	0	100	40－70	40－60	a35	a35
88	New Orleans，La	Euston＇s Business College	B．B．Euston－	1887	${ }_{2}^{2}$		$\stackrel{2}{3}$	52	8	60	32	6	38	10	12	b7－10	${ }_{8} 8$
83	do	J．W．Blackman＇s Commercial College－－	J．W．Blackman	1862	3		3				16			0	6	15	
81	－do－－－－－－－－－．－－－－－	Soul6 Commercial College and Literary Institute．	Geo．Soulé	1856	10	1	11	289	37	326	289	37	326			150	120
85	do	St．John the Baptist＊－．－－－－－－－－－－－－－－－－－－－－	H．H．Ward	1854	1	3	4			550						20	
86	Augusta，Me	Dirigo Business College	12．B．Capen	1863	8		8	210	59	269						35	
87	Portland，Me	Portland Business College	L．A．Gray	1883	5	$\stackrel{2}{2}$	7	184	45	229	38	11	49			60	c12
88	Rockland，Me	Rockland Commercial College	H．A．Howard	1880	$\stackrel{2}{7}$	2	4	98	69	167	0	0	0	50	0	80	
89	Baltimore，Md．－．－－－－	Eaton \＆Burnett＇s Business Collego．－－－－－	A．H．Eaton and E． Burnett．	1878	7		7	415	62	477	98	18	116			100	c25
90	Boston，Mass	Allen Institute	G．G．Allen	1880	2	1	3	23	88	111	5	9	14				
91	Boston，Mass．（608 Washington st．）．	Bryant \＆Stratton Commercial College．－	H．E．Hibbard	1864	19	2	21	800	132	932				600		160	
92	Boston，Mass ．－－－－－	Comer＇s Commercial College	Charles E．Comer	1840	8			225	96	321	110	34	144	$2 \% 5$	115	150	30
93	－－－－－do	French＇s Business College	Charles French．	1848	2	1	3	93	29	128	0	0	0	32	0	140	
94		Hickox＇s Shorthand School．	Wm． W ．Hickox	1880	1	1	2			150			20			615	b6

TABLE 2．－Statistics of commercial and business colleges for 1889－90－Continued．

	Post．omico．	Name．	Superintendent or principal．		Instruct－ ors．			Students．						Average daily attend－ ance．		Annual charge for tuition．	
								Day course．			Tvening course．						
								$\begin{aligned} & \text { ®゙ } \\ & \text { ت゙゙̇ } \end{aligned}$		$\begin{aligned} & \text { Win } \\ & \text { Ĥ } \end{aligned}$		$\begin{aligned} & \dot{3} \\ & \text { ت゙ } \\ & \text { ష̈ } \\ & \text { E } \end{aligned}$	T．			$\dot{0}$ 0 0 0 0 0 A． A．	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
135	St．Joseph，Mo	St．Joseph Commercial College	Bro．Marcellian	1867	8	0	8	200	0	200	0	0	0	180		$\begin{array}{r} 30,40, \\ 50 \end{array}$	
136	St．Louis，Mo．．－	Jones Commercial College	J．G．Bohmer	1841	5	1	6	253	67	320	117	11	128	180	91	100	\＄50
137	St．Louis，Mo．（322 Chestnut st．）．	Mound City Commercial College	Thos．A．Rice	1859	4		4	80	2	82	53		53	50	45	100	a30
138	St．Louis，Mo－－．．．－	Perkins \＆Herpel＇s Mercantile College－	H．C．Perkins and P．	1882	4		4	67	15	82	125	7	132	50	100	100	50
139	Sedalia，Mo．	Central Business College	C．W．Robbins．	1883	12	2	14	700	133	838	700	133	833	205	150	60	30
140	Stanberry，Mo．	Northwestern Normal School，Business and Shorthand Institute．	John E．Fesler	1881	12	6	18	3.5	275	600				200		40	
141	Hastings，Nyebr．	Queen City Business College－－－－－－－．－．．－	J．H．Schoonover	1888	1	2	3	40	20	66	28			15	10	625	b25
142	Lincoln，Nebr ．－．．．．－	Lincoln Business College and Institute of Penmanship，Short－hand，Type－ writing，and＇Telegraphy．	Lillibridge and Roose．	1884	7		7	459	190	649	30	14	41			60	36
143	Omaha，Nebr	Omaha Commercial College＊．－－－－－－－－－－－－	M．G．Rohrbough ．．．	1872	5	1	6			350						65	
144	－－－．－do	Rathbun＇s Omaha Business．	G．P．Rathbun	1873	5	1	6	376	124	500						65	
145	Stromsburg，Nebr ．－	Stromsburg Normal and Business Col－	J．J．Bryant	1889	7	3	10	51	53	104	0	0	0	75		44	
146	York，Nebr．	York College of Commerce－－－－－－－－－－－	J．George－－．．．．－．．．．－	1890	1	0		20	4	24	0	0	0			36	
147	New Hampton，N．H．	New Hampton Literary and Biblical In－ stitution and Commercial College．	A．B．Meservey，A．m．， PH．D．	1878	3		3	81	15	96						c13	
148	Portsmouth，N．H ．－	Smith＇s Academy and Commercial School．	Lewis E．Sinith．．．．－	1873	3	2	5	42	22	64	5	13	18				
149	Newark，N．J	Jersey City Business College－－－－	Wm．E．Drake	1884	4	1	5	60	44	104	105	16	121	45	60	75	25
150	Jersey City，N．J．－．－	Coleman National Business College ．－．－	H．Coleman		5	3	8	3\％5	86	411	42	13	55			85	d25
151	Newark，N．J－－－－－－－－－	New Jersey Business College	C．T．Miller	1874	7	1	8	17%	33	205	80	${ }^{16}$	96	110	75	70	30
152	Trenton，N．J．－－－－－－－－	The Stewart and Hammond Business College．	Thos．J．Stewart	1883	7	1	8	211	63	304	115	31	146	190	100	75	30
153	－－do．	Trenton Business College．．	Andrew J．Rider ．－－－	1865	6	2	8	218	100	318	123	10	133	106	50	75	30
154	Albany，N．Y	Albany Business College－	John R．Carnell．－．－－－	1856	8	3	11	502	140	642	50	15	63	350	50	100	40
155	Binghamton，N．Y－－－			1859	4	2		150	50	200	83	25	108	45	28	100	30
156	Brooklyn，N．Y ．－－．．－	Claghorn＇s Bryant \＆Stratton＇s Busi－ ness College．＊	Chas．Claghorn	1861	7	1	8			224						120	

STATISTICS OF COMMERCIAL AND BUSINESS COLLEGES. 1617

TABLE 2．－Statistics of commercial and business colleges for 1889－90．－PART I－Continued．

				60						tude	ts．						
				$\stackrel{\text { Na }}{\stackrel{\rightharpoonup}{\circ}}$		stru		Day	cou	rse．		$\begin{aligned} & \text { veni } \\ & \text { ours } \end{aligned}$		daily	tend-	$\begin{aligned} & \text { char: } \\ & \text { tuit } \end{aligned}$	－for on．
	Post－offico．	Name．	Superintendent or principal．					默		$\begin{aligned} & \text { न్ㅍ̇ } \\ & \text { E- } \end{aligned}$	$\begin{aligned} & \text { 亗 } \\ & \text { 圌 } \end{aligned}$		$\begin{aligned} & \text { त⿹弋工 } \\ & \text { B } \end{aligned}$				$\begin{aligned} & 80 \\ & \text { a } \\ & \text { - } \\ & \text { a } \\ & 0 \\ & 0 \\ & \triangleright \\ & \text { p } \\ & \text { a } \end{aligned}$
	1	2	3	4	5	6	7	8	¢	10	11	12	13	13	15	16	县
194	Delaware，Ohio．－－－－－	National Pen Art Hall and Business	G．W．Michael	18ั̌2	4	2	6	320	198	518						850	
195	Findlay，Ohio	Findlay Business College	J．N．Woolington－－	1883	3 1	1	2	59	41	93	13	10	23	48	18	45	${ }_{25}^{845}$
196	Germantown，Ohio－	Twin Valley College，Actual Business School．	Orvon Graff Brown．	1883	1	1	2	24	34	58	． 5	0	5			35	25
197	Hamilton，Ohio ．－	Ohio Commercial College－．．－－－－－－－－－－－－	W．A．Nichols	1875	2	2	，	48	15	63	50	4	54			90	50
198	Hopedale，Ohio．．．－	Buchanian Business Institute	W．Buchanan		${ }^{1}$	1		42	${ }^{17}$	59	0	0	0	30	0	40	
199	Mansfleld，Ohio ．．．－－	Ohio Business College－－－－－－－－－－－－－－－－－－－	Joseph W．Sharp， M．S．，PH．D．	1866	2	1	3	104	38	142				40		75	
200	Oberlin，Ohio．．．－	Oberlin Business College ．－－－－－－－－－－－－－－－－	McKee and Hender－	1876	2	1	3	161	53	214							
201	Springfield，Ohio．	The Nelson Business College Company－－	R．J．Nelson．	1881	3		3									50	
202		Van Sickle＇s Practical Business College＊－	John W．Van Sickle．	1871	1	0	1			28			23			40	20
203	－－．．．do	Williss College of Shorthand－－－－	F．W．Williss	1880 1870	$\frac{1}{5}$	0	3									100	
204	Toledo，Ohio．－．－．．．－．	Toledo Business College and Shorthand School．	M．H．Davis．－．．．．．．．－．	1870	5	0	5	400	200	600	75	25	100	200	75	60	25
205	Washington C．H．， Ohio．	Ohio Business University	Edmund J．H．Dun－	1885	2	2	4	98	32	130	47	14	61	108	52	80	40
200	Youngstown，Ohio．－	Normal Business College	J．C．Steiner．－．－．－．－－	1885	1	3	4	76	84	－ 160	32	20	52	50	20	35	35
207	Zanesville，Ohio－．－－－	Zanesville Business College	C．C．Kennison．．．．．．－	1805	－	1	3				120	60	180	60		50	20
208	Baker City，Oregon－	Baker City Normal and Business College－	S．A．Danford，Pr．B．	1888	2	3		18 320	$\begin{aligned} & 16 \\ & 160 \end{aligned}$	34 480	20	9	29	30 150	18	$a 5$ 60	$a 5$ 60
220	Portland，Oregon	Portland Business College－	A．P．Armstrong	1866 189	6 3 3	3	9	320 70	160 15	480 85	23	12	40	150 42	31	60 50	60 25
211	－－－－－－do－－－－－．	American Business College and Modern	O．C．Dorney ：－	1889	6	2	8	115	25	140	82	14	96	90	75	50	35
212	do	Offlee－Training School． Mountain City Business College	G．G．Zeth，A．M	1879	3	1	4	315	93	408	104	25	123	92	43	60	0
213	Easton， Pa	Laston College of Business．．．	C．L．Free－	1870	3	0	3	50	10	60	3．	15	59			50	20
214	Erie，एa	Clark＇s Business College	I．C．Clark	1883	7	2	9	500	100	600	150	125	175	200	75	60	35
215	Harrisburg，Pa．．．．	Keystone isusiness College and School	H．O．Bernhardt．．－	1889	3	0	3	17	7	24	17	1	18	18	15	75	50
216	Lancaster，Pa	Keystone Business Colleg	W．D．Moss	1879	1	1	2	25	15	40	10	10	20			b45	b30
217	－－－－－do－	Lancaster Business College	H．C．Wedalon	1830	1	1	2	50	10	60	29		38	55	35	50	25

TABLE 2．—Statistics of commercial and business colleges for 1889－90．—PART I—Continued．

	Post－offle．	－Name．	Superintendent or principal．		Instruct－ ors．			Students．						Average daily attend－ ance．		Annual charge for tuition．	
								Day course．			Evening course．						
						守	$\begin{aligned} & \text { تై } \\ & \text { Hे } \end{aligned}$	$\begin{aligned} & \stackrel{0}{山 ゙ 心} \\ & \text { むú } \end{aligned}$	－	$\begin{aligned} & \text { न్ } \\ & \text { O } \\ & \text { H } \end{aligned}$	范	过	N－1				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
254	Wallawalla，Wash ．－	Empire Business College	A．M．Cation	1887	3	1	4	70	15	85	25	0	25	40	15	\＄60	\＄24
255	Wheeling，W．Va－－－	Wheeling Business College－	J．M．Frasher－－	1860	4	1	5	153	69	222	110	7	117	68	44	45	45
256	Appleton，Wis	De Land＇s Business College－－．－．．．．．．．－－	O．P．De Land－．．．．．－ C． H Howieson	1887	3	1	$\stackrel{4}{2}$										
257	Chippewa Falls，Wis．	Chippewa Fals Business College and	C．H．Howieson ．．．－．－	1887	1	1	2	27	20	47				40		60	a24
258	Green Bay，Wis．．．．－	Green Bay Business College	J．N．McCunn－－－－－－－	1868	3	3	${ }_{6}$	116	${ }^{27}$	153	25	6	31	55	23	60	25
260	Madison，Wis ．－．－．－－－	Northwestern Business College．－．－．－．．．－．－－	R．G．Jeming and J．	1856	5	1	6	146	${ }^{57}$	120	12	3	${ }_{35}^{14}$	125	20	45	65 20
261	Milwaukee，Wis．．．．－	Charles Mayer＇s Commercial College．	Charles Mayer		6		10			370						100	
262	－．．－．－do－．．．．．．．．．．．．．－－	Spencerian Business College．．．．．．．．．．．－－－	Robert C．Spencer－－	1863	4	4	8	－217	44	261	39	－26	$\stackrel{-7}{6-}$	90^{-1}	45	14	44
263	do	Wilmot Business and Shorthand College．	H．M．Wilmot．．．．．．．－	1881	2	2	4	34	62	96	32	9	41			55	40

TABLE 2.-Statistics of commercial and business colleges jor 1889-90.-PART II-Continued.

							Com	mer	cial	stu	ies.						Am en stu	anu- is ies.				Aca	dem	ic s	tudi			
	Name.													$\begin{aligned} & \text { dig } \\ & \text { di } \\ & \text { on } \end{aligned}$							$\begin{aligned} & \text { Hi } \\ & \stackrel{\text { H }}{1} \end{aligned}$	$\begin{aligned} & \dot{\text { • }} \\ & \dot{0} \\ & \dot{U} \end{aligned}$			$\begin{aligned} & \dot{y} \\ & \text {. } \\ & \text { d } \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$			ت̈ 0 0 0 0 H 0 0 0 H
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
99	Cannon's Commercial College	87	40	146													19											
100	Lowell Commercial College. Childs Business College	160	160	160	160	0	160	0	0	160	0	0	160	0	0	0	32	32		0	0	0	0	0	0		0	0
102	New England School of Shorthand and Typewriting.																		8									
103	Commercial Department of Waltham High School.	48	48	48																	48	----	20	27	21	21		
104	Foster's Business College																											
105	Worcester Select School of Shorthand and Typewriting.																											
106	Krug's Business College ---------------																											
107 108	Devlin's Business College	85	76	360	52				75		75		345					50		350			360	48	25	70		23
109	Detroit Business University	707	879	880	707		200	180	180	130	180	180	860				318	318										
110	St. Joseph's Parochial Commercial School.--																											
111	Grand Rapids Business College and Practical Training School.	157				-											31	31	1	0	0			0			0	0
112	Welton's Commercial College .	64	80	77	40	60	45	37	45	27	48	48	80	0	0	0	18	12		26	2	0	0	4	0	0	0	3
113	Poucher Business College -			-	--	---	-	--	---					-	--	--						-		---				
115	Parsons Business College	110	120	115	110		90			109	102	100	120				65	50										
116	Interlake Business College.	87	182	210	67	91	18			14			120	0	0	0	56	45		126	0	0	17	22	7	5		92
117	Upper Peninsula Business College				---	---	-	--	---	---	---																	
118	Parsons Business College -Curtiss Commercial College																											
119 120	Curtiss Commercial College Curtiss Commercial College	22															137	137										
121	St. Paul Business College	213	213	32.	213	0	213	0	213	2	213	13	325	0	20	0	8	61										
122	Winona Business College	100	100	100	100					30							23	23										
123	St. Stanislaus Commercial Colleg	45	${ }^{78}$	${ }_{193}$	3	75							${ }_{183}$	40	5					60			30	30	30	3	3	50
124	Capital Cominozial College	180	170	193	90																							

Table 2.-Statistics of commercial and business colleges for 1889-90.-PART II-Continued.

TABLE 2．－Statistics of commercial and business colleges for 1889－90．－PART II－Continued．

		｜	！${ }^{\circ}$
		\％	
	＇sotscud	C	
		${ }_{6}^{2}$	
	－セxqə．ธิTV	e	¢0：
		${ }_{6}^{6}$	
	＇צəәхড	${ }_{\text {Cr }}^{6}$	10
		$\underline{6}$	
	 	${ }_{6}^{8}$	
		$\stackrel{\square}{\square}$	
		$\stackrel{\infty}{*}$	にヲ ：
	$\cdot \mathrm{Sutq}$	\％	
	－पș̦ueds	$\stackrel{\rightharpoonup}{9}$	
		$\stackrel{19}{=1}$	
		－	
	－$ә$ uәpuods －əxioo SSəutsng	$\stackrel{9}{9}$	
	әsnoप पоІ़ssịumo，	$\stackrel{\square}{2}$	
	－əsnoप suṭao！ pursu！̣ixodum	－	
	＇Yu飞q ə．səıt0，	$\stackrel{\theta}{\theta}$	
		\bigcirc	
		∞	
		\＄	
		\bigcirc	
		10	
	＇đ！̣पsuruurd	7	
		\bigcirc	
	－8u！̣đәәY乡00¢	C	
	$\begin{aligned} & \text { ©் } \\ & \text { 镸 } \end{aligned}$	\square	

Table 2.-Statistics of commercial and business colleges for 1889-90.-PART III.

Post-office.	Name.				
1	2	3	4	5	6
Los Angeles, Cal	Woodbury's Business Colle	91	22	Per ct.	Per ct.
Sacramento, Cal	Bainbridge College and Norm	218	37	91	
San Francisco, Cal	Commercial High School.	377	29	93	62
Do	Heald ${ }^{\text {c }}$ Business College	60	16	50	60
Do	Pacific Business College	38	13	32	
Denver, Colo	Denver Business College	37	10	31	29
Bridgeport, Conn	Bridgeport Business College	51	17	45	45
	Martin's Shorthand and Typewriting	190	40	95	
Wartford, Conn-•...	Robertson's Shorthand School Commercial department Washington High	1334	${ }_{96}$	94	27
	School. H.C.Tanner's Shorthand and Typewriting Bureau.	77	16	77	
Do.	Spencerian Business College..----	85	10	43	7
Atlanta, Ga	Moore's Business College and School of Shorthand.	32	25	40	53
Augusta. Ga	St. Patrick's Commercial College	568	30	78	2
Chicago, Ill	Kimball's Training School.	18	12	18	
Do.	Metropolitan Business College	35	31	15	2
Dixon,	Dixon Business College.	160	42	89	11
Joliet, Ill.	Joliet Business College and English Training	168	60	60	5
Onarga, Ill	Grand Prairie Seminary and Commercial	78	97	55	7
Quincy, Il	Gem City Business College	120	27	50	6
Rockford, Ill	Rookford Business College	45	16	38	4
Fort Wayne, Ind....-	McDermut \& Whiteleather's Business Col-				
Hope, Ind.	Normal and Commercial College	25	10		7
Indianapolis, Ind	Indianapolis Business University	44	9	37	18
Richmond, Ind-	Richmond Business College and Institute of Penmanship and Shorthand.	40	14	40	8
Valparaiso, Ind	Northern Indiana Business College.......-..--	36	53	36	56
Bloomfield, Iowa.	Normal and Scientific Institute	54	14	54	
Council Bluffs, Iowa.-	Western Iowa College	84	19	35	3
Decorah, Iowa	Valder Business-College and Normal School.	68	17	42	11
Des Moines, Iowa	Capital City Commercial College.	80	22	46	15
Iowa City, Iowa	Iowa City Commercial College	48	10	34	25
Keokuk, Iowa	Gate City Business College	85	25	71	19
Muscatine, Iowa	Muscatine Commercial College	84	10	46	
Oskalocsa, Iowa.	Oskaloosa Business College .-	58	15	49	11
Ottumwa, Iowa .	Ottumwa Business College and Shorthand Institute.	64	36	40	2
Atchison, Kans	Atchison Business College-	65	10	36	7
Leavenworth, Kans.-	Central Business College	112	10	40	7
Topeka, Kans .	Pond's Business College	38	20	31	
Wichita, Kans.	Southwestern Business College	78	50	56	
LQuisville, Ky	Bryant \& Stratton Business College	33	22	28	27
Do..	Southern Business College	60	17	25	17
New Orleans, La	Euston's Business College.	50	5	17	
Rockland. Me	Rockland Business College	73	13	30	21
Boston, Mass.	Bryant \& Stratton Commercial College	129	29	64	11
Do..	Comer's Commercial College	140	17	70	
Do	French's Business College	63	10	26	61
Fall River, Mass	Holmes's Bryant \& stratton Commercial College.	37	5	31	26
Holyoke, Mass	Childs's Business College.	100	9	50	8
Lawrence, Mass.	Cannon's Commercial College	23	8	38	
Springfield, Mass.	Childs's Business College	117	17	59	11
Waltham, Mass	Waltham High School	349	26	87	10
Battle Creek, Mich.	Krug ${ }^{\text {s }}$ Business College	180	15	50	2
Big Rapids, Mich	Ferris Industrial School	24	20	20	13
Grand Rapids, Mich.	Welton's Commercial College	82	7	58	9
Kalamazoo, Mich .-.-	Parsons Business College	62	18	57	6
Lansing, Mich ...	Interlake Business College	25	12	21	6
Marquette, Mich	Upper Peninsula Business Colle	37	9	31	5
Winona, Minn........	Winona Business College.	75	27	47	8

TABLE 2.--Statistics of commercial and business colleges for 1889-90.-PART IIIContinued.

Post-office.	Name.				
1	2	3	4	-5	c
				Perct.	Per ct.
Meridian, Miss.	State Business College	25	9		
Kansas City. Mo	National Business College-	43	10	${ }_{36}^{22}$	
	St. Joseph's Commercial College	360	23	90	
St. Louis, Mo	Jones Cornmercial College	68	30	56	
	Mound City Commercial College	146	13	61	14
Do	Perkins \& Herpel's Mercantile Colleg	73	13	61	
Hastings, Nebr.		23		23	
Stromsburg, Nebr	Stronourg Normal and Business College..--	108	13	72	
New Hampton, N.H.	New Hampton Literary and Biblical Institute and Conmercial College.	63	13	42	34
Jersey City	Jersey City Būsiness College.......-- --.....	104	9	43	
Newark, N	New Jersey Business College	129	14		13
Trenton, N.	The Stewart and Hammond Business College.	150	24.	63	
	Trenton Business College.-....------------	100	13	33	
Albany, N. Y	Albany Business College		32		21
Binghamton,	The Lowell Business College	18	8	23	26
Buffalo, N. Y	Buffalo College of Commerce		21	44	29
Brooklyn, N.	St. James's Commercial College ---.---...--	382	35	95	
Elmira, N. Y	Elmira School of Commerce and Shorthand	60	20	50	53
Genera, N. Y	Geneva Business College and Shorthand Institute.	84	8	70	24
Ithaca, N. Y	Wyckoff's Phonographic Iustitut	115	5	64	
Jamestown, N. Y	Jamestown Business College		17		2
New York, N. Y	Manhattan Business College --.-.--	156	15	78	
	The Paine Uptown Business College --.----	36	33	29	
	Walworth's Business and Stenographic College.	80	33	67	
Olean, N. Y ------	Westbrook Commercial College .-	59	12	50	22
Poughkeepsie, N. Y..	Eastman Business College	82	25	34	
Troy, N. Y.-.	Troy Business College -....-...........-.--	37 370	22	31 92	
	tute.				
Canton, Ohio	The Canton Business College	32	10	32	27
Camden, Ohio	Whittaker Shorthand School	60	13.	100	
Findlay, Ohio --	Findlay Business College.	62	12	52	24
Hopedale, Ohio	Buchanan Business Colloge	122	15	51	
Mansfielã, Ohio		23	13	88	16
Toledo,	Toledo Business College and Shorthand	53	40	33	11
Washington, Ohio	Ohio Business University-	100	27	83	12
Youngstown, Ohio	Normal Business College	31	13	31	38
Baker City, Oregon --	Baker City Normal and Business Colleg	71	10	88	
Portland, Oregon	Portland Business College	38	17	31	
Allentown, Pa	Allentown Business College.	99	11	49	
	American Business College and Modern Oifice Training School.	128	11	64	
Altoona, Pa	Mountain City Business College	18	23	23	19
Erie. Pa	Clark's Business College	40	22	33	
Harrisburg, Pa	Keystone Business College and School of Sienocraphy.	90	6	75	19
Lancaster, Pa		183	27	92	14
Meadrille, Pa	Bryant, Stratton, and Smith Business College.	76	19	88	
Philadelphia, Pa	Pierce College of Business and Shorthand .--	80	16	50	10
Scranton. Pa	Wood's Business College	148	33	74	14
Wilkesbarre, Pa	Wilkesbarre Business College.	27	6	33	24
Yorik, Pa	Bacheldor's Business College	58	12	48	
East Greenwich, R.I.	Greenwich Business College	92	45	46	
Providence, R. I	Scholfield's Commercial College	101	25	80	58
Knoxville, Temn	Innoxville Business College.	36	15	30	8
Nashville, Tenn.	Goodman's IBusiness College	91			
Austin, Tex.	Jennings's Business College	17	8	${ }_{36}^{28}$	

Table 2.-Statistics of commercial and business colleges for 1889-90.-PART IIIContinued.

Post-office.	Name.				
1	2	3	4	5	6
Fort Worth, Tex Thorps Spring, Tex.-	Fort Worth Business College Commercial Department, Add Ran University Training School.	56 189	19 68	$\begin{array}{r} \text { Per ct. } \\ 28 \\ 80 \end{array}$	Per ct. 12
Haco, Tex..		19	18	31	53
Burlingron, Vt --...	Burlington Business College	104	13	52	10
Lyndon Center, Vt.-.	Lyndon Comniercial College	116	10	60	27
Pichmond, a, ${ }^{\text {Spokane }}$ -	Smithdeal Business College.	49 72	10	49	8
	Empire Business College.	82	10	47	7
Wheeling, W.Va.....-	Wheeling Business College	37	14	31	13
Chippewa Fails, Wis.	Chippewa Falls Business Coliege and School	136	20	85	17
Green Bay, Wis	Green Bay Business Colle	86	9	36	
Madison, Wis.........	Northwestern Business Colleg	74	21	62	7
Milwaukee, Wis .-...-	Spencerian Business College.	69	11	35	

Institutions for the Defective and Dependent Classes．
TABLE 1．－Summary of statistics of public boarding institutions for the deaf，for 1889－90．

	＇səxnา！puədx＇t	∞		$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { م } \end{aligned}$		$\\|$		－	
	－sqđఫ̣əอəฯ	\geqslant						$1 \begin{gathered} 9 \\ 9 \\ 0 \\ 0 \end{gathered}$	
	－s sumppṛnq spunoг» јо өпケセム	$\stackrel{\theta}{\theta}$		$\begin{aligned} & \text { O్రి } \\ & \text { た్ర } \\ & \text { م⿵人 } \end{aligned}$		18		$\begin{aligned} & 8 \\ & 8 \\ & \infty_{0} \\ & \infty \\ & \hline \end{aligned}$	8808 880 1015
	－snzex 	19	$\begin{aligned} & 0 . \\ & 0 . \\ & \text { é } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\text { a }}{\text { ® }}$	＇¢
		－	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \text { O- } \end{aligned}$	$$		$\\| \begin{aligned} & 10 \\ & 100 \\ & 00 \\ & 0 \end{aligned}$		in	앙융아
$\begin{aligned} & \dot{\tilde{n}} \\ & \overrightarrow{\tilde{n}_{1}} \\ & \dot{\sim} \end{aligned}$	－ 	$\stackrel{\text { co }}{\square}$	$\begin{aligned} & \text { 毋̀ } \\ & \infty \end{aligned}$	\#్ర	か留葻	ర్ర		\bigcirc	0
		$\stackrel{\rightharpoonup}{2}$	๕	永		¢	Ho O	9	＋O\％
		=	$\stackrel{\infty}{\sim}$	8	－080 0	Q2	0000	\bigcirc	00
		θ	$\begin{aligned} & \text { Fi } \\ & \text { जी } \end{aligned}$	$\stackrel{\neq 0}{0}$	MNF	®		哭	\mathfrak{F}－
	「โセフロ」	\bigcirc		$\begin{aligned} & \text { E尸 } \\ & \text { on } \end{aligned}$	Rex	\％		$\stackrel{\text { N }}{6}$	
	－әтйӫ	∞	~	등		$\frac{10}{60}$		合	ํ，${ }^{1}$
	＇ә！エ	\cdots		$\underset{\sim}{\infty}$		沵		욤	¢్రరi\％
		－	会	б	ーサ！	os		－	－Tロ
		15	吕	\％	－	8	9ササำ100000002	F	＊o ${ }^{\circ}$
	－әr¢mə⿺𠃊	\cdots	\％	\ddagger		む	OClcococcocr	¢	ーササ
	－ T TGIN	\dagger	$\stackrel{9}{8}$	용	00 ¢た	\％		\％	7000
－suotุn）		Q	$\stackrel{\infty}{\square}$	๓	ーードーが	O	－	∞	－－
		\cdots							

Table 2.-Summary of statistics of public day schools for the deaf, for 1889-90.

States.		Instructors.				Pupils.									$\begin{aligned} & \text { Value of grounds and } \\ & \text { buildings. } \end{aligned}$		
				$\begin{aligned} & \text { Э. } \\ & 0 \\ & \text { H } \end{aligned}$		$\begin{aligned} & \text { ๙゙ } \\ & \text { ت్̉̉ } \end{aligned}$											
1	2	3	4	5	6	7	8	(1)	10	11	12	18	14	15	16	17	18
United States.	15	14	46	60	46	220	$2 \pi 2$	492	344	40	17	254	4,820	\$2, 625	\$162,000	\$17, 958	816,782
North Atlantic Division	5	2	24	26	22	80	125	205	150	32	7	45	1,600	800	87,000	11,32\%	9,798
Massachusetts. Connecticut New Yorik	2 1 2	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 19 \\ 2 \\ 3 \end{array}$	19 3 4	$\begin{array}{r} 15 \\ 3 \\ 4 \end{array}$	55 14 11	$\begin{array}{r}110 \\ 11 \\ 4 \\ \hline\end{array}$	$\begin{gathered} 165 \\ 25 \\ 16 \end{gathered}$	$\begin{array}{r}120 \\ 25 \\ 5 \\ \hline\end{array}$	$\begin{array}{r} 29 \\ 0 \\ 3 \end{array}$	3 4 4	45	1,000	800	87,000	5,013 4,375 1,934	3,489 4,375 1,934
South Atlantic Division	1	4	3	7	5	14	16	30	30	0	3	25	2,500	1,800	55,000	1,200	-----------
Maryland	1	4	3	7	5	14	16	30	30	0	2	25	2,500	1,800	55,000	1,200	-----------
North Central Division	9	8	19	27	19	126	131	257	16.	14	8	184	720	25	20,000	5,434	6,884
	2	2	1	3	0	15	16	31	0	0	4						
Thinois --.	2	1	10	11	9	32	37	69	61	5	0						
Michigan.-	1	3 2	0 1	3 3 3	3 2 2	22 16	25 10 18	47 26	46 15	0 4	4 0	74 110	350 0	25	20,000	4,505	6,055
Mínnesota	1	0	3	3	3	22	18	40	30	5							
lowa-...-	1					5	9	14	0	0	0	0		0	0	929	929
Missourt -.-	1	0	4	4	2	14	16	30	12	0	0	0	70				

TABLE 4.-Statistics of public boarding institutions for the deaf, for 1889-90.-PART I.

F. D. Morrison-. - -.- do- \mid Board of trustees
(c)
Board of visitors.

Board of trustees.
Board of commisGovernor.
Board of trustees.
The committee.

 c President of Maryland School for Blind and Maryland School for Deaf.
d Consists of the attorney-general, auditor, and treasurer of New Mexico.

15	Baltimore, Md. (649 Saratoga st.).	Maryland School for the Colored Blind and Deaf.	1872	Board of trustees
16	Frederick, Md..	Maryland School for the Deaf	1868	Board of visitors.
17	Bever	New England Industrial School	1880	Bo
18	Flint,	Mic	1854	-d
19	Faribault, Minn_	Minnesota School for the Deaf	1863	Board of directors.
20	Jackson, Miss	Institution for the Education of the Deaf and Dumb.	1854	Boa
21	Fulton,	School for the Deaf and Dumb..	1851	
22	Omaha, Nebr	Nebraska Institute for the Deaf and Dumb.	1869	Board of public lands and buildings.
23	Ch ambersburg, near Trenton, N. J.	New Jersey School for DeafMutes.	1883	Board of trustees
24	Santa	New Mexico School for the Deaf	1885	Committeo
25	Buffalo, N. Y. (125 Edward st.).	Le Conteulx St. Mary's Institution for the Improved Instruction of Deaf-Mutes.	1857	B
26	Fordham, N. Y.-	St. Joseph's Institute for the Improved Instruction of DeafMutes.	1869	Board of managers
27	Malone, N. Y	Northern New for Deaf-Mut	188	Boa
28	New York, N. Y. (Lex. av., bet. sts.).	Institution for the Improved Instruction of Deaf-Mutes.	1867	Association for the Improved In. struction of Deaf Mutes.
29	New York, N. Y. (Washing to n Heights).	New York Institution for the Instruction of the Deaf and Dumb.	1818	Board of directors
30	Rochester, N. Y. (945 N. St. Paul st.).	Western New York Institution for Deaf-Mutes.	1876	Board of trustee
31	Rome, N. Y	Central New York Institution for Deaf-Mutes.	1875	.-.-do

[^88]Table 4.-Statistics of public boarding institutions for the dcaf, for 1889-90.-Part I-Continued.

TABLE 4.-Statistics of public boarding institutions for the deaf, for 1889-90.Part II.

	Name.	$\begin{aligned} & \text { Instruct- } \\ & \text { ors. } \end{aligned}$			Pupils.								
					$\begin{aligned} & \text { ®゙ } \\ & \text { ت゙ㄹ } \end{aligned}$								
	1	2	3.	4	5	6	7	8	9	10	11	12	13
1 2 3	Alabama Institute for the Dea	2	4	2	50	35	85	83	16	0	3		0
	Arlansas Deaf-Mute Institute	4	7	1	59	61	99	113		11	6		
	Instituticn for the Deaf and Dumb and the Blind.	9	3	2	91	54	132	142	40		6		0
4	ColoradoInstitution for the Education of the Mute and the Blind.	5	4	1	43	32	\%0	72	21	11	0	3	50
5	American Asylum at Hartford for the Education and Instruction of the Deaf and Dumb.	6	10	4	78	59	131	130	77	0			100
6	Columbia Institution for the Deaf and Dumb.	12	2	1	99	30	87	85	30	2	10		9
7	Florida Blind and Deaf-Mute Institute.	1	1	1	14	8		22		0	0	0	
8	Georgia Institution for the Education of che Deaf and Dumb.	4	2	0	66	45	80	83	3	0	1		
9	Illinois Institution for the Education of the Deaf and Dumb.	12	20	6	299	209	497	492	217		10	235	100
10	Indiana Institution for the Education of the Deaf and Dumb.	8	8	1	164	140	296	293	80		13		95
11	Iowa Institution for the Deaf and Dumb	7	9	2	164	114	269	266	24	11	14		95
12	Kansas Institution for the Education of the Daff ant Dumb.	6	10	1	160	112	218	220	40	10	4		95
13	Kentucky Institute for Deaf-Mutes .--	11	6	1	106	70	168	168	23	0	4		
14	Louisiana Institution for the Education of the Deafand Dumband the I3lind.	3	2		40	39			14				
15	Maryland School for the Colored Blind and Deaf.	4	1	0	16	6	19	20	0	0	3		
16	Maryland School for the Deaf and Dumb.	6	8	2	48	45	93	90	53	0	1	259	0
17	New England Industrial School for Deaf-Mutes.	0	4	1	20	8	28	28	13	0	20	28	90
18	Michigan School for the Deaf.-.......... Minnesota School for the Deaf	11	13	2	165 112	134 85	${ }^{295}$	285	40 68	10	27 10	282	90 99
$\xrightarrow{19}$	Institration for the Education of the Deaf and Dumb.	7	5	1	112	48	-84	180 82	${ }^{68}$	10	10		
21	School for the Deaf and Dumb	7	9	2	186	111	258	245	63		0	0	
22	Nebraska Institute for the Deaf and Dumb.	4	4	2	72	57	98	98	31	17	0	a	90
23	New Jersey School for Deaf-Mutes .-.-- New Mexico School for the Deai and	4 1	0	2 0	${ }_{5}^{62}$	56	106 7	109	23	0	0	0	
	Dumb.												
25	Le Couteulx St. Mary's Institution for the Improved Instruction of DeafMutes.	3	16	10	85	73	142	136	150	8	26	380	90
26	St. Joseph's Institute for the Improved Instruction of Deaf-Mutes.	1	20	19	126	153	257	269	239	52			90
27	Northern New York Institution for Deaf-Mutes.	4	2	1	53	36	75	76	29	0	0	0	
28	Institution for the Improved Instruction of Deaf-Mutes.	8	11	19	113	99	176	198	212		20	513	100
29	The New York Institution for the Instruction of the Deaf-Mutes.	7	8	7	234	116	303		250	35	36	3,254	
30	Western New York Institution for Deaf-Mutes.	6	14	5	96	75			171		2	13	
31	Central New York Institution for Deaf-Mutes.	8	2	4	93	63	156	140	20		16	191	95
32	North Carolina Institution for the Deaf, Dumb. and the Blind.	6	2	1	60	66			12	0			85
3331	School for the Deaf of North Dakota.Ohio Institution for the Education of		14	2	10	17			0 122	0	6		95
	Ohio Institution for the Education of the Deaf and Dumb.	11	14	2	244	227	396	380	122	0	6		95
35	Oregon School for Deaf-Mutes	2	1	1	13	13	24	60	11	1	2	79	100
36	Pennsylvania Institution for the Deaf and Dumb.	8	26	13	242	188	430	430	114	0	26	2,350	80

Table 4.-Statistics of public boarding institutions for the deaf, for 1889-90.— Part II-Continued.

	Name.	Instructors.			Pupils.								
						$\begin{aligned} & \dot{0} \\ & \text { む̈ } \\ & \text { हु } \\ & =1 \end{aligned}$	'688I 'I 'כeq quesord	Present June 1, 1890.					
	1	2	3	4	5	6	7	8	9	10	11	12	13
38	Western Pennsylvania Institution for the Instruction of the Deaf and Dumb	4	6	1	111	88	170	156	26	0	5		75
39	South Carolina Institution for the Education of the Deaf and Dumb and the Blind.	2	3	2.	39	35	---	63	22	0	5		
40	Dakota School for Deaf-Mutes* -.......	3	1	1	32	15			16		1		
42	Tennessee Deaf and Dumb School...... Deaf, Dumb, and Blind Institution for Colured Youth	6	4 2	1	21	12	150	$\begin{array}{r} 146 \\ 37 \end{array}$	18	0	0	0	99
43	Texas Deaf and Dumb Asylum. .-. --.	7	3	1	130	76	161	156	30				80
44	Deaf-Mute Department, University of Deseret.	1	2		33	12			5				100
45	Virginia Institution for the Education of the Deaf and Dumb and of the Blind.	7	3	1	50	48	95	96	24	0	0		90
46	Washington School for Defectire Youth.	2	1	1	20	13	32	32	8	5	0	0	
47	West Virginia School for the Deaf and the Blind.	3	2	1	36	32	66	65	29	0	7	78	75
48	Wisconsin School for the Deaf..........	9	9	3	152	74	183	183	45	0	11	109	100

*Statistics of 1888-89.

NOTE EXPLANATORY OF TABLE ON FOLLOWLNG PAGES.

Note.-I. The Manual Method.-The sign language, the manual alphabet, and writing are the chief means used in the instruction of the pupils.
II. The Oral JLethod.-Articulation and speech-reading, together with writing, are made the chief means of instruction, and facility in articulation and speech-reading, as well as mental derelomment and written language, is aimed at. Signs are used as little as possible, and the manual alphabet is generally discarded altogether. There is a difference in different schools in the extent to which the use of natural signs is allowed in the early part of the course, and also in the prominence giren to writing as an anxiliary to articulation and speech-reading in the course of instruction.
III. The Combined System. Articulation and speech-reading are regarded as rery important, but mental derelopment and the acquisition of language are regarded as still more important.
A. The general instruction of the t upils is carried on chiefly by the manual method. Part of them receire special training in articulation and speech-reading.
$A B$. Part of them are taught by the manual method, others by the oral method. Of the former, part receire special training in articulation and speech-reading. All are permitted to mingle freely with one another out of school hours.
$A E$. The general instruction of the pupils is carried on chiefly by the manual method. Part of them receire special training in articulation and speech-reading. Some of the teachers also use articulation and speech-reading in addition to the manual alphabet and writing as a means of instruction with part of their pupils.
B. Some of the pupils are taught by means of the manaal method and others by the oral method. These two classes are permitted to mingle freely with one another out of school hours.
$B C$. Some of the pupils are taught by means of the manual method, and others by the oral method. Of the latter, part are permitted to mingle freely out of school hours with the manually taught pupils; others are kept entirely separate from them and from those who mingle with them out of school hours as well as in the schoolrooms.
C. Some of the pupils are tanght by means of the manual method and others by the oral method. These two classes are kept entirely separate out of school hours as well as in the schoolrooms.
D. The general instruction of the pupils is carried on chiefly by means of the manual alphabet and writing without the use of the sign language. All the pupils receire special training in articulation and speech-reading.
E. The sign language, the manual alphabet, writing, articulation, and speech-reading are all used as means of instruction by the same teachers and with the same pupils.
F. In addition to one or more of the methods above described, auricular training is giren to a part of the pupils.
Table 4.-Statistics of public boarding institutions for the deaf, for 1899-90.-Part III.

TABLE 4．－Statistics of public boarding institutions for the deaf，for 1889－90．－PART III—Continued．

		$\stackrel{6}{6}$	
	－sәрклд хәч\％	$\stackrel{\square}{6}$	
	－هuturs	er	L20
	．סิuŢoon	${ }_{6}{ }^{2}$	
	－suturoM	$\stackrel{\sim}{*}$	
	－Sumuxxer	${ }_{*}^{\infty}$	
	－8u！̣quilx	$\stackrel{*}{0}$	
	－8uȚuotrea	\％	何交
		121	
	－ธu！ฺruzauṭen	－	 \vdots \vdots 0 \vdots 1
	－＜xquәd．xep	$\stackrel{98}{90}$	
		$\stackrel{\text { er }}{\sim}$	
		d	
		$\stackrel{\rightharpoonup}{*}$	10 ${ }_{1}$
		\bigcirc	
	＇セ．xqว．5IV	0	
		\％	
	 	－${ }^{\text {c }}$	
Primary depart－ment．		19	
	－8\％TTITM	\cdots	
	－8u！proy	$\stackrel{\circ}{6}$	
	－8iturods	¢	10：
		\cdots	

Table 4.-Statistics of public boarding institutions for the deaf, for 1889-90.Part IV.

						Rece	ts.	Expen	tures.
	Name.								
	1	2	3	4	5	6	7	8	9
1	Alabama Institution for the	500	\$218		\$75,000	\$20, 000	\$100	$\$ 500$	\$18,000
2	Arkansas Deaf-Mute Institute.	497	196	\$650	90,000	26,838		6,297	21,782
3	Institution for the Deaf and Dumb and the Blind.	1,500			$a 418,000$	a45, 750		a102,000	a45, 925
4	Colorado Institution for the Education of the Mute and the Blind.	525	275		a155, 000	a110, 000		a90, 000	a20,000
5	American Asylum at Hartford for the Education and Instruction of the Dear and Dumb.	2,000			250, 000				
6	Columbia Institution for the Deaf and Dumb.	3,500	465	3,000	700,000	657, 532	7,298	2,421	60, 017
7	Florida Blind and DeafMute Institute.				a16,000			a3,500	5,000
8	Georgia Institution for the Education of the Deaf and Dumb.	1,000		600	60,000	17,000	0		17,274
9	Illinois Institution for the Education of the Deaf and Dumb.	12,071	200	500	500, 000	100,000		5,000	100,000
10	Indiana Institution for the Education of the Deaf and Dumb.	4,000	197	1,000	449,600	101, 034	240	46, 034	54, 999
11	Iowa Institution for the Deaf and Dumb.					59,800			59,800
12	Kansas Institution for the Education of the Deaf and Dumb.	1,350	200		178, 000	44,000		40, 000	
13	Kentucky Institution for Deaf-Mutes.	1,650	c213		166, 000	37, 185	2,923	8,763	777
14	Louisiana Institution for the Education of the Deaf and Dumb and the Blind.	200			200, 000				22,000
15	Maryland School for the Colored Blind and DeafMutes.	130	232		a35, 000	$a 7,000$	$a 2,317$	$a 703$	$a^{7}, 194$
16	Maryland School for the Deaf and Dumb.	2,300	250	700	250, 000	25,000	100		23, 994
17	New England Industrial School for Deaf-Mutes.	400		0	20,000	2,000	3,602		4, 046
18	Michigan School for the Deaf.	2,325	189	125	415,845	57,000	50	800	49,000
19	Minnesota School for the Deaf.	1,250	188	100	225, 000	36,041		1,031	15, 850
20	Institution for the Deaf and Dumb.	500			125, 000		15, 472		,47
21	School for the Deaf and Dumb.	1,075	225		250, 000			167,000	, 25
22	Nebraska Institute for the Deaf and Dumb.	1,100	194	100	115, 000	25, 000		5,000	20, 000
23	New Jersey School for DeafMutes.	500	304		100,000	*33,340			*33, 310
24	New Mexico School for the Deaf and Dumb.	60	89	0	0	880	185		,065
25	Le Couteulx St. Mary's Institution for the Improved Instruction of Deaf-Mutes.	660	216	0	153, 000		29,237	175	28,530
26	St. Joseph's Institution for the Improved Instruction of Deaf-Mutes.	650			262, 943		19, 091	47, 987	70, 37
27	Northern New York Institution for Deaf-Mutes.	80	253	35	65,000	41, 731	2,547	21,707	22,47
28	Institution for the Improved Instruction of Deaf-Mutes.	850		800	166, 729	51,757	1,526	6,920	47, 42
29	The New York Institution for the Instruction of the Deaf and Dumb.	4, 650	313	3,500	456, 000	87, 175	4, 455	4,683	94, 001

Deafana Dumb.

* Statistics of 1888-89.
a Includes the blind department.

[^89]TABLE 4.-Statistics of public boarding institutions for the deaf, for 1889-90.-Part IV-Continued.

	Name.					Receipts.		Expenditures.	
	1	2	3	4	5	6	7	8	9
30	Western New York Institution for Deaf-Mutes.	1,500	\$269	\$500	8100,000	\$42,118	81,330	\$3,145	\$37, 721
31	Central New York Institution for Deaf-Mutes.	300	283		125, 000	28,480	12,005	1,832	38,633
32	North Carolina Institution for the Deaf and Dumb and the Blind.	1,800	200		a60, 000	$a 40,000$			a13, 000
33	School for the Deaf of North Dakota.								
34	OhioInstitution for the Education of the Deaf and Dumb.	2,014	180		750, 000	84,731		3, 634	81,107
35	Oregon School for DeafMutes.	0	270	0	12,000	9,000		2,000	7,000
36	Pennsylvania Institution for Deaf and Dumb.	6,000	251	4,000	650,000	96, C03	25, 000	6,500	101, 500
37	Pennsylvania Oral School for the Deaf.		231	--...0	65,000	34, 360	420	59,352	8,760
38	Western Pennsylvania Institution for the Instruction of the Deaf and Dumb.	750	213		189, 967	44, 200	10,387		34,904
39	South Carolina Institution for the Education of the Deaf and Dumb and the Blind.	525	153		55,000			1,100	13,188
40	Dakota School for DeafMutes.*	163				33,000		800	
41	Tennessee Deaf and Dumb School.	750	212	200	150, 000	33,000.		5,500	26, 300
42	Deaf, Dumb, and Blind Institute for Colored Youth.		144	50	a32, 000	a16,500		a1, 333	a5, 258
43	Texas Deaf and Dumb Asslum.	650	148	125	150,000	42,476		4,753	33,705
44	Deaf-Mute Department, University of Deseret.	20	200		100, 000	45,000		35, 000	2, 400
45	Virginia Institution for the Education of the Deaf and Dumb and of the Blind.	100		25	a200, 000	a35, 000	$a 800$		
46	W ashington School for Defective Youth.				40,000	642, 000			30,000
47	West Virginia Schools for the Deaf and the Blind.	789	260	0	a70,000	a24, 700	a1,930	0	a26, 200
48	Wisconsin School for the Deaf.	1,200		100	105, 000	40,000			

[^90]Table 5.-Character of defect and age at which it appeared.

Post-office.	Name.			Over two years of age.		cı
1	2	3	4	5	6	7
Talladega, Ala	The Alabama Institution for the Dea	as				
Little Rock, Ar	Arkansas Deaf-Mute Institute ..	9-30	10	39	6	
Berikeley, Cal.	Institution for the Deaf and Dumb and the Blind.	7-18				
Colorado Springs .--	Colorado Institution for the Education of the Mute and the Blind.	4-22	43	27	5	2
Hartford, Conn.-...-	The American Asylum at Hartford for the Education and Instruction of the Deaf and Dumb.	8-24				
Mystic Bridge, Conn.	Whipple's Home School for the Deaf	5	22	3	22	
Washington, D. C..-	The Columbia Institution for the Deaf and Dumb.	7				
St. Augustine, Ela	Florida Blind and Deaf-Mute Institute.-...-	6-21				
Cave Spring, Ga.	Georgia Institutionfor the Education of the Deaf and Dumb.	8-27				
Chicago, Ill	Chicaco Deaf-Mute Day School.........-.-....-	6-21				
	Ephpheta School for the Deaf.-.......-.-.-...-		4	5	8	
Englewood	Voice and Hearing School for the		19	,	2	
Jachsonville, Iil	Illinois Institution for the Education of the Deaf and Dumb.	8	254	254		22
Eransville, Ind	Eransville Indiana School for the Deaf..-.-	7-25	25	5	6	
Indianapolis, Ind	The Indiana Institution for the Education of the Deaf and Dumb.	8-21				
Council Bluffs, Iowa.	The Iowa Institution for the Deaf and Duizb.	(b)				
Dubuque, Iowa	Eastern Iowa School for the Deaf .-.-.-.-.-	7-25	13			
Olathe, Kans.	The Kansas Institution for the Education of the Deaf and Dumb.	8-21				
Danville, Ky .-......	Kentucky Institute for Deaf-Mutes	9				
Baton Rouge, La...	Louisiana Institution for the Deaf and Dumb and the Blind.					
New Orleans, La...-	New Orleans Free Public School for DeafMutes.	5	5	3		0
Portland, Me	Portland School for the Deaf-----------------	(b)				14
Baltimore, M	F. Inapp's Institute..---------------------------	6				
do	Maryland School for Colored Blind and Deaf.	7	10	5	3	4
Frederick, Md	Maryland School for the Deaf and Dumb...-	7	64	27	0	
Beverly, Mass	New England Industrial School for Deaf Mutes.	7	8	20	0	8
Bcston, Mass	The Horace Mann School for the Deaf .-....	5	50	22	9	18
Northampton, Mass.	Clarize Institution for Deaf Mutes	(b)	60	47	8	11
West Medford, Mass.	The Sarah Fuller Home for Little Deaf Children.	(c)	12	1		0
Flint, Mich	Michigan School for the Deaf.-.-.---....------	9-20	152	217	31	
Norris, Mich ...-------	Evangelical Lutheran Deaf and Dumb Asylum.	8	6	30	9	21
Faribault, Minn	Minnesota School for the Deaf.................	8	126	63	12	30
St. Paul, Minn --...--	Institute for Deaf-Mutes .--.....-.-.	5	12	22	2	5
Jackson, Miss .-...-.	Institution for the Education of the Deaf and Dumb.	8				
Fulton, Mo	School for the Deaf and Dumb --.-.-...-. .-. -	8				
St. Louis, Mo	Maria Consilia Deaf-Mute Institute	8		13	15	2
Or-.-do -	St. Louis Day School for the Deaf.--.....-.--		1	29		0
Omaha, Nebr-.....--	Nebraska Institute for the Deaf and Dumb-	7-25				
Chambersburg (near Trenton), N.J.	The New Jersey School for Deaf-Mutes....-	8				
Santa Fe, N. Mex ...	New Mexico School for the Deaf and Dumb	8-17	5	2		0
Albany, N. Y .-.-.---	Albany Home School for the Deaf.-.-.-.-.-.		5		4	
Buffalo, N. Y.........-	Le Couteulx St. Mary's Institution for the Improved Instruction of Deaf-Mutes.	6	145	13	0	8
Fordham, N. Y......-	St. Joseph's Institute for the Improved Instruction of Deaf-Mutes.	6	171	108	28	57
Malone, N. Y .-....--	Northern New York Institution for DeafMutes.	6	55	62		14

Table 5.-Character of defect and age at which it appeared-Continued.

51 52
 \section*{C}

\qquad
--

Columbus, Ohio.-
Toledo. Ohio Salem, Oregon .-...-Philadelphia, Pa...

Scranton, Pa Wilkensburg, Pa....-

Providence, R. I-.-. Cedar Spring, S. C .
Sioux Falls. S. Dak. Knoxville, Tenn....Austin, Tex
\qquad Salt Lake City, Utah Staunton, Va Vancouver, Wash. Romney, W. Va.....

Delavan, Wis, La Crosse, Wis Milwaukee, Wis..... St. Francis Station, Wis. Wausau, Wis.
New York (Washington Heights), N.Y.

Rochester, N. Y.
Rome, N.Y
Raleigh, N. C
Devils Lake, N. Dak.
incinnati, Ohio
----do
-.-. do
.

Name.

Institution for the Improved Instruction of
Miss Keeler's Private Articulation Class for Deaf-Mutes.
Ine New York Institution for the Instruction of the Deaf and Dumb.

Western New York Institution for DeafMutes.
Central New York Institution for DeafMutes.
North Carolina Institution for the Deaf and Dumb and the Blind.
School for the Deaf of North Dakota.
Cathedral School for the Deaf
Day School for Deaf-Mutes
Cincinnati Oral School for the Deaf
Springer Institute
tion
the Deaf and Dumb.
Toledo Deaf-Mute School
Oregon School for Deaf-Mutes
The Pennsylrania Institution for the Deaf and Dumb.
Pennsylvania Oral School for the Deaf
Western Pennsylvania Institution for the Instruction of the Deaf and Dumb.
Rhode Island Day School for the Deaf.
South Carolina Institution for the Educa-
tion of the Deaf and Dumb and the Blind.
Dakota School for Deaf-mutes
Tennessee Deaf and Dumab School
Deaf, Dumb, and Blind Institution for Colored Youth.
Texas Deaf and Dumb Asylum
Deaf-Mute Department, University of Deseret.
The Virginia Institution for the Education of the Deaf and Dumb and of the Blind.
Washington School for Defective Youth ...
West Virginia Schools for the Deaf and the Blind.
Wisconsin School for the Deaf.
Public School for the Deaf.
Milwaukee Day School for the Deaf
St. John's Catholic Deaf-Mute Institution
Wausau Day School for the Deaf

a And over.
Table 6.-Statistics of public day schools for the deaf, for 1889-90-PART I.

Table 6．－Statistics of public day schools for the deaf，for 1889－90．－PART II．

$\begin{aligned} & \text { 접 } \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \hline 8 \end{aligned}$	Name．	Method of in－ struction．	Instructors．			Pupils．						Receipts．		Expendi－tures．	
			官	躴			$\begin{aligned} & \text { ⿷匚 } \\ & \text { డ゙ } \\ & \text { む } \\ & \text { שu } \end{aligned}$						$\begin{aligned} & \text { © } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
	1	®	3	4	5	6	7	8	9	10	12	H2	13	14	15
		Combined，A		4			24								
			1 1	1	0	$\begin{array}{r}24 \\ 7 \\ \hline\end{array}$	6 1 1	30 8 8	30 8 8	0 0	0	\＄1，800			1,600 734
3 4	New Orleans Free Public School，Deaf－Mute Portland School for the Deaf．．．－－－－－－－－－	Oral．－－－	0	7	7	24	21	45	45	45	， 14				
5	Horace Mann School for the Deaf．－－－－－	－do－－－－	0	9	9	41	56	${ }_{9}^{91}$	92	97	＇ 16	a9，842		\＄464	10，506
${ }_{6}^{6}$	St．Louis Day School for the Deaf．	Manual	1	1	0 0	14 7 7	16 6	29	126	0 0	0				700
7	Day School for Deaf－Mutes ．－．．．．．．．．	Oral	0	1 3	$\stackrel{0}{2}$	7	${ }_{15}^{6}$	${ }_{21}^{12}$	20	20	${ }_{6}^{0}$	1，225			1，200
8	Cincinnati Oral School for the Deaf－－	Oral．．．－	0 1	3 0 0	${ }_{0}^{2}$	${ }_{5}^{7}$	12	21	20	${ }_{0}$	6	1，220			
10	Toledo Deaf－Mute School－．．．－．．．．．．．．．		0	4	4	12	21	30	33	33	8	4，689			4，689
11	Public School for the Deaf．．．．．．．．．．．．．．．	do	0	1	1	5	－ 1	${ }^{6}$	${ }^{6}$	6	1	491			550 4.250
12	Milwaukee Day School for the Deaf		1	5	6	22	19	38	37	41	2	3，800			
13	Wausau Day School．－．．．－－		0	1	1	6	2			8					

Table 7.-Statistics of private schools for the deaf and dumb, for 1889-90.-Part I.

	Post-office.	Name.		Chief executive offl cer.	Method of instruction.	Industries taught.	How supported.
	1	2	3	4	5	6	7
1	Mystic Bridge, Conn-	Whipple's Home School for the Deaf.	1869	Mrs. Margaret Ham-	Oral	Dressmaking, housekeeping tailoring.	Tuition fees, State
2	Chicago, Ill	Ephpheta School for the Deaf	1884	Mary C. Hendrick.	Combined, E	Sewing, modeling,	Ephpheta Society.
3	Englewood, Ill .-	Chicago Voice and Hearing School for the Deaf.	1882	Mary T. McCowan .-	Oral	Drawing, painting, clay modeling,	Tuition fees.
	Dubuque, Iowa	Eastern Iowa School for the Deaf.	1888	De Coursey French.-	Manual	None	
5	Baltimore, Md--	F. Knapp English and German Institute.	$18{ }^{18}$	F. Knapp --.---.-..--	Oral	-...-do	Tuition fees and
6	Northampton, Mass.	Clark Institution for Deaf-Mutes	1867	Caroline A. Yale	-do	Carpentry, wood-	
7	West Medford, Mass.	Sarah Fuller Home for Little Deaf Children.	1888	Eliza L. Cark	d	Non	Tuition fees and con-
8	Norris, Mich .	Evangelical Lutheran Institution for Deaf and Dumb.	1873	D. F. Uhlig	d	-do.-.-.----------	Tuition fees and Lu-
9	St. Paul, Minn	Institute for Deaf-Mutes	1880	Miss Naídin	Combined, A, B		tion.
10	St. Louis, Mo..-.-.--	Maria Consilia Deaf-Mute Institute.	1885	Sister M. Adelin	d	Dressmaking, sew-	Tuition fees and contributions.
11	Albany, N. Y	Albany Home School for the Deaf	1889	Anna M. Black	Oral	None	Tuition fees.
12	New York, N. Y. (27 E. 46th st.).	Miss Keeler's Articulation Class for DeafMutes.	1885	Sarah Warren Keeler.			Do.
13	Cincinnati, Ohio ..--	Cathedral School for the Deaf...-.	1887	E. P. Cleary --.---..--	Manual	---do --------------	Tuition fees and archbishop.
14	-...do \qquad St. Francis, Wis	Springer Institute --.--- -- --	$\begin{aligned} & 1888 \\ & 1876 \end{aligned}$	John M. Mackey .-.--			
	St. Francis, We-----	St. John's Cathonic Dear-Mute Instute		Rev.M.A. Gerara	Comb	carving.	tions and tuition fees.

			ruct				Pup							Rece	ipts．	Expen	itures．
	Name．	$\begin{aligned} & \text { Ф゙ } \\ & \text { ت゙゙̇ } \end{aligned}$								$\begin{aligned} & \text { In auricular percep- } \\ & \text { tion. } \end{aligned}$							
	1	$\boldsymbol{2}$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	118
	Whipple＇s Home School for the Deaf	1	2	3	14	11	19	23	25	0	4		100	\＄4，375			
2	Ephpheta＇School for the Deaf．－．．．－－．－．－．．．．．．．．．．－．		6	3	20	27	41	43	40	5	0	0					
3 4 4		1	6 0	6 0	12 5	10 9	20 12	20 12	21 0	5 0	0	0			\＄929		\＄929
5	F．Knapp English and German Institute－－－－－－－－－－－－－－－－－－－－－－	4	3	5	14	16	32	30	32	0	2	25	100	a1，200	${ }_{0}$		
${ }_{6}^{6}$	Clarke Institution for Deaf－Mutes－－．．．－．．．		16	13	56	51	99	102	107	29	0	40	98				
7	Sarah Fuller Home for Little Deaf Children．．．－－．．．－．－		3	$\stackrel{2}{3}$	9	4	11	10	13		${ }_{7}$	5	0		5，013	${ }^{\$ 214}$	3，275
8	Evangelical Lutheran Deaf and Dumb Asylum．．．．．．－	3	3	3	2	25	${ }_{37}^{47}$	47	46	0	7	74	67		4，505	2，165	3，890
9	Institute for Deaf－Mutes．－－．－－－．．．－	0	3 4 4	$\stackrel{3}{3}$	$\stackrel{22}{14}$	18 16	37 30	37 38 2	12	5	0	0		0			
11	Albany Home School for the Deaf．．．．．．．．	0	$\stackrel{4}{2}$	$\stackrel{2}{2}$	14 3 3	10	$\stackrel{3}{2}$	$\stackrel{4}{4}$	12	3	0	0			1，934		
12	Miss Keeler＇s Private Articulation Class for Deaf－ Mutes	1	1	2	8	2	9	9									
13	Cathedral School for the Deaf．	1	1	0	5	6			0	0	4		95				
14 15		${ }_{2}^{1}$	0	0 3	10	10	21	24	${ }_{15}^{0}$	0 4	0	0					
				3	10		2	2	15								

Division and State．		Instructors．				Pupils．											
		获		$\begin{aligned} & \text { ज゙ } \\ & \text { ज̈ } \end{aligned}$	$\begin{aligned} & \text { 总 } \\ & \text { 总 } \end{aligned}$	$\begin{aligned} & \text { 向 } \\ & \text { ت } \end{aligned}$		$\begin{aligned} & \text { تّ } \\ & \stackrel{\text { H. }}{0} \end{aligned}$			$\begin{aligned} & \text { 易 } \\ & \text { B } \\ & \text { Z } \end{aligned}$						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	18	18
United States．．．－．－－	33	127	191	318	120	$\begin{gathered} (469) \\ 499 \mid 1,247 \end{gathered}$		\}3,215	1，224	980	183	150	35，450	\＄12， 849	85，121， 987	8819，050	8718，753
	4	26	56	82	37	$208^{(469)}{ }_{171}$		848	289	802	90	75	9，100	7，751	1，351，541	301， 104	220，552
Massachusetts．．－．．．	2 1	$\begin{array}{r\|} 14 \\ 10 \\ 2 \end{array}$	$\begin{array}{r} 18 \\ 29 \\ 9 \end{array}$	$\begin{aligned} & 32 \\ & 39 \\ & 11 \\ & \hline \end{aligned}$	$\begin{array}{r}14 \\ 9 \\ \hline\end{array}$			\} $\begin{array}{r}226 \\ 374 \\ 248 \\ \hline\end{array}$		$\begin{gathered} -\cdots-1 \\ 190 \\ 112 \end{gathered}$	$\begin{gathered} \cdots \\ 7_{1} \\ 19 \end{gathered}$	$\begin{array}{\|r\|} \hline 6 \\ -\quad--\quad \\ \hline \end{array}$	$\begin{array}{\|} \hline \cdots \cdots-\cdots \\ 4,500 \\ 4,600 \\ \hline \end{array}$	$\begin{array}{r} \cdots,-\cdots \cdot \\ 5,751 \\ 2,000 \end{array}$	$\begin{aligned} & 426,198 \\ & 760,537 \\ & 164,805 \end{aligned}$	$\begin{array}{r} 48,000 \\ 141,234 \\ 111,870 \end{array}$	$\begin{array}{r} 52,785 \\ 117,389 \\ 50,378 \\ \hline \end{array}$
New York																	
Pennsylvania																	
South Atlantic Div	8	26	24	50	20	242	187	429	157	$\underline{161}$	8	28	4，023	900	759， 000	56，796	58,507
Maryland	2111111	$\begin{array}{r} 4 \\ 2 \\ 4 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 7 \\ & 3 \\ & 2 \\ & 6 \\ & 6 \\ & 1 \\ & 4 \\ & 1 \end{aligned}$	$\begin{array}{r} 15 \\ 7 \\ 4 \\ 10 \\ 2 \\ 10 \\ 2 \end{array}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 5 \\ & 1 \\ & 5 \\ & 0 \end{aligned}$	$\begin{gathered} 73 \\ 28 \\ 19 \\ 19 \\ 51 \\ 20 \\ 53 \\ 4 \end{gathered}$	$\begin{array}{r} 56 \\ 24 \\ 17 \\ 40 \\ 11 \\ 35 \\ 4 \\ \hline \end{array}$	1294636913138888	6606008500	$\left.\begin{array}{\|} \hline 53 \\ \hdashline-{ }_{26} \\ \cdots-\cdots \\ \hdashline-\quad 85 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & 7 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 18 \\ -\quad-4 \\ 3 \\ \hdashline-3 \\ \hdashline \\ 0 \\ \hline \end{array}$			$\begin{array}{r} 200,000 \\ 70,000 \end{array}$		$\begin{gathered} 40,678 \\ \left(\begin{array}{c} (5) \\ (b) \\ 3,750 \\ -14,077 \end{array}\right. \end{gathered}$
Virginia－${ }_{\text {West Virginia }}$																	
North Carolina－																	
Georgia－－－－．－－																	
Florida																	
South Central Division	8	32	41	73	25	360	305	665	291	247	48	17	7，839	3，000	553，500	197， 378	170， 102
Kentucky	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 4 \\ 2 \\ 4 \\ 2 \\ 2 \\ 10 \\ 8 \end{array}$	$\begin{array}{r} 5 \\ 8 \\ 2 \\ 1 \\ 1 \\ 3 \\ 15 \\ 7 \end{array}$	$\begin{array}{r} 9 \\ 10 \\ 6 \\ 3 \\ 5 \\ 5 \\ 25 \\ 15 \end{array}$	$\begin{array}{r\|} 2 \\ 10 \\ 2 \\ 1 \\ 1 \\ 5 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 48 \\ & 44 \\ & 21 \\ & 14 \\ & 97 \\ & 76 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \\ & 20 \\ & 14 \\ & 16 \\ & 75 \\ & 89 \end{aligned}$	$\begin{array}{r} 105 \\ 94 \\ 64 \\ 35 \\ 20 \\ 172 \\ 165 \\ \hline \end{array}$	$\begin{gathered} 98 \\ 0 \\ 40 \\ 13 \\ 8 \\ 8 . \\ 97 \end{gathered}$	50 0 35 21 13 75 53	$\begin{array}{r} 5 \\ 7 \\ 5 \\ 0 \\ 0 \\ 8 \\ 23 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 4 \\ 1 \\ 0 \\ 0 \\ 6 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 2,500 \\ 500 \\ 575 \\ 850 \\ 857 \\ d 1,69 \\ 1,178 \end{array}$	$\begin{array}{r} 1,500 \\ 200 \\ 100 \end{array}$	$\begin{array}{r} 100,000 \\ 100,000 \\ 50,000 \\ 55,000 \\ 40,000 \\ 13,000 \\ 73,500 \\ 75,000 \end{array}$	$\begin{array}{r} 36,095 \\ 17,000 \\ 14,720 \\ 15,500 \\ 37,500 \\ 240,610 \\ 35,953 \end{array}$	
Tennessee－．																	
Mississippi．																	
Louisiana																	
Arkansas．														1.000 200			

North Central Division..	10	37	64	101	35	641	556	1,197	453	241	37	30	14, 358	4,073	1,848,946	259, 772	265,592
Ohio	1	8	11	19	7	131	93	230	139	25	12	12	2,050		500, 000	60,194	48,329
Indiana	1	3	8	11	3	67	63	130	72	10	0		1,250	1,000	350, 000	30,000	40, 711
Illinois.	1	5	9	14	5	106	81	187	50	100	15	5	2,111		189, 025	41, 899	65,124
Mickigan	1	3	6	9	3	56	39	95	42	11	3	3	1,540	${ }_{1}^{873}$	169,921	24, 662	$\stackrel{22,361}{20,}$
Wisconsin	1	3	${ }_{4}^{4}$	7	3	51	39	90	64	58	1	${ }_{5}^{0}$	2,500	1,600	165, 000	26, 000	20, 475
Minnesota	1	1	${ }_{8}^{2}$	${ }^{3}$	3	33	31	64	0	0	0	5				15,427	15, 417
lowa.-	1	3	8	11	3	85	85	171	0	0	0						
Missouri	1	4	6	10	4	47	5.	99	0	0	0	0	3,580	350	250,000	25,780-	35,200
Nebraska.	1	2	5	7	3	24	33	57	45	37	4	3	777	250	75, 000	14, 600	13,200
Kansas.	1	5	5	10	1	41	33	74	40	0	2	2	550		150, 000	21,210	4, 775
Western Division	3	6	6	12	3	48	28	76	35	20	0	0	130	125	609,000	4,000	4,000
Colorado	1											0					
Oregon	1	3	2	5	1	4	3	7	2	6	0		130	125	6,000	4,000	4,000
California	1	2	1	3	1	25	11	36	0	0	0	2	(b)		448,000	(b)	

Table 9.-Statistics of public institutions for the blind, for 1889-90.-P Part I.

		Name.		Controlling body.				Executive.		
	Post-offlce.			Name.	No.	Term.	By whom appointed.	Name.	Title.	By whom appointed.
	1	2	3	4	5	6	7	8	9	10
1	Talladeg	The Alabama Academy for the Blind. Arkansas School for the Blind.	$\begin{aligned} & 1867 \\ & 1859 \end{aligned}$	Board of commissioners. Board of trustees .	85	6 years 2 years.	Governor Governor, confirmed by the senate. Governor .-.-	J.H. Johnson, jr- Rev. John H. Dye, D. D.	$\left.\begin{array}{\|c\|} \hline \text { Superin- } \\ \text { tendent. } \\ -- \text { do }----- \end{array} \right\rvert\,$	Board of commissioners. B Jard of trustees.
2	Little Rock, Ark-									
3	Berkeley, Cal.--	California Institution for the Education of the Deaf and Dumb and the Blind.	1860	Board of directors.	5	4 years.			Principal	
4	Colorado Springs, Colo.	and the Blind. Colorado Institution for the Education of the Mute and the Blind.	1883	Board of trustees .	5	6 years	Governor. confirm ed by the senate.	John E. Ray, A. M.	Superintendent.	Board of trustees.
5	St. Augustine, Fla.	Florida Blind and Deaf-Mute Institute. Georgia Academy for the Blind....	$\begin{aligned} & 1885 \\ & 1852 \\ & 1849 \end{aligned}$	Board of managers	4	4 years.	Elected by the people. \qquad	William A. Caldwell. W. D. Williams William S. Phillips.	Principal -.....-	Board of mana gers.
6 7	Macon, Ga Jacksonville, Ill -	Georgia Academy for the Blind.... Illinois Institution for the Education of the Blind.		Board of trustees.	3	6 years.	Governor, approved by the senate.		Superin- tendent.	Board of trustees.
8	Indianapolis, Ind.	Indiana Institution for the Education of the Blind.	$\begin{aligned} & 1846 \\ & 1852 \end{aligned}$			- - - - o.o... 2 years		$\begin{aligned} & \text { Elmer E. Grif- } \\ & \text { fith. McCune - } \end{aligned}$	Principal	
9	Vinton, Iowa --..	Iowa College for the Blind --......				2 years. 3 years.	Legislature.Governor .-.-			Trustees. Board of trustees.
10	Wyandotte,Kans	Kansas Institution for the Education of the Blind.	1867	Board of trustees.	5			J. F. McCune .-. Allen Buckner.-	Principal. superintendent. --.-do \qquad	
11	Louisville,	Kentucky Institution for the Education of the Blind.	$\begin{aligned} & 1842 \\ & 1871 \end{aligned}$	Board of visitors.	9	4 years.	-.--do\qquad	B. B. Huntoon.-. Mary Stratton		Board of visitors.
12	Baton Rouge,La	Loulisiana Institution for the Blind and Industrial Home.							Principal	
13			$\begin{aligned} & 1853 \\ & 1872 \\ & 1832 \end{aligned}$	Board of directors. Board of trustees . \qquad do \qquad	$\left.\begin{array}{r} 18 \\ 6 \\ 12 \end{array} \right\rvert\,$	1 year--	Elected by corpora-	Frederick D. Morrison.	Superintendent.	Board of directors.
14			$\begin{aligned} & 1 \text { year.- } \\ & 1 \text { year. } \end{aligned}$				-do ----------	-do	Board of trustees.	
5			Governor and corporation.			John A. Bennett.	Director .-	Do.		

Superin- Board of control.

Board of trustees. Board of managers.
Board of trustees.
Do.
Board of education. Board of commis-
Board of trustees.
Board of trustees. Board of regents.

 Robt. Barker

16	Lansing, Mi	Michigan S	880	Board of control .-	3	6 years.	Governol, confrimed by the senate.
17	Faribault, Minn.	Minnesota School for the Blin	1866	Board of directors.	7	5 years.	Govern
	Jackson, Miss .-.	Mississippi Institution for the Instruction of the Blind.	1848	Board of trustees .	5	4 years.	
19	St. Louis, Mo. (18:7 Morgan street).	Missouri School for the Blind ...--	1851	---do ------- ------	9	4 years.	
20	Nebraska City, Nebr.	Nebraska Institute for the Blin	1875	Board of public lands and buiidings.	4	2 years.	State electo
	Batavia,	New York State Institution	1868	Board of trustees -	9	6 years.	Governor
	New	New	1831	Board of managers	20	ar	olf
	Raleigh,	N	1845	Board of trustees	7	6 years.	over
24	Columbus, Ohio.	Ohio Institution for the Education of the Blind.	1837		5	5 years.	Governor. conflrmed by the senate.
	Salem, Oregon	Oregon Institute for the Blind	1873	Board of education	3	4 years	Elected...
26	Philadelphia, Pa	Pennsylvania Institution for the Instruction of the Blind.	1833	Board of managers	24	Life.	Self-perpetaating.
27	Cedar Springs, S. C.	South Carolina Institution for the Education of the Deaf and Dumb and the Blind.	1819	Board of commissioners.	5	Indeflnite.	Governor .-.-
28	Nashville, Te	Tennessee School for the Blind ----	1844	Board of trustees	7	Lifo	egislature.-
29	Austin, Tex.	for Colored Youth. Dear, Dumb, and Blind Institute	1887				
31		Texas Institution for the 131ind	1857	Board of trustees	5	ars.	Gover
31	Staunton, Va.-	Virginia Institution for the Education of the Deaf and Dumb and of the Blind.	1830	Board of directors.	9	3 years.	,
32	Romney, W. Va.-	West Virginia Schools for the Deaf and the 1 lind.		Board of regents.	7	4 years.	d
83	Janesville, Wis.-	Wisconsin School for the Blind..	1850	Board of supervision.	5	5 years.	Governor confirmed by the senate.

Table 9.-Statistics of public institutions for the blind, for 1889-90.-Part II.

	Name.	Instructors.			Pupils.									
				$\underset{\underset{1}{\underset{1}{3}}}{\substack{0 \\ \hline}}$	$\underset{\substack{\text { cin }}}{\stackrel{0}{\omega}}$									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Alabama Academy for the Blind	8	2	2	44	20	50	50	40	35	5			
2	Arkansas School for the Blind.-	8	7	4	76	89	150	150	97	53	23	0	75	75
3	California Institution for the Education of the Deaf and Dumb and Blind.	2	1	1	25	11	35					2		
4	Colorado Institution for the Educaticn of the Mute and Blind.	1	3	1	19	14	30	31	33	20	0	0	0	
5	Florida Blind and Deaf-Mute_Institute.	1	1	0	4	4	----	8	0	0	0	0	0	-.-----
6	Georgia Academy for the Blind.---	6		5	53	35	83	82	88	88	0	3	350	95
7	Illinois Institution for the Education of the Blind.	5	9	5	106	81	175	157	50	100	15	5	64	
8	Indiana Institution for the Education of the Blind.	3	8	3	67	63	116	111	130	72	10	----	250	
0	Iowa College for the Blind...-.......	3	8	3	85	86	148	96						
10	Kansas Institution for the Education of the Blind.	5	5	1	41	33	74	---	76	40		2		50
11	Kentucky Institution for the Education of the Blind.	4	5	2	60	45	105	103	98	50	5	6	450	
12	Louisiana Institution for the Blind and Industrial Home.	2	3	1	14	6	20	20	8	13	0	0	3	
13	The Maryland School for the Blind.	5	6	3	57	46	91	97	42	40	7	15	227	
14	Maryland School for Colored Blind and Deaf.	3	1	1	16	10	22	23	24	13	0	3	32	
15	Perkins Institution and Massachusetts School for the Blind.	14	18	14	---							6	----	95
16	Michigan School for the Blind	3	6	3	56	39	88	71	93	42	11	3	3	50
17	Minnesota School for the Blind....-	1	2	3	33	31	59	61	64	55	4	5	----	
18	Mississippi Institution for the Instruction of the Blind.	1	2	1	21	14	29	24	13	21	---	0	---	
19	Missouri School for the Blind....--	4	6	4	47	52	91	87				0	607	60
20	Nebraska Institute for the Blind	2	5	3	24	33	50	52	45	37	4	3	14	75
21	New York State Institution for the Blind.	5	11	6	72	59	120	115	----	92	23	1	74	
22	New York Institution for the Blind.	5	18	8)			147	98	48			
23	The North Carolina Institution for the Deaf and Dumb and the Blind.	4	6	5	51	40		51				3		90
24	Ohio Institution for the Education of the Blind.	8	11	7	131	99	215	213	13	139	25	12		
25	Oregon Institute for the Blind.-.---	3	2	1	4	3	7		2	6				30
26	Pennsylvania Institute for the Instruction of the Blind.	2	9	9	136	112	192	192	142	112	19	69	1310	
27	South Carolina Institution for the Education of the Deaf and Dumb and the Blind.	1	1	1	20	11	---	29	---					
28	Tennesree School for the Blind....-	2	8	2	48	46	86	88	(a)	(a)	7	4		75
29	Deaf, Dumb, and Blind Institute for Colored Youth.		1	1	15	13	25	28	28	11		0	0	------
30	Texas Institution for the Blind....	5	9	4	82	62	135	132	7	64	8	6	36	60
31	The Virginia Institution for the Education of the Deaf and Dumb and the Blind.	4	3	3	22	24	47	45			----		---	
32	West Virginia Schools for the Deaf and the Blind.	2	2	2	19	17	36	35	6	26	1	4	32	
33	Wisconsin School for the Blind.....	1	3	3	51	36	81	78	64	58	1	0	14	75

a Nearly all the school are instructed.
Table 9．－Statistics of public institutions for the blind：for 1889－90．－Part III．

	Name．	Primary de－ partment．				Academic department．								Industrial department．										Method of instruc－ tion．
		$\begin{aligned} & \dot{80} \\ & \text { 荷 } \\ & \stackrel{\rightharpoonup}{\sim} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \text { 華 } \\ & \text { B } \end{aligned}$			$\begin{aligned} & \text { 淢 } \\ & \end{aligned}$														$\begin{aligned} & \text { 8i } \\ & \text { 틈 } \\ & 0 \\ & 0 \end{aligned}$			
	1	2	3	4	5	6	7	8	9	11.	11	12	13	14	15	16	17	18	19	20	21	12	23	21
1	Alabama Academy for the Blind．	50	50	50	50	15		30	12	8	20		30	－－－	35			35						Line letter，Braille，
2	Arkansas School for the Blind	113	97	54	123	55		41	11	7	13	7	10	45	40	32	25	15	60	20	－－－	20	60	New York point． Raised letters，New
3	California Institution for the Education of the Deaf and Dumb and the Blind．																							York point． Boston square，New York point．
4	Colorado Institution for the Education of the Mute and Blind．	14	14	14	14	16	0	16	0	0	0	0	16	0	0	0	0	5	0	0	0	0	0	Line print，New York point．
5	Florida Blind and Deaf－Mute Institute ．－．－．．．．．																							Raised letters．
${ }^{6}$	Georgia Academy for the Blind．．．．．．．．．－．．．．．－														10	0	10	10						Line，New York point．
7	Illinois Institute for the Education of the Blind．																							Roman raised print， New York point．
8	Indiana Institution for the Education of the Blind．	130	130	68	119	25	0	15	11	11	11	11	11	0	0	0	0	44	36	0	0	0	74	New York point，em－ bossed line type．
10																								
10	Kansas Institution for the Education of the Blind．	77		77				7	12					15										New York point．
11	Kentucky Institution for the Education of the Blind．	36	83	83	104	18		18			18		18	10	8			36						New York point， roman．
12	Louisiana Institution for Blind and Industrial Home．	13	13	13	13	7		6			4	2			4	0	0	6	4	0			2	Braille，New York point，line letter．
13	The Maryland School for the Blind．－．－－－－－－－－－－	64	64	32	64	19	19	19	19	19	19	19	19	8	5	0	0	17	31	19	0	0	0	New Yoris point，line etter．
14	Maryland School for Colored Blind and Deaf．．．	22	22	20	26									0	6	0		18	13	0	0	0	0	New York point， Boston type．
15	Perkins Institution and Massachusetts School for the Blind．																							Line type，improved Braille．
16	oMichigan School for the Blind	55	41	8	23	23	－－－	11	10	－－－	13		（a）	40					39					Embossed point，
17	Minnesota School for the Blind								4			6	12	21	6				43					Line，New York point．

TABLE 9.-Statistics of public institutions for the blind, for 1889-90.-PART III-Continued.

Table 9．－Statistics of public institutions－for the blind，for 1889－90．－PART IV．

	Name．	$\text { R.xexq!! u! seum!o } \Lambda$				Receipts．		Expenditures．	
	1	2	3	4	5	6	7	8	9
1	Alabama Academy for the Blind．．	575	8230	$\$ 100$	\＄850，000	814， 720		\＄11， 500	\＄14， 700
2	Arlansas School for the Blind－－．	1，1\％8		200	175，000	35， 071	\＄882	5，149	20， 763
3	Ca，ifornia Institution for the Ed－ ucation of the Deaf and Dumb， and the Blind．	a250			（a）	（a）		（a）	（a）
4	Colorado Institution for the Ed－ ucation of the Mute and the Blind．	200	2%	0	（a）	（a）		（a）	（a）
5	Florida Blind and Deaf－Mute In－ stitute．	$a \leq 0$			16，000				
6	Georgia Academy for the Blind ．－．	1，500	168	500	95， 000	16，000			11．079
7	Illinois Institution for the Educa－ tion of the Blind．	2，111	251		189,025	38，000	3，899	20，860	44， 204
8	Indiana Institution for the Edu－ cation of the Blind．	1，250	238	1，000	350，000	30， 000		11，485	29， 205
9 10	Iowa College for the Blind Kansas Institution for the Edu－	550	23		150， 000	20，000	b1，210	800	3， 975
10	cation of the Blind．	－ 500	217		100，000	20，000	61，210	800 5	3， 910
11	Kentucky Institution for the Ed－ ucation of the Blind	2，500	217	1，500	100，000	36，095		5，986	24， 054
12	Louisiana Institution for the Blind and Industrial Home．	575			40,000	7，500	c30，000	30，000	7，500
13	The Maryland School for the Blind．	1，439	293		313，000		31，479	9，386	23， 395
14	Maryland School for Colored blind and Deaf．	384	232		35， 000		9，317	703	7，194
15	Perkins Institution and Massa－ chusetts School for the Blind．				426， 198	30，000	di8，00u	7，180	45，605
16	Michigan School for the Blind．－．－	1，540	235	$8 \% 3$	169，921	24，66：2	0		21，361
17	Minnesota School for the Blind．．－		246			15，427		1，495	13，9：2
18	Mississippi Institution for the Instruction of the Blind．	$8 \% 0$			55，000			900	6，500
19	Missouri School for the Blind－．．－	3，580	215	350	250，000	e25，500	22s0	10，000	25，200
20	Nebraska Institute for the Blind．	777	250	250	75， 000	14，600			13，200
21	New York State Institution for the Blind．	1，150	163	191	375，582	47，610	946	3，566	39， 044
22	New York Institution for the Blind．	3，350	283	5，560	384， 957	51， 376	41， 272	5，969	68，810
23	The North Carolina Institution for the Deaf and Dumb and the 13lind．		200	100					3，750
24	Ohio Institution for the Educa－ tion of the Blind．	2，050	201		500，000	60，194			48，329
25	Oregon Institute for the Blind	130		125	6，000	4，000			4，000
26	Pennsylvania lnstitution for the Instruction of the Blind．	4，600	285	2，000	164，806	46，750	65,120		c50， 378
27	South Carolina Institution of the Deaf and Dumb and the Blind．								
28	Tennessee School for the Blind．．－	500	200	200	100，000	$17,000$			
29	Deaf，Dumb，and Blind Institute for Colored Youth．	0	144	0	32，000	（a）		（a）	（a）
30	Texas Institution for the Blind．．－	1，691	254	$1,000$	$133,500$	$40,610$		4，000	36，610
31	The Virginia Institution for the Education of the Deaf and Dumb and of the Blind．	g250		$a 300$	（a）	（a）	（a）		
32	Test Virginia Schools for the Deaf and the Blind．	$g 400$	260	0	（a）	（a）	（a）		（a）
33	Wisconsin School for the Blind ．．	2，500	300	2，400	165，000	20，000		3，975	20，500

a See table No．4，Part IV．
b Received from Industrial Department．
c Donation from Louisiana Board for Assistance of Blind．
d This is from other States for support of their＂beneficiaries．＂
e One－half of the biennial appropriation．
f Total expenditures for the yeai are reported as $\$ 104,777$ ．
g Raised type．

Table 10.-Number of pupils congenitally blind in public institutions-Number not wholly blind-Statistics of public institutions for the blind for 1889-90.

	Post-office.	Namo.	$\stackrel{\square}{\circ}$ 				
	1	2	3	4	5	6	7
	Talladega, Ala	Alabama Academy for the Blind	*8	12			12
2	Little Rock, Ar	Arizansas School for the Blind...	6-26	50	115		40
3	Berkeley, Cal.-.....--	California Institution for the Education of the Deaf and Dumb and the Blind.	8-18	0			
4	Colorado Springs, Colo.	Colorado Institution for the Education of the Mute and the Blind.	4-22	5	27	1	13
5	St. Augustine, Fla	Florida Blind and Deaf-Mute Institute.....-	6-21				2
6	Macon, Ga	Georgia Academy for the Blind...	8-20				
7	Jacksonville, Ill.....	Illinois Institution for the Education of the Blind.	6				
8	Indianapolis, Ind ..-	Indiana Institution for the Education of the Blind.	8	41	69	0	78
9	Vinton, Iowa	Iowa College for the Blind .-.-.-.-.-.-.-.-. --		16	55		100
10	Wrandotte, Kans.--	Kansas Institution for the Education of the Blind.	9				
11	Louisville, KY-------	Kentucky Institution for the Education of the Blind.	6-18	25	80	10	93
12	Baton Rouge, La...--	Louisiana Institution for Blind and Industrial Home.	8	6	14	----	2
13	Baltimore	The Maryland School for the Blind...-.-.---	7-20	41	62		52
14	---do	Maryland School for Colored Blind and Deaf.	7	3	20	3	13
15	Boston, Mass.-.---.--	Perkins Institution and Massachusetts School for the Blind.	5				
16	Lansing, Mich	Michigan School for the Blind ---.---.------	10-21	22	73	7	32
17	Faribault, Ninn	Minnesota School for the Blind	8-25				
18	Jackson, Miss .	Mississippi Institution for the Instruction of the Blind.	8				
19	St. Louis, Mo.-.-.---	Missouri School for the Blind...-.-.-.-.-.-.-. -	9-25	15	84		32
20	Nebraska City, Nebr-	Nebraska Institute for the Blind ---...-.-.---	9-21	13	44		25
21	Batavia, N. Y =--..	New York State Institution for the Blind.--	8-21				
23	New York, N, Y....-	New York Institution for the Blind .-.-...---	*8				
23	Raleigh, N. C....----	The North Carolina Institution for the Deaf and Dumb and the Blind.	8	40		58	
24	Columbus, Ohio .-.--	Ohio Institution for the Education of the Blind.	8	93	126	11	109
25	Salem, Oregon	Oregon Institute for the Blind.	7-21	3	4	1	1
26	Philadelphia, Pa-.--	Pennsylvania Institution for the Instruction of the Blind.	6-21	30	218	---	83
27	Cedar Spring, S. C --	South Carolina Institution for the Education of the Deaf and Dumb and the Blind.	10				11
28	Nashville, Tenn	Tennessee School for the Blind .------------	7-17				24
29	Austin, Tex..	Deaf, Dumb, and Blind Institute for Colored Youth.	7-21	$\cdots 14$	11		3
30		Texas Institution for the Blind ------------	8-20	8	105		136
31	Staunton, Va	The Virginia Institution for the Education of the Deaf and Dumb and of the Blind.	7-21	23	27		22
32	Romney, W. Va	West Virginia Schools for the Deaf and the Blind.	8	17	19	0	16
33	Janesville, Wis	Wisconsin School for the Blind-.-....	8-21	43	44	3	49

*And orer.
'IABLE 11.-Summary of statistics of public institutions for the feeble-minded, for 1889-90.

TABLE 12. -Summary of statistics of private institutions for the feeble-minded.

States.		Instructions.					Pupils.						
		$\stackrel{\oplus}{\text { ت゙ }}$					$\stackrel{\oplus}{\text { ゙ }}$						
1	2	3	4	5	6	7	8	9	10	11	12	13	14
United States	10	5	33	38	26	35	141	69	210	23	1,300	84, 000	83,500
North Atlantic Division.	8	2	25	27	14	34	102	52	154	7	1,000	4,000	3,500
Massachusetts	1	1	10	11	14	29	62	24	86	0	0		
Connecticut	1						6		6	0	500	4,000	
New York......	$\stackrel{2}{2}$	1	$\begin{aligned} & 9 \\ & 6 \end{aligned}$	${ }_{7}^{9}$	3	5	26 8	18 10	44 18	0	500		5,500
South Atlantic Division..	1	2	3	5	3	1	12	5	17	7	300	------	
Maryland	1	2	3	5	3	1	12	5	17	7	300	--...--	
North Atlantic Division...	1	1	5	6	6	0	27	12	39	9			
Michigan	1	1	5	6	6	0	27	12	39	9			--------

Table 13.-Statistics of public institutions for the feeble-minded, for 1889-90.—Part I.

	Post-offlce.	Name.		Controlling body.				Executive.		
				Name.	No.	Term.	By whom appointed.	Name.	Title.	By whom appointed.
	1	2	3	4	5	6	' 7	8	'9	10
1 2	Santa Clara, Cal. Lakeville, Conn.	California Home for the Care and Training of Feeble-Minded Children.	1885 1858	Board of trustees Board of directors	14	4 years 1 year	Governor .---	A. Edgar Osborne, M. D., PII. D.	Superintendent.	Board of trustees.
3	Lincoln, Ill--	Illinois Asylum for Feeble-Minded	1865	Trustees.......----	3	6 years.	Governor------	Dr. Wm. B. Fish.		Do. Trustees.
4	Fort Wayne, Ind.	Indiana School for Feeble-Minded Youth.	1879	Board of trustees .	3	2-4 years	--do.----..-	John G. Blake.-	..do	Board of trustees.
5	Glenwood, Iowa.	Iowa Institution for FeebleMinded Children.	1876	..do	3	6 years.	Legislature .	Dr. F. M. Powell	.-do	Do.
6	Winfield, Kans.-	State School for Idiotic and Imbecile Youth.	1881	.do	5	3 years.	Governor, confirme d by the sen-	C. K. Wiles	.-do	Do.
7	Frankfort, Ky --	The Kentucky Institution for the Education and Training of Feeble-Minded Children.	1860	Board of commissioners.	9	6 years.	ate. Governor...	John Quincy Adams Stewart, M.D.	----do	Governor.
8	South Boston, Mass.	Massachusetts School for the Feeble-Minded.	1848	Board of trustees-	12	3 years.	Governor and cor- poration.	Walter E. Fernald, M.D.	.-.do .	Board of trustees.
9	Faribault, Minn.	Minnesota School for FeebleMinded.	1879	Board of directors.	7	5 years.	Governor.-.-	A.C. Rogers, M.D.	-.-do -.-	Board of directors.
10	Beatrice, Nebr .-	Nebraska Institution for FeebleMinded Youth.	1887	Board of public lands and buildings.				J. T. Armstrong, M.D.	-.-do	Board of public lands and buildings.
11	Vineland, N. J .-	The New Jersey Home for the Education and Care of FeebleMinded Children.	1888	Board of directors.	13	1-4 years	The Association.	S. O. Garrison	.-.-do .	Board of directors.
	Vineland, N. J .-	New Jersey State Institution for Feeble-Minded Women.	1888					Mary J. Dunlap, M.D.		
13	Newark, N. Y.--	New York State Custodial Asylum for Feeble-Minded Women.	1878	Board of trustees.	9	6 years.	Governor, with consent of senate.	W. L. Willett .-.	.-.do -.---	Board of trustees.
14	Randalls Island, New York City, N. Y.	School for Feeble-Minded,	1867					M. C. Dunphy .--		

Table 13.-Statistics of public institutions for the feeble-minded, for 1889-90.-Part I-Continued.

	Post-office.	Name.		Controlling body.				Executive.		
				Name.	No.	Term.	By whom appointed.	Name.	Title.	By whom appointed.
	1	2	3	4	5	6	7	8	9	10
15	Syracuse, N. Y..	New York State Asylum for Idiots.	1851	Board of trustees.	8	8 years-	Governor andsenate.	James C. Carson.	Superintendent.	Board of trustees.
16	Columbus, Ohio.	The Ohio Institution for FeebleMinded Youth.	1857	.-do .-.-------------	5	5 years.	Governor andsenate.	Gustavus A. Do- ren, m.d.	...do-	Do.
17	Elwyn, Pa.....--	Pennsylvania Training School for Feeble-Minded Children.	1853	Board of directors.	21		Members of corporation.		Medical superintendent.	Board of directors.

Table 13.-Statistics of public institutions for the feeble-minded, for 1889-90.-PART II.

TABLE 13.-Statistics of public institutions for the feeble-minded, for 1889-90.—Part III.

TABLE 13.-Statistics of public institutions for the feeble-minded, for 1889-90.-PART IV.

	Name.	$\begin{aligned} & \text { Volumes } \\ & \text { in li- } \\ & \text { brary. } \end{aligned}$	Value of scientific apparatus.	Value of grounds and buildings.	Receipts.		Expenditures.	
					State, county, or municipal appropriations.	Other sources.	Buildings and im-provements.	For support.
	1	2	3	4	5	6	\%	8
1	California Home for the Care and Training of Feeble-Minded Childron			\$45, 000	\$40,500	\$4, 519		$\$ 30,374$ 25,630
2	Connecticut School for Imbeciles				11,007		2,785	
3	Illinois Asylum for Feeble-Minded Children	180		198,865 280,000	66,000 75,000		2,785	70,025 74,923
4	Indiana School for Feeble-Minded Youth .--			280,000	15, 109,609	1,233 3,305	2,460	81, 069
5	State School for Idiotic and Imbecile Youth	0	\$10	30,000	28,775		8,919	17,5\%0
6 7	The Kentucky Institution for the Lducation and Training of Feeble-Minded Children.	300		60, 000	32, 000	49,600	50,000	42,000
8		0 135	0 150	137, 000	$a 78,581$ 56,000	60,829 1,990	91, 796	42,194 49,553
9	Minnesota School for Feeblo-Minded	135	150 200	167,000	56,000 36,038	1,990	22,266 16,602	49,553
10		0	200	86,000 30,000	36,038	24, 380	16,602 2,847	5,200 20,601
11	The Now Jersey Home for the Education and Care of Feeble-Minded Chiduren.	100		-20,000		5,258	--\%	5, ¢68
13				110, 000	57,166	3,429	37, 458	23, 137
14	School for Feeble-Minded --...-.-.							
15	New York State Asylum for Idiots	335	200	$\begin{array}{r} 3555,429 \\ 660,853 \end{array}$	102,340	13, 13,815	33,004 7,262	128, 364
16 17	The Ohio Institution for Feeble-Minded Youth ------	1,000		450, 000	115, 96'	13,815	,202	119,137

a Special appropriation for building purposes. *Statistics for 1888-89.
Table 14.-Statistics of private institutions for the feeble-minded, for 18s9-90.-Palet I.

EDUCATION IN FOREIGN COUNTRIES.

The following table presents the statistics of public elementary schools, i.e., schools intended for children of legal school age, generally 6 to 14 years, and supported wholly or in part by public funds. In a few instances the statistics are not strictly limited to these bounds.
For France, as will be seวn by reference to columns 3 and t, the enrollment in private elementary schools, which derive nothing from public funds, is included. As these schools are, however, under government inspection they pertain in a certain sense to the public system. For England and Wales and Scotland the enrollment includes pupils in infant schools and classes. Of the number tabulated, for the former 9 per cent. and for the latter 2.42 per cent. were under $\check{0}$ years of age.
In Ireland only those pupils on the rolls who make at least one attendance in the fortnight preceding the government examination are included in the number recognized for the government paymonts. This number and the total enrollment for the year are both tabulated (see column 5). Private schools not aided by public funds are included in the enrollment for the Netherlands. The latest official statistics from Finland, i. e., for 1859-90, give a very imperfect notion of the actual state of instruction in that country, as they include only organized schools, whereas the larger proportion of the population receire the elements of knowledge through the agency of ambulatory schools. The statistics of these as reported in 1886 are, therefore, given (see column 5).
The statistics of Upper Burmah, whose schools have recently bzen brought under the supervision of English officials, include 8,685 pupils in strictly private schools. For the remaining provinces of India the tabulated statistics include only public primary schools. The reports receired show also an attendance in private native schools of elementary grade as follows: Bengal, $\bar{i}, 286$; Bombay, 67,123; Lower Burmah, 35,003; North West Provinces and Oudh, 00,061 ; Mysore, 22,162.
Peculiar difficulties are encountered in the attempt to tabulate the current expenditures for elementary education. In some instances these are given in financial reports separate from the educational, and pertaining to a different year. Often the total expenditure for education is given without itemizing, so that the amounts devoted to the elementary schools can not be determined; thus, for example, in Russia in 1891 the school budgets of the different ministors having charge of educational institutions amounted to about $\$ 23,000,000$, the proportion for elementary education not being separable.
In Roumania in 1891 the total budget for the various grades of education was \$3,580,921.

The total expenditures are not made up in every case solely from public funds, governmental and local, church subsidies and tuition fees being often sources of revenue. In the German-speaking countries tuition fees form. only an insignificant item in the total expenditure. In 1888 the principle of free education was established by law in Prussia, and is being carcied into effect as rapidly as circumstances permit. In Belgium while subsidized private schools comprise 29 per cent of the enrolled pupils, tuition fees afford about 5.22 per cent of the total elementary school income, the maintenance of forty-nine normal schools being included therein.

About 25 per cent of the reported school expenditure for England and Wales was made up from tuition fees, which this year, for the last time, form an appreciable part of the income, the law providing for the remission of fees having gone into operation September, 1891. Scotland has completed a year's experiment in free education. Tuition fees are required in the public schools of the following British colonies represented in the table: Quebec, New South Wales, South Australia, Western Australia, Tasmania, Mauritius, Trinidad, Jamaica, and the provinces of India.

Statistics of pubric elementary

cclucation in foreign countries.

q Date incomplete.
h Pupils making the required number of attendances for Government payment.

Total enrollment.
j Pupils in ambulatory schools in 1885.

Statistics of public elementary education

a Includes schools established by the Gorernment and also those maintained by the foreign population.
in foreign countries-Continued.

b Appropriation by the Government and the provinces.

Statistics of public elementary education

a In the Commissioner's Report for $1888-89$ by a clerical error the corresponding ratio was given as 58.81 instead of 15.92 . The basis employed was the population of 1881 , the latest then attainable.
in foreign countries-Continued.

Current expenditures.							Name and title of chief offcer of education.	
12	13	14	15	16	17	18	19	
		\$668,725	89.13	80.-17	$\begin{aligned} & 2,766,747 \\ & 3,878,600 \end{aligned}$	$\begin{aligned} & 1891 \\ & 1881 \end{aligned}$	Señor Errazuriz, minister of justice and public instruction. J.J.Trujillo, minister of public	
		176, 325	3. 33	$\begin{array}{r} 80.17 \\ .13 \end{array}$	$3,878,600$		instruction. Dr. E. Laso, minister of public in-	60
		226, 523	14.55	. 68	329, 645	1887		
							ecclesiastical affairs, and pub-	61
		$\begin{aligned} & 303,581 \\ & 575,039 \end{aligned}$	5.70	11	2,700, 945	1876	D.F. Herrera, minister of the	
		363, 050	17.57	. 84	683, 943	1889	Dr. C. Berra, minister of justice eclesiastical affairs, and public instruction.	
			36.29	. 15	2,285, 054	1890	Dr. E. . Blanco, minister of public	
		195, 719						
			19.56 4.63	2.17	89, 990	1890	Hon. C.R. Bish	
		73, 114	4.6314.18	. 19	377, 986		Hon. A. Stand tendent of sc	
		2, 769, 094876,360		2.44	1,134, 207	1891	Hon.J. H. Carruthe	
			14.18	2. 20	393,718		Hon. W. O. Hodgkinson, secretary	
		$453,529$	10.1214.62	1.443.10	315, 048	1891	Hon. J.G. G. . H nkins, minister of ed-	
		3,616,419			1,131, 690	1891	Hon. Charles Henry Pearson, minister of education.	
			14.62	3.10				
					626, 830			
						1891	Hon. W. P. Reeves, minister of	
		165, 310	9.23	1.12	146, 667	1891	Hon.B.Stafford Bird, minister ofeducation.	

INDEX.

A.

Académie d'Alger, statistics of, 1242, 1243.
Académie de Pảris, France, new edifice, 47.
Academies. See Secondary instruction.
Académies in France, described, 250.
Accommodation, lack of, in higher institutions for the colored race, 1090-1092.
See also Seats.
A dams, Charles K., on shortening college curriculum, 807-808.
Adams, Mass., statistics of schools and school finances, 1318,1358 .
Addis, Wellford, papers by, on statistics and curricula of professional schoois, 1850-1890, 837-1020.
Add-Ran Christian Unirersity, 1597, 1608.
Adelbert College of Western Reserve University, 1593. 1606.

Adler, Fclix, on effect of manual training on general education, 1148.
Administration and organization of systems, in France, system described, $105,151,249,250$, 256; and medical inspection in Paris, 265; in Scotland, 189, 190, 200, 203, 214, 222, 234; in England, 234, 239, 213; in London and in Paris, 264; in Arstria. 423, 424, 425, 465, 467, 473 ; in Prussia, 455,457 ; in Norway, 478,482 , 481, 485, 491; in Deninark. 525,528, 529; course to be followed in enforcing temperance instruction, 708-709; state as supervisor of secondary education, 1114, 1116, of private schools, 1155-1153, 117t-1175; functions of local school committces of Alaska, 1296.
See also Management and supervision of instruction, and State and local appropriations.
Admission requirements. See Higher education.
Adrian, Mich., statistics of schools and school finances, 1318,1358
Adrian College, statistics. 1559, 1603; school of theology of, 1047.
Age. See Students.
Agents, risiting, in reformatory education, 1067.
A ggregate attendance, in commou schools, 5,14 , 15, 613: proportion of, in cities, 604.
Agricultural and Mechanical College of Kentucky, statistics, 1053.
Agricultural and Mechanical College of Mississippi, statistics, 1054.
Agricultural College and Experiment Station, statistics, 1054.
Agricultural College of South Dakota, statistics, 1055.

Agricultural College of Utah, statistics, 1054.
A gricultural colleges: See Higher and professional education.
Agricultural experiment station urged for Alaska, 1290-1300.
Δ griculture, study of, $51,52,62$; exhibit at Paris Exposition, 116; use of, in General Booth's scheme for the regeneration of city slums, 588-58.).
See also Higher and professional education.
Akron, Ohio, statistics of schools and school finances, 1318, 1358.
Akron Busincss College, 1617-1631.
Alabama, statistics, commou schools, 6-33; appropriations in lieu of school taxes, 24; meager local taxes, 27; comparatire statistics of enrollment, attendance, teachers, and accommodationsin the schools of cities and villages,

Alabama, statistics-Continued.
607; comparative financial statistics of city and rillage systems, 608; eurollment and attendance in cities and rillages, 613 ; supervising officers, teachers, property, and expenditure in cities and rillages, 614 ; pupils in and graduates from public high schools, 615 ; character and enforcement of temperance sch law , 714; summary of statistics of colleges for women. 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and colleges, 760, 762; distribution of college students in regular degree courses from 18861890. 774 ; summary of degrees conferred by colleges and universities in, 7i6; productire funils of colleges and unirersities, 778-779; average age of college freshmen 1880-90, 800 ; students from, at Johns Hopkins, Harvard, and Michigan Universities, 820; statistics of professional schools, 1022-1032; degrees conferred by professional schools, 1033; statistics by race, $1074-1075$; education of the colored race in, $1075-1077$; statistics of institutions in, for colored race. 1090; summary of statistics of private secondary schools, 1486-1488; summary of statisties of business colleges, 1600 ; summary of statistics of schools for the deaf, $1632-1635$; summary of statistics of schools for the blind, 1652.

Alabama A cademy for the Blind, 1651-1660.
Alabama Agricultural and Mechanical College programme of ciril and mechanical engi, neering courscs, 960,977 , and statistics, 1053 .
Alabama Couference Female Collcge. curricnlum of, 750 ; statistics, $1571-1575$.
Alabama Institution for the Deaf, 1636-1648.
Alabama State normal schools, statistics, 1056 , 1086.

Alaska, character of temperance school law, 714; report on education in, 1245-1300; teachers in schools of, 1258; schools recently established in, 1259-1261.
Albany, N. Y., scale of teachers' salaries, 634; statistics of schools and school finances, $1318,1358$.
Albany Busincss College, 1616-1631.
Albany College of Pharmacr, statistics, 1040.
Albany Fome School for the Deaf, 1650-1651.
Albany Law School, statistics, 1052.
Albany (N. X.) Teachers' Training Class, statistics, 1057.
Albemarle Female College, 1580-1581.
Albert Lea College, curriculum and statistics of, 752, 1576-1577.
Albion, N. Y., statistics of schools and school finances, $1318,1358$.
Albion Colle ge, 1589, 1603.
Albrccht, Dr., on sture of languages, 369.
Albnqucrque College, 1591. 1605.
Alcohol, study of cffects of, in public schools, 695742.

Alcorn Agricultural and Mechanical College, statistics, 1054. 1088.
Alexander, James W., on higher education and business, 1144.
Alexandre Manzoni Lyceum, Milan, represented at intermational congress, 144 .
Alexandria. Ta.. statistics of schools and school finances, 1318, 135 s.
Alexandria Academy, statistics, 108%.

Alfieri, Marquis, remarks in international congress, $84,147,161,166$.
Alfred University, 1591, 1605.
Algcbra, in lycécs for girls, conclusions of international congress, 145; in England, 244; as a requisite for admission to medical schools, 875-876; number of students pursuing, in public high schools, 1391-1392; in private secondary schools, 1491-1492; in business colleges, 1621-1631; in institutions for the deaf, 1641-1642; in schools for the blind, 1657-1658.
Algicrs, educational exhibit at Paris Exposition, 120.

Allan Glen's Institution, Scotland, described, 205.
Allegheny, Pa., scale of teachers' salaries, 641; statistics of schools and school finances, 1318, 1358.
Allegheny College, 1595, 1607.
Allegheny Theological Scminary, statistics, 1049.
Allen Institute, 1614-1631.
Allentown, Pa., statistics of schools and school finances, 1318, 1358.
Allentown Business College, 1618-1631.
Allentown Female College, 1578-1509.
Allen University, statistics, 1087, 1088, 1596, 1607; theological department of, 1049, 1089; law school, 1052,1089 ; occupations of graduates, 1082;
Alliance, Ohio, statistics of schools and school finances, $1318,1358$.
Alma College, 1589, 1603.
Alpena, Mich., statistics of schools and school finances, $1318,1358$.
Altoona, Pa., statistics of schools and school finances, 1318, 1358.
Altschevsky, Mme., school of, at Kharkoff, Rus sia, 126, 127.
Alvergniat, M., exhibit at Paris Conservatoire, 103.

Ambats School, instruction in, 980.
American Asylum at Hartford for the Education and Instruction of the Dcaf and Dumb, 1636.
American Business College and Modern OfficeTraining School, 1618-1631.
American Collcge of Dental Surgery, statistics, 1039.

American Eclectic Medical College of Cincinnati, statistics, 1037.
American Medical College, statistics, 1037.
American Veterinary College, statistics, 1044.
Americus, Ga., statistics of schools and school finances, $1318,1358$.
Amesburg, Mass., statistics of schools and school finances, 13i8, 1358.
Amherst College, 1588, 1603.
Amity College, 1585, 1602.
Amsterdam, Holland, educational exhibit at Paris Exposition, 125.
Amsterdam, N. Y., statistics of schools and school finances, 1318, 1358.
Ancient languages. See Classics, also Latin and Greek.
Anderson, Ind., statistics of schools and school finances, 1318, 1358.
Anderson, William E., on appointing teachers, 1181.

Anderson Female College, 1578, 1579.
Andorer Theological Seminary, statistics, 1047.
Andrew Female College, 1574-1575.
Andrews, E. B., on education, 812-813, 1139-1140, 1152, 1182.
Angell, James B., on shortening college curriculum, 808.
Ann Arbor, Mich., statistics of schools and school finances, 1318, 1358.
Anoka, Minn., statistics of schools and school finances, $1318,1358$.
Ansonia, Conn., statistics of schools and school finances, $1318,1358$.
Antioch College, 1594, 1606.
Antwerp, Belgium, exhibit of education at Paris Exposition, 121.
Apparatus for instruction, in United States, expenditure for, 29, 32 ; exhibit at Paris Exposition, 128; in Hungary, statistics, 444; in Austria, 474; in Denmark, described, 539; value of, in colleges for women, 747, 748; in colleges and universitics, 762-763; in schools for the deaf, 1632-1635.

Apperception, definition of, 1231-1233.
Appleton, Wis., statistics of schools and school finances, 1318, 1358.
Apprentice schools, in Belgium, 122; in France, $45,116,118,257$; in Europe, $978-980,980-983$.
Appropriations. See State and local appropriations.
Arcadia Male and Female College, 1587, 1603.
Archbald, Pa., statistics of schvols and school finances, 1318, 1358.
Architecture, courses in, 992-994; proposed establishment of schools of, in Prussia, 1241.
Argentine Republic, fcmale teachers, 55; educational exhibit at Paris Exposition, 120; enrollment and cost of elementary instruc tion, 556-560, 1672-1677; school system of, 1220-1221.
Arithmetic, study of, in Prussia, character of instruction, 461 ; as a study of the elementary grade, 1126, 1128; number of students pursuing study of, in commercial colleges, 16211628; in institutions for the deaf, 1641-1642; in schools for the blind, 1657-1658; in institutions for the feeble-minded, 1666, 1669.
Arizona, statistics, common schools, 7-33; com parative statistics of enrollment, attendance, teachers, and accommodations, 607; pupils in, and graduates from public high schools, 615; character of Congressional tempcrance school law, 714; statistics of professional schools, 1030, 1031.
Arizona Normal School, statistics, 1056.
Arkansas, statistics, common schools, 6-33; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 607; enrollment and attendance, in cities and villages, 613 ; supervising efficers, teachers, property, and ex penditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615 ; summary of statistics of universities and colleges, 760,762 ; distribution of college students in regular degree courses from 1886-90, 774; summary of degrees conferred by colleges and unirersities in, 776; pro ductive funds of colleges and universities, $778-779$; average age of freshmen 1880-90, 800; students from, atJohns Hopkins, Har vard, and Michigan universities, 820; statistics of professional schools, 1022-1031; de grecs conferred by professional schools in, 1033; statistics by race, 1074; education of the colored race in, 1077; statistics of institutions in, for colored race, 1090-1091; summary of statistics of private secondary schools, $1486-1488$; summary of statistics of business colleges, 1610 ; summary of statistics of schools for the deaf, 1633-1635; summary of statistics of schools for the blind, 1652.
Arkansas College, 1582, 1600.
Arkansas Industrial Unirersity, statistics, 1053 medical department of, statistics, 1034 ; branch normal college, statistics, 1056, 1086.
Arkansas Institute for Deaf Mutes, statistics, 1089, 1636-1648.
Arkansas School for the Blind, 1089, 1651-1600.
Arnoulin, M., remarks in international congress, 156.

Arrondissements, in France, described, 106.
Artane, School of, 980.
Articulation, summary of statistics of teachers of, in schools for the deaf, 1632-1635.
Art schools, in Switzerland, exhibit at Paris Exposition, 128; in England, statisties, 248; in Saxony, statistics, 305 ; in Austria, 436, 451, 452, 466; in Europe, 984 ; to be established in Prussia, 1241.
Asboth, Johann von, remarks on classics, 11921197.

Ashborough Normal School, statistics, 1058, 1086.
Asheville, N. C., statistics of schools and school finances, 1318, 1358.
Asheville Female College, 1578-1579.
Ashland, Ky., statistics of schools and school finances, 1318, 1358.
Ashland Pa., statistics of schools and school finances, 1318, 1358.
Ashland University, 1593, 1606.
Ashtabula, Ohio, statistios of schools and school finances, 1318, 1358.

Aspen, Colo., statistics of schools and school finances, 1318, 1358.
Assistant teachers. See Teachers.
Association of American Medical Colleres, effort to prolong studies of medical students, 898.
Association of colleges in New England, proposes changes in elementary curriculum, 1124-1125.
Association of Saxon Engineers and Architects, action on Prussian conference, 403.
Associations, in Scotland, 204; in Denmark, 539; mectings of, in Europe, 1185-1189.
Astoria, Oregon, statistics of schools and school finances, $1318,1358$.
Astronomy, exhibit at Paris Exposition, 101.
Asylums. in Prussia, number of children in, 296; in Denmark, society for establishment, 541 .
Atchison, Kans., statistics of schools and school finances, 1318, 1358.
Atchison Business College, 1614-1631.
Athens, Ga., statistics of schools and school finances, 1318, 1358.
Athens Female College, 1574-1575.
Athletic sports. See Physical training.
Atkinson Institution, Scotland, described, 205.
Atlanta, Ga., scale of salaries of teachers, 621 ; statistics of schools and school finances, 1318, 1358.
Atlanta Baptist Seminary, statistics, 1045, 1087.
Atlanta Medical College, statistics, 1034.
Atlanta Seminary, theological department of, 1088.

Atlanta Unirersity, statistics, 1088, 1583, 1601; occupation of graduates, 1082 ; normal department, statistics, 1086; preparatory department of, statistics, 1087.
Atlantic, Iowa, statistics of schools and school finances, $1318,1358$.
Atlantic City, N.J., statistics of schools and school finances, 1318, 1358.
Attendance, in elementary public and private schools of United States, statistics, $7-16,36$, and in cities, 601-613, 1318-1350; in schools of Alaska, 1254-1255, 1299; compulsory and in general in France, 45-46,107, 252, 258; in Paris, statistics 88, 268,275; compulsory, in Scotland, 192, 193, 217, 222; in English elementary schools, 240; legal provisions respecting compulsory, $245-246$; in London and in Paris, statistics, 266, 267-268; in Russia, 206, 406, 463; in Saxony, 302; in Hungary, statistics, 410, 440; in Austria, statisfics, $429,466,473$; in Hungary, statistics, 440 ; system of compulsory, in Norway, 480-482; in Denmark, legal provisions governing, 535; population in Europe and America compared with, 549-560,1203,1672-1677; characteristics and social condition of the children in the slums of London, 579-582; various relations of total, in cities and villages to other statistical facts, 601-606; in public high schools of cities and rillages, 615 ; for course of university extension lectures, 830 , 832; fluctuation of, at professional schools in United States, France, and German5, during 1880-90, 837-873; in schools of all kinds for the colored race, 1090, 1091; compulsory, remarksupon,1110-1111; decrease in, in New York, 1158-1159; compulsory, necessity for, 1165; compulsory, countries haring laws upon, 1197-1198, at public erening schools, 1346-1350.
See also A ggregate attendance, Arerage daily attendance, and Students.
Attleborough, Mass., statistics of schools and school finances, 1318, 1358.
Auburn, Me., statistics of schools and school finances, $1318,1358$.
Auburn, N. Y., statistics of schools and school finances, $1318,1358$.
Auburn Theological Seminary, statistics, 1048.
Augsburg Seminary, statistics, 1047, 1589, 1604.
Angusta, Ga., statistics of schools and school finances, 1318, 1358.
Augusta, Me., statistics of schools and school finances, 1318, 1358.
Augustana College, 1585, 1601; theological seminary, statistics, 1046.
Auricular perception, summary of students taught by means of, 1632-1635.

Aurora, Ill., statistics of schools and school finances, 1318, 1358.
Au Sable, Mich., statistics of sckools and school finances, $1318,1358$.
Austin, Tex., statistics of schools and school finances, 1318, 1358.
Austin College, 1597, 1608.
Austria, school gardens, 129; operations of educational system, 419-439; statistical diagram of education, 454; school system described, 465-4₹4; statistics of elementary schools, 1221, 1222.
Austria-Hungary, operations of educational system, 419-451; statistics, 551-555, 1672-1677.
Aralon College, 1591, 1601.
Arerage daily attendance, in common schools, statistics, $5,12,13,35$; in cities, 601-613; in Scotiand, rule for computing, 192; statistics, in Engiish elementary schools, 240, 244, 245; in London and in Paris, statistics, 267, 268; in cities and rillages in rarious relations, 601-c05; on unirersity extension courses, 829. 830,831 ; of white and colored pupils in former slave States, 1074; in business colleges, 1612-1620; in foreign countries, 16721677.

Arery Normal School, statistics, 1061, 1086.
Arondale, Ohio, statistics of schools and school finances, 1318, 1358 .
Awards to American exhibitors at Paris Exposition, 130 .

E.

Baccalaureate. See Degrees.
Bacheldor's Business College, 1619-1631.
Baden, programmes of higher schools, 414, 415; statistics, 551-555, 1672-1677.
Bainbridge Business College and Normal School, 1612-1631.
Baker, James H., on uniform admission requisites to college, 1116-1118.
Baker City Normal and Business College, 1618131.

Baker Theological Institute, statistics, 1050.
Baker University, 15S6, 1602.
Baldwin Unirersity, 1593, 1606.
Ballard Normal School, statistics, 1087.
Baltimore, Md., teachers' salaries, 617-655; statistics of schools and school finances, 1318, 1358.

Baltimore College of Dental Surgery, statistics, 1039.

Baltimore Medical College of Baltimore City, statistics, 1035.
Baltimore University, medical department, statistics, 1035.
Bangor, Me., statistics of schools and school finances, 1318, 1358.
Bangor Theological Seminary, statistics, 1047.
Baptist Female College, 1576, 1577.
Baraboo, Wis., statistics of schools and school finances, 1318,1358 .
Bardoux, H., author of provision for school buildings, 96 .
Barnard College, founding, endowment, and course of, 743, 744; statistics, 1572, 1573.
Barre, Vt., statistics of schools and school finances, 1318, 1358.
Bartholomew English and Classical School, 1578, 1579.

Basiadis, M., remarks in international congress, 86, 149, 154, 156, 161.
Bataria, N. Y., statistics of schools and school finances, $1318,1358$.
Bates College, 1588, 1603.
Bath, Me., statistics of schools and school finances, 1318, 1358.
Battle Creek, Mich., statistics of schools and school finances, 1318, 1358.
Battle Creek College, 1589, 1 1003.
Bararia, programmes of higher schools, 410,411 ; statistics, 551-555, 1672-1677.
Bay City, Mich., statistics of schools and schoo finances, 1318, 1358 .
Bayless Business College, 1613-1631.
Baylor College, curriculum, 753.
Baylor Female Colle se, 1500, 1501
Baylor Unirersity, 1507, 1608.

Bayonne, N. J., statistics of schools and school finances, 1318, 1258.
Beale, Miss Dorothea, remarks in international congress, 78, 79, 144, 158, 159, 169.
Beardstown, Ill., statistics of schools and school finances, 1318, 1358.
Beatrice, Nebr., statistics of schools and school finances, 1318, 1358.
Beaumont Hospital Medical College, statistics, 1085.

Bearer Falls, Pa., statistics of schools and school finances, 1318, 1358.
Becson, J. W., on government of children, 1181.
Behm's Chattanooga Commercial College, 1619 1631.

Belfast, Me., statistics of schools and school finances, 1318, 1358.
Belgium, female teachers, 57 ; exhibit of education at Paris Exposition, 121; statistics, 551-555, 1672-1677; provision in, for industrial education, 381 ; school buildings of, 1222 .
Bellaire, Ohio, statistics of schools and school finances, 1318, 1358.
Bellefontaine, Ohio, statistics of schools and school finances, 1318, 1358.
Bellevillc, Ill., statistics of schools and school finances, $1318,1358$.
Bellevinc College, $796,1591,1605$.
Bellevue Collegiate Institute, 1615-1634.
Bellevue Hospital Medical College, clinic.lectures at, $889,1035$.
Bell's Miale and Femalo Academy, statistics, 1087.
Belmont College, 1533, 1606.
Beloit. Wis., statistics of schools and school finances, 1318,1358 .
Beloit College, 798, 1509, 1609.
Benedict Institutc, statistics, 1087, 1089 ; theological department of, statistics, 1049.
Benefactions, in Scotland, 205, 228, note; to University of Copenhagen, 528; to Cleveland College for Women, 74; amount received by colleges for women, 1889-90, 747, 748, $1572,1573,1575-1581$; by colleges and univeritics, $762,763,770,782,1600-1609$; for buildines see 795-798, in several conncctions; for colored people and institutions, 1081, 1085 ; rceeived by private sccondary schools, 1487, 1488.

Bennet Collcge of Eclectic Medicine and Surgery, statistics, 1037.
Bennet Seminary, statistics, 1087, 1576, 1577.
Benton A cademy and Business College, 1619-1631.
Benzonia College, 1589, 1603.
Bcquests. Ser Benefactions.
Bcrea College, 1082, 1087, 1088, 1587, 1602.
Berkeley Divinity School, statistics, 1045.
Berlin, Germany, decreaso of child labor, 297; Royal A gricultural High School at, 998-999, 1002-1003; Royal Veterinary University at, statistics, 1004; statistics of elementary schools of, 1197; compulsory attendance in, 1198.

Berlin, Wis., statistics of schools and school finances, 1318, 1358.
Bert, Paul, promoter of secondary education, 100.
Berthelot, M., work relating to educational exhibits, 86 .
Bertram, Dr., on special tcachers, 383.
Bethany Collegc, Kans., 1587, 1602.
Bethany College, W. Va., 1598, 1608.
Bethel Collegc, Ky., 1587, 1602.
Bethel College, Tenn., 1597, 1608.
Bethlchem, Pa., statistics of schools and school finances, 1318, 1358.
Beverly, Mass., statistics of schools and school finances, $1318,1358$.
Bible teaching, in elementary schools of London, 274.

Bibliography, works published in Europe in 1888 and 1889, 1189-1190.
Biddeford, Mo., statistics of schools and sehool finances, $1318,1358$.
Biddle University, statistics, 1593, 1606, 1087, 1088; theological department, statistics, 1048, 1388 .
Big Rapids, Mich., statistics of schools and school finances, 1318, 1358.
Bilingual instruction, in Scotland, 201.
Binghamton, N. Y., statistics of schools and school finances, $1318,1358$.

Birmingham, Ala., salary of teachers, 617; statisties of schools and school finances, 1318, 1358. Birmingham, Conn., staćistics of schools and school tinances, 1318, 1858.
Birmingham, England, Technical School of, 980.
Birmingham Normal Training School, statistics, 1056.

Bishop College, statistics, 1088.
Bishop Seabnry Divinity School, statistics, 1047.
Blackburn University, 1584, 1601.
Black Hills College, established, 792.
Blanchet, M., remarks in international congress, $67,146,160,173$.
Blind, recent provision for in Scotland, 203; in England, 247 ; schools for, in Saxony, 305 ; in Norway, 514; in Demmark, 542; schools for, of colored race, 1089-1091; statistics of schools for, 1652-1660.
Blondel, M., on study of social sciences, $147,161,167$.
Bloomington, Ill., statistics of schools and school finances, 1318, 1358.
Bloomington, Ind., statistics of schools and school finances, 1318, 1358.
Bloomington Law School, statisties of, 1051.
Bloomsburg, Pa., statistics of schools and school finances, $1318,1358$.
Blue Mountain Female College, curriculum of, 752, statistics, 1576-1577.
Boards of education. See Administration and organization of systems.
Board schools, in England, system, 239-241.
Bohtz, Dr., on Prussian teachers, 397.
Bolivia, statistics, 556-558, 1222, 1672-1677.
Bonet-Maurý, M., remarks in intcrnational congress, 158.
Bookkeeping, as a study in the elementary school, 1127; number of students pursuing study of, in commercial schools, 1621-1628.
Boone, Iowa, statistics of schools and school finances, 1318, 1358.
Boonville, Mo., statistics of schools and school finances, 1318, 1358.
Booth, Charles, résume of his study on the slums of London and their reformation, 574-585.
Bocth, William, charactcr of the work and scheme of, for the regeneration of the slums of great cities, 585-590.
Bordentown, N.J., statistics of schools and school finances, 1318, 1358.
Bordentown Femalo College, 1570-1577.
Borough and Parochial Schoolmasters' Association, Scotland, described, 204.
Bossert, M., report to international congress, 65, $77,144,158,169$.
Boston, 'Mass., scale of teachers' salaries, 18491892, 668-679; early efforts to introduce physical culture in schools of, 1103-1104; character of physical training in schools, 1108; statistics of schools and echool finances, 1318, 1358.
Boston City Hospital Training Schcol for Nurses, statistics, 1042.
Boston College, 1588, 1603.
Boston Dental College, statistics, 1039.
Boston Normal School, statisties, 1057.
Boston'Training Schoolfor Nurses, statistics, 1042.
Boston Truant Nichool, statistics, 1071.
Boston University, organization, 789, 1589, 1603; students in graduato departnient, 1870-90, 819; school of medicine, curriculam of, 907, 1037 ; school of theology, statistics, 1047; law school, statistics, 1052.
Botany as a requisite of admission to medical schools, 875-876.
Bourgeois, Léon, minister of public instruction, France, 249.
Boutmy, M., reDort to international congress, 65, $144,166$.
Bouvy, M., on trade-training, 121.
Bowdoin College, 15S8, 1603; medical department, statistics, 1035 .
Bowdon College, 1583, 1601.
Bowling Green, Ky., statistics of schools and school finances, 1318, 1358.
Boyden, A. C., on the effects of alcohol on the human system, and the method of teaching temperancc, 709-713
Boys' House of Refuge, Ncw Orleans, statistics, 1071.

Boys' Industrial Home, statistics, 1072.
Braddock, Pa., statistics of schools and school finances, 1318,1358
Bradford, Pa., statistics of schools and school finances, $1318,1358$.
Braidrood, Il., statistics of schools and school finances, $1318,1358$.
Brain, models at Paris Exposition, 122, 128.
Brainerd, Minn., statistics of schools and school finances, $1318,1358$.
Brainerd Institute, statistics, 1087.
Brattleboro, Vt, statistics of schools and school finances, $1318,1358$.
Brazil, statistics, $556-560,1672-1677$.
Brazil, Ind., statistics of schools and school finances, $1318,1358$.
Bréal, Mr., remarks in international congress, 64 , $\mathfrak{7 3}, 75,77,79,145,154,156,158,170,171,172$.
Bremen, $551-555,1572-1677$.
Brenham, Tex., statistics of schools and school finances, $1318,135 \mathrm{~S}$.
Brentano. L., idea of political economy, 82 .
Breslan, University of, statistics of agricultural department of, 1002.
Brewer, Mre., statistics of school and school finances, 1318,1358 .
Brewer, William H., objections to form of inquiry, 956-959.
Brewer Normal School, statistics, 1001, 1086.
Bridgeport, Conn., scale of salaries of teachers, 619 ; statistics of schools and achool finances, $1318,1358$.
Bridgeport Business College, 1612.
Bridgeton, N. J., statistics of schools and school finances, $1318,1358$.
Bristol, Conn., statistics of schools and school
finances, $1318,13 \overline{3} 8$.
Bristol, Pa., statistics of schools and school finarces, $1318,1358$.
Bristol, R. I., statistics of schools and school finances, $1318,1358$.
British India, statistics, 1672-1677.
Broaddus College, 1580-1581.
Brockton, Mass., statistics of schools and school finances, 1318, 1358 .
Brookfield, Mo., statistics of schools and school finances, $1318,1358$.
Brookline, Mass., statistics of schools and school finances, 1318, 1358.
Brooklrn, N. Y., scale of salaries, 635 ; statistics of schcols and school finances, 1318,1358 .
Brooklyn, Ohio, statistics of schools and school finances, $1318,1358$.
Brooklyn Homœopathic Maternity and New York StateSchool for Training Nurses, statistics, $10+2$.
Brooklyn Training School for Teachers, 1057.
Brooklyn Training School for Nurses, statistics, 1042.

Brooklyn Truant Home, statistics, 1072.
Brooks, Edware, on mathematics in the clementary schools, 1131-1132.
Brown, George P., on moral training and will training, $1140-1141,1173,1174$.
Brown's Peoria Business College, 1613-1631.
Brownsrille, Ter., statistics of schools and school finances, 1318, 1358 .
Brownsville Female College, 1578-1579.
Brown University, establishes a department of didactics, 1015; statistics, 1595, 1607.
Branswick Home School, 1668-1669.
Brussels, Belgium, female teachers, 55.
Bryant \& Stratton Business College, 1614-1631.
Bryant, Stratton \& Smith Business College, 1619-1631.
Bryn M「awr College, 1572-1573.
Bryce, James M., classification of American colleges, 756.
Buchanan, John L., on women as teachers, 1182-1183.
Buchanan Business Institute, 1618-1631.
Buchtel College, 1593, 1606.
Bucknell University, 797, 1505, 1607.
Bucyrus, Ohio, statistics of schools and school finances, $1318,1358$.
Buenos Ayres, system of education, 120.
Buffalo, N. Y., scale of teachers' salaries, 635-636; statisties of schools and school finances, 1318, 1358.

Buffalo Business University, 1617-1631.
Buffalo College of Commerce, 1617-1631.
Buffalo Law School, statisties, 1052.
Bufnoir, M., report to and remarks in international congress, $65,63,83,144,148,154,159,163$.
Buildingsandaccessories, value of, inUnitedStates, $5,18,35$; in cities, $605,608,614,1358-1387$; expenditure for, in the United States, 20-32, 34; in France appropriation and expenditure for, 45, 88, 96, 257; in Edinburgh, Scotland, description, 202; in England, legal regulations, 244 ; in London and Paris, 270-271; in Kungary, statistics, 414 ; in Austria, 473 ; in NorWay described, 512 ; legal provisionsconcerning, in Denmark, 537; value of, belonging to colleges for women, $747,1572-1573,1575-1571$; ralue of, occupied by colleges and unirersities, $752-763,780,1600-1609$; value of, belonging to State universities, 782; character and cost of new, erected by colleges and universities during 1889-90, 795-798; State aid for, for schools for training teachers, 1031; amount expended for, by private manual training schools, 1062; by reformatory institutions, 1070-1072; ralue of, possessed by institutions for the education of the colored race, 1083; by technical schools, 1029; br schools for training teachers, 1031; need of proper, for public schools, 1162; of Belgium, 1222 ; number of, used for school purposes in city systems, 1319-1315; cost of new, during year, in city systems, 1359-1386; Value of, nsed for public high schools, 13891392, 1395-1485; and occupied by private secondary schools, 1487-1488, 1495-1571; Talue of and amount expended for, by schools for the deaf, 1632-1635, 1611-1645, 1649, 1651; ralue of, ocerpied by schools for the blind, 1652-1653, 1659; occupied by schools for the feeble-minded, 1661-1669.
See also Expenditures and Seats.
Buisson, F., rice-president of Congres3 of primary instruction, 49, 86, 91, 96, 57, 114, 249 .
Bulgaria, statistics, $551-553,1222,1672-16 \div 7$.
Bureau of Education, exhibit at Paris Exposition, 130.

Burgh schools, in Scotland, 226.
Burgher schools, in Prassia, 395.
Burlington, Iowa, statistics of schools and school finances, 1318,1358 .
Burlington, N.J., statistics of schools anid school finances, $1318,1358$.
Burlington, Vt., statistics of schools and school finances, 1318-1358.
Burlington Business College, 1619-1631.
Burnham industrial farm, statistics, 1072.
Bursuries. See Scholarships.
Butler, N. M., on coördination of secondary and higher education, 1133, 1147.
Butler, Pa., šatistics of schools and school finances, 1318, 1358.
Butler University, erects and equips observatory and preparatory department building, 795 , 1585, 1601.
Burritt College, 1597, 1608.
Business, instraction in, in elementary schools, 51,52 ; in Saxony, statistics, 305 ; discussed in Prussian conference, 398; in Austria, 437; in Copenhagen, Denmark, 524; salary of teachers in commercial departments of city systems of public schools, 617-603; statistics of colleges giving, 1610-1631.
Eusiness Department, Washington High School, 1612-1631.
Buss, Miss Frances M., present at international congress, Paris, 144.
Bussey Institution, statistics of, 1055.
Butte City, Mont., statistics of schools and school finances, $1318,1353$.
Buxton, Edward North, former chairman of London school board, 254.

Cadillac, Mich., statisties of schools and school finances, $1318,1358$.
Caire, Mr., on female teachers, 56.
Cairo, IIl, statistics of schools and school tinances. $1318,1358$.

Calais, Me., statistics of schools and school finances, $1318,1358$.
Caldwell Colle ee, 1574-1575.
Calesthenics. See Physical training.
California, statistics of common schools, $7-33$; State school taxes, 25 ; per capita school expenditure, 35 ; comparative statistics of enrollment, attendance, teachers, and accommodations in cities and villages, 607; comparative financial statistics of city and village systems, co8; enrollment and attendance in cities and villages, 613 ; supervising officers teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from public high schools, 615; teachers and pupils in public erening schools of cities and villages, 616; character and enforcement of temperance school lams, 711-715; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, $1 \frac{1}{2} 9$; summary of statis ics of universities and colleges, 761.763 ; summary of degrees conferred by colleges and universities in, 776 ; productive funds of colleges and universities, 778-779; distribution of college students in regular degree courses from 1886-1890, 775; average age of freshmen, 1880-1890, 800; students from, at Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 10221032; degrees conferred by professional schools in, 1033; statistics of reform school, 1070; summary of statistics of private secondary institutions, 1486-1488; summary of statistics of business colleges, 1611; summary of statistics of schools for the deaf, 1633-1035; summary of statistics of schools for the blind, 1653; Institution for the Deaf, Dumb, and Blind, 1654-1660; summary of statistics of institutions for the feebleminded, 1661-1062.
California College, 1582, 1600.
California College of Pharmacy, statistics, 1040.
California Home for the Care and Training of Fee-ble-Mrinded Children, 1663-1667.
California Medical College, statistics, 1037.
California State Normal Schools, statistics, 1056.
Calvin Colle ge, 797, 1593, 1606.
Cambridge, Mass., scale of teachers' salaries, 625; statistics of schools and school finances, 1318, 135 s.
Cambridge, Ohio, statistics of schools and school fimances. 1318, 1358.
Cambridge Truant School, statistics, 1071.
Camden, N. J., scale of teachers' salaries 631; statistics of schools and school finances, 1318, 1358.

Campbell University. 1586, 1602.
Canada, statistics, 556-560, 1672-1677.
C'anandaigua, N. Y., statistics of schools and school finances, $1318,1358$.
Cane Hill College, 1582, 1600.
Caner, Dr., on effects of Prussian conference, 398. Canisius Col.ege, 1592, 1605.
Cautine Scolaire, in Paris, 89, 269.
Canton, Ill., statistics of schoo.s and school finances, 1318, 1358.
Canton, Ohio, statistics of schools and school finances, $1318,1358$.
Canton Theological School, statistics, 1048.
Cape Girardeau, Mo., statistics of schools and school finances, 1318, 1358.
Capen, Elmer H., on shortening college curriculum, 810 .
Cape of Good Hope, statistics of, 1672-1677.
Capital Business College, 1619-1631.
Capital City Commercial College, 1613-1631.
Capital Commercial College, 1615-1631.
Capital University, 1593, 1606.
Caraffa, M.. on commercial instruction, 53.
Carbondale, Pa., statistics of schools and school finances, $1318,1358$.
Carey, Henry A., 796.
Carleton College, 1589, 1604.
Carlisle, Pa., statistics ${ }^{\circ}$ of schools and school finances, 1318, 1358.
Carlyle, Thomas, on instruction in piety, 1171.
Carnegic, Andrew, on college training and business pursuits, 1143.

Carpenters, number of graduates from colleges and universities for colored race, 1082.
Carpentry. See Manual training.
Carriot, M., president of section of international congress, 51.
Carson and Newman College, 797, 1597, 1603.
Carthage, Mo., statistics of schools and school finances, 1318, 1358.
Carthage College, 1584, 1601.
Carthage Collegiate Institute, 1590, 1604.
Casanora, M., remarks in international congress, 71, 165.
Case School of Applied Science, programme of civil and mechanical engineering courses, 960, 977; statistics, 1055.
Cast, M. T., remarks in international congress, $65,68,80,144,156,163-165,170$.
Cathedral school for the Deaf, 1650-1651.
Catholic Normal School and Pio Nono College, statistics, 1061.
Catholic University of America, statistics, 1045.
Catskill, N. Y., statistics of schools and school tinances, 1318, 1358.
Cedar Blaff Female College, 1574-1575.
Cedar Rapids (Iowa) statistics of schools and school finances, $1318,1358$.
Cedar Rapids Business College, 1613-1631.
Centenary Cullege of Louisiana. 1587, 1603.
Center College of Kentucky, 1587, 1602.
Central Alabama Academy, statistics, 1060, 1086.
Central Business College (Kans.), 1614, 1631.
Central Business College (1 Mo.), 1616, 1631.
Central College, statistics, 1038.
Central College of Physicians and Surgeons, statistics, 1034.
Central Falls, R.I., statistics of schools and school finances, $1318,1358$.
Central Female College, Ala., 1574-1575.
Central Female Collece, Mo., 1576;1577.
Central Female Institute, 1580-1581.
Centralia, IIl., statistics of schools and school finances, 1318, 1358.
Central Indiana Normal School and Business Institute, statistics, 1060 .
Central Law College, statistics, 1052.
Central New York Institutions for Deaf Mutes, 1637-1648.
Central Normal College, statistics, 1060. 1613-1631.
Central Pennsyl Yania College, 1595, 1607.
Central Tennessee College, occupation of graduates, 1082; statistics, 1088, 1597, 1608; medical department of, statistics, 1036, 1089; theological department of, statistics, 1050, 1089; law department, statistics, 1052, 1089; normal department, statistics, 1086.
Central University of Iowa, 1586, 1602.
Central University of Kentucky, 1587, 1602; dental department of, statistics, 1039.
Central Wesleyan College, 1047, 1591, 1604.
Certificates of maturity. See Degrees.
Certification of high school students to colleges, 1115-1116.
Ceylon, establishment of schools in, by Buddists, 1222.

Chaddock College, 1585, 1601.
Chaddock School of Law, statistics, 1051.
Chaffee College of Agriculture, statistics, 1055.
Chaix, M. N., founder of apprentice school, 116.

Chambersburg, Pa ., statistics of schools and school finances, 1318, 1358.
Champaign, IIl., statistics of schools and sehool finances, 1318,1358 .
Chandler School of Science and the Arts, statistics, 960, 1055.
Chappell Hill Female College. 1580-1581.
Chappins, M., on modern secondary education, $51,67,146,160,173,174$.
Character-building, lacking in German gymnasium, 367.
Charcot, M., president of international congress, 133.

Charity Hospital, Blackwell's Island, Training School for Male and Female Nurses, statistics, 1042.
Charleroi Industrial School, 982.
Charles Mayer's Commercial College, 1620-1631.
Charleston, S. C., statistics of schools and school finances, $1318,1358$.

Charleston, W. Va., statistics of schools and school finances, 1318, 1358.
Charlotte, N. C., statistics of schools and school finances, $1318,1358$.
Charlotte Female Institute, 1578-1579.
Charlottesville, Va., statistics of schools and school finances, $1318,1358$.
Charts, appropriate, for scientific temperance instruction, a desideratum, 700.
Chassiotis, M., remarks in international congress, 73.
Chattanooga, Tenn., statistics of schools and school finances, 1318, 1358.
Chattanooga Medical College, statistics, 1036.
Chautauqua Literary and Scientific Circle, 831, 832.
Chautemps, ir., address at inauguration of new Sorbonne, 48,178.
Cheboygan, Mich., statistics of schools and school finances, 1318, 1358.
Chelsea, Mass., statistics of schools and school finances, $1318,1358$.
Chemistry: exhibit at Conscrratoire, des Arts et Métiers 103, and congress at Paris, 132; in secondary schools for girls, 157 ; new buildings for instruction in, see at various places, 795-798; favorite study at Johns Hopkins University, 821 ; physiological and medical, 891; course in, 994-996; number of students in public high schools pursuing study of, 1391-1392, in private secondary schools, 1491-1492, in business colleges, 1621-1628, in institutions for the education of the deaf, 1641-1642, in schools for the blind, 1657-1658;
Chemnitz, Saxony, statistics of child labor, 298; curriculum of school for soap-makers, 995996.

Chester, Pa., statistics of schools and school finances, 1318,1358
Chejenne, Wyo., statistics of schools and school finances, $1318,1358$.
Chicago, Ill., scale of salaries of teachers, 621; statisties of schools and school finances, 1318, 1358.
Chicago Baptist Union Theological Scminary, statistics, 1046.
Chicago College of Dental Surgery, statistics, 1039.

Chicago College of Pharmacy, statistics, 1040.
Chicago Female College, 1574-1575.
Chicago Homeopathic Medical College, statistics; 1037.

Ciicago Manual Training School, statistics, 1062.
Chicago Medical College of the Northwestern Unirersity, clinics of, 889-890, 1034.
Chicago Opthalmic College, statistics, 1037.
Chicago Theological Seminary, statistics, 1045.
Chicago Vetcrinary College, statistics, 1044.
Chicago Voice and Hearing School for the Deaf, 1650-1651.
Chickasaw Female College, 1576-1577.
Chickopee, Mass., statistics of schools and school finances, 1:318, 1358.
Chief State school officers, 591-592.
Child labor in England, legal regulations, 246 (note) ; in Prussia, conditions, 296-299.
Child's Business College, 1615-1631.
Chile, statistics, 556-550, 1672-1677.
Chillicothe, Mo., statistics of, schools and school finances, $1318,1358$.
Chillicothe, Ohio, statistics of schools and school finances, 1318, 1358.
Chillicothe Normal School and Business Institute, 1615-1631.
China, education in, in western literature and science, 1222-1223.
Chippewa Falls, statistics of school and school finances, $1318,1358$.
Chippewa Falls Business College, 1620-1631.
Chowan Academr, statistics, 1037.
Chowan Baptist Female Institute, 1578-1579.
Christian Bible School, statisties, 1087.
Christian Biblical Institute, statistics, 1048.
Christian Brothers' College (Tenn.), 1597, 1608.
Christian Female College, 1576, 1577.
Christian University, 1590, 1604.
Christie's Musical and Business College, 16191631.

Church courts, in Scotland, 220 (note).

Church of England, expenditures for schools and statistics, 240-241.
Cincinnati, Ohio, scale of tcachers' salaries, 683693 ; statistics of schools and school finances, $1318,1258$.
Cincinnati College, law school of, statistics, 1052.
Cincinnati College of Medicine Find Surgery, statistics, 1036.
Cincinnati College of Pharmacy, statistics, 10.10.
Cincinnati House of Refuge, statistics, 1072.
Cincinnati Normal School, statistics, 1058.
Cincinnati Polyclinic, statisties, 1038.
Cincinnati Wesleyan College, 1578-1579.
Circleville, Ohio, statistics of schools and school finances, 1318, 1358.
City and Guilds of London Institute, promotes manual training, 274.
City asylums, in Prussia, number of children, 296.

City superintendents, names and titles of, 593-601.
City systems of public schools, slatistics, 603-614, 1318-1392 ; of Norway, 481, 492, 500; of Germanr, 1197.
Civics, in France, 111; in Prussian higher schools, cavinet order, 344 ; instruction in, 1109-1110; as a high school study, 1120-1121.
Civil engineering, courses of, 945-961.
Claflin University, College of Agriculture, and Mechanics' Institute, programme of mechanical engineering, 977 ; statistics, 1054 , $1088,1596,1607$; occupation of graduates, 1082; preparatory department of, statistics, 1087.

Claghorn's Bryant \& Stratton's Business Collegc, 1616-1631.
Claremont Female College, 1578-1579.
Clark, Eliza A., endowment of Clereland College for Women by, 744.
Clarke, S. M., delegate from United States to international congress, 64, 149.
Clarke Institution for Deaf-Mutes, 1650, 1651.
Clark's Business College, 1618-1631.
Clarksville, Tenn., statistics of schools and school finances, $1318,1358$.
Clark University, Ga., 1087, 1088, 1584, 1601.
Clark Unirersity, Mass., organization, 789, 791, 792; course in pedagogy, 1018; statistics, 1589, 1609.
Class, formation, discipline, and size of. See Management and supervision of instruction; for class instruction, see Methods of instruction.
Classics, study of, in secondary schools, discnssed in international congress, 65, 72-77, 145, 170; in first Scotch schools, 214; in Prussian higher schools, $360,365,370,390,396$; in Norway, 505 ; in Denmark, 526 ; salary of professor of, in city systems, 634, 642, 643. 645; as a requisite for admission to medical schools, 875,876 ; preparatory college course in, 1117; conflict orer, 1190-1191; attacks on schools giring instraction in the, 1236-1208: value of, in technical education, 1239-1240; number of pupils in public high schools preparing for college classical course, 1395-1485; in private secondary schools, 1486-1571; number pursuing, in private secondary schools, 1490-1492.
See also Greek and Latin.
Classification. See Management and supervision of instruction.
Class rooms, in Hungary, statistics, 441.
Clerks, number of graduates from colleges and universities for colored race who become, 1082.

Clereland, Ohio, statistics of schools and school finances, 1318, 1358.
Cleveland College for Women, foundation and endowment of, 744, 1572-1573.
Clereland (Oliio) Training School, statistics, 1058.
Clews, Henry, on college training, 1143.
Clinic, 885-890.
Clinton, Iowa, statistics of schools and school finances, 1318, 1358.
Clinton, Mass., statistics of schools and school fillances, 1318, 1358.
Clinton, Mo., statistics of schools and school finances, 1318, 1358.
Clinton Business College, 1613-1631.

Clinton College, 1571-1575.
Cobb Divinity School, statistics, 1047.
Coe College, 1585, 1602.
Coeducation of the sexes, in France, discouraged by law, 257; in London, 273 ; in Germany, 284 ; in private elementary schools, in Prussia, 290e in Saxony, 301; in Austria, statistics, 427,470 ; in Hungary statistics, 441; in Norway, 506; ratio of colleges practicing, to total number of colleges, 764 .
Cogswell Polytechnic College, statistics, 1055.
Cohn, Herman, on the study of the classics, 11951196.

Cohoes, N. Y., statistics of schools and school finances, $1318,1358$.
Colby University, $1588,1603$.
Coldwater, Mich., statistics of schools and school finances, 1318, 1358.
Coleman National Business College, 1516, 1631.
Colfax C'ollege, 153S, 1608.
Colgate University, 796, 1592, 1605.
Collar, Wlliam C.. on introducing foreign language study in the elementary schools, 1126.
Collard, François, speech in international congress, 149, 163.
College for Young Ladies, Osirego, Kans., 1574 1575.

College of Charlestown, 1596, 1607.
College of Emporia, 1586, 1602.
College of Homocopathic Medicine and Surgery, statisties, 1037.
College of MIontana, 1591, 1605; School of Mines, statistics, 1055.
College of New Jersey, 788-789, 796, 819, 1591, 1605; graduate strdies at, 817-818; scientific department, statistics, 1055.
College of Notre Dame, 1574-1515.
College of Pharmacy of the City of New York, statistics, 1040.
College of Physicians and Surgeons of Baltimore, statistics, 1035.
College of Physicians and Surgeons (Boston), statistics, 1035.
College of Physicians and Surgeons of Chicago, statistics, 1034.
College of Physicians and Surgeons (Keokak), statistics, 1035.
College of Physicians and Surgeons in the City of Ňew York, statistics, 1035.
College of St. Augustine, 798.
College of St. Francis Xavier, 1592, 1605.
College of Science and Arts, Scotland, described, 205.

College of the Bible, statistics, 1047.
College of the Christian Brothers (i10.), 1590, 1604.
College of the City of New York, 1592, 1605.
Coilege of the Holy Cross, 1589, 1609.
College of the Immacnlate Conception, 1587, 1603.
College of the Sacred Heart, 1591, 1505.
College of the Sisters of Bethany, 1574-1575.
College of William and Mary, normal department, 1059.
Colleges. See Higher and professional education.
Collin, C. A., on the object of education, 1136.
Colombia, statistics, $5503-560,1223,1672-1677$.
Colorado, statistics of common schools, 7-33; no State school tax, 24; local school tax, 26 ; per capita school expenditure, 35 ; comparative statistics of emrollment, attendance, tcachers, and accommodations, 607; com. paratire financial statistics of city and village systems, 608; enrollment and attendance in cities and rillages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in and graduates from public high schools, 615; teachers and pupils in public evening schools of cities and villages, 616; character and enforcement of temperance school law, 714,715 ; summary of statistics of universities and colleges, 761,763 ; summary of degrees conferred by colleges and anirersities in, 776; distribution of college students in regular degree courses from 1886 to 1890, 775; productive funds of colleges and wniversities, $773-779$; average age of freshmen, 1880-1890, 100; students from, at Johns Hopkins, Harvard, and Michigan universities, 820; degrees conferred by professional

Colorado, statistics-Continued.
schools in, 1033; statistics of professional schools, 1022-1929; statistics of reform school, 1070 ; summary of statisties of private secondary schools, 1486-1488; summary of statistics of business colleges, 1610 ; summary of statistics of schools for the deaf; 1633-1635; summary of statistics of schools for the blind, 1653.
Colorado A cademy, Blowing Fock, statistics, 1057. Colora do A gricultural College, statistics, 1053.
Colorado College, 1583, 1600.
Colorado Institution for the Education of the Mute and the Blind, 1636-1648, 1654-1660.
Colorado School of Mines, statistics, 1055.
Colorado Springs, Colo., statistics of schools and school finances, 1318, 1358.
Colored race, salary of teachers in city schools for, $620,621,624,634,644$; statistics of schools for the, 1073-1075, 1086-1090; occulsation of more highly educated portion of, 1095-1096; number of colored students engaged in secondary studies in public high schools, 13881392; number of, in publie high schools, 1395-1485.
Cclumbia, Pa., statistics of schools and school finances, 1318, 1358.
Columbia, S. C., statistics of schools and school finances, 1318,1358 .
Columbia, Tenn., statistics of schools and school finances, $1318,1358$.
Columbia A thenæum, 1578-1579.
Columbia College, N. Y., founds Barnard College as its woman's department, 743, 7i4; organization, 789,790 ; shortens college curriculum for intending professional students, 807; graduate department, 818; students in graduate department, $1870-1890,819$; statistics, 1592, 1605; medical department of, statistics, 1030 ; school of law, statistics, 1052; school of mines, course in chemistry, 995, statistics, 1055.
Columbia College of Commerce, 1612-1631.
Columbia Femalo College, 1578-1579.
Columbia Institution for the Deaf and Duinb, 1636-1648.
Columbian University, organization, 789; statistics, 1583, 1600 ; medical department of, statics, 1034; dental department of, statistics, 1039; statistics of law school of, 1051.
Columbus, Ga., statistics of schools and school finances, 1318, 1358.
Columbus, Ind., statistics of schools and school finances, 1318, 1358.
Columbus, Miss., statistics of schools and school finances, 1318, 1358.
Columbas, Mo., statistics of schools and school finances, 1318, 1358.
Columbus, Ohio, scale of teachers' salaries, 640; statistics of schools and school finances, 1318-1358.
Columbus Business College, 1617-1631.
Columbus Medical College, statistics. 1036.
Comer's Commercial College, 1614-1631.
Commercial department, Add-Ran Unirersity, 1619-1631.
Commercial department of Waitham High School, 1615-1631.
Commercial High School, 1612-1631.
Commercial law, number of students in business colleges pursuing study of, 1621-1628.
Commercial schools. See Business, instruction in.
Committee, school. See Administration and organization of systems.
Communes, in France, described, 106.
Compulsory thrift, in Maison Chaix, France, 116.
Concord, N. H., statistics of schools and school finances, 1318, 1358.
Concordia College, 1585, 1601.
Concordia Seminary, statistics, 1046.
Concordia Theological Seminary, statistics, 1047.
Conference on Prassien education, history and proceedings, $343-418$; negro, at Tuskecee, 1097; Lake Mohonk, resolutions alopted at meeting of 1891, 1097-1098; on physical training, at Boston, 1889, 1107.
Congress, name of each, held during International Exposition at Paris, 135, 136.
Congress of Experimental Psychology, Paris, 133.

Congress of Primary Instruction, Paris, proceedings, 49-64.
Congress of Secondary and Higher Education, Paris, proceedings, 61-86.
Connecticut, statistics, common schools, 6-33; relative decrease in enrollment, 9 ; comparative statistics of the enrollment, attendance, teachers, and accommodations in the schools of cities and rillages, 606: comparative financial statistics of cities and village system, 608 ; enrollment and attendance in cities and villages, 613 ; supervising offcers, teachers, property, and expenditures, in cities and rillages, 614 ; pupils in and grat. uatcs from public high schools, 615 ; teachers and pupils in public erening schools in citics and villages, 610 ; character and enforcement of temperance school law, 713, 715-716; summary of statistics of universitîcs and colleges, 760,762 ; distribution of college students in regular degree courses from 1886-1850, 773; summary of de grees conferred by colleges and universities in, 776; productive funds of colleges and universities, $778-779$; average age of freshmen, 1880-1830, 800 ; students from, at Johns Hopkins, Harvard, and Michigan Universities, 820; statistics of professional schools, 10221031; degrees conferred by professional schocls of, 1033; statistics of reform schocl, 1070; summary of statistics of private secondary schools, 1486-1458; summary of statistics of business colleges, 1610 ; summary of statistics of schools for the deaf,16521635; summary of statistics of institutions for the feeble-minded, 1601-1662.
Connecticut School for Imbeciles, 1663-1667.
Connecticut State Normal and Training School, statistics, 1056.
Connecticut Training School for Nursès attached to the New Haven Hospital, statistics, 1042.

Connellsville, Pa., statistics of schools and school finances, 1318,1358 .
Connersville, Ind., statistics of schools and school finances, 1318, 1358 .
Cannon's Conimercial College, 1615-1631.
Connor's Business College, 16141631 .
Conservatoire des Arts et Métiers, Paris, described, 103.
Construction work as a study in city systems of public schools, 1351-1355.
Conshohocken, Pa., statistics of schcols and school finances, 1318, 1358.
Continuation schools in Europe, 430, 453, 464, 474 $513,539,1238,1239,1241$.
Contract schools in Alas $\kappa \mathrm{K}, 1247-1250$.
Conrent of Mary Immaculate, statistics, 1087.
Conway, Clara, informal physical training, 1153, 1154.

Cook County Normal School, statistics; 1056.
Cooking, study of, provision in Edinburgh schoolhouse, 2il2; in England, government grants allowed, 244; salary of teachers, 619-693; in city systems of public schools, 1351-1356: number of pupils in institutions for the deaf pursuing, 1641, 1642; in schools for the blind, 1657-1658.
Cookman Institute, statistics, 1087.
Cooper-Limestone Institute, 1578, 1579.
Cooper Medical College, statisticz, 1034.
Cooper Memorial College, 1587,1602.
Cooper Normal College, $1060,1583,1604$.
Copenhageir, Denmark, description of schools, 525; functions of school board, 529; courses of study in elementary schools, 532 ; organization of schools, 538; effect of school life on children in schools of, 1202.
Corcoran Scientific School, programme of civil engineering course, 960 ; statistics, 1055.
Corinth Female College, 1576-1577.
Cornell College, 1556, 1602.
Cornell University, organization, 789; erects chemical building, 796; students in graduate department, $1870-1890,819$; programme of civil and mechanical engineering courses, 960,977 ; course in architecture, 992; statistics, 1592,1605 ; school of pharmacy, statistics, 1040 ; school of law. statistics, 1025.

Corporal punishment in Norway, legal provisions, 485.
Corpus Christi, Tex., statistics of schools and school finances, $1318,1358$.
Corry, Pa., statistics of schools and school finances, $1318,1358$.
Corsicana, Tex., statistics of schools and school finances, $1318,1358$.
Cortland, N. Y., statistics of schools and school finances, 1318, 1358.
Corvallis College, $1594,1606$.
Cosmography, in schools for girls, concl 7 sions of international congress, 145 .
Costa Pica, statistics, 556-500, 1223, 1672-1677.
Cost of education. See Expenditures.
Cotner University, established, 792 ; statistics, 1591, 1605.
Cottage system, merits of, in reformatory education, 1063-1066.
Coubertin, Pierre, paper on physical training, 134.
Council Bluffs, Iowa, statistics of schools and school finances, $1318,1358$.
Councils of education in France, functions, 250.
Courses of studj. See Curriculum.
Covington, Ky., scale of teachers' salaries, 624 ; statistics of schools and school finances, 1318, 1358.
Craik, Henry, secretary of Scotch education department, 189.
Cramming, aroided in Prussian higher schools, 329.
Cranbrook, Viscount, head of Euglish education department, 238.
Cramfordsrille, Ind., statistics of schools and school finances, 1318, 1358.
Crefeld Wearing School, 983.
Creighton College, 1591, 1605.
Creston, Iowa, statistics of schools and school finances, 1318, 1358.
Crime, effect of education in London, 278; a form of social disease, 573; statistics of, in Germany, 1192.
Croiset, A., report to and remarks in international congress, $65,72-i 7,144,145,156,170,171,1 i 2$.
Cropses. Tiss 工., on teaching literature, 1169.
Crozer Theological Seminary, statistics, 1049.
Caba, proportion of population evrolled, 556-560.
Cumberland Female College, 1580-1581.
Cumberland University, statistics. 1597, 1603; Theological School of, statistics, 1050; law school, statistics, 1052.
Cunyngham, H. H., report on teaching of morality in France, 110.
Curriculum, industrial instruction as a part of the, in elementary education, 51-54; of schools for modern education, 75,226 ; of primary schools, in Raris, 90,92 ; in France, of training colleges. 113, 114, legal provisions, 255,256 ; correllaton of studies of, 260, and professional courses, $880,881.915,916$, $941,950,951$; of apprentice school in Belgium, 122; of elementary and normal schools in Denmark, 123, 533, of unirersities, 534, and of polytechnic schools, 536 ; international equivalence of studies discussed in international congress, 148.159; in Scotland, legal provisions, 194, of normal schools, 199, and of burgh schools, 225 (note) ; of teachers' training colleges in England, 242, of elomentary schools of London, 273, and of Cambridge University, extension students, 828 ; in Prussia, of higher schools, 352,39 ; ; regulations. 282, 283, of cadet schools, 400, and comparison of the ditierent grades of schools, 460,461 : of typical German higher schools, 407-415; of Austrian elementary schools, 470, 471; of elementary, secondary, and higher schools in Norway, 486, 500, $502,508,510$; of Woman's Christian Temperance Union for scientific temperance instruction, 700-708, 730-742; leading to degree of A. B. in 15 colleges for women, $750-754$; course pursued by students in regular degree course in colleges and unirersities, $772-775$; organization of certain miversities, 783-787, 788-790; length of college, 799-813; of Tale University in 1824 and 1890, 801; efforts to shorten college, 804-813; of professional schools (including technological and normal), 875-1020;

Curriculam-Continued.
special mathematical courses; course of medical schools and requirements for admission to practice medicine in France, 880, 881; in faculties of theology in France, 915,916 ; illustrative of instruction in applied science in France, 946, 950, 951; of Lycées, 950,951 ; of graduate departments in theological schools, 940 ; time deroted to studies of civil engineering course, 955-960; time deroted to shop exercises in mechanical engineering course, 963-965, 977; time deroted to mechanical engineering studies, 977 ; of Prussian agricultural colleges, 1005; interrelation of the, of the several grades of instruction, 1111-1135; proposed by N. E. A. for preparatory schools, 1117; proposed by N. E. A. as a general high-school course, 1118; of the elementary school, 1126-1132; of public schools should be fixed by legislation, 1163-1164; rerision of the preparatory school, 1176-1177; value of the classics as a part of, of secondary instruction in Europe, 1192-1197; studies, and number pursaing each, in the schools of Alaska, 1256; of manual training schools, 1351-1356; of business colleges, 1621-1628; of schools for the deaf, 1641-1643; of schools for the blind, 1657, 1658; of institutions for the feeble-minded, 1666, 1669.

See also Classics, Latir,; Algebra, etc., and Programme for time devoted to each study, and Term for annual duration of study.
Curry University, 1619-1631.
Curtis, George William, on examining teachers, 1180.

Curtis Commercial College, 1615-1631.
Cygnaeus, promoter of education in Finland, 124.

B.

Daily programme. See Programme; also Session. Dakota School for Deaf-Mutes, 1638-1648.
Dakota Unirersity, 1596, 1607.
Dallas, Tex., scale of teachers' salaries, 644; statistics of schools and school finances, 1318, 1358. Dalton Female College, 1574-1575.
Dana, Charles A., on self education, 1142.
Danbury, Conn., statistics of schools and school finances. 1318, 1358.
Danilewsky, M., on hypnotism, 134 .
Danvers, Mass., statistics of schools and school finances, $1318,1358$.
Danville, Ill., statistics of schools and school finances, 1318, 1358.
Danville, Pa., statistics of schools and school finances, $1318,1358$.
Danville, Va., statistics of schools and school finances, 1318, 1358.
Danville Business College, 1613-1631.
Danville College for Yourg Ladies, 1580-1581.
Darboux, M., reports to and remarks in international congress, $65,77,80,144$.
Dartmouth College, organization, 789; statistics, 1591, 1605; medical college, statistics, 1035 ; statistics of scientific and professional departments of, 1054, 1055.
Daughters College, 1574, 1575
Davenport, Iowa, statistics of schcols and school finances, 1318, 1358.
Davenport Female College, 1578, 1579.
Davidson College, 1593, 1606.
Days city bchools were taught, 1319-1345. See also Term.
Dayton, Ohio, scale of teachers' salaries, 640; statistics of schools and school finances, 1318, 1358.
Dayton, Ky., statistics of schools and school finances, 1318, 1358.
Dayton (Ohio) Normal School, statistics, 1058.
Deaf, exhibit of method of Grosselin, 119; provision for, in Scotland, 203, in England, 247, in Saxony, 305, in Norway, 514, and in Denmark, 542 ; salaries of teachers in the Portland school for the, 624 ; schools for the, for colored race, 1089-1091; statistics of schools for, 1632-1652; controlling body of institutions for education of, 1636-1638; character of defect and age at which it appeared in children enrolled in schools for, 1646-1647.

Deaf, Dumb, and Blind Institute for Colored Youth, Texas, 1638-16!8, 1655-1660.
Deaf-mute department, University of Deseret, 1638-1648.
Decatur, Ill., statistics of schools and school finances, $1318,1358$.
Decorah Institute, 1613-1631.
Dedham, Díass., statistics of schools and school finances, $1318,1358$.
Defiance, Ohio, statistics of schools and school finances, $1318,1358$.
Defiance College, statistics, 1061.
Defodon, M., secretary of congress of primary instruction, 49.
Deformed children, schools for, in Denmark, 545.
De Garmo, Charles, on literature as a means of ethical training, 1168-1169.
Degrees, international equiralence of, 65, 68-72, 148, 163 ; discussions in internatioual congress, $146,160,161,172$; in Scotch universities, examinations for, 210 ; in France, system described, 256 ; for graduation, in Prussian higher schools, 328 ; decision of the Prussian conference concerning, 392, 394; in Austrian universities, statistics, 434; in secondary schools, in Hungary, statistics, 449 ; conferred by colleges for women, 749; significance of, in United States, 757-758; summary of, conferred in 1889-90, by colleges and unirersities, 776-777; inıcrease of requirements for, 801 ; conferred by French professional faculties, 840-802; matriculates in medical schools having bachelor, 876-878, 1021-1026; students of theology having, 920, 1021-1026; in pedagogy, 1015, 1019 ; conferred by professional schools, 1033 ; relation of, to requisites for admission to college, 1113
De Land's Basiness College, 1620-1631.
Delapierre, M., remarks on female teachers, 57.
De Lapparent, M., vice-president of international congress, 64.
Delattre, A., exllibit at Paris Exposition, 122, 128.
Delaware, statistics, common schools, 6-33; comparative statistics of enrollment, attendance teachers, and accommodations in the schools of cities and villages, 606; comparative financial statistics of city and village systems, 608; enrollment and attendance in cities and vilages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and villages, 616; character and enforcement of temperance school law, 713, 716; summary of statistics of unirersities and colleges, 760 , 762; distribution of college stadents in regular degree courses from 1886-90,774; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and universities, 778-779; average age of freshmen, $1880-90,800$; statistics of professional schools, 1027,1029 ; statistics of reform schools, 1070; statistics by race, 107:11075 ; colored schools of, 1078, 1030 ; summary of statistics of prirate secondary schools, 1486-1488; summary of statistics of business colleges, 1610.
Delaware, Ohio, statistics of schools and school finances, 1318, 1358.
Delaware College, statistics, 1053, 1583, 1600; programme of civil and mechanical engineering courses, $960,977$.
Delboenf, M, , president of section of international congress, 133, 134.
Delinquents, jurenile, provision for, in England, 247 ; in Prussia, 295 ; in Saxony, statistics, 305 ; methods employed in the reformation of, 1063-1072.
Delphos, Ohio, statistics of schoals and school finances, $1318,1358$.
Denifle, M., exhibit at Paris Exposition, 101.
Denison, Tex., statistics of schools and school finances, $1318,1358$.
Denison Unirersity, 1593, 1606.
Denmark, exhibit of education at Paris Exposition, 122; educationalsystem described, 519548; provision in, for industrial education, 981; educational work in, 1223; statistics, 1672-1677.

Denominational schools in France, statistics, 259.
Dentistry, map showing location and diagrams illustrating, statistics of schools of, 859-800; statistics of schools of, 1023, 1039.
Denrer, Colo., scale of salaries of teachers, 619 ; statistics of schools and school finances, 1318, 1255.
Denrer Business College, 1612-1631.
Departments in France, described, 106.
De Pauw Unirersity, organization, 789 ; statistics, 1585-1601, daily routine of, exercises in theological department, 931, and statistics, 1046; school of law, 1051.
Depew Chauncey M., on higher education and business, 1145.
Des MIoines, Iowa, scale of salaries of teachers, 623 ; statistics of schools and school finances, 1318, 1358.
Des Moines College, 1585, 1602.
Desparmet-Ruelle, Mme., remarks in international congress, 158.
Detroit, Mich., scale of teachers' salaries, 627; statistics of schools and school finances, 1318, 1358.

Detroit Business University, 1615-1631.
Detroit College, statistics, 1589, 1603.
Detroit College of Medicine, statistics, 1035.
Detroit Emergency Hospital Training School for Nurses, statistics, 1042.
Devlin's Business College, 1615-1631.
Dexter Normal College, statistics, 1060.
Dick bequest, Scotland, 205, 228 note.
Dickinson, J. W., on the function of the normal school, 1178; on the need of more male teachers, 1183.
Dickinson College, 1595, 1607.
Didama, H. D., on adrancement of the medical profession, 912.
Dietz, M., remarks in international congress, 76 , $77,79,146,154,156,158$.
Diggle, J. R., chairman of London school board, 264.

Dingo Business College, 1614-1631.
Dinners for school children, in Paris, public prorision, 89.
Discipline. Sce Management and superrision of instraction
Dissection, 885.
District, system in Austria, 467; in Norway, 478.
District of Columbia, statistics, common schools, $6-33$; per capita school expenditure, 35 ; comparatire statistics of enrollment, attendance, teachers, and accommodations in cities and rillages, 606; comparative financial statistics of city and rillage system, 608; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditures in cities and villages, 614; pupils in and graduates from public high schools, 615; teachers and pupils in public erening schools of cities and villages, 616 ; character of Congressional tem perance school law, 713; summary of statistics of universities and colleges, 760 , 762 ; distribution of college students in regular degree courses from 1886-1890, 774; summary of degrees conferred by colleges and unirersities in, 776 ; arerage age of freshmen, $1830-90,800$; students from Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1022-1030; degrees conferred by professional schools of, 1033 ; statistics of reform school, 1070 ; statistics by race, 1074-1075; statistics of schools for the colored race, 1090-1091; summary of statistics of prirate secondary schools, $1486-1488$; summary of statistics of business colleges, 1610 ; summary of statistics of schools for the deaf,1632-1635.
Division of time. See Programme.
Dixon Business College, 1613.
Doane College, 1591, 1605.
Dr. Martin Luther College, 1589, 1604.
Domestic economy, study of, in England, gorernment grants allowcd, 244.
Donations. See Benefactions.
Douglas, Count, on physical culture, 382.
Dover. N. H., statistics of schools and school finances, $1318,1358$.

Downer College, curriculum, 754; statistics, 1580-1581.
Drake Unirersity, erects almmni science hall, 975 ; statistics, 1585,1602 ; Bible department of, statistics, 1046; law department, statistics, 1051.

Draper, A.S., on the needs of the public schools, $1163-1165$; on public school education, 1i68; on the nocessity for special education, 1170-1180, 1181.
Drawing, study of, in public schools of Paris, 91 ; in England, gorernment grants allowed, 244 ; in London, results of examination, 273 ; decisions of Prussian conference, 390; salary of teacher of, in certain cities, 617-693; as a high-school study, 1120; as study in cily systems of public schools, 1£51-1356; prirate secondary schools haring obligatory instruction in, 1495-1571; in public high schools, 1395-1485.
Drew Theological Seminary of the Methodist Episcopal Church, statistics, 1048.
Dreyfus-Brisac $\mathrm{Mr}_{\text {., }}$ secretary of international congress, 64, 67, 85, 107, 143, 186.
Druggists, number of graduates from collcges and unirersities, for colored race who become, 1082.
Drum Hill district, N. F., statistics of schools and school finances, $1318,1358$.
Drury, V., promoter of secondary school, 102.
Drury College, 1591, 1604.
DuBois, Pa., statistics of schools and school finances, $1318,1358$.
Dubuque, Iowa, statistics of schools and school finances, 1318, 1358.
Due West Female College, 1578, 1579.
Duft's Mercantile College, 1619-1631.
Duluth, Minn., statistics of schools and school finances, $1318,1358$.
Dundee (Scotland) Unirersity, statistics. 188.
Dunkirk N. Y., statistics of schools and school finances, 1318, 1358.
Dunmore, Pa., statistics of schools and school finances, $1318,1358$.
Duplan, M., on school organization, 88 .
Duration of schools. See Term.
Durham, N. C., statistics of schools and school finances, 1318, 1358.

E。

Earlham College, erects and equips a gymnasium, 795 ; statistics, $1585,1601$.
Eastern Iowa School for the Deaf, 1650, 1651.
Eastern State Normal School, statistics, 1057.
East Liverpool, Ohio, statistics of schools and school finances, 1318, 1358.
Eastman Business College, 1617-1631.
East Mississippi Female College, 1576, 1577.
Easton, Pa., statistics of schools and school tinances, $1318,1358$.
Easton College of Business, 1618-1631.
East Portland, Oregon, statistics of schools and school finances, 1318, 1358.
East Providence, R. I., statistics of schools and school finance3, $1318,1358$.
East Saginaw, JIich., statistics of schools and school finances, $1318,1358$.
East St. Louis, Ill., statistics of schools aEd school finances, $1318,1358$.
Eaton and Burnett's Business College, 1614-1631.
Eau Claire, Wis., statistics of schools and school finances, 1318, 1358.
Eberswalde, Royal Forest Academy at, statistics, 1003.

Eclectic Medical College of the City of New York, statistics, 1037.
Eclectic Medical Institute, statistics, 1037.
Eclectic Medieine, statistics of schools of, 1022, 1037.

Ecole Centrale des Arts et Manufactures, curricnlum, 975-976.
Ecole Nationale des Ponts et Chanssées, 951.
Ecole Normale, Sévres, described, 114.
Ecole Normale Spéciale, Clunv, described, 114
Ecole Polytechnique, curriculum of, 951.
Ecoles Maternelles, in France, described, 257.
Ecoles Normales Supérieures d'Enseignement Primaire, France, described, 59, 113.

Economic Science, in higher education, discussed in international congress, 82; discussion in international congress, 161, 166.
Ecuador, statistics, etc. $550-558,1229,1672-1677$.
E. D. Lyons, Classical School, 1617-1631.

Eden College, statistics, 1047.
Edgewater, N. Y., statistics of schools and school finances, $1318,1358$.
Edinburgh, Scotland, educational activity, 202; educational associations, 204; normal school established, 230.
Editors, number of graduates from colleges and universities for the education of the colored race, who become, 1082.
Education, Wilhclm II of Prussia, quoted on, 44; effects, in Scotland, 231 (note); anxiliary aids to, in Scotland, 204; auxiliary agencies pronotive of, in England and France, 247, 262 ; effects, in London, 278; a general remedy in social pathology, 573; various views as to what it is, its value, and its acquisition, 1135-1143.
See also Elementary, Higher, and Secondary education, Administration and organization of systems, Mana gement and supervision of instruction, Mcthods of instruction, Curriculum, Teachers, and Professors and instructors.
Educational Institute, Scotland, described, 204.
Edwards, Richard, on moral training in public schools, 1173-1174.
Egger, Max, report to international congress, 66, $73,145,153,160,170-172,173,174$.
Egypt, educational work in, $1215,1223,1224$.
Eitner, Dr., on gymnastics in Prussian highor schools, 381.
Electires, in theological schools, 936-938.
Elcctrical engincering, courses of, 990-992; now laboratory for, 797.
Elementary education, in United States, statistics, 1-37, in cities, 603-614; proceedings of intornational congress on, 49-64; exhibic at Paris Exposition, 90,97 ; public subsidies to privato schools in Paris, 91 ; statistics of, in France, 96 ; comparison of Englisli with French, 106; in France, characteristic features, 255, 257; in Scotland, 188-191, 195-196, 227,230 , and relation of, to higher education, 206, 230; in England, system and results, 238-244; in London and Paris described, 263-280; in Prussia, enrollment, 282; in Prussia, description and statistics, 289-293; maintonance of Prussian schools, 455; in Prussia, statistics, 455 ; in Saxony, described, $301-303,305,452$; in Austria, 426, 451, $452,465,466$; in Hungary, system described, 439,445 ; in Switzerland, statistics, 453 ; in Würtemberg, 453; in Norway, 479, 487, 500512 ; statistics of, in rarious countries of the world, 549-560, 1672-1677; in Denmark, 520524 ; list of endorsed text-books on scientific temperance instruction appropriate for, 699 ; course of study in scientific temperance appropriato for, 700-706, 739-742; agricultural instruction in, 1006-1013; adjustment of curriculum of, to that of higher education, 1111-1135; remarks on privato, by several persons, 1156-1158; transfer of private schools, to school boards in Minnesota, 1157, 1153; remarks on the theory of public, by several persons, 1158-1163; in Alaska, 1250, 1251.

See also Kindergartens, Administration and organization of systems, Management and supervision, of instruction, Methods of instruction, Curriculum, Programme, Teach ers, Students, Salaries, Income, Expendi ture, Funds, and State and local appropria tions.
Elgin, Ill., statistics of schools and school finances, 1313, 1358.
Eliot, C. W., proposes to shorten college curricu lum, 804 ; on the improvement and adminis. tration of secondary education, 1112-1116; on shortening the elementary school course, 1126-1131.
Elizabeth, N. J., statistics of schools and school finances, 13i8, 1358.
Elizabeth Aull Female Seminary, 1576, 1577

Elkhart, Ind., statistics of schools and school finances, $1318,1358$.
Elliott's Business College, 1613-1631.
Ellsworth, Me., statistics of schools and school finances, 1318, 1358.
Elmira, N. Y., statistics of schools and schiool finances, $1318,1358$.
Elmira College, 1572, 1573.
Elmira School of Commerce and Shorthand Institute, 1617-1631.
Elocution, salary of teachers of, in certain cities, 617-693.
El Paso, Tex., statistics of schools and school finances, 1318, 1358.
Elyria, Ohio, statistics of schools and school finances, $1318,1358$.
Emerson Institute, statistics, 1060, 1086
Eminenco College, 1587, 1602
Emory and Henry College, $798,1598,1608$.
Emory College, statistics, 1584, 1C01; law department of, statistics, 1051.
Empire Business College, 1620, 1651.
Emporia, Kans., statistics of schools and school finances, 1318, 1358.
Emporia Business College, 1614-1631.
Endowment, of English elementary schools, statistics, 240 ; value of, to institutions of learning, 746 ; of colleges for women, 746, 748 ; of colleges and universities, 778, 779.
England [and Wales], evils of examinations. 93 cducational exhibit at Paris Exposition, 123 ; school system compared with that of Scotland, 189; social distinctions in school system, 237; educational aystem compared with that of France, 263; educational system and operations, 237-248; outdoor play, 294; statistics, $551-560,1672-1677$; provision in, for industrial education, $981,982,983$; com pulsory attendance in, 1198; influcnce of national character on education in, 12241226.

English language; study of, in Prussian higher schools, discussed, 370; decisions of Prussian conference, 390 ; requisite for admission to medical schools, $875-876$; in high schools, 1120,1121 ; number of students in business colleges pursuing, 1621-1628; in deaf institutions, 1641, 1642; in schools for the blind, 1657,1658 ; in schools for the feebleminded, 1666-1669.
Enrollment in schools. See Attendance, Students, and Higher, Secondary, and Elementary education.
Ensworth Medical College and Hospital Association, statistics, 1035.
Ephpheta School for the Deaf, 1650-1651.
Episcopal Female Institute, 1580-1581.
Episcopal Theological School, statistics, 1047.
Erie, Pa., statistics of schools and sebool finances, 1318, 1358.
Erie (Pa.) Teachers' Training Class, statistics, 1058.

Erkelenz, M., remarks by in international congress, 74, 77, 79, 144, 154, 150, 158, 159, 176.
Erskine Collcge, 1536, 1607.
Erskine Theological Seminary, statistics, 1050.
Escanaba, Mich., statistics of schools and scbool finances, $1318,1358$.
Estey Seminary, 1578, 1579.
Eufaula, Ala., statistics of schools and school finances, 1318, 1358.
Enreka, Cal., statistics of schools and school finances, 1318, 1358.
Eureka College, statistics, 1046, 1584, 1601.
Euston's Business College, 1614-1631.
Evangelical Institution for Deaf and Dumb, 1650, 1651.

Evangelical Lutheran Theological Seminary, S C., statistics, 1050.

Evancelical Lutheran Theolugical Seminary of the Erangelical Lutheran Synod of Wisconsin, statistics, 1050.
Evangelical Proseminary, 1584, 1601.
Eransport, Ill., statistics of schools and school finances, 1318, 1358.
Evansville, Ind., maximum salary of assistants, 622; statistics of schools and school financos, $1318,1358$.

Eransville Commercial College, 1613-1631.
Evelyn Collcge, founding and curriculum of, 744745; statistics, 1572-1573.
Erening schools, in Scotlaud, 202; in England, 240, 247; teachers and pupils in public erening schools in cities and villages, 616, 13461350; salary of teachers of, in certain cities, 617-693; expenditure for, in cities, 1359-1386.
Everett, Mass., statistics of schools and school finances, $1318,135 S$.
Examinationa, methods of, 60; in France, evils, 93; in Prussia, methods, 462; in Austria, methods, 472; in Denmark, methods, 536; in England results of examination in class subjects, 244; the "quiz" as a feature of macdical instruction, 884; coöperative, for admission to college, 1116; effective, for teachers, 1180.
See also Degrees, and for examination of elementary pupils description of system as referred to under name of each country.
Exhibits, ellucational, at Paris Exposition, 86-132; of school appliances and work in Europe, 1200.

Expenditures, for common schools in the United States, by states, $5,9,27-37$, by cities, $60\{-$ 603, 614, 1359-1387; in France, for elementary schools, $96,252-253$, for higher education, 102; in Scotland, 188; in England, for elcmentary schools, 241 , for teachers' training colleges, 242 ; in London and Paris, statistics, 269, 270; for educatiou in Saxony, statistics, 290305; for elemmentary normal and secondary schools, in Hungary, statistics, 442, 413, 446, 450; for educational purposes in Prussia, statistics, 283, 457; for education in Norway, objects, 489-490; for educational purposes in Denmark, statistics, 528 ; for elementary instruction in Europe and America, 549-560, 1672-1677; heavy cost of educating children of the slums, 581; for education in cities compared (per centum) with other statistical facts, 604-608; for industrial education in Europe, 985; for support of private man. ual training schools, 1062 ; for reformatory schools, 1070 -1072; increase in New York for public schools, 1159; for schools of Alaska by the Goverument and religious bodies, 1257; for manual training in city systems of public schools, $1351-1356$; for all purposes by schools for the deaf, 1632-1635, 1644-1645, by schools for the blind, $1652-1653,1659$, by schools for the feeble-minded, 1661-1669.
See also Buildings and accessories.
Ewing College, 1584, 1601.

F.

Faculties in France described, 251-260.
Fairburn High School, statistics, 1056.
Fairmont State Normal School, statistics, 1059.
Falk, Dr., ministcr of public instruction, Prussia, on regulations of middle schools, 282 .
Falliéres, Armand, address at inauguration of New Sorbonne, 48, 179-182; addresses to congress of primary instruction, 49-51, 64.
Fall River, Mass., statistics of schools and school finances, $1318,1358$.
Fanta, Mlle., remarks in international congress, 158.

Fargo, N. Dak., statistics of schools and school finances, 1318,1358 .
Fargo Collcge, 1503,1606 .
Faribault, control of parochial schools by city school authorities, 1158; statistics of schools and school finances, 1318, 1358.
Farmers, number of graduates from colleges and universities for the colored race who become, 1082.
Farrand Training School for Nurses, statistics, $10+2$.
Fauquier Institute, 1580-1581.
Favre, Mme. Jules, head mistress of normal school, 114.
Fayctteville, N. C., statistics of schools and school finances, 1318, 1358.

Feeble-minded, schools for, in Saxony, 305; schools for, in Norway, 515; schools for, in Denmark, 542 ; statistics of schools for, 1661-1664.
Fees. See Tuition.
Fellenberg, influence on Swiss education, 129.
Fellowships, number of, in collcges and unirersities, 762-763, 1000-1009; at Princeton and Columbia Colleges for the promotion of graduate studr, 817-818; effect of establishing, at Johns Hoptins, 819, 821.
Fencing. See Physical Training.
Ferrari-Perez, M., remarks in international congress, 163.
Ferris Industrial School, 1071, 1615-1831.
Ferry, Jules, mentioned, 45, 59, 91, 100, 10S, 112, 114.

Fiedler, Dr., member of committee on school reform, 389.
Finances. See Incomc and Expenditure.
Findlay, Ohio, statistics of schools and school finances, 1318, 1358 .
Findlay J3usiness College, 1613-1531.
Findlay College, 1593, 1606.
Finland, educational exhibit at Paris Exposition, 124; statistics, 551-555, 1672-1677.
Fisk. University, erects gymnasium and workshop, 797 ; statistics, 1088, 1597, 1608; occupation of graduates of, 1082; theological course, statistics, 1050, 1059 ; normal department, statistics, 1086; preparatory department of, statistics, 1088.
Fitchburg, Mass., statistics of achools and school finances, 1318,1358 .
F. Knapp English and German Institute, 1C501651.

Flagg, Azariah C., on the danger of a text-lools law, 1184.
Flint, Mich., statistics of schools and school finances, 1318, 1358.
Florida, statistics, common schools, 6-33; length of school term, 15; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and rillages, 606; comparative financial statistics of city and village systems, 608; enrollment and attendance in cities and ril lages, 613; superrising officers, teachers, propcrty, and expenditure in cities and villages, 614; pupils in, and graduates from public high schools, 615 ; character of temperance school law, 714 ; summary of statistics of unirersities and colleges, 760, 762; distribution of college students in regular degree courscs from 1885-1890, 774 ; summary of degrees conferred by colleges and unirersities in, 776; productire funds of colleges and universities, 778-779; students from, at Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1027-1031; statistics by race, 1074; statistics of schools for the colored race, 1090-1001; sumnary of statistics of prirate secondary schools, 1486-1488; summary of statistics of business colleges, 1610; summary of statistics of schools for the deaf, 1032-1635; summary of statistics of schools for the blind, 1052 .
Florida Agricultural College, programme of mechanical engineering course, 977 ; statistics, 1053.
Florida Blind and Deaf MuteInstitute, 1630-16 18 , 1651-1660.
Florida Conference College, 1583, 1600.
Florida Institute, statistics, 1087.
Florida Institute for the Deaf and Blind, statistics, 1059.
Florida State Normal Schools, 1056, 1078, 1086.
Flower, R. P., on the appropriation of noney for education, 1158-1161.
Flushing, N. Y., statistics of schools and school finances, 1318, 1358.
Fonbert, M., on female teachers, 50.
Fond duLac, Wis., statistics of schools and school finances, 1318, 1355.
Foreign languages. See Modern languages.
Forestry, schools for, 1003.
Forge work as a study in city systems of public schools, 1351-1356.

Furtbuildangs schulen. See Continuation schools.
Fort Dodge, Iowa, statistics of schools and school finances, 1318, 1358.
Fort Hill Prirate Institution for Feeble-Minded and Epileptic Children, 1668-1669.
Fort Howard, Wis., statistics of schools and school finances, 1318, 1358.
Fort Madison, Iowa, statistics of schools and schcol finances, 1318, 1358.
Fort Scott, Kans., statistics of schools and school finances, 1318, 1358.
Fort Scott Kansas Normal School, statistics, 1060.

Fort Smith, Ark., statistics of schools and school finances, $1318,1358$.
Fort TVarne, Ind., statistics of schools and school finances, 1318, 1358.
Fort Wayne College of Medicine, statistics, 1034.
Fort Worth, Tex., statistics of schools and school finances, 1318, 1358.
Fort Worth Business College, 1619-1631.
Fort Worth Universits, 1597,1608.
Foster's Lusiness College, 1615-1031.
Fostoria, Ohio, statistics of schools and school finances, 1318, 1358.
Franingham, Mass., statistics of schools and school finances, $1318,1358$.
France, conditions of education, 41; attention to popular education, 44, 45; training of teachers, historical sketch, 58; educational exlibit, $86-120$; international equiralence of studies, 148; educational system and its operations, 249-261; educational system compared with the English, 263; statistics of, 551-560, 1672-1077; diagrams illustrative of professional education in, 819-869; teachers' meetings in, 1185-1189; exhibition of drawing and manual training, 1200 ; surgical instruments suggested for schoo's of, 1201; population of, during the past 1,800 years, 1217; influcnce of education on employment desired by people of, 1224.
Frankford, Ind., statistics of schools and school finances, $1318,1358$.
Frankfort-on-the-Main, Germany, action on Prussian conference, 402.
Frankfort-on-the-ider, Germany, decrease of child labor, 297.
Franklin, Pa., statistics of schools and school finances, $1318,1358$.
Franklin and Marshall College, 1595, 1607.
Franklin College (Ind.), 1585, 1601.
Franklin College (Ohio), 1594, 1606.
Fraser, D. Mr., inspector of Scotch school district, extract from report, 201.
Frederick, Md., statistics of schools and school finances, $1318,1358$.
Frederick Female Seminary, 1576, 1577.
Fredericksburg, Va., statistics of schools and school finances, $1318,1358$.
Free Church of Scotland, activity and history of establishment, 224, 228.
Free Tuition. See Gratuity.
Fremont, Nebr., statistics of schools and school finances, 1318,1358 .
Fremont, Ohio, statistics of schools and school finances, 1318,1358 .
Fremont Normal, statistics, 1060.
Freeport, Ill., statistics of schools and school finances, $1318,1358$.
Freeport College of Commerce and Northwestern Normal School, 1613-1631.
French, Misy Frances G., on educational system of Normay, 475-517; on educational system of Denmark, 519-548.
French language, study of, discussed, 369; salary of teachers of, $63 \pm, 638$; as a requisite for admission to medical schools, 875, 876; in elementary schools, 1125; number of students pursuing, in public high schools, 1390-1392; in prirate secoudary schools, 1490-1492; in business colleges, 1621-1628.
French Protestant College, 1589, 1603.
French's Business College (Mass.), 1614-1631.
French's Business College (N. Y.), 1617-1631.
Freshmen, average age of, 799-804.
Friburg, Bergakadenie at, courses of, 987-989.
Frick, Dr.. on Prussian higher schools, 367, 375.
Frommel, Dr., on Prussiau higher schools, 375 .

Fulton, Mo., statistics of schools and school finances, 1318, 1358.
Fulton, N. X., statistic of schools and school finances. 1318,1358 .
Funds, amount of, possessed by colleges for women, $747,1572-1581$; by colleges and universities, $762,763,773,779,1600-1609$; by State universities, 782 ; by technical schools, 1029 ; by schools for training teachers, 1031 ; by private secondary schools, 1487, 1488, 1495-15i1; distribution to white and colored schools, 1075 , 1076, 1077.
Furman University, 1596, 1607.
Furniture, in United States, statistics of expenditure for, 29-32; exlibit at Paris Exposition, 118; in Denmark, described, 539.

G.

Gaffey's Shorthand School, 1612-1631.
Gainesrille, Tex., statistics of schools and school finances, $1318,1358$.
Gainesrille College, 1584, 1601.
Galena, Ill., statistics of schools and school finances, $1318,1358$.
Galesburg, Ill., statistics of schools and school finances, $1318,1358$.
Galesburg Business College, 1613-1631.
Galion, Ohio, statistics of schools and school finances, 1318, 1358.
Gallipolis, Ohio, statistics of schools and school finances, $1318,1358$.
Galton, Francis, president of section of international congress, 133.
Galveston, Tex., statistics of schools and school finances, $1318,1358$.
Games, activity of the society for promoting, in Germany, 1217.
See also Physical training.
Gammon Theological Seminary, statistics, 1045, 1083.

Gannett Institute, 1576, 1577.
Gardens, school, in Germany and Austria-Hungary, 308, 1216, 444.
Gardiner, Me., statistics of schools and school finances, $1318,1358$.
Gardner, Mass., statistics of schools and school finances, 1318, 1358.
Gardner City Business College, 1612-1631.
Garfield University, statistics, 1587, 1602; theological department of, statistics, 1046; law college, statistics, 1051.
Garrard College, 15S7, 1602.
Garrett Biblical Institute, statistics, $10 \downarrow 0$.
Gaston College, 15is, 1579.
Gate City Business College (Iowa), 1613-1631.
Gate City 1Business College (Kans.), 1614-1031.
Gates College, 1591, 1605.
Gaudenzi, M., remarks in interational congress, 84, 146, 163, 166.
Gaufrés, M工.J., report and remarks bs, $83,154$.
Gauthiot, M., remarks in international congress, 74, 172 .
Garard, M... remarks, 57, 71, 149, 164.
Geiser, C. F., speech in international congress, 149, 161 .
Gem City Lusiness College, 1613-1631.
General German Association for School Reform, objects, $339,343,401$.
General Hospital Training School for Nurses, statistics, 1042.
General Theological Seminary of the Protestant Episcopal Church in the United States, statistics, 10 ± 8.
Genesee Business University, 1617-1631.
Genera, N. Y., statistics of schools and school finances, $1318,1358$.
Genera, Switzerland, kindergartens, 128.
Genera Business College and Shorthand Institute, 1617-1631.
Geneva College, 1595, 1607.
Gentel, M. Ferd., renarks in international congress, $71,147,148,159$.
Geography, model of the earth at the Paris Exposition, 117; in English elementary schools, 244; in Prussian higher schools, discussed, 380; in Prussia. methods, 461; as an elementary school study, 1127; number of students in business colleges pursuing study of, 16211628.

Geometry, in lycées for girls, conclusions of international congress, 145 ; as a requisite for admission to medical schools, 875-876; number of students in public high schools pursuing, 1391-1392; in private secondary schools, 1491-1492; in business colleges, 16211628; for the deaf, 1641, 1642; in schools for the blind, 1657, 1658.
Georgetown College, 1587, 1602.
Georgetown Female Seminary, 1574, 1575.
Georgetown University, statistics, 1583, 1600 ; medical department of, statistics, 1034 ; statistics of the law department of, 1051.
Georgia, statistics, common schools, 6-33; increased length of school term, 15; appropriations in lieu of school taxes. 24; meager local taxes, 27; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 606 ; comparative financialstatistics of city and villagesystems, 608; enrollmentand attendancein citics and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615; teachers and pupils in public evening schools of cities and villages, 616 ; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and collcges, 760, 762; distribution of college students in regular degree courses from 1886-1890, 774 ; summary of degrees conferred by colleges and universities in, 776 ; productive funds of colleges and universiites, 778-779; average age of frcshmen, 1880-1890, 800 ; students from, at Johns Hopkins, Harvard, and Michigan universitics, 820 ; statistics of professional schools, 1022-1032; degrees conferred by professional schools of, 1033 ; statistics by race, 1074 ; education of the colored race in, 1078-1079; statistics of schools for the colored raee, 1090-1091; summary of statistics of private secondary schools, 1486-1488; summary of statistics of business colleges, 1610 ; summary of statistics of schools for the deaf, 1632-1635; summary of statistics of schools for the blind, 1652.

Georgia Academy for the Blind, 1654-1660; (colored department) statistics, 1089.
Georgia College of Eclectic Medicine and Surgery, statistics, 1037.
Georgia Institute for the Dcaf and Dumb (colored department), statistics, 1089.
Georgia Institution for the Education of the Deaf and Dumb, 1636-1648.
Georgia Methodist Female College, 1574, 1575.
Georgia Schocl of Technology, statistics, 1055.
German College, 1586, 1602.
German College of Mount Pleasant, Iowa, statistics, 1046.
German Congregational 'Cheological Scminary, statistics, 1047.
German-English College, statistics, 795, 1046, 1581, 1601.

German language, salary of teacher of, in certain cities, $621-693$; as a requisite for admission to medical schools, 875,876 ; in theological schools, $925,939,940$; number of students pursuing, in public high schools, 1391, 1392; students in secondary schools pursuing, 1490-1492; number of students in busincss colleges pursuing, 1621-1628.
German Presbyterian Theological School of the Northwest, statistics, 1046.
German Theological School of Newark, N. J., statistics, 1048.
German Wallace College, statistics, 1593, 1606; theological department of, statistics, 1049.
Germany, sccondary schools, type of final examination, 65 ; plasticity of university systcm, 83; education, 281-311; statistics, 551-555, 1203, 1672-1677; diagram showing fluctuation of attendance in the faculties of law, medicine, and theology in universities of, 838-843; location of training schools for teachers in, 870-872; programmes illustrative of a course in applied science, $945,948-950,966-967$; con-

Germany, sccondary schools-Continued.
flict between the classics and science as instruments of oducation, 1190-1197; city school systems of, 1197; effect of school work on health in, 1200, 1201.
Gifford, Lord, benefactions to Scotch universitios, 208.

Gilbert Academy, statistics, 1087.
Gilbert Haven School of Theology, statistics, 1047, 10 S8.
Gilchrist educational trust, Scotland, described, 205.

Gilman, D. C., quoted on various educational topiCS, 865-867, 1124, 1135, 1141, 1142, 1152, 11761177, 1183, 1181.
Gilman, Nicholas Paine, on moral instruction in public schools, 1171-1173.
Giner, de Los Rios, remarks in international con. gress, 149, 163.
Girard College, manual training department, statistics, 1062.
Girls' higher schools in Hungary, statistics, 445.

Girls' (Ohio) Industrial Home, statistics, 1072.
Glasgow, Scotland, bursaries to encourage school attendance, 193; educational activity, 202; educational associations, 204 ; normal schools established, 230.
Glasgow and West of Scotland Technical College, described, 205.
Glasgow (Scotland) Association for Promoting the Higher Education of Women, founder of college, 209.
Glendale Fcmale College, 1578-1579.
Glens Falls Business College, 1617-1631.
Gloucester, Mass., statistics of schools and school finances, 1318, 1358.
Gloucester City, N.J., statistics of schools and school finances, 1318, 1358.
Gloversville, N. Y., statistics of schools and school finances, 1318, 1358.
Goldey's Wilmington Commercial College, 16121631.

Goldsboro, N. C., statistics of schools and school finances, 1318, 1358.
Goodman's Business College, 1619-1631.
Göring, Dr., on German educational system, 352 .
Goshen, Ind., statistics of schools and school finances, 1318, 1358.
Gosler, Dr. yon, letter and address to members of Prussian conference, $347,357$.
Göttingen, University of, statistics of agricultural department of, 1002.
Goucher, John F., president of Womans' College of Baltimore, 744 .
Governmental aid. See State and local appropriations.
Graded schools. See Management and supervision of instruction.
Graduates, privileges of, of secondary schools in Europe, $327,394,462$; from Austrian secondary schools, statistics, 431 ; of normal schools, in Hungary, statistics, 446 ; sex, and ratio of, to enrollment in city high schools, 606; number of, from public high schools, 1890, 615, 1389-1392, 1395-1485; students in departments for, in colleges for women, 747; students in departments for, in colleges and universities, 760-761; growth of departments for, in universities, 815-826; from professional schools (including technological and normal schools), 1021-1032, 1034-1061; occupation of colored college, 1081-1082; number of colored, 1082 ; from private sccondary schools, 1487-1488, 1495-1571; from business colleges, 1620-1631; from schools for the blind, 1652-1653, 1656.
See also Degrecs.
Graf, Dr, , on Prussian higher schools, 380, 389.
Grammar, in elementary schools, 1127.
Grammar schools. Sce Elementary education.
Grand Forks, N. Dak., statistics of schools and school finances, 1318, 1358.
Grand Haven, Mich:, statistics of schools and school finances, $1318,1358$.
Grand Island, Nebr., statistics of schools and school finances, 1318, 1358.
Grand Prairie Seminary and Commercial College, 1613-1631.

Grand Rapids Business College and Practical Training School，1610－1631．
Grand Rapids，Mich．，scale of teachers＇salary， 628 ；statisties of schools and school finan． ces，1318， 1358.
Grand River College，1590， 1604.
Granger Place School， $1578,1579$.
Grant，Gcorge M．，remarks by，on various topics， $1153,1167,1169,1181$.
Grants，government．See State and local appro－ priations，and Income．
Granville Femate College，1578－1579．
Gratuity，school material furnished in Paris，89； in Scotland，193，202；in England，240，247，
Gréard，O．，vice－rector of the Aeademy of Paris， mentioned and quoted， $47,48,49,62,64,65$ ， $75,85,86,88,143,148,149,153,161,178,265$.
Great Britain and Ireland，statistics，551－555， 1672－1677．
Greecè，statistics，551－555，1672－1677．
Greek，study of，introduction in Scotland， 216 （note）；in Prussian gymnasien，discussed， 416；generally omitted from curriculum of colleges for women， 7 ± 8 ；study of，in theo－ logical schools，923－925，939；as a requisite for admission to college，1115；studies to be accepted in lieu of，for admission to college， 1121；contest orer，in Germany，1190－1197； number of students pursting，in public high schools，1390－1392；students in private secondary schools pursuing stady of，1490－ 1492；number of students in business col－ leges pursuing study of，1621－1628．
See also Classics．
Green Bay，Wis．，statistics of school and school finances，1318， 1358.
Green Bay Business College，1620－1631．
Greensboro Female College，1578－1579．
Greensburg，Pa．，statistics of schools and school finances，1318， 1358.
Greencastle，Ind．，statistics of schools and school finances， $1318,1358$.
Green Island，N．Y．，statistics of schools and school finances， $1318,1358$.
 finances，1318－1358．
Greenville，Ohio，statistics of schools and school finances， 1318,1358 ．
Greenville，S．C．，statistics of schools and school finances，1318， 1358.
Greenville，Tex．，statistics of schcols and school －finances，1318， 1353.
Greenville and Tusculum College，1597， 1608.
Greenville Female College，1578－1579．
Greenwich，Conn．，statistics of schools and school finances， $1318,1258$.
Grecnrich Business College，1619－1631．
Grenoble，France，educational exhibit at Paris Exposition， 98.
Griffin，Ga．，statistics of schools and school finances，1318， 1358 ．
Griseri，Mme，remarks in international congress， $77,86,144,156,161$.
Griswold College，statistics，1585，1602；theolog－ ical department， 1046.
Gross Medical College of Denver，statistics，1034．
Grosselin，A．，instruction of the deaf，92， 119.
Grounds．See Buildings and accessories．
Grove City College，1595， 1607.
Grunaltvig，N．F．S．，promoter of rural high schools， 525.
Guadelupe，statistics，550－560，1672－1677．
Guatemala，educational exhibit at Paris Exposi－ tion，124；statistics，556－550，1256，1672－1676．
Guiana（British），proportion of population en－ rolled，556－560，1672－1677．
Guiana（French），proportion of population en－ rolled，556－560，1672， 1676.
Guilford College，1593，1606．
Güssfeld，Parl，quoted，382，1136－1197．
Gymnasium．See Secondary schools．
GJmnastics．See Physical training．

車晋。

Hackensack，N．J．，statistics of schools and school finances，1318， 1358.
Haduonfield Training School for Feeble－Minded， 1668－1669．

Haeckel，Ernst，on instruction in the classics as a preparation for professional study， 883 ．
Hagerstown，Md．，statistics of schools and school finances，1318， 1358.
Hahnemann Hospital College，statistics， 1037.
Hahnemann Medical College and Hospital，statis• tics， 1037.
Hahnemann Medical College of Pennsylvania statistics， 1037.
Haish Mantal Training School，statistics； 1062.
Haiti，proportion of popalation enrolled， 556 － 560.

Hall，G．Stanley，quoted，1146－1147， 1155.
Half－day schools in Austria，statistics， 426.
Hallo，University of，statistics of，the agricul． tural department， 1002.
Hall＇s Business College，1613－1631．
Hamburg，Germany，statistics of child labor，298； provision for industrial education，981－982； statistics，551－555，1672， 1677.
Hamline University，15S． 1604.
Hamilton，Ohio，statistics of schools and school finances， $1318,1358$.
Hamilton College，1592， 1605.
Hamilton Female College，1574－1575．
Hamilton Theological Seminary，curricalum and－ statistics， $932-933,1048$.
Hampden－Sidney College，1598， 1608.
Hampton Normal and Agricultural Institute，sta－ tistics，1054；twenty－two Jears＇work of， 1098－1102．
Hancock，John，obituary notice of， 1309.
Hand，Daniel，sketch of life of， 1084 （note）．
Eand Fund，distribntion of，1084， 1086.
Hannibal，Mo．，statistics of schools and school finances， $1318,1358$.
Hannum＇s Business College， 1612.
Hanorer，Roval Veterinary University in，statis－ tics， 1004.
Hanover College，795，1585， 1601.
Hardin College，1570－1577．
Harkville College，1585， 1601.
Harlaux，M．，remarks in international congress， 74， 170 ．
Harris，W．T．，on committee of management of international congress，64；delegate to in－ ternational congress，149；quoted on several topics，1111－1112，1132－1133，1147，1161，1155， 1166.

Harris College，1590， 1604.
Harrisburg，Pa．，statistics of schools and school finarices， $1318,1358$.
Harrison，Frederic，on overorganization in eluca－ tion， 1140.
Harrison，N．J．，statistics of schools and school finances，1318－1358．
Hartaux，MI，speech in international congress， 149.

Hart－DFke，Sir W．，vice－president of English ed－ ucation department， 233 ．
Hartford，Conn．，statistics of schools and school finances，1318， 1358.
Hartford Theological Seminary，programne and statistics of，930，104．．
Hartshorn Memorial College，statistics， 1088.
Hartwell，E．M．，extracts from report of，as diroc－ tor of physical training in the Boston pub－ lic schools，1106－1108．
Hartwick Seminary，statistics， 1048.
Harvard University，organization，788；erects building for athletic sports，796；arerage age of freshmen，18こ6－＇90， 804 ；action on the proposition to shorten college curriculum， 80t－805；graduate instruction at，816－817； students in graduate department，1870－1850， 819：place of residence of students in grad． nate department，820；State in whicli stu． dents of graduate department received first degree，824；statistics，1589－1603；exercises and statistics of Divinity School，Harvard Medical School，curriculum and statisties of， 899－902，1035；School of Veterinary Medicine， statistics，1044，932，1047；Bussey Institu－ tion，curriculum and statistics of，997， 1055 ； courses for teachers in methods of instruc－ tion，1017－1018；dental department of，sta－ tistics，1039；law school，statistics，1052， Lawrence Scientific School，statistics， 1055.

Harm ood Seminary, 1574-1575.
Hastings, Neîr., statistics of schools and school finances, i318-1358.
Hastings Collegø of the Law, statistics, 1051.
Haren Academy, statistics, 1087.
Harerford Collčge, 1595, 1607.
Farerhill, Mass., statistics of sohools and school fiuances, 1318-1358.
Haverhill Training Schuol, statistics, 1057.
Harerstraw, N. Y., statistics of schools and school finances, 1318, 1358.
Hamaii, edneation in, 1226-1227; statistics, 1672-1577.
Hazleton, Pa., statistics of schools and school finances, 1318, 1358.
H. C. Tanner's Shorthand and Trpewriting Bureau, 1612-1631.
Heald, Daniel, on higher education and business, 1144.

Heald's Business College, 1612, 1631.
Heanne Academy, statistics, 1088.
Hebrew, study of, in theological schools, 923-925, 936-933.
Hebrews, in Prussian middle schools, 286, 292; among teachers of Prussian middle schools, 237; among students of Austrian secondary schools, 432, 433.
Hebrew Technical Institute, statistics, 1062.
Hebrew Union College, statisties, 1049.
Hedding College, 1584, 1601.
Heidelverg Theological Scminary, statistics, 1049.
Heidelberg University, statistics, 1594, 1605 .
Helena, Ark., statistics of schools and school finances, 1318,1358 .
Helena, Mont., scale of teachers' salaries, 630 ; statistics of schools and school finances, 1318, 1355.

Helmholtz, Dr. von, on ancient languages, 372.
Hemenway, Mrs. Mary, benefactions of, to Boston public school system, 1104.
Henderson, Ky., statistics of schools and school finances, 1318, 1358.
Henry, Mr., exhibit of stellar photographs, 101.
Heredity in education, 1135-1136.
Heriot Hespital School. 980.
Heriot trust, Edinburgh, Scotland, described, 205.
Hermite, M., adöress at inauguration of new Sorborne, 48,178
Herold M., promoter of school canteens. 89.
Hertzeberg, Dr., on classics in secondary schools, 505.

Herzen, A., remarks in international congress, 67, $68,73,76,79,146,156,158,160,170,173,174$.
Hesperian College, $795,1583,1600$.
Heatcfeu, Millc., on femalo inspectors, 58.
Hickox's Shorthand School, 1614-1631.
Higbuee, Elnathan E., obituary notice of, 1302.
High schools. See Secondary education.
Higher and professional (includiog technical and normal) education, statistics, 3, 4; in France, technical, 88,102 , system, 251; awarils to exhibitors at Paris Exposition,130-131; proceedings of international congress, Paris, 143-186̈; requisites for admission to colleges and universities, $148,159,206,210,328,1113-$ 1114, 1114-1116, 1118,1152 , to professional courses; 163,210, $33^{-}, 373,875-876.918,941$; statistics of, in Scotland, 188; Scottish Unirersities Commission, work described, 206-211; in England, attendance in colleges for women 238; technical edacation, in England, local tax for, 247; technical schools of Saxony, 299, 305,452 ; preparation for professional studies required in Prussia, 327 ; for business men, discussion in Prussian conference, 398; in Anstria, institutions described, 433-437. 451-452; in Hungary, statistics, 450; technical education in Wïrttemberg, 453; technical schools in Switzerland, 435 ; in Prussia, effect of special privileges, 462; statistics of technical education in Denmark, 526-528; list of foreign unirersities, with statistics, 561-572; general discussion of the present character of, in the liberal arts, with diagrams, and statistics of instructors, attendance, degrees, and finances, $755-798$, and by instifutions, 1582-1609; for women, 743-754, 1572-1581; graduate departments of

Higher and professional (including technical and normal) education-Continued.
universities, 815-8:5; comparatire diagrams illinstrating statistics of professionalschools, 1881-1890, 837-873; influence of high schools upon scholarship of medical students, 879 ; courses and statistics of agricultural and other techuological collegcs, 996-1013, 10271029; agricultural instruction in Gerlian universities, 1002-1004; departments of pedagogy in colleges and universities, 10151020; of the colored race, 1081-1085; list of schools for colored race, 1088; effect of, on the elementary education of the colored race, 1095; adjustment of secondary curriculum in view of elementary instruction, 1111-1135; remarks on, by sereral persons, 1143-1147; statistics of German universities, 1242; students preparing for college classical course, in public bigh schools, 1389-1392, 1395-1485; in private secondary schools, 1486-1488, 1495-1571; number receiving, in Europe, 1204.
See alẹo, Curriculum, Professors and instructors, Teachers, Students, Degrees, Fellowshins, Scholarships, Funds, Income, Expenditure: State or local appropriations, and Women.
Highland University, 1586, 1602.
Hill, Frank A., on relation of the three grades of education, 1122.
Hill, Thomas, obituary notice of, 1310.
Fillman College, 1576-1577.
Hillsboro College, 1593, 1606.
Hill's Business College, 1619-1631.
Hillsdale College, theological department of, statistics, 1017, 1589, 1604.
Hillside School, 1668 , 1669.
Hill's Waco Business College, 1619-1631.
Himly, M., remarks in international congress, 159, 174.
Hinsdale, B. A., on scholarship in teaching, 1178.
Hinzpeter, Dr., on influence of teacher, 385.
Hiram College, 1594, 1 C05.
Histology, instruction in medical schools, 893.
History, in English elementary schools, 241. 345, $355,380,390$; salary of teachers of, 634, 644; favorite stady at Jolins Hopkins Unirersity, 821; rarious diagrams illustrating attendance on professional schools in United States, Germany, and France, 837-873; study of ecclesiastical, in theological schools, 926 , 927; as a high school study, 1120-1121; number of pupils in public high schools pursuing study of 1391-1392, and in private secnndary schools, 1491-1492; numiber of students in business colleges pursuing the study of general, 1621-1628; number of students in schools for the blind pursuing study of, 1657-1658; number of students pursuing study of, in schools for the feebleminded, 1666, 1669 .
Hiwassee College, 1596, 1608.
Hobart Coilege, 1592, 1605.
Hoboken, N. .J., statistics of schools and school finances, 1318, 1358.
Holland, educational exhibit at Paris Exposition, 125; provision in, for industrial education, 981, statistics, 551-555, 1572-1677.
Hollins Institute, 1580-1581.
Holmes's Bryant and Stratton Commercial College, 1615-1631.
Holmes's Shorthand and Business College, 16131631.

Holyoke, Mass., scale of teachers' salaries, 625; statistics of schools and school finances, 1318, 1358.
Holy Ghost College, 1595, 1607.
Holzmüller, Dr., on Prussian higher schools, 367.
Homœopathic Hospital College, statistics, 1037.
Homœopathic Medical College of Missouri, statistics, 1037.
Homœopathic Medicine, statistics of schools of, 102. 1037.

Home school for nerrous and delicate children and routh, 1668-1669.
Homestead, Pa., statistics of schools and school finauces, $1318-1345,1358-1387$.

Home study, remarks of Emperor William, 361, $391,1142,1150-1151$.
Honduras, statistics, 556-560, 1572-1577.
Hoosick Falls, N. Y., statistics of schools and school finances, 1318,1358
Hope College, 1589, 1604.
Hope Institute, 1597, 1608.
Hopkinsville, Ky., statistics of schools and school finances, 1318,1358 .
Hornellsville, N. Y., statistics of schools and school finances, 1318, 1358.
Hornemann, Dr., on ancient languages, 370.
Horst, Prof., on classics in secondary schools, 505.
Hospital College of Medicine (Louisville), statistics, 1035
Hours, school. See Session.
House of Correction and Reformatory, Gatesrille, Tex., statistics, 1072.
House of Employment and Reformation for Juvenile Offenders, Lowell, Mass., statistics, 1071.

House of Reformation for Colored Boys, Cheltenham, Md., statistics, 1071.
House of Reformation, Boston, statistics, 1071.
House of Refuge, Philadelphia, statistics, 1072.
House of Refuge, St. Louis, Mo., statistics, 1072.
House of the Good Shepherd, statistics, 1671.
Houston, Tex., statistics of schools and school finances, $1318,1358$.
Howard College, 1582, 1600.
Howard Female College, 1578-1579.
Howard Payne College, 1576-1577.
Howard Unirersity, statistics, 1088, 1583, 1600; medical department of, statistics, 103i, 1089; dental department of, statistics, 1039; pharmaceutical college of statistics, 1040 ; theological department of, statistics, 1045, 1088; statistics of the law department of, 1051, 1089; normal department, statistics, 1086; preparatory department of, statistics, 1087
Hudson, N. Y., statistics of schools and school finances, $1318,1358$.
Hughes, James L., on education, 1140; on informal physical training, 1153.
Hulin, Georges, remarks in international congress, $81,147,167$.
Humboldt, W. von, mentioned, 44, 328, 330.
Humphreys College and Business Institute, 1615-1631.
Hungary, national aid to education, 425; operations of educational system, 439-451; statistical diagram of education, 454 ; statistics, 551-560, 1227, 1672-1677.
Hunt, Mrs. Mary H., originates morement for imparting instruction in effects of alcohol as a public school study, 695; answers objections to temperance instruction, 737-739.
Hunt and Huddleston College, 1589, 1604.
Huntingdon, Ind., statistics of schools and school finances, $1318,1358$.
Huntingdon, Pa., statistics of schools and school finances, 1318, 1358.
Funtingdon, W. Va., statistics of schools and school finances, 1318, 1358.
Huntsinger's Business College, 1612-1631.
Huntsville, Ala., statistics of schools and school finances, $1318,1358$.
Huntsrille Female College, 1574-1575.
Huntsville Female Seminary, 1574-1575.
Hurdebise, M., remarks in international congress, 74, 149.
Hutchinson, Kans., statistics of schools and school finances, 1318. 1358.
Hyde, William De Witt, on shortening college curriculum, 808-810.
Hyde Park, Mass., first to introduce stady of scientific temperance in public schools, 695 ; statistics of schools and school finances, 1318, 1358.

Hypnotism, discussion in international congress, 133, 144.
Hygiene, in Paris, medical inspection of schools, 265; in Prussia, 338, 392 ; in Norway, legal provisions, 483; effect of study on health of pupils in Europe, 1200-1202; use of cuspidors to prevent spread of contagious disease in Berlin, 1216.
See also Temperance irstruction.

1.

Iceland, educational condition, 522.
Idaho, statistics, common schools, 7-33; comparative statistics of, enrollment, attendance, teachers, and accommodations in schools of cities and villages, 607; character of temperance school law, 714 ; summary of statistics of private secondary schools, 1486-1483.
Illinois, statistics, common schools, 7-33; relative decrease in enrollment, 9 ; permanent school fund, 23 ; appropriations in lieu of school tares, 24 ; comparatire statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 607; comparative financial statistics of city and rillage systems, 608; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614; teachers and pupils in public erening schools of cities and villages, 616; statistics of colleges for women 747; degrees conferred by colleges for women in, 749 ; summary of statistics of unirersities and colleges, 761, 762 ; distribution of college stadents in regular degree courses from 1886-1800, 775 ; summary of degrees conferred by colleges and universities in, 776 ; productire funds of colleges and universities, 778-779; average age of freshmen 1880-1890, 800; students from, at Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1022-1032; degrees confcrred by professional schools in, 1033 ; statistics of reform schools, 1970; summary of statistics of private secondary schools, 1436-1488; summary of statistics of business colleges, 1610 ; summary of statistics of institutions for the deaf, 1633-1635; summary of statistics of schools for the blind, 1653 ; summary of statistics of institution for the feeble-minded, 1661-1662.
Illinois Asylum for Feeble-Minded Children, 1663-7.
Illinois College, erects a gJmnasium, 795; statistics, $158 \frac{1}{4}, 1601$.
Illinois College of Pharmacy, statistics, 1040.
Illinois Female College, 1574-1575.
Illinois Industrial School for Girls, statistics, 1071.

Illinois Institution for the Education of the Blind, 1654-1660.
Illinois Institution for the Education of the Deaf and Dumb, 1636-1648.
Mlinois State Normal University, statistics, 1056.
Illinois 'Training School for Nurses, statistics, 1042.

Illinois Wesleran Unirersity, has nonresident course of graduate study, 818; statistics, 1584; law department of, statistics, 1051.
Hion, N. Y., statistics of schools and school finances, 1318, 1358.
Illiteracy, in Europe, 96, 523, 1202-1204.
Income, from all sources, for support of public schools. 20-27: of Scotch schools, 194,208,233; of English elementary schools, statistics. 240 ; sources of, for support of schools of London and Paris, 269-270; for educational purposes, in France, sources, 252 ; in Saxony, receipts from tuition, 304, 305, in Austria, 433, in Prussia, 457; in Hungary, sources and statistics, 442, 450; in Norway, sources, 488 ; for school purposes, in Denmark, statistics, 527,528 ; of colleges for women, 748 ; receired by colleges and unirersities from tuition fees, productive funds, etc., 762-763, 768-769; from funds possessed by State universities, 782 ; of technical schools, 1029; of schools of science from State grants and endowment, 1053-1055; received by prirate manual training schools, 1062 ; public and other sources, in cities, 1358-1387; income from tuition fees in public high schonls: 1389-1392, $1395-1485$; from tuition fees, productire funds, etc., received by private secondary ochools, 1487-1488,1495-1571; from all sources received by schools for the deaf, 1632-1635,

Income-Continued
1644-1645, 1649, 1651; amount received by schools for the blind,1652-1653,1659; received by schools for the feeble-minded, 1661-1699.
Independence, Mo., statistics of schools and school finances, 1318, 1358.
Indian Territory, statistics of private secondary schools, 1486-1488; statistics of business colleges, 1611.
Indiana, statistics, common schools, 7-33; comparative statistics of enrollment, attendance, teachcrs, and accommodations in the schools of cities and villages, 607 ; comparative financial statistics of city and village systems, 608; enrollmentand attendance in cities and villages, 613; supervising offcers, teachers, property, and expenditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615 ; teachers and pupils in public erening schools of cities and villages, 616; summary of st:atistics of universities and colleges, 761,762 ; distribution of college students in regular degree courses from 1886-1890,774; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and universities, 778-779; a verage age of freshmen, 1880-1890, 800 ; students from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional schools, 1022-1032; degrees conferred by professional schools in, 1033; statistics of reform schools, 1070; statistics of private secondary schools, 1486 1488; statistics of business colleges, 1610; statistics of schools for the deaf, 1633-1635; summary of statistics of schools for the blind, 1653 ; statistics of institutions for the feeble-minded, 1661-1662.
Indiana Dental College, statistics, 1039.
Indiana Eclectic Medical College, statistics, 1037.
Indiana Institution for the Education of the Blind, 1654-1660.
Indiana Institution for the Education of the Deaf and Dumb, 1636-1648.
Indiana Normal College, statistics, 1056.
Indiana Opthalmic College, statistics, 1037.
Indianapolis, Ind., scale of salarics of teachers, 622 ; statistics of schools and school finances, 1318, 1358.
Indianapolis Business University 1613-1631.
Indianapolis Flower Mission Training School for Nurses, statistics, 1042.
Indianapolis Normai School, statistics, 1056.
Indiana Reform Schooì for Boys, statistics, 1071.
Indiana School for Feeble-Minded Youth, 16631667.

Indiana State Normal School, statistics, 1056.
Indiana University, organization, 784; erects library building, 795; statistics, 782, 1585, 1601; law department, statistics, 1051.
Industrial Institutc, statistics, 1087.
Industrial Institute and College, 1576-1577.
Industrial instruction in clementary schools, discussion in international congress, $51,54,62$; in Belgium, exhibit at Paris Exposition, 121, and peculiar organization of instruction at Tournay, Belgium, 122; in England, statistics, 247; in Saxony, 303, 305; in Austria, statistics, 430, 437; fostered by societies, in Denmark, 539 ; demand for, in Denmark, 546; urged by Charles Booth as a reformatory agency, $580-581,583-584$; salaries of teachers of, 618-693; character and cost of, in Europe, 978-995, 1240-1242; in reformatory schools, 1067-1070; of the colored race, 10851086, $1093-1095$; in schools for the deaf, 1641-1642; in schools for the blind, 16571658; in schocls for the feeble-minded, 1666, 1669.

See also Manual training, and for higher forms, Higher and professional education.
Industrial school, San Francisco, statistics, 1071.
Infant schools, in Hungary, statistics, 443, 444.
Ingham University, 1572-1573.
Insanity, a form of social pathology, 573.
Inspection. See Management and supervision of instruction.
Institut Agronomique, curriculum, 998.

Institute for Deaf Mutes, St. Paul, Minn., 16501651.

Institut Industrielle du Nord, curriculum, 976
Institute for Training Colored Ministers, statistics, $1045,1088$.
Institution for the Deaf and Dumb and the Blind, Little Rock, 1636-1648.
Institution (Mississippi) for Education of the Deaf, statistics, 1089, 1637-1648.
Institution for the Improved Instruction of Deaf Mutes, 1637-1648.
Instructors. See Professors and instructors.
Interlake Business College, 1615-1631.
International Congress of Secondary and Superior Education, Paris, 1889, proceedings, 143-186,
International Educational Congress, in Paris, 132-136.
International Exhibition, Paris, 1889; educational congresses, 41-142.
Ionia, Mich., statistics of schools and school finances, 1318, 1358.
Iowa, statistics, common schools, 7-33; no State school tax, 24 ; local school tax, 26 ; comparatire statistics of enrollment, attendance, teachers, and accommodations in schools of citics and rillages, 607; comparative financial statistics of city and village systems, 608 ; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615 ; teachers and pupils in public crening schools of cities and villages, 616; character and enforcement of temperance school law, 714, 716717; distribution of college strdents in regular degree courscs from 1886-90, 775; summary of statistics of universities and colleges, 761,762 ; summary of degrces conferred by colleges and universities in, 776 ; productive funds of colleges and universities, 778-779; arerage age of freshmen, 1880-90, 800; students from Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1022-1032; summary of statistics of private secondary schools, 14861488; degrees conferred by professional schools in, 1033; statistics of reform school, 1070; summary of statistics of business colleges, 1610; summary of statistics for schools for the deaf, 1633-1635; summary of statistics of schools for the blind, 1653; summary of statistics of institutions for the feebleminded, 1661-1662.
Iowa Agricultural College and Farm, 1053.
Iowa Business College, 1613-1631.
Iowa City, Iowa, statistics of schools and school finances, $1318,1358$.
Iowa City Commercial College, 1613-1631.
Iowa College, 1586, 1602.
Iowa College for the Blind, 1654-1660.
Iowa College of Law, statistics, 1051.
Iowa College of Pharmacy, statistics, 1040.
Iowa College of Physicians and Surgeons, statistics, 1034.
Iowa Eclectic Medical College, statistics, 1037.
Iowa Industrial School, girls' department, statistics, 1071.
IowaInstitution for the Deaf and Dumb, 1636-1648. Iowa Institution for Feeble-Minded Children, 16631667.

Iowa Northern Normal School, statistics, 1050.
Iowa State Normal School, statistics, 1056.
Iowa Wesleyan University, erects a chapel and science hall, 796; statistics, 1586, 1602.
Ireland, statistics, 551-555, 1672-1677.
Iron Mountain, Mich., statistics of schools and school finances, 1318, 1358.
Ironton, Ohio, statistics of schools and school finances, 1318, 1358.
Ironwood, Mich., statistics of schools and scliool finances, 1318, 1358.
Irving Female Seminary, 1578-1579.
Ishpeming, Mich., statistics of schools and school finances, $1318,1358$.
Italy, statistics, 551-553, 1227-1228, 1672-1677; provision for industrial education, 981; exhibition of school appliances in, 1200 .

Itliaca, N. Y., statistics of schools and school finances, 1318, 1358.
Ires, Erayton, on higher education and business, 1111-1145.

छ.

Jackson, Mich., statistics of schools and school finances, $1318,1358$.
Jacksou, Miss., statistics of schools and school finances, $1318,1358$.
Jackson, Ohio, statistics of schools and school finances, 1318, 1358.
Jackson, Pev. Sheldan, report of, on schools of Alaslia, 1245-1300.
Jackson, Tenn., statistics of schools and school finances, 131S. 1358.
Jackson Busiuess College, 1615-1631.
Jackson Colleqe, statistics, 1060, 1086.
Jacksun Female Academy, 157.1-1570.
Jacksonville, Ill., statistics of schools and school finances, 1318, 1358.
Jacksonville Business College, 1613-1631.
Jäger, Dr., remarks on sereral educational topics, $329,368,377$.
Jamaica, statistics, 556-558, 1672-1077.
James, W., president of section of international congress, 133 ; quoted on several topics, 11311135, 1141.
Jamestown, N. Y., statistics of schools and school fuances, $1318,1358$.
Jamestown Business College, 1617-1631.
Janestille, Wis., statistics of schools and school finances, 1318, 1358.
Janet: Pierre, remarks in international congress, 133.

Japan, statistics, 125, 1672-1677; coudition of edu cational affairs, 1228.
Jeffersen City, Mo., statistics of schools and school finances, 1318, 1353.
Jefferson College, 1587, 1603.
Jetierson Medieal College of Philadelphia, roster of, hospital practice, etc., 888 ; statistics, 1036.

Jeffersonville, Ind., statistics ofschools and school finances, 1318, 1358.
Jenninas Business College, 1619-1631.
Jeremiah Vardeman School of Theology, statis tics, 1047.
Jersej City, N.J.J., scale of teachers' salaries, 632; statistics of schools and school finances, $1: 18,1358$.
Jersey City Dasiness College, 16i6-1631.
Jessamine Female Institute, 1574-1575.
Jewel Normal School, statistics, 1087.
John, F. L., mentioned, 44.
John B. Stetson University, 1583, 1600.
John C. Creen School of Science, programme of ciril engineering course, 960 ; statistics, 1055.
Johns Hoplins University, orqanization, 789; erects Y. M. C. A. hall, 796 ; students in graduate departments, 1870-90, 819; place of residence of graduate students, $8 \approx 0$, and state in which students of, graduate dopartment, received first degroe, 823; activity of individuals connected with, for university extension, 832,833 ; statistics, 1538 , 1603.

Johnson City, Tenn., statistics of achools and schcol tinances, $1318,1358$.
Johnstown, N. Y., statistics of schools and school finances, $1318,1358$.
Johnstown, Pa., statistics of schools and school tinances, 1318, 1358.
Joliet, III., statistics of schools and school finances, $1318,1358$.
Joliet Business College and English Training School, 1613-1631.
Jones Commercial College, 1616-1631.
Joplin, Mo., statistics of schools and school finances, 1318,1358.
Judson Female Institute, 1574, 1575.
Junction City, Kans., statistics of schools and school finances, 1318, 1358.
J. W. Blackman's Commercial College, 1614-1631.
E.

Kalamazoo, Mich., statistics of schools and school finances, $1318,1358$.

Kalamazoo College,1589, 1604.
Kankakec, Ill., statistics of schools and scliool fivances, $1318,1358$.
Kansas, statistics, common sehools, $7-33$; propor. tion of population in schools, 11; no state school tax, 2f; comparatire statistics of enrollment, attendance, teaclrers, and accommodations in cities and villages, 607 ; con parative financial statisties of eity and rillage systems, 608; enrolment and attenciance in cities and villages, 613 ; supervising officers, teachers, propertr, and expenditure in cities and riliages, 614 ; pupils in and graduates from pullic bigh schoul, 615; teachers and prpils iupublic eveningschools of cities and villages. 6r6; character and erforcemement of temperamce school law, ilt, 717-i18; summary of statistics of colleres for women, 747; degrees conferred by colleres for women in, 743 ; summary of statistics of universities and colleses, 761,763 ; distribation of college stadents in regular degree courses from 1886-90, 7.5 ; stumary of degrees conferred by colleges and universities in, 776 ; productive funcs of colleges and unirersities, 778,779 ; arerage age of freshmen 1880-90. 800; students from, at Johrs Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1023-1032; statistics of reform school, 107U; degrees conferred by professional schonls in, 1033 ; statistics of private secondary' sehosls, 1486-1488; statistics of business colleces, 1611; statistics of schools for the deat, 16.31635; statistics of schools for the blind, 1653; statistics of institutions for the feeble-minded,1661-1062.
Kansas City, Kans., scale of teachers' salaries, 623 ; statistics of schools and school finances, $1318,1358$.
Kansas City,-MIo., scale of teachers salaries, 630; statistics of schools and scliool finances, 1313, 1358.
Kansas City College of Pharmaey, statistics, $10 \div 0$. Kansas City Dental College, statistics, $10: 3$.
Kansas City Homœopathic Medical College, statistics, 1037.
Kansas City Ladies' College, 1576-157.
Kansas City Medical College, statisties, 1035.
Kansas Institution for the Education of the Blind, 165t-1660.
Kansas Institution for the Education of the Deaf and Dumb, 1636-1643.
Kangas State A gricultural College, statistics, 1053. Kansas State Normal Sehool. statisties, 1056
Kansas State Reform School, statisties, 1071.
Kansas Wesleyan University, 1587, 1002.
Kapp, Dr., on preparation for professions, 333.
Kavanaugh College, 1589, 1604.
Kearney, Nebr., statistics of schools and school finances, 1318, 1058.
Keatchie College, 1587, 1503.
Keene, ㄱ. H., statistics of schoals aud school finances, 1318, 1358.
Kekerrich, G. W., secretary of English education department, 238.
Keller, Dr. Chr. promoter of education of idiots, 544 . Kenosha, Tis., statistics of schools and school finances, 1318, 1358.
Kenton (Ohio), statistics of schools and school finarces, $1318,1358$.
Kentucky, statistics, common schools, G-33; State aid to education, 26; comparativestatistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 606 ; comparative financialstatistics of city and village systems, 608 ; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in and graduates from public high schools, 615; teachers and pupils in public erening schools of cities and villages, 616; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and colleges, 760, 762 ; distribution of college students in regular degree courses, 1880-1890, 774 ; summary of degrees conferred

Kentrucky-Continued.
by colleges and universities in, 776; productive fruls of colleges and nuiversities, 778775; averacc agc of freshmen, 1880-1890, 800; students from, at Joluns Hopkins, Harvard, and Michigau unirersities. 820 ; 'statistics of professional schools, 1022-1032; degrees confericd by professional schools of, 1033; statistics of reform school, 1070; statistics by racs, 1074-1075; statistics of schools for the colurel race, 1090-1691; statistics of prirate sccondary schools, 1485-1488; summary of statistics of business colloges, 1610 ; statistics of schools for the deaf, 1632-1635; statistics of schools for the blind, 1632; statistics of institations for the feeble-minded, 1661-1662.

- Kentucky Classical and Business College burned, 798.

Kentucky College for Young Ladies, 1574, 1575.
Kentucky Institution for Deaf Mutes, 1036-1648; colored department, statistics, 1089.
Kentucky Institution for the Education and Training of Feeble-Minded Children, 16631667.

Kentracky Institation for the Education of the Blind 1651-1660; colored department, statistics, 1089.
Kentrucky School of Mcdicine, clinics at, 890; statistics, 1035.
Kentucky Criversity, open to women, 798, statistics, 15.57, 1602.
Kentucky Wesleyan College removed, 798, statistics, 1587, 1602.
Kenjon Collcge, 1593, 1 ©06.
Keokulk, Iowa, statistics of schools and school finances, 1318,1358 .
Kergomand, Mmc., on female inspectors, 56.
Keystone Basiness College, 1618, 1631.
Kcystonc Business College and Sichool of Phonograpliy, 1618-1631.
Key West, Fla., statistics of schools and school finances, $1318,1358$.
Kiddle Menry, obituary notice of, 1306.
Kimball's 'rraining School, 1613, 1631.
Kidlergartens, in Switzerland, exhibit at Paris Exposition, 128; in Austria, 430, 466; in Hungary, 446; in Prussia, 456; salary of teachors in, in certain cities, 617-693; romarks on, by several persons, 1147 ; in schools for the fecble-minded, 1066.
King College, 1596, 1607.
Kingston, statistics of, schools and school finances, $1318,1358$.
Kirksville Mercantile College, 1615-1631.
Kissick's Busincss College, 1617-1631.
Kitchens, school, in Austria, 1215.
Klemm, L. R., on education in Germany, 281-311; on education in Austria-Hungary, 419-454; on Prussian school system, 455-46!; on school system of Austria, 465-17.4; on education in Europe and America, 549-560.
Klix, Dr., on training of teachers, 383.
Knox, John, views on education, 218 (note), 219, 220.

Knox Collere, 1584, 1601.
Knox Institute, statisties, 1087.
Knoxville, Tenn., statistics of schools and school finances, 1318, 1358.
Knoxville Business College, 1619-1631.
Knoxville College, occupation of graduates, 1082; statistics, 1087, 1597, 1608; training school, statistics, 1059, 1086.
Koefoed, M., promoter of education of deformed children, 545.
Kokoma, Ind., statistics of schools and school finances, 1318, 1358 .
Kroman, Dr., on object of instruction, 531.
Kropatschek, Dr. on several educational topics, 375, 377, 382, 836, 389.
Krug's Busincss College, 1615-1631.
Kruse, Dr., on sereral educational topics, 371, 378.

L.

Laboratories. Sce in various connections, 795-798; work in medical, 890-894; of electrical enginecring at Purdue University, 991-992.
Labor unions, in Saxony, promoters of industrial schools, 304.

La Crosse, Wis., statistics of schools and school, finances, $1318,1358$.
La Crosse Busincss College, 1620-1631.
Ladd, H. W., on State authority over private schools, 1156.
Lafayette, Ind., statistics of schools and school finances, $1318,1358$.
La Fayctte College, Ala., 1582, 1600.
Lafayettc College, Pa., students in graduate dopartment, 1870-1890, 819; statistics, 1595, 1507.

La Grange Academy, statistics, 1087.
La Grange College, 1590, 1604.
La Grange Femalo College, 1574, 1575.
Lagncan, Dr., remarks in international congress, 68, 160.
Lahaie, Houzeau de, on female teachers, 57.
La Harpe Academy, statistics, 1087.
Lakanal, J., author of term "normal school," 58.

Lake Charles College, organization, 792.
Lako Erio Female Seminary, 1578-1579.
Lake Forrest University, statistics, 1584, 1601; medical department of, statisties, 1034.
Lambertville, N. J., statistics of schools and school finances, 1318, 1358.
Lancaster, Ohio, statistics of schools and school finances, 1318, 1358.
Lancaster, Pa., statistics of schools and school finances, 1318, 1358.
Lancaster Business College, 1618, 1631.
Lane Theological Scminary, statistics, 1049.
Lane University, 1587, 1602.
Langnages, spoken in private middle schools in Prussia, 292; methods of instruction discussed in Prussian confercnce, 379 ; best methods of teaching, 1148-1149: study of foreign, 1204-1266.
See, variously, Classics, Modern languages, and name of each (e. g., Latin), and Mother tongue.
Lansford, Pa., statistics of schools and school finances, 1318, 1358.
Lansing, Mich., statistics of schools and school finances, 1318,1358 .
Lansingbirg, N. Y., statistics of schools and school finances, 1318, 1358.
Laporte, Ind., statistics of schools and school finances, 1318, 1358.
Laredo, Tex., statistics of schools and school finances, 1318, 1358.
Larroumet, Gustave, director of fine arts, France, 249 .
La Salle, Ill., statistics of schools and school finances, 1318, 1358.
La Salle College, 1595, 1607.
Lascell Seminary, 1576-1577.
Laskowsky, M., remarks in international congress, 86, 148, 161, 163.
Latin, in French schools, 170; in Prussian higher schools, 365 ; in admission requirements to Prussian universities, 417 ; study of, in theological seminaries, 925, 939; in elcmentary schools, 1125 ; as a requisite for admission to college, 1116, 1117, 1120; in German schools, 1190-1197; number of students pursuing, in public high schools, 1390-1392; students in private secondary schools pursuing study of, 1490-1492; number of stadents in business colleges pursuing study of, 1621-1628.
See also Classics and Curriculum.
"Latin humanities," term adopted in internar tional congress, 155,
Laundry work, instruction in London schools, 274.
Laurie, S. S., on various educational topics, 197, 199, 228 (note).
Lavisse, Eruest, discourse at students' banquet of Mcndon, 182-186.
Law, schools of, in Austria, statistics, 452; stady of, in University of Copenhagen, 534 ; maps showing location of schools of, in United States, France, and Germany, with diagrams illustrating their statistics, 837-873; degrces conferred by schools of, 1033; statistics of schools of, $943,1020,1227$; schools of, for colored race, 1089.
For laws concerning schools see Legislation and Administration and organization of systems

Lawrence, Kans., statistics of schoois and school finances, 1318, 1358.
Lawrence, JIass., scale of teachers' salaries, 626 ; statistics of schools and school finances, 1318. 1358.

Lawrenceburg, Ind., statistics of schools and school finances, $1318,1358$.
Lawrence Business College, 1614-1631.
Lawrence Industrial School, statistics, 1071.
Lawrence Scientific School of Harvard University, programme of civil engineering course, 960; statistics, 1055.
Lamrence Training School, statistics, 1057.
Lawrence University, 1599, 1609.
Lawjers, number of graduates of colleges and universities for colored race, becoming, 1082.
Leadville, Colo.. statistics of schools and school finances, 1318, 1358.
Lea Female College, 1576, 1577.
Learenworth, Kans., statistics of schools and school finances, $1318,1358$.
Lebanon, Pa., statistics of schools and school finances, $1318,1358$.
Lebamon Talley College, 1595, 1607.
Le Conte, Joln, obituary notice of, 1310.
Le Conteulx St. Mary's Institntion for the Im. proved Instruction of Deaf AIutes, 1637-1648.
Lectures, courses of, for graduate students of Harrard practically unsuccessful, 817; unirersity extension, $828,829,833,834$; in medical schools, $883-885$.
Leddin Business College, 1619-1631.
Le Fort, Dr., opinion of, on medical instruction, 882.

Legion of सonor, France, description of schools, 93.

Legislation, school, in Scotland, 189; date, character, and enforcercent of the, regarding temperanceinstruction in the several States, 697, 705-709, 713, 724: resarding township, trustees in Alabama, 1076; required to determine the nature of instruction in public scluools, 1163-1164.
Leigh, Edwin, obituary notice of, 1306.
Lehigh Enirersity, statistics, 1055.
Leland University, statistics, $1088,1587,1603$; preparatory department of, statistics, 1087; theological department of, statistics, 1047, 1088.

Le Mars, Iowa, statistics of schools and school finances, 1318.1358.
Le Mojne Ňormal Institute, statistics, 1061, 1086.
Lenicut, If., secretary of congress of primary instruction, 49, 61 .
Lenox College, erects Clarke Memorial Hall and observatory, 795 ; statistics, 1566,1602 .
Leonard Medical School, statistics, 1035.
Levasseur, M., compiler of statistics for Paris Exposition, 96 .
Levering, Eugene, 796.
Lewis College, $1590,1 \mathrm{C} 04$.
Lewiston, Die., statistics of schools and school finances, $1318,1358$.
Lexington, Ky., statistics of schools and school ${ }^{\circ}$ finances, 1318, 1358.
Lexington, Mo., statistics of schools and school finances, $1318,1358$.
Lexington Colored Normal School, statistics, 1087.
Liard, Lonis, director of higher edncation, France, 249.
Liberty Female College, 1574-1575.
Libraries, statistics of expenditure for school, 29,32 ; exhibit of Parisian school libra.

- ries, 90; in Scotch unirersities, 209; in Austria, 430; Prussian school, 463; in Denmark, 539 ; number of rolumes in, in colleges for women, 747, 1572-1581; number of volumes in colleges and nnirersities, 762-763, 1600-1609; French school, 1206-1209; size of, in public high schools of cities, 1389-1485; number of volumes in, possessed by private sccondary schools, 1487-1488, 1495-1571; rolumes in schools for the deaf, 1641-1645, 1632-1635; rolumes in schools for the blind,
-1652-1655, 1659 ; volcmes in, in schools for the feeble-minded, 1661-1669.
Library buildings, see in varions connections, 795-802.
License, for higher class of teachers, 1075.

Lichtenberger, Mr., remarks in international congress, 67, 109, 146, 160.
Lima, Ohio, statistics of schools and school finances, $1318,1358$.
Lincoln, Ill., statistics of schools and school finances, $1318,1358$.
Lincoln, John L., obituary notice of, 1310.
Lincoln, Nebr., statistics of schools and school finances, $1318,1358$.
LincolnBusiness College and Institnte of Penmanship, Shorthand, Typewriting, and Telegraphy, 1616-1631.
Lincoln Unirersity, Ill., 1585, 1601.
Lincoln University, Pa., statistics, 1038, 1505, 1607; theological department, statistics, 1089; preparatory department of, statistics, 1087.
Linden Hall Seminary, 1578-1579.
Lindenwood Femalo College, 1576-1577.
Ling, Peter Henrik, sketch of, 1101-1105.
Litchfield, Ill., statistics of schools and school finances, $1318,1358$.
Literature, salary of professor of, 634, 642, 644, 645.
Little Falls, N. Y., statistics of schools and school finances, 1318, 1358.
Little Rock, Ark., scale of teachers' salaries, 617; statistics of schools and school finances, 1318, 1358.
Little Rock Commercial College, 1612-1631.
Little Rock University, 1582, 1600.
Littleton High School and Business Institute, 1617-1631.
Livingston College, occupation of graduates, 1082 ; statistics, 1088, 1593, 1606; normal department, statistics, 1086; preparatory department, statistics, 1087 .
Loans and bonds, amount paid on, during jear, by city systems, 1359-1386.
Local taxes for schools. See Taxes and Income.
Lock Haren, Pa., statistics of schools and school finances, $1318,1358$.
Lockport, N. Y., statistics of schools and school finances, $1318,1358$.
Logan, Ctah, statistics of schools and school finances, 1318, 1358.
Logan Female Coilege, curriculum of, 751 ; statistics, 157 ±-1575.
Logansport, Ind., statistics of schools and school filuances, $1318,1358$.
Lombard Unirersity, 1584, 1601.
London, Eng., female teachers, 56 ; elementary education, described, 263; population of the slums, its character and amelioration, 574-590.
London Society for the Extension of University Teaching 830.
Long Branch, N.J., statistics of schools and school finances, 1318, 1358.
Long Island City, N. Y., statistics of schools and school finances, $1318,1358$.
Long Island College Hospital and Hoagland Laboratory, curriculnm, 910; statistics, 1035.
Long Island College Hospital Training School for Nurses, statistics, 10 ± 2.
Loomis Laboratory, 892.
Loraine, Ohio, statistics of schools and school finances, $1318,1358$.
Los Angeles, Cal., scale of teachers' salaries, 618; statistics of schools and school finances, 1318 , 1358.

Louisburg Female College, 1578-1579.
Louisiana, statistics, common schools, 6-33; length of school term, 15; comparatire sta. tistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 607; comparative financial statistics of city and rillage systems, 608; enrollment and attendance in cities and rillages, 513 ; supervising officers, teachers, property, and expenditure in cities and rillages, 614 ; pupils in, and graduates from, pnblic high school, 615; character of temperance school law, 714 ; snmmary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of unirersities and colleges, 760,762 ; distribution of college students in regular degree in courses from 1886-90,774; summary of degrees couferred by colleges and unirersities in, 776 ; produc-

Louisiana－Continued．
tive funds of colleges and universities，778－ 779；arerage ago of freshmen，1880－90，800； students from，at Johns Hopkins，Harvard， and Michigan universities，820；statistics of professional schools，1022－1032；degrees conferred by professional schools in，1033； statistics of reform school，1070；statistics by race，1074－1075；statistics of schools for the colored race，1090－1091；statistics of private secondary schools， 1486 －1488；statis－ tics of business colleges，1610；statistics of schools for the deaf，1633－1635；statistics of schools for the blind， 1652.
Louisiana，Mo．，statistics of schools and school finances， 1318,1358 ．
Louisiana Institution for the Blind and Indus－ trial Home，1654－1660．
Louisiana Institution for the Education of the Deaf and the Blind，1636－1648．
Louisiana State Normal School，statistics， 1057.
Louisiana State Unirersity and Agricultural and Mechanical College，782，784；statistics，1587， 1603.

Louisville，Ky．，scale of teachers＇salaries，624； statistics of schools and school finances， 1318， 1358.
Louisville College of Dentistry，statistics， 1039.
Louisrille College of Pharmacy，statistics， 1040.
Louisville Medical College，statistics， 1035.
Louisriile Normal School，statistics， 1057.
Louisville School of Pharmacy for Women，sta－ tistics， 1040.
Low，Seth，quoted on several educational topics， 807，1144，1165．
Lowell，James Russell，obituary notice of， 1311.
Lowell，Mass．，scale of teachers＇salaries， 626 ；sta－ tistics of schools and school finances，1318， 1358.

Lowell Commercial College，1615， 1631.
Loyola College，1588， 1603.
Lübeč⿳亠丷厂彡，statistics，551－555，1672－1677．
Luce＇s Commercial College，1619－1631．
Lucy Cobb Institute，1574－1575．
Ludington，Mich．，statistics of schools and school finances，1318， 1358.
Luna，Ramon de，speech in international congress， 149.

Luther Seminary，statistics， 1047
Lutherville Female Seminary，1575－1576．
Lycees，in France．See Secondary education．
Lyman School for Boys，staistics， 1071.
Lynchburg，Va．，statistics of schools and school finances， 1318,1358 ．
Lynden Commercial College，1619－1631．
Lynn，Mass．，statistics of schools and school finances，1318， 1358.
Lynnland Female College，1574－1575．
Lyons，Iowa，statistics of schools and school finances，1318， 1358.
Lyons，N．Y．，statistics of schools and school finances， $1318,1358$.

17．

Mabilleau，M．L．，on civic instruction， 111.
McAlester，A．W．，mentioned 912.
Macalester College，1589， 1604.
Macé，M．Jean，promoter of gymnastics，134， 135.
M＇Ewan，William，M．P．，gift to university， 208.
Maclay College of Theology，statistics， 1045 ．
Macon，Ga．，statistics of schools and school finances，1318， 1358.
Macon Commercial College，1613－1631．
McCormick Theological Seminary of the Presby－ terian Church，statistics， 1045.
McDermat \＆Whiteleather＇s Business College， 1613－1631．
McDonald，A．E．，on social pathology and educa－ tion，573－590．
McDonogh School，statistics， 1062.
McKeesport，Pa．，statistics of schools and school finances， $1318,1358$.
McKendree College，statistics，1585，1001；law de－ partment，statistics， 1051.
McLean Asylum Training School for Nurses， statistics， 1042.
McMinnville College，159E． 1606

McPherson Normal College statistics， 1060.
Madison，Ind．，statistics of schools and school finances，1318， 1358.
Madison，Wis．，statistics of schools and school finances，1318， 1358.
Madison（Wis．）Normal Class of，statistics， 1059. Magill，T．H．，on teaching modern languages， 1148－1149．
Mahanoy City，Pa．，statistics of schools and school finances，1318， 1358.
Maier，Michael，exhibit at Paris Exposition， 103.
Maine，statistics，common schools，6－33；com－ parative statistics of enrollment，attend－ ance，teachers，and accommodations in the schools of cities and villages，606；compara－ tive financial statistics of city and village school systems．608；enrollment，and attend－ ance in cities and villages，613；supervising officers，teachers，property，and expendi－ ture in cities and villages，etc．， 614 pupils in and graduates from public high schools， 615 ；teachers and pupils in public evening schools of cities and villages， 616 ；charac－ ter，and enforcement of temperance school law， 713,718 ；summary of statistics of col－ leges for women，747；degrees conferred by colleges for women in，149；summary of sta－ tistics of universities and colleges， 760,762 ； distribution of college students in regular degree courses from 1886－90，773；summary of degrees conferred by colleges and unirer－ sities in，776；productive funds of colleges and universities，778－779；value of grounds， buildings，and apparatus in colleges and universities， 780 ；average age of freshmen， 1880－90，800；students from，at Johns Hop－ kins，Harvard，and Michigan universities， 820 ；statistics of professional schools，1022－ 1031；degrees conferred by professional schools in，1033；statistics of reform schools， 1070；summary of statistics of private sec－ ondary schools，1486－1487；summary of sta－ tistics of business colleges，1610；statistics of schools for the education of the deaf， 1634.

Maine State Agricultural and Mechanical Col－ lege，programme of civil and mechanical courses， 960,977 ；statistics，1053；State nor－ mal schools，statistics， 1057
Maine Weslcran Seminary and Female College， curriculum， $752,1576$.
Malden，Mass．，statistics of schools and school finances，1318， 1358.
Malone，N．Y．statistics of schools and school finances， 1318,1358
Management and supervision of instruction，in France：system of inspection，107，classifi－ cation and discipline of teachers，253－254， functions of general councils，250，grading of schools， 258 ；in Scotland，191，195，200，203， 232；discipline in Scotch universities，207； in England，system of inspection described， 238；classification of pupils and inspection of schools in London and Paris．264．273－275： in Prussia ：grading of elementary and middle schools，281，290，291，391，discipline of teach－ ers， 335 ，supervising，457，462－463；in Sax－ ony，classification and grading of schools， 301， 302 ；in Austria：classification and grad－ ing and supervising of schools， $426,433,467$ ， legal provisions，476；in Hungary，classifi－ cation of schools，441，445；in Norway， methods of discipline described，485，510； in Denmark．536－537；official character of persons usually intrusted with county，1163； remarks on discipline，1176；medical super－ rision in the schools of Paris，1212－1214； rules and regulations for management of schools of Alaska，1251－1254；number of classes in mauual training schools，1351－ 1356.

See also Administration and organization of systems and Co－education．
Manchester，Conn．，statistics of schools and school finances，1318， 1358.
Manchester，N．H．，statistics of schools and school finances， $1318,1358$.
Manchester，Va．，statistics of schools and school finances，1318． 1358.

Manchester (N. H.) Traizing School, statistics, 1057.

Manluattan Business College, 1617, 1631.
Manhattan College, 1592, 1605.
Manistce, Mich., statistics of schools and school finances, 1318, 1358.
Mankato, Minn., statistics of schools and school finances, 1318, 1358.
Mansficld, Ohio, statistics of schools and school finances, 1318, 1358.
Mansfield Female College, 1576, 1577.
Manual training, in elementary schcols discussed in international congress, 54,62 ; study of, in seliools of France, 90, 91, 92, 93, 38, 113, 277; training school for, in Denmark, 122 ; essential point in Finnish education, 124 ;in Switzerland, exhibit at Paris Exposition, 129; in London, recent provisiona, 274; in clementary schools, in Prassia, 461 ; salary of teachers of, in certain cities, 019-693; characteristics of schools of, $97 i-978$; effect cn general education of, 1143; in GermanJ, 1209,1212; as a study in city systems of public schools, 1351, 1356
See also Iudustrial training and Slöjत.
Marble, A. P., remarks by, on several topics, 1156 1167, 1181, 1178.
Marblehead, Mass.,statistics of schools and school finances, 1318, 1358.
Marcilla Street Home for Neglected Chilldren, statistics, 1071.
Marey, M., exhibit for study of motion, 101.
Maria Consilia Deaf-Mute Institute, 1650, 1651.
Marietta, Ohịo, statistics of schools and school finances, $1318,1358$.
Marietta College, 1504, 1 G06.
Marillier, M., remarks in international congress, 133.

Marinette, Wis., statistics of schools and school finances, 1318, 1353.
Marion, M., on state control of education. 45; lectures on pedagogy, 113 .
Marion, Ind., statistics of schools and school finances, $1313,1358$.
Marion, Ohio, statistics of schools and school finances, 1318.1358.
Marion Female College, 1580, 1531.
Marion Female Seminary, 15^{7} 4-1575.
Marlboro, Mass., statistics of schools and school finances, 1318, 1358.
Marquette, Mich., statistics of schools and school finances, 1318, 1358.
3 Farquette College, 1599, 1609.
Marshall, Mo., statistics of schools and school finances, $1318,1358$.
Marshall, Tex., statistics of schools and school fimances, 1318, 1358.
Marshall College, statistics of, 1059.
Marshalltown, Iowa, statistics of schools and school finances, 1318, 1358.
Mrartha Washington College, 1550-1581.
Martin, George \bar{H}., experimental inquiries of, to ascertain value of temperance teaching in Massachusetts, $721-733$; remarks on elementary school programme, 1125-1126.
Martin Female Colle ge, 1580-1581.
Martinique and Guadelupe, statistics of, 556-560, 1672-1677.
Martinsburg, W. Va., statistics of schools and school finances, $1318,1358$.
Martins Ferry, Ohio, statistics of schools and school finances, 1318, 1358.
Martin's Shorthand and Typewriting School, 16121631.

Martel, M., report to international congress, 51.
Mary Fletcher Hospital Training School for Nurses, statistics, 1043.
3raryland, statistics, common school, 6-33; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and rillages, 606; comparatire financial statistics of city and rillago sjstems, 608 ; enrollment and attendance in cities and rillages, 613; supervising officers, teachers, property, and expenditure in cities and rillages, 614 ; pupils in, and graduates from public high schools, 615; character of tomperanco school law, 713 ; summary of statistics of colleges for women, 747; degrees

Maryland-Continued.
conferred by colleges for women in, 749; summary of statistics of unirersities and colleges, 750, 762 ; distribution of college students in regular degree courses from 18S6-90, 774; summars of legrees conferred by colleges and universities in, 776 ; productive funds of colleges and universities, T78, 773 ; average age of freslmen 1880-90, 800 ; stadents from, at Johns Hopkins, Harvard, aud Michigan universities, 820; statistics of professional schools, 1022-1031; degiees conferred by professional schools of, 1033; statistics of reform schools, 1070 ; statistics by race, 1071-1075; education of colored race in. 1079; statistics of schools for the colored race, 1090-1091; summary of statistics of privato secondary schools, 1486 1488; snumary of statistics of business colleges, 1010; summary of statistics of schools for the deaf, 1632-1635; summary of statistics of schools for the blind, 1052; summary of statistics of institutions for the feebleminded, 1662.
Maryland A gricultaral Coilege, statistica, 1053.
Maryland College of Pharmace, statistics, $10 \leq 0$.
Maryland School for Colored Blind and Deaf Mutes, statistics, 1083, 1637-16:8.
Maryland School for the Blind, 1651-1630.
Maryland State Normal Schonl, statistics, 1057.
. Mary Sharp College, curriculum of, 753; statistics. 1580-15si.
Maryrille, Mo., statistics of schools and school finances, 1318,1358 .
Maryville College, 1597, 1608.
Mason City, Iowa, statistics of schools and school tinarices, 1:18, 1358.
Massachusetts, statistics, common schools, G-33; relatire dccrease of enrollment, 9 ; private schouls, 17 ; local school taxes, 26 ; per capita school expenditure, 35; comparatire statistics of emrollment, attendance, teachers, and accommodations in the schools of cities and rillages, 606; comparative financial statistics of cities and villages, systenis, C 08 ; $\in \mathrm{n}$ rollment and atteudance in cities and rillages, 613 ; sunervising oficers, teachers, property, and expenditure in cities and villages, 614; teachers and pupils in pulilic erening schools of cities and rillages, 616 ; papils in, and graduates from public high schools, 615 ; cleacter and enforcement of the temperanco school law, 713, 718-719, 724 733; summary of statisties of colleges for women, 747; degrees conferred by colleges for women in, 749; summary of statistics of universities and colleges, 760,762 ; distribution of college students in regular derree courses from 1886-1800, 773; summary of ilegrees confcired by colleges aud universities in, 776 ; productive funds of colieges and nuirersities, 778-770; arerage age of freshmen, 1880-1890, 800; students from, at Jolins Hopkins, Harvard, and Michigan Universities, 820; establishes scholarships to supply high school teachers, 1015 ; statistics of professional schools, 1022-1031; degrees conferred by professional schools of, 1033 ; statistics of reform schools, 1070 ; summary of statistics of private secondary schools, 1486-1488; summary of statisties of business colleges, 1610 ; summary of statistics of schools for the deaf, 1632-1635; snmmarr of statistics of schools for the blind, 1035; summary of statistics of institutions for the fceble-minded, 1061-1662; school for feebleminded, 1603-1667.
Massachusetts Agricultural College, programme of ciril engincering course, 960 ; statisties, 1053.

Massachusetts College of Pharmacy, statistics, 1040.

Massachusetts Institute of Technology, courses in, $960,995,1053$.
Massachnsetty Staté normal schools, statistics, 1057.

Massachusetts State Primary School, statistics, 1071.

Maternal schools, $89,97,257$.

Mathematical School of Dubuque, 1613-1631.
Mathematics, study of, discussed in international congress, $80,132,157,168$; salary of professor of, $63 t, 642,644$; in the eiementary schools, 1121-1125, 1125-1120, 1128, 1131-1132; in high schools, 1120-1121; number of students in prirate secondary schools pursuing,14911492.

Mather, Michard H., obituary notice of, 1306 .
Mathews Hall, statistics, 1015.
Matteawan, N. Y., statistics of schools and school finances, 1318, 1358.
Matthias, Dr., on Prussian higher schools, 369.
Manch Chunk, Pa., statistics of schools and school firances, 1318-1358.
Mauritios, statistics of, 1672-1677.
Meadville, Pa., statistics of, schools and school finances, $1318,1358$.
Meadrille Theological School, statistics, 1049.
Meals. See Cantine scolaire.
Mechanical engineering, courses of, 961-986.
Mechanics, course of applied, 954 ; order of exercises in experimental, 963 .
Mechanics, number of graduates from colleges and universities for colored race who become, 1082.
Medford, Mass., statistics of schools and school tinances, $1318,1358$.
Medicine, admission to study of, in Europe, 163; in Scotch universities, 210; preparation for study, in Prnssia, 337, 373 ; maps showing location of schools of, in United States, France, and Germany, with diagrams illnstrating their statistics, 837-873; rcquisites of admission to schools of, 875-879; number of matriculates in schools of, having a lachelor's degree, 877-878; currieulum of schools for, 879-913; requirements of the U. S. Army, Illinois State board of health, and the Unirersity of France, 880, 881, 897; sugrestions as to how the profession may bo ailvanced, 911; statistics of schcols of, 1021-1023; degrees conferred by schools of, 1033; professors and students in schools of, 1021-1024; schools of, for colored race, 1089, 1091.

Medico-Chirurgical College of Philadelphia, statisticy, 1036.
Medical College of Alabama, statistics, 1034.
Medical College of Georgia, statistics, 1034.
Medical College of Indiana, statistics, 1034.
Medical College of Ohio, statisties, 1036.
Medical College of the State of South Carolina, stat:stics, $10: 6$.
Merical College of Virginia, statistics, 1036.
Medical Sclicol of Maine, statistics, 1035.
Medina, N. Y., statizties of schools and school finances, 1318, 1358.
Medium of instruction. See Mother tongue.
Medreczky, F., remarks in international congress, $81,147,161,163,166$.
Meenen, M. Van, on female teachers, 55,56 .
Neharry Nedical Department of Central Tennessce College, statistics 1036.
Meharry Dental Department of Central Tennessee College, statistics, 1039.
Meiklejoln, J. M. D., service to training colleges, 199.

Melrose, Mass., statistics of schools and school finances, 1318, 1358.
Memphis, Tenn., scale of teachers' salaries, 644; statistics of schools and school finances, 1318, 1358.
Memphis Conference Female Institute, 1500, 1501.
Memphis Hospital Medical College, statistics, 1036.

Memasha, Wis., statistics of schools and school finances. 1318, 1358.
Menominee, Mich., statistics of schools and school finances, $1318,1358$.
Menomonee, Wis., statistics of schools and school finances, $1318,1358$.
Mercer Female Seminary, statistics, 1087.
Mercer University, erects an additional building, 795 ; statistics, 1045, 158.1, 1601; statistics of the law schools of, 1051.
Merchants, number of graduates from colleges and universities for the colored race who became, 1082.

Meriden, Conn., statistics of schools and school finances, $1318,1358$.
Meridian, Miss., statistics of schools and school finances, 1318, 1358.
Meridian Academy, statistics, 1087.
Merrill, Wis., statisties of schools and school finances, 1318,1358 .
Metal working as a study in public schools of cities, $13{ }^{2} 51,1055$.
Methods of instruction, in France, uniformity, 95, 113; in a Russian Sunday school, 127; class system of instruction, 354, 377, 383-384; in teaching Latin, 356; in Prussia, 378, 291-392, 460, 462-463; to be employed in scientific temperance instruction, 708, 715, 717, 719, 733, 739-742; in medical schools, 879-913; in university extension work, $83 \frac{1}{4}$; manner of con. ducting text-book work in medical schools, 883-\&\$5; remarks on, by several persons, 11481152; mutual criticism of teachers in Canada, 1214, 1215; in schools for the deaf, 1641-1643; inschools for the blind, 1657-1658. Sec also Mother tongue.
Metropolitan Busimess College, 1613-1631.
Mexico, statistics, $556,560,1228-1229$; 1672-1677.
Mexico, Ho., statistics of schools and school finances. 1318, 1358.
Miami Commercial College, 1617-1631.
Miami Medical College of Cincinnati, statistics, 1036.

Miami University, 1594, 1606.
Micé, M., remarks in international congress, 76, 77, 153, 154, 156, 174.
Michigan, statistics, common schools, 7-23; comparative statistics of enrollment, attendance, teachers, and accommodations in schools of cities and villages, co7; comparative financial statistics of city and rillage systems, 608; enrollment and attendance in ctities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from public high schools, 615 ; teachers and punils in public erening schools of cities and villages, 616 ; character and enforcement of temperance school law, 714, 719; summary of statistics of universities and colleges, 761,762 ; distribution of college students in regular degree courses from 1580 1830, i75; summary of degrees conferred by colleges and universities in, 776 ; productive funds of colleges and aniversities, 7T8-779; arerage age of freshman, $1880-100,800$; students trom, at Joins Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional schools, 1022-1032; degrees conferred by professional schools in, 1053 ; statistics of reform schools, 1070; summary of statistics of private secondary schools, $1+86-1488$; summary of statistics of business colleges, 1610; summary of statistics of schools for the deaf, 1633-1635; sumnnary of statistics of schools for the blind, 1653; summary of statistics of institutions for the feeble-minded, 1662.
Michigan Agricultural College, programme of civil and mechanical engineering courses, 960,977 ; statistics, 1053.
Michigan City, Md., statisties of schools and school finances, $1318,1358$.
Michigan College of Medicine and Surgery, statistics, 1035
Michigan School for the Blind, 1655-1660.
Michigan School for the Deaf, 1637-16i8,
Michigan State Mining School, 987, 1055.
Michigan State Normal Sehool, statistics, 1057.
Middlebnry College, 1598, 1618.
Midnle Georgia Military and Agricultural College, statistics, 1053.
Middletown, Conn., statistics of schools and school finances, $1318,1358$.
Middl school finances, 131
Middletown, Ohio, statisties of schools and school finances, 1318,1358 .
Middletown, Pa., statistics of schools and school finances, 1318, 1358.
Midland College, 1586, 1602.

Mikkelson, Aksel, president of Slöjd training school, 122, 540.
Milford, Mass., statistics of schools and school finances, 1318, 1358.
Military drill. See Physical training.
Military schools, in Saxony, statistics, 305 ; in Prussia, changes in course of study, 400.
Military scrvice, in Prussia, privileges of graduates of higher schools, 327; decisions of Prussian conference, 392.
Millcrsburg Femalc College, 1574.
Milligan College, 1597, 1608.
Mills College and Seminary, 1572-1573.
Millville, N. J., statistics of schools and school finances, $1318,1358$.
Milton, Pa., statistics of schools and school finances, 1318, 1358.
Milton College, 1599, 1609.
Milwaukee, 'Wis., scale of teachere' salaries, 645, 646 ; reserre corps of teachers, 1180-1181; statistics of schools and school finances, 1318, 1358.
Milwaukee College, 1580-1581.
Minard Commercial School, 1619-1693.
Minden F'emale College, 1576-1577.
Miner Normal School, statistics, 1056, 1086.
Mining engineering, course of, 436, 451, 986-990.
Ministers, number of graduates of college and universities for the colored race becoming, 1082.
Minneapolis, Minn., scale of teachers' salaries, 629 ; statistics of schools and school finances, 1318, 1358.
Minneapolis College of Physicians and Surgeons, statistics, 1035.
Minneapolis Normal Training School, statistics, 1057.

Minnesota, statistics, common schools, 7-33; low average attendance, 13 ; comparatire statistics of cnrollment attcndance, teachers, and accommodations in the schools of cities and villages, 607; comparatire financial statistics of city and rillage systems, 608; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditures in cities and villages, 614 ; pupils in, and graduates from public high schools, 615 ; teachers and pupils in public erening schools of cities and villages, 616 ; character and enforcement of school law, $714,719-720$; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and colleges, 761, 762; summary of degrees conferred by colleges and universities in, 776 ; productive funds of colleges and universities, 778-779; arerage age of treshmen, 1880-'90,800; students from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; distribution of college students in regular degree courses from 18861890,775 ; statistics of professional schools, 1022-1031; degrces conferred loy professional schools in, 1053 ; statistics of reform scliools, 1070; transfer of parochial schools to school boards, 1157-1158; summary of statistics of private secondary schools, 1486-1488; summary of statistics of business collcges, 1610 ; summary of statistics of schools for the blind, 1653 ; summary of statistics of institutions for the feeble-minded, 1661-1662.
Minnesota College of Pharmacy, statistics, 1040.
Minnesota Law School, statistics, 1052.
Minnesota School for the Blind, 1655-1660.
Minnesota School for the Deaf, 1637-1648.
Minnesota School for Feeble-Minded, 1663-1667.
Minnesota State Normal Schools, statistics, 1057.
Minnesota State Reform School, statistics, 1072.
Missimer, H. C., on psychology, in normal schools, 1179.

Missionary Institute of the Evangelical Lutheran Church, statistics, 1049.
Mission House of the Reformed Church in the United States, statistics, 1050.
Miss Keelcr's Articulation Class for Deaf Mutes, 1650-1651.
Mississippi, statistics, common schools, 6-33; comparative statistics of eurollment, attendance, teachers, and accommodations in the schools of cities and villages, 607; compara-

Mississippi-Continuéd.
tive financial statistics of city and village systems, 608; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from public high schools, 615 ; character of temperance school law, 704 ; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and colleges, 760,762 ; distribution of college students in regular degree courses from, 1886-50, 774; summary of degrees conferred by colieges and universities in, 776 ; productive funds of colleges and universities, 778-779; arerage age of freshmen, $1880-20,800$; statistics of professional schools, 1026-1032; degrees conferred by professional schools of, 1033; statistics by race, 1074-1075; statistics of schools for the colored race, $1000-1091$; statistics of private secondary schools, 1186-1488; statistics of business colleges, 1610; statistics of schools for the deaf., $1633-1635$; statistics of schools for the blind, 1652.
Mississippi Agricultural and Mechanical College, programme of civil engineering course, 960; statistics, 1054.
Mississippi College, 1589, 1604.
Mississippi School for the Blind, 1655-1660.
Mississippi State Normal Schools, statistics, 1057, 1086.

Missouri, statistics, common schools, 7-33; comparativestatistics of enrollment, attendance, teachers, and accommodations in cities and villages, 607 ; comparative financial statistics of city and village systems, 608; enrollment and attcudance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and villages, 616; character and enforcement of temperance school law, 714, 720; summary of statistics of colleges for women, 747; degrees conferred by colleges for wromen, 749 ; summary of statistics of universities and colleges, 761, 762 ; distribution of collcge students in regular degree courses from 1886-'00, 775 ; smmmary of degrees conferred by collcgess and universities, 776; productive fund of colleges and unirersities, 778779 ; endows State university with direct tax refunded by the United States, 781; arerage age of freshmen 1880-؟0, 800; students from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional schools, 1022-1032; degrees conferred by professional schools in, 1033; statistics of reform school, 1070 ; statistics by race, 1074; statistics of schools for the colored race, 1090 ; summary of statistics of private secondary schools, 1486-1488; summary of statistics of business colleges, 1611 ; summary of statistics of schools for the deaf, 1633-1635; summary of statistics of schools for the blind, 1653.
Missomri Dental College, statistics, 1039.
Missouri Medical College, statistics, 1035.
Missouri School for the Blind, 1655-1660.
Missouri School of Mines and Metallurgy, programme of civil cngineering course, 960 ; statistics, 1054.
Missouri State Normal Schools, statistics, 105%.
Missouri Valley College, 1500,1604
Mixed schools. See Coëducation.
Moberly, Mo., statistics of schools and school finances, $1318,1358$.
Mobile, Ala., statistics of schools and school finances, $1318,1358$.
Modeling as study in the public schools of cities, 1351-1356.
Model schools. See Practice schools.
Modern languages, study of, discussed in international congress, $65,72-82,144,145,156,157$, 169-172; in Prussia, 283, 371, 390, 393.
See also French, etc., and Curriculum.

Molding as a study in city systems of public schools, 1351-1356.
Moline, Ill., statistics of schools and school finances, $1318,1358$.
Monarchism taught in Prussian higher schools, 388.

Monmouth, Ill., statistics of schools and school finances, 1318,1358 .
Monmouth College, 1585, 1601.
Monongahela, Pa., statistics of schools and school tinances, 1318,1358 .
Monroe, Mich., statistics of schools and school finances, $1318,1358$.
IIonroe Female College, 1574-1575.
Montana, statistics, common schools, 7-33; comparative statistics of enrollment, attendance, teachers, and accommodation in cities and rillages, 607; comparative financial statistics of city and village systems, 608; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in and graduates from public high schools, 615 ; teinperance instruction in, $720-$ 721 ; summary of statistics of universities and colleges, 761,763 ; distribution of college students in regular degree courses from 1886-1890, 775; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and universities, 778-779; students from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional schools, 1028; statistics of private secondary schools, 14861488; statistics of business colleges, 1611.
Mont Carmel, Pa., statistics of schools and school finances, 1318,1358 .
Montenegro, proportion of population eurolled, $551-555,1236$.
Montgomery, Ala., statistics of schools and school tinances, $1318,1358$.
Montgomery Female College, 1580-1581.
Moore's Business College and School of Shorthand, 1612-1631.
Moore's Hill College, establishes normal department, 798; statistics, 1585-1601.
Moore Street Industrial School, statistics, 1088.
Moral training, 108-112, 116, 393, 1171-1176, 1216, 1233-1234.
See also Religion.
Moravian College and Theological Seminary, statistics, 1049.
Moravian Seminary, 1578-1579.
Morel, M., vice-president of international congress, $64,65,68,77,144,156,157,158,160$.
Morgan College, statistics, 1087, 1588, 1603.
Morristown, N.J., statistics of schools and school finances, 1318, 1358.
Morristown Normal Academy, statistics, 1059, 1086.

Morristown Seminary and Normal Institute, statistics, 1087.
Morrisville College, 1590, 1604.
Moss, Woodson, 912.
Mother tongue as the rehicle of instruction, 424, $427,440,442,461,471,511$.
Mound City Commercial College, 1616-1631.
Mountain City Business College, 1618-1631.
Mountain City Business College and School of Shorthand and Typewriting, 1619-1631.
Mount Carmel Convent, statistics, 1037.
Mount Clemens, Mich., statistics of schools and school finances, 1318, 1358.
Mount Hermon Female Seminary, statistics, 1087.
Mount Holyoke Seminary and College, 1572-1573.
Mount Vernon, Ind., statistics of schools and school finances, $1318,1358$.
Mount Vernon, N. Y., statistics of schools and school finances, 1318, 1355.
Mount Vernon, Ohio, statistics of schools and school finances, 1318, 1358.
Mount St. Mary's College, 1588, 1603.
Mount St. Mary's Theological Seminary, statistics, 1047.
Mount Sinai Training School for Nurses, statistics, 1042.
Mount Union College, eiects gymnasium, 797; statistics, $1593,1606$.

Mourges, Mme., report of Jiscussions, 145, 157, 168.
Mowry, William A., on value of reviewing, 115i.
Muhlenberg College, 1595, 1607.
Muir, R.J., inspector of Scotch school district, extract from report, 201.
Mulcaster, Richard, college for teachers, 112.
Muncie, Ind., statistics of schools and school finances, $1318,1358$.
Münden, Royal Forest Academy at, statistics, 1003.

Municipal aid. See State and local appropriations.
Munroe, James P., remarks on educational topics, 1138-1139, 1142, 1166, 1167-1168, 1176.
Murray Male and Female Institute, 1587, 1600.
Muscatine, Iowa, statistics of schools and school finances, $1318,1358$.
Muscatine Commercial College, 1614-1631.
Musée Pédagogique, Paris, date of foundation, 45; described,114, 261, 1200; educational publications, 137-142.
Museums of pedagogy, in France, 95, 97, 114, 261 1200, 1218-1220; in Japan, 125; in Prussia, 463; in Denmark, 539.
Music, study of in Scotch universities, 211; in London, results of examination in singing, 273; in Prussia, 461; salary of teachers of, in certain cities, 617-693; in high schools, 1120 ; in schools for the blind and feebleminded, 1655, 1666, 1669.
Muskegon, Mich., statistics of schools and school finances, 1318, 1358.
Muskingum College, 1594, 1606.
Mustapha Bey, Ibrahim, remarks in international congress, 149, 163.
Myers, Mr., remarks in international congress, 313.

N.

Nanticoke, Pa., statistics of schools and school finances, 1318,1358 .
Napa College, erects and equips an observatory, 795; statistics, 1582, 1600 .
Narcotics. See Temperance instruction.
Nashotah House, statistics, 1050 .
Nashua, N. H., scale of teachers' salaries, 631; statistics of schools and school finances, 1318, 1358.

Nashville, Tenn., statistics of schools and school finances, $1318,1358$.
Nashville College for Young Ladies, 1580-1581.
Natchez, Miss., statistics of schools and school finances, 1318,1358 .
Natick, Mass., statistics of schools and school finances, 1318, 1358.
National Bar Association, report of, on law schools, 943.
National Business College, 1615-1631.
National College for the Deaf, course in pedagogy of, 1020 ; statistics, 1583,1600 .
National College of Pharmacy, statistics, 1040.
National German American Teachers' Seminary, statistics, 1061.
National Pen Art Hall anã Business College, 1618-1631.
National Union of Elementary Teachers, England, description of work, 247.
National University, medical and dental department of, statistics, 1034 ; statistics of the law department of, 1051 .
Natural philosophy. See Physics.
Natural science. See Science.
Nearsightedness in Prussian higher schools, 338, 363.

Nebraska, statistics, common schools, 7-33; comparative statistics of enrollment, attendance, teachers, and accommodations in cities and villages, 607 ; comparatire financial statistics of city and village systems, 608; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and villages, 616; character of temperance school law, 714; statistics of universities and colleges, 761, 761 ; distribution of college students on regular degree courses from 1886-

Nebraska-Continued.
1830, 775 ; summary of degrees conferred by colleges aud universities in, 776 ; productive funds of colleges and universities, 778, 779; arerage age of freshmen, 1880-90, 800 ; students from, at Jolus Hoplins, Harrard, and Michigan waiversities, 820; statistics of professional schools, 1022-1032; degrees conterred by professional schools in, 1033; statistics of reform sehool, 1070; statistics of private secondary shools, 1486-1188; statisties of lusiness colleges, 1611 ; statistics of sehools for the deaf, 1633-1635; statistics of schools for the blivel, 1653 ; statistics of institutions for tle feeble-minded, 1661-1662.
Nebraska Citr, Nebr., statistics of schools and school tinances, 1318, 1358.
Nebraska Institute for the Blind, 1655-1660.
Nebraski Institution for Feeble-Minded Youth, 163.3-1667.

Nebraska Institution for the Deaf and Dumb, 1637-1048.
Nebras: a State Normal School, statistics, 1057.
Nebraska Wesleyan University, 1591, 1605.
Necrology of edrication, 1301-1316.
Neenal, Wis., statistics of schcols and school finances, 1318, 1358.
Negaunce, Mich., statistics of schcols and school finances, $131^{8}, 135 \mathrm{~S}$.
Neglected children. in Prussia, statistics, 295.
Nelsom Business College, 1619-1631.
Nelsonrille, Uhio, statistics of schools and school finances, $1318,1358$.
Negro. See Colored race.
Netherlands. See Holland.
Nerada, statistics, common schools, 7-33; permanent school fund, 23 ; comparative statistics of enrellment, attendance, teachers, and accommodation in the schools of cities and villages, 607 ; comparative financial statistics of city and village sjstems, Ce3; enrollment and attendance in cities and rillages, 613; supervising oficers, teachers, property, and expenditure in cities and villages, blit papils in and graduates from public high schools, 615 ; character and enfurcernent of temperance school law, 714, 721 ; summary of statistics of unirersities and colleges, 761,$753 ;$ productive funds of colleges and universitics, 73 -i79; arerage age of freshmey, $1850-90,800$; summary of statistics of private secondary eschools, 1486-1488; summary of statistics of business colleges, 1611.
Nerada, Mo., statistics of schools and school finances, 1318, 1358.
New Albany, Inil., statisties of schools and school finances. 1313, 1358:
Newark, N. J., scale of teachers' salaries, 633; statistics of schools and school finances, 1318, 1358.
Newark, Ohio, statistics of schools and school finances, 1318,1358 .
Newark City Home, statistics, 1072.
Newark (N. J.) Public Normal and Training School, statistics, 1057.
New Bedford, Mass., scale of teachers' salaries, 623 : statistics of schools and school finances, 1318, 1353.
New Bedford Truant School, statistics, 1071.
Newbern, N. C., statistics of schools and school tinances, $1318,1358$.
Newberry College, 1536, 1607.
New Brighton, N. Y., statistics of schools and school finances, 1318,1358 .
Jew Brighton, Pa., statistics of schools and school finances, 1318, 1358.
New Britain, Conn., statistics of schools and school finances, 1318, 1358.
New Branswick, N. J., statistics of schools and school finances, $1318,1358$.
Newburg, N. Y., statistics of schools and school finances, 1318, 1358.
Newburyport, Mass., statistics of schools and school finances, 1318, 1358.
Newcastle, Del., statistics of schools and school finances, $1318,1358$.
Newcastle, Pa., statistics of schools and school finances, 1318,1358 .

Now Church Theological School, statistics, 1047.
New Fngland Hospital Training School for Nurses, statistics, 104 ?
Now England Industrial School for Deaf Mutes, 1037-1648.
New Englard Sciool of Shorthand and Typewriting. 1615-1631.
New Hampshire, statistics, common schools, 0-33; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 606; comparative financial statistics of city and rillace systems, GcB; emrollment and attendance in cities and villages, 013 ; supervising officers, teachers, property, and expenditare in cities and rillages, 014; pupils in and graduates from public high schools, 615; teachers aind papils iu public erening schouls of cities and rillazes, 616 ; character and unforcenicut of temperance seliool law. 713,721 ; summary of statistics of colleges for women, 7i7; degrees couferred by colleges for vomen in, 7 ± 9; summary of statistics of universities, and colleges, 760,762 ; distribution of college students in regular degze courses from 1886-1800, 773 ; summary of detsrees conferred by colieges and universities in, Tit; productive funds of colleges and universities 7i8-779; students from, at Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professiunal sehools, 1022-1031; degrees conferred by professional schouls of, 1033 ; statistics of reform school, 10i0; statistics of prirate secondary schools, $1+83-1488$; statistics of business colleges, 1610.

Now Hampshire College of Agriculture, programme of mechanical coarse, 977; statistics, 1054.
New Hampshire Conference Seminary and Fomale C'ollege, 1576-1577.
New Hampshire Stato Normal School, statistics, 1057.

New Hampton Literary and Biblical Institution and Commercial College, 1616-1631.
New Haren, Cown., maximum salary of the sereral grades of teachers, 619 ; statistics of schools and school finances, 1318,1358 .
New Jersey, statistics, common schools, 6-33; State school taxes, 25; comparatico statistics of enrollmient, attendance, teachers, and accommolations in the schools of cities and villages, 606 ; comparative financial statistics in city and villagè systems, 6.8: enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and rillages, $614 ;$ pupils in and graduates from public high schools, 015; teachers and pupils in public erening schools of cities and villages, 616; summary of statistics of colleges for women, 7 ± 7; summary of staristics of unirersities and colleges, $760-762$; distribution of college students in regular degree courses from 1880-1890, 773; sumbury of dearees conferred by colleges and universities in, 776 ; proluctive funds of colleges and universities, $78-779$; students from, at Johns Hopkins, Harvard, and Michigan unirersities, 820 ; statistics of professional schools, 1024-1031; degrees conferred by professional schools of, 1033; statistics of reform schools, 1070; statinties of private secondary schools, 1489-1488: statistics of business colleges, 1610 ; statistics of schiools for the deaf, $1632-1035$; statistics of institutions for the fceble-minded, 16611662.

New Jersey Business College, 1616-1631.
New Jersey Home for the Eulucation and Care of Feeble-Minded Children, 1663-1667.
New Jersey School tor Deaf-Mutes, 1637-16is.
New Jersey State Institution for Feeble-Minced Women, 1663-1667.
New Jersey State Jormal School, statistics, 1057.
Now Lime Institute, statistics, 1087.
New London, Conn,, statistics of schools and school finances, 1318, 1358.

New Market Polytechnic Institute, statistics, $1055,1559,160$.
New Nexico, statistics, common schools, 7-33; comparative statistics of eurollment, attend ance, teachers, and accommodations in cities aud villages, 607; comparative fiuancial statistics of city and village systems, 608; ourollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditures in cities and villaçes, 614 ; pupils in, and graduates from pulblic high schools, 615 ; summary of statistics of universitics and colleges, 761, 763 ; distribution of college students in regular decree course from $1886-1890,775$; summary of dewrees conferred by colleges and unirersitics in, 776; statistics of professional schools, 1027,1029 ; summary of statistics of private secondary schools, 1486-1468; summary of statistics of business colleges, 1611; School for the Deaf and Dumb, 1633-1635.
New Mexico, School for the Deaf and Dumb, 16131635.

New Orleans, La., scale of salaries, 1843-88, 680-682; statistics of schools and school finances, 1318, 1358.
New Orleans Normal School, statistics, 1057.
New Orleans Polyclinic, statistics, 1037
Few Orleans Unirersity, occupation of graduates, 1082 ; statistics, $1088,1588,1603$; preparatory department of, statistics, 1087; normal derartment. statistics, 1086; medical departmeat, statistics', 1035, 1089.
New Philadelphia, Ohio, statistics of schools and school finances, 1318, 1358.
Newport. Ky., statistics of schools and school finances, 1318-1358.
Newport. R. I., statistics of schools and school finances, 1318, 1358.
New Rocielle, N. Y., statistics of schools and schonl finances, $1318,1358$.
New South Wales, statistics, 1672-1677.
Newton, Kans, statistics of schools and school finances, $1518,1358$.
Newton, Mass., statistics of schools and school tinances, 1318, 1358.
Newtou Theological Institute, statist tes, 1047.
New York, statistics, common schools, 6-33; relative decrease in earollment, 9 ; increased length of school term, 15 ; comparative statistics of enrollment, attondance, teachers, and accommodations in the schools of cities and villages, 606 ; comparative financial statistics of city and rillage systems, 608; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from public high schools, 615 ; teachers and pupils in public ereuing schools of cities and villages. 616 ; character of temperance school law, 713; summary of statistics of colleges for wonien, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and colleges, 760. 762; distribution of college students in resular dezrec courses from 1886-1890.773; summary of degrees conferred by colleges and universities in, 776 ; productive funds of colleges and universities, 778-779; average age of freslumen 1880-1890, 800; students from, at Johns Hopkins, Harrard, and Michigan Unirersities, 820 ; statistics of professional schools, 1022-1031; degrees conferred by professional schools of, 1033; statistics of reform schools, 1070 ; decrease of attendance in public schools of, 1158-1153; statistics of private secondary schools, 1486-1183; statistics of business colleges, 1610; statistics of schools for the deaf, 1632-1635; statistics of schools for the blind, 1652; statistics of institulions for the feeble-minded, 16811662.

New York, N. Y., scale of teachers' salaries, 636$6: 38$; statistics of schools and school finances of city, 1318, 1358.
New York Catholic Protectory, statistics, 1072.
New York City College, classical instruction, 73.
New York College of Dentistry, statistics, 1039.

New York College of Vetezinary Surgeons, statistics, 1044.
New Tork Homeopathic Medical College and Hospital, 890.
New York House of Refuge, statistics, 1072.
New York Jurenile Asjlum, statistics, 1072.
New York Medical College and Hospital for Women, statistics, 1037.
New York Polyclinic Hospital and Dispensary, statistics, 1038.
New York Post-Graduate Medical School, statistics, 1038.
New York State Asylum for Idiots, 166i-1667
New York State Custodial Asylum for FeebleMinded Women, 1663-1667.
New York State Institution for the Blind, 16551660.

New York Institution for the Instruction of the Deaf and Dumb, 1637-1648.
New York State Normal College, establishment and course of, 1019-1020.
New York State Normal Schools, statistics, 1057.
New York Training School for Nursea (Bellevue Hospital), statistics, 1042.
New Windsor College and Windsor Female College, 1588, 16 J3.
New Zealand, statistics, 1672-1677.
Niagara Falls, N.Y., statistics of schools and school finances, $1318,1358$.
Niles, Mich., statistics of schools and school finances, 1318, 1358.
Niles, Ohio, statistics of schools and school finances, $1318,1358$.
Niagara University, statistics, 1592,1605 ; medical department of, statistics, 1035.
Nicaragua, statistics, 556-558, 1672-1677.
Night schools. See Ercning schools.
Norfolk, Va., statistics of schools and school finances, 1318, 1358.
Norfolk Colle ere for Young Ladies, 1580-1581.
Norfolk Mission School, statisties, 1088.
Norinal and Commercial College, 1613-1631.
Normal and Scientific School, 1613-1631.
Normal Business Collcge, 16181631.
Normal Schools. Sie Teachers, training of.
Normal 'Trainingand Practice School fur Teachers, statisties, 1050.
Norristown, Pa., statistics of schools and school finances, $1318,1358$.
North Adams, Mass., statistics of schools and school finances, $1318,135 \mathrm{~S}$.
Northampton, Mass., statistics of schools and school finances, 1318, 1358.
Nortlı Carolina, statistics, cemmon schools, 6-33; meager local taxes, 27 ; comparative statistics of cnrollment, attendance, teachers, and accommodations, in the schools of cities and villages, 606; comparative financial statistics of city and village systems, 608 ; enrollment and attendance in cities and rillages, 613 ; supervising officers, teachers, property, and expendituro in cities and villages, 614 ; pupils in, and graduates from pnblic high schools, 615 ; character of temperance school law, 714 ; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universities and colleges, 760, 762; distribution of college students in regular degree courses from 1886-90, 774 ; sum. mary of degrees conferred by colleges and universities in, 776; productive funds of colleges and universities, 778, 779; a verage age of freshmen, 1880-90, 800; students from, at Johns Hopkins, Harvard, and Michigan unirersities, 820 ; statistics of professional schools, 1022-103! ; degrces conferred by professional schools of, 1033 ; statistics by race, 1074-1075; education of the colored race in, 1079-1080; statistics for schools for the colored race, 1090-1091; summary of statisties of private secondary schools, 1486-1488; statistics of business colleges, 1610 ; statistics of schools for the deaf, 1632-1635; statistics of schools for the blind, 1652.
North Carolina College, 1593, 1605.
North Carolina College of Agriculture and the Mechanic Arts, statistics, 1054.

North Carolina Institution for the Deaf and Dumb and the Blind, 1089, 1638-1648, 16551660.

North Carolina State normal schools, statistics, 1058, 1086.
North Dakota, statistics, comronon schools, 7-33; comparatire statistics of enrollment, attendance, teachers, and accommodations in cities and rillages, 607; comparatire financial statistics of city and village systems, 608 ; enrollment and attendance in cities and rillages, 613 ; supervising officers, teachers, property, and expenditure in cities and rillages, 614; pupils in and graduates from public high schools, 615; character and enforcement of temperance school law, 714, 722 ; summary of statistics of unirersities and colleges, 761,762 ; distribution of college students in regular degree courses from 1886 to 1890,715 ; summary of degrees conferred by colleges and unirersities in, 776; productive funds of colleges and unirersities, 778,779; students from, at Johns Hoplins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1031; of private secondary schools, 14861488; summary of statistics of business colleges, 1611; summary of statistics of schools for the deaf, 1633-1635.
Northern Illinois College, 1584, 1601.
Northern Illinois Normal School, statistics, 1060. Northern Indiana Business College, 1613-1631.
Northern Indiana Normal School, statistics, 1060.
Northern Iowa Business University, 1613-1631.
Northern New York Institution for Deaf Mutes, 1637-1648.
North Georgia Agricultural College, statistics, 1053.

Northwestern Business College, Iowa, 1614-1631.
Northwestern Business College, Wis., 1620-1631.
Northwestern College, erects a new building, 795, 1585, 1601.
Northwestern Hospital Training School for Nurses, statistics, 1042 .
Northwestern Medical College, statistics, 1035.
Northwestern Normal, statistics, 1060.
Northwestern Normal and Collegiate Institute, statistics, 1061.
Northwestern Normal School, Business, and Shorthand Institute, 1616-1631.
Northwestern Ohio Medical College, statistics, 1036.

Northwestern University, Illinois, statistics, 1584, 1601; College of Medicine, statistics, 889, 800, 1034; Dental Department statistics, 1039; Law Departınent, statistics, 1051.
Northwestern Unirersity, Wisconsin, 1599, 1609.
Northwest Normal School (Lynden), statistics, 1061.

Northwestern Teterinary College, statistics, 1044.
Norwalk, Ohio, statistics of schools and school finances, $1318,1358$.
Norwich, Conn., statistics of schools and school finances, 1318, 1358.
Norwich, N. Y., statistics of schools and school finances, 1318, 1358.
Norwich University, statistics, 1055.
Norway, educational system described, 475-517; statistics, 551-555, 1672-1677.
Norwegian Augustana Theological Seminary, statistics, 1016.
Norwegian-Danish Theological School, statistics, $10-16$.
Norwegian Luther College, 1585, 1602.
Nurse training, diagrams illustrating statistics of schools in the United States and France, 863-866; statistics, 1024, 1 C 42.
Nurse Training School of the Woman's Hospital of Philadelphia, statistics, 10 ± 3.

0.

Oakland, Cal., scale of teachers' salaries, 618 ; statistics of schools and school finances, 1318, 1358.

Oakland Business College.'1612-1631.
Oak Ridge Institute, 1617-1631.

Oakside District, N. Y., statistics of schools and school finances, $1318,1358$.
Oberlin, Ohio, statistics of schools and school finances, 1318, 1358.
Oberlin Business College, 1618-1631.
Oberlin College, 1594, 1606 ; theological department of, statistics, 1048.
Obligatory branches. See Elementary education and Curriculum.
Obligatory school attendance. See Attendance.
Occadi, Prof. Montorani, director of school of political sciences at Bologna, 166.
Occupations, higher, restricted to gymnasium graduates, 327,336 ; of graduates of higher institutions for colored race, 1095-1096; followed by graduates Hampton Normal and Agricultural Institute, 1101.
Ochorowicz, M., remarks in International Congress, 134.
Oconto, Wis., statistics of schools and school finances, $1318,1358$.
Oderse, Denmark, school buildings described, 538.

Ogden City, Utah, statistics of schools and school finances, 1318, 1358.
Ogden College, 1537, 1602.
Ogdensburg, N. Y., statistics of schools and school finances, 1318, 1358.
Ogontz School for Young Ladies, 1578-1579.
Ohio, statistics, common schools, 7-33; comparatire statistics of enrollınent, attendance, teachers, and accommodations in the schools of cities and Fillages, 607; comparatire financial statistics of city and rillage systems, 608; enrollment and attendance in cities and villages, 613; supervising oflicers, teachers, property, and expenditures in cities and villages, 614 ; pupils in, and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and villages, 616; character and enforcement of temperance school law, 714,722 ; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of unirersities and colleges, 761,762 ; distribution of college students in regular degree courses from 1886-90, 774; summary of degrees conferred by colleges and universities in, 776; productire funds of colleges and unirersities, 778-779; arerage age of freshmen, 188090, 800 ; students from, at Johns Hopkins, Harrard, and Michigan universities, 820; statistics of professional schools, 1022-1032; degrees conferred by professional schools in, 1033 ; statistics of reform schools, 1070 ; statistics of schools for the colored race, 1090; statistics of prirate secondary schools, 1486-1488; of business colleges, 1610 ; schools for the deaf, 1633-1635; institutions for the feeble-minded, 1601, 1662.
Ohio Business College, 1618-1631.
Ohio Business Unirersity, 1618-1631.
Ohio Commercial College, 1618-1631.
Ohio Institution for the Education of the Blind, 1655-1660.
Ohio Institution for the Education of the Deaf and Dumb, 1638-1618.
Ohio Institution for Feeble-Minded Fouth, 1664 1667.

Ohio Normal University, statistics, 1061.
Ohio State Teachers' Association, report of committee on adjustment of college and high school curriculum, 1118-1122.
Ohio State Unirersity, organization and statistics, $782,786,1593,1606$; erects an electrical and a chemical laboratory, 797; school of pharmacy of, statistics, 1041; reterinary department, statistics, 1044.
Ohio University, statistics, 1593,1606; normal department, statistics, 1058.
Ohio Wesleyan Unirersity,1593, 1606.
Oil City, Pa., statistics of schools and school finances, $1318,1358$.
Oklahoma, statistics, common schools, 6-33; comparativestatistics of enrollment, attendance, teachers, and accommodations in schools of cities and villages, 607.

Olean, N. Y., statistics of schools and school finances, 1318, 1358.
Oliret College, erects library and Adelphic Society Hall, 796; statistics, 1589, 1604.
Ollendorff, M., rice-president of congress of primary instruction, 49.
Olneyrille, R.I., statistics of schools and school finances, 1318, 1358.
Olyphant, Pa., statistics of schools and school finances, $1318,1358$.
Omaha, Nebr., scale of teachers' salaries, 631; statistics of schools and school finances, 1318, 1358.

Omaha Commercial College, 1616-1631.
Omaha Medical College, statistics, 1035.
Ontario, sectarian sclools in, 1157; remarks on religious instruction in, 1174; uniform textbooks in, 1184.
Orange, N. J., statistics of schools and school finances, 1318, 1358.
Orange Free State, education in, 1229.
Orange Training School for Nurses, statistics, 1042.

Oregon, statistics, common schools, 7-33; length of school term, 15; no State school tax, 24; comparative statistics of enrollment, attendance, teachers, and accommodations in cities and villages, 607; comparative financial statistics of city and village systems, 608; cnrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and rillages, 614 ; pupils in and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and rillages, 616; character of temperance school law, 714; summary of statistics of unirersitics and colleges. 761,763 ; distribution of collcge students in regular degree courses from 1880-1890, 775; summary of degrees conferred by colleges and universitiês in, 776; productive funds of colleges and universities, 778-779; average age of freshmen, 1880-1890, 800; students from, at Johns Hopkins, Haryard, and Michigan universities, 820 ; statistics of professional schools, 102\%-1031; degrces conferred by professional schools in, 1033; State normal schools, statistics, 1058; statistics of private secondary schools, 1486-1488; statistics of business colleges, 1611; statistics of schools for the dcaf, 1633-1635; statistics of schools for the blind, 1653.
Oregon Agricultural College, programme of civil and mechanical engineering courses, 960 , 977; statistics, 1054.
Orcgon Institute for the Blind, 1655-1660.
Oreyon School for Dcaf Mutes, 1638-1648.
Organization of schools. See Administration and organization of schools.
Osborne's Business College, 1612-1631.
Oshkosh, Wis., statistics of schools and school finances, 1318, 1358.
Oskaloosa, Iowa, statistics of schools and school finances, 1318, 1358.
Oskaloosa Business College, 1614-1631.
Oskaloosa College, Bible department of, statistics, 1046; statistics, 1586-1602.
Oswego, N. Y., statistics of schools and school finances, 1318, 1358.
Ottawa, Ill., statistics of schools and school finances, $1318,1358$.
Ottawa, Kans., statistics of schools and school finances, $1318,1358$.
Ottawa Unirersity, 1587, 1602.
Otterbein University, 1594, 1606
Ottumwa, Iowa, statistics of schools and school finances, 1318, 1358.
Ottumwa Business College, 1614-1631.
Ottumwa Normal School, statistics, 1060
Overpressure, in Prussian higher schools, 338, 361.

Owego, N. Y., statistics of schools and school finances, $1318,1358$.
Owen, Sir Hugh, author of Education Acts Manual, 237.
Owensboro, Ky., statistics of schools and school finances, $1318,1358$.

Orrosso, Mich., statistics of schools and school finances, $1318,1358$.
Oxford A cademy, statistics, 1087.
Oxford Female College, i578-1579.
Oxford Female Seminary, 1578-1579.
Oxford University, university extension, teachers of, 829.

P.

Pacific Business College, 1612-1631.
Pacific Methodist College, 1583, 1600.
Pacific Theological Seminary, statistics, 1045.
Pacific University, 1595, 1606.
Packard's Business College and School of Stenography, 1617-1631.
Packer Collegiate Institute, 1578-1579.
Paducah, Ky., statistics of schools and school finances, $1318,1358$.
Paehler, Dr., on relations of family and school, 386.
Paine Institute, statistics, 1060, 1086.
Paine's Business College, 1617-1631.
Painesville, Ohio, statistics of schools and school finances, 1318, 1358.
Palestine, Tex., statistics of schools and school finances, 1318,1358 .
Palm's Business College, 1619-1631
Paraguay, educational exhibit at Paris, 126; statistics, 556-560, 1372-1377.
Paris, France, inauguration of new Sorbonne, 47; educational exhibit, 88-95; statistics higher education, 102; professors in higher institutions, 254; clementary education, described, 263; pedagogical museum of, 1200 .
Paris, Ill., statistics of schools and school finances, 1318, 1358.
Paris, Ky., statistics of schools and school finances, $1318,1358$.
Paris, Tex., statistics of schools and school finances, 1318, 1358:
Paris Exposition, 1889, rerort of congresses and exhibitions, 41-142.
Parish schools, in Scotland, 225, 231.
Park College, statistics, 1590, 1604.
Parker, F. W., on flexibility in courses of study, 1135 ; on criticism of prirate schools, 1157.
Parker College, establishment, 792, 1589, 1604.
Parkersburg, W. Va., statistics of schools and school finances, 1318, 1358.
Parkersburg Female Seminary, 1580, 1581.
Parker Theological Institute, statistics, 1089.
Parliamentary schools, in Scotland, 225.
Parochial schools. See Elementary education.
Parr, S. S., on free text-books, 1184.
Parsons, Kans., statistics of schools and school finances, 1318, 1358.
Parsons Business College, 1615-1631.
Parsons College, 1586, 1602 .
Pasadena, Cal., statistics of schools and school finances, 1318,1358 .
Passaic, N. J., statistics of schools and school finances, 1318, 1358.
Paterson, N. J., scale of teachers' salaries, 663; statistics of schools and school finances, 1318, 1358.
Paterson Gencral Hospital and Training School for Nurses, statistics, 1042.
Paterson (N. J.) Normal Training Class, statistics, 1057.
Patriotism, cultivation of, in French schools, 111.
Pattern-making as a study in public schools of cities, 1351-1356.
Paul Quinn College, occupation of graduates, 1082; statistics, $1088,1597,1608$.
Paulsen, Fr., on study of languages, 375.
Pawtucket, R.I., statistics of schools and school finances, 1318, 1358.
Peabody, Mass., statistics of schools and school finances, 1318, 1358.
Peabody Fund, amount, of distributed to schools and institutes for training teachers, 1031.
Peabody Normal College, statistics, 1059.
Peace Institutc, 1578-1579.
Pedagogy, higher instruction in, 1015-1020.
Peek, Frank, promoter of Bible teaching, 274.
Peekskill, N. Y., statistics of schools and school finances, 1318,1358 .
Peirce Business College, 1619-1631.

Pekin, Ill., statistics of schools and school finances, $1318,1358$.
Penmanship, salary of teacher of, in certain cities, $617-693$; number of stadents pursuing stady of, in business colleges, 1621-1628.
Penn College. 1586, 1602.
Penn Industrial and Normal School, statistics, 1037.

Pennsylvania, statistics, common schools, 6-33; appropriations in lieu of Stare school taxes, $2 \frac{1}{\text {; comparative statisties of enroll- }}$ ment, attendance, teachers, and accom. modations in the schools of cities and villages, 606; comparative financial statistics of city and village systems, 6C8; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from, public high schools, 615 ; teachers and pupils in puiblic evening schools of cities and villages, 616 ; character and enforccment of temperance school law, 713, 722-723; summary of statisties of colleges for women, 7i7; degrces conferred by colleges for women in. $7 \leqslant 3$; snmmary of statisties of universities and colleges, 760,762 ; distribation of collcge students in regular degree courses from $18=6-90,773$; summary of degrees conferred by colleges and universities in, 7.6 ; productive fuuds of colleges and universities, 778-779; average age of freshmen, 183090, 8C0; students from, at Johns Hopkins, Harvard, and Michigan mirersitics, 820; university extension in, 833; statistics of professional schools, 1022-1031; dcgrees conferred by protessional schools of, 1033 ; State normal schools, statisties, 1058; statistics of reform schools, 107 u ; statistics of schools for the colored race, 1090 ; summary of statisties of private secoudary schools, 1486 1488; summary of statistics of business colleges, 1010 ; summary of statistics of schools for the deaf, 1032-1625; summary of statistics of schools for, 1652, summary of statistics of institations for the feeble-minded, 1661-1662.
Pennsylvania College, erects recitation hall and chay el, 797, statistics, $1595,1607$.
Pennsylvania College of Dental Surgery, statisties, 1039.
Pennsylvania Institution fur the Dcaf and Dumb, 1638-1018.
Pemsylrania Institution for the Instruction of the Blind, 1855-1650.
Pennsylrania Military Academy, 1595, 1607.
Pennsylrania Oral School for the Deaf, 1508-16:8.
Pennsylvania Re!orm School, statistics, 1072.
Peunsylramia State College, statistics, 1054.
Pennsylrania Training School for Feeble-jinded Children, 1661-1667.
Penn Yan, ス. Y., statistics of schools and schoo finances, $1318,1358$.
Pensacula, Fla., statistics of schools and school finauces, 1318, 1358.
Pensions for teachers, in Scotland, 198, 201; in Great Britain, 242, 1230-1231; in Prussia, 288, 334 ; in Hungary, statistics, 444; in Norway, statistics of expenditures, 490 , and legal provision, 499; in Denmark, 532; recommewded by the National Edacational Association, 1183.
People's schools, in Austria, salaries of teachers, 428.

Peoria. Ill., scale of salary of teachers, 622; statistics of schools and school finances, 1318, 1053.

Perkins \& Herpel's Mercantile College, 1616-1631.
Perkins Institution and Massachusetts Schoolfor the Blind, 1654-1660.
Perra, I)r. F. A., award at Paris Exposition, 132.
Perrier, E., report to international congress, 64, 65, 77,144 .
Perrot, G., remarks in international congress, 154.

Perry Institute and Business College, 1515-1631.
Persia, educational notes on, 1229.
Perth Academy, Scotland, courses of study, 225 (note).

Perth Amboy, N. J., statisties of schools and school finances, 1318, 1358 .
Peru, statistics, $5504-560,1229,1672-107 \%$.
Peru, Ml., statistics of schools and school finances, 1318, 1358.
Peru, Inci., statistics of schools and school finances, $1318,1358$.
Petersburg, Fa., statistics of schouls and school finances, 1318, 1358 .
Pharmacy, maps showing location of schools of, in United States, and diagrams illnstratiag theirstatistics, 858-862; statistics, 1021, 10231024.

Philadelphia, Pa., scale of teachers' salaries, 6i1642 ; statistics of schools and school finances, 1318, 1358.
Philadelphia College of Pharmacy, statistics, 1041.
Philadelphia Dcntal College, statistics, 1039.
Philadelphia Girls' Normal School, statistics, 1058.
Philatelphia Hospital Training School for Nurses, statistics, $10 \frac{1}{2}$.
Philadelphia Lying-in Charity and ITurse School, statistics, 1043.
Philadelphia Polsclinic and College for Graduates in MIcdicine, statistie, 1038.
Philadelphia Seminary, 1573-1579.
Philander Smith Collcge, statistics, 1088, 1582, 1600; occupation of graduates, 1082 : normal department, statisties, 1086; preparatory department of, statistics, 1087; theological department, statistics, 1038.
Philarétos, George V., remarks in international congress, 149, 163.
Phillipsburg, N. J., statistics of schools and school finances, $1318,1358$.
Philomath College, 1595, 1606:
Philosophy, intluence of study in Scotch universities, 231.
Phonixrille, Pa., statistics of schools and school finances, $1318,1355$.
Phonograply, action concerning in international congress, 1 ³.
Physical traiuing, in maternal schools of Paris. 89 ; in France, costume, 94 ; in French normal colleges, 98 ; in Frenchsecondary schools, 100; exhibit of apparatus at Paris Expusition, 116, 119; at international congress at Paris, 13.; provision in Paris schoolhouses for, 271 ; in Scotland, 202; in London, reports of instractors, 273; movement for pablic play, in Germany, 293-295, 383; in Prussian scinools, discussed, $330-332,340,352,363,381$, 391, 451 ; in Saxony, in school for teachers, 301; in Austria, statistics, 430 ; in Irungarian schools, statistics, 444,445 ; statistics of expenditures in సॅorway for, 490 ; in Denmark, $531,532,538$; salaries of teachers of, 621, 623,625 ; buildings for, see in various connections, 795-798; Swelish (or Ling) system of, 1103-1108; remarks on, by several persons, $115 \%-1155$; number of public high schools haring a gjmnasium, 1395-1435; director of, in Boston, 1107-1108; private secondary schools having a gymnasium, 1495-1571; in schools for the feeble-minded, 1666, 1669.
Physicians, number of graduates of colleges and universities for the colored race becoming, 1082.

Physics, in schools for girls, conclasion of international congress, 145 ; study of, in secondary schools for girls, discussion in international congress, 157 ; salary of tcachers of, in certann cities, 624-693; in a preparatory college course, 1117; in high sclools, 11201121 ; in the elementary schoo's, 112:-1125, 1127 ; number of students in public high schools pursuing, 1391-1392; in socondary schools, 1401-1492; in business culieges, 1621-1628; in institutions for the deaf, 10 11 1642; in schools for tho blin $3,1657-10.53$.
Physio-Medical Collego of Indiana, statistics, 1037.

Physio-Medical School, statistics of, practice, 1021, 1037.
Physiology, study of, in England, gorernment grants allowed, 244; in medical schools, 892-893.
See also Temperance, instruction in

Pichery, M., desiguer of new gymuastic apparatuis, 89.
Pictce, Fiward T., on methods in teaching, 1178.
Pierce Chopel, statistics, 1087
Pierce Christian College, 1582, 1600.
Pieme Lniversity, 1506, 1607.
Pigeomean, H., remarks in international congress, C $_{5}, 67,68,143,146,160,173,174$.
Pike EOllege, 1589, 1604.
Piqua, Olio, statistics of schools and school tinances, 1318, 1358.
Pittsburg, Kans., statistics of schools and school finances, 1318, 1358.
Pittsburg, Pa., scale of teachers' salaries, 642; statistics of schools and school finances, 1318, 1358.
Pittsburg College of Plarmacy, statistics, 1041.
Pittsburg Female College, 1578,1579.
Pittsburg Training School for Nurses, statistics, 10 ± 3.
Pittsfiel!, Mass., statistics of schools and school finances, 1318, 1358.
Pittston, Pa., statistics of schools and school fimances, $1318,1358$.
Plainfield, N. J., statistics of schools and school finances, 1318, 1358.
Plattsburg, N. Y., statistics of schools and school finances, 1318, 1358.
Plattsmouth, Nebr., statistics of schools and scheol finances, $1318,1358$.
Playgrounds in cities of Germany, 294.
Plazy, M., on female inspectors, 57.
Pleasant Hope Normal Academs, statistics, 1060.
Plummer Farm School of Reform for Boys, statistics, 1071.
Plymouth, Mass., statistics of schools and school finanees, 1318, 1358.
Plymonth, Pa., statistics of schools and school finances, $1318,1358$.
Poetry, study of, 353 .
Polytechnic Institute of Brooklyn, 1592, 1605.
Polytechinic School of Washington University, programme of civil and mechanical engipeering courses, 960,977 ; statistics, 1055 .
Pomeros, Ohio, statistics of schools and school finances, $1318,1358$.
Pond's Liusiness College, 1614-1631.
Pontiac, Mich., statistics of schools and school finances, $1318,1358$.
Population, of United Statesof school going age compared with enrolment, attendance, expenditure, etc., 1-37; of France, 115; of London and of Paris,266,267, 298; of Hungary, 439; of the Loudon slums, 576-578; of cities of over 4,000 in list of Bureau of Education and in Census Bulletin No. 165,609-612,13181344; percentage of, enrolled in the industrial schools of Belginm, 081; of former slave States, by race and percentage enrolled, 1074; proportion of, in forcign countries, enrolled in public schools, 1672-1677.
Portage, Wis., statistics of schools and school finances, $1318,1358$.
Port Chester, N. Y., statistics of schools and school finances, 1318,1358 .
Port Gibson Female College, 1576-1577.
Port Huron, Mich, statistics of schools and school finances, 1318, 1358.
Port Jervis, N. Y.. statistics of schools and school finances, $1318,1358$.
Portland, Me., scale of teachers' salaries, 624; statistic sof schools and sch'l finances, 1318, 1358 .
Portland, Orcgon, scale of teachers' salaries, 641; statistics of schools and school finances, 1318, 1358.

Portland Business College, Me., 1614-1631.
Portland Business College, Oregon, 1613-1631.
Portland Normal Practice School, statistics, 1057.
Portland S.t:ool for Medical Instruction, statisties, 1034.
Portsmouth, N. H., statistics of schools and school finances, 1318, 1358 .
Portsmouth, Ohio, statistics of schools and school fuances, 1318, 1358.
Portsmouth, Va., statistics of schools and school finances, 1318, 1358.
Portugal, statisties, 551-555, 1672-1667; educational notes on, 1229-123u.
Post graduate instruction. See Graduates.

Post Graduate Medical School of Chicago, statis tics, 1037.
Potter College for Young Ladies, 1574-1575.
Pottstown, Pa., statistics of schools and school finances, 1318, 1358.
Pottsville, Pa., statistics of schools and school financee, $1318,1358$.
Poucher Business College, 1615-1631.
Poughkeepsie, N. Y., statistics of schools and school finances, 1318, 1358.
Practice schools, in normal schools, discussion in international congress, 49, 58, 62; in Denmark, described, 534 ; salary of teachers of, in St. Paul, 629; pupils in, 1030, 1032.
Prairie View Normal School, statistics, $1059,1086$.
Pratt Institute, Teclinical High School Department, statistics, 1062.
Prattrille Male and Female Academy, statistics, 1087.

Preparatory Medical School, Poughkeepsie, N. Y., statistics, 1034.
Preparatory medical schools, 895-807, 1021.
Preparatory schools. See Secondary education.
Presbyterian College of South Carolina, 1596, 1607.
Presbyterian College of the Southwest, 1583, 1600.
Preslyyterian Church, establishment in Scotland, 219, 223, 227.
President of each institution. Consult reference under name of that institrition.
Prejer, Dr. W., on school reform, 335, 339, 342.
Prichett School Institute, 1590, 1601.
Prickett College of Cominerce, 1619-1631.
Primary schools. Sce Elementary education.
Principals, salary of, in certain cities, 617-693; salaries of, in each of the English public schools, 1216.

See also Teachers, and for names see references to statistical tables under name of each institution.
Printers, number of graduates from colleges and universities for the colored race who become, 1082.

Printing, as a study of the public schools of cities, 1352-1356.
Private Institution for the Education of FeebleMinded Youth, 1668-1669
Private schools. See Elementary and Secondary education.
Productive funds. See Funds.
Professional schools. Sce Higher and professional ellacation, also Business, Industrial, and Manual Training Schools.
Professors and instructors, in France, conditions described. 253-256; in Saxony, statistics, 305; in Prussia, rank and work, 334; in Austrian secondary schools, statistics, 431, 432; in Normal and sceondary schools in Hungary, 446, 449; number of, in foreign universities, 561-572; in institutions for higher cducation of women, 747, 1572, 1573, 1574, 1578; in all departments of institntions for higher education, 760-761, 761-765, 784,15821609 ; number of, in professional schools (including technological and normal schools), 1021-1062; in schools for the colored race, 1086-1090; of physical training in Boston, 1108.

See also Teachers.
Professorships, endowed, number of, in universities and coileges, 762-763, 782, 1600-1609.
Programme, weekly, in France. regulations, 258; in Paris, 276; in Prussian middle schools, 284; decision of Prussian conference as to, 390 ; in Prussian Cadet Schools, 401; in typical German higher schools, $50-415,418$; in secondary scbools, in Norway, 505,507 , 508; in schools, in Denmark, 532, 534, 544-545; mauual training schools in city systems of public schools, 1351-1350.
See also Curriculum and 'Term.
Progyninasiums, decisions of Prussian couference, 391.

Promotions, in Prussian elementary schools, 462.
Propert5, assessed and cash value of, in cities, 1358-1386.
See also Buildings and accessories also Funds. Protestant Episcopal Theological Seminary of Virginia, statistics, scheme of lectures 934, 1050.

Providcnce, R. I., scale of teachers' salaries, 643 ; statistics of schools a school finances, $1318,1358$.
Providence Bryant \& Stratton Business College, 1619-1631.
Prorincial Seminary of St. Francis of Sales, statistics, 1052.
Proro City, Utah, statistics of schools and school finances, $1318,1358$.
Prussia, beginning of popular education, 44; description of schools, 281-418; State aid to education, 426 ; statistics, 454, 551-560, 16721677; school system described, 455-464; ssistem of agricultural schools, 1002.
Psychology, at international congress at Paris, proceedings, 133.
Public schools. See Elementary education, the names of foreign countries and of the States of the Union, Administration and organization of systems, Management and supervision of instruction, Methods of instruction, Curriculum, Teachers, Students, Attendance, Buildings, Seats, Funds, Income, and Expenditure.
Pueblo, Colo., statistics of schools and school finances, 1318, 1358.
Pueblo Busincss College, 1612-1630.
Pulte Medical College, statistics, 1037.
Pupils. See Students.
Pupil teachers, salary of, 622, 628.
Purdue School of Pharmacy, statistics, 10.10.
Purdue Unircrsity, course of elcetrical engineering, 990-991; statistics, 1053.
Putnam, G. B., paper on Swedish (Ling) system of gymnastics, 1103-1108.

Q.

Queen City Business College, 1616-1631.
Qucen Margaret College, Scotland, described, 209. Queensland, statistics, 1672-1677.
Quénardel, II., report to international congress, 59.

Quincy, Ill., statistics of schools and school finances, $1318,1358$.
Quincy, Mass., stätistics of schools and school finances, $1318,1358$.

1.

Rabier, M., remarks in international congress, 66, $75,145,156,172,173,249$.
Racine, Wis., statistics of schools and school finances, $1318,1358$.
Rahway, N. J., statistics of schools and school finances, $1318,1358$.
Raleigh, N. C., statistics of schools and school finances, $1318,1358$.
Ramon do Luna, M., speech in international congress, 149.
Randolph-Macon College, erects science hall, 797; statistics, 1598, 1608.
Rathlun's Omaha Business College, 1616-1631.
Reading, remarks on, by several persons, 11681171.

Reading, Pa., scale of teachers' salaries, 643 ; statistics of schools and school finances, 1318, 1358.

Reading (Pa.) Training School for Teachers, statistics, 1058.
Realschulen. See Secondary education.
Reccss. See Session.
Recitation, as a feature of medical instruction, 884.
Reckers \& Bradford's Commercial School, 16151631.

Recreation. See Physical training.
Ped Bank, N. J., statistics of schools and school finances, $1318,1358$.
Redemptionist House of Stadies, statistics, 1047.
Redfield College, 1596, 1607.
Red Wing, Minn., statistics of schools and school finances, $1318,1358$.
Red Ting Norwegian Evangelical Lutheran Seminary, 1047.
Reformation in Scotland, effect on education, 218.
Reformatory education. See Delinquents, juvenile.
Reform in Prussian higher schools, committee, 389.

Reformed Presbyterian Theological Seminary, statistics, 1049.
Reform School for Girls, and Woman's Prison, Indianapolis, statistics, 1071.
Reform School of the District of Columbia, statistics, 1071.
Registration. See Attendance.
Religion, denominations represented in Prussian schools, 286, 290, 292; in Austrian schools, 435-438; denominational schools in Hungary, $441,445,148$; aftiliation to different denominations of colleges and universities, 787-788, of schools for the colored race, 1086-1090, and of private secondary schools, 1491-1571; instruction in, in France, 46; in Scotland, 229 (note), 230, 232, 234; in England, 239; in Prussia, 344, 345, 353, 393, 396, 456, 461; in Austria, 466, 471; in Normay, 486; in Denmark, 531.
Renora, Pa., statistics of schools and school finances, 1318,1355 .
Rensselaer Polytechnic Institute, statistics, 1055.
Requirements for admission. See Higher education.
Rerenne. Sce Trition and Income.
Reviewing, value of, $1149-1150,1152$.
Rhode Island, statistics, common schools, 6-33; State school appropriations, 24 ; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and rillages, 606; comparatire financial statistics of cities and rillages, systems, 008 ; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in, and graduates from public high schools, 615; teachers and pupils in public erening schools of cities and villages, 616; character of temperance school law, 713 ; summary of statistics of universities and colleges, 760 , 762; distribution of college students in regular degrce courses from 1886-90, 773 ; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and unirersities, 778-779; students from, at Johns Hopkins, Harrard, and Michigan unirersities, 820; statistics of professional schools, 1030-1031; Hospital Training School for Nurses, statistics, 1013 ; State Normal School, statistics, 1058 ; statistics of reform school, 1070 ; summary of statistics of private secondary schools, 1486 1488 ; summary of statisties of business colleges, 1610; statistics of school for the education of the deaf, 1634.
Ribot, Th., presiding officer of international congress, 133.
Riohet, Ch., remarks in international congress, 133.

Rich Hill, Mo., statistics of schools and school finances, $1318,1358$.
Richmond, Ind., statistics of schools and school finances, 1318, 1358.
Richmond, Va., scale of teachers' salaries, 645 ; statistics of schools and school finances, $1318,1358$.
Richmond Business College and Institute of Penmanship and Shorthand, 1613-1631.
Richmond College, Ohio, 1594, 1606.
Richmond College, Va., 1598, 1608.
Richmond Female Institute, 1580-1581.
Richmond Theological Seminary, statistics, 1050, 1089.

Ridgerille College, $1585,1601$.
Rio Grande College, $1504,1606$.
Ripon College, 1599, 1609.
Ritner's Commercial College, 1615-1631.
Riverside, Cal., statistics of schools and school finances, $1318,1358$.
R.M. Bartlett's Commercial College, 1617-1631.

Roanoke, Ta., statistics of schools and school finances, 1318,1358 .
Roanoke College, 1598, 1608.
Roanoke Fcmale Colle ge, 1580-15s1.
Robertson's Shorthand School, 1612-1631.
Rochester, Minn., statistics of schools and school finances, 1318, 1358.

Rochester, N. H., statistics of schools and school finances, $1318,1358$.
Rochester, N. Y., scale of teachers' salaries, 638; statistics of schools and school finances, 1318, 1358.
Rochester Bnsiness University, 1617-1631.
Rochester (N. Y.) Teachers Iraining Class, statistics, 1058.
Rochester Theological Seminary, statistics, 1048.
Rockefeller, John D., endows Chicago University, 792-793.
Rockford, Ill., statistics of schools and school finances, 1318, 1358.
Rockford Business College, 1613-1631.
Rockford Scminary, curriculum of, 751 ; statistics, 1574-1575.
Rock Hill College, 1588, 1603.
Rock Island, Ill., statistics of schools and school finances, $1318,1358$.
Rockland, Me., statistics of schools and school finances, $1318,1358$.
Rockland Commercial College, 1614-1631.
Rockville, Conn., statistics of schools and school finances, 1318, 1358.
Roger Williams Unircrsity, occupation of graduates, 1082 ; statistics, $1088,1597,1608$; theological department of, statistics, 1050, 1089; normal department of, statistics, 1086; pre. paratory department of, statistics, 1088.
Rollins College, 1583, 1601.
Rome, Ga., statistics of schools and school finances, 1318, 1358.
Rome, N. Y., statistics of schools and school finances, $1318,1358$.
Rosenfeld, M., remarks in international congress, $76,1 \frac{1}{4} 6,156,161$.
Rose Polytechnic Institute, programme of civil and mechanical engincering courses, 960, 977; course of electrical engineering, 990; statistics, 1055.
Ross, George W., remarks by, 1174, 1184.
Roumania, school for social science, 84 ; statistics, 551-555, 1672-1677; educational notes on, 1230.

Royal commission to inquire into the Scotch system of education, 234.
Royal Unirersity at Genera, establishes a school for the practical training of travelers, 1239.
Rush Medical College, statistics, 1034.
Russia, educational exhibit at Paris Exposition, 126; statistics, 551-555, 1672-1677; educa. tional notes on, 1230 .
Rust University, statistics, 1082, 1088, 1589, 1604; preparatory department of, statistics, 1087; theological department, statistics, 1088.
Rutger's College, 1591, 1605.
Rutger's Scientific School, programme of civil engineering course, 960 ; statistics, 1054.
Rutherford College, 1593, 1606.
Rutland, Vt., statistics of schools and school finances, $1318,1358$.
Rutland English and Classical Institute and Business College, 1619-1631.
Ryder Divinity School, statistics, 1046.
S.

Sabin, Henry, on qualifications for teaching 1177$1178,1179$.
Saco, Me., statistics of schools and school finances, $1318,1358$.
Sacramento, Cal., statistics of schools and school finances, 1318, 1358.
Sacred Heart College, statistics, 1050.
St. Albans, Vt., statistics of schools and school finances, $1318,1358$.
St. Aloysius Commercial School, 1615-1631.
St. Andrews University College, Scotland, statistics, 188.
See also University of St. Andrews.
St. Augustine Normal School and Collegiate In. stitute, statistics, 1048, 1061, 1088.
St. Benedict's College, Kans., 1586, 1602.
St. Benedict's College, N. J., 1591, 1605.
St. Bonaventure's College, 1592, 1605.
St. Bonaventnre's College and Seminary, statistics, 1048.

St. Charles, Mo., statistics of schools and school finances, $1318,1358$.

St. Charles College, La., 1587, 1603.
St. Charles College, Md., 1588, 1603.
St. Cloud, Minn., statistics of schools and school finances, $1318,1358$.
St. Francis College, N. Y., 1592, 1605.
St. Francis College, Pa., 1595, 1607.
St. Francis Solanus College, 1585, 1601.
St. Gall, Switzerland, kindergartens, 128.
St. Ignatius College, Cal., 1582, 1600.
St. Ignatius, Colle ge, Ill., 1581, 1601.
St. James Commercial School, 1617-1631.
St. John's Catholic Deaf-Mute Institute, 1650-1651.
St. John's College, Md., 1588, 1603.
St. John's College, Brooklyn, N. X., 1592, 1605.
St. John's College, Fordham, N. Y., 1592, 1605.
St. John's River Conference College, 1583, 1601.
St. John's University, 1589, 1604.
St. John the Baptist (business college), 1614-1631.
St. Joseph, Mo., scale of teachers' salaries, 630; statistics of schools and school finances, 1318, 1358.
St. Joseph's College, Ohio, 1593, 1606.
St. Joseph's College, Pa., 1595, 1607.
St. Joseph's Commercial College, 1616, 1631.
St. Joseph's Diocesan College, $1585,1601$.
St. Joseph's Institute for the Improved Instruction of Deaf-Mutes, 1637-1648.
St. Joseph's Parochial Commercial School, 16151631.

St. Joseph's Provincial Seminary, statistics, 1048.
St. Lawrence University, 1592, 1605.
St. Louis, salaries of teachers, 1837-1889, 656-667; statistics of schools and school finances, 1318, 1358.
St. Louis College of Pharmace j, statistics, 1040.
St. Louis College of Physicians and Surgeons, statistics, 1035.
St. Louis Law School, statistics, 1052.
St. Louis Medical College, statistics, 1035.
St. Louis Normal School, statistics, 1057.
St. Louis Post-Graduate School of Medicine, statistics, 1037.
St. Louis Seminary, 1576-1577.
St. Louis Training School for Nurses, statistics, 1042.

St. Lonis University, 1590, 1604.
St. Luke's Hospital Training School for Nurses, statistics, 1053.
St. Mary's College, Kans., 1587, 1602.
St. Mary's College, Ky., 1587, 1602.
St. Mary's Industrial School for Boys, statistics, 1071.

St. Mary's School, statisties, 1574-1575.
St. Mary's Theological Scminary, statistics, 10 ± 9.
St. Mary's Unirersity, 1597, 1608.
St. Mcinrad's Abley, statistics, 1046.
St. Meinrad's College, 1585, 1601.
St. Olaf College, 1589,1604 .
St. Paul, Minn., scale of teachers salaries, 629, 630; statistics of schools and school finances, 1318, 1358.
St. Paul Business College, 1615-1631.
St. Paul Teachers' Training School, statistics, 1057.

St. Patrick's Commercial Institute, 1613-1631.
St. Stanislaus Commercial College, 1615-1631.
St. Stephen's College, 1592, 1605.
St. Viateur's College, statistics, 1045, 1584, 1601.
St. Vincent College, Pa., 1595. 1607.
St. Vincent's College, Cal, 1582, 1600.
St. Vincent's College, Mo, 1590, 1604.
St. Vincent Seminary, theological department of, statistics, 1049.
St. Xavier College, 1593, 1606.
Saginaw, Mich., scale of teachers' salries of, 628; statistics of schools and school finances, 1318, 1358.
Salaries of professors, teachers, or superintendents, 29-35; in France, 45, 254 ; in Scotland, 197, 198, 208; in England, 241 ; in London and Paris, statistics, 271, 272; in Prussia, higher schools, 288,334; in Austria, statistics. 42ε 429 ; in Norway, statistics, 480, 496; in Denmark, amount and manner of parment, 531 ; of all kinds in 69 cities of the United Statcs, 617-693; of principals of English public (secondary) schools, 1216; in Europe, 12341235; in Alaska school system, 1257; amount paid to teachers by city systems, 1359-1386.

Salem, Mass., scale of teachers' salaries, 627 ; statistics of schools and school finances, 1318, 1358.

Salem, N. J., statistics of schools and school finances, $1318,1358$.
Salem, Ohio, statisties of sehools and school finances, 1318, 1358.
Salen, Oregon, statisties of schools and school finances, $1318,1358$.
Salem Female A cadeny and College, 1578-1579.
Silliers, M., president of section of international eonoress. 51, 91.
Salina, Kens., statistics of schools and school tinances, 1318, 1358.
Salisluury, N. C., statistics of schools and school finances, 1318, 1358.
Salt Là̊c City., Utah, scalo of teachers' salaries, $0!5$; statisties of schools and school finances, $1318,1358$.
Salrador, statistics, $556-560,1672-1077$; educar tional notes on, 1230 .
Salration Army, its oxigin, growth, and working furce, 586-590.
Sam Móuston Stato Normal School, statistics, 1059.

San Antonio, Tex., statistics of schools and school finances. 1318, 1358.
San Diego, Cal., statistics of schools and school timances, 1:318, 1358.
Samduskr, Ohio, statistics of schools and school finances, 131*, 1358.
San Erancisco, Cal., scale of teachers' salaries, 618; statistics of schools and school finances, 1318, 1358.
San Francisco Theological Seminary, statistics, 10 ± 5.
San Fraucisco Training School for Nurses, statis tics, 1042.
San Joaquin Fallay College, 1583, 1600.
San José, Cal., statistics of schools and school finances, $1318,1358$.
San Salrador, exbibit of education at Paris Exposition. 127.
Santa Barbara, Cal., statistics of schools and school finances, $1318,1353$.
Santa Clara College, 1582. 1600.
Sauta Cruz, Cal., statistics of schools and school finances, $1318,1358$.
Santa Fe, Ň. Mex., statistics of schools and school fininces, 1318, 1358.
Santa liosa, Cal.. statistics of schools and school finances, 1818, 1858 .
Santa Rosa Ludies' College, curriculum of, 750, statistics, 15it-1575.
Santee N゙ormal Traininr Sehool, statistics, 1047.
Santo Domingo, educational notes on, 1230.
Sarah INuller Home for Little Deaf Children, 1650 1651.

Saratoca Springs, N. Y., statistics of schools and school finances, 1318, 1358.
Sarmiento, President, promoter of education in Argentine Fiepublic, 120.
Sault Ste. Marie, Mich., statistics of schools and school finances, 1318, 1358.
Sarannah, Ga., statisties of schools and school finances, 1318, 1358.
Saring banks, for educating children in care of moner, 278, 580. 1215.
Sanjer's Commereial College, 1615-1631.
Saxony, description of schools, 239 ; statistical summary of education,452-154, 551-555, 1672107; economic development, 306; programmes of higher schools. 113, 414.
Sasre Female Institute, 157-1575.
Scarritt Collemiate Institate, 1590, 1604.
Sehonectaly, A. Y., statistics of schools and school !inances, $1318,1358$.
Schiller, Dr., on instruction, $365,377,378$.
Schlee. Dr., on several educational topics, 365,389 ,
Schofield Normal and Indastrial School, statistics, 1061. 1086.

Schofiell's Commercial College 1619-1631.
Scholarships, in France, described, 107; offered to prolong school ditendance in Scotland, 193; in Scotch training colleges, 199; in Scotch unifersities, reccipts, 208, 230 note; in British unirersities, founded by Gilelrist trust, 205; number of, in colleges and universities, $762,763,1600-1609$; цumber of, in State uni-

Scholarships - Centinued.
rersities, 782 ; incr case in the number of desirable, 1116; number of, in colleges for women, 15i2-1581.
See also Fellowships.
School, for all terms in which the word school limits or otherwise modifies a substantire Ford, see nunder the substantive, c. $g .$, School Juildings under Buildings.
School for Backward and Delicate Boys. $1668,1669$.
School for the Deaf and Dumb, Fulton ${ }^{\text {r Mio., }}$ 1637-16 18.
School for the Deaf of North Dakota, 1638-16!8.
School for Feeble-minded, New York, 1663-1667.
School of Mines, Colorado, programms of civil engineering course, 960.1055.
Schools. This volume deals with instraction whieh, the wold over, is of three grades, elementary (given in "peoples" schools in Germany, "primary" sehools in Latin countries, "board" schools, when preblic, in England, and public or common schools in the Cnited States); secondary (given is gymmasien and realschulen in Germany, Licées and colleges in France, "problic" aud sccondary schools, etc., in Eagland, and high selinols, academies, etc., in America); and higher and professional including for conrenience technical and normal training. Proper entries and roferences are maile, therefore, under the name of each crate. Private schools are classed with public.
Schottmüller, Dr., on Prussian higher schools, 372.

Schrader, Dr., member of committee on reform $374,384,397$.
Schulze, Dr... on studs of languaçes, 369.
Schweitzer, P., on adrancement of the medica profession, 911, 912.
Science, study of, in secondary schools, clisenssed in international congress, $65,72-82.144-145$ 155, 157, 168, 170; iu England, 214, 248; in relation to religion, 942,943 ; schools of ap plied, 941-1020; in elementary schools, 1121, 1125 ; number of students in public schools preparing for college scientific corirse. 13051485 ; pupils in private seconclary sehools preparing for college scientific course, 14871488, 1495-1571.
Science and Art Department, England, opera. tions. 248.
Scio College, 1594, 1606
Scordia, Dille., on female inspectors, 57.
Scotia Seminary, statistics, 1087.
Scotland, educational system, 18-236; statistics, $551-555,16 \pi-1677$.
Scranton, Pa., statistics, 1318-1386.
Seats, in English elementary schools, statistics, 240; in London and Paris, statistics, 257; arerage number of, to a schonl building, 605 ; arerage number of, for each 100 pripis in atterdance in cities, 606; summary of number of, for strdy in cities and villages, 614, 1319-1345.
Seattle, Wash., statisties of schools and school finances, $131 \mathrm{~S}, 1387$.
Secondary cducition, internatioual congress, 64 86. 90, 143-186; in France, 100, 131, 254. 256, 259 ; in Scotland, fostered by the Merchant Company, 204; in Prussia, described. 281-$288,-91-2.3,335,389,-403-409,415,418,456$, 125.6-1238; in Saxony, 209-305, 413-114, 452; in Bararia, 410-411; in Württemberg, 412, 413 , 453 ; in Baten, $41 \frac{1}{4} 115$; in Austria, 430-1:32, $451-15^{2}, 466$; in Hungary, $445,447-450$; in Switzerland, statistics, 453 ; in Norwat, 457, 502,505 ; in Denmark, $525,526,528,533$; in the slums of London, 583-584; ratio of enrollment in city-high schools to public school enrollment, 605 , ratio of city high school to popu. lation and to enrollment. Co6; text-books on scientifia temperance instrnction appropriate for, 699; course of study in seientific temperance appropriate for schools for. 700 , 706,742 ; in institations for the higher edneation of women, $745-747$; in clepartments of, in colleges and mirersities, TeO; statistics of, for colored race, 1083; list of sithools for col. ored race, statistics, 1057-1083; proposed

Sccondary education-Continued.
reforms in, 1111-1135; at public expense, 1164; reniarks on, by several persons, 11761177; statistics of public high schools by States and cities, $1:: 83-1456$; statistics of private scluools for, 1486-1571; number of students pursuing academic studies in schools for the deaf, 1641-1643; number of pupils in academic department of schools for the blind, 1657-165S.
See also Administration and organization of systems, Management and supervision of instruction, Methods of instruction. Curriculum, Programme, Professors and instructors, Salary, Students, Funds, Income, Expeuditure, and State and local appropriations.
Sée, Camille, author of a French school law, 45, 100.

Sée, Miss Rosalie, present at international congress, Paris, 144.
Sognin Physiological School for children of arresterl mental or physical derelopment, 1668.
Sellar, A. C., author of Scotch manual of education, 190.
Selma, Ala., statistics of schools and schoolfinances, 1318, 1358.
Selma Uuiversity, 795, 1045, 1087, 1088, 1582, 1600; theological department of, statistics, 1088.
Semetic languages, study of, in theological schools, 935-939.
Seminary of St. Charles Borromen, statistics, 1049.
Seminary of St. Francis of Sales, $1539,1609$.
Seminary of the Sacred Heart, $1574-1575$.
Seminary of tho Immaculate Conception, statistics, 1048.
Seminary of Our Lady of Angels, statistics, 1048.
Serria, statistics, 551-555, 1672-1677.
Session, length of daily, in Prussia, 390; in Austria, 473 ; in Norway, $486,506,513$.
Sewing, study of, $91,129,244,532$; salary of teacher of, in cortain cities, 617-693; as a study in city systems of public schools, 1351-1356; number of pupils in schools for the bind, pursuing study of, 1657-1658; number of students in schools for the feeble-minded, pursuing stidy of, 1666, 1609.
Seyffordt, Depuuty, on Prussian conference, 403.
Seymour, Ind., statistics of schools and school finances, $1318,13 \overline{5}$.
Scymour, Natban Pcrkins, obituary notice of, 1312.
Seymour, Thomas D., on the value of reviewing, 1149-1150.
Shamokin, Pa., statistics of schools and school finances, $1318,1358$.
Sharon, Pa., statistics of schools and school finances, 1318, 1358.
Sharpsburg, P'a., statistics of schools and school finances, 1318, 1358.
Shaw University, statistics, 1088, 1593, 1606; medical department of, statistics, 1035, 1089; theo-logical-department of, statistics, 1018, 1088; preparatory department of, statistics, 1087; law department of, statistics, 1089.
Sheboygan, Wis., statistics of schools and school finances, 1318, 1358.
Sheffield Scientific School, programme of civil and mechanical engineering courses, 960,977; statistics, 1053.
Shelbina Collcgiate Institute, 1591, 1604.
Shelby ville, Ind., statistics of schools and school finances, 1318, 1058.
Sheldon, Winthrop D., quoted on several educational topics, 1143-1144, 1145-1147.
Shenandoah, Pa., statistics of schools and school finances, 1318. 1358.
Shepardson College, 1578-1570.
Shepherd College, statistics of, 1059.
Sherman, Tex., statistics of schools and school finances, 1318, 1358.
Sherwood Female Seminary, 1580-1581.
Sherwood Normal School and Business Institute, statistics, 1060.
Shetland Islands, conditions of school work, 201.
Shoemaling, as a study in the public schools of cities, 1352-1356.
Shop work. See Manual training, Industrial training, and Higher and professional education
Shorter College, 1574-1575.

Shrereport, La., statistics of schools and school finances, $1318,1358$.
Shurtleff Collcge, statisties, 1585, 1601; school of theology, 1046.
Silgwick, Prof., president of section of international congress, 133.
Sidney, Ohio, statistics of schools and school finances, 1318. 1358.
Sierra Normal College and Business Institute, 1612-1631.
Silliman Collegiate Institute, curriculum, 751.
Silliman Female Collegiate Institute, 1576-1577.
Simon, Jules, president of congress of physical training, 100, 134, 112 .
Simpson, Ancrew, Scotch schooimaster, 215 (note). Simpson College, erects a science and a ladies; hall, 795 ; statisties, $1586,1602$.
Sing Sing, N. Y., statistics of schools and school finances, 1318, 1358.
Singing. See Music.
Sioux City, Iowa, scale of teachers' salaries. 623; statistics of schools and school finauces, 1318, 1358.
Sioux City Training School for Teachers, staistics, 1056.
Sioux Falls, S. Dak., statistics of schools and school finances, 1318, 1358.
Sionx Falls Business College, 1619-1631.
Slater Fund, amount distributed, 1889-'90, 1084, 1085.

Slöjd, training school in Denmark, 122, 540; schools in Denmark, described, $5 \div 0$.
Smith, Miss A. T., on educational system of Scotland, 187-211; of Englamd, 237-243; of France, 249-261; of Lolldon and Paris, 263280.

Smith, George R., donation of darghters of, to found college, 1085.
Smith, Herbert E., suggestions by, on the advancoment of the medical profession, 911.
Smith, O. D., quoted on several educational topics, 1137-1138, 1151-1152.
Smith College, 1572-1573.
Smithdeal Etrsiness College, 1619-1531.
Smith's Academy and Commercial School, 16161631.

Socialism, instrnction in higher schools in Prussia, $344,388,398$.
Social pathology, defined, 573 ; relation of education to, 573 .
Social science discussed in international congress, $8:, 147,161,166$.
Socicties for promoting technical instruction, in France, cxhibits at exposition. 104-106.
Society for Propagating Christian Knowledge, in Scotland, early work. 223 (note).
Society for the Collegiate Instraction of Women, $1572,1573$.
Sockanosset Reform School for Boys, 1072.
Somerville,'Mass,, statistics of schools and school finances, 1318, 1358.
Sorbonne, Paris, France, inauguration of new edifice, $47,174,182$.
Soulo Commercial College and Literary Institute, 1614-1631.
Soulé Female College, 1580, 1581.
Soult, Mme., report in international congress, $78,145,169$.
Soult, Mille., remarks in international congress, 157.

South Amboy, N. J., statistics of schools and school finances, 1318, 1358.
South America, exhibits at Paris Exposition, 132.
Sonth Australia, statistics, 1572-1577.
South Bend, Ind., statistics of schoolseand school finances, 1318, 1358.
South Bethlehem, Pa., statistics of schools and school finances. 1318, 1358.
Southbridge, Mass., statistics of schools and school finances, 1218, 1358.
South Carolina, statistics, common schools, 6-33; meager local taxes, 27 ; per capita school expenditure, 35 ; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 606; comparative financial statistics of city and village systems, 608; enrollment and attendance in cities and villages, 613; supervising officers, teachers,

South Carolina-Continued.
property, and expenditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615 ; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of universitics and colleges, 760,762 ; distribation of college students in regular degree courses from 1886-90, 774; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and universities, 778-779; arerage age of freshmen, 1880-'90 800; students from, at Johns Hopkins, Harrard, and Michigan universities, 820; statistics of professional schools, 1022-1032; degrees conferred by profcssional schools of, 1033 ; statistics by race, 1074 ; statistics of schools for the colored race, 1090-1091; ssummary of statistics of private secondary schools, $1456-1488$; summary of statistics of busincss colleges, 1610; summary of statistics of schools for the deaf, 1632-1635; Institution for the Education of the Deaf and the Dumb and the Blind, 1638-1618; summary of statistics of schools for the blind, 1652; Institution for the Education of the Deaf, Dumb, and the Blind. 1655-1660.
South Carolina Institution for the Education of the Deaf and Dumb and the Blind (colored department), statistics, 1089.
South Chester, Pa., statistics of schools and school finances, 1318, 1358.
South Dakota, statistics, common schools, 7-33; comparativestatistics of enrollment. attendancc, teachers, and accommodation, in cities and villages, 607 ; comparative financial statistics of city and village systems, 638 ; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in, and graduates from public high schools, 615 ; character and enforcement of temperance school law, 714, 723-724; suminary of statistics of universities and colleges, 761,762 ; distribution of college students in regular degree courses from, 18861890,775 ; summary of degrees conferred by colleges and universities in, 776; productive funds of collcges and unirersities, 778-779; students from, at Johns Hopkins, Harrard, and Michigan universities, 820; statistics of professional schools, 1028, 1031; degrees conferred by profes sional schools in, 1033 ; normal schools, statistics, 1058; statistics of reform school, 1070; summary of private secondary schools, 1486-1488; summary of statistics of business colleges, 1611 ; summary of statistics of schools for the deaf, 1633-1635.
South Dakota Reform School, statistics, 1072.
South Dakota School of Mines, statistics, 1055.
South Easton, Pa., statistics of schools and school finances, 1318, 1358.
Southern Academic Institute, statistics, 1060.
Southern Baptist Theological Seminary, scheme of lectures, 932 ; statistics, 1047.
Southern Business College, 1614-1631.
Southern Female College, 1574-1575, 1580-1581.
Southern Illinois Normal University, statistics, 1056.

Southern Indiana Normal College, statistics, 1060. Southern Medical College, statistics, 1034.
Southern Normal School and Business College, statistics, 1060.
Southern University, occupation of graduates, 1082; preparatory department of, statistics, 1087; statistics, 1088, 1588, 1603.
South Georgia College of Agricultural and Mechanic Arts, statistics, 1053.
South Kentacky College, 1587, 1602.
South Norwalk, Conn., statistics of schools and school finances, 1318, 1358.
South Omaha, Nebr., statistics of schools and school finances, 1318, 1358.
Southwest Baptist College, 1589, 1604.
Southwestern Baptist University, 1597, 1608.
Southwestern Business College, 1614-1631.
Southwestern Presbyterian University, 1596, 1608.

Southwestern Cniversits, 1597, 1608.
Southwest Georgia Agricultural College, statistics, 1053.
Southwest Virginia Institute, 1580-1581.
Spain, educational exhibit at Paris Exposition, 123; statistics, 551-555, 1672-1677.
Spanish, study of, in theological department of Boston University, 939 ; number of students in business colleges pursuing stady of, 1621-1628.
Spartanburg, S. C., statistics of schools and school finances, $1318,1358$.
Spelman Seminary, statistics, 1087.
Spencer, Mass., statistics of schools and school finances, $1318,1358$.
Spencer, H. C., obituary notice of, 1312.
Spencerian Dusiness College, Clereland, 16171631.

Spencerian Business College, Milwankee, 16201631.

Spencerian Business College, Wasbington, D. C., 1612-1631.
Spokane Business College, 1619-1631.
Spokane Falls, Wash., statistics of schools and school finances, $1318,1358$.
Spough, M., remarks in international congress, 158.

Springer Institute, 1650-1651.
Springfield, Ill., statistics of schools and school finances, $1318,1358$.
Springficlel, Mass., statistics of schools and school finances, 1318, 1358.
Springficld, Mo., statistics of schools and school finances, 1318, 1353.
Springficld, Ohio, scale of teachers' salaries, 640; statistics of schools and school finances, 1318, 1358.
Springfield Business College, 1613-1631.
Spring Hill College, 1582, 1600 .
Spruyt, C. B., remarks in interuational congress, 149,171 .
Spullcr, E., instructions as to educational exhibit, 86.

Sququalak Female College, 1576-1577.
Stamford, Conn., statistics of schools and school finances, 1318, 1358.
Standford Female College, 1574-1575.
Staüdor, Dr., government commissioner, on effects of Prussian conference, 401.
Stanley, Lyulph, quoted on several educational topics, $56,64,72,76,86,146,154,156,158,159$, $163,170,171$.
Stanton, Va., statistics of schools and school finances, 1318, 1358.
Starkville Female Institute, 1576-1577.
Starling Medical College, statistics, 1036.
State and local appropriations, in state systems 24; in city systems,1358-1386; in Scotland, 189-190, 208, 232; in England, 240, $24 \overline{5}, 248$; in France, 252, 257, 270 ; in Saxony, 300, 304, 305 ; in Austria, 426; in Hungary, 450; in Norway, 489; in Denmark, 528; receired by colleges and unirersities, 762-763, 771,782, 796 ; to industrial education in Europe, 98t985 ; received by technical schools, 1029; received by schools for training teachers, 1031; received by schools of science, 1053-1055; asked for Alaska, 1298-1299; receired by schools for secondary education, 1114, 1389-$1485,1487-1571$; by schools for the deaf, 16411645,1649 ; by schools for the blind, 1657, and by schools for the feeble minded, 1667.
State Business College, 1613-1631.
State common school sjstems, statistical exhibit, $1-37$.
State (Mich.) House of Correction and Reformatory, statistics, 1071.
State (Mich.) Industrial Home for Girls, statistics, 1071.
StateIndustrial School of Colorado, statistics, 1071.
State (N. H.) Industrial School, statistics, 1072.
State (Mass.) IndustrialSchool for Girls, statistics, 1071.

State (N.J.) Industrial School for Girls, statistics, 1072.

State (Nebr.) Industrial School for Jurenile Offenders, statistics, 1072.
State prisons, in Prussia, number of children in, 296.

State (Conn.) Reform School, statistics, 1071.
State (IIl.) Reform School, statistics, 1071.
State (Me.) Reform School, statistics, 1071.
State (Mich.) Reform School, statistics, 1072.
State (N. J.) Reform Schoel for Juvenile Delinquents, statistics, 1072.
State Scliool for Idiot and Imbecile Youth, 16631667.

State superintendents, names and titles of, 591-601.
State supervision. See Administration and organization of systems.
State University of Iowa, statistics, 782, 1586, 1602; organization, 784 ; erects chemical laboratory and assembly hall, 796; medical department of, statistics, 1034; law department, statistics, 1051.
Staunton Female Seminary, 1580-1881.
Steelton, Pa., statistics of schools and school finances, $1318,1358$.
Stenograply, number of students in business colleges pursuing study of, 1621-1628.
Stephens Collcge, curriculum, 753.
Stephens Female College, 1576-1577.
Sterling, Ill., statistics of schools and school finances. 1318, 1358.
Stctson. H. L., on relation of secondary and higher instruction, 1123-1124.
Stcttin, courses of gymnasium and real gymnasium of, 948-949.
Steubenville, Ohio, statistics of schools and school finances, 1318,1358 .
Sterens, W. Le Conte, on cndowments, 746.
Stevens Institute of Tcchnology, statistics, 1055.
Sterens Point, Wis., statistics of schools and school finances, 1318, 1358.
Still water, Minn., statistics of schools and school finances, $1318,1358$.
Stimulants. Sce Temperance instruction.
Stockton, Cal., statistics of schools and school finances, $1318,1358$.
Stockton Business Collcge and Normal Institute, statistics, 1060 .
Stoneham, Mass., statistics of schools and school finances, 1318,1358 ,
Stonewall Jackson Female Institute, curriculum, 754; statistics, 1580-1581.
Storer College, statistics of, 1096, 1086.
Storm, J., remarks in international congress, 149.
Storm Lake Normal and Business School, $105 \overline{5} 6$.
Storrs Agricultural School, curriculum, 997; statistics, 1055.
Straight University, occupation of graduates, 1082; statistics, 1088, 1588, 1603; thicological department of, statistics, 1047 ; 1 reparatory department of, statistics, 1087; normal department, statistics, 1086; theological department, statistics, 1088.
Streator, Ill., statistics of schools and school finances, 1318, 1358.
Stromsburg Normal and Business College, 15161631.

Stuart Female College, 1574-1575.
Students, in the Unitcd States, 1-4; in public and private elementary schools, $7-18,35$; in city systems alone, $603-614,1318-1392$; in public ligh schools, $615,1388-1392,1395-1485$; in city evening schools, $616,1346-1350$; in public and private manual training schools, 1062, 1351-1356; in colored schools alone, 10861091; in business colleges, $1610-1620,1629-$ 1631; in reform schools, 1070-1072; in schools for the deaf, 1632-1640; in schools for the blind, 1652-1658, 1660; in schools for the deaf and the blind born with their defect, 1646, 1647, 1660; in schools for the feebleminded, 1661-1669; in private secondary schools, 1486-1571; in secondary and preparatory departments of colleges for women, 747, 1572-1581; in preparatory departments of colleges and universities, 760, 761, 15821609; in schools of science, 1053-1055; pursuing study of foreign language in private secondary schools, 1490-1492; in all departments of colleges for women, 747, 1572-1581; in all departments of universities and colleges, $760-768,782,1020,1582-1609$; in professional schools, including technological and normal schoo!s, 1021-1062; professional

Students-Continued.
students better prepared than formerly to enter upon professional study, $878,879,918$, 919.

Enrolled in elementary schools of foreign countries, 551-560, 1672-1677; in foreign universities, 561-572; in France, 96, 102; in Scotland, 188; classification of, in England, 243; in English training colleges for teachers, 243; in Prussian schools for training teachers, 282, and middle schools, 285; religion of, in Prussia and Austria, 286, 290, 292, 432, 433; in various schools of Saxony, 305 ; number to each teacher, decisions of Prussian conference, 391 ; number to each teacher and gencral statistics in Austria, 429, 431-439, 451. 452, 466; in Hungary, 440, 445, 446, 448; in Germany, statistics, 452, 453; in Copenhagen, Denmark, statistics, $524,525$.
Age of, arerage in the sereral standards of Scotland, 196, in Prussia, 456, in Hungary, 449, of American freshmen, 799-804. in American medical schools, 879, and in theological schools, 919 ; for attending school, in Norway 488, in cities of the United States, 1318-1344, for the deaf and the blind, 16461647, 1660.
Meals provided for indigent in Austria, 1215; suicide of, in Germany, 1217-1218.
See Graduates, also Higher, Secondary, and Elementary education.
Studics. See Curriculum, also Algebra, Latin, etc.
Stuttering, method of curing, 1216-1217.
Stuttgart, W'irttemberg, programme of bigher schools, 412.
Substitute teachers. See Teachers.
Suicide, among Prussian school children, 338.
Sunbury, Pa., statistics of schools and school finances, $1318,1358$.
Sunday schools, in Russia, 126, 127; nonreligious, in Germany, $1238,1239$.
Superintendents of State and city systems, list of, 591-c01; salary of, in certain cities, 617693.

Superior Council of Public Instruction, in France, functions, 107.
Supervision. See Management and supervision of instruction.
Supervisors, number of, in cities and villages, 614; number of, in cities, 1319-1344.
Supplementary schools. See Continuation schools. Supplies, gratuitously furnished, in Paris, 89.
Surinam, proportion of population enrolled, 556 560.

Sutherland, Margarct W., on home study, 11501151.

Sverdrup, M., on classics in secondary schools, 505.

Swarthmore College, 1595, 1607.
Sweden, conditions of secondary education, 366 ; statistics, 551-555, 1672-1677; effect of school life on hcalth, students in, 1201-1202.
Swedish system of gymnastics, favorable results in London, 274, described, 1103-1108.
Swedish Theological Seminary, statistics, 1046.
Switzerland, educational exhibit at Paris Exposition, 127; statistical summary of education, 453; statistical diagram of education, 454; statistics, 551-555, 1672-1677; provision in, for industrial education, 981; conflict over classics as instruments of education, 11911192.

Synodical Female College, Mo., 1576-1577.
Synodical Female College, Tenn., 1580-1581.
Syracnse, N. Y., scale of teachers' salaries, 639; statistics of schools and school finances, 1318, 1358.
Syracuse (N. Y.) Teachers' Training Class, statistics, 1058.
Syracuse Training School for Nurses, statistics, 1043.

Syracuse Unirersity, erects library building, 796 797; statistics, 1592, 1605; College of Medicine statistics, 1035 .
Sytine, M., efforts to improve Russian literature, 127.

定。

Tabor College, 1586, 1602.
Tacona, Wash., scale of teachers' salaries, 645; statistics of schools and school finances, 1318, 1358.
Talbot, I. T., on advancement of the medical profession, 913.
Talladega College, statistics, 1045, 1087; normal department, statistics, 1086; theological department, statistice, 1088.
Tamaqua, Pa., statistics of schools and school finances, $1318,1358$.
Tampa, Fla., statistics of schools and school finances, 1318, 1358.
Tarentum, Pa., statistics of schools and school finarices, 1318. 1358.
Tarkis College. 1591, 1604.
Tasmania, statistics, 1572-1677.
Taunton, Mass., statistics of schools and school finances, 1318, 1358.
Taxes, principal source of income for suppert of publie elementary schools, $20-26$; levied by local school loards, in Scotland, 190, 227, in England, 240, 247; in Sazony, receipts of indestrial schonls, 30t; statistics of amount derived from, in Prnssia, 457; amount of public schicol, raised in cities, 1358-1387.
Tajlor \& Son's Busincss College, 1617-1031.
Teachers: number in common schools of United States by sex, and in relation to other statistical facts, $5,19,35$, in cities, $601-606,614$, 1319-1345, in public high schools, 615,1388 1455, in city evening schools, 616, 13x6-1350, giving manual training instrnction, 1062, 1351-1355, in schools for the colored race, 1030-1091; in prirate sccondary sehools 1486-1483, 1491-1571, in basiness colleges, 1610-1620, in reform schools, 107e-1072, in schools for the deaf. 1632-16.35, 1339-1640, 16.4, 1651, in schools for the blind, 1650-1655, 1656 , in schools for the feeble-minded, 16611669; in public elemeutary schools in foreign comutries, $1672-1677$, in France, 96-97, in Scotland, 188 , in forces of London and Paris, 271-272. in Prussia,287, 291-202. 416, in Saxony 302,005 , in Austria $427,452,466$, in Hungary 442, in Denuark 524
Appointment of: in Scotland, 197, 234, in Prussia, 334 , in Norway, 475, in Denmark, 531.

Qualifications of: reqnired in France, 45, 203255; in Scotland, 197-198; in Enyland, 241, 244; in Saxony, 302; in Austria, 427; in Denmark, examination of, 531; unprepared to teach the injurious effects of alcohol, ctc., 708-733; licenso for better qualified, asked for, 10.5; a better prepared force of, requircd, 1163, remarks on character and training of, 1177-1184; schools for training, function of, 1178 ; effectire examination for, 1180 ; mutual criticisn and observation in Canada, 1214-1215.
Tenare of office of, 197, 241.
Training of: in France, 45, 93, 98-100, 112, 253256 ; discussion in intemational congress, 51 , 54, 58; importance attached to, in Argentine Republic, 121; in Denmark, 123,530, and financial statistics, 528; in Scotland, 198-199, 227, 230-230; in England, 241-244; in Saxony, 300 , and statisties, 305,452 ; examination and probationary service required in Prassia, 332-335, 459; discussed by Prussian conference, 38t, 391-397, and statistics, 456-459; in Switzerland, statistics, 453; in Austria, 427, 436, 451-452, $469-470$; in Hungarr, 443,445,466, 459; in Württemberg, statistics, 453; in Nortway, lescribed, 478, 495-498; maps showing location of schools for training in France, Germany, aud the United States, and diagram showing attendance at American schools, $868-873$; training schools for, statistics of, 1030; number of graduates from higher institutions for the colored race becoming, 1081 ; schools for training, list of, for colored race, 1086 ; instrnction of, in physical training in Boston, 1108; in France, to study contemporaneous literature, 1242.

Teachers-Continued.
W omen: in eleme"tary schools, discussion in international congress, 49,55-58, 62; pensions for, 242,$1183 ;$ meetings and associatiuns of, in Europe, 247, 530, 1185-1189; dwellings for, in Hungary, 444; proportion of, in teaching corps of Prussia, 1243.
See also Salary, Professors and instructors, Management and supervision of instruction and Curiculum.
Teachers' Seminary of the Evangelical Lutheran Synod of Ohio statistics, 1061.
Technical School of Cincinnati, statistics, 1062.
Technology, schools for. See Higher and professional education.
Telegraphy, number of students in business colleges pursuing stady of, 1021-162s.
Temperance, seientific instruction in, in public schools, 635-742, 1097.
Temple, Tex., statistics of schools and school finanecs, 1318, 1358.
Tennessee statistics, common schools, 6-33; meager local taxes, 27; comparative statistics of enrollment, attendance, and accommadations in the schools of cities and rillages, 607; comparative financial statistics of eity and village systems, 608 ; enrollment and attendance in cities and rillages, 613 ; supervising officers, teachers, property, and expenditure in cities and rillages, 614 ; pupils in, and graduates from, public high schools, 615 ; summary of statistics of col leges for women, 747; degrces couferred by cotleges for women in, 749 ; summarr of statistics of universities and colleges, 760,762 ; distribution of college stridents in regular degree courses from, 1880-1890, 774; summary of degrees conferred by colleges and universitics in. 776; productive funds of collcges and universities, 778,779 ; arerage age of freshmen, 1880-189), 800; students from, at Johns Mopkins, Harrard, and Michigan unirersities, 820 ; statistics of professional schools. 102:-1032; degrees conferred by professional schools $10: 3$; statistica by race, $107 t$; education of the colored race in, 1080-1081; statistics of schools for the colored race, 1090-1091; summary of statistics of private secondary sehools, $1486-1$ 188; summary of statistics of business colleges, 1610: summary of statistics of schools for the blind, 1653.
Tennessee Deaf and Dumb School, 1638-1648; colored department, 1089.
Temnessee Female College, 1578-1579.
Tennessee School for the Blind, 1655-1660; colored department, statistics, 1090.
Term, length of, in State systems, $5,11-15,36$, in city systems, $604,1313-1345$, in professional schools, $1031-1060$, in business cnlleges, $1629-$ 1631; lesal provisions, in Norway, 485-188, and in Demmark, 539.
Terre Haute, Ind., statistics of schools and school fiuances. 1318, 1358.
Texas, statistics, common schools, 6-33; perwianent school fund, 23 ; meager local taxes, 27 ; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 607; comparative financial statistics of city and village srstems, 608; enrollment and attendance in cities and rillages, 613; sitpervising officers, teachers, property, aud expenditure in cities and villages. 61s; pupils in and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and villages, 616 ; summary of statistics of enlleges for women, 747; degrees conferred by colleges for women in, 7%; summary of statistics of unirersities and colleges, 700 , 762, distribution of collere st atents in regular degree courses from 1886-1890, 774; summary of degrees conferred by colleges and universities in, 776 ; productire funds of colleges and universities, 778-779; arerage age of freshmen 1880-1800, 800 ; students from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional

Texas-Continned.
schools, 1022 -1032; degrees conferred by professioual schools in, 1033 ; statistics of reform school,a1070; schiool statisticy by race, 107t1075; statisties for schools for tho colored race, 1090-1091; summary of statistics of bnsiness college, 1610; sumnary of statistics of privato secondary schools, 1485-1483; summary of statistics of schools for the deaf, $1633-1635$; summary of statistics of schools for the blind, 1852.
Texas Agricultural and Mechanical College, programme of civiland mechanical engineering coirses, 960.977 ; statistics, 1054.
Texas Deaf and Dumb Asylum, 1638-1648.
Texas Institution for Deaf and Dumb and Blind Colored Youth, statistics, 1030.
Texas Iastitution for the Blind, 1655-1050.
Texas Medical College and Hospital, statistics, 1006.

Text-books, cbaracter of, in France, 95, 111; in Germany, 460 ; method of selection in Austria, 470, and in Norwar, 484; difficult in providing appropriate, for temperance instruction, 697-639, 715; recommendations as to use of, in temperance instruction, $733,735-736$; in theological schools, 934-936; remarks on, by sere:al persens, 118.
Thayer School of Civil Engineering, curriculum, 047,960 ; statistics, 1055.
The Canton Business College, 1617-1631.
The Lowells' Brsiness College, 1615-1631.
The Nelson Business College, 1617-1631.
The Nelson Business College Company, 1618-1631.
Theological Seminary of the ErangelicalLatheran Church at l'hiladelphia, statistics, $10 \downarrow 9$.
Theological Seminary of tho Frangelical Lutheran Synod of Uhio, statistics, 104 ?.
Theological Seminary of the Gceneral Synod of the Erangelical Lutheran Church in the United States, statistics, 10 ± 9.
Thecongical Senimary of the PresbyterianChurch, Fy., statistics, 1047.
Theological Seminary of the Presbyterian Church, N.J., statistics, $10 \div 8$.

Theological Seminary of the Protestant Eniscopal Church in the Diocese of Ohio, statistics, 1043.

Theological School of the Reformed (Dutch) Chnreh in America, statistics, 1018.
Theolorical Sominary of the Reformed Church. statistics, 1019.
Theological Seminary of the Synod of South Carolina and Georgia, statistics, 1049.
Theology, in Scotch universities, 209 ; maps showing location of schools of. in United States, France, and Germany, with diagrams illustrating their statistics, 837-873; requisites foradmission, and conrsc of study of schools of, 013-913; statistics of schools of, by denominations, 1025-1026; degrees conferred by schools of, 1033 ; schools for colored race ${ }_{r}$ 1083.

See also Higher and Professional education.
Tho Paine Uptown Business College, 1617-1631.
The Stewart and Hammond Business College, 1616-1631.
The Terre Haute Commercial Colloge, 1613-1631.
Thiel, Dr., on Prussian higher schools, 366.
Thiel College, 1595, 1607.
Thomasville Female College, 1578-1579
Thompson, Supt., on State aid to education in Kentucky, 26.
Thompsonville, Coun., statistics of schoors and school finances. 1318, 1358.
Thrift, encouragement in schools of London and Paris, 2 Ts.
Tharber, Charles Herbert, on higher schools of Prussia, 313-418.
Tiffin, Olio, statistics of schools and school finances, 1318, 1358.
Tilden Seminary, 1576-1577.
Tillotson Collegiate and Normal Institute, statisties, 1061, $10 \approx 6$.
Time, distribution of, during daily session or week. See Programme.

Titusvilla, Pa., statistics of schools and school finances, 1318, 1358.
Tobaceo, injurious effects of. See incidentally, 695-i 12.
Toledo, Ohie, statistics of schools and sehool finarces, 1318, 1358.
Toledo Dissiness Coilege and Shorthand Sehools, 1613-1031.
Toledo Medical College, statistics, 1036.
Tolstoi, Count, efforts to improve Russian literature, 127.
Topeka, Kans., statistics of schools and school finazces, 1318, 1358.
Toppington, Conn., statisties of sehools and school finauces, 1318, 1358.
Tongaioo University, statisties, 1057, 1085, 1057.
Tourjee, Eben, obituary notice of, 1312.
Tuwanda, Pa., statistics of schools and sclool finances. 1318, 1353.
Towne Scientific Selecol, programmo of civil engineering course, 960, 1055.
Training of teachers. See Teachers.
Training School for Nurse3 of Brooklyn Homcopathic Hospital, statistics, 1012.
Training Schoul for Nurses of Rochester City Hospital, statisties, 1043.
Training school for Nurses of the Buffalo State Huspital, statisties, 1012.
Transvaal, educational notes on. 1230 :
Traverse City, Mich., statistios of schools and school finances, 1318, 135 S.
Trenton, Mo., statistios of echools and school finances. 1318, 1358.
Trenton, N. J., scalo of tenchers' salaries, 634; statistics of school and school finances, $1313,1353$.
Trenton X3usiness College, 1610-1631.
Trinidad, statistics, $555-560$ 1672-1677.
Trinity Cullege (Cosn.), 1583, 1600.
Trinity Cuilece (N. C.), removal of, and new buildin .̈s. 738; statisties, 1593, 16u6.
Trinity College, M. E. So., statistics, 1018.
Trinity Scbool statistics, 1037.
Trinity University, statisties. 1527, 1093; thoological deparimest of statisties, 1050 .
Tri-State Normal School, statistics, 10c0.
Troy, N. Y., scale of teachers' salaries, 639; s ${ }^{\dagger}$ ntistics of schools and school finances, 1318 , 1358.

Troy, Ohio, statistics of schools and schoul finances, 1318, 1353.
Troy Lusiness College, 1617-1631.
Truant officers, salary of, in Cambridere, Mass., 625.

Truant schools, in England, statistics, 247.
See also Attendanco, and Delinquents.
Trustees, new law in regard to, in Alabama, 1076.
Trüzschler, Dr., Prussian minister of education, on school reform, 405.
Tufts College, statistics, 1585, 1609
Tufts Divinity School, statistics, 1047.
Tuition in England. remession. 240, 247; in normal schools, in Denmark, 53ti in European and American systems, 549-560; average cost per diem and per capita in city systems, $601-608$; charge for, by professional schuols of all kinds, 1031-1062; annual charge for, in colleges and universities, $10: 0-160$; annual charge for, in business colleges, 15121620.

See also Gratuity, and Income.
Tulane University of Lonisiana, statistics, 15ss, 1603; medical department, 908-909, and statistics, 1035; pharmacy course of medical department, statistics, 1040; lave department, statisties, 1051 ; manual training dopartment, statistics, 1062.
Tunis, exhibit at Paris Exposition, 129.
Turkey, proportion of popalation enrolled, 5515゙50.
Tuscaloosa, Ala., statistics of sebools and school finances, 1318,1358.
Tuscaloos: Female College, 1574-1577.
Tuskegce Normal and Industrial Iustitute, occupation of graduates, 1488.
Twin Valley Collego, 159?, 1:06.
Twin Valler College Aciual Business School, 1618-1 $\dot{6} 1$.

Tyler, Tex., statistics of schools and school finances, 1318, 1358.
Types of education, discussion in international congress, 72-77, 145.
Typewriting, number of students in business colleges pursuing stady of, 1621-1628.
Typography, apprentice school in France, 116.
Tyrone, Pa., statistics of schools and school finances, 1318, 1358.

U.

Uhlhorn, Dr., on Prussian higher schools, 368 ; mentioned, 389 .
Uhlig, Dr., remarka in Prussian conference, 365.
Union, N. J., statistics of-schools and school finances, 1318, 1358.
Union Benerolent Association Home and Hospital, statistics, 10 ± 2.
Union Biblical Institute, Erangelical Association, statistics, 1046.
Union Biblical Seminary, statistics, 1049.
Union Business College, 1613-1631.
Union Christian College, statistics, 1585,1601 ; statistics, 1046.
Union College of Law (Chicago), statistics, 1051.
Union Female College, 1570-1577.
Union Theologieal Seminary, schedule of lectures 933-934; statistics, 1050.
Union Theological Seminary in the City of New Tork, statistics, 1018.
Uniontown, Pa., statistics of schools and school finances, 1318, 1358.
Union University inaugurates a course in science in 1833, $757-758$; statistics, 1592,1605 ; mediical department of, statistics, 1035; law department, statistics, 1052.
United Presbyterian Theological Seminary of Xenia, Ohio, statistics, 1049.
United States, educational exhibit at Paris Exposition, 129 ; statistical diagram of education, 454.

Universities, in Scotland, 189, 206, 216, 230, and note; in England, 238; in Prussia, 282, 417, 456;-in Austria, 434, 457, 452, 466 ; in Saxony, 452; in Switzerland, 453; in Württemberg, 453; in Norway, 487, 508; in Denmark, 526; professors and students in foreign, 561-572; income of State, 780-i81.
See also Higher education, and cross references thereto appended.
Unirersity and school extension, 207, 247, 827-835, 115y-1161.
University Dental College (Chicago), statistics, 1039.

University Medical College of Kansas City, statistics, 1035.
Unircrsity of Aberdeen, Scotland, 183, 207, 230.
University of Alabama, statistics of, 782,1582, 1600 ; law school of, statistics, 1051.
University of Atlanta, effort to establish a normal school for colored teachers in, 1078.
University of Berlin, course of lectures in faculty of theology, 914 .
Unirersity of Bonn, previous preparation of students, 328; Royal Agricultural Academy in connection with, 1003.
University of Buffalo, department of pharmacy of, statistics, 1040; medical department of, statistics, 1035.
University of California, statistics of, 782, 1582, 1600; organization, 783 ; new building, 795 ; students in graduate department, 1870-1890, 819; medical department of, statistics, 1035; and clinics of, 890; college of dentistry of statistics, 1039; statistics of law department of, 1051.
University of Cambridge, England, fathers university extension, 828.
University of Chicago, founding and organization of, 792-795.
University of Chisistiania, Normay, number of professional students, 365 .
University of Cincinnati, statistics, 1593, 1606; department of dentistry of, statistics, 1039.
Unirersity of Colorado, statistics of, 782, 1583, 1600; organization, 783 ; erects new dormitory, 795 ; medical department of, statistics,

University of Copenhagen, 528, 534, 539.
Unirersity of Denver, dental department of, statistics, 1039, 1583, 1600 ; medical department of, statistics, 103t; college of pharmacy of, statistics, 1040; Haish Manual Training School of, statistics, 1062.
University of Deseret, 1597, 1608.
University of Edinburg, Scotland, 188, 207, 222, 230 (note).
University of Georgia, statistics of, 782, 1583, 1601; organization of, 783; medical department of, statistics, 1031; statistics of the law department of, 1051 .
Uniecrsity of Glasgow, Scotland, statislics, 188, 207, 230 (note).
University of Hanover, various conrses of the Technical, 910-950, 966-967, 970, 993-994.
Unirersity of Illinois, stalistics, 782, 1053, 1584, 1601; organization, 783; new military and assembly building, 795 ; programme of ciril and mechanical engineering courses, 960 , 977: department of biolog. of, 1013-1015.
University of Kansas, statistics of, 782, 1587,1602; organization, 754 ; students in graduate department, 1870-90, 819; school of pharmacy of, statistics, 1040; law school, statistics, 1051.
University of Kiel, statistics of the agricnltural department of, 1002.
University of Königsberg, statistics of agricultural department of, 1002.
University of Louisville, law department, statistics, 1051; medical department, statistics, 1035.

Unirersity of Marrland, dental department of, statistics, 1039 ; faculty of physic, statistics, 1035; scliool of law, statistics, 1051.
University of Michigan, statistics of, 782, 1589, 1603; organization, 781 ; graduate students, 1870-1890, 1819; place of residence of the graduate stutents, 820 ; State in which students in graduate department received degree, 825 : course of pedagogy at, 1015,1016 ; medical department, curriculum of, 906; statistics, 1035; homœopathic medical department, statistics, 1037; college of dental surgery of, statistics, 1039 ; school of pharmacy of, statistics, 1040; law department, statistics, 1052.
University of Minnesota, statistics of, 782, 1589, 1604; organization. 784; erects science hall and museum, chemical and plessical laboratory, hospital, and law bnilding, 796; students in graduate department, $1870-90,819$; College of Medicine, statistics, 1035; Номœopathic Medical Department of, statistics, 1087; College of Dentistry of, statistics, 1039; School of Practical Mechanics, statistics, 1062.
University of Mrississippi, statistics, 782, 1589, 1604; organization, 785 ; erects library building, 796 ; will establish department of pedagogy, 798; department of law, statistics, 1052.

University [of the State] of Missouri. statistics of, 782, 1590, 160t; organization, 785 ; Medical Department of, statistics, 1035; Law Department. statistics, 1052.
University of Nashrille, Medical Department of, statistics, 1036.
University of Nebraska, statistics of, 782, 1591, 1605 ; organization, 785.
University of Nerada, statistics of, 782, 1591, 1605; orģanizalion, 785.
University of North Carolina, statistics of, 782 , 1593. 1606; organization, 785; law school, statistics, 1052.
Unirersity of North Dakota, statistics of, 782, 1593, 1606; organization, 785 .
University of Notre Dame, law department, statistics, 105; statistics, 1585, 1601.
University of Oregon, statistics of, 782, 1594, 1606; organization, 780 ; erects gymnasium, 797 ; medical department of, statistics, 1036; school of law, statistics, 1052.
University of Paris, France, inauguration of the New Sorbonne, 174-182.

University of Pennsylrania, organization, 789; erects library building, 797; laboratory, instruction in the, 894,895 ; statisties, 1595 , 1607; students in graduate department, 1870-90, 819; course preparatory to medicine, 897; medical department, curriculum of, 903-905; medical department of, statistics, 1036; auxiliary department of medicine, statistics, 1038 ; department of dentistry of, statistics, 1039; veterinary department, statistics, 1044 ; law department, statistics, 1052; Towne Scientific School, 1055.
Unirersity of Rochester, $1592,1605$.
University of St. Andrews, Scotland, 207, 216, 217 note, 230 note.
Unirersity of South Carolina, statistics of, 782, 1596, 1607; courses in pedagogy of, 1019; College of Pharmacy of, statistics, 1041; school of law, statistics, 1052.
Cniversity of South Dakota, statistics of, 782, 1596, 1607; organization, 786 .
Unirersity of Southern California, statistics, 1583, 1600; College of Medicine of, statistics, 1034.
University of Tennessee, statistics of, 782, 1597, 1608; organization, 786 ; erects Y. M.' C. A. building, 797 ; programme of civil and mechanicalengineering courses, 960,977 ; course of the "teachers', department," 1018-1019; medical department of, statistics, 1036; dental department of, statistics, 1039.
University of Texas, statistics of, 782, 1597, 1608; organization, 786 ; erects sereral buildings, 797; law department, statistics, 1052.
University of the City of New York, statistics, 1592,1605 ; degrees in pedagogy given by, 1019; medical department of, statistics, 1035; department of law, statistics, 1052 .
Unirersity of the Northwest, organization, 792.
University of the Pacific, 1582, 1600.
Unirersity of the South, statistics, 1597, 1608; theological department of, statistics, 1050.
University of Vermont and State Agricultural College, erects library and other buildings, 797; statistics, 1598, 1608 ; medical department of, statistics, 1036.
Unirersity of Virginia, statistics of, 782, 1598, 1608; organization, 786 ; preparatory course for students of medicine, 897 ; medical department of, statistics, 1036 ; law department, statistics, 1052.
Unirersity of Washington, statistics of, 782, 1598, 1608; organization, 786.
Unirersity of West Virginia, statistics of, 782 , $1598,1609$.
University of Wisconsin, statistics of, 782, 1599, 1609; organization, 787 ; department of pharmacy of, statistics, 1011; college of law, statistics, 1052.
Unirersity of Wooster, 1594, 1606.
Unirersity of Wyoming, organization, 787; statistics of, $782,1590,1609$.
Upper Iowa Unirersity, 1585, 1602.
Upper Peninsula Busiuess College, 1615-1631.
Urbana, Ohio, statistics of schools and school finances, 1318-1358.
Urbana Unirersity, 1594, 1606.
Urechia, M., remarks in international congress, $68,71,84,147,160,161,163,165,167$.
Ursinus College, statistics, 1505,1607 ; theological department of, statistics, 1049.
Ursuline Academy, 15:6-1577.
Uruguay, educational exhibit at Paris Exposition, 131 ; statistics, $556-560,1672-1677$.
U. S. Grant Unirersity, statistics, 1596, 1607; medical department of, statistics, 1036; school of theology, statistics, 1050.
Utah, statistics, common schools, $7-33$; comparatire statistics of enroliment, attendance, teachers, and accommodations in the schools of cities and villages, 607; comparatire financial statistics of city and village systems, C0S; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in, and graduates from public high schools, 615; character of temperance school law, 714 ; summary of statistics of universities and colleges, 701, 763 ; distribution of college

Utah-Continued.
students in regular degree courses from 1836-1890, 775 ; students from, at Johns Hopkins, Harrard, and Michigan unirersities, 820 ; statistics of professional schools, 1027,1029 ; summary of statistics of prirate secondary schools, $1486-1488$; statistics of city school systems of, 1318-1392; summary of statistics of business colleges, 1611; summary of statistics of institutions for the deaf, 1633-1635.
Ctica, N. Y., statistics of schools and school finances, $1318,1358$.
Utica Business College, 1617-1631.
V.

Vachon, Marius, report of, on industrial education in Europe, 978-985.
Valder Business College and Normal School, 1613-1631.
Fallejo, Cal., statistics of schools and school finances, 1318, 1358.
Valley Female College, 1580-1581.
Valparaiso, Ind., statistics of schools and school finances, $1318,1358$.
Vanderbilt University, organization, 789, statistics, 1597, 1608 ; medical department of, statistics, 1036 ; department of dentistry of, statistics, 1039; department of pharmacy of, statistics, 1011; Biblical department of, statistics, 1050; law department, statistics, 105 ?
Vander Rest, E., remarks in internation congress, 84, 147, 167 .
Van Hamel, M., remarks in international congress, 149, 163.
Van Sickle's Practical Bnsiness College, 1618, 1631.
Van Wert, Ohio, statistics of schools and school finances, 1318,1358 .
Vassar Cullege, 1572-1573.
Venezuela, statistics, 556, 560, 1672, 1677.
Vermont,statistics,common schools, 0-33; no State school taxes, 24; comparatire statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 606; comparative financial statistics of cities and villages, systems, 608 ; enrollment and attendance in cities and villages, 613; supervising officers, teachers, property, and expenditure in cities and villages, 614; pupils in, and graduates from public high schools, 615 ; teachers and pupils in public evening schools of cities and villages, 616; passes first compulsory temperance education law, 697; character and enforcement of temperance school law, 713, 724; summary of statistics of universities and colleges, 760,762 ; distribution of college students in regular degree courses from 1886-90, 773; summary of degrees conferred by colleges and universities in, 776; prodactive funds of colleges and universities, 778779; arerage age of freshmen, 1880-90, 800; students from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional schools,1022-1031; degrees conferred by professional schools of, 1033; statistics of reform school, 1070 ; summary of statistics.of private secondary schools, 1486 1488; summary of statistics of business colleges, 1610.
Vermont Reform School, statistics. 1072.
Vermont State Normal Schools, statistics, 1059.
Veterinary medicine, exhibit at Paris Exposition, 116; statistics of schools in Prussia, 100t; in United States. 1021, 1044.
Vicksburg, Miss., statistics of schools and school finances, 1318, 1358.
Vicksburg Commercial School, 1615-1631.
Vienna, Austria, early morement for schools, 422; teachers' salaries, 470 ; statistics of elementary schools of, 1197.
Villanora College, 1505, 1607.
Villanora Monastery, ecclesiastical department of, statistics, 1049 .
Vincennes, Ind., statistics of schools and school finances, 1318, 1358.
Virchow, Dr., on study of classics, 366.

Virginia, statistics, common schools, 6-33; comparative statistics of enrollment, attendance, tcachers, and accommodations, 606; comparative financial statistics of city and village systems, 608; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villages, 614 ; pupils in and graduates from public high schools, 615; teachers and pupils in public evening schools of cities and villages, 616 ; summary of statistics of colleges for women, 747; degrees conferred by colleges for women in, 749 ; suminary of statistics of universities and colleges, 760 , 762 ; distribution of collego students in regular degree courses, 1886-1890, 771; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and universitics, 778-779; average age of freshmen, 1880-1890, 800 ; studerts from, at Johns Hopkins, Harvard, and Michigan universities, 820 ; statistics of professional scliools, 1022-1031; derrees couferred by professional schools of, 1033 ; statistics by race, 1074 ; statistics for schools for the colored race, 1090 ; summary of statistics of private secondary schools, 1486-1483; summary of statistics of business colleges, 1610 ; summary of statistics of schools for the deaf, 1632-1635; summary of statistics of schools for the blind, 1652.
Virginia Agricultural and Mechanical College, programme of civil and mechanical engineering courses, 960,977 ; statistics, 1054.
Virginia City, Nev., statistics of schools and school finances, $1318,1358$.
Virginia Female Institute, 1580-1581.
Virginia Institution for the Education of the Deaf and Dumb and the Blind, 1638-1618, 1655-1660.
Virginia Military Institute, programme of ciril engineering course, 960 ; statistics, 1055.
Virginia State Normal Schools, statistics, 1059, 1086.

Vocal music. See Music.
Voluntary conitribution, income of English elementary schools, statistics, 240.
Voluntary schools, in England, powers of managers, 239 ; statistics, 240 .
W.

Wabash, Ind., statistics of schools and school finances, 1318, 1358.
Wabash College, erects library building, 795 ; statistics, $1585,1601$.
Waco, Tex., statistics of schools and school finances, 1318, 1358.
Waco Female College, 1580-1581.
Waddell, Inspector, extract from report on Scottish schools, 200.
Wake Forest College, 1593, 1606.
Wales. See England.
Walcker, Karl, on the study of languages in secondary schools, 1195.
Walhalla Female College, 1578-1579.
Walla Walla, Wash., statistics of schools and school finances, 1318, 1358.
Wallingford, Conn., statistics of schools and school finances, 1318, 1358.
Walling ford Academy, statistics, 1087.
Wralthal Normal School, statistics, 1057.
Waltham, Mass., statistics of schools and school finances, 1318, 1358.
Walworth's Business and Stenographic College, 1617-1631.
Ward's Seminary for Young Ladies, 1580-1581.
Warren, Ohio, statistics of schools and school finances, $1318,1358$.
Warren, Pa., statistics of schools and school finances, 1318, 1358.
Warren, William F., on shortening college curriculum, 810-812.
Warrensburg, Mo., statistics of schools and school finances, 1318, 1358.
Wartburg College, 1586, 1602.
Wartburg Seminary, statistics, 1046.
Wartburg Seminary of tho Evangelical Lutheran Synod of Iowa and other States, statistics, 1046.

Washburn College, 1587, 1602; erects chapel, 796, W ashburn Seminary, statistics, 1087.
Washingtun, statistics, common schools, 7-33; comparative statistics of enrollment, attendance, teachers, and accommodations in cities and villages, 607 ; enrollment and attendance in cities and villages, 613 ; supervising officers, teachers, property, and expenditure in cities and villagos, 614 ; pupils in and graduates from public liigh schools, 615 ; character of temporance school law, 714; summary of statistics of unirersitics and colleges, 761,763 ; distribution of college students in regular degrec courses from 1886 to 1890,775 ; summary of decreces conferred by colleges and universities in, 776 ; productive funds of colleges and universities, 778-779; arerare age of freshmen, 1880-90, 800; students from, at Johns Hopkins, Harvard, and Michigan unirersities, 820 ; statistics of professional schools, 1032; summary of statistics of private secondary schools, 1486-1488; summary of statistics of busincss colleges, 1611 ; summary of statistics of schools for the deaf, 1633, 1635.

Washington, D. C., statistics of schools and school finances, 1318,1358 ; scale of salaries of teachers, 620.
Washingtou, Ind., statistics of schools and school finances, 1318, 1358.
Waslington, Ia., statistics of schools and school finances, $1318,1358$.
Washington and Jefferson Collcge, 1595, 1607.
Washington and Lee University erects gyinnasium, 798 ; statistics, 1598,1608 ; law department, statistics, 1052 .
Washington College, 1588, 1 G03.
Washington C. H., Ohio, stitistics of scbools and schicol finances, 1318, 1358.
Washington Female Sewinary, 1578-1579.
Washington School for Defective Youth, 16381648.

Washington Training School for Ňurses, statistics, 1042.
Waslington Unirersity, statistics, 1530, 1604; law department, statistics, 1052; polyteclnic school of, statistics, 1055; manual training school of, statistics, 1062.
Waterbury, Conn., statistics of schools and school finances, 1318, 1358.
Waterloo, Iowa, statistics of schools and school finances, 1318, 1358.
Waterloo, N. Y., statistics of schools and school finances, 1318, 1358.
Waterloo Collegiate Institute and Cummercial College, 1614-1631.
Watertown, Mass., statistics of schools and school finances, $1318,1358$.
Watertown, N. Y., statistics of schools and school finances, $1318,1358$.
Waterville, Me., statistics of schools and school finances, $1318,1358$.
Watt Institution and School of Arts, Scotland, described, 205.
Waukegan, Ill., statistics of schools and school finances, 1318, 1358.
Waukesha, Wis., statistics of schools and school finances, $1318,1358$.
Wausain, Wis., statisties of schools and school finances, $1318,1358$.
Wayland Seminary, statistics, 1045, 1088.
Webster, H. E., on shortening the collegc preparatory course, 1134.
Welch Training School, statistics, 1056.
Welldon, J. E. C., on modern studies as mental training, 1135.
Wellesley College, represented at international congress, Paris, 144; statistics, 15i2-1573.
Wellington, Kans., statistics of schools and school finances, $1318,1358$.
Wells Collcge, 1572-1573.
Wells School for Teachers and School for Individual Instruction, statistics, 1060.
Wellston, Ohio, statistics of schools and school finances, $1318,1358$.
Wellsville, Ohio, statistics of schools and school finances, $1318,1358$.
Welton's Commercial College, 1615, 1631.

Wesloyan Church, in England, statistics of schools, $240,241$.
Wesleyan Female College (Ga.), curriculum of, 750; statistics, $1574-1575$.
Weslcyan Female College, (N. C.), 1578-1579.
Wesleyan University organizes department of English language, 798 ; statistics, 1583, 1600.
West Australia, statisties, 1572-1577.
West Bay City, Mich., statistics of schools-and school finances, 1318, 1358.
Test Chester, Pa., statisties of schools and school finances, $1318,1358$.
West Clerelaud, Ohio, statistics of schools and school finances, $1318,1358$.
West Georgia A gricultural and Mechanical College, statistics, 1053.
West Kentucky Classical and Normal College, 15S7. 1602.
West Side Business School, 1613-1631.
West Tennessee Preparatory School, statistics, 1087.

West Virginia, statisties, common schools, 6-33; comparative statistics of enrollment, attendance, teachers, and accommodations in the schools of cities and villages, 606; comparatire financial statistics of city and rillage s5stems, 608; emrollment and attendance in cities and villages, 613; superrising officers, teachers, property, and expenditure in cities and rillages, 614 ; pupils in and graduates from public high schools, 615 ; character of temperance school law, 714; summary of statistics of colleges for tromen, 747; degrees conferred by colleges for women in, 749 ; summary of statistics of unirersities and colleges, 760,762 ; distribution of college stadents in regnlar degree courses from $1856-90,774$; summary of degrees conferred by colleges and universities in, 776; productive funds of colleges and unirersitics, $778-779$; arerage age of freshmen, $1830-90,800$; students from, at Joluns Hoplins, IFarrard, and Mrichigan universities. 820; statistics of professional schools, 1026-1032; statistics by race, 1074; statistics for schools for the colored race, 1030; summary of statistics of secondary schools, 1486-1488; summary of statistics of business colleges, 1610 ; summary of statistics of institutions for the deaf, 1632-1635: summary of statisties of schools for the blind, 1652.
West Virginia College. 1598, 160 s.
West Tirginia Normal and Classical Acalemy, statisties, 1001.
West Virginia schools fur the Deaf and the Blind, 1633-1618; 1655-1660.
West Tirginia State normal schools, statistics, 1059.

West Virginia Universitr, organization, is7; new buildings, 798 ; statistics, 1598,1608 ; law department, statistics, 105%.
Westbrook Commercial College, 1617-1631.
Westbrook Seminary and Female College, 1576$15 i 7$.
Westchester County Institute, 161i-1631.
Westerly, R. I., statistics of schools and school finances, 1318, 1358.
Western Collece, Iowa, erects new building: 796; 1586, 1602.
Western College. Mo., 1590, 1604.
Western Iowa College, 1613-1631.
Western Maryland College, 1588-1603.
Westem New York Institution for Deaf Mutes, 1637-1648.
Westeru Normal Colloge, statistics, 1060.
Western Normal Unirersity, statistics, 1061.
Western Pennsylrania Institution for the Instruction of the Deaf and Dumb, 1638-164s.
Western Pennsylvama Medical College, statistics, 1036.
Western Reserve Business College, 161i-1631.
Western Reserve Normal College, statistics, 1061.
Western Reserre Unirersity, Medical Department of, statistics, 1036 ; founds Cleveland College for Women, 744 .
Western Theological Department of the Reformed (Dutch) Church in America, statistics, 1047.
Western Theological Seminary, Ml., time schedule of, 930 ; statistics, 1045 .

Western Theological Seminars, Pa., statisties, 1049.
Western University of Pennsylvania, 1595, 1607.
Westfield, Mass., statistics of schools and school finances, 1318, 1358.
Westfield College, 1585, 1601.
Westminster College, Mo., 1590, 1604.
Westminster College, Pa., 1595, 1607.
Westminster Theological Seminary, statistics, 1047.

Weymouth, Mass., statisties of schools and school finances, 1318,1358 .
Wheaton College, 1585, 1601.
Wheaton Female Seminars, 1576-1577.
Wheeler, B. J., on humanistic culture, 365.
Wheeling, W. Va., statistics of schools and school finances, 1318, 1358.
Wheeling Business College, 1620-1631.
Wheeling Female College, 1580-1581; curriculum, 704.

Whipple's Home School for the Deaf. 1650-1651.
Whitaker's Shorthand School, 1617-1631.
White, A. D., on Prussian ligher schools, 374.
White, E. E., report on proper adjusthrent of secondary and college curricula, 1118-1193; on compalsory edncation, 1156.
Whitehall, N. T., statisties of schools and school finances, $1318,1358$.
Whitesboro Graded School, 1019-1631.
White Water, Wis., statistics of schools and school finances, 1318, 1358.
Whitman College, 1598.160s.
Whitworth Female College, 1576-1577.
Wichita, Kans., statistics of schools and school finances, $1018,1358$.
Wickersham, James Pyle, obituary notico of, 1313.

Widgery, W. H., report of educational congresses and exhibition, Paris, 41-142; remarks by, in that congress, $80,149,158$; obituary notice of, 1316 .
Wilberforce Universitr, occupation of graduates, 1682: statistics, 1591, 1606; statistics, 1088; theological department of, statistics, 1049 , 1089; preparators department of, stat istics, 10S7; law department, statistics, 1089.
Wilbur School and Home for the Feeble, in Minnesota, 1668-1669.
Wiley University, statistics, 1088, 1597, 1608.
Wilkesbarre, Pa., statistics of schools and school finances. 131s, 1358.
Wilkesbarre Business College, 1619-16.31.
Wilkinsburg, Pa., statistics of schools and school finances, 1318, 1358.
Willaruette University, Melical Department of, statisties. 1036, 1095, 1606; Law Department of, statistics, 1052 .
William and Mary, influence of reign apon Scotch school reforms, 223.
William Jewell Colloge, statistics, 1590, 1604; school of theology in, statistics, 1047.
William II, Emperor of Germany, addresses at Prussian conference, 359-363,389.
Williamsburg Colored A cademy, statistics, 1087.
Williams College, 1553. 1603.
Williamsport, l'a., statistics of schools and school finances, 1318,1358 .
Williamsport Commercial College and School of Shorthand, 1619, 1631.
Williamston Femalo College, 15TS-1579.
Willimantic, Conn., statistics of schools and school finances, 1318. 135 s.
Williss College of Shorthand, $1618,1631$.
Wilmington, Del., scale of salaries of teachers, 620; statistics of sehools and school finances, $1318,1378$.
Wilmington College, 1594, 1606.
Wilmot Business and Shorthand College, 1620-1631.
Wilson, Rer. J. M., letter to international congress, 134.

Wilson College, 15T8-1579.
Wilson Collegiate Institute, 1578-1579.
Winchell, Alexander. obituary notice of, 1313.
Winchester, Va., statistics of schools and school finances, 1318,1358 .
Winchester Female College, 1574-1575.
Winfield, Kans., statisties of schools and school finances, 1318.1358.
Winona, Minn., statistics of schools and school finances, 1318, 1358.

Winona Business College, 1615, 1631.
Winsted, Conn., statistics of schools and school finances, 1318, 1358 .
Winston, N. C., statistics of schools and school finances, 1318, 1358.
Winthrop Training Schoolfor Teachers, statistics, 1058.

Wisconsin, statistics, common schools, $7-33$; relative decrease in cnrollment, 9 ; comparative statistics of enrollment, attendance, teachers, and accommodations in the scliools of cities and rillages, 607; comparative financial statistics of city and rillage systems, 608; enrollment and attendance in cities and rillages, 613; supervising officers, teachers, property, and expenditurcs in cities and villages, 614; pupils in, and graduates, from public high schools, 615 ; teachers and pupils in public erening schools of cities and villages. 616; character of temperance school law, 714 ; summary of statistics of colleges for women, 717; degrees conferred by colleges for women in, 749; summary of statistics of unirersities and colleges, 761 , 762; distribution of college students in regular degree courses from 1856-30, 775; summary of degrees confcrred by coilcges and universities in, 776; productive funds of colleges and universities, 778-779; arerage age of freshmen, 1830-90, 800; students from, at Johns Hopkins, Harrard, and Michigan universities, 820 ; statistics of professional schools, 1023-1032; degrecs conferred by professional schools in, 1033; statistics of rcform schools, 1070; summary of statistics of private secondary schools, 1486-1488; summary of statistics of businoss colleges, 1610; summary of statistics of schools for the education of the deaf, 16331635 ; summary of statistics of schools for the blind, 1653.
Wisconsin Industrial School for Girls, statistics, 1072.

Wisconsin School for the Blind, 1655, 1660.
Wisconsin School for the Dcaf, 1638, 1648.
Wisconsin State normal schools, 1059.
Wittenberg Coilege, statistics, 1594, 1606; theological department of, statistics, 1049 .
Woburn, Mass., statistics of schools and school finances, 1318, 1358.
Wofford College, 1596, 1607.
Woman's Christian Temperance Union, activity and course of study of, for scientific temperance instruction, 695-706, 739-742.
Woman's College of Baltimore, foundation and coursé of studr. 744; statistics, 1572-1573.
Woman's Hospital Medical College of Chicago, statistics, 1034.
Woman's Medical Collcge of Baltimore, statistics, 1035.

Woman's Medical College of Cincinnati, statistics, 1036.

Woman's Jedical College of Georgia, statistics, 1034.

Woman's Medical College of Pennsylrania, statistics, 1036.
Woman's Mcdical College of the New York Infirmary, statistics, 1035 .
Women, employment as teachers and inspectors, 55-58, 1182-1183; in France, admitted to institutions for higher education, 260, and statistics, 102; excluded from institutions for higher education in Germany, 282, 285; schools for, in Saxony, 305; attendance in universities in Austria, 467; in Norway, admitted to university, 509 ; in Denmark, 535; characteristics of, in the London slums, 579; higher education for, 743-754; statistics, 1572-1581.
See also Higher education and Coëducation.

Woodbine Normal Schock, statistics, 1056
Woodbury's Business College, 1612, 1631.
Wood-carving as a study in the public schools of cities, 1352-1356.
Wood's Business College, 1619, 1631.
Wood-work as a study in city systems of public schools, 1351-1357.
Woonsocket, R. I., statistics of schools and school finances, 1318, 1358.
Wooster, Ohio, statistics of schools and school finances, $1318,1358$.
Wooster Unirersity, medical department of, statistics, 1036.
Worcester, Mass., scale of teachers' salaries, 627; statistics of schools and school finances, 1318, 1858.
Worcester City Hospital Training School, statistics, 1042.
Worcester Polytechnic Institute, programme of ciril and mechanical engineering courses, 960, 977; statistics, 1055.
Worcester Select School of Shorthand and Typewriting, 1615-1631.
Worcester 'Truant School, statistics, 1071.
Wright's Business College, 1617-1631.
Württemberg, programmes of higher schools, 412, 413 ; statistical summary of education, $453-$ 451.

Wurtz, A., on the curriculum of a medical school, 881-882.
Wrekoft"s Phonographic Institute, 1617-1631.
Wyoming, statistics, common schools, 7-33; proportion of population in schools, 11 ; com. parative statistics of enrollment, attend. ance, teachers, and accommodations, 607; summary of statistics of universities and colleges, 761,763 ; character of temperance school law, 714; summary of statistics of private secondary schools, 1486-1488.

X.

Xcnia, Ohio, statistics of schools and school finances, $1318,1358$.

Y.

Yale University, organization, 788; erects recitation rooms and new library, 795 ; curriculum of, in 1825 and 1891, 801 ; students in graduate department, 815-819; statistics, 1583, 1600; medical department of, statistics, 1034; theological department of, statistics, 1045 ; statistics of law department, 1050; Shefield Scientific School, statistics, 1053.
Yankton College, 1596, 1607.
Year, school. See Term.
Tonkers, N. Y., scale of teachers' salaries, 639; statistics of schools and school finances, 1318, 1358.
Fork, Pa., statistics of schools and school finances, 1318, 1358.
York College of Commerce, 1616-1631.
Young Female College, 1574-1575.
Youngstown, Ohio, statistics of schools and school minances, 1318, 1358.
Ipsilanti, Mich., statistics of schools and school finances, 1318, 1358.
Z.

Zancsrille, Ohio, statistics of schools and school finances, 1318, 1338.
Zanesrille Business College, 1618-1631.
Zarncke, Fr., on classical instruction as a preparation for professional study, 883, note.
Zeller, Dr., on language instruction, 376.

[^0]: ${ }^{1}$ The data relating to country schools were obtained by subtracting the items in Tables 8 and 9 from the corresponding ones in Tables 1 to 15, chapter 1, Part 1.

[^1]: ${ }^{1}$ In the preparation of these summaries omissions and deficiencies in the returns of individual cities were supplied from the best sources available. If no accurate information couid be had in any particular case, an estimate based upon the ratios developed in the other cities of the same State was used unless it appeared that the conditions were essentially different in the city for which precise data were lacking.
 Blanks in the tables indicate that the number of cities which reported the item was not suf-
 ficient to justify an assumption of approximate correctness in an estimate for the deficiency.

[^2]:
 Second year's service
 Third year's service

 Pupil teachers
 Teachers holding certificates of the first grade are entitled to $\$ 25$ additional to the above rates, but teachers without experience do not receive this additional amount until the second year's service. After four years' continued service for every three years further service an additional $\$ 25$ may be granted to teachers holding either grade of certificate.

 Substitute teachers receive $\$ 2$ per day, but if the salary of the absent teacher is less than that sum the substitute receives the per diem of the absentee.

[^3]: α Assistant teachers in primary grades are paid $\$ 450$ for their third year, and $\$ \sim 03$ for their fourth and subsequent years.

[^4]: a See Table 12, p. 665, for number of teachers of each rank, and Table 13, p. 667, for numbcr receiving each amount.
 b For rule of classification, see footnote c, p. 662.

[^5]: a See Tables 9,10 , and 11, pp. 652-665, for schedules of salaries for corresponding dates.
 b Data not available.
 c The principal of the Normal School is also principal of the High School.
 d German department discontinued.

[^6]: e Salary proportioned to the numbor of divislons taught.
 f per evening
 g Data notavailable.
 cThere is also one special teacher of German
 who receives id a week for' three hours' actual service per woek.
 d Per week.
 a Junior masters rank as masters after thirteen
 y yhis grade will be discontinued when the in-

 ## cumpents retire.

[^7]: a Males elected to places provided for females.

[^8]: b Men elected to positions provided for women.
 c From 1870 to 1875 , inclusive, one female assistant at $\$ 800$ was assigned to each large school.
 a This schedule was adopted in 1866.
 b Men eln

[^9]: ${ }^{1}$ It is proper to say that Mrs. Hunt kindly undertook the revision of the proofs of this historical sketch.

[^10]: ${ }^{1}$ In schools having seven years below the high school, more time per year should be given to the study, so as tn complete Lessons in Hygiene during the seventh year. If there are only six years below the high school, enough time should be given to complete "Hygiene for Young People" during the fifth year, as well as Lessons in Hygiene during the sixth year.
 ${ }^{2}$ Schools having seven years below the high school can complete "Lessons in Hygiene" during the serenth year. Those haring six years below the high school can, in addition, complete "Young People's Physiology" during the sixth year.

[^11]: First, second, and third year.-"Physiology for Little Folks," in hands of teacher for oral instruction. Lessons three times per week. Facts drawn from text-book.

 Fourth year.-"Physiology for Little Folks," in hands of pupils. Recitations three times per week until book is completed.
 Fifth yerr.-"Physiology for Boys and Girls," in hands of pupils. Recitations three times per week until first half of book is completed.

 Sixth year.-"Physiology for Boys and Girls," in hands of pupils. Recitations three times per week until last half of book is completed, reviewing from first chapter.

 Seventh year.-"Young Folks'•Physiology," in hands of pupils. Recitations three times per week until first half of book is completed,
 ${ }^{1}$ Schools having six years below the high school can complete "Number Three" of the Union series during the sixth year.

[^12]: ${ }^{1}$ Where there are pupils of high-school grade in ungraded schools, they should have a highschool text-book, either Steele's "Hygienic Physiology," or "Outlines of Anatomy, Physiology and Hygiene," by Roger S. Tracy, M. D., or "The Human Body and the Effects of Narcotics," by H. Newell Martin, м. D.

[^13]: ${ }^{1}$ This topical outline has been furnished by Mrs. Hunt in advance of publication.

[^14]: 1 Three lessons per week for fourteen weeks is specified, instead of one lesson per week for forty weeks, or two lessons per week for twenty-one weeks, because when the lessons come farther apart the pupils forget the last before they reach the next; the subject as a whole does not become so readily a part of the intelligence; more time has to be taken in reviewing the last lesson before taking up the new; the pupils interest is not so well sustained, nor proficiency so easily acquired, as when the lessons are given in closer succession.
 2 Without well-authenticated text-books in the hands of pupils, error is as liable to be taught as truth, for teachers have rarely received even a brief course of instruction in the subject, and their knowleege of the same is therefore made up of as much folklore as fact. Much time is also liable te be wasted over matters that are entirely irrelevant, such as the legal or political phases of the temperance question, whenever the text-book is not followed.
 ${ }_{3}$ Teacher's will be more thorough in teaching a subject in which the pupils, and hence their faithfulness in teaching it, are put to a test. The pupils will also study a subject more faithfully when they know that their standing or promotion depends upon their ability to pass an examination in it.

[^15]: a Amended 1886.

[^16]: ${ }^{1}$ The Massachusetts act of 1885 provides that "physiology and hygiene, which, in both divisions of the subject, shall include special instruction as to the effects of alcoholic drinks, stimulants, and narcotics on the human system, shall be taught as a regular branch of study to all pupils in all schools supported wholly or in part by public money, except special schoo:s maintained solely for instruction in particular branches, such as drawing, mechanics, art, and like studies. All acts or parts of acts relating to the qualifications of teachers in the public schools shall apply to the branch of study prescribed in this act, and all penalties now fixed for neglect to provide instruction in the branches of study now prescribed by law shall apply to this branch of study."

[^17]: ${ }^{1}$ On the settlement of the Fayerweather estate, New York, Barnard will receive a fund of $\$ 100,000$.
 ${ }_{2}$ Annual catalogue, 1890.

[^18]: ${ }^{1}$ North American Review, vol, 136, p. 28.

[^19]: ${ }^{1}$ See table of statistics of colleges for women.

[^20]: ${ }^{1}$ The figures here used were taken from the Report of the Commissioner of Education for 1885-86, when the total number of colleges and universities was 345 .

[^21]: VII.-Diagram showing the distribution of regular college students among the sereral geographical divisions.

[^22]: It is controlled by-
 Governor of State.
 President of State Agricultural Society. $\}$ Ex officio.
 State superintendent of public instruction.
 9 trustees appointed by governor and confirmed by senate.

[^23]: III. Normal Department.
 IV. Music and Art Department.

 It is governed by a board of regents consisting of 7 members, who are appointed by the gov-
 ornor and confirmed by the senate.

[^24]: ${ }^{1}$ This state of affairs has since been changed，and the medical department now enjoys the benefits of the reorganization of the university．

[^25]: 1 This includes, of course, only those students who entered as freshmen and completed the course in three years.

[^26]: 1 The chlef blame for this condition in our country rests with the legislatures of the sereral States which grant these powers to institutions without defining the qualifications to be demanded for the attainment of degrees.

[^27]: ${ }^{1}$ For value of fellowshins. see Annual Redort for 1888-89. pp. 649-554.

[^28]: ${ }^{1}$ Prepared by Mr. Wellford Addis, of the Bureau, specialist in professional education.

[^29]: For every 100,000 inhabitants in Germany
 There were in 1881
 Latr.
 $\cdot 11$
 $\begin{array}{cc}\text { Medicine. } & \text { Theology. } \\ 8 & 6\end{array}$
 1880 13
 18
 12

[^30]: —— Medicine, 6455 students, including candidates for the officiat santé in 1888. Law, 5152 students, including candidates for the certificat de capacite in 1888. Protestant Theelogy, 101 stadents in 1888.

[^31]: Students in 1890, 7013, of whom 19 per cent. graduated in 1890 against 16 per cent. in 1881.

[^32]: —— Students, 2229 in 1888.
 -.-.-.-. Graduates.-Pharmacists of the 2 d class.

[^33]: a The total number of students (188) possessing a degree at time of matriculation is taken from president's report, 1890
 b No answel.
 c Average per cent.
 These figures show a slight increase during the six years; but, if the institutions making no answer could have been included, a decrease might hav ; resulted, which would have tended to confirm the average for the 65 schools which furnished definite reports for 1886-87.

[^34]: ${ }^{1}$ Dean of the Paris Faculty of medicine from 1856 to 1874 , member of the institute, professor of chemistry at the Sorbonne, senator of France, etc., etc.

[^35]: ${ }^{1}$ To the same effect Dr. Zarncke, professor of modern languages and literature, when dean of the faculty of philosophy of the Unirersity of Leipzig, says:. There is asecond view, which I call the pedagogic view. There is no better means of training the mind than the thinking and observing that the study of the classic languages necessitates. There is something mysterious in this result, and still an experience of many Jears has confirmed it. I am a member of two examining boards, one of which examines young men who have received their training in a gymnasium on a classical basis, while the other Joung men are without this foundation. The latter are rery often superior to the former in information (Kenntnissen), but when mental maturity is tested by Written Work the graduates of the gymnasium surpass those of other schools to such a degree that a comparison can scarcely be instituted.

[^36]: ${ }^{1}$ This school, with great propriety, classes dissections as laboratory work. Other schools, seemingly with less propriety, also class the witnessing an autopsy as laboratory work, considering it as a part of the work of the pathological laboratory. It would be scarcely permissible to call a "didactic" lecture on chemistry, illustrated by experiments, a laboratory exercise. In both the autopsy and the chemical lecture the stndent-is a spectator and listener, not an active agent. At Harrard, howerer, and at the Bellerue College, the student is called upon by turns to make an autopsy.

[^37]: All students not occupied during the above hours dissect from 12 to 2 daily, and from 9 to 11 Friday.

[^38]: ${ }^{1}$ It will be noticed that the department of biology of the Illinois State University (p. 1013) has a special course preparatory to medicine.

[^39]: Boston insane Asylum; Wo = Free Hospital for women
 These abbreviations refer to the following as well as to the above tables.

[^40]: e In second half-y ear in sections.
 f Each half of the class on alternate weeks till February.

[^41]: e For half the class.
 $f:$ Each half of the class on alternate weeks
 g In sections.

[^42]: a Each dissection requires ten weeks of afternoon mork in the anatomical laboratory. There are two sections yearly, beginning in October and in January. Students may complete one dissection in their first year, and must complete the work by the end of the second year.
 b Laboratory work, the same as in the first semester.
 c Hours required, same as in the first semester.
 d. Hours required, same as in the first semester.

[^43]: c Diseases and injuries of genito-urin ary organs, syphilis, and many otber affections, not mentioned above, are demonstrated in the ampaitheater a nd wards of the Charity Hospital. d Surgical diseases of women are taught in the waris and amphitheater of the Charity Hospital.

[^44]: ${ }^{1}$ The following letter admirably illustrates the above remarks:

[^45]: ${ }^{1}$ The Union Theological Seminary of New York City has a museum of this kind, as perhaps have other American seminaries.

[^46]: 1 This College consists of two departments, the preparatory and the collegiate. The preparatory consists of Grades D, C, B, and A, and the colle riate consists of first collegiate, second collegiate, junior and senior classes. No C grade this year.

[^47]: ${ }^{1}$ Chair of Pastoral Theology, Church Polity, and Mission Work.
 ${ }_{2}^{2}$ Associate Professor in Department of Biblical Philology.
 ${ }^{3}$ Chair of Sacred Literature.
 ${ }^{4}$ Chair of Hebrew and Cognate Languages.
 5 Chair of Church History.
 ${ }_{6}^{6}$ Chair of Systematic Theology.
 ${ }^{7}$ President and Chair of Sacred Lhetoric.

[^48]: ${ }^{1}$ In order that the main outlines of the curriculum may be presented clearly, some of the briefer courses, which occupy only a fraction of a session, and the exercises in elocution are not noted in this scheme.
 ${ }^{2}$ For half the session this hour is given to homiletics; but throughout the whole session exercises are given in analyzing texts and constructing sermons.
 ${ }^{3}$ This hour is given to canon law during the latter part of the session.

[^49]: ${ }^{1}$ The programme is prefaced by the following statement as to admission:
 Nemo in Seminarium admittetur nisi studia ad classes optatas præparatoria jam sufficienter excoluerit, quod per examen constare debebit. Ante omnia autem literas testimoniales ab Instituto cui forte fuerit adscriptus, necnon a proprio parocho vel alio superiore ecclesiastico secum portare tenebitur.

[^50]: ${ }^{2}$ As, for instance, at the Chicago Theological Seminary, where the professor of church history conducts a "Historical Society" in which he reads with the students of all classes who may desire it selections from patristic worlss, e. g. First Apology of Justin Martyr.

[^51]: ${ }^{1}$ Worcester $v s$. State of Georgia, 6 Peters. The Rev. Samuel A. Worcester, having been seized Thile performing, under the sanction of the chief magistrate, the duties of a minister of the gospel among the Cherokees, and having been condemned for thereby violating as an intruder a law of Georgia, to four years; hard labor, appealed to the Supreme Court of the United States, which declared the Cherokees a nation, over which Georgia had no control, Chief Justice Marshall delivering the opinion.

[^52]: ${ }^{1}$ At a recent meeting the Association of Colleges in New England "invited the attention of the public "to the advisability of making the following change in the programme of the New England grammar schools:
 "2. The introduction of elementary physics into the later years of the programme as a substantial subject to be taught by the experimental or laboratory method and to include exact weighing and measuring by the pupils themselves."
 ${ }_{2}$ Discussions on technical education at the Washington meeting of the American Institute of Mining Engineers, and at a joint meeting of the American Society of Civil Engineers and the American Institute of Mining Engineers.

[^53]: ${ }^{1}$ This arrangement, especially as relating to the diplomas granted on the completion of the courses of the Lycee, was somewhat moditied by the decree of August, 1890.
 ${ }^{2}$ Revue Scientifique, 1 st vol. of 1887 , p. 784.

[^54]: ${ }^{1}$ History of ways of transportation, technical and commercial management of lines of transportation, etc.
 ${ }^{2}$ This was somewhat modified in 1890.

[^55]: during spring term.

[^56]: First term.-Analytical geometry (4 hours), descriptive geometry (3 hours), German (4 hours), qualitative analysis and mineralogy (2 hours), physics (1 hour), free drawing (2 hours), mechanical drawing (6 hours), practice (10 hours).
 Second term.-Calculus (6 hours), German (4 hours), qualitative analysis and mineralogy (2 hours), metallurgy (1 hour), applied physics (1 hour), physical laboratory (2 hours), steam engineering (2 hours), free drawing (2 hours), mechanical drawing (4 hours), practice (10 hours), additional summer practice (168 hours).

[^57]: Descriptive geometry, calculus, general physics, general chemistry, kinematics, construction of machines, applied hygiene, and natural history; mineralogy and geology, architecture, botany (especially the common plants of France), Zoölogy (especially the common animals of France), industrial drawing.

[^58]: ${ }^{1}$ Upon the conditions of affairs in Germany. Austria, Belgium, Switzerland, Italy, Russia, Denmark, Sweden and Norway, and England. National Printing Office, Paris, 1885-90.

[^59]: ${ }^{1}$ What we would call industrial or technical the author calls "special professional school." which are treated of further on.

[^60]: ${ }^{1}$ The remaining part of M. Vachon's report is given in abstract.

[^61]: History of architecture, lectures, fall term; three times a week; winter, twice. Designing, fall and winter terms; lectures, twice a week; lectures and drawing, seven and a half hours a week. Spring term, lectures, twice a week; drawing, four hours additional; drawing and library work, each term, twelve hours per week. Heating, etc., lectures, fall term, three times a week. Stereotomy, lectures, winter term, twice a week, and six hours a week drawing and modelling. Professional practice, spring term, lectures.

[^62]: ${ }^{1}$ This will be understood though not mentioned in the case of each university that folloys

[^63]: a Does not include preparatory school pupils, now 66 Ackerbauschulen pupils, nor 17 winter school pupils, nor 23 pupils in a rery mixed school which is joined with one of these agricultural colleges.

[^64]: a Does not include the endowment of the Bussey Institute which will be "very large."
 b Half of biennial appropriation.
 c Estimated at 6 per cent.
 d Unsold lands.
 e From all sources.

[^65]: Briefly and in general terms please favor us with any oplnion or other information you may have to impart in answer to the following questions:

 1. Assuming merely for convenience in putting the inquiry, that it is highly desirable to separate those more deeply tainted with vice and crime from the other inmates of the institution:
 (a) Do you consider that the cottage system answers this purpose, and does the segregation of the more vicious amount to very much the same thing as a classification of all the pupils by age?
 (b) What charges at your schooi in respect to the classification of pupils and the adoption of the "cottage system" during the last decade?
[^66]: ${ }^{1}$ In January, 1892, the main building of Straight University, New Orleans, La., was consumed by fire. Fortunately, howerer, the property was adequately insured, and a larger structure : now being erected in its stead.

[^67]: ${ }^{1}$ Read before the department of superintendence (Nat. Ed. Ass.) at Brooklyn, February $16,1802$.

[^68]: ${ }^{1}$ The other extracts upon this subject given in this connection were compiled by Mr. Sheldou in illustration of his argument in the New Englander. Most of them appeared originally in the New York Tribune in reply to Mr. Carnegie's assertion.

[^69]: ${ }^{1}$ Quoted by John A. Mooney in the Educational Review, as are Dr. Becker and Hon. E. F. Dunne, further on.
 ${ }_{2}$ Education: To Whom Does it Belong? p. 12.

[^70]: ${ }^{1}$ Translated from "Paedagogium" (Vienna).

[^71]: ${ }^{1}$ Prussia has about 300 classical high schools gymnasia.

[^72]: ${ }^{1}$ This is true of a few, not of many schools.

[^73]: ${ }^{1}$ Often the information furnished the Office comes too late for insertion in the current report. Most of the persons named were correspondents of this Bureai.

[^74]: * Statistics of 1888-89.
 a Estimated.
 b This includes the entire town.

[^75]: * Statistics of 1888-89.

[^76]: c This report includes the entire town.

[^77]: *Statistics of 1888-89

[^78]: a The small average daily attendance as compared with the total enrollment is due to the rapid growth of the city and of the schools.

[^79]: * Statistics of 1888-89.
 \dagger For expenses of evening schools, see p. 1358 et seq., Table 4, column 16. a White pupils. δ Colored pupils.
 c One school was in session 57 evenings and another 27 evenings.

[^80]: a Including five evening drawing schools.
 b Average number.
 c The five schools were in session $132,67,34,83$, and 106 erenings, respectively.

[^81]: * Statistics of 1888-89.
 a The teachers receive no extra compensation for evening-school work; no separate record is kept.
 δ The schools for boys were open 39 evenings ; for girls, 20.
 c Estimated.

[^82]: c County and township taxes are included in column 5.
 \dot{a} Receipts from county taxes are included in column 5.

[^83]: * Statistics of 1888-89.
 a Estimated.
 b Overdraft, $\$ 11,058$.
 c Real estate only.

[^84]: Receipts of county taxes are included in column No. 5.

[^85]: *Statistics of 1883-89.
 b Succeeded by Martha E. Chase.
 a Succeeded by Horace H. Epes, A. m. c Succeeded by Rev. P. S. Twitty.

[^86]: * Statistics of 1888-89.
 $\approx \$ 10$ to nonresidents: free to residents of the State
 $\delta \$ 15$ to nonresidents; free to residents of the State.

[^87]: * Statistics of 1888-89.
 a Includes apparatus and librariea.

[^88]: a Three for the termeof one Congress.
 b One by the Presiuent of the Senate; one by the Speaker of the House of
 Representatives, and eight by the corporation of the institution.

[^89]: b From United States.
 c Exclusive of improvements and real estate.

[^90]: *Statistics of 1888-89. $\quad a$ includes the blind department. $\quad 6$ For State beneficiaries.

