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Abstract 

Growth mixture models (GMMs) are applied to intervention studies with repeated measures to 

explore heterogeneity in the intervention effect. However, traditional GMMs are known to be 

difficult to estimate, especially at sample sizes common in single-center interventions. Common 

strategies to coerce GMMs to converge involve post-hoc adjustments to the model, particularly 

constraining covariance parameters to equality across classes. Methodological studies have 

shown that although convergence is improved with post-hoc adjustments, they embed additional 

tenuous assumptions into the model that can adversely impact key aspects of the model such 

as number of classes extracted and the estimated growth trajectories in each class. To facilitate 

convergence without post-hoc adjustments, this paper reviews the recent literature on 

covariance pattern mixture models, which approach GMMs from a marginal modeling tradition 

rather than the random effect modeling tradition used by traditional GMMs. We discuss how the 

marginal modeling tradition can avoid complexities in estimation encountered by GMMs that 

feature random effects and we use data from a lifestyle intervention for increasing insulin 

sensitivity (a risk factor for type 2 diabetes) among 90 Latino adolescents with obesity to 

demonstrate our point. Specifically, GMMs featuring random effects – even with post-hoc 

adjustments – fail to converge due to estimation errors whereas covariance pattern mixture 

models following the marginal model tradition encounter no issues with estimation while 

maintaining the ability to answer all the research questions.  
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Facilitating Growth Mixture Model Convergence in Preventive Interventions 

 Intervention studies that include repeated measures collected at more than two time 

points present the opportunity to assess the trajectory of effects over time. When modeling the 

trajectory of intervention effects, it is also important to consider possible heterogeneity because 

the intervention may not necessarily be equally beneficial for all participants in the study (Imai & 

Ratkovic, 2003; Jo, Wang, & Ialongo, 2009). Subgroup analysis is one method by which such 

heterogeneity is tested; however, there have been criticisms of this method in that such 

analyses are often underpowered and that only subgroup memberships collected in the study 

are able to be tested (Cook, Gebski, & Keech, 2004; Pocock, Assmann, Enos, & Kasen, 2002).  

An alternative exploratory method to examine such heterogeneity in repeated measures 

data is growth mixture models (GMMs; Muthén & Shedden, 1999; Verbeke & Lesaffre, 1996), 

which combine latent class analysis with growth models such that discrete latent groups of 

growth trajectories are identified. Muthén et al. (2002) demonstrated that GMMs can be applied 

to randomized interventions to explore response heterogeneity. Using this approach, analyses 

on the extracted latent groups of growth trajectories can illuminate which variables differentiate 

efficacy within subgroups or optimize intervention effects for specific populations (e.g., Petras & 

Masyn, 2010; Vermunt, 2010). The promise of this approach is alluring, but one barrier to 

implementation is the complexity of estimating GMMs (e.g., Jung & Wickrama, 2008). For 

instance, Kim (2012) noted that the sample size requirements for obtaining trustworthy 

estimates can exceed 1,000 in routine situations. Furthermore, McNeish and Harring (2020) 

simulated data in accordance with a PTSD meta-analysis and found that convergence was 

achieved in less than 15% of replications with a sample size of 500.  

For most single-center interventions, the costs and logistics of conducting randomized 

trials with repeated measures preclude enrolling sample sizes that approach four digits, which 

may prohibit modeling heterogeneity in intervention trajectories. For instance, Winkley, Landau, 

Eisler, & Ismail (2006) reviewed randomized intervention studies with repeated measures for 
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children, adolescents, and adults with Type 1 diabetes and found that 86% (25/29) of these 

studies had sample sizes below 100 (range = 14 to 301). As another example, Northouse, 

Katapodi, Song, Zhang, & Wood (2010) found a median sample size of 91 (range = 14 to 329) 

among 29 randomized intervention studies with repeated measures which aimed to improve the 

well-being of cancer patient caregivers. As a last example, Firth, Torous, Nicholas, Carney, 

Rosenbaum, & Sarris (2017) reviewed nine studies on the effectiveness of smartphone 

interventions on anxiety over time and found that 44% (4/9) had samples below 100 with a 

median of 114.  

With the typical sample sizes in intervention studies, especially those involving 

underrepresented groups or hard-to-reach populations, nonconvergence issues are a realistic 

possibility – if not a probability – when fitting GMMs to assess heterogeneity in intervention 

trajectories. When these issues are encountered, a common strategy to coerce convergence is 

post-hoc adjustments to the model (Infurna & Jayawickreme, 2019). Constraining covariance 

parameters across different latent classes is a particular salient example of this strategy (e.g., 

Wickrama et al., 2016). The popularity of this method has contributed to it being the default 

method in Mplus software (Infurna & Grimm, 2018) despite the method often being criticized in 

the methodological literature (Bauer & Curran, 2003; Diallo et al., 2016; Gilthorpe et al., 2014; 

Heggeseth & Jewell, 2013; Infurna & Luthar, 2016; Kooken et al., 2019). 

The aim of this paper is to demonstrate an alternative approach for modeling 

heterogeneity in intervention trajectories in the likely case that sample sizes are modest. 

McNeish and Harring (2020) advanced the covariance pattern growth mixture model (CPGMM) 

that blends latent class analysis with covariance pattern models (Jennrich & Schluchter, 1986) 

from the marginal growth modeling tradition popular in biostatistics. The CPGMM is similar to 

the traditional GMM except that it does not include random effects, which facilitates estimation 

at smaller sample sizes with better statistical properties to avoid post-hoc model alterations.  

In this paper, we first outline the differences between marginal and random effects 

traditions to growth modeling. Though both are well-known in the biostatistics community, the 
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random effects tradition is used almost exclusively in psychology-adjacent areas and knowledge 

of marginal models are less widespread (Huang, 2017; McNeish, Stapleton, & Silverman, 2017). 

We then discuss how traditional GMMs combine the random effects tradition with latent class 

analysis, but that this approach is not the only method by which heterogeneity in growth 

trajectories can be modeled. We note that little work has been conducted to similarly combine 

latent class analysis with the marginal growth modeling tradition, despite potential advantages it 

may hold over models following the random effects tradition. We describe a motivating dataset 

interested is assessing the effect of a lifestyle intervention on increasing insulin sensitivity (a risk 

factor for type 2 diabetes) among 90 Latino adolescents with obesity. We demonstrate the 

difficulties that are encountered if trying to estimate the model with GMMs. We then show how 

CPGMMs from the marginal growth modeling tradition do not encounter any difficulties with this 

data; thereby, providing a less computationally demanding way to assess heterogeneity in 

growth trajectories to a broader array of contexts and research disciplines where large sample 

sizes are rarely feasible.    

Marginal vs. Random Effects Traditions for Growth Modeling 

A prevailing difficulty in growth modeling is that the data violate the traditional 

independence assumption because the same people are repeatedly measured (Hedeker & 

Gibbons, 2006). That is, the residuals of the repeatedly measured outcome from the same 

person are more related to each other than they are to residuals from a different person. Any 

model for repeated measures data must therefore be able to account for the non-zero 

covariance between residuals from the same person for inferences to be valid (Diggle, 

Heagerty, Liang, & Zeger, 2002). There are multiple ways to accomplish this, which has led to 

the age-old debate in biostatistics about subject-specific growth versus population-averaged 

growth (Zeger, Liang, & Albert, 1988). Many pedagogical papers have been written to guide 

researchers through the differences (Burton, Gurrin, & Sly, 1998; Hanley, Negassa, Edwardes, 

& Forrester, 2003; Hubbard et al., 2010). From a modeling perspective, subject-specific growth 

is associated with random effects models whereas population-averaged growth is associated 
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with marginal models.  

The defining characteristic of random effects models (a.k.a. mixed effect models, 

multilevel models; Laird & Ware, 1982) is that a unique growth trajectory is formed for each 

person. The presence of person-specific growth trajectories partitions the covariance in 

residuals from the same person into two sources: the portion attributable to differences between 

people and the portion attributable to differences within people (Curran, Obeidat, & Losardo, 

2010). Between-person sources capture heterogeneity in the regression coefficients defining the 

growth trajectory and within-person sources capture the variability in the observed data around 

the person-specific trajectory. These two sources are estimated separately but are combined to 

pattern the overall covariance matrix of the repeated measures (Jennrich & Schluchter, 1986). 

In a random effects model, the different portions of the covariance are theoretically interesting 

and are on equal ground to the regression coefficients that describe changes in the mean over 

time (Gardiner, Luo, & Roman 2009).  

On the other hand, marginal models do not provide unique growth trajectories for each 

person in the data. Instead, they acknowledge the covariance among residuals by directly 

estimating elements of the covariance matrix for the repeated measures separately from the 

regression coefficients (i.e., there is no between-person variability in regression coefficients). 

So, whereas random effect models estimate between-person variability in regression 

coefficients to pattern the covariance matrix of the repeated measures, marginal models 

separate the estimation into different steps. The result is that covariance is not partitioned into 

between-person and within-person sources with marginal models. Rather, marginal models 

estimate the average growth trajectory across the sample (conditional on relevant covariates) 

while directly estimating the covariance between the residuals. The marginal approach does not 

provide person-specific growth trajectories; however, the absence of random effects makes 

estimation simpler while requiring fewer assumptions. Parameter estimates and their standard 

errors account for the covariance of the residuals, but this covariance is not a focus and is 

treated more as a nuisance to accommodate in order to obtain valid inferences.  
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More Formal Comparison 

 To make the distinction more concrete statistically, consider the standard random effect 

growth model using mixed effect notation from Laird and Ware (1982) in Equation 1,  

 
i i i i i= + +y Xβ Zb ε   (1) 

The equation shows that the vector of repeated measures for person i ( iy ) is equal to a design 

matrix containing person i’s data values for covariates (
iX ) multiplied by a vector of fixed effect 

coefficients (β ) plus a design matrix for the random effects (
iZ ) multiplied by a vector of 

random effects that are unique to person i (
ib ) plus a vector of within-person residuals (

iε ). In 

Equation 1,
iX β  forms the average growth trajectory across all people in the data, 

i iZ b captures 

how much the person-specific growth curve for person i deviates from
iX β , and iε  captures how 

much the observed data for person i (
iy ) deviate from person i's unique growth curve 

i i i+X β Z b  

There are two distributional assumptions present in the model. The first is that the 

random effects follow a multivariate normal distribution whose mean is zero and whose 

covariance matrix is estimated from the data, ( )~ ,i MVNb 0 G . The second is that the within-

person residuals follow a multivariate normal distribution whose mean is zero and whose 

covariance matrix is estimated from the data ( )~ ,i iMVNε 0 R . To pattern the model-implied 

marginal covariance matrix of the residuals (
iΣ ), the covariance of the random effects is 

combined with the covariance of the within-person residuals such that T

i i= +Σ ZGZ R .  

 On the other hand, consider one type of marginal model for continuous outcomes – the 

covariance pattern model (Jennrich & Schluchter, 1986) – which can be written as  

 
( )( )~ ,

i i i

i iMVN

= +y X β ε

ε 0 Σ θ
  (2) 

iX β  similarly forms the average growth trajectory across all people in the data but there are no 

random effects in the model and the residual covariance matrix is not partitioned into different 

sources. Instead, the overall residual covariance is patterned as a function of parameters in the 
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θ  vector, which can include autoregressive parameters, correlations, or variances. The specific 

pattern to use is determined by the researcher, but selection of the appropriate pattern can be 

informed by the number or spacing of repeated measures. Common patterns include compound 

symmetry that assumes constant correlation among residuals across time, first-order 

autoregressive where the correlation decays based on the distance between measurements, or 

unstructured whereby each element of the covariance matrix is uniquely estimated.  The 

appendix provides further details on possible covariance structures and selecting among them.  

Extension to Models with Latent Classes: Growth Mixture Models 

Growth modeling can be combined with latent class analysis to further enable modeling 

of heterogeneity. Latent class analysis is a method for grouping observations into categories of 

a discrete latent variable (Goodman, 1974; Dayton & Macready, 1988). This discrete latent 

variable is similar to discrete observed variables like treatment group assignment where there 

are a finite number of categories. The difference is that the category or class to which people 

belong is not observed in the data but rather is determined by probabilistically grouping data 

together based on similarities in the observed data over time (Lanza & Cooper, 2016).  

Combining latent class analysis with growth modeling is conceptually similar to adding a 

latent moderator variable for growth trajectories (Jedidi, Jagpal, & DeSarbo, 1997). When using 

an observed moderator variable like treatment group, the intercept and slope of the growth 

trajectories are permitted to be different in the treatment control groups. The same idea applies 

when growth models are combined with latent class analysis whereby each latent class has a 

different growth trajectory. The difference is that the class to which a person belongs is treated 

as a latent, unobserved variable and therefore not present in the data. 

There are multiple ways to combine latent class analysis with growth modeling, but the 

most common is with GMMs (Muthén & Shedden, 1999, Verbeke & Lesaffre, 1996). GMMs 

operate in the random effect tradition whereby the researcher specifies the number of classes 

they expect, the model assigns people to a latent class, and a random effect growth model is fit 

within each class. This means that there are three sources of variability in the model: (a) 



GROWTH MIXTURE MODEL CONVERGENCE 9 

 

between-class such that there is heterogeneity in trajectories across classes, (b) within-class, 

between-person variability such that people are allowed to have a unique person-specific 

growth trajectory that deviates from the overall class trajectory, and (c) within-class, within-

person variability such that the observed data deviate from the person-specific trajectory.1  

In statistical notation, GMMs extend the random effects model in Equation 1 by including 

latent classes such that the model would include k subscripts (where k = 1, …, K for K the 

number of classes chosen by the researcher) on the fixed regression coefficients and both 

covariance matrices. This denotes that each class has unique, class-specific estimates for those 

parameters. In statistical notation, the general model would be written as  

 ( )

( )

~ ,

~ ,

i i k i i i

i k

i ik

MVN

MVN

= + +y X β Z b ε

b 0 G

ε 0 R

  (5) 

Estimation issues. This approach is perfectly reasonable from a statistical viewpoint 

but is difficult to estimate due to the many different sources of variability (Jung & Wickrama, 

2008). Person-specific growth trajectories are latent as they are not included in the data; GMMs 

then place latent classes on top of these latent trajectories. Attempting to extract so much latent 

information and properly attribute it to the right source from a relatively small amount of 

observed information can create singularities in the likelihood surface used to determine 

parameter estimates (Hipp & Bauer, 2006). This can lead to nonconvergence or estimates that 

come from local maximums but do not globally maximize the likelihood surface (Biernacki, 2005; 

McLachlan & Peel, 2004).  

The prevalence of estimation difficulties with GMMs often leads to post-hoc alterations to 

the model, which typically involve the within-class, between-person covariance matrix that 

captures differences across person-specific growth trajectories within classes. This involves 

either removing random slopes from the model (i.e., forcing all people to grow at the same rate 

                                                 
1 Technically, all people are in all classes simultaneously but their contribution to the likelihood of each class is 
weighted by the probability that they belong to each class. We simplify the description in the text to keep the 
conceptual idea succinct.   
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and reducing the dimensions of G) or constraining the within-class covariance matrices to be 

equal across all classes such that G and R in Equation 5 have no k subscripts (Gilthorope et al., 

2014; Harring & Hodis, 2016, Infurna & Grimm, 2017; Infurna & Luthar, 2016). The logic of this 

approach is that if a large amount of latent information makes estimation difficult, then reducing 

the number of parameters associated with the latent information will improve the ability of the 

model to converge. This practice is indeed useful for improving convergence rates, but it has 

been shown to come at a cost and change key conclusions of the model such as the estimated 

growth trajectories in each class (Heggeseth & Jewell, 2013), how many classes are extracted 

(Diallo et al., 2016; Kreuter & Muthén, 2008), the meaning of the classes (Bauer & Curran, 

2004), or class assignment (Infurna & Luthar, 2016).  

A larger issue with constraining covariance matrices to equality across classes to 

facilitate estimation is that doing so weakens the motivation for using the model (Bauer & 

Curran, 2003). The latent classes are introduced because there is thought to be subgroups of 

growth trajectories in the data. These subgroups are presumably of interest because they have 

unique properties that that can contribute to understanding how different subgroups change 

over time. Constraining large portions of the model to be equal across the different latent 

classes imposes tenuous and atheoretical homogeneity assumptions that force aspects of the 

classes to be identical despite the model’s expressed interested in uncovering heterogeneity.  

The marginal modeling tradition has recently been considered as one option to facilitate 

estimation without imposing homogeneity assumptions across classes because it inherently 

reduces the amount of latent information because it does not feature latent trajectories for each 

person in the data.  

Adding Latent Classes to Marginal Growth Models  

Although the random effect approach is dominant when combining growth modeling with 

latent classes to explore heterogeneity, the reason for this dominance is difficult to pinpoint and 

recent research has questioned the need for random effects in these models (Henderson & 

Rathousz, 2018; McNeish & Harring, 2020). The focus on the random effect tradition is 
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especially peculiar because the interest in empirical studies that employ GMMs tends to be in 

the between-class heterogeneity with little or no attention being paid to within-class variability. 

For instance, van de Schoot, Sijbrandij, Winter, Depaoli, and Vermunt (2017) reviewed 

applications in the post-traumatic stress disorder literature and found that no studies reported 

any information about covariance structure parameters and a re-review of these studies by 

McNeish and Harring (2020) for different characteristics found that none of these studies had 

person-specific research questions (there are studies using GMMs that do focus on this 

information; e.g., Jo et al., 2017). Each study in the review had the same three interests: (a) 

determine how many classes are present, (b) determine the mean growth trajectory in each 

class, and (c) determine what other variables affect or are affected by the different classes.  

This suggests that the within-class variability is often a feature to accommodate rather 

than a direct research interest. In such cases, Heagerty and Zeger (2000) explicitly recommend 

against random effect models, stating “if the primary objective of analysis is to make inference 

regarding the mean response … then a marginalized model may be preferred” (p. 17). All of 

these questions can be addressed with marginal models and doing so would facilitate 

estimation because marginal models simplify the amount of latent information by avoiding a 

unique growth trajectory for each person. Additionally, the way these models are applied more 

closely adheres to the context appropriate for marginal rather than random effects models.  

Similar to the correspondence between the random effect model in Equation 1 and the 

GMM in Equation 5, the standard covariance pattern model from Equation 2 can be extended 

into a CPGMM by placing a k subscript on the fixed effects, the overall residual covariance 

matrix, and the parameters that pattern the covariance matrix such that  

 
( )( )~ ,

i i k i

i ik kMVN

= +y X β ε

ε 0 Σ θ
  (6) 

Comparing CPGMMs to Latent Class Growth Models 

 Removing between-person random effects from models for growth trajectory 

heterogeneity has precedent with the latent class growth model (LCGM; Nagin, 1999). The 
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LCGM is written similarly to equation 6 except that the distribution for the residuals is constant 

and independent across time, ( )2~ 0,
ii k tMVN ε I . Without random effects and with constant 

and independent residuals, the only source of heterogeneity in the LCGM is the latent classes. 

LCGMs are therefore a semiparametric approach which defines classes differently than a GMM: 

LCGMs define a class as a collection of people who follow the same distinct trajectory whereas 

GMMs define a class as a heterogeneous set of people that can be described by a single 

probability distribution (Nagin & Tremblay, 2005, p. 895). Due to this different definition of class, 

GMMs and LCGMs often arrive at different solutions such that LCGMs tend to extract more 

classes (Bauer & Curran, 2004; Kreuter & Muthén, 2008; Sijbrandij et al., 2019).   

 Though CPGMMs similarly remove between-person random effects, the covariance is 

fully modeled by ( )( )~ ,i ik kMVNε 0 Σ θ , which extends the LCGM by allowing for a complete 

covariance structure among the repeated measures. Therefore, CPGMMs are fully parametric 

like GMMs rather than semiparametric like LCGMs. If considering different models for 

heterogeneity in growth trajectories along a continuum, CPGMMs would be about halfway 

between GMMs and LCGMs (McNeish & Harring, 2021). CPGMMs share the advantages of 

LCGMs in that they remove random effects and the associated covariance partition that 

complicate estimation. However, CPGMMs define “class” similarly to GMMs by virtue of more 

rigorously and parametrically modeling the covariance structure.  

Evidence for Utility of CPGMMs 

 The goal of this paper is to demonstrate by example that exploring growth trajectory 

heterogeneity need not be abandoned with the modest sample sizes that are common in 

preventive interventions rather than providing simulation-based evidence to support use of 

CPGMMs. However, previous simulations involving the CPGMM have yielded promising results, 

especially with modest sample sizes. McNeish and Harring (2021) simulated sample sizes 

between 100 and 500 with high attrition and found that the CPGMM provided the least biased 

estimates of the class trajectories while also having far superior convergence relative to other 
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methods, including the standard random effect GMM that was used to generate the data. That 

is, the random effect GMM was often too complex to be converge even though it was the correct  

population model and the CPGMM outperformed the population model when the data 

characteristics were not ideal (i.e., smaller sample size, high attrition). 

McNeish, Harring, and Bauer (2021) explored class enumeration properties of various 

GMM and LCGM specifications and similarly found that the CPGMM displayed the best 

convergence, with convergence rates for the CPGMM never falling below 82% for 3-class 

models with N = 100 compared to convergence rates between 10-20% for standard GMMs and 

convergence rates in the 50-60% range for other GMM specifications designed to improve 

convergence. The CPGMM was able to select the proper number of classes in a majority of 

replications, even with samples as small as 100 if relative entropy was .90. When using small-

sample specific information criteria like HT-AIC or HQ-AIC, the correct number of classes could 

be selected in more than 70% of replications with N =100. No other GMM specification could 

select the correct number of classes in 50% or more of replications when N =100.      

The next section describes our motivating dataset and highlights the difference in the 

difficulty between methods when trying to assess heterogeneity in randomized interventions 

with repeated measures for the sample sizes and data structure typical of these studies.   

Motivating Data 

 The motivating data come from a randomized control trial testing the efficacy of a 12-

week lifestyle intervention intended to reduce type 2 diabetes risk among Latino youth with 

obesity (Soltero et al., 2017). Latino youth who enrolled in the study were randomly assigned to 

participate in a lifestyle intervention or to the control group. The lifestyle intervention included 

physical activity three days per week and one day of nutrition education and health behavior 

skills training for three months. Following this three-month period, booster sessions were held 

once per month for another three months to reinforce and support health behavior changes. 

Participants were measured 12 months from baseline, meaning there were 4 measurements per 

participant: baseline, the end of the intensive intervention (3 months after baseline), the end of 
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the booster period (6 months after baseline), and 12 months from baseline (Soltero et al., 2017; 

Williams et al., 2017). The type 2 diabetes outcome of interest at each measurement occasion 

was insulin sensitivity, which is considered an important physiological indicator of diabetes-

related health in youth (Haymond, 2003). Insulin sensitivity was assessed by the whole-body 

insulin sensitivity index using glucose and insulin concentrations from a 2-hour oral glucose 

tolerance test (OGTT) (Matsuda & DeFronzo, 1999). 

 Given the increased attention to response heterogeneity in pediatric obesity 

interventions (Ryder, Kaizer, Jenkins, Kelly, Inge, & Shaibi, 2019), the goal of the analysis is to 

explore growth trajectory heterogeneity following intervention among 90 Latino youth with 

obesity. The top panel of Figure 1 shows the empirical data for all 90 participants in the 

intervention condition over the course of the study. As noted earlier, although the sample size is 

quite typical for studies in this area (and even towards the larger end of the spectrum if 

comparing to the related areas of diabetes prevention research cited in the introduction), a 

sample of this size is at risk for estimation issues with traditional random effect GMMs.  

When analyzing the data, five cases were identified as outliers using likelihood 

displacement influence measures (Cook & Weisberg, 1982), so the models were fit with and 

without these outliers as a sensitivity analysis. The bottom panel of Figure 1 shows the empirical 

data for the 85 participants in these analyses. The next section demonstrates the difficulties with 

GMMs before showing how CPGMMs can better accommodate these and other similar data.2  

Growth Mixture Model 

  An interest in this analysis is to identity heterogeneity in the effect of the intervention for 

different subgroups. We consider models with 2 through 4 latent classes in addition to a 

standard random effect model with one class. We fit the 2-, 3-, and 4-class models in Mplus 

Version 8.3 using robust maximum likelihood estimation, 100 initial stage iterations for each 

random set of starting values, a minimum of 100 iterations and a maximum of 1000 iterations of 

                                                 
2 All Mplus input and output files used in the analysis are available from https://osf.io/sjer5/  

https://osf.io/sjer5/
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the quasi-Newton algorithm, and 100 sets of random starting values and 10 final stage 

optimizations to ensure that the solution was not a local maximum. The plot of the empirical 

data in Figure 1 suggested that there may be some nonlinearity, which we account for with a 

quadratic trend,3 as has been done in previous longitudinal models on insulin sensitivity for 

groups at-risk for type 2 diabetes (Tabák et al., 2009). In these initial models, we include 

random effects for the intercept, linear slope, and quadratic slope, all of which were allowed to 

covary with each other. Residual variances are uniquely estimated at each time-point. Both the 

random effect covariance matrix and the within-person residual matrix were allowed to be class-

specific and were not constrained.  

 The 2-class solution best loglikelihood was replicated, indicating the solution was the 

global maximum; however, the result contained a nonpositive definite matrix because 4 

variances had negative estimates. The result was similar for the 3-class solution such that the 

best loglikelihood was replicated but 6 variance estimates were negative and the derivative 

matrix was also nonpositive definite, meaning that standard errors were not trustworthy. The 4-

class solution was filled with estimation issues and reported 51 warning messages, including 

that the loglikelihood could not be replicated and that there were several parameters creating a 

nonpositive definiteness. Following the commonly implemented remedy, we then constrained 

the both the between-person covariance matrix and the within-person covariance matrix to be 

equal across all classes. Running the model this way also led to nonconvergence as the 2-

class, 3-class, and 4-class solutions all were nonpositive definite, indicating that the estimates 

were inadmissible. There were no differences in convergence for data with or without outliers.  

 The previous model included random effects on the quadratic slope, which is often 

difficult to estimate, especially with smaller samples (Diallo et al., 2014). Seeing as quadratic 

slope variance is often removed even in models without latent classes, we tried estimating the 

                                                 
3 Based on reviewer comments, we also explore latent basis and multivariate pattern cluster mixtures models to 
consider robustness of class assignment and trajectories to a quadratic growth function. The results from this 
exploration revealed that repeated measure means were very reasonably approximated by a quadratic function and 
that class assignment was not appreciably different among different latent class methods. Full details of this 
robustness analysis are provided in the appendix. 



GROWTH MIXTURE MODEL CONVERGENCE 16 

 

models again with only two random effects (intercept and linear slope). We again started with a 

model where the between-person covariance matrix and the within-person covariance matrix 

were allowed to be class-specific and were not constrained. This did not help address 

estimation issues and the resulting solutions were nonpositive definite for the 2-class, 3-class, 

and 4-class models. We then tried constraining all covariance matrices to be equal after 

removing the quadratic random effect. With this approach, only the 2-class solution with the full 

data converged and it suggested that one class contained a 91% of the sample with the other 

class containing a 9% of the sample. The 4-class constrained model converged only for the data 

without outliers and resulted in 80% of the sample assigned to one class and the other classes 

each having about 5 people. These results would suggest that there is not much heterogeneity 

in the growth trajectories and that the intervention would affect nearly all participants equally.  

Covariance Pattern Growth Mixture Model 

After (predictably) encountering difficulties with the random effect GMM, we applied a 

quadratic CPGMM in this section with unstructured class-specific covariance structure in each 

class. This covariance structure freely estimates each element of the covariance matrix, which 

with 4 repeated measures will result in ( )4×5 / 2 =10  covariance parameters per class (4 

variances, 6 covariances).4 Similar to the previous section, we fit the model in Mplus Version 8.3 

using robust maximum likelihood estimation, 100 initial stage iterations for each random set of 

starting values, a minimum of 100 iterations and a maximum of 1000 iterations of the quasi-

Newton algorithm, and with 100 sets of random starting values and 10 final stage optimizations 

to ensure that the solution was not a local maximum.  

We tested models with 2 to 4 latent classes and used the following information criteria to 

decide on the number of classes: BIC (Schwarz, 1978), the sample-size adjusted BIC (SABIC; 

                                                 
4 The number of parameters required for unstructured covariance matrices can be unruly when the number of 
repeated measures exceeds about 5 (McNeish & Harring, 2020, p. 953). There were no issues in this data containing 
only 4 unequally spaced repeated measures, so we opted for the most general structure to avoid any potential issues 
associated with covariance misspecification (e.g., Heggeseth & Jewell, 2013). Readers considering CPGMMs with 
data featuring more repeated measures are encouraged to consider more parsimonious covariance structures such 
as Toeplitz, first-order autoregressive, Markov, or first-order factor analytic. More detail on selecting between 
competing covariance structures in CPGMMs is provided in the appendix.  
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Sclove, 1987), Draper BIC (DBIC; Draper, 1995), HQ-AIC (Hannan & Quinn, 1979), HT-AIC 

(Hurvich & Tsai, 1989), and the classification likelihood criteria (CLC; Biernakci & Govaert, 

1997). The BIC is a commonly used information criteria for class enumeration (Nylund et al., 

2007) and the SABIC has been found to perform well with smaller samples and unequal class 

proportions (Tofighi & Enders; 2008). HQ-AIC and HT-AIC are designed for model comparisons 

with small sample repeated measures data while the CLC has been noted to perform well with 

smaller samples and in differentiating between solution with 2 or more classes models (Henson, 

Reise, & Kim, 2007). We also fit a 1-class model as a point of comparison.  

A comparison of fit for 1-, 2-, and 3-class solutions is shown in Table 1 for data with and 

without outliers. The 4-class model had a nonpositive definite covariance matrix in one class, 

which was somewhat expected because the 4-class model had fewer than 2 people per 

estimated parameter (55 parameters vs. 90 people). However, the 2-class and 3-class solution 

converged with no issues or warnings and were able to replicate the best likelihood across 

different sets of starting values, suggesting that the solution is the global maximum. 

The results indicate that a 3-class solution appears to fit best based on the SABIC, 

DBIC, HQ-AIC, and CLC regardless of whether outliers are included. The simulation by 

McNeish et al. (2021) found that DBIC, HT-AIC, and HQ-AIC were best at selecting the correct 

number of classes when N = 100 when relative entropy was either .70 or .90. Both DBIC and 

HQ-AIC selected 3 class while the HT-AIC selected 2 classes. The McNeish et al. (2021) 

simulation also found that when HT-AIC is incorrect, it tends to extract too few classes whereas 

HQ-AIC rarely extracted too many classes. Taken together, this result seems to support a 3-

class solution. Furthermore, the fit of the 3-class CPGMM is much better than the 2-class 

constrained GMM with the full data presented in the previous section (loglikelihood = -387.70) 

and the 4-class constrained GMM from the data without outliers (loglikelihood = -297.61). 

The class trajectories for the 3-class solution are shown in Figure 2 and the parameter 

estimates and class proportions for each class are shown in Table 2. Differences between 

analyses with or without outliers are minimal but the trajectories without outliers are slightly less 
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curvilinear than trajectories from the full data. Interpretations in this section correspond to the 

full data. Class 1 follows a concave parabolic trajectory such that insulin sensitivity increases 

during the intervention and booster period but tapers off during the follow-up period. Class 2 

exhibits similar insulin sensitivity levels as Class 1 at baseline but minimal response to the 

intervention as both the linear slope (Z = -1.89, p = .06) and quadratic slope (Z = 1.68, p = .09) 

are not significant at the .05 level. Class 3 responded to the intervention initially as the 

instantaneous slope at baseline is positive and significant (Z = 2.98, p < .01) but the quadratic 

slope is also significant and negative (Z = -3.00, p < .01), which cancels out the initial growth 

and leads to essentially no growth over 12-months.5  

A subtle but important feature of the model is that the covariance structure in each class 

can be uniquely estimated without issue. In GMMs, the covariance is difficult to estimate and 

often ends up constrained across classes as a casualty of the complex estimation, despite the 

fact that it rarely makes sense to force equality across latent classes. Figure 3 shows class 

growth trajectories and the empirical data of participants within each class to demonstrate the 

importance of allowing the covariance to be different across classes.  

Class 1 clearly has more variability around its class trajectory whereas Class 3 has little 

variability around its class trajectory. Constraining the variances to be equal across classes 

would clearly be inappropriate in this data. Though differences in variability are often overlooked 

and the focus is placed on the class growth trajectory, misspecifications in the covariance 

structure (such as inappropriate equality constraints across classes) adversely affect the class 

growth trajectories because misspecification in mixture models permeates to all parts of the 

model (Heggeseth & Jewell, 2013). This occurs because the model will classify participants in 

accordance with the specified covariance structure. If the covariance matrices were constrained 

to be equal across classes in these data, it is likely that many participants in Class 1 would be 

                                                 
5 This interpretation presumes that classes are substantively meaningful entities, typically deemed a direct application 
of mixture models. It is also possible that the classes are merely a mathematical device to approximate a complex 
reality that may simply be non-normal (Bauer & Curran, 2003), often deemed an indirect application of mixture 
models. There is currently no reliable method by which to distinguish direct and indirect applications (Bauer & Curran, 
2004). This applies equally to random effect GMMs and CPGMMs.  
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reclassified because they could not simultaneously be assigned to Class 1 while also satisfying 

the requirement that all classes have equal variability. Similarly, Class 3 likely would consume 

part of Class 2 if its variability were increased due to covariance equality constraints.  

Note that although we use a marginal model in this analysis, the ability to answer the 

traditional research questions of interest with GMMs is unaffected. We were able to determine 

that there were multiple classes and we estimated the growth trajectories for each class, just as 

is done with GMMs. Although not included here, the model can include variables to predict class 

membership or distal outcomes can be predicted by class membership (Peña et al., 2020). For 

instance, the empirical study from which these data originate collected additional risk factors 

and sociodemographic indicators which may help identify responders and non-responders.  

Discussion 

 Assessing heterogeneity of growth trajectories with mixture models is a computationally 

intensive endeavor. However, the overreliance on the random effect modeling tradition in growth 

mixture models appears to unnecessarily exacerbate these complexities. The random effects 

tradition affords researchers little additional benefit with respect to answering common research 

questions of interests and frequently requires undesirable model alterations for the model to 

converge. This is especially true for the sample sizes encountered with typical randomized 

intervention studies, which even under the best circumstances, may fall far below growth 

mixture model recommendations.  

Nonetheless, the established marginal modeling approach provides the basis for a 

solution to this issue. Marginal models are just beginning to be extended to include latent 

classes and additional methodological research would be fruitful for more clearly delineating 

their strengths and weaknesses, but these models are theoretically more congruent with the 

typical goals of latent class analysis with repeated measures data in that they emphasize the 

growth trajectories in each class while accommodating the covariance as a secondary 

consideration. Though treating the covariance as ancillary may appear like a departure from the 
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traditional growth mixture modeling framework, such secondary status is already on display with 

the common approach in growth mixture models of constraining all the covariance structures to 

be equal across classes. Only in a context where covariance structures were secondary would 

such an approach be permissible. 

The covariance pattern growth mixture model merely takes the desire to accommodate – 

but not focus on – the covariance structure and places it in its natural home within the marginal 

model tradition. That is, if the main interest is differences between classes, there is no need to 

struggle with complex estimation associated with partitioning the within-class variability when 

these estimates are not of interest and not reported in most cases. Essentially, covariance 

pattern mixture models have the ability to improve convergence without sacrificing the quality of 

the model estimates or the ability to answer typical research questions. 
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Table 1 
Comparison of fit measures for models with a different number of classes.  
 

 Full Data (N = 90)  Outliers Removed (N =85) 

Measure 1 Class 2 Classes 3 Classes  1 Class 2 Classes 3 Classes 

Loglikelihood -403.57 -341.51 -312.67  -333.26 -280.93 -254.98 

Relative Entropy --- .732 .756  --- .786 .795 

BIC 866 805 810  724 682 692 

SABIC 825 719 680  683 597 563 

DBIC 842 755 734  700 632 617 

HQ-AIC 846 764 749  699 642 633 

HT-AIC 839 764 784  705 645 678 

CLC --- 716 674  --- 587 548 

 
Note: BIC = Bayesian Information Criteria, SABIC = Sample Size Adjusted BIC, DBIC = Draper 
BIC, HQ- AIC = Hannan-Quinn Akaike Information Criteria, HT-AIC = Hurvich-Tsai Akaike 
Information Criteria, CLC = Classification Likelihood Criteria. Lower values of information criteria 
indicate better fit. Relative Entropy and CLC require multiple classes to be computed and are 
undefined for the 1-class model.  
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Table 2 
Parameter estimates and class proportions for each class 
  

Full Data (N = 90) 

Parameter Class 1 Class 2 Class 3 

Intercept 1.86 2.37 1.07 

Linear Slope 0.52 -0.18 0.08 

Quadratic Slope -0.03 0.01 -0.01 

Baseline Variance 1.14 1.19 0.13 

3 Months Variance 1.33 0.95 0.27 

6 Months Variance 6.06 0.30 0.30 

12 Months Variance 1.98 0.51 0.23 

Residual  

 Correlation Matrix  

  

1

.29 1

.65 .75 1

.77 .60 .72 1

 
 
 
 
 
 

 

 

1

.29 1

.50 .17 1

.73 .40 .72 1

 
 
 
 
 
 

  

1

.80 1

.69 .85 1

.24 .64 .45 1

 
 
 
 
 
 

 

Class Proportion 18% 34% 48% 

 

Outliers Removed (N = 85) 

Intercept 1.84 2.38 0.99 

Linear Slope 0.21 -0.14 0.08 

Quadratic Slope -0.011 0.003 -0.006 

Baseline Variance 0.53 0.97 0.08 

3 Months Variance 0.71 0.84 0.21 

6 Months Variance 1.99 0.39 0.24 

12 Months Variance 0.78 0.35 0.26 

    

Residual  

 Correlation Matrix  

1

.50 1

.39 .22 1

.35 .44 .14 1

 
 
−
 
 
 
 

 

1

.13 1

.65 .29 1

.44 .83 .38 1

 
 
 
 
 
 

 

1

.78 1

.68 .78 1

.47 .79 .54 1

 
 
 
 
 
 

 

    

Class Proportion 18% 36% 46% 
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Figure 1. Plot of empirical insulin sensitivity data over time for full data (N = 90; top panel) and 
the data with potential outliers removed (N = 85; bottom panel) 
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Figure 2. Plot of class-specific growth trajectories for 3-class solution of CPGMM from full data 
(N = 90; top panel) and from the data with outliers removed (N = 85; bottom panel) 
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Figure 3. Class-specific growth trajectories plotted against the empirical data of people assigned 
to each class for full data (N = 90; top panel) and data with outliers removed (N =85; bottom 
panel). 
 


