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Abstract 

Traditional statistical model evaluation typically relies on goodness-of-fit testing and quantifying 

model complexity by counting parameters. Both of these practices may result in overfitting and 

have thereby contributed to the generalizability crisis. The information-theoretic principle of 

minimum description length addresses both of these concerns by filtering noise from the 

observed data and consequently increasing generalizability to unseen data. 
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Increasing generalizability via the principle of minimum description length 

As a remedy to the generalizability crisis, Yarkoni urges researchers to consider “cross-

validation techniques that can minimize overfitting and provide alternative ways of assessing 

generalizability outside of the traditional inferential statistical framework” (Sec. 3.6.7). I believe 

this advice is valuable and worthy of elaboration. 

Traditional model evaluation techniques are beset by (at least) two inconvenient truths. 

First, goodness-of-fit (GOF) and generalizability are inextricably tied to model complexity 

(defined by Myung, Pitt, and Kim (2004) as “a model's inherent flexibility that enables it to fit a 

wide range of data patterns” [p. 12]). As models become more complex, GOF to the observed 

data increases, but generalizability to unseen data decreases. Additionally, GOF indices conflate 

fit to the useful signal in the data with fit to the useless noise, and so must be adjusted to account 

for complexity. The widely used Akaike Information Criterion (Akaike, 1973), for example, 

mitigates the effects of complexity by penalizing for the number of parameters. 

However, this leads to the second issue: Complexity cannot be fully assessed by simply 

counting parameters (and in fact, overfitting can occur with just one parameter; Piantadosi, 

2018). Complexity is also affected by the configuration of variables in the model (Cutting, 

Bruno, Brady, & Moore, 1992): Models that organize the same number of parameters in different 

configurations may differ in terms of GOF. It follows from these two issues that researchers who 

rely exclusively on GOF and quantify complexity only by counting parameters are exacerbating 

the generalizability crisis. 

A solution to these problems can be found by bypassing probability theory altogether and 

adopting a technique from information theory. The principle of minimum description 

length (MDL; Rissanen, 1978; 1989) aims to separate regularity (i.e., meaningful information) 
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from noise in the observed data and “squeeze out as much regularity as possible” (Grünwald, 

Myung, & Pitt, 2005, p. 15) via data compression. Suppose we have a sequence of nine binary 

digits that contains a regularity: twice as many 1s as 0s. The complete data space S includes 

29 = 512 patterns, but the regularity only applies to 84 (or 16.4%) of those patterns. Thus, our 

sequence belongs to a relatively small subset of S. A description (e.g., programming code) that 

compresses the complete data in this manner would be quite useful: We would know, for 

example, that future use of that code would return only those sequences that contain the same 

regularity. 

According to the MDL principle, the best description (or model) is that which maximizes 

compression of S. Our nine-digit sequence could be further compressed: The regularity of “twice 

as many 1s as 0s + the first three digits are 1s” describes just 20 patterns, compressing the data to 

less than 4% of S. That is, over 96% of sequences would not follow this more precise regularity, 

so we should be “impressed” (in the sense of Meehl's (1990) rainfall analogy or Lakatos’s (1978) 

example of Halley's comet) when we find a sequence that does. 

What does this have to do with the generalizability crisis? In his introduction to MDL, 

Grünwald (2005) described two relevant features. First, “MDL procedures automatically and 

inherently protect against overfitting” (p. 5). GOF statistics may overfit the data by capturing 

both signal and noise, whereas MDL methods filter out that noise through data compression, 

allowing researchers to focus only on the signal. Second, “MDL methods can be interpreted as 

searching for a model with good predictive performance on unseen data” (p. 6). Mathematical 

proof of this statement can be found in Vitányi and Li (2000), who concluded that “compression 

of descriptions almost always gives optimal prediction” (p. 448). 
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Although MDL may seem obscure, consider it in light of this statement from Roberts and 

Pashler (2000) in Psychological Review, following their declaration that good fit cannot clarify 

what a theory predicts: “Without knowing how much a theory constrains possible outcomes, you 

cannot know how impressed to be when observation and theory are consistent” (p. 359). The 

phrase “a theory [that] constrains possible outcomes” can be rewritten in MDL terms as “a 

description that compresses the complete data space.” Through that translation, it becomes clear 

that the MDL principle encapsulates Meehl's (1997) argument that “the narrower the tolerated 

range of observable values, the riskier the test, and if the test is passed, the stronger the 

corroboration of the substantive theory” (p. 407). 

Various methods have been developed to quantify the MDL principle (see Myung, 

Navarro, & Pitt, 2006; Navarro, 2004; Pitt, Myung, & Zhang, 2002), but their formulations 

involve statistical obstacles such as integration across the complete data space. To sidestep this 

intractability, quantitative psychologists have relied on simulation methods to gain MDL-type 

insights regarding latent variable models. Preacher (2006) generated 10,000 random correlation 

matrices to simulate the complete continuous data space and fit competing structural equation 

models with the same number of parameters but different configurations to each matrix 

(interested readers can conduct similar MDL-type studies using the ockhamSEM package in R; 

Falk & Muthukrishna, 2021). Despite the fact that the number of parameters was held constant, 

certain models had an inherent tendency to fit better than others (termed “fitting propensity”). 

Bonifay and Cai (2017) expanded upon this work by considering the fitting propensity of 

several categorical data models. Among other findings, their analysis revealed that the 

confirmatory bifactor model achieved good fit to an excessively wide range of random datasets. 

The model was so deficient at compressing the data space (i.e., filtering out noise) that it 
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accommodated an extremely wide range of data patterns, including many that were nonsensical. 

This MDL-inspired work demonstrated that good fit is essentially built into the bifactor model, 

so if the goal is to ensure generalizability, GOF testing should not be considered risky or severe 

(Watts, Poore, & Waldman, 2019). 

In summary, the information-theoretic principle of MDL offers insights into overfitting 

and generalizability that are not possible using traditional methods. Although this principle may 

not address many of the generalizability issues described in the target article, it should be 

considered by researchers who wish to avoid overfitting and thereby enhance predictive 

accuracy. 
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