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Abstract 
 

We develop a new framework for identifying at-risk students in public schools. Our framework 
has two fundamental advantages over status quo systems: (1) it is based on a clear definition of 
what it means for a student to be at risk and (2) it leverages states’ rich administrative data 
systems to produce more informative risk measures. Our framework is more effective than 
common alternatives at identifying students who are at risk of low academic performance and 
we use policy simulations to show that it can be used to target resources toward these students 
more efficiently. It also offers several other benefits relative to status quo systems. We provide 
an alternative approach to risk measurement that states can use to inform funding, 
accountability, and other policies, rather than continuing to rely on broad categories tied to the 
nebulous concept of “disadvantage.” 
 

 



1 
 

1. Introduction 

There have been substantial advances in education data infrastructure since the turn of the 

21st century and as of our writing this article, virtually every state in the U.S. has a state 

longitudinal data system (SLDS) supported by large investments from the federal government.1 

These data systems allow states to track students as they move through K-12 schools, monitoring 

their academic progress and providing rich information about their circumstances. Computing 

power has also increased rapidly during this same period of investment in data infrastructure so 

not only are rich data on K-12 students increasingly available, they are also increasingly usable. 

However, these gains in data availability and useability have not translated into 

meaningful improvements in how states identify students in need of additional resources and 

supports, who are commonly described as being “disadvantaged” or “at risk.” States ubiquitously 

rely on categorical indicators associated with the concept of disadvantage, broadly defined, to 

identify these students. For example, states have historically used free and reduced-price meal 

(FRM) eligibility to identify high-poverty students, with some states shifting more recently to the 

use of direct certification (DC) status. States also group students by characteristics such as 

English language learner (ELL) status, individualized education program (IEP) status, and 

underrepresented minority (URM) status, among others. States use combinations of these 

categorical indicators in a variety of policies, most notably in funding formulas and to track 

achievement gaps. 

The category-based approach used by states is reasonable but lacks a firm conceptual 

grounding. It is also antiquated from an analytic perspective. With respect to the former critique, 

it is useful to ask why states use the categories they use to identify at-risk students. A sensible 

answer is that data exist and the categories correlate with challenging student circumstances. But 

the precise dimensions of risk targeted by the categories are not clear. For example, consider a 

definition of risk based on the likelihood of poor academic performance, which we argue below 

is an appropriate definition in the context of the education system. By this definition, surely there 

are many FRM-eligible students who are not high risk, and many non-FRM-eligible students 

who are high risk. Clarifying what we mean by “risk”—that is, risk of what?— illuminates the 

inaccuracy of common categorical indicators. The inaccuracy is not surprising because these 

 
1 New Mexico is the lone exception (see here: https://nces.ed.gov/programs/slds/stateinfo.asp, information retrieved 
08.23.2021). 

https://nces.ed.gov/programs/slds/stateinfo.asp
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indicators are blunt descriptors of student circumstances, but taken at face value, state systems 

that track students categorically do not acknowledge this problem. 

Our other critique of the current approach is that does not leverage states’ rich 

administrative data to improve measurement accuracy. For example, if FRM status is a risk 

indicator and ELL status is a risk indicator, what about a student who is both FRM-eligible and 

an ELL? Relatedly, what about a student who is consistently FRM-eligible versus one who is 

eligible for just a single year? In fact, in the latter case it has been documented empirically that 

students who are FRM-eligible for multiple years are at greater risk of poor academic 

performance (Michelmore and Dynarski, 2017). However, state systems do not allow for this 

type of differentiation to impact students’ risk designations. These examples illustrate the general 

point that existing categorical systems do not leverage the full breadth of information available 

about students.  

With the limitations of existing systems as motivating context, we develop and test a new 

framework for identifying at-risk students in public schools. Our framework includes a clear 

definition of risk based on academic performance. It also uses simple but modern methodological 

tools to better leverage information available in state data systems to measure risk.  

We implement our framework using the Missouri SLDS as a proof-of-concept exercise 

and highlight two key findings. First, our framework is more effective than status quo systems at 

identifying students at risk of poor academic outcomes. This is by design and in a policy context, 

it means the metrics that emerge from our framework can be used to better target resources 

toward low-performing students and their schools. The second key finding is that the metrics 

from our framework can also be used to improve the targeting of resources to students across a 

broad range of traditional “categories of disadvantage”—namely, ELL, IEP, and URM 

students—compared to hypothetical systems based on poverty proxies (i.e., FRM and DC status) 

or a system modeled after California’s progressive Local Control Funding Formula (LCFF).  

Our framework provides a principled structure within which states can work to develop 

better measures of student risk. That said, it is not a panacea and has limitations that we elaborate 

on over the course of this article. Some of the limitations are inherent to the challenging problem 

of measuring student risk, but we expect most can be improved upon with additional research. 

Our goal is to propel research forward on a more promising path toward the accurate and useful 

measurement of student risk. In turn, this can improve the efficacy of state policies designed to 
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narrow achievement gaps and promote better academic outcomes among at-risk students. 

 

2. Why a New Framework is Needed 

In this section we expand on the two fundamental features of our framework that 

distinguish it from status quo systems, which are: (1) it establishes a clear definition of student 

risk (based on academic performance) and (2) it applies modern data and analytic tools to 

measure risk more effectively.  

First, we assert that a clear definition of risk is a desirable feature of any framework used 

to identify at-risk students. Once a definition is established, a framework’s efficacy can be 

assessed by the accuracy with which at-risk students are identified. Status quo systems, while 

aimed in the general direction of identifying students in need of supports, do not clearly define 

what it means for a student to be at risk. This makes it impossible to assess their efficacy. For 

example, even for a concept as straightforward as poverty, we are not aware of any state system 

that formally acknowledges the difference between available measures of poverty used for policy 

purposes—which are either inaccurate, heavily coarsened, or both—and actual poverty.  

The process of defining “risk” in the abstract is undoubtedly challenging. However, we 

argue that in the context of schooling risk can be defined based on academic performance. In our 

framework, we define a student as at risk if her characteristics indicate she is likely to perform 

poorly in school.  

This is an intuitive and reasonable definition, but we acknowledge alternative definitions 

exist, of which perhaps the most credible is a poverty-based definition. However, even if one 

concedes that definitions of risk based on academic performance and poverty both have 

conceptual merit, academic performance is preferable for two practical reasons. The first reason 

is that we are currently unable to measure poverty accurately in the education system. This is an 

uncomfortable truth, but an important one. To illustrate this point, we briefly review the 

prospects for the two predominant poverty metrics used in state policies: (1) FRM eligibility 

from the National School Lunch Program (NSLP), and (2) DC status based (primarily) on 

participation in social safety net programs outside of schools. Regarding FRM data, Domina et 

al. (2018) and Fazlul, Koedel, and Parsons (2021) show conclusively that these data do not 

measure poverty accurately. Fazlul, Koedel, and Parsons (2021) find that DC data measure 

poverty accurately in Missouri, at least on average at the threshold of 130 percent of the poverty 
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line. However, DC status is limited because it is a heavily-coarsened measure of poverty. 

Moreover, cross-state variability in direct certification processes is such that DC status will be 

more effective in some states than others at identifying high-poverty students.2 If the goal is to 

measure student poverty, it must be acknowledged that education systems do not have access to 

accurate, consistent, and differentiated measures of poverty.3  

The second practical problem with poverty measurement in education is that states rely 

entirely on data from external programs. Historically, FRM data have come from the U.S. 

Department of Agriculture’s NSLP and the primary program used to determine DC status is the 

Supplemental Nutrition Assistance Program (SNAP). This is problematic because external 

programs can change. A recent example is the introduction of the Community Eligibility 

Provision (CEP) to the NSLP, which allows sufficiently high-poverty schools to offer free meals 

to all of their students. It was not the intent of the CEP to alter the informational content about 

poverty contained by FRM status, but in many states, this is what happened (Chingos, 2018; 

Greenberg, 2018; Koedel and Parsons, 2021). Now states are turning to DC data to replace FRM 

data but the fundamental limitation remains: changes to eligibility requirements of the core 

programs that determine DC status will change the informational content of the data. A desirable 

feature of a stable measurement system in education is that to the extent possible, student 

designations should not be subject to changes caused by changes to external programs. 

The second core consideration that motivates our framework is the failure of current 

systems to leverage all of the information available about students to assess their risk levels. This 

consideration is independent of how risk is defined. The use of blunt categories in current 

systems is only preferable if there is no marginal information to be extracted from additional 

variables in state data systems and no degrees of differentiated risk indicated by the persistence 

of students’ categorical assignments or belonging to multiple categories. This condition is 

 
2 To elaborate briefly, different rules for direct certification across states are such that the poverty threshold 
identified by DC data will vary. In some cases, it may be difficult to tie DC status to a particular threshold. Another 
issue is that direct certification relies on families’ participation in social safety net programs and not all high-poverty 
populations are similarly likely to participate, with Hispanics being a prime example of a group underrepresented in 
programs that lead to direct certification. See Fazlul, Koedel, and Parsons (2021) for further discussion. 
3 Fazlul, Koedel, and Parsons (2021) also evaluate the accuracy of School Neighborhood Poverty (SNP) data from 
the National Center for Education Statistics. They show that SNP data measure poverty accurately on average at the 
school level, but there are many sources of errors for individual schools and no SNP metrics are available for 
individual students. 
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intuitively implausible and has been refuted empirically for specific variables in recent studies by 

Goldhaber et al. (2022) and Michelmore and Dynarksi (2017). 

 

3. A New Framework for Measuring Student Risk Status in K-12 Public Schools 

3.1 The Framework 

We develop our framework for measuring student risk around the most reliable, scalable 

indicators of academic performance available in the education system: state standardized 

assessments. Although other informative measures of academic performance surely exist in 

pockets of the education system—e.g., well-designed tests and assignments in particular 

teachers’ classrooms, personal information about individual student circumstances known by 

individual educators, etc.—no better and more differentiated information about student academic 

performance exists at scale. A plausible alternative would be a marker of academic progress, 

such as high school graduation or college matriculation, but key weaknesses of these metrics 

include (1) they are observed less often (e.g., only once at th e point of high school exit for each 

student) and (2) they are not as differentiated as test scores (Austin et al., 2021). State 

accountability policies also already emphasize standardized assessments, making them a natural 

focal point for measuring academic performance. Moreover, research causally links student test 

scores to consequential later life outcomes such as college attendance and earnings.4 

The foundation of our framework is a predictive linear regression of student test scores 

using student attributes, which can be expressed generically as follows: 

0i iS β ε= + +i 1X β          (1) 

In equation (1), iS  is a test score for student i and iX  is a vector of student attributes. For the 

moment, iX  can be thought of as capturing information about students along a variety of 

dimensions and of a variety of types (e.g., contemporary and historical information, individual 

and school-level information, interactions of individual attributes within the vector, etc.). We 

will be more precise about how we specify iX  in our proof-of-concept application using the 

Missouri SLDS below. 

 
4 For a recent review of research and discussion on this point see Goldhaber and Özek (2019). 
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The predicted values from this regression, ˆ
iS , can be interpreted as measures of student

risk. They are weighted averages of the attributes in the vector iX , where the weights—the 

coefficients in the vector 1β —depend on the extent to which each attribute predicts student 

performance. Students with lower values of ˆ
iS  are at greater risk of poor academic performance

than their peers with higher values, as determined by their attributes. 

An immediate question is the following: If the aim is to define risk status based on test 

performance, why bother estimating ˆ
iS  when the actual test score, iS , is observed? There are 

two reasons, one practical and one conceptual. The practical reason is that iS  is only available 

for test takers, but values of ˆ
iS  can be calculated for all students regardless of whether they are

tested. That is, we can use the output from equation (1) to extrapolate from the test-taking 

population to produce common measures of risk for all students, inclusive of students who do not 

take the test, using their attributes in the X vector and the weights 1β . The extrapolation to 

untested students (including those outside of tested grades) requires assuming the attributes that 

predict performance for tested students are the same attributes that would predict performance 

for untested students, had they been tested. Although we cannot test this assumption directly 

because scores for untested students are unobserved, it is intuitive. We also provide evidence 

consistent with this assumption being upheld, at least to an approximation, by showing that we 

obtain similar values of ˆ
iS  for individual students when we estimate equation (1) using different

subsamples of tested grades (see below). 

The conceptual reason for using ˆ
iS  instead of iS  is that it creates a profile-based 

prediction of student performance that does not depend on the student’s actual performance. To 

understand why this is appealing we must consider the intended use of the risk metrics we aim to 

develop, which is to inform consequential state policies. We have two types of policies in mind: 

funding policies and accountability policies.  

Given this intended use, it is a general principle of our framework that the measures 

themselves should be impervious to the activities of educational actors (i.e., districts, schools, 

and teachers) to the extent possible. To illustrate with a counterexample, consider a system 

where funding increases are provided to support at-risk students and risk status is defined by 
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iobserved test scores, S . This would perversely incentivize educational actors to produce lower 

test scores and, in doing so, would harm the credibility of the system.5 However, if risk status is 

defined by ˆ
iS —that is, by how students are predicted to perform based on their attributes given

statewide performance patterns—and if the underlying attributes cannot be manipulated by 

educational actors, this undesirable design feature disappears. 

More accurately, it nearly disappears, because even if the elements of X used to predict 

test scores are selected to be non-manipulable, the weights contained by 1β  may still be 

influenced by school demographics and policies. A concern would be if a particular district 

enrolls a disproportionate share of students with one of the predictive attributes, say kX . In that 

case, the district’s own performance could meaningfully influence the weight on that attribute, 

βk . Fortunately, this problem can be overcome through jackknifing, which is an estimation 

procedure whereby the weights applied to produce the values of Ŝi for students in a particular 

school or district are based only on data from outside that school or district. With the use of 

jackknifed estimates of β1 , and elements of X that cannot be influenced by educational actors 

(more on this below), Ŝi is a non-m  anipulable indicator of student risk that can be applied in 

consequential education policies. 

3.2 Assessing the Framework via Policy Simulation 

We present standard statistical diagnostics for the prediction model that underlies our 

framework in the empirical application below, but our real examination of the value of our 

framework is based on a policy simulation. The simulation illustrates how our metrics would 

affect the allocation of resources to different types of students and the schools that serve them. 

We begin by using the Ŝi values for individual students to produce a new binary categorization 

of risk status based on predicted academic performance. To do this, we set a threshold value     .  

If i <S S we assign student i as “high risk,” otherwise we assign the student as “low risk.” These 

binary categories replicate the categorical (and mostly binary) structure of other risk-status 

5 Note that whether districts, schools, and teachers actually respond to their perverse incentives has no bearing on 
the desirability of this feature. For example, even if no actor responded to the incentive to produce low test scores, 
schools and districts that did in fact produce them would receive more funding, giving the impression that poor 
performance is rewarded and undermining the system. 
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measures—e.g., DC, ELL, FRM, IEP, URM, etc.—with the key difference being that they 

separate students based on their risk of low academic performance. The binary categories discard 

valuable information about differentiated student risk by coarsening ˆ
iS , but are useful because 

they facilitate apples-to-apples comparisons to status quo systems.6  

Our policy simulation is based on the following progressive formula for allocating 

resources to “high risk” and “low risk” students: 

(1 )L HN Z N B+ + =         (2) 

In equation (2), LN  is the number of low-risk students, HN  is the number of high-risk students, 

and B is the total resource budget. The amount allocated to each low-risk student is normalized 

to 1.0 and Z is a positive multiplier that allows more per-pupil resources to be distributed to high-

risk students. LN  and HN  are choice variables that depend on how low-risk and high-risk 

students are defined. We can use ˆ
iS  to assign students to low-risk and high-risk categories, or we 

can assign students using traditional categories such as FRM status, DC status, ELL status, IEP 

status, and URM status. 

A simple way to think about the total resources denoted by B is in dollar terms, but the 

framework is broader than that. For example, B could reflect the availability of a specific, 

centrally-allocated resource like additional personnel or tutoring services within a state. 

Generally speaking, equation (2) can be thought of as describing the allocation of any scarce 

resource across low-risk and high-risk students in the system. 

The values of LN  and HN , determined by the definitions of “low risk” and “high risk” 

students, along with the fixed budget B, will yield different values of Z as described by the 

following re-arrangement of equation (2): 

1L

H

B NZ
N
−

= −         (3) 

We impose the constraint that L HB N N N> = + , which ensures that Z is positive. In other 

words, this constraint ensures there is enough funding to provide more than one normalized 

resource unit for each high-risk student. 

 
6 Another advantage of our framework is that more differentiated information about student risk can be recovered 
from the uncoarsened values of ˆ

iS . See below for further discussion. 
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Policy simulations based on this resource-allocation model allow us to document how 

different measures of risk status yield different resource allocations across students and schools 

with different characteristics. While we use this resource-allocation model as our primary policy 

simulation, we also briefly consider an accountability policy application as a separate extension. 

 

4. Data and Implementation 

4.1 Data Overview 

We use administrative microdata from the Missouri SLDS for our proof-of-concept 

empirical application. The Missouri SLDS is typical of other state systems nationwide; therefore, 

the application should generalize broadly to other states. Of course, different student and 

circumstantial attributes may be differentially predictive of student performance in different 

states, but the structure of the framework should generalize. 

The foundation of our framework is the cross-sectional regression described in broad 

terms by equation (1), and accordingly, we conduct our analysis using the Missouri SLDS with 

just one cohort of students from the 2016-17 school year (hereafter: 2017). That said, some of the 

student variables we use to predict test scores are longitudinal, such as persistent poverty. We 

construct these variables by looking backward in the SLDS for students in the 2017 cohort, 

although we still estimate the prediction regressions cross-sectionally. 

 There are two major components of our prediction framework: outcomes and predictors. 

For outcomes, our primary specification is based on student test scores on state assessments in 

math and ELA in grades 3-8. We standardize each test by subject-grade and define iS  for each 

student as the average standardized score across subjects. We restrict the analytic sample we use 

to estimate equation (1) to students with test scores in both subjects. Recall that this does not 

influence our ability to produce estimates of ˆ
iS  for all students because we assume the predictors 

of academic performance are the same for tested and untested students. Under this assumption, 

we produce values of ˆ
iS  for all students in Missouri in grades 3-12.7 

 
7 Values can also be assigned to students in grades K-2 using the same procedure. There are some technical 
implications with respect to variable construction for younger students that merit consideration—namely for the 
panel variables we describe below given that students’ data histories do not begin until kindergarten—but in 
principle the predictions can be extended to earlier grades. 
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We cannot test the assumption that the predictors are the same for tested and untested 

students directly. However, to gain some insight into its plausibility, we test whether students’ 

predicted scores, ˆ
iS , are sensitive to using different combinations of tested grades to estimate 

equation (1). For instance, if we obtain substantively different values for ˆ
iS  depending on 

whether we estimate the model on students in grades 3-8, versus grades 3-5, versus grades 6-8, it 

would suggest the predictors are grade-level sensitive. But if we obtain similar values of ˆ
iS , it 

would suggest the predictors are generally stable across tested groups. In Appendix Table A1, we 

show that values of ˆ
iS  estimated using different subsets of tested grades are highly correlated.  

There are two ways states could specify the threshold test value, S , separating low-risk 

and high-risk students. One way is to pre-specify a fraction of students the state wishes to target 

for additional resources. Equation (3) gives a rationale for this approach by showing the fraction 

of students identified determines the level of additional resources available per high-risk student 

under a fixed budget. Identifying too many high-risk students dilutes the resource level per 

student. Another way to set S  is to anchor it to a proficiency-category threshold on the state test, 

which is appealing in that it ties the framework directly to state education policy objectives. 

We build our policy simulation following the proficiency-based approach, although we 

implement a simplified version. The simplification is that we set a single threshold value of S  

for all grades based on 2017 Missouri NAEP performance. Averaging across math and English 

Language Arts in grades 4 and 8, NAEP data show that 26.25 percent of Missouri students score 

below basic. We use this percentile threshold—the 26.25th percentile—as S and assign all 

students to high-risk and low-risk categories based on their predicted scores on the Missouri state 

test (the Missouri Assessment Program, or MAP). That is, we assign students with values of ˆ
iS  

below the 26.25th percentile as high-risk students, and students above the 26.25th percentile as 

low-risk students. 

Our simplified approach to setting the threshold value of S  based on NAEP data does 

not have any substantive bearing on how our framework operates. It is appealing because it 

simplifies the analysis and improves the generalizability of our findings by creating a degree of 

separation from the specific policy context in Missouri. A state wishing to implement our 

framework with closer adherence to its own grade-and-subject-specific standards could set the S
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values separately for each grade (and even subject); this would not affect the efficacy of the 

framework in any substantive way. 

That said, an important feature of S  is that it is percentile-based rather than based on a 

raw test score value. This is necessary because the predicted scores, ˆ
iS , are implicitly shrunken 

through the prediction process and as a result, the distribution of ˆ
iS  is tighter than the 

distribution of iS . The use of a score-based value to set S  would result in a lower share of high-

risk students identified than students whose actual test scores are below the threshold value.8 

Next, we turn to the predictors of academic performance. We consider three broad types 

of predictor variables: (1) individual-level contemporaneous variables, (2) individual-level panel 

variables, or persistence variables, and (3) school-average variables. The individual variables are 

listed in Table 1 and include measures of student mobility (number of districts attended in year t, 

number of schools attended in year t), ELL status, IEP status, race-ethnicity category (where the 

categories are American Indian, Asian/Pacific Islander, Black, Hispanic, White, and Multi-race), 

gender category (male or female), FRM status, and DC status. The panel variables are three-year 

averages of the individual-student variables taken over the current and two preceding years.9,10 

These variables capture the persistence of students’ circumstances, motivated by prior work on 

the predictive validity over test scores of persistent poverty (Michelmore and Dynarski, 2017) 

and mobility (Goldhaber et al., 2022). The third and final set of variables includes school 

averages of the contemporaneous student variables. The school-average variables capture the 

predictive influence of schooling circumstances conditional on individual student circumstances. 

 
8 Alternatively, a variance inflation procedure like the one discussed in Appendix E could be used to set score-based 
thresholds. 
9 We exclude variables that generally do not change over time, such as race-ethnicity and gender designations, from 
the panel variable list. For the mobility variables, we divide the total numbers of schools and districts attended by 
the number of years the student was enrolled in a Missouri school district in the last three years, then additionally 
control for the fraction of years the student was enrolled in a Missouri district. This three-variable set captures 
mobility between Missouri schools and districts and across state lines over the three-year period.  
10 The use of three-year averages rather than, say, count variables, allows us to use three years of data for students 
who we observe for at least three years and fewer years for students new to Missouri or with missing data. For 
example, a student with two years of data who is FRM-eligible in both years will be coded as “100 percent” FRM-
eligible for the panel variable and similarly for a student with just one year of data. The alternative is to use count 
variables and drop students with insufficient histories (who analytically will be treated as having incomplete X 
vectors). However, this is an inferior option from a policy perspective because it would lead to fewer students for 
whom we can estimate ˆ

iS . The efficacy, or lack thereof, of our panel-variable models embodies both the 
substantive importance of the variables and the limitations associated with using them in a comprehensive way as 
would be necessary in a real policy application. 
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4.2 Practical Issues Associated with Taking the Framework to the Data 

4.2.1 Variable Selection 

In Section 3 we discuss how in the ideal implementation of our framework, the variables 

included in the X-vector would be non-manipulable. The non-manipulability principle led us to 

exclude some types of information available in the SLDS from the predictor set at the onset—

examples include data on student attendance, behavioral incidents, course-taking, and grades. 

These and related variables are typically included in SLDS-based “early warning systems” 

designed to identify students at risk of poor academic outcomes, such as high school dropout (Li 

et al., 2016). However, although these kinds of variables are predictive, they are a poor fit in our 

framework because they can be affected (potentially a great deal) by district and school behavior. 

Per the preceding discussion, their inclusion would create perverse incentives in the policy 

applications we have in mind, which have high-stakes funding and accountability consequences 

attached.11 

While we omit some of the most manipulable variables from the prediction framework, 

we also acknowledge that not all of the remaining variables listed in Table 1 are entirely non-

manipulable. For example, schools and districts can manipulate FRM status by adopting 

community eligibility, if eligible; and if not, they can manipulate individual student designations 

through other aspects of the NSLP application process (Bass, 2010). Schools and districts can 

also potentially manipulate other student categories including ELL and IEP. Unfortunately, there 

are few strong predictors of student performance in the Missouri SLDS that are entirely non-

manipulable, which suggests a tradeoff between the predictive validity of ˆ
iS  and its 

manipulability. We were unable to construct a credible version of ˆ
iS  that excludes all potentially 

manipulable student attributes. Instead, we take a middle-of-the-road approach by allowing some 

potentially manipulable variables into the framework. The tradeoff between non-manipulability 

and predictive accuracy merits consideration from users of our framework in any policy 

application.  

Ultimately, our preferred model includes all of the variables listed in Table 1, but uses 

DC status in place of FRM status as the measure of student poverty. We favor the use of DC 

 
11 See Public Impact with Education Analytics (2021) for a related application. Their initial framework does not 
account for non-manipulability, but they emphasize its importance in their discussion of key issues for future 
research. 
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status over FRM status because it is a more accurate measure and cannot be manipulated as 

easily as FRM status (Fazlul, Koedel, and Parsons, 2021). After making this switch, students’ 

ELL and IEP designations are the most manipulable categories remaining in our preferred 

implementation of our framework. 

An additional variable-selection issue highlighted by this discussion is with regard to the 

use of information external to the education system. An application of our framework that is 

entirely internal to the education system would exclude both FRM and DC data (because both 

derive from external programs), but as we show below, this has consequences for the predictive 

accuracy of equation (1). Our decision to include DC status as an external indicator of poverty is 

again in the spirit of striking a balance between competing priorities. This choice is made easier 

by evidence we show below that students’ risk designations based on our framework are far less 

sensitive to data disruptions (e.g., a policy change that makes a variable unavailable or changes 

its meaning) than risk designations in common categorical systems. 

4.2.2 Variable Weights 

In addition to concerns about the manipulability of variables in the X-vector, we must 

also be concerned about the variable weights ( 1β  in equation 1). Districts and schools can 

influence these weights if they serve a disproportionately large fraction of students with 

particular attributes. For example, consider a case of extreme residential segregation by race-

ethnicity in a system with two districts, A and B. If District A predominantly serves URM 

students and is also highly effective, the race-variable weights in equation (1) will partly reflect 

District A’s effectiveness, leading to lower “risk” scores for URM students than would be 

implied by non-schooling conditions alone.  

Jackknifing is an estimation procedure that prevents individual schools and districts from 

influencing their own weights. In our application, it involves estimating multiple iterations of 

equation (1) after removing some data at each iteration. In its purest form, a district-level 

jackknife with J districts involves estimating J “leave-one-out” versions of equation (1), where 

each version is estimated on J-1 districts.12 The version estimated for individual district j 

includes data from all districts except j itself. The jackknifed fitted values for district j are a 

 
12 We jackknife at the district level throughout our application. Jackknifing at the school level is also possible, but it 
is less conservative, more computationally intensive, and unnecessary because district jackknifing works well 
empirically (see below). 
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function of the characteristics of students in district j (which are unchanged by the jackknifing 

procedure), X, and a set of weights, j
1β , unique to district j and estimated using data entirely 

outside of district j. Conceptually, these fitted values can be described as capturing the degree of 

risk of students in district j based on their attributes, as predicted by a statewide model outside of 

district j. The jackknifed estimates of the weighting parameters have the desirable feature that 

they cannot be influenced by district j’s own behavior. 

Jackknifing is a common procedure used in academic research, but at least in its purest 

form, it can be computationally intensive and may be unnecessarily complex for policy 

applications such as the one we consider. Therefore, we explore the use of simpler variants of the 

jackknifing procedure. Our preferred jackknife is what we refer to as a “random-quarters” 

jackknife, which randomly divides districts in Missouri into four equal-sized groups and 

estimates four “leave-one-group-out” jackknifed versions of equation (1). Each district’s 

jackknifed values are from the regression that excludes the random quarter of the sample to 

which it belongs. In the appendix we confirm that other jackknifing approaches yield similar 

results—e.g., splitting the sample randomly into thirds, fifths, tenths, and a full jackknife (see 

Appendix Table A2). All of the results presented below use the random-quarters jackknife. 

 

5. Empirical Application 

5.1 Descriptive Documentation of Model Output 

Table 2 provides statistical summary information for variants of equation (1) that include 

different combinations of variables in X. Rows (a)-(d) include only student-level 

contemporaneous variables to predict test scores, rows (e)-(h) build on the models in rows (a)-(d) 

by adding corresponding panel variables, and rows (i)-(l) further add corresponding school-level 

variables. Within each set of rows, the models become increasingly rich moving down in the 

table. The last row within each horizontal panel (rows (d), (h), and (l)) also includes two-way 

interactions of all variables for the relevant variable types (the types are: individual student, 

panel, and school-level). The notes to Table 2 give precise details about each specification. 

The columns of the table provide statistical information about the models. In column (1), 

the R-squared values range from about 0.21 in our sparsest specification to 0.29 in the models 

with the most predictive power. Our preferred specification is shown in row (l), where the R-

squared is at the maximum in the table. Row (l) uses all available information, includes two-way 



15 

interactions between the individual student, panel, and school-aggregate variables, and uses DC 

status instead of FRM status to capture economic disadvantage.  

Note the maximum possible R-squared value for each specification in Table 2 is below 

1.0. This is because there is test measurement error in iS  and school effects explain some of the 

variance in student outcomes. However, variation from these sources is not predicted by the 

variables in X. This puts a ceiling on the maximum feasible R-squared value in Table 2; a rough 

estimate is that the maximum should fall in the range of 0.70-0.80.13 Scaling the estimated R-

squared from our preferred specification in row (l) by the center of this range—0.75—gives an 

ad hoc “effective R-squared” of 0.39.14 This is our best estimate of the share of the explainable 

variation in student test scores accounted for by our preferred model.  

Unfortunately, it is difficult to gain insight from this number about the efficacy of our 

predictions. An R-squared value that is too low is undesirable because it would imply poor 

predictions from the model, but an R-squared that is too high is undesirable because some 

distance between iS  and ˆ
iS  is appealing from an incentive-design perspective, per the preceding

discussion. The R-squared values reported in Table 2 do not seem particularly “high” or “low” at 

a cursory glance, although it is a diagnostic limitation that there is no concrete way to judge the 

performance of the model in this way. 

Complementing the R-squared values, Column (2) shows MSEs for the individual 

predictions relative to observed test scores, and columns (3)-(5) show error rates for the binary 

predictors of which students are below the score threshold. For the results in these latter 

columns, we assign the lowest 26.25 percent of students based on ˆ
iS  to the below-basic category

then compare their predicted assignments to their actual assignments based on being below the 

26.25th percentile in the distribution of iS . A false-positive is a student we assign as “high risk” 

based on ˆ
iS , but who scores at or above the 26.25th percentile in reality; and vice-versa for a

13 First, measurement error attributable to the testing instruments accounts for about 10 percent of the variance in 
these tests (e.g., see Data Recognition Corporation, 2019), and following Boyd et al. (2013), if we use a broader 
definition of test measurement error it roughly doubles this value to 20 percent. In addition, based on 
Konstantopoulos and Borman (2011), unobserved factors across schools—inclusive of (and arguably primarily 
consisting of) school effects—can be estimated to account for up to an additional 10 percent the variance in scores. 
Subtracting these variance shares from the maximum R-squared value of 1.0 yields a feasible maximum in our 
application in the range of 0.70-0.80. 
14 In instances where the upper bound R-squared value is below 1.0, the effective R-squared can be obtained by 
dividing the estimated R-squared by the maximum value (e.g., Aaronson, Barrow, and Sander, 2007). 
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false negative. The MSE and error-rate numbers come with the same interpretive caveats as the 

R-squared values: numbers that are too high, or too low, are both of concern.

Although it is difficult to draw conclusions about the general efficacy of our framework 

from Table 2, it is useful for comparing the different specifications of equation (1). One 

takeaway from the table is that poverty status data—whether FRM or DC data—add substantial 

predictive value to the model. Relative to our specifications in rows (a), (e), and (i) that omit this 

information, the R-squared increases by about 3-5 percentage points in rows where we include it 

in various forms. Between the two, FRM data are more predictive of test scores than DC data 

(this can be seen by comparing the output in rows (b) and (c), (f) and (g), and (j) and (k)). In 

results omitted for brevity, we confirm that DC status is a stronger predictor of low test scores 

than FRM status for individual students. However, DC data contribute less to the explanatory 

power of the model because there is more variance in FRM data (i.e., the FRM-eligible student 

share is closer to 0.50).15 

Another takeaway from the table is that conditional on the first-order variables, there is 

only a marginal gain in explanatory power from adding the interaction variables to the models. 

This can be seen by the small changes in the R-squared values, MSEs, and error rates 

corresponding to the rows in Table 2 that add the interaction terms ((d), (h), and (l)) relative to 

their preceding rows. The limited impact of the interaction variables does not mean that student 

assignments to multiple categories do not matter—the models without interactions still allow 

students who belong to multiple categories to have lower predicted performance. Rather, the 

limited impact of the interactions suggests that the predictive influence of multi-category 

assignment can be inferred (roughly) additively. For this reason, we do not pursue more complex 

models with additional interactions.16 

Table 3 summarizes our risk measures overall, and within traditional categories of 

disadvantage, by reporting means and standard deviations of ˆ
iS

15 Recall from above that our preference for using DC data is not based on maximizing predictive power, although it 
is helpful that there is not a major loss of predictive power in switching from FRM to DC data, especially in our 
richest specifications. Below we show that the predicted values, ˆ

iS , are very highly correlated in models that switch
between using FRM and DC data. 
16 Future work could apply machine learning tools to select the optimal model. However, while this would be an 
interesting academic exercise, our investigation suggests that meaningful gains in predictive power are unlikely. It is 
also a policy consideration that the use of machine learning could be perceived as less transparent. We leave 
consideration of the costs and benefits of alternative estimation techniques within our framework to future research.  
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in Table 2, row (l).17 First, focusing on the group-average values of ˆ
iS  in the first row of Table 3,

the results reflect the well-understood achievement gaps that motivate the policy focus on these 

categories. The gaps in average predicted achievement by DC status, FRM status, ELL status, 

URM status, and IEP status are 0.58, 0.52, 0.44, 0.59, and 0.94, respectively. These gaps are in 

standard deviation units of test scores and large by any reasonable standard.18 

It is a useful (albeit predictable) validity check of our framework that it replicates well-

established achievement gaps on average between the categories in Table 3. But the more 

important new information is in the second row of the table, which reveals broad heterogeneity 

in the risk for poor academic performance within traditional categories of disadvantage. To see 

this, first note that column (1) shows that across all students, the standard deviation of ˆ
iS  is

0.50.19 The subsequent columns show there is almost as much variation in ˆ
iS  within several of

the categories as in the full sample—e.g., the standard deviations within the FRM-eligible 

category, non-ELL category, and URM category are all 0.49. Table 3 provides empirical support 

for the intuitive claim that traditional categories of disadvantage used in state policies are coarse 

and mask considerable variability in student risk as measured by academic performance. 

While Tables 2 and 3 provide necessary contextual information, they are not directly 

informative about the utility of our framework. This is because they do not address the policy-

relevant question of whether our risk measures are “good enough to be useful.” The answer to 

this question depends on the policy objective and the quality of alternative options. In the next 

section we incorporate these dimensions via our policy simulations. 

5.2 Policy Simulations 

Table 4 shows results from our first set of policy simulations. We use the risk measures 

from our framework to allocate resources to students and compare the allocations to alternative 

allocations using the same policy but where risk status is defined by DC or FRM status. We set 

17 None of the substantive findings in Table 3 are unique to using our preferred specification. 
18 We do not report values for the many coefficients from our prediction models because the multivariate regression 
framework makes the interpretation of individual coefficients intractable, especially in our richer (and preferred) 
specifications. That said, the mean values of ˆ

iS  across student categories in Table 3 permit inference about the net
direction of the model predictions. More information about the performance of the prediction model can be found in 
Appendix B. 
19 This value is below 1.0 due to shrinkage in the predictions. Table 1 (including the table notes) shows that the raw 
standardized scores have standard deviations of approximately 1.0, which is by construction. 
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B = 1.25N  (recall N is the total number of students). Our results are not directionally sensitive 

to the value of B, but all else equal, larger values of B generate larger resource gaps between 

high-risk and low-risk students.

 Each column of Table 4 shows results from a different policy parameterization, defined 

by the first four rows. The rows in the lower panel of the table show the average resource units 

accruing to students with different characteristics. It is these rows that show the policy impacts 

of our framework, in the form of changes to the resource allocations compared to DC- and FRM-

based alternatives. 

We walk through how to read the table using the results in column (1) under the baseline 

settings of our framework. First, we identify high-risk students as those below the 26.25th 

percentile in the distribution of predicted test scores, which gives a high-risk student share of 

0.2625 (rounded to 0.262 in the table). From equation (3), with B = 1.25N, the third row of the 

table shows that Z = 0.952. The policy simulation allocates (1+Z) resource units to each student 

identified as high risk—in the bottom panel of the table, we show the tautological result that 
students identified as high risk based on a low value of Ŝi each receive 1.952 resource units.

The other rows in the bottom panel of Table 4 show the average resource units accruing 

to students with other characteristics. For example, students identified as high-risk based on 

actual test scores (i.e., with iS  below the 26.25th percentile) receive 1.537 resource units, on 

average. This value is below the value for students identified by ˆ
iS  because the model does not

predict test performance perfectly. DC and FRM students receive 1.50 and 1.40 resource units on 

average, respectively, and the values accruing to ELL, IEP, and URM students are similarly 

shown. The resources accruing to students with different characteristics derive from the 

association of these characteristics with low predicted academic performance (i.e., ˆ
iS ).

The normalization of resource units in our policy simulation facilitates straightforward 

comparisons within and across columns in the table. The easiest way to compare allocations 

across student types is in percentage units relative to the normalized baseline allocation of 1.0, 

which in a funding system would correspond to a foundational dollar value per pupil. For 

example, in the baseline scenario in column (1) our framework allocates 1.621 resource units per 

URM student, on average, or an additional 62.1 percent of the foundational amount received by a 

low-risk student. 
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Next, we turn to the comparative analyses in Scenarios 2 and 3. In these scenarios we 

anchor our framework to the DC and FRM data, respectively, by resetting S  to match the share 

of students identified as high-risk by these designations. That is, 27.3 and 50.3 percent of 

Missouri students are directly certified and FRM-eligible, respectively, and we adjust S  so the 

bottom 27.3 and 50.3 percent of students based on ˆ
iS  are identified as high-risk. This allows for 

comparisons of how the use of our risk measures differs from the alternative measures, holding 

fixed the fraction of high-risk students identified (and correspondingly, the value of Z).  

First, the results from Scenario 2 show that using a DC-based definition of risk results in 

more resources accruing to DC and FRM students, on average, compared to defining risk using 

ˆ
iS . The finding for DC students is again tautological—when we define risk using DC status, 

each DC student receives (1+Z) resource units by construction. The finding for FRM students 

follows from the strong overlap between FRM eligibility and DC status. However, the other rows 

of the table show that targeting resources directly to DC students comes at the cost of lower per-

pupil resources for other types of students at risk of low academic performance. First, and 

unsurprisingly, our framework in Scenario 2 allocates more resources to students with low test 

scores and low predicted test scores (where the latter reflects the same tautology described 

above). This empirically confirms that our framework is more effective at targeting students at 

risk of poor academic performance than a DC-based framework. Our framework also allocates 

more resources to ELL, IEP, and URM students, and by a substantial margin in all three cases.  

A similar set of results unfolds in Scenario 3, which is anchored to FRM status. The 

magnitudes of the per-student resource allocations in Scenario 3 are smaller across the board 

compared to Scenario 2 because Z is much smaller. This is owing to the fact that many more 

high-risk students are identified (because there are so many students who are FRM-eligible), 

which suppresses the per-student allocations under the fixed budget. Still, the general pattern of 

findings from Scenario 2 holds in Scenario 3. The FRM-based system is, by definition, better at 

targeting resources to FRM students, and similar or worse at targeting resources to every other 

category associated with student risk.  

Next, we compare columns (1) and (5) across scenarios. This comparison pits our 

framework under the baseline settings against the FRM-based alternative. The conditions in 

columns (1) and (5) differ by both (a) the metric used to identify high-risk students and (b) the 
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share of students identified. The comparison shows that our framework allocates more resources 

per student along every measured dimension of risk except FRM status (including DC status, 

albeit marginally). For most non-FRM characteristics, our framework leads to substantially more 

resources per student, on average. This reflects the broader targeting of resources in our 

framework based on the full vector of information, X, and the fact that we identify fewer high-

risk students, which permits a greater per-student allocation via the higher value of Z. A 

summary characterization of this comparison is as follows: our framework is more effective at 

targeting resources toward high-risk students both as we define them in terms of academic 

performance and more broadly using most other common categorical definitions. 

The comparative scenarios in Table 4 are informative but generic. In Table 5, we show 

results from a complementary comparison grounded in a real-world policy by grafting the core 

features of California’s high-profile Local Control Funding Formula (LCFF) onto the Missouri 

data—namely, LCFF’s supplemental and concentration grants. This allows us to compare 

resource allocations based on our framework to what they would look like if LCFF were 

implemented in Missouri.  

California’s LCFF allocates additional resources to “targeted disadvantaged pupils” as 

identified by ELL status, FRM status, and foster youth. Students who belong to any category are 

counted and students cannot be double-counted based on assignments to multiple categories.20  

We implement a modified version of LCFF that ignores foster youth because we do not have 

access to data for this designation.21 

The LCFF allocates resources at the district level and accounts for district-level 

circumstances by providing additional per-pupil funding to districts with concentrated need 

(Johnson and Tanner, 2018). Based on 2021 LCFF funding rules, we convert the LCFF formula 

from a district-level to student-level allocation model to fit within our analytic framework. The 

student-level version of the LCFF funding formula is as follows: 

0 0 0(0.2* )* (0.65* )*max[ 0.55,0]i i dF F F D F D= + + −     (4) 

 
20 See here for more information about LCFF (link retrieved 11.01.2021): 
https://www.cde.ca.gov/fg/aa/lc/lcffoverview.asp; also Johnson and Tanner (2018).  
21 The implications of omitting foster youth should be small because few children in Missouri (1.4 percent in 2020) 
are in foster care (link retrieved 11.01.2021: https://www.stltoday.com/news/local/state-and-regional/missouri-
foster-parents-get-help-from-legislature-but-why-are-more-children-coming-into-state/article_24fab000-d8ed-5ff7-
a20d-eaa88a1ae21f.html) and of those that are, many are likely already FRM-eligible.  

https://www.cde.ca.gov/fg/aa/lc/lcffoverview.asp
https://www.stltoday.com/news/local/state-and-regional/missouri-foster-parents-get-help-from-legislature-but-why-are-more-children-coming-into-state/article_24fab000-d8ed-5ff7-a20d-eaa88a1ae21f.html
https://www.stltoday.com/news/local/state-and-regional/missouri-foster-parents-get-help-from-legislature-but-why-are-more-children-coming-into-state/article_24fab000-d8ed-5ff7-a20d-eaa88a1ae21f.html
https://www.stltoday.com/news/local/state-and-regional/missouri-foster-parents-get-help-from-legislature-but-why-are-more-children-coming-into-state/article_24fab000-d8ed-5ff7-a20d-eaa88a1ae21f.html
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In equation (4), iF  is the resource allocation for student i, 0F  is the base amount, iD  is an 

indicator equal to one if the student belongs to a “targeted-disadvantage” category (i.e., ELL or 

FRM), and dD  is the share of students in a targeted disadvantage category in district d. In words, 

the LCFF allocates an additional 20 percent of the base funding level for each targeted student, 

then an extra 65 percent of the base amount to districts for each targeted student in excess of 55 

percent of enrollment.22 Following our analytic structure from above, we normalize 0F  to 1.0. 

 We apply the pseudo-LCFF in Missouri and assign students values of iF . To compare the 

subsequent student allocations to allocations from our framework, we first use the sum of the iF  

values across all students to calculate the total pseudo-LCFF budget in Missouri—i.e., the total 

amount allocated to students under the LCFF rules—which we set as B in equation (2). For 

notational convenience, we write the total budget in units of N as above (applying the LCFF 

rules in Missouri generates a total resource budget of 1.152N). Then, using this budget, we 

implement our policy simulation where we allocate resources following equation (2) and set S  

at the 26.25th percentile of test scores. This facilitates a fixed-budget comparison between the 

two allocation models.  

Before turning to the results, we note two key features of the pseudo-LCFF. First, it 

accounts for two categories of disadvantage simultaneously (FRM and ELL), albeit simply. 

Second, the “concentration” portion of the pseudo-LCFF formula allocates more resources to 

districts with concentrated need via the third term in equation (4). Our policy structure does not 

include a directly-analogous concentration component, but the use of the school-level variables 

in our prediction model is similarly-spirited. That is, to the extent that concentrated student risk 

is associated with lower test scores conditional on students’ individual risk, our model will 

assign students in high-concentration schools lower values of ˆ
iS . (We could also modify our 

policy structure to copy the LCFF concentration-grant structure by forcefully allocating more 

resources to students in schools or districts with high proportions of low- ˆ
iS  students, although 

we do not pursue this extension here.) 

 
22 The way the student-level formula is written in equation (4), each student in a district with 0.55dD >  receives a 
small positive increment, which is equivalent to identifying the fraction of students above 55 percent and providing 
the district with the full increment for each of these students. 
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Table 5 shows the results comparing our framework to the pseudo-LCFF in Missouri. 

Along most dimensions we measure, including the key metrics of test performance and predicted 

test performance, our framework yields more resources per high-risk student than the pseudo-

LCFF. The one exception is FRM students, who are explicitly targeted by LCFF and receive 

modestly higher resources under LCFF, on average.23 Our framework yields higher per-student 

allocations along most dimensions because it explicitly accounts for them in constructing the 

predicted test scores. Moreover, it distributes the excess budget (0.152*N) in a more targeted 

way by focusing on the bottom 26.25 percent of students; in contrast, under the pseudo-LCFF the 

excess budget is distributed across 51.1 percent of Missouri students (the unduplicated sum of 

FRM and ELL students). 

Tables 4 and 5 focus on student level allocations, but it is difficult to target resources to 

individual students differentially within a school. The extent to which student-level changes in 

resource allocations will impact school-level allocations, whether in our framework or in any 

other framework, depends on the distribution of student characteristics across schools. As a 

simple example, consider a hypothetical (and unrealistic) setting where students are distributed 

to schools randomly. In this case, there would be no expected effect of changes to student-level 

resource allocations on school-level resource allocations. This is because each school’s student 

body would be of the same proportions (subject to sampling variance). In the real world, 

residential sorting implies that changes to student-level allocations will translate at least partly to 

changes in school-level allocations. 

In Appendix C we provide information complementary to Tables 4 and 5 at the school 

level, in the form of correlations between school-average student characteristics and school-

average resource allocations. The correlations reported in the appendix are directionally in line 

with expectations based on the findings in Tables 4 and 5 in the presence of residential sorting. 

That is, policy simulations that produce higher student-level resources for particular types of 

students also generally produce higher school-level resources for schools serving more of these 

students. Interestingly, the concentration portion of the pseudo-LCFF formula does not seem to 

 
23 ELL students are also explicitly targeted by the pseudo-LCFF, but the effect on ELL students is overwhelmed by 
other factors. The ELL comparison in Missouri is also not especially useful due to the low ELL share in the state (in 
contrast to California). 
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greatly affect the strength of the school-level correlations, although it does put modest upward 

pressure on the correlation between resources and schools’ FRM shares. 

The link between our student-level and school-level findings is conditional on the 

distribution of students across Missouri schools. For our purposes it is sufficient to show that 

directionally, the correlations in the appendix are as expected based on the student-level findings 

reported in Tables 4 and 5. But more broadly, the question of how student-targeted resource 

allocation models impact school (and district) resources through the distribution of students 

across schools (and districts)—whether in our framework or a different framework—merits 

attention in future research.24 

 

6. Framework Flexibility and Augmentation 

6.1 Flexibility 

An advantage of our framework is that it can handle changes in the underlying variables 

used to measure student risk, or the information they contain, with greater flexibly and less 

disruption than systems that rely on categorical assignments. For example, consider a state that 

measures risk categorically using DC status. If that variable were to suddenly become 

unavailable (e.g., due to a data sharing problem or other policy change), the entire category 

would disappear and need to be replaced. This would likely result in a significant disruption to 

measurement. In contrast, the effect of the same event on our risk measures, ˆ
iS , will be dulled by 

the larger framework. The reason is that the remaining predictors in the X-vector will absorb 

some of the information loss—i.e., to the extent that these variables are correlated with DC 

status, their weights in the coefficient vector 1β  will change to lessen the total impact on the 

predictions.  

This is a clear theoretical benefit of our approach, but does it help in practice? We answer 

this question in two ways. First, in Table 6 we report correlations of ˆ
iS  as estimated by the 

specifications shown in Table 2. The correlations are shown in reverse order for the 

specifications in rows (l) to (a) of Table 2 in order to emphasize differences among our preferred 

 
24 IEP students offer an instructive example of the importance of the student distribution because they are more 
evenly distributed across schools than most other student groups (for whom residential segregation is stronger). 
Because of their relatively even distribution, as student-level resources for IEP students increase, it can put 
downward pressure on cross-school differences in resources. 
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models that use the richest control-variable sets. Column 1 shows that compared to our primary 

specification in row (l), most alternative specifications of the prediction model yield similar risk 

values for individual students. For example, only 3 of the 11 correlations reported in the first 

column are below 0.89, and the minimum value is 0.844 (from row (a), which is the sparsest 

specification). In fact, the correlation reported between models (a) and (l) of 0.844 is the 

minimum value in the entire correlation matrix. Broadly speaking, Table 6 confirms that the risk 

metrics for individual students are fairly stable as we change the attributes included in X. 

Next, in Table 7 we make a concrete comparison between our framework and a 

categorical system. We assess the implications of a switch from using DC status to using free 

meal (FM) status to identify students from low-income families. Conceptually this is a 

reasonable substitution as both metrics are purported to identify students from families at 130 

percent of the poverty line or below (although in practice FM-eligibility is oversubscribed—see 

Domina et al., 2018; Fazlul, Koedel, and Parsons, 2021). In the categorical system, we recode 

students as high risk based on FM status instead of DC status. Within our framework, we make 

the same data switch in the prediction model. For the DC-data scenario we estimate the model as 

described in row (l) of Table 2 precisely; for the FM-data scenario we estimate the same model 

but for any DC-based variable or interaction, we use an FM-based variable or interaction in its 

place. We continue to identify at-risk students in our framework based on predicted 

achievement—i.e., an at-risk student has ˆ
iS S<  , where S  is set at the 26.25th percentile. 

The results in Table 7 make clear that the flexibility of our approach is a significant 

practical benefit. The risk metrics from our framework are much less volatile than the categorical 

alternative in response to the hypothetical switch from DC to FM data. Specifically, in our 

framework this data switch results in just 4.4 percent of students switching at-risk status, 

compared to 17.8 percent of students under the categorical alternative. 

The reason for this difference is that the weighting parameters in the prediction model 

adjust to reflect the informational content of the new variable, in this case FM status, holding the 

share of at-risk students fixed. We largely identify the same group of at-risk students regardless 

of whether we use DC or FM data. The change in the categorical designations is much more 

disruptive because of the large difference in the size of the DC and FM categories and the 

inherent inflexibility of the categorical approach. We acknowledge that the categorical approach 

in Table 7 is a straw man in the context of an academic investigation—it is obvious that it must 
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perform worse than the model-based approach—but it is important to recognize this is a 

fundamentally accurate characterization of current systems and explains much of the 

consternation brought about by the Community Eligibility Provision, which is pushing states to 

switch from FRM-based to DC-based categories. 

By the same logic, changes to variable definitions that alter their informational content 

will also have less of an impact in our framework. For example, suppose future changes to the 

programs that determine DC status change the level of poverty associated with this variable. The 

risk designations of students in our framework will not be entirely impervious to such a change, 

but the impact of the information disruption will be reduced.  

We also note one aspect of our measures that makes them more volatile than categorical 

alternatives: their anchoring to state assessments. If states change their assessments, it will 

impact students’ ˆ
iS  values if the X-vector attributes differentially predict performance on the 

new assessments. We do not explore the sensitivity of our estimates to test changes directly, but 

make three comments about this issue. First, if a test change occurs and it alters the values of ˆ
iS , 

it can be argued that the new values of ˆ
iS  reflect an update to the state’s educational goals per 

their decision to adopt the new assessment. Given this, our framework’s potential sensitivity to 

the new test could be viewed positively as it allows for a fluid, policy-aligned adjustment to what 

it means to be at risk. Second, if a test-induced change to students’ ˆ
iS  values is deemed too 

disruptive, the impact can be dampened by using a multi-year average of the weighting 

parameters, 1β , based on the new and old tests. Finally, although there is no direct research on 

the impact of test changes on prediction models such as ours per se, Backes et al. (2018) study 

the sensitivity of estimates of teacher value added to test changes. Estimates of teacher value 

added derive from models that are similar in many respects to our prediction models, and in 

some ways would be expected to be affected even more by test changes. However, Backes et al. 

(2018) show that estimates of teacher value added are relatively stable when test changes occur, 

which suggests that the risk measures that emerge from our framework may not be highly 

sensitive to assessment changes. 

6.2 Augmentation 

There are some aspects of current systems that our framework does not meaningfully 

improve upon. The most obvious example is students with severe IEPs, for whom broad 
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categorical designations, or measures of risk from our framework, are insufficient to capture the 

extent of their needs. This is despite the fact that IEP status is strongly associated with low test 

performance conditional on taking the test, as demonstrated above by the large average 

allocations that accrue to IEP students in our framework.  

In funding policies, add-ons will be needed for IEP students to augment any general 

framework. For accountability policies, which we discuss briefly in an extension below, it may 

be desirable to exclude these students, or at least those whose disabilities are deemed severe 

enough to exempt them from testing, as is common practice in many states. 

 

7. Extensions 

7.1 Risk Measures That Ignore Race-Ethnicity 

The goal of the prediction models summarized by Table 2 is to predict academic 

performance, and race-ethnicity is a consistently strong predictor. Statistically, the decision of 

whether to use information on race-ethnicity to improve the estimates of ˆ
iS  is unambiguous: 

these data should be used. Still, arguments have been made for the omission of data on race-

ethnicity from test prediction models such as ours, based on the view that controlling for race-

ethnicity sets different expectations for academic performance across racial-ethnic groups.25 We 

believe this viewpoint is misguided in our application and that our use of racial-ethnic data in the 

prediction model acknowledges longstanding gaps in educational outcomes by race-ethnicity, 

gaps that policies informed by the risk measures from our framework can work to remedy. Still, 

in this section we briefly consider the implications of the omission of these variables from the 

prediction model.  

We re-estimate our preferred specification in row (l) of Table 2 omitting all information 

about race-ethnicity. This produces estimates of ˆ
iS  that are not directly influenced by this 

information (although some circumstances that contribute to variance in ˆ
iS  are still correlated 

with race-ethnicity). Appendix Table D1 shows results from this model in the same format as 

Table 2. A comparison between the versions of model (l) that do and do not include the race-

ethnicity variables shows that the predictions from the latter are clearly worse. For example, the 

 
25 Ehlert et al. (2016) provide a deeper discussion on this issue in the context of school accountability systems. 
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R-squared is 0.03 points lower, the MSE is 0.02 points higher, and the classification error rate is 

1.5 percentage points higher. 

Next, in Appendix Table D2 we use our policy simulation to show how student-level 

resource allocations are affected if we use the values of ˆ
iS  from the restricted model. The results 

can be compared to the findings from our baseline scenario in Table 4, which is replicated in the 

appendix for ease of presentation. Most of the findings are similar regardless of whether we use 

the full or restricted versions of model (l), which is as expected given the general robustness of 

the prediction framework shown by Table 6. However, there is one exception precisely where it 

is anticipated: using the model that is stripped of all racial-ethnic information results in less 

resources accruing to URM students. 

7.2 Monitoring Achievement Gaps  

The empirical application of our framework is in the context of a resource-allocation 

policy. However, our framework also has features that make it appealing for use in other 

policies, such as for monitoring achievement gaps within schools. Many states informally 

monitor within-school achievement gaps and these gaps are incorporated into some states’ 

formal accountability policies (Martin, Sargrad, and Batel, 2016). 

Based on their plans submitted to the federal government as part of the Every Student 

Succeeds Act (ESSA), states currently track achievement gaps in one of two ways. The first is to 

specify multiple categories of student risk (e.g., FRM, ELL, IEP, URM) and track gaps for each 

category separately. The second is to combine the categories into one “super subgroup” and track 

the achievement gap between students who do and do not belong to the super subgroup. 

Each approach has strengths and weaknesses. The former follows from the structure of 

the predecessor to ESSA—No Child Left Behind (NCLB). On the one hand, it is useful because 

it provides detailed information about achievement gaps along a variety of dimensions. But on 

the other hand, it can be misleading because of heterogeneity in expected student performance 

within the categories across schools. For example, if schools A and B both have ELL students, 

but the ELL students at school A are also at relatively greater risk along other dimensions (e.g., if 

they come from lower-income families), the ELL-based gap will be higher in school A than in 

school B due to compositional difference, all else equal.  
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Another problem with the multi-category approach is that the multiple comparisons can 

cause information overload.26 They can also lead to type-I errors because as the number of 

groups tracked for accountability increases within a school, the likelihood of bad outcomes for 

some groups by chance increases statistically (Davidson et al., 2015). Policymakers may have 

trouble drawing accurate inference about schools that track many achievement gaps due to their 

diversity. The super-subgroup approach is meant to solve these problems by reducing the 

achievement gap within a school to a single number comparing students who do and do not 

belong to the super subgroup. However, its limitation is that there are compositional differences 

in the super subgroup across schools, which exacerbates the problem raised in the preceding 

paragraph of group heterogeneity in expected student performance. 

Our framework allows for the single-comparison simplicity of the super-subgroup 

approach with the added benefit of minimizing the potential for misleading comparisons due to 

differences in the composition of super subgroup across schools. The basic idea is to compare 

schools’ predicted achievement gaps between high-risk and low-risk students to their actual 

gaps. Schools with actual gaps that are smaller than the predicted gaps have less inequity than 

would be implied by the characteristics of their student bodies, and vice versa for schools with 

actual gaps that are larger than their predicted gaps. Appendix E provides additional details. 

7.3 Uncoarsened Risk Measures 

Throughout our empirical application we assign binary risk categories to students based 

on predicted test performance. This facilitates a straightforward comparison to status quo 

systems and lends policy relevance to our work given the strong cultural norm within the 

education sector of grouping students categorically, and often in a binary fashion.  However, our 

framework produces more differentiated risk measures in the form of the underlying ˆ
iS  values.

This is another dimension of flexibility of our framework.  

In the interest of brevity, we do not investigate the potential for using the uncoarsened Ŝi 

26 See Sutcliffe and Weick (2009) for a general discussion of information overload and its effects. 

values to enhance policy practice here. A productive avenue of future research would be to 

consider how using multiple risk categories--e.g., moving from a two-category binary system to 

a five-category system--could improve resource targeting by facilitating the allocation of 

additional resources to the highest-risk students. The limiting case would involve using the fully
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uncoarsened ˆ
iS  values directly in a resource-allocation function to produce even more 

differentiated allocations.27 

 

8. Conclusion 

We develop and test a new framework for identifying at-risk students. Our framework is 

guided by a clear definition of student risk based on predicted academic performance and 

modernizes the approach to risk measurement methodologically. The resulting measures are 

more effective at identifying students at risk of poor academic performance. Our framework is 

more flexible than status quo systems and less sensitive to disruptions caused by changes to the 

data available for the purpose of risk measurement. The NSLP’s Community Eligibility 

Provision is a recent example of such a disruption. Finally, our framework is designed for use in 

consequential education policy applications. Although the risk measures it produces are not 

perfectly non-manipulable, which is the theoretical ideal, the data and estimation procedures 

outlined in our article aim to minimize their manipulability. 

We view our primary contribution as putting forth a principled, methodologically-

modernized framework for measuring student risk. We motivate the need for our framework by 

the lack of a strong conceptual or methodological grounding of current state systems. The 

historical evolution of these systems is not entirely clear, and we are not aware of any formal 

documentation of how they came to be. But regardless of the factors that have resulted in current 

systems, it is difficult to argue they are carefully considered and use available data to measure 

student risk efficiently. This is a troubling state of affairs given the high stakes associated with 

accurate risk measurement. Two of the most important types of education policies—funding and 

accountability policies—depend critically on our ability to identify at-risk students. 

We apply and test our framework using the Missouri SLDS in a proof-of-concept 

exercise. We recognize our decisions about which variables to use as predictors and outcomes, 

and how to construct some predictor variables (e.g., the panel variables), are subject to 

reasonable disagreement. But the goal of our paper is not to be prescriptive with regard to the 

 
27 Such an exercise may yield useful theoretical insights, although it would be less policy relevant (at least in the 
near term) given the predominant category-based policy infrastructure in education. In addition to being of less 
direct use in policy, there are also analytic challenges associated with developing a system based on the fully 
uncoarsened ˆ

iS  values, some of which we touch on briefly in Appendix B. 
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precise details of implementing our framework. In fact, some of our findings refute the notion 

that there is a clear “right way” to implement the framework that would merit a prescriptive 

recommendation, which we view as a feature, not a bug (e.g., see Table 6). 

Once implemented, our framework is well-suited for continual improvement, which is 

another advantage over current systems. For example, the set of predictor variables can be 

augmented in real time as new and higher-quality data become available. It will be important to 

monitor the potential for measurement disruptions from this kind of augmentation from year-to-

year, but the basic diagnostics we present using the Missouri data suggest that the risk measures 

would not change dramatically in response to most changes to the data. Future iterations of the 

framework could also incorporate projections of student risk along other dimensions, such as in 

terms of attendance, graduation, and college matriculation. These could replace test scores in the 

framework or, more likely, augment them—for example, each student’s total risk score could be 

a weighted average of risk as assessed for different indicators of academic performance. The 

framework could even be extended to incorporate emerging measures of student well-being, such 

as social-emotional measures. Extensions along these lines would require research to assess their 

costs and benefits, but the flexibility inherent to the framework allows for these kinds of 

continual improvement efforts. In contrast, the rigidity of existing categorical systems may help 

to explain why risk measurement in education has not changed for so long. 

The impetus for the development of our framework is the inadequacy of current methods 

for measuring student risk. No new approach, including ours, will perfectly measure risk due to 

the inherent difficulty of the task. But despite their limitations, new systems can improve upon 

existing systems, and ultimately increase the efficacy of policies designed to promote 

educational equity. 
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Table 1. Descriptive Statistics for Missouri Students, 2017. 
 Mean SD 
Demographics   

Female 0.49 0.50 
American Indian 0.00a 0.07 

Asian/ Pacific Islander 0.02 0.15 
Black 0.16 0.37 

Hispanic 0.06 0.24 
White 0.72 0.45 

Multi-race 0.03 0.18 
English Language Learner 0.04 0.20 

Individualized Education Program 0.13 0.34 
   

Poverty Measures   
Directly Certified 0.27 0.45 

Free and Reduced-Price Lunch Eligible 0.50 0.50 
Free-Lunch Eligible 0.44 0.50 

Reduced-Price Lunch Eligible 0.06 0.24 
   

Mobility Measures   
Number of Districts Attended 1.04 0.22 
Number of Schools Attended 1.05 0.24 

   

Test Scores (Standardized)   
Average Math and English Language Arts 0.01 0.92b 

N (students) 698,726  
Notes: This table shows the summary statistics for students in Missouri in the 2016-2017, restricted to students in 
schools with at least 25 students enrolled. Test scores are from a reduced sample of 387,317 students in grades 3-8 
with math and communication arts tests.  
a0.4 percent of Missouri students are American Indian 
b The standard deviations of the standardized math and English Language Arts tests in the analytic sample are 0.99 
separately; the standard deviation of students’ averaged standardized scores is lower. 
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Table 2. Statistical Output from Various Test Prediction Models. 
 R-squared from 

predictive linear 
regression 

MSE Classification error rate percentage  
(i.e., predicted status ≠ actual status) 

 (1) (2) (3) (4) (5) 
Predicting students’ contemporary test scores using:   All False positive False negative 
(a) Individual contemporary variables 0.213 0.67 23.56 8.92 14.64 
(b) Individual contemporary variables with FRM 0.266 0.62 24.12 12.55 11.57 
(c) Individual contemporary variables with DC 0.248 0.64 23.72 11.10 12.62 
(d) Individual contemporary variables with DC and two-way interactions 0.251 0.63 24.32 12.79 11.53 
      

(e) All individual variables in (a), plus corresponding panel variables 0.221 0.66 23.90 10.86 13.04 
(f) All individual variables in (b), plus corresponding panel variables 0.277 0.61 23.93 12.18 11.75 
(g) All individual variables in (c), plus corresponding panel variables 0.259 0.63 24.12 12.40 11.72 
(h) All individual variables and two-way interactions in (d), plus 
corresponding panel variables and two-way panel interactions 

0.263 0.62 24.09 12.53 11.56 

      

(i) All individual and panel variables in (e), plus corresponding school-level 
aggregates 

0.250 0.63 24.21 12.31 11.90 

(j) All individual and panel variables in (f), plus corresponding school-level 
aggregates 

0.290 0.60 23.81 12.20 11.61 

(k) All individual and panel variables in (g), plus corresponding school-level 
aggregates 

0.282 0.61 24.09 12.81 11.28 

(l) All individual and panel variables and two-way interactions in (g), plus 
corresponding school-level aggregates and two-way school level interactions 

0.290 0.60 23.81 12.59 11.22 

      

N (Test Takers in Grades 3-8) 387,317 
N (Schools) 1,749 

Notes: Rows (a) – (d) include individual contemporary variables for students. Row (a) includes information about mobility, EL status, IEP status, sex, and race-ethnicity 
indicators. Row (b) adds FRM status to the variable list in row (a), and row (c) replaces FRM status with DC status. Row (d) includes all the variables in row (c) and adds 
all possible two -way interactions of these variables. Rows (e) to (h) include individual level panel variables corresponding to those in rows (a) – (d). Row (e) adds three-
year averages of school and district mobility, share of years spent in a Missouri public school in the last three years as well as separate variables indicating the share of 
the last three years spent as an EL and IEP student. Model (f) adds the share of years as an FRM student, model (g) replaces that with DC status panel variable, and model 
(h) adds two-way interactions for all panel variables used in model (g), along with previous interactions of the individual variables. Finally, models (i) – (l) add school 
level aggregate variables to models (e) – (h) in the same fashion. The R-squared values indicate the share of the variance in the outcome—in this case, the student’s year-t 
standardized test score averaged over math and communication arts that can be explained by the variables in each row. The binary classification error rates are calculated 
as the fraction of students whose predicted binary proficiency classification differs from their actual classification based on their observed test scores. 
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Table 3. Means and Standard Deviations of ˆ
iS  Overall, and Within Traditional Categories of Disadvantage.  

 All 
students 

DC FRM ELL URM IEP 

  DC Not 
DC 

FRM Not 
FRM 

ELL Not 
ELL 

URM Not 
URM 

IEP Not 
IEP 

Full specification (from row (l) of Table 2)            
Average ˆ

iS  0.03 -0.39 0.19 -0.23 0.29 -0.39 0.05 -0.43 0.16 -0.78 0.16 

Standard deviation of ˆ
iS  (with shrinkage) 0.50 0.44 0.42 0.49 0.35 0.44 0.49 0.49 0.42 0.38 0.39 

            
Share of students in this category 1.0 0.27 0.73 0.50 0.50 0.04 0.96 0.22 0.78 0.13 0.87 

Notes: The full specification from which we obtain ˆ
iS  is as shown in row (l) of Table 2.  
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Table 4. Resource Allocation Policy Simulations, Results Part I: Average per-Student Allocations. 
 Baseline Scenario: 

S  set at basic/below basic 
achievement percentile 

Scenario 2: 
S  set so the high-risk student share 

matches the DC share 

Scenario 3: 
S  set so the high-risk student share matches 

the FRM share 

 Use ˆ
iS  to define  

high risk 
Use ˆ

iS  to define 
high risk 

Use DC to define 
high risk 

Use ˆ
iS  to define 

high risk 

Use FRM to define 
high risk 

N(H) Share 0.262 0.273 0.273 0.503 0.503 
N(L) Share 0.738 0.727 0.727 0.497 0.497 
Z 0.952 0.916 0.916 0.497 0.497 
B 1.25*N 1.25*N 1.25*N 1.25*N 1.25*N 
      
Average resource units per student, by type, where a value of 1.0 
represents the normalized resource allocation to low-risk students: 

  

Actual Test Score ( iS ) 
below 26.25th percentile 

1.537 1.530 1.445 1.403 1.379 

Predicted test score ( ˆ
iS ) 

below 26.25th percentile 

1+Z=1.952 1+Z=1.916 1.500 1+Z= 1.497 1.400 

DC 1.500 1.500 1+Z=1.916 1.482 1.490 
FRM 1.400 1.400 1.489 1.391 1+Z= 1.497 
      
ELL 1.636 1.631 1.335 1.456 1.405 
IEP 1.910 1.880 1.337 1.494 1.316 
URM 1.621 1.618 1.432 1.455 1.404 
      
N 698,726 698,726 698,726 698,726 698,726 
Notes: Using different values of B, subject to the constraint B > N, does not affect the findings directionally, although it does increase the per-pupil dollar gaps 
for all student categories relative to 1.0. 
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Table 5. Resource Allocation Policy Simulations, Results Part II: Average per-Student Allocations Under our Framework versus 
Pseudo-LCFF, Holding the Budget Fixed Based on the Projected LCFF Amount. 

 Our Framework 
 

Pseudo-LCFF 

N(H) Share 0.262 0.511 
N(L) Share 0.738 0.489 
Z 0.570 N/A 
B 1.152*N 1.152*N 
   
Average resource units per student, by type, where a value of 1.0  
represents the normalized resource allocation to low-risk students: 
Actual Test Score ( iS ) 
below 26.25th percentile 

1.322 1.235 

Predicted test score ( ˆ
iS ) 

below 26.25th percentile 

1+Z=1.570 1.271 

DC 1.299 1.287 
FRM 1.239 1.287 
   
ELL 1.381 1.305 
IEP 1.545 1.182 
URM 1.372 1.295 
   
N 698,726 698,726 

Notes: B is determined based on the budget implied by the pseudo-LCFF, which we implement as described in the text. We convert the budget into units of N to 
facilitate comparability with other portions of our analysis. The high-risk group under pseudo-LCFF is as defined by that policy: the sum of ELL and FRM 
(unduplicated). 
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Table 6. Correlations of ˆ
iS  in the Full Sample When ˆ

iS  is Estimated using Different Variables in the X-vector. 
 (l) (k) (j) (i) (h) (g) (f) (e) (d) (c) (b) (a) 
             

(l) 1.0 -- -- -- -- -- -- -- -- -- -- -- 
(k) 0.957 1.0 -- -- -- -- -- -- -- -- -- -- 
(j) 0.917 0.952 1.0 -- -- -- -- -- -- -- -- -- 
(i) 0.894 0.934 0.920 1.0 -- -- -- -- -- -- -- -- 
(h) 0.932 0.953 0.908 0.883 1.0 -- -- -- -- -- -- -- 
(g) 0.923 0.959 0.908 0.887 0.991 1.0 -- -- -- -- -- -- 
(f) 0.891 0.918 0.976 0.872 0.929 0.929 1.0 -- -- -- -- -- 
(e) 0.859 0.890 0.873 0.934 0.921 0.927 0.894 1.0 -- -- -- -- 
(d) 0.910 0.933 0.891 0.877 0.979 0.973 0.912 0.919 1.0 -- -- -- 
(c) 0.903 0.939 0.890 0.880 0.971 0.979 0.911 0.924 0.992 1.0 -- -- 
(b) 0.879 0.906 0.956 0.866 0.919 0.920 0.980 0.891 0.923 0.923 1.0 -- 
(a) 0.844   0.874 0.858 0.917 0.907 0.912 0.879 0.984 0.925 0.931 0.896 1.0 

Notes: The row and column headers reference the rows of Table 2 that define the variable list used to estimate ˆ
iS . We use our baseline jackknifing scenario that 

jackknifes the data into four equal-sized groups of districts to produce these correlations. 
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Table 7. Changes in Student Categorizations as At Risk in the Hypothetical Condition where DC Data Become Unavailable and the 
State Switches to Using Free-Meal (FM) Status in its Place. 
 Our Framework: 

ˆ
iS  is predicted first with DC data using the model 

shown in row (l) of Table 2, then using the same 
model but with FM data in place of DC data; high-
risk status in both scenarios is assigned if ˆ

iS S<   

Categorical System: 
At-risk status is initially assigned 
categorically based on DC status, 

then by FM status 

Share of high risk students using DC 0.262 0.273 
Share of high risk students using FM 0.262 0.441 
   
Share of students who have a change in 
risk status (high to low, or low to high) 
due to the data change 

0.044 0.178 

Notes: The first scenario within our framework corresponds to row (l) of Table 2; the second scenario is identical except we replace any DC-based information 
with FM-based information in the prediction model.  
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Appendix A: Supplementary Tables 
 
Appendix Table 1. Correlations of ˆ

iS  in the Full Sample when the Predictive Regression is Estimated using Test Data from Grades 3-
8, Grades 3-5 Only, and Grades 6-8 Only. 
 ˆ

iS  estimated using data from 
test takers in grades 3-8 

ˆ
iS  estimated using data from 
test takers in grades 3-5 

ˆ
iS  estimated using data from 
test takers in grades 6-8 

ˆ
iS  estimated using data from 

test takers in grades 3-8 

1.0 -- -- 

ˆ
iS  estimated using data from 

test takers in grades 3-5 

0.977 1.0 -- 

ˆ
iS  estimated using data from 

test takers in grades 6-8 

0.974 0.930 1.0 

Notes: The values of ˆ
iS  are from the primary specification described by row (l) in Table 2. We use our baseline jackknifing scenario that jackknifes the data into 

four equal-sized groups of districts to produce these correlations. 
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Appendix Table A2. Correlations of ˆ
iS  in the Full Sample Under Different Jackknifing Scenarios. 

 “Leave-out-one-
quarter” jackknife 

(baseline) 

“Leave-out-one-
third” jackknife 

“Leave-out-one-
fifth” jackknife 

“Leave-out-one-
tenth” jackknife 

“Leave-out-one-
district” (pure) 

jackknife 
“Leave-out-one-quarter” 
jackknife (baseline) 

1.0 -- -- -- -- 

“Leave-out-one-third” 
jackknife 

0.988   1.0 -- -- -- 

“Leave-out-one-fifth” 
jackknife 

0.987   0.987    1.0 -- -- 

“Leave-out-one-tenth” 
jackknife 

0.995 0.988 0.990 1.0 -- 

“Leave-out-one-district” 
(pure) jackknife 

0.983 0.976 0.987 0.984 1.0 

Notes: The values of ˆ
iS  are from the primary specification described by row (l) in Table 2. 
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Appendix B: Supplementary Information about the Test Prediction Models 
 

In this appendix we provide additional details about the prediction models beyond what is 

shown in Tables 2 and 3. We do not report values for the individual coefficients in the prediction 

models because the multivariate regression framework makes it difficult to gain inference from 

them, especially in our richer (and preferred) specifications that include overlapping information 

(e.g., contemporary and panel measures of the same concepts, interactions of variables, etc.).28 

What we do show in Figure B1 is the distributions of predicted scores, ˆ
iS  , for the different 

specifications shown in Table 2 in the main text. 

 There are two reasons we show the distributions. First, they highlight the “lumpiness” in 

the distributions of ˆ
iS , especially for the sparser versions of the prediction model. The lumpiness 

is not surprising because all of the student-level control variables in the models are binary or 

categorical indicators. When we add the panel versions of the variables to the prediction model it 

facilitates greater dispersion of the predicted values, and even more so when we add the school-

average variables. This explains why the distributions of ˆ
iS  are less lumpy going down the rows 

of graphs in Figure B1. Still, none of the distributions of ˆ
iS  in the figure are smooth, which 

reflects the nature of the underlying data. 

 This is a limitation in the sense that it would be beneficial to have better-differentiated, 

consequential predictors of student test scores available in state data (i.e., continuous or near-

continuous predictor variables of consequence). In the absence of such variables, the 

distributions of ˆ
iS  are necessarily lumpy. That said, and following on the discussion in the text, 

it is still true that the degree of differentiation in ˆ
iS  is far greater than the differentiation 

currently facilitated by states’ categorical systems for identifying at-risk students. This is because 

the model allows students with different combinations of categorical assignments to have 

different values of ˆ
iS . If useful predictors of student test scores become available in the future 

that are continuous or near-continuous, they could be incorporated into the framework in a 

straightforward manner to smooth the predictions further. 

 
28 Said another way, the “all else equal” interpretation typically ascribed to regression coefficients is not sensible in 
our models. However, a broad sense of how our predictions associate with key student characteristics is provided in 
Table 3 in the main text. 
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 The second reason we show the predictions is to make clear that they do a poor job of 

differentiating students in the upper end of the distribution. This again reflects a feature of the 

underlying data: namely, that the data available in state systems are insufficient to differentiate 

high-achieving students. From the perspective of a generic predictive-modeling exercise this is a 

serious limitation, but for our application it is not because we do not need to differentiate 

students in the upper end of the distribution to inform policies targeted toward high-risk students. 

The distributions from the richer specifications in particular show that the prediction model 

works well in lower tail of the distribution (including our preferred specification, model (l)), 

although this issue will make some potential expansions of our framework problematic—namely, 

expansions that greatly increase the threshold value for identifying at-risk students, S . More 

broadly, the poor distributional alignment in the upper tail between actual and predicted scores 

highlights a blind spot in state longitudinal data systems with respect to collecting data that 

permits the identification of high achievers. 
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Appendix Figure B1. Predicted Test-Score Distributions Using the Models Shown in Table 2 in the Main Text. 

 
Notes: The graph labels indicate the row in Table 2 to which the model corresponds. The actual test score distribution is the same in each graph 
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Appendix C: School-Level Allocations 
 

Appendix Tables C1 and C2 provide information complementary to Tables 4 and 5 in the 

main text, but at the school level. This allows us to assess the extent to which the resource 

differences across students shown in Tables 4 and 5 translate to cross-school differences, in 

acknowledgment of the difficulty of targeting resources to individual students differentially 

within a school.  

We start with Appendix Table C1, which replicates the scenarios from the initial policy 

simulations shown in Table 4. Reflecting this, the first four rows of Table 4 and Appendix Table 

C1 are identical. The bottom rows differ in that they report correlations between school-average 

variables and school-average student allocations. Larger correlations, positive or negative, 

indicate resource allocations that are targeted more or less toward schools that serve students 

with the characteristics indicated by the rows. The findings in Appendix Table C1 are in the 

expected direction following on Table 4, although the magnitudes of the correlations vary 

depending on how students are distributed across schools.  

We highlight two key takeaways from Appendix Table C1. First, the tautological aspects 

of the allocations from Table 4 remain: our framework is better at targeting resources to schools 

with lower average predicted test scores, and the DC- and FRM-based systems are better at 

targeting resources to schools with more DC and FRM students, respectively. Second, and also 

following from Table 4, our framework is more effective at targeting resources to schools with 

more at-risk students as defined by the non-test-score and non-poverty categories (ELL, IEP, and 

URM).  

Appendix Table C2 reports the same school-level correlations under the pseudo-LCFF. 

Again, the general insights from the student-level resource allocations in Table 5 are reflected in 

the school-level correlations. The concentration portion of the pseudo-LCFF formula does not 

seem to greatly affect the correlations—as evidenced by the substantive similarity of the student-

level and school-level results—although it does appear to put modest upward pressure on the 

correlation between resources and the FRM share.   

A formal decomposition of the differences between Tables 4 and 5 and Appendix Tables 

C1 and C2 is possible and would be useful to quantify how the distribution of student 

characteristics across schools influences the link between the student-level and school-level 
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resource allocations. Appendix Table C3 provides the school-level means and variances of the 

focal student characteristics, which would be key inputs for such a decomposition.29 

 
29 We save this extension for future research because it requires theoretical background and would be more useful if 
it were conducted so that the results could be generalized broadly (e.g., to settings in different states with different 
student distributions). We view it as beyond the scope of our current article.  
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Appendix Table C1. Resource Allocation Policy Simulations, Results Part I.A: Correlations between School-Level Allocations and 
School Characteristics.  

 Baseline Scenario: 
S  set at basic/below basic 

achievement percentile 

Scenario 2: 
S  set so the high-risk student 
share matches the DC share 

Scenario 3: 
S  set so the high-risk student share 

matches the FRM share 

 Use ˆ
iS  to  

define high risk 
Use ˆ

iS  to  
define high risk 

Use DC to 
define high risk 

Use ˆ
iS  to  

define high risk 

Use FRM to 
define high risk 

N(H) Share 0.262 0.273 0.273 0.503 0.503 
N(L) Share 0.738 0.727 0.727 0.497 0.497 
Z 0.952 0.916 0.916 0.497 0.497 
B 1.25*N 1.25*N 1.25*N 1.25*N 1.25*N 
      
Correlations between average resources  
and school need as defined by: 

    

Average test score -0.697   -0.695 -0.694 -0.659 -0.640  
Average predicted test score -0.829 -0.827 -0.678 -0.771 -0.617 
DC share 0.786 0.793 0.994 0.842 0.864 
FRM share   0.673 0.681 0.865 0.797 0.998 
      
ELL share 0.227 0.229 0.143 0.200 0.200 
IEP share 0.225 0.221 0.161   0.187 0.067 
URM share 0.818 0.817 0.630   0.632 0.556 
      
N (schools) 2,101 2,101 2,101 2,101 2,101 

Notes: Using different values of B, subject to the constraint B > N, does not affect the findings directionally, although it does affect the strength of the 
correlations. The school-level sample size in this table is larger than in Table 2 because Table 2 uses the test-taking sample in grades 3-8 only. 
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Appendix Table C2. Resource Allocation Policy Simulations, Results Part II.A: Correlations between School-Level Allocations and 
School Characteristics Under our Framework versus Pseudo-LCFF, Holding the Budget Fixed Based on the Projected LCFF Amount. 

 Our Framework 
 

Pseudo-LCFF 

N(H) Share 0.262 0.511 
N(L) Share 0.738 0.489 
Z 0.570 N/A 
B 1.152*N 1.152*N 
   
Correlations between average resources  
and school need as defined by: 
Average test score -0.697 -0.605 
Average predicted test score -0.829 -0.596 
DC share 0.786 0.786 
FRM share 0.673 0.907 
   
ELL share 0.227 0.223 
IEP share 0.225 0.024 
URM share 0.818 0.658 
   
N (schools) 2,101 2,101 

Notes: B is determined based on the budget implied by the pseudo-LCFF, which we implement as described in the text. We convert the budget into units of N to 
facilitate comparability with other portions of our analysis. The high-risk group under pseudo-LCFF is as defined by that policy: the sum of ELL and FRM 
(unduplicated). 
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Appendix Table C3. School-Level Average Shares of Students, and their Variances, for Various Student Characteristics. 
Measures of disadvantage  Mean of school level share Variance of school level share 
DC 0.323 0.032 
FRM 0.577 0.066 
ELL 0.040 0.008 
IEP 0.152 0.015 
URM 0.212 0.083 
Low iS  (below 26.25th percentile) 0.283 0.030 

Low ˆ
iS  (below 26.25th percentile) 0.304 0.067 

N (School) 2,101 
Note: The cross-school mean and variance of observed scores (Si) are calculated using the subset of schools (1,749) with at least one student who took both the 
Math and English Language Arts test. Note the school means of the shares of students with low scores based on iS  and ˆ

iS  are not equal to 26.25 because the 
means in this table are school-weighted, not student-weighted.
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Appendix D: Omitting Information about Race-Ethnicity from the Predictions 
 
In this appendix, we briefly report on our findings if we omit information about student 

race-ethnicity entirely from the prediction model. We do not believe there is a strong rationale 

for omitting information about race-ethnicity from the model. Nonetheless, we provide this 

analysis for completeness and in recognition of the fact that some stakeholders may prefer to 

specify the model in this way, or at least wish to understand the implications. 

The results from our analysis omitting all racial-ethnic information from the prediction 

model are provided in Appendix Tables D1 and D2. Table D1 corresponds to Table 2 in the main 

text, and Table D2 corresponds to Table 4 in the main text. In very brief summary, Table D1 

shows that the prediction model performs worse if we omit racial-ethnic information. This is 

readily apparent in the output from the predictive regression. The R-squared is lower, the MSE is 

higher, and the classification error rate is higher. Table D2 shows that for the most part, the 

average student allocations in the policy simulation are not meaningfully affected by omitting 

racial-ethnic information from the prediction model (compared to column (1) of Table 4 in the 

main text). This result follows from Table 6, which shows more broadly that using different 

predictors, and combinations of predictors, does not have large effects of students’ risk-status 

rankings within our framework. The one exception is with regard to URM status—URM students 

have much lower average allocations in Table D2 compared to Table 4. This result reflects the 

fact that if we do not allow for racial-ethnic differences in student performance in the model, it 

does not recognize race-ethnicity as an independent indicator of risk status; unsurprisingly, this 

corresponds to fewer URM students being identified as at-risk. 
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Appendix Table D1. Statistical Output from Primary Test Prediction Model, Omitting All Race-Ethnicity Information. 
 R-squared from 

predictive linear 
regression 

MSE Classification error rate percentage  
(i.e., predicted status ≠ actual status) 

 (1) (2) (3) (4) (5) 
Predicting students’ contemporary test scores using:   All False positive False negative 
(l’) All variables included in row (l) of Table 2 in the main text, except any 
variables and interactions involving race-ethnicity 

0.260 0.62 25.31 14.09 11.23 

      

N (Test Takers in Grades 3-8) 387,317 
N (Schools) 1,749 
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Appendix Table D2. Comparison of Primary Policy-Simulation Findings from Table 4 Using Test Prediction Models With and 
Without Race-Ethnicity Information. 

 Baseline Scenario: 
S  set at basic/below basic 

achievement percentile 
(Repeated from Table 4) 

 
S  set at basic/below basic  

achievement percentile 
(Test prediction model does not include any race-

ethnicity information) 
 Use ˆ

iS  to define high risk Use ˆ
iS  to define high risk 

N(H) Share 0.262 0.262 
N(L) Share 0.738 0.738 
Z 0.952 0.952 
B 1.25*N 1.25*N 
   
Average resource units per student, by type, where a value of 1.0  
represents the normalized resource allocation to low-risk students: 
Actual Test Score ( iS ) 
below 26.25th percentile 

1.537 1.544 

Predicted test score ( ˆ
iS ) 

below 26.25th percentile 

1+Z=1.952 1+Z=1.952 

DC 1.500 1.558 
FRM 1.400 1.404 
   
ELL 1.636 1.606 
IEP 1.910 1.924 
URM 1.621 1.466 
   
N 698,726 698,726 

Notes: Using different values of B, subject to the constraint B > N, does not affect the findings directionally, although it does increase the per-pupil dollar gaps 
for all student categories relative to 1.0. 
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Appendix E: Details About Using our Framework for Accountability 

In this appendix we provide details about how our framework can be used to improve the 

monitoring of achievement gaps within schools. Following on the resource-allocation application 

in the main text, we identify all students with ˆ
iS S≥   as low risk and all students with ˆ

iS S<   as 

high risk. We continue with the 26.25th percentile in mind as the threshold for S , although this 

choice is not substantively important in what follows.  

Consider the following representation of the observed achievement gap in school k 

between low-risk and high-risk students: 
, ,

1 1, ,

1 1L k H kN N

ik ik
i iL k H k

S S
N N= =

−∑ ∑         (E1) 

In equation (E1), the subscript k is added to each student’s score, ikS , to denote the school 

assignment. Next consider the predicted achievement gap based on our framework, where the 

only change is that we replace students’ actual scores, ikS , with their predicted scores, ˆ
ikS : 

, ,

1 1, ,

1 1ˆ ˆ
L k H kN N

ik ik
i iL k H k

S S
N N= =

−∑ ∑         (E2) 

The observed and predicted achievement gaps in equations (E1) and (E2) can be used to 

determine how the actual achievement gap at school k compares to the predicted gap based on 

the X-vector attributes of students who attend school k. A useful metric for school k can be 

expressed as the difference between equations (E1) and (E2): 
, , , ,

1 1 1 1, , , ,

1 1 1 1ˆ ˆ{ } { }
L k H k L k H kN N N N

ik ik ik ik
i i i iL k H k L k H k

S S S S
N N N N= = = =

− − −∑ ∑ ∑ ∑     (E3) 

Momentarily suppressing discussion of one technical caveat, equation (E3) has a straightforward 

interpretation. If the value is positive, the actual achievement gap between low-risk and high-risk 

students at school k exceeds the predicted gap based on the attributes of low-risk and high-risk 

students; and vice-versa if equation (E3) is negative. Said another way, schools with negative 

values of equation (E3) have achievement gaps that are smaller than what would be expected 

based on their compositions of low-risk and high-risk students. 

Equation (E3) provides a single, summary indication of how the achievement gap in 

school k compares to what is expected. States can quickly identify schools that have narrower 

achievement gaps than expected, and larger gaps than expected, based on this single number. 
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The potential for equation (E3) to be misleading about the school’s gap is much less than in the 

simple systems states currently use. This is because the composition of high-risk and low-risk 

students along many dimensions is accounted for by the rich specification from which the ˆ
ikS  

values are estimated. 

The one technical caveat to this simple interpretation of equation (E3) is that the fitted 

values in equation (E2)—i.e., the ˆ
ikS  values—are implicitly shrunken through the predictive 

regression. As noted in the main text, shrinkage is inherent to the prediction process and in the 

resource-allocation policy simulations, we addressed this issue by using percentiles to set S . 

Due to the shrinkage, the average gap between the test score predictions in equation (E2) will be 

attenuated relative to the gap in observed scores in equation (E1), resulting in disproportionately 

positive values for the difference in equation (E3). 

Fortunately, as in the allocation-policy context, there are straightforward technical 

solutions to the shrinkage problem. One solution, following from our preceding analysis, is to 

estimate equation (E3) using percentiles rather than actual and predicted scores. The 

interpretation of equation (E3) would be as follows: for each school, it would indicate the 

difference in the actual versus predicted percentile gap between high-risk and low-risk students. 

If equation (E3) is estimated in percentiles, the simple interpretation of positive and negative 

values would hold from above.  

 However, it may be undesirable from a presentational standpoint for states to report 

achievement gaps in percentiles. If states wish to report the difference in equation (E3) in test-

based units and not percentiles, a mathematically-equivalent solution is to inflate the variance of 

ˆ
iS  to match the variance of iS  by multiplying the ˆ

iS  values by a constant.30 This inflation should 

occur after the predictions are made using equation (1) in the main text, but before constructing 

the average predicted values in equation (E2). Using the variance-inflated ˆ
iS  values, equation 

(E3) can be interpreted in test-based units, and the same inference can be drawn for positive and 

negative values as described above. 

 
 

30 Specifically, if each value of ˆ
iS  is multiplied by the ratio of standard deviations of iS  and ˆ

iS , it will inflate the 

variance so the variance of the modified ˆ
iS  values matches the variance of iS . This will preserve students’ rankings 

in the distribution of fitted values and allow for appropriate interpretation of equation (E3). 
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