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Abstract. This paper presents WikiMorph, a tool that automatically breaks down words 
into morphemes, etymological compounds (morphemes from root languages), and gen-
erates contextual definitions for each component. It comes in two flavors: a dataset and 
a deep-learning-based model. The dataset was extracted from Wiktionary and contains 
over 450k entries. We then used this dataset to train a GPT-2 model to generalize and 
decompose any word into morphemes and their definitions. We find that the model 
accurately generates complex breakdowns when given a high-quality initial definition.  
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1 Introduction 

The ability to recognize the morphological structure of words and the meaning of the 
morphemes within that structure positively correlates with vocabulary development and 
reading comprehension [4, 7, 8, 27]. Unfortunately, there are not many tools designed 
to increase morphological awareness. While morpheme segmentation tools and datasets 
are available [2, 6, 18, 20, 22], these lack critical elements for learning, such as defini-
tions for each morpheme or a sense of its etymology. We attempt to fill this void by 
introducing WikiMorph: a dataset and deep-learning model. The dataset was collected 
by extracting user-inputted morphological data from a December 2020 version of the 
English Wiktionary XML dump file. This dataset contains morphemes (from English 
and root languages), PoS tags, and contextual definitions for each morpheme. Since 
Wiktionary lacks morpheme entries for some words, we also train a GPT-2 model on 
this dataset to generalize and break down any English word.  

The model receives two inputs: a word and, optionally, its definition. If a definition 
is not received, the model will attempt to generate a definition for the input word. From 
there, it autoregressively generates a word breakdown which includes morphemes and 
contextualized definitions. See Section 3 for results.  

2 WikiMorph: Dataset & Model 

Wiktionary is an online, multilingual dictionary sponsored by the Wikimedia Founda-
tion that contains a wide variety of information useful for NLP tasks. For this paper, we 
are primarily interested in the definition and etymology sections of Wiktionary. The 
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etymology section is of particular importance since it often contains annotated morpho-
logical segmentations for words. These segmentations can either be in English or from 
root languages such as Latin or Ancient Greek. We will refer to morphemes from root 
languages as etymological compounds throughout this paper. These compounds are 
useful since they give additional insights into English words and often allow further 
morpheme segmentation within the root language.  

Extracting data from Wiktionary comes with many challenges. Most notably, stand-
ardization. Wiktionary was primarily designed to allow for flexible formatting to make 
it easy for authors across the web to contribute. This flexibility makes it essential first 
to regularize the formatting of Wiktionary. We do this by looping through the XML file 
and applying many regular expressions. These regular expressions aim to remove 
markup codes and allow our morpheme extraction algorithm to grab all relevant data.   

Wiktionary does not require authors to input morpheme segmentations when a word 
falls under a common rule. Meaning that some affixes are regularly void of morpho-
logical entries, and therefore, unacceptable for this work. Most of these missing affixes 
are suffixes that change the grammatical context of the word. (e.g., making dog plural 
by adding -s). To combat this, we created a list of common suffixes that did not have 
regular entries in Wiktionary and used a series of heuristics to find the root morpheme. 
We then check a word corpus to see whether the root morpheme is an actual word and 
use DistillBERT word embeddings to see whether it is similar to the base word.   

To extract morphemes, we deploy a recursive methodology. This methodology first 
attempts to find English morphemes within the Etymology section of Wiktionary. If 
found, we proceed to search Witkionary's entry for each of these found morphemes to 
see whether they too contain annotated morpheme segmentations. We repeat this pro-
cess until the word cannot be broken down further in English. We then perform a similar 
lookup in root languages we deemed as "good" for each English morpheme. With 
"good" in this context meaning that we found examples where the language gave addi-
tional insights not seen in the English breakdown alone. If multiple etymological break-
downs were found, we chose only one with two criteria in mind. (1) Does the compound 
have a complete Wiktionary entry? (2) How insightful is the root language for English 
words? While rankings varied based on criteria 1, the system typically prefers Latin 
and Ancient Greek compounds since they are well-represented in Wiktionary and many 
morphologically complex words are derived from them.  

Words often have different meanings depending upon the context. The same is true 
for morphemes within a word. We account for this by choosing the best definition entry 
for each morpheme using word embeddings from two models: DistillBERT and Spacy's 
Core model [10, 21]. We perform two operations for each morpheme definition. (1) 
Definition Similarity: Cosine similarity between the base word and morpheme's defini-
tion. (2) Addition Similarity: Adds word vectors from other morphemes within the base 
word to the current morpheme's definition vector, then takes the cosine similarity be-
tween the new vector and the base word's definition vector. We then perform a weighted 
average operation over the values and choose the definition with the highest average. 

Since Wiktionary does not guarantee that word entries have a complete morpheme 
breakdown, it is necessary to filter out any of our extractions containing incomplete 
breakdowns. We do this by looping through the extracted morphemes and using a series 
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of heuristics on each root morpheme to ensure completeness. These heuristics consist 
of the following checks: (1) Checks the number of syllables within the word [1]. (2) 
Checks the word frequency [19]. (3) Checks the number of etymological compounds. 
(4) Checks to see whether there are any common affixes. 

We then train the WikiMorph model by extending the large variant of GPT-2 made 
available by Hugging Face [24]. GPT-2 is an autoregressive model that uses the decod-
ing blocks of the transformer architecture [11, 23]. It contains 36 decoding blocks with 
774M parameters. We use 16-bit precision for lesser memory requirements and greater 
training speed. We then fine-tune the pretrained GPT-2 model for three epochs. 

To assess the model, we removed 1500 samples from the dataset prior to training. 
We then perform an ablation test on these samples to see how the model performs when 
it receives an input definition vs. when it does not. For both conditions, the aim is to 
test how well the model segments morphemes and its ability to generate contextualized 
definitions. To test its segmentation ability, we use accuracy and character-level 
ROUGE1 as a sanity check to ensure that the model did not produce wildly different 
morphemes [26]. To evaluate how well the model generates contextualized definitions, 
we use word-level ROUGE1 (with stemming) and cosine similarity between the gen-
erated definition and ground-truth definition using RoBERTa word embeddings [15]. 
For definition evaluation, the metrics are only performed when both the generated and 
ground-truth sample have an instance of the same morpheme to ensure alignment.   

3 Results & Discussion 

Table 1. Results showing model performance and differences between when the model receives 
an input definition (+) vs. when it does not (-).  

  English Morphemes Etymology Morphemes 

 Metrics + Def - Def + Def - Def 

Morpheme 
Segmentation 

Accuracy 0.925 0.887 0.890 0.854 

Character ROUGE1 0.992 0.985 0.572 0.559 

Definition 
generation 

ROUGE1 Score 0.808 0.528 0.945 0.931 

RoBERTa Sim. 0.754 0.421 0.933 0.913 

 
The results in Table 1 show that the model performed well at segmenting morphemes 
with over 85% accuracy for both English and etymology. For English morphemes, the 
model also did well at matching the characters within the ground-truth's segmentation, 
demonstrating that it is unlikely to give wildly different results even when the segmen-
tations are different. The only notable differences in morpheme characters came in ex-
amples such as the ones shown in Figure 1. Here the model adds characters to properly 
form the root morpheme "perceive".  

It is important to note that some differences between the sample and generated break-
downs are not errors. As stated in section 2, Wiktionary does not guarantee a full mor-
phological breakdown for word entries, leading to some entries within our dataset not 
having a complete segmentation. However, since morphemes are repeatable in words 
(e.g., a- appears in arise and amoral), there is a probability that the morpheme is 
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correctly segmented in other entries of the dataset—allowing the model to pick up on 
this probability and act as a denoiser, as shown in Figure 1B. 

 

Fig. 1. A) Real sample from WikiMorph dataset. B) Generated output when given a definition. 

The model showed considerable improvements while generating English definitions 
when given an input definition. This result is not surprising. When the model receives 
a definition, it has a good initialization—allowing it to pay attention and reference that 
good definition during the generation of each morpheme's definition.  If the model does 
not receive an input definition, it has no context about the word aside from what it might 
have learned during training. Without this context, it can hallucinate while generating 
the initial definition, cascading additional errors across subsequent morphemes. 

Interestingly, while the English contextualized definitions were significantly worse 
when the model did not receive a definition, the generated definitions for etymological 
compounds only saw a slight degradation. We speculate the reasons for this are due to 
three reasons. (1) The definitions are often much shorter for root languages than in 
English, thereby decreasing the probability that the model makes an error on an early 
token leading to subsequent errors.  (2) There are fewer definition entries for each ety-
mological compound. (3) These affixes frequently appear throughout many different 
words in our dataset, giving the model many opportunities to memorize the result. 

4 Conclusion  

This paper presents WikiMorph, a novel dataset and GPT-2-based model designed to 
help students learn morphology. The dataset extracted is one of the largest morpheme 
datasets to date and the only large-scale dataset containing contextualized definitions 
and etymological compounds.  The trained WikiMorph model displayed an impressive 
ability to generate word breakdowns; however, further evaluation is required to deter-
mine its effectiveness in learning environments.  
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