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Abstract 

Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number 

of categories and/or variables increases, the number of table cells with few (or zero) observations also 

increases. Unfortunately, sparse contingency tables invalidate the use of standard goodness-of-fit sta-

tistics. Limited-information fit statistics and bootstrapping procedures offer valuable solutions to this 

problem, but they present an additional concern in their strict reliance on the (potentially misleading) 

observed data. To address both of these issues, we demonstrate the Bayesian model checking tech-

nique, which yields insightful, useful, and comprehensive evaluations of specific properties of a given 

model. We illustrate this technique using item response data from a patient-reported psychopathology 

screening questionnaire, and we provide annotated R code to promote dissemination of this informa-

tive method in other prevention science modeling scenarios. 

 

Keywords: model evaluation, Bayesian, model checking, item response theory 
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Model evaluation in the presence of categorical data:  

Bayesian model checking as an alternative to traditional methods 

An important component of any statistical modeling endeavor is the thorough evaluation of 

the model, and in typical practice, evaluation consists primarily of testing the goodness-of-fit (GOF) 

of the hypothesized model to the observed data. The limitations of this approach are well documented: 

GOF methods are generally misunderstood and often misapplied (Roberts & Pashler, 2000) and fit 

indices are adversely affected by issues such as sample size (Marsh, Balla, & McDonald, 1988), non-

normality (Ory & Mokhtarian, 2010), model complexity in terms of the number of parameters (Marsh 

& Balla, 1994) or the particular arrangement of the parameters in the model (Bonifay & Cai, 2017), 

and other issues (Hayduk et al., 2007).  

GOF testing is even more problematic when the data are categorical. Discrete item data can 

be arranged in a multiway contingency table of the observed probabilities and appraised via a 𝜒2 test, 

but it is known that the asymptotic p-values of the 𝜒2 statistic are only correct when the expected 

frequencies in each cell of the contingency table are large (> 5 is a general guideline) (Maydeu-Olivares, 

2013). Of course, the probabilities within the cells of the table must sum to one, so as the number of 

possible categorical data patterns increases, the expected frequencies become quite small and standard 

p-values cannot be used (Bartholomew & Tzamourani, 1999). To illustrate the scope of this sparse 

contingency table problem in the context of psychometric data, Maydeu-Olivares noted that when an 

item included four or more response categories, the classical 𝜒2 p-values became inaccurate when tests 

included more than five items. The same limitation applies to the G2 likelihood ratio test. 

One remedy to this issue is found in the limited-information fit statistics that have been intro-

duced to categorical data modeling. Limited-information GOF statistics are based on the lower-order 

margins of the contingency table (opposed to the “full information” in each cell), usually the univariate 

and bivariate proportions of correct response/endorsement. Further details on GOF of categorical 
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data models are found throughout this Special Issue, particularly in the contribution from Cai, Chung, 

and Lee (in press, this volume). For a more detailed treatment of limited-information fit assessment, 

see Maydeu-Olivares (2013).  

Another method of countering the sparse contingency table is the bootstrapping procedure 

(Efron, 1979). Bootstrapping is an appealing alternative to GOF testing, as it allows one to assign 

measures of accuracy to the estimates obtained from the observed data. Traditional (non-parametric) 

bootstrapping involves resampling directly from the observed data, while parametric bootstrapping 

involves sampling from a distribution defined by parameters estimated from the observed data. With 

regard to categorical data, Langeheine, Pannekoek, and van de Pol (1996) outlined how the parametric 

bootstrap can be applied to circumvent the contingency table sparseness and thereby obtain a distri-

bution of some GOF statistic (rather than a single sample-dependent point estimate of GOF). 

Despite skirting the sparse contingency table problem, limited-information fit and bootstrap-

ping are both beset by a more general concern: strict reliance on the observed data. GOF statistics 

directly evaluate the model with regard to the available data and bootstrapping, though more informa-

tive than GOF testing, presumes that the observed data are worthy of resampling. However, if the 

sample data are misrepresentative of the target population (whether due to poor sampling strategies, 

low sample size, missing data, various breaches of data integrity, or other idiosyncrasies), then GOF 

may be a deceptive method of model evaluation. 

An alternative to these traditional approaches can be found in the Bayesian statistical frame-

work. Kadane (2015 in Prevention Science) provided a brief, yet informative overview of Bayesian infer-

ence and its potential advantages over traditional methods in the context of prevention research. As a 

didactic example, Kadane carried out a Bayesian analysis of data from a violence prevention study, 

wherein he demonstrated the benefits of allowing for distributions around the unknown parameters 

in a model, which is not a typical consideration of more traditional statistics. Because this work was 
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intended (and succeeds) as a general introduction to the Bayesian approach, it is consequently limited 

in scope. A key omission from Kadane’s work was model evaluation. Practitioners who make use of 

Bayesian inference must be able to determine whether their model is “good,” that is, the degree to 

which it accurately encapsulates the observed data and generalizes to future or otherwise unseen data. 

Further, and more pertinent to the aims of the present article, the Bayesian perspective offers unique 

insights that can supplement or dispute the findings from a traditional model evaluation. 

Bayesian inference. It is generally accepted that Bayesian inference is a distinct framework that is 

“separate and apart” from classical inference. From the traditional perspective, Bayesian reasoning is 

justifiably counterintuitive, due in no small part to its underlying philosophy. The Bayesian estimation 

framework is also decidedly complex in that it contains statistical and estimation techniques that re-

quire a firm understanding prior to implementation. This paper is not meant to act as a primer on 

general Bayesian methodology, but we recommend several readings for those interested in a broader 

treatment of Bayesian statistics. For a gentler introduction, see Hoff (2009) or van de Schoot et al. 

(2014), and for a more thorough treatment see Gelman et al. (2013) or Kaplan (2014). In the current 

paper, we focus instead on the issue of evaluating models through the Bayesian framework, which can 

be beneficial to better understanding model performance. Before introducing that topic, we provide 

a brief overview of the statistical foundation of Bayesian estimation—namely, Bayes’ theorem, which 

then leads into a discussion of Bayesian model evaluation. 

In statistical terms, the Bayesian approach focuses on P(M|D), the probability of some hy-

pothesized model M, given the data D. That is, Bayesian analysis treats the model as random and the 

data as fixed; in other words, the model may or may not be true, and any inferences must be based on 

the available data. Bayes’ theorem (Bayes, 1764) is used to calculate P(M|D): 

 𝑃(M|D) =
𝑃(D|M)𝑃(M)

𝑃(D)
 , (1) 

where P(M|D) is known as the posterior probability of the model, given the data; P(D|M) is the 
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likelihood of the model, given the data; P(M) is the prior probability of the model; and P(D) is the prior 

probability of the data. Essentially, Eq. (1) holds that data-based inferences must consider the data 

and any prior beliefs about the model and/or data. Figure 1 illustrates the relationship between the 

likelihood, the prior, and the posterior. Specifically, the posterior distribution can be viewed as a com-

promise between the likelihood and the prior. Prior distributions have been a source of great contro-

versy, largely because they have the potential to influence final model results in a substantial way. 

However, under cases of default software settings for priors (typically referred to as diffuse prior set-

tings) and larger sample sizes, the influence of the prior is minimized.  

Though much more could be said on the fundamental philosophy and implementation of 

Bayesian inference, our attention is on the insights that can be gained by applying Bayesian methods 

to evaluate categorical data models. Therefore, in the current illustration, we have opted to confine 

the analyses to using default prior and estimation settings in the software to provide a straightforward 

introduction of the topic.1 Results should be interpreted in the context of default settings, and the 

reader should be aware that altering these settings in a subsequent analysis may also alter the findings. 

Default prior settings vary across software programs and do not uniformly impact estimates across 

different modeling situations. For example, if sample sizes are relatively smaller, then prior settings 

(whether they are default diffuse, or subjective) can have a larger impact on posterior estimates as 

compared to larger sample sizes (see e.g., van Erp, Mulder, & Oberski, 2018). It is also true that, as 

models increase in complexity (e.g., adding mixture components or multilevel structures), prior set-

tings can impact posterior estimates in varying (and sometimes drastic) ways (see e.g., Depaoli, Yang, 

& Felt, 2017). Therefore, it is important for researchers to interpret the impact of prior settings in the 

context of the data being analyzed and the particular model being estimated. We expand on some 

 
1 Although we largely use default settings here, we also note that subjective prior settings are a helpful way of incorporat-
ing specific opinions, theory, or knowledge into the estimation process. We describe this element of subjectivity in more 
detail in the Discussion section. 
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methods for assessing the impact of prior settings in the Discussion section. 

The Bayesian approach offers an appealing alternative to traditional model evaluation. In cer-

tain scenarios, such as linear modeling, traditional goodness-of-fit tests may be useful and informative. 

Further, many fit statistics, such as the 𝜒2 test, are easy to implement because their distribution is 

known (or can be approximated). Gelman, Meng, and Stern (1996) argue, however, that reliance on 

the traditional approach is problematic for models that impose severe restrictions on the parameters 

(e.g., positivity constraints) or the probability distributions (e.g., due to a strong prior) and models that 

do not align to the general linear model. Further, traditional methods are generally aimed at obtaining 

a point estimate of some parameter, while Bayes’ theorem allows researchers to characterize entire 

distributions of uncertainty around a point estimate.  

An important distinction can be made with regard to model evaluation as well. As discussed 

above, traditional model evaluations are typically made with reference to the observed data alone or 

through bootstrap resampling of the observed data. This inferential shortcoming led Gelman et al. 

(1996) to conclude, “It seems to us that in the context of assessing goodness-of-fit of a model for a 

given data set, hypothetical replications are inevitable” (p. 802). The Bayesian approach facilitates 

consideration of these “hypothetical replications” for model checking. 

Model checking. Instead of gauging the degree to which a given model represents the observed 

data, model checking enables a researcher to investigate any feature of a model by evaluating the 

observed data against a reference distribution of replicated data. Gelman et al. (1996) list three ways 

to check a Bayesian model: by testing its sensitivity to changes in the prior probability distribution and 

the likelihood; by checking that inferences based on the posterior are reasonable, given the substantive 

research focus; and by checking that the model fits the data. We focus on this last method, though it 

should be noted that “fitting the data” does not refer only to global GOF, as we will explain shortly. 

 The goal of model checking is to evaluate a model with reference to replicated data, thereby 
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allowing for considerations of important issues like generalizability to future or unseen data. In that 

regard, model checking is conceptually similar to the traditional bootstrap technique, as noted by Gel-

man et al. (1996), who posited that “the posterior predictive replication appears to be the replication 

that the classical approach intends to address” (p. 738). This link is even more direct when considering 

that Rubin (1981) used the term “Bayesian bootstrap” to describe an earlier version of model checking. 

Yet, however similar their goals may be, model checking differs from bootstrapping in several im-

portant ways, as discussed below. 

Posterior predictive model checking (PPMC), as introduced by Guttman (1967) and formally 

defined by Rubin (1984), involves drawing a simulated sample of the unknown parameter 𝜃from the 

posterior 𝑝(𝜃|𝑀, 𝐷). Given the simulated sample, a replicated dataset (Drep) is derived. Specifically, 

draws are taken from the posterior predictive distribution tied to the replicated data, Drep, in order to 

compute the probability of events that involve Drep: 𝑝(Drep|M, D) = ∫ 𝑝(Drep|M, 𝜃)𝑝(𝜃|M, D)𝑑𝜃, 

where 𝜃 is the unknown model parameters. This equation serves as the reference distribution by which 

one may evaluate the model. Having formulated a posterior distribution of 𝜃 based on the model and 

data, a predictive distribution of Drep can be used to “check” the model.  

In PPMC, many data sets are replicated according to the same model M and a sample of 

possible 𝜃 values that have been drawn the posterior distribution. The resulting Drep replications form 

the posterior predictive reference distribution, which can be used to explore the usefulness of a model 

in analyses of future data that are somewhat similar to the observed data. In that sense, the Bayesian 

concept of PPMC is closely related to the parametric bootstrapping procedure described earlier, 

though the reference distribution for data replication is the posterior predictive distribution rather 

than the sampling distribution. 

Test statistics and test quantities. In PPMC, failings of the model are indicated by the presence of 

systematic differences between the observed and replicated data. To assess such differences, Bayesian 
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researchers select statistical measures that represent certain aspects of the data and/or model that are 

deemed relevant to the topic under investigation. Borrowing the nomenclature of Gelman et al. (2013), 

such measures are referred to as test statistics (denoted by T(D)) if they depend on the observed data 

alone. For example, PPMC could be used to examine whether the median (or extreme cases, quantiles, 

or any other data-based test statistic) of the observed data is likely, given the reference distribution. 

When model checking measures depend on both model and data, they are referred to as test quantities 

and denoted by T(M,D). For example, GOF indices by definition require a model and some data. 

When PPMC is applied to a test quantity, it yields Dobs: a simulated sample of values obtained by fitting 

the model to the observed data with different sets of parameter values drawn from the posterior 

distribution. 

Bayesian model evaluation proceeds by comparing an observed test statistic or quantity T to 

the same test statistic or quantity from the reference distribution of Drep. A posterior predictive p-value 

(or ppp-value) is then computed to quantify the likelihood of T in the reference distribution: 𝑝𝑝𝑝 =

𝑝(𝑇(Drep) ≥ 𝑇(D)) or 𝑝𝑝𝑝 = 𝑝 (𝑇(Drep) ≥ 𝑇(Dobs)). The ppp-values denote the similarity be-

tween the observed and replicated data, relative to the chosen test statistic or quantity. The presence 

of systematic differences between the observed and predictive values is indicated by ppp ≤ .05 or ≥ 

.95; ppp-values near .50 indicate that there are no differences between the observed T and the distri-

bution of T values that one would expect if the model were correct (Stone & Zhu, 2015). Although 

these cutoff values are commonly implemented, we do not advocate the strict use of cutoff values in 

general. The main goal here is to evaluate the degree to which a model minimizes the number of 

extreme ppp-values.  

Finally, the analysis below illustrates an application of PPMC to evaluate various statistical 

aspects of a single model, but PPMC can also be used for model comparison (e.g., Béguin & Glas, 



BAYESIAN MODEL CHECKING  10 

 

2001; Sinharay, 2006). In that case, one could inspect the relative fit of competing models by examin-

ing the frequency of extreme ppp-values in each model; the model with fewer ppp-values below .05 or 

above .95 would be deemed to better represent the observed data, with regard to the particular T 

under investigation. For further details and an example of PPMC-based model comparison in the 

context of IRT modeling, see Zhu and Stone (2012). 

Methods 

Data. As an illustration, we used secondary data2 from the Sequenced Treatment Alternative 

to Relieve Depression (STAR*D; Rush et al.., 2004) trial, which was supported by the National Insti-

tute of Mental Health. Data were collected from 41 clinical outpatient patient facilities in the United 

States. Participants in the STAR*D trial completed the 139-item self-report Psychiatric Diagnostic 

Screening Questionnaire (PDSQ; Zimmerman & Mattia, 2001), which uses DSM-IV criteria to meas-

ure 15 psychiatric disorders, including major depressive disorder (MDD). Further details can be found 

at https://www.nimh.nih.gov/funding/clinical-research/practical/stard/index.shtml. 

We analyzed the dichotomous (Yes/No) responses to the MDD items from a random sample 

of N = 1000 STAR*D participants. For the purposes of our illustration, three MDD items were re-

moved from the original PDSQ data. Item 1 (“During the past two weeks, did you feel sad or de-

pressed?”) had an extremely high endorsement rate of 98.22% and was therefore deemed uninforma-

tive. Further, as in Bonifay (2015), Items 6 (“Was your appetite significantly greater than usual nearly 

every day of the past 2 weeks?”) and 8 (“Did you sleep at least 1-2 hours more than usual nearly every 

day of the past 2 weeks?”) were also removed; these items were worded almost identically to Items 5 

and 7 (about “lower” appetite and “less” sleep, respectively) and thus highly redundant.  

Model. Practitioners often rely on PDSQ raw score thresholds for potential diagnosis. For ex-

ample, Castel et al. (2007) examined the specificity and sensitivity of several PDSQ subscales in order 

 
2 Thank you to Dr. Waguih IsHak of the Geffen School of Medicine at UCLA for providing this data set. 
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to ascertain raw cut-off scores for clinical diagnosis and were able to approximately replicate the MDD 

threshold that is recommended in the PDSQ manual. Importantly for our illustration, this use of raw 

scores implies that the MDD item set is unidimensional (McNeish & Wolf, 2020) in that all items 

contribute to the measurement of a single factor (i.e., “depression”). The assumed unidimensionality 

of the MDD subscale is also evident in several studies involving the MDD subscale itself (e.g., Houben 

et al., 2017) as well as research on the factor structure of the full PDSQ wherein all MDD items were 

measured by one factor (e.g., Gibbons, Rush, & Immekus, 2009). We followed this usual approach by 

specifying an item response theory (IRT) model with a unidimensional test-level structure. 

At the item-level, a variety of IRT models can be applied to estimate the probability of MDD 

symptom presence (or absence). We considered the two-parameter logistic model (2PLM; Birnbaum, 

1968), which is among the simplest (and most widely applied) IRT models. The 2PLM is given by 

 𝑃(𝑥𝑖𝑗 = 1|𝜗𝑗; 𝑎𝑖 , 𝑏𝑖) =
exp[𝑎𝑖(𝜗𝑗 − 𝑏𝑖)]

1 + exp[𝑎𝑖(𝜗𝑗 − 𝑏𝑖)]
 , (2) 

where the probability 𝑃 of a correct response 𝑥 = 1 on item 𝑖 by person 𝑗 is conditional on the 

location 𝜗 of person 𝑗 along the latent trait continuum and two item parameters. The 𝑎𝑖 (or “discrim-

ination”) parameter represents the degree to which item 𝑖 differentiates between respondents at lower 

and higher latent trait locations. The 𝑏𝑖 (or “difficulty”) parameter represents the location of the item 

along the latent trait scale. 

In sum, the model under evaluation in this paper specifies a 2PLM for each item, a unidimen-

sional structure for the complete set of items, and a normally distributed latent variable underlying the 

response patterns. For ease of communicating our findings, we will use the shorthand “Mod.U2N” to 

denote a unidimensional 2PLM with a normally distributed person parameter. 

Estimation. To compare the model checking approach against more traditional model evalua-

tion criteria, we implemented two estimation strategies. First, we used the default specification in 
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flexMIRT: marginal maximum likelihood estimation via the expectation-maximization algorithm 

(Bock & Aitkin, 1981) with 49 quadrature points equally spaced between values of -6.0 and 6.0 on the 

latent trait scale. Second, we conducted Bayesian estimation via Metropolis-within-Gibbs Markov 

chain Monte Carlo simulation. For simplicity, we accepted the default prior distributions: flat (nonin-

formative) priors for the item parameters and a standard normal prior for the person parameter (i.e., 

𝜗 ~ N(0,1)).3 Reliance on default prior distributions is generally ill-advised (Kass & Wasserman, 1996), 

and given the characteristics of the STAR*D participants (i.e., clinical outpatients), a normally distrib-

uted prior may be a model misspecification. However, (a) a normal prior on the person parameter is 

the default in standard IRT person parameter estimation (i.e., EAP or MAP “scoring”) and thus likely 

to be applied in practice, and (b) PPMC allows one to empirically investigate whether this prior is 

likely to be correct or not (Gelman & Shalizi, 2013). 

Traditional model evaluation. For the sake of comparison, we calculated traditional goodness-of-

fit statistics by fitting Mod.U2N to the observed data via Metropolis-Hastings Robbins-Monro esti-

mation (Cai, 2010) in flexMIRT. Note that the 18 dichotomous MDD items permitted 218 = 262,144 

possible response patterns (i.e., an extremely sparse contingency table), thus precluding consideration 

of full-information GOF statistics. Accordingly, we consulted the ordinal M2* statistic (Cai & Hansen, 

2013; Maydeu-Olivares, 2013), which is asymptotically 𝜒2 distributed with 𝜅 − 𝜈 degrees of freedom 

(𝑑𝑓), where 𝜅 is the number of reduced first- and second-order marginal residuals (i.e., 𝜅 = 𝑛(𝑛 +

1)/2  for 𝑛 items) and 𝜈 denotes the number of free parameters. We also considered the root mean 

square error of approximation based on the M2
* statistic (RMSEA2), which is given by 

√(𝑀2
∗ − 𝑑𝑓)/(𝑁 ∙ 𝑑𝑓), where 𝑁 is the sample size. Conveniently, RMSEA2 is interpreted just as the 

 
3 One important aspect when deciding on the specification of priors is the prior-data disagreement issue that can arise. If 
priors are misaligned with the evidence in the data, then the posteriors can be impacted by the priors, as well as GOF. 
This issue is particularly common if informative, but “inaccurate,” priors are implemented. We used non-informative 
priors to avoid this issue. For more on data-prior conflict, please see Evans and Moshonov (2006). 
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traditional RMSEA: values below .08 represent mediocre fit and values below.05 support good fit 

(MacCallum, Browne, & Sugawara, 1996). 

Bayesian model evaluation. PPMC can certainly be used in an omnibus sense, by evaluating the 

general GOF of the whole model; however, as Gelman et al. (1996) noted, “Indeed, Bayesian inference 

is a powerful tool for learning about model defects, because we have the ability to examine, as a 

discrepancy measure, any function of data and parameters” (p. 758). The potential to examine any 

feature of the data highlights the versatility of the model checking method: Test statistics and quanti-

ties can be chosen by the researcher in order to assess some characteristic of the data that is not 

directly addressed by the probability model. For example, rather than considering the mean or vari-

ance, one may wish to explore the degree to which the rank ordering of the observed sample is the 

same in the replicated distribution as in the observed data. Similarly, it may be informative to know 

whether the residuals from fitting the model to the observed data are similar in size to those obtained 

from the replicated data.  

To demonstrate PPMC, we selected two test statistics (based only on the observed data) and 

two test quantities (based on the data and model). Note that the choice of test statistics or quantities 

is up to the researcher, and any feature of the data and/or model can be evaluated via PPMC. Though 

we recommend that feature selection should have some theoretical justification. For example, if an 

educational assessment includes open-ended constructed response items (meaning correct answers 

cannot be attributed to guessing), then it would be uninformative to use PPMC to investigate whether 

the lower asymptote (or “guessing”) parameter of a dichotomous IRT model is greater than zero.  

Test statistics. In the present example, we decided to first examine the item response propor-

tions, which are simply the proportions of Yes endorsements out of all valid responses to each MDD 

item. Mod.U2N specified a symmetric (normal) prior distribution for the person parameter (i.e., the 

latent variable of “depression”). To be clear, analysis of the item response proportions will indicate 
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symmetry but will not provide evidence regarding the normality of the latent trait (because, e.g., a 

bimodal distribution may be symmetric but not normal). Though the flexibility of PPMC would cer-

tainly allow one to examine this issue more formally, by checking the model according to recent ad-

vancements in latent variable distribution fit (e.g., Monroe, in press; Zhen & Cai, 2018). More simply, 

it may be the case that the levels of depression among respondents in the observed data are not sym-

metrically distributed. Perhaps the STAR*D sample was characterized by many patients with higher 

levels of depression (more Yes responses) and few with low levels (fewer No responses) than one 

would expect in a symmetric distribution. In such a case, the observed response proportions would 

be higher than those that were generated from the posterior predictive distribution Drep given 

Mod.U2N, thus suggesting that a skewed prior may be a more appropriate specification. To investigate 

this possibility, we conducted PPMC of the item response proportions, comparing the observed re-

sponse proportions in the data to the replicated response proportions in Drep. 

Our second test statistic was the item-total correlation (i.e., correlation between each MDD 

item and the total score for all items). While the response proportions enabled us to check the person 

parameter, the item-total correlations allow us to check an important item property: If all items are 

measuring a single construct, then they should be similarly correlated with the total scores. It is trivial 

to establish that this is not the case in the observed data, with item-total correlations ranging .30 to 

.59. However, PPMC of the item-total correlations goes beyond analysis of the observed data by pre-

senting a distribution of item-total correlations that we would expect to see if Mod.U2N were correct.  

Test quantities. IRT analyses provide several pieces of output that qualify as suitable test quan-

tities. We first checked the 2PLM by considering the 𝑆-𝑋𝑖
2 item-fit statistics (Orlando & Thissen, 

2000), which indicate the degree to which the item response function is under- or overestimating the 

empirical proportion of endorsements of item 𝑖. For PPMC of the fit of the 2PLM to each item, we 

calculated how often the 𝑆-𝑋𝑖
2 values in Drep exceeded the 𝑆-𝑋𝑖

2 values in Dobs. Support for the 2PLM 
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as an appropriate item-level model was indicated whenever the observed data yielded item-fit statistics 

that were equivalent to the data replicated under Mod.U2N (i.e., items with ppp-values near .5). 

Finally, we also considered the degree to which Mod.U2N was able to capture the residual 

correlations (aka local dependence (LD)) between each MDD item pair. By definition, a unidimen-

sional IRT model is not equipped to capture any meaningful LD among the items. To check this in 

Mod.U2N, we examined the LD X2 index (Chen & Thissen, 1997), which is based on the 𝜙 correlation 

matrices of the observed and model-implied bivariate contingency tables. When the observed corre-

lation is higher than the model-implied correlation for an item pair, the result is positive LD; if the 

model-implied correlation is higher, then negative LD has been detected within that item pair. For 

PPMC, ppp-values were obtained for all LD X2 values in every data set in Dobs and Drep. 

Analytic strategy. Model evaluation via PPMC can be performed using any Bayesian statistical 

software. Because our aim was to evaluate an IRT model, we conducted all simulations and analyses 

in flexMIRT v3.6 (Cai, 2020), which we called from within R (R Core Team, 2017) via the irtplay 

package (Lim & Wells, 2020). The R script comprised six steps. First, we performed a Bayesian analysis 

of the MDD data according to the model specifications described below, and saved the output from 

each of 1,000 Markov chain Monte Carlo (MCMC) iterations. Second, we used the parameter vector 

from each MCMC cycle to generate 1,000 unique data sets. In the third and fourth steps, we obtained 

test statistics/quantities from the observed and replicated data, respectively. Fifth, we calculated the 

ppp-values and associated descriptives of several classical and IRT item-level and test-level statistics. 

Finally, we plotted the key results. The complete annotated R script is available at https://osf.io/42cz7/. 

Results 

Due to space constraints and because they were not our primary concern, we have opted not 

to present the parameter estimates that we obtained through either traditional or Bayesian estimation. 

In the traditional analysis, all 𝑎𝑖 parameters (M = 1.55, SD = 1.30) were significantly different than 

https://osf.io/42cz7/
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zero and 𝑏𝑖 parameters ranged from -3.56 to 1.42. Bayesian estimates of the 𝑎𝑖 (M = 1.58, SD = 1.34) 

and 𝑏𝑖 (range: -3.52, 1.49) parameters were comparable to the traditional estimates. In practice, these 

results should be closely inspected, but for this illustration, we are bypassing the parameter estimates 

so that we can emphasize model evaluation. 

Traditional model evaluation. According to traditional GOF assessment, the MDD items were not 

well represented by Mod.U2N, M2(135) = 1192.88, p < .0001, RMSEA2 = .09. Though somewhat 

informative, these results do not provide much insight into the failings of Mod.U2N; they tell us that 

the overall fit of Mod.U2N to the particular data in the STAR*D sample is weak, but they provide no 

details regarding the precise weaknesses of this model. Of course, we could continue investigating the 

data from a traditional perspective, examining item-level statistics, residuals, and other IRT output, 

but such results inform us only about the observed data. A deeper understanding of Mod.U2N, that 

is, beyond GOF and without strict reliance on the observed data, can be gleaned from PPMC. 

Bayesian model evaluation: Test statistics. Table 1 displays the observed response proportions for 

each of the 18 MDD items (paraphrased for simpler presentation), along with the PPMC results. All 

proportions in the observed data fell within the uncertainty interval of the posterior distribution and 

the corresponding ppp-values (ranging from .417 to .673) indicated that the replicated proportions 

were fairly indistinguishable from the observed proportions. In other words, Mod.U2N is able to 

generate many data sets with response proportions that are highly similar to those that we observed. 

We can thereby conclude that the observed response proportions are not driving the poor fit. 

Table 2 presents the observed and replicated item-total correlations. Unlike the response pro-

portions, the item-total correlations showed that the observed sample yielded data with unexpectedly 

high (Items 1, 2, 3, 11, and 12) or low (Items 13-18) correlations with the total MDD scores. For 

example, Item 2 (“Did you get less joy or pleasure from almost all of the things you normally enjoy?”) 

had a higher item-total correlation in the observed data (r = .408) than in all but 11 of the 1,000 
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replicated data sets (i.e., ppp = .011). Conversely, the item-total correlations of Items 14 (“Did you 

wish you were dead?”) and 15 (“Did you think you’d be better off dead”) were higher (r = .630 and 

.639, respectively) than observed in 100% of the replicated data sets (i.e., ppp = 1.000). Overall, these 

results indicate that data consistent with Mod.U2N would have had substantially different item-total 

correlations than those obtained from the STAR*D participant data. Therefore, PPMC of the item-

total correlations provides evidence that Mod.U2N is not likely to have generated the observed data. 

Bayesian model evaluation: Test quantities. It is a bit more complicated to convey PPMC findings 

in the context of test quantities. The results above were found by comparing a test statistic from a 

single observed data set to the distribution of that same statistic in many replicated data sets; however, 

model-based test quantities such as item-fit or local dependence statistics require an inspection of the 

complete Dobs distribution. Then, PPMC proceeds by simply counting the number of replications in 

which the test quantity obtained via Drep exceeds that of Dobs. Consequently, PPMC of test quantities 

can be communicated by comparing the distributions of Dobs and Drep and/or by focusing primarily 

on ppp-values. 

The results from PPMC of the 𝑆-𝑋𝑖
2 item-fit index are displayed in Figure 2. Ideally, each item 

would resemble Item 3 (“Did you get less joy or pleasure from almost all of the things you normally 

enjoy?”), in which the 𝑆-𝑋𝑖
2 density plots for Dobs (dark fill) and Drep (light fill) were almost perfectly 

superimposed (ppp = .512). However, we found that the observed item-fit of Items 13-16 was sub-

stantially higher that we would anticipate if Mod.U2N were correct. The expected misfit of Item 15 

(“Did you think you’d be better off dead?”) was particularly egregious: In Dobs, the expected 𝑆-𝑋𝑖
2 was 

122.359 (95% UI = 76.268, 197.55), while in Drep, the expected 𝑆-𝑋𝑖
2 was just 10.363 (95% UI = 3.198 

to 22.805), and in fact, there was not a single replication in which Item 15 yielded worse item-fit in 

Drep than in Dobs. Further, though the Dobs values were technically within the Drep uncertainty intervals, 

the ppp-values of Items 2, 4, 17, and 18 were also far smaller than expected under Mod.U2N. Thus, 
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PPMC of the 𝑆-𝑋𝑖
2 quantities provides compelling evidence against the 2PLM as an appropriate item-

level model for several of the MDD items. 

Finally, Figure 3 illustrates the ppp-values of the local dependencies between all 18(18 – 1)/2 

= 153 item pairs. In this figure, pie charts that are close to a 50/50 split and darker in color (e.g., the 

chart for Items 3 and 4) reflect LD X2 quantities that were similar for Dobs and Drep, meaning that the 

observed LD of that particular item pair would be likely to replicate if Mod.U2N were correct. Recall 

that Mod.U2N was specified as a unidimensional model, such that the responses to all MDD items 

were hypothesized as reflecting a single latent continuum (e.g., “depression”). If that were correct, 

then all pies in Figure 3 would be evenly halved. Clearly, that is not the case: Many pairs are depicted 

as slivers, lines, or even dots, indicating that the LD X2 of Drep was rarely, almost never, or never 

greater than or equal to that of Dobs, respectively. In summary, PPMC of local dependence revealed 

an additional flaw of Mod.U2N: A single latent dimension is unable to account for the residual corre-

lations that were evident in the observed data. 

Discussion 

The aim of this paper was to showcase the utility of the Bayesian model evaluation technique 

known as posterior predictive model checking, and to illustrate the insights that PPMC offers in the 

context of categorical data using an example pertinent to prevention science. Rather than relying on 

traditional goodness-of-fit assessment, which is a thorny issue in the presence of categorical data and 

is fraught with methodological problems, we used PPMC to explore statistical issues related to a di-

chotomous measurement model of 18 major depressive disorder items from the Psychiatric Diagnos-

tic Screening Questionnaire. PPMC allows users to scrutinize any aspect of their data or model, and 

we demonstrated this technique by examining two data-based test statistics (response proportions, 

item-total correlations) and two IRT model-based test quantities (item-fit, LD). The PPMC results 

have implications for specific methodological issues and prevention science research more broadly. 
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Methodological implications. The observed item response proportions (Table 1) were aligned with 

what we would expect given our hypothesized model: a unidimensional 2PL IRT model with a nor-

mally distributed person parameter. However, the PPMC results identified several problematic items, 

both in terms of unexpected item-total correlations (Table 2) and poor representation by the 2PLM 

(Figure 2), as well as overall misspecification regarding the underlying dimensionality of the item set 

(Figure 3). This latter finding is especially revealing, as Gelman and Shalizi (2013) argue that the sub-

jectivity of the Bayesian prior (a deservedly major sticking point for many traditional practitioners) can 

be investigated via PPMC of the prior itself. In our study, the results provided evidence that a univari-

ate normal prior of the person parameter was highly unlikely to produce the observed response pat-

terns. Further research would be needed to determine whether the prior was errant with regard to 

unidimensionality, normality, or their interaction. Although the STAR*D participants comprised a 

clinical outpatient sample, we would argue that individual differences in the degree of MDD could 

still be normally distributed. Although the ppp-values of the item response proportions (Table 1) do 

not directly assess the normality of the latent trait, we did find that the proportions in data sets that 

were replicated under assumed normality were virtually indistinguishable from the observed propor-

tions. If the person parameter had been asymmetric, for example negatively skewed such that the 

sample included more people with high levels of depression, then the posterior predictive replications 

would have yielded lower response proportions than in the observed data. However, none of the ppp-

values in Table 1 suggest that this was the case; whether this symmetry reflects a normally distributed 

latent variable is a topic for future research. 

It may be that the unidimensionality specification is the culprit (among the four data/model 

features that we checked; further PPMC may reveal additional shortcomings of Mod.U2N). Im-

portantly, if the MDD item set is multidimensional, then several psychometric methods that assume 

unidimensionality would be invalidated, including Cronbach’s alpha (McNeish, 2018) and commonly 



BAYESIAN MODEL CHECKING  20 

 

applied measurement techniques such as linking and equating (Bolt, 1999) and computerized adaptive 

testing (Ackerman, 1991). In the specific context of IRT, the precision and accuracy of item parameter 

estimates (Way, Ansley, & Forsyth, 1988) and person parameter estimates/factor scores (Ansley & 

Forsyth, 1985) are compromised when multidimensional data are represented by a unidimensional 

model. Further adverse consequences of ignoring multidimensionality in item response data can be 

found in Reise, Cook, and Moore (2015). 

An issue that is especially germane to our MDD illustration was recently illuminated by 

McNeish and Wolf (2020): Summed scores, such as those used in diagnosing psychopathology with 

the PDSQ, correspond to a constrained (parallel) latent variable model. From this correspondence 

between summed scores and factor scores, it follows that a violation of unidimensionality, such as that 

shown in Figure 3, would also violate the application of summed scores. This is particularly concerning 

in the context of the PDSQ, wherein diagnoses are based on simply tallying the responses to the 

symptom checklist. If the MDD item set is multidimensional, then the self-reported presence of a 

certain number of symptoms should not be used to inform clinical diagnosis. In our illustration, PPMC 

revealed that Mod.U2N does not support the degree of multidimensionality that is present in the 

observed data, and having uncovered this flaw in the model, we can recommend that summed scores 

(and other methods that assume a single underlying dimension) are not warranted or defensible.  

Prevention science implications. Beyond the methodological considerations of the MDD items of 

the PDSQ, PPMC offers great utility in the science of prevention. Whenever a statistical model is used 

to represent a prevention science theory, it should be rigorously evaluated. As discussed, traditional 

GOF assessment and bootstrapping methods can be misleading due to their overreliance on the ob-

served data. For example, if the aim is to prevent the development of depression, then the model of 

depression should be thoroughly evaluated, not only in terms of global fit to the data, but with regard 

to specific flaws. As Box (1976) noted (in a subsection entitled “Selective Worrying”): “Since all 
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models are wrong, the scientist must be alert to what is importantly wrong” (p. 792); PPMC allows 

users to examine precisely why the model is wrong, and to thereby improve it. In the prevention 

sciences, if we can better understand why a model is wrong, then we will be better equipped to improve 

our efforts at prevention. 

Limitations and Future Directions. The main point of concern that some researchers have sur-

rounding Bayesian inference is the subjectivity of specifying the prior. Bayes’ theory does not place 

any constraints on how one should set the prior, so the choice of prior may differ from person to 

person, depending on each person’s previous beliefs about the phenomenon under investigation. Con-

sequently, the posterior, which is a function of the prior, can also differ from one researcher to the 

next. However, we note that subjectivity is not solely placed within the Bayesian estimation frame-

work. It is also the case that the model being estimated is subjective in that it can be specified in a 

variety of ways, depending on the subjective opinions of the researcher. Thus, the model checking 

techniques discussed above are based on the subjective opinions that characterize the model, the pri-

ors, and the posterior distributions, which from the traditional perspective, may be uncomfortable for 

some researchers. However, it is our view that the advantages of PPMC outweigh the complications, 

especially in light of the potential for PPMC to directly test the appropriateness of the prior specifica-

tion (Gelman & Shalizi, 2013). We also note that embracing subjectivity in data analysis can provide a 

rich set of results and a deeper understanding of the phenomena under investigation. 

To that end, a specific limitation of this study is the use of the default (normal) prior. In 

application, it is a good strategy to assess the impact that prior settings have on results, especially in 

the case of subjective priors. If modifying the priors impacts the posteriors or model checking phase 

in a substantive way, then this would be an important aspect to note. One way of addressing this issue 

is to conduct a sensitivity analysis of the prior settings. A sensitivity analysis can be used to examine 

how robust posterior results are when the prior settings are altered. If posterior findings remain 
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relatively stable under statistically and substantively different prior settings, then there can be confi-

dence that the impact of prior subjectivity is minimal. However, if findings vary when priors are al-

tered, then the subjectivity of opinions plays a stronger role in the formation of the posterior, and 

potentially on model evaluation. We also note that a similar sensitivity analysis can be conducted on 

the likelihood, where the robustness of substantive results can be examined by performing a sensitivity 

analysis on the model—this process need not be confined to the Bayesian framework. For more in-

formation on these issues, see Depaoli and van de Schoot (2017).  

As a final note, we would like to briefly address another common criticism of Bayesian meth-

ods: MCMC estimation and PPMC are not computationally efficient. The Bayesian analyses presented 

in this paper required far longer than traditional methods. The test quantities in particular were a 

considerable computation burden: To obtain Dobs and Drep required fitting 1,000 IRT models, and 

even though these were relatively simple models, the amount of computation time was orders of mag-

nitude longer than with the traditional approach (i.e., ~40 minutes vs. a few seconds). Despite this, 

we believe that the Bayesian approach is worth the effort. As discussed throughout this Special Issue, 

categorical data introduces several statistical and analytical complications, and proper evaluation of 

categorical data models is crucial, especially when the goal is as important as prevention. Thus, while 

Bayesian methods are undeniably more laborious than traditional model evaluation strategies, it is our 

view that the extra work pays off in more informative, revealing, and useable results. 

Our primary motivation was to demonstrate the insights that are afforded by Bayesian model 

evaluation. Having conducted PPMC and uncovered various problems with the MDD item response 

data, an obvious future direction would be to apply a multidimensional model. Model evaluation be-

comes much more cumbersome in such an analysis, as each dimension must be appraised, scored, and 

interpreted. Fortunately, Bayesian methods are available for multidimensional IRT (Fox, 2010) and 

PPMC proceeds conceptually just as described herein (e.g., Levy, 2011). Thus, while it was not our 
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intention to uncover the true structure of the MDD items, future researchers could certainly build on 

our PPMC results to better understand the dimensionality (and thereby enhance the use and interpre-

tation of scores) of the MDD items and to extend our results to the PDSQ as a whole.  

Conclusion. In summary, Bayesian methods are rarely applied in prevention science, but they 

offer several advantages. This paper focused on the use of Bayesian model checking to more thor-

oughly evaluate models of categorical data, which are notoriously difficult to appraise using traditional 

methods. Our findings demonstrate that PPMC can be an especially enlightening model evaluation 

strategy, and we suggest that this technique be added to the statistical toolbox of prevention scientists. 
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