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Consider Julie (described in Mack, 1990, p. 22), a sixth grader who knows little 

about fractions. Julie knows that when you have two pizzas of the same size, and one is 
cut into six equal-sized pieces but the other cut into eight equal-sized pieces, she’ll get 
more pizza if she chooses a slice from the first pizza, rather than the second (see Figure 
1). However, when asked which fraction is bigger, 1/6 or 1/8, she says, “One eighth is 
bigger. [Eight] is a bigger number I think. [Eight] is bigger than [six].” 

Like Julie, many children have sound intuitions about the mathematical patterns 
in our world. These mathematical intuitions enable them to predict, for example, that 
dividing an amount into two groups will result in two, smaller groups that are 
approximately one half of the original amount (McCrink, Spelke, Dehaene, & Pica, 2013) 
and that combining two quantities will result in a bigger quantity that is approximately 
equal to the sum of the parts (Knops, Viarouge, & Dehaene, 2009; Mix, Levine, & 
Huttenlocher, 1999; Wynn, 1998). As children’s mathematics knowledge develops in 
educational and informal settings, they link these intuitions about numbers and 
mathematical relationships to formal symbolic mathematics, extend their early formal 
knowledge to support more complex mathematical thinking, and develop new intuitions 
and concepts about the relations among symbolic quantities. 

 

 
Figure 1. While children may have intuitions about the size of pieces, they often have 
difficulty reasoning about the formal symbolic fractional notation used to represent those 
magnitudes. In this example, a child who can reason about two pizzas cut into different 
numbers of slices may be unable to accurately reason about fraction symbols meant to 
represent the size of each slice. One goal of mathematics education is to support students’ 
reasoning about the formal mathematical symbols.  

 
 In this chapter, we review the empirical research on children’s understanding of 
fraction concepts, symbols, and procedures. In the first two sections, we argue for the 
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practical and theoretical importance of examining children’s fraction understanding. In 
the third section, we describe children’s and adults’ fraction reasoning, while highlighting 
the common methodologies in this literature, and present the developmental picture 
painted by current research across the lifespan. In the fourth section, we explore the 
educational implications of developmental research on children’s fraction reasoning. 
Finally, we conclude by considering the directions for future research. 
 

Mathematical Cognition and Education 
Mathematical thinking has long been an important and productive area of 

cognitive and developmental research, for both practical and theoretical reasons. 
Practically, understanding how children learn mathematics—particularly which 
experiences are most beneficial for robust learning—helps us to improve mathematics 
education in the US and abroad. Development of mathematical thinking is an essential 
aspect of children’s cognitive development. As adults, we reason about numbers and 
mathematics relationships every day. We reason with decimal numbers when calculating 
how much something costs or how much change we should receive. We measure, add, 
and transform fractions of ingredients while cooking. We consider and compare 
percentages when making decisions about interest rates at the bank and false positive 
rates at the doctor’s office. In addition to using mathematics in everyday contexts such as 
these, many professions require advanced mathematical skills.  

Given the critical role of mathematical thinking across a variety of contexts, the 
vast variability in children’s mathematical knowledge across cultures--even among 
economically developed nations--is concerning. For example, children in the US have 
been lagging behind those in many other developed countries on international 
assessments of mathematics achievement, despite sufficient access to public education. 
Among the 72 countries participating in the OECD’s Programme for International 
Student Assessment (PISA), a survey of science, reading, and mathematics literacy 
among 15 year olds, the US scored below average in mathematics in the 2015 survey, 
with a significantly lower average score than the previous 2012 survey (OECD, 2016). 
The top scoring countries included Singapore, China, and Japan. Furthermore, the survey 
showed that only about 1% of students in the US reached the most advanced levels of 
mathematics reasoning, compared to about 10% in higher achieving countries. This raises 
a variety of questions about what facets of students’ educational experience in higher-
performing countries result in more mathematical proficiency, and which of these could 
be implemented in other, under-performing countries. Cross-cultural comparisons of 
American and East Asian classrooms have uncovered a variety of differences that may 
contribute to differential mathematics knowledge, including differences in teacher 
preparation (e.g., Ma, 1999), classroom practices (e.g., Richland, Zur, & Holyoak, 2007), 
and attitudes towards mathematics learning and practice (e.g., Stevenson, Chen, & Lee, 
1993). One goal of research in mathematics cognition and development is to uncover the 
psychological mechanisms that propel development and shape children’s emerging ideas 
and to identify experiences that enhance children’s understanding in order to inform the 
best practices for mathematics education in the US (e.g., Siegler et al., 2010, an IES 
Practice Guide) and abroad. 
 The development of children’s fraction knowledge also appears to play an 
important role in the development of mathematical cognition. Children’s understanding 
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of fraction magnitudes is highly correlated with their current standardized mathematics 
achievement scores (Siegler, Thompson, & Schneider, 2011) and is a better predictor for 
students’ readiness for learning algebra (i.e., knowledge of symbols and proficiency with 
solving equations and word problems) than their understanding of whole number 
magnitudes (Booth & Newton, 2012). More strikingly, fifth-grade students’ fraction 
knowledge predicts later high school mathematics achievement, even after controlling for 
children’s other early mathematics knowledge, domain general capacities (i.e., verbal IQ, 
nonverbal IQ, and working memory), and social factors (i.e., family education and family 
income; Siegler et al., 2012). 
 Despite its critical importance in mathematics education, and therefore 
educational success more broadly, American children continue to struggle to understand 
the magnitudes associated with fraction symbols (e.g., NCTM, 2007), procedures for 
solving fraction problems (e.g., Siegler et al., 2011; Siegler & Pyke, 2013), and the 
concepts underlying fraction operations (e.g., Richland & Hansen, 2013; Sidney & 
Alibali, 2015). For example, in a recent NAEP survey, half of the tested eighth graders 
incorrectly ordered three fractions (2/7, 1/12, and 5/9) from smallest to largest (NCTM, 
2007). This is particularly striking given that current standards for mathematics education 
recommend introducing symbolic fractions as early as 3rd grade (NGA & CCSSO, 2010). 
Indeed, in a survey of 1,000 US Algebra teachers evaluating their students’ preparation 
for Algebra 1, teachers reported that students’ fraction understanding was the second 
“biggest problem”, out of 15 possible areas, in their algebra preparation (Hoffer, 
Venkataraman, Hedberg, & Shagle, 2007). Even elementary school teachers often 
struggle with fraction concepts (e.g., Lo & Leu, 2012; Ma, 1999). For example, in one 
cross-cultural study of American and Chinese early mathematics teachers, nearly all of 
the 23 American teachers who were interviewed struggled to accurately solve and 
generate word problems about fraction division (Ma, 1999). In contrast, all of the Chinese 
teachers could not only accurately solve fraction division problems, but they were also 
able to describe multiple ways of conceptualizing fraction division and multiple strategies 
for approaching this topic with their students. Given the alarming gaps in students’ 
knowledge, it is crucial to examine the ways in which children’s fraction knowledge, and 
their educational success more generally, can be improved. 
 

Mathematical Cognition and Developmental Theory 
In addition to the practical applications of research to education, research on 

mathematical cognition often sheds light on a variety of fundamental questions about 
cognition generally. What is the nature of our mental representations of quantity? How 
do these mental representations change over time? What kinds of environmental 
experiences have formative and lasting effects? To what extent is mathematics cognition 
supported by domain specific knowledge about mathematics or by domain general 
competencies and processes? Which aspects of children’s cognition are innate or very 
early emerging? Historically, many of these questions have been primarily addressed 
within children’s mathematics cognition with respect to children’s developing 
understanding of natural, whole numbers. As we will show, many findings from this 
research generalize to development of fraction knowledge. 

 
Representing Whole Numbers 
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Researchers have long been interested in how children represent and estimate the 
numerosity of sets and the magnitudes of symbolic numbers. Using numerosity 
comparison tasks in which participants are asked to choose the more numerous of two 
sets of dots (see Figure 2, Panel A), a variety of studies have shown that infants to adults 
can rapidly choose which set has more, without the need for counting (e.g., Barth et al., 
2003; Halberda, Mazzocco, & Feigenson, 2008; Xu & Spelke, 2000; Xu, 2003). 
Importantly, the ratio between two numerosities (or the difference in their logarithms) 
governs our ability to distinguish them, such that lower ratios between sets (i.e., 1:2) are 
more easily distinguished than higher ratios (i.e., 7:8), regardless of the number of items 
in each set. This ability to represent the numerosity of items has been attributed to an 
approximate number system (ANS) that supports estimating the numerosity of sets in an 
inexact way, with decreasing precision with increasing numerosity, and appears to be 
present in even very young children. Similar magnitude estimation abilities have also 
been documented in other primates (e.g., Brannon & Terrace, 1998) and rats (Meck & 
Church, 1983), suggesting that the ability to extract quantity information from 
nonsymbolic sets is an evolutionarily primary, and perhaps innately specified, ability.  
 

A 

 

B 

 

 
Figure 2. Tasks for assessing knowledge of natural, whole number magnitudes. Panel A 
shows an example of the dot comparison task, which is used to measure nonsymbolic 
whole number magnitude comparison (e.g., Halberda et al., 2008). In this task, people are 
asked to choose the larger number of dots without sufficient time to count them. Panel B 
shows an example of the number line task, which is used to measure symbolic whole 
number magnitude estimation (e.g., Siegler & Opfer, 2003). In this task, people are asked 
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to mark the number line to show where 58 is located.    
 
 
This early emerging ability to represent the magnitude of nonsymbolic sets 

appears to support the more advanced ability to represent numeric magnitudes with 
numeric symbols, such as representing the numerosity of a set of two with the numeral 2. 
Using a number line task, in which participants are asked to locate a number on a given 
number line (see Figure 2, Panel B), Siegler and colleagues (e.g., Siegler & Opfer, 2003) 
have demonstrated that children’s early magnitude judgments of symbolic whole 
numbers follow similar, ratio-governed patterns as their judgments of nonsymbolic 
magnitudes – unit differences between smaller numbers are overestimated while unit 
differences between larger numbers are underestimated. With experience, children’s 
mental representations of numerical magnitude become increasingly linear (Siegler & 
Opfer, 2003; Siegler, Thompson, & Opfer, 2009, for a review). Siegler and Opfer (2003) 
have argued that as children gain experience with whole number symbols and their 
relative magnitudes, they develop linear representations of number akin to a mental 
number line, on which small numbers are represented on the left and large numbers on 
the right, and unit differences (i.e., differences of one) are represented in the same way 
across the entire scale. 

Development of nonsymbolic and symbolic number representations appear to 
occur concurrently and as a result of numerical experience. The ANS acuity, or highest 
ratio of sets that can be compared accurately, increases over developmental time 
(Halberda & Feigenson, 2008) and in response to practice (DeWind & Brannon, 2012). 
Children’s number line representations also become linear across increasingly large 
scales as they gain practice with larger numbers (e.g., Siegler & Opfer, 2003; Siegler & 
Booth, 2004), with experiences that link symbolic numbers with linear, number-line like 
representations of numerical magnitude (e.g., Ramani & Siegler, 2008), with feedback 
about critical magnitudes (Opfer & Siegler, 2007), and via analogies between smaller 
number scales and larger number scales (Thompson & Opfer, 2010). 

It remains somewhat controversial whether these mental representations are 
domain-specific representations of numerical magnitude or are based on domain-general 
representations of magnitude that also support the measurement of other nonsymbolic 
magnitudes, such as area and time. The ANS has been described as a domain specific 
representation (e.g., Feigenson, Dehaene, & Spelke, 2004). Alternatively, the classic view 
is that the brain uses a general analog magnitude system to represent number (Dehaene, 
2003; Meck & Church, 1983; Moyer & Landauer, 1967). Still a third view was recently 
proposed by Leibovich and colleagues (Leibovich, Katzin, Harel, & Henik, in press; 
Leibovich, Kallai, & Itamar, 2016), who have suggested that numerical estimation of 
nonsymbolic sets is supported by a domain general, approximate magnitude system 
(AMS), which becomes specialized to support numerical reasoning. Regardless of the 
specific nature of the magnitude representations, any truly domain general process, such 
as working memory (Namkung & Fuchs, 2016) and inhibitory control (e.g., Fuchs & 
McNeil, 2012), must also play a role in children’s ability to map between symbolic 
numbers and magnitude representations. 
 
Understanding Fractions 
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One challenge of research in children’s mathematical thinking is to build a theory 
of mathematical development that incorporates children’s thinking about numbers more 
broadly (Sidney, Thompson, Matthews, & Hubbard, in press; Siegler, Fazio, Bailey, & 
Zhou, 2013; Siegler et al., 2011). Under this goal, the study of children’s fraction 
reasoning has emerged as an important topic in children’s mathematical thinking and 
development (Siegler, 2016; Siegler & Lortie-Forgues, 2014; Siegler et al., 2013; Siegler 
et al., 2011). Natural, whole numbers comprise a very small subset of the kinds of 
numbers we use in complex mathematics, and even in our everyday lives. As illustrated 
by the examples given at the beginning of the chapter, in addition to reasoning about 
whole number sets, we also reason about ratios and proportions represented with rational 
numbers, such as fractions, decimals, and percentages.  

Examining children’s developing understanding of fraction magnitudes, symbols, 
and operations allows us to broaden our characterization of mathematical development. 
Critically, fractions can serve as an illuminating test case for theories of mathematical 
development that have been based primarily on studies of children’s whole number 
reasoning. Studies of fraction reasoning allow us to examine whether these theories 
generalize. For example, as we will discuss further in the next section, Siegler, 
Thompson, and Schneider (2011) examined whether the mental representations that 
support symbolic whole number reasoning (i.e., the mental number line) are similar to 
those that support symbolic fraction reasoning. Fractions also allow us to evaluate 
assumptions about the relationships between early emerging whole number competencies 
and later complex mathematics. For example, many researchers have argued that whole 
number reasoning is early emerging because the mind is innately equipped to reason 
about natural whole numbers, whereas fraction representations must be constructed from 
whole number representations. Recently, some researchers (Lewis, Matthews, & 
Hubbard, 2015; Matthews & Hubbard, 2016) have pointed to evidence for early 
competence in ratio reasoning, arguing for an intuitive ratio processing system (RPS) that 
should support early fraction reasoning as well. This work will also be further discussed 
in the next section. Furthermore, researchers who argue against the domain specificity of 
our understanding of numerical magnitude, such as Leibovich and colleagues (Leibovich 
et al., in press; Leibovich et al., 2016) who argue for the AMS rather than ANS, leave 
room for whole number and fraction reasoning to develop in parallel rather than in 
sequence. As these examples illustrate, examining the development of fraction reasoning 
opens up several intriguing questions about the relationship between natural, whole 
number reasoning and more complex mathematics. 

In addition to these questions about mathematical development, examining the 
development of fraction reasoning also allows us to test key theories of general cognitive 
development, in particular those concerning the development of relational reasoning and 
transfer. Fractions are fundamentally a relational concept. Their meaning is not derived 
from a single component, either the numerator or denominator alone, but from the ratio 
relationship between these two components. The ability to represent relations among 
elements requires representing individual elements and thus develops later than the 
ability to represent the individual elements. For example, the ability to match sets based 
on relational patterns across elements within sets (e.g., small-medium-large or A-B-A 
patterns) rather than matching based on the perceptual details of the elements increases 
with age (e.g., Gentner, 1988). Furthermore, children’s attention to relational structure 
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can be supported by using relational language (e.g., referring to a small-medium-large 
pattern as “Baby, Mommy, Daddy”; Rattermann & Gentner, 1998), making an analogy to 
relationships in more familiar contexts (e.g., Goswami & Brown, 1990; Goswami, 1995), 
and by reducing the working memory demands of tasks relying on relational reasoning 
(e.g., Richland & McDonough, 2010; Thompson & Opfer, 2010). Although only a small 
subset of research on children’s relational reasoning is situated in mathematical contexts, 
many mathematical concepts, such as fraction magnitudes, are inherently relational. 
Therefore, by examining whether these cognitive supports also enhance children’s ability 
to reason about fractions, we can test the generalizability of these prior findings. 

Similarly, by examining the relationship between children’s emerging fraction 
understanding and their prior knowledge of whole number magnitudes and operations, we 
can test and further illuminate our theories of transfer. Children’s whole number 
knowledge sometimes appears to negatively bias their fraction concepts (e.g., Ni & Zhou, 
2005), suggesting that children’s prior numerical knowledge transfers to new fraction 
concepts in ways that are unhelpful for new learning. Yet, several aspects of children’s 
whole number and fraction knowledge are strongly correlated (e.g., Bailey, Siegler, & 
Geary, 2014) and their knowledge of arithmetic operations with whole numbers can 
directly support learning about fraction arithmetic through analogical transfer (e.g., 
Richland & Hansen, 2013; Sidney & Alibali, 2015). Further investigation of when and 
how children spontaneously transfer from their prior knowledge of whole numbers when 
making sense of fractions may further illuminate the mechanisms of such transfer and 
contextual features of instruction that would further support appropriate transfer from 
students’ prior knowledge. The relationship between children’s knowledge of whole 
numbers and their developing understanding of fractions will be further discussed in the 
next section. 
 

The Development of Fraction Skills 
 In this section, we review the current state of evidence of children’s and adults’ 
understanding of fractions, as well as some comparative evidence. First, we describe the 
nature of children’s nonsymbolic proportion and ratio reasoning, as children typically 
show early competence with matching and comparing nonsymbolic fractions, similar to 
that of non-human animals. Next, we describe the nature of children’s and adults’ 
reasoning about the magnitudes of symbolic fractions, which are first introduced in early 
childhood, and appear to cause difficulty for some students. Then, we will turn to more 
complex symbolic reasoning (e.g., arithmetic operations with fractions), which often 
depends on having adequate knowledge of fraction magnitudes. Along the way, we will 
discuss the methodology used to examine children’s nonsymbolic and symbolic fraction 
understanding. Finally, we will consider the developmental pathways to fraction 
understanding including the evidence for relationships between nonsymbolic and 
symbolic reasoning, and the relationship between facets of children’s fraction knowledge 
and other mathematics knowledge, as well as the role of domain general processes in the 
development of children’s fraction skills. 
 
Nonsymbolic Proportions and Ratios 

Children, adults, infants, and even non-human animals are able to reason about 
proportions and ratios in nonsymbolic contexts. Children as young as 4 years old can 
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easily match visual stimuli representing the same proportions, despite different overall 
size (Duffy, Huttenlocher, & Levine, 2005; Sophian, 2000; Spinillo & Bryant, 2001) or 
even vastly different perceptual details (Singer-Freeman & Goswami, 2001). 
Furthermore, children as young as 4 years old can predict the outcome of simple addition 
and subtraction of nonsymbolic proportions, represented as parts of a circle, and this 
ability appears to develop from 3 to 5 years in parallel with the ability to add and subtract 
discrete, whole number, sets of objects (Mix et al., 1999). One limitation of these earlier 
studies is that they leave open the possibility that children may be completing the tasks 
via mechanisms other than attending to proportion, such as object-matching or attending 
to overall amount rather than proportion per se; similar criticisms have also been leveled 
at studies of nonsymbolic whole number reasoning (see Gebuis & Reynvoet, 2012; 
Leibovich et al., in press; Mix, Huttenlocher, & Levine, 2002). 

More recently, interest in children’s fraction reasoning has led many researchers 
to examine children’s and adults’ abilities to compare one ratio of two numerosities to 
another ratio of two numerosities, in magnitude comparison tasks that are parallel to 
those used to investigate whole number reasoning (i.e., the dot comparison tasks used in 
studies of the ANS, see Figures 2 and 3) and tasks that better reflect symbolic fractional 
notation (e.g., two sets of dots separated by a fraction bar, with one taking the place of 
the numerator and the other taking the place of the denominator; see Figure 3, Panel B). 
These studies more closely target participants’ sense of fractions as a ratio between two 
numbers or quantities. 
 In one such study, Fazio, Bailey, Thompson, and Siegler (2014) administered a 
variety of fraction and whole number tasks to fifth-grade children, including a 
nonsymbolic fraction magnitude comparison task. In this task, children viewed displays 
with two sets of yellow and blue dots, intermixed, of varying sizes (see Figure 3, Panel 
A). Each set represented a specific ratio (e.g., 3:8 was represented with three blue dots 
and five yellow dots). Children were told that the dots represented candies, and the blue 
dots taste the best, therefore, they should choose the side that would give them the best 
chance of picking a blue candy. Fazio and colleagues found that children were fairly 
successful at this task, choosing the larger ratio, on average, on 70% of trials. Similar to 
studies of whole number magnitude comparison, children were more accurate on the 
largest ratio differences (76%) than on the smallest ratio differences (65%).  

 
  
A 
 

B 
 

C   
 

D 
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Figure 3. Example stimuli for tasks assessing infants’, children’s, and adults’ ability to 
represent and compare nonsymbolic ratios and proportions. Panel A shows an example of 
a dot ratio stimulus in which the component numerosities are intermixed, as in Fazio et 
al. (2014) and McCrink & Wynn (2007). Panel B shows an example of a dot ratio 
stimulus in which the component numerosities are represented separately, in a fraction 
format, as in Matthews & Chesney (2015). Panel C shows an example of an area ratio 
stimulus, as in Matthews & Chesney (2015). Panel D shows two examples of area 
proportion stimuli, one continuous and one discretized, as in Boyer et al. (2008). Each 
panel shows an example of a 1:2 ratio.  
 

Adults are also adept at perceiving and comparing nonsymbolic ratios and 
proportions (e.g., Matthews & Chesney, 2015; Meert, Grégoire, Seron, & Noël, 2012). In 
their experiments with adult participants, Matthews and Chesney used symbolic 
fractional notation with sets of dots to represent component numerosities (i.e., one set of 
dots in the numerator position of the fraction and another set of dots in the denominator) 
or differently sized circular areas to represent component magnitudes (i.e., a smaller 
circle in the numerator position and a larger circle in the denominator; see Figure 3, 
Panels B and C). In their tasks, adults were able to accurately choose the greater ratio 
when comparing symbolic fractions to nonsymbolic dot fractions, symbolic fractions to 
nonsymbolic area fractions, and nonsymbolic dot fractions to nonsymbolic area fractions. 
In all cases, participants demonstrated the distance effect: they were faster and more 
accurate for more distant ratios and slower and less accurate for closer ratios, in parallel 
to earlier studies of adults’ whole number comparisons. Furthermore, in a supplemental 
experiment, Matthews and Chesney found that adults were slower to make comparisons 
across two symbolic fractions than two nonsymbolic fractions in the same format, 
making it improbable that adults were converting nonsymbolic ratios to symbolic 
fractions in order to make the comparisons across ratios. Thus, adults can automatically 
represent ratio magnitudes in fractional formats, and the mental representations of these 
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ratio magnitudes show an important similarity to adults’ mental representations of whole 
number magnitudes -- the comparison process itself is affected by the distance between 
ratios. 

Furthermore, the ability to compare ratio magnitudes appears to be quite early 
emerging. McCrink and Wynn (2007) found that infants as young as 6 months old were 
sensitive to changes in ratios of items, as long as the ratios differed by at least a factor of 
2. Their study used a habituation paradigm to test infants’ ratio perception, in which 
infants were first habituated to stimuli with one ratio and then tested with stimuli that 
either matched or did not match the ratio of the habituated stimuli. Critically, habituation 
paradigms are used to test whether participants can perceive differences between 
habituated stimuli and test stimuli. If infants dishabituate, or begin to look longer at the 
new stimuli, during the test phase, researchers can infer that infants perceive the test 
stimuli as being different from habituated stimuli. In contrast, if infants do not look 
longer at the new stimuli during the test phase, then researchers can infer that infants do 
not perceive the new stimuli as being different from the habituated stimuli. 

During the habituation phase, infants viewed a series of displays with yellow Pac-
Men and blue pellets in different numbers, but constant ratio in each display (e.g., 8 blue 
pellets and 4 Pac-Men and 14 blue pellets and 7 Pac-Men are both a 2:1 ratio), until 
habituated. As in the adult work, the size of the dots varied within and across displays. To 
test whether infants can perceive ratio, McCrink and Wynn (2007) then tested whether 
infants would dishabituate to new ratios of items. The infants were assigned to one of two 
groups, a distant ratio group and a close ratio group (see Table 1). In the distant ratio 
group, the new ratio differed from the old ratio by a factor of 2. For example, some 
infants were habituated to displays with a 2:1 ratio and tested with displays with a 4:1 
ratio. In the close ratio group, the new ratio differed from the old ratio by a factor of 1.5. 
For example, some infants were habituated to displays with a 2:1 ratio and tested with 
displays with a 3:1 ratio. Importantly, the numbers of items in the testing displays were 
different than in the habituation items seen by both groups.  

McCrink and Wynn (2007) found that infants in the distant ratio group, on 
average, paid more attention to new ratios that differed by a factor of 2, whereas infants 
in the close ratio group did not pay attention to the new ratios that differed by a factor of 
1.5. In other words, when the ratios of objects in the habituated and tested displays were 
very different, infants perceived them to be different. When the ratios of objects was less 
different, the infants did not appear to perceive the difference, even though the number of 
items was different in both conditions. Their findings suggest that infants can perceive 
differences in ratios, when they are sufficiently large, and thus must also be able to 
perceive the individual ratios between numbers of objects.  
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This work with infants has at least two implications for the development of 
nonsymbolic ratio reasoning. First, it demonstrates that the ability to represent and 
discriminate between ratios across numbers is early emerging, and thus likely supported 
by innate cognitive capacities. This idea is further supported by many similar studies with 
animals demonstrating sensitivity to differences or changes in proportions (Drucker, 
Rossa, & Brannon, 2016; Emmerton, 2001; Harper, 1982; McComb, Packer, & Pusey, 
1994; Vallentin & Nieder, 2008). For example, recently, Drucker and colleagues (2016) 
demonstrated that rhesus macaques were able to choose a display with the larger ratio for 
a candy reward, and resembling the 6-month-old infants, their accuracy was modulated 
by the differences in ratio. Second, the role of distance in infants’, adults’, and other 
animals’ ability to discriminate proportions bears a striking similarity to the role of 
distance in infants’ ability to discriminate numerosities of sets. As McCrink and Wynn 
(2007) discuss, 6-month-old infants’ approximate representations of numerosities appear 
parallel to their approximate representations of proportions, as in both contexts, infants 
can discriminate sets that differ by a factor of 2 (20 dots vs. 40 dots, 2:1 dot ratio vs. 4:1 
dot ratio), but not sets that differ by a factor of 1.5. Their work suggests a similar 
mechanism for numerical (whole number) discrimination and ratio (fraction) 
discrimination, although the exact mechanism remains unclear. 

Despite these early competencies with nonsymbolic ratios and proportions, older 
children’s and adults’ nonsymbolic fraction reasoning sometimes appears to be sensitive 
to the nature of the proportional stimuli, specifically, whether the fraction is represented 
as a ratio of discrete, countable segments or a ratio of continuous amounts (Boyer & 
Levine, 2015; Boyer, Levine, & Huttenlocher, 2008; DeWolf, Bassok, & Holyoak, 2015). 
For example, Boyer and colleagues (2008) asked first, second, third, and fourth grade 
students to choose a mix of juice and water that matched a sample “recipe” (i.e., in the 
right proportions) to give to a very particular teddy bear. Children were shown a picture 
of a juice and water mixture in one of four conditions, which varied on how the “recipe” 
sample and the target proportion were displayed, either as continuous amounts of juice 
and water (e.g., as in an unmarked cylinder) or discretized, countable sections of juice 
and water (e.g., as in a graduated cylinder; see Figure 3, Panel D). Then, they were asked 
to choose between a target which matched on juice:water ratio, but not the overall 
amount of fluid, or a foil which matched on the amount of juice or overall amount of 
fluid, but not the juice:water ratio. When both proportions were represented in a 
discretized way, children were less likely to choose the correct, proportion-match, and 
instead, likely to choose a foil that matched the number of juice “sections”. Thus, 
although children are able to reason about proportions and ratio when the components are 
continuous or not easily countable (e.g., in the dot ratio tasks), when ratio components are 
easily countable, children appear to rely on independent whole number components, 
rather than ratio, to match. Studies of children’s symbolic fraction reasoning have 
uncovered parallel strategies during symbolic fraction comparison, and this reliance on 
only one ratio component has been attributed to a whole number bias (e.g., Ni & Zhou, 
2005), which we will discuss further in the following section. 

 
Symbolic Fractions 
 Given an early emerging ability to discriminate ratios, it might be expected that 
symbolic fractions would pose no special problems for young children. However, a 
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wealth of research demonstrates that children, in particular those educated in the US, 
have difficulty understanding the magnitudes and ratios expressed by symbolic fractions. 
For example, in interviews with elementary-aged children, Mack (1990, 1995) found that 
children learning about symbolic fractions in school displayed a range of misconceptions 
about the meanings of various fractions, many based on incorrect application of counting 
strategies to assess magnitude. For example, one young student reported 3/5 as meaning: 
“Oh, three fifths, that’s three whole pumpkin pies with five pieces in each pie” (Mack, 
1995, p. 431). As the example at the beginning of this chapter illustrates, even when 
children have informal understanding of the magnitudes of fractional parts, this intuition 
is not always connected to their symbolic reasoning. Instead, often children, and 
sometimes adults, focus on the magnitudes of individual, whole number components of 
symbolic fractions in order to make sense of fraction symbols. 
 Children’s systematic tendency to interpret fractions in a way that reflects robust 
transfer of children’s early counting and whole number knowledge is often referred to as 
the whole number bias (e.g., Ni & Zhou, 2005). One common example of the whole 
number bias occurs when children are comparing fraction magnitudes and rely only on 
the denominator or numerator component (i.e., the independent whole number 
component) to judge relative size. For example, children will often judge 1/3 as less than 
1/4, because 3 is less than 4 (Behr, Wachsmuth, Post, & Lesh, 1984) or judge 2/2 as less 
than 3/4, because 2 is less than 3 and 4 (Harnett & Gelman, 1998). Even adults’ fraction 
comparison is sometimes influenced by whole number components. Bonato, Fabbri, 
Umilta, and Zorzi (2007) found that even adults rely on whole number magnitude 
representations while comparing unit fractions, fractions with 1 in the numerator (e.g., ⅕ 
vs. ¼). When asked to decide which of two symbolic fractions is bigger, Bonato and 
colleagues found that distances between denominator components significantly 
influenced the comparison speed (e.g., 5 - 4, for ⅕ vs. ¼), such that participants were 
faster when the distances between denominator components was larger. The distances 
between the ratios (e.g., .20 - .25, for ⅕ vs. ¼) did not significantly predict comparison 
speed, as it does in many nonsymbolic fraction comparison tasks, suggesting that adults 
were only attending to denominator components to make the comparison. 
 However, adults’ reliance on independent whole number components during 
fraction comparison tasks is often constrained to pairs for which relying on either the 
numerator or denominator to make comparisons is an efficient strategy. For example, 
when comparing two unit fractions, one can rely on their knowledge of the heuristic that 
larger denominators indicate smaller fractions, thus a comparison across denominator 
components will always result in a quick, accurate answer (see Table 2). Schneider and 
Siegler (2010) demonstrated a distance effect based on overall ratio, rather than 
components, when more complex, non-unit fractions (e.g., 7/9 vs. ⅗) were included in 
the task, preventing strategies based on independent components, alone. This distance 
effect, based on the decimal distance between the two to-be-compared fractions, was 
taken as evidence that adults could reason about the holistic magnitude of fractions. 
Adults were more accurate when they compared more distant fractions. 



 14 

Table 2 
 
Common Strategies for Comparing Fraction Magnitudes among Adults 
Strategy Type Strategy Description Example Pairsa 

Strategies that rely 
on only the 
numerator or 
denominator 
magnitude 

Equal Denominators 
When the denominators are equal, the 
fraction with the larger numerator is 
larger 

2/5 3/5 

Equal Numerators 
When the numerators are equal, the 
fraction with the smaller denominator is 
larger 

2/7 2/5 

Multiply for a 
Common 
Denominator 

Multiply the numerator and denominator 
of one fraction by a whole number so 
that the denominators become equal, 
deploy Equal Denominators strategy  

2/5 7/10 

Multiply for a 
Common Numerator 

Multiply the numerator and denominator 
of one fraction by a whole number so 
that the numerators become equal, 
deploy Equal Numerators strategy 

2/5 4/7 

Strategies that rely 
on considering the 
numerator and 
denominator 
magnitudes 

Larger Numerator 
and Smaller 
Denominator 

Fractions with larger numerators AND 
smaller denominators are larger in 
magnitude 

2/5 3/4 

Difference between 
numerator and 
denominators 

Fractions with smaller differences 
between denominators and numerators 
are larger 

2/5 8/9 

Strategies that rely 
on considering the 
ratio between 
numerator and 
denominator 

Halves Reference When one fraction is less than 1/2, the 
fraction that is greater than ½ is larger 2/5 6/11 

Numerator goes into 
the denominator 
fewer times 

Divide the denominator by the 
numerator; the smaller quotient is the 
larger fraction 

2/5 7/17 

Note. This strategy table is adapted from Fazio, DeWolf, and Siegler (2016). They found 
that adults rely on a range of strategies for magnitude comparison. These strategies can 
lead to accurate comparisons when used effectively. 
 
aLarger fractions appear on the right.
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 Although relying on independent components to judge whether one fraction is 
larger than another can be advantageous in the magnitude comparison task, it should be 
noted that relying on only the denominator to estimate magnitude more precisely (e.g., 
when estimating the size of 1/60 relative to 1/1 and 1/1440) can decrease the accuracy of 
the estimate (Opfer & DeVries, 2008; Thompson & Opfer, 2008). Thus, by adulthood, 
people can accurately reason about the magnitude of symbolic fractions, using a variety 
of strategies, although they still have difficulty representing their magnitudes precisely. 
Given that fraction magnitude estimation is often a strategic, rather than automatic 
process, adults are slower to process fraction magnitudes than other kinds of numbers 
(e.g., decimals; DeWolf, Grounds, Bassok, & Holyoak, 2014). 
 Siegler, Thompson, and Schneider (2011) demonstrated that, like adults, children 
also rely on a variety of strategies for estimating the magnitude of symbolic fractions. 
Siegler and colleagues examined sixth and eighth grade students’ fraction understanding 
in a variety of tasks, including a fraction number line task. The fraction number line task 
is adapted from the original number line task (see Figure 2, Panel B) used to assess the 
nature of people’s whole number magnitude representations (e.g., Siegler & Opfer, 
2003). This task assesses symbolic fraction magnitude estimation by requiring 
participants to place fractions (e.g., ⅗) on a number line with given endpoints, often 0 
and 1 or 0 and 5. Accuracy is measured with percentage absolute error (PAE), an index of 
the measured difference between the participant’s placement of the fraction and the 
correct location of the fraction relative to the total length of the number line, such that 
higher PAE indicates lower accuracy. 
 Children use a wide variety of strategies in order to estimate fraction magnitudes 
on the fraction number line task (Siegler, et al., 2011; Siegler & Thompson, 2014), 
including highly advantageous strategies, such as transforming less familiar fractions into 
more familiar fractions and comparing fractions to subjective landmarks on the number 
line (e.g., using their knowledge of ½, the midpoint of the 0-1 line, as a landmark for 
estimating other fraction magnitudes), and less advantageous strategies, such as using the 
numerator or denominator magnitude to guide magnitude estimation (e.g., placing 3/7 
near 0, since 3 is a small number). The highly advantageous transformation and 
landmarks strategies are common and often significantly related to lower PAE. As a 
further indicator of children’s reliance on their strategic knowledge to estimate fraction 
magnitudes, children’s estimations are often time-consuming compared to the time it 
typically takes younger children to estimate whole number magnitudes, and their 
estimates of fraction magnitudes are less accurate overall than whole number magnitudes 
(Fazio et al., 2014). 

Taken together, this research (Bonato et al., 2007; DeWolf, Grounds, Bassok, & 
Holyoak, 2014; Schneider & Siegler, 2010; Siegler et al., 2011; Siegler & Thompson, 
2014) demonstrates that children’s and adults’ estimation of the magnitude of symbolic 
fractions requires them to process the ratio across component numbers, rather than 
automatically perceive that ratio, and both children and adults often rely on strategic 
knowledge to make estimations and comparisons. Importantly, this contrasts with the 
research on nonsymbolic fraction understanding, which likely relies on automatic 
processes.  

The variability in children’s and adults’ strategy use across tasks and stimuli can 
account for the variability in evidence for the whole number bias. On the basis of this 
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research, Alibali and Sidney (2015) have argued for a dynamic strategy choice account of 
the whole number bias, suggesting that people’s strategy choices are guided by the 
strength of their magnitude representations for the numbers in the problems (e.g., how 
easily a person can directly estimate the magnitude of a number), their repertoire of 
available strategies, and the context or affordances of the task at hand. For example, 
among children who are still learning about fraction symbols, fraction magnitude 
representations and strategic knowledge are not well developed. In contrast, their 
knowledge of whole number magnitude representations and strategies may be quite well 
developed, and automatically activated, causing children to rely on their whole number 
knowledge and often resulting in the whole number bias. Similarly, adults may rely on 
whole number magnitude knowledge when the task stimuli afford whole number-based 
reasoning (e.g., as in Bonato et al., 2007) or when their fraction magnitude 
representations are not precise enough to support a direct comparison (e.g., when 
comparing fractions that are close in magnitude, e.g., 4/5 and 7/9). Among older children 
and adults, having rich strategic knowledge helps them to leverage their whole number 
knowledge and avoid the pitfalls of the whole number bias. 
 
Advanced Fraction Concepts 
 Children’s knowledge of fractions extends beyond understanding the magnitudes 
of fraction symbols. For example, children also learn about other fraction properties, such 
as the idea that unlike natural, whole numbers, fractions cannot be counted in a sequence 
and that there are an infinite number of fractions between any two fractions. This latter 
idea is referred to as numerical density, and children’s understanding of numerical 
density lags behind their understanding of fraction magnitudes (e.g., McMullen, 
Laakkonen, Hannula-Sormunen, & Lehtinen, 2015). Even when children understand the 
idea of numerical density in the context of whole numbers (i.e., there are an infinite 
number of numbers between any two whole numbers), they are less likely to understand 
this same idea in the context of fractions (i.e., there are an infinite number of numbers 
between any two fractions; e.g., Vamvakoussi & Vosniadou, 2010). Instead, seventh, 
ninth, and even eleventh graders may claim, for example, that there are no fractions 
between ⅗ and ⅘ because there are no whole numbers between 3 and 4. Children may 
have difficulty reasoning about numerical density between fractions in part because of 
poorly developed or imprecise mental representations of fraction magnitudes or strategies 
for thinking about fraction magnitudes, thus relying on their knowledge of countable, 
whole number sequences to reason about density (see Alibali & Sidney, 2015 for a 
discussion). Even adults show evidence of a whole number bias, for example, responding 
that there is only one number between ½ and ¼ (e.g., ⅓), particularly when the 
experimenter highlights this possibility by gesturing once between ½ and ¼ printed on 
paper (Brown, Donovan, & Alibali, 2016).  
 Furthermore, a great deal of research has examined children’s ability to calculate 
and understand addition, subtraction, multiplication, and division with fractions. 
Children, and even adults, show deficits in their ability to apply fraction arithmetic 
procedures to symbolic problems. For example, Siegler and colleagues (Siegler et al., 
2011; Siegler & Pyke, 2013) found that sixth and eighth grade children showed poor 
accuracy on fraction arithmetic problems across all four operations. Children often 
implemented incorrect strategies, such as operating on the numerators and denominators 



 17 

independently (e.g., ⅗ + ½ = 4/7) or inappropriately applying a problem-solving strategy 
meant for one operation on another, such as only operating on the numerators when the 
denominators are the same (e.g., ⅗ * ⅖ = 6/5) a correct procedure for fraction addition, 
but not fraction multiplication. Both types of errors suggest spontaneous transfer for 
children’s prior knowledge to these difficult problems. Furthermore, children’s 
knowledge of fraction division appears to be especially poor. Even at eighth grade, long 
after fraction arithmetic instruction typically occurs in 5th and 6th grade (NGA & 
CCSSO, 2010), children’s proficiency with fraction division calculation is quite low 
(46% correct, Siegler et al., 2011). 
 In addition, children often have poor conceptual understanding of fraction 
operations, and most notably, fraction division (e.g., Sidney & Alibali, 2015; Richland & 
Hansen, 2013). As described in an earlier section, even American elementary teachers are 
unsure of how fraction division might be represented in a “real world” context (e.g., Ma, 
1999). Studies assessing conceptual knowledge of fraction division often employ tasks in 
which people are asked to generate a story (e.g., Ball, 1990; Ma, 1999; Sidney & Alibali, 
2015; Sidney, Hattikudur, & Alibali, 2015) or a diagram (e.g., Richland & Hansen, 2013; 
Sidney, 2016; Sidney et al., 2015) to represent a fraction division problem (see Figure 4). 
Similar to children’s errors on solving symbolic fraction problems (e.g., Siegler & Pyke, 
2013), children’s errors on conceptual items often also reflect inappropriate transfer from 
their prior knowledge of other fraction operations. For example, children may write 
stories that represent multiplication and subtraction rather than division (e.g., for 5 ÷ ¼, 
representing ¼ of five units taken away from five whole units or 5 * (5 - ¼), see Figure 4 
Panel B). Such errors are common (e.g., Sidney & Alibali, 2017) and are consistent with 
the misconception that “division makes smaller” (Fischbein, Deri, Nello, & Marino, 
1985). However, children’s conceptual understanding of fraction division is improved by 
instruction that draws on children’s more familiar, whole number division concepts (e.g., 
Richland & Hansen, 2013; Sidney, 2016; Sidney & Alibali, 2015). Such educational 
interventions will be further discussed in the Implications for Instruction section. 
 

A 

 

B 
 
 

 

Figure 4. In some studies, children’s and adults’ understanding of the conceptual 
structure of fraction division is assessed by asking participants to draw a diagram to 
represent a fraction division problem. Panels A and B are examples of participants’ 
drawings to represent 5 ÷ ¼ from Sidney and Alibali (2012). Panel A shows accurate 
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reasoning; 5 is divided in 20 subsections of ¼. Panel B reflects the “division makes 
smaller” misconception, and represents a combination of multiplication and subtraction 
instead of division. Sidney and Alibali (2017) also documented this error using an object 
modeling task assessing fraction division concepts. 
 
Developmental Pathways�  

Which aspects of children’s early fraction understanding support children’s later 
fraction understanding as well as their later mathematics achievement? Although the 
complete developmental picture is still emerging, we examine several correlational and 
longitudinal studies that shed light on what these pathways may be. First, we discuss the 
role of symbolic fraction magnitude understanding in fraction arithmetic and mathematics 
achievement. Second, we discuss the role of nonsymbolic fraction understanding in 
fraction development, and mathematics development more broadly. Finally, we consider 
the role of whole number knowledge and general cognitive predictors in children’s 
fraction development. 
 As discussed in a previous section, much of the research on children’s numerical 
development has occurred in the context of their whole number reasoning. Children’s 
estimation and comparison of whole number magnitudes in nonsymbolic (e.g., Halberda 
et al., 2008; Schneider et al., 2016) and symbolic tasks (e.g., Booth & Siegler, 2008; 
Schneider et al., 2016) are correlated to mathematics achievement more broadly. In 
particular, children’s whole number magnitude estimation on the number line task 
appears to be important for later success in mathematics. Children who are better able to 
estimate the magnitude of symbolic whole numbers on a number line are more proficient 
with whole number arithmetic (e.g., Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 
2007; Geary, Hoard, Nugent, & Byrd-Craven, 2008) and have better memory for 
numbers (e.g., Thompson & Siegler, 2010). Furthermore, providing training that 
increases children’s accuracy on a number line estimation task (e.g., by playing a board 
game in a left-to-right orientation, in parallel with the hypothesized mental number line) 
results in improvements in counting ability (Ramani & Siegler, 2008; Whyte & Bull, 
2008) and arithmetic proficiency (e.g., Booth & Siegler, 2008; Siegler & Ramani, 2009). 
These findings suggest that the ability to precisely estimate the magnitude of numbers, as 
measured by the number line task, is a fundamental mathematics development. 
 Siegler, Thompson, and Schneider (2011) proposed that estimating the magnitude 
of symbolic fractions on a number line is similarly central to later mathematics 
understanding. Their integrated theory of numerical development posits an important role 
for the number line representation, in general. Thinking about numbers as represented on 
a continuous number line can support children’s thinking about magnitudes of both whole 
numbers and fractions relative to 0, 1, and other numbers as well as children’s thinking 
about other important numerical concepts such as numerical density between whole 
numbers and fractions. 

In support of their hypothesis, and in parallel with the research of children’s 
whole number development, both correlational and longitudinal studies have 
demonstrated that children’s fraction magnitude understanding indeed supports more 
complex mathematics skills. Children’s fraction magnitude understanding is correlated 
with both their fraction arithmetic skills (Hecht & Vagi, 2010; Siegler et al., 2011), and 
children’s understanding of fraction magnitudes and their fraction arithmetic skills are 
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both, independently correlated with their concurrent mathematics achievement (Fazio et 
al., 2014; Siegler et al., 2011; Torbeyns et al., 2015). Knowledge of fraction magnitudes 
is necessary, although not sufficient, for understanding the density of rational numbers 
(McMullen et al., 2015). Furthermore, children’s fraction knowledge predicts later, high 
school mathematics achievement, over and above their knowledge of whole number 
arithmetic, IQ, working memory, and family education and income (Siegler et al., 2012). 
These findings clearly point to a central role of children’s understanding of the magnitude 
of fraction symbols in numerical development more generally. However, the role of 
children’s understanding of nonsymbolic ratios and proportions in their understanding of 
symbolic fractions, advanced fraction concepts, and mathematics achievement is less 
clear.  

Children’s and adults nonsymbolic ratio understanding is correlated with 
symbolic fraction understanding (Fazio et al., 2014; Matthews, Lewis, & Hubbard; 2016; 
Möhring, Newcombe, Levine, & Frick, 2016), algebra proficiency (Matthews, Lewis, & 
Hubbard, 2016), and general mathematics achievement (Fazio et al., 2014), although the 
relationships between symbolic fraction knowledge and achievement appears to be 
stronger than the correlations between nonsymbolic ratio understanding and achievement 
(Fazio et al., 2014). Furthermore, in a mediation model that included both whole number 
and fraction nonsymbolic and symbolic tasks, Fazio and colleagues examined the 
hypothesis that symbolic understanding of magnitudes mediates the relationship between 
nonsymbolic understanding and mathematics achievement, in other words, that 
nonsymbolic understanding is a precursor to symbolic magnitude understanding, which 
in turn affects children’s general mathematics knowledge. They did not find support for 
this hypothesis. Instead, they found that nonsymbolic and symbolic magnitude 
understanding independently correlated with mathematics achievement, with a stronger 
correlation between symbolic knowledge and achievement, consistent with a recent meta-
analysis (Schneider et al., 2016). However, their conclusions may be in part due to a 
reliance on measures of nonsymbolic and symbolic magnitude knowledge that include 
both whole number and fraction measures. Matthews and colleagues (2016) found that 
nonsymbolic ratio understanding, but not nonsymbolic whole number magnitude 
knowledge, was associated with algebra proficiency. Likewise, recent longitudinal work 
suggests that the relationships between nonsymbolic whole number magnitude 
comparison and later mathematics proficiency may be quite small when controlling for 
other general cognitive competencies (e.g., Sullivan, Frank, & Barner, 2016). Therefore, 
it remains unclear whether nonsymbolic ratio understanding directly affects the 
development of non-fraction mathematical knowledge, or whether students’ 
understanding of symbolic fractions, specifically, mediates this relationship. 
 In addition to nonsymbolic ratio reasoning, facets of children’s early mathematics 
knowledge of whole numbers as well as several domain general processes support the 
development of children’s fraction concepts and skills. For example, knowledge of whole 
number magnitudes is correlated with knowledge of fraction magnitudes in fifth grade 
(e.g., Fazio et al., 2014) and children’s whole number division knowledge predicts 
concurrent fraction arithmetic proficiency in sixth and eighth grade (Siegler & Pyke, 
2013). Furthermore, children’s analogical reasoning ability supports their estimation of 
whole number magnitudes (Alvarez et al., 2017; Sullivan & Barner, 2014; Thompson & 
Opfer, 2010) and is related to their ability to complete number analogies (i.e., 30:60 is 
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like 50:__ ) akin to symbolic fraction matching (Alvarez et al., 2017). 
A handful of longitudinal studies have begun to reveal some of the developmental 

precursors of children’s early symbolic fraction reasoning in fourth grade (Jordan et al., 
2013; Vukovic et al., 2014). Children’s early symbolic fraction knowledge in fourth 
grade is related to a variety of domain general processes in third grade, including their 
attentive behaviors in the classroom, language ability, nonverbal reasoning, and working 
memory (Jordan et al., 2013), and in first grade, including their language ability, attentive 
behaviors, and visual-spatial memory (Vukovic et al., 2014). However, among the 
strongest predictors of children’s fourth grade fraction understanding is children’s second 
(Vukovic et al., 2014) and third grade (Jordan et al., 2013) whole number magnitude 
knowledge, as measured by the number line task. Moreover, Vukovic and colleagues 
(2014) found that children’s number line estimation and whole number arithmetic fluency 
in second grade fully mediated the relationships between fourth grade fraction knowledge 
and first grade domain general skills.  

Taken together, this research suggests that children’s language ability, their ability 
to attend to instruction in the classroom, their working memory, and their analogical 
skills support mathematics learning more generally, and that children’s whole number 
magnitude understanding is positively related to their fraction knowledge. This latter 
point is especially important in the context of research on the whole number bias. 
Although some aspects of children’s whole number knowledge appear to interfere with 
fraction reasoning, understanding how to map whole numbers symbols to magnitudes on 
a number line provides an advantage for understanding fraction magnitudes as well. 

 
 

Implications for Instruction 
As we discussed at the beginning of the chapter, students’ understanding of 

fraction concepts, such as the magnitudes associated with fraction symbols, and their 
understanding of fraction procedures, such as those for adding, subtracting, multiplying, 
and dividing fractions, is highly, and often uniquely, predictive of more complex 
mathematics and later mathematics achievement. Yet, many students struggle with 
fractions, more so than other areas of mathematics (e.g., Hoffer et al., 2007). In this 
section, we consider the implications of the research on children’s and adults’ fraction 
reasoning for improving classroom instruction of this important area of early 
mathematics. First, we consider the aspects of children’s fraction understanding on which 
educational interventions may have the broadest impact.  
 
Areas for Intervention 

The psychological research on children’s ratio and fraction reasoning, as well as 
the developmental theory, points to children’s mental representations of symbolic 
fractions as particularly important in mathematics education. As we have described in 
earlier sections, the accuracy of children’s magnitude representations for symbolic 
fractions, and more generally, their ability to understand the magnitudes, ratios, and 
proportions to which symbolic fractions refer, critically supports both later fraction 
reasoning as well as later mathematics skills, such as algebra reasoning. Although 
children’s nonsymbolic reasoning and fraction arithmetic proficiency are correlated with 
later mathematics achievement, these correlations tend to be considerably weaker. One 
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implication of these weaker correlations, coupled with the evidence that children appear 
to have competency representing and comparing nonsymbolic ratios quite early on, is that 
intervening on children’s nonsymbolic reasoning may not be optimally productive. In 
contrast, although fraction arithmetic is not always correlated with later mathematics 
achievement, competency with fraction arithmetic is a practical skill and an important 
component of school mathematics (NGA & CCSSO, 2010) as well as the standardized 
tests used to measure mathematics proficiency (e.g., the NAEP and PISA, see 
Mathematical Cognition and Education section). Thus, the research we have discussed in 
this chapter points to two areas in which educational interventions may be most 
impactful: children’s understanding of symbolic fraction magnitudes and children’s 
understanding of fraction arithmetic concepts and procedures. 
 
Improving Magnitude Representations 
 Children’s mental representations of symbolic fractions might be improved 
through several avenues. One possibility is to improve the accuracy and precision of 
children’s nonsymbolic ratio representations in order to provide a better basis for 
understanding the magnitudes of symbolic fractions. This logic has been applied to 
children’s whole number reasoning, as well, and some researchers have suggested that 
improving children’s ANS acuity through training improves their ability to estimate the 
magnitudes of symbolic whole numbers (e.g., Park & Brannon, 2013). However, 
although nonsymbolic ratio reasoning is correlated with symbolic fraction reasoning, it 
remains unclear whether or how nonsymbolic ratio reasoning may be improved and 
whether greater accuracy at matching or estimating nonsymbolic ratios would 
necessarily, and spontaneously, result in substantive improvements in symbolic fraction 
magnitude estimation. 

There may be more promise in interventions that target the links between 
children’s nonsymbolic magnitude estimations and their symbolic reasoning. Tasks such 
as the number line estimation task directly address the link between the symbolic fraction 
that is placed on the number line and a nonsymbolic ratio (e.g., the ratio between the line 
length between 0 and the fraction and the total line length between 0 and 1; see Sidney et 
al., in press, for discussion). Indeed, as discussed in an earlier section of this chapter, 
Siegler and colleagues’ (2011) integrated theory of numerical development suggests that 
the number line is a powerful tool for representing magnitudes of all rational numbers, 
including both whole numbers and fractions, and children’s ability to represent numbers 
on a number line is highly predictive of later mathematics success. Furthermore, similar 
work on children’s whole number understanding has shown that experience with linear, 
continuous representations of whole number magnitudes is causally related to 
improvements in children’s understanding of the magnitudes that underlie symbolic 
numbers (e.g., Ramani & Siegler, 2008) as well as improvements in arithmetic (e.g., 
Siegler & Ramani, 2009). 

One critical characteristic of the number line as a visual representation for 
understanding the magnitudes of symbolic fractions may be its continuous nature. Often, 
early fraction education in the US includes area models of fractions that are discrete in 
nature (NGA & CCSSO, 2010). For example, in an area model, the fraction ⅗ might be 
represented as a circle with five sections, three of which are shaded. In contrast, on a 
number line, the fraction ⅗ might be represented as a continuous length that is ⅗ of the 
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line length from 0 to 1 (see Figure 5). Boyer and colleagues’ (Boyer & Levine, 2015; 
Boyer et al., 2008) studies of children’s nonsymbolic ratio comparison suggest that 
children are better able to compare ratios across continuous representations than 
discretized, countable representations. Discrete representations afford counting, which in 
turn can cause whole number bias-type errors. 

 
 

A 

 

B 

 

 
Figure 5. Fractions can be represented using area models (Panel A) and number lines 
(Panel B). Research suggests that number lines are powerful tools for reasoning about the 
magnitudes of number symbols (e.g., Hamdan & Gunderson, 2016; Siegler, Thompson, 
& Schneider, 2011). Panel A shows a circular area model and rectangular area model, 
also known as a tape diagram, for the fraction 3/5. Panel B shows 3/5 represented on a 
continuous 0 to 1 number line. 
 

Indeed, some educational interventions have demonstrated that including number 
line representations in instruction improves children’s understanding of fraction 
magnitudes (e.g., Cramer, Post, & delMas, 2002). In their Rational Number Project 
(RNP), Cramer and colleagues designed fraction instruction that represented fractions 
with both area models and number line models to introduce fraction symbols and their 
magnitudes. The intervention also included opportunities to compare and contrast across 
different fraction representations. Cramer and colleagues found that RNP instruction was 
more effective in helping students learn about the magnitudes of fraction symbols, which 
in turn supported their understanding of fraction arithmetic, in comparison to fraction 
instruction that only included area models. This work provides some evidence that more 
continuous, number line representations are beneficial for children’s fraction learning. 
However, there were many differences between the activities in the intervention and 
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those in the control instruction, rendering it difficult to make a strong conclusion about 
the number line, per se. 

In one recent experimental study, Hamdan and Gunderson (2016) directly, and 
rigorously, compared children’s learning about fraction magnitudes from number line and 
area models of fractions. In this study, second- and third-grade children were introduced 
to fraction symbols for the first time using continuous, number line representations or 
discrete, area representations of their magnitudes. After the lesson, children who learned 
about fraction magnitudes using number line representations were not only better able to 
represent fractions on a number line than children who learned about fractions using area 
representations, but also more accurate at comparing symbolic fractions, a task that had 
not been introduced in the lesson. Furthermore, children in the number line condition 
displayed less evidence of errors stemming from a whole number bias. Thus, learning 
about the magnitudes represented by fraction symbols using number line representations 
directly supports children’s ability to estimate and compare symbolic fractions. 

Number line representations may also be advantageous to children’s fraction 
learning because they are abstract representations of numerical magnitude. Mathematics 
textbooks often represent number concepts with real objects, and sometimes visually 
detailed illustrations. Researchers across psychology, educational psychology, and 
mathematics education have questioned whether concrete representations of 
mathematical concepts benefit or limit students’ learning about those mathematical 
concepts, in comparison to more abstract representations. Although concrete 
representations can sometimes constrain children’s errors during problem solving and 
learning, by providing familiar contexts for thinking about abstract concepts (e.g., 
Koedinger, Alibali, & Nathan, 2008; McNeil, Uttal, Jarvin, & Sternberg, 2009), learners 
are better able to generalize their knowledge to new problems when they learn with 
abstract representations (e.g., Kaminski, Sloutsky, & Heckler, 2008). The abstract nature 
of the number line representation, compared to representing fractions as pies or pizzas for 
example, may be yet another reason why learning about fractions on number lines results 
in generalizable knowledge. 
 In addition to including number line representations in instruction, children’s 
understanding of fraction magnitudes may also be supported by drawing on their 
knowledge of whole number magnitudes. Despite evidence of the whole number bias in 
children’s fraction reasoning, the developmental research makes clear that children’s 
whole number magnitude estimation is correlated with their fraction magnitude 
estimation. Thus, interventions that focus on integration of children’s fraction 
understanding with their prior knowledge of whole number magnitudes may also prove 
successful.  

In one such intervention, Moss and Case (1999) developed a rational number 
curriculum in which children’s experiences with fractions drew on earlier lessons 
including decimal and whole number magnitudes. In their instruction, children were first 
shown how to connect their understanding of whole numbers between 0 and 100 to 
representations of percentage (i.e., 0% to 100%). Then, the instructor linked between 
percentages and decimals (i.e., 0.00 to 1.00). Finally, the instructors built on children’s 
understanding of decimals between 0 and 1 to make sense of fractions between 0 and 1. 
Along the way, the instructor used continuous linear representations, akin to the number 
line, to ground students’ understanding of numerical magnitude. Children who received 
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the experimental instruction, in which their whole number knowledge was leveraged to 
make sense of rational number magnitudes, showed a better understanding of fraction 
magnitudes and fewer whole number bias errors than children who learned via typical 
instruction. Although, as in the RNP curriculum (Cramer et al., 2002), any of the 
components of the instruction may have contributed to student learning, this study 
provides converging evidence with that of the longitudinal studies that children’s whole 
number magnitude knowledge underlies their understanding of numerical magnitude, 
more generally. 
 
Improving Fraction Arithmetic 
 Few experimental interventions are specifically aimed at improving children’s 
fraction arithmetic skills, rather than at improving children’s arithmetic skill through their 
understanding of symbolic fraction magnitudes. Indeed, competence at estimating the 
magnitude of symbolic fractions is correlated with fraction arithmetic skill, and 
improvements in magnitude estimation are likely causally related to improvements in 
addition and subtraction of fractions. In children’s whole number reasoning, providing 
support for children’s visualization of whole number magnitudes improves their ability to 
add whole numbers (Booth & Siegler, 2008). Similarly, being able to visualize or 
estimate the magnitude of a fraction may also support children’s ability to estimate or 
predict the answer to fraction addition and subtraction problems. 
 Although children’s fraction magnitude knowledge may help them better estimate 
or predict the answer to fraction addition or subtraction problems, children’s knowledge 
of the multiplicative operations, and of division specifically, tends to be much less robust 
than their knowledge of addition and subtraction (Dixon, Deets, & Bangert, 2001). Thus, 
improving children’s knowledge of fraction magnitudes may not be sufficient to improve 
children’s understanding of fraction division, without also supporting children’s 
understanding of the division concepts. 
 A handful of studies suggest that drawing on students’ prior knowledge of whole 
number division concepts during fraction division instruction can improve students’ 
fraction division learning (Richland & Hansen, 2013; Sidney, 2016; Sidney & Alibali, 
2015). In these studies, the instructor first reminds fifth- and sixth-grade children about 
what it means to divide by a whole number (e.g., division can be construed as dividing 
into groups as big as the divisor), and then introduces the analogous concept in the 
context of fraction division. Reminding children about their relevant prior knowledge of 
whole number division before the lesson improves children’s mental models for fraction 
division (Richland & Hansen, 2013; Sidney, 2016; Sidney & Alibali, 2015) and their 
problem solving accuracy (Sidney & Alibali, 2015). 

However, these studies have mixed recommendations on the extent to which this 
link should be made explicitly for students. Richland and Hansen (2013) found that 
making the analogy between whole number division and fraction division with a high 
degree of instructional support (e.g., using similar visual representations, using gesture to 
indicate corresponding features across whole number and fraction division) was 
beneficial for student learning. In contrast, Sidney and Alibali (Sidney, 2016; Sidney & 
Alibali, 2015) have found that reminding students about whole number division prior to 
fraction division instruction, but not explicitly making analogies between division 
problems, results in fewer misconceptions and better transfer to novel problems than 
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making explicit analogies either with or without a high degree of instructional support. 
Although these studies highlight the benefits of drawing on children’s prior knowledge of 
whole numbers during fraction learning, the specific aspects of instruction that might best 
support this link remain unclear. In the next section, we outline future directions, both for 
applied research on fraction instruction and basic research on the development of 
children’s mathematical reasoning. 
 

Future Directions 
 Recently, several experts across the fields of mathematics education, educational 
psychology, psychology, and neuroscience engaged in a collaborative exercise to outline 
the most important questions about children’s mathematical cognition, given the current 
state of research and theory (Alcock et al., 2016). Their agenda included questions 
pertaining to the developmental pathways of mathematical cognition (e.g., “What are 
reliable early and later longitudinal predictors of the development of number skills, 
arithmetic, and other aspects of mathematics?”, p. 26) as well as to the interactions 
between developmental trajectories (e.g., “How are different mathematical skills 
(including representing number, counting, performing arithmetic, using fractions) and 
their developmental trajectories related to each other?”, p. 27). They also challenged 
mathematics cognition researchers to shed light on educational interventions (e.g., 
“Which domain-specific foundational competencies are most malleable and when in 
developmental time? And does their malleability impact on other aspects of mathematical 
performance?”) and develop measures that would allow for better comparison across 
studies. As we have discussed in this chapter, many researchers have addressed these 
questions in the context of children’s fraction development. Still, we see several avenues 
for future research that would contribute to our understanding of both children’s fraction 
development and mathematics development more generally. 
 First, although longitudinal and other correlational studies are beginning to 
uncover the precursory whole number competencies for later fraction reasoning, further 
research is needed to provide a more comprehensive account of the relationship between 
the development of children’s whole number reasoning and the development of 
children’s fraction reasoning. Young children demonstrate early competence in reasoning 
about both nonsymbolic sets and ratios, and symbolic whole number magnitude 
estimation is correlated with symbolic fraction magnitude estimation. However, the 
specific relationships between nonsymbolic and symbolic whole number and fraction 
competencies, and the interactions between their developmental trajectories, remain 
unclear. For example, what is the relationship between children’s ability to estimate 
numerosity of sets and their ability to estimate ratios; do these competencies develop 
independently or in parallel? Is it advantageous for children to develop symbolic 
knowledge of whole number prior to understanding symbolic fractions, or would it be 
more advantageous to introduce fractions earlier, to prevent a strong whole number bias?  
 Second, although several researchers have found positive correlations across 
fraction tasks and between fraction tasks and general mathematics achievement, some of 
the evidence shows mixed results, for example, the evidence for relationships between 
nonsymbolic ratio reasoning and mathematics achievement. Furthermore, much of this 
research is correlational, therefore, it remains unclear which pathways are causal and 
open to intervention.  
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One barrier to both of these goals is that mixed findings across studies may be due 
in part to differences across tasks used to measure ostensibly the same underlying 
competency. For example, some nonsymbolic tasks represent fractions as ratios across 
dots whereas others represent ratios across line lengths (see Matthews & Chesney, 2015). 
In some studies, the components are separated and in others they are joined (see Möhring 
et al., 2016). Future research is needed to further explore the consequences of differences 
across tasks and create standardized measures to facilitate comparison across studies and 
research labs. 
 In addition to these questions about the developmental pathways towards fraction 
understanding, current research on children’s fraction development has opened up several 
new questions about children’s analogical and relational reasoning. For example, given 
the relationships between children’s whole number and fraction reasoning, more research 
is needed to understand the roles of analogical mapping and transfer in integrating 
children’s knowledge about whole numbers, fractions, and other kinds of numbers. Do 
the same types of instructional features (i.e., visual representations, familiar source 
domain, shared labels) that support children’s analogical and relational reasoning also 
support learning about fraction concepts? What is the relationship between the 
development of children’s relational reasoning, the general cognitive competencies that 
support relational reasoning (e.g., executive functioning), and their understanding of 
fractions as a relational concept? 
 Finally, there are many more applied questions to pursue. Here, we have argued 
for the number line as critically important for grounding children’s mental 
representations of fraction magnitudes. Although Hamdan and Gunderson (2016) have 
empirically demonstrated the promise of number line representations for children’s 
learning, more research is needed to examine the instructional activities that would 
support further learning, such as learning about arithmetic operations with fractions. 
Furthermore, several of the theoretical questions we have posed here may also further 
efforts to design fraction instruction that fully supports children’s early fraction concepts, 
as well as the specific aspects of fraction competencies that underlie students’ success 
with algebra and more advanced mathematics concepts. 
 

Conclusions 
Children’s understanding of fractions, including their symbols, concepts, and 

arithmetic procedures, is an important facet of both developmental research on 
mathematics cognition and mathematics education. Research on infants’, children’s, and 
adults’ fraction and ratio reasoning allows us to test a range of proposals about the 
development of numerical cognition that have largely been developed with natural, whole 
numbers in mind. As with whole numbers, even young infants can reason about 
nonsymbolic ratios, people’s ability to compare nonsymbolic ratios is governed by the 
ratio between ratios, and children’s ability to accurately place fractions on a number line 
predicts later competencies and mathematics achievement on standardized measures. 
However, as with whole numbers, the causal relationships between early emerging 
nonsymbolic competencies and later symbolic competencies remain underspecified. The 
developmental research opens several avenues for improving mathematics education. 
Here, we have focused on the inclusion of the number line representation and analogies 
between children’s prior knowledge of whole numbers and related fraction concepts as 
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two beneficial facets of fraction instruction. Although children’s fraction understanding 
has recently received a great deal of attention, this work has opened up many additional 
questions, and more empirical research on the relationships between nonsymbolic and 
symbolic whole number and fraction tasks is necessary to paint a clearer picture of the 
development of children’s understanding of fractions. 
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