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Abstract

Perceptual judgments result from a dynamic process, but little is known about the 

dynamics of number-line estimation. A recent study proposed a computational model 

that combined a model of trial-to-trial changes with a model for the internal scaling of 

discrete numbers. Here, we tested a surprising prediction of the model—a situation in 

which children's estimates of numerosity would be better than those of adults. 

Consistent with the model simulations, task contexts led to a clear developmental 

reversal: children made more adult-like, linear estimates when to-be-estimated numbers 

were descending over trials (i.e., backward condition), whereas adults became more like 

children with logarithmic estimates when numbers were ascending (i.e., forward 

condition). In addition, adults' estimates were subject to inter-trial differences regardless 

of stimulus order. In contrast, children were not able to use the trial-to-trial dynamics 

unless stimuli varied systematically, indicating the limited cognitive capacity for 

dynamic updates. Together, the model adequately predicts both developmental and 

trial-to-trial changes in number line tasks.

Keywords: numerical cognition, numerosity perception, cognitive development, 

dynamic models. 
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Dynamics vs Development in Numerosity Estimation: A Computational Model 

Accurately Predicts a Developmental Reversal

1. Introduction

Magnitude estimation is not a static process but changes dynamically from trial 

to trial. In the past half-century, numerous studies have shown that quantities 

encountered on previous trials can have substantial effects on the estimate of a current 

quantity, such as time, size, length, weight, and numerosity of a set (Gilden et al., 1995; 

Helson et al., 1954; Parducci, 1963, 1965; Petrov & Anderson, 2005; Petzschner et al., 

2015). Recently, researchers began noticing dynamic effects in number-line estimation 

tasks (Cicchini et al., 2014; D. Kim & Opfer, 2018), which are used in such diverse fields 

as numerical cognition and education.

The underlying mechanisms of dynamic effects in number-line estimation are not 

fully understood. In one model, the internal scaling of number is linear, and 

compression results from dynamic updates (Cicchini et al., 2014). In another, the 

internal scaling of number is logarithmic, and decompression results from memory for 

previous trials (D. Kim & Opfer, 2018). Here we tested a novel and unexpected 

prediction of the latter model. Specifically, if trial-to-trial changes reflect participants’ 

memory for previous numbers (and not the internal scaling of number), highly 

memorable sequences of numbers (e.g., testing numbers in an ascending or descending 



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 4

order) could result in children providing more linear numerical estimates than adults, 

thereby reversing the typical "log-to-linear shift" (Siegler et al., 2009).

1.1. Development in number-line estimation

In a number-line estimation task, participants are asked to place a numerical 

magnitude (e.g., 9 dots) on a line flanked by two numbers (e.g., 0 and 30 dots; Fig. 1). 

Previous literature has shown that numerical estimates increase logarithmically with 

actual magnitude in young children and more linearly in older children and adults (the 

“logarithmic-to-linear shift”; Berteletti et al., 2010; Booth & Siegler, 2006; Opfer et al., 

2019; Sasanguie et al., 2012; Sella et al., 2015; Siegler et al., 2009; Siegler & Opfer, 2003). 

The log-to-linear shifts are still evident in various versions of number-line tasks that 

differ in anchoring instruction, boundedness, or number-line size (D. Kim & Opfer, 

2017; D. Kim & Opfer, 2020; Lee et al., 2019; Opfer et al., 2016; Thompson & Opfer, 2010).

Figure 1. Illustration of a number-line estimation task.
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Conventionally, the developmental log-to-linear shifts are viewed as evidence for 

representational changes that take place with age and education. According to this view, 

human and non-human species possess logarithmic representations for number that are 

responsible for log estimates in young children. With schooling and experience with 

numbers, children acquire accurate, linear representations, which lead to more linear 

estimates in older children and adults (Dehaene et al., 2008; Dehaene, 2011; Siegler et al., 

2009; Siegler & Opfer, 2003). 

Logarithmic and linear representations of number are not mutually exclusive but 

coexist and compete with one another. For example, individual second graders who 

generate linear estimates on 0-100 number lines also produce logarithmic estimates on 

0- 1,000 number lines (Siegler & Opfer, 2003). In adults, too, numerical estimates can be 

logarithmic when stimuli are extremely large (Landy et al., 2013) or attention is shared 

by multiple tasks (Anobile et al., 2012). Thus, the logarithmic-to-linear shift does not 

appear in a stage-like manner, but occurs gradually, starting with numbers with which 

children have the greatest familiarity (Siegler et al., 2009). The co-existence of linear and 

logarithmic representations also helps to explain why aligning 0-1,000 to 0-100 number-

line problems results in much more linear number-line estimates for the 0-1,000 

problems (Opfer & Siegler, 2007; Opfer & Thompson, 2008).
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The co-existence of logarithmic and linear representations of number can be well 

captured by a mixed log-linear model (MLLM; Anobile et al., 2012), which is formulated 

as follows:

where y denotes the estimate of a given number (x) on a number line with an upper-

bound (U). a is a scaling parameter.  is the index of logarithmic compression in 

estimates, measuring the relative contribution of log representations in comparison with 

that of linear representations. When estimates are perfectly logarithmic, meaning that 

there is no contribution of linear representations,  equals 1. When estimates are 

perfectly linear, which indicates no influence of log representations in estimates,  

equals 0.

The logarithmicity component ( ) adequately captures the log-to-linear changes 

over the course of development (D. Kim & Opfer, 2018; D. Kim & Opfer, 2020; Opfer et 

al., 2016, 2019). Estimates of numbers in young children exhibit high values of 

logarithmicity components, which suggests that young children rely heavily on log 

representations. The values of logarithmicity components decrease with age, indicating 

that the dependence on logarithmic representations decreases with age. For example, 

Opfer et al. (2016) found that the  value in 3-year-olds’ estimates was .73 on 0-20 

number lines, and the  value in 5-year-olds’ estimates dropped to .07 on the same 

y = a(λ
U

ln(U )
ln(x) + (1 − λ)x),

λ

λ

λ

λ

λ

λ
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number lines, presenting a log-to-linear developmental shift. Besides the 

representational-shift account, it’s worth noting that there are alternative accounts for 

the source of log-linear patterns in number-line estimates. The alternatives include the 

views that log estimates result from children’s lack of familiarity with numbers 

(Ebersbach et al., 2008; but see Thompson & Opfer, 2010) or of proportional reasoning 

skills (Zax, Slusser, & Barth, 2019; but see Opfer, Young, & Siegler, 2011; Opfer, 

Thompson, & D. Kim, 2016; D. Kim & Opfer, 2017). Table A1 summarizes previous 

number-line studies testing the representational-shift and alternatives accounts using 

psychophysical models.

1.2. Dynamics in number-line estimation

In addition to number-line estimates changing with age and experience, 

estimates also change from trial to trial in ways that mirror the dynamics of similarity 

ratings. Like similarity ratings, the estimate of a number on the number line involves 

judging the similarity of a given number (e.g., 9 dots) to an upper-bound number (e.g., 

30 dots) on a continuum (D. Kim & Opfer, 2018). In a number-line task, an estimate 

moves towards an upper-bound as a given number is more similar in magnitude to the 

upper-bound number. On the other hand, if a given number is dissimilar to the upper-

bound number, the estimate moves away from the upper-bound.

Similarity judgment has been shown to vary dynamically depending on previous 

trials. Typically, a pair of objects is judged to be more similar if preceded by highly 
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dissimilar pairs and to be judged more dissimilar if preceded by highly similar pairs 

(Sjöberg & Thorslund, 1979; Tversky, 1977). For example, two string instruments (e.g., 

violin and harp) were rated to be more similar when previous trials included pairs of 

different types of instruments, (e.g., clarinet and harp as a non-string and string 

instrument pair) than when only the pairs of the same type of instruments (e.g., banjo 

and harp as a string instrument pair) appeared on previous trials (Sjöberg & Thorslund, 

1979).

Kim and Opfer (2018) integrated this context-dependence into the MLLM and 

developed the dynamic mixed log-linear model (D-MLLM) that includes trial-by-trial 

calibration in a response scale ( ), which is similar to the adaptation level (Helson 

et al., 1954), the average response level (Petrov & Anderson, 2005), or an internal 

function that links a psychological value to a response (Birnbaum, 1999):

While the logarithmicity on the first trial ( ) shows the psychological representation 

prior to any dynamic effects, the logarithmicity after the first trial ( ) changes based on 

previous logarithmicity ( ) and similarity of current and previous numbers to the 

upper-bound ( ). There is also a weight parameter ( ) 

that represents a memory component for previous trials. The parameter  is equal to 

the mean slope of regression lines of current estimates ( ) on previous numbers ( ; 

λi, i > 1

λi = λi−1(1 − w(xi−1 − xi)) .
If  λi < 0, then λi = 0; and if λi > 1, then λi = 1.

λ1

λi

λi−1

(U − xi) − (U − xi−1) = xi−1 − xi w

w

yi xi−1
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Fig. 4 in Kim & Opfer, 2018). This weight parameter determines the adjustment in 

response scaling (Eq. 2) as well as the relative influence of previous trials (Eq. 4). If 

estimators are unable to remember or otherwise make use of numbers given on 

previous trials (i.e., ), there are no dynamic effects on estimates.

The dynamic logarithmicity ( ) is next combined with the psychological scaling 

( ), which is similar to the conventional MLLM (Eq. 1), except that it reflects trial-by-

trial dynamics:

The contribution of this internal scaling ( ) is relatively weighted in comparison to 

numbers on previous trials (Cicchini et al., 2014), and they together produce an estimate 

of a current number ( ):

The D-MLLM predicts how numerical estimates will change as a function of the 

preceding trials. As in overestimation of similarity between similar objects (e.g., violin 

and harp) after dissimilar trials (e.g., clarinet and harp), the D-MLLM predicts that 

dissimilar stimuli (small numbers) to the upper-bound on previous trials increase the 

logarithmicity component on the current trial of a more similar number (large number; 

Eq. 2). The increased logarithmicity in turn leads to a more logarithmic estimate of the 

current number (Eq. 3-4). In contrast, previous trials of similar stimuli (large numbers) 

w = 0

λi

pi

pi = a(λi
U

ln(U )
ln(xi) + (1 − λi)xi) .

pi

yi

yi = (1 − w)pi + w ⋅ xi−1, 0 ≤ w ≤ 1.
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to the upper-bound prior to the current trial of a less similar number (smaller number) 

decrease logarithmicity. The decreased logarithmicity then causes a more linear estimate 

of the current number. Together, the D-MLLM provides unique predictions for order 

effects in numerical estimates: estimates are more logarithmic if to-be-estimated numbers 

are given in forward order (small  large numbers) and more linear if to-be-estimated 

numbers are given in backward order (large  small numbers; Fig. 2A).

Using the D-MLLM, Kim and Opfer (2018) demonstrated the interaction between 

logarithmic representations and dynamic processes over trials in 0-30 numerosity 

→

→

Figure 2. Median estimates of 100-participant simulations using the D-MLLM (A). 

a was set to 1, the  was .5, and w was .3 for all orders. A developmental reversal 

by stimulus order was predicted in D-MLLM simulations (B):  was set to .72 for 

adults and 1 for children as found in actual data (D. Kim & Opfer, 2018). a was set 

to 1, and w was .1 for both age groups.

λ1

λ1
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estimation. More specifically, adults were logarithmic on the first trial (  = .47 to .85) 

but became more linear over trials using inter-trial differences (  = .04 to .18). 

However, this was only true when numerosities were given in random order. When they 

estimated the same numerosity for every trial, such that there were zero inter-trial 

differences ( ), adult participants remained logarithmic from the first to the 

last trial (  = .87,  = .40). 

In contrast, in the identical number-line task, in which numerosity was given in 

random order, children failed to incorporate previous trials into current estimates 

( ) and yielded numerosity estimates that were consistently logarithmic from the 

first to the last trials (  = 1.00,  = 1.00). This constantly high logarithmicity was 

adequately simulated by the D-MLLM with a zero . Kim and Opfer (2018) postulated 

that the lack of between-trial dependence in children might be due to limited memory 

resources required to track different numbers trial to trial (Ciesielski et al., 2006; Kwon 

et al., 2002). They further suggested that if to-be estimated numerosities were given in a 

certain way that eases memory loads, such as consistently forward and backward order, 

children might be able to dynamically update previous trials onto current estimates. 

This speculation provides a very interesting prediction for a developmental reversal in 

numerosity estimation: when numbers are given in backward order, so children can use 

previous trials to decrease logarithmicity, they will become as linear as adults. On the 

other hand, if numbers are given in forward order, such that logarithmicity increases 

λ1

λlast trial

xi−1 − xi = 0

λ1 λlast trial

w = 0

λ1 λlast trial

w
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over trials, even adults will produce more logarithmic estimates that look like children’s 

estimates (Fig.  2B).

1.3. Overview of Studies

In the current Studies, we test this novel prediction of the D-MLLM by 

manipulating order of to-be-estimated stimuli. Specifically, we asked adults (Study 1, 

Study 3) and children (Study 2) to estimate numerosities given in random, forward, 

and/or backward order on number lines. If number-line estimation is free from trial-to-

trial dynamics, there will be no difference in logarithmicity across forward, backward, 

and random conditions. Specifically, adults in the forward condition will be as linear as 

in the random condition, whereas children in the backward condition will be as 

logarithmic as in the random condition, without a predicted developmental reversal. In 

contrast, if log compression results from the interaction between log representations and 

dynamic updates of previous trials, estimates will be the most logarithmic in the 

forward condition and the most linear in the backward condition. Indeed, given 

previously observed values for the parameters of the D-MLLM, children would be 

expected to produce more linear estimates than adults in the backward condition, 

whereas adults would be expected to produce more logarithmic estimates in the 

forward condition. As should be evident, this is not a trivial prediction, and it appears 

to be a unique implication of the computational model.
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2. Study 1

In Study 1, we revisit dynamics in adults’ numerosity estimates and test if salient 

contexts (forward and backward order) drive increased or decreased logarithmicity as 

predicted by the D-MLLM (D. Kim & Opfer, 2018). Extending Kim and Opfer (2018), we 

use larger to-be-estimated numerosities (5 to 495 dots) than the previous study (5 to 29 

dots). Large numerosities are perceptually challenging and lead to more logarithmic 

estimates in adults (Lee et al., 2019). Therefore, this manipulation might impede 

dynamic calibrations for linear estimation in the random condition (via large s or a 

small  of the D-MLLM), putting adults on an equal footing with children.

2.1. Method

2.1.1. Participants 

We collected data from 49 undergraduate students (21 females, M = 20.01 years, 

SD = 1.71 years; 45% Caucasian, 29% Asian, 10% African American, 6% Hispanic, 4% 

Native American, 2% Multiracial, and 4% no answer) at The Ohio State University. 

Participants received course credit in return for their participation.

2.1.2. Materials and procedure 

          Participants completed a number-line estimation task. The task consisted of three 

conditions (forward, backward, and random) given over three blocks in 

counterbalanced order. Each condition included 36 to-be-estimated numerosities that 

were non-subitizable and evenly sampled from the 0-500 range: 5, 19, 33, 47, 61, 75, 89, 

λ

w
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103, 117, 131, 145, 159, 173, 187, 201, 215, 229, 243, 257, 271, 285, 299, 313, 327, 341, 355, 

369, 383, 397, 411, 425, 439, 453, 467, 481, and 495. The conditions were the same except 

for stimulus order. In the forward condition, the stimuli were presented in ascending 

order (5  495), whereas the stimuli were given in descending order (495  5) in the 

backward condition. In the random condition, to-be-estimated numbers were presented 

in random order. The stimuli were estimated only once per condition–i.e., 36 trials per 

condition.

On every trial, a given number of dots above a line flanked with 0 and 500 dots 

were displayed for 2 seconds and then masked with a random noise image (Fig.  1). 

Participants were asked to click on the line where a given number of dots belonged. 

There was no time limit for response. The size of dots was controlled; The dots of a 

stimulus were the same in size as the dots at the upper bound on half the trials and the 

same in total area as the upper-bound dots on half the trials. There was neither practice 

nor feedback provided.

2.2. Results and discussion

First, we computed trial-to-trial logarithmicity of median estimates collapsed 

over participants in the random condition. The random condition was the only 

condition, to which the MLLM could be fit trial by trial. In the forward and backward 

conditions, because every participant received numerosities in the same order, there 

was only one stimulus per trial number that the model could use, which makes it 

→ →
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impossible to compute the logarithmicity component trial by trial. Compared to the 

previous study using the 0-30 number lines (  .08 to .13 in D. Kim & Opfer, 2018), 

the inter-trial dependence in the current Study was slightly smaller ( ), but still 

significant (  .01 in bootstrapping significance test). Despite the moderate inter-trial 

dependence, the logarithmic components on the first and the last trials did not differ so 

much (  = .42 and  = .46), and there was no decrease in logarithmicity over trials 

( ,  in a log-log transformed regression). The absence of the log-to-

linear change might be due to large numerosities in the current Study that might have 

increased perceptual demands and hindered trial-to-trial linearization. When estimates 

were simulated from the D-MLLM using  and  from the data, simulated estimates 

explained the actual data moderately well (  in median estimates), although 

they exhibited the log-to-linear change over trials ( , ).

w =

w = . 06

p =

λ1 λ36

b = − . 09 p = . 16

w λ1

R2 = . 83

b = − . 23 p < . 01

Figure 3. Median estimates (A) and mean logarithmicity values of individual adults (B) in 

the first block in Study 1. Error bars indicate ± SEM.
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Next, we examined whether dynamic effects predicted by the D-MLLM were 

evident across conditions. To do so, we computed logarithmicity ( ) in median 

estimates. Median estimates did not seem to differ by condition, presenting similar 

logarithmicity across conditions (  = .37 in forward, .28 in random, and .3 in backward). 

However, it is possible that the within-subject design, in which participants completed 

one condition after another, yielded cross-conditional dynamics and confounded with 

dynamic effects within a condition. Consistent with this postulation, the differences in 

logarithmicity were more pronounced when we analyzed median estimates from the 

first block, in which there were no previous blocks that could have affected the current 

block (Fig.  3A). As predicted by the D-MLLM, estimates were the most logarithmic in 

the forward condition (  = .67) and the least logarithmic in the backward condition (  = 

.17). Logarithmicity in the random condition fell in-between that of forward and 

backward conditions (  = .22).

Dynamic updates in numerosity estimates were next examined at the individual 

level. When logarithmicity was computed for each individual, the averaged 

logarithmicity components were not different across conditions if block numbers were 

not accounted for (M  = .43 in forward, .36 in random, and .40 in backward, F(2, 96) = 

1.89,  = .04, p = .16). However, when the first block was only considered, the difference 

in logarithmicity across conditions became more evident (F(2, 46) = 3.02,  = .12, p = 

.06). In line with the prediction of the D-MLLM, log compression of the first block was 

λ

λ

λ λ

λ

λ

η2
p

η2
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the greatest in the forward condition (M  = .57, SD  = .41), the smallest in the backward 

condition (M  = .29, SD  = .35), and in between that of forward and backward conditions 

in the random condition (M  = .34, SD  = .28; Fig.  3B). 

The interaction between cross- and within-block dynamics (block order

stimulus order) was further examined in a linear mixed-effects regression with 

participants as random effects (random intercepts) and block number, condition, and 

their interaction as fixed-effects predictors of logarithmicity components. As shown in 

Table 1, compared to random order, logarithmicity substantially increased when to-be-

estimated numbers were provided in forward order (b = .44, p  .001). The effects of 

forward order decreased as the forward condition was given in a later block (b = –.18, p 

 .001). However, the backward order neither affected logarithmic compression in 

estimates (b = .05, p  .05), nor showed an interaction with block number (b = –.01, p  

.05). Together, numerical estimates dynamically changed with numbers previously 

encountered within a block and over three blocks. When block order was controlled, 

λ λ

λ λ

λ λ

×

<

=

> >
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logarithmicity varied by stimulus order: as predicted in the D-MLLM simulations, 

adults, in particular, became more like children in the forward condition.1

   The D-MLLM also predicts the interaction between condition and block. Parameter values obtained from actual 1

data in the random condition (a = 1.09, = .42, w = .06) were used to simulate estimates in all three conditions. In 

the stimulations, prior trials were always integrated into a current estimate regardless of block order. For example, 

the first trial in the second block was affected by the history of previous trials in the first block. As found in actual 

estimates, simulations presented greater logarithmicity in the forward condition than in the random condition (b = 

1.23, p < .001), whereas estimates in the backward condition were not different from those in the random condition 

(b = -.07, p = .18). Block itself did not have significant effects (b = -.01, p = .49), but interacted with condition. The 

effect of forward order decreased as the condition was present in a later block (b = -.47, p < .001), whereas 

backward-order effects did not vary with block order (b = .01, p = .62). Although the predicted effects were a bit 

stronger than actual findings, the D-MLLM could describe the interaction between stimulus and block order, 

showing that block effects, in fact, reflect the dynamic effects of the history of previous trials.

λ1
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Table 1.  

Results of a mixed-effects regression model on logarithmicity (λ) in Study 1. The baseline is the 

random condition. 

3. Study 2

Study 1 demonstrated that adults’ numerosity estimates change with previously 

encountered numbers and that dynamic effects could make adults become like children, 

producing more logarithmic estimates. In Study 2, we examined whether children could 

integrate prior trials into their estimates and become like adults, yielding more linear 

estimates. Although children seem unable to use dynamic information in the random 

condition, it is probably due to the limits in cognitive resources (D. Kim & Opfer, 2018). 

Children may become able to use priors in current responses if stimuli are presented in 

Predictor b SE df t p

(Intercept) .22 .08 138.41 2.65 .009**

Block number .07 .04 114.56 .48 .07

Forward .44 .12 111.19 1.81 .0002***

Backward .05 .12 114.00 3.73 .63

–.18 .06 115.98 –3.28 .001**

–.01 .06 116.58 –.15 .88

Note. ** p < .01, *** p < .001.

Block number  Backward×

Block number  Forward×
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a systematic order, such that it is easy to track previous trials and predict what comes 

next.

3.1. Method

3.1.1. Participants 

           Ninety-three children were recruited at a children’s science museum in 

Columbus, OH (47 girls, M = 8.13 years, SD = 2.38 years, age range = 4.11 to 15.17 years; 

83% Caucasian, 9% African American, 4% Asian, 2% Native American, 1% Hispanic, 

and 1% Multiracial). Children’s parents/guardians completed a consent form prior to 

testing and waited in a waiting area while children completed the number-line task in a 

testing room. All children were rewarded with a sticker for participating.

3.1.2. Materials and procedure 

           The identical number-line task was used in Study 2, with two exceptions: the 

smaller number range and between-subject design. Children were randomly assigned to 

one of forward (n = 32, M = 8.04 years, SD = 2.51 years), backward (n = 30, M = 8.17 

years, SD = 2.21 years), and random (n = 31, M = 8.19 years, SD = 2.49 years) conditions 

and completed the assigned condition only. We also used 0-30 number lines, on which 

young children previously failed to incorporate previous trials into current estimates 

when stimuli were given in random order (D. Kim & Opfer, 2018). Twenty to-be-

estimated numbers were selected to evenly sample non-subitizable numbers: 5, 6, 7, 8, 9, 

10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 27, 28, and 29.
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3.2. Results and discussion

Six children who experienced technical issues, could not complete the task, or 

only chose the two endpoints (i.e., 0 and 30) for all stimuli were excluded from analyses. 

We first computed trial-to-trial logarithmicity in estimates in the random condition. 

Children’s numerosity estimates resembled those in the previous study (D. Kim & 

Opfer, 2018); there seemed to be neither solid memory for previous numbers 

( , p = .73 from a bootstrapping significance test) nor log-to-linear calibration 

in estimates over trials ( ). Although logarithmicity on the first trial 

was moderately logarithmic (  = .24), overall estimates from the first to the last trials 

showed constant logarithmicity (  = .47). In line with these findings in actual data, 

simulated estimates by the D-MLLM did not present a trial-to-trial decrease in 

logarithmicity ( ) and explained children’s actual estimates 

adequately well ( 4).

w = − . 017

b = − . 008,p = . 53

λ1

Mλ

b = − . 002,p = . 50

R2 = . 9

Figure 4. Median estimates (A) and mean logarithmicity values of individual children 

(B) in Study 2. Error bars indicate ± SEM.
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Logarithmicity in estimates across conditions was next analyzed at the group 

level. Consistent with findings in adults in Study 1 and predictions by the D-MLLM, 

logarithmic compression in median estimates varied with stimulus order. Median 

estimates were the most logarithmic when stimuli were given in forward order (  = .54) 

and less logarithmic when they were given in random order (  = .13). More importantly, 

as hypothesized, children became more like adults, producing perfectly linear estimates, 

when numbers were provided in backward order (  = 0; Fig.  4A).

In line with the group-level findings, logarithmic compression significantly 

changed with stimulus order at the individual level as well (F(2,84) = 8.03,  = .16, p  

.001). When logarithmicity was computed for each child, logarithmicity components in 

the forward condition were the greatest (M  = .70, SD  = .37), followed by those in the 

random condition (M  = .44, SD  = .36). As expected, logarithmicity components were 

the smallest in the backward condition (M  = .30, SD  = .43; Fig.  4B). In fact, the mean  

value in children’s backward-order estimates was much smaller than that in adults’ 

forward estimates on 0-500 number lines in Study 1 (M  = .57), indicating a 

developmental reversal by dynamic effects. 

The dynamic effects were also well captured in a regression model with 

children’s age and condition as predictors of logarithmicity components (Table 2). Age 

was significantly predictive of children’s logarithmicity (b = –.14, p  .001). Replicating 

previous work (D. Kim & Opfer, 2018; Opfer & Siegler, 2007; Siegler & Opfer, 2003), 

λ

λ

λ

η2 <

λ λ

λ λ

λ λ λ

λ

<
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children’s estimates were more linear with age, exhibiting the log-to-linear shift in 

development. Logarithmicity also changed with stimulus order; Compared to the 

random condition, logarithmicity components were significantly greater in the forward 

condition (b = .23, p  .05). Children’s logarithmicity decreased with the descending 

order of stimuli although it was marginally significant (b = –.16, p  .10). We also 

conducted another regression analysis to examine interactions between age and 

condition. The results remained almost identical for age and condition, and the age  

forward and age  backward interaction terms were insignificant (p  .05), indicating 

the developmental decrease in logarithmicity was consistent across conditions. 

Table 2.

Results of a regression model on logarithmicity (λ) in Study 2. The baseline is the random 

condition.

<

<

×

× >

Predictor b SE t p

(Intercept) .45 .07 6.90 .0001***

Age –.14 .04 –3.70 .0004***

Forward .23 .09 2.51 .014*

Backward –.16 .10 –1.67

Note. p < .10, * p < .05, *** p < .001.†

.098†



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 24

Moreover, this model with additional interaction terms did not explain data better than 

the simpler regression model without interaction ( BIC = 7.89). Taken together, the log-

to-linear improvement in development persisted regardless of stimulus order. More 

importantly, we found that children became capable of using previous trials in current 

estimates when stimuli changed systematically, producing more logarithmic estimates 

in the forward condition and more adult-like, linear estimates in the backward 

condition.

4. Study 3

To compare children’s and adults’ performance better, we carried out Study 3. In 

this Study, adult participants were asked to complete the forward condition that was 

identical to that in Study 2. We hypothesized that the stimuli ascending over trials 

would increase logarithmicity, leading to child-like estimates in adults.

4.1. Method

4.1.1. Participants 

           Thirty adults were recruited from Amazon Mechanical Turk (11 females, M = 

37.95 years, SD = 10.99 years, age range = 25.67 to 65.33 years; 60% Caucasian, 13% 

Native American, 10% African American, 7% Asian, 3% Hispanic, and 7% no answer). 

Prior to proceeding to the study, all participants were asked to provide consent for their 

participation. The study took less than 5 minutes, and participants received $1.5 in 

return for their participation.

Δ
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4.1.2. Materials and procedure 

           Participants were asked to estimate numerosities given in forward order on 0-30 

number lines. The task was the same as the forward condition in Study 2.

4.2. Results and discussion

One participant who clicked at random places too quickly (mean RT < 500ms) 

was removed from analyses. 

First, we examined the degree of logarithmic compression in median estimates. 

The median estimates were pretty logarithmic for adults (   = .44, Fig. 5). The 

logarithmicity component was greater in value than those in previous research where 

adults estimated numerosities given in random order on the same numerical scales (e.g., 

 = 0 to .11 in D. Kim & Opfer, 2018). More importantly, the median estimates by adults 

were more logarithmic than those by children in the backward and random conditions 

in Study 2.

Next, logarithmicity was computed for each individual. Individual adults 

produced quite logarithmic estimates (M  = .58, SD  = .40). Compared to children in 

Study 2, adults in Study 3 were indeed more logarithmic than children in the backward 

condition (b = –.29, p  .01). They appeared to be less logarithmic than children in the 

forward condition, but the difference was not significant (b = .11, p  .25). Together, even 

when the number scale was controlled to be the same, adults’ estimates in the forward 

condition were more logarithmic than children’s estimates in the backward condition at 

λ

λ

λ λ

<

=
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both group and individual levels. Together, these results provide supportive evidence 

for a developmental reversal created by stimulus order. 

5. General Discussion

In the present paper, we sought to test the validity of the D-MLLM of number-

line estimation by testing a unique and unexpected implication. Specifically, the D-

MLLM predicts a particular developmental reversal as a function of stimulus order. In 

line with the model predictions, there was a clear developmental reversal in the current 

Studies. Adults in Study 1 and 3 made more logarithmic estimates when stimuli were 

Figure 5. Median estimates (A) in Study 3.
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ascending over trials. On the other hand, children in Study 2 produced more linear 

estimates when stimuli were descending over trials. Furthermore, as predicted by the 

D-MLLM, the inflation and the deflation of logarithmicity by stimulus order were 

present within age groups. Both adults and children, at the group and individual levels, 

were more logarithmic in the forward condition and more linear in the backward 

condition, while their logarithmicity in the random condition fell in-between that of 

forward and backward conditions. Altogether, these findings provide experimental 

evidence that the D-MLLM is a model that adequately captures the underlying 

processes of number-line estimation.

The context effects by stimulus order in the current Studies also provide strong 

evidence against an argument that log compression in numerical estimation comes from 

a central tendency of judgment (Cicchini et al., 2014). For this account, a given 

numerosity is represented rather linearly, but its estimate is corrupted by the prior, the 

history of previous trials. The influence of previous trials creates certain biases in 

current estimates: a current numerosity is underestimated after small-number trials and 

overestimated after large-number trials, resulting in log-like compression in overall 

estimates. Although the dependence on previous trials may lead to more logarithmic 

estimation (D. Kim & Opfer, 2018), however, this sequential mechanism alone cannot 

account for the order effects observed in the present Studies. 
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For the central tendency account, constant underestimation would be expected in 

the forward condition, where previous trials were always smaller than a current 

numerosity. On the other hand, stimuli should have been overestimated in the 

backward condition, in which a current numerosity was always smaller than 

numerosities on previous trials. This under- or overestimation does not necessarily 

mean that overall estimates would be compressive or expansive. Estimates can be very 

linear with an overall tendency of over- or underestimation. When estimates were 

simulated using the central tendency model by Cicchini et al. (2014), they were perfectly 

linear in both forward and backward conditions for adults in Study 1 and children in 

Study 2, with poor to moderate fittings ( s = 0, = .24 to .77). Inconsistent with these 

predictions, however, actual estimates by both children and adults were more 

logarithmic with a tendency of overestimation in the forward condition, while more 

linear with an underestimation tendency in the backward condition. For adults in Study 

3, the model failed to generate estimates that describe the actual data ( = 0). In fact, the 

model without dynamic update, which is equal to a linear model, appeared to explain 

the actual data better ( = .87). Together, this suggests that the simple sequential effects 

are not the sole driving force of logarithmic or linear estimation. Instead, log and linear 

representations are employed in numerical estimation, and the reliance on each 

representation is determined dynamically over trials.

λ R2

R2

R2



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 29

One may argue that spatial restriction or adaptation effects might have elicited 

systematic distortion found in the current Studies. More specifically, there might have 

been growing concerns about the limited space in forward and backward conditions as 

a task proceeded. If so, estimates for numbers on later trials would have been crammed 

into the right side of a number line in the forward and the left side in the backward 

condition. Alternatively, participants might have adapted to small or large numerosities 

in the beginning of a task—i.e., small numbers in the forward and large numbers in the 

backward condition. The adaptation effects could have led to overestimation for large 

numbers on later trials in the forward condition and underestimation for small numbers 

in the backward condition. In both cases, estimates were expected to be compressive for 

forward order and to be expansive (rather than linear) for the backward order. 

We examined this possibility using Stevens’ power model ( ). In this 

model, parameter  is 1 when estimates are perfectly linear, smaller than 1 when 

estimates are compressive, and larger than 1 when estimates are expansive. For Study 1, 

median estimates in the first block were compressive regardless of stimulus order (  = 

.37 to .76). Importantly, the  value in the backward condition was significantly smaller 

than 1 (  = .76, 95% CI = [.68, .87]), indicating that backward-order estimates were 

considerably compressive rather than linear or expansive. This is also in line with our 

findings, where estimates were found logarithmic for all conditions. In Study 2, 

children’s median estimates were compressive in forward and random conditions (  = 

y = a ∙ xβ

β

βs

β

β

β
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.62 and .88 respectively), and expansive in the backward condition (  = 1.10). However, 

the  value of the backward condition was not different from 1 (95% CI = [.92, 1.25]), 

meaning that backward estimates were not significantly different from linear estimates. 

This is consistent with our findings using the MLLM, in which estimates were 

logarithmic in forward and random conditions and linear in the backward condition. 

Together, log and linear patterns in estimates in the current Studies are not accounted 

for by spatial restrictions or perceptual adaptation.

What made it possible for children to use previous trials in the forward and 

backward conditions? Replicating the previous finding (D. Kim & Opfer, 2018), children 

in Study 2 failed to incorporate previous numerosities into current estimates in the 

random condition. Considering that the current Study involved older children (the 

highest age = 15.17 years; M = 8.13 years) than the previous work (the highest age = 6.99 

years; M = 6.02 years), this result suggests that the ability for dynamic update may 

emerge slowly in later development. When stimuli systematically increased or 

decreased, however, children became able to use previous trials to adjust their current 

responses. The systematic change in stimuli might alleviate memory loads, enabling 

children to remember and exploit previous trials better – i.e., significant w of the D-

MLLM. In addition to memory, conscious registration for previous trials could be 

promoted in the forward and backward conditions, enhancing the expectancy for 

current stimuli. Recent work by (S. Kim et al., 2020) has demonstrated that although the 

β

β
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prior may affect current responses at a low sensory level, the perceptual history of 

previous trials is constructed at a high level that involves conscious perception of 

stimuli. Aligned with this, most children in the forward and backward conditions in 

Study 2 showed the explicit awareness of the systematic change in stimuli, correctly 

pointing out the ascending or descending order of to-be-estimated numerosities.

In Study 1, we also showed that the numerosity size might affect dynamic effects 

in adults. As found in the previous research using 0-30 number lines (D. Kim & Opfer, 

2018), adults in the current Study incorporated previous trials into current estimates 

even on larger number lines – i.e., 0 to 500. However, compared to estimates on 0-30 

number lines, adults’ estimates of large numerosities exhibited weaker dependence on 

previous trials. The trial-by-trial logarithmicity in the current Study did not vary too 

much and remained constantly high, whereas the estimates of small numerosities on 

0-30 number lines were logarithmic on the first trial but became very linear after few 

trials (D. Kim & Opfer, 2018). This finding insinuates that along with the duration of 

stimulus display (Crawford et al., 2000) and multi-task paradigms (Anobile et al., 2012; 

Cicchini et al., 2014), the magnitude of stimuli may change dynamic processes in adults. 

Previous research has shown that larger numerosity leads to greater logarithmicity in 

estimates collapsed across all trials (Lee et al., 2019), but nothing is known about trial-

to-trial logarithmicity in small vs. large number estimates. The role of the numerical 
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magnitude in dynamics and internal scaling could be an interesting venue for future 

research.

Importantly, the results from the current Studies call attention to controlling for 

experimental parameters. Even though dynamics effects are evident in number line 

tasks, researchers often fail to consider them by using ascending stimulus order (Gross 

et al., 2018), fixed order for every individual (Moeller et al., 2009; Weijdena et al., 2018; 

Yuan et al., 2019), or non-counterbalanced or non-randomized condition order (Cohen 

& Sarnecka, 2014; Link et al., 2014; Regina M. Reinert et al., 2015; Regina Miriam Reinert 

et al., 2019; Sella et al., 2015; Weijdena et al., 2018). The current study also showed that 

block order needs to be controlled for especially when blocks can create different 

contexts. In the current study, a previous block with ascending or descending stimuli 

appeared to form a unique context that affects estimates in the following blocks, 

whereas block effects were not evident in previous work, where numbers were always 

randomly presented (D. Kim & Opfer, 2018). 

In addition, trial-to-trial dynamics found in the current Studies may not be 

limited in number line tasks, but bias other tasks tapping into numerical 

representations. For example, inter-trial dynamics may affect children’s performance in 

a give-a-number task (GAN), a number recall task, or number comparison, all of which 

show strong associations with number-line estimation (Laski & Siegler, 2007; Opfer et 

al., 2019; Thompson et al., 2017). Supporting this idea, Odic et al. (2014) found that 
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children compared numbers more accurately after easy trials than hard trials. This 

perceptual hysteresis—i.e., the dependence on previous trials—required explicit 

feedback on children’s performance regardless of whether feedback was accurate or 

inverted. The authors concluded that feedback helped children to form their internal 

confidence in numerical comparison and that no matter whether the confidence is low 

or high, a stable confidence status might cause the hysteresis effects. In the current 

study, previous trials affected children’s estimation even in the absence of feedback, but 

only if stimuli were presented in salient, systematic order. This suggests that the 

forward or backward order of stimuli may be sufficient for children to establish internal 

confidence in the absence of feedback, such that children are encouraged to remember 

and rely on trials prior to a current one. Consistent with this, the accuracy of number-

line estimation is strongly associated with confidence in the estimation (Fitzsimmons et 

al., 2020; Rivers et al., 2020). Together, the findings in the present paper suggest that it is 

important to carefully control for dynamic effects across conditions as well as over trials 

in numerical tasks. Without control over these parameters, adults can be made to look 

like children (and vice-versa).

We would like to note the limitation of the current Studies that dynamic effects 

were examined only in non-symbolic, numerosity estimation. Previous work showed 

that there were no dynamic updates in estimates of symbolic numbers (i.e., Arabic 

numerals) in both children and adults (D. Kim & Opfer, 2018). Despite the absence of 
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dynamic effects, age-related differences were evident in symbolic number estimates 

from the very first trial: from the first to the last trials, children were steadily 

logarithmic, whereas adults were completely linear. This suggests that the true 

developmental change in numerical representation may be better captured in symbolic 

number estimation, which is not susceptible to trial-by-trial dynamics. What is 

unknown is whether symbolic number estimates are still free from strong priors, like 

ascending or descending stimuli, that predict next trials. Future studies may examine 

the effects of stimulus order and dynamic encoding on symbolic number estimation in 

comparison with numerosity estimation.

In sum, we experimentally created situations, in which children became more 

like adults and adults became more like children in number line estimation. As 

predicted by the D-MLLM, task contexts changed logarithmicity in children’s and 

adults’ estimates. Therefore, the D-MLLM accurately predicts dynamic processes and 

developmental changes in number line estimation.



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 35

Acknowledgments

This study was supported by grant R305A160295 from the Institute of Education 

Sciences (IES). We would like to thank the children and their parents for participating in 

the current study, as well as Katie Kuhlwein and Wei Fang for their help in data 

collection. We also thank Jike Qin for her review and Elida Laski and Bob Siegler for 

pointing out the similar phenomenon observed in symbolic number-line estimation.



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 36

References

Anobile, G., Cicchini, G. M., & Burr, D. C. (2012). Linear mapping of numbers onto 

space requires attention. Cognition, 122(3), 454–459.

Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in 

children. Journal of Experimental Child Psychology, 111(2), 246-267.

Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical 

estimation in preschoolers. Developmental Psychology, 46(2), 545.

Birnbaum, M. H. (1999). How to show that 9> 221: Collect judgments in a between-

subjects design. Psychological Methods, 4(3), 243.

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure 

numerical estimation. Developmental Psychology, 42(1), 189–201.

Chesney, D. L., & Matthews, P. G. (2018). Task constraints affect mapping from 

Approximate Number System estimates to symbolic numbers. Frontiers in 

Psychology, 9, 1801.

Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to 

space reflects dynamic encoding mechanisms, not static logarithmic transform. 

Proceedings of the National Academy of Sciences, 111(21), 7867–7872.

Ciesielski, K. T., Lesnik, P. G., Savoy, R. L., Grant, E. P., & Ahlfors, S. P. (2006). 

Developmental neural networks in children performing a categorical n-back task. 

Neuroimage, 33(3), 980–990.



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 37

Cohen, D. J., & Blanc-Goldhammer, D. (2011). Numerical bias in bounded and 

unbounded number line tasks. Psychonomic Bulletin & Review, 18(2), 331–338. 

http://doi.org/10.3758/s13423-011-0059-z

Cohen, D. J., Blanc-Goldhammer, D., & Quinlan, P. T. (2018). A mathematical model of 

how people solve most variants of the number-line task. Cognitive Science, 42(8), 

2621-2647. doi:10.1111/cogs.12698

Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line estimation shows 

development of measurement skills (not number representations). Developmental 

Psychology, 50(6), 1640.

Crawford, L. E., Huttenlocher, J., & Engebretson, P. H. (2000). Category effects on 

estimates of stimuli: Perception or reconstruction? Psychological Science, 11(4), 

280–284.

Dehaene, S. (2011). The number sense: How the mind creates mathematics. OUP USA.

Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of 

the number scale in western and amazonian indigene cultures. Science, 320(5880), 

1217–1220.

DeVries, J. M., Kuhn, J. T., & Gebhardt, M. (2020). What applying growth mixture 

modeling can tell us about predictors of number line estimation. Journal of 

Numerical Cognition, 6(1), 66-82.

Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The 

http://doi.org/10.3758/s13423-011-0059-z


Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 38

relationship between the shape of the mental number line and familiarity with 

numbers in 5-to 9-year old children: Evidence for a segmented linear model. 

Journal of Experimental Child Psychology, 99(1), 1-17.

Fitzsimmons, C. J., Thompson, C. A., & Sidney, P. G. (2020). Confident or familiar? The 

role of familiarity ratings in adults' confidence judgments when estimating 

fraction magnitudes. Metacognition & Learning, 15(2).

Friso-van den Bos, I., Kroesbergen, E. H., Van Luit, J. E. H., Xenidou-Dervou, I., 

Jonkman, L. M., Van der Schoot, M., & Van Lieshout, E. C. D. M. (2015). 

Longitudinal development of number line estimation and mathematics 

performance in primary school children. Journal of Experimental Child Psychology, 

134, 12–29. http://doi.org/10.1016/j.jecp.2015.02.002

Gilden, D. L., Thornton, T., & Mallon, M. W. (1995). 1/f noise in human cognition. 

Science, 267(5205), 1837–1839.

Gross, S. I., Gross, C. A., Kim, D., Lukowski, S. L., Thompson, L. A., & Petrill, S. A. 

(2018). A comparison of methods for assessing performance on the number line 

estimation task. Journal of Numerical Cognition, 4(3), 554–571.

Helson, H., Michels, W. C., & Sturgeon, A. (1954). The use of comparative rating scales 

for the evaluation of psychophysical data. The American Journal of Psychology, 

67(2), 321–326.

Heine, A., Thaler, V., Tamm, S., Hawelka, S., Schneider, M., Torbeyns, J., De Smedt, B., 



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 39

Verschaffel, L., Stern, E., & Jacobs, A. (2010). What the eyes already “know”: 

using eye movement measurement to tap into children's implicit numerical 

magnitude representations. Infant and Child Development, 19(2), 175–186. http://

doi.org/10.1002/icd.640

Hoffmann, D., Hornung, C., Martin, R., & Schiltz, C. (2013). Developing number–space 

associations: SNARC effects using a color discrimination task in 5-year-olds. 

Journal of Experimental Child Psychology, 116(4), 775-791.

Hurst, M., Leigh Monahan, K., Heller, E., & Cordes, S. (2014). 123s and ABC s: 

developmental shifts in logarithmic-to-linear responding reflect fluency with 

sequence values. Developmental Science, 17(6), 892-904.

Jung, S., Roesch, S., Klein, E., Dackermann, T., Heller, J., & Moeller, K. (2020). The 

strategy matters: Bounded and unbounded number line estimation in secondary 

school children. Cognitive Development, 53, 100839. doi:10.1016/

j.cogdev.2019.100839

Kim, D., & Opfer, J. E. (2017). A unified framework for bounded and unbounded 

numerical estimation. Developmental Psychology, 53(6), 1088.

Kim, D., & Opfer, J. E. (2018). Dynamics and development in number-to-space mapping. 

Cognitive Psychology, 107, 44–66.

Kim, D., & Opfer, J. E. (2020). Compression is evident in children’s unbounded and 

bounded numerical estimation: Reply to Cohen and Ray. Developmental 

http://doi.org/10.1002/icd.640
http://doi.org/10.1002/icd.640


Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 40

Psychology, 56(4), 853.

Kim, S., Burr, D., Cicchini, G. M., & Alais, D. (2020). Serial dependence in perception 

requires conscious awareness. Current Biology, 30(6), R257–R258.

Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental 

changes in visuo-spatial working memory. Proceedings of the National Academy of 

Sciences, 99(20), 13336–13341.

Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal 

connections among numerical categorization, number line estimation, and 

numerical magnitude comparison. Child Development, 78, 1723–1743. http://

dx.doi.org/10.1111/j.1467-8624.2007.01087.x

Laski, E. V., & Yu, Q. (2014). Number line estimation and mental addition: Examining 

the potential roles of language and education. Journal of Experimental Child 

Psychology, 117, 29-44. http://doi.org/10.1016/j.jecp.2013.08.007

Landy, D., Silbert, N., & Goldin, A. (2013). Estimating large numbers. Cognitive Science, 

37(5), 775–799.

Lee, S., Kim, D., Opfer, J. E., Pitt, M. A., & Myung, I. J. (2019). Active learning for a 

number-line task with two design variables. The 41st Annual Meeting of the 

Cognitive Science Society.

Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Unbounding the mental number 

line—new evidence on children’s spatial representation of numbers. Frontiers in 

http://dx.doi.org/10.1111/j.1467-8624.2007.01087.x
http://dx.doi.org/10.1111/j.1467-8624.2007.01087.x


Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 41

Psychology, 4, 1021.

Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental 

number line: Logarithmic or decomposed linear? Journal of Experimental Child 

Psychology, 103(4), 503–515.

Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number 

discrimination in young children. Journal of Experimental Psychology: General, 

143(1), 255.

Opfer, J. E., Kim, D., Young, C. J., & Marciani, F. (2019). Linear spatial-numeric 

associations aid memory for single numbers. Frontiers in Psychology, 10, 146.

Opfer, J. E., & Martens, M. A. (2012). Learning without representational change: 

development of numerical estimation in individuals with Williams syndrome. 

Developmental Science, 15(6), 863–875. http://doi.org/10.1111/

j.1467-7687.2012.01187.x

Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical 

estimation. Cognitive Psychology, 55(3), 169–195.

Opfer, J. E., Siegler, R. S., & Young, C. J. (2011). The powers of noise-fitting: reply to 

Barth and Paladino. Developmental Science, 14(5), 1194–1204. http://doi.org/

10.1111/j.1467-7687.2011.01070.x

Opfer, J. E., & Thompson, C. A. (2008). The trouble with transfer: Insights from 

microgenetic changes in the representation of numerical magnitude. Child 



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 42

Development, 79(3), 788–804.

Opfer, J. E., Thompson, C. A., & Kim, D. (2016). Free versus anchored numerical 

estimation: A unified approach. Cognition, 149, 11–17.

Parducci, A. (1963). Range-frequency compromise in judgment. Psychological 

Monographs: General and Applied, 77(2), 1.

Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 

72(6), 407.

Petrov, A. A., & Anderson, J. R. (2005). The dynamics of scaling: A memory-based 

anchor model of category rating and absolute identification. Psychological Review, 

112(2), 383.

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on 

magnitude estimation. Trends in Cognitive Sciences, 19(5), 285-293.

Reinert, R. M., Hartmann, M., Huber, S., & Moeller, K. (2019). Unbounded number line 

estimation as a measure of numerical estimation. PloS ONE, 14(3).

Reinert, R. M., Huber, S., Nuerk, H.-C., & Moeller, K. (2017). Sex differences in number 

line estimation: The role of numerical estimation. British Journal of Psychology, 

108(2), 334–350. http://doi.org/10.1111/bjop.12203

Reinert, R. M., Huber, S., Nuerk, H.-C., & Moeller, K. (2015). Strategies in unbounded 

number line estimation? Evidence from eye-tracking. Cognitive Processing, 16(1), 

359–363.



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 43

Rivers, M. L., Fitzsimmons, C. J., Fisk, S. R., Dunlosky, J., & Thompson, C. A. (2021). 

Gender differences in confidence during number-line estimation. Metacognition 

and Learning, 16(1), 157-178.

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between 

basic numerical abilities and mathematics achievement. British Journal of 

Developmental Psychology, 30(2), 344–357. http://doi.org/10.1111/

j.2044-835X.2011.02048.x

Sella, F., Berteletti, I., Lucangeli, D., & Zorzi, M. (2015). Varieties of quantity estimation 

in children. Developmental Psychology, 51(6), 758.

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence 

for multiple representations of numerical quantity. Psychological Science, 14(3), 

237–250.

Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One 

learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3(3), 

143–150.

Sjöberg, L., & Thorslund, C. (1979). A classificatory theory of similarity. Psychological 

Research, 40(3), 223–247.

Thompson, C. A., Morris, B. J., & Sidney, P. G. (2017). Are books like number lines? 

Children spontaneously encode spatial-numeric relationships in a novel spatial 

estimation task. Frontiers in Psychology, 8, 2242.



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 44

Thompson, C. A., & Opfer, J. E. (2008). Costs and benefits of representational change: 

Effects of context on age and sex differences in symbolic magnitude estimation. 

Journal of Experimental Child Psychology, 101(1), 20–51. http://doi.org/10.1016/

j.jecp.2008.02.003

Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of 

progressive alignment on representational changes in numerical cognition. Child 

Development, 81(6), 1768–1786.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327.

van der Weijdena, F. A., Kamphorsta, E., Willemsena, R. H., Kroesbergenab, E. H., & van 

Hoogmoed, A. H. (2018). Strategy use on bounded and unbounded number lines 

in typically developing adults and adults with dyscalculia: An eye-tracking 

study. Journal of Numerical Cognition, 4(2), 337–359.

White, S. L., & Szűcs, D. (2012). Representational change and strategy use in children's 

number line estimation during the first years of primary school. Behavioral and 

Brain Functions, 8(1), 1. http://doi.org/10.1186/1744-9081-8-1

Yuan, L., Prather, R., Mix, K. S., & Smith, L. B. (2019). Number representations drive 

number-line estimates. Child Development.

Zax, A., Slusser, E., & Barth, H. (2019). Spontaneous partitioning and proportion 

estimation in children’s numerical judgments. Journal of Experimental Child 

Psychology, 185, 71-94.



Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION 45



 38
Running head: DYNAMICS VS DEVELOPMENT IN NUMEROSITY ESTIMATION  

Appendix

Table A1

Summary of previous studies examining number-line estimation.

Study Participants Number 
format

Number 
Scale

Models 
Applied

Best-fitting Model 

Siegler & 
Opfer (2003)

Children 
aged 7 - 11 
years and 
adults

Symboli
c

0-100, 
0-1,000

Log, linear For young children, linear in 0-100 
and log in 0-1000 tasks; for older 
children and adults, linear in both

Laski & 
Siegler (2007)

Children 
aged 5-8 
years

Symboli
c

0-100 Log, linear Log for young and linear for older 
children in pretest; more linear in 
posttest after training

Opfer & 
Siegler (2007)

Children 
aged 8 years

Symboli
c

0-1,000 Log, linear Log before training, linear after 
training

Dehaene et al. 
(2008)

Mundurucu 
adults and 
children aged 
7-17 years, 
American 

Non-
symbolic

1-10, 
10-100

Log, linear For Mundurucu participants, log 
in both; for American adults, log 
in 10-100 and linear in 1-10

Ebersbach et 
al. (2008)

Children in 
K-3rd grades

Symboli
c

1-100 for 
K-2nd, 
1-1,000 for 
3rd grade

Log, linear, 
2-phase 
linear

2-phase linear for all grades

Opfer & 
Thompson 
(2008)

Children 
aged 7 years

Symboli
c

0-1,000 Log, linear Log before and linear after 
training

Thompson & 
Opfer (2008)

Children 
aged 7-9 
years

Symboli
c

0-1,000 Log, linear Log for young and linear for older 
children in pretest; more linear in 
posttest after training

Berteletti et 
al. (2010)

Children 
aged 3.5-6.5 
years

Symboli
c

0-100, 
1-10, 1-20

Log, linear Log for young and linear for older 
children in 1-10 and 1-20; log for 
all in 0-100

Heine et al. 
(2010)

Children in 
1st-3rd grades

Symboli
c

0-100 Log, linear Log for 1st graders; linear for 
2nd-3rd graders

Cohen & 
Blanc-
Goldhammer 
(2011) 

Adults Symboli
c

0-26, 0-1 
(stimuli < 
26)

Linear, 
1-2CPMs, 
1-multiple 
SPMs

One of CPMs in 0-26 and one of 
SPMs in 0-1

Opfer et al. 
(2011)

Children in 
K-4th grades

Symboli
c

0-100 for 
K-2nd, 
0-1,000 for 
1st-4th 
grades

Log, linear, 
1-2CPMs

Log for younger children on both 
scales, linear for older children on 
both scales
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Anobile et al. 
(2012)

Adults Non-
symbolic

1-10, 1-30, 
1-100 with 
or without 
an 
additional 
attentional
ly-

MLLM, 
Central-
tendency 
Bayesian 
model

Both; more log compression with 
the attentionally-demanding task

Ashcraft & 
Moore (2012)

Children in 
1st-5th grades 
and adults

Symboli
c

0-100 for 
1st-2nd, 
and 0-100 
and 
0-1,000 for 
3rd-5th 

Log, linear, 
exponentia
l

With grade, a linear model fits 
better

Opfer & 
Martens 
(2012)

Children 
aged 6-17 
years and 
adults with or 
without 
Williams 
syndrome 

Symboli
c

0-1,000 Log, linear Log for children and adults with 
WS (even after training) and 
young children without WS; linear 
for older children and adults 
without WS

Sasanguie et 
al. (2012)

Children in 
K-2nd, and 
6th grades

Symboli
c & Non-
symbolic

0-10 for 
K-1st, 
0-100 for 
1st-2nd, 
6th grades

Log, linear Linear for all in 0-10, and more log 
for young children and linear for 
older children in 0-100 regardless 
of number formats

White & 
Szucs (2012)

Children in 
1st-3rd grades

Symboli
c

0-20 Log, linear, 
1-2CPMs

No model differences for 1st 
graders; linear for 2nd and 3rd 
graders 

Hoffmann et 
al. (2013)

Children in K Symboli
c

0-20 Log, linear Log for first-term children; no 
model differences for second-term 
older children

Cicchini et al. 
(2014)

Adults Non-
symbolic

0-100 MLLM, 
Bayesian 
integration 
model

Bayesian integration model 
especially when attention was 
deprived

Cohen & 
Sarnecka 
(2014)

Children 
aged 3-8 
years

Symboli
c

0-20, 0-1 
(stimuli < 
20)

Log, linear, 
SBCM, 
1-2CPMs, 
1-multiple 
SPMs

SBCM or CPMs in bounded tasks 
and one of SPMs in unbounded 
tasks

Hurst et al. 
(2014)

Adults Symboli
c

0-1,258, 
2,000-3,000
, 
1,639-2,897

Log, linear linear in standard endpoint 
conditions (0-1,258, 2,000-3,000) 
and log in the non-standard 
endpoint condition (1,639-2,897)

Laski & Yu 
(2014)

Chinese and 
Chinese 
American 
children in K 
and 2nd 
grades

Symboli
c

0-100, 
0-1,000

Log, linear More log for Chinese American K, 
and linear for Chinese K and all 
2nd graders in 0-100; log for 
Chinese and Chinese American K, 
and linear for Chinese 2nd graders 
in 0-1,000
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Link et al. 
(2014)

Children in 
1st-4th grades 
and adults

Symboli
c

0-10 for 
1st, 0-20 
for 2nd, 
0-100 for 
3rd, 0-1000 
for 4th 
graders, 
0-10,000 
for adults, 
and 0-1 

Linear, 
0-2CPMs, 
1-multiple 
SPMs

Linear for 1st-2nd graders, and 
one of CPMs for 3rd-4th graders 
and adults when tasks were 
bounded; 1SPM*** when tasks 
were unbounded

Friso-van den 
Bos et al. 
(2015)

Children 
aged 5-8 
years

Symboli
c

1-100 Log, linear 
0-2CPMs

0CPM for 5- to 6-year-olds, and 
1CPM for 7- to 8-year-olds

Sella et al. 
(2015)

Children in K, 
1st, 3rd 
grades

Symboli
c & Non-
symbolic

0-100 Log, linear More log for K and 1st graders 
than for 3rd graders regardless of 
number formats

Opfer et al. 
(2016)

Children 
aged 6-8 
years

Symboli
c

0-1,000 Log vs. 
2CPM, 
MLLM vs. 
MCPM

2CPM with but log without 
midpoint-anchoring instruction; 
MLLM for all conditions

Kim & Opfer 
(2017)

Children in 
K-2nd grades

Symboli
c

0-30 for K, 
0-100 for 
1st, 0-1,000 
for 2nd 
graders, 
and 0-1 
(stimuli < 
30 for K, < 
100 for 1st, 

MLLM, 
MCPM1, 
MCPM2, 
MSPM

MLLM 

Reinert et al. 
(2017)

Adults Symboli
c

0-50, and 
variable 
unit (0-1 to 
0-10; 
stimuli < 

Linear, 
1-2CPMs, 
SPMs

One of CPMs in bounded tasks 
and 1SPM in unbounded tasks

Chesney & 
Matthews 
(2018)

Adults Non-
symbolic

1-300 Log, linear, 
0-1CPMs

Linear and 0-1CPMs fit equally 
well

Cohen et al. 
(2018)

Adults Symboli
c

0-22, 0-1 
(stimuli < 
22)

0-2CPMs, 
MCPM, 1-
multiple 
SPMs

One of CPMs in bounded tasks 
and 1SPM in unbounded tasks

Kim & Opfer 
(2018)

Children 
aged 5-6 
years and 
adults

Symboli
c & Non-
symbolic

0-30 MLLM, 
dynamic 
MLLM, 
Bayesian 
integration 
model

MLLM or dynamic MLLM
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Note. CPM = cyclic power model; MCPM = mixed cyclic power model; SPM = scallop 

power model; MSPM = mixed scallop power model; MLLM = mixed log-liner model.

Opfer et al. 
(2019)

Children 
aged 3-5 
years

Symboli
c

0-20 MLLM, 
MCPM1, 
MCPM2

MLLM

Yuan et al. 
(2019)

Children 
aged 4-6 
years

Symboli
c & Non-
symbolic

0-1,000 Log, linear, 
MLLM, 
1-2CPMs

Log or MLLM

Zax, Slusser, 
& Barth 
(2019)

Children 
aged 6-8 
years

Symboli
c

0-100 0-2CPMs, 
MCPM

MCPM for median estimates

Devries, 
Kuhn, & 
Gebhardt 

Children in 
2nd grade

Symboli
c

0-20, 0-100 Log, linear, 
1CPM

Linear in 0-20 and log in 0-100

Jung et al. 
(2020)

Children in 
5th-7th grade

Symboli
c

0-10,000, 
0-1 
(stimuli < 
29)

Linear, 
1-2CPMs, 
1-multiple 
SPM

Linear

Kim & Opfer 
(2020)

Children 
aged 4-12 
years

Symboli
c

0-538, 0-1 
(stimuli < 
58, 132, or 
448)

1SPM, 
MLLM

MLLM in both bounded and 
unbounded tasks
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