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Abstract
Prior research has found gender differences in spatial tasks in which men perform better,
and are more confident, than women. Do gender differences also occur in people’s
confidence as they perform number-line estimation, a common spatial-numeric task
predictive of math achievement? To investigate this question, we analyzed outcomes
from six studies (N = 758 girls/women and boys/men with over 20,000 observations;
grades 1–5 and adults) that involved a similar method: Participants estimated where a
provided number (e.g., ¾, 37) was located on a bounded number line (e.g., 0–1; 0–100),
then judged their confidence in that estimate. Boys/men were more precise (g = .52) and
more confident (g = .30) in their estimates than were girls/women. Linear mixed model
analyses of the trial-level data revealed that girls’/women’s estimates had about 31%
more error than did boys’/men’s estimates, and even when controlling for precision, girls/
women were about 7% less confident in their estimates than were boys/men. These
outcomes should encourage researchers to consider gender differences for studies on
math cognition and provide pathways for future research to address potential mechanisms
underlying the present gender gaps.
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Imagine two first graders who just rated their confidence on a number-line estimation trial in
which they estimated where 25 goes on a 0 to 100 number line. Although both first graders
greatly overestimated the location of the number on the line, one child was more confident in
the estimate than the other. Such differences in confidence can influence the children’s
engagement with math, because higher confidence is related to greater self-efficacy and
persistence when tasks are difficult. Now imagine that the more confident child is a boy and
the less confident child is a girl, and that such differences are not just isolated to these children.
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Does a gender gap occur in which girls are less confident than boys when they are engaged in
math tasks such as number-line estimation? Given that such a gap could have negative short-
and long-term consequences for educational and career outcomes, discovering whether such a
gender gap exists is critical so that future research can develop interventions to minimize it.

The present research evaluates the extent to which gender differences arise in confidence on
number-line estimation, a task which taps the fundamental ability to estimate numerical magnitude
(and is predictive of futuremath achievement; e.g., Bailey et al. 2014;Booth and Siegler 2006, 2008;
Fazio et al. 2014; Fuchs et al. 2010; Geary 2011; Schneider et al. 2018; Siegler 2016; Siegler et al.
2011, 2012; Siegler and Thompson 2014; Tosto et al. 2018). In this task, participants are (1) asked to
estimate where a provided number (e.g., 25) falls on a horizontal number line and (2) asked to judge
their confidence in their estimate – an example is presented in Fig. 1. In the remainder of the
Introduction, we explain why exploring gender differences in confidence for number-line estimation
is important and why such differences in confidence may occur. Finally, we describe our analytic
approach for estimating gender differences in this domain.

Why Investigate Gender Differences in Confidence for the Number-Line
Estimation Task?

Our reasons for focusing on gender differences in confidence for number-line estimation arise
from the possibility that gender differences will occur in number-line estimation performance.
Thus, to motivate our interest in confidence, we begin by first considering why (and whether)
gender differences occur in number-line estimation performance. According to Halpern’s
(2004) cognitive-process taxonomy, considering the component processes that underlie task
performance is essential for understanding the degree to which gender differences may occur
in performance. Whereas women tend to perform better on some tasks that require verbal
skills, men tend to perform better on some tasks that require spatial skills. Consistent with this
taxonomy, Halpern et al. (2007) concluded that a performance gap favoring boys emerges in
tasks that require spatial ability, such as the mental-rotation task (for reviews, see Lauer et al.
2019; Levine et al. 2016; Voyer et al. 1995; Voyer et al. 2017).
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To the extent that space and number are intertwined in the number-line estimation task – the focal
task in our analyses – one might anticipate gender differences due to the inherent spatial character-
istics of the task. That is, to perform successfully on number-line estimation, people must map their
mental representation of a numerical magnitude onto a one-dimensional spatial representation (i.e.,
the number line). In fact, some researchers have hypothesized that people possess amental number
line in which smaller numbers are oriented on the left side of space and larger numbers are oriented
on the right side of space. For example, when preschoolers were shown a “hiding box” in which
compartments in the boxwere verbally labeledwith increasing numbers from left-to-right, theywere
quicker to find the object in a “finding box” that was similarly labeled with increasing numbers from
left-to-right as compared to when they tried to find hidden objects in a finding box that was verbally
labeled from right-to-left (Opfer et al. 2010). Further, in the spatial numerical association of
response codes effect (SNARC effect; Dehaene et al. 1993; Hubbard et al., 2005), people (who
read left-to-right) tend to respond faster when smaller numbers require a left-hand button press and
bigger numbers require a right-hand button press.1 Bull et al. (2013) found this SNARC effect to be

1 Although, see Colling et al. (2020) for a failure to replicate a priming paradigm in which participants were
quicker to detect targets on the right side when they were preceded by large numbers.



stronger in men than in women, suggesting that the association between numerical and spatial
representation may be more pronounced in men.

Consistent with the above rationale, gender differences have been observed in number-line
estimation performance across development and for various numerical scales, with medium
effect sizes on average (Bull et al. 2013; Gunderson et al. 2012; Hutchinson et al. 2019;
LeFevre et al. 2010; Reinert et al. 2017; Thompson and Opfer 2008). For example, in a recent
study of gender differences in tasks tapping basic numerical skills (e.g., counting ability,
number comparison, arithmetic, etc.), Hutchinson et al. (2019) found that number-line esti-
mation was the only task for which boys performed better than did girls. Specifically, the

Fig. 1 Sample Number-Line Estimation Trial with Confidence Judgment. Note. Children used the slider (a) to
estimate the target number on the number line, then used the pictures at the bottom to make their confidence
judgments: (b) 3-point confidence judgment scale (from Fitzsimmons et al. n.d.; adapted from Hembacher and
Ghetti 2014); (c) a 5-point confidence judgment scale (from Wall et al., n.d.)
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authors investigated gender differences in number-line estimation performance in the 0–100
and 0–1000 range across approximately 1400 children in the Netherlands in grades 1–6 and
reported an overall medium effect favoring boys (Cohen’s d = 0.39 and 0.59 for the 0–100 and
0–1000 number-line scales, respectively). To foreshadow, such gender differences in number-
line estimation performance also occurred in the present research, which motivated our focus
on confidence.

Will Gender Differences Occur in Confidence About Number-Line
Estimation Performance?

Given such gender differences in number-line estimation performance, will gender differences
also occur in confidence? Answering this question is important for a couple reasons. First, if
girls/women are less confident in their estimation performance (as compared to boys/men),
differences in confidence could partly be contributing to the differences in performance (for an
example in the context of the mental rotation task, see Estes and Felker 2012). In particular,
low confidence could lead to a lack of task persistence. Second, given that gender differences
do occur in number-line estimation performance, any gender differences in confidence could
arise because people’s confidence tracks their performance. For instance, if confidence
judgments are perfectly accurate (i.e., aligned with performance), then the confidence judg-
ments would naturally be lower for those who perform worse on the task. Note, however, that
prior research investigating the accuracy of confidence judgments for the number-line estima-
tion task has demonstrated that their accuracy is far from perfect (although accuracy is not
entirely on the floor; e.g., Wall et al. 2016). Thus, any gender differences in confidence could
arise from (somewhat) accurate monitoring of performance or from gender biases in making
confidence judgments. Thus, if gender differences occur in confidence, will they remain when
gender differences in performance is statistically controlled?

To answer our focal questions, we used a method that was illustrated in our opening scenario.
When performing this task, people’s confidence can bemeasured by having them judge howwell
they performed on each trial; these retrospective confidence judgments (henceforth, confidence
judgments for brevity) refer to people’s confidence that their estimate accurately represents the
location of that number’s magnitude on the line. As with other metacognitive judgments (e.g.,
judgments of learning), confidence judgments are not based on direct access to how precisely
numbers are represented in memory. Rather, theories of metacognition distinguish between two
types of information that can be used as a basis for judgments (e.g., Koriat 1997; Koriat and
Ackerman 2010; Koriat and Levy-Sadot 1999). Theory-based judgments are informed by
people’s naive beliefs about learning or their perceptions about their own abilities. In contrast,
experience-based judgments are informed by on-line monitoring during task performance. In the
number-line estimation task, both of these factors could influence confidence judgments about
estimation performance. For example, people may base their judgments on their beliefs about
their ability to perform in a math/spatial domain (i.e., self-efficacy; Bandura 1977), their attitudes
about whole numbers and fractions (e.g., Sidney et al. 2019), or perceived difficulty of the
number-line estimation task (i.e., theory-based factors). Or, people may base their judgments on
inferences about cues available when they are responding on a specific trial (i.e., experience-
based factors), such as having the experience of familiarity with to-be-estimated numbers (e.g.,
Fitzsimmons et al. 2019; Fitzsimmons et al. 2020). Next, we consider how each of these factors
may contribute to gender gaps in confidence.
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One theory-based factor – self-efficacy – is most pertinent to the present research as it may
be a basis for confidence judgments. In particular, children who believe they tend to perform
well on math or spatial tasks may be more likely to make higher confidence judgments
following number-line estimation compared to those who feel less confident in their abilities.
On the one hand, when asked to rate their overall math or spatial ability, boys/men tend to
make higher ratings than do girls/women (e.g., Ariel et al. 2018; Ganley and Lubienski 2016;
Syzmanowicz and Furnham 2011). In addition, attitudes about math tend to be more negative
for girls/women compared to boys/men, and women also report being more anxious about
math than do men (for a review, see Hyde et al. 1990). On the other hand, young girls earn
better grades in mathematics throughout elementary school (e.g., Dwyer and Johnson 1997;
Halpern et al. 2007; Kenney-Benson et al. 2006; Kimball 1989; Marshman et al. 2018) and
hence this early recognition of their good grades in math may lead them to be more confident
in their performance as compared to boys. Thus, given the potential role of self-efficacy in
confidence judgments, the available evidence may lead one to expect that a gender difference
(in either direction) will emerge in confidence judgments for number-line estimation.

In addition to theory-based factors such as self-efficacy, confidence judgments can also be
constructed from experience-based inferences, such as how quickly a person responds to a
given question (with quicker responses producing more confidence, e.g., Benjamin et al. 1998)
or a person’s overall familiarity with the numbers they are estimating (with more familiar
numbers producing higher confidence, e.g., Fitzsimmons et al. 2020). To the degree that
gender differences occur in such experiences (e.g., in familiarity), those could result in gender
differences in confidence judgments as well.

To date, few investigations are available about gender differences in trial-by-trial confidence
judgments for math tasks, and that evidence is mixed. Even when controlling for performance,
gender differences have been observed in trial-by-trial confidence judgments for various math
and spatial tasks (e.g., mental rotation, paper folding, solving arithmetic problems), with boys
being more confident than girls (e.g., Ariel et al. 2018; Boekaerts and Rozendaal 2010; Cooke-
Simpson and Voyer 2007; Estes and Felker 2012). However, other studies have reported no
gender differences in confidence for math tasks, such as solving arithmetic problems or
number-discrimination decisions (e.g., Baer and Odic 2019; Nelson and Fyfe 2019). Thus,
whether gender differences will occur in confidence for this task remains an open question. As
important, we also investigated whether gender differences occur in confidence when task
performance (i.e., estimation precision) is controlled. This analysis is critical because when
gender differences occur in performance and in confidence, then the former differences in
performance could (appropriately) be producing the gender differences in confidence.

Method Overview

Replicating prior research, our preliminary analyses (described below) revealed gender differ-
ences in number-line estimation performance favoring boys (g = .52). Accordingly, the present
investigation will provide answers to two critical questions that have not been previously
addressed:

1. Do gender differences exist in confidence for number-line estimation precision? And, if
the answer to this question is “yes”, then:

2. Do gender differences in confidence remain when controlling for gender differences in
estimation precision?
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In answering these questions, we realize that making accurate claims about gender differences
is challenging, as research on gender differences is often plagued by publication bias (e.g.,
Nelson 2014). To avoid this issue, we conducted analyses using all available data (that we are
aware of) on the number-to-position number-line estimation task in which participants also
made trial-by-trial confidence judgments. To obtain a comprehensive list of empirical studies
that met this inclusion criteria, we undertook a systematic search of the literature through the
APA PsychINFO database and Google Scholar. The database search involved using the
keyword “number line” in combination with the terms “metacognition” and “confidence
judgments.” No date restrictions were applied during the literature search, which concluded
on August 10, 2020. The database searches yielded 9 unique hits. After screening these papers
against our criteria, only Wall et al. (2016) and Fitzsimmons et al. (2020) survived. We also
conducted a forward search (i.e., citations of original articles) for these two articles and
screened all citations against our criteria; this did not yield any additional articles that met
our criteria. We also included additional datasets from our laboratories, some of which, at the
time of writing, have not yet been published or were undergoing peer review.

These studies were particularly well-suited for avoiding publication bias as none of them
were designed to examine gender differences in number-line estimation performance and none
(prior to this analysis) had involved analyzing gender differences. Our analyses include data
from six studies (10 separate experiments) that examined participants’ ability to estimate target
numbers on a number line and their confidence in those estimates (Fig. 1; Feltner and
Thompson n.d.; Fitzsimmons et al. 2019; Fitzsimmons et al. 2020; Fitzsimmons et al. n.d.;
Wall et al., n.d.; Wall et al. 2016). In sum, the analyses included 758 participants (339 boys/
men and 419 girls/women) ranging in age from first grade to adults. All of these studies
received approval from Kent State University's Institutional Review Board, and informed
consent was obtained for all participants. For full transparency, we note that the Principal
Investigator (PI) was the same for all of these studies.2 However, the PI worked with several
different graduate and undergraduate research assistants, postdocs, and faculty collaborators to
collect the data. Table 1 contains a summary of the descriptive information for the studies
included in the analyses.

All experiments used a similar method in which participants made between 12 and 48
estimates for whole numbers or fractions on number lines. Six different numerical ranges were
used: 0–10, 0–100, 0–1000, 0–100,000, and 1000–1 billion (for whole numbers), and 0–1 (for
fractions). In some cases, participants made estimates in multiple numerical ranges. Each to-
be-estimated number was presented one at a time on an individual sheet of paper or on a
computer screen. Estimation precision was measured on a trial-level basis as proportion
absolute error (PAE). In this paper, PAE is calculated with the following equation:

PAE ¼ jParticipant’s estimate−Correct Answerj=Scale of number line ð1Þ
For example, if a participant was asked to estimate the location of “70” on a 0–100 number line
but marked the location corresponding to “90,” the PAE would be computed as [(|90–70|)/

2 Given data were all collected by the same lab, readers may be concerned that the same participants completed
multiple experiments. Because we recruited from some of the same school districts each year, there is a (small)
possibility that this occurred (e.g., 4th graders in 2016 and 5th graders in 2017). However, most of the data
collected was separated by multiple years, and we can be sure that the same children did not participate in
multiple studies - for example, we are certain that 1st and 2nd grade children from the Wall et al. (2016) dataset
were not the same 1st and 2nd graders in the Fitzsimmons et al. (n.d.) dataset.
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100] = .20 (Eq. 1). Higher deviation indicates a less precise estimate. PAE can range between 0
and 1.

Immediately after estimating each number, participants rated their confidence for each
estimate (Fig. 1). Confidence judgments were made on three-point (not so sure, kind of sure, or
really sure; Wall et al. 2016.; Fitzsimmons et al. n.d., four-point (not so sure, kind of sure,

Table 1 Summary of Study-Level and Sample-Level Characteristics

Study Sample
size (N)

Grade Percent
Boys/Men

Number-Line
Scale/s

Number of
Estimations

Confidence
Judgment
Scale

Wall et al. (2016),
Expt 1

18 1 50% 0–10; 0–100 18 per scale (36
total)

3 point

24 2 50% 0–100; 0–1000 18 per scale (36
total)

3 point

17 4 47.1% 0–1000;
0–100,000

18 per scale (36
total)

3 point

Wall et al. (2016),
Expt 2

17 1 47.1% 0–10; 0–100 18 per scale (36
total)

3 point

21 2 52.4% 0–100; 0–1000 18 per scale (36
total)

3 point

16 4 31.3% 0–1000;
0–100,000

18 per scale (36
total)

3 point

Wall et al. (2016),
Expt 3

18 1 44.4% 0–100 18 3 point

31 2 41.9% 0–1000 18 3 point
36 4 44.4% 0–100,000 18 3 point

Wall et al. (n.d.),
Expt 1

20 2 55.0% 0–100; 0–1000 18 per scale (36
total)

5 point

Fitzsimmons
et al.( n.d.), Expt 1

72 1 48.6% 0–1000 22 3 point

38 2 39.5% 0–1000 22 3 point
Fitzsimmons

et al. ( n.d.), Expt 2
117 Adults 12.8% 1000–1 billion 22 100 point

Fitzsimmons et al. (2020),
Expt 1

90 Adults 62.2% 0–1 44 4 point

Fitzsimmons et al. (2020),
Expt 2

101 Adults 58.4% 0–1 12 4 point

Feltner and
Thompson ( n.d.),
Expt 1

51 5 49% 0–1 20 3 point

Fitzsimmons et al. (2019) 58 4 44.8% 0–1000;
0–100,000;
0–1

18 per scale for
whole
numbers, 12
per scale
for fractions
(48 total)

5 point

13 5 53.8% 0–1000;
0–100,000;
0–1

18 per scale for
whole
numbers, 12
per scale
for fractions
(48 total)

5 point

Note. Total N = 758; k = 18. One additional participant from Fitzsimmons et al. (n.d.) and another participant
from Fitzsimmons et al. (2020) were excluded from analyses for choosing not to report their gender. The
Principal Investigator was the same for all of these studies

Gender differences in confidence during number-line estimation 163



pretty sure, or totally sure; Fitzsimmons et al. 2020), five-point (Fig. 1; Feltner and Thompson,
n.d.; Fitzsimmons et al. 2019; Wall et al., n.d.), and 100-point (Fitzsimmons et al. n.d.) scales.
Adults self-reported their gender on demographic forms, and parents reported the gender of
their children on parental permission forms.3 For experiments that included multiple experi-
mental phases, we only included data collected prior to when a manipulation was introduced.
For example, Fitzsimmons et al. (n.d.) used a pretest-posttest design to investigate the
effectiveness of interventions aimed at improving estimation performance; only pretest data
were included in the current analyses.

We use two separate methods to conduct our analyses: (1) commonly used meta-analytic
procedures in which we calculate standardized measures of effect sizes (Hedges’ g), and (2)
linear mixed models that use trial-level data. We first present the Hedges’ g meta-analyses, in
which we examine whether gender differences exist in estimation precision (performance) and
confidence judgments (confidence). We then present the linear mixed model analyses. In these
analyses, we (1) replicate the results from theHedges’ gmeta-analyses and (2) examine whether
gender differences in confidence exist controlling for estimation precision at the trial level.

Results

Hedges’ g Analyses

Analytic Approach To calculate gender differences in performance and confidence, we
conducted meta-analyses using standard procedures in which standardized effect sizes were
calculated and then weighted by the number of participants.

We computed Hedges’ g (Hedges 1981) as a standardized measure of effect size, which
represented the standardized mean difference between boys/men and girls/women. For each
sample, g was computed using the following equation:

g ¼ Mm−M fð Þ=spooled ð2Þ
In Eq. 2,Mm = the mean for boys/men,Mf = the mean for girls/women, and spooled = the pooled
estimate of the population standard deviation. In these calculations, a g greater than 0 indicated
an advantage for boys/men in precision or confidence, whereas a g less than 0 indicated an
advantage for girls/women. For studies that had multiple experiments, each experiment
contributed a unique effect size given that the settings, instructions, and other factors varied
by experiment. If multiple effect sizes were available from the same sample (e.g., the same
participants made estimates on multiple number-line scales, as in Wall et al. 2016), we pooled
the means and standard deviations, and these pooled values were used to compute the
composite effect sizes that were included in the analyses (for justification, see Card 2012; p.
192–193). In addition, for experiments that investigated number-line estimation across multi-
ple grades, each grade contributed a separate effect size (given prior research showing that the
precision of children’s estimates improves with age; Siegler and Booth 2004; Siegler and

3 For full transparency, we note that participants were asked to report their “sex” on these demographic forms.
Because we are not making claims that any differences observed between men and women can be attributed
solely to biological differences (e.g., differences in physical attributes between males and females; American
Psychological Association 2012), we use the term “gender” throughout the paper and refer to boys/men and girls/
women rather than males and females.
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Opfer 2003; Siegler et al. 2009; Thompson and Opfer 2010). Ultimately, the six studies
included in the meta-analyses produced 18 effect sizes composed of 758 participants (Table 1).

We used random-effects models for our meta-analyses (e.g., Hedges 1983; Hedges and
Vevea 1998; Raudenbush 1994). Unlike fixed-effects models, which conceptualize only a
single population mean effect size, random-effects models estimate a mean population effect
size as well as the variability in effect sizes due to the population variability in effect sizes and
hence are more appropriate to use when the effect sizes of the studies included in the analysis
differ from each other (Borenstein et al. 2010). Random-effects models also allow for
inferences that generalize beyond the samples included in the meta-analyses to a broader
population of potential representative studies (i.e., unconditional inferences; Hedges and
Vevea 1998). Because we anticipated variation in the effect sizes, random effects models
were considered most appropriate for the overall analyses. For more details on how we
conducted these analyses, refer to Appendix 1.

Gender Differences in Performance Our analyses revealed medium gender differences in
number-line estimation performance favoring boys/men (g = .52; Appendix 2).

Gender Differences in Confidence A gender difference occurred in confidence favoring
boys/men (Fig. 2). The overall weighted effect size was g = .30, 95% CI [.12, .47], p = .002.
No significant heterogeneity was observed among the effect sizes, Q(17) = 19.03, p = .33.
However, with 18 samples, we were only powered to detect large amounts of heterogeneity
(Card 2012, p. 191). We also calculated I2, which describes the percentage of total variation
across studies that is due to heterogeneity rather than sampling variability alone (Higgins and
Thompson 2002). According to Higgins et al. (2003), I2 values of 25%, 50%, and 75% are
associated with small, medium, and large amounts of heterogeneity, respectively. This index
revealed a small, non-significant amount of heterogeneity among the effect sizes; I2 = 10.69%.

For comparison, we also conducted a fixed-effects model (for similar justification, see
Lawson et al. 2018). The fixed-effects model resulted in a similar overall mean effect size,
g = .26, 95% CI [.10, .41], p = .002.
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Study, Expt, and Grade Effect size 95% CI lower 95% CI upper
Wall et al. (2016), Expt 1, Grade 1 0.67 -0.28 1.62

Wall et al. (2016), Expt 1, Grade 2 0.96 0.11 1.80

Wall et al. (2016), Expt 1, Grade 4 0.12 -0.84 1.07

Wall et al. (2016), Expt 2, Grade 1 0.40 -0.56 1.36

Wall et al. (2016), Expt 2, Grade 2 0.99 0.08 1.89

Wall et al. (2016), Expt 2, Grade 4 0.59 -0.49 1.66

Wall et al. (2016), Expt 3, Grade 1 0.23 -0.71 1.16

Wall et al. (2016), Expt 3, Grade 2 0.17 -0.55 1.16

Wall et al. (2016), Expt 3, Grade 4 -0.30 -0.96 0.36

Wall et al. (n.d.), Expt 1, Grade 2 0.03 -0.85 0.91

Fitzsimmons et al. (n.d.), Expt 1, Grade 1 0.03 -0.43 0.49

Fitzsimmons et al. (n.d.), Expt 1, Grade 2 0.34 -0.31 1.00

Fitzsimmons et al. (n.d.), Expt 2, Adults 0.11 -0.43 0.65

Fitzsimmons et al. (2020), Expt 1, Adults 0.07 -0.36 0.50

Fitzsimmons et al. (2020), Expt 2, Adults 0.64 0.23 1.04

Feltner & Thompson (n.d.), Expt 1, Grade 5 -0.19 -0.74 0.36

Fitzsimmons et al. (2019), Expt 1, Grade 4 0.28 -0.23 0.80

Fitzsimmons et al. (2019), Expt 1, Grade 5 1.03 -0.13 2.19

Grand Mean 0.30 0.12 0.47

Fig. 2 Forest Plot of Effect Sizes for the 18 Samples Included in the Hedges’ g Meta-Analysis of Confidence



Linear Mixed Model Analyses

Analytic Approach In addition to the Hedges’ g meta-analyses, we also conducted linear
mixed effects models (i.e., a specific type of multilevel model) so that data at the trial level
(i.e., each estimate and its associated confidence judgment for a given participant) could be
included in the analyses. This method increased our statistical power by allowing us to include
20,801 observations (nested within 758 participants) in the analyses and to control for
performance on a given number-line estimate, which allowed us to answer the following
question: Do gender differences exist in confidence, controlling for estimation precision? That
is, are gender differences in confidence still observed when accounting for the fact that girls/
women have lower estimation precision than boys/men?

We first replicated the effect of gender on estimation precision and confidence, then
examined whether gender differences in confidence remained when estimation precision was
statistically controlled. In these linear mixed effects models, trial-level observations (level-1
unit) are nested within participants (level-2 unit), which are then nested within experiments
(level-3 unit).

Measure of Trial-Level Confidence Given that different scales were used to measure confi-
dence in different experiments (i.e., some experiments used a 3-point scale, whereas others
used 4-, 5-, or 100-point scales; Table 1), we converted each trial-level confidence judgment to
a proportion (i.e., a 0–1 scale) using the formula: [(trial-level confidence judgment - 1) /
(maximum confidence judgment value for the scale – 1)]. Thus, on a 3-point scale, a
confidence judgment of 1 becomes 0 ([1–1]/[3–1] = 0), 2 becomes .50 ([2–1]/[3–1] = .50),
and 3 becomes 1.0 ([3–1] / [3–1] = 1). Overall, the average trial-level confidence judgment was
.653 (Table 2).

Gender Differences in Performance To summarize the main outcomes, we again found that
girls/women were less precise in their number-line estimates than were boys/men (replicating
the findings from the Hedges’ g meta-analysis). The full analysis is presented in Appendix 3.

Trial-Level Gender Differences in Confidence, Controlling for Performance Using linear
mixed-effects models to predict confidence, we again found that girls/women were slightly
less confident than boys/men (replicating the findings from the Hedges’ g meta-analysis).
We also found that these gender differences remained when estimation precision was
accounted for.

Table 3 presents two linear mixed effects models that predict trial-level confidence
judgment proportion (on a 0–1 scale). Model A predicts confidence using only the partici-
pant’s gender and Model B predicts confidence using both the participant’s gender and the
participant’s trial-level PAE as a control.

Table 2 Trial- Level Summary Statistics for Linear Mixed Models

Mean SD Min Max

PAE .145 .166 .000 .998
Confidence judgment .653 .299 .000 1.00

Note. 20,801 trials nested within 758 participants. PAE = proportion absolute error. In total, 53.9% of participants
were girls/women.
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Model A replicates the findings from the Hedges’ g meta-analyses on the effect of gender
on confidence judgments. Using the fixed-effects estimates, girl’s/women’s confidence was
estimated to be .048 points lower than boy’s/men’s (p = .001; Model A). The intercept of .688
(p < .001) represents the fixed-effects estimate of the average boy’s/man’s confidence judg-
ment. Thus, the fixed-effects estimate of the average girls’/women’s confidence judgment is
.640 (.688–.048; see Model A). Thus, it appears that the average girl/woman was about 7%
less confident than the average boy/man (.048 / .688 = .0697; Model A).

Given that boys/men were both more precise in estimating magnitudes (e.g., had lower
PAE) and were also more confident in their estimates compared to girls/women, one possi-
bility is that girls’/women’s lower confidence reflects their poorer performance. That is,
perhaps girls/women are just as confident as boys/men once their higher PAE is taken into
account. Model B tests this hypothesis by adding a control for estimation precision (i.e.,
participant’s trial-level PAE). This control reduced the magnitude of the gender coefficient
from −.048 (p = .001, Model A) to −.038 (p = .007, Model B). However, gender remained a
statistically significant predictor of confidence: Even when controlling for trial-level estimation
precision, girls/women were .038 points less confident in their estimates than were boys/men.

Discussion

Recall the boy and girl estimating numbers in our opening vignette. Though neitherwas very precise
in the location where they placed the number on the number line, confidence in estimation
performance was higher for the boy than the girl. The vignette partly reflected the gender gaps
revealed in the present research. In particular, we analyzed all available data on the number-line
estimation task inwhich participants alsomade trial-by-trial confidence judgments. Inmeta-analyses
of six studies with 758 participants (339 boys/men and 419 girls/women) and subsequent linear
mixed models of trial-by-trial number-line estimates and confidence judgments, boys/men were
more precise than girls/women in their number-line estimates. In addition, boys/men were more
confident than girls/women, evenwhen controlling for estimation precision. For the remainder of the
Discussion, we review potential mechanisms, future directions, and implications of these findings.

Table 3 Linear Mixed Models Predicting Trial-Level Confidence Judgments

Model A Model B
Coeff. (SE) Coeff. (SE)

Fixed Effect Estimates
Intercept .688*** (.020) .719*** (.020)
Participant’s PAE on the trial – −.247*** (.012)
Woman −.048** (.014) −.038** (.014)

Random Effect Estimates
U3 (Experiment) .054 (.014) .055 (.015)
U2 (Participant) .182 (.005) .180 (.005)
U1 (Trial) .235 (.001) .233 (.001)
AIC 881.0864 477.4147
BIC 920.8002 525.0713

Note. Trials nested within participant, which is nested within experiment. Model A predicts confidence using
only the participant’s gender and Model B predicts confidence using both the participant’s gender and the
participant’s trial-level PAE as a control

**p < .01. ***p < .001

Gender differences in confidence during number-line estimation 167



Gender Differences in Number-Line Estimation Performance
and Confidence

As compared to girls/women, why were boys/men more confident in their trial-by-trial
confidence judgments? As mentioned in the Introduction, confidence judgments can be influ-
enced by multiple theory- and experience-based factors (e.g., Undorf et al. 2018). The observed
gender gap in confidence could be explained by differences in judgment cue use by girls/women
and boys/men.We consider two possibilities here. First, the gender gap may reflect a concomitant
gap in people’s self-efficacy for performing math tasks. In this case, as compared to boys/men,
girls/womenmay in general believe they are less capable of solving math problems, which in turn
could lower girl’s/women’s confidence judgments even when they performed the number-line
estimation task with equal precision. Another contributing factor is based on recent evidence
demonstrating that confidence judgments are more strongly related to people’s familiarity with
estimated numbers than they are to actual performance (Fitzsimmons et al. 2019; Fitzsimmons
et al. 2020). The idea here is that people’s familiarity with specific numbers influences their
number-line estimation confidence, with greater familiarity producing greater confidence.

Although the present data do not provide a test of these hypotheses, both are testable and
arguably could contribute to the gender gap in confidence on this task. That is, as compared to
boys/men, girls/women may generally have less task-specific efficacy for number-line esti-
mation (either because of its math component, spatial component, or both) and may also have
less perceived familiarity with the numbers. In fact, lower self-efficacy may push some girls/
women away from engaging in math tasks, which in turn could reduce their actual familiarity
with those numbers. Most important, with minor adaptations of the methods used here, the
degree to which these (and other) factors jointly contribute to this gender gap in confidence
could be estimated. For instance, number-line estimation with trial-by-trial confidence judg-
ments could be supplemented with self-report methodology (e.g., asking participants to self-
explain why they rated their confidence as they did) or by collecting people’s math self-
efficacy and perceived familiarity with the numbers used in the task.

Implications for Education

Although we have characterized our effects of gender as small/medium according to statistical
convention, the practical implications of these findings are currently unknown and hence
important to explore (Rosenthal et al. 2000). For example, could a small gender difference on
number-line estimation impact performance on high-stakes tests, such as the SAT and GRE?
Performance on the number-line estimation task is critically important to help people know
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As compared to girls/women, why did boys/men make more precise number-line estimates?
Although considerable debate exists over the causes of such gender differences when they are
observed (e.g., Hyde 2014), we imagine that psychological (e.g., differences in math attitudes;
Sidney et al. 2019), social (e.g., differences in early spatial experiences, such as exposure to spatial
language, media, and toys; Caldera et al. 1989; Doyle et al. 2012; Pruden and Levine 2017; or
gendered stereotypes about math and spatial ability, McGlone and Aronson 2006; Moè and
Pazzaglia 2006), and possibly even biological factors (e.g., sexual dimorphism in the parietal
cortex; Goldstein et al. 2001) could contribute to the gender differences observed in the number-
line estimation task (as is the case for performance; e.g., Tosto et al. 2018). We leave it to future
research to evaluate the contribution of these factors to the present gender differences observed.



whether they are “in the ballpark”when solving a math problem and may partially explain why
number-line estimation is related to concurrent math ability (e.g., Fazio et al. 2014) and
predictive of future math ability (e.g., Bailey et al. 2014). And, self-confidence about math
ability has been found to be an important contributor to women’s and men’s course enrollment,
major, and career choices (Correll 2001; Ellis et al. 2016). As such, gender differences for
math and spatial tasks may be one of a myriad of reasons that women are less likely to pursue
and persist in STEM fields (for other reasons, see Ceci and Williams 2011; Ceci et al. 2009).

Given that a gender gap exists for number-line estimation and such a gap has possible
implications for persistence in math, what can be done to narrow it? Some interventions have
been found to effectively improve estimation precision (Fitzsimmons et al. n.d.; Opfer and
Siegler 2007; Opfer and Thompson 2008; Thompson and Opfer 2010). For example, one of the
studies included in our analyses (Fitzsimmons et al. n.d.) investigated the effectiveness of three
interventions for improving both performance and confidence. Participants first completed a
pretest in which they made a set of number-line estimates and made confidence judgments after
each estimate. They then completed an intervention, which involved either (1) studying correct
worked examples, (2) studying incorrect worked examples, or (3) receiving corrective feedback
on their pretest performance. On a posttest, performance was significantly improved (compared
to pretest) for participants who received corrective feedback or studied correct worked exam-
ples. However, the magnitude of confidence judgments did not change from pretest to posttest
for most groups. Thus, employing educational interventions aimed at improving people’s
confidence for number-line estimation remains a fruitful avenue for future research.

One fascinating possibility is that interventions aimed at increasing girls’/women’s confi-
dence in their task performance may benefit performance – and not only on the trained math
task (i.e., the number-line estimation task in the present case) but also on other math tasks. The
possibility itself derives from self-efficacy theory (Bandura 1977): People (in this case girls/
women) who are less confident in their ability to perform a task will be less persistent to solve
it accurately. For instance, if a student believes she will not perform well, she may not consider
effective solutions or may respond without considering other possible solutions. In this case,
poor self-efficacy is a self-fulfilling prophecy in that the belief in not doing well contributes to
poorer performance. This possibility may also partly explain (as discussed next) why gender
differences were smaller in confidence than in performance, as if the lower confidence by girls/
women added to what would otherwise be a smaller deficit in number-line estimation
performance. If this lower-confidence-undermines-performance hypothesis is correct, then
interventions aimed at enhancing confidence should also improve performance.

Limitations and Future Directions

In the current study, we found gender differences in confidence, even when controlling for
performance. We also found that the magnitude of the gender differences observed for
confidence were smaller than those for performance (g = .30 versus .52). This may lead some
readers to wonder what this suggests regarding gender differences in judgment accuracy. For
example, are boys/men overconfident in their number-line estimates compared to girls/wom-
en? Unfortunately, our data do not allow us to answer this question. To compute measures of
absolute accuracy (e.g., degree of overconfidence), judgments must be made on the same scale
as performance. In many of the experiments included in our analyses, CJs were made on a 3-,
4-, or 5-point scale, whereas PAE is calculated as the absolute deviation between the correct
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location on the number line and the participant’s estimate expressed as a proportion (i.e.,
divide by the range of the scale). Although we could have transformed the scales to be
comparable (e.g., divided the 3-point CJ scale by 3 to yield a proportion to be consistent with
PAE), the resulting index cannot be “unambiguously interpreted” (Dunlosky et al. 2016, p.
30). For example, we cannot be sure that a CJ rating of “2” on a 3-point scale corresponds to
.66 (or 66% confidence) in a participant’s mind.

Interpretation is made even more complicated by the fact that performance on the number-
line task is calculated as PAE, a continuous measure of performance. To assess whether a
person is over- or under-confident, we would need to establish that an estimate is correct or
incorrect and compare this to a participant’s confidence for their estimate. However, people are
rarely if ever exactly correct (i.e., PAE of 0) on this spatial-numeric task. For instance, even
adults who are experts in the 0–1000 numerical range exhibit some small PAE for the task
(e.g., Thompson and Opfer 2010, Experiment 1). To make it easier to calculate over- and
under-confidence, PAE could be dichotomized as correct vs. incorrect (e.g., within 10% of the
correct location). However, there is no justified theoretical reason to dichotomize this contin-
uous variable, and in doing so, researchers would lose important variability in individual
differences in this measure. Because of these issues, assessing the degree of over- or under-
confidence for the number-line estimation task will require future advances in measurement of
judgments and performance (so they can be made on comparable scales) for this task.

Although we cannot calculate measures of absolute metacognitive accuracy, we were able to
assess whether gender differences exist for relative accuracy, or the degree to which participants can
discriminate between number-line estimates that are more (vs. less) precise. We calculated relative
accuracy by computing a gamma correlation for each participants’ CJs and PAE (reverse coded for
ease of interpretation) across trials, then averaged these values across participants (Nelson 1984).We
chose to report this measure of relative accuracy to be consistent with and comparable to our
previous publications (Wall et al. 2016; Fitzsimmons et al. 2020; Fitzsimmons et al. n.d.). Gamma is
a nonparametric correlation that does not assume equal intervals between levels of a measure, with
values ranging from −1 to 1 (with values closer to 1 reflecting better discrimination, and values
closer to 0 indicating very little ability to discriminate between the precision of estimates). Across all
participants, we found the mean values of gamma were positive for both genders (boys/men: n=
309,M= .18, SD= .31; girls/women: n= 400,M= .20, SD= .28), which suggests that participants
have some ability to monitor the accuracy of their estimates. However, no reliable gender difference
was observed for relative accuracy (forest plot and analyses are displayed in Appendix 3). Taken
together, the present outcomes suggest that although girls/women (as compared to boys/men) are
less confident in their task performance, they are equally able to discriminate between estimates that
are more versus less precise.

Finally, our analyses included data from participants ranging from early childhood to
adulthood, but we chose not to focus on developmental trends in our outcomes of interest.
We argue that to assess developmental changes in confidence (for example), a cross-sectional
or longitudinal design should be used (cf. Hutchinson et al. 2019). In particular, participants of
various ages should estimate numbers within the same number-line scale (and in the datasets
we analyzed, not all participants estimated numbers within the same scales). However,
interpreting these data could be challenging given that the very oldest children and adults will
be highly accurate in some of the smallest numerical ranges, and the very youngest children
will be highly inaccurate in some of the largest numerical ranges (cf. Thompson and Opfer
2010). Alternatively, researchers could follow children from younger to older ages to assess
how confidence changes over short and long periods of time. Investigating gender differences
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across development is a fascinating direction for future research, but not one we can ade-
quately address with the current dataset given we do not have enough variation in age and
number-line scales to draw strong conclusions. Nevertheless, we conducted linear mixed
models to statistically test for developmental effects to assess whether the magnitude of gender
differences in confidence increases (or decreases) with grade and found no evidence of
developmental effects in gender differences in confidence (Appendix 4).

Conclusion

The current study suggests that gender is an important source of individual differences in confidence
judgments on trial-by-trial number-line estimation. In our analyses with over 700 participants who
made estimates across a variety of number-line scales, we found evidence that boys/men and girls/
womendiffer on both performance and confidence for number-line estimation. These findings advance
research showing that performance is more precise for boys/men than girls/women and are the first to
show that confidence judgments are higher for boys/men than girls/women, evenwhen controlling for
performance. Asmore researchers collect measures of confidence for number-line estimation, we hope
these gender analyses could be replicated in the future. In addition, these outcomes should encourage
researchers to consider analyses of gender differences for studies onmath cognition andmetacognition
and provide pathways for future research to address our speculations about potential mechanisms
underlying the gender differences observed. Research in this area also raises important questions about
how gender gaps in number-line estimation performance and confidence can be narrowed and how
such gaps can impact self-assessment, self-efficacy, and persistence in math and math-intensive fields.
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Appendix 1: Further Details on Hedges’ g Meta-Analyses

To conduct our Hedges’ gmeta-analyses, we followed these four steps: Once an effect size (g)
was calculated for all of the samples, we (1) estimated heterogeneity among the effect sizes, (2)
estimated the population variability in effect sizes, (3) used this estimate of population
variability to provide random-effects weights of sample effect sizes, and (4) used these
random-effects weights to estimate a random-effects mean effect size and standard error of
this estimate. In particular, heterogeneity was estimated using the Q-statistic (Cochran 1954),
computed with the following equation:

ðA1Þ
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In Eq. A1, wi = the weight of study i (wi=1/SE2
i, where SEi= the standard error of the effect size

estimate for study i), gi= the effect size estimate from study i, and gi= the mean effect size across the
samples, such thatQ is distributed as chi-square with k-1 degrees of freedom, where k= the number of
samples. To estimate population variability in effect sizes (τ2), the following equation was used:

τ2 ¼ Q− k−1ð Þ= Σwið Þ− Σw2
i

� �
= Σwið Þ� �� 	 ðA2Þ

Random-effects weights (w*i) were computed as: w*i = 1/(τ2 + SE2
i), where SEi = the standard

error of the effect size of study i. Finally, the random-effects mean effect size (g) was
calculated with the following equation:

g ¼ Σ w*gð Þ=Σ w*ð Þ ðA3Þ
The standard error of this mean effect size was computed as SEg = [Σ(w*)]½ .

Appendix 2: Analyses of Gender Differences in Performance

Hedges’ g Meta-Analysis

A medium gender difference in precision occurred favoring boys/men, presented in Fig. 3.
Averaged across the 18 effect sizes, boys/men were more precise in their number-line
estimates than were girls/women, g = .52, 95% CI [.31, .74], p < .001. No significant hetero-
geneity was observed among the effect sizes, Q(17) = 24.46, p = .11; I2 = 30.50%. Conducting
this same meta-analysis on performance using a fixed-effects model resulted in a similar
overall mean effect size, g = .48, 95% CI [.32, .63], p < .001.

Linear Mixed Effects Model

Table 4 presents a nested linear mixed effect model predicting trial-level PAE from the
participant’s gender. The model replicated the findings from the Hedges’ g meta-analysis on
the effect of gender on estimation precision. Using the fixed-effects estimates, women’s PAE
is estimated to be .039 points higher than men’s PAE (p < .001). Given the intercept of .126
(p < .001), the fixed-effects estimate of the average man’s PAE was .126 versus .165 (.126 +

Table 4 Linear Mixed Models Predicting Trial-Level Precision (Measured as PAE)

Model

Coeff. (SE)
Fixed Effect Estimates
Intercept (SE) .126*** (.018)
Participant-Level (U2)
Woman .039*** (.007)
Random Effect Estimates
U3 (Experiment) .003 (.001)
U2 (Participant) .006 (.000)
U1 (Trial) .018 (.000)
AIC −23,070.98
BIC −23,031.27

Note. Trials nested within participant, which is nested within experiment. PAE = proportion absolute error.
***p < .001
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.039) for women. Thus, it appears that the average girl’s/woman’s estimate had 31% more
error than the average boy’s/man’s estimate (.039 /.126 = .3095).

Appendix 3: Gender Differences in Relative Metacognitive Accuracy

No reliable gender difference was observed for relative accuracy, as calculated by computing
an intra-individual gamma correlation between confidence judgments and performance (Fig.
4); g = .11, 95% CI [−.13, .35], p = .27. No significant heterogeneity was observed among the

Study, Expt, and Grade Effect size 95% CI lower 95% CI upper
Wall et al. (2016), Expt 1, Grade 1 -0.28 -1.21 0.65

Wall et al. (2016), Expt 1, Grade 2 1.12 0.26 1.99

Wall et al. (2016), Expt 1, Grade 4 0.75 -0.23 1.74

Wall et al. (2016), Expt 2, Grade 1 -0.40 -1.36 0.56

Wall et al. (2016), Expt 2, Grade 2 0.61 -0.27 1.48

Wall et al. (2016), Expt 2, Grade 4 1.17 0.03 2.30

Wall et al. (2016), Expt 3, Gorade 1 1.30 0.28 2.33

Wall et al. (2016), Expt 3, Grade 2 0.93 -0.22 2.33

Wall et al. (2016), Expt 3, Grade 4 0.93 0.23 1.62

Wall et al. (n.d.), Expt 1, Grade 2 0.75 -0.16 1.66

Fitzsimmons et al. (n.d.), Expt 1, Grade 1 0.46 -0.004 0.93

Fitzsimmons et al. (n.d.), Expt 1, Grade 2 0.29 -0.36 0.95

Fitzsimmons et al. (n.d.), Expt 2, Adults 0.97 0.41 1.52

Fitzsimmons et al. (2020), Expt 1, Adults 0.20 -0.23 0.63

Fitzsimmons et al. (2020), Expt 2, Adults 0.26 -0.13 0.66

Feltner & Thompson (n.d.), Expt 1, Grade 5 -0.002 -0.55 0.55

Fitzsimmons et al. (2019), Expt 1, Grade 4 0.72 0.19 1.26

Fitzsimmons et al. (2019), Expt 1, Grade 5 0.89 -0.26 2.03

Grand Mean 0.52 0.31 0.74

Fig. 3 Forest Plot of Effect Sizes for the 18 Samples Included in the Hedges’ g Meta-Analysis of Performance

Study, Expt, and Grade Effect size 95% CI lower 95% CI upper
Wall et al. (2016), Expt 1, Grade 1 -0.03 -1.02 0.95

Wall et al. (2016), Expt 1, Grade 2 0.58 -0.26 1.41

Wall et al. (2016), Expt 1, Grade 4 -1.34 -2.39 -0.28

Wall et al. (2016), Expt 2, Grade 1 -0.40 -1.36 0.56

Wall et al. (2016), Expt 2, Grade 2 -0.25 -1.13 0.64

Wall et al. (2016), Expt 2, Grade 4 -0.19 -1.33 0.96

Wall et al. (2016), Expt 3, Grade 1 -0.08 -1.11 0.95

Wall et al. (2016), Expt 3, Grade 2 0.37 -0.37 1.10

Wall et al. (2016), Expt 3, Grade 4 1.13 0.39 1.86

Wall et al. (n.d.), Expt 1, Grade 2 -0.60 -1.50 0.30

Fitzsimmons et al. (n.d.), Expt 1, Grade 1 0.27 -0.22 0.75

Fitzsimmons et al. (n.d.), Expt 1, Grade 2 0.17 -0.49 0.83

Fitzsimmons et al.  (n.d.), Expt 2, Adults 0.21 -0.39 0.81

Fitzsimmons et al. (2020), Expt 1, Adults -0.09 -0.51 0.34

Fitzsimmons et al. (2020), Expt 2, Adults 0.40 -0.04 0.83

Feltner & Thompson (n.d.), Expt 1, Grade 5 -0.17 -0.76 0.43

Fitzsimmons et al. (2019), Expt 1, Grade 4 -0.18 -0.71 0.35

Fitzsimmons et al. (2019), Expt 1, Grade 5 -0.65 -1.77 0.47

Grand Mean 0.11 -0.13 0.35

Fig. 4 Forest Plot of Effect Sizes for the 18 Samples Included in the Hedges’ g Meta-Analysis of Relative
Metacognitive Accuracy
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effect sizes, Q(17) = 27.47, p = .05, I2 = 38.11%. The fixed-effects model resulted in a similar
overall mean effect size, g = .07, 95% CI [−.09, .23], p = .28.

Appendix 4: Gender Differences in Confidence (Controlling
for Performance) by Grade and Number-Line Scale

Note. Each point represents the effect of gender while controlling for PAE, averaged across
experiments involving participants who are in the same grade and estimated within the same
number-line scale. Negative values indicate boys/men are more confident than girls/women.
The horizontal line represents the grand mean effect of gender (b = −0.38). The size of each dot
is mapped to the number of observations (participants x items), with larger sizes representing
more observations.
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