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A B S T R A C T

Young children's estimates of numerical magnitude increase approximately logarithmically with
actual magnitude. The conventional interpretation of this finding is that children's estimates
reflect an innate logarithmic encoding of number. A recent set of findings, however, suggests that
logarithmic number-line estimates emerge via a dynamic encoding mechanism that is sensitive to
previously encountered stimuli. Here we examine trial-to-trial changes in logarithmicity of nu-
merosity estimates to test an alternative dynamic model (D-MLLM) with both a strong loga-
rithmic component and a weak response to previous stimuli. In support of D-MLLM, first-trial
numerosity estimates in both adults (Study 1, 2, 3, and 4) and children (Study 4) were strongly
logarithmic, despite zero previous stimuli. Additionally, although numerosity of a previous trial
affected adults’ estimates, the influence of previous numbers always accompanied the loga-
rithmic-to-linear shift predicted by D-MLLM. We conclude that a dynamic encoding mechanism is
not necessary for compressive mapping, but sequential effects on response scaling are a possible
source of linearity in adults’ numerosity estimation.

1. Introduction

Mapping number to space is fundamental for everyday life. Humans exhibit spontaneous associations between number and space
even in early infancy (de Hevia, Izard, Coubart, Spelke, & Streri, 2014; de Hevia & Spelke, 2010, 2013; Lourenco & Longo, 2010), as
do other species, such as chimpanzees and newborn chicks (Adachi, 2014; Drucker & Brannon, 2014; Rugani, Vallortigara, Priftis, &
Regolin, 2015; see McCrink & Opfer, 2014, for review). The nature of this mapping is not limited to non-symbolic numbers (i.e.,
numerosity), extends to symbolic numbers, and improves dramatically with age and education (Ashcraft & Moore, 2012; Dehaene,
Izard, Spelke, & Pica, 2008; Geary, Hoard, Nugent, & Byrd-Craven, 2008; Gunderson, Ramirez, Beilock, & Levine, 2012; Hurst, Leigh
Monahan, Heller, & Cordes, 2014; McCrink & Opfer, 2014; Opfer & Furlong, 2011; Siegler & Booth, 2004; Siegler & Opfer, 2003).
However, it is still controversial whether approximately logarithmic compression in number-to-space mappings should be attributed
to primitive, logarithmic encoding of numerical information (Dehaene, 2003, 2007; Nieder & Merten, 2007; Siegler & Opfer, 2003) or
to a dynamic encoding mechanism that is sensitive to the statistics of previously encountered numbers (Anobile, Cicchini, & Burr,
2012; Cicchini, Anobile, & Burr, 2014).

1.1. Evidence for compressive number-to-space mapping

Compressive number-to-space mappings are perhaps most evident in developmental studies of number-line estimation, such as
when children estimate the location of a number (e.g., 15) on a line flanked by two other numbers (e.g., 0 and 30) (Fig. 1A). In early
development, estimates of numbers increase as a logarithmic function of the number to be estimated (for review, see Kim & Opfer,
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2017). With schooling, mapping of number onto a line becomes linear (the “logarithmic-to-linear shift,” Siegler, Thompson, & Opfer,
2009). This logarithmic-to-linear shift has been observed across a wide variety of number-line tasks, including ones that vary the
magnitude of numbers over several orders of magnitude (Dehaene et al., 2008; Opfer & Siegler, 2007; Siegler & Opfer, 2003;
Thompson & Opfer, 2010), that present symbolic or non-symbolic numbers (Dehaene et al., 2008; Sasanguie, De Smedt, Defever, &
Reynvoet, 2012; Sella, Berteletti, Lucangeli, & Zorzi, 2015), that present bounded or unbounded number lines (Kim & Opfer, 2017;
Qin, Kim, & Opfer, 2017), and that provide instruction with or without anchors (Opfer, Thompson, & Kim, 2016).

Compressive mappings are also present in adults’ estimates under certain circumstances—lack of formal education (Dehaene
et al., 2008), attentional resources (Anobile et al., 2012; Cicchini et al., 2014; Dotan & Dehaene, 2016), or time (Dotan & Dehaene,
2013, 2016)—that arguably put adults on a more equal cognitive footing with children. Effects of formal education were found in a
study that examined number-line estimation among the Amazonian Mundurucu without formal education and American adults
(Dehaene et al., 2008). When logarithmic and linear regressors were tested, the logarithmic regressor better predicted Mundurucu
adults’ estimates than linear regressor, whereas the reverse was true for educated American adults—unless numbers were large and
non-symbolic. Thus, it appears that logarithmic compression may be the default spatial-numeric mapping without schooling.

Logarithmically compressive mappings are also evident to some degree among educated adults if they are placed under atten-
tional load. For example, when attentional resources were taxed in a dual task (number-line and another irrelevant task), adults’
estimates had a strong logarithmic component (Anobile et al., 2012; Cicchini et al., 2014; Dotan & Dehaene, 2016). To quantify the
degree of logarithmicity, Anobile et al. (2012) used a mixed log-linear model (MLLM; cf. Dehaene et al., 2008; Karolis, Iuculano, &
Butterworth, 2011) that integrates logarithmic and linear functions:

= +y a U
U

x x
ln( )

ln( ) (1 ) ,
(1)

where y denotes the estimate to a given number x, a is a scaling factor that scales a represented magnitude of x, U the number at the
right end of a number line, and λ an index of logarithmicity. If estimates are perfectly linear, λ equals 0, whereas λ is 1 for completely
logarithmic estimates (Fig. 1B). Adults produce estimates with less compression (λ=0.11 for adults in Cicchini et al., 2014) com-
pared to young children (λ=0.77 for children in Opfer et al., 2016). However, even educated adults showed greater logarithmicity
(λ=0.38) when attention was deprived by an additional task given with an estimation task (Cicchini et al., 2014).

Finally, logarithmic components are evident in the early processing stages of number-line estimation. Dotan and Dehaene (2013,
2016) tracked finger trajectories while adults were positioning a given number on a number line. In the study, fingers were observed
to move first toward a position that was consistent with a log-scaled number position around 500–1050ms and was later corrected to
the direction to a more linear position of a number (Dotan & Dehaene, 2013). Taken together, findings from adult number-line
estimation indicate that formal education provides the knowledge that allows top-down control of an inherent logarithmic bias, but
this control that suppresses the logarithmic influence requires attention and time (but also see Dotan & Dehaene, 2016, for an
alternative explanation for healthy adults).

Understanding the source of compressive mappings is both theoretically and practically important. Theoretically, it provides a
fundamental understanding of an inherent mental number line that humans appear to share with nonhuman species (Nieder &
Dehaene, 2009) and of basic quantitative skills, such as comparing, approximating, and projecting combinations of quantities (Opfer
& Siegler, 2012). In addition, logarithmic compression in spatial-numeric mappings has been viewed as important evidence for
numerical representation following the Weber-Fechner law, which describes the relationship between the physical magnitude and the
subjective sensation (Siegler & Opfer, 2003). According to the psychophysical principle, the perceived magnitude increases as the
logarithm of an actual magnitude. Practically, nonlinearity in number-to-space mapping also predicts several real world outcomes,
including accuracy of memory for number (Thompson & Opfer, 2016; Thompson & Siegler, 2010), number categorization (Opfer &
Thompson, 2008), dyscalculia (Geary et al., 2008), math scores (Ashcraft & Moore, 2012; Fazio, Bailey, Thompson, & Siegler, 2014;
Gunderson et al., 2012; Kim & Opfer, 2017; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013), and quality of economic utility
judgments (Peters & Bjalkebring, 2015; Schley & Peters, 2014).

Fig. 1. Illustration of a non-symbolic number-line task (A) and responses predicted by the MLLM with various degrees of logarithmicity (B).
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1.2. Sources of compression

1.2.1. Static logarithmic encoding
Why might early, untutored number-line estimates be logarithmically compressed? Two (non-mutually exclusive) explanations

have been offered. The classical explanation is that early magnitude estimates are logarithmic due to an innate encoding system first
proposed by Dehaene and Changeux (1993). In the neural network model, numerosity detectors that are inherently hardwired to
respond selectively to a preferred numerosity, forming a Gaussian distribution of activity on a log scale. Because of the log-normal
coding, overlaps among activations of numerosity detectors increase with number. For example, numerosity detectors that peak to 9
objects are more activated by 14 objects than by 4 objects despite the same distance between 9 vs. 14 and 9 vs. 4. Thus, this log-
normal feature explains numerical performance obeying the Weber-Fechner law and underlying mechanisms of a logarithmic en-
coding of numbers (Dehaene & Changeux, 1993; Verguts & Fias, 2004; also see Gallistel & Gelman, 2000, for linear encoding with
increasing variability).

Independent empirical support for a logarithmic encoding mechanism like that by Dehaene and Changeux (1993) came from a
series of later findings by Nieder and colleagues (for a review, see Nieder, 2005). These investigators obtained single-cell recordings
of neural activity as awake monkeys tracked the number of objects in a set during a delayed match-to-sample task. They found that
neurons in the prefrontal cortex (PFC) and the primate analog of the human intraparietal sulcus (IPS) showed clear numerosity
tuning, with peak firing for a preferred numerosity and decreasing activity as numerosity deviated from the preferred magnitude
(Nieder & Merten, 2007). Critically, the tuning curves of these ‘numerons’ showed log-normal variability as modeled in Dehaene and
Changeux (1993). Thus, collectively, the number-tuned neurons identified by Nieder and colleagues formed a physiological basis for
the Weber-Fechner law.

1.2.2. Dynamic encoding
Against the logarithmic encoding account, an alternative view—the dynamic encoding hypothesis (Anobile et al., 2012; Cicchini

et al., 2014)—is that compressive mapping can be attributed to a “central tendency of judgment,” which is the tendency of estimates
to be biased toward the mean of a stimulus distribution (Cross, 1973; Garner, 1953; Hollingworth, 1910; Jesteadt, Luce, & Green,
1977; see Gescheider, 1988, for review). For example, the magnitude of 15 is likely to be underestimated if preceded by 1 and
overestimated if preceded by 29 as the central value of tested stimuli moves toward 1 or 29.

According to the dynamic encoding account, numbers are represented linearly with scalar variability (i.e., fuzzier and less
confident representation for larger number). As a result, if estimating a larger number, responders rely more heavily on prior
knowledge of previously encountered stimuli and integrate this information with the linear representation of the current magnitude.
This dynamic process gives rise to the central tendency of judgment as the central values of the mental set (i.e., the prior) is updated
online in the course of estimation (also see Anobile et al., 2012, for a fixed prior). From this perspective, logarithmicity in number-
line estimation reflects the dynamic encoding mechanism, such that a current estimate is influenced by the number previously
encountered, which tends to anchor the next estimate. Specifically, under a central tendency, numbers are underestimated if pre-
ceded by a smaller number trial, whereas numbers are overestimated if preceded by a larger number trial. Therefore, a logarithmic
pattern of estimates on a number line does not come from a “static logarithmic transform,” but emerges online from regression of
estimates toward the mean of the tested distribution over trials.

Evidence in favor of the dynamic encoding hypothesis came from a study by Cicchini et al. (2014). They asked five adults to
estimate the position of a non-symbolic number (a set of dots) on a 0–100 number line, with 9 unique numerosities tested on a total of
144 trials. The researchers used a dual-task paradigm to elicit more compression in mappings by boosting a central tendency.
According to the dynamic encoding account, greater logarithmic compression was expected in a dual-task with additional attentional
demands. This was because greater cognitive demands could increase response noise—i.e., Weber fraction in the likelihood—or
reliance on the history of numbers previously experienced, which in turn leads to a greater central tendency (Anobile et al., 2012).
Cicchini and colleagues examined the nonlinearity of estimates using the MLLM (Eq. (1)). Logarithmicity (λ) of estimates was greater
in a dual task than that in a single number-line task, supporting the idea that the lack of attentional resources yields more logarithmic
estimates. Furthermore, when regressed against numerosity from the previous trials, estimates on the current trial were under-
estimated after smaller previous numerosity, whereas overestimated after larger previous numerosity in both single- and dual-task
conditions. Compared to the single-task condition, under attentional overload, the inter-trial dependency was stronger along with
greater logarithmicity.

Cicchini et al. (2014) further proposed a mathematical model to account for logarithmic patterns that might have resulted from
the sequential dependencies. The model derived from a Kalman filter produces a current estimate based on the knowledge of previous
trials while simultaneously updating the response distribution on the current trial. Cicchini et al. (2014) showed that the model
reliably predicted compressive estimates as well as captured the inter-trial dependencies—i.e., underestimation after small trials and
overestimation after larger trials—that cannot be simulated using the conventional MLLM. The integration model fitted estimates
better than the MLLM in a dual-task condition, where sequential effects were stronger. On the other hand, in a single-task condition,
in which estimates were more linear, the model did not predict estimates better than the MLLM.

Together, these results suggest that more attentional demand elicited greater logarithmicity and a stronger central tendency. From
these findings, Cicchini et al. (2014) concluded that attentional load increased logarithmicity because it increased a central tendency.
Based on the supposed cause-effect relation between dynamic encoding and logarithmicity, they claimed, “the strongest evidence for
logarithmic coding [of number] was the logarithmic number line: Because that now has a more plausible explanation, there exists no
evidence at all for logarithmic encoding of number in primate brains” (p. 7871).
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1.3. How dynamic and logarithmic encodings might interact to produce a logarithmic-to-linear shift

Theoretically, logarithmic vs. dynamic encoding of numbers are not mutually exclusive—the nature of the default encoding is
conceptually distinct from the nature of sequential effects. Ideally, each of these should be jointly modeled to check for potential
interactions. In this section, we examine some potential interactions that might occur.

Our basic idea is that in a number-line task like the one in Fig. 1A, estimates can be viewed as ratings of the similarity of the target
number (e.g., 15 dots) and endpoint (e.g., 30 dots). When the target and endpoint are highly similar (e.g., 29 and 30), the subject
marks a position on the line that is close to the endpoint. When the target and endpoint are dissimilar (e.g., 1 and 30), the subject
marks a position on the line that is far from the endpoint (for this interpretation of number-to-space mappings, see Cantlon, Cordes,
Libertus, & Brannon, 2009). Because similarity ratings are highly context-dependent (Goldstone, Medin, & Halberstadt, 1997; Medin,
Goldstone, & Gentner, 1993; Nosofsky, 1988; Parducci, 1965; Tversky, 1977), number-line estimates would be expected to be in-
fluenced by context as well (e.g., reference points, Holyoak, 1978).

In terms of sequential effects, the most important context effects concern the effect of similarity among pairs of compared items on
later similarity judgments (Sjöberg & Thorslund, 1979; Tversky, 1977). A common finding in this research is that if participants had
previously judged the similarity of low-similarity items (e.g., wasp-chicken), the similarity ratings of highly similar items (e.g., goose-
chicken) increased; in contrast, after participants had rated the similarity of high-similarity items (e.g., sparrow-chicken), the si-
milarity ratings of high-similarity items (e.g., goose-chicken) decreased (Sjöberg & Thorslund, 1979). In the psychophysical litera-
ture, these context effects are often considered to result from adjustment to an internal response scale over trials, which is known as
the adaptation level (Helson, 1964; Parducci, 1965) or average response level (Petrov, 2008; Petrov & Anderson, 2005).

The same sequential effects on response scaling should be expected in the case of number-line estimation. If one had just judged
the similarity of low-similarity items (e.g., 1 and 30), the similarity rating of 15 and 30 would be exaggerated (as on a compressive
scale), but if one had just judged highly similar items (e.g., 29 and 30), the similarity rating of 15 and 30 would be minimized (as on
an expansive scale). These context effects must also be weighted. If no memory trace is left by a previous trial (e.g., for trials too long
before the current trial or in subjects with poor memory or attention), context cannot have an effect and the weight should be set to 0
when the weight is between 0 and 1 (Staddon, King, & Lockhead, 1980; Ward & Lockhead, 1970). In contrast, to the extent that the
subject responds more to previous trials than the current trial, the weight would increase from 0.5 towards 1.

Thus, number-line estimates seem likely to be a product of three key components. The first component concerns the psychological
scaling of numbers (as indexed by λ in Fig. 1B) before any other numbers have been presented. The next component concerns the
differences between number pairs in successive trials (e.g., 15 and 30 vs. 29 and 30 when 15 is presented after 29). For number lines
with a fixed upper bound, the differences between pairs reduce to the differences between numbers presented in previous and current
trials (e.g., 29−15; xi−1− xi in Eq. (4) below). In the case of presenting the same number repeatedly, xi−1− xi is 0 (e.g.,
29−29=0), but in the case of presenting different numbers, the component is used to readjust the response scale of numbers (λ in
Eq. (4)). The third component concerns the weight of the sequential effect (w in Eqs. (2) and (4) below), which must be 0 on the first
trial and is generally found to be equal to 0 on all trials other than the immediately preceding one (Gescheider, 1988).

To check the plausibility of this idea, we formulated a dynamic mixed log-linear model (D-MLLM) that incorporated the three
components and simulated its performance under several conditions. The D-MLLM includes two major parts: a psychological scale of
numbers that is either logarithmic or linear and a sequential dependency on the previous trial. It is formulated as follows:

= + >y w p w x i(1 ) · , 1,i i i 1 (2)

where yi indicates an estimate on i trial, pi a magnitude encoding of an i-trial number, and w a weight of a number presented prior to
the current trial (xi−1) on the estimate of the next number tested.1 The weight parameter is between 0 and 1, such that it can reflect
the relative influence of sequential effects and representation of current trial. In our simulations below, a conservative estimate of the
weight parameter (w) comes from the strength of the central tendency of judgment (which integrates sequential effects over all trials),
but the weight component more broadly reflects the relative influence of sequential effects and representation. This weight parameter
produces dynamic changes in the response scaling that would mimic changes in the psychological scaling, given by Eq. (3):

= +p a U
U

x x
ln( )

ln( ) (1 ) .i i i i i
(3)

pi is similar to the MLLM (Eq. (1)) except that the representation of numerical magnitude is updated from trial to trial based on how
similar the current number is to the upper bound in a context of the previous trial:

= w U x U x(1 (( ) ( )))i i i i1 1 (4)

= w x x(1 ( )).i i i1 1

1 Note that Cicchini et al. (2014) modeled sequential effects using previous estimates (yi-1) instead of previous stimuli (xi-1), assuming that
previous estimates would be the best replacement for what responders remember for previous stimuli. However, their empirical test used previous
stimuli (not responses) to test for sequential effects, arguing that the central tendency of judgment can be directly probed with preceding stimuli. For
simplicity, our current model also uses a stimulus that is presented before the current trial to model and test sequential dependencies, but note that it
is also possible for the current trial to rely on previous estimates or both of previous estimates and stimuli (Mori & Ward, 1995; Petrov & Anderson,
2005).
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In Eq. (4), the logarithmicity on i trial (λi) is between 0 and 1 and adjusted from the previous logarithmicity (λi−1) based on the
difference between previous (xi−1) and current (xi) stimuli, weighted by the parameter w. Therefore, in a case, where 15 is estimated
on a 0–30 number line, the logarithmicity decreases if the current trial follows a larger trial (e.g., 29) that exaggerates the dissimilarity
of 15 to 30; the logarithmicity of the current trial increases after a trial of a smaller number (e.g., 1) that makes the similarity between
15 and 30 more salient. This postulate provides interesting predictions for order effects in estimates. If participants are given stimuli
in an ascending order, estimates will be more logarithmic, whereas they will be more linear if stimuli are given in an descending
order (Fig. A1). Critically, there is no weight on the first trial—i.e., w=0—because there have been no previous trials before the first
trial. Thus, on the first trial, the D-MLLM is exactly the same as the MLLM.

A noise-free simulation of D-MLLM is presented in Fig. 2. As in Cicchini et al. (2014)’s argument, when initial (first-trial) estimates
were simulated as completely linear (λ1=0) and the weight of the previous stimulus had been set high (w=0.7 to 1), median
estimates pooled over all trials were perfectly compressive (λ=1), and the logarithmicity index increased after just a few trials
(Fig. 2A). Similarly, when initial estimates were set as completely logarithmic (λ1=1) and the weight of the previous stimulus was
high (w=0.7 to 1), median estimates remained highly compressive (λ=1), though without trial-to-trial changes in logarithmicity
(Fig. 2B). In this sense, a strong central tendency of judgment would have a compressive effect on median estimates (i.e., pooled over
all trials).

Simulations from the same model also depict what happens when the effect of the previous trial is smaller (w=0 to 0.3). When
initial estimates were set to be linear (Fig. 2C, λ1=0), median estimates barely increased in compression for smaller w’s (λ=0.01 to
0.11 when w=0 to 0.1) and more noticeably for a larger w (λ=0.38 if w=0.3). But if initial estimates were completely logarithmic
(λ1=1), the logarithmic component of median estimates fell fast with w’s that were between 0.03 and 0.3 (λ=0.14 to 0.46), with
most of the change occurring over the first 10 trials (Fig. 2D), whereas median estimates stayed logarithmic over time for zero or
almost zero w’s (λ=0.78 to 1 if w=0 to 0.01). Thus, initially logarithmic estimates could either remain so when the weight of
previous trials is high or give rise to a logarithmic-to-linear shift when the weight is low (e.g., 0.03 to 0.3).

Theoretically, this interaction between a high logarithmicity component and small sequential effect is very interesting because it
can address some surprising developmental differences, such as age- (and educational-) differences in estimating non-symbolic
number (e.g., Dehaene et al., 2008; Qin et al., 2017; Sella et al., 2015; this manuscript, Study 4). In the D-MLLM model, those who
appear to represent number linearly on the number-line task (like educated older children and adults) may nevertheless encode
number logarithmically, but remember and take advantage of previous stimuli to linearize their responses. On the other hand,
children with limited memory resources would not be expected to exploit metric information about sequential numbers and thus to
rely on logarithmic encoding alone. In this way, the D-MLLM allows us to distinguish between age-related changes in dynamic
response scaling from age-related changes in numerical representations.

2. Overview of studies 1–4

The current studies revisit whether any causal relation exists between sequential effects and compressive estimates of numbers, as
well as to test predictions from D-MLLM. To test whether dynamic encoding is the sole source of logarithmic estimates, Studies 1–4
examined participants’ initial estimates in a number-line task. On the first trial, no sequential effect is possible because no previous
number has been encountered. Study 2 addressed the same issue using a same-numerosity design, where participants were repeatedly
tested on the same numerosity. Thus, like first-trial information in Studies 1–4, inter-trial differences were non-existent in Study 2, so
estimates would be expected to remain either logarithmic or linear.

To examine how dynamic processes might interact with logarithmic encoding over the course of estimation, Studies 1–4 also
examined logarithmicity of estimates on a trial-by-trial basis, such that the predicted dynamic effects of D-MLLM could be tested. If

Fig. 2. Simulations of 300 virtual participants using the D-MLLM. First-trial estimates, median estimates collapsed over trials, and trial-to trial
changes in the compression index are presented across different initial logarithmicity (λ1) and weight parameters (w). For the simulations, scaling
factor a equaled 1, and 20 numbers used in the present paper were used in random order.
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the initial encoding mode was logarithmic and interacted with a dynamic process (as in our D-MLLM simulation), a logarithmic-to-
linear shift would be expected in Studies 1, 3, and 4, but not Study 2. These same issues were explored in adults’ estimates of non-
symbolic numbers alone (Studies 1, 2, and 3), as well as in children’s and adults’ estimates of non-symbolic and symbolic numbers
(Study 4).

3. Study 1

In Study 1, we sought to replicate sequential effects with a larger number of adult participants (n=40) and more numerosities
(20 numerosities between 0 and 30) than previously tested (Cicchini et al., 2014; n=5 and 9 numerosities between 0 and 100). The
increase in sample size was necessary to obtain the statistical power necessary to make meaningful inferences about single-trial
estimates. In Cicchini et al. (2014), numerosities as small as 2 and 3 were used with large numerosities beyond the subitizable range.
Considering such a short presentation of an array of dots (240ms), it is highly likely that small numerosities were easily tracked,
whereas magnitude of large numerosities, like 67, were estimated with difficulty. Moreover, it is possible that distinct numerical
systems were applied in approximating magnitude, depending on the subitizability of numerosity (Feigenson, Dehaene, & Spelke,
2004). The authors also reported that there were no effects of previous trials for small, subitizable numerosities (Cicchini et al.,
2014). In the current study, only numerosities larger than 4 were included, such that the same numerical system would be in effect for
all stimuli. We also expected that estimation of the larger number of numerosities on a smaller scale would allow us to examine
dynamic effects in number-line estimation more thoroughly.

3.1. Method

3.1.1. Participants
Forty undergraduate students at the Ohio State University participated in the study (M=20.55 years, SD=3.08 years, 19 male

students). All the participants had normal or corrected-to-normal vision. They received credit in return for their participation.

3.1.2. Procedure and design
Participants were given a non-symbolic number-line task, in which they were shown a set of dots (5–29) on a computer screen and

asked to estimate the number of dots by mouse-clicking a position on a line flanked by 0 dots on the left and 30 dots on the right
(Fig. 1A). On each trial, a set of to-be-estimated dots were shown briefly (240ms) and immediately followed by a random-noise mask,
employed to prevent counting. This procedure continued for 3 blocks of 20 trials. The to-be-estimated numerosities were chosen to
sample non-subitizable numbers evenly: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29. Compared to the
previous study, in which only 9 numerosities on a 0–100 scale were used (Cicchini et al., 2014), the current study included most of
the numerosities between 0 and 30 except for those that were subitizable or might serve as landmarks. By doing so, mappings of all
possible numerical values onto a number line and their trial-by-trial changes were examined more exhaustively. The order of nu-
merosities presented was determined by a balanced Latin square, such that each numerosity was presented to two participants on
each of the 20 trials in a block. The size of dots was controlled on half the trials: the dot size was equal to the size of the 30 dots at the
right end for half the trials, while the total surface area covered by dots was the same as the aggregate of the surface of the right-end
dots on the other half trials. After instructions, participants started the task with no practice trials or feedback of any kind.

3.2. Results

If dynamic encoding were the only cause of logarithmic numerosity estimates, the central tendency of judgment should ac-
company logarithmic compression in estimates. Thus, if estimates are not logarithmic, but completely linear, the central tendency of
judgment would not be expected. To examine this, we first tested if median estimates were logarithmically compressive. The median
positions of participants’ estimates were regressed against the number of dots presented. For this purpose, we used the MLLM (Eq.
(1)). As shown in Fig. 3A.1, collapsing over all the 60 trials, median estimates were completely linear (λ=0), replicating findings
from schooled participants in Dehaene et al. (2008).

Weights of the logarithmicity (λ) parameter were next tracked on a trial-by-trial basis using median estimates of each numerosity
collapsing over participants on each trial (a scatter plot for each trial is presented in Fig. A2). Against the idea that dynamic encoding
is solely responsible for logarithmic estimates, a large logarithmic component was evident on the first trial (λ=0.85), but decreased
drastically to the last trial (λ=0.09) (Table 1 and Fig. 3A.2). To test this observation statistically, we regressed the logarithmicity
values on trial number. Consistent with nominal values, logarithmic index values decreased with trial number somewhat ex-
ponentially, τ=3.14 in y= e−x/τ and b=−1.08, p < .01 in a regression with log-scaled trial number and log-scaled logarith-
micity.

To check whether logarithmic-to-linear changes came merely from practice reducing noise, averaged standard deviations of
estimates were computed on every trial and regressed against trial number. The amount of noise did not decrease over time
(b=0.003, p > .05). These results indicate that logarithmic number-line estimates do not require any dynamic response to previous
stimulus distributions; rather, they are strongly present on the first trial. Additionally, if participants’ estimates were subject to any
inter-trial dependencies, the dynamic processes appeared to have linearization effects that contrast with the effects of central ten-
dency that bring about compression.

We next examined whether any central tendency was present. To test this, we first followed Cicchini et al. (2014)’s analytic
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procedure, in which errors for each trial were categorized into 3 groups based on magnitude of previous stimuli (larger by 6, similar,
or smaller by 6). We found that, consistent with a central tendency, when a set of dots was presented after a larger set, participants
tended to overestimate the number of dots. Also, after a smaller set, participants tended to underestimate the number of dots. Thus, as
reported in Cicchini et al. (2014), the average error of estimates differed reliably as a function of magnitude of numerosities prior to
current ones (F(2, 20)= 23.32, p < .001).

To test for dynamic effects more systematically, we again regressed current responses on numerosities on the past and the future
trials. Fig. 4 shows the dependency of current estimates of two sample numerosities on the immediately prior trials (−1 trials). If
current responses were more dependent on previous numbers, estimates of current numbers would be more underestimated after
small previous trials and more overestimated after large previous trials, resulting in a greater regression coefficient. Consistent with
Cicchini et al. (2014), there was a tendency for estimates of large numbers to be more dependent on previous trials (e.g., the greater
regression coefficient for 22 than 5 in Fig. 4). The same regression analysis was applied to current estimates of all 20 stimuli on all the
possible past and future trials (i.e., from −59 to +59 trials) to ensure that there was no artifactual dependency on future trials
(Cicchini et al., 2014). We next conducted bootstrap significance tests on the regression coefficients of each trial. As found in Cicchini
et al. (2014), regression weights were the greatest and significantly different from zero in the immediately previous trial (average

Fig. 3. Actual data (blue) and D-MLLM predictions (red) in Study 1–3 (A-C respectively): (1) median estimates of actual and simulated data.
Parameter values of the best-fitting models are shown for real data along with those for simulated data in parentheses. (2) Trial-to-trial logarith-
micity of real and simulated estimates. (3) Mean coefficients as a function of relative trial number in actual estimates. Error bars indicate standard
errors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Logarithmic component (λ) in Study 1–4.

Group First trial Last trial All trials

Study 1
Adult 0.85 0.09 0

Study 2
Adult 0.87 0.40 0.26

Study 3
Adult 0.47 0.04 0

Study 4
Non-symbolic Child 1 1 1

Adult 0.70 0.18 0.11
Symbolic Child 0.36 0.32 0.15

Adult 0 0 0

D. Kim, J.E. Opfer Cognitive Psychology 107 (2018) 44–66

50



β=0.13, p < .001) (Fig. 3A.3). Thus, a central tendency of judgment was evident overall, but (collapsing over these trials) very
little compression was observed.

To test our alternative model of dynamic processing, 300-subject responses to the same stimuli were simulated using the D-MLLM.
The scaling factor from median estimates pooled over all trials was adopted for the scaling factor in simulation (a=0.91 in
Fig. 3A.1). The logarithmicity component for the first trial in adults’ real estimates was used for the initial logarithmicity (λ1=0.85).
For the dependency parameter, the mean coefficient (average β) of the −1 trial obtained by regressing current estimates on im-
mediately prior stimuli was employed (w=0.13). Simulated estimates were corrupted with errors randomly generated from a
Gaussian distribution. The variability of the error distribution was determined using the averaged standard deviation of actual
estimates in current Studies (e.g., SD=4.87 in Study 1). Simulated estimates that were smaller than the lower bound (0) or larger
than the upper bound (30) were adjusted to be at the closest bound.

Identical analyses conducted on adults’ estimates were done on the simulated data. The red line in Fig. 3A.1 shows the best-fitting
MLLM to median estimates from simulations. The medians of simulated responses collapsing across all trials were somewhat linear,
exhibiting relatively small logarithmicity (λ=0.18) as in actual estimates and as in Cicchini et al. (2014) ’s single-task condition. The
medians of simulated estimates fit the medians of actual estimates well (R2=0.93). When logarithmic compression was analyzed
trial by trial, simulations also presented a decreasing trend in logarithmicity (τ=3.61, and b=−0.18, p < .05 in a log-log re-
gression) (Fig. 3A.2). The simulation results are consistent with findings of a logarithmic-to-linear shift in actual estimates. In si-
mulation, the decrease in logarithmicity was mainly driven by the interaction between a weak dynamic encoding effect and an
initially strong logarithmic component (as in Fig. 2D).

Lastly, sequential dependencies on previous trials were examined. Regressed on the magnitudes of numerosities immediately
prior to the current trials, more underestimation of current trials was evident after small trials, F(2, 20)= 107.9, p < .001. When
regressed on stimuli on relative trials (−59 to +59 trials), current estimates were considerably dependent on −1 trials although the
dependency was greater than actual data (average β=0.18, p < .001). Taken together, the simulation demonstrated that even if a
central tendency is evident as in estimates, dynamic encoding might have given rise to a linearizing process that is distinct from and
can overweigh a central tendency over the course of a task.

4. Study 2

In Study 1, a strong logarithmic component was observed on the first trial, before any dynamic process could give rise to results.
In Study 2, we tested for a logarithmic component over trials, but without varying inter-trial numeric differences, by presenting the
same numerosity repeatedly to a given participant. If the effect of dynamic updates from previous trials increased compression, the
amount of compression would be expected to remain low from the first to last trial in Study 2, and the amount of compression
observed in Study 1 would be greater than Study 2. In contrast, if dynamic processes lead to linearization as in the D-MLLM, the
amount of compression in estimates would be expected to remain high from the first to the last trial, and the amount of compression
in Study 1 would be less than Study 2.

4.1. Methods

4.1.1. Participants
In this Study, 40 undergraduate students from the Ohio State University were recruited (M=18.84 years, SD=3.15 years, 14

male students). They were awarded credit toward a psychology class in return for their participation.

4.1.2. Procedure and design
Study 2 was identical to Study 1. It consisted of 3 blocks of 20 trials in which numerosity was displayed for only 240ms. The only

difference between the two Studies was that in this Study participants estimated the same numerosity repeatedly for all trials. Each
numerosity was estimated sixty times by two participants who were randomly assigned to the number. The location of each dot in a
set was determined randomly on each trial so that a display of an array of dots differed trial by trial. On the other hand, the size of

Fig. 4. Estimates of two sample numerosities (22 and 5) as a function of numerosity on immediately previous trials (−1 trials).

D. Kim, J.E. Opfer Cognitive Psychology 107 (2018) 44–66

51



dots was not controlled and always the same as the 30-dot size at the right end. By presenting the same sized and the same number of
dots on every trial, we attempted to keep subjective experience of a numerosity identical to avoid any changes in perceived mag-
nitude of the same numerosity that can result from irrelevant stimulus dimensions (e.g., the size of dots; Gebuis & Reynvoet, 2012).

4.2. Results

The MLLM was first fit to median estimates that collapsed over all 60 trials. The median estimates showed slightly greater
compression (λ=0.26) than those in Study 1 (λ=0), where central tendency effects were present (Fig. 3B.1). Additionally, the
average logarithmicity for a given trial in Study 2 (M=0.45, SD=0.17) was considerably greater than that in Study 1 (M=0.10,
SD=0.15), p < . 0001 in a randomization test. These empirical results are not at all consistent with the model depicting that a
central tendency of judgment is required for compression.

Trial-by-trial analyses on the logarithmic components also yielded evidence against the dynamic encoding explanation for
compression, revealing that the first-trial estimates (λ= 0.87) were more logarithmic than those for later trials and as logarithmic as
the estimates on the first trial in Study 1, where first trial compression was the same as in this Study, p= .88 in a randomization test.
Moreover, unlike Study 1, no reduction in compression was observed from trial to trial, b=0.13, p > .05 in a log-log transformed
regression and b=0.001, p > .05 in a linear regression (Table 1, Fig. 3B.2, and Fig. A3). Thus, at least qualitatively, both the
differences in overall compression and trial-to-trial changes are more consistent with the predictions of the D-MLLM than the dy-
namic encoding account.

To test predictions of the D-MLLM, responses of 300 virtual participants were simulated in the same manner as Study 1. For the
two parameter values from actual data (i.e., first-trial λ and a scaling factor of median estimates) were used for λ1 and a in simulation
(λ1=0.87, a=0.58). Because there was no possible dependency on the previous trial in the same-numerosity task, the weight
parameter was set to be 0 (w=0). When collapsed over trials, the medians of simulated estimates were more logarithmic than actual
responses (λ=0.89, Fig. 3B.1), and the over-compression tendency resulted in a misfitting of simulated medians to actual medians,
R2=0.26. Consistent with the findings in medians, trial-by-trial logarithmicity was greater than that of actual estimates (Simulated:
M=0.88, SD=0.10), p < .001 in a randomization test. As shown in real data, however, a trial-by-trial analysis revealed that the
first trials were logarithmic (λ1=0.90), and the logarithmicity stayed constantly high over time, b=0.001, p > .05 in a linear
regression (Fig. 3B.2). Although the simulation produced more compressive responses than those observed in human participants, the
simulation accurately captured the fact that estimates could stay logarithmic from the beginning to the end of a number-line task.

5. Study 3

In Study 3, we examined whether estimates would be less compressive when subjects had more time to encode numerosity. Study
3 was identical to Study 1 except for a longer display of a stimulus (2000ms). Previous research had shown that longer exposure to
stimuli improves numerosity discriminability (Kaswan & Young, 1963) and line-length estimation (Crawford, Huttenlocher, &
Engebretson, 2000). For example, Crawford et al. (2000) showed that estimates of line length were more biased toward the center of
a stimulus distribution in the short display condition. According to a Bayesian approach by Huttenlocher and colleagues, if parti-
cipants have an inexact memory for a stimulus due to constraints on encoding time or cognitive resources, they adjust estimates more
to the central value of the category, leading to a stronger central tendency of judgment (Huttenlocher, Hedges, & Duncan, 1991).
However, it still remains unknown whether logarithmicity in number-to-space mappings is dependent on display time. Also, if linear
mapping is not automatic, but requires time, attentional resources, and better memories for stimuli, a longer display may yield more
linear responses as a result (Anobile et al., 2012; Dotan & Dehaene, 2013, 2016; Huttenlocher et al., 1991). This issue is potentially
important in interpreting previous results. In Cicchini et al. (2014)’s study, a stimulus was on the screen for only 240ms, which is
extremely short compared to typical studies with number-line tasks (e.g., Anobile, Stievano, & Burr, 2013; Fazio et al., 2014).

5.1. Methods

5.1.1. Participants
In Study 3, 41 undergraduate students at the Ohio State University participated (M=20.05 years, SD=1.69 years; 16 male

students). One participant who misunderstood and positioned the same location for all numerosities was excluded from analyses.

5.1.2. Procedure and design
Study 3 followed the same procedure as Study 1 except that participants were exposed to a stimulus for 2000ms.

5.2. Results

The logarithmic component (λ) for overall estimates was computed as in Studies 1 and 2. Consistent with Study 1, median
estimates exhibited no compression (λ=0) (Fig. 3C.1). Estimates from the first to last trials were tracked, and values of the loga-
rithmic index were highest on the first trial (λ=0.47) and exponentially decreased to 0.04 with trial number, τ=1.99 and
b=−0.80, p < .05 in a log-log regression (Table 1, Fig. 3C.2, and Fig. A4). Again, the logarithmic-to-linear transition did not result
from response noise (b=−0.006, p > .05). Thus, as in Study 1, results indicate that a central tendency was not required for
logarithmically compressed mapping.
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To test whether the logarithmicity was affected by longer stimulus exposures, a randomization test was performed on first-trial
estimates of Study 1 and 3. Even though the logarithmicity on the first trial for Study 3 was lower in value, it did not significantly
differ from that of Study 1 (p= .39). In the same manner, the mean difference of 60-trial logarithmicity values from the two Studies
was analyzed. There was no statistical difference in the average logarithmicity of 60 trials in Study 1 (M=0.10, SD=0.15) and
Study 3 (M=0.08, SD=0.10) either, p= .31. Therefore, the effect of a longer stimulus exposure on compression in mappings was
not evident (though might be if display time were long enough for counting).

Sequential effects were again evident in Study 3. The mean errors of current responses significantly changed depending on
immediately previous trials, F(2, 20)= 26.49, p < .001. The result implies that there were similar systematic biases in responses:
Overestimation after a large-numerosity trial and underestimation after a small-numerosity trial. This trend was again observed when
estimates were regressed against magnitude of the past and the future trials. First, regressed on magnitude of the −1 trial, the current
estimates of 5 numerosities were significantly predicted by previous stimuli (p < .05 for numerosity 17, 19, 20, 22, and 29). Second,
when estimates on current trials were regressed as a function of numerosity of relative trials, magnitudes of stimuli immediately prior
to current trials affected current responses significantly (average β=0.09, p < .01) (Fig. 3C.3).

Simulation was next conducted in the identical way in Study 1 and 2, using actual initial responses for the logarithmicity, median
estimates for a scaling factor, and the average β of −1 trial for the weight parameter (λ1=0.47, a=0.94, w=0.09). First, even
though the median responses in simulation were slightly more logarithmic (λ=0.12 for medians, Fig. 3C.1), the simulation showed
good model-fitting to adults’ median estimates (R2=0.95). The trial-by-trial logarithmicity components presented a decrease over
time, τ=1.82 and b=−0.43, p < .05 in a log-log regression (Fig. 3C.2). Moreover, as found in actual estimates, current trials were
over- or under-estimated depending on the magnitude categories of immediately previous trials (i.e., smaller, similar, or large), F
(2, 20)= 51.06, p < .001. When current estimates were regressed against trials presented in the past and the future, the weight of
trials immediately prior to the current ones was significantly different from zero (average β=0.15, p < .001).

In summary, the effects of display duration on compression in number-line estimates were examined using a longer display time
than in Study 1. Consistent with findings in Study 1, the logarithmic pattern was evident on the first trial, and the compressed
estimates became quickly linearized after the first trials. Even though a set of dots stayed on the screen for 2000ms, the longer display
of numerosity affected logarithmicity neither on the first trial nor over all the 60 trials in mappings. Again, the experimental and
simulation results point to the logarithmic-to-linear shifts during number-to-space mappings that may result from incorporating
metric information about differences between successively tested numbers.

6. Study 4

In Study 4, we examined potential interactions of sequential effects with numerical formats and age. Study 4 followed a more
conventional design in number-line studies, which typically uses symbolic numbers and presents each stimulus only once (Siegler &
Booth, 2004; Siegler & Opfer, 2003). Although Cicchini and colleagues claimed that logarithmic compression was the result of
dynamic encoding, their arguments were based only on adults’ estimates of non-symbolic numbers (Anobile et al., 2012; but see
Cicchini et al., 2014 for a brief summary on children’s inter-trial dependency). However, considering a large body of studies showing
developmental changes in estimates of symbolic numbers, it is important to explore relations between logarithmicity and sequential
effects in estimates of symbolic and non-symbolic numbers by both children and adults. In this study, we examined kindergartners
between the ages of 5 and 6 years. Given that children at those ages would be at chance levels when required to hold memories for
more than 3 items serially presented (i.e., 2-back tasks) (Ciesielski, Lesnik, Savoy, Grant, & Ahlfors, 2006; Kwon, Reiss, & Menon,
2002), we expected children to show little to no between-trial dependencies in number-line tasks, where 3 numbers (a given number
and two ends) are presented on each trial.

6.1. Methods

6.1.1. Participants
Seventy 5- to 6-year-old children were recruited from upper-middle- or middle-class schools in Columbus (M=6.02 years,

SD=0.45 years, 37 male students) and 80 undergraduate students from the Ohio State University (M=19.75 years,
SD=2.37 years, 45 male students). We chose the age ranges for child participants because children between 5 and 6 have much less
experience with linear number-lines than older children, thereby helping to isolate the influence of schooling (if any) on numerosity
estimation. Children were given a sticker in return for their participation, whereas adults received credit toward a psychology course.

6.1.2. Procedure and design
Participants completed both symbolic and non-symbolic number-line tasks that were given in a random order. Study 4 followed

the similar procedure to Study 3 except for the smaller number of trials, with an additional number-line task in symbolic number.
Each task included only one block of 20 trials, which randomly presented 20 stimuli only once. The same 20 numbers used in Study 1
and 3 were used and presented for 2000ms for both numerosity and Arabic number conditions in the Study. In the symbolic
condition, an Arabic numeral was estimated on a number line with numeral 0 and 30 at the ends. There was no practice or feedback
provided for both age groups as in a typical setting (Laski & Siegler, 2007; Opfer & Siegler, 2007; Opfer & Thompson, 2008).
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6.2. Results

6.2.1. Estimation of non-symbolic numbers
To test dynamic effects on logarithmic mappings, logarithmicity of median estimates and trial-by-trial responses were analyzed

with the MLLM. First, when collapsing over all trials, children’s median responses were completely logarithmic (λ= 1), whereas
adults’ median estimates were more linear (λ=0.11), a λ value that was identical to that observed by Cicchini et al. (2014) in the
single task condition. (Table 1 and Fig. 5A.1 and B.1). A randomization test revealed that the logarithmic component of children’s
median estimates was significantly greater than that of adults’ (p < .001).

Next, logarithmicity values were computed on a trial-by-trial basis to examine how compression changed over time. Children
indeed showed constant logarithmic patterns in numerosity estimation on the first, the last trial, and nearly every trial in between
(λ=1 for the first trial, λ=1 for the last trial) (Table 1, Fig. 5A.2, and Fig. A5). In contrast, there was a trend for the logarithmic
components of adults’ estimates to decrease over trials (λ=0.70 for the first trial, λ= 0.18 for the last trial; Fig. 5B.2), and the 20
logarithmic components of adults’ responses were significantly lower than those of children’s estimates (children: M=0.97,
SD=0.09; adults: M=0.21, SD=0.19), p < .0001, randomization test. However, unlike Studies 1 and 3, the decrease in adults’
logarithmicity scores was not significant, τ = 3.09 and b=−0.39, p= .47 in a log-log transformed regression and b=−0.012,
p= .11 in a linear regression, presumably due to the smaller number of trials in this study. Consistent with this conjecture, the
logarithmicity scores of adults in Study 4 did not differ from those of the first 20 trials of Study 3 (M=0.12, SD=0.14), p= .11.

Fig. 5. Children’s (yellow) and adults’ (blue) actual data and D-MLLM predictions (red) in Study 4 (A and B for non-symbolic, C and D for symbolic
condition): (1) median estimates of actual and simulated data. Parameter values of the best-fitting models are shown for real data along with those
for simulated data in parentheses. (2) Trial-to-trial logarithmicity of real and simulated estimates. (3) Mean coefficients as a function of relative trial
number in actual estimates. Error bars indicate standard errors. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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These results narrowly replicate previous findings demonstrating age differences in number-line estimation (Siegler & Opfer,
2003). However, on the first trial, the logarithmicity values of adults’ and children’s estimates (0.70 for adults vs. 1 for children) did
not differ from each other, p= .30 in a randomization test, and were much closer in value than those on the last trial (0.18 for adults
vs. 1 for children). The difference on the first and last trials reflects the fact that there was a trend for the logarithmicity of adults’
estimates to decrease from trial to trial. Overall, these results were not consistent with the dynamic encoding explanation for
compressed mapping: Compression was again evident on trial 1, before any dynamic encoding mechanism could have an influence.
Nor were these results consistent with the idea that the representation of numerical magnitudes changes much from childhood to
adulthood: On the first trial of numerosity estimation, adults’ estimates were as logarithmic as children’s. Rather, trial-to-trial
analyses suggest that the native representation of numerosity is logarithmic, but this impression can be supervened (at least in adults)
by encountering numerosities that differ from trial to trial.

To test whether this effect of trial-to-trial changes might have occurred via a central tendency, response errors were again grouped
by the magnitude of the previous trial. The sequential effects were not found in children’s responses, but adult mappings changed
significantly as a function of the previous trial (F(2, 30)= 6.60, p < .01). Again, a numerosity was more underestimated when the
previous number was smaller than when it was similar or larger in adults. Unlike Cicchini et al. (2014) or Study 1 and 3, however,
overestimation after the large-numerosity trials was not observed. To examine this more closely, estimates were regressed on
magnitude of trials given in the past and the future. For children, there was no special relationship between the current response and
trials given before or after the current trial, average β=0.03, p= .20 for −1 trials (Fig. 5A.3). For adults, the dependencies of the
current mapping were found on the immediately previous trial, average β=0.08, p < .01 for −1 trials (Fig. 5B.3). Thus, as in
Studies 1 and 3, we observed that the central tendency of judgment co-occurred with a decrease in estimation compression.

To check whether the co-occurrence of a central tendency of judgment and a decline in estimation compression was consistent
with our D-MLLM model, we generated estimates of 300 virtual children and adults. Again, the logarithmic index from the first trial
and a scaling factor from median estimates were adopted in simulation (λ1=1, a=0.59 for children, λ1=0.70, a=0.86 for
adults). Given no sequential dependencies in children, we posited the dependency parameter as zero for children, whereas the
average β from −1 trials was used for the weight in adults (w=0 for children and 0.08 for adults). When collapsed over all 20 trials,
simulated medians for children were logarithmic as in real responses (λ=0.99, Fig. 5A.1) with a rather poor fitting to actual median
data (R2=0.70). Medians from virtual adults were actually quite close to real responses (λ=0.17, Fig. 5B.1), R2=0.96. Trial-to-
trial changes yielded similar results. The D-MLLM correctly predicted no changes in trial-to-trial logarithmicity, b=0.004, p > .05
in a linear regression in children (whose actual estimates were logarithmic on every trial) (Fig. 5A.2). The D-MLLM simulated a
decreasing pattern in logarithmicity for adults, τ=2.70, b=−1.01, p < .05 in a log-log regression (Fig. 5B.2).

When sequential effects in simulated data were tested, the mean errors of current responses did not change as a function of
previous numerosity in children’s simulated estimates, F(2, 30)= 0.228, p > .05. However, unlike children’s real estimates, their
simulated responses exhibited a significant reliance on the −1 trials when regressed as a function of relative trials, average β=0.03,
p= .04. For adults, previous numerosities had significant effects on the mean errors, F(2, 30)= 3.591, p < .05. Regressed against
numerosities on relatively past and future trials, simulated estimates were also dependent on the −1 trials, showing the mean
regression coefficient that was significantly greater than zero, average β=0.09, p < .001. Again, the findings in simulations suggest
dynamic encoding as a source of linearity in number-line estimates by shifting the internal scaling over time.

6.2.2. Estimation of symbolic numbers
It is important to examine logarithmic compression and inter-trial dependencies in mappings of symbolic numbers since they do

not rely on perceptual processing as heavily as mappings of non-symbolic numbers would. Recent work has shown that symbolic
numbers are represented more accurately and linearly than numerosities in later development once associations between numerical
symbols and their magnitudes are acquired. Among Mundurucu participants, for example, educated ones mapped numbers on a
number line linearly when stimuli were given in Portuguese, while estimating non-symbolic numbers on a log scale (Dehaene et al.,
2008). The same patterns were reported in estimates by children: Greater linearity in the symbolic conditions than in the non-
symbolic conditions. (Sasanguie et al., 2012; Sella et al., 2015).

The similar tendency was also found in median and trial-by-trial estimates in the current study. Compared to the median re-
sponses for non-symbolic numbers, the median estimates of symbolic numbers were more linear for both groups (λ=0.15 for
children, λ=0 for adults). Adults’ median estimates were perfectly linear, and the difference between the two groups in logarith-
micity was significant, p < .01, randomization test (Table 1, Fig. 5C.1 and D.1, and Fig. A6).

Children’s and adults’ estimates on each trial were fit by the MLLM to compute trial-by-trial logarithmicity. As expected, the
logarithmic component value of children’s symbolic estimates on the first trial (λ=0.36) was lower than that of children’s non-
symbolic estimates in value. The linear patterns in children’s responses stayed somewhat constant across trials, b=0.003, p= .75 in
a linear regression (Fig. 5C.2). For adults, estimates of symbolic numbers were so accurate in the first place that there was no
compression detected on any trials (λ= 0 for all trials) (Fig. 5D.2). When the difference between two groups in the logarithmic
components tracked trial by trial was evaluated, adults’ performance in symbolic numbers (M=0, SD=0) was more linear than
children’s (M=0.38, SD=0.19), p < .0001. These findings again replicate previous studies that have shown the developmental
improvement in number-line estimation (Siegler & Opfer, 2003; Siegler et al., 2009). The logarithmic-to-linear changes over trials
observed in numerosity mappings by adults, however, were not found in estimation of symbolic numbers.

The dynamic encoding effects on symbolic number estimation were examined with averaged response errors by magnitude of the
previous trial. As opposed to prediction by the dynamic encoding hypothesis, children have a tendency to underestimate the current
number more when it followed a larger number trial, but magnitude of the previous trial did not show significant effects on the
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current responses, p > .05. For adults, although the current stimulus tended to be more underestimated when given after a smaller
number, the magnitude of −1 trial was not a significant main effect, p > .05. Next, the current estimates were regressed against
stimuli from −19 to +19 trial. Inconsistent with the central tendency, children’s estimates were negatively related to previous
numbers, average β=−0.07, p= .02 (Fig. 5C.3). An unexpected dependency was also evident between the current and a future
trial—i.e., +2 trials, average β=0.04, p= .04. The retroactive predictability of future trials on the current estimates does not make
logical sense and might be a false positive. Interestingly, the dependencies on the immediately previous trial found in Study 1 and 3
could not be found in adults, p > .05 (Fig. 5D.3).

Estimates of two groups were regenerated with the D-MLLM. Simulations were conducted in the identical way in Study 1–3. For
children, a weight parameter was set to 0, the lowest value of w in the model (λ1=0.36, a=0.85, w=0). For adults, a zero weight
parameter was used as well (λ1=0, a=0.98, w=0). Simulated medians exhibited greater compression (λ=0.34, Fig. 5C.1), but fit
the medians of children’s real estimates well, R2=0.90. Despite the absence of dynamic effects, simulations reproduced perfectly
linear medians in adults (λ=0, Fig. 5D.1), R2=0.99. Analyses for trial-to-trial logarithmicity on simulated data exhibited no
decrease in logarithmic components over time in children, b=0.01, p > .05 in a linear regression (Fig. 5C.2). In adults’ virtual
responses, zero logarithmicity appeared to remain constant over trials, b=−0.001, p > .05 in a linear regression (Fig. 5D.2).

To test dynamic encoding effects in simulations, simulated responses were regressed against previous trials. For children, si-
mulations accurately modeled no main effect of the −1 trials on the mean errors as in actual estimates, and no inter-trial dependency
on the −1 trials, ps > .05. For adults whose simulations entailed no compression to linearize over trials, the simulated estimates
showed sequential effects in neither averaged errors nor regression coefficients as a function of past and future trials, ps > .05.

In summary, the effects of dynamic processes were tested with estimates of non-symbolic and symbolic numbers by young
children and adults. It replicated the previous studies showing the developmental improvement in number-line estimation:
Logarithmic compression was greater in children’s overall estimates than in adults’. Consistent with literature on numerical cognition,
estimates of symbolic numbers were more accurate and linear than those of non-symbolic numbers. However, trial-by-trial analyses
revealed that adults’ mapping of numerosity was as logarithmic as children’s on the first trial, where there was no previous trial that
could possibly affect the current response. The compression diminished over the course of estimates in adults, whereas the com-
pression was constantly high in children. Moreover, the simulation could successfully mimic a non-decreasing and a decreasing trend
in logarithmic compression in children and adults. The results suggest that representation of non-symbolic numbers for educated
adults may be logarithmic as for children and other species, but may be corrected to be linear with consideration of magnitude of the
previous stimulus over trials.

7. Discussion

In this paper, we sought to identify the role of dynamic encoding in compressive number-to-space mapping. According to the
dynamic encoding account, the sequential dependency between previous and current trials is the sole cause of compression in
number-line estimation (Anobile et al., 2012; Cicchini et al., 2014). Here, we sought to investigate the alternative possibility that
dynamic response scaling (i.e., changes in the function relating the internal representation to the response) has an interactive effect
with the psychological scaling of number (i.e., the function relating the external stimulus to the internal representation), much as is
observed in similarity ratings and category judgments (Helson, 1964; Parducci, 1965; Petrov & Anderson, 2005). To test this, we
revised our static model of psychological scaling (MLLM) to make use of sequential dependencies in a dynamic model (D-MLLM).
Predictions from the D-MLLM were then tested in various circumstances and across ages.

7.1. Compressive mapping is the default, no dynamic encoding required

Against the dynamic encoding account, our results indicate that a central tendency of judgment is not required for logarithmic
compression in numerical estimates. If dynamic updates were necessary for logarithmic estimates, the logarithmic component would
be expected to be near zero prior to any previous numbers encountered (i.e., the first trial). Across Studies 1–4, however, we found
that the logarithmic component of adults’ estimates on the first trial was much more compressive, with the observed logarithmicity
ranging from 0.47 to 0.87. These results are not consistent with the idea that the psychological scaling of numerosity is linear.

To test this idea still further, we also simulated data from a dynamic encoding model (Cicchini et al., 2014), in which numerosities
are scaled linearly with scalar variability (Fig. A7). For the first trial without any dynamic effects, the model assumes linear re-
presentation of numerosity and entails Gaussian errors with the zero mean and the scalar SD (i.e., k · xα, increasing variability unless α
equals 0). As in Cicchini et al. (2014), the power-law parameter α and the constant k were obtained directly from our data using a
simple regression and model fitting to the data respectively (see Cicchini et al., 2014, for details). Simulations of the dynamic
encoding model also supported the idea that the very first estimates of non-symbolic numbers would be quite linear in adults (λ=0
to 0.10 in Study 1–4) (see first trials in Fig. A7). Thus, even a model assuming linear scaling with scalar variability would predict
much lower levels of compression (0–0.10) than were actually observed (0.47–0.87).

Additionally, sequential effects did not even coincide with compression. In Study 1 and 3, for example, sequential effects were
evident after trial 1, yet the central tendency did not appear to elicit logarithmic responding. Rather, as predicted by our D-MLLM,
median estimates pooled over all trials were perfectly linear, and the logarithmicity of estimates decreased rather than increased from
trial to trial. In contrast, the dynamic encoding model failed to predict the log-to-linear shifts found in adults’ estimates of numerosity
(Fig. A7). For example, in Study 1, estimates simulated from the dynamic encoding account were linear on the first trial (λ=0.10)
and on following trials (M=0.12, SD=0.04 in λ’s) without any significant shifts in logarithmicity (b=0.001, p= .19 when
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logarithmicity was regressed against trial number). This result is consistent with the idea that the default perception of numerosity
obeys the Weber-Fechner law, but is not at all consistent with the idea that compression requires dynamic encoding.

Single-number estimation in Study 2, which made it possible to separate effects of repeatedly estimating over trials from effects of
viewing different numbers on different trials, was also inconsistent with the dynamic encoding hypothesis. According to the dynamic
encoding account, single-number estimation lacks any informative prior trials; as a result estimates would be expected to stay linear
from the first to last trials. Simulation of Cicchini et al. (2014)’s model also predicted constantly linear estimates over trials (λ=0.01
and 0.03 for the initial and last trial respectively) (Fig. A7.B). Against this prediction, however, the logarithmicity of adults’ actual
estimates was greater than that of Study 1 and 3, where sequential effects were significant. Further, estimating a single numerosity
repeatedly neither evoked the logarithmic-to-linear shifts that were found in Studies 1, 3, and 4, nor did the procedure reduce
estimation variability from trial to trial. In fact, the amount of noise in estimates tended to increase from trial to trial, b=0.02,
p < .001. Again, these results would not be expected if the logarithmicity of numerosity estimates required a dynamic encoding
mechanism, but this pattern was better predicted by our D-MLLM.

This compressive mapping in adults is surprisingly consistent with an earlier finding by Krueger (1982). Krueger (1982) was the
first to attempt to separate dynamic processes from magnitude representation. To control for effects of previous trials, he adopted a
single-trial design, in which participants estimated the numerosity of an X array only once, and which is thus comparable to the first
trials in our studies. He found that single-trial estimates were still compressive (β=0.83 of a power function). Our results extend this
finding to a single-number design (Study 2), where estimates were fairly compressive on the first trial and every trial thereafter.
Together, these results indicate that default encoding of number without any dynamic components is compressive.

7.2. Age-related changes in numerosity estimation: what develops?

Studies of number-line estimation typically find age- or education-related decreases in the logarithmicity (or compressiveness) of
numerosity estimates (Dehaene et al., 2008; Qin et al., 2017; Sasanguie et al., 2012; Sella et al., 2015). This finding immediately
raises the question of whether the perception of numerosity changes or something else. The present findings suggest that the psy-
chological scaling of numerosity probably does not change much with age. Instead, age-differences in the linearity of numerosity
estimates may reflect age-differences in encoding time and responsiveness to inter-trial differences in stimuli.

Several observations from our studies suggest that this view of development is correct. First, in Studies 1–4, the logarithmicity of
adults’ estimates on the first trial (i.e., before any sequential effects were possible) were 0.85 (Study 1), 0.87 (Study 2), 0.47 (Study
3), and 0.70 (Study 4), with compression associated with a 240-ms display time (Studies 1 and 2) being somewhat higher than with a
2000-ms display time (Studies 3 and 4). Logarithmicity of children’s estimates on the first trial was 1 in Study 4, suggesting that age-
related increases in the speed of numerosity encoding (Ratcliff, Love, Thompson, & Opfer, 2012; Thompson, Ratcliff, & McKoon,
2016) may play some role in increasing the linearity of numerosity estimates.

Second, age-differences in the logarithmicity of numerosity estimates were much larger in later trials than in earlier trials. In
Study 4 (Fig. 5A-B.2), the logarithmicity parameters for adults and children were fairly close (0.70 vs. 1) on the first trial, but it
dropped exponentially in adults but not in children. Thus, as effects of inter-trial differences could accumulate, developmental
differences emerged, such that in the last ten trials adults’ estimates were almost perfectly linear and children’s estimates were almost
perfectly logarithmic. Thus, whatever is causing differences between children’s and adults’ pattern of estimates must be emerging on
a trial-to-trial basis, not as a function of aging. More exactly, these trial-wise decreases in logarithmicity occurred in adults only when
they were asked to estimate different numbers on different trials (as in Study 1, 3, and 4). Asked to estimate the same number
repeatedly (in Study 2), adults’ estimates were stable. Thus, differences between children and adults were not present at first,
emerged quickly over trials, but only when inter-trial differences in numeric stimuli were present.

All three of these findings were predicted by our D-MLLM model, which helps us to interpret what might be changing over
development. In the model, an estimate depends on the relative weight of (1) the number that a subject sees in a given trial and (2) its
difference from previous trials, much like the sequential effects observed in similarity ratings. Weighting previous trials more than
current ones is obviously non-adaptive, which should lead us to expect the weight of sequential effects to be less than 0.5 (as in
Fig. 2D instead of Fig. 2B). Empirically, the weight of sequential effects is also quite low, about 0.07 to 0.13 in adults (Cicchini et al.,
2014, Fig. 3C; this paper, Fig. 3A.3, Fig. 3C.3, and Fig. 5B.3). In simulations of D-MLLM (Fig. 2D), even these small differences would
be expected to generate differences in trial-to-trial changes in logarithmicity, such that even a weight that is half that of adults’ would
generate much less change.

Among young children, these inter-trial effects would almost certainly have to be attenuated or eliminated. Our expectation that
children would not rely much (possibly at all) on previous trials comes from developmental differences on n-back tasks, which present
subjects with a continuous series of a simple stimulus (e.g., letter O), and in which subjects are asked on each trial i whether the same
stimulus was presented on trial i-n. In our task, each trial presented 3 numbers, with a various time interval between trials but never
less than 2 s. For a 2-back task of even shorter duration than 2 s, growth models suggest that kindergartners would perform at chance
levels (Ciesielski et al., 2006; Kwon et al., 2002), suggesting that they have no memory of i−3 number, whereas adults perform at
more than 95% accuracy. At the very least, then, we should expect children to be much less likely than adults to be subject to inter-
trial dependencies, and our observed weights were indeed not different from zero.

Interestingly, there was great similarity of trial-to-trial logarithmicity between children (Study 4) and adults who estimated the
same numerosity (Study 2). The results are in line with a developmental study by Sullivan and Barner (2014), in which both linearity
in estimates and the percent of responses relying on previous trials increased with age and memory supports (e.g., allowing children
to see where they had marked all previous locations on the number line). Moreover, they found that individuals’ degrees of reliance
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on previous trials predicted fits of a linear function. Taken together, there might be no developmental difference in representing the
number of a set: Even educated adults might encode numbers logarithmically in the beginning, just like young children. However, by
encoding more quickly and by remembering and using previous trials to adjust estimates on new trials, adults greatly improve the
accuracy of their estimates.

7.3. Estimation of symbolic and non-symbolic value

Estimates of the value of symbolic numbers have also been reported to show age-related decreases in logarithmicity or com-
pression (Barth & Paladino, 2011; Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Heine et al., 2010; Laski & Siegler, 2007;
Laski & Yu, 2014; Opfer & Martens, 2012; Opfer & Siegler, 2007; Opfer, Siegler, & Young, 2011; Opfer et al., 2016; Sasanguie et al.,
2012; Siegler & Booth, 2004; Siegler & Opfer, 2003; Slusser, Santiago, & Barth, 2013; Thompson & Opfer, 2008; White & Szűcs,
2012). Could these changes, too, simply reflect developmental differences in responsiveness to previous stimuli?

Theoretically, we might expect the development of numerosity and symbolic number to be quite similar. Representation of
numerosity seems fundamental for understanding symbolic numbers because the meaning of symbolic numbers is learned in part by
associating numeric symbols with the quantities for which they stand (Dehaene, 2007; Opfer & Siegler, 2012). Consistent with this
idea, logarithmic compression (λ) in estimates of symbolic and non-symbolic numbers in Study 4 was positively correlated in children
(r(68)= 0.32, p < .01). That is, children who generated the most logarithmic estimates in numerosity estimation also generated the
most logarithmic estimates in symbolic numeric estimation. Thus, we might expect a similar developmental trajectory.

Unlike numerosity estimation, however, estimates of symbolic numbers revealed developmental differences in numeric mapping
in the absence of any sequential effects from prior trials. In Study 4, adults produced perfectly linear estimates from the first to the
last trials, with zero inter-trial dependency (i.e., w=0 and λ=0). Also, children estimated Arabic numerals more logarithmically
than adults from the first trial though the last, and also did not show valid inter-trial dependencies either (i.e., w=0 but with high λ).
Given no sequential dependencies in either age group and large age-differences in λ from the first through the final trial, the
differences in logarithmic compression between children and adults seem to reflect actual developmental improvement in re-
presenting the value of numeric symbols.

Although developmental differences in estimates of symbolic number may not require sequential dependencies (as developmental
differences in numerosity estimation did), one could imagine creating a situation where children would expect a certain sequence of
numbers, be able to remember the previous number given, and use the difference in numbers to adjust their response scaling. One
such case would be when children are given numbers in a counting sequence, either ascending or descending. In this case, D-MLLM
could prove useful in generating predictions about the resulting pattern of symbolic number estimates (see, for example, Fig. A1).

7.4. Other characterizations of compressive mappings

In this paper, we have largely used logarithmicity (λ) from the mixed log-linear model to describe the degree of compression in
children’s estimates. Another interpretation of compressive mappings in number-line estimation is that estimates do not exactly
follow the Weber-Fechner law, but Stevens’ power law (Stevens, 1975). Based on Stevens’ power law, some researchers have recently
argued that compressive estimation stems from the lack of cognitive strategies, such as proportional reasoning (Barth & Paladino,
2011; Hollands & Dyre, 2000; Rouder & Geary, 2014; Slusser et al., 2013; Spence, 1990). According to the account, number-line
estimates become compressive if responders rely only on one reference point (the lower end). Otherwise, estimation patterns may
entail one or two cycles if estimates are made using two (the lower and upper ends) or three reference points (two ends and the
midpoint) respectively.

Elsewhere, we have argued against the cyclic-power function approach due to the model complexity (Kim & Opfer, 2017; Opfer
et al., 2011, 2016; Qin et al., 2017), but the simple power model seemed to be a straightforward equivalent to our MLLM. To examine
this, we applied Stevens’ power model (y= a · xβ) to adults’ estimates of numerosity in current studies. In Stevens’ power model, the
model parameter β is smaller than 1 as estimates are more compressive, whereas the parameter β approaches toward 1 as estimates
become more linear. When fitting the model to estimates trial by trial, we found first estimates were compressive (β=0.45 in Study
1; β=0.45 in Study 2; β=0.64 in Study 3; β=0.48 in Study 4). We next regressed the trial-to-trial exponent β’s against trial number
(e.g., 1–60 in Study 1–3 and 1–20 in Study 4). If there were shifts from compressive to linear during estimation, the parameter β
would increase and get closer to 1 over trials. There were indeed considerable increases in the exponent β in all Studies except for
Study 2, where the same numerosity was repeatedly estimated (b=0.003, p < .01 in Study 1; b=−0.001, p= .19 in Study 2;
b=0.002, p < .05 in Study 3; b=0.009, p= .06 in Study 4). Similar results were obtained using the absolute values between the
trial-to-trial β’s and 1 (i.e., |1− β|) as a non-linearity measure (b=−0.001, p= .06 in Study 1; b=0.001, p= .50 in Study 2;
b=−0.002, p < .01 in Study 3; b=−0.01, p= .06 in Study 4). The results are consistent with our finding that compression
decreased in the course of a number-line task, especially in which different numerosities were estimated. Although Stevens’ power
law is very similar to the MLLM, however, it isn’t immediately clear how to extend the model to incorporate a dynamic component
(but see Cross, 1973, for a power function that takes biases of prior trials into account).

Still another characterization of compressive mappings employs a rational analysis approach. A recent study, for example, has
shown that logarithmic patterns in number-line estimates may be the result of an internal scaling for the frequency distribution of
number use—i.e., the need probability (Piantadosi, 2016). According to the author, in numerosity estimation, numerosity is mapped
onto internal representation that is biased by noise. Estimators are thought to efficiently minimize the noise between numbers and the
representation of numbers by adjusting their responses according to how often each number must be represented. It has been found
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that logarithmic compression can arise if the probability of representing number n is proportional to something similar to 1/n2.
Although this account may not commit to the psychophysical assumptions of the logarithmic encoding account, it is not clear how it
accounts for the present findings that estimates are initially logarithmic, but linearized over trials within a task. Given that need
probabilities are computed using a vast amount of data (e.g., frequencies of numbers that baboons encounter in the wild or of number
words appearing on a corpus of books) (Piantadosi, 2016; Piantadosi & Cantlon, 2017), only a few encounters of different numbers
would not seem likely to change the internal scaling of number. Possibly future work on the dynamics and development of nu-
merosity estimation can elucidate the role of frequency information, which the present approach has not attempted to address.

8. Conclusions

Mapping number to space is not a static process, but changes with various dynamic components within a task and even within a
single trial (Cicchini et al., 2014; Dotan & Dehaene, 2016). The present article sought to examine the effects of between-trial dy-
namics on number-to-space mapping in order to separate developmental differences in dynamic processes from developmental
differences in the psychological representation of number. Our findings suggest that age differences in numerosity estimation do not
reflect developmental differences in the psychological representation of number, but differences in dynamic processes. In contrast,
age differences in symbolic number estimation reflect developmental differences in the psychological representation, not differences
in dynamic processes.
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Appendix A

See Figs. A1–A7.

Fig. A1. Simulations of the D-MLLM (a=1, λ1 = 0.5, and w=0.3). Median estimates pooled over all trials are presented as a function of stimulus
order (i.e., ascending, random, and descending orders). Numbers used in the present studies were used.

D. Kim, J.E. Opfer Cognitive Psychology 107 (2018) 44–66

59



Fig. A2. Median estimates from the first to the last trials in Study 1.
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Fig. A3. Median estimates from the first to the last trials in Study 2.
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Fig. A4. Median estimates from the first to the last trials in Study 3.

Fig. A5. Children’s (A) and adults’ (B) median estimates of non-symbolic numbers from the first to the last trials in Study 4.
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Fig. A6. Children’s (A) and adults’ (B) median estimates of symbolic numbers from the first to the last trials in Study 4.
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