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Abstract 

Understanding fraction magnitudes is important for achievement and in daily life. However, 

adults’ fraction reasoning sometimes appears to reflect whole number bias and other times 

reflects accurate reasoning. In the current experiments, we examined how contextual factors and 

individual differences in executive functioning (Experiment 1), knowledge of fraction 

equivalence (both experiments), and strategy use (Experiment 2) influenced adults’ fraction 

reasoning. Adults were only biased by fraction components when reasoning about fractions as 

holistic magnitudes was difficult: when estimating under a time constraint, when estimating 

fractions with large components, or when comparing fractions close in decimal distance. 

However, adults’ knowledge of fraction equivalence moderated the effects of whole number 

components on their fraction estimation performance: when modeled at low levels of 

equivalence knowledge, adults were biased by fraction components when estimating. Adults 

with more knowledge of fraction equivalence were able to reason about fractions as holistic 

magnitudes through adaptive strategy choices. 

Keywords: whole number bias, fraction reasoning, fraction representations, strategies, 

adaptive strategy use   
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Do Adults Treat Equivalent Fractions Equally? Adults’ Strategies and Errors During Fraction 

Reasoning 

Imagine you are running late for a friend’s surprise party, and you are considering which 

route to take to get there as fast as possible. Should you take the route that is 15 miles with an 

average speed limit of 60 miles per hour, or the route that is 10 miles with an average speed limit 

of 40 miles per hour? If you focus on just the speed, the first route seems best; if you focus on 

the distance, the second route seems best. As this example illustrates, focusing on any one whole 

number component would lead to erroneous conclusions because the magnitude of time (e.g., 

distance divided by speed) is equivalent for both routes (i.e., 15 miles/60 mph = 10 miles/40 

mph). However, children often only focus on whole number components--numerators and 

denominators in isolation--when reasoning about rational numbers, thus making whole number 

bias errors (Ni & Zhou, 2005). Even adults appear biased by whole number knowledge in certain 

contexts, yet appear to accurately reason about fraction magnitudes in others (e.g., Bonato, 

Fabbri, Umiltà, & Zorzi, 2007; Obersteiner, Van Dooren, Van Hoof, & Vershaffel, 2013; 

Schneider & Siegler, 2010; Sprute & Temple, 2010).  

Understanding fraction magnitudes is difficult for children and adults. Children struggle 

to order fractions from least to greatest after years of formal fraction instruction (U.S., 

Department of Education, National Assessment of Educational Progress, 1981, 2008), and 

community college students struggle with seemingly simple tasks such as selecting the larger of 

two fractions (e.g., Schneider & Siegler, 2010; Fazio, DeWolf, & Siegler, 2016). This difficulty, 

likely due to whole number bias, is problematic because understanding the magnitude of 

fractions is important for success in advanced mathematics (e.g., Booth & Newton, 2012; Fazio, 

Bailey, Thompson, & Siegler, 2014; Schneider et al., 2018; Siegler et al., 2012), at work 
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(Handel, 2016), and in everyday life, such as when making medical decisions (e.g., Peters et al., 

2006). However, are these difficulties due to a persistent whole number bias, are the errors 

unique to specific tasks or individuals, and how might various strategies lead to accurate or 

inaccurate fraction reasoning? 

The main goal of the current experiments was to investigate the role of individual 

differences and contextual factors (i.e., characteristics of the stimuli) in adults’ whole number 

and fraction reasoning. We examined individual differences in knowledge of fraction 

equivalence and executive functions because both may play important roles in accurate fraction 

reasoning and help explain the source of whole number bias errors. To understand the source of 

whole number bias errors, we examined how these individual differences interact with 

contextual factors to impact adults’ fraction reasoning to evaluate for whom whole number 

components negatively impact fraction reasoning, when components bias reasoning, and how 

adults adaptively use strategies to reason about fractions. We examined the who, when, and how 

of whole number bias errors to evaluate strategic variability accounts of fraction reasoning. In 

the following sections, we first review the theoretical approaches to whole number bias, then we 

describe the role of contextual factors, strategies, and individual differences that are important 

for accurate fraction reasoning. 

Theoretical Accounts of Whole Number Bias 

Whole number bias is typically characterized by incorrect use of the heuristic larger 

components = larger fraction magnitude (Alibali & Sidney, 2015; Behr, Wachsmuth, Post, & 

Lesh, 1984; Braithwaite & Siegler, 2017; DeWolf & Vosniadou, 2015; Ni & Zhou, 2005; 

Stafylidou & Vosniadou, 2004; Vamvakoussi et al., 2012). For example, an adult might reason 

that traveling 15 miles at a speed of 60 miles per hour is faster than traveling 10 miles at 40 miles 
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per hour because 60 > 40 and 15 > 10, despite both ratios of time being equivalent (15/60 = 

10/40 = 0.25). Although the specific source of whole number bias errors is debated, one 

theoretical account is that children’s initial instruction on whole numbers negatively influences 

the way they conceptualize subsequently-learned numbers, and these misconceptions--numbers 

are discrete (have unique successors), have only one symbolic representation, and larger digits 

represent larger magnitudes--persist into adulthood (Ni & Zhou, 2005). Because fractions differ 

from whole numbers in a variety of ways, some researchers suggest that children’s initial 

concept of number must undergo conceptual change to accommodate fraction processing 

(DeWolf & Vosniadou, 2015; Stafylidou & Vosniadou, 2004; Vamvakoussi, 2015; Vamvakoussi 

et al., 2012; Vamvakoussi & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2010; Vosniadou, 

2014; Vosniadou & Verschaffel, 2004). According to conceptual change theories (e.g., 

Vosniadou, 2014), children never fully integrate their fraction and whole number knowledge, but 

instead they continue to process these numbers in distinct ways. 

Dual processing accounts. One hypothesis for whole number bias errors in adults is that 

people process whole numbers intuitively and automatically, but they process fractions 

effortfully and strategically (Bonato et al., 2010; Kallai & Tzelgov, 2009, 2012; Meert, Grégoire, 

& Noël, 2009, 2010; Vamvakoussi, 2015; Vamvakoussi & Vosniadou, 2010; Vosniadou, 2014). 

Thus, the intuitive and effortful processing systems hypothesized to be involved in decision 

making within dual-processing frameworks are often used to interpret whole number bias errors 

(Gillard, Van Dooren, Schaeken, & Verschaffel, 2009; Obersteiner et al., 2013; Vamvakoussi, 

2015; Vamvakoussi et al., 2012; Van Hoof, Linjen, Verschaffel, & Van Dooren, 2013; 

Vosniadou, 2014). Within dual-processing accounts, whole number bias might manifest in 

adults’ longer response times as they attempt to inhibit automatically-activated whole number 
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magnitude knowledge of the fraction components or as increased error rates when they attempt 

to transform a fraction into a simplified form, such as a decimal or percentage.   

The integrated theory of numerical development. Some evidence suggests that 

fractions and whole numbers can be processed more similarly than dual-processing approaches 

imply. For example, neurological evidence suggests that whole numbers and fractions are 

processed similarly in the brain (Jacob & Nieder, 2009), and behavioral evidence suggests that 

people have an ability to process ratios directly without being lured by the magnitude of the 

whole number components (e.g., Liu, 2017; Matthews & Ellis, 2018; Matthews & Lewis, 2017). 

Furthermore, according to the integrated theory of fractions and whole number development, one 

thing that unites both fractions and whole numbers is that their magnitudes can be ordered from 

smallest to largest on a number line (e.g., Siegler, 2016a; Siegler & Braithwaite, 2016; Siegler, & 

Lortie-Forgues, 2014; Siegler, Thompson, & Schneider, 2011). Magnitude knowledge improves 

for increasingly larger numerical ranges and number types (whole numbers, rational numbers, 

etc.) across developmental time (Opfer & Siegler, 2007; Siegler, 2016a; Siegler, Thompson, & 

Opfer, 2009; Siegler et al, 2011; Thompson & Opfer, 2010). Although the integrated theory 

emphasizes the centrality of magnitude knowledge across numerical development, it also 

emphasizes variability in the types of strategies that people deploy as they encounter fraction 

problems.  

Theories of strategic variability. Variable strategy use is the hallmark of overlapping 

waves theory (Siegler, 1996, 2005, 2016b). According to overlapping waves theory, strategy 

selection changes over time with increasing experience, and at any given time-point, individuals 

use a variety of different strategies to solve problems (Siegler, 1996, 2005, 2016b). Strategic 

variability accounts of cognition have been extended to explain whole number bias errors. For 
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example, the dynamic strategy choice account of whole number bias (Alibali & Sidney, 2015) is 

a theoretical framework that acknowledges both the intuitive and strategic processes involved in 

reasoning about numbers. However, compared to dual-processing approaches, the dynamic 

strategy choice account places more emphasis on the strategies (both implicit and not) that 

people use to reason about fractions. Importantly, strategic variability accounts are unique in that 

they suggest an individual’s strategy choice depends on the interaction among prior knowledge, 

experience with similar problems, and characteristics of the problem itself (Alibali & Sidney, 

2015; Siegler, 1996, 2005, 2016b). In other words, the strategies and mental processes that 

people use to reason about fractions will vary within individuals on different tasks and problems 

as well as between individuals with different prior knowledge and cognitive abilities. In the next 

sections, we discuss the contextual factors, such as the size of the whole number numerator and 

denominator components and time constraints, as well as individual differences, such as 

equivalence knowledge and executive functioning abilities, that influence adults’ fraction 

reasoning. 

Contextual Factors that Influence Whole Number Bias 

Component size in comparison tasks. Whole number components influence adults’ 

fraction reasoning in fraction comparison tasks (Bonato et al., 2007; DeWolf & Vosniadou, 

2015; Meert et al., 2010; Meert, Grégoire, & Noël, 2012; Obersteiner et al., 2013; Opfer & 

DeVries, 2008; Vamvakoussi et al., 2012; Zhang, Fang, Gabriel, & Szücs, 2014). In comparison 

tasks, the larger fraction magnitude in the pair can be comprised of components that are larger 

and consistent with whole number ordering (e.g., 4/7 > 2/5; 4 > 2 and 7 > 5), or smaller and 

inconsistent with whole number ordering (e.g., 2/3 > 5/8; even though 2 < 5 and 3 < 8). When 

comparing fractions with components that are inconsistent with the fraction magnitude, adults 
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tend to have longer response times and higher error rates, which may be due to inhibiting whole 

number knowledge that is automatically activated by the components (DeWolf & Vosniadou, 

2015; Obersteiner et al., 2013; Vamvakoussi et al., 2012). However, the effect of whole number 

component consistency is only evident when the fraction pairs are close together in decimal 

distance, which makes comparing holistic magnitudes difficult (DeWolf & Vosniadou, 2015), or 

when fractions share a common component, and comparing components is adaptive (Obersteiner 

et al., 2013; Vamvakoussi et al., 2012). For example, comparing only the denominator of unit 

fractions--fractions with numerators of 1--can lead to fast and accurate responses. 

Component size in number line estimation. Even when comparison across components 

is not possible (e.g., when participants are asked to estimate a single fraction’s magnitude on a 

number line
1
), adults are sometimes biased by the size of fraction components. For example, 

when adults estimated the location of unit fractions (e.g., 1/60) on a number line ranging from 

1/1 on the left to 1/1440 on the right, their estimates corresponded to the size of the denominator, 

rather than the holistic magnitude of the fractions (Opfer & DeVries, 2008). Unit fractions may 

be especially likely to elicit whole number reasoning in the estimation task because participants 

often ignore the common numerator components as they do in fraction comparison tasks (Bonato 

et al., 2007; Schneider & Siegler, 2010). In the current experiments, we examined whether adults 

were biased by whole number components when estimating equivalent, non-unit fractions on 

number lines.  

Components and strategic variability. The variable effects of components in fraction 

comparison and estimation tasks are consistent with strategic variability accounts of cognition. 

                                                 
1
 Although sets of numerator and denominator components cannot be visually compared during 

completion of the number line estimation task, componential strategies are sometimes reported 

when participants are asked to describe their strategies after making each estimate (Siegler et al., 

2011; Sidney et al., 2018). 
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For example, in studies of trial-to-trial strategy variability, most adults used six to 11 different 

strategies across 32 to 48 comparison problems (Fazio et al., 2016; Sidney et al., 2018) and up to 

seven strategies to estimate fractions on 0-5 number lines (Sidney et al., 2018). Many fraction 

magnitude comparison strategies involved only comparing components without reference to 

magnitudes. These componential strategies were adaptive on some trials (when fraction pairs 

shared a component), yet maladaptive on others (when pairs did not share a component). Other 

strategies, such as transforming fractions when estimating or referencing magnitudes, 

demonstrate a holistic representation of fractions as magnitudes. The use of strategies based on 

holistic magnitudes is adaptive and related to more precise estimation performance for both 

children and adults (Sidney et al., 2018; Siegler & Thompson, 2014; Siegler et al., 2011). 

However, the use of magnitude and transformation strategies can be more difficult and time 

consuming on some trials (e.g., 2/19) than others (e.g., 3/4). Because strategies take different 

amounts of time to execute, the time allotted will influence strategy selection and performance 

(Caviola, Carey, Mammarella, & Szücs, 2017; Fazio et al., 2016; Kellogg, Hopko, & Ashcraft, 

1999). 

Time constraints. Both the dual-processing account and the dynamic strategy choice 

account of whole number bias suggest that a time constraint should elicit whole number bias 

errors during fraction reasoning. For example, the dynamic strategy choice account suggests that 

there are costs and benefits of implementing different strategies; the strategy that leads to the 

most accurate performance might also be quite time-intensive to execute (Fazio et al., 2016). 

Therefore, if participants do not have time to execute effective strategies, such as if they are 

forced to estimate under a time constraint, they will be  more likely to make a whole number bias 

error. Similarly, the dual-processing account points to inhibition of intuitive whole number 



10 

ADULTS’ STRATEGIES AND ERRORS DURING FRACTION REASONING 

 

knowledge and the use of a more analytic processing system--both processes that take additional 

time--as important ways to combat the whole number bias (e.g., Obersteiner et al., 2013; Van 

Hoof, Janssen, Verschaffel, & Van Dooren, 2015; Van Hoof, Verschaffel, & Van Dooren, 2015). 

Thus, to elicit whole number bias, we had adults estimate under a time constraint when they 

presumably were not given long enough to employ time-intensive, computational strategies or to 

inhibit automatically-activated knowledge of whole numbers (Campbell & Austin, 2002; Caviola 

et al., 2017; Fazio et al., 2016; Kellogg et al., 1999). However, some individuals may be able to 

overcome whole number bias, even if they estimate under a time constraint.  

Individual Differences Influencing Whole Number Bias 

In the following sections we review how individual differences in knowledge about 

fraction concepts (e.g., strategies, equivalence) and executive functioning abilities (e.g., 

inhibition) are important to accurately reason about fraction magnitudes and avoid whole number 

bias errors.  

Equivalence knowledge. Strategic variability accounts predict that prior knowledge may  

impact adults’ ability to accurately reason about fraction magnitudes. Specifically, prior 

knowledge of fraction equivalence may be important because it requires an understanding that 

the same magnitude (e.g., 0.5) can be represented by fractions with different whole number 

components (e.g., 1/2, 15/30, 50%, etc.), yet they are all located at the same place on the number 

line. Furthermore, adults with more prior knowledge of fraction equivalence may frequently 

implement strategies that emphasize the holistic magnitude of the fraction, such as transforming 

one number into the other (e.g., 1/4 = 25%), which may be especially likely to reduce whole 

number bias errors. Researchers have evaluated how children estimate equivalent fractions one at 

a time on number lines (Braithwaite & Siegler, 2017), or whether children can match figures 
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(e.g., a circle) to equivalent symbolic fractions (Ni, 2001), but not how equivalence knowledge 

moderates the effect of whole number components on fraction reasoning. Thus, we directly 

examined how knowledge of fraction equivalence relates to whole number bias and fraction 

magnitude understanding. To effectively reason about fraction magnitudes and implement 

strategies to determine whether two fractions are equivalent also requires executive functioning 

abilities. 

Executive functioning. Executive functioning is thought to be organized into three 

components: inhibition, updating, and shifting (Miyake et al., 2000) which continue to develop 

throughout adolescence and serve as a resource to effectively use and mentally manipulate 

information (Cragg & Gilmore, 2014). Inhibition and updating are proposed to be especially 

important for understanding fraction magnitudes (Gómez, Jiménez, Bobadilla, Reyes, & 

Dartnell, 2015; Kolkman, Hoijtink, Kroesbergen, & Leseman, 2013; Siegler & Pyke, 2013). 

Inhibition is the ability to suppress automatic responses from being executed, and updating is the 

ability to replace old information in working memory with new, task-relevant information 

(Miyake et al., 2000). If whole number bias stems from automatically applying whole number 

knowledge when reasoning about fraction magnitudes, then inhibition of whole number 

magnitude representations should play an important role in adults’ ability to accurately reason 

about fraction magnitudes (Vamvakoussi et al., 2012; Van Hoof, Janssen, et al., 2015; Van Hoof 

et al., 2015). If manipulating fractions (e.g., transforming them into equivalent fractions) is 

important for executing strategies that reduce the likelihood of making whole number bias errors, 

then updating numerical information in mind should be important for adults’ ability to reason 

about fraction magnitudes. For these reasons, we chose to use domain-specific, numerical 
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measures of inhibition and updating to assess whether inhibition and updating numerical 

information was important for reducing whole number bias errors.  

Current Experiments 

 In the current experiments, we evaluated the role of contextual factors (i.e., fraction 

stimuli, time constraints) and individual differences (i.e., equivalence knowledge, executive 

functioning, strategy use) that were hypothesized to impact adults’ fraction reasoning when 

estimating equivalent fractions one at a time. Focusing on equivalent fractions allows us to 

manipulate component size independent of magnitude to examine whole number bias errors 

(e.g., 1/2 vs. 15/30 as in Braithwaite & Siegler, 2017). We focus on whole number bias errors 

during number line estimation to limit the use of componential comparison strategies afforded by 

the comparison task (Braithwaite & Siegler, 2017). However, we included a fraction comparison 

task to replicate past research (e.g., DeWolf & Vosniadou, 2015) and evaluate whether a 

manipulation that may constrain adults’ potential strategies during number line estimation 

subsequently transfers to the fraction comparison task (Siegler & Thompson, 2014).    

In line with dual-processing theories and the dynamic strategy choice account of whole 

number bias, we hypothesized that adults would make whole number bias errors by estimating 

larger-component fractions as being larger than equivalent, smaller-component fractions, 

particularly when under a time constraint (H1a). However, the dynamic strategy choice account 

suggests that whole number components may lead to additional errors beyond the common 

larger components = larger fraction magnitude misconception. For example, strategies such as 

segmenting the number line may be more difficult and prone to errors when estimating fractions 

with large (e.g., segmenting the line into 30 parts) compared to small components (e.g., 

segmenting the line into 2 parts). Furthermore, strategies based on independent whole number 
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components of fractions may lead to less precise estimates because larger whole numbers are 

represented less precisely along the mental number line (Dehaene, 1992, 2003, 2011; Meert et 

al., 2009; Meert et al., 2012). Thus, we explored whether component size also affected adults’ 

estimation precision (i.e., PAE).  

If imposing a time constraint in the number line task leads to whole number bias errors 

(i.e., execution of strategies in which the whole number components are processed in isolation), 

subsequent performance on a comparison task may also be affected. In past work, when children 

estimated fractions on a number line with landmarks that encouraged componential-based 

reasoning, they subsequently used componential reasoning when comparing fraction magnitudes 

(Siegler & Thompson, 2014). If estimating under a time constraint increases componential 

processing, this may carry over to fraction comparison performance. Thus, we hypothesized that 

fraction comparison accuracy would be lower for adults who estimated under a time constraint as 

compared to adults who estimated under no time constraint (H1b). We also compared the effects 

of component consistency and distance on comparison accuracy. We predicted that adults would 

be less accurate when comparing fractions when the larger fraction magnitude had components 

that were inconsistent with whole number ordering (H1c), or when the decimal distance between 

the pair was small (H1d). 

We also examined the role of several important individual differences in number line 

estimation: (1) adults’ knowledge of fraction equivalence, (2) inhibition, and (3) updating 

abilities. The dynamic strategy choice account of whole number bias suggests that individual 

differences will moderate the effect of whole number components on adults’ fraction reasoning 

in specific contexts (e.g., such as estimating under a time constraint). Thus, we expected 

individual differences to moderate the interaction between component size and time constraint: 
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differences in estimates of equivalent fractions with smaller and larger components (i.e., whole 

number bias) that are made under a time constraint would be smaller for adults with greater 

understanding of fraction equivalence, better inhibition, or better updating abilities compared to 

adults with less understanding of equivalence or worse executive functioning abilities (H2). 

We replicated and extended our results in a second experiment using a new set of 

fractions. In Experiment 2, we focused our analyses on individual differences in equivalence 

knowledge and strategy use. To preview our main findings, we replicated findings from 

Experiment 1 that demonstrated the importance of equivalence knowledge for reducing the 

effects of whole number components on estimation precision. Finally, we extended these results 

to show that estimates were more precise for individuals with more equivalence knowledge, in 

part, because they used more effective strategies when estimating.  

Our combined results across experiments make several novel contributions to the field. 

First, we directly examined how fraction equivalence knowledge moderates whole number bias 

errors in adults’ number line estimation performance with fractions. To do so, we created a novel 

two-choice equivalence measure, building on a same/different task (Gabriel, Szücs, & Content, 

2013) and a true/false inequality task (Vamvakoussi, Van Dooren, & Verschaffel, 2012). Second, 

we linked equivalence knowledge to specific strategy use during number line estimation, which 

provided evidence that theories of strategic variability can explain whole number bias errors 

during fraction reasoning. Finally, we examined strategy use in the equivalence task, and these 

reported strategies can be compared and contrasted to strategy use in fraction comparison tasks 

(e.g., Fazio et al., 2016; Sidney, Thalluri, Buerke, & Thompson, 2018). 

Experiment 1 
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Method 

The study was reviewed and approved by the Kent State University Institutional Review 

Board (protocol #17-432).  

Participants  

 A total of 78 adult participants (M = 35.04 y, SD = 10.25 y, range 21 - 69 y) met our pre-

registered inclusion criteria, and thus had complete data for all tasks
2
. We powered our study to 

replicate the smallest effect of component size on raw estimates reported in Experiment 2 of 

Braithwaite and Siegler (2018). We aimed to detect the smallest effect because we thought that 

adults in the timed condition in our study might perform similarly to the older children in theirs. 

A power analysis using G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) with 80% power, an 

alpha of .05, while accounting for 10% attrition indicated we should sample 110 participants; 

therefore, we sampled 111 total participants from Amazon’s Mechanical Turk (MTurk). 

Participants self-reported being United States citizens currently living in the United States.  

We screened participants for inattentive responding using pre-registered inclusion criteria 

specific to each task (https://osf.io/4uygd/). Participants who did not meet inclusion criteria on 

number line estimation (n = 3), fraction comparison (n = 2)
3
, fraction equivalence verification (n 

= 2), numerical stroop (n = 3), and digit span (n = 17), were excluded from analyses involving 

those tasks. . Five participants were excluded from all analyses for failing to meet inclusion 

criteria on three out of five tasks (n = 2) or for reporting having used a calculator during the 

experiment (n = 3). Despite our attempt to exclude adults who had recently taken similar surveys 

                                                 
2
 We included participants who completed all tasks in order to make results comparable across all analyses, however 

this differed slightly from our pre-registered inclusion criteria. The conclusions and major findings are the same 

using either inclusion criteria.   
3
 One participant was excluded from the comparison task for only answering one problem correctly.  
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from our research team, 13 adults with such prior experience participated and were excluded. For 

detailed information about inclusion criteria, please see our pre-registration link.  

Of the 78 participants in the final data set, 30 were female and 47 were male; one 

participant did not report gender. Most participants were white (n = 55; 70.5%), had a college 

degree (n = 34; 43.6%) or completed some college (n = 20; 25.6%), and were employed for 

wages (n = 51; 65.4%). See Table 1 for all demographic information. 

Table 1.  

Demographics from Experiments 1 and 2. 

Demographics 

 Frequency (percent) 

Race E1 E2 

White 55 (70.5) 64 (64) 

Black or African American 8 (10.3)  10 (10) 

American Indian or Alaskan Native 4 (5.1)  2 (2) 

Asian 4 (5.1) 13 (13) 

Hispanic or Latino 1 (1.3) 5 (5) 

Multiple races 5 (6.4) 4 (4) 

Did not report 1 (1.3) 2 (2) 

   

Education   

Completed high school 14 (17.9) 12 (12) 

Post high school other than college  1 (1.3)  3 (3) 

Some college 20 (25.6) 24 (24) 

College graduate 34 (43.6) 47 (47) 

Postgraduate 8 (10.3)  11 (11) 

I’d rather not report 1 (1.3)  3 (3) 
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Design and Tasks 

All participants estimated equivalent fraction magnitudes that increased in component 

size (smallest, small, large, and largest); approximately half of participants (n = 49) were 

randomly assigned to complete the number line estimation task under a three second per trial 

time constraint (henceforth timed condition), and the other half (n = 44) completed estimates at 

their own pace (henceforth untimed condition). Thus, we tested a 2 (between: timed vs. untimed) 

x 4 (within: smallest, small, large, largest component) design.  

Number line estimation. Participants indicated the location of a fraction on a number 

line with 0 on the left and 1 on the right by either clicking on the line or sliding an icon to a 

particular location on the line. Forty-four fractions with 11 magnitude values ranging from 0.2 to 

0.83 (1/5, 2/9, 1/4, 1/3, 3/7, 1/2,  5/9, 2/3, 3/4, 4/5, and 5/6) were adopted from Experiment 2 of 

Braithwaite and Siegler (2017). Each fraction was presented with four different numerator and 

denominator component sizes (see Appendix A). For example, fractions with magnitudes 

equivalent to 0.5 were 1/2, 2/4, 12/24, and 15/30. The smallest component fractions were always 

in their simplified form (e.g., 1/2). Braithwaite and Siegler (2017) multiplied the simplified 

fractions by a number, such as 2/2 or 3/3, to create equivalent, non-simplified small component 

fractions. They multiplied each component in the simplified fractions by a larger number (e.g., 

12/12 or 15/15) to create the large (e.g., 12/24) and largest (e.g., 15/30) component equivalent 

fractions. Thus, component size is operationalized as relative to the smallest-component, 

equivalent fraction. We changed two non-simplified small component fractions from the original 

stimuli to further clarify the distinction between small and large component fractions. 

As in Braithwaite and Siegler (2017), we compared participants’ raw estimates of small 

and large component fractions to evaluate the whole number bias. In line with prior research 
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(Siegler & Booth, 2004; Siegler et al., 2011), we also assessed magnitude knowledge by 

calculating percent absolute error (PAE) for each trial and averaging across all trials for each 

participant. Percent absolute error was calculated by taking the absolute value of the decimal 

distance between the actual fraction magnitude and the participant’s estimate then dividing the 

result by the numerical range. PAE is expressed as a percentage by multiplying the result by 100 

and is averaged across trials for each participant:  

PAE =  ((|actual - estimate|) / numerical range) * 100 

 Participants completed number line estimates in one of two quasi-randomized orders so 

that participants did not estimate two equivalent fractions in a row (e.g., 15/30 was never 

presented after 1/2).  

Confidence judgments. After participants estimated each fraction on the number line, 

they immediately rated their confidence on a 4-point scale (adopted from Wall, Thompson, & 

Morris, 2015). Analyses pertaining to confidence judgments were not central to our current 

hypotheses so they will not be reported.  

Fraction comparison. Participants selected which of two fractions was larger in 

magnitude across 20 trials (see Appendix A). All fraction magnitudes were less than one, with 

both fraction magnitudes in some pairs less than (e.g., 12/28 vs. 2/5) or greater than (e.g., 11/14 

vs. 15/21) 0.5, or with one of the magnitudes less than and the other greater than 0.5 (e.g., 13/29 

vs. 10/12). The fraction with the larger magnitude was presented equally on the right and left 

side of the screen, and all items were presented randomly to each participant. The instructions 

emphasized speed and accuracy and discouraged calculator use.  

We created fraction comparison pairs that varied in the consistency of the whole number 

components and the numerical distance between fractions to replicate prior work on fraction 
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comparison (DeWolf & Vosniadou, 2015). For consistent pairs, participants comparing holistic 

magnitudes would make the same choice as participants relying on the “larger components, 

larger fraction magnitude”  heuristic: the fraction with the larger magnitude had larger numerator 

and denominator components than the fraction with the smaller magnitude (e.g., 14/18 > 2/5). 

For inconsistent pairs, using this componential strategy would lead to incorrect responses: the 

fraction with the larger magnitude had smaller numerator and denominator components than the 

fraction with the smaller magnitude (e.g., 6/7 > 12/29). No fractions within pairs had equivalent 

numerators or denominators, as this has been shown to elicit componential comparisons (Bonato 

et al., 2007; Schneider & Siegler 2010). We created pairs with either a small (i.e., < .14) or large 

(i.e., > .37) distance between them. We examined accuracy (out of five trials) for inconsistent 

small distance trials, inconsistent large distance trials, consistent small distance trials, and 

consistent large distance trials. Because adults use a variety of strategies to compare fractions, 

and these strategies take different amounts of time to execute, we chose not to evaluate response 

times (for a discussion of this issue, see Fazio et al., 2016).  

Fraction equivalence knowledge. Participants verified whether 66 fraction equivalence 

statements (e.g., 1/2 = 15/30) were true or false (see Appendix A). Fraction stimuli were drawn 

from the number line estimation task. Each simplified fraction was paired with an equivalent 

small component fraction (e.g., 1/2 = 2/4) and with the largest component fraction (e.g., 1/2 = 

15/30); the largest component fractions were paired with other small component fractions (e.g., 

2/4 = 15/30). We created false statements using the same component size pairings (e.g., 6/8 = 

1/2, 1/2 = 12/36, and 2/4 = 12/16), while controlling for the decimal distance between each 

fraction because distance impacts fraction comparison speed and accuracy (DeWolf & 



20 

ADULTS’ STRATEGIES AND ERRORS DURING FRACTION REASONING 

 

Vosniadou, 2015). Approximately half of the fractions in our false statements differed by a small 

distance (<.14) and the other half differed by a large distance (>.37).  

As with fraction comparison, the fraction with the larger magnitude was presented 

equally on the right and left side of the screen (for false items), the fraction with larger 

components was presented equally on the right and left side of the screen, and all items were 

presented randomly to each participant. Equivalence knowledge was measured as the percentage 

of correct responses out of 66 possible trials.  

Inhibition. Participants’ inhibition was measured with a numerical stroop task in which 

they viewed a fixation cross for 300 ms, then had 2,000 ms to select which of two digits was 

physically larger while ignoring numerical magnitude (i.e., inhibit whole number magnitude 

knowledge). We adopted digit pairs with a magnitude distance of one or five (distance 1: 1 vs. 2, 

3 vs. 4, 6 vs. 7, 8 vs. 9; distance 5: 1 vs. 6, 2 vs. 7, 3 vs. 8, 4 vs. 9) using eight single digits from 

Dadon and Henik (2017). Digit pairs were presented with a physical ratio (smaller font size [56 

point Arial] divided by larger font size [67 point Arial]) of 0.84, which produced the longest 

reaction times in a prior study (Leibovich, Diesendruck, Rubinsten, & Henik,  2013). Participants 

completed a random presentation of 112 digit pairs consisting of 32 congruent (numerical and 

physical size in the same direction, e.g., 1 2), 32 incongruent (numerical and physical size in 

opposite directions, e.g., 1 2), and 48 neutral (only manipulate the task-relevant dimension of 

physical size, e.g., 1 1) trials. The larger digit appeared equally on the right and left side of the 

screen.  

We measured participants’ numerical inhibition ability with their average response times 

(RT) to correct responses on incongruent trials (as in Gómez et al., 2015; Kaufmann et al., 2005; 

Leibovich et al., 2013). We chose to use only the average response time to incongruent trials 
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because of inherent problems with the reliability of difference scores as individual difference 

measures (Cronbach & Furby, 1970; Edwards, 1995, 2001), and because the use of RT from 

incongruent trials only has been used in prior work (e.g., Gómez et al., 2015). However, we 

confirmed that  adults’ response times were longer on incongruent (M = 755ms, SD = 181ms) 

than on neutral (M = 640ms, SD = 166ms), t(77) = 13.92, p < .001, and congruent trials (M = 

614ms, SD = 173ms), t(77) = 14.82, p < .001. We also confirmed that adults’ response times 

were longer on neutral than congruent trials, t(77) = 3.72, p <.001. These results indicate adults 

are inhibiting the automatically activated knowledge of the whole number magnitude during 

incongruent trials to respond correctly. 

Updating. Participants’ updating was measured with a digit span task in which they 

viewed a fixation cross for 2,000 ms, then viewed a series of digits, one at a time for 2,000 ms 

each. Participants were instructed to recall, in order, the last four digits presented when a “????” 

appeared on the screen (see Siegler & Pyke, 2013 for a similar letter span task). The instructions 

encouraged participants to practice saying only the last four digits out loud as each new digit 

appeared. Each sequence of five, seven, nine, or 11 digits was randomly presented three times 

for a total of 12 trials. Digits within test sequences were presented in a fixed order, and answers 

always contained a unique series of digits (i.e., with no repeating numbers: 7942). We measured 

participants’ updating ability as the percentage of correctly recalled digits out of 48. 

Fraction familiarity. Participants indicated how familiar they were with 44 fractions on 

a six-point scale from “not familiar at all” to “very familiar” (see Dumas, Johnson, & Lynch, 

2002 for a similar word-familiarity scale). Analyses pertaining to familiarity judgments were not 

central to our current hypotheses so they will not be reported.  
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Demographic information. Participants reported their age, gender, race/ethnicity, level 

of education, their scores on the math section of the SAT/ACT, the country in which they 

completed their primary education, the most advanced mathematics course they completed, their 

employment status, and the device they used to complete the survey.    

Procedure 

 Participants accepted the Human Intelligence Task (HIT) through Amazon’s Mechanical 

Turk and then were directed to a link to complete our tasks on the Qualtrics website. On average, 

participants took 46 minutes to complete the survey (overall range = 24.65 - 129.97 minutes; 

timed condition: 24.65 – 98.97 minutes; untimed condition: 25.32 – 129.97 minutes). First, 

participants completed the number line estimation task, then the fraction comparison task, and 

then the fraction equivalence task. Participants then completed the numerical stroop and digit 

span tasks in a counterbalanced order. Finally, all participants rated the familiarity of fractions 

and answered demographic questions. Participants were compensated $6.00.    

Participants were randomly assigned to complete number line estimates either under a 

three second per trial time constraint or at their own pace. This time limit was determined using 

half of the mean response time it took pilot participants to solve the number line estimation 

problem under no time constraint, as has been done in past work (Crescenzi, Kelly, & Azzopardi, 

2015). Furthermore, the three second time limit that we implemented was shorter than the 

average 5.95 seconds it took adults from a highly selective university to compare fractions. Three 

seconds was also notably shorter than the average response time for high performing (9.33s) and 

low-performing community college students (10.91s) reported in Fazio et al. (2016). If 

participants exceeded the three second time constraint, the screen flashed red and informed 

participants to, “Please respond within the time limit,” but the trial only advanced after 
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participants made their estimate. Thus, there was no missing data for any participant in the 

number line task. Participants exceeded the three second time limit on 16.5% of trials. Percent 

absolute error (PAE) for estimates made over the time limit (M = 10.27%, SD = 9.09%) did not 

differ from estimates made within the time limit (M = 8.93%, SD = 8.11%), t(38) = 1.38, p = 

.177.   

Results 

Preliminary Analyses 

 First, we confirmed that random assignment to number line estimation condition resulted 

in equivalent groups by examining demographics and other individual differences. Participants in 

the timed and untimed conditions did not differ in age, t(75) = 0.53, p = .598 (one participant did 

not report age), gender, X
2
(2, N = 78) = 2.02, p = .364, performance on the equivalence task, 

t(76) = .47, p = .639, inhibition task, t(76) = 1.21, p = .231, or updating task, t(76) = 0.17, p = 

.865. Thus, it appeared that random assignment was effective. We confirmed that there were no 

differences in overall percent absolute error (PAE) on number line estimates between the two 

randomized orders of fractions in the timed, t(39) = 0.24, p = .809, and untimed, t(35) = 0.75, p = 

.457, conditions. We collapsed the two orders of fractions within each condition for all analyses.  

As can be seen in Table 2, we replicated prior work showing that number line estimation 

and fraction comparison performance were related (e.g., Fazio et al., 2014; Laski & Siegler, 

2007; Siegler et al., 2011). Furthermore, our measure of fraction equivalence knowledge related 

to estimation and comparison performance. However, inhibition only related to performance in 

the comparison task, while updating related to performance in the number line estimation, 

comparison, and equivalence tasks. 
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Table 2.  

Descriptive statistics and correlations between tasks. 

 N α Mean (SD) 1 2 3 4 5 

1. Number Line Magnitude PAE
a
 78 .964 8.4% (7.7%) - - - - - 

2. Comparison Accuracy 78 .728 76.2% (16.7%) -.568** - - - - 

3. Equivalence Accuracy 78 .802 84.1% (12.0%) -.536** .497** - - - 

4. Numerical Stroop RT (inhibition) 78 .950
b
 755ms (181ms) .178 -.277* -.121 - - 

5. Digit Span Accuracy (updating)  78 .847 83.3% (17.7%) -.370** .361** .327** .004 - 

Notes. * p < .05, ** p < .01  
a
PAE is a measure of error in which higher percentages indicate less 

precise estimates. 
b
Cronbach's alpha for numerical stroop was calculated based on response times 

to correct responses on incongruent items only using the Psych package from R with pairwise 

deletion (Revelle, 2018).   

Analysis Plan 

We predicted that adults would estimate fractions with larger components as larger than 

equivalent fractions with smaller components, especially when estimating under a time constraint 

(H1a). However, we hypothesized that having more knowledge of fraction equivalence or better 

executive functioning abilities would reduce the effects of a time constraint on estimates of 

equivalent fraction magnitudes (H2). Across all number line analyses, we tested our hypotheses 

in between-within, general linear models (GLMs) with condition (untimed vs. timed) as a 

between-subjects factor, component size (smallest, small, large, and largest) as a within-subjects 

factor, and equivalence knowledge, updating, and inhibition abilities as concomitant variables
4
. 

                                                 
4
 This analysis differs from our pre-registered difference score approach, but the conclusions are 

similar when we do not collapse categories, but instead analyze component size as a four-level 

independent factor. We chose to analyze component size as a four-level independent factor to 
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Note, we label these as concomitant variables rather than covariates because we are testing the 

interaction between the within-subjects factor, the between-subjects factor, and continuous 

predictors (see Judd, Kenny, & McClelland, 2001; Maxwell & Delaney, 2004). We explored 

significant interactions with individual difference measures at high (+1 SD from mean) and low 

(-1 SD from mean) levels of the continuous individual difference variable in the timed and 

untimed conditions using planned polynomial contrasts on estimated marginal means. These 

follow-up planned contrasts are equivalent to simple slope tests. Simple slope tests for marginal 

interactions are reported in the Supplemental Analyses File. Bonferroni corrections were used in 

post-hoc, pairwise comparisons to adjust for multiple tests. When sphericity was violated, we 

report Greenhouse-Geisser corrected degrees of freedom.  

Individual Differences in Number Line Estimation  

Raw estimates. We conducted a 4 (component size: smallest, small, large, largest) x 2 

(condition: untimed vs. timed) between-within mixed GLM with equivalence, inhibition, and 

updating as concomitant variables on raw number line estimates. The results of the full model 

can be seen in Table B1. Tests of within-subjects effects revealed no main effect of component 

size on raw estimates, F(2.085, 145.918) = 0.52, p = .604, but component size interacted with 

condition, F(2.085, 145.918) = 7.71, p = .001, ηp
2
 = .10. There were no other within-subjects, 

two-way interactions. In line with our second hypothesis (H2), the interaction between 

component size and condition was qualified by a three-way interaction with equivalence 

knowledge, F(2.085, 145.918) = 8.04, p < .001, ηp
2
 = .10, and a marginal three-way interaction 

with inhibition, F(2.085, 145.918) = 2.55, p = .079, ηp
2
 = .04.  

                                                                                                                                                             

evaluate whether whole number bias increases as the size of components increases and to reduce 

the number of analyses necessary to test our hypotheses. 
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Component size by condition. We conducted follow-up pairwise comparisons examining 

the effects of component size in the untimed and timed condition on the estimated marginal 

means of raw estimates. Adults estimated the largest-component fractions as 0.023 larger than 

large-component fractions when they estimated under a time constraint (p = .008). However, no 

other comparisons in the timed or untimed conditions were significant (all ps > .14). Thus, in 

contrast to our first hypothesis (H1a), participants in our study rarely demonstrated whole 

number bias errors in their raw estimates of fractions, even when under a time constraint.  

The moderating role of equivalence knowledge. To explore the three-way interaction 

between component size, condition, and equivalence knowledge, we tested the effect of 

component size in each condition when equivalence knowledge was higher (+ 1 SD) or lower (-1 

SD). As can be seen in Figure 1, all pairwise comparisons of estimated marginal means were 

non-significant in the untimed condition.  

In the timed condition, multivariate tests revealed an effect of component size when 

equivalence knowledge was higher, F(3, 68) = 4.50, p = .006, ηp
2
 = .17, and lower, F(3, 68) = 

4.43, p = .007, ηp
2
 = .16. However, the pattern of pairwise comparisons on estimated marginal 

means is less clear. As can be seen in Figure 1, when modeled at lower equivalence knowledge,  

adults estimated the smallest component fractions as larger than fractions with small and large 

components. In contrast, when modeled at higher levels of equivalence knowledge, adults were 

only marginally affected by component size and estimated the smallest component fractions as 

smaller than other equivalent fractions.  

Thus, whether whole number components influenced adults’ fraction reasoning depended 

on the difficulty of the task and their prior knowledge of fraction equivalence. Only when 

equivalence knowledge was lower were adults influenced by the size of fraction components 
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when estimating under a time constraint. Furthermore, the effect of components was in contrast 

to how whole number bias is typically characterized. Adults with less equivalence knowledge 

may have made errors when attempting to mentally simplify a larger component fraction, or they 

may have used the heuristic that smaller components = larger magnitudes without taking into 

consideration the size of the numerator. These data are consistent with strategic variability 

accounts of fraction reasoning (Alibali & Sidney, 2015): when under restricted time, adults’ 

performance suggested that which strategies and heuristics they used depended on their 

knowledge of fraction equivalence.  
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Figure 1. Three-way interaction between condition, component size, and equivalence knowledge 

on average raw estimates. Note. All estimates are estimated marginal means at high (+ 1 SD) and 

low (- 1 SD) levels of equivalence knowledge while controlling for mean values of inhibition 

and updating. *p < .05, 
+
p < .1. 

 Estimation precision. We ran a parallel mixed 4 (component size: smallest, small, large, 

largest) x 2 (condition: untimed vs. timed) between-within GLM with equivalence, inhibition, 

and updating as concomitant variables on estimation precision (PAE). Within-subjects effects did 

not reveal a significant effect of component size on PAE, F(2.742, 191.93) = 1.49, p = .223. 

However, component size interacted with condition, F(2.742, 191.93) = 3.58, p = .018,  ηp
2
 = 

.05, and this interaction was qualified by a three-way interaction with equivalence knowledge, 

F(2.742, 191.93) = 4.28, p = .008, ηp
2
 = .06. There was a marginal three-way interaction between 

component size, condition, and updating, F(2.742, 191.93) = 2.26, p = .088, ηp
2
 = .03, but no 

other interactions were significant (see Table B2 for the full model).  
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The moderating role of equivalence knowledge. When modeled at higher (+ 1 SD) 

levels of equivalence knowledge, there was no multivariate effect of component size on 

estimation precision for adults in the untimed, F(3, 68) = 0.73, p = .538, or timed condition, F(3, 

68) = 1.13, p = .344.  

When modeled at lower equivalence knowledge (-1 SD), there was a significant 

multivariate effect of component size in both the untimed, F(3, 66) = 7.49, p < .001, ηp
2
 = .25, 

and timed conditions, F(3, 68) = 6.22, p = .001, ηp
2
 = .22. As can be seen in Figure 2, estimated 

marginal means were higher (less precise) for fractions with the largest components compared to 

fractions with smaller components in both conditions. Thus, regardless of timing condition, the 

effect of component size on estimation precision depended on adults’ prior knowledge of 

fraction equivalence. When equivalence knowledge was higher, adults estimated fractions based 

on their holistic magnitude, regardless of the size of components or time constraints. 

 

Figure 2. Three-way interaction between component size, condition, and equivalence knowledge 

on percent absolute error (PAE) while controlling for updating and inhibition. Effects are based 



30 

ADULTS’ STRATEGIES AND ERRORS DURING FRACTION REASONING 

 

on estimated marginal means at lower (-1 SD) and higher (+ 1 SD) levels of equivalence 

knowledge. Note. Higher PAE relates to less precise estimates. * p < .05. ** p < .01 
+
p < .1.  

Fraction Comparison Performance 

Accuracy. We hypothesized that adults would be less accurate when comparing fractions 

after making number line estimates under a time constraint (H1b), when comparing fractions 

with components inconsistent with whole number ordering (H1c), and when the distance 

between the pair was small (H1d). To evaluate our hypotheses, we conducted a mixed ANOVA 

with condition (untimed vs. timed) as a between-subjects factor, and consistency (consistent vs. 

inconsistent) and distance (small vs. large) as within-subjects factors.  

Components only influenced adults’ fraction reasoning when it was difficult to compare 

fractions based on holistic magnitudes (see Table B3). Within-subjects effects revealed a 

significant effect of consistency, F(1, 76) = 6.86, p = .011, ηp
2
 = .08, distance, F(1, 76) = 43.42, p 

< .001, ηp
2
 = .36 and an interaction between consistency and distance, F(1, 76) = 21.95, p < .001, 

ηp
2
 = .22. Adults were less accurate at comparing consistent (M = 71.7%, SE = 2.4%) than 

inconsistent fraction pairs (M = 81.0%, SE = 2.7%), and when comparing small- (M = 68.2%, SE 

= 1.8%) than large-distance (M = 84.7%, SE = 2.7%) pairs. The interaction revealed that the 

effect of whole number component consistency depended on the distance between the fractions.  

 The effect of consistency was only significant when adults compared small-distance 

fraction pairs, F(1, 76) = 14.25, p < .001, ηp
2
 = .16. This surprising result, which replicates prior 

work with Greek participants (DeWolf & Vosniadou, 2015), might be due to adults comparing 

fractions by selecting the fraction with the smaller within-fraction numerator and denominator 

difference. This componential heuristic has been reported in past work examining fraction 

comparison strategy use (Fazio et al., 2016; Sidney et al., 2018). In our study, this heuristic 
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would lead to correct responses on 100% of trials when comparing inconsistent fraction pairs. 

However, when comparing consistent fraction pairs that were close in decimal distance, this 

heuristic would lead to the incorrect response on four out of five trials.  

Between-subjects effects did not reveal an effect of condition, F(1, 76) = 1.18, p = .280, 

ηp
2
 = .02. Adults in the untimed condition had an average overall accuracy (M = 78.4%, SE = 

2.7%) similar to adults in the timed condition (M = 74.3%, SE = 2.6%). Condition did not 

moderate the effect of consistency, distance, or the interaction between consistency and distance 

(all ps > .3).  

Experiment 1 Discussion 

 In line with strategy variability accounts of whole number bias (e.g., Alibali & Sidney, 

2015),  adults’ performance when estimating and comparing fractions suggested they adapted 

their strategy choices to the task. When it was difficult to reason about fractions as holistic 

magnitudes (e.g., when under a time constraint or when comparing fractions close in distance), 

adults fell back on componential-based heuristics. By contrast, adults’ fraction reasoning under a 

time constraint did not reflect whole-number-based strategies. One possibility is that the time 

constraint was not constraining enough to lead to whole number bias errors. However, this seems 

unlikely. The average number line estimation trial-level response time was significantly longer in 

the untimed (M = 14.97s, SD = 17.74s) than timed (M = 3.26s, SD = .35s) conditions, t(36.026) = 

4.01, p < .001. This was also the case for estimates of fractions from each component size bin 

(all ps < .01). Furthermore, as mentioned earlier, the time constraint we imposed in the current 

study is much shorter than the time it takes college students enrolled in a highly selective 

university to compare fraction magnitudes (Fazio et al., 2016).    
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 In line with our second hypothesis (H2), only adults with less knowledge of equivalence
5
 

were influenced by components when reasoning about fractions one at a time in the number line 

task. Adults with less knowledge of equivalence estimated larger-component fractions less 

precisely than smaller-component fractions in both conditions and estimated fractions with 

smaller components as larger in magnitude in the timed condition. Adults with more knowledge 

of equivalence estimated smaller- and larger-component fractions with similar precision in both 

conditions, estimated fractions similarly in the untimed condition, and were only marginally 

affected by components in the timed condition.  

The moderating role of equivalence knowledge during fraction estimation suggests that 

individual differences in knowledge impact 1) what strategies are selected and 2) how effectively 

they are implemented. For example, adults with more equivalence knowledge may have 

adaptively used strategies in both conditions but did not have enough time to effectively 

implement them in the timed condition. In contrast, when it was difficult to reason based on 

holistic magnitudes, adults with less equivalence knowledge were likely falling back on less 

adaptive heuristics, such as smaller components = larger magnitude. This heuristic aligns with a 

part-whole interpretation of fractions: when the denominator is smaller, there are fewer, but 

larger, parts (i.e., a fraction with a denominator of 5 has larger parts than a fraction with a 

denominator of 19). However, if the numerator is also small (e.g., 2), the fraction represents 

fewer parts of the whole (i.e., 2/5 is only 2 out of a possible 5 parts). This part-whole 

interpretation is adaptive when reasoning about unit fractions, but not all fractions. Thus, 

knowledge of fraction equivalence was important for adaptively selecting strategies when 

reasoning about fraction magnitudes, in line with overlapping waves theory (Siegler, 1996, 2005, 

                                                 
5
 Note that we use a person-centered interpretation of our results. However, these findings are based on modeled 

effects and we did not group participants based on their performance on the equivalence task.  
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2016b) and the dynamic strategy choice account of whole number bias (Alibali & Sidney, 2015). 

However, we did not directly examine strategy use in Experiment 1, which was the primary 

motivation for conducting Experiment 2.  

Experiment 2 

In Experiment 2, we examined why individual differences in equivalence knowledge 

moderate the effects of contextual factors on adults’ fraction reasoning by examining self-

reported strategy use. In addition to examining strategy use, we investigated the role of task 

order on number line estimation performance. We explored whether recent experiences can 

facilitate accurate fraction reasoning.  

Recently activated knowledge can help or hinder performance and strategy use (Crooks 

& Alibali, 2013; McNeil & Alibali, 2005; Sidney & Alibali, 2017). For example, adults used less 

effective strategies to solve mathematical equivalence problems (e.g., 3 + 4 + 6 = 3 + __) when 

irrelevant knowledge was activated (Crooks & Alibali, 2013; DeCaro, 2016; McNeil & Alibali, 

2005). Research involving children suggests prior experiences can also help performance. For 

example, children who had their knowledge of whole number division activated first provided 

more conceptually accurate representations of fraction division on a following fraction division 

task compared to children whose knowledge of fraction addition was activated (Sidney & 

Alibali, 2017). Thus, we tested whether activating adults’ knowledge of equivalence, by having 

participants complete the equivalence task before number line estimation, would reduce whole 

number bias effects. 

We hypothesized that component size and equivalence knowledge would interact: adults 

with more knowledge of equivalence would estimate small- and large-component fractions with 

similar precision, but adults with less equivalence knowledge would be less precise when 
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estimating large- relative to small-component fractions (H1). Given the lack of a significant 

effect of component size on raw estimates in the untimed condition from Experiment 1, we did 

not expect significant differences in raw estimates of fractions with smaller or larger 

components. However, the differences in component size between small- and large-component 

fractions using stimuli from Braithwaite and Siegler’s (2017) study were always relative to the 

smallest-component fractions. Indeed, some small-component fractions (e.g., 10/12) had similar 

components as large-component fractions of different magnitudes (e.g., 9/12). Thus, in 

Experiment 2 we distinguished component size by making all large component fractions have 

double digit components.  

Of primary interest, we examined the strategies that adults used and related the frequency 

of their strategy usage to estimation precision. Self-reported strategies have been successfully 

used in prior research to gain insight into the strategies children and adults use to reason about 

other numerical tasks such as multiplication, addition, and fraction comparison or estimation 

(e.g., Campbell & Alberts, 2009; Fazio et al., 2016; LeFevre, Bisanz, et al., 1996; LeFevre, 

Sadesky, & Bisanz, 1996; Sidney et al., 2018). In the current experiment, solving problems in the 

number line estimation and fraction equivalence tasks takes long enough to form a representation 

in short-term (or working) memory, and the representations are active long enough that the 

nature of how these representations have been manipulated (i.e., the strategies) can be reported. 

Thus, these tasks meet Ericsson and Simon’s (1980, 1984, 1993, 1998) requirements for 

providing valid strategy reports. However, we acknowledge that there are some limitations to 

self-reporting strategies (e.g., Smagorinsky, 1998; Thevenot, Castel, Fanget, & Fayol, 2010; 

Wilson & Nisbett, 1978). For example, individuals’ behavioral performance sometimes suggests 

they are using strategies that they do not self-report when prompted (Thevenot et al., 2010) or 
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reporting strategies may change performance, strategies, or thinking (e.g., Smagorinsky, 1998; 

c.f., Ericsson & Simon, 1998 or Smith & Miller, 1978 for counter arguments). Although self-

reporting strategies may have limitations, this methodology is one way to evaluate predictions 

made by the dynamic strategy choice account of whole number bias. By having adults provide 

strategy reports, we do not have to rely solely on experimenter-generated inferences about why 

people performed the way they did; they tell us explicitly. The combination of self-reported 

strategies with the behavioral data from Experiment 1 provides converging evidence of the 

processes associated with adults’ fraction reasoning. 

In Experiment 2, we predicted that use of adaptive magnitude strategies would relate to 

more precise estimates of fractions on number lines (H2a) and higher overall accuracy on the 

equivalence task (H2b). We also explored whether knowledge of fraction equivalence related to 

more precise number line estimates through the use of adaptive strategies.    

Method  

The study was reviewed and approved by the Kent State University Institutional Review 

Board (protocol #17-432).  

Participants  

  A total of 100 participants (Mage = 34.94 y, SD = 11.40 y, range 19 - 71 y; 42% female) 

met pre-registered inclusion criteria and were included in the final data set (see Table 1). We 

recruited 112 adult participants who self-reported being at least 18 years old, United States 

citizens, and currently living in the United States. As in Experiment 1, we powered to detect a 

small effect with 80% power and the potential for 10% attrition (Faul et al., 2009). We powered 

to detect a small effect to rule out the possibility that we did not detect an effect of component 

size in the untimed condition in Experiment 1 due to power. The same pre-registered inclusion 
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criteria from Experiment 1 was implemented in Experiment 2. There were 12 participants who 

were excluded from analyses: seven from number line estimation, one from fraction equivalence, 

and seven for reporting having used a calculator (there is some overlap between calculator use 

and other exclusions).  

Design and Tasks  

 The design of Experiment 2 was similar to that of Experiment 1. All participants 

estimated equivalent fraction magnitudes with small or large components under no time 

constraint. Approximately half of the participants were randomly assigned to complete the 

number line estimation and equivalence tasks in either the activated (n = 45) or non-activated (n 

= 55) condition. Participants in the activated condition completed the fraction equivalence task 

before number line estimation, and those in the non-activated condition completed tasks in the 

opposite order. Thus, we tested a 2 (between: activated vs. non-activated) x 2 (within: small vs. 

large component) between-within design with equivalence knowledge as a concomitant variable. 

Number line estimation. This task was similar to Experiment 1, but participants 

estimated the magnitude of a different set of 12 fractions with six magnitude values ranging from 

0.167 to 0.857 (see Appendix A). We adopted a subset of simplified, small component fractions 

from experiment one of Braithwaite and Siegler (2017). We created equivalent large component 

fractions with double-digit numerators and denominators because the largest differences in 

estimation precision in Experiment 1 were between the largest and smallest component fractions. 

As in Experiment 1, fractions were presented in one of two pre-randomized orders so that no 

equivalent magnitude was presented back-to-back. We analyzed both raw estimates and percent 

absolute error to evaluate the effects of component size on adults’ fraction reasoning.   
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Fraction equivalence verification. This task was the same as in Experiment 1. 

Participants completed nine true and nine false equivalence statements using fraction stimuli 

drawn from the number line task. Because all small component fractions in the number line task 

were in their simplified form, the six original true statements could be correctly solved using a 

componential equivalence strategy: do the components of one fraction evenly go into to the 

components of the paired fraction (e.g., the numerator, 1, goes into the numerator, 12, evenly and 

the denominator, 6, goes into the denominator, 72, evenly when evaluating 1/6 = 12/72). Thus, 

we created three additional true statements using non-simplified fractions equivalent to three of 

the original magnitudes (1/6, 4/9, 6/7) that were not included in the number line task. These 

items would need to be solved using an alternative strategy (e.g., simplification, equivalent 

component, cross-multiplication, see strategy coding section below). To balance the number of 

true and false items, we created three additional false pairs. See Appendix A for all 18 

statements.  

Strategy coding. We asked participants to report their strategy use immediately after 

each trial in the number line estimation and equivalence tasks. For the number line estimation 

task, we adopted coding schemes from past research (Sidney et al., 2018; Siegler & Thompson, 

2014; Siegler et al., 2011). For any individual trial, a participant could report a strategy that we 

coded in multiple categories (e.g., segmenting and transformation). We also calculated the 

number of unique correct strategies a participant used (out of seven), since variable strategy use 

relates to estimation precision (Sidney et al., 2018).  

We adapted coding schemes from research in fraction comparison (Fazio et al., 2016) to 

develop an initial coding scheme for the fraction equivalence task. We also included a number of 
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new codes that were unique to the equivalence measure (e.g., componential transformation, 

simplification, common factor).  

For both tasks, the first author and a research assistant coded each strategy independently 

for all participants, then the raters resolved disagreements through discussion until agreement 

was 100%. Initial agreement was 94.3% for the number line task (Cohen’s Kappa = .75) and 

95.8% for the equivalence task (Cohen’s Kappa = .77) For the full list of strategies and 

examples, see Table 3 and 4.  

Confidence ratings and familiarity. These tasks were the same as in Experiment 1 but 

not central to the present hypotheses and are not discussed further.   

Demographic information. Participants reported the same demographic information in 

Experiment 2 as was reported in Experiment 1. 
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Table 3.  

Number line estimation strategy codes and average use.  

Strategy Category Strategies Definition Example Average Use 

Transformation:  

Transforming the fraction 

into a different number or 

form that is easier to estimate 

Rounding 
Rounding: Approximating the 

fraction to a similar number. 

Approximated [54/63] 

as 5/6 

60.76% Simplifying 
Simplifying: Transforming the 

fraction into a different fraction. 

I reduced [24/84] by 4 

to 6/21. 

Translating 

Translating: Transforming the 

fraction into a different form such 

as a percentage 

I know that 5/8ths is 

close to 0.6. 

Segmentation: 
Dividing the line into 

segments or parts. 

Halves 

reference 

Any reference to half, the 

midpoint of the line, or 

segmenting the line into two 

parts. 

I divided the line in 

half then split the half 

line by 3. 

29.32% 

Denominator 

Segmenting the line into parts 

based on the size of the 

denominator. 

Divide the line into 

7ths and move the dot 

to 6. 

15.19% 

Other Any other segmenting of the line. 

I divided the lower 

half of the line into 

three sections. 

3.32% 

Magnitude: 

Referencing the magnitude or 

size of the fraction. 

Magnitude 
Placing a fraction based on the 

size. 

2/8 is 0.25 and 2/7 is a 

little bigger than that. 
33.02% 

Spatial: 

Referencing a spatial 

location or how close/far a 

value is to a reference point . 

Spatial  

Placing a fraction based on a 

spatial location, such as further to 

the left or right. 

I went just past half. 

22.68% 

Landmarks 

Placing a fraction based on how 

close or far it is to a landmark, 

such as 0, ½, or 1. 

6/7 is close to 1. 

Visualization: 

Thinking of the fraction using 

a visual representation other 

than the number line 

Visual 

Placing the fraction based on how 

it is represented visually, such as 

parts of a pizza or pie. 

I thought about 7 

pieces of pie and then 

taking away one piece. 

1.58% 

Independent Components: 

Referencing how big or small 

the components are 

independently. 

Components 

Placing a fraction based solely on 

the size of the numerator and/or 

denominator. 

I put it closer to 0 

because it being a 

single digit. 

1.27% 

Note. Examples in italics are strategies reported by participants. Average use is calculated by 

dividing the total frequency each strategy was coded across participants by the total number of 

possible opportunities for the strategy to be reported. 
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Table 4.  

Strategy Category Strategies Definition Example Average Use 

Transformation:  

Transforming the fraction 

into a different number or 

form that is easier to estimate 

Equivalence / 

Simplification
*
 

Simplifying a fraction or 

transforming one of the fractions 

into a larger equivalent form.    

Divide the right by 

9/9 and it becomes 

4/9 

 

46.71% 

Common 

Components
*
 

Transforming one or both 

fractions to have an equivalent 

numerator or denominator 

I reduced both sides 

so the denominators 

were 7 (divided the 

left side by 3 and the 

right side by 6) 

 

8.91% 

Componential 

Attempting to see if the 

components of one fraction can 

evenly divide or multiply into 

the components of the other 

fraction. 

4 does not go into 35 

cleanly therefore the 

statement is false. 

 

14.21% 

Vague  

Strategies that suggest the 

participant transformed without 

a clear indication of how. 

I used the strategy of 

division to simplify 

 

12.53% 

Cross Multiplication: 

Comparing the whole number 

result of multiplying the cross 

components 

Cross 

Multiply
*
 

Multiply the denominators by 

the numerators of the other 

fraction and comparing the 

whole number result. 

12(6)=72 and 

72(1)=72. 
1.87% 

Magnitude: 

Referencing the magnitude or 

size of fractions. 

Magnitude or 

Half-reference
*
 

Referencing the size of one or 

both fractions or indicating the 

fractions are on the opposite or 

same sides of one-half.  

54/63 is a lot more 

than 2/7 

 

10.72% 

Division: 

Numerator goes into the 

denominator same / different 

amount of times. 

Numerator-

Denominator
*
 

Divide each denominator by the 

numerator to see if the result is 

the same or different.  

both top numbers go 

into the bottom 6 

times 

 

1.74% 

Parity: 

Referencing whether the 

components of fractions are 

odd or even. 

Parity 

Deciding that fractions with odd 

or even components either can 

or cannot be equivalent. 

odd and even 

numbers not equal 

 

1.00% 

Common factor: 

Finding a least or greatest 

common factor. 

Common 

Factor  

Noting that there is, or is not, a 

greatest or least common factor 

for the components of both 

fractions.  

common factor 9 

 
5.56% 
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Fraction equivalence task strategy codes and average use.  

Note. Examples in italics are strategies reported by participants. Average use is calculated by 

dividing by the total frequency each strategy was coded across participants by the total number 

of possible opportunities for the strategy to be reported. 

Procedure  

 Participants accepted the HIT through MTurk and were directed to the Qualtrics website 

to complete the survey on their own electronic device. Participants took an average of 37 minutes 

(range = 7 to 155min)
6
 to complete the survey and were compensated $3.00. Participants were 

randomly assigned to complete the number line estimation task after (activated condition) or 

before (non-activated condition) completing the fraction equivalence task. After each trial in 

both the number line estimation and equivalence tasks, participants provided a written report of 

the strategy they used to solve the problem. At the end of the experiment, participants rated the 

familiarity of fractions and then answered demographic questions.  

Results 

Preliminary Analyses  

 We first confirmed random assignment was effective by examining differences in 

demographics and equivalence knowledge. There were no differences in age, t(98) = 1.05, p = 

.298, or equivalence scores, t(98) = 0.58, p = .560, between conditions. There was an 

approximately equal distribution of self-reported race, gender, and education level across 

conditions (all Chi-Square ps > .65). Estimation precision did not differ on the number line tasks 

between the two randomized orders presented within each condition (ts <1, ps >.6), so we 

collapsed number line order within each condition. As can be seen in Table 5, and replicating our 

results from Experiment 1, equivalence accuracy and PAE were related.  

                                                 
6
 Participants who took less than 10 minutes to complete the survey did not have codable strategy report data.  
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 In the following sections, we report how components, condition, and equivalence 

knowledge affected adults’ estimation performance. We examined estimation performance using 

the same analytic approach as used in Experiment 1. Then, we report the relation between 

strategy use and estimation performance. We also report the relation between strategy use and 

performance in the equivalence task. Finally, we report whether adults with more knowledge of 

equivalence are more accurate because they use more adaptive strategies.   

Table 5.  

Descriptive statistics and correlations between number line estimation and equivalence. 

 N  (α) Mean (SD) 1 2 

1. Number line estimation PAE 100 (.89) 7.5% (8.0%) - - 

2. Equivalence Accuracy 100 (.72) 86.3% (13.6%) -.558** - 

Note. PAE = percent absolute error and is inversely related to accuracy. ** p < .001.  

 Number line estimation 

 Estimation precision. We predicted that adults’ estimates of fractions with larger 

components would be less precise than estimates of equivalent fractions with smaller 

components but that equivalence knowledge would moderate this effect. We also explored 

whether activating knowledge of fraction equivalence reduced the effects of components or 

interacted with prior knowledge of equivalence. To test our hypotheses, we conducted a 2 

(condition: activated vs. non-activated) x 2 (component size: small vs. large) between-within 

GLM with equivalence knowledge as a concomitant variable
7
.  

Within-subject effects revealed a significant effect of component size, F(1, 96) = 6.29, p 

= .014, np
2
 = .06, and an interaction between component size and equivalence knowledge, F(1, 

                                                 
7
 As with Experiment 1, this analysis differs from our pre-registered difference score approach, 

but the conclusions are similar when analyzed using either approach. We chose to run a single 

GLM to reduce the number of necessary analyses to test our hypotheses.  
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96) = 5.84, p = .018, np
2
 = .06. The interactions between component size and condition as well as 

between component size, condition, and equivalence knowledge were both non-significant (both 

ps > .6; see table B4 for full model).  

In line with our first hypothesis (H1), follow-up planned comparisons revealed that the 

effect of components was only significant when equivalence knowledge was low. As can be seen 

in Figure 3, when modeled at low levels of equivalence knowledge, adults were less precise 

when they estimated fractions with large components (M = 13.0%, SE = 1.0%) relative to 

fractions with small components (M = 11.4%, SE = 1.1%), F(1, 96) = 5.22, p = .025, np
2
 = .05. 

When modeled at average or high levels of equivalence knowledge, there were no differences in 

adults’ estimation precision for fractions with small or large components (both ps > .2). We also 

confirmed that this pattern of results holds when we excluded participants who did not have 

codable strategy report data (described in the strategy report section). Indeed, the interaction 

between equivalence knowledge and component size remained significant (F[1, 75] = 5.24, p = 

.025, np
2
 = .07), and the pairwise comparisons at higher and lower equivalence scores were 

similar to results when including the participants without codable strategy data (Table B6). Thus, 

as in Experiment 1, fraction equivalence knowledge was important for reducing the effects of 

component size on estimation precision.  
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Figure 3. The effect of component size on PAE on estimated marginal means modeled when 

equivalence scores were higher (+ 1 SD) or lower (- 1 SD). Note. PAE is a measure of error and 

is inversely related to accuracy. 

Even though we increased the size of components, adults with average levels of 

equivalence knowledge estimated small- and large-component fractions with similar precision. 

This surprising result may be due to reactivity from reporting strategies after each trial, which we 

discuss further in the discussion (e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Rittle-

Johnson, Loehr, & Durkin, 2017). Indeed, the 39 participants who had at least one number line 

estimation trial with no codable strategy report data had significantly higher PAE (M = 12.14%, 

SD = 11.0%) than the 61 adults who reported codable strategy data on all trials (M = 4.5%, SD = 

2.08%), t(39.75) = 4.31, p < .001, d = .97. Thus, providing quality strategy reports related to 

more precise number line estimates. However, the current experimental design cannot shed light 

on the direction of these effects; strategy reporting might have led to more precise estimates, or 
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individuals who are more precise might have been able to provide codable strategy reports. We 

did replicate our main behavioral finding from Experiment 1: when equivalence knowledge was 

lower, adults were less precise when estimating large-component compared to small-component 

fractions. 

Raw estimates. We ran a parallel GLM to examine the effects of component size and 

equivalence knowledge on raw estimates. However, there was no effect of components and no 

interaction with equivalence knowledge or condition (all ps > .18 See Table B5 for the full 

model).  

However, we found that excluding participants without codable strategy data (described 

below) changed the results. We conducted a 2 (condition: activated vs. non-activated) x 2 

(component size: small vs. large) between-within GLM with equivalence as a concomitant 

variable. The main effect of component size was non-significant, but component size interacted 

with condition, F(1, 75) = 4.63, p = .034, np
2
 = .06, and this interaction was qualified by a 

marginal three way interaction with equivalence knowledge, F(1, 75) = 3.57, p = .063, np
2
 =  .05 

(Table B7). The results of follow-up tests are consistent with our behavioral data from 

Experiment 1: when equivalence knowledge was lower, adults who had recently completed a 

fraction task fell back on componential heuristics, such as smaller components = larger 

magnitudes. 

Strategy Use  

 Next, we examined participants’ strategy use in the number line estimation and 

equivalence task. As pre-registered, we excluded participants who did not provide codable 

strategy reports on over half of the trials. This resulted in 21 participants being excluded from the 

number line task and 22 participants excluded from the equivalence task.  
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Strategy use and estimation precision. In line with overlapping waves theory, adults 

used a variety of different strategies to estimate fractions on number lines. Adults used between 

zero and seven different correct strategies across trials (M = 3.96, SD = 1.60). One participant 

guessed or used intuition on all trials, and only one participant used all seven correct strategies at 

least once across the 12 estimation trials. As can be seen in Table 6, and in line with our second 

hypothesis (H2a), adults who used magnitude strategies more frequently, had lower overall 

percent absolute error (PAE). Similarly, adults who used the transformation or segmentation 

strategy more frequently, or who used a variety of different strategies, had lower PAE.  

Table 6.  

Correlations between strategy use and performance on the number line estimation and 

equivalence task.  

 N Mean (SD) 1 2 3 4 5 6 7 

1. Number Line Magnitude PAE
a
 79 5.7% (4.7%) - - - - - - - 

2. Equivalence Accuracy  79 87.9% (10.9%) -.430** - - - - - - 

3. Transformation Strategy 79 7.29 (3.8) -.344** .508** - - - - - 

4. Magnitude Strategy 79 3.96 (3.60) -.276* .122 .165 - - - - 

5. Any Segmentation Strategy 79 5.86 (4.12) -.311** -.066 -.294* .159 - - - 

6. Spatial Strategy 79 2.72 (3.14) .205 -.072 -.132 .064 .179 - - 

7. Visualization Strategy 79 0.19 (0.86) .050 -.274* -.152 .027 .000 .124 - 

8. Strategy Variability (out of 7) 79 3.96 (1.6) -.302** -.087 -.185 .410** .677** .306* .209 

Note. Differences in correlation values from Table 5 are due to filtering out participants who did 

not provide codable strategy reports. ** p < .01, * p < .05. 
a
PAE = percent absolute error and is 

inversely related to estimation precision. 

 Fraction equivalence knowledge and adaptive strategy use. To examine whether 

strategy use explained the relation between equivalence knowledge and estimation precision, we 
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explored several indirect effect models. In all models, we controlled for condition and used 

bootstrapping to estimate coefficients and confidence intervals using the PROCESS macro for 

SPSS (Hayes, 2012). First, we examined whether adults with more equivalence knowledge had 

lower PAE indirectly through their strategy variability. However, there was no indirect effect of 

equivalence knowledge on PAE through strategy variability (b = .01, 95% CI [-.02, .05]). Next, 

we examined whether equivalence knowledge related to estimation precision through the use of 

adaptive strategies. Two strategy types might be considered particularly adaptive in our 

experiment. First, magnitude strategies are adaptive on any trial during number line estimation 

since correct use of these strategies will always lead to precise estimates. This strategy may be 

more difficult when estimating fractions with large components. When estimating large-

component fractions, adults may need to use the second adaptive strategy--transformation--prior 

to estimating the fraction magnitude. Use of transformation strategies often indirectly indicates 

magnitude understanding. For example, an adult reported that they reduced 24/84 “by 4 to 6/21.” 

Maintaining the correct ratio between components demonstrates accurate magnitude 

understanding, and this indirect reference to magnitude has been coded as adaptive in past 

research (Sidney et al., 2018).   

First, we tested whether equivalence knowledge indirectly related to more precise 

estimates overall through the use of magnitude strategies. However, this model was non-

significant, indirect effect: b = -.01, 95% CI [ -.04, .01]. Next, we tested whether there was an 

indirect effect of adults’ equivalence knowledge on PAE for large component trials through use 

of transformation strategies on those trials. We examined transformation strategies and PAE on 

large-component trials because these are the trials when adults’ were biased. As can be seen in 

Figure 4, higher equivalence knowledge related to a higher frequency of using the transformation 
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strategy on large-component trials, b = 9.47, t(76) = 5.76, p < .001, 95% CI [6.19, 12.74], use of 

this strategy related to more precise estimates on large-component trials, b = -0.01, t(75) = 2.93, 

p = .004, 95% CI [-0.01, -0.002], and the indirect effect on large-component PAE was also 

significant, b = -0.08, 95% CI [-0.18, -0.01]. This was not the case when examining the role of 

transformation strategies overall on average PAE. In other words, equivalence knowledge only 

had an indirect effect on PAE through the frequency of transforming large-component fractions, 

but not through transformation on all trials. 

 

 

Figure 4. Indirect effect of equivalence knowledge on percent absolute error for large component 

trials through the frequency of using the transformation strategy when estimating large 

component fractions. Note. PAE is inversely related to precision. LC = large component. 

Equivalence task strategy use. As with number line estimation, we analyzed adults’ 

optimal strategy variability (out of 5 possibly strategies). For the equivalence task, we coded 

simplification, common component, cross-multiplication, magnitude, and division strategies as 

optimal, since each of these strategies would lead to the correct response if executed correctly. 

Adults used between 0 and 5 optimal strategies on the equivalence task (M = 2.40, SD = 1.05). 



49 

ADULTS’ STRATEGIES AND ERRORS DURING FRACTION REASONING 

 

Five participants did not use an optimal strategy on any trial, and only one used all five optimal 

strategies at least once.  

 We predicted that use of magnitude strategies in the equivalence task would relate to 

higher accuracy. In line with our second hypothesis (H2b), adults who used the magnitude 

strategy more frequently had higher performance on the equivalence task, r = .311, p = .004. 

Higher performance on the equivalence task also related to the frequency adults used  

simplification, r = .677, p < .001, and common component, r = .344, p = .001, strategies. 

However, cross-multiplication and division--the other two strategies we coded as adaptive--were 

unrelated to performance, possibly because they were used less frequently than the other 

adaptive strategies overall (1.85% and 1.74%, see Table 4). We also explored whether strategy 

variability in the equivalence task related to overall performance. In line with overlapping waves 

theory (Siegler, 1996, 2005, 2016b), variability among optimal strategies related to higher 

accuracy on the equivalence task, r = .318, p = .003. However, variability among all strategies 

was unrelated to accuracy.   

Experiment 2 Discussion 

In Experiment 2, we examined how components, individual differences in equivalence 

knowledge, and recent experiences with fraction equivalence impacted adults’ reasoning about 

fraction magnitudes. In line with our first hypothesis (H1), adults with less knowledge of fraction 

equivalence were less precise when estimating fractions with larger compared to smaller 

components. However, adults with average or above average levels of equivalence knowledge 

estimated equivalent fractions with small and large components with similar precision. Thus, we 

replicated our results from the first experiment: whole number components impacted adults’ 
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ability to precisely estimate fraction magnitudes, especially when equivalence knowledge was 

low. Importantly, we examined the strategies adults used to reason about fraction magnitudes.  

Adults used a variety of different strategies when they estimated fractions on number 

lines and evaluated whether two fractions were equivalent. In line with our second hypothesis 

(H2a-b), adults who more frequently used strategies based on the holistic magnitude of fractions 

had better performance in both tasks. Importantly, individual differences and contextual factors 

influenced the strategies that adults used in the number line estimation task. In the estimation 

task, adults with more equivalence knowledge were more likely to use the transformation 

strategy when estimating large component fractions, and use of this strategy related to lower 

overall percent absolute error (PAE). Thus, we extended findings from the first experiment: 

individual differences in knowledge of fraction equivalence related to more precise number line 

estimates, in part due to adaptive strategy use.  

General Discussion 

Adults’ performance in fraction magnitude tasks sometimes reflects whole number bias, 

but other times reflects accurate reasoning. Across two experiments, contextual factors and 

individual differences influenced adults’ fraction reasoning. Adults demonstrated whole number 

bias when it was difficult to reason about fractions as holistic magnitudes: when estimating under 

a time constraint, when estimating fractions with large components, or when comparing fractions 

close in decimal distance. We extend past research by demonstrating that individual differences 

in knowledge of fraction equivalence were more important than inhibition or updating abilities 

for reducing whole number bias during number line estimation. When equivalence knowledge 



51 

ADULTS’ STRATEGIES AND ERRORS DURING FRACTION REASONING 

 

was higher
8
, adults were not biased by fraction components when estimating fractions on number 

lines.    

These novel results advance research on adults’ fraction reasoning in several important 

ways. First, we replicated research demonstrating that adults can reason about fractions as 

holistic magnitudes (e.g., Gabriel et al., 2013; Obersteiner et al., 2012; Schneider & Siegler, 

2010; Sprute & Temple, 2011; Zhang et al., 2014), even though some adults still demonstrate 

whole number bias. Second, to our knowledge, we are the first to demonstrate fraction 

equivalence knowledge moderates whole number bias in adults. We linked fraction equivalence 

knowledge to adaptive strategy use, thereby extending past research and theories on strategy 

variability and whole number bias (e.g., Alibali & Sidney, 2015; Fazio et al., 2016; Sidney et al., 

2018; Siegler, 1996, 2005, 2016b; Siegler & Thompson, 2014; Siegler et al., 2011). Establishing 

a relation between equivalence knowledge and fraction reasoning elucidates for whom 

components negatively impact fraction reasoning, and linking equivalence knowledge to 

adaptive strategy use elucidates how adults adaptively use strategies to reason about fractions.  

Theoretical Implications 

 Strategic variability (Siegler, 1996, 2005, 2016b) occurs in many domains: arithmetic      

(e.g., LeFevre, Bisanz, et al., 1996; LeFevre et al., 1996), memory (e.g., Schneider, Kron-Sperl, 

& Hünnerkopf, 2009), locomotion (e.g., Adolph, Vereijken, & Denny, 1998), performance on 

false belief problems (Flynn, O’Malley, & Wood, 2004), and even when playing tic-tac-toe 

(Crowley & Siegler, 1993). Similar to strategic variability in other domains, the results from our 

current experiments indicated that there was systematic variability in how, when, and for whom 

whole number components impacted adults’ fraction reasoning (see Alibali & Sidney, 2015). 

                                                 
8
 We use a person-centered interpretation in the discussion of our results, Note that we modeled these findings at 

higher and lower levels of equivalence scores.  
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Our findings build on past work demonstrating that the effects of whole number components on 

adults’ fraction reasoning vary within individuals who are solving problems in different contexts 

and between individuals who possess different prior knowledge (DeWolf & Vosniadou, 2015; 

Fazio et al., 2016; Obersteiner et al., 2013; Schneider & Siegler, 2010; Sidney et al., 2018; 

Zhang et al., 2016). For example, even expert mathematicians draw on their knowledge of whole 

numbers to compare fractions when all fraction pairs in the task share a common component, yet 

use fraction magnitude strategies when components differ from fraction-to-fraction (Obersteiner 

et al., 2013). Experts were faster to compare fractions with common components when the 

correct answer was consistent with whole number knowledge (e.g., 6/11 < 8/11 and 6 < 8) 

relative to when the correct answer was inconsistent with whole number knowledge (e.g., 6/13 > 

6/47 even though 47 > 13). Experts had to inhibit their whole number strategies when comparing 

fractions with common numerators, but did not have to do so when comparing fractions with 

common denominators or when making comparisons that elicited fraction magnitude strategies 

(i.e., fraction pairs with no common components). Thus, in some contexts, whole number 

strategies are adaptive; in others, these same strategies result in errors or increased response 

times. These findings are consistent with other work that demonstrates adults adapt their strategy 

selection based on characteristics of the problem (e.g., Fazio et al., 2016; Schneider & Siegler, 

2010).  

In the context of estimating one fraction at a time in our experiments, whole number 

magnitudes may not need to be inhibited. Indeed, adults’ ability to inhibit whole number 

magnitude knowledge in Experiment 1 only marginally moderated the effect of whole number 

components in the estimation task, but related to overall comparison performance. In contrast, 

updating abilities related to overall estimation and comparison performance. Thus, inhibition of 
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whole number knowledge may be more important in the context of comparing fraction 

magnitudes than in the context of estimating because the comparison fraction is visible on the 

screen, and therefore the direct comparison between numerator and denominator components 

must be inhibited. Alternatively, the correlation between performance on the fraction comparison 

and inhibition tasks might be due to both tasks involving comparisons between numbers rather 

than due to inhibition of magnitude knowledge generally (i.e., shared task variance). Future work 

might test this possibility by including domain-specific and domain-general measures of 

inhibition.  

The role of different mental processes (e.g., inhibition and updating) in reasoning about 

fractions in different task contexts does not conflict with conceptual change approaches to whole 

number bias. For example, our data do not rule out the possibility that whole numbers might be 

processed differently than fractions. However, our data point to the fact that people often 

integrate whole number and fraction knowledge as they adaptively choose which strategy to 

employ from trial-to-trial. For example, consider how an adult with more knowledge of fraction 

equivalence might estimate the fraction 12/72 on a number line. This person’s understanding of 

fraction equivalence might be activated when they see 12/72; this fraction is difficult to estimate 

in its current form, but it can be transformed. To transform the fraction, the person might draw 

on their knowledge of whole number multiplication or division. Thus, with relevant prior 

knowledge of fraction equivalence, the appropriate combination of fraction and whole number 

knowledge leads to adaptive strategy selection and execution.   

Strategic variability accounts also suggest that relevant prior knowledge should be related 

to more precise estimates of fraction magnitudes (Alibali & Sidney, 2015; Schneider & Siegler, 

2010; Siegler, 1996, 2005, 2016b). In our studies, we found that the relation between adults’ 
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number line estimation precision and their equivalence knowledge provided a compelling case 

for the relevance of prior knowledge. Further, we replicated the Bayes Factors models reported 

by Braithwaite and Siegler (2017) in which, for each participant, we compared models that 

predicted fraction estimates from fraction magnitudes (magnitude model), numerator and 

denominator components (componential model), or fraction magnitude and components together 

(hybrid model). For each model and participant, we calculated Bayes Factors relative to an 

intercept only model using the BayesFactor package for R (Morey, Rouder, & Jamil, 2015) and 

transformed the Bayes Factors into posterior probabilities (see Supplemental Analyses File). 

Across both experiments, equivalence knowledge related to having a higher posterior probability 

of being fit by a magnitude model, and a lower probability of being fit by a componential or 

hybrid model. It is currently unclear whether equivalence knowledge causes more precise 

magnitude representations (or vice versa) and whether effectively executing strategies causes 

more precise magnitude representations (or vice versa). However, the interrelations between 

equivalence knowledge, strategy use, contextual factors, and performance suggest that some 

experiences may be more likely to support adaptive strategy selection and execution than others.  

Environmental Experiences and Educational Implications 

Why are some participants more likely to possess a holistic representation of magnitudes 

than others? Holistic magnitude representations may require particular environmental 

experiences (e.g., with fraction equivalence) that build on people’s intuitive ability to directly 

reason about ratios, such as fractions (e.g., Jacob & Nieder, 2009; Binzak, Matthews, & 

Hubbard, 2019; Lewis, Matthews, & Hubbard, 2015; Matthews & Chesney, 2015; Matthews & 

Ellis, 2018; Matthews & Lewis, 2017). New research suggests that people possess a ratio 

processing system (RPS; Matthews, Lewis, & Hubbard, 2015) that can be used to directly and 
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automatically process ratios. The RPS may be leveraged to support learning about fraction 

magnitudes through the frequency with which fractions are encountered in the environment. For 

example, fractions like 1/4, 1/2, or 3/4 are encountered more frequently in the environment than 

other fractions (e.g, Braithwaite & Siegler, 2018), and adults are more familiar with, and 

confident when estimating common compared to uncommon fractions (Fitzsimmons, Thompson, 

& Sidney, 2019). Furthermore, adults quickly compare common fractions as holistic magnitudes, 

yet they strategically compute the magnitude of less common fractions (Liu, 2017). Our Bayes 

Factor analysis provided evidence that more extensive experience with fraction equivalence may 

be one way to facilitate processing fractions based on holistic magnitudes.  

The role of equivalence knowledge and strategy use in adults’ whole number bias 

provides a foundation for researchers to develop evidence-based instructional sequences to 

facilitate fraction learning (e.g., Moss & Case, 1999; Tian & Siegler, 2018). When learning about 

equivalent ratios in sixth grade, some children shift from componential-based reasoning about 

fractions towards accurate magnitude representations (Common Core State Standards, CCSS-M, 

6.RP.A.3, 2010; Braithwaite & Siegler, 2017; Gabriel et al., 2013; Van Hoof, Degrande, 

Ceulemans, Verschaffel, & Van Dooren 2018; Van Hoof et al., 2015). Children’s additional 

experience with equivalence may help them recognize the importance of the relation between 

components for accurate reasoning about fraction magnitudes. However, the relation between 

equivalence knowledge and fraction magnitude understanding is likely bi-directional because 

evidence suggests conceptual and procedural knowledge (Rittle-Johnson, 2017; Rittle-Johnson, 

Schneider, & Star, 2015; Rittle-Johnson, Siegler, & Alibali, 2001) and fraction magnitude and 

arithmetic knowledge develop iteratively (Bailey, Hansen, & Jordan, 2017). Future research 
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could examine whether improving equivalence knowledge subsequently improves children’s use 

of  magnitude-based strategies and diminishes the effects of whole number bias, or vice versa.  

To improve fraction magnitude understanding, future researchers might test an 

intervention using self-explanation prompts. In Experiment 2, adults who provided higher quality 

strategy reports had more precise number line estimates than those who could not, consistent 

with past work suggesting that self-explanation prompts can improve performance (Chi et al., 

1989; Chi, Leeuw, Chiu, & Lavancher, 1994; DeCaro, Rotar, Kendra, & Beilock, 2010; 

McEldoon, Durkin, & Rittle-Johnson, 2013; Rittle-Johnson, Fyfe, Loehr, & Miller, 2015; Rittle-

Johnson et al., 2017; Rittle-Johnson & Loehr, 2017; VanLehn, Jones, & Chi, 1992). Self-

explanations are thought to help students address misconceptions and integrate knowledge by 

directing attention to important structural, rather than surface, features of problems (e.g. Rittle-

Johnson et al., 2017). Misconceptions and attention to whole number components--surface 

features of fractions--are the most likely causes of whole number bias during fraction magnitude 

reasoning. Thus, self-explanation prompts might be ideal for improving fraction magnitude and 

equivalence understanding by directing participants’ attention to holistic magnitudes rather than 

to numerator and denominator components.  

What Makes Fraction Equivalence Knowledge Important? 

Understanding fraction equivalence can be considered a highly specialized form of 

magnitude knowledge: it requires understanding a precise, rather than approximate, relation 

between fractions. That is, when participants decide that two fractions are equivalent, they 

presumably know the exact magnitude of each fraction (1/2 and 15/30 both = 0.5). When they 

decide which of two fractions is larger, they can approximate the magnitude of the two fractions 

(i.e., fraction A is greater than 1/2 and fraction B is less than 1/2, so fraction A is largest), and 
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this will lead to the correct answer except for situations in which it is too difficult to differentiate 

approximated magnitudes, such as for fractions that are very close in decimal distance.  

What leads to the development of fraction equivalence precision? Practice with whole 

number computational skills, such as multiplication and division, likely contribute to the 

development of this ability. Whole number knowledge can help, rather than hinder, fraction 

learning (e.g., Namkung, Fuchs, & Koziol, 2018; Sidney & Alibali, 2015, 2017; Sidney, 

Thompson, & Rivera, 2019; Siegler et al., 2011). For example, children’s proficiency with 

multiplication and division predicts how well they will learn fraction concepts (Namkung et al., 

2018), and division proficiency predicts later algebra performance (Siegler et al., 2012). 

Furthermore, activating students’ knowledge of whole number division facilitates their ability to 

represent fraction division problems (e.g., Sidney & Alibali, 2015, 2017). Multiplication or 

division is often necessary to execute fraction transformation strategies, the most commonly 

reported strategy on the fraction equivalence task (e.g., simplify 36/81 by dividing by 9/9; see 

Table 4). Thus, our measure of equivalence knowledge likely captures some of adults’ 

proficiency with whole number multiplicative reasoning (Steffe & Olive, 2009). Future work 

might explore whether knowledge of fraction equivalence mediates the relation between earlier 

whole number knowledge and later fraction understanding.  

Conclusion 

 Children and adults often inappropriately apply their whole number knowledge while 

reasoning about fractions (Alibali & Sidney, 2015; Braithwaite & Siegler, 2017; DeWolf & 

Vosniadou, 2015; Ni & Zhou, 2005; Siegler & Lortie-Forgues, 2015; Siegler et al., 2011; 

Vamvakoussi, 2015). We discovered that individual differences in fraction equivalence 

knowledge moderate how whole number components impact adults’ fraction reasoning. We are 
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the first to demonstrate that adults with more equivalence knowledge can access more precise 

representations of fraction magnitudes, in part, due to their adaptive use of transformation 

strategies. Adapting strategies based on knowledge of fraction equivalence and contextual factors 

provides evidence that strategic variability accounts of cognition can explain adults’ fraction 

reasoning and whole number bias errors. The role of equivalence knowledge and transformation 

strategies in adults’ fraction reasoning provides an important foundation for researchers to 

explore the link between whole number and fraction knowledge, design interventions that aim to 

reduce whole number bias earlier in development, and improve fraction magnitude 

understanding.  
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Appendix A 

Stimuli used in Experiments 1 and 2. 

Table A1.  

Fraction stimuli in the number line estimation task from Experiment 1 (top) and 2 (Bottom).  

Small component   Large Component  

SC1 SC2  LC1 LC2 

1/5 3/15  5/25 6/30 

2/9 4/18  6/27 8/36 

1/4 3/12*  8/32 9/36 

1/3 3/9*  10/30 12/36 

3/7 9/21  12/28 15/35 

1/2 2/4  12/24 15/30 

5/9 10/18  15/27 20/36 

2/3 4/6  6/9 8/12 

3/4 6/8  9/12 12/16 

4/5 8/10  12/15 20/25 

5/6 10/12  15/18 20/24 

Experiment 2 

1/6  12/72 

2/7
+
  24/84 

4/9  36/81 

3/5  27/45 

5/8  35/56 

6/7  54/63 

Note. Fractions are equivalent in magnitude in each row (e.g., 1/5 = 3/15 = 5/25 = 6/30). Stimuli 

with an asterisk are the two fractions that were changed from the original stimuli in Braithwaite 

and Siegler (2017).The original small component fraction 6/24 was changed to 3/12 and the 

original small component fraction 8/24 was changed to 3/9.  
+
The fraction 2/7 was not used by 

Braithwaite and Siegler (2017).  
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Table A2. Fraction equivalence statements in Experiment 1. 

True  False 

1/5 = 3/15  1/2 = 15/30  1/3 = 9/21  8/36 = 3/7 

4/18 = 2/9  20/36 = 5/9  6/8 = 1/2  2/3 = 15/35 

1/4 = 3/12  2/3 = 8/12  4/18 = 2/3  1/3 = 6/30 

3/9 = 1/3  12/16 = 3/4  2/9 = 3/15  15/30 = 5/9 

3/7 = 9/21  4/5 = 20/25  3/7 = 10/18  12/36 = 1/2 

1/2 = 2/4  5/6 = 20/24  10/12 = 3/4  12/16 = 2/9 

10/18 = 5/9  6/30 = 3/15  5/6 = 3/9  10/12 = 9/36 

4/6 = 2/3  8/36 = 4/18  8/10 = 1/4  3/15 = 20/25 

6/8 = 3/4  9/36 = 3/12  3/12 = 4/5  9/21 = 15/30 

8/10 = 4/5  3/9 = 12/36  4/6 = 1/5  3/12 = 6/30 

5/6 = 10/12  9/21 = 15/35  2/4 = 5/9  12/36 = 10/18 

6/30 = 1/5  2/4 = 15/30  4/5 = 8/12  4/6 = 8/36 

8/36 = 2/9  10/18 = 20/36  20/36 = 5/6  20/24 = 6/8 

9/36 = 1/4  4/6 = 8/12  20/24 = 1/5  20/36 = 8/10 

1/3 = 12/36  12/16 = 6/8  3/4 = 9/36  2/4 = 12/16 

3/7 = 15/35  20/25 = 8/10  1/4 = 20/25  3/9 = 15/35 

20/24 = 10/12      4/18 = 8/12     

Note. Statements were presented in a randomized order to participants. 
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Table A3.  

Fraction comparison items by trial type. Bolded fractions are the fractions with the larger 

magnitudes and correct responses 

Small Distance Comparisons 

Consistent Comparisons  Inconsistent Comparisons 

12/28 2/5  4/7 13/23 

9/15 28/41  32/43 9/11 

12/13 10/11  11/14 15/21 

24/49 11/23  35/41 11/12 

3/8 11/27  16/21 7/9 

  

Large Distance Comparisons 

Consistent Comparisons  Inconsistent Comparisons 

2/5 14/18  12/29 6/7 

34/43 12/33  9/13 14/45 

22/45 2/21  11/23 8/9 

11/19 21/22  17/46 12/16 

13/17 3/8  10/12 13/29 

Note. Small distance comparisons had a decimal distance between the fractions less than .14 (M 

= .04), and large distance comparisons had a distance greater than .37 (M = .41). Correct 

responses are bolded.   
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Table A4. Fraction equivalence statements from Experiment 2.  

True  False 

12/72 = 1/6  1/6 = 36/81 

2/7 = 24/84  54/63 = 2/7 

4/9 = 36/81  4/9 = 35/56 

27/45 = 3/5  3/5 = 24/84 

35/56 = 5/8  5/8 = 27/45 

6/7 = 54/63  12/72 = 6/7 

3/18* = 2/12*  16/36* = 2/12* 

12/27* = 8/18*  6/21* = 18/42* 

12/14* = 18/21*  6/30* = 9/15* 

Note. Fractions with an asterisk were not presented during the number line estimation task. 

Statements were presented in a random order.  
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Appendix B 

Full statistical models from Experiments 1 and 2.  

Table B1.  

Effects of component size and individual differences on raw estimates in Experiment 1.  

Within subjects effects F
a
 MS p ηp

2
 

Component size 0.52 0.001 0.604 0.007 

Component Size * Equivalence 0.27 0.001 0.77 0.004 

Component Size * Inhibition 0.27 0.001 0.776 0.004 

Component size * Updating 2.18 0.004 0.115 0.03 

Component Size * Condition 7.71 0.015 0.001 0.099 

Component Size * Condition * Equivalence 8.04 0.016 <.001 0.103 

Component Size * Condition * Inhibition 2.55 0.005 0.079 0.035 

Component Size * Condition * Updating 0.95 0.002 0.394 0.013 

Between subjects effects F
b
 MS P ηp

2
 

Condition < 0.01 < 0.001 0.968 < 0.001 

Equivalence 0.01 < 0.001 0.979 < 0.001 

Inhibition 0.43 0.005 0.512 0.006 

Updating 1.63 0.019 0.206 0.023 

Condition * Equivalence 4.51 0.052 0.037 0.061 

Condition * Inhibition 0.33 0.004 0.565 0.005 

Condition * Updating 12.55 0.144 < .001 0.152 

Note. MS = Mean squared. 
a
Within-subjects effects, Greenhouse-Geiser corrected degrees of 

freedom for F-statistic = 2.085, 145.918. 
b
Between-subjects effects degrees of freedom for F-

statistic = 1, 70. 
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Table B2.  

Effects of component size and individual differences on PAE estimates in Experiment 1.  

Within-subjects effects on PAE F
a
 MS p ηp

2
 

Component size 1.49 0.001 0.219 0.021 

Component Size * Equivalence 1.87 0.001 0.135 0.026 

Component Size * Inhibition 0.02 <.001 0.995 0 

Component size * Updating 0.32 <.001 0.813 0.005 

Component Size * Condition 3.58 0.003 0.015 0.049 

Component Size * Condition * Equivalence 4.28 0.004 0.006 0.058 

Component Size * Condition * Inhibition 0.35 <.001 0.789 0.005 

Component Size * Condition * Updating 2.26 0.002 0.082 0.031 

Between Subjects Effects F
b
 MS p ηp

2
 

Condition 1.60 0.026 0.211 0.022 

Equivalence 19.29 0.316 < 0.001 0.216 

Inhibition 1.76 0.029 0.189 0.025 

Updating 5.79 0.095 0.019 0.076 

Condition * Equivalence 1.79 0.029 0.186 0.025 

Condition * Inhibition 0.48 0.008 0.491 0.007 

Condition * Updating 0.01 < 0.001 0.897 < 0.001 

Note. MS = mean squared. 
a
Within-subjects effects degrees of freedom for F-statistic = 3, 210. 

b
Between-subjects effects degrees of freedom for F-statistic = 1, 70. 

Table B3.  

Effects of consistency and distance on fraction comparison accuracy in Experiment 1.  

Within-subjects effects F
a
 MS p ηp

2
 

Consistency 6.857 0.653 0.011 0.083 

Consistency * Condition 0.101 0.01 0.752 0.001 

Distance 43.415 2.068 < 0.001 0.364 

Distance * Condition 0.033 0.002 0.856 < 0.001 

Consistency * Distance 21.953 0.498 < 0.001 0.224 

Consistency * Distance * Condition 0.785 0.018 0.378 0.01 

Between-subjects effects F
a
 MS p ηp

2
 

Condition 1.18 0.131 0.280 0.015 

Note. MS = mean squared. 
a
Within-subjects effects degrees of freedom for F-statistics= 1, 76.  
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Table B4.  

Effects of component size and individual differences on PAE in Experiment 2.  

Tests of Within-Subjects Effects F
a
 MS p ηp

2
 

Component size 6.29 0.007 0.014 0.061 

Component size * Equivalence 5.84 0.007 0.018 0.057 

Component size * Condition 0.20 < 0.001 0.654 0.002 

Component size * Condition * Equivalence 0.212 < 0.001 0.646 0.002 

Tests of Between-Subjects Effects F
a
 MS p ηp

2
 

Equivalence 44.41 0.396 <.001 0.316 

Condition 0.01 <.001 0.946 < 0.001 

Condition * Equivalence 0.05 <.001 0.829 < 0.001 

Note. MS = mean squared. 
a
Degrees of freedom for F-statistic = 1, 96.  

Table B5.  

Effects of component size and individual differences on raw estimates in Experiment 2.  

Tests of Within-Subjects Effects F
a
 MS p ηp

2
 

Component size 1.82 0.005 0.18 0.019 

Component size * Equivalence 1.58 0.005 0.213 0.016 

Component size * Condition 0.26 0.001 0.612 0.003 

Component size * Condition * Equivalence 0.34 0.001 0.561 0.004 

Tests of Between Subjects effects F
a
 MS p ηp

2
 

Equivalence 2.21 0.012 0.141 0.022 

Condition 9.79 0.051 0.002 0.093 

Condition * Equivalence 8.60 0.045 0.004 0.082 

Note. MS = mean squared. 
a
Degrees of freedom for F-statistic = 1, 96.  
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Table B6.  

Effects of component size and individual differences on PAE in Experiment 2 after filtering out 

participants who did not have codable strategy data.  

Tests of Within-Subjects Effects F
a
 MS p ηp

2
 

Component size 5.68 0.005 0.02 0.07 

Component size * Equivalence 5.24 0.005 0.025 0.065 

Component size * Condition 0.01 <.001 0.946 < 0.001 

Component size * Condition * Equivalence < 0.01 <.001 0.946 < 0.001 

     

Tests of Between-Subjects Effects     

Equivalence 17.35 0.064 <.001 0.188 

Condition 0.02 <.001 0.882 < 0.001 

Condition * Equivalence < 0.01 <.001 0.958 < 0.001 

Note. MS = mean squared. 
a
Degrees of freedom for F-statistic = 1, 75.  

 

Table B7.  

Effects of component size and individual differences on raw estimates in Experiment 2 after 

filtering out participants who did not have codable strategy data.  

Tests of Within-Subjects Effects F
a
 MS p ηp

2
 

Component size 0.568 0.001 0.453 0.008 

Component size * Equivalence 0.461 0.001 0.499 0.006 

Component size * Condition 4.643 0.009 0.034 0.058 

Component size * Condition * Equivalence 3.566 0.007 0.063 0.045 

     

Tests of Between-Subjects Effects     

Equivalence 0.059 0.000 0.809 0.001 

Condition 4.03 0.009 0.048 0.051 

Condition * Equivalence 3.73 0.008 0.057 0.047 

Note. MS = mean squared. 
a
Degrees of freedom for F-statistic = 1, 75.  

 


