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Although almost everyone agrees that the environment shapes children’s learning, 

surprisingly few studies assess in detail the specific environments that shape 

children’s learning of specific content. The present article briefly reviews examples 

of how such environmental assessments have improved understanding of child 

development in diverse areas, and examines in-depth the contributions of analyses 

of one type of environment to one type of learning: how biased distributions of 

problems in mathematics textbooks influence children’s learning of fraction 

arithmetic. We find extensive parallels between types of problems that are rarely 

presented in US textbooks and problems where children in the US encounter greater 

difficulty than might be expected from the apparent difficulty of the procedures 

involved. We also consider how some children master fraction arithmetic despite 

also learning the textbook distributions. Finally, we present findings from a recent 

intervention (Braithwaite & Siegler, 2020) that indicates how children’s fraction 

learning can be improved.  
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Despite general agreement that children’s learning is shaped by the environment, 

surprisingly few studies provide detailed assessments of the everyday environments in which 

children learn specific content. The relative scarcity of assessments of these environments is 

understandable, because in many domains, the relevant input is difficult to assess or unknown. 

However, studies that have thoroughly examined the natural environments in which learning 

occurs suggest that greater effort in this direction would pay large dividends.  
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A well-known study of language development (Hart & Risley, 1995, 2003) illustrates the 

benefits that can be gained by assessing, in detail, inputs from the everyday environment. They 

had observers tape record family interactions in homes of varied socio-economic status for an hour 

each month during the period when children in their sample were 9- to 36-months-old.  

The headline finding was that children from professional families heard more than three 

times as many words spoken to them as children from families on welfare; moreover, extrapolating 

the observed differences from birth to age 18 produced a language gap of millions of words. 

Further detailed analyses revealed especially large gaps in the use of unusual words and complex 

syntax. Statements directing children to do or not do something, which Hart and Risley termed 

“business talk,” were similarly abundant throughout numerous homes, but frequency of more 

elaborative statements, especially ones responding to what the child just said or commenting on 

what the child just did, differed greatly. Differences in linguistic input at home predicted 

differences in children’s vocabularies and other important outcomes. Number of words spoken in 

the household before age 3 correlated roughly r=.6 with children’s vocabulary at age 3, individual 

differences in vocabulary at age 3 strongly predicted differences in vocabulary at age 9, frequency 

of exposure to low-frequency words proved especially predictive of children’s vocabulary at age 

9, and amount of non-business talk in the home before age 3 correlated substantially with 

children’s performance on an IQ test at age 9 (Hart & Risley, 1995, 2003; Snow & Beals, 2006). 

Language input also influences learning of specific content. Pruden et al. (2011) found a 

roughly 100-fold difference between the highest and lowest number of spatial words (e.g., circle, 

little, side) spoken by parents to their children at ages 14–46 months. A mediation analysis 

indicated that children who heard more spatial words from parents used more spatial words 

themselves. In turn, the more spatial words that children produced, the better their performance 

was on a spatial transformation task at 54 months of age.  

The relation between language input and content knowledge is causal as well as 

correlational. Guiding randomly-chosen parent-child dyads to talk about spatial features in a 

museum boosted parent-child spatial talk and subsequently improved children’s assembling of 

puzzles (Polinsky et al., 2017). Similarly, prompting some randomly selected parents to talk about 

budgeting in a museum’s mock grocery store increased parent-child number talk and children’s 

attention to numbers relative to prompting other parents to talk about healthy eating at the grocery 

store (Braham et al., 2018).  

Language input is not the only area in which the benefits of detailed examination of 

learning environments have been demonstrated; analyses of infants’ visual environments have also 

yielded similar benefits. Through placing lightweight head-mounted cameras on infants’ 

foreheads, investigators have been able to learn which objects attract infants’ visual attention. 

These studies have revealed a variety of non-intuitive findings, including that infants look at 

obstacles in their paths more often when crawling than when walking (Kretch et al., 2014); that in 

the first two years of life, visual input shifts from a focus on faces to a focus on hands (Fausey et 

al., 2016); and that infants attend three times as long when people act as causal agents as when 

they engage in self-propelled motion without any obvious causal purpose (Cicchino et al., 2011). 

None of these findings was self-evident; for example, beginner walkers might have been expected 

to look at obstacles more often than crawlers do, because stepping on obstacles while walking 

produces harder falls. Similarly, infants might have been expected to attend more to self-propelled 

motion than to causal actions involving small movements, because the self-propelled motion is 

more visually apparent. These and other findings regarding infants’ visual environments raise a 
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host of important theoretical issues, such as the issue of what drives the changes in which objects 

attract infants’ gazes. 

Focusing on the specifics of the input that children receive also has proved to be useful for 

understanding kindergartners’ math learning. In one remarkable study using data from the Early 

Childhood Longitudinal Study, Kindergarten (ECLS-K) cohort of 1998-1999, examination of 

math knowledge and classroom instruction at the beginning and end of kindergarten indicated that 

most classroom instruction was devoted to counting from 1-10 and identifying simple geometric 

shapes, which more than 90% of children had mastered before they started kindergarten (Engel et 

al., 2013). Very little time was devoted to topics in which most kindergartners lacked proficiency, 

in particular single-digit addition and subtraction. Time spent on counting and shape identification 

negatively predicted math learning during kindergarten, whereas time spent on addition and 

subtraction positively predicted learning. These findings were robust after controlling for variables 

such as the child’s race, gender, and linguistic background; mother’s income and education; total 

amount of time spent by the teacher on mathematics; and school variables such as percent of 

students eligible for free or reduced-price lunches. The findings have been replicated with a 2010-

2011 sample (Engel et al., 2016), showing little change despite mathematics reform efforts in the 

period between the two samples.  

Even seemingly trivial aspects of the learning environment can have surprising effects. For 

instance, the internal spacing on a page or screen of arithmetic problems involving both addition 

and multiplication (e.g. 3 + 4 × 5 = ___) influences the speed and accuracy of performance on such 

equations (Landy & Goldstone, 2007a, 2007b, 2010). Narrower spacing between the operation 

symbol and the surrounding operands increases the probability of performing that operation first. 

In the problem above, narrower spacing between “3+4” than between “4×5” (e.g., 3+4 × 5) would 

increase the likelihood of answering “35” rather than “23.” Mathematics involves abstraction over 

irrelevant details, but this does not mean that learners abstract over irrelevant details.  

The goal of this article is to demonstrate in greater depth the insights that can be gained 

about development through detailed analyses of relevant environments. In particular, we examine 

insights that can be gained through detailed assessment of one aspect of the environment – 

textbook problems -- into one aspect of development – acquisition of fraction arithmetic. We also 

report recent research on how detailed analyses of natural environments can inspire interventions 

that improve learning in this area. 

 

Why Focus on Fraction Arithmetic? 

Several considerations led us to focus on this area. Even beyond the general importance of 

mathematics proficiency for long-term academic and occupational success (Ritchie & Bates, 

2013), fractions appear to be particularly important. Fractions knowledge is foundational for 

acquiring more advanced mathematics in school; knowledge of fractions in 5th grade uniquely 

predicts overall mathematics achievement in 10th grade, including knowledge of all four whole 

number operations, after statistically controlling for numerous other demographic and knowledge 

variables (Siegler et al., 2012). The predictive relation between 5th graders’ performance on 

fractions problems, most of which involved fraction arithmetic, and overall mathematics 

achievement five years later was evident in both the US and the UK. The importance of fractions 

extends beyond mathematics: Fraction and decimal arithmetic were involved in more than half of 

the equations on the reference sheets for recent Advanced Placement tests in both physics and 

chemistry (College Board, 2014, 2015). Further, knowledge of fractions is essential in many 

workplaces: a national survey of more than 2,000 U.S. workers (Handel, 2016) indicated that two-
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thirds of employees used fractions in their work. Occupations in which employees report using 

fractions include not only ones that we usually think of as involving mathematics, such as 

engineering and science positions, but also a wide range of other occupations, including nursing, 

carpentry, auto mechanics, and modern factory work (Hoyles et al., 2001; Sformo, 2008).  

Another reason to focus on fraction arithmetic is that children have great difficulty learning 

it. When thousands of US 8th graders were asked on the 1978 National Assessment of Educational 

Progress (NAEP) whether 12/13+7/8 was closest to 1, 2, 19 or 21, only 24% answered “2” 

(Carpenter et al., 1980); the most common answers were “19” and “21.” This and similar findings 

triggered a variety of reform efforts to improve mathematics education, culminating in the 

Common Core State Standards. However, when Lortie-Forgues et al. (2015) presented the same 

problem to 8th graders in 2014, more than three decades later, accuracy had increased only from 

24% to 27% correct.  

Such errors might be interpreted as implying that children do not learn correct fraction 

arithmetic procedures, but that interpretation is only partially correct. The same children who use 

flawed strategies and generate implausible errors on some trials use correct strategies and answer 

correctly on other trials. In Siegler and Pyke (2013), for example, most 6th and 8th graders who 

were presented pairs of virtually identical fraction arithmetic problems (e.g., 3/5×1/5 and 3/5×4/5) 

used different strategies on at least one pair of the highly similar problems; 65% of such differing 

pairs of strategies included both a correct strategy and an incorrect one. Equally striking, children 

were only slightly more confident in their correct than in their incorrect answers. Together, these 

findings suggest that children learn both correct and incorrect strategies but are unable to identify 

through reasoning which are correct, leading to a competitive retrieval process without a filter for 

rejecting incorrect strategies when they are retrieved.  

Why is learning about fractions and fraction arithmetic so difficult? At a general level, 

there are two types of reasons: inherent and culturally-contingent (Lortie-Forgues et al., 2015). 

Inherent sources of difficulty are ones that would make learning difficult in any society in any time 

period. Among the inherent reasons for difficulty in learning fraction arithmetic are the difficulty 

of estimating the magnitudes of individual fractions, the complex relations between rational and 

whole number arithmetic operations, and the complex relations among different rational number 

arithmetic operations. An instance of the challenge of understanding fraction magnitudes is that 

evaluating the plausibility of “1/2+1/2 = 2/4” requires knowing the magnitudes of “1/2” and “2/4.” 

An instance of the complex relations between arithmetic operations involving whole numbers and 

arithmetic operations involving fractions is that adding whole numbers involves performing the 

operation on all numbers in the problem (e.g., 3+5+4+5 = 17”), whereas adding fractions involves 

performing the whole number operation only on the numerators (3/5+4/5 = 7/5). An instance of 

the complex relations among different fraction operations is that children often overgeneralize 

from fraction addition to fraction multiplication, for instance incorrectly inferring that because 

3/5+4/5 = 7/5, therefore 3/5×4/5 = 12/5. These inherent sources of difficulty would increase the 

difficulty of learning fraction arithmetic regardless of the era, society, or instructional approach 

presented to children. 

Other sources of difficulty in fraction arithmetic are culturally contingent. These include 

teacher knowledge of the lesson material, student knowledge of less advanced mathematics, 

societal pedagogical beliefs and values, and textbook presentations of the material. All of these 

vary among societies, subgroups within societies, and historical periods, and all influence learning.  

 

Why Focus on Textbooks? 
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The mathematics learning environment is multifaceted. It involves people who provide 

relevant input to children, such as teachers, parents, siblings, and classmates; sociological forces, 

such as racial, ethnic, social class, and gender biases within the child’s society; educational policies 

at national, state, and local levels; and impersonal forces, such as technology, instructional 

materials, and games. All of these influences are important, but this article focuses on a single 

aspect of the mathematics learning environment: distributions of problems in textbooks.  

Textbooks offer several advantages for studying the impact of specific features of the 

environment on specific aspects of children’s learning. The most popular textbook series in large 

countries such as the China, India, and the US are used by millions of children each year; thus, 

textbooks are an ecologically valid part of the learning environment. Many other types of materials 

are also used, including on-line resources, exercises prepared by one’s colleagues, workbooks, and 

problems generated by teachers, parents, and tutors. However, the use of math textbooks is 

widespread in many countries around the world (Fan et al., 2013; Valverde et al., 2002).  

Another advantage of examining textbooks is that they indicate the order in which children 

encounter problems. Problems in an earlier grade textbook almost always are presented before 

ones in a later grade textbook, and teachers usually present chapters in the order in which they 

occur in the textbook (Freeman & Porter, 1989). A third advantage of studying textbooks as part 

of the learning environment is that the raw data are widely available; thus, replicating analyses of 

textbook problems and testing alternative interpretations by performing new analyses is easy. A 

fourth advantage is that examining textbooks allows investigation of a variety of educationally-

relevant issues (Fan et al., 2013): textbook features (e.g., analyses of the types of problems 

receiving more and less coverage); textbook use (e.g., analysis of how much teachers rely on 

textbooks), textbook goals (e.g., analyses of the most appropriate use of textbooks); and other 

issues regarding textbooks (e.g., how well different textbooks promote  student learning). A fifth 

advantage is that parallel analyses of textbooks can be done cross-nationally. Textbooks are used 

throughout the world -- a survey of fourth and eighth graders in more than 20 countries showed 

that 75% of students reported that their teachers primarily used textbooks for mathematics 

instruction (Horsley & Sikorová, 2014). This facilitates cross-national comparisons and allows 

tests of potential explanations of developmental differences in different societies.  

Although we believe that problem distributions in textbooks exert a large influence on 

children’s learning, it is important to note that this influence is conditionally dependent on the way 

in which teachers use the textbooks. Teachers select which problems to assign, and they decide 

how to teach the concepts and procedures relevant to the problems; this is why textbooks are 

sometimes viewed as mediators between the national curriculum, as defined by curriculum 

standards, and the implemented curriculum, as enacted by teachers (Valverde et al., 2002). Modes 

of teaching are likely to interact with textbook characteristics. In particular, changing the 

distribution of problems in textbooks is likely to be most effective if teachers (and textbooks) call 

attention to important dimensions of variation among problems and explain clearly why those 

dimensions do or do not influence appropriate problem-solving procedures and ways of 

conceptualizing problems. This, in turn, implies that teacher education and professional 

development will also be important determinants of the gains that can be realized from changing 

the distribution of textbook problems.  

 

Relation of Textbook Problem Distributions to Children’s Performance 

Fraction Arithmetic 
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Textbook Problems. To assess the distribution of fraction arithmetic problems in 

textbooks, Braithwaite et al. (2017) coded all symbolic rational number arithmetic problems 

presented in the fourth through sixth grade volumes of three popular U.S. mathematics textbook 

series: Houghton Mifflin Harcourt’s GO MATH! (Dixon et al., 2012a, 2012b), McGraw Hill 

Education’s Everyday Mathematics (University of Chicago School Mathematics Project, 2015a, 

2015b, 2015c), and Pearson Education’s enVisionMATH (Charles et al., 2012). These three series 

were chosen because all were among the most widely-adopted US textbook series (Opfer et al., 

2018) and had volumes for fourth through sixth grade, the grades in which fraction arithmetic 

receives the greatest emphasis in the U.S. (CCSSI, 2010). The problems were the full set of those 

that a) had two operands, at least one of which was a fraction or mixed number, b) were in symbolic 

form (i.e., with only numbers and operation specified), and c) required exact answers (i.e., not 

estimates). Problems that had these characteristics constituted most of the problems in all 

textbooks that Braithwaite et al. (2017) analyzed, as well as in three other textbook series analyzed 

by Cady et al. (2015). 

The analyses of all three textbook series revealed strong associations between arithmetic 

operations and the types of operands (numbers) in the problems (Table 1). Among problems 

involving two fractions, only 4% of multiplication and subtraction items but 50% of addition and 

subtraction items had equal denominators. The pattern was highly similar in all three textbook 

series. 

Similar operand-operation associations were present in the distribution of problems having 

a fraction and a whole number (Table 2). Among problems with at least one fraction operand, only 

5% of addition and subtraction items included a whole number operand (e.g., 6–3/5), but 65% of 

multiplication and division items did (e.g., 6×3/5).   

The associations between arithmetic operations and operands (numbers) in these problem 

distributions do not have any obvious mathematical justification. Children must learn to multiply 

fractions with identical denominators, just as they need to learn to multiply fractions with unequal 

denominators. Children need to learn to add and subtract whole numbers and fractions, just as they 

need to learn to multiply and divide them. The reason for the biases in textbook problems are 

unknown, but there is no question that the distribution of problems is far from random. 

 

Table 1.  

Percent of US Textbook Problems Classified by Arithmetic Operation and Denominator Equality 
 Arithmetic Operation 

     Denominator equality Addition Subtraction Multiplication Division 
 Equal denominators 12 13 1 1 

  Unequal denominators 13 12 29 19 

 

Table 2.  

Percent of US Textbook Problems Classified by Arithmetic Operation and Operand Number 

Type 
 Arithmetic Operation 

     Operand number type Addition Subtraction Multiplication Division 
 Fraction-fraction 25 23 13 8 

  Whole-fraction 0 2 17 13 

Note. Percentages may not sum up to 100% because of rounding.  
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Problems Used in Instruction. The fact that problems appear in textbooks does not 

guarantee that children will encounter them. Teachers do not typically present all problems in 

textbooks; they might compensate for the paucity of certain types of problems in textbooks by 

emphasizing them in class or homework assignments. This hypothesis was suggested to the first 

author by William McCallum, who took the lead role in writing the section of the Common Core 

State Standards on fractions instruction. 

To test the assumption that textbook problems reflect the input children receive, Tian et al. 

(2019) asked fourteen 4th, 5th, and 6th grade math teachers from five school districts in the greater 

Pittsburgh area to provide all problems that they presented to students in math class or as 

homework during the 2017 – 2018 school year. These problems were coded using the same criteria 

as in Braithwaite et al. (2017). 

One main finding was that 70% of the fraction arithmetic problems in the in-class and 

homework assignments came from textbooks. Another main finding was that the fraction 

arithmetic problems that teachers assigned showed very similar distributions to those in the 

textbooks in Table 1A and 1B. This was true for both the problems from textbooks that teachers 

assigned and the problems from sources other than textbooks. These findings supported our 

assumption that textbook problems are a good proxy for the problems that children encounter.  

 

Do Children Learn Characteristics of Problem Input? The fact that operations and 

operands are associated in textbook problems does not guarantee that children learn those 

associations. There are reasons to hypothesize that children would learn the associations between 

operations and operands that were present in the fraction arithmetic textbook items, but there are 

also reasons to hypothesize the opposite. On one hand, learning of statistical associations between 

features of the environment is a fundamental learning mechanism that operates from infancy 

onward (Rakison et al., 2008). There is no obvious reason to believe that this mechanism “turns 

off” in formal educational contexts. On the other hand, mathematics instruction emphasizes 

general principles and procedures, not associations between operations and operands, and 

textbooks and teachers focus learners’ attention on those principles and procedures. This directing 

of attention might lead children to not detect mathematically irrelevant associations. 

To determine which hypothesis was correct, Braithwaite and Siegler (2018) presented 

middle school students with two complementary types of problems. On generate-operand 

problems, an arithmetic operation was specified and children were asked to choose two numbers 

to accompany it (e.g., •×•).  On choose-operation problems, operands were specified and 

children were asked to choose an arithmetic operation to accompany them (e.g., 3/5•2/5). 

Children’s choices indicated that they had learned the operator-operand associations that 

were present in the textbooks. On the generate-operands task, when the specified operation was 

addition or subtraction, children usually generated pairs of fractions with equal denominators. 

When the specified operation was multiplication or division, they usually generated operand pairs 

with a whole number and a fraction. The choose-operation task yielded similar findings. When 

presented two fractions with equal denominators, children chose addition or subtraction more often 

than multiplication or division. In contrast, when presented a whole number and a fraction, they 

chose multiplication or division more often than addition or subtraction.  

Children even learned the particular fractions that were most likely to appear in the 

textbooks. The frequency with which specific fractions were presented in textbooks correlated 

quite strongly (r=.78) with the frequency with which children generated them on the generate-

operand problems. Part of this relation was due to fractions with small denominators appearing 
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most often in both textbooks and children’s choices, but even when the denominator size was 

statistically controlled, the relation remained highly significant. Thus, children are exceptionally 

good at learning mathematically irrelevant characteristics of instructional input, such as relations 

between operations and operands and frequencies of particular fractions. Unfortunately, they are 

much less apt at learning desired procedures and concepts. 

 

Relations to Children’s Fraction Arithmetic Performance. Frequencies of fraction 

arithmetic problems in math textbooks were highly predictive of middle school children’s fraction 

arithmetic performance (Braithwaite et al., 2017). Most strikingly, despite correct multiplication 

and division procedures being identical for problems with equal and unequal denominators, 

children were considerably less accurate on the infrequently presented problems with equal 

denominators than on the frequently presented problems with unequal denominators. Thus, 

children in Siegler and Pyke (2013) were correct on 58% of multiplication items with unequal 

denominators (e.g., 3/5×1/4) but only 36% of multiplication items with equal denominators (e.g., 

3/5×1/5). Other relations between frequency of different types of textbook problems and children’s 

performance were also present. For instance, textbooks included far fewer division items than 

addition, subtraction, or multiplication items, and performance was far worse on division items 

than on problems involving any of the other three operations.  

The textbook problem distributions were useful for explaining not only accuracy patterns 

but also common types of errors. For instance, the correct addition/subtraction rule (perform the 

operation on the numerators and maintain the denominator, as on 3/5+4/5 = 7/5) was frequently 

overgeneralized to multiplication (3/5×4/5 = 12/5). Such errors were as common as correct 

answers on equal-denominator multiplication problems in Siegler and Pyke (2013). These 

overgeneralization errors may have reflected the pattern of equal denominators appearing 10 times 

as often on addition/subtraction as on multiplication/division problems in textbooks. This 

statistical relation may have led children to infer that when denominators are equal, they should 

apply a version of the addition/subtraction rule to multiplication.  

 

Are These Relations Causal? If the parallels between textbook problem distributions and 

children’s performance reflect causal relations between them, then including more problems of the 

types that children rarely encounter at present could improve performance on these problems. 

Although experiments have not yet been conducted in which children are randomly assigned to 

receiving varying distributions of rational number arithmetic problems, findings from other areas 

of mathematics, such as mathematical equality, are encouraging.  

Mathematical equality is the concept that the values on each side of the equal sign are 

equivalent. Despite this concept being fundamental to many areas of mathematics, and children 

frequently encountering the equal sign from kindergarten or first grade onward, understanding of 

it remains limited even years later. Most fourth graders, for example, answer problems such as 

“8+4 = �+5” by summing the numbers to the left of the equal sign (yielding the answer “12”) or 

by adding all numbers in the problem (yielding the answer “17”) (Falkner et al., 1999). Both of 

these approaches indicate that children view the equal sign as a kind of “go” signal to execute the 

operation in the problem, rather than as a sign that the values on each side should be made equal. 

Examination of elementary and middle school math textbooks yielded a hypothesis 

regarding the source of this delayed understanding. The textbooks rarely presented problems with 

operations on both sides of the equal sign. Only 5% of problems in middle school textbook series 

examined by McNeil et al. (2006) had operations on both sides of the equation (e.g., 4+5 = 2+_).  
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Moreover, such problems are comparably rare in elementary school textbooks (Powell, 2012). This 

finding suggested the hypothesis that lack of experience with such problems leads to children 

misinterpreting the equal sign.   

To test whether a causal relation exists between encountering such non-standard problems 

and understanding the equal sign, McNeil et al. (2015) created a modified workbook with non-

standard uses of the equal sign that are not typically found in standard workbooks. The modified 

workbook had the same number of problems as the standard one, but included several types of 

items that were absent from it. One type of problem included in the modified, but not the standard, 

workbook was items with operations on the right side of the equal sign (e.g., __ = 5+4). Another 

atypical type of item in the modified workbook replaced the equal sign with the words “is the same 

amount as.” On both immediate and delayed posttests, children who had used the modified 

workbook showed better understanding of mathematical equivalence than peers who had used the 

standard workbook. These findings demonstrated a causal relation between encountering varied 

types of problems in workbooks and children’s learning.  

 

Do Biased Problem Distributions Doom Children’s Learning? 

The detailed parallels between textbook problem distributions and children’s performance 

suggest that imbalanced distributions adversely affect children’s learning of fraction and decimal 

arithmetic. However, some children do learn rational number arithmetic, despite encountering the 

same textbook distributions as their classmates, which raises the question of how they are able to 

do so. 

An answer is suggested by data from China. Analyses of Chinese textbooks demonstrated 

similar problem distributions to those in US textbooks, and analyses of Chinese children’s learning 

of the relations in textbooks between operands and operations showed that the Chinese children 

learned the relations at least as well as US children (Braithwaite & Siegler, 2018). In contrast to 

children in the US, however, Chinese children solved fraction arithmetic problems very accurately. 

When presented with the same problems as children in Siegler and Pyke (2013), Chinese 6th 

graders answered 90% of items correctly (versus 32% for US peers), and Chinese 8th graders 

answered 93% of items correctly (versus 60% for US peers) (Bailey et al., 2015). The differences 

were even greater for children in the bottom one-third of each distribution: 76% versus 15% correct 

for 6th graders, and 78% versus 20% correct for 8th graders. Thus, it seems as though being exposed 

to imbalanced fraction arithmetic textbook problem distributions does not doom children to poor 

fraction arithmetic performance.   

This combination of findings raised two further questions: When do biased textbook 

problem distributions negatively influence children’s learning? How do some children largely or 

completely avoid these negative effects, despite learning the associations that are present in the 

problem distributions? 

 

The Role of Conceptual Understanding 

One major determinant of when textbook problem distributions influence fraction 

arithmetic (and other areas) seems to be conceptual understanding of problem-solving procedures 

in the domain. In arithmetic, this type of conceptual knowledge concerns issues such as, “why does 

addition of positive numbers yield answers greater than either addend?” and “why does 

multiplication of numbers greater than one yield answers greater than either multiplicand but 

multiplication of numbers between 0 and 1 yield answers less than either multiplicand?”  
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Contrasting rational number and whole number arithmetic illustrates the impact of conceptual 

understanding on children’s learning.  

We have already seen several illustrations of US students not applying conceptual 

knowledge to rational number arithmetic problems. When children claim that 12/13+7/8 ≈19 or 

that 6+.32 = .38, they are not considering whether the magnitudes of the answers to the problems 

make sense. When they claim that 1/2+1/2 = 2/4, they are ignoring the principles that adding two 

positive numbers must result in an answer greater than either addend. When they claim that 

3/5×4/5 = 12/5, they are ignoring (or do not know) the principle that multiplying two numbers 

between 0 and 1 must result in an answer less than either multiplicand.  

A particularly dramatic illustration of lack of use of conceptual knowledge in fraction 

arithmetic comes from Braithwaite et al. (2018). Sixth and seventh graders from US schools in a 

middle-income area were asked to estimate the magnitudes of individual fractions and sums of 

fractions on 0-1 number lines, and to estimate the magnitudes of whole numbers and sums of whole 

numbers on 0-1000 number lines. Magnitudes of individual numbers were estimated first, followed 

by estimates of sums of pairs of numbers that had been presented previously. Thus, a child may 

have been asked to estimate the locations of 3/7 and 4/9 earlier and 3/7+4/9 later. Fraction 

problems were converted into almost equivalent whole number problems by multiplying the 

nearest decimal equivalent of each fraction by 1000 (e.g., for fractions 3/7, 4/9, and 3/7+4/9, the 

parallel whole numbers were 429, 444, and 873). Answers to both fraction and whole number 

problems appeared equally often in each quartile of the number line. 

Strikingly, on 52% of the fraction triads (a, b, and a+b), children estimated that one or both 

of the individual fractions were larger than the estimated sum of both fractions. Using the example 

above, this meant that roughly half of children estimated either 3/7 or 4/9 as being larger than 

3/7+4/9. This pattern was observed on only 15% of whole number triads, demonstrating that the 

difficulty was not with children’s understanding of the number line task or inattention to the task. 

The pattern was highly consistent across different triads of numbers: inaccuracy of estimates 

(percent absolute error) for each of the 16 fraction sums was greater than for all whole number 

sums and for 15 of the 16 individual fractions. Clearly, these children did not possess conceptual 

understanding of fraction addition or, at minimum, did not apply whatever conceptual 

understanding they had to estimating fraction sums.  

Previous findings have indicated that children of similar ages also do not apply conceptual 

knowledge to evaluating the plausibility of answers to fraction arithmetic problems that require 

exact answers (Hecht, 1998; Hecht et al., 2003; Siegler & Pyke, 2013). Moreover, addition is likely 

the easiest arithmetic operation to understand; understanding of subtraction, multiplication, and 

division is unlikely to be better. This lack of conceptual understanding opens the door to 

mathematically irrelevant associations based on textbook problem distributions influencing 

children’s performance.  

Chinese children appear to have greater conceptual, as well as procedural, knowledge of 

fractions. Although most U.S. sixth and eighth graders incorrectly believe that the product of two 

positive fractions below one is larger than the larger operand alone (Siegler & Lortie-Forgues, 

2015), most Chinese sixth and eighth graders do not commit this error (Tian & Siegler, 2018). 

Further, a far higher percentage of primary school mathematics teachers in China than in the United 

States can explain the rationales for fraction arithmetic procedures (Ma, 1999), making it possible 

for them to teach the rationales to their students. Chinese children’s superior understanding of 

fraction arithmetic may allow them to override their associations between operations and operand 

features, thereby avoiding the detrimental effects of the spurious associations.  
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How Could Conceptual Understanding Reduce the Impact of Spurious Associations 

from Textbook Problems?  If children applied conceptual understanding of fraction arithmetic 

to the answers they generate, they could reject many erroneous answers based on an implausible 

magnitude of the answer (is it possible that 12/13+7/8 = 19?) or a violation of principles (is it 

possible that 1/2+1/2 = 2/4?). The process seems akin to Kahneman’s (2011) discussion of the 

relation between Type 1 “fast” processing and Type 2 “slow” processing. Strategy choices based 

on spurious associations between operations and operands in textbooks seem akin to Type 1 “fast 

thinking.” Strategy choices based on conceptual understanding that overrides the spurious 

associations seems akin to Type 2 “slow thinking.” As Kahneman noted, the slower processing, 

based on conceptual understanding, can override the faster processing, based on associations. 

Detecting the implausibility of answers yielded by flawed procedures could motivate 

children to try alternative procedures that they previously learned. The plausibility of this account 

was further supported by Siegler and Pyke’s (2013) findings, which showed that most children 

who used implausible strategies on some trials used correct strategies on other, highly similar trials 

that differed only in the particular fractions in the problem. With repeated experience solving 

problems, children would seem likely to use correct strategies increasingly often, because the 

answers the correct strategies generate would be reinforced more often than the answers produced 

by the flawed strategies. Alternatively, with improved conceptual understanding, children might 

be able to avoid the flawed strategies entirely.  

Development of whole number addition provides a useful contrastive case that illustrates 

how learning occurs when children possess conceptual understanding of an arithmetic operation. 

Even preschoolers have considerable understanding of whole number addition and subtraction 

(Gilmore et al., 2018). For instance, children choose adaptively among the varied addition 

strategies they use, in the sense of using each approach most often on problems on which it yields 

favorable combinations of accuracy and speed (Siegler & Shrager, 1984). Preschoolers usually use 

retrieval, the fastest strategy, for problems on which it can be executed accurately. On the other 

hand, preschoolers usually use slower strategies, such as counting from one, on problems where 

those approaches are necessary for accurate performance. Such adaptive strategy choices, along 

with the almost total absence of implausible answers such as 3+4 = 2 or 3+4 = 22, seem to reflect 

implicit understanding of basic addition.  

Preschoolers’ conceptual understanding of whole number addition extends to discovery of 

new strategies. Siegler and Jenkins (1989) identified 4- and 5-year-olds who, on a pretest, solved 

problems by counting from 1 but never counted-on from the larger addend, even on problems such 

as 2+9, where counting-on from the larger addend could have been advantageous. The children 

were presented large numbers of addition problems, most of them involving two single-digit 

addends, with feedback about the answer’s correctness following each problem.  

Solving problems led almost all of the preschoolers to discover the counting-on strategy, 

though some took more than 200 problems to do so. Most children also discovered another correct 

strategy that was intermediate between counting from one and counting-on from the larger addend. 

Perhaps most striking, no preschooler ever tried a conceptually-flawed strategy, such as counting 

the first addend twice or only counting the second addend.  

Beyond this implicit understanding, young children also possess some explicit conceptual 

understanding of whole number addition. On the trial where they discovered the counting-on 

strategy, some preschoolers in Siegler and Jenkins (1989) explicitly noted its superiority to 

counting-from-one because, as one child put it, when you count-on, “You don’t have to count a 
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very long way.” Moreover, when kindergartners in another study were asked to judge whether a 

strategy that an experimenter demonstrated was “very smart,” “kind of smart,” or “not smart,” they 

judged counting-on, which they had not used on the pretest, to be much smarter than the 

conceptually flawed strategy of counting the first addend twice, which they also had not used 

(Siegler & Crowley, 1994).   

A major difference between whole number and rational number arithmetic is that in at least 

some areas of whole number arithmetic, children employ a goal sketch that reduces use of flawed 

strategies. Goal sketches are domain-specific mechanisms for evaluating the legitimacy and 

usefulness of strategies in that domain. They include requirements for correct strategies as well as 

means for evaluating the plausibility of answers. A goal sketch for fraction multiplication might 

include the information that multiplying two positive fractions below one must result in an answer 

less than either multiplicand; any strategy that violated that principle would be rejected. A goal 

sketch that included such information would allow children to reject 3/5 as a potential answer to 

3/5×1/5, because that answer would be larger than one of the operands and equal to the other. Such 

evaluations could lead children to turn to the other main fraction multiplication strategy they know, 

the correct strategy, and thereafter choose it increasingly, because it produced answers that met 

the requirements of the goal sketch and received reinforcement.  

Consistent with this view, children learn whole number arithmetic despite the presence of 

imbalances in the distribution of problems that children receive. For instance, children hear 

problems of the form 1+n less often than problems of the form n+1 (Siegler & Shrager, 1984). 

Similarly, frequency of single-digit multiplication problems in second and third grade math 

workbooks is correlated with accuracy on the problems (Siegler, 1988). Yet, most children 

eventually become proficient with addition and multiplication of whole numbers (e.g., Moore & 

Ashcraft, 2015), displaying little difficulty even with problems that appear relatively infrequently. 

One reason why most children eventually succeed in learning at least single-digit whole 

number arithmetic may be that their understanding of whole number arithmetic is grounded in their 

knowledge of counting. Children initially use counting to generate or enumerate whole number 

quantities (e.g., Le Corre & Carey, 2007; Wynn, 1992), but later also count to calculate sums of 

whole numbers. Thus, to calculate 3+2, a child might count “1,2,3,4,5” or “3,4,5.” Children 

spontaneously discover increasingly advanced strategies for adding by counting (Siegler & 

Jenkins, 1989; Svenson & Sjöberg, 1983), culminating in relatively consistent retrieval of 

arithmetic facts from memory.  

 

Promoting Conceptual Understanding as a Key to Effective Interventions 

Providing children with a foundation for understanding fraction arithmetic, analogous to 

the foundation that counting provides for whole number arithmetic, could greatly improve their 

ability to learn fraction arithmetic procedures. Several recent studies have tested experimental 

interventions designed with these goals in mind and have shown promising results (Braithwaite & 

Siegler, 2020; Dyson et al., 2018; Fuchs et al., 2013). Below, one of these interventions is 

described in detail. Our goal is not to advocate for a particular intervention, but to illustrate how 

children’s understanding of fraction arithmetic might be improved and how doing so might 

facilitate children’s learning of fraction arithmetic procedures. 

 Putting Fractions Together (PFT) is a conceptual framework that was created to help 

children connect their knowledge of individual fractions and fraction arithmetic, thereby 

improving their understanding of both (Braithwaite & Siegler, 2020). PFT uses the idea of 

concatenating (i.e., putting together) unit fractions to conceptualize individual fractions and sums 
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of fractions with both equal and unequal denominators. Thus, 3/9 is conceptualized as the result 

of concatenating three 1/9s; 2/9+1/9 is conceptualized as the result of concatenating two 1/9s with 

one 1/9; and 3/9+1/6 is conceptualized as the result of concatenating three 1/9s with one 1/6. The 

idea of concatenating unit fractions was intended to serve as a foundation for understanding 

individual fractions and fraction addition in the same way that counting serves as a foundation for 

understanding individual whole numbers and whole number addition. Counting and PFT both 

involve iterating units (wholes or unit fractions) to generate quantities, but unlike counting, PFT 

permits combining units of different sizes (i.e., different unit fractions, as when adding 1/5+1/6). 

 Braithwaite and Siegler (2020) tested the PFT framework by conducting two intervention 

experiments, the first with 63 4th and 5th graders, the second with 104 5th and 6th graders. Children 

in Experiment 1 were recruited from a school serving a 95% Caucasian study body; children in 

Experiment 2 were recruited from two schools, both of which served more racially diverse student 

bodies (68% Caucasian, 23% African-American, 8% biracial, and 1% Latinx in one school, and 

52% Caucasian, 28% African-American, 19% Latinx, and 2% Other in the other). 

  The experimental designs in both experiments involved an intervention group and an 

active control group. All children in both conditions participated in computer game-based 

activities.  

In the intervention condition, children created graphical representations of individual 

fractions and fraction sums by concatenating virtual manipulatives representing unit fractions, then 

used these graphical representations to estimate the magnitudes of the fractions and fraction sums 

on a number line in order to catch a hidden monster (Figure 1). After children played the game 

over multiple trials, the virtual manipulatives were withdrawn, and children continued to practice 

estimating fractions and fraction sums. This transition was intended to encourage children to 

internalize and mentally simulate the process of concatenating unit fractions. 

 
Figure 1. An example trial from the computer game used in the fraction intervention, involving a 

fraction sum. The example displays the feedback children received after “catching the monster.” 
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In the active control group in Experiment 1, children received the same procedure as peers 

in the intervention group for estimation of the magnitudes of individual fractions. These children 

did not receive practice on estimating the magnitudes of the sums, but received a greater number 

of problems involving estimation of the magnitudes of individual fractions, thus allowing time on 

task to be equated for the two conditions. In the active control group in Experiment 2, children 

received the same procedure as in the intervention group except that they estimated whole numbers 

and sums of whole numbers on a 0-1000 number line instead of fractions and fraction sums on a 

0-1 number line. 

 Different versions of the intervention were tested in two experiments with fourth, fifth, and 

sixth graders. Before and after the intervention, children completed assessments requiring them to 

estimate the magnitudes of individual fractions and sums of fractions on a number line without 

using (or seeing) any virtual manipulatives. Children displayed large improvements in accuracy 

on these tasks from pretest to posttest, especially on the most difficult task, estimation of unequal-

denominator sums (Cohen’s ds for this task ranged from 1.52 to 1.72). Children’s performance 

also improved on a transfer task, comparing fraction sums to 1, that they did not practice during 

the intervention (d = 0.69).  Improvements on all tasks involving fraction sums were larger than 

those observed in the active control groups. The improvement on the transfer task was 

accompanied by increased use of estimation strategies, such as, “2/10 and 1/8 are less than 1/2 so 

that means that [their sum is] going to be less than 1.” Thus, the intervention helped children learn 

how to estimate sums of fractions accurately without relying on exact calculation procedures. 

 The development of the estimation strategies mentioned above is critical because 

estimation provides a method for discriminating between plausible and implausible answers 

without already knowing the correct procedure. For instance, a child who knows—without 

calculating—that 2/3+3/5 is greater than 1 could recognize that 2/3+3/5 = 5/8 is impossible. After 

a number of such experiences, the child might recognize that separately adding numerators and 

denominators cannot be a correct procedure (because it always yields impossible answers--no 

greater than at least one of the addends), and might try a correct procedure instead. Thus, 

improving children’s ability to estimate could provide them with a conceptual basis for choosing 

between correct and incorrect procedures. 

 Returning to the issue with which this section began, how might interventions such as PFT 

enable children to resist the influence of biased input on learning? When deciding how to solve a 

problem, children without a conceptual foundation for understanding fraction arithmetic have no 

way to distinguish correct procedures from incorrect ones. This leaves children open to the 

influence of biased input. Conceptual understanding, however, could save students from relying 

on such experiences alone. As the above example illustrates, students with reasonable conceptual 

understanding of fraction arithmetic operations can use that understanding to help decide how to 

solve problems and to evaluate the results of their decisions. This can help them avoid errors that 

are currently pervasive in fraction arithmetic. PFT represents a promising approach to inculcating 

the conceptual understanding needed to make this possible. 
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