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Abstract 
 

Educators must balance the needs of students who start the school year behind grade level with their 

obligation to teach grade-appropriate content to all students. Educational software could help 

educators strike this balance by targeting content to students’ differing levels of mastery. Using a 

regression discontinuity design and detailed software log and administrative data, we compare two 

versions of an online mathematics program used by students in three education agencies. We find 

that although students assigned the modified curriculum did progress through content objectives 

more quickly than students assigned the default curriculum, they did not perform better on pre- and 

post-objective quizzes embedded in the software, and most never progressed far enough to reach 

the grade-level content. Furthermore, there was no statistically significant effect of the modified 

curriculum on formative test scores. These findings suggest policymakers and practitioners should 

exercise caution when assigning exclusively remedial content to students who start the school year 

behind grade level, even though this is a common feature of many math educational software 

programs.  
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I. Introduction 

 

On the 2019 NAEP assessment, 19 percent of fourth-grade students and 31 percent of eighth-

grade students scored below the basic achievement level in mathematics. These patterns are even 

more striking when broken down by race, with 35 and 27 percent of fourth-grade Black and 

Hispanic students and 53 and 43 percent of eighth-grade Black and Hispanic students respectively 

scoring below the basic achievement level in math. Moreover, despite extensive efforts to improve 

math learning, these rates have not changed significantly in the last 15 years.  

Previous research has focused on four types of policies for students performing below grade 

level: grade retention, summer school, increased instructional time, and tutoring. Rigorous analyses 

show that younger students identified for summer school and potential grade retention tend to 

experience increases in test scores initially, with few positive or negative effects later (Matsudaira, 

2007; Jacob & Lefgren, 2009; Eren et al., 2017; Schwerdt et al., 2017). In contrast, the effects of 

retaining students in eighth grade depend on context, with some observed negative effects likely 

related to social stigma (Jacob & Lefgren, 2009; Eren et al., 2017). Studies on the effects of increased 

instructional time find initial positive test score impacts that fade out over time (Taylor, 2014), but 

also positive impacts on college entrance tests, credits earned, high school graduation, and college 

enrollment (Cortes et al., 2015). However, Taylor (2014) has found some suggestive evidence that 

additional math instructional time crowds out instructional time in other subjects like English, 

music, and art. There is strong causal evidence for the large positive impacts of tutoring on student 

learning outcomes, especially in earlier grades and for low-income students (Nickow et al., 2020; 

Dietrichson et al., 2017). Tutoring is most effective in high doses, one-on-one or in very small 

groups, and when delivered by teachers, paraprofessionals, or highly trained personnel (Robinson et 

al., 2021), making it a potentially expensive undertaking for districts. Kraft & Falken (2021) estimate 

that a K-12 tutoring program would cost about $1,000 per student, with a majority of the cost going 

toward staffing expenses. There are significant time and monetary costs associated with summer 

school, grade retention, and increased instructional time as well. Taylor (2014) estimates that Miami-

Dade County Public Schools required a 15% increase in math teachers across the district to support 

their remedial class intervention, which could be particularly costly in a tight teacher market. 

Support for students performing below grade-level has gained increased importance in the 

context of the COVID-19 pandemic. Early estimates of unfinished learning from spring 2021 

indicate significant decreases in student learning rates (Kuhfeld et al., 2021). These are likely 

underestimates––a supplementary analysis indicates that students who participated in testing during 

the 2020-21 school year were less racially diverse and higher performing than average. In addition, 

policymakers believe the effect of the pandemic will linger for years. For example, embedded in the 

American Rescue Plan Elementary and Secondary School Emergency Relief Fund is $1.2 billion of 

funding for evidence-based summer enrichment programs as well as $21 billion for evidence-based 

initiatives to address the impact of lost instructional time (U.S. Department of Education, 2021). 

Thus, now more than in the past, there is an acute need to address the learning needs of students 

working to catch up to grade-level content. 

Educational software programs may provide a time- and cost-efficient way to assist students 

who are academically behind their peers. These are targeted programs designed to develop a 

particular skill in coordination with a teacher’s regular curriculum. They have the potential to 
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“personalize” education and meet each student’s performance level, allowing teachers to effectively 

instruct students with varying abilities and strengths in one classroom. One possible way to elevate 

student achievement is to incorporate below-grade-level content into an existing curriculum using 

educational software, allowing students to progress and learn at their own pace while remaining in 

the same classroom as their grade-level peers. The theory of change for this approach is that 

reteaching or solidifying understanding of foundational below-grade-level concepts increases 

students’ self-efficacy in the subject and ultimately accelerates grade-level learning compared to the 

default condition in which students do not receive any below-grade-level scaffolding. If effective, 

this practice could help eliminate the social stigma of holding students back, as discussed by Jacob 

and Lefgren (2009), as well as potentially save school systems the high financial and staffing costs of 

interventions such as summer school, grade retention, and additional remedial coursework. 

In this study, we take advantage of detailed software log data linked to student-level 

administrative records to estimate the causal effects of providing low-performing students with 

below-grade-level content via an online math program. Our pilot draws upon approximately 2,800 

students enrolled in grades 3-6 in three local education agencies, including traditional district schools 

and charter schools. We employ a regression discontinuity approach to compare two versions of the 

program. Students with prior test scores below a designated cutoff were assigned a modified version 

of the curriculum with below-grade-level content before the grade-level curriculum, while those 

above the cutoff received only the default grade-level curriculum. We examine whether providing 

students with this modified curriculum accelerated their completion of learning objectives, improved 

pre- and post-objective quiz scores, and raised subsequent standardized math test scores.  

The results of our quasi-experimental analysis suggest that while students assigned the modified 

curriculum made faster progress through learning objectives in the program, most of them did not 

ultimately advance to the grade-level material that followed. They also did not perform better on the 

most proximal measure of pre- or post-objective quizzes embedded in the software, nor did they 

perform better on standardized assessments. These results occur even though most of the modified 

curriculum students were working on easier below grade-level content that they should have been 

taught in the prior year. Specifically, we find that students who used the modified curriculum 

completed about 0.09 more objectives per hour than students who used the default curriculum, 

representing an approximately 22-percent increase in objectives completed per hour before the 

modified curriculum was introduced. Yet, since students in the modified curriculum group received 

6-7 below-grade-level objectives, their higher rates of progress were not enough to advance them to 

the grade-level content, and in fact they were 70 percent less likely to complete any grade-level 

objectives at all. 

While not conclusive, our study suggests that policymakers and practitioners should exercise 

caution when considering the use of educational software that place students onto exclusively 

remedial content to support and encourage students who begin the school year behind grade level. 

While education software often complements regular grade-level instruction, our observation that so 

few students who received the modified curriculum were ever able to work on grade-level concepts 

in the program raises the question of whether assigning students exclusively remedial content at the 

beginning of the school year only perpetuates the challenges associated with being behind their 

grade-level peers. Our study is the first, to our knowledge, to link detailed software log data with 

district administrative data to assess and quantify whether educational software could provide an 
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alternative to other strategies for supporting below-grade-level students, such as grade retention, 

summer school, increased instructional time, and tutoring.  

   

II. Background and Intervention 

 

A. Background 

 

This study was conducted in three school systems (consisting of both traditional school districts 

and charter management organizations) located in the Pacific and East South Central regions of the 

United States. All three sites at the time of the study used a math educational software that focuses 

on elementary and middle grades (K-8). The software is almost entirely visual and utilizes very little 

language-based instruction, but it is structured like a textbook, with students progressing through a 

certain number of learning objectives during the course of a specific grade-level curriculum. While 

teachers can modify the order of objectives within the grade-level curriculum, they do not have the 

ability to add above- or below-grade-level objectives to the syllabus.  

The software provider recommends a weekly usage level (in minutes) and an approximate 

amount of content that students should cover each week in order to complete a majority of the 

curriculum by the end of the year. However, the mode of delivery of the software (e.g., large school-

based labs, mobile laptop carts for classroom) varies by site, and often by school within one site. At 

the beginning of this study, all three sites had been implementing the software for several years, 

particularly in their younger grades, with 60 to 80 percent of all classrooms using the software. 

In our past work with this group of school systems, we used a matched comparison method to 

estimate the impact of the math software program on student achievement in previous years of 

implementation. We found that students who increased their weekly usage of the software from fall 

to spring experienced significant math score gains on state accountability tests. However, on 

average, students with lower prior achievement were using the software for less time each week than 

students with higher prior achievement. School system leaders hypothesized that low-achieving 

students were less engaged with the software because they were struggling to work through math 

content that was geared toward their assigned grade level rather than their true ability level. Based on 

this hypothesis, these three sites developed an intervention strategy in coordination with the 

software vendor to help increase the software usage and math achievement of students with lower 

test scores. 

 

B. Intervention and Assignment Strategy 

 

The pilot study took place over the course of the 2016-17 school year. The software provider 

designed modified versions of the regular syllabi for grades 3-6. For each grade level, the provider 

identified foundational learning objectives from earlier grade levels and placed them at the beginning 

of the grade-level curriculum. For example, the fourth-grade modified curriculum began with key 

activities from the second- and third-grade levels before introducing the fourth-grade content. In 

contrast, the default fourth-grade curriculum contained only the fourth-grade content. The goal of 

this intervention was to provide additional scaffolding and support to students who otherwise would 

have likely struggled to complete their grade-level activities in the software program. 
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We identified students in grades 3-6 in all three participating sites to receive the modified 

curriculum based on their prior spring math assessment scores. Students who scored below a 

particular cutoff (roughly corresponding to the bottom quartile of achievement across the entire 

sample) were assigned to a treatment group that would receive the modified curriculum, while 

students who scored above the cutoff were assigned to a control group that would receive the 

default grade-level curriculum.1 The software provider pushed out the correct versions of the 

curriculum directly to students, reducing the likelihood that individual teachers would switch the 

order of the objectives or otherwise change the design of the modified or default curriculums.   

 

III. Data, Descriptive Statistics, and Hypotheses 

 

A. Data Sources 

 

This study uses student-level data from two sources. Student demographic characteristics, school 

and class enrollment information, and formative and summative test scores are provided by the local 

education agencies. The running variable is derived from students’ prior spring math test score. For 

most students in grades 4-6, this is their spring 2016 state assessment. For third-grade students and 

students in a state that did not administer an assessment in 2016, their spring formative assessment 

is used instead.2 State test scores are standardized by each state’s reported means and standard 

deviations. The formative test scores are standardized using national norming studies provided by 

the company administering the assessment. The standardized test scores are then converted to 

percentiles and centered at the cut scores to create a common running variable for all students. 

 The math software vendor provides data on students’ usage of the software, including the 

number of minutes they spend using the program each week, completion of individual objectives, 

performance on quizzes taken before and after each objective, and their assigned version of the 

program (modified curriculum or default curriculum). We aggregate these data to the student level to 

calculate each student’s average weekly minutes of usage, number of objectives completed per hour3, 

and pre- and post-quiz scores for the time periods before and after the modified curriculum was 

turned on for the treatment group.4 These data are then merged with the demographic, enrollment, 

and test score data described above. 

 

B. Descriptive Statistics 

 

 
1 Note that we identified the test score cutoffs for each grade level across all students in the participating sites. However, 
within each site, schools had to opt in to participate in the study. Thus, while there is a clear cutoff score for the design 
of our regression discontinuity model, the test score percentile distribution we observe around the cutoff does not 
appear uniform. 
2 Students at one site did not take a state assessment in 2016, but they did take the same formative assessment as 

students in other sites. We created concordance tables with the other sites’ test score data to map the state assessment 

against the formative assessment and translate the state assessment cut scores for each grade level to the formative 

assessment’s scale. 
3 We divide the number of lessons completed per hour to normalize the completion across classrooms and sites since 
students spent different amounts of time on the application 
4 Modified curriculum start dates varied by site and ranged from early October 2016 to early December 2016. However, 
start dates were consistent for students within a site. All students used the default curriculum in the weeks before the 
modified curriculum was turned on for the treatment group students.  
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Table 1 presents summary statistics on all students eligible for participation in the study.5 There 

are two analytic samples described in this table. The software sample includes students from all three 

sites. One site did not administer formative tests in the fall, so the test score sample is restricted to 

the two sites with complete test score information. Both samples are largely comprised of English 

language learners, Hispanic students, and students receiving free or reduced-price lunch. The 

majority of students possess all three of these characteristics.  

In the weeks prior to the introduction of the modified curriculum, students used the math 

software for an average of 59 minutes per week, below the vendor’s recommended level of 90 

minutes per week. Average usage following the start of the modified curriculum is somewhat lower, 

at 53 minutes per week. In the pre-treatment period, students received average pre-quiz scores of 

0.46 and average post-quiz scores of 0.55 (on scales of 0 to 1). Following the start of the modified 

curriculum, students received average pre-quiz scores of 0.59 and average post-quiz scores of 0.72, 

representing an overall increase from the fall. Students completed about one-third of an objective 

per hour in both the pre- and post-treatment periods. 

Students’ fall and spring formative math and ELA scores represent their academic ability at the 

beginning and end of the school year.6 On average, students in our sample demonstrate a 0.77 

standard deviation increase in math achievement and a 0.60 standard deviation increase in ELA 

achievement over the course of the 2016-17 school year. Compared to national norms, they end the 

year slightly above average in math performance and slightly below average in ELA performance. 

 

C. Hypotheses 

 

This pilot study follows an earlier analysis of the implementation and impact of the math 

instructional software program in 13 education agencies, including the three sites in our sample. The 

results of this investigation indicate that usage of the software varies significantly by prior 

achievement: on average, students with lower prior test scores use the software for less time each 

week than students with higher prior test scores. At the same time, increased usage of the software is 

associated with significant gains in math test scores, and though not statistically different, the 

magnitude of these gains is largest for students in the bottom quartile of prior achievement. We 

presented these results to the 13 sites, and three of them were interested in testing an intervention 

using the educational software to improve engagement and achievement outcomes for their lowest 

performers. The data presented informed their hypotheses as they co-created a modified version of 

the math software in partnership with the vendor. Based on anecdotal feedback, these sites 

hypothesized that a key mechanism driving the lower usage of low-performing students was that 

these students lacked the knowledge to complete their grade-level content, resulting in lower self-

efficacy, frustration, and disengagement with the software overall. They hypothesized that students 

would spend more time using the software if allowed to complete objectives more closely aligned 

with their true math ability before beginning their grade-level material. Thus, their proposed 

intervention was a modified version of the software that gradually ramps students up to their grade-

level objectives. 

 
5 Participation varied by site. In some sites, only certain schools, grade levels, or classrooms were included in the study. 
6 The growth in test scores from fall to spring is expected. The formative test is vertically scaled, and the scores from 
both testing periods are standardized against the spring national norms to place both the fall and spring tests on the 
same scale. 
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Unlike other math educational software programs, the program in this study does not rely on 

diagnostic tests to place students in different curriculum levels. By default, students are assigned a 

syllabus that corresponds to their grade level and contains a set number of activities aligned to their 

grade-level math concepts. The sites’ first hypothesis was that providing below-grade-level content 

to low-performing students would improve their engagement with the software, strengthen their 

understanding of the material, and increase the rate at which they completed learning objectives. 

Then, once they reached the grade-level content, they would have more confidence and stronger 

foundational content knowledge, which would allow them to accelerate their learning of grade-level 

material in the software. Detailed student-level log data made available by the educational software 

company provides strong proxies to measure these outcomes. First, students’ average weekly 

minutes of software usage proxies for engagement. Second, pre- and post-objective quiz scores 

measures students’ proximal cognitive understanding of the content. Finally, the number of 

objectives completed per hour represents students’ learning progress, which the sites expected 

would improve in response to the modified curriculum, both because the below-grade-level content 

would fall within students’ optimal learning zone and because students would be more engaged with 

the software. Then, when students completed the below-grade-level objectives, they would perform 

better on grade-level pre- and post-quizzes and experience an acceleration of grade-level content 

completion compared to the comparison group.   

The sites’ second hypothesis was that deeper engagement and stronger foundational content 

knowledge in response to the modified curriculum would increase students’ distal math test scores at 

the end of the school year. This aligned with our previous findings that increased usage of the 

software is associated with math test score gains, particularly for low-achieving students. We would 

not expect to see a corresponding impact on ELA test scores because the math software is a visual 

program that is designed to be mostly language independent. Accordingly, we examine ELA scores 

as a placebo outcome in our analysis.7 

 

IV. Methodology 

 

We employ an intent-to-treat regression discontinuity technique to estimate the impact of the 

modified curriculum on average weekly minutes of software usage, pre- and post-objective quiz 

scores, number of objectives completed per hour, access to grade-level objectives, and formative 

math and ELA test scores.8 Students who score below a particular cutoff on their prior spring math 

assessment are assigned the modified curriculum, which includes key content from earlier grade 

levels, while students who score above the cutoff receive their default grade-level curriculum. 

Equation (1) describes the relationship of the treatment indicator 𝑇𝑖 to the cut score 𝑐: 

 

𝑇𝑖 = {
0 𝑖𝑓 𝑐 > 0

 1 𝑖𝑓 𝑐 ≤  0
        (1) 

 
7 This does not hold in the other direction: there are plausible explanations for how this intervention could decrease 
ELA scores, e.g., by increasing time spent on math at the expense of time spent on ELA. Also, non-cognitive factors, 
like persistence, could be enhanced by struggling through math problems that would also have an effect on ELA scores, 
but we would expect these to be small in magnitude. 
8 A small number of students assigned to the treatment group did not use the modified curriculum. We do not conduct a 
fuzzy regression discontinuity analysis to address noncompliance at this stage. 
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We begin by confirming that there is no discontinuity in the running variable or covariates 

around the assignment cutoff. We then use a standard regression discontinuity model, shown in 

equation (2), to estimate the effect of the modified curriculum on outcome Y of student i. In this 

model, 𝑇𝑖 is an indicator of whether the student was assigned the modified curriculum. (𝑋𝑖 − 𝑐) is a 

linear function of the running variable 𝑋𝑖, prior math percentile score, centered at the cut score 𝑐. 𝑍𝑖 

is a vector of student demographics and pre-treatment covariates. 𝛼𝑖 represents site-fixed effects. 

 

𝑌𝑖 =  𝛽0 +  𝛽1𝑇𝑖 + 𝛽2 (𝑋𝑖 − 𝑐) + 𝛽3 (𝑋𝑖 − 𝑐) ∗ 𝑇𝑖 + 𝑍𝑖 + 𝛼𝑖 + 𝜀𝑖     (2) 

 

The coefficient 𝛽1 is the main estimate of the discontinuous effect of the modified curriculum at 

the test score cutoff. We focus on fitting this model within a bandwidth of 15 percentile points 

above and below the cutoff; however, we also run sensitivity tests with a range of bandwidths, 

including the “optimal” non-parametric bandwidth selected by a mean squared error method. Our 

final sensitivity test involves running a non-parametric model across the same range of bandwidths. 

The non-parametric model uses a triangular kernel to place more weight on observations closer to 

the cutoff. In all cases, we calculate robust standard errors clustered at the school-grade level. 

 

V. Results 

 

A. Density and Covariate Balancing Tests 

 

We begin by examining the density of the running variable to confirm there is no discontinuity 

at the assignment cutoff. Figure 1 shows the share of students in the larger software usage sample 

with prior spring math percentile scores 20 points above and below the cutoff. As expected, there is 

no evidence of a discontinuity at the threshold. Next, we apply our standard regression discontinuity 

model to examine whether any of the pre-treatment covariates vary discontinuously at the cutoff. 

Table 2 shows that there are no discontinuities in student demographics, average weekly minutes of 

software usage, number of objectives completed per hour, or fall formative test scores at the cutoff. 

These results confirm that the treatment group and control group are demographically and 

academically similar close to the cutoff. However, by chance, students assigned the modified 

curriculum had higher pre- and post-objective quiz scores during the pre-treatment period. As such, 

we would expect the post-treatment results to be biased upward. To partially address these concerns, 

all models control for baseline performance. 
 

B. Impact Estimates 

 

Our main outcomes of interest are students’ average weekly minutes of software usage in the 

post-treatment period (a measure of engagement), their average pre- and post-quiz scores on grade-

level objectives in the post-period (a proximal measure of content mastery), their number of 

objectives completed per hour in the post-period (a measure of progress), and their spring formative 

math assessment scores (a distal measure of academic achievement). We also examine whether 

students ever accessed the grade-level objectives after completing the below-grade-level objectives to 

test the hypothesis that providing students with below-grade-level content would accelerate their 
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grade-level learning. Finally, we analyze the impact of the modified curriculum on students’ spring 

formative ELA scores as a placebo indicator. Observing a discontinuity in ELA scores at the cutoff 

would be concerning; we do not expect the modified curriculum to have a meaningful effect on 

English learning or achievement because the math software is mostly language independent. 

Figures 2-4 illustrate the unadjusted non-parametric regression discontinuity models for these 

outcomes within a bandwidth of 15 percentile points above and below the cutoff. In the top left 

panel of figure 2, the average weekly software usage of students directly below the cutoff (the 

modified curriculum group) appears higher than that of students directly above the cutoff (the 

default curriculum group), suggesting that students who received the modified curriculum spent 

more time using the software each week than those who received the default curriculum. The top 

right and bottom left panel of figure 2 shows that the modified curriculum did not appear to have 

much impact on pre- and post-objective quiz scores within the software, the most proximal measure 

of content mastery. The left panel of Figure 3 shows a positive discontinuity for number of 

objectives completed per hour, indicating that students who received the modified curriculum 

completed more objectives per hour than students who received the default curriculum. However, 

the right panel of figure 3 shows that these students were much less likely to ever reach the grade-

level objectives that followed. Finally, figure 4 shows small positive discontinuities for both 

formative math and ELA test scores. 

Table 3 reports the impact estimates of the modified curriculum using the linear model outlined 

in equation (2) within the same bandwidth of 15 percentile points. A positive coefficient signifies a 

positive effect of the modified curriculum, while a negative coefficient signifies a negative effect. 

After controlling for student demographics, pre-treatment covariates, and site differences, the 

modified curriculum’s effects on average weekly minutes of usage and pre- and post-objective quiz 

scores are not statistically different from zero. The confidence intervals on the null effects are 

relatively precisely estimated. We do, however, observe a positive and statistically significant effect 

of the modified curriculum on the number of objectives completed per hour. Students who receive 

the modified curriculum complete 0.09 more objectives per hour than students who receive the 

default curriculum. However, despite making more progress through their below-grade-level 

objectives compared to the progress through grade-level content made by students assigned the 

default curriculum, students who received the modified curriculum were over 70 percentage points 

less likely to work on even one grade-level objective in the post-treatment period. 

We do not observe a statistically significant effect of the modified curriculum on either math or 

ELA test scores. In our earlier analytic work on the impact of this software program (outside the 

scope of this paper), we observed a 0.04 standard deviation increase in math test scores for the 

average student who increased his or her fall to spring usage by an average of about 30 minutes per 

week. Because we did not observe a significant increase in the average weekly usage of modified 

curriculum students, it is not surprising that we do not identify a significant effect on test scores.9  

 

 
9 We conduct a similar analysis using state-administered summative test scores for students in grades 4-6 in three sites 
and find that the effect on math scores is close to zero and insignificant (-0.01 standard deviations) and the effect on 
ELA scores is negative and statistically significant (-0.26 standard deviations). One possible explanation for the 
apparently negative impact of the modified curriculum on ELA scores is that teachers diverted time away from ELA 
instruction for students who received the modified curriculum in order to give them more time to work through their 
extended math software curriculum. 
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C. Sensitivity Tests 

 

Table 4 shows the impact estimates for all three outcomes under two different model 

specifications and across multiple bandwidths, including the “optimal” non-parametric bandwidth 

for each outcome, calculated using the mean squared error approach outlined by Calonico et al. 

(2014). The parametric regression discontinuity model is the one outlined in equation (2); the non-

parametric model is included as a sensitivity check. Though the magnitudes of the coefficients on 

objectives completed per hour and access to grade-level objectives differ across models, their 

directions are consistent, providing suggestive evidence that the modified curriculum has a positive 

effect on students’ progress through the software yet a negative effect on their ability to reach grade-

level content. This table also illustrates the bias-variance tradeoff inherent in the bandwidth selection 

decision for a regression discontinuity analysis such as this one. Closer to the cutoff, our estimates 

are less biased but also less precise. Farther away from the cutoff, we gain precision but also increase 

bias in our estimates because students are less comparable. 

 

VI. Discussion 

 

In this study, we use a regression discontinuity design with unique educational software log data 

linked to traditional administrative data to causally investigate whether assigning students remedial 

work prior to grade-level material through a math educational software program can provide 

teachers an efficient way to support below-grade-level students. While educational software 

promises to “meet students where they are,” allowing teachers to instruct students of varying levels 

more optimally, there is no existing causal evidence on the effectiveness of this strategy. Our work 

demonstrates that, at a minimum, the strategy of providing students with remedial content needs 

further refinement to achieve that goal. Moreover, our model of providing descriptive and causal 

data to a network of agencies to inform hypotheses and work in partnership with educational 

software vendors to pilot and test could provide a fruitful roadmap for the future.    

We find that, among students quasi-randomly assigned to receive a modified mathematics 

curriculum containing material from earlier grade levels, there is no statistically significant effect on 

engagement, proxied by minutes on the software, no positive effect on proximal pre- or post-

objective quizzes, and no statistically significant increase in math test scores. These patterns are 

particularly concerning for two reasons. First, students in the modified curriculum group tended to 

perform 10 to 15 points better on the pre- and post-quiz scores prior to the beginning of the 

intervention. This suggests a potential upward bias in our treatment group, even though we control 

for the student’s pre-curriculum quiz performance in our models. Yet the effect on post-curriculum 

quizzes can’t be distinguished from zero. Second, the students enrolled in the modified curriculum 

were receiving significantly easier content than their peers who received the default curriculum. 

Thus, on these measures, there is no evidence that providing the modified curriculum improved 

student engagement or understanding the material, despite receiving content that should have been 

covered in the prior year. 

Our quasi-experimental design does find an acceleration of content completion, but also 

provides detailed data that providing remedial content might not be beneficial. We observe an 

acceleration in the rate of content completion of 0.09 objectives per hour, a 22-percent increase 

from baseline, but this acceleration is insufficient to bring approximately 70 percent of students back 
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to the first grade-level objective. Thus, the modified curriculum students did not end the year at a 

similar place in the syllabus as the default curriculum students. The acceleration in learning was not 

sufficient to cover the material assigned to them, suggesting that this remedial approach to 

instruction could perpetuate a cycle in which students provided below-grade-level instruction are 

never able to catch up to their grade-level peers. These findings are congruent with a recent 

descriptive study published by The New Teacher Project, which found that assigning students 

below-grade-level content could be harmful (TNTP, 2018). A follow-up study using descriptive 

Zearn data showed that starting students on grade-level content and then interspersing below-grade-

level content at key points prior to the grade-level content demonstrated significantly better results 

compared to the “ramp-up” style curriculum that we tested (TNTP, 2021). Alternatively, the amount 

of below-grade-level content a student receives may be an important factor. The software program 

in our study assigned students 6-7 key below-grade-level concepts before resuming the grade-level 

curriculum, but perhaps fewer below-grade-level objectives could be assigned, even if students have 

not mastered all the foundational concepts. While these emerging hypotheses should be rigorously 

tested, it does indicate the promise of educational software could be fulfilled with further 

experimentation surrounding the curriculum design.      

Our partnership and collaborative approach provide one way these hypotheses could be tested. 

The current pilot took place in the context of a larger project that created a network of district and 

charter agencies to collectively learn about the implementation and impact of educational software. 

By convening this network of partners, the sites, in collaboration with the authors identified 

challenges, identified potential solutions, and then co-designed a test of the potential solution with 

an educational software partner. Implementing continuous improvement networks at scale such as 

these in a partnership with educational software vendor could allow for specific software strategies 

to be causally tested and monitored, accelerating our understanding of this sector as well as other 

potential interventions. Our work provides a proof point that networks like these can help the field 

learn about what works for whom.                                  

Our work offers several lessons for the design of future evaluations of assisting students who 

start the school year behind their peers. First, while we were able to leverage rich administrative and 

log data it could be helpful to obtain additional data on student engagement apart from their usage 

of the software, such as attendance data. This could help us better understand if the minutes are 

indicative of allowing the students more time to work on the software or by an actual improvement 

in these students’ overall engagement with school. Adding these metrics to our analysis will help us 

gain a deeper understanding of how or if this intervention worked. Second, another important piece 

to understanding the benefits of instructional software as a tool for remedial education would be 

identifying the costs of the software, including the licenses, hardware, network creation, and high-

quality teaching required for effective implementation. While we have begun to think through these 

factors, in order to really weigh the pros and cons of additional class time versus additional 

educational software usage, we need to obtain better data on many of these costs. Third, there is a 

learning curve to participating in these improvement networks, thus we suggest that districts and 

policymakers commit to them in order to reap the benefits of the setup cost.  

By documenting mixed findings with a math instructional software in response to the inclusion 

of below-grade-level material, this paper adds to a growing literature on educational software in 

supplementing and improving instruction for students who are otherwise at risk of falling behind 
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(see, e.g., Escueta et al., 2017). How or if these software programs can be used to address this 

particular issue remains an understudied area in the economics of education.  
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Tables and Figures 

 

Table 1 

Summary Statistics 

 
Software Sample 

(Three Sites) 
Test Score Sample 

(Two Sites) 

 Mean SD N Mean SD N 

Demographics       

Male 0.49 0.50 2,852 0.50 0.50 2,194 

ELL 0.70 0.46 2,852 0.76 0.42 2,194 

Hispanic 0.70 0.46 2,852 0.77 0.42 2,194 

FRPL [Not available for one site] 0.79 0.41 2,194 

Pre-treatment covariates       

Pre-treatment average 

weekly minutes of usage 
58.61 29.09 2,852    

Pre-treatment average  

pre-quiz score 
0.46 0.31 2,852    

Pre-treatment average  

post-quiz score 
0.55 0.39 2,852    

Pre-treatment objectives 
completed per hour 

0.32 0.35 2,852    

Fall math std. score    -0.75 0.96 2,194 

Fall ELA std. score    -0.70 1.13 2,194 

Outcomes       

Post-treatment average 

weekly minutes of usage 
52.53 23.95 2,852    

Post-treatment average  

pre-quiz score 
0.59 0.22 2,852    

Post-treatment average  

post-quiz score 
0.72 0.24 2,852    

Post-treatment objectives 
completed per hour 

0.34 0.17 2,852    

Spring math std. score    0.02 1.02 2,194 

Spring ELA std. score    -0.10 1.07 2,194 

Note: The growth in test scores from fall to spring is expected. The formative test is vertically scaled, and the scores from 

both testing periods are standardized against the spring national norms to place both the fall and spring tests on the 

same scale.  
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Figure 1 

Density of the Running Variable 

 
Note: Percentiles were identified across all students at all three sites. However, not all students participated in 

the pilot study. As such, we do not observe a uniform distribution of test scores percentiles around the cutoff.  
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Table 2 

Covariate Balance around the Cutoff 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Parametric regression discontinuity model. School-grade-clustered standard 

errors are in parentheses. The sample for the male, ELL, Hispanic, and pre-treatment 

usage analyses is the software usage sample (three sites). The sample for the FRPL 

and fall test score analyses is the test score sample (two sites). 

*** p<0.01, ** p<0.05, * p<0.1 

 

  

 Bandwidth = 15 percentiles 

 RD Estimate N 

Demographics   

Male 
-0.02 
(0.07) 

782 

ELL 
0.07 

(0.06) 
782 

Hispanic 
-0.03 
(0.04) 

782 

FRPL 
-0.01 
(0.06) 

571 

Pre-treatment covariates   

Pre-treatment average 

weekly minutes of usage 
-0.28 
(2.93) 

782 

Pre-treatment average 

pre-quiz score 
0.09** 
(0.04) 

782 

Pre-treatment average 

post-quiz score 
0.14*** 
(0.05) 

782 

Pre-treatment objectives 
completed per hour 

-0.04 
(0.07) 

782 

Fall math std. score 
0.05 

(0.08) 
571 

Fall ELA std. score 
0.08 

(0.12) 
571 
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Figure 2 

Impact of the Modified Curriculum on Post-Treatment Average Weekly Minutes of Usage, 

Average Pre-Quiz Score and Average Post-Quiz Score 

 
Notes: Unadjusted non-parametric regression discontinuity model with triangular kernel weighting. 
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Figure 3 

Impact of the Modified Curriculum on Post-Treatment Objectives Completed per Hour and 

Ever Accessing Grade-Level Objectives in Post-Treatment Period 

 

Notes: Unadjusted non-parametric regression discontinuity model with triangular kernel weighting. 
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Figure 4 

Impact of the Modified Curriculum on Spring Formative Math and ELA Scores 

 
Notes: Unadjusted non-parametric regression discontinuity model with triangular kernel weighting. 
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Table 3 

Impact of the Modified Curriculum on Student Outcomes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Parametric regression discontinuity model including student demographics, 

pre-treatment covariates, and site-fixed effects. School-grade-clustered standard 

errors are in parentheses. The sample for the post-treatment usage analysis is the 

software usage sample (three sites). The sample for the spring test score analyses 

is the test score sample (two sites). 

*** p<0.01, ** p<0.05, * p<0.1 

 

  

 Bandwidth = 15 percentiles 

 RD Estimate N 

Outcomes   

Post-treatment average 
weekly minutes of usage 

3.61 
(2.38) 

782 

Post-treatment average  
pre-quiz score 

0.01 
(0.03) 

782 

Post-treatment average 
post-quiz score 

-0.02 
(0.03) 

782 

Post-treatment objectives 
completed per hour 

0.09*** 
(0.02) 

782 

Ever accessing grade-level 
objectives in post-treatment 
period 

-0.73*** 
(0.06) 

782 

Spring math std. score 
0.06 

(0.08) 
571 

Spring ELA std. score 
0.04 

(0.09) 
571 
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Table 4 

Impact Estimates for All Model Specifications 

Continued on next page.  

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (19) 

Post-treatment average 
weekly minutes of usage 

     

Parametric RD estimate 
2.78 

(2.25) 
3.61 

(2.38) 
4.69 

(3.40) 
7.63** 
(3.77) 

2.45 
(2.33) 

Non-parametric RD 
estimate 

1.62 
(3.24) 

3.46 
(3.65) 

6.22 
(4.26) 

10.99* 
(5.62) 

2.97 
(3.49) 

N 1,026 782 518 292 958 

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (15) 

Post-treatment average  
pre-quiz score 

     

Parametric RD estimate 
0.02 

(0.02) 
0.01 

(0.03) 
0.00 

(0.02) 
0.02 

(0.03) 
0.01 

(0.03) 

Non-parametric RD 
estimate 

0.01 
(0.03) 

0.00 
(0.03) 

0.02 
(0.03) 

0.01 
(0.05) 

0.01 
(0.03) 

N 1,026 782 518 292 801 

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (19) 

Post-treatment average 
post-quiz score 

     

Parametric RD estimate 
-0.01 
(0.03) 

-0.02 
(0.03) 

-0.04 
(0.04) 

0.01 
(0.05) 

-0.01 
(0.03) 

Non-parametric RD 
estimate 

-0.02 
(0.03) 

-0.02 
(0.04) 

0.01 
(0.04) 

0.02 
(0.06) 

-0.01 
(0.03) 

N 1,026 782 518 292 1,005 



DRAFT  9/2021 

23 
 

 

Continued on next page. 

 

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (18) 

Post-treatment objectives 
completed per hour 

     

Parametric RD estimate 
0.09*** 
(0.02) 

0.09*** 
(0.02) 

0.11*** 
(0.02) 

0.09*** 
(0.03) 

0.09*** 
(0.02) 

Non-parametric RD 
estimate 

0.09*** 
(0.02) 

0.09*** 
(0.02) 

0.09*** 
(0.03) 

0.08** 
(0.04) 

0.07*** 
(0.02) 

N 1,026 782 518 292 958 

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (14) 

Ever accessing grade-level 
objectives in post-treatment 
period 

     

Parametric RD estimate 
-0.70*** 

(0.06) 
-0.73*** 

(0.06) 
-0.72*** 

(0.07) 
-0.65*** 

(0.10) 
-0.73*** 

(0.06) 

Non-parametric RD 
estimate 

-0.66*** 
(0.06) 

-0.64*** 
(0.07) 

-0.57*** 
(0.09) 

-0.53*** 
(0.12) 

-0.63*** 
(0.08) 

N 1,026 782 518 292 696 

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (13) 

Spring math std. score      

Parametric RD estimate 
0.11 

(0.07) 
0.06 

(0.08) 
0.08 

(0.08) 
0.10 

(0.12) 
0.05 

(0.08) 

Non-parametric RD 
estimate 

0.04 
(0.08) 

0.02 
(0.09) 

0.00 
(0.10) 

0.07 
(0.14) 

0.01 
(0.09) 

N 737 571 377 216 506 
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Notes: Parametric and non-parametric regression discontinuity models include student demographics, pre-treatment 

covariates, and site-fixed effects. Non-parametric model includes triangular kernel weights. School-grade-clustered 

standard errors are in parentheses. Optimal bandwidths for each outcome are determined using a mean squared 

error method (Calonico et al. 2014). The sample for the post-treatment usage analysis is the software usage sample 

(three sites). The sample for the spring test score analyses is the test score sample (two sites). 

*** p<0.01, ** p<0.05, * p<0.1 

 

  

 Bandwidth (percentiles) 

 20 15 10 5 Optimal (12) 

Spring ELA std. score      

Parametric RD estimate 
0.09 

(0.07) 
0.04 

(0.09) 
-0.05 
(0.10) 

-0.18 
(0.15) 

-0.04 
(0.09) 

Non-parametric RD 
estimate 

0.00 
(0.07) 

-0.05 
(0.09) 

-0.09 
(0.11) 

-0.19 
(0.14) 

-0.09 
(0.10) 

N 737 571 377 216 438 
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Appendix 

 

Figure A1 

Impact of the Modified Curriculum on Post-Treatment Average Weekly Minutes of Usage at 

Different Bandwidths 
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Figure A2 

Impact of the Modified Curriculum on Post-Treatment Average Pre-Quiz Score at Different 

Bandwidths 
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Figure A3 

Impact of the Modified Curriculum on Post-Treatment Average Post-Quiz Score at 

Different Bandwidths 
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Figure A4 

Impact of the Modified Curriculum on Post-Treatment Objectives Completed per Hour at 

Different Bandwidths 
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Figure A5 

Impact of the Modified Curriculum on Ever Accessing Grade-Level Objectives in the  

Post-Treatment Period at Different Bandwidths 
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Figure A6 

Impact of the Modified Curriculum on Spring Formative Math Scores at Different 

Bandwidths  
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Figure A7 

Impact of the Modified Curriculum on Spring Formative ELA Scores at Different 

Bandwidths  

 


