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Abstract 

Determining the effectiveness of core mathematics curricula is foundational to evidence-based 

practice. Examining effectiveness heterogeneity is also crucial to better understanding 

mathematics achievement among English language learners (ELLs). In this study, we used a 

quasi-experimental design (difference-in-differences) to examine the impact of a standards-based 

elementary mathematics curriculum (Bridges in Mathematics) on fifth graders’ annual gains in 

mathematics achievement in a large midwestern school district compared to the district’s prior 

curriculum (Investigations). We also investigated whether the effect of Bridges varied across 

English language proficiency (ELP) levels of English language learners (ELLs). Students in 

schools that implemented Bridges (n = 1,839) showed significantly greater mathematics gains 

compared to those receiving the prior curriculum (n = 3,354; g = 0.25 in change score standard 

deviations). This effect did not vary significantly across ELP levels. Limitations of this study as 

well as implications for research and practice with core curricula are discussed.  

Keywords: Elementary school, mathematics, English language learners, differences-in-

differences  

Impact Statement 

We used a quasi-experimental design to investigate the effect of the Bridges in Mathematics 

curriculum on student mathematics achievement gains in fifth grade in a large, urban school 

district. Students who received the curriculum grew measurably more on mathematics scores 

from the fall to spring of fifth grade than students who received the previous curriculum. English 

language learners with heterogenous English language proficiency levels and English-proficient 

peers benefited similarly from the curriculum. 
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Examining Bridges in Mathematics and Differential Effects Among English Language Learners 

Promoting students’ mastery of basic mathematics facts, concepts, and procedures 

(National Mathematics Advisory Panel [NMAP], 2008) at scale requires further expansion of 

evidence-based mathematics curricula that align with the developmental aspects of mathematics 

learning. A variety of factors speak to this need. Despite increases in fourth graders’ mathematics 

performance on National Assessment of Educational Progress (NAEP) from 1990 to 2019 

(Hussar et al., 2020), U.S. fourth graders’ mathematics performance in the 2015 Trends in 

International in Mathematics and Sciences Study (TIMSS) shows they performed significantly 

behind ten other countries (Hussar et al., 2020). These gaps occur even in light of national 

policies (e.g., No Child Left Behind [NCLB], 2002; Every Student Succeeds Act [ESSA], 2015) 

and standards (e.g., implementation of the Common Core State Standards in Mathematics 

[CCSSM] in 2010; National Governors Association Center for Best Practices [NGA], Council of 

Chief State School Offers [CCSO], 2010) implemented to improve achievement. Moreover, there 

have been many efforts to test elementary mathematics intervention programs or strategies, but 

only two comprehensive elementary mathematics curricula meet What Works Clearinghouse’s 

(WWC) effectiveness definition (Odyssey Math and Everyday Mathematics; WWC, 2020a; see 

also Agodini and Harris [2010] who made a similar observation of WWC-reviewed interventions 

in 2009). Systematically higher effect sizes of curriculum evaluations from developers compared 

to independent teams may further cloud the evidence base (Wolf et al., 2020).  

Elementary school is a key period to ensure development of core mathematics 

competencies. Acquisition of a variety of core skills is necessary to reach numerous benchmarks 

in mathematics skill development, especially as students approach middle school. Elementary 

word-problem solving (Fuchs et al., 2014) as well as mathematical equivalence knowledge 
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(Matthews & Fuchs, 2020) begin a trajectory towards algebra competence. Additionally, early 

fraction competencies in elementary school lay a foundation for success in middle school algebra 

(Booth & Newton, 2012). Koon and Davis (2019) show that grade five mathematics achievement 

more robustly predicted meeting grade 11 mathematics benchmarks than patterns of students’ 

mathematics courses between grades six and 11. Rigorous core instruction in key areas of 

mathematical competence remains a critical aspect of effective prevention of mathematics 

difficulties (Clarke et al., 2011; Clarke et al., 2015).  

Multitiered systems of support (MTSS) explicitly embeds prevention within its levels of 

support (Burns, 2011). Universal curriculum (tier 1 instruction) that all students receive within 

the general classroom prevents compounding difficulties at broad scale by sufficiently providing 

the requisite skills for sustained academic development (Mellard et al., 2010). Examining the 

effectiveness of universal curriculum to ensure students are acquiring core skills is central to 

effective MTSS and curriculum implementation since effective instruction at tiers 2 and above 

are premised on adequate universal instruction (Mellard et al., 2010). Research examining 

universal mathematics curriculum effectiveness among English language learners (ELLs) is in 

particular need of further development considering the dearth of studies in this area. Equity 

issues are critical to address in the universal tier in order to ensure all students equitably receive 

necessary core content (Albers & Martinez, 2015; Robinson-Cimpian et al., 2016).  

The current evidence base, achievement trends, and equity issues impacting students’ 

learning necessitate continued examination of practices and programs that support students’ 

learning with added attention to linguistic diversity. Some studies have studied implementation 

of universal core curricula in randomized trials (e.g., Agodini & Harris, 2010; Clarke et al., 

2011; Clarke et al., 2015). Doabler, Clarke et al. (2016) extended Clarke et al. (2011) by testing 
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the curriculum’s effects among Spanish-speaking ELLs, finding positive results of the 

intervention across baseline performance levels. Yet more work is needed in this area. Additional 

studies situated in context must examine the causal effects of curricula on student achievement to 

generate evidence rooted in day-to-day practices. Randomized trials have been a leading method 

to the evidence-based education movement (Borman, 2009). However, research designs that 

leverage local decisions to measure causal effects also inform the evidence base of curricula and 

provide insight into achievement trends among diverse learners in typical educational settings. In 

our current study, we use the temporal variation in the implementation of a CCSSM-based 

curriculum in a large school district to investigate treatment effects on annual student-level 

mathematics achievement gains and effect heterogeneity across ELLs’ English language 

proficiency (ELP) levels. 

Standards-Based Instruction in Mathematics 

CCSSM implementation in 2010 prompted the need for universal curricula that were 

well-aligned to these standards, helping to align identification, prevention, and intervention 

services with benchmarks for students’ content mastery. Standards like CCSSM require 

deliberate, high-fidelity implementation that is well-supported professionally and corresponds 

with high levels of accountability (Coburn et al., 2016). Disconnects between implementation 

efforts and accountability to fidelity may generate tensions that weaken teachers’ buy-in and 

standards adherence (Coburn et al., 2016). Practices that align to CCSSM associate with 

achievement in multiple ways. Schmidt and Huoang (2012) found that CCSSM not only 

mirrored the standards of higher performing countries on 1995 TIMSS mathematics but also that 

state standards more similar to CCSSM were associated with higher NAEP mathematics scores 
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in 2009. Measures of alignment to state-level standards further support small increases in the 

cognitive demand of CCSSM compared to other standards in 2010 (Porter et al., 2011).   

Although a significant majority of the U.S. adopted the CCSSM upon its implementation 

in 2010, substantial variability in CCSSM implementation remained (Cogan et al., 2013). Cogan 

et al. surveyed mathematics teachers in 41 U.S. states in 2011 and showed that state standards 

informed a majority of teachers’ instruction across grades 1-12 and that teachers were receptive 

to CCSSM implementation. Yet, across 40 states, 0% to 35% of teachers relied on textbooks that 

may not have reflected CCSSM. Variation in materials may impede standards adherence, and 

teachers indicated PD as well as accessible implementation resources would support CCSSM 

implementation (Cogan et al., 2013).  

Adapting curricula to fit situational needs while retaining standards-alignment and 

accountability is difficult without the necessary supports that help teachers carry out their 

instructional strategies (Coburn et al., 2016). Teacher professional development (PD) facilitates 

high-fidelity implementation and shapes teachers’ perceptions of implementing the curriculum, 

especially in light of standards adherence and assessment-based accountability (McGee et al., 

2013). A randomized trial of elementary-level teacher PD (Garet et al., 2016) found positive 

effects on teachers’ mathematics content knowledge and some aspects of instructional quality. 

Garet et al. found null effects on student achievement, though prior work has provided evidence 

of a relationship between teachers’ mathematics content knowledge and student achievement 

(Campbell et al., 2014; Hill et al., 2005). Additionally, Blank and de las Alas (2009) established 

post-test and pre-post effect sizes of 0.13 and 0.21, respectively, of elementary PD in 

mathematics on student achievement.  
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These prior studies suggest that improved student achievement likely occurs at the 

confluence of high-fidelity implementation of standards-aligned curricula, PD for teachers, and 

access to evidence-based instruction. Decisions about curriculum implementation and, 

ultimately, the prevention efforts that undergird universal instruction, must stem from clear 

sources of evidence that reflect day-to-day practices, however. To that end, empirical 

investigation of curriculum in-context helps determine how policymaker decisions affect student 

achievement. Uses of quasi-experimental designs (QEDs) are increasing in education research 

given their ability to assess these exact types of decisions (Gopalan et al., 2020).  

English Language Learners and Mathematics Achievement  

Mathematics development, prevention of difficulties, and the implementation of 

standards-based instruction also requires particular attention among ELLs. Multiple sources of 

language factor into ELLs’ academic learning, including general and specific academic language 

in English (Baker et al., 2014; Doabler, Nelson, et al., 2016) and students’ native languages. 

There are pressing equity issues impacting ELLs’ learning in core instruction as well (Robinson-

Cimpian et al., 2016). However, mathematics curriculum effectiveness research among ELLs is 

limited, and more research is needed to better understand how standards-based mathematics 

curriculum implementation intersects with linguistic diversity.  

Students identified as ELLs comprised 10.1% of the student population in the U.S in 

2017 (Hussar et al., 2020). Typical reports of ELLs’ mathematics performance document 

significant gaps from their non-ELL peers (e.g., Hussar et al., 2020), though other accounts of 

linguistically diverse student achievement (using more inclusive definitions of linguistic 

diversity than ELL) show NAEP mathematics improvements at higher rates relative to 

monolingual peers (Kieffer & Thompson, 2018). Examining patterns of achievement in relation 
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to curriculum change informs how new practices and implementation strategies might support 

ELLs’ learning. However, definitions and identification criteria for ELLs varies across states as 

well as research studies. Research that examines differences in achievement level and growth 

across ELL status as well as across the ELP continuum is needed to better understand the 

relationships of language to mathematics and how mathematics curricula support ELLs’ learning. 

Language holds important relationships to mathematics performance (Vukovic & Lesaux, 

2013; Chow & Ekholm, 2019). ELLs in particular face the challenge of acquiring both general 

and content-specific English language in addition to competencies in specific academic areas 

(Baker et al., 2014; Doabler, Nelson, et al., 2016). This occurs concurrently with native language 

development for many students as well. Prior experimental studies have posited that verbalizing 

problem-solving and meaningful use of content-specific language in tier 1 (Doabler, Clarke, et 

al., 2016) as well as tier 2 curriculum (Doabler et al., 2019) facilitates ELLs’ mathematics 

development. Vukovic and Lesaux (2013) found that oral language predicted mathematics 

performance in elementary school, though this relationship was more robust for conceptually-

focused mathematics tasks. In another study, elementary students’ language syntax skills 

uniquely positively predicted mathematics performance (Chow & Ekholm, 2019). Mathematics 

language also relates to mathematics performance among young children (Purpura & Reid, 2016; 

Purpura et al., 2017). Relationships of vocabulary and reading comprehension may be also 

informative in this context. Quinn and colleagues (2015) found that growth in vocabulary 

predicted growth in reading comprehension among mostly English-speaking students, supporting 

the instrumentalist hypothesis of reading comprehension (Anderson & Freebody, 1981). 

Relatedly, Lesaux et al. (2010) found that oral English language predicted English reading 

comprehension among native Spanish-speaking students. Altogether, these findings support that 
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vocabulary and language acquisition may facilitate comprehension and mathematics 

performance in a variety of settings and grade levels. For ELLs, building vocabulary and 

language use may be particularly important for mathematics learning, which is consistent with 

recommended practice (Baker et al., 2014; Doabler, Nelson, et al., 2016). 

However, there is limited research in the influence of mathematics curricula on ELLs’ 

mathematics achievement, and considering ELP level heterogeneity is important for MTSS 

implementation (Albers & Martinez, 2015). Intervention research within an MTSS model is 

informative for this area of work, though research on heterogenous effects of mathematics 

interventions for ELLs remains limited. Doabler, Clarke, et al. (2016) found that a universal 

kindergarten mathematics curriculum produced similar achievement gains for ELLs across prior 

achievement levels. Doabler et al.’s (2019) results regarding variation of tier 2 mathematics 

intervention effects across ELP levels were mixed. Small-scale studies (e.g., Driver & Powell, 

2017) or single-case designs (e.g., Orosco, 2014; Leauvano & Collins, 2020) have further 

investigated the effects of interventions of ELLs at-risk for mathematics difficulties.   

These studies also underscore the variability in defining ELL and ELP, necessitating 

further examination of how mathematics curriculum and ELP relate to achievement. Studies also 

vary in the scale and scope of intervention and generally target a more specific subgroup of 

students (e.g., ELLs at-risk for mathematics difficulties). QEDs that leverage day-to-day decision 

making of policymakers to identify causal effects of mathematics curriculum offer a particularly 

important perspective in this literature as they can provide insight into how implementing new 

practices at wide scale supports ELLs’ learning. 

The Present Study 
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 In the present study, we investigated the effects of the implementation of a standards-

based curriculum, Bridges in Mathematics (The Math Learning Center, 2015), on fifth graders’ 

annual mathematics achievement gains within a large, urban, midwestern school district 

compared to the district’s former curriculum (Investigations). We also examined the extent to 

which these effects varied across ELP levels.  

Bridges is implemented internationally and has received strong reviews from curriculum 

reviewers (e.g., Education Reports, 2018). It emphasizes instruction that is “[…] linguistically, 

visually, and kinesthetically rich […]” (The Math Learning Center, 2020, n.p.) and is designed 

for 80 minutes of mathematics instruction per day (The Math Learning Center, n.d.a.). Bridges’s 

publisher provides some information of the curriculum’s research base (The Math Learning 

Center, n.d.b.), yet we are aware of only one independent causal analysis of this curriculum’s 

impact on student achievement (SEG Measurement, 2018).  

Unlike Bridges, which was designed to align directly to CCSSM standards, Investigations 

required adaptations by the district to meet needs for CCSSM alignment. At the time of this 

study, some schools had implemented Bridges in Mathematics curriculum and some schools 

were still using Investigations. Investigations had been used in the district for approximately 10 

years. This version of Investigations was not aligned to the CCSSM and therefore lacked explicit 

emphasis on core aspects of CCSSM. Key to the Bridges curriculum is the nonlinear sequence of 

CCSSM coverage that builds a continuous cycle of scaffolding for content mastery (Hansen, 

2017). This cyclical pattern of content coverage – e.g., introducing a standard in small 

increments and continuously revisiting the standard to promote mastery – constitutes 

“meaningful distributed practice” (MDP; Hansen, 2017) and parallels the sequencing of 

standards (“spiraling”) in a different curriculum meeting WWC’s effectiveness criterion – 
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Everyday Mathematics (Center for Elementary Mathematics and Science Education, n.d.). 

However, this cycle also imposes potential implementation barriers given that it was not the 

typical linear and sequential sequence of standards coverage that was central to Investigations, 

which provided fewer distributed practice opportunities on the same standards over time. A 

number of reviews (Dunlosky et al., 2013; Gerbier & Toppino, 2015; Son & Simon, 2012) 

highlight the promising positive effects of distributed compared to massed practice opportunities. 

Investigations’ standards coverage structure was more massed in nature. 

Although the curricula naturally differed along important lines such as CCSSM-aligned 

content and the structure of standards coverage, the clearest distinction between the two curricula 

in this district was the PD and implementation support that teachers received to 

implement Bridges, particularly with respect to the standards coverage. This resulted in a greater 

emphasis on instruction on the specific CCSSM elements of Bridges and the cycling of 

standards, whereas Investigations lacked the built-in alignment to CCSSM as well as explicit 

instructional support guiding CCSSM implementation. The prior curriculum may have had 

content emphases on language and visuals to a similar degree of Bridges (in addition to 

individual teacher instructional strategies not built-in to the curriculum as well as modifications 

to better align to CCSSM), but the district clearly differentiated the two curricula with PD and 

implementation support for Bridges-specific elements (e.g., content coverage, lesson planning, 

instructional strategies aligned to the curriculum).  

Our control condition in this case parallels what Cogan et al. (2013) echoed in their 

survey of teachers’ use of curriculum materials relate to the CCSSM. Students in schools 

implementing Bridges received instruction under content explicitly aligned to CCSSM from 

teachers that received PD targeted to promote instruction that balanced instructional flexibility 
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with high implementation fidelity. Specific PD and implementation supports ideally drew more 

attention to the unique elements of Bridges and the CCSSM standards guiding learning that may 

not have been explicit within the curriculum or instructional strategies in prior practice.  

We investigated the main effects of the Bridges curriculum on fifth graders’ mathematics 

achievement gains and whether this effect varied by ELP level. We addressed two research 

questions: 

1. What is the impact of Bridges in Mathematics on students’ yearly mathematics 

achievement gains in fifth grade? 

We did not express a strong a priori hypothesis regarding the impact of Bridges on student 

achievement. We suspected that if the curriculum potentially improved student achievement 

gains, observed effects would likely operate through PD, implementation support, and standards 

alignment of Bridges coupled with instruction and the curricular content. However, new 

implementation and PD could have also led to decreases in fidelity that did not improve 

implementation beyond business-as-usual practices. We believed the more likely scenario 

entailed strong PD, greater implementation fidelity, and improved instruction. 

2. Is the effect of Bridges different across levels of ELP?  

Bridges’ focus on using mathematics language potentially provided enhanced opportunities for 

ELLs to use language in their mathematics learning (e.g., vocabulary). Prior work has noted the 

importance of language use in ELLs’ mathematics learning (Doabler, Clarke, 2016; Doabler, 

Nelson, et al., 2016; Doabler et al., 2019), and oral English language predicts reading 

comprehension (Lesaux et al., 2010) as well as mathematics performance (Vukovic & Lesaux, 

2013). Although the majority of classroom teachers did not receive Bridges PD that explicitly 
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targeted teaching ELLs, we believed the curriculum structure, content, and increased fidelity had 

potential to be differentially beneficial for ELLs with varying ELP levels. 

Method 

Procedure 

We used student-level data from fifth-grade students in a large, urban, midwestern school 

district (Madison Metropolitan School District [MMSD]) to study the effects of Bridges 

curriculum implementation on student achievement growth and differential effects across ELP 

levels. Procedures for this study were reviewed and approved as exempt by Florida State 

University Institutional Review Board (IRB; Study 00001629) 

Student Sample 

We used data from fifth-grade students in 29 of MMSD’s 32 elementary schools (three 

schools enroll only kindergarten to second-grade students). The district implemented Bridges in 

three phases of schools across three years (phase one [2016-17], two [2017-18], and three [2018-

19]). Out of the 29 schools, phase one (nine schools) and phase two (12 schools) had completed 

implementation at the time of this study. The staggered implementation of the curriculum 

facilitated identifying control group students from concurrent non-Bridges schools as well 

students in the district prior to any Bridges implementation. To do this, we used data from three 

year-based cohorts: fifth graders in 2015-16, 2016-17, and 2017-18. Students in the control 

group comprised students in the district prior to any Bridges implementation (i.e., 2015-16) as 

well as students in schools who had not yet received Bridges instruction (i.e., non-Bridges 

students in 2016-17 and 2017-18). Table 1 displays the timing of the student cohorts and phases 

of Bridges implementation between grades three and five. 

<Table 1 about here> 
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We used students’ exposure to Bridges in fifth grade to analyze the effect of Bridges on 

mathematics achievement gains (this includes the fifth-grade data of students who also received 

Bridges in fourth grade). The full sample of students with a valid school identification code in 

grade five, grade five demographic data, and an ELP level (from the prior year) totaled 5,555 

students. No demographic data were missing among these 5,555 students except for a proportion 

of parent education level (which was the highest- or only-reported level between grades three 

and five); we generated an indicator variable to capture remaining missingness. We exclude 

students who were missing fall of grade five reading assessment scores (3.5%), so our sample of 

students with complete covariate data totaled 5,359. Missing values on our outcome (3.1%) 

further limited our final sample to 5,193 fifth-grade students in MMSD from 2015-16 (n = 

1,765), 2016-17 (n =1,695), and 2017-18 (n = 1,733). Treatment group students (n = 1,839) were 

those who received Bridges instruction in 2016-17 (phase one implementation) or 2017-18 

(phase two implementation). The remaining 3,354 students in 2015-16, 2016-17, and 2017-18 

comprised the control group. 

Measures 

Dependent variable 

 Measures of Academic Progress Math Change Score. We calculate grade five change 

on Northwest Evaluation Association’s Measures of Academic Progress (MAP) math assessment 

by subtracting fall MAP achievement scores from spring scores in the same year. MAP math is 

computer-adaptive, vertically scaled in Rasch (RIT) units, and shows adequate reliability in the 

normative sample: fall-spring test-retest reliability is .90 and marginal reliability is .97 in fall and 

spring (National Center on Intensive Intervention [NCII], 2019).  

Independent variables 
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Bridges Exposure.  We have available a single school identification variable for fifth 

graders reflecting the last school students attended during fifth grade. We use this indicator to 

determine Bridges exposure. Students indicated to be enrolled in a Bridges school in fifth grade 

were given a 1; all other students were given a 0. As Table 1 shows, some students would have 

received Bridges in fourth grade as well. Students that switched from a Bridges school to a non-

Bridges school between fourth and fifth grade (only a small percent) were considered part of the 

control group. We do not capture students who may have switched schools during the year of 

analysis. However, most students (94%) remained in the same school between fourth and fifth 

grade based on school indicators from both years.  

As aforementioned, Bridges implementation occurred in a three-phase rollout. To support 

Bridges implementation, most teachers participated in a two-day workshop in the summer prior 

to the first year of implementation at their school, which was presented by Bridges trainers from 

The Math Learning Center. At the workshop, teachers learned about the key components of the 

Bridges curriculum (unit structure and lesson components) and specific Bridges instructional 

strategies. Teachers were grouped into grade bands (kindergarten to second grade and third to 

fifth grade) during the PD in order to cater to unique grade-specific implementation factors. 

Beginning in the fall with the start of the school year, district-level curriculum and instruction 

staff met monthly with grade-level teacher teams in schools for the first year of implementation. 

The focus for monthly work was to check-in on implementation and provide support for teacher 

collaboration with a preview of upcoming units and lessons for the grade level. Monthly grade-

level meetings with teachers and building leadership provided implementation support to 

increase the instructional flexibility needed to creatively intermix standards coverage while also 

promoting fidelity to the curriculum and CCSSM. 
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ELP. Students in this state and district are assigned an ELP level from 1 to 7. ELLs who 

have attained English proficiency are assigned a 6, levels 1-5 reflect increasing degrees of 

proficiency, and level 7 reflects native English speakers (Wisconsin Department of Public 

Instruction, n.d.a). ELLs’ ELP level is based primarily on scores from the ELP assessment used 

across the state (Assessing Comprehension and Communication in English State-to-State for 

ELLs [ACCESS] from World Class Instructional Design and Assessment [WIDA]; Wisconsin 

Department of Public Instruction, n.d.a). ACCESS is administered in the winter of each school 

year, and it has strong validity and reliability (Wisconsin Department of Public Instruction, 

n.d.b). Proficiency scores range from 1.0 to 6.0 (rounded to the nearest tenth), and the scale (1.0 

to 6.0) remains the same regardless of students’ grade. ACCESS scores are truncated to the next 

whole number to create categorical ELP levels (e.g., 3.0 – 3.9 truncates to ELP 3). Proficiency 

scores from students’ immediate previous grade informs their ELP level in the subsequent grade. 

However, in our data, ELP level does not reflect exactly who would have been limited in ELP in 

grade five. ACCESS scores from the prior year between 5 and 5.9 equated to an ELP of 5, which 

did not correspond to local district ACCESS proficiency criteria (in general, ELP levels were left 

as-reported even if they did not align to ACCESS scores). Also, changes to ACCESS in 2016-17 

potentially resulted in lower proficiency scores and altered proficiency criteria after 2016-17 

(Wisconsin Department of Public Instruction, n.d.c). Some students with an ELP level of 6 or 

below did not have ACCESS scores (14.3%). This could be a result of a variety of factors, 

though it is likely due to prior reclassification (i.e., they no longer took ACCESS). We include 

only students enrolled in MMSD public schools in the immediate prior year that had an ELP 

level (or an ACCESS score for analyses limited to students who took ACCESS). 
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We combined ELP levels (levels 6-7 = proficient, 4-5 = “mid” ELP, 1-3= “low” ELP) so 

we could measure effect heterogeneity across levels of ELP in the full sample. There are 

limitations to this method, however. We do not capture variation in the length of time since 

reaching English proficiency (i.e., those with ELP of 6); we were primarily concerned with 

identifying the level of proficiency relevant to students’ fifth grade year. Our labels of “mid” and 

“low” ELP likely do not reflect the complexity of skills that each ELP level intends to represent. 

Our “low” ELP definition is more representative of students with ELP of 3 since students with 

ELP of 2 or below typically do not take MAP in MMSD (though this is not the case for all 

students). “Mid” and “low” designations should be interpreted in relative terms as opposed to 

absolute levels of proficiency. We also used ACCESS Overall Composite Score proficiency 

levels (from the prior year) to address research question two.  

Covariates. Covariates in our analysis include indicators for parent education level, 

free/reduced-price lunch eligibility, race/ethnicity, gender (male or female), individualized 

education plan (IEP) status (yes or no IEP), student cohort year (2015-16, 2016-17, 2017-18), 

and fall of grade five MAP reading achievement. All demographic covariates were measured 

during fifth grade except parent education, for which we used the highest- or only-reported level 

across grades three to five (missing parent education level was given a new indicator variable). 

We also included indicators for assignment to implementation cohorts of a one-to-one student 

technology plan, which began implementation in 2015-16. The technology plan cohorts to which 

schools were assigned (six in total) may have related to schools’ decision to implement Bridges. 

We assigned technology cohort indicators to schools regardless of schools’ year-based cohort in 

this study (i.e., if a school was assigned to implement technology in 2015-16, we assigned the 
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corresponding technology implementation cohort indicator across all years in this study rather 

than only in the year the technology was implemented).  

Treatment Balance 

Demographic and ELP characteristics of our analytic sample along with treatment 

balance tests are provided in Table 2.  

<Table 2 about here> 

Treatment groups show balance across the majority of characteristics except for some differences 

across parent education and ELP level. ELP differences across groups may relate to changes in 

the ELP measure in 2016-17.  

Table 3 displays fall and spring MAP achievement data as well as prior year ELP scores 

for Bridges and comparison students.  

<Table 3 about here> 

Data in Table 3 indicates that treatment conditions achieved similarly on fall grade five MAP. 

ACCESS score differences across conditions are not significant when controlling for cohort year. 

Design 

We used a pre-post differences-in-differences (DiD) design (Lechner, 2011) to test the 

effect of Bridges on student mathematics achievement change scores from the fall to spring of 

fifth grade and variation in the treatment effect across ELP. We identify the model based on 

temporal variation in the exposure of three different cohorts of fifth graders to Bridges. 

Missing data 

 Among students with complete covariate data (n = 5,359), 3.1% were missing both fall 

and spring MAP math scores, limiting the analytic sample to 5,193 students. The majority of 

MAP math scores were missing from spring. Proportions of missing MAP change scores did not 
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vary by condition (Bridges = .029, Investigations = .032, MDiff(SE)= .003(0.005), p = .55). We 

used inverse probability weighting (IPW; Seaman & White, 2013) to reduce potential bias 

induced by missing data. See supplemental materials for more information on our IPW method. 

Analysis 

We use a single-level ordinary-least squares (OLS) regression model to estimate the main 

effect of Bridges on students’ fall-spring of fifth grade change scores. Change scores have 

valuable properties for estimating causal effects in DiD designs (Kim & Steiner, 2019) and are 

similar to a student fixed effect that removes the association between time-invariant attributes of 

students and their academic achievement. We also use this model to assess variation across 

three-category ELP level (proficient, mid, low). We use cluster-robust standard errors to correct 

errors for the nonindependence of students nested within schools. We do not use multilevel 

models as our primary analysis, though we use i to indicate student-level variables and j to 

indicate school-level variables (robustness checks of our results include multilevel models, 

however). Our primary model, Model 1, is as follows:  

 
∆"#$	"&'ℎ!" = β# +	β$	,-./012" + β%	34$	41516!" +		

β&	34$	41516!" 	× ,-./012" +
	β'	89ℎ9-'	2!" 	× ,-./012" + β;!" +	ε!"

 (1) 

where ∆"#$	"&'ℎ!" is the annual change score outcome for student i in school j, ,-./012" is 

an indicator for the schools implementing Bridges in a given year, and 34$	41516!" 	represents 

indicators of students’ three-category ELP level (proficient as reference group). 

β&34$	41516!" 	× ,-./012" is the interaction between Bridges exposure and ELP level (this 

separates into two interaction terms due to two indicators variables for the three ELP levels). 

Because we are interested in the average effect of Bridges regardless of when it was 

implemented (i.e., 2016-17 or 2017-18), 	β'	89ℎ9-'	2!" 	× ,-./012" interacts the cohort 2 and 
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Bridges indicator. This controls for variation of the effect of Bridges across year cohorts. ;!" 

represents a vector of covariates that includes fall grade five MAP reading performance and 

dummy-codes for demographic variables displayed in Table 2 as well as student cohort year 

(2017 as reference group). We also include five dummy codes for the school cohorts (six total) 

of one-to-one technology implementation (first cohort [2015-16] is the reference group). ε!" is a 

random error term	adjusted for clustering at the school by cohort level (resulting in 87 clusters, 

one for each school within each year cohort; see supplemental materials for more on this). 

We also use prior year ACCESS Overall Composite Score proficiency levels to test the 

variation of the effect of Bridges across ELP. We use a single-level OLS model (Model 2) for 

this analysis  

 
∆"#$	"&'ℎ!" = β# +	β#$	,-./012" + β%	#883==	89>?92.'1!" +		

β&	#883==	89>?92.'1!" 	× ,-./012" +
	β'	89ℎ9-'	2!" 	× ,-./012" + β;!" +	ε!"

 (2) 

Besides the variable used for terms β% and β&, this model mirrors Model 1, and our estimands of 

interest are again β$	and β&. We use the same IPWs for Models 1 and 2, though Model 2 is 

restricted to only the students with available ACCESS overall composite proficiency scores from 

the prior year (n = 1,367). ε!" is also corrected for clustering at the school by cohort level. 

Results 

To investigate the effect of Bridges and the interaction terms with ELP level in Models 1 

and 2, we use Stata’s (StataCorp, 2019) margins command to calculate average marginal effects 

(AMEs; see Williams, 2012) assuming unbalanced groups for the coefficients of interest (β$ and 

β&) in Models 1 and 2. AMEs represent the difference in the outcome per one-unit change in the 

predictor averaged across every individual’s values on the covariates (and interactions) in the 

model (Williams, 2012). We use change score standard deviations to estimate Hedges’s g effect 
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sizes (Hedges, 1981) using the independent groups formula described in WWC (2020b). We use 

Stata’s esizei command to calculate Hedges’s g. 

In online supplemental materials, Table S1 displays unadjusted change scores, adjusted 

change scores, AMEs, and effect size estimates for research questions 1 and 2 in change score 

SDs. In Supplemental Table S2, we present the Benjamini-Hochberg (BH) correction for 

controlling for the false-discovery rate in our main hypothesis tests. 

Research Question 1 

For research question 1, we attend to the predicted difference in change scores between 

our treatment and comparison groups averaged across all covariate terms (including interactions) 

in Model 1 (i.e., the AME of @#$ in Model 1). Students receiving Bridges gained significantly 

more on MAP math than comparison students (b = 2.022, SE = 0.616, t = 3.28, p = .001). 

Adjusting for covariates, Bridges students gained an average of 11.24 points on MAP math from 

fall to spring; comparison students gained 9.21 points. This main effect of 2.022 equates to a 

Hedges’s g of 0.250 (standardized on change score standard deviations). Figure 1 displays the 

predicted change scores for each treatment group from Model 1 (top panel) and the estimated 

difference in change scores between conditions (AMEs; bottom panel). Supplemental Table S3 

displays full regression results of Model 1 (however, these are not AMEs and do not represent 

tests of our main effect and interactions with ELP). 

Research Question 2  

Figure 1 also displays the simple effects of Bridges estimated at each ELP level (i.e., 

using the at instead of the over command in Stata’s margins). These effects translate to effect 

sizes (g) of 0.226 for English language-proficient students (ELP levels 6-7), 0.336 for students 

with mid ELP (ELP levels 4-5), and 0.337 for students with low ELP (ELP levels 1-3; SDs for 
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each treatment group within ELP levels can be found in Supplemental Table S1). We conducted 

four pairwise comparisons of the ELP level simple effects to test whether ELP moderates 

Bridges. None of these tests were statistically significant. The effect of Bridges was not 

significantly greater among mid ELP levels compared to proficient (b = 0.617, SE = 0.839, t = 

0.74, p = .464) or low ELP levels (b = 1.063, SE = 1.072, t = 0.99, p = .324). A reverse-Helmert 

contrast scheme comparing the proficient category to combined mid and low ELP (contrast terms 

of -1, .631, and .369, respectively) was not significant Bridges (b = 0.782, SE = 0.708, t = 1.10, p 

= .273). Last, the difference between mid and low ELP levels was not significant (b = 0.445, SE 

= 1.255, t = 0.35, p = .724). We conclude the effect of Bridges does not vary significantly across 

ELP levels.  

<Figure 1 about here> 

 Results from Model 2 show the effect of Bridges does not significantly vary across 

ACCESS performance. Figure 2 displays the AME of Bridges at specific values of ACCESS. 

The total difference in the AME of Bridges across ACCESS scores 3 to 6 was small in 

magnitude and not statistically significant (b = -0.101, SE = 2.325, t = 0.04, p = .965). The main 

effect of Bridges remains significant in Model 2 (b = 2.935, SE = 0.964, t = 3.05, p = .003, g = 

0.376). Supplemental Table S4 displays full results of Model 2. 

<Figure 2 about here> 

Robustness Checks 

 We conducted robustness checks of our DiD estimates to assess robustness of our 

estimation model, the internal validity of our DiD design, and the sensitivity of our results to 

omitted variables. We provide a brief overview here; see the “Robustness Checks” section for 

additional detail. Generally, our results were robust to different model specifications, outliers, the 
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length of time students were exposed to Bridges (i.e., some students already received Bridges in 

fourth grade), whether students switched schools between the prior and current year of analysis, 

and prior year IEP status (since current status could change during the year). Analyses using 

current year (grade five) ELP/ACCESS scores display a pattern of results similar to analyses 

with prior year ELP/ACCESS. Overall, robustness tests do not suggest significant internal 

validity threats to our DiD design, though these tests do not rule out all possible threats. A 

sensitivity analysis indicates that an omitted variable would have to partially correlate at least 

.137 with both Bridges exposure and MAP mathematics change score (impact = .019 [i.e., 

.137*.137]) to change our main estimate (b = 2.022, SE = 0.616) to a null effect (Frank, 2000).  

Discussion 

 We used the staggered implementation of a standards-based elementary mathematics 

curriculum in a large school district to estimate the causal effect of Bridges on annual 

mathematics change scores. On average, students in Bridges schools gained approximately two 

more points on MAP from fall to spring than students who received the previous curriculum, 

Investigations (g = 0.250). Universal mathematics curriculum and instruction are key sources of 

prevention within MTSS (Clarke et al., 2011; Clarke et al., 2015, Mellard et al., 2010), and more 

research is needed in this area, particularly studies focusing on ELLs (e.g., Doabler, Clarke, et 

al., 2016). This implementation of Bridges offered a unique opportunity to examine effects of 

universal curriculum changes on student achievement and effect heterogeneity among ELLs. 

QEDs are growing in popularity in education research (Gopalan et al., 2020). Our specific QED, 

DiD, leverages policy changes or exposures that occur in day-to-day educational settings that can 

be highly informative of how policies and practices impact student achievement over time. QEDs 
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are a critical tool for education researchers and practitioners to test causal effects of systematic 

changes to practice, which can inform effectiveness both locally and potentially more broadly.  

The primary implication of our work is that Bridges, a widely used, standards-based 

curriculum, may possess meaningful advantage to students beyond the previous curriculum 

implemented in the district. These observed effects may be a combination of curricular content, 

PD, and implementation support. Prior work has shown that PD is effective in bolstering aspects 

of teacher knowledge and instruction (Garet et al., 2016), and meta-analyses show it may 

meaningfully improve student achievement (Blank & de Alas, 2009). Coupling the PD for 

Bridges was ongoing implementation support for schools in their first year of Bridges 

implementation. As aforementioned, implementation support was in part focused on the 

sequencing of standards and lessons throughout the curriculum that differed significantly from 

the prior curriculum. Our QED is an important step in building a stronger evidence base for 

universal mathematics curricula by examining these locally-driven, district-wide efforts to 

change implementation and instruction. QEDs have a meaningful role in evidence-based 

education by testing causal questions in a manner that is timely, feasible, and rooted in realistic 

conditions of instruction, such as systematic changes to core curriculum. Our work extends that 

of prior randomized trials of universal mathematics curricula (e.g., Agodini & Harris, 2010; 

Clarke et al., 2011; Clarke et al., 2015) and the effects among ELLs (Doabler, Clarke, et al., 

2016). 

Bridges implementation related to achievement gains similarly across ELP levels. Prior 

work has shown effective teachers are effective for non-ELLs and ELLs alike (Loeb et al., 2014). 

These effects on change scores should also be taken in light of the pre-existing differences in 

mathematics achievement levels: students with mid and low ELP began fifth grade performing 
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0.56 and 1.23 SDs (g), respectively, below English proficient peers. Identifying the mechanisms 

of learning in core instruction that bolster the achievement trajectories of linguistically diverse 

students is needed to better understand universal curriculum implementation and how to 

continually support equity for ELLs in core instruction (Robinson-Cimpian et al., 2016). For 

example, explicit instruction may afford ELLs the key opportunities for developing early 

mathematics skills through deliberate use of language in problem solving (Doabler, Clarke, 

2016; Doabler, Nelson, et al., 2016; Doabler et al., 2019). Both general language (Chow & 

Ekholm, 2019; Vukovic & Lesaux, 2013) and specific mathematics language (Purpura & Reid, 

2016; Purpura et al., 2017) predict mathematics performance, and oral language (Lesaux et al., 

2010) and vocabulary (Quinn et al., 2015) predict reading comprehension. Yet the lack of 

differential effects of Bridges across ELP levels requires additional attention to understand how 

ELP intersects with instruction (Albers & Martinez, 2015) and how language facilitates 

mathematics learning. 

Limitations and Future Directions 

Other sources of selection bias into curriculum implementation may remain in our 

analysis. For example, systematic variation in the readiness or capacity of schools to implement 

with fidelity will be important to consider in future work. These factors could relate to 

achievement gains and may not be accounted for in our set of covariates, so these should be more 

explicitly measured in future studies that do not randomize treatment assignment. Additionally, 

the current estimates do not reflect within-year entry or exit into a school using the curriculum. 

Differences in the ELP assessment across years remains a substantial limitation, though 

controlling for cohort year helps address this.  
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We did not have data that would inform curriculum mechanisms, such as fidelity, dosage, 

mathematics subskills, or other mediators of intervention effects. Future research should attend 

to these issues as part of program evaluation efforts in order to target key competencies at critical 

junctures of mathematics development (e.g., fraction knowledge prior to middle school [Booth & 

Newton, 2012]). This could also help promote system-wide efforts to support universal 

instruction by identifying key elements of fidelity and instruction like instructional quality and 

teacher mathematics knowledge (Garet et al., 2016). Classroom observations of core instruction 

mechanisms would also be highly informative, and prior studies have included this aspect 

(Doabler, Clarke, et al., 2016). Relatedly, identifying those who were actually “treated” or 

received the core mechanisms of the curriculum will be important to identify in future research 

(e.g., Schochet & Chiang, 2011). Long-term intervention impacts are also important to 

investigate (Bailey et al., 2020). Our limited scope of analysis should prompt future studies to 

consider how universal curriculum implementation can serve its intended role in long-term 

prevention. 

It is also important to consider that our outcome was an English measure of mathematics 

and how this may impact assessment of ELLs’ mathematics knowledge (Solano-Flores, 2016). 

Studies involving ELLs that assess multiple areas of mathematics skills (e.g., Doabler, Clarke, et 

al. 2016; Doabler et al., 2019) likely capture more granularity in mathematics skills than what we 

capture on MAP. Measures of specific mathematics subdomains (including those in native 

languages) might speak more to how a mathematics curriculum promotes learning. Some 

existing work has addressed the intersection of specific domains of mathematics performance 

and specific instruction techniques (explicit instruction) with ELLs in tier 1 (Doabler, Clarke, et 

al., 2016) and across ELLs’ ELP levels in tier 2 intervention (Doabler et al., 2019). More work in 
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this area is needed, however. Examining these factors may help better target prevention 

strategies that sustain mathematics development over a longer term in light of the many 

dimensions of language, mathematics, and implementation challenges. 

Conclusion 

 Bridges, a widely used standards-based curriculum, has received little empirical scrutiny. 

School districts and policymakers are pressed to make critical decisions about curriculum 

materials and how to support teachers’ curriculum implementation in ways that meets students’ 

needs. Although many possible routes to the effects identified here are possible (e.g., teacher PD 

and implementation support, more rigorous and standards-aligned content), the empirical 

evidence we present lends credit to the use of Bridges as a comprehensive, standards-based 

universal curriculum to bolster students’ mathematics gains in late elementary school. 
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Table 1 

Student Cohort by Bridges Implementation Phase 

 Grade by Academic Year  

Student 
Cohort 

2013-
2014 

2014-
2015 

2015-
2016 

2016-
2017 

2017-
2018 

Bridges  
Implementation 

Phase 

1                  
 3  4  5    
 3  4  5    
 3  4  5    

2                     
  3  4  5  1 (2016-17) 
  3  4  5  2 (2017-18) 
  3  4  5  3 (2018-19) 

3                   
   3  4  5 1 (2016-17) 
   3  4  5 2 (2017-18) 
   3  4  5 3 (2018-19) 

Note. Shaded boxes indicate periods in which Bridges was 
implemented. 
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Table 2    

Percentages of Demographic and English Language Proficiency Composition Across 

Treatment Groups  

Variable 
Investigations 

(n = 3,354) 
Bridges 

(n = 1,839) 
Difference  

p-value 
Student with Individualized  

Education Plan (IEP) 14% 15% .153 

Free or Reduced-Price Lunch Eligible 50% 51% .300 
Female 50% 50% .765 
Race/Ethnicity    

White 42% 42% .860 
Black or African American 17% 18% .186 
Hispanic/Latino 22% 23% .802 
Asian or Asian American 9% 8% .203 
Native Hawaiian/Pacific Islander or  

American Indian/Alaska Native 0% 0% .497 

Multiracial 10% 9% .314 
Parent Education    

Less than High School Degree 7% 6% .077 
High School Degree 18% 19% .344 
Some College or Technical Degree 23% 24% .336 
Four-Year Degree 17% 19% .016 
Graduate School/Professional Degree 31% 28% .052 
Missing Education Level 5% 4% .097 

English Language Proficiency      
Proficient (Levels 6–7) 77% 78% .681 
Mid English Proficiency (Levels 4–5) 16% 12% < .001 
Low English Proficiency (Levels 1–3) 7% 11% < .001 

Note. Parent education is the highest- or only-reported level across third, fourth, and fifth 

grade. Some estimates rounded to 0 due to small sample sizes. Two-tailed proportion test 

used to calculate treatment balance (tests not corrected for clustering). Using a multinomial 

logistic regression to predict ELP level using treatment condition, Bridges students are more 

likely to have low ELP (compared to mid), but this effect is removed when controlling for 

cohort year. 
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Table 3   

Descriptive Statistics of Assessment Data Across Treatment Groups 

 Mean (Standard Deviation) Mean 
Difference  

p-Value Variable Investigations Bridges 

MAP Math RIT Score  
Fall  209.64 (17.52) 210.72 (17.56) .485 

MAP Reading RIT Score 
Fall  206.24 (18.22) 206.72 (17.82) .744 

MAP Math RIT Score  
Spring  219.22 (19.01) 221.37 (19.06) .201 

MAP Reading RIT Score 
Spring  212.70 (17.33) 213.22 (16.93) .709 

ACCESS Overall Composite 
Score Proficiency Level 
(Grade 4)a 

4.7 (0.97)/4.6 4.2 (0.95)/4.1 .004 

Note. All data from grade five except ACCESS. 3,345 control and 1,836 Bridges 

students had spring MAP reading data. 440 Bridges students and 927 control students 

had ACCESS scores. Tests of condition differences clustered at school by cohort level 

(87 clusters for MAP, 86 for ACCESS). Since we use a DiD design, we also report 

MAP reading and math data from the spring of fifth grade. Treatment and comparison 

groups score similarly in the spring on both measures. However, these data are meant 

only to describe the sample characteristics in achievement level and are not tests of our 

main research questions. The mean difference in ACCESS scores is significantly 

reduced and not statistically significant when controlling for cohort year. All values are 

unweighted (see Missing Data section in Methods for more information on weighting 

for missingness). 

aMedian values presented in bold as the ACCESS measure exhibits a somewhat 

nonnormal distribution. 
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Figure Captions 

Figure 1. Predictive margins of Bridges and PC groups across ELP levels (top) with group 

sample sizes and DiD simple effects coefficients (bottom). 

Note. Error bars represent cluster-robust 95% confidence intervals. Figure produced in ggplot2 

(Wickham, 2016). PC = Previous Curriculum. 

Figure 2. Bridges impact estimates across ACCESS Overall Composite Score proficiency levels 

3 to 6 

Note. Error bars represent cluster-robust 95% confidence intervals. Figure produced in ggplot2 

(Wickham, 2016). PC = Previous Curriculum. 
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Supplemental Materials for Examining Bridges in Mathematics and Differential Effects Among 

English Language Learners 

 In this supplemental materials document, we present additional information regarding 

inverse probability weighting for missing data, descriptive and inferential statistics, regression 

model tables, as well as robustness checks, a sensitivity analysis, and additional results using 

grade five ELP data. Table S1 displays additional information on unadjusted and adjusted change 

score estimates and effect sizes; Table S2 displays the Benjamini-Hochberg Correction table for 

our primary results; and Tables S3 and S4 display the full regression results from Models 1 and 

2, respectively (which are the basis for the marginal effects we present in the main text). Figures 

S1 and S2 display results of robustness checks discussed in the main text. Finally, Figure S3 

displays adjusted estimates and marginal effect results of Models 1 and 2 estimated using ELP 

levels and ACCESS scores measured in fifth grade.  

Model Used for Constructing Inverse Probability Weights 

We used a logistic regression model to construct inverse probability weights (IPWs; 

Seaman & White, 2013) to account for missing data in our analysis of the impact of Bridges on 

annual MAP math growth in fifth grade. This is a single-level model with cluster-robust standard 

errors; however, we use i and j to denote student versus school-level variables. The model is as 

follows:  

690.'	"#$	8ℎ&A01	=B9-1	CD21-51/!" =	β# +	β$	,-./012" +		β%	34$	41516!" 	+
	β&	E&66	"#$	F1&/.A0!" 	+ 	β'=?1B.&6	3/.!" 	+ 	β(	EF4!" +	β)	E1>&61!" +
	β*	$&-1A'	3/HB&'.9A	41516!" 	+ 	β+	89ℎ9-'	I1&-!" +
β,	J1BℎA9690K	L>?61>1A'&'.9A	89ℎ9-'"	 +	β$#	,-./012" 	× 	;!" +	ε!" 	  

 
where "#$	8ℎ&A01	=B9-1	CD21-51/!" is a binary variable coded 1 if a student has both fall 

and spring MAP math in grade five and 0 if not. We used five indicators for six-category 

race/ethnicity (Native Hawaiian/Pacific Islander and American Indian/Alaska Native combined 
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into one indicator). We included five indicators of parent education level (no high school, some 

college/technical degree, college degree, graduate/professional degree, missing education level) 

with high school completion as the reference group. As reported in the main text, we use the 

highest-reported education level across grades three to five (or the level that is available). Cohort 

year is a three-category variable representing each of the student data cohorts (i.e., students in 

grade five in 2015, 2016, or 2017) with cohort 3 (2017) as the reference group. Technology 

implementation cohort is a six-category variable indicating whether a school (regardless of 

cohort year) was implementing or planned to implement a one-to-one student technology plan 

that overlapped with Bridges implementation. Five indicator variables were included and the first 

cohort of implementation, which occurred in 2015-16, was used as the reference group. β$# 

represents interaction terms between treatment condition and each of the covariates (represented 

as	;!")	except each technology cohort indicator. Bridges is interacted with only the year cohort 2 

(2016-17) indicator, as no cohort 1 (2015-16) students received Bridges. ε!" 	is a random error 

term clustered at the school by cohort level. We then constructed IPWs by obtaining predicted 

probabilities from the logit model and dividing 1 by the predicted probability of being a 

complete case. The weights sum to the number of individuals with complete data on the 

covariates (n = 5,359)  
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Supplemental Information on Primary Analysis Results 

Supplemental Table S1 displays unadjusted (unweighted) and adjusted (weighted) change 

score means for each treatment group from Models 1 and 2 along with sample sizes for each 

group, average marginal effects for each comparison, and the corresponding Hedges’s g estimate 

(standardized on change score standard deviations).  

Supplemental Table S1.         
Unadjusted and adjusted change score estimates by treatment and ELP group 

  
Unadjusted 
Unweighted 
Means (SD) 

Adjusted 
Weighted 

Means 
n 

Estimated 
Difference 

(SE) 

Effect Size 
in Change 
Score SD 

(Hedges's g) 
All Students           

Bridges 10.647 (7.882) 11.236 1,839 2.022 
(0.616) 0.250 PC 9.580 (8.197) 9.215 3,354 

English Language 
Proficient           

Bridges 10.553 (7.843) 11.005 1,426 1.843 
(0.643) 0.226 PC 9.660 (8.339) 9.162 2,584 

Mid ELP           
Bridges 10.909 (7.170) 11.693 219 2.461 

(0.913) 0.336 PC 9.493 (7.375) 9.232 527 
Low ELP           

Bridges 11.036 (8.896) 12.576 194 2.906 
(1.159) 0.337 PC 8.914 (8.372) 9.670 243 

Subgroup with 
ACCESS Scoresa           

Bridges 11.172 (7.960) 12.089 440 2.935 
(0.964) 0.376 PC 9.605 (7.719) 9.154 927 

Note. Each effect size calculated using the SD and n from each treatment group within 
each ELP level. Effect sizes calculated using Stata’s esizei command. 
aAdjusted estimates from Model 2. 
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Supplemental Table S2 below displays the Benjamini-Hochberg correction (Benjamini & 

Hochberg, 1995) that we applied to our primary hypothesis tests to control for the false discovery 

rate (FDR). We adopt the procedure for implementing the Benjamini-Hochberg correction 

described in What Works Clearinghouse (2020b). The first column, Term, displays each of the 

primary tests we considered in our main analysis using Models 1 and 2 (described in the main 

text). The second column shows the observed p-value of the main and differential effects tests 

(all of which are reported in the main text). Using the conventional alpha level of .05, the alpha 

critical value is divided by the ranking of the observed p-value for each test. The highest 

observed p-value that is less than the BH-adjusted critical value is the new criterion for 

significance. In this case, both significant terms (the main effects of Bridges from Models 1 and 

2) remained significant after adjustment.  

Supplemental Table S2   
Benjamini-Hochberg (BH) Corrections for Primary Statistical Tests 

Term  
Observed 
p-value 
of Test 

p-
value 
Rank  

BH 
Adjusted 
Critical 
Value 

Significant 
After 

Adjustment? 

Bridges Main Effect Model 1 .001* 1 .007 Yes 
Bridges Main Effect Model 2 .003* 2 .014 Yes 
Bridges Differential Effects        

Low/Mid Combined vs.  .273 3 .021 No Proficient 
Low ELP vs. Proficient .324 4 .029 No 
Mid ELP vs. Proficient .464 5 .036 No 
Low ELP vs. Mid ELP .724 6 .043 No 
Across ACCESS Score .964 7 .050 No 

Note. The formula for the adjusted critical value is .05* [Rank/7]. *Significant at 
.05 level prior to adjustment.  
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 Supplemental Tables S3 and S4 display the full regression results of Models 1 and 2, 

respectively. Adjusted means and average marginal effects (AMEs) presented in the main paper 

(above in Table S2) are based on these two models. Importantly, the effects in these tables are 

not the primary estimates of interest. The effects of interest in the main text, the AMEs, represent 

the effect of Bridges (as well as the variation in the Bridges effect across ELP) averaged across 

all covariates and interactions in the model (Williams, 2012). The coefficient for Bridges in 

Table S3 below, on the other hand, would represent the effect of Bridges among students with 

English-proficient ELP levels within only cohort 3 (because there is an interaction between 

Bridges and cohort 2 students). This is not the estimate of interest, because this in fact represents 

the simple effect of Bridges among English-proficient students in cohort 3. The primary effect of 

interest is the main effect of Bridges averaged across all other terms in the model, which is what 

we report in the main text. Similarly, the simple effects of Bridges at each ELP level reported in 

the main text (produced using the at—rather than over—command within margins in Stata) are 

averaged across all other terms in the model. The interaction coefficients between Bridges and 

ELP level in Table S3 represent the variation in the treatment effect among only cohort 3 

students (due to the interaction between cohort 2 and Bridges). This same logic applies to Table 

S4 (the regression results for Model 2 from the main text). We report these results to demonstrate 

the overall models that were used to calculate the AMEs we calculated in the main text.  For 

more information on how AMEs in Stata are calculated, see Williams (2012). All standard errors 

are adjusted for clustering at the school-by-cohort level following on recent recommendations to 

cluster at the level of treatment assignment (Abadie et al., 2017), which in this case was schools 

within year. We used Stata’s vce(unconditional) option within the margins command to calculate 

standard errors for AMEs.  
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Supplemental Table S3. 
Unstandardized Regression Coefficients for Bridges Main Impact Model (Model 1) 
    Cluster-  

Robust SE 
    95% Confidence Interval 

Predictor Est. t p Low  High 
Bridges 2.379 0.772 3.080 .003 0.844 3.914 
Mid ELP 0.070 0.508 0.140 .890 -0.939 1.080 
Low ELP 0.508 0.725 0.700 .485 -0.934 1.950 
Bridges X Mid ELP 0.617 0.839 0.740 .464 -1.051 2.285 
Bridges X Low ELP 1.063 1.072 0.990 .324 -1.068 3.194 
Less Than High School Degree -0.092 0.476 0.190 .847 -1.038 0.853 
Some College/Tech Degree 0.284 0.372 0.760 .447 -0.455 1.024 
Four-Year Degree 0.592 0.463 1.280 .204 -0.328 1.513 
Graduate/Professional Degree 1.129 0.421 2.680 .009 0.293 1.965 
Missing Education Level -0.428 0.625 0.680 .496 -1.670 0.815 
Black or African American -0.919 0.416 2.210 .030 -1.747 -0.092 
Hispanic/Latino -0.505 0.437 1.150 .252 -1.374 0.365 
Asian 0.206 0.437 0.470 .639 -0.663 1.074 
Multiracial -1.339 0.476 2.810 .006 -2.285 -0.392 
Native Hawaiian/Pacific Island or American 

Indian/Alaskan Native -0.023 2.005 0.010 .991 -4.009 3.962 

Fall Gr. 5 MAP Reading 0.015 0.010 1.470 .146 -0.005 0.036 
Free/Reduced Price Lunch -0.179 0.371 0.480 .631 -0.917 0.559 
Student with Individualized Education Plan -0.924 0.584 1.580 .117 -2.086 0.237 
Female -0.210 0.225 0.940 .352 -0.657 0.236 
Cohort 1 (15-16) 1.455 0.613 2.370 .020 0.237 2.674 
Cohort 2 (16-17) 2.782 0.713 3.900 .000 1.365 4.200 
Bridges X Cohort 2 -1.632 0.956 1.710 .092 -3.533 0.269 
Technology Plan Cohort 2 1.497 1.013 1.480 .143 -0.517 3.511 
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Technology Plan Cohort 3 -0.640 0.653 0.980 .330 -1.939 0.659 
Technology Plan Cohort 4 -1.287 0.868 1.480 .142 -3.013 0.439 
Technology Plan Cohort 5 -0.068 0.780 0.090 .931 -1.619 1.484 
Technology Plan Cohort 6 -0.482 0.889 0.540 .589 -2.249 1.286 
Intercept 5.348 2.206 2.420 .017 0.963 9.732 
Note. n = 5,193. Standard errors (SEs) corrected for 87 school-by-cohort clusters. ELP reference group is proficient. 
Parent education level reference group is high school.  
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Supplemental Table S4. 
Unstandardized Regression Coefficients for Secondary Bridges Impact Model (Model 2) 
     Cluster- 

Robust SE 
    95% Confidence Interval 

Predictor Est. t p Low  High 
Bridges 4.521 3.570 1.270 .209 -2.578 11.619 
ELP -0.114 0.382 0.300 .766 -0.873 0.645 
Bridges X ELP -0.034 0.775 0.040 .965 -1.574 1.507 
Less Than High School Degree -0.353 0.512 0.690 .492 -1.372 0.665 
Some College/Tech Degree 0.268 0.521 0.510 .608 -0.768 1.303 
Four-Year Degree -0.077 0.937 0.080 .935 -1.940 1.786 
Graduate/Professional Degree 1.216 0.802 1.520 .133 -0.378 2.810 
Missing Education Level -1.001 0.873 1.150 .255 -2.738 0.736 
White 2.074 1.131 1.830 .070 -0.174 4.323 
Black/African American 0.621 0.958 0.650 .519 -1.284 2.526 
Asian 0.661 0.678 0.970 .333 -0.687 2.009 
Multiracial, Native Hawaiian/Pacific 

Island, or American Indian/Alaska 
Native 

2.220 1.239 1.790 .077 -0.244 4.683 

Free/Reduced Price Lunch 1.281 0.544 2.350 .021 0.199 2.362 
Student with Individualized Education 

Plan -2.283 0.912 2.500 .014 -4.096 -0.470 

Fall Grade 5 MAP Reading -0.012 0.023 0.540 .588 -0.058 0.033 
Female -0.222 0.404 0.550 .585 -1.025 0.582 
Cohort 1 (15-16) 2.640 1.118 2.360 .020 0.417 4.862 
Cohort 2 (16-17) 4.103 1.154 3.560 .001 1.809 6.397 
Bridges X Cohort 2 -3.814 1.674 2.280 .025 -7.143 -0.485 
Technology Plan Cohort 2 0.465 1.038 0.450 .656 -1.600 2.529 
Technology Plan Cohort 3 -0.491 1.128 0.440 .664 -2.733 1.751 
Technology Plan Cohort 4 -0.415 0.948 0.440 .663 -2.301 1.470 
Technology Plan Cohort 5 0.303 0.899 0.340 .736 -1.483 2.090 
Technology Plan Cohort 6 0.467 1.161 0.400 .689 -1.842 2.776 
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Intercept 8.594 3.942 2.180 .032 0.757 16.431 
Note. n =1,367. Standard errors (SEs) corrected for 86 school-by-cohort clusters (the main model corrects for 87). Multiracial 
students and Native Hawaiian/Pacific Islander or American Indian/Alaska Native students collapsed into a single indicator 
variable due to small sample sizes. Race/ethnicity reference group is Hispanic/Latino. ELP = ACCESS composite proficiency 
score.   
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Robustness Checks 

 As we described in the main text, we conducted a number of additional analyses to assess 

the robustness of our models and the sensitivity of our results to unmeasured confounders. We 

tested the robustness of Model 1 to alternative specification, assessed the assumptions of DiD 

and robustness of our main finding using an analysis of parallel trends and falsification tests (St. 

Clair & Cook, 2015; Furquim et al., 2020), conducted a sensitivity analysis of the main effect of 

Bridges, and assessed our findings using grade five ELP/ACCESS data. Below, we provide a 

description of those analyses 

Assumption Checks and Alternative Model Specifications 

We addressed the assumptions of the regression model by inspecting residuals and 

potential outlying or influential data points. Robust clustered standard errors in all analyses 

account for the clustered structure of the data (students nested in schools) and heteroskedasticity. 

Removal of large and outlying positive or negative change scores slightly reduced the reported 

main effect point estimates in Models 1 and 2, though simple effects of both models (and by 

extension the moderation estimates) were more sensitive to these outliers (the low ELP simple 

effect decreased by approximately 0.40 and the Bridges moderation estimate between ACCESS 

scores of 3 and 6 increased by approximately 1.70). However, moderation estimates remained 

imprecise and nonsignificant, and all main effects remained similarly significant. As a result, we 

retained outlying data points in the analyses given the limited impact on our inferences and to 

represent the full distribution of change scores in the analyses. 

We inspected the robustness of the primary results to different model and error 

specifications. Errors clustered at the school-level regardless of cohort (i.e., 29 schools) were 

only slightly smaller than the reported models. Point estimates of Model 1 varied across 
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multilevel models with random intercepts at the school-level (b = 1.678, SE = .568, z = 2.95, p = 

.003) or school by cohort level (b = 2.036, SE = .705, z = 2.89, p = .004). A single-level analysis 

of covariance (ANCOVA) version of Model 1 with spring MAP math as the outcome, 

controlling for fall MAP math (with school by cohort clustered errors), showed similar 

significant effects as well (b = 2.118, SE = 0.593, t = 3.57, p = .001). All alternative models were 

estimated with the same covariates and IPWs as described for the primary analysis. Impact 

estimates similarly varied across ELP levels in these alternative models. Including an indicator 

variable of whether students switched schools between the prior and current year or controlling 

for prior year special education status (since status might have changed during the year of 

Bridges for some students) had little effect on the reported main effect estimates. Restricting the 

sample to those who did not switch schools between prior and current years also had a minimal 

impact on estimates.  

Among only students in Bridges schools (n = 1,839), we tested whether those assigned to 

Bridges schools in grade four and continued in a Bridges school in grade five (n = 558) showed 

different treatment effects than students who received Bridges only in grade five (n = 1,281) 

(controlling for identical covariates except enrollment year indicator for 2015 and using the same 

IPWs). Students who received two years of Bridges instruction did not change differently in fifth 

grade than those who received one year (b = -0.281, SE = 0.873, t = 0.32, p = .750). This effect 

did not vary significantly by ELP level, though a pattern of point estimates similar to Model 1 

emerged (low ELP b = 1.385, mid ELP b = 0.598, proficient b = -0.648). These results suggest 

our primary findings may not be only a result of length of exposure to Bridges. 

Parallel Trends Analysis and Falsification Tests 

Figure S1 displays MAP math mean scores across assessment periods between grades 
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three and five. This graph is a representation of the parallel trends assumption of DiD (St. Clair 

& Cook, 2015). Violation of this assumption may impact the internal validity of the design if 

there was systematic variation between treatment and comparison conditions prior to the 

treatment period (Lechner, 2011; St. Clair & Cook, 2015). This graph suggests minimal variation 

between treatment and comparison groups prior to treatment implementation, particularly prior 

to implementation in grade five. Only students who had complete MAP math data across all 

waves are included (regardless of if they had MAP reading data).  

Figure S1 

Mean MAP math achievement estimates in each assessment period in grades three to five. 

 

Note. Means calculated for students with complete MAP math data across all assessment periods 

(total n = 4,589, Bridges n = 1,637). Adjusted estimates from multilevel models controlling for 

grade five enrollment year show similar results. Plot produced in ggplot2 (Wickham, 2016). 

Points slightly offset from each other for visual clarity. 
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Figure S2 below displays falsification or nonequivalent outcomes tests (St. Clair & Cook, 

2015; Furquim et al., 2020) of Bridges across all students and within each ELP level. We use 

models identical to Model—including the same clustered standard errors, covariates, and 

IPWs—but we replace our main outcome (grade five MAP mathematics change score) with the 

relevant falsification or nonequivalent outcome. When our outcome is MAP reading change 

score, we remove fall grade five MAP reading as a covariate (and including MAP fall grade five 

mathematics minimally changes estimates). In the case of measuring the treatment on time 

periods prior to the treatment (the top two panels of Figure S2), these tests help further assess 

whether treatment and comparison differences existed prior to the main treatment period 

(conditioning on the covariates we used in the primary analysis using Model 1), which may 

threaten the internal validity of our design. The nonequivalent outcomes test (bottom panel of 

Figure S2) helps establish whether treatment-control differences were present on outcomes that 

may not be reasonably expected to be impacted by the treatment to the same extent as the 

primary outcome. Although it is possible that a mathematics intervention could impact reading 

skills (and that may be of substantive interest), our primary outcome of interest and hypothesized 

effects were focused on mathematics. Only students who were observed in the primary analysis 

model (Model 1) and had data on the relevant outcome measure, covariates, and had IPWs are 

included in these analyses. Grade four MAP change scores did not differ in statistical 

significance or magnitude between treatment and comparison groups, nor did grade five MAP 

reading change scores. Grade three MAP change scores, however, were statistically significantly 

lower on average between treatment and comparison groups. This trend is somewhat apparent on 

Figure S1 as well. This may suggest a departure from parallel trends that could affect the internal 
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validity of the design. However, this trend was apparent two years prior to the majority of 

schools implementing Bridges in our design (though some schools implemented in grade four).  

Figure S2 

Falsification tests of main treatment effects and simple effects across ELP levels.  

 

Note. Grade three MAP math change score placebo test (top panel, total n = 4,657), grade four 

MAP math change score placebo test (middle panel, total n = 4,984), and grade five MAP 

reading change nonequivalent outcomes test (bottom panel, total n = 5,181). These models 

include the same covariates as Model 1 except the model with MAP reading as the outcome 

(bottom panel) does not include fall grade five MAP reading as a covariate. Error bars represent 
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cluster-robust 95% confidence intervals (using fifth grade school-by-cohort clusters). PC = 

previous curriculum. Plot produced in ggplot2 (Wickham, 2016).  

Sensitivity Analysis 

 We conducted a sensitivity analysis of the main effect of Bridges (b = 2.022,  SE = 0.616) 

to determine the extent to which an unobserved variable would need to correlate with our 

outcome and treatment assignment to produce a nonsignificant effect of Bridges. We used the R 

Shiny App Konfound-It! (Rosenberg et al., 2018) for this procedure. We used the main effect 

reported in the main text (b = 2.022), its cluster-robust standard error (0.616), 5,193 

observations, and the number of covariate terms in Model 1 (26) to complete this procedure. The 

results of this procedure indicate that an unmeasured variable would need correlate greater than 

.137 with both Bridges assignment as well as grade five MAP mathematics change scores while 

accounting for covariates (and thus have an impact of .019 [i.e., .137*.137]) to render our 

observed effect nonsignificant (Frank, 2000).  

Analyses using Grade Five ELP and ACCESS 

 Figure S3 displays adjusted estimates and marginal effects of Models 1 and 2 estimated 

using grade five ELP or ACCESS data (rather than prior year). We draw the same conclusions 

from these estimates as we do from the primary models in the main text. The main effect of 

Bridges in the left panel is statistically significant and of similar magnitude (g = 0.243) to the 

main model presented in the main text. This effect does not vary significantly across ELP levels 

(left panel), nor do Bridges estimates vary significantly ACCESS scores (right panel).
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Figure S3 

Bridges impact estimates using ELP measured in grade five.  

 

Note. Left graph, top panel displays covariate-adjusted mean change scores for each group. Left 

graph, bottom panel displays the estimated difference between each mean in the top panel (the 

AMEs of Bridges). The graph on the right displays the AME of Bridges at representative values 

of ACCESS scores. Sample sizes differ from main analyses since more student data were 

available using grade five ELP (full n = 5,385), though there were fewer students with ACCESS 

scores (ACCESS n = 1,161). Models used to estimate these effects are identical to Models 1 and 

2 reported in the main text (except for the different ELP or ACCESS variable). We constructed 

IPWs for these analyses using a model identical to what was used for the primary analyses (see 

first page of this document) with the exception of using grade five ELP level. ACCESS scores 

and ELP data were recorded in the winter during fifth grade (i.e., after all Bridges schools started 

implementation) and thus may constitute a posttreatment variable for all Bridges students 

(Montgomery et al., 2018). This would only be problematic in the main analyses Plot produced 

in ggplot2 (Wickham, 2016). 
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