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Abstract 

Although mathematics development research has become more prominent in the school 

psychology literature in recent years, a large research gap in this area exists regarding English 

language learners (ELLs).  Significant research in education, cognitive science, and psychology 

has been devoted to understanding the links between language and mathematics, but the 

developmental factors that predict stability and change in mathematics skill development among 

ELLs are less clear.  In one study, I investigated growth and change among ELLs compared to 

English-proficient student (EPS) peers using latent change score modeling to detect differences 

in interindividual and intraindividual change across language proficiency groups.  I also 

examined the extent to which working memory differentially predicts mathematics change trends 

and patterns across language groups.  In a second study, I closer examined the processes of 

mathematics development among ELLs by investigating the presence of heterogeneous, 

unobserved growth trajectories; whether development of English language proficiency (ELP) 

predicts mathematics growth patterns; and the interaction between working memory and 

language proficiency gains in predicting later mathematics growth.  Results from Study 1 

suggested that ELLs and their English-proficient peers change similarly across time though at 

different levels of performance.  Additionally, kindergarten working memory operated similarly 

in predicting growth parameters among both ELL and EPS subpopulations.  Findings from Study 

2 are suggestive of a single highly variable growth trajectory among ELLs.  Although working 

memory uniquely predicted mathematics developmental patterns, interactions between working 

memory and English proficiency gains were not predictive of later mathematics level or change 

pattern.  However, gains in English early reading skills (arguably one domain of ELP) uniquely 

and positively predicted later mathematics performance level, although that advantage was 
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partially offset by a prediction of decelerating mathematics growth through fourth grade.  

Theoretical and practical applications for research involving ELLs in the context of RTI, future 

directions, and limitations are discussed.   

Keywords: English language learners, mathematics, English language proficiency, 

Response-to-Intervention, working memory 
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CHAPTER I: INTRODUCTION 

Background 

Statement of the Problem 

Adequately developing mathematics skills early in schooling is important to preventing 

academic risk in later grades given the iterative, sequential, and interdisciplinary nature of 

mathematics development.  Many studies underscore the importance of early mathematics 

competencies in predicting later mathematics skill outcomes and the developmental course of 

acquiring mathematics knowledge (Duncan et al., 2007; Geary, Nicholas, Li, & Sun, 2017; 

Jordan, Kaplan, Locuniak, & Ramineni, 2007; Jordan, Kaplan, OIáh, & Locuniak, 2006; LeFevre 

et al, 2010; Nguyen et al., 2016; Watts et al., 2015; Watts et al., 2017).  Despite the advances in 

research in developmental processes in this area, less attention has been devoted to these trends 

among English language learners (ELLs).  Recent studies have detailed how language plays a 

key role in much of learning mathematics and applying mathematical knowledge to problem 

solving across educational levels (Chow & Ekholm, 2019; LeFevre et al., 2010; Powell, Cirino, 

& Malone, 2017; Purpura & Logan, 2015; Purpura & Reid, 2016; Vukovic & Lesaux, 2013).  

Thus, it is imperative that researchers better equip practitioners with the appropriate knowledge 

regarding the role of language in mathematics, as effectively leveraging language use in early 

mathematics shows promise to benefit all students (Doabler, Clarke, & Nelson, 2016; Jayanthi, 

Gersten, & Baker, 2008).  Given the pressing practical and policy concerns regarding the 

educational success and attainment of linguistically diverse students (Kieffer & Thompson, 

2018; Murphy, 2014; Umansky, 2016, 2018) and paucity of research in this area, such effective 

instructional practices are critical to promoting students’ access to high-quality instruction in 

mathematics (Robinsin-Cimpian, Thompson, & Umansky., 2016).  Empirical research drawing 
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on education, developmental, and cognitive science can help inform building an evidence-base in 

the role of language in mathematics.  However, doing so is also a multidimensional process that 

accounts for key ecological factors such as cultural, instructional context, and policy-level 

factors.   

Although this issue of the role of language in mathematics requires researchers and 

practitioners to identify levers of change at all ecological levels, a focus on student-level 

development of mathematics skills and language proficiency offers a bottom-up perspective to 

how those levers may operate at different points in students’ education and brings attention to the 

potential developmental cascades (Lerner, Leonard, Fay, & Isaac, 2011) that may drive 

individual development.  Such cascades are rooted in developmental systems theory (DST; Ford 

& Lerner, 1992; Griffiths & Tabery, 2013; Lerner et al., 2011) in which individual characteristics 

and contexts are theorized to interact to produce patterns of individual development (i.e., 

dynamic interactionism [Ford & Lerner, 1992; Lerner, 1978]).  Though the current study does 

not directly test developmental cascades as both theoretical and analytic models (e.g., Berry & 

Willoughby, 2017; Masten & Cicchetti, 2010), there are complex differential individual-by-

context interactions that take place across English-proficient students (EPS) and ELLs given 

differences in social context of education (e.g., placement in language instructional programs), 

cognitive development (e.g., learning a second language), as well as how instruction is accessed 

and its effect on the individual (e.g., how language instructional programs help students respond 

to classroom instruction).  These interactions, though again not analytically tested here, are 

important considerations in the larger theoretical context of studying development in a dynamic 

ecological system such as education.   



 

 

3 

3 

Ecological (Bronfenbrenner, 1979; Bronfenbrenner & Morris, 2006) and developmental 

theory helps frame how cascades may propagate multilevel and multidimensional process among 

ELLs and EPSs.  From an empirical perspective, there is a significant need to better understand 

the quantitative patterns of development in mathematics across these two student groups, the 

factors that predict how intraindividual change transpires, and, in particular, the role of language 

within a mathematics developmental system.  Research targeting these areas can help researchers 

better understand the course of mathematics development, how ecology relates to development, 

and what instructional and intervention practices can most effectively and efficiently produce 

desirable student outcomes.  Recent empirical evidence provides insight into these relationships 

and a basis for investigating such areas of development.  Purpura and colleagues (i.e., Purpura & 

Ganley, 2014; Purpura & Logan, 2015; Purpura & Reid, 2016) have provided evidence for 

language-dependent processes of early mathematics skill development among preschoolers 

(typically aged between four and six across studies).  Similarly, LeFevre et al. (2010) proposed a 

model of mathematical competence in seven different areas (numeration, calculation, geometry, 

measurement, number line slope, number line r2, magnitude comparison), finding that language 

ability measured through receptive vocabulary was the only variable that uniquely predicted each 

of the seven mathematics outcomes.  Given that this connection of language to mathematics 

tends to occur regardless of native language, the language-mathematics relationship lends further 

credit to the multiple language demands in ELLs’ learning (Baker et al., 2014; Doabler, Nelson, 

& Clarke, 2016): learning both general and content-specific language in academic domains. Last, 

these students must navigate social language development, which also bears on academic, social, 

emotional, and behavioral functioning (Albers, Mission, & Bice-Urbach, 2013).  These language 

demands have been the subject of recent large-scale experimental investigations of early 
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mathematics curricula (Doabler, Clarke, Kosty, et al., 2016; Doabler et al., 2019), mainly 

through probing moderators of mathematics intervention.  However, the research on potential 

cognitive mechanisms that drive these strategies remains meager.  Students who exhibit 

inadequate skill developmental in mathematics, coupled with acquiring a second language, may 

have unique factors contributing to their academic difficulties and successes.  As such, it is 

important not only to understand general trends in the relationship between language and 

mathematics but also how mathematics development and second language acquisition interact 

over the early and intermediate elementary years.   

That said, many pictures of ELL achievement trends may be painted depending on the 

data source.  Prior work has set the precedent for highlighting the significant gaps between 

language groups while devoting far less attention to the patterns of those gaps over time and how 

individuals change within differential trajectories.  However, using recent National Assessment 

of Educational Progress (NAEP) data, Kieffer and Thompson (2018) provided evidence that 

multilingual students (not limited to current ELLs) have been improving academically at a faster 

rate in mathematics than their monolingual peers, narrowing the achievement gap over the last 

decade.  Despite these promising findings, significant questions about ELLs’ academic 

development remain that require further investigation at all levels of the educational system – in 

the classroom, in individual interventions (i.e., single-case designs), in school districts, and at the 

national level.  Projections of growth in science, technology, engineering, and mathematics 

(STEM) jobs further underscore the imperative to continue investigating mathematics among 

ELLs: Vilorio (2014) projected significant STEM jobs growth by 2022—some by nearly 40%.  

With this growth in the workforce, it is important to establish access to rigorous STEM content 

by leveraging the strengths of educational programming for ELLs (Umansky, 2016, 2018) and 
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culturally relevant curricula (Driver & Powell, 2017; Dee & Penner, 2017).  Increasing the 

positive interactions students might have with STEM disciplines can contribute to sustained 

interest over time (Ainley & Ainley, 2015), though it is necessary to first establish access to all 

instructional content among ELLs (Robinson-Cimpian et al. , 2016) to effectively garner 

students’ learning strengths.   

The Role of Response to Intervention (RTI) 

The response to intervention (RTI) process can enhance practitioners’ ability to provide 

such learning supports to students at all levels of performance.  Typical models of RTI service 

delivery specify a strong support system at the primary (tier 1), secondary (tier 2), and tertiary 

(tier 3) levels (Fuchs & Fuchs, 2007).  Universal screening systems and the measures employed 

in these systems have established a standard for the notion of risk and how schools should 

identify those students in need of secondary and tertiary supports (Compton, Fuchs, Fuchs, & 

Bryant, 2006; Glover & Albers, 2007), provided that appropriate data corroboration is conducted 

among school-based problem-solving teams (Albers et al., 2013).  For example, Baker et al. 

(2019) directly studied the role of school-based data teams in identifying students in need of a 

school-wide, tier 2 reading intervention.  In particular, they studied the process by which schools 

employ student achievement data to identify instructional supports.  Baker et al. take note of 

Institute of Education Sciences’ practice guide for schools in leveraging student data to identify 

students in need of supplemental supports (Hamilton et al., 2009).  These teams and school 

practices, though an indirect result of the study of development, employ information on the 

normative patterns of student academic growth to determine intervention need, eligibility, and 

evidence-based preventative practices.   
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Yet the understanding of academic risk and the necessary supports for mathematics skill 

development among ELLs is less well-established, potentially making it more difficult for 

school-based teams to employ screening and progress-monitoring data to make highly informed 

decisions.  First, a number of studies have elucidated the complications to assessing ELLs in 

their mathematics skills and the achievement gaps that seem to consistently appear between 

ELLs and their EPS peers (Abedi, 2002; Abedi & Herman, 2010; Abedi & Lord, 2001).  

Screening for mathematics difficulties among ELLs is difficult as many students already score 

below average benchmarks of academic performance, and coupled with small sample sizes, 

establishing predictive validity and norms among ELLs can be difficult (Hall, Markham, 

McMackin, Moore, & Albers, 2019).  Albers and Martinez (2015) underscore these 

complications, recommending that practices such as utilizing local norms and cut scores can help 

reduce false rates in screening.  These complications make the definition of risk in mathematics 

among EPSs difficult to extrapolate to ELLs.  Many cultural factors may relate to these gaps, not 

the least of which is the language difference and the variability among those language 

differences.   

Beyond focusing only on the language gaps, bioecological factors (Bronfenbrenner & 

Morris, 2006) contribute to such learning and access gaps.  Often these learning and access gaps 

have been framed as deficits in ELLs’ learning.  Although many subgroups that comprise ELLs 

in American schools are traditionally more socioeconomically disadvantaged (Reardon & 

Galindo, 2009), this does not inherently imply any deficit to learning.  Rather, these learning 

gaps arise as an interaction between the individual and the context of their development (Lerner 

et al., 2011).  For example, Roberts and Bryant (2011) found that the school composition of 

students eligible for free and reduced lunch explained a significant amount of variance in 
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mathematics development across English-speaking students as well as Spanish and Asian ELLs.  

Abedi and Herman (2010) found that the proportion of other ELLs in the classroom explained 

significant variance in mathematics outcomes.  Such contextual factors interact with individual 

students’ response to instruction, including access to and effective learning of grade-level 

content and progress comparable to peers according to both national and local norms.   

These data, both quantitative and qualitative, provide the basis for instructional supports, 

intervention identification, and, absent of student responsiveness to tiered intervention, special 

education eligibility.  However, many empirical studies further obscure potential variation in 

patterns of ELL mathematics development by classifying “ELL” as a binary indicator when there 

is substantial variability along the language proficiency continuum.  Additionally, how that 

binary indicator is defined varies significantly in research.  Although this binary formulation of 

ELLs is efficient and is in some cases the only information available, it is clear this approach 

likely suppresses substantial variance within ELLs that could more effectively elucidate 

developmental and achievement trends among this group.   

In translation to practice, these varying definitions have significant implications for 

access to instruction required to perform at grade-level (Robinson-Cimpian et al., 2016) and the 

cognitive factors implicated in second language learning (Bialystok, 2011; Greenfader, 2017; 

Grundy & Timmer, 2017; Wang, 2017).  For example, these variations in English proficiency, 

especially the timing of obtaining proficiency, may have different implications at different grade 

levels (Halle et al., 2012).  In research, definitions of ELLs and the subsequent decomposition of 

between- and within-group relationships have epistemological implications of research among 

ELLs: How do we actually know what we think we know about ELL achievement, and what is 

the relationship of researchers’ methodology to generating that collective understanding? As 
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such, research must address the individual differences within language minority groups with 

greater attention to the characteristics that define such groups as well as to development of 

English language proficiency (ELP).  This is especially important in mathematics in light of the 

significant research gaps in mathematics development among ELLs. 

Patterns of Development and RTI 

The topography and distribution of developmental trends is particularly emphasized here 

due to their role in forming a comprehensive, preventative RTI model.  Studying variability in 

development can help extract students who differentially change in systematic ways.  Such sub-

distributions might include “movers” and “stayers” (Goodman, 1961; Kaplan, 2008).  Varying 

definitions could be formulated for the mover-stayer framework in education.  One such 

definition might include students who respond (i.e., increasing level and trend) or do not respond 

to instruction (i.e., low level and minimal trend), a pattern that Jordan and colleagues (2006; 

2007) partly observed in early numeracy skills.  This may appear qualitative based on observing 

the predicted trajectories, or the longitudinal likelihood of switching trends or categories can be 

empirically estimated (Chow, Dolan, Grimm, & McArdle, 2013; Kaplan, 2008; Kaplan & 

Walpole, 2005).  Extracting these subgroups of growth and change may help derive levers of 

intervention and assessment in RTI.  Due to the unique needs of ELLs, however, a more 

thorough picture of mathematics development among ELLs must be painted by examining 

shapes, patterns, and distributions of mathematics development.   

The Present Work 

 The two studies included herein address gaps in the literature on ELL development in 

mathematics with particular emphasis on how studying developmental topography can inform 

RTI practices and future research on assessment and intervention in mathematics among ELLs 
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(as well as EPSs).  Across the two studies, I address development with a focus on patterns of 

variability and shape.  Many prior studies have examined the persistent achievement gaps among 

ELLs; however, given the heterogeneity among ELLs, fewer studies address differential patterns 

of change between ELLs and EPSs, within the ELL subgroup, and the role of working memory 

and language proficiency in predicting these relationships.  As RTI becomes more crucial to 

school-based policy, access to grade-level content must be addressed from multiple angles, rather 

than focusing on average gaps between demographic groups.  Among ELLs in particular, this 

means analyzing academic skill and curricular access along the ELP continuum.  Recent work 

has exemplified the efficacy of tier-2 mathematics intervention among ELLs with potentially 

differential benefits for ELLs with lower ELP (Doabler et al., 2019).  Additionally, working 

memory is a stronger predictor of later mathematics achievement among Hispanic students who 

exhibit fewer basic reading skills in English (Greenfader, 2017).  Though such studies are very 

informative for the role of cognitive skills among ELLs and responsiveness to mathematics 

instruction, these studies do not directly address how ELP relates to differences in intraindividual 

change compared to EPSs or later developmental patterns in terms of the distribution of trends 

and variability in patterns of change.  Furthermore, few studies have addressed the relationship 

between ELP and mathematics as sequential development processes.  Halle et al. (2012) 

provided cogent evidence for the importance of the timing of obtaining ELP, and as such, the 

rate at which early ELP develops may play an important role in predicting the subsequent pattern 

of mathematics growth, especially when students are assessed in English.  The present work 

addresses this research gap.   
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Breakdown of Studies in Current Research 

Study 1.  In Study 1, I extend prior work (Roberts & Bryant, 2011) analyzing the 

developmental trend of mathematics between ELLs and EPSs.  I take a latent change score 

modeling approach (McArdle & Nesselroade, 2014) to analyzing differential patterns of growth 

between low-ELP ELLs and English-proficient students while controlling for a variety of 

behavioral, cognitive, demographic, and ecological factors.  I investigate the invariance of 

change patterns across groups to detect whether low-ELP ELLs and EPSs change in significantly 

different ways, both in the constant amount of change that accrues between kindergarten and 

fourth grade as well as the proportional change that occurs between grade levels.  Additionally, 

given the role working memory plays in mathematics development, I test whether working 

memory differentially predicts mathematics development patterns across groups.  In Study 1, I 

address the following research questions:  

Research Question 1: Does the pattern of mathematics growth from the Spring of 

kindergarten to the Spring of grade 4 differ significantly for ELLs 

and EPSs in terms of additive and proportional change? 

Research Question 2: To what extent does working memory differ across ELLs and EPSs 

in uniquely predicting mathematics development patterns? 

Study 2.  In Study 2, I focus on the students I defined as low-ELP ELLs in Study 1 and 

explore the presence of heterogeneous patterns of growth in mathematics using growth mixture 

modeling (Kaplan, 2002; Ram & Grimm, 2009).  Contingent upon the presence of mixture 

patterns, I also planned to test whether students are stable in their growth trajectory membership 

across time (i.e., regime switching; Chow et al., 2013).  Again, contingent on the presence of 

mixtures, I also planned to test whether early growth in ELP predicts growth trajectory 
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membership and the stability in growth class membership.  To further investigate the relationship 

between working memory and ELP, I also planned to test whether working memory moderates 

the extent to which ELP growth predicts later mathematics outcomes, including growth class 

membership, growth class stability, and the growth patterns within each mixture class.  If 

mixture classes exist, testing these relationships can help identify heterogeneous relationships 

within and between unobserved growth patterns.  Recent research has advanced in testing 

differential response to intervention based on ELP (Doabler et al., 2019), working memory 

ability (Fuchs, Schumacher, Sterba, et al., 2014), and baseline mathematics proficiency (Fuchs, 

Fuchs, & Gilbert, 2018).  As such, it is necessary to detect when and for whom ELP gains predict 

growth patterns to better inform relationships between language and mathematics development 

and instructional response.  The research questions for Study 2 are as follows: 

Research Question 1: Are there unobserved, systematic, differential growth trajectories 

(i.e., mixtures) in mathematics development from grades 1 to 4?  

Research Question 2: Do gains in ELP across kindergarten predict greater mathematics 

growth? If multiple growth mixtures exist, do ELP gains predict 

growth trends differently within each class? 

Research Question 3: Is ELP is a stronger predictor of mathematics growth patterns 

among students with lower working memory capacity?  
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CHAPTER II: LITERATURE REVIEW 

RTI is predicated on an understanding of developmental cascades (Ford & Lerner, 1992; 

Lerner et al., 2011) and the ecology of students’ development (Burns, 2011).  RTI helps schools 

identify students at varying levels of multidimensional risk as early as possible and provide 

services to prevent further academic performance challenges.  Such a process requires 

assessments to measure the developmentally appropriate skills and interventions to target the 

appropriate cognitive mechanisms of learning.  Most importantly in the RTI model, those 

assessments and interventions contribute to preventing a particular issue from compounding over 

time, which means that it is critical to understand the developmental topography of that skill 

domain.  Specifically, translational researchers must understand the deficits and challenges that 

may accrue and cascade in absence of intervention (i.e., counterfactuals); how intervening on a 

particular skill aligns with instruction in subsequent curriculum units and grades; and the risk and 

protective factors that contribute to those developmental cascades.  The unique strengths of ELLs 

and challenges to their success necessitates a stronger conception of how RTI can be most 

effectively leveraged for their development.  Doing so requires a developmental approach to 

studying mathematics skills among ELLs, specifically focusing on the differential patterns that 

may emerge in light of the distinctive linguistic and cognitive factors related to ELLs’ 

mathematics learning. 

Characteristics of English Language Learners and Their Education 

Demographic and Geographic Characteristics 

ELLs represent a large and growing population of students in the United States, 

comprising 9.6% of students in elementary and secondary schools in 2016 (U.S. Department of 

Education, National Center for Education Statistics, 2018a).  In early elementary grades, ELLs 
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comprise up to 16% of the total student population (U.S. Department of Education, National 

Center for Education Statistics, 2018b).   Bardack (2010) defined an ELL as “…an individual 

who is in the process of actively acquiring English, and whose primary language is one other 

than English” (p. 5).  Although Spanish-speaking students represented the majority of ELL 

students in American schools in the 2016 school year, totaling 77% of ELL students (U.S. 

Department of Education, National Center for Education Statistics, 2018b), the general 

population of ELLs is in fact extremely diverse, representing many different native languages 

from across the world.  Other commonly spoken languages include Arabic, Chinese, and 

Vietnamese, with each of those languages representing around two percent of those spoken in 

American schools (U.S. Department of Education, National Center for Education Statistics, 

2018b).  The regions these languages represent range from the Middle East, to Southeast Asia, 

Sub-Saharan Africa, Central Europe, and to regions within the United States, where some 

students speak primarily Native American languages (U.S. Department of Education, National 

Center for Education Statistics, 2018b).  Moreover, the countries and regions from which these 

students (first generation) or these students’ parents and families (second generation) originate 

vary significantly in religious and political affiliation as well as economic and educational 

environment; Reardon and Galindo (2009) highlight this diversity among Hispanic students in 

particular.  As a result, there is significant heterogeneity within the ELL population.  Some 

subgroups of the ELL label may be more socioeconomically marginalized than others (as 

Reardon and Galindo [2009] highlight among Hispanic students), making meeting the needs of 

these students challenging, particularly in areas with relatively few resources for culturally 

diverse or immigrant families (e.g., bilingual specialists in schools).  Thus, maximizing these 
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students’ strengths and attainment rests not only on language but also on competence and 

understanding of the cultural factors that impact their learning (Albers et al., 2013).   

This demographic of students has been growing steadily over the past ten years, 

especially in areas of the American West and South (U.S. Department of Education, National 

Center for Education Statistics, 2018a).  Additionally, the number of students participating in 

programs designed to serve ELL students varies significantly by state and school district.  For 

example, California has the largest population of ELLs in the United States, totaling 1,261,672 

students across K-12 education in 2016 (U.S. Department of Education, National Center for 

Education Statistics, 2018a).  This number has fallen by nearly 300,000, however, since 2005, 

when 1,571,463 students were enrolled in ELL programs (U.S.  Department of Education, 

National Center for Education Statistics, 2018a).  Conversely, since 2000 ELL enrollment has 

been steadily climbing in other states.  In Texas, ELL program enrollment totals have increased 

by more than 100,000 students since 2000; in Florida, by 80,000 students.  From 2000 to 2016, 

North Carolina’s ELL program enrollment total more than doubled from around 44,000 to 

around 92,388 students.  In Arkansas, enrollment more than tripled from around 12,000 to 

41,482 students between 2000 and 2015.  In many states, this growth is expected to continue 

through 2027.  For example, from Fall 2015 to Fall 2027, ELL enrollment rates are expected to 

increase by up to 27% in some states (e.g., North Dakota), while in many others states ELLs are 

expected to increase enrollment between 10% and 17% by 2027 (McFarland et al., 2018).  

Enrollment numbers are expected to decrease in other areas, including states with already high 

numbers of ELLs, such as California and Illinois (McFarland et al., 2018).    
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Educational Resources, Instruction, and Programming 

The prior statistics are important not only to show the major population growth and 

fluctuations; they are also important indicators of the educational resources needed to adequately 

serve these students.  Many areas of extreme growth may not have the material (e.g., curricular 

materials, classroom space) or human resources (e.g., administrators, social workers, school 

psychologists, bilingual educators) to keep up with the immense growth.  Such contextual factors 

may explain differential opportunities to learn for ELLs.  For example, Abedi and Herman 

(2010) found the classroom-level opportunities to learn in eighth grade algebra courses were 

higher within classrooms with a higher proportion of ELLs.  Furthermore, the resources that are 

in place may not be necessarily culturally aligned to garner these students’ academic and social-

emotional-behavioral success (Robinson-Cimpian et al., 2016; Umansky, 2016).  These 

ecological factors highlight not only the need to understand the context itself but also how 

development occurs in context, inevitably shedding light on the crucial individual-by-context 

interactions that drive developmental cascades (Bronfenbrenner & Morris, 2006; Lerner et al., 

2011).  With this in mind, attaining ELP can be a challenging process both for the student and 

their teachers.  Many classrooms might have students with varying levels of English proficiency 

in addition to a wide variety of academic skill level and social-emotional-behavioral difficulties, 

all of which may impact access to learning opportunities among ELLs.  Unlike a completely 

English-speaking classroom with a variety of achievement levels, adding a language barrier 

could significantly affect a teacher’s ability to target skill areas in which an ELL may be 

struggling (e.g., how a student might conceptualize a problem differently based on language; 

cultural differences affecting what knowledge teachers assume students have).  That said, value-

added modeling approaches (Loeb, Soland, & Fox, 2014) have shown that teachers who are 
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generally effective with EPSs generalize their skills to working with ELLs.  Although, Loeb et 

al. (2014) and Master et al. (2012) both found that additional training for working with students 

provides an advantage in producing positive academic outcomes among ELLs.   

Reaching language proficiency is a complex and multidimensional process, which may 

explain why additional bilingual training among teachers may be so crucial for student outcomes.  

Language needs to be attended to at both the social and academic level (Albers et al., 2013).  

Proficiency in social language does not constitute proficiency in academic language, as academic 

language is content- and task-specific.  As such, teachers and instruction more generally must be 

aligned with the developmental context, that language skills among ELLs are tied to more than 

just the content-specific language required to learn the target skill.  Simultaneously, language is 

intuitively embedded in many mathematics abilities, with word problem solving being the most 

clearly language-embedded activity.  That said, language underlies mathematics skills very early 

on (Purpura & Reid, 2016).  Purpura and Reid (2016) suggested that poor understanding of 

mathematics vocabulary in preschool and the relationships among mathematical concepts 

portends poor performance in kindergarten, as these linguistically embedded concepts of 

numeracy underlie the procedures and concepts needed to build early number sense.  

Nevertheless, both social and academic language are culturally embedded, which is not uniform 

across student backgrounds.  Development of proficiency in these English language domains is 

supported in schools through a number of different types of programs, which are discussed 

below. 

ELL education programming.  A variety of language instruction programs are 

employed throughout the United States to support primary (native) languages (L1) and second 

language (L2) proficiency.  Faulkner-Bond et al. (2012) described seven predominant language 
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instruction education programs (LIEPs).  The instructional program orientation and the goals of 

each program are listed in Table 1 below.   
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Table 1 
ELL instructional programs and language goals from Faulkner-Bond et al. (2012).   

Program Type Program Goal 

English as a second language (ESL) 
instruction “Proficiency in English” (p.  x) 

Content-based instruction “Preparation to meet achievement standards, 
proficiency in English” (p.  x) 

Sheltered instruction “Preparation to meet academic achievement 
standards, proficiency in English” (p.  xi) 

Transitional bilingual programs “Preparation to meet academic achievement 
standards, proficiency in English” (p.  xi) 

Two-way immersion 
“Preparation to meet achievement standards, 

proficiency in English, bilingualism and 
biliteracy, biculturalism” (p.  xii) 

Developmental bilingual programs 
“Preparation to meet academic achievement 

standards, proficiency in English, 
bilingualism and biliteracy” (p.  xii) 

Newcomer 
“Preparation to participate in regular LIEP 

offerings, build foundational skills in content 
areas (basic literacy, math concepts, etc.)” (p.  

xiii) 
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The programs that are employed in schools vary by state and district policies.  In most 

states, there are a variety of programs offered depending on district resources.  Rolstad, 

Mahoney, and Glass (2005) conducted a meta-analysis that examined ELL education programs 

and revealed that bilingual education was more effective in producing higher achievement when 

comparing ELLs to other ELLs (ES = 0.23).  Umansky (2016) utilized a regression discontinuity 

design (RDD) to evaluate the impact of language instructional programs in kindergarten through 

high school, showing similar results as Rolstad et al. (2005).  In particular, Umansky (2016) 

showed that bilingual (as well as dual-language immersion) education programs were most 

impactful in producing achievement in mathematics and language arts for ELLs who fell just 

below the cutoff for language support eligibility.  However, the implications of such an effect 

become highly muddied as one infers further away from the discontinuity cutoff, underscoring 

the need to better understand how achievement and policy initiatives interaction among students 

in a wide range of ELP levels.   

Recent policy changes have significantly altered the ELL education landscape by 

aligning with recent empirical evidence.  In November 2016, Proposition 58 in California 

(Senate Bill 1174) was approved in their state election, which changed their ELL instruction 

policy to include non-English languages, having previously instructed all students in English 

(California Education for a Global Economy Initiative of 2014).  This reflects a cultural shift 

among policymakers that recognizes, although English language proficiency is a crucial 

mechanism to academic success, the process of building that process recruits many processes of 

development, including proficiency in native language (Albers & Martinez, 2015; Cárdenas-

Hagan, Carlson, & Polard-Durodola, 2007; Cummins, 1979; Guglielmi, 2012).  Additionally, 

different second language programs may have different social psychological implications for 
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students and may be differentially resourced in terms of providing for students (Umansky, 2016).  

These contextual factors are undoubtedly important to consider in light of the goal of language 

support services: helping students master grade-level knowledge domains.  However, such 

contextual factors that filter into the psychological processes of learning may relate to students’ 

learning.  This is not the focus of the current work, although the overarching ecology of ELLs’ 

education experiences underscores much of the current and extant work in this area.   

For language instructional programs to work successfully, it is necessary for practitioners 

to build students’ proficiencies in a way that allows them to access grade-level instruction to 

meet these standards.  However, the supports within different types of language programming 

may have significantly different mechanisms of support students’ instructional access and 

instructional response that are related to the cognition of instruction, the teachers’ training, and 

the social context of the instructional environment.  As Umansky (2016) highlighted, placement 

in different kinds of language instructional classrooms may have significantly different 

implications for students’ social experiences of their education.  These types of instructional 

contexts may act on different mechanisms of the relationship between L1, L2, and mathematical 

cognition.  At a more basic level, teachers and interventionists must attend to a student’s 

language proficiency when accounting for their response to instruction, and the extent to which 

language proficiency facilities or impedes such response.  With policy-level standards in mind, it 

is necessary to understand how mathematical knowledge develops, its relationship to language, 

and the multilevel factors that promote or impede students’ capacity to meet grade-level 

benchmark proficiencies. 
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Properties of Mathematics Development 

 Many studies empirically describe language-mathematics associations in school-aged 

children learning second languages (Abedi & Lord, 2001; Chen & Chalhoub-Deville, 2016; 

Garrett, 2010; Greenfader, 2017; Guglielmi, 2012; Halle et al., 2012; Hartano, Yang, & Yang, 

2018; Roberts & Bryant, 2011; Van Rinsveld, Schiltz, Brunner, Landerl, & Ugen, 2016; Van 

Rinsveld, Dricot, Guillame, Rossion, & Schiltz, 2017; Vukovik & Lesaux, 2013; Wang, 2017).  

Chen and Chaloub-Deville (2016) found that much of the achievement discrepancy between 

ELLs and EPSs disappears when language proficiency (as measured by English reading ability) 

is controlled; however, they also noted that there is a large amount of variability within language 

groups that seems to be driven by language demands.  Additionally, the same authors found the 

relationship between academic language proficiency was stronger across time for students with 

lower mathematics achievement than for students performing higher in mathematics .  Thus, 

although language ostensibly impacts ELLs most significantly—and these students are in the 

most need for language support—the language demand of mathematics impacts all students.  

Other studies in RTI, as well as broader developmental theory, corroborate the role of general 

language ability.  From a tiered intervention perspective, Powell et al. (2017) showed that 

language ability uniquely predicted responsiveness to a tiered mathematics intervention for 

students at-risk in mathematics.   LeFevre et al. (2010) found similar evidence of linguistic 

ability uniquely predicting mathematics domains among four- to seven-year-old native English-

speaking students.  Among ELLs, Halle et al. (2012) found that earlier attainment of ELP in 

kindergarten was predictive of a steeper growth trajectory in mathematics compared to students 

who reached proficiency in first grade.  Both Greenfader (2017) and Wang (2017) used the 

ECLS-K: 2011 dataset to investigate mechanisms of achievement patterns among Hispanic 



 

 

22 

22 

students.  The results of these studies suggested not only enduring relationships between English 

proficiency and mathematics achievement, but unique pathways to mathematics knowledge that 

are consistently related to language across developmental and competency levels in mathematics 

and native language. 

Mathematics Cognition and Language 

The mechanisms behind relationships between mathematics skills and language continue 

to prove somewhat elusive, although more recent research is strengthening the connection, 

particularly in the early childhood education context (LeFevre et al., 2010; Pupura & Ganley, 

2014; Purpura & Logan, 2015; Purpura & Reid, 2016).  Recent experimental work has even 

established a causal relationship between mathematics language and mathematics performance 

among preschool (Purpura, Napoli, Wehrspann, & Gold, 2017) and kindergarten children 

(Hassinger-Das, Jordan, & Dyson, 2015).  These experimental studies have focused on training 

students in mathematical language; however, language has a much broader cognitive role in 

mathematics beyond the domain-specificity of mathematics vocabulary.   

Much of the understanding of the basic number system comes from the triple-code model 

(Dehaene, 1992), which posits three independent “codes” of number representation.  The first 

two codes relate to the storage of number in verbal and Arabic format.  These two formats 

support the functioning of the exact number representation system and support exact, symbolic 

arithmetic functions.  The third code, the approximate number system (ANS), supports 

representation of magnitude and quantity.  The ANS develops independently of language and is a 

shared quality with non-human mammalian and non-mammalian mathematical cognition 

(Dehaene, 2011).  Conversely, the verbal and Arabic codes are supported largely through 

language and the mapping of approximate quantities to discrete, exact representations of number.  
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Given the emphasis on the phonologically- and symbolically-encoded exact number 

representation codes, language is potentially a high-leverage factor in the development of exact 

arithmetic skills. These skills are the basis of mathematical development in formal school 

(though the early ANS system alone is predictive of school-aged mathematics ability [Mazzocco, 

Feigenson, & Halberda, 2011] and the interrelationship of exact and approximate number 

representations potentially lies at the center of specific learning disorder in mathematics [Noël & 

Rousselle, 2011]).   For example, Nys, Content, and Leybaert (2013) recruited a sample of 

students with specific language impairment (SLI) as well as non-SLI controls to compare on 

approximate and exact calculation tasks.  As the authors note, their findings were consistent with 

the triple-code model: approximate number functions remained in-tact among SLI participants, 

though they exhibited consistent deficits in exact number functions compared to controls.  This 

suggests that deficits in exact number arithmetic may be at least in part attributable to language 

ability.  Other research offers more general insight; Gelman and Butterworth (2005) noted that 

“… it is one thing to hold that language facilitates the use of numerical concepts and another that 

it provides their causal underpinning” (p.  9).  This viewpoint is consistent with many of the 

ideas advanced in Dehaene (2011), specifically that language promotes the syntactical and 

functional purposes of numbers.  Recent evidence confirms this role of the language structure in 

potentially facilitating mathematics learning (Chow & Ekholm, 2019), providing alternative 

evidence to the well-established role of general language vocabulary in predicting mathematics 

performance by showing that language syntax, over and above multiple other domains of 

language, is the strongest predictor of latent mathematics performance (comprised of 

equivalence, problem-solving, and calculation measures) among elementary students (b = 0.18, 

p < .05).   Nevertheless, as much as language may mediate and/or moderate the extent to which 
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learners are able to categorize, synthesize, calculate, and ultimately remember mathematics 

functions, language on its own does not hold the key to the basic number system.  Yet it does 

play a vital role in acquiring and storing numerical information (Dehaene, 2011; LeFevre et al., 

2010) and understanding mathematics (Vukovic & Lesaux, 2013).  The evidence as to whether 

that occurs through accessing the general structure (Chow & Eckholm, 2019) or vocabulary 

(LeFevre et al., 2010; Vukovic & Lesaux, 2013; Vukovic et al., 2014), however, requires further 

scrutiny.   

To investigate the specific role of language in mathematical knowledge, researchers often 

study bilingual-proficient individuals to analyze the extent to which language mediates and/or 

moderates mathematics learning and problem solving (Dehaene, Spelke, Pinel, Stanescu, & 

Tviskin, 1999; Marsh and Maki, 1976; Spelke & Tsivkin, 2001; Venkatraman, Siong, Chee, & 

Ansari, 2006).  In their seminal work, Marsh and Maki (1976) recruited Spanish-English 

bilinguals to solve simple addition problems in either their preferred or non-preferred language.  

They found that the speed with which participants responded with answers was quicker in the 

preferred language; however, the mechanism through which this was hypothesized to occur was 

translation.  For these participants, it was quicker to translate the arithmetic processes into the 

preferred language rather than answer in the non-preferred language.  Spelke and Tsivkin (2001) 

conducted research similar to Marsh and Maki (1976) but additionally distinguished between 

exact and approximate number calculations.  Russian-English bilingual individuals who were 

trained to answer exact number arithmetic (as opposed to approximate) calculated their answers 

quicker in their native language in comparison to their second language.  When these students 

answered questions involving approximate arithmetic, the speed of calculation was more or less 

equal between the two languages.  Venkatraman et al. (2006) used similar methods of exact 
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versus approximate arithmetic calculations to study the neurological processes underlying these 

differences in the level of language dependency of numerical computations.  This study provided 

evidence for a biological basis to the nature of how language relates to arithmetic.  Specifically, 

there might be independent brain regions implicated in language switching of exact and 

approximate arithmetic.  Van Rinsveld et al. (2016) examined arithmetic and bilingualism among 

secondary and post-secondary students (seventh grade through early college).  Their results 

suggested that when students were primed with a “language context” (i.e., being asked to 

evaluate a true/false question) in their second language, they solved an arithmetic problem faster 

than without the language context (η2 = .067).  However, this effect did not hold for students’ 

primary language: the presence or absence of a language context did not alter the speed with 

which the arithmetic was completed (η2 = .001).  Additionally, complex problems were 

completed quicker with the language context than without (η2 = .065), though this language 

effect did not hold for simple problems (η2 = .001).  Across these studies, both the nature of how 

the problem is solved (i.e., exact or approximate solving), the language of problem solving and 

the conditions under which these problems are solved (e.g., the language context) appear to 

influence, or at the very least relate to, simple arithmetic.  These factors have important 

instructional implications in that language has inconspicuous effects on tasks that are, on face the 

of it, seemingly not rooted in language.   

Van Rinsveld et al. (2017) found no language differences in solving simple addition 

problems, although students performed better at complex addition in their native language 

(German) than second language (French).  This line of research suggests multiple ways in which 

second-language learners (specifically bilingual students) encode mathematical information, and 

the form of long-term storage of such information seems to moderate the relationship between 
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language of instruction/stimuli and mathematics performance.  Van Rinsveld et al. specifically 

suggested that for simple arithmetic, the manner in which the mathematical content is 

encountered modulates the form of encoding.  In the context of Luxembourgish schools in which 

students learn both German and French, the authors highlighted the likely pattern of that students 

learn German earlier than French (and thus learn mathematics in German), although students 

learn mathematics in French likely out of necessity (Van Rinsveld et al., 2017, p.  24).  The type 

of problem-solving in which students are prompted to engage then moderates the relationship 

between language, type of encoding, and behavioral mathematics performance, as indicated by 

students’ better complex addition performance in German compared to French.  Specifically, the 

authors drew on prior fMRI work (Tang et al., 2006) to conclude that the language in which 

arithmetic information was encoded (e.g., in German) may subsequently affect how such 

information is retrieved (e.g., in French).   

Distinguishing among types of mathematical cognition, Vukovic and Lesaux (2013) 

found that language does not play a significant role in the cognitive processes affecting strictly 

numerical cognition (e.g., arithmetic) among six- to nine-year-old children.  However, they 

provided evidence that language may promote understanding of mathematics, a trend that they 

observed across both ELL and EPS groups.  Thus, the language-based information used to solve 

mathematical tasks might be more heavily rooted in the underlying understanding that students 

generate rather than the overlap of numerical and linguistic cognition.  Vukovic and Lesaux’s 

(2013) findings, however, do not provide evidence of neural mechanisms of language differences 

as Van Rinsveld et al. (2017) and Venkatraman et al. (2006) do.  As such, it is difficult to 

determine the extent to which language facilitates comprehension of mathematics, as the 

language of instruction and language of mathematics learning may moderate the role of language 
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in acquiring mathematical knowledge.  Language as a mechanism for comprehending 

mathematics may theoretically account for an equal amount of variance or similarly predict in 

mathematics performance across linguistic groups, though the paths through which this variance 

is explained may differ between groups (i.e., there are different variables mediating the 

theoretical link between language and mathematics performance).   

Taking this evidence together, it is unclear what might be the source of this variation in 

cognitive storage and representation of mathematical information.  The manner by which 

mathematics knowledge is encoded potentially varies across language groups, which then would 

potentially alter the manner by which students leverage their mathematical knowledge to solve 

problems.  Based on the developmental research on the exact and approximate number systems 

and the role of language in developing basic mathematical representations, it would seem that the 

capacity to maximize exact number functions as an extension of the ANS can be in part 

attributable to language, regardless of whether individuals are monolingual, bilingual proficient, 

or learning a second language.  However, given the relationships identified between language 

and exact versus approximate arithmetic among bilinguals, ELLs may at times encode 

mathematical content in a perceptually different manner.  By extension, it seems intuitive that the 

manner by which these number representations are utilized to execute tasks in either L1 or L2 

may depend on the extent to which L1 and L2 influence the storage of mathematical information.  

That said, because of the overlap of language and culture, there are many socioecological factors 

tied to language groups that undoubtedly relate to students’ mathematical performance, 

development, and cognition.   
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Confounders of Mathematics and Language Development: Socioeconomic Status and 

Social Context 

Although many studies have detailed bilingual mathematics problem solving, many of 

these studies (e.g., Van Rinsveld et al. 2016, 2017) conducted their research among a select 

group of bilinguals that did not represent the educational, social, or developmental context of 

second language learners (specifically, ELLs) in American schools.  As such, many studies 

focusing on ELLs in American education account for social and economic indicators in their 

analysis, especially when utilizing large datasets.  For example, Roberts and Bryant (2011) found 

that status (SES) may be a more effective predictor of mathematics achievement than language, 

at least throughout elementary school.  These authors found that student-level SES was a better 

predictor of mathematics achievement than L1, with school-level SES, measured as the 

proportion of free-reduced lunch-eligible students attending the school (as a proxy for school 

resources and context), accounting for a significant proportion of mathematics achievement 

growth (not separated by language grouping).  However, the important limitation to this work is 

that the authors included only students proficient in oral English at the end of kindergarten or 

reached proficiency during the course kindergarten.  This is an important distinction in how this 

research fits into the broader literature, in that non-English proficient students are a main focus 

of educational programming and academic intervention.  Although SES is a potent predictor 

according to research, it may not be any better of a predictor than other barriers to academic 

performance, such as low English proficiency, given that English proficiency is a key gateway to 

accessing academic content.  Nevertheless, Halle et al. (2012) also showed that multilevel and 

multifaceted characteristics predicted the timing of reaching English proficiency (at kindergarten 

entry versus end of first grade), such as classroom environments (e.g., amount of time spent on 



 

 

29 

29 

reading), language barriers inhibiting home-school connections, parent education level, and 

teacher training in child development.  These data underscore the ecological variables underlying 

second language proficiency development and the extent to which context interacts with 

individual characteristics to drive developmental patterns.  Although these socioeconomic and 

sociocultural factors are vital to understanding the ELL demographic and their learning 

characteristics, they are not the sole drivers of change.  To that end, it is important to study the 

factors that can be targeted directly within instruction and the school context (e.g., cognition, 

behavior) to improve mathematics outcomes considering these are the main factors driving the 

RTI model while recognizing the broader socioecological constructs that relate to ELLs’ 

mathematics development.   

Domain-Specific Predictors of Mathematics Achievement 

A number of studies identify the early predictors of mathematics achievement, although 

few of them directly address language as a developmental predictor.  That said, this research is 

useful in understanding the nature of the domain-specific (i.e., early mathematics) indicators of 

performance in mathematics.  To start, Duncan et al. (2007) conducted a well-known study 

across six large longitudinal datasets indicating that mathematics, with an effect size of 0.34, is 

the strongest predictor of later academic achievement.  Other studies examine more specific 

subskills of mathematics that are predictive of positive mathematics skills growth.  Jordan et al. 

(2007) investigated the predictive value of number sense in kindergarten on first-grade 

mathematics achievement.  Their findings indicated that growth in number sense (i.e., counting, 

knowledge of numbers, and simple addition/subtraction) across kindergarten and first grade, in 

addition to number sense skills in kindergarten, explained a large portion of mathematics 

achievement in first grade (R2 = .66).  Extending the predictive value of number sense, Locuniak 
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and Jordan (2008) found that kindergarten number sense predicted second-grade calculation 

abilities more effectively than demographic and cognitive characteristics or reading abilities (R2 

= .42).   

Comparing the development of different mathematics abilities, Fuchs, Powell, Cirino, et 

al. (2014) conducted a randomized controlled trial of a second-grade calculation skills 

intervention and a word problem solving intervention to investigate whether calculation or word 

problem solving abilities contributed differentially to the development of pre-algebraic 

knowledge.  Their findings suggested that word problems significantly contributed to the 

development of mathematics skills compared to a control (ES = 1.36) and the calculation 

intervention (ES = 1.32).  Interestingly, the calculation intervention did not appear to predict pre-

algebraic knowledge more effectively than the control condition.  Relatedly, equals sign 

knowledge significantly predicted two measures, solving equations and functions, of fourth 

grade algebra knowledge (Matthews & Fuchs, 2018), although again the extent to which general 

language or ELP among ELLs predicated equals sign knowledge was not directly examined.  

Other earlier childhood predictors of late elementary mathematics (grade 5) performance 

included counting and cardinality, patterning, and geometry, although counting and cardinality 

emerged as the strongest predictor of grade 5 mathematics performance (b  = 0.42; Nguyen et al., 

2016).  However, Watts et al. (2017) found that a preschool curriculum designed to increase 

counting, geometry, and patterning skills did not directly improve stable aspects of mathematics 

skills over time; rather, it increased mathematics performance directly after the intervention and 

then faded out beyond that period.  Together, these pieces of evidence suggest that different 

mathematics content areas are differentially longitudinally predictive.  Across studies, basic 

number sense emerges as one of the strongest predictors of long-run mathematics achievement, 
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with fraction knowledge and word problems representing the next steppingstone in the 

acquisition of core mathematics skills.  Although these studies are highly informative, few of 

them directly address early longitudinal predictors of mathematics among ELLs.   

Domain-General Predictors of Mathematics Performance and Relationships with 

Language 

Empirical studies consistently point to working memory as a key developmental predictor 

of mathematics skills (Bull, Espy, & Wiebe, 2008; Geary, 2011; Geary, Hoard, Nugent, & 

Bailey, 2012; Cragg, Keeble, Richardson, Roome, & Gilmore, 2017; Geary et al., 2017; Lee & 

Bull, 2016) as well as a moderator of mathematics intervention (Fuchs, Schumacher, Sterba, et 

al., 2014). Based on initial work by Baddeley and Hitch (1974), Gathercole, Pickering, 

Ambridge and Wearing (2004) established invariance of a three-factor model of working 

memory (which includes central executive, phonological loop, and visuospatial sketchpad 

elements) across ages six to 15. These factors, both independently and in concert, support the 

short-term holding and processing of information.  Working memory (both verbal and 

visuospatial elements) supports the development of mathematics fact fluency and problem-

solving procedures, whereas verbal working memory simultaneously predicts conceptual 

mathematics understanding (Cragg et al., 2017).  Cragg et al. additionally found that factual, 

procedural, and conceptual understanding also mediate the relationship between verbal working 

memory and general mathematics achievement over and above a direct relationship between 

verbal working memory and general mathematics achievement.  As the authors noted, the 

contribution of inhibition and shifting as components of executive functioning to components of 

mathematics skills as well as general achievement largely disappeared when controlling for 

working memory, indicating working memory is a critical cognitive mechanism in supporting 
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multiple domains of mathematics learning processes (facts, procedures, and concepts) and 

achievement.   

However, only a handful of studies address the relationship between working memory, 

language proficiency, and mathematics achievement (Greenfader, 2017; Swanson, Kong, & 

Petcu, 2018; Wang, 2017).  Building bilingualism and fostering second-language learning 

constitute a significant cognitive undertaking (Chen & Li, 2008; Cummins, 1979).  Supporting 

language learning is challenging at student, instructional, and policy levels, yet some studies 

show that early bilingualism presents a significant cognitive advantage over monolingualism 

(Bialystok, 2011; Bialystok & Martin, 2004).  This may suggest that there are distinct cognitive 

functions that relate to language learning, though the cognitive benefits of early bilingualism 

have come under greater scrutiny of late (Lukasik et al., 2018).  Studies supporting cognitive 

advantages to bilingualism show that strong bilingual abilities at an early age predicts inhibition 

ability, likely due to the competing demands of switching between languages and inhibiting one 

linguistic process in favor of another (Bialystok, 2011).  Other studies have focused on whether 

the “bilingual advantage” extends to all dimensions of executive functions.  Grundy and Timmer 

(2017) conducted a meta-analysis to establish the consistency of findings of bilingual advantage 

in working memory, establishing that being bilingual presented a moderate (ES = 0.20) 

advantage in working memory ability.  This study replicated a prior meta-analysis (Linck, 

Osthus, Koeth, & Bunting, 2014), establishing ES of 0.255 for the bilingual advantage in 

working memory ability, which was consistent across levels of bilingual proficiency, though the 

complexity of the working memory task (e.g., simple versus complex span tasks) partially 

moderated this effect.  Grundy and Timmer (2017), Linck et al. (2014), and Lukasik et al. (2018) 

mainly focused on bilingual adults, although this potential bilingual advantage has been shown to 
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occur early on.  As evidenced by computation tasks involving multiple languages (Spelke & 

Tviskin, 2001), there is a nuanced relationship between mathematical tasks and language 

whereby language does not necessarily account for the ability to conduct mathematical 

operations, though it appears that much of this information needed to execute these tasks travels 

through language-based cognitive mechanisms (Gelman & Butterworth, 2005; Van Rinsveld et 

al., 2016; Van Rinsveld et al., 2017).  As such, meaningful group differences between bilingual 

and monolingual children in executive functions may have significant implications for 

mathematics development, although the role of working memory in particular requires further 

examination. 

Working memory may also be a plausible actor in the development of mathematics skills 

among ELLs for theoretical reasons, not just intuitive reasons based on prior empirical findings.  

Cognitive load theory in education research (Sweller, Ayres, & Kalyuga, 2011) suggests that 

instruction and learning that strains working memory capacities impedes skill development (de 

Jong, 2009; Sweller, 1988).  Cummins (1979) posited that the influence of cognitive load plays a 

significant factor in the achievement of ELLs, suggesting that developing competencies in L1 

can help facilitate knowledge acquisition in L2 by reducing the cognitive capacity needed to 

consistently transfer information between two (or more) languages.  Indeed, Wang (2017) found 

that growth in working memory positively mediated the relationship between ELL status (coded 

as monolingual English proficient, bilingual proficient, and bilingual limited English proficient) 

and mathematics growth, such that ELLs categorized as having lower ELP were predicted to 

grow more in working memory, which then positively predicted mathematics growth through 

third grade.  Greenfader (2017) similarly used the ECLS-K:2011 and found that working 

memory was a stronger predictor of mathematics among Hispanic students  than English-
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monolingual White students.  Guglielmi (2012) provided evidence that the relationship between 

L1 in grades eight and 12 mathematics was mediated through L2 ability, suggesting cross-

language transfer.  Cárdenas-Hagan, Carlson, and Pollard-Durodola (2007) show this cross-

language transfer in letter sound and identification at an earlier age (kindergarteners), although 

they did not observe that L1-L2 transfer occurred for phonological awareness and oral language 

among students instructed in English.  Instructional context aside, Cárdenas-Hagan et al. and 

Guglielmi (2012) both showed, at varying developmental levels, that native language relates to 

developing second language abilities, which then go on to predict later achievement levels.  

Although neither study addressed the cognitive mechanism, this research further underscored the 

importance of L1 theoretically playing a cognitive role in acquiring L2.  Learning difficulties in 

mathematics may compound this language and cognitive load problem by further straining short-

term working memory and executive functioning.   

Findings from meta-analyses (Grundy & Timmer, 2017; Linck et al., 2014) and recent 

longitudinal studies (Greenfader, 2017; Swanson, Kong, & Petcu, 2018; Wang, 2017) underscore 

the importance of understanding the role of executive functioning across language groups, 

especially working memory given the unique variance it consistently explains in developmental 

studies of mathematics.  Students who are much lower in ELP may possess differential risk 

factors to lower mathematics performance over time, and it is possible language ability interacts 

with different dimensions of domain-general and domain-specific risk (poor mathematics 

performance).  As such, it is important to describe the current knowledge of dimensions of risk 

for poor mathematics performance over time and the topography of mathematics skill 

development among at-risk learners.   

Atypical Mathematics Development 
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Deficits in early numeracy skills (Chard et al., 2005; Jordan et al., 2006; Jordan, Glutting, 

Dyson, Hassinger-Das, & Irwin, 2012) and cognitive attributes such as processing speed (Moll et 

al., 2016) and working memory (Fuchs et al., 2005; Geary, 2011; Geary et al., 2017; Li & Geary, 

2013; Moll et al., 2016) are risk factors for the development of significant mathematical 

difficulties.  A multitude of studies have demonstrated the efficacy and effectiveness of early 

numeracy and number sense programs to prevent the compounding of mathematics difficulties 

over time (Codding et al., 2011; Fuchs et al., 2005; Jordan et al., 2006; Jordan et al., 2012).  The 

Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (American Psychiatric 

Association, 2013) employs the term SLD with impairment in mathematics (i.e., mathematics 

SLD) to encompass a variety of barriers to typical mathematics skill development; the term 

dyscalculia was previously used to refer to this diagnosis and still is used frequently in the 

literature.  These barriers may include problems related to mathematics facts fluency, 

computation, and numeracy (American Psychiatric Association, 2013).  Prevalence of 

mathematics SLD ranges from 5 to 15% (American Psychological Association, 2013).  

Neurodevelopmental disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD), SLD 

with impairment in reading as well as anxiety, and language deficits may be important secondary 

or co-occurring factors in mathematics SLD (Kaufman & von Aster, 2012). 

A number of theories contribute to the current understanding of mathematics skills 

deficits.  Landerl, Bevan, and Butterworth (2004) presented a number of working memory, 

numerical, and spatial-processing tasks to eight- and nine-year-old children with either reading 

SLD, mathematics SLD, or co-occurring reading and mathematics learning disorders.  Although 

their study was more formative research and was ultimately unable to identify the relationships 

between working memory, verbal memory, numerical ability, and reading, they presented 
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various findings associated with task-based deficits that children with mathematics SLD face.  

One significant finding was that children with mathematics SLD and reading plus mathematics 

SLD performed significantly slower than a control group and a reading SLD group on a number 

comparison task (no effect size reported).  Similarly, children with mathematics SLD and 

reading plus mathematics SLD performed slower than controls and children with just reading 

SLD in a variety of number sequencing tasks (counting 45 to 65, 2 to 20, 20 backward to 1).  

Interestingly, among the contrasts conducted to follow-up with their ANCOVA analyses, no 

groups differed in counting from 1 to 20.  However, no significant differences were detected 

between experimental groups on a dot comparison task involving counting a set of either 1-3 

dots or 4-10 dots.  This study significantly contributed to the theoretical evidence suggesting that 

impairments specifically relating to numeracy and quantity characterize mathematics learning 

difficulties.  As the authors noted, their evidence corroborated findings from neuropsychology 

and cognitive neuroscience (Dehaene, Dehaene-Lambertz, & Cohen, 1998; Dehaene, Piazza, 

Pinel, & Cohen, 2003).  Again, language proficiency was not controlled for or modeled as a 

mechanism of their observed findings, limiting these results in informing practice for 

linguistically diverse students.   

Despite the evidence presented above, the cognitive neuroscience field faces a divide 

over the cognitive basis of mathematics learning difficulties.  A number of studies (e.g., 

Andersson & Lyxell, 2007; Geary, Hoard, Nugent, & Bailey, 2012; McLean & Hitch, 1999; 

Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013) have leveraged evidence against the magnitude 

processing camp, making a cogent argument that a large portion of problems in mathematics 

learning may be attributable to deficits in verbal, visual-spatial, and central executive 

components of working memory.  Both verbal and visual-spatial working memory have been 
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identified as components of mathematics learning disorders (Swanson & Zheng, 2014).  

Importantly, Szucs et al. (2013) identified visual-spatial working memory as one  key deficit 

among individuals with mathematics SLD, leveraging evidence against studies suggesting a 

general magnitude processing perspective:  

It is noteworthy that Landerl et al. (2004) is one of the most often cited studies in support 

of the MR [magnitude representation] theory.  However, that study merely demonstrated 

that DD have slower magnitude comparison speed than controls, which can happen for 

many reasons.  (p.  2675)   

The working memory argument, at a basic level, posits that impairments in numerical ability 

relate to impairments to accurately accessing learned information, manipulating that information, 

then systematically and efficiently carry out the task at hand.  Thus, given the roles of 

phonological processing, language, as well as visual-spatial processing in early mathematics and 

in predicting mathematics trajectories (Li & Geary, 2013; Geary et al., 2017), deficits in verbal 

and visual-spatial processing are an unsurprising culprit in impeding mathematics learning.  

Swanson et al. (2018) extended such work to ELLs with mathematics difficulties, showing that 

growth in working memory was related to mathematics computation growth among English-

Spanish proficient students.  However, this was not the case among low-proficiency ELLs, 

indicating that the risk factors among low-proficiency ELLs with mathematics difficulties may 

take on a different profile than more English-proficient ELLs.  Nevertheless, working memory 

played an important role in explaining variance in computation growth across all mathematics 

and language proficiency categories.  Yet such findings must undergo corroboration in other 

studies given the varying definitions of ELLs in the research literature as well as in policy across 

states and school districts.  Moreover, there is additional need to investigate these domain-
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general connections because working memory and language play meaningful role in 

mathematics development for typically and atypically developing children in mathematics and 

therefore represent key components in mathematics, seemingly regardless of skill level.   

 In general, these domain-specific and -general risk factors suggest that schools can 

address early number difficulties using multidimensional, focused screeners to identify and 

predict risk.  As Clarke, Baker, Smolkowski, and Chard (2008) identified, kindergarten growth in 

skills measured on CBM, specifically quantity discrimination (e.g., discriminating between the 

larger of two numbers), predicted higher achievement on a standardized criterion measure.  

Additionally, static measurement of early numeracy via CBM as a whole has well-established 

concurrent and predictive validity (Clarke et al., 2014) for students at risk for mathematics 

difficulties.  Growth on these componential numeracy skills is necessary to demonstrate adequate 

instructional response, and a lack thereof suggests the need for tiered intervention (Clarke et al., 

2008; Fuchs et al., 2005).  Later on, another risk factor in developing mathematics development 

is deficits in word problem solving (Fuchs, Powell, Cirino, et al., 2014) and fraction 

understanding (Resnick et al., 2016; Rinne, Ye, & Jordan, 2017).  Given the sequence of 

mathematics skill development, with number sense leading to calculation ability which then 

forms the algorithmic basis for understanding word problems and pre-algebraic knowledge and 

concurrently fraction understanding, early identification and intervention is integral to 

prevention.  And, especially given recent evidence that early intervention promotes students use 

of prior knowledge to increasingly acquire new mathematical knowledge (Watts et al., 2017), it 

is even more critical that students at risk for SLD in mathematics receive appropriately tiered 

instruction as, on top of content knowledge deficits, they may be less efficacious at recruiting 



 

 

39 

39 

and acquiring knowledge for problem solving given the deficits in executive functions 

(especially working memory) consistently observed among at-risk learners.   

This further underscores the need to establish effective procedures and practices of RTI 

in mathematics for ELLs given the additional contextual, cognitive, and domain-specific 

variables that may impact their learning both positively and negatively.  In essence, although 

literature has identified profiles of risk in mathematics learning, this infrequently accounts for 

students with limited ELP (with the exception of studies such as Davis & Powell, 2017; Doabler, 

Clarke, Kosty, et al., 2016, Doabler et al., 2019, and Swanson et al., 2018).  Though similar 

patterns of deficits in mathematics knowledge may arise across language groups (e.g., poor 

number sense in kindergarten is likely to be a common risk factor regardless of language), such 

risk factors may be qualitatively distinct, requiring researchers and practitioners to attend to the 

qualities of learning factors (e.g., deficits in multiple areas processing speed, language, working 

memory, level of mathematics knowledge in different areas) just as much as the degree of the 

deficit in grade-level performance.   

 An important aspect of this literature to note is that few studies investigate the potential 

unobserved patterns of development among ELLs, though a handful of studies address 

unobserved trajectories in number sense (Jordan et al., 2006; Jordan et al., 2007) and fraction 

knowledge development (Resnick et al., 2016; Rinne et al., 2017).  These prior studies are highly 

informative in establishing a general sense of what constitutes “at risk” developmental patterns, 

though it is necessary to understand the profile and distribution of growth trends specifically 

within ELLs to explore if these ELL patterns match the more general profiles of mathematics 

growth mixture distributions.  That said, the detection of these is not directly related to 

identifying of mathematics difficulties or learning disorders.  What they are informative for, 
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however, is distinguishing among qualitatively distinct development profiles that are suggestive 

of at risk developmental patterns.  Detection of such profiles based on those qualitative factors 

across grades may then be mapped onto current knowledge of how mathematics difficulties and 

learning disorders function over early and intermediate elementary school, informing assessment 

and intervention practices.   

Types of Mathematical Knowledge 

Although the focus of much of the literature review up to this point has been focused on 

explanatory mechanisms of achievement gaps between at-risk math learners and typically 

developing ELLs and EPSs, it is also important to take a broader, developmental perspective on 

how learners acquire mathematics skills.  This is important not only to broadly contextualize 

what predicts math achievement at a cognitive level, but it provides insight into the ways in 

which knowledge and skill acquisition interact with factors that are exogenous and endogenous  

to the student.   

 Acquiring mathematics skills and knowledge requires both conceptual and procedural 

knowledge (Rittle-Johnson, Siegler, & Alibali, 2001).  As Rittle-Johnson et al. (2001) discussed, 

there existed “concepts-first” (Byrnes & Wasik 1991; Byrnes, 1992) or “procedures-first” 

(Siegler, 1991) theories, which argued that concepts or procedures preceded the development of 

the other skill.  Although experimental evidence seemed to substantiate both theories, Rittle-

Johnson et al. (2001) provided causal evidence that these processes and skills reciprocally and 

simultaneously impact each other, and that the representation of the problem in working memory 

mediates the development and reciprocity of the two.  However, research over the past decade or 

so has yet to settle on definite properties of either concept, making the measurement of either 

domain of mathematical knowledge challenging (Baroody, Feil, & Johnson, 2007; Crooks & 
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Alibali, 2014).  That said, Crooks and Alibali (2014) noted that the momentum of recent policy, 

curricula, and research is driven towards building conceptual understanding, particularly as it 

relates to indirectly building procedural knowledge.  Baroody et al. (2007) made a convincing 

case for this perspective, as they proposed a model for integrating conceptual and procedural 

domains.  Paraphrasing the authors, they discussed that procedural knowledge acquired in 

isolation of concepts (or with superficial connections to concepts) may lead to more inaccurate 

problem solving or strategy use (Baroody et al., 2007, p. 126).  Recent tier-2 intervention 

approaches in kindergarten build on the reciprocal nature of concepts and procedures (Clarke, 

Doabler, Smolkowski, Baker, et al., 2016; Clarke, Dobaler, Smolkowski, Nelson, et al., 2016), 

both of which are often deficits in students with or at risk of specific learning disorder in 

mathematics.  Results of randomized trials indicated immediate, but not long-term, efficacy of 

the ROOTS curriculum across a number of fluency- and conceptually-based assessments 

(Clarke, Doabler, Smolkowski, Baker, et al., 2016; Clarke, Doabler, Smolkowski, Nelson, et al., 

2016).   

Although the studies above provide concrete evidence for these conceptual and 

procedural processes in typical and at-risk individuals, it is still unclear as to how these concepts 

generalize to ELLs, for whom the addition of language may mediate and/or moderate 

mechanisms of knowledge and skill acquisition.  As an example, Rittle-Johson et al. (2001) 

stated that representations of knowledge are critical in relating conceptual and procedural 

understanding. However, the added cognitive load of language barriers may impact how these 

representations are generated and utilized.  If the student is at risk for mathematical difficulties 

(independent of any language barriers), language and executive-functioning deficits could 

potentially cascade to severely limit a student’s ability to meaningfully create representations of 
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information needed to connect the underlying concept of a problem with the strategy used to 

execute it.  Additionally, these processes may differ significantly across mathematical domains.  

The mechanisms of developing procedural and conceptual understanding may differ more in 

kindergarten than in third grade for ELLs, as the language demands might be much more 

challenging; learning cardinality and quantity-symbol correspondence assumedly differs 

significantly in the language needed from prealgebraic concepts, fractions, and word problems.  

Although evidence suggests that language could be important for responsiveness to mathematics 

interventions across many student demographics and skill levels (Doabler, Clarke, Kosty, et al., 

2016; Doabler et al., 2019 Powell et al., 2017), problem representation, as well as the ways in 

which procedural and conceptual understanding reciprocate, may appear different for students 

navigating second language learning and barriers.  Even if students are assessed in their 

knowledge in their native language, instruction likely is not fully in their native language, at 

times requiring students to transfer knowledge learned in or translated from a second language 

back into a native language to more fully understand the tasks and concepts at hand.   

Instructional Factors  

Although computation itself is not inherently language based (Gelman & Butterworth, 

2005), the mediums through which mathematics is communicated (oral, written, symbolic) are.  

On an instructional basis, mathematics is laden with academic language (Albers et al., 2013; 

Kersaint et al., 2013).  One major component of effective instruction for ELLs is developing this 

unique area of academic language (Gersten et al., 2007).  Relatedly, mathematics has a linguistic 

“’register’” composed of four different elements: vocabulary, syntax, semantics, and discourse 

(Kersaint et al., 2013, p. 43).  For example, regardless of whether actual mathematical 

computation utilizes language, teachers use content-specific vocabulary to teach the conceptual 
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and problem-solving skills needed for the arithmetic.  This content-specific, academic language 

only increases as students age and the conceptual and procedural bases of mathematics become 

increasingly computationally complex.  For example, it requires even more linguistic demand for 

a student to extract vocabulary information from the general syntax of a word problem, define 

the conditions of the word problem, and finally synthesize that information to form a coherent 

algorithm to complete the problem at hand (Kersaint et al., 2013).  Underlying these linguistic 

demands are, of course, the student’s mathematical knowledge needed to solve the problem.  On 

an instructional level, the explanations a teacher may use to teach addition, subtraction, 

multiplication, and division may be confounded and obscured by a students’ language 

proficiency (“oral discourse”; Kersaint et al., 2013).  A simple explanation of the number line, 

subtraction, or division may not be easily understood without making accommodations to meet 

the needs of proficiency levels or adjusting how the content is presented.  Jayanthi, Gersten, and 

Baker (2008) advocated for the use of explicit instruction techniques for at-risk mathematics 

learners, many strategies of which emphasize the opportunities to verbalize problem solving 

skills.  Doabler, Nelson, and Clarke (2016) further emphasized the components of explicit 

instruction, especially problem verbalization, as a key mechanism to helping ELLs at risk for 

mathematics difficulties build their mathematical knowledge component.  These instructional 

factors require students to have an adequate level of English proficiency to understand direct 

explanations of mathematical concepts in addition to synonyms and alternative explanations of 

those concepts, and techniques such as explicit instruction can help leverage ELLs’ nascent L1 

and L2 proficiencies to access rigorous mathematics content.  Doabler, Clarke, Kosty, et al. 

(2016) conducted secondary analyses of an RCT of a universal kindergarten mathematics 

curriculum specifically looking at the impact on ELLs’ mathematics achievement.  Their 
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findings indicated that the curriculum was effective for ELLs  (as it was for EPSs; Clarke et al., 

2011), and prior low performance in mathematics did not moderate these effects.  As the authors 

discuss, this did not close early achievement gaps between lower and higher performing ELLs 

based on pretest scores, though the curriculum effects are indicative of the role of language and 

instructional discourse in early mathematics learning.   

 Much of the curriculum and instruction research on this area focuses on the instructional 

components that best lead to student success (Loeb et al., 2014; Master et al., 2012), although 

little of that inquiry has focused on the mechanisms contributing to differential impacts on ELLs 

versus EPSs.  Some research, though, accomplishes this through qualitative methods.  Gutiérrez 

(2002) conducted a qualitative analysis of three high school mathematics teachers serving ELLs 

in a mixed Spanish and English classroom based on classroom observations, teacher interviews, 

and student interviews.  Gutiérrez distilled these strategies into a number of important 

characteristics, such as scaffolding prior knowledge and allowing students to use their primary 

language as necessary (especially with particularly cognitively demanding tasks).  More broadly, 

Gutiérrez also expanded on previous research by noting the importance of teacher understanding 

and empathy of linguistic background and diversity.  As aforementioned, additional teacher-level 

factors including training, professional development, and experience with ELLs are important in 

garnering ELLs’ learning strengths (Loeb et al., 2014; Master et al., 2012).   

Tiered intervention effects for at-risk mathematics learners.  Currently, there is a dearth 

in research in the area of identifying risk for math-related difficulties in ELLs, although 

assessment of mathematics among ELLs through summative measures has been well 

documented (Abedi, 2002; Abedi & Lord, 2001).  Recently, research has employed more 

prevention-based techniques to address mathematics difficulty among kindergarten-aged ELLs 
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(Doabler, Clarke, Kosty, et al., 2016).  Although this research focuses on addressing 

mathematics difficulty, it still does not propose a better system by which these students can be 

identified.  Intuitively, the earlier students can be identified, the better.  Operating within a 

prevention model is a major component of RTI; however, Doabler, Clarke, Kosty, et al. (2016) 

found that the curriculum that was under investigation (i.e., Early Learning in Mathematics 

[ELM]) produced equally positive effects for students across skill levels (Hedge’s g: Test of 

Early Mathematics Ability-Third Edition [TEMA-3] = 0.30 with statistically significant effect, 

Early Mathematics Curriculum-Based Measure = 0.18 without statistically significant effect).  

This finding is important in terms of the efficacy of this curriculum for kindergarten ELLs, yet 

the authors highlighted that these findings were contradictory to a previous study (Clarke et al., 

2011) that investigated the effects of ELM for students with mathematics learning difficulties, 

which found that ELM yielded stronger effects for students with lower prior mathematics 

achievement.  Doabler, Clarke, Kosty et al. rationalized their effect by noting that the explicit 

instruction components of ELM may be the important mechanism in helping ELLs and students 

with mathematics learning difficulties (and ELLs with learning difficulties) learn.  As a universal 

technique to prevent mathematics learning difficulties at an early age among ELLs, this study 

has significant implications that are greatly enhanced by the methodological rigor of their 

randomized trial.  However, fitting this curriculum into the context of screening measures may 

make it difficult to accurately identify the students considered at risk for mathematics difficulties 

if the effects are uniform across ability groups.  These uniform effects are undoubtedly positive 

among the ELL population as it would seem to suggest that mathematics learning difficulties and 

limited English proficiency can be equally balanced (instructionally) using techniques of explicit 
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teaching.  Additionally, these results seem to suggest that the language of mathematics is 

important for all students, not just those considered at risk.   

However, in a study of a tier-2 mathematics intervention, Doabler et al. (2019) found that 

ELLs’ ELP level did not significantly moderate the intervention effect at the .05 level, though 

the authors highlighted the potentially meaningful variation in the treatment effect across ELP 

scores may suggest at-risk ELLs with low ELP responded meaningfully stronger than those with 

higher ELP. Similar to Doabler, Clarke, Kosty, et al. (2016), though, prior mathematics ability 

did not moderate treatment effects among ELLs.  Such findings further underscore the role that 

language could play in treatment response and how it serves as an additional contributor to how 

mathematical knowledge is acquired and utilized.  To that end, language and the role of other 

domain-general abilities require further investigation to better understand factors that may 

contribute to response to instruction. 

The Present Studies 

 Many studies establish cogent correlational evidence for these language-mathematics 

relationships among ELLs (Chen & Chaloulb-Deville, 2016; Garrett, 2010; Greenfader, 2017; 

Roberts & Bryant, 2011; Wang, 2017); some studies even establish a causal relationship between 

language and mathematics (Hassinger-Das et al., 2015; Pupura et al., 2017).  However, 

integrating across many different disciplines and drawing on developmental, cognitive, 

assessment, and intervention studies, it is apparent that there is a significant lack of 

understanding regarding the patterns of mathematics development among ELLs, the domain-

general predictors (i.e., language and working memory) of those trajectories, and for whom these 

patterns may differentially unfold.  Additionally, despite the increasing work in this area, few 

studies extended this line of inquiry specifically to the RTI framework in which a prevention 
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focus is explicit in identifying student risk status (Burns, 2011).  Designing optimal prevention 

techniques requires an understanding of the developmental trajectory underlying skill 

development, stability, change within that developmental process.  Moreover, predictors of those 

developmental trends become critical to the provision of services to support academic, cognitive, 

and behavioral development.  Of those predictors, language is arguably the most critical factor 

among ELLs to investigate as a key leverage point in targeting mathematics intervention due to 

its obvious but nuanced and relatively understudied role in mathematics development.  

Understanding the relationship of ELP to developmental trends, however, also requires 

understanding the prior-established cognitive components that predict mathematics development. 

Working memory consistently emerges as a key player.   

The current studies merge these concepts in the following manner.  Evidence suggesting 

that language is critical to understanding mathematics (Vukovic & Lesaux, 2013), execution of 

different problem types (Spelke & Tviskin, 2001; Venkatraman et al., 2006), and progressing 

adequately with peers (Doabler, Clarke, Kosty, et al., 2016; Doabler et al., 2019; Halle et al., 

2012; Roberts & Bryant, 2011) can be merged with theories on cognitive load (Cummins, 1979; 

Sweller et al., 2011), mathematics knowledge types (i.e., conceptual, procedural; Baroody et al., 

2007; Crooks & Alibali, 2014; Rittle-Johnson & Alibali, 1999; Rittle-Johnson et al., 2001), and 

the general importance of mathematics for academic development (Duncan et al., 2007) to 

provide a framework for understanding potential mechanisms of how language and mathematics 

are related.  From a broader developmental perspective, the interactions of second language 

proficiency, general language, mathematics, and the ecology of schools necessitates a 

developmental systems and bioecological framework to contextualize growth in mathematics 

given the cascading relationships between social and educational context, cognitive, social, 
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emotional, behavioral, and academic functioning.  Language may be a critical mechanism for 

generating understanding of mathematical concepts (Vukovic & Lesaux, 2013), although 

language proficiency could be related to the rate at which both conceptual and procedural 

understanding (as a reciprocal relationship) are acquired, thereby accounting for the amount of 

change or gains students make in mathematics and, in turn, how children understand 

mathematics.  Thus, the long-term interdependent cycle of procedural and conceptual knowledge 

types building on each other may be mitigated (or accelerated) if language partially accounts for 

how students understand mathematics (e.g., Vukovic & Lesaux, 2013). Adding to this, executive 

functioning ability specifically has been implicated in the acquisition of specific types of 

mathematics knowledge (Cragg & Gillmore, 2014; Cragg et al., 2017) as well as bilingualism 

(Bialystok, 2011).  Thus, it is possible that executive functioning abilities may moderate how 

ELP is associated with mathematics by playing a role in how mathematical knowledge is 

acquiried and implemented, which could then predict trends mathematics growth over time.  

Complementarily, working memory may function differentially among ELLs and EPSs given the 

varying patterns of domain-general and domain-specific skills development.  A logic model 

depicting these long-term relationships between conceptual and procedural knowledge, ELP, and 

cognitive attributes is presented in Figure 1 below.  Although not all aspects (i.e., conceptual and 

procedural knowledge) are directly measured in the current data, they are assumed to be 

inherently implicated in the development of mathematical knowledge given the current 

instructional emphases and content of assessments in mathematics.  The unmeasured aspects of 

this model can serve as the basis for further empirical and theoretical investigation for ELLs and 

EPSs alike, as language serves as a general predictor of mathematics performance regardless of 

second language learning (LeFevre et al., 2010; Powell et al., 2017; Vukovic & Lesaux, 2013).  
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Figure 1.  Hypothesized logic model of mathematics growth and change over time for ELLs.   

Note. Dotted arrows indicate a feedback loop, whereby acquiring skills faster allows an individual to build conceptual and procedural 

knowledge quicker, though this growth diminishes over time for some students.  Information not included in the gray box is the 

subject of empirical investigation in the present studies.  
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The present investigation is divided into two studies.  The first study assesses differences 

in change patterns across time between ELLs and EPSs.  Much of the research related to 

mathematics achievement among ELLs compares achievement between ELLs and their EPS 

peers.  This study seeks to extend that line of research by employing novel forms of change 

modeling to better understand the nature of interindividual differences in intraindividual change 

in addition to offering a more practice-oriented approach to considering ELL characteristics.  In 

Study 1, I employ multiple group latent change score modeling (MG-LCSM; McArdle & 

Nesselroade, 2014) which allows me to analyze differences in growth patterns through fixing 

equality constraints across groups to test if the model is better fit without those equality 

constraints.  In doing so, I can directly test the differences in growth parameters across groups 

while modeling the change within each group separately.   

 Given the prior research on the role working memory may play across language groups 

(Greenfader, 2017; Swanson et al., 2018; Wang, 2017) and its relationship to mathematics, I also 

investigate the extent to which working memory may differentially predict mathematics 

development patterns net of other dimensions of executive functioning (i.e., inhibition and 

cognitive flexibility).  Both Greenfader (2017) and Wang (2017) addressed the role of working 

memory as mediators between language group and later outcomes (although Greenfader [2017] 

also examined how language group moderated working memory).  However, Study 1 addresses 

whether working memory skills at the end of kindergarten differentially predict mathematics 

development patterns of through grade four.   

In Study 2, I exploratorily investigate heterogenous growth patterns utilizing growth 

mixture modeling (GMM) as well as predictors of heterogenous mathematics development, 

specifically growth in English language proficiency in kindergarten, working memory, and the 
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interaction between ELP gains and working memory.  Utilizing data from Spring of first grade 

through Spring of fourth grade, I test the patterns of growth among students classified as ELLs in 

kindergarten once the majority of these students are fully assessed on their mathematics skills in 

English.  The primary goal of this study is to detect which students may potentially be classified 

as at risk based on their initial level in their growth trajectory and the ensuing pattern of growth.  

Prior research has exhibited the ways in which the GMM technique is useful for identifying 

students who are stable in their trajectories over time or exhibit differential patterns of growth 

(Kaplan, 2002).  Students who exhibit more stable, low-growth patterns may indicate academic 

risk by not acquiring skills at a normative pace to equip them with the necessary skills for long-

term mathematics success, especially as students transition into fraction and algebra learning.  

However, stability in membership to growth trajectories can also be tested in mixture modeling.  

These models, called latent markov chain models (Kaplan, 2008) or regime switching models 

within a growth model (Chow et al., 2013), are particularly useful to investigate questions of 

discontinuity in development, provided heterogenous patterns of growth exist.  Overall, Study 2 

investigates the extent to which the interaction of early language proficiency growth and working 

memory predict growth in mathematics trajectories in middle elementary school and stability in 

that growth in an effort to unpack the role of working memory in the relationship between 

English language proficiency and mathematics achievement trends.   
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CHAPTER III: STUDY 1 

Research Questions and Hypotheses 

Research Question 1 

Does the pattern of mathematics growth from the Spring of kindergarten to the Spring of 

grade 4 differ significantly for ELLs and EPSs in terms of additive and proportional change? 

Research utilizing ECLS-K: 1999 data showed that ELLs proficient in English by kindergarten 

entry exhibited steeper growth in mathematics relative to EPS peers through grade eight (Halle et 

al., 2012).  However, these studies (in both conditional and unconditional models) employed a 

linear slope in their growth model.  Multiple studies have exhibited the decelerating of academic 

growth over time, often in a piecewise (Kohli, Sullivan, Sadeh, & Zopluoglu, 2015), nonlinear 

(Grimm, Ram, & Estabrook, 2010), or quadratic (Roberts & Bryant, 2011) manner.  Linear 

models of growth, such as Halle et al. (2012) who showed English-proficient (at kindergarten 

entry) ELLs exhibited steeper growth through grade eight in math compared to EPS peers, 

potentially omit meaningful patterns of variability across development.  A similar story can be 

told with Garrett’s (2010) and Wang’s (2017) results, in which linear trajectories were favored as 

the primary functional form of development through grades eight and three, respectively.  In the 

current study, I hypothesized that the intercept as well as constant and proportional change 

components of the MG-LCSM will differ significantly between groups.  Specifically, I predicted 

that ELLs will be significantly lower on their intercept, exhibit steeper growth than EPSs over 

early elementary, then – as has been identified in previous literature – decelerate in academic 

growth toward the end of intermediate elementary.  I predicted that ELLs, relative to earlier 

change, will decelerate more than EPS peers, which may potentially be attributable to the 

compounding of disadvantaged mathematics performance early on coupled with increasing 
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linguistic complexity of mathematics.  Recent work has shown the importance of recruiting prior 

knowledge to continually building mathematics knowledge (“state” levels) and enhance 

performance over and above “trait” levels, i.e., the portion of individual differences in 

mathematics performance level that remains stable over time (Watts et al., 2017).  Thus, given 

the multidimensional and sequential nature of mathematics development, early performance 

deficits portend poorer knowledge-building mechanisms, disadvantaging students’ capacity to 

recruit prior knowledge as building blocks for new mathematics concepts and procedures.  Early 

language barriers among less English-proficient ELLs may further inhibit the knowledge 

building and application process.  Compared to EPSs, these language and mathematics 

development factors together create more barriers to bridging early numeracy and arithmetic 

knowledge from early elementary to later algebraic thinking, fraction learning, and word 

problem solving, thereby differentially slowing performance gains on average. 

Research Question 2 

To what extent does working memory differ across ELLs and EPSs in predicting 

mathematics development patterns? This question is largely exploratory in nature given the 

limited research on the contribution of early working memory to mathematics development 

among lower-ELP ELLs versus EPSs, though recent work has shown that working memory is 

more strongly predictive of second grade mathematics achievement among Hispanic students 

and Hispanic students with lower early literacy performance (Greenfader, 2017).  The significant 

prior research on the relationship between working memory and mathematics among both 

typically developing (Geary et al., 2017; Lee & Bull 2016), at-risk children (Fuchs, Schumacher, 

et al., 2014; Swanson & Zheng, 2014), and ELLs (Swanson et al. , 2018) suggests that working 

memory plays a substantial role in explaining variation in mathematics achievement concurrently 
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and longitudinally.  However, because language has been consistently identified to be related to 

mathematics development, mathematics tasks may recruit memory resources in a different 

fashion over time for ELLs given the additional language load of mathematics tasks among 

ELLs.  In particular, early individual differences in working memory capacity may be 

differentially predictive of later mathematics development trends given this potential the 

relationship between language and working memory to compound over time in relation to 

mathematics.   

Study 1 Method 

 In Study 1, I utilized data from the Early Childhood Longitudinal Dataset: 2010-2011 

Kindergarten Cohort Public-Use data file (ECLS-K:2011).  These data are available from the 

National Center for Education Statistics website.  The ECLS-K employed a three-stage complex 

sampling design. In stage one, 90 primary sampling units (PSUs) comprised of counties were 

selected, followed by schools within PSUs in stage two, and finally students within schools in 

stage three .  In the kindergarten base year, study staff collected data from 18,174 students on a 

wide range of measures assessed at the student, parent, teacher, administrator, and school levels.  

These students were followed through the end of grade five, with 30% random samples taken in 

the Fall of first and second grade.  Students in the full ECLS-K: 2011 sample attended both 

private and public schools.  Trained study personnel administered direct child assessments. At 

the time of conducting the current research, only data through grade four were publicly available.  

Participants 

In Study 1, I utilized data only from students who attended public schools in the fall and 

spring of kindergarten and the spring of first through fourth grade. I used only public school 

students predominantly because the role of RTI (or similar models) in private schools is likely 
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highly variable (or nonexistent) and to remain consistent with prior analyses of academic 

development of ELLs (Roberts & Bryant, 2011).  Thus, the context of public schools is an 

important factor in this study.  Roberts and Bryant (2011) took a similar approach, additionally 

justifying that the context of private schools substantially different than  public schools.  I 

defined ELLs as the students whose parents reported that English was not the primary language 

at home (in kindergarten) and who were not fully English language proficiency in the Fall of 

kindergarten (discussed more below).   

Measures 

Mathematics.  The mathematics achievement measure in the ECLS-K: 2011 is a 

vertically-scaled, item-response theory (IRT)-based measure (Tourangeau et al., 2018).  

Narjarian et al. (2018b) reported that differential item functioning (DIF) tests revealed no 

significant impact of language on the item characteristics, suggesting that the same mathematics 

skill on each item was being assessed across Spanish and English administrations.   Students who 

were assessed in Spanish are discussed more below.  The mathematics IRT measure has an a 

estimate of between .92 and .94 across all rounds of assessment in the full sample.   

English Basic Reading Skills.   All students, regardless English proficiency, received 

part of the IRT reading measure in English called the English Basic Reading Skills (EBRS) 

measure.  Twenty items comprised this measure: 18 items on basic English literacy skills (e.g., 

letter-word identification, phonemic awareness) as well as two items from the Preschool 

Language Assessment Scale (preLAS) Art Show subset, which measures expressive vocabulary 

using pictures (Tourangeau et al., 2015a).  Because all students received the EBRS, all students 

also could obtain a score on the ECLS reading IRT measure, regardless of their actual routing 

through the multi-stage IRT assessment (Tourangeau et al., 2015a).  However, nine students who 
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were routed through the cognitive battery in Spanish did not have an IRT score, though they 

obtained a score on the EBRS of either 0 or 1.  As such, the EBRS was used as a covariate in all 

Study 1 analyses rather than the reading IRT measure, though students’ raw EBRS score does 

not reflect IRT dimensions such as item difficulty or the same content coverage of the larger 

reading assessment (e.g., reading comprehension; Tourangeau et al., 2015a).  Nevertheless, the 

EBRS data helps control for early native and second language reading (as opposed to oral 

language proficiency) abilities across and within groups.  For Fall 2010, the EBRS had a 

researcher-reported a of .87 (Tourangeau et al., 2015a). 

Socioeconomic status.  Socioeconomic status (SES) measured at baseline (i.e., 2010-

2011) is a standardized (M = 0, SD = 1) composite measure comprised of parent occupational 

prestige, income, and education level data (Tourangeau et al., 2015a).   

Pre-kindergarten care arrangement.  Pre-kindergarten care arrangement was a 

categorical variable with two levels indicating the type of care arrangements children received 

prior to entering kindergarten.  Parents provided these data on the kindergarten parent 

questionnaire (Tourangeau et al., 2015a).  This variable was turned in to a binary indicator 

variable with values related to whether the child received parental care only (1) or nonparental 

care (0) during the year prior to kindergarten. The majority of students with nonparental care 

arrangements attended center-based care programs (67%), with relative care in the child’s or 

relative’s home the next most frequent form of nonparental care (19%). 

Kindergarten type.  Kindergarten type was a dummy-coded variable indicating whether 

the child attending half or full day kindergarten in the Fall of 2010 (1 = full day, 0 = half day; 

Tourangeau et al., 2015a).  In half-day kindergarten, students attended morning or afternoon 
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classes; however, for the purposes of this study, I do not make a distinction between morning and 

afternoon half-day kindergarten.  

First-time kindergarten status.  Students in the kindergarten base-year sample of the 

ECLS-K: 2011 had data collected regarding whether they had previously attended kindergarten 

(Tourangeau et al., 2015a).  This is a dummy-coded variable indicating whether the student had 

previously attended kindergarten (1 = yes) or not (0 = no).  Many prior studies have focused 

analyses only on first-time kindergarteners; however, because the focus of this study was not 

related specifically to aspects of kindergarten entry of effects of kindergarten, first-time 

kindergarten status was used as a control rather than an exclusionary category.   

Age at kindergarten entry.  Age at kindergarten entry was measured in months 

(Tourangeau et al., 2015a).  Age at kindergarten entry measured age of students when they 

entered kindergarten for the first time and would likely help remove differences in individual and 

group differences that would be due to differential levels of mathematics development at 

kindergarten entry related to age. 

Sex.  Children’s sex was obtained from school records and parent-report (Tourangeau et 

al., 2018).  This variable was dummy-coded (0 = male, 1 = female). 

Race/ethnicity.  Race/ethnicity was obtained in the ECLS-K: 2011 data from parent 

report and school records (Tourangeau et al., 2018).  Eight categories were provided as response 

options.  These categories were transformed into eight dummy-codes to reflect each race 

category.  However, due to some very small cell sizes, especially among the students defined as 

ELLs, a number of categories were collapsed into a single race/ethnicity variable for the 

multiple-group models.  These race/ethnicity categories included students whose race/ethnicity 

was reported as Black/African American, American Indian, Native Hawaiian/Pacific Islander, 
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Asian, and two or more races.  This is predominantly a necessity of the modeling technique 

(described more below).  Because race/ethnicity is utilized as covariates in each group of the 

multiple-group model, regressing the slope and intercept of the change score model onto very 

small n or zero-cell race/ethnicity categories may become problematic.  By collapsing certain 

small-sample race categories into one, the same dummy codes can effectively be utilized in 

regressions within each group of the multiple-group model.  This may underestimate variance 

that can be distinctively attributed to certain racial/ethnic categories; however, the focus is 

accounting for race/ethnicity variance broadly as opposed to modeling group-specific 

contributions to the model.  Additionally, given the that the multiple-group aspect of the model is 

based on ELL-status is strongly confounded with race/ethnicity (i.e., the majority of ELLs in 

these data are of Hispanic descent), the multiple-group structure of the model is inherently 

accounting for a significant portion of the race/ethnicity variance in the outcomes of interest.  

The goal using the current race/ethnicity categories is to account for variance within each group.  

This is an important strategy as well, particularly among the ELL group.  Roberts and Bryant 

(2011) utilized the ECLS-K: 1999 cohort to analyze developmental trajectories in mathematics 

between native Spanish-speaking and native Asian-language speaking ELLs, finding significant 

differences between the two groups over time.  It is not the goal of the current study to model 

these differences in native language, although it is important to control for these differences in 

light of these prior findings. 

English language proficiency.  English language proficiency was assessed on the 

preschool Language Acquisition Screener (preLAS; Duncan & De Avila, 1998).  This measure is 

comprised of two oral language tasks, each with 10 possible correct responses.  The entire 

screener has a total raw score of 20, although the “Simon Says” task is weighted twice as much 
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as the “Art Show” task (Tourangeau et al., 2018).  The total weighted score is 30.  The raw 

number-right score (i.e., 0-20) for Fall 2010 has a a of .91 (Tourangeau et al., 2015a).  Students 

who did not score at least 16 out of 30 on the screener were deemed not English proficient for 

the purposes of assessment.  Those students who scored below 16 out of 30 on the preLAS and 

spoke Spanish were administered all cognitive assessments in Spanish besides the English Basic 

Reading Skills measure.  It is also important to note that the manner by which students were 

identified as ELLs in the current study does not align with how the ECLS-K:2011 researchers 

identified students who needed to take the Spanish version of the assessments or be excluded 

from assessment (e.g., some students not identified as ELLs still took assessments in Spanish).  

The definition of ELL in the current study was based on two factors: parent-report of home 

language in kindergarten (not English, English, or unable to choose primary language) and a 

score on the preLAS.  The ECLS-K: 2011 researchers used a publisher-recommended cutoff 

score of 16 to identify students who to take direct cognitive assessment in Spanish (among those 

who spoke Spanish).  However, this cutoff score represents a narrow subset of the non-native 

English speakers in the dataset who are highly limited in their English proficiency.  There is a 

large range to gaining English language proficiency that is not represented by utilizing such a 

low cutoff.  State accountability and growth assessments such as the ACCESS for ELLs measure 

(World-Class Instructional Design, 2014) assess English proficiency along a broad continuum, 

from not English-speaking at all to highly English proficient.  Thus, a higher cutoff was used to 

capture the larger variability in English language proficiency among ELLs that was more 

generalizable to the range of English proficiency found in a typical school district.   

To establish this cutoff, the distribution of the preLAS measure among students whose 

parents reported the home language was English or non-English (in kindergarten) was 
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investigated to extract an appropriate cut score that would adequately distinguish between 

students with high ELP and students who exhibited lower (but not only very low) ELP .1  The 

investigation into this cut score focused on two main elements: the extent to which the cut score 

distinguishes between EPSs who took the preLAS and students whose home language was not 

reported as English, and the distinguishability of the cut score within the non-English home 

language group from ELP  and limited ELP .  To establish these proficiency levels, I examined 

the distribution of Fall 2010 preLAS scores in the full kindergarten base year sample (N = 

12,425) using the sample weight WC_2P_2TZ0 with the corresponding primary sampling unit 

(WC_2P_2TZPSU) and stratum (WC_2P_2TZSTR) variables.   Table 3 displays the percentages 

of students within each band of English proficiency (I defined the bands for the purposes of this 

table).  A Pearson c2 test with Rao and Scott adjustment in the survey package of R (Lumley, 

2004; 2018) shows that the proportions of each category between the two groups are 

significantly (F = 541.66, numerator df = 2.77, denominator df = 443.31, p < .05).   

 

 

 

 

 

 

 

 
1 The preLASscreening measure in the ECLS-K: 2011 data consists of a receptive (Simon Says) and an expressive 

(Art Show) language task.  The Simons Says task score is weighted twice as much as the Art Show task. The score 
on the measure was generated using the formula described in the ECLS – K: 2011 K-4 User Manual: preLAS score 
= Art Show + (Simon Says*2).  The total weighted score on this measure was 30.  Refer to the K-4 User Manual 
(Tourangeau et al., 2018) for more information.   
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Table 2 

 

Percentages of Students in Language Proficiency Categories 

 Speaks English as 
Primary Home Language 

Language Proficiency Level Yes No 

English Proficient (³ 28) 86.01% 
(85.91%) 

33.05% 
(35.05%) 

Marginal English Proficiency (<28) 11.25% 
(11.29%) 

29.34% 
(29.23%) 

Limited English Proficiency (<23) 1.87% 
(1.90%) 

17.42% 
(17.41%) 

Very Low English Proficiency (<17) 0.88% 
(0.89%) 

20.18% 
(18.25%) 

Note.  Unweighted percentages in parentheses.         
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Figure 2 displays box plots and raw data points for preLAS scores by parent-reported 

primary language spoken at home (which was recorded in either the Fall or Spring of 

kindergarten).  Figure 3 displays the weighted boxplot using base-year sample weights that 

adjusted for student, parent, teacher, and before and after school program nonresponse.  

Comparing Figures 2 and 3, the quantiles of the unweighted data reflect similar distributions in 

the weighted data, though the boxplot whiskers for the weighted non-English speaking data are 

slightly different.  Examining Figure 1, clusters of scores emerge in the data, where the 

overwhelming majority of EPS students score at 26 or above.  Meanwhile, the median score for 

non-native English-speaking students is 25 (which is the lower whisker bound for EPS students).   

At and below a score of 22, there are proportionally few EPSs, while there is a relatively even 

distribution of students who spoke a non-English language at home between a score of 0 and 22.  

Given this breakdown of preLAS scores, the cut-point for defining ELLs was set at a score of 23.  

This represents what is thought to be a conservative estimate of the full range of English 

proficiency, given that assessments such as ACCESS and other state-level proficiency measures 

assess students who are likely English proficient, while also taking into account a large profile of 

language domains (i.e., reading, listening, speaking, and writing).  Based on this distribution, a 

cut score of 23 appeared to clearly distinguish ELLs who are limited in English proficiency 

relative to native English-speaking students (or students’ whose parents reported speaking two 

primary home languages).  In terms of the raw preLAS total score, the subpopulation of 303 

students who obtained weighted score of 22 or below obtained a maximum raw score of 16.  

Previous studies of ELLs using the ECLS-K:2011 utilized a raw cut-score of 16 to define ELL 

(e.g., Hartano et al., 2018; Wang, 2017; Wilkinson, 2017).  Despite the raw score cut point’s (16 

out of 20) similarity to the weighted cut-score in the current data, using the publisher-
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recommended weighting of the preLAS did not result in the same sample that would have been 

obtained using the total raw score because some students would have scored higher on the 

weighted metric (i.e., total score of 30).  Using a raw cut-score of 16 out of 20 resulted in a 

sample size of 350.  To adhere to the scoring protocol ECLS-K: 2011 researchers used to 

identify students who were to be assessed in Spanish, however, the weighted cut score of 23 was 

retained.   

That said, this attempt to capture a level of English proficiency beyond what has been 

typically represented in prior work by taking more explicit effort to define English proficiency in 

a nationally-representative sample of the kindergarten base year is significantly limited due to 

the simple fact that the preLAS is not nearly as comprehensive as the ELP assessments 

employed in schools.  In practice, the definition of ELLs employed in schools varies significantly 

across states; there is no objective, absolute level at which English proficiency is determined.  To 

that end, a relative proficiency approach such as this potentially reflects a more representative 

method of what constitutes English proficiency in school settings.   
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Figure 2.  Unweighted boxplots and raw data points of Fall 2010 kindergarten sample preLAS 

scores by primary home language.  

Note. Parents of students who reported more than one primary home language were included in 

“Yes” for the purposes of this study. Figure produced in ggplot2 (Wickham, 2016).
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Figure 3.  Weighted boxplots of Fall 2010 kindergarten sample preLAS scores by primary home 

language.  

Note. Parents of students who reported more than one primary home language were included in 

“Yes” for the purposes of this study. Figure produced using the survey package (Lumley, 2004; 

2018).
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Fall kindergarten teacher-rated attentional focus.  Students’ attentional focus was 

assessed using the attentional focus scale from the short form of the Children’s Behavior 

Questionnaire (Putnam & Robertson, 2006).  Teachers were asked to rate student behavior in 

response to scenarios over the previous six months.  Ratings were provided on a seven-point 

scale (1 = Extremely Untrue, 7 = Extremely True; Tourangeau et al., 2015a).  Higher scores 

represent greater attentional focus.  Composite scores were prorated such that respondents 

needed four or more responses to have a scale score, which was calculated as the mean of the 

items.  The scale has a reported reliability of .87 in the ECLS-K: 2011 data (Tourangeau et al., 

2015a).   

Fall kindergarten teacher-rated inhibitory control.  Students’ inhibitory control was 

assessed using the inhibitory control scale from the short form of the Children’s Behavior 

Questionnaire (Putnam & Robertson, 2006).  Teachers were asked to rate student behavior in 

response to scenarios over previous six months; ratings were provided on a seven-point scale of 

(1 = Extremely Untrue, 7 = Extremely True; Tourangeau et al., 2015a).  Higher scores indicate 

higher levels of the ability to restrain behaviors.  Composite scores were prorated such that 

respondents needed four or more responses to have a scale score, which was calculated as the 

mean of the items.  The scale has a reported reliability of .87 in the ECLS-K: 2011 data 

(Tourangeau et al., 2015a).   

Fall kindergarten cognitive flexibility.  Cognitive flexibility was assessed using the 

Dimensional Change Card Sort (DCCS) task (Zelazo, 2006).  This task measures a child’s ability 

to shift problem solving in response to changing constraints or rules for the sorting task.  For Fall 

kindergarten, the ECLS-K researchers administered the traditional table-top version, rather than 

the computerized National Institutes of Health (NIH) Toolbox version that was administered 
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after first grade (Tourangeau et al., 2018).  The assessment was comprised of one baseline task 

and then two tasks consisting of two different sorting rules.  The raw number correct out of all 

trials was used in the current analyses.  Given the relationship of cognitive flexibility to 

academic as well as other executive functioning outcomes, it is important to control for it to 

better isolate the relationship of working memory to mathematics.  Reliability estimates for the 

table-top version of the DCCS are not reported; however, the equivalent NIH Toolbox 

computerized version for ages 3 to 15 has test-retest reliability of .92 (Weintraub et al., 2013).   

Spring kindergarten working memory.  Working memory was assessed using the 

Numbers Reversed subtest from the Woodcock-Johnson III Test of Cognitive Abilities 

(Woodcock, McGrew, & Mather 2001).  In this task, the child listened to a series of numbers and 

was subsequently asked to repeat the series of numbers backwards to the assessor.  The length of 

the digit span increased in blocks (i.e., multiple items with three digits, then the next block 

consistent of four-digit series, etc; Tourangeau et al., 2015a).  The task was discontinued when 

the child reached the ceiling criterion. I used age-based standard scores in all analyses, which are 

designed to have a mean of 100 and standard deviation of 15 in the norming sample (Tourangeau 

et al., 2015a). The median reliability across ages in the norming sample is .87 (Schrank, 

McGrew, & Woodcock, 2001).    

The Spring of kindergarten measurement was chosen for analysis predominantly for 

practical reasons, as a significant portion of students did not have valid working memory scores 

in the Fall of kindergarten.  Students aged 62 months and younger who obtained a raw score of 0 

or 1 did not obtain a standard score (Tourangeau et al., 2015a), and this would have significantly 

limited the sample size.  Additionally, the first measurement in the growth modeling process 

(described more below) is the Spring of kindergarten; thus, utilizing the Spring measurement of 
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working memory, though it may not address questions related skills at kindergarten entry, 

presents an accurate measure of the sustainability of the relationship between working memory 

and mathematics skills over time.   

Procedure 

Data from the current study were publicly available through the United States 

Department of Education’s National Center for Educational Statistics website (NCES).  Data 

were downloaded from the website as an ASCII file, which was then converted into a readable 

data file with Stata 15 syntax files NCES provides on its website.  Data were partially cleaned in 

Stata then exported to R (R Core Team, 2018) for further manipulation and multiple imputation 

(more detail on this is provided below).  After data manipulation and imputation in R, data were 

exported to Mplus (Múthen & Múthen, 2017) for further analysis.  Because use of publicly 

available data from NCES in this format does not constitute research with human subjects, all 

research procedures were exempt from institutional review board (IRB) review by default. 

The ECLS-K: 2011 utilizes a three-stage complex sampling design (Tourangeau et al., 

2015a).  In stage one, 90 primary sampling units (PSUs) consisting of counties were identified 

throughout the United States.  Stage two consisted of identifying public and private schools that 

had kindergarten programs (or equivalent ungraded programs) for five-year-old children.  Stage 

three consisted of sampling students within each school identified in stage two. Asian, Native 

Hawaiian, and Pacific Islander children were oversampled as a whole group (not as individual 

demographic groups; Tourangeau et al., 2015a).  Due to this complex sampling design, 

traditional analyses that assume simple random sampling do not produce generalizable and 

unbiased estimates.  As such, I completed all analyses using the appropriate weighting and 
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design elements.  More information on the weighting and estimation methods in this 

investigation is provided below in the Analysis section.   

For Spring assessment data from Spring of first grade through Spring of fourth grade, 

sampling procedures were slightly adjusted.  The sampling and recruitment procedures described 

above detail the methods used for the kindergarten base-year sample.  These students were 

eligible for sampling in first through fourth grade Spring assessment waves.  Again, I used 

appropriate sample weighting procedures in data cleaning and analysis to account for the design 

of sampling the longitudinal data, including non-response and students not eligible for direct 

assessment.  More information on design and methodological limitations of sampling for Spring 

assessment data in grades first through four can be found in chapter four of the ECLS-K: 2011 

Kindergarten – Fourth Grade User Manual (Tourangeau et al., 2018).   

Missing data.  Missingness may arise from a variety of sources. Enders (2010) describes 

three mechanisms of missingness, drawing on Rubin’s (1976) work. I briefly summarize each of 

these three mechanisms below.  Potentially the least plausible (yet most convenient) assumption 

of missingness is missing completely at-random (MCAR), in which missingness is not 

attributable to any observable characteristics about respondents and reflects truly random 

processes in nonresponse (e.g., a computer fluke prevents a response from being recorded).  

More realistic and still easy to handle with modern techniques is the missing at random (MAR) 

assumption, in which missingness on a response variable is associated with or attributable to 

other observed, measured characteristics.  For example, families may be less likely to show up 

for a child therapy session and provide data due to factors related to socioeconomic status or 

demographics.  The last mechanism, and the most difficult to handle, is the missing not at 

random assumption (MNAR).  This may arise when missingness occurs because of the values 
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respondents would report on the variable.  A frequent occurrence of this in school settings (and 

the ECLS-K: 2011) is when schools do not administer English-based assessments to ELLs.  

Although one may partially account for the missingness by imputing assessment scores based on 

ELL status or ELP level, the primary reason the variable is missing is because it is highly likely 

an ELL with low ELP would score significantly lower on an English-based assessment than an 

ELL with higher ELP or an EPS.  Under the MAR assumption, one may get closer to modeling 

MCAR data provided that an appropriate model of missingness is specified. 

 Multiple imputation offers a flexible, rigorous method to model missingness patterns 

(Rubin, 1987).  The plausibility of appropriately accounting for the MCAR or MAR assumption 

in imputation also rests in part on the amount of missing data.  Larger amounts of missing data 

induce more variability and uncertainty, making it harder to generate the distribution of data that 

would have been obtained with complete data from all respondents.  Even in light of substantial 

portions of missing data, the major advantage to multiple imputation is the explicitly modeling of 

uncertainty in missingness in both the variance and estimates of missing values and the 

subsequent parameter estimates that are pooled across imputed datasets.  In the current data, the 

sampling weights accounted for the majority of missing data due to nonresponse and attrition.  

However, missing data remained after weighting primarily for the teacher-report CBQ scales.  

This is likely primarily due to the item non-response rather than unit non-response (i.e., teachers 

did not complete enough items to obtain a total score though they partially completed the rating 

scales).   

I used multiple imputation with predictive mean matching (PMM; Rubin, 1987) in the R 

package mice (van Buuren & Groothuis-Oudshoorn, 2011) to handle missing data.  For the 

cognitive and academic measures there were missing very few data (i.e., mathematics, reading, 
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and working memory).  The convergence of the PMM model was very poor for these variables, 

so I imputed the mean of each group for each of these variables prior to conducting multiple 

imputation for the remaining missing data.  All of the variables used in the current analyses were 

included in the imputation procedure.  Auxiliary variables were also included to improve the 

accuracy of the imputation process (Enders, 2010).  All missing values on independent and 

dependent variables were imputed, and I generated 20 imputed data sets each with 5 iterations. 

Table 3 provides information on each of the variables that were used in the imputation 

procedure, which I used primarily to account for missingness on the CBQ Attentional Focus and 

Inhibitory Control measures in the Fall of kindergarten.  Some students were retained in 

kindergarten, and as a result those students were assigned a different variable for their CBQ 

measure in spring of first grade. Some adjustments to the teacher-level questionnaire had to be 

made for those students’ measures to better reflect the kindergarten environment (Tourangeau et 

al., 2015b). As such, the spring of first grade CBQ Attentional Focus measure variable is titled 

X4ATTNFS in the data file and the same variable for retained students is titled X4KATTNFS. 

These two variables were collapsed into the same variable to create single spring of first grade 

CBQ variables to be used as an auxiliary variable in imputation (Enders, 2010).  Students’ 

retention status was not reflected in the cognitive assessment data (Tourangeau et al., 2018). For 

direct cognitive measures, students’ grade corresponded to the year of the study.  If a student was 

retained in kindergarten, they were still included in the grade one data. This pattern continued 

through the rest of the study such that students’ grade reflected their year in the study, not the 

actual grade level in which they were enrolled.  Figure 4 shows the density plots for each 

imputation of the CBQ scale scores.  The correspondence between the red and blue lines 
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indicates adequate performance of the PMM procedure in uncovering the sampling distribution 

of the scale scores.   
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Table 3   
Variables Used in Multiple Imputation Model of Missing Data 

Variable Period of Measurement  
Mathematics IRT Score Fall/Spring of kindergarten and Spring grades 1-4 
Reading IRT Score Spring of kindergarten and grades 1-4 
English Basic Reading Skills Fall/Spring of kindergarten 
preLAS Simon Says Raw Score Fall/Spring of kindergarten 
preLAS Art Show Raw Score Fall/Spring of kindergarten 
CBQ Attentional Focus Fall/Spring of kindergarten and Spring grade 1 
TMCQ Attentional Focus  Spring grades 2-4 
CBQ Inhibitory Control Fall/Spring of kindergarten and Spring grade 1 
TMCQ Inhibitory Control Spring grades 2-4 
Dimensional Change Card Sort Fall/Spring of kindergarten, Spring grade 1 
WJ-III Numbers-Reversed Spring of kindergarten and Spring grades 1-4 
Age at Kindergarten Entry Kindergarten 
Socioeconomic Status (continuous) Kindergarten 
Primary Home Language (k – 1 dummy codes; Not English as 
reference group) 

Kindergarten 

Race/Ethnicity (k – 1 dummy codes; Hispanic as reference 
group) 

Kindergarten 

ELL Status Fall of kindergarten 
Full-Day Kindergarten Fall/Spring of kindergarten 
Parental Pre-K care Kindergarten 
Not First-Time Kindergartener Fall of kindergarten 
Assessed in Spanish Fall/Spring of kindergarten, Spring grade 1 
Primary Sampling Unit (k – 1 fixed effects) One value for all study waves 
Sampling Stratum (k -1 fixed effects) “ ” 
Sampling Weight “ ” 
Note.  CBQ = Children’s Behavior Questionnaire; TMCQ = The Middle Childhood Questionnaire; WJ = Woodcock-Johnson; IRT = 
Item Response Theory 
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Figure 4.  Density plots of 20 distributions of PMM-imputed values (red) and the observed 

sample distribution (blue) for the CBQ Attentional Focus (top) and Inhibitory Control (bottom) 

scale scores in the fall of kindergarten.   
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After removing students from the data who did not have the appropriate clustering 

variables (primary sampling unit and stratum) and had a sampling weight value of 0, there were 

few missing data.  No more than approximately six percent of data were missing in the entire 

sample or in each of the EPS and ELL subgroups.  Nevertheless, missingness that was not 

accounted for by the non-response weighting of the survey design may include other forms of 

bias that would not be appropriate to address through listwise deletion, which was present 

primarily in teacher-reported rating scales.   

A few things are important to note about the imputation process.  First, Fall 2010 preLAS 

scores were not imputed.  This was due to the fact that this variable was used in defining the 

ELLs of interest in the current study.  Imputing a variable and creating a subset of data based on 

imputed values may misconstrue aspects of the population of interest by assigning people to 

categories to which they would not have belonged had they provided data, leading to potentially 

erroneous assumptions about students’ demographic and linguistic characteristics.  Missing 

values for primary home language were also removed prior to imputation.  Although deleting 

these data is a significant limitation, it was more of a concern to accurately identify the student 

groups of interest than to increase statistical power, given the relatively large samples already 

available.  Moreover, the use of sampling weights and survey design characteristics in the 

analyses excluded the majority of students with missing preLAS scores and parent-reported 

home language from Fall 2010 (or Spring 2011 for home language).  There were few (n = 18) 

students who were excluded because of missing preLAS or home language reports but had valid 

sampling weight values.  However, given the large amount of data, this is a small amount of 

sample loss.  Other demographic and ecological variables were imputed, such as socioeconomic 

status, first-time kindergartener status, pre-kindergarten care arrangements, and kindergarten 
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type (full/half day); however, because these were used as covariates and not for the purpose of 

creating subgroups, the imputed values were only useful in the context of controlling for these 

demographic and ecological characteristics rather than defining subgroups.  The actual values of 

the control variables were not of substantive interest and were included to control confounds 

present in the kindergarten year that potentially relate to the level and course of mathematics 

performance and growth and its relationship with working memory.  Third, many measures used 

in these analyses required students to obtain at least a minimum score to have a scorable 

assessment and speak English or Spanish.  For cognitive assessment areas, the ECLS-K:2011 

dataset includes flag variables that indicate whether a valid assessment score was present or not 

(e.g., the student attempted the assessment but did not obtain a minimum score or the student 

was ineligible due to speaking a language other than English or Spanish and did not pass the 

preLAS screener).  Students who did not provide a scoreable assessment based on the flag 

indicator in mathematics and reading at any time point, WJ-III Numbers Reversed assessments 

from the spring of kindergarten and later, and Dimensional Change Card Sort in fall and spring 

of kindergarten and spring of first grade were deleted.  Deleting data from students who did not 

obtain minimum scores or were otherwise ineligible for assessment scores did not have a large 

impact on the sample size used in the current study; 1.2% (n = 63) students did not have valid 

assessment scores.   

The last important aspect of the imputation is how I dealt with missingness on individual 

items of the CBQ.  Prior research has indicated that imputing individual survey items then 

creating subscales based on the imputed values (rather than imputing subscale averages) provides 

more statistical power, though either approach induces similar levels of bias into the analytic 

model (Gotschall, West, & Enders, 2012).  Given the relatively small proportion of missingness 
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(approximately 6%), I imputed the preexisting scale score values of the CBQ measures provided 

in the ECLS-K: 2011 rather than individual items.  Imputing scale scores also produced a more 

parsimonious imputation model in light of the number of other variables included in the model 

(i.e., k -1 dummy codes for strata and PSUs, race/ethnicity, and primary home language).  

Nevertheless, as a sensitivity analysis of the scale score imputation model, I also conducted an 

item-level imputation model using the item-level CBQ data for kindergarten and Spring of first 

grade (Tourangeau et al., 2018).  Only these rounds of data were used to simplify the imputation 

model, given that adding all rounds of data for the CBQ and TMCQ attentional focus and 

inhibitory control items would require 78 additional variables (six items on each scale in 

kindergarten and first grade, and seven items on each scale in second through fourth grade).  

With the similarity in items, this may have caused substantial multicollinearity and convergence 

problems.  Imputation results were pooled and analyzed with complex survey design elements in 

survey package in R (Lumley, 2004; 2018).  Table 8 shows the estimates from the scale-level and 

item-level imputation procedures.  Almost no differences were observed for the mean estimates.  

One aspect to note about the item-level imputation is the fact that the CBQ has the response 

option of “Not Applicable.” In the prorated scale scores already provided in the dataset, these 

responses are treated as missing. There is likely a significant difference in why teachers would 

respond “Not Applicable” versus skipping the question altogether; “Not Applicable” likely 

reflects a systematic response (MNAR) whereas skipping an item could be truly random 

(MCAR), or at least predictable based on other variables (MAR).  In the item-level imputation, 

these “Not Applicable” responses were imputed, but this could be problematic because it may 

imply responses were imputed that should not have existed in the first place (e.g., if the CBQ 

question was truly not applicable to the child).  Thus, the CBQ scale score imputation model is 
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advantageous because the available scores do not include “Not Applicable” options, so the 

responses reflect levels of attentional focus and inhibitory control that are based on relevant 

questions about the child’s behavior.  Although imputing the prorated scale score sacrifices 

significant information about individual items, the prorated scores arguably reflect a more 

accurate picture of a child’s behavior among those who responded to enough questions than 

imputing responses that may truly have not been applicable to the child. 
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Table 4 
Mean and Standard Deviation (SD) Estimates of CBQ Scale Scores Across Item- and Scale-

Level Imputation 

 Item-Level Imputation  Scale-Level Imputation 

Scale M SD 
 

M SD 

ELL Attentional Focus 4.410 1.270 
 

4.389 1.317 

EPS Attentional Focus 4.796 1.249 
 

4.793 1.273 

ELL Inhibitory Control 4.649 1.232 
 

4.729 1.312 

EPS Inhibitory Control 4.933 1.190 
 

4.994 1.244 
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 Following the data cleaning and imputation procedures, the combined datasets were then 

split into 20 individual data files and read into Mplus (version 8.1; Muthen & Muthen, 2017) for 

analysis.  When conducting analyses on multiply imputed data, parameter estimates, standard 

errors, log-likelihood values, chi-square values, and the resulting fit indices are estimated across 

each of the imputed datasets and pooled into average estimates in a final model. 

Analysis.  I used a multiple-group latent change score modeling (MG-LCSM) approach 

to decomposing group differences in mathematics development.  LCSMs offer a more nuanced 

approach to modeling differences over time than typical growth models, though LCSMs are 

nested with the larger growth modeling framework.  In a LCSM, there are multiple forms of 

change: constant, proportional, and dual change (McArdle & Nesselroade, 2014; Petscher, Koon, 

& Herrara, 2016). Constant change is similar to the estimate provided in a simple linear growth 

model, though the interpretation of this parameter can become complicated in certain 

circumstances (discussed more below).  Proportional change is the amount of change that occurs 

between individual waves of measurement relative to the level of the variable in the prior wave 

over and beyond what is accounted for by constant change.  The constant change and 

proportional change models can be implemented on their own.  Constant change constructed 

from change scores yields a slope parameter identical to that of the traditional linear growth 

curve.  Proportional change on its own, while not frequently used in the literature, provides 

information about wave-to-wave change without assuming an underlying additive change 

trajectory that occurs across all waves.   

Combining together constant and proportional change in a dual-change model (McArdle 

& Nesselroade, 2014; Petscher et al., 2016), the LCSM then captures the underlying constant 

(i.e., linear) component of growth while accounting for wave-to-wave-specific deviations from 
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the linear form of change that are predicted based on one’s prior level on the dependent variable 

(i.e., proportional change).  The combination of these elements of change yields projected 

growth trajectories that capture nonlinear longitudinal relationships and provide greater detail as 

to when (and among what levels of performance) change is expected to occur.   

Moreover, the proportional change components can be constrained to equality or 

estimated over time and across groups. Although fixing these proportional change components 

over time still yields non-linear growth trends, the implication is that one’s prior level predicts 

subsequent growth to the same degree (measured as a proportion) across time.  For example, it 

would suggest that students who have higher prior levels always change more in the subsequent 

time intervals, and the size of this effect (i.e., the amount of predicted change proportional to 

prior level) is equal across time.  Freely estimating the proportional patterns over time, on the 

other hand, allows one to model non-constant autoregressive patterns in development.  Petscher 

et al. (2016) demonstrated that modeling non-constant autoregressive patterns can be highly 

informative in the context of tracking academic growth within the RTI context, as predictive 

capability of academic measures progress monitoring and detecting adequate academic growth is 

crucial to providing adequate measurement of instruction and intervention response.  Detecting 

varying individual differences in predicting change at different points thus helps detect variable 

patterns of development while accounting for the constant change that occurs across time.  

Although it is not expected that LCSMs will produce significantly different results in terms of 

the shape of change over time given prior work in this area (Grimm, Ram, & Estabrook, 2010; 

Roberts & Bryant, 2011), LCSMs provide more insight into the relationships between students’ 

static performance and the extent of their growth across time while simultaneously accounting 
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for the general pattern of additive change over the developmental period (kindergarten through 

fourth grade). 

 As a structural equation model, LCSMs can be fit as a multiple group model (MG-

LCSM) and parameters can be fixed or estimated across groups depending on hypotheses about 

the values of structural parameters.  A multiple-group model then allows the testing of invariance 

of these parameters across time and groups.  A variety of techniques have been used to study the 

differential longitudinal patterns of development including multiple-group growth models; 

however, the use of the MG-LCSM facilitates the detection of differential patterns in non-

constant autoproportional change and a method of explicitly testing the invariance of change 

parameters across groups. 

Therefore, the goal of Study 1 is to test invariance of change parameters between ELLs 

and EPSs in a MG-LCSM.  In particular, the invariance of dual-change parameters (i.e., constant 

and proportional change) across ELLs and EPSs in addition to covariate relationships in a 

conditional MG-LCSM will be tested.  Multiple models were considered in testing hypotheses of 

change, both unconditional and conditional (i.e., controlling for a number of baseline covariates).  

As aforementioned, ELLs were identified as those students who spoke a language other than 

English at home and were low in English proficiency in the Fall of kindergarten (i.e., scored 

lower than 23 on the Fall 2010 administration of the preLAS).  Although this definition of ELL 

using the ECLS-K:2011 differs from prior studies using the 2011 (e.g., Greenfader, 2017; 

Hartano et al., 2018; Wang, 2017; Wilkinson, 2017) and the 1999 ECLS-K cohort (e.g., Halle et 

al., 2012; Roberts & Bryant, 2011), the main goal of this study is to detect differences in change 

patterns among students who were not initially proficient in English while making a 

conscientious effort to define the subpopulation of initially low ELP ELLs based on preLAS 
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proficiency relative to peers who speak English, at least in part, as a primary home language.  

Although change patterns among initially English-proficient second-language learners are of 

major interest, these patterns have in part been documented in the literature (e.g., Halle et al., 

2012; Roberts & Bryant, 2011).   

 Data inspection.  As with basic regression analyses, violations to assumptions of 

structural equation models can significantly impact standard error efficiency and bias parameter 

estimates.  The basic assumption of SEM is multivariate normality.  I assessed this using the 

MVN package in R (Korkmaz, Goksuluk, & Zararsiz, 2014).  Results from this procedure 

indicated significant violations to multivariate normality when examining only the dependent 

variables (i.e., mathematics IRT scores from kindergarten through grade four) as well as when 

including the entire set of independent and dependent variables.  The heavily-tailed distributions 

of the mathematics IRT scores is evident in the descriptive boxplots presented previously.  This 

skew and kurtosis of the IRT distributions is a natural product of the scale’s construction 

(Najarian et al., 2018a, 2018b).  As such, all analyses employed robust estimation techniques to 

account for violations to normality.  Another factor that can impact SEM results is the presence 

of significant outliers, both univariate and multivariate.  I assessed univariate outliers of growth 

curves through inspection profile plots of each language group sample.  Although there was 

significant variability in wave-specific distributions, few individual raw profile plots appear to be 

significant outliers such that they could be problematic for model estimation (in terms of fitting 

growth curves to individual data points).  However, at wave five (fourth grade) there were five 

students (one ELL, four EPSs) who scored > 5 SD below the mean of 109.29 (SD = 14.86).  

Because of these students’ significant univariate distance from the mean at that specific time 

point, additional care was taken to inspect models after fitting to examine the impact, if any, 
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these data points had on model estimation.  Additionally, for the conditional models, one 

extreme univariate outlier was present for the Fall of kindergarten mathematics IRT score, which 

was used as a covariate.  One EPS obtained a score of 139.16, which was nine SDs above the 

Fall kindergarten sample mean of 35.15.  The extremity of this data point warranted further 

investigation after model fitting to determine its leverage in the model. 

Complex survey elements.  The complex design of the survey necessitated weighted 

analyses to produce generalizable population estimates and standard errors corrected for 

heteroskedasticity due to clustering within PSUs and strata.  I used the Taylor method of 

variance estimation to produce cluster-robust standard errors using the TYPE = COMPLEX 

command in Mplus (Múthen & Múthen, 2017).   By default, complex survey estimation in Mplus 

employs robust maximum likelihood estimation (MLR), which uses a standard error correction 

procedure similar to the Yuan-Bentler “sandwich” estimator (Múthen & Múthen, 2017).  This 

robust estimation also aids in mitigating violations of multivariate nonnormality in standard error 

estimation.  In all analyses, I employed the sampling weight for Spring measurements between 

kindergarten and grade four along with the Fall of kindergarten (W8C18P_8T180) with the 

corresponding primary sampling unit (W8C18P_8T1PSU) and stratum (W8C18P_8T18STR).   

Study 1 Results 

Descriptive Statistics 

Descriptive statistics on the independent and dependent variables in this study are 

presented in Tables 5 through 7.  Additionally, Table 8 provides proportions of demographic 

characteristics for each group with corresponding tests of proportions for each group to assess 

baseline equivalence and differences for each characteristic.  Table 9 shows t-tests for baseline 

differences in continuous covariates used in the MG-LCSM modeling.   
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Table 5             
Overall Sample Descriptive Statistics           
  

M SD Min Max Proportion 
Missing   

EBRS - Fall K 13.60 4.35 0.00 20.00 .000 
IRT Mathematics - Fall K 35.15 11.52 10.25 139.16 .000 
IRT Mathematics – Sp.  K 49.12 12.39 13.58 98.29 .000 
IRT Mathematics – Sp. Gr. 1 73.40 16.93 21.91 131.82 .001 
IRT Mathematics – Sp. Gr. 2 90.16 15.99 14.79 143.97 .001 
IRT Mathematics – Sp. Gr. 3 102.55 15.18 40.25 144.25 .002 
IRT Mathematics – Sp. Gr. 4 109.79 14.86 25.22 139.06 .002 
WJ - III Numbers Reversed – Spring K  95.77 16.61 41.00 157.00 .000 
DCCS – Fall K 14.43 3.13 0.00 18.00 .000 
CBQ Attentional Focus – Fall K 4.77 1.28 1.00 7.00 .035 
CBQ Inhibitory Control – Fall K 4.98 1.25 1.00 7.00 .038 
Age at Kindergarten Entry 66.35 4.48 39.83 86.87 .002 
Socioeconomic Status – Fall/Sp. K -0.14 0.76 -2.33 2.6 .002 
preLAS Combined Score - Fall K 27.78 4.63 0.00 30 .000 

Unweighted N 5,014 
Weighted N 3,432,073 
Note. Missingness proportions are not weighted. EBRS = English basic reading skills, IRT = 
item response theory, WJ = Woodcock-Johnson, DCCS = Dimensional Change Card Sort, 
CBQ = Children’s Behavior Questionnaire, K = Kindergarten. 

 



 

 

86 

86 

 

 

 

 

 

 

 

 

Table 6         

EPS Sample Descriptive Statistics 

  
M SD Min Max Proportion 

Missing   
EBRS – Fall K 13.95 4.07 0.00 20.00 .000 
IRT Mathematics - Fall K 35.88 11.34 10.25 139.16 .000 
IRT Mathematics – Sp. K 49.82 12.17 13.58 98.29 .000 
IRT Mathematics - Sp. Gr. 1 74.33 16.69 21.91 131.82 .001 
IRT Mathematics - Sp. Gr. 2 90.93 15.68 14.79 143.97 .001 
IRT Mathematics - Sp. Gr. 3 103.18 14.96 40.25 144.25 .002 
IRT Mathematics - Sp. Gr. 4 110.36 14.69 25.22 139.06 .002 
WJ - III Numbers Reversed – Spring K 96.44 16.40 41.00 157.00 .000 
DCCS – Fall K 14.58 2.99 0.00 18.00 .000 
CBQ Attentional Focus 4.79 1.27 1.00 7.00 .035 
CBQ Inhibitory Control 5.00 1.24 1.00 7.00 .038 
Age at Kindergarten Entry 66.44 4.45 39.83 86.87 .002 
Socioeconomic Status -0.09 0.75 -2.07 2.6 .002 

preLAS Combined Score - Fall K 28.69 2.32 5.00 30.00 .000 

Unweighted N 4,711 

Weighted N 3,226,117 
Note. Missingness proportions are not weighted.  EBRS = English basic reading skills, IRT 
= item response theory, WJ = Woodcock-Johnson, DCCS = Dimensional Change Card Sort, 
CBQ = Children’s Behavior Questionnaire,  K = Kindergarten. 
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Table 7           
ELL Weighted Sample Descriptive Statistics 

Variable M SD Min Max Proportion 
Missing 

EBRS – Fall K 8.05 4.63 0.00 20.00 .000 
IRT Mathematics - Fall K 23.73 7.60 9.79 48.54 .000 
IRT Mathematics – Sp. K 38.24 10.58 14.13 76.11 .000 
IRT Mathematics - Sp. Gr. 1 58.93 13.88 25.88 103.40 .000 
IRT Mathematics - Sp. Gr. 2 78.10 16.02 23.45 115.43 .000 
IRT Mathematics - Sp. Gr. 3 92.66 15.14 43.95 123.92 .001 
IRT Mathematics - Sp. Gr. 4 100.87 14.77 28.16 130.95 .001 
WJ - III Numbers Reversed – Spring K 85.22 16.46 51.00 134.00 .000 
DCCS – Fall K 12.09 4.12 0.00 18.00 .000 
CBQ Attentional Focus – Fall K 4.39 1.32 1.00 7.00 .063 
CBQ Inhibitory Control – Fall K 4.73 1.32 1.00 7.00 .056 
Age at Kindergarten Entry 65.02 4.83 39.10 81.07 .003 
Socioeconomic Status – Fall/Sp. K -0.84 0.54 -2.33 1.61 .003 

preLAS Combined Score - Fall K 13.56 7.57 0.00 22.00 .000 

Unweighted N 205,956 

Weighted N 303 
Note. Missingness proportions are not weighted. EBRS = English basic reading skills, 
IRT = item response theory, WJ = Woodcock-Johnson, DCCS = Dimensional Change 
Card Sort, CBQ = Children’s Behavior Questionnaire, K = Kindergarten. 
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Table 8          

Study One Weighted Demographic Proportions and c2 Difference Tests  

Variable EPS ELL 
c2 

Sig. 
Total 

Proportion 

Missing 

EPS  ELL 

Primary Home Language: English .88 -- -- .83 .000  .000 

Primary Home Language: Not English .11 1.00 *** .16 .000  .000 

Primary Home Language: Cannot 

Choose 
.01 -- -- .01 .000  .000 

Black/African American .14 .007 *** .13 .000  .000 

White .54 .006 *** .51 .000  .000 

Hispanic, Race Specified .21 .91 *** .25 .000  .000 

Hispanic, No Race Specified .003 .01 * .004 .000  .000 

Asian .04 .05  .04 .000  .000 

Native Hawaiian/Pacific Islander .003 .01  .004 .000  .000 

American Indian/Alaskan Native .01 .002 * .01 .000  .000 

Two or More Races .043 -- -- .04 .000  .000 

Female .49 .50  .49 .000  .000 

Not First-Time Kindergartener .05 .05  .05 .002  .003 

Parental Pre-K Care .20 .38 *** .21 .004  .003 

Full-Day Kindergarten (Fall) .80 .91 * .81 .001  .007 

Full-Day Kindergarten (Spring) .81 .93 ** .82 .000  .000 

Unweighted N 4,711 303  5,014  

Weighted N 3,226,117 205,956  3,432,073  

Note. Missingness proportions not weighted. Primary home language measured in kindergarten.  *p < .05, 

**p < .01, ***p < .001 
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Table 9       
T-Tests of Baseline Mean Differences   

Variable EPS M ELL M MDiff  (SE) 
EBRS – Fall K 13.95 8.05 5.90 (0.31)*** 

IRT Mathematics – Fall K  35.88 23.73 12.15 (0.72)*** 

WJ – III Numbers Reversed – Spring K  96.44 85.22 11.22 (1.05)*** 

DCCS– Fall K  14.58 12.09 2.49 (0.29)*** 

CBQ Attentional Focus – Fall K  4.79 4.39 0.40 (0.09)*** 

CBQ Inhibitory Control – Fall K  5.00 4.73 0.26 (0.07)*** 

Age at Kindergarten Entry 66.44 65.02 1.41 (0.45)** 

Socioeconomic Status – Fall/Sp. K -0.09 -0.84 0.75 (0.04)*** 
Note. All analyses weighted. EBRS = English basic reading skills, IRT = item 
response theory, WJ = Woodcock-Johnson, DCCS = Dimensional Change Card 
Sort, CBQ = Children’s Behavior Questionnaire, K = Kindergarten, IRT = item 
response theory.  **p < .01, ***p < .001 
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Figure 5 shows profile plots of 30 randomly sampled ELLs and 30 randomly sampled 

EPSs (they were sampled separately to obtain exactly 30 students from each language group).  

Box plots for EPSs and ELLs across assessment waves are presented in Figures 6 and 7, 

respectively.  Examining the box and profile plots descriptively, it is clear that the variability and 

mean level of change across assessment waves is markedly different between the two groups.   
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Figure 5.  Profile plot of mathematics achievement between Spring of kindergarten and Spring 

of fourth grade for 30 randomly sampled EPSs and 30 randomly-sampled ELLs. 

Note. Data randomly sampled separately within groups then combined to create plots. Figure 

produced in ggplot2 (Wickham, 2016). 
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Figure 6.  Weighted boxplot of  EPS students’ mathematics IRT scores by assessment wave. 

Note. Figure produced using the survey package (Lumley, 2004; 2018).  
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Figure 7.  Weighted boxplots of ELL students’ mathematics IRT scores by assessment wave.   

Note. Figure produced using the survey package (Lumley, 2004; 2018).



 

 

94 

94 

Unconditional MG-LCSM   

To begin to test the primary research question of the study, a series of unconditional MG-

LCSMs were tested.  I used the Bayesian Information Criterion (BIC) to assess model fit 

improvement.  Starting with a single-group model, I then estimated a multiple-group model with 

all parameters constrained across groups. Following that, I iteratively and systematically freed 

parameters to test the improvement in fit.  The model fitting results are presented in Table 10.  

Figure 8 is a  path diagram of the final selected model based on the fit indices in Table 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

95 

95 

 

Table 10     
Unconditional MG-LCSM BIC Values  

  BIC ΔBIC from Model 1 

Model 1   
Single group model (residuals freed over time, 
proportional change constrained over time) 179995.635 -- 

Model 2 

180989.506 993.871 
      All change parameters constrained (residuals              
      and proportional change constrained across    
      time and groups) 

Model 3 
180807.937 812.302       Intercept freed (residuals and proportional   

      change constrained across time and groups) 
Model 4   
      Intercept + proportional change + residuals        
      freed across time and groups 178922.785 -1072.85 

Model 5   
       Intercept + slope + residuals +      
       variances/covariances freed 178936.862 -1058.773 

Model 6   
       Intercept + slope + residuals + variances/  
       covariances + proportional change freed 178932.065 -1063.570 

Note. Bolded values indicate the final model selected based on the lowest BIC value 
compared to Model 1.   
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Figure 8.  Multiple-group unconditional latent dual-change model of mathematics.   

Note. Factor loadings for ELLs are bolded. Standard errors in parentheses. Italicized coefficients 

denote the parameter is fixed across groups.  All unlabeled paths fixed to 1.  *p < .05, **p < .01, 

***p <.001
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The final model selected based on Table 10 (c2 [df] = 363.487 [16]) generally evidenced 

adequate fit based on the root mean square error of approximation (RMSEA = 0.093), 

comparative fit index (CFI = 0.986), Tucker-Lewis index (TLI = 0.969), and standardized root 

mean squared residual (SRMR = 0.133).2  Based on the parameters in Figure 8, ELLs and EPSs 

differed significantly in their intercept values, suggesting that in the Spring of kindergarten 

significant gaps in mathematics achievement were evident.  This model indicated that constant 

change rates (slope) and intercept-slope variances and covariances were equal across groups, 

suggesting that the gaps observed in kindergarten generally persisted through the end of grade 4.  

In both groups, students who score higher tend to grow more, as indicated by the significant, 

positive proportional change values coupled with the positive constant change.  However, this 

autoproportional effect tapers off by wave five, suggesting that individuals’ mathematics IRT 

scores in grade three are not significantly predictive of how much they change through fourth 

grade.  This model does not account for other factors that may explain group differences, though, 

so it is difficult to assess the extent to which the differences observed here are attributable to 

other confounders.  As such, I considered a series of conditional models to address Research 

Question 1.   

Conditional MG-LCSMs 

Covariates were included into the MG-LCSM to analyze the extent to which the 

predictors of interest improved model fit and helped explain group differences.  In all conditional 

models, the intercept, proportional change, and residual parameters were unconstrained across 

 
2 The typical independence model used to calculate indices such as the CFI and TLI is inappropriate for 
growth/latent change modeling (Widaman & Thompson, 2003). I calculated the CFI and TLI using a multiple-group 
intercept-only model with residuals constrained across group and time as the null model rather than the default 
independence model (c2 [df] = 24,223.455 [35]). 
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groups based on the findings from the unconditional MG-LCSM, though constant change and 

intercept-slope variances/covariances remained fixed across groups.  Although it is likely that the 

inclusion of covariates would change the structural relationships across groups, the goal of 

analyzing the conditional model is to detect the extent to which covariates explain variation in 

growth and improve model fit directly compared to the baseline unconditional model.  

Continuous predictors were centered at the grand mean for the entire sample to aid in 

interpretation and detect deviations from the overall weighted sample mean values (except the 

SES variable since it was already standardized to have M = 0 and SD = 1 in the full sample).   

 First, a model with all intercept and slope regressions freed between groups was fit.  The 

unconstrained conditional MG-LCSM showed better a BIC (172315.683) than the unconditional 

model.  Figure 9 shows path diagram of the within-group conditional MG-LCSM.  This type of 

model essentially assumes that ELL status moderates the relationship between mathematics 

growth and all of the covariates in the model.  An alternative perspective is that, because this is a 

multiple group model that is estimating each group’s model separately, this is equivalent to 

modeling two separate conditional LCSMs.  Therefore, this model does not remove between-

group differences, but rather provides a way to remove within-group differences to inspect the 

remaining between-group differences.  Table 11 provides the regression parameter estimates and 

fit indices for the overall MG-LCSM.  The aforementioned Fall of kindergarten mathematics 

score outlier did not affect model estimation, so I retained it in the analyses. Additionally, the 

five significant univariate outliers identified in wave five did not meaningfully alter regression or 

latent change estimates. 
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Figure 9.  Conditional MG-LCSM with covariate regressions unconstrained across groups.  

Note. ELL parameter estimates are displayed in bold. Standard errors in parentheses.  Italicized 

coefficients are fixed across groups.  All unlabeled paths fixed to 1.  *p < .05, **p < .01, ***p 

<.001 
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Table 11             
Multiple Group Conditional Latent Change Score Results - Regressions Freed Across Groups 
  Regression Coefficients (SE) 

 ELL     EPS 
Predictor Intercept Slope     Intercept Slope 

(Intercept) 45.786 (1.699)*** 21.639 (1.974)***     48.824 (0.469)*** 21.639 (1.974)*** 
Sp. K Working Memory 0.167 (0.048)** -0.003 (0.011)   0.158 (0.008)*** 0.019 (0.007)** 
Fall K DCCS 0.268 (0.107)* 0.115 (0.064)   0.177 (0.048)*** 0.098 (0.029)** 
Fall K Attentional Focus 1.059 (0.604) 0.579 (0.244)*   0.588 (0.158)*** 0.209 (0.075)** 
Fall K Inhibitory Control 0.070 (0.6) -0.293 (0.252)   0.308 (0.137)* -0.082 (0.067) 
Fall K EBRS 0.202 (0.135) 0.052 (0.043)   0.080 (0.046) -0.029 (0.018) 
Fall K Full-Day 3.298 (1.354)* -0.713 (0.669)   0.842 (0.438) -0.551 (0.169)** 
Parental Pre-K Care 0.295 (1.088) -0.411 (0.385)   -0.236 (0.372) 0.163 (0.158) 
Age of Kindergarten Entry 0.183 (0.173) -0.146 (0.069)*   0.173 (0.039)*** -0.088 (0.016)*** 
Not First-Time Kindergartener 4.671 (2.694) -1.650 (1.082)   0.900 (0.683) -2.546 (0.428)*** 
Socioeconomic Status 0.474 (0.857) -0.045 (0.402)   0.929 (0.198)*** 0.481 (0.109)*** 
Non-Hispanic -0.637 (1.657) 2.266 (0.815)**   0.129 (0.391) -0.194 (0.175) 
Female -0.624 (1.066) -1.046 (0.348)**   -1.001 (0.212)*** -1.233 (0.14)*** 
Fall K Mathematics IRT 0.541 (0.093)*** 0.016 (0.04)   0.681 (0.018)*** -0.007 (0.017) 
R2 .68 .27     .81 .21 
RMSEA 0.054 
SRMR 0.039 
BIC 172314.811 
c2 (df) 783.415 (94) 
Note. *p < .05, **p < .01, ***p <.001  
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After conditioning the MG-LCSM on the set of predictors and freely estimating the slope 

and intercept regressions within each group, the model-implied trajectories remained similar.  

EPSs had a higher intercept (nearly one-fifth SDs) in the Spring of kindergarten and showed 

somewhat different change patterns.  EPSs continued to gain more throughout first grade and 

show slight deceleration in growth through fourth grade.  ELLs show a mostly linear change 

pattern until grade two when the autoproportional effect increases and then nearly doubles again 

through fourth grade. 

Though the last model conditions on the covariates, it does not control for between-group 

differences in the covariates and serves only as an intermediate model to examine conditional 

change patterns.  A second conditional MG-LCSM model was estimated with covariate 

relationships constrained across groups, which controls for between-group differences in the 

covariate effects on the MG-LCSM intercepts and slopes.  This allows detection of the extent to 

which  change components differ between ELLs and EPSs after removing between-group 

differences in baseline characteristics.  Figure 10 displays the MG-LCSM as a path model, and 

Table 12 displays the regression coefficients and fit indices.  Based on the change coefficients in 

Figure 10, EPSs again continue to show consistent, significant autoproportional effects through 

fourth grade, the magnitude of which remain somewhat similar though the direction changes 

after first grade.  ELLs show similar patterns after grade one; however, change remains relatively 

linear in earlier years (i.e., prior performance is not significantly predictive of change beyond the 

constant change in kindergarten or first grade).  Controlling for these baseline covariates explains 

all of the ELL-EPS achievement gap at the end of kindergarten.  That said, conditioning on these 

achievement, cognitive, and demographic characteristics does not significantly change group 

differences in change.  Compared to the baseline unconditional model, however, this final 
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conditional model has weaker autoproportional effects, indicating that the covariates potentially 

explain some of the patterns of intraindividual change.  This may be due in part because of the 

significant difference in the intercept-slope covariance as well as the conditional slope (constant 

change) value (which is larger), suggesting that after conditioning on these covariates, a larger 

portion of change occurs through the conditional slope (constant change) value.  Again, none of 

the significantly outlying data substantially impacted model estimation. 

To visually compare the unconditional and two conditional models, Figure 11 shows 

model-implied trajectories for each of the models.  As noted in the figure, Fall kindergarten 

mathematics is held at 0 (i.e., the grand mean) and all other covariates are held at each group’s 

means. These trajectories show the estimated growth that occurs when each group enters 

kindergarten performing identically in mathematics but when they are held group-specific levels 

of all other covariates. Each trajectory is estimated at the mean of each dummy variable, which 

indicates the proportion of individuals in the data with a value of 1 on each dummy variable.  

This aids in extracting a true mean trajectory for each group rather than mean trajectories among 

specific groups (i.e., holding dummy variables at 1 or 0). 
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Figure 10.  MG-LCSM estimates with regression parameters constrained to equality across 

groups.  

Note. ELL parameter estimates are displayed in bold.  Italicized coefficients denote it is fixed 

across groups.  All unlabeled paths fixed to 1. *p < .05, **p < .01, ***p <.001
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Table 12       
Multiple Group Conditional Latent Change Score Results with Regressions Constrained 
Across Groups 

  Regression Coefficient (SE) 

Predictor Intercept Slope 

(Intercept) 48.765 (0.452)***/49.295 (0.681)*** 21.807 (1.908)*** 
Sp. K. Working Memory 0.158 (0.008)*** 0.018 (0.007)** 
Fall K DCCS 0.190 (0.045)*** 0.099 (0.029)** 
Fall K Attentional Focus 0.637 (0.149)*** 0.232 (0.079)** 
Fall K Inhibitory Control 0.284 (0.13)* -0.093 (0.067) 
Fall K EBRS 0.080 (0.046) -0.018 (0.017) 
Fall K Full-Day 0.901 (0.438)* -0.569 (0.173)*** 
Parental Pre-K Care -0.195 (0.357) 0.119 (0.150) 
Age at Kindergarten Entry 0.171 (0.039)*** -0.092 (0.016)*** 
Not First-Time Kindergartener 1.128 (0.648) -2.509 (0.406)*** 
Socioeconomic Status 0.925 (0.196)*** 0.468 (0.106)*** 
Non-Hispanic  0.111 (0.386) -0.128 (0.172) 
Female -0.988 (0.219)*** -1.238 (0.138)*** 
Fall K Mathematics IRT 0.678 (0.019)*** -0.006 (0.017) 

R2 .81/.70 .21/.19 

RMSEA 0.048 
SRMR 0.041 
BIC 172144.972 
c2 (df) 822.864 (120) 
Note. Bolded coefficients represent values for ELLs.  *p < .05, **p < .01, ***p <.001 
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Figure 11.  Estimated latent trajectories for each MG-LCSM by ELL status.   

Note.  The conditional trajectories are modeled at the means of each covariate within each group 

(including dummy codes) except Fall kindergarten mathematics scores, which are held at 0 

across groups (i.e., the overall sample mean since the models were grand-mean centered).  Figure 

produced in ggplot2 (Wickham, 2016). 
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To answer Research Question 2, I allowed the regressions of the MG-LCSM intercepts 

and slopes on working memory to vary across groups while constraining all other regressions to 

equality across groups.  This allowed me to test whether ELL status moderates the relationship of 

working memory in the MG-LCSM controlling for all other between-group differences in 

covariates.  Freeing the working memory slope did not improve the overall model fit, as 

indicated by an increase in the BIC from 172144.972 to 172161.692.  When freed across groups, 

working memory showed a significant relationship with both intercept (b = 0.158, SE = 0.008, p 

< .001) and slope (b = 0.018, SE = 0.007, p < .01) among EPSs. ELLs evidenced similar patterns, 

though only the working memory relationship with the intercept was significant (intercept: b = 

0.148, SE = 0.033, p < .001; slope: b = 0.015, SE = 0.012, p = .180).  This slightly worsened 

relative model fit suggests that working memory, holding other covariate effects constant across 

groups, likely does not differently predict mathematics performance level or change trend.  In 

terms of predictive capability and parsimony, the MG-LCSM with working memory constrained 

to equality across groups is the preferred model.  However, given that the BIC difference 

between the models is not substantial, this is not conclusive evidence that working memory 

operates exactly similarly across groups.  The relationships with latent slopes are similar across 

groups, but the standard error among ELLs’ is nearly double that of EPSs’.  It is clear there is far 

more power to detect the effect when it is assumed to not vary across groups given the precision 

of the effect among EPSs due to the large sample size.  This, coupled with the highly similar 

regression coefficient across groups, explains the BIC advantage in the constrained (i.e., 

unmoderated) model.   
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Study 1 Discussion 

 In Study 1, I used multiple group latent change score (MG-LCSM) to test the equality of 

change patterns across ELLs and their English-proficient peers and the extent to which language 

group moderated the role of working memory in mathematics development.  The MG-LCSM 

framework permits direct tests of differences in additive change between kindergarten and fourth 

grade in addition to group differences in the patterns of change between individual Spring-to-

Spring intervals.  Detecting heterogeneity in the profiles of academic skills and growth over time 

is a core component of RTI as these differential change patterns help inform the extent to which 

different levels of performance relate to subsequent change across different developmental 

levels.  Intraindividual change is integral to monitoring instructional response and forms the 

basis for curriculum-based measurement (CBM), which is why latent change score modeling can 

uniquely capture elements of academic growth that other modeling approaches do not (Petscher 

et al., 2016).  Although it is not possible to extend the IRT scores of the mathematics measure in 

this study directly to CBM applications, these results provide a general picture of change among 

ELLs relative to EPSs and when fluctuations in change would be expected beyond the additive 

growth that occurs across early and intermediate elementary schooling.  Nevertheless, given the 

nested nature of LCSM within the larger growth modeling approach, these results are similar to 

findings from previous work using the ECLS-K (Roberts & Bryant, 2011).  Though the LCSM 

models similar patterns it simultaneously captures more information about the intraindividual 

change that explains what might be observed in a quadratic curve (i.e., where change occurs and 

the individual differences in performance levels that predict acceleration/deceleration).   

 In both groups, a slowing of growth was evident from kindergarten through fourth grade.  

This is consistent with prior growth modeling literature that has shown a plateauing of growth in 



 

 

108 

108 

mathematics through fifth grade (Grimm et al., 2010; Roberts & Bryant, 2011) among a variety 

of subgroups and through eighth grade among students with SLD in mathematics (Kohli et al., 

2015).  This study adds to this literature base by further quantifying and testing the significance 

of that plateauing via proportional change.  However, the results of this study did not strongly 

support the hypothesis that ELLs would plateau more significantly than their English proficient 

peers.  EPSs generally show more curvature to their growth pattern than ELLs, who from 

kindergarten to grade 3 show essentially a linear growth pattern.  Relative to that linear change, 

ELLs show the hypothesized plateauing across third grade; however, this does not appear 

pronounced enough to suggest that ELLs change in a systematically different manner than EPSs 

in that area.  Rather, EPSs appear to make greater gains from kindergarten to first grade, then 

there is deceleration in growth through the end of fourth grade (relative to the change that 

occurred in from kindergarten to first grade).  The reason for this deceleration may in part be 

attributable to the distribution of scores becoming more left-skewed as grades progress. 

Another aspect of these patterns is the substantive nature of the gains.  The IRT-based 

scale scores used in the current study are comprised of the summed predicted probabilities of 

answering each item within the whole pool of items administered across all waves of data, and 

these predicted probabilities take into account factors such as students’ latent ability level and the 

difficulty of the item (Najarian et al., 2018a, 2018b). Thus, growth along the IRT measure 

indicates a greater probability of answering more items correctly within the entire item pool 

administered to students in fourth grade.  However, because the mathematics measure is 

comprised of multiple domains of mathematical knowledge with varying levels of difficulty, 

gains at different points on the scale are qualitatively distinct (Tourangeau et al., 2018).  ELLs 

began and ended kindergarten performing nearly one standard deviation below their English-
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proficient peers.  The gains that are then made in subsequent time intervals are significantly 

different from the gains of EPSs who begin kindergarten with higher levels of mathematics 

skills.  Higher performing students may learn and expand their knowledge of mathematical 

concepts and procedures in different ways than ELLs given their potentially increased access to 

instruction.  To that end, the skills that ELLs accumulate over the course of elementary school 

may be somewhat distinct from the skills initially higher performing students acquire.  This 

represents a significantly different inference and implication than CBM measures would provide, 

which measure the fluency in a specific skill such as mathematics computation.  Progress 

monitoring and growth in such a measure then represents growth in a specific skill domain of 

mathematics.  The mathematics IRT measure, on the other hand, represents students’ composite 

growth along a vertical scale of latent mathematics ability, taking into account item difficulty 

and multiple domains of mathematical concepts, facts, and procedures.   

At the end of kindergarten, an average EPS may have gained significant competency in 

numbers and operations and thus may have a higher predicted probability of answering more 

difficult items on measurement or geometry.  Subsequently, their gains across the following year 

through first grade are indicative of gains in more complex areas of mathematical knowledge 

(i.e., their summed predicted probabilities of answering more difficult items increases).  On the 

other hand, ELLs exhibit lower predicted probability of correctly answering more complex 

mathematics problems.  The gains that they make by the end of first grade, then, catch them up 

to the level at which EPSs were performing at the end of kindergarten.  In other words, ELLs end 

kindergarten an entire grade level behind their English proficient peers.  Differences in the 

estimated change patterns between the two language groups, as aforementioned, may be partly 

due to the shifting distribution of EPS mathematics scores across grade levels (e.g., greater left 
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skew in later grades).  Except for a small number of extremely low performing students, the 

distribution of ELL mathematics data is largely consistent across grades.   

 The lack of differential plateauing may be attributable to these qualitative aspects of 

academic gain.  ELLs enter into a linguistically demanding mathematics environment performing 

at a level that allows them to continue making consistent, linear gains because the gains that are 

made are among more basic mathematical concepts, procedures, and facts.  EPSs, on the other 

hand, continue to make gains in more challenging areas of mathematical knowledge.  Though 

they decelerate in their growth, this indicates that it becomes more difficult to acquire the same 

knowledge gains as their level of performance increases and they are assessed in more difficult 

areas of mathematics.  For example, EPSs exhibit a change score of nearly 25 points from 

kindergarten to first grade based on the MG-LCSMs, yet increasing by that same amount from 

third to fourth grade (relative to their prior level of performance) would be unlikely because that 

the 25-point gain in kindergarten is reflective of progress in basic number competencies and 

operations starting from a lower level of performance.  The distribution of items in the 

kindergarten through second grade rounds of data collection weighs heavily toward number 

properties and operations;  by third grade, these items comprise only forty percent of the items, 

with measurement, geometry, data and probability, and algebra gaining greater weight in the 

item pool (Najarian et al., 2018b).  ELLs exhibit slightly greater change scores after 

kindergarten, which are likely reflective of greater room to grow because they do not reach as 

much of a ceiling in the difficulty of the items.  Yet the gains they make in one year are the gains 

EPSs make in the prior year, suggesting ELLs are one year behind in the difficulty of items they 

are answering.  Therefore, the similar decreases in gains by third grade observed across groups 

suggest that ELLs on average show decelerating gains in mathematical third grade mathematical 
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knowledge during fourth grade instruction.  Although the performance gaps do not increase 

during this time, it indicates that ELLs potentially decelerate in acquisition of content that their 

peers acquired a year earlier.  Absent of higher dosages of effective, targeted intervention, this 

likely has the pernicious effect of diminishing their response to late-elementary and early middle 

school instruction in increasingly complex word problems, fractions, and algebra relative to 

EPSs. 

Unsurprisingly, controlling for kindergarten-entry mathematics skills explains nearly all 

of the estimated growth gaps, suggesting that if ELLs and EPSs entered kindergarten with the 

same level of mathematics ability, their trajectories between the end of kindergarten and fourth 

grade would be highly similar (see Figure 11).  Though some variance between groups is left to 

be explained, it is clear that kindergarten-entry domain-specific skills contribute the most to 

mitigating average achievement gaps over time.  However, this does not change the underlying 

shape of development in either group. 

Working Memory Findings 

Controlling for other executive functioning, background, demographic, and academic 

(basic English reading skills and prior mathematics) variables, the finding that working memory 

continues to play a unique role in predicting mathematics development patterns for both ELLs 

and EPSs underscores its role in facilitating mathematics cognition across development.  Prior 

studies, such as Cragg et al. (2017), highlighted its function in uniquely predicting procedural, 

conceptual, and factual mathematics knowledge, and Geary et al. (2017) showed that working 

memory is consistently a meaningful predictor of mathematics development across grades.  To 

that end, in the current findings, early levels of working memory not only predict concurrent 

level of mathematics performance; early levels compound over time in the form of increase 
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additive change over controlling for its effect on students’ intercept (i.e., Spring of kindergarten).  

It is also important to highlight that working memory predicts these patterns net of students’ 

kindergarten entry mathematics ability.  Given the current results also show stark mathematics 

performance gaps at kindergarten entry, the current results on working memory suggest that 

working memory has a unique role in explaining mathematics development regardless of 

students’ kindergarten entry mathematics performance levels.  Another important aspect of this 

analysis to note is that this effect emerged controlling for kindergarten-entry English basic 

reading skills. ELLs scored significantly lower on average on the EBRS measure in the Fall of 

kindergarten (standardized mean difference [SMD] = 0.98, controlling for SES, race/ethnicity, 

sex, not first-time kindergartener, prekindergarten care, and age of kindergarten entry), and the 

contribution of working memory to growth patterns was similar across groups.  Taken together, 

these results corroborate prior research establishing the critical role of verbal working memory in 

mathematics development (Cragg et al., 2017; Geary, 2011; Geary et al., 2012; Geary et al., 

2017; Greenfader, 2017; Wang, 2017) while extending these findings to show that verbal 

working memory functions similarly across EPSs and low ELP ELLs net of other covariates 

previously shown to be strongly predictive of mathematics performance.   

In lieu of a direct specification of empirical mechanisms that drive change among ELLs, 

the current findings are consistent with what has been identified as contributors to mathematics 

development among EPSs.  First, working memory is a unique predictor of mathematics growth 

patterns both in terms of level and degree of gain, which is to say that students with higher 

working memory are simultaneously predicted to initially perform greater and subsequently 

make greater gains in mathematics through fourth grade.  As I underscored throughout the 

literature review, working memory’s developmental relationship to mathematics has a substantial 
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body of empirical evidence.  Despite the inability to assess differential relationships in specific 

domains of working memory (i.e., verbal versus visuospatial) in the current work, the results 

presented herein corroborate evidence of the meaningful role of working memory and lend 

further credit to such by controlling for a variety of other variables associated with achievement 

and subcomponents of executive functioning.  By establishing that working memory does not 

differentially relate to mathematics across language groups, the current work extends prior 

findings to show that working memory is an equally important leverage point regardless of ELP.  

Both Fuchs, Schumacher, and Sterba et al. (2014) and Powell et al. (2017) showed that working 

memory ability evidenced strong capability to predict intervention responsiveness.  Findings here 

of working memory’s relationship to development suggest that it may play a similar, unique role 

among ELLs, though this requires scrutiny in an intervention context. 

Recent work exhibited minimal incremental validity of cognitive variables in universal 

screening systems (Clarke et al., 2018), though these findings continue to align with evidence 

that cognitive variables explain unique variation in mathematics skills. The current study shows 

that response to instruction and consequent performance levels are not entirely domain-specific; 

regardless of kindergarten entry mathematics ability and basic English reading skills, working 

memory uniquely predicts mathematics performance levels and subsequent growth rates among 

both groups.  Especially for ELLs, this underscores the crucial role that domain-general skills 

play in development net of domain-specific performance in mathematics and reading.  Given that 

ELLs begin and end kindergarten performing an entire grade level behind EPS peers and 

continue to evidence this gap through fourth grade, working memory’s unique contribution to 

developmental levels and trends points to the need for building domain-specific skills while 

leveraging domain-general areas to support learning regardless of second language development. 
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However, as Clarke et al. (2018) also note, introducing domain-general variables into screening 

needs to be balanced with time and economic value of doing so. The current findings warrant 

further investigation into which domain-general skills are most uniquely predictive in order to 

better clarify the incremental value of such skills in applied settings. 

Assuming that second language learning may impact the relationship of an executive 

functioning component like working memory and mathematics may be an easy conclusion to 

draw; however, these exploratory findings indicate otherwise.  This is not to say that language 

does not play a role in mathematics; as aforementioned, it is a critical component of multiple 

aspects of mathematical cognition and instructional response.  However, further investigations 

ought to focus on the mediators between working memory and mathematics, as the process of 

this relationship may heavily rely on the extent to which working memory helps build 

mathematical language in L1 and L2 and how that transfers to building mathematical knowledge.  

Indeed, using the ECLS-K: 2011, Wang (2017) found that higher growth rate in working 

memory through grade three mediated the effect of kindergarten ELP status on mathematics 

growth through grade three. Non-proficient bilingual students in Wang (2017) scored 

significantly lower on working memory, possibly leaving greater room to grow over time on that 

measure. Similarly, ELLs in this current study scored significantly lower on working memory in 

the Spring of kindergarten (b = -6.83, SE = 1.20, t = 5.71, SMD = 0.42, p < .001) even after 

controlling for first-time kindergartener status, age of kindergarten entry, race/ethnicity, sex, 

taking the cognitive assessments in Spanish, SES, and pre-kindergarten care.  With this gap in 

mind, such increases in working memory likely facilitate the growth of mathematical content 

knowledge, as increasing executive functioning skills like working memory may help students 

access curricular content and respond to instruction more effectively.  This may especially 
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important when ELLs end kindergarten scoring nearly half a standard deviation below age-based 

norms (even controlling for demographic factors).  A significant gap such as this warrants further 

empirical investigation of mechanisms, as the processes through which ELLs may access 

instructional content and generate mathematical knowledge may operate through different 

mechanisms if they begin with significantly lower working memory.   

That said, although these results also point towards the notion that although ELLs 

observationally exhibit many different risk and protective factors in their learning, these do not 

explain away the more basic aspects of how executive functioning contributes to mathematics 

learning.  When students’ native language (and the language of instruction) can be effectively 

accounted for, the predictors of students’ learning appear similar.  To that end, identifying the 

most equitable and effective ways to instruct mathematics while providing as few language 

barriers as possible should continue to be a critical focus of research in educational policy, 

psychology, and curricula.   

Limitations 

The current study has significant limitations that are crucial to address in light of the 

findings.  Principally, my definition of ELLs may not be consistent with the definition schools 

use according to summative measures of ELP.  These assessments provide a complex and 

thorough assessment of English language proficiency – both academic and social – that cannot 

be equated with the definition of ELL I used in the current work.  Although the preLAS provides 

a brief screening assessment of language proficiency and parent-reported native language has 

been utilized in prior work (e.g., Roberts & Bryant, 2011), this definition may not easily 

extrapolate to the students classified as ELLs in schools based on state-mandated, IRT growth 



 

 

116 

116 

measures of ELP such as ACCESS 2.0 (World Class Instructional Design and Assessment, 

2014).    

 Additionally, the current study utilized mathematics and executive functioning 

assessments in which a number of students were assessed in Spanish.  In kindergarten (Fall and 

Spring), this constituted a significant proportion of students.  While the IRT scale of mathematics 

is consistent across Spanish and English, this may represent a confound in comparing growth 

across ELLs and EPSs and the ability to translate this information into practice in an RTI model.  

Mainly, many schools assess ELLs in their native language (as of now, mostly Spanish 

assessments exist) and in English.  In this way, schools may address academic progress 

simultaneously in both languages and use this information to determine the need for further 

assessment, tiered intervention, and services in ESL programs.  With some students having been 

assessed in Spanish, I am limited in my ability to parse-out the role of language in students’ 

mathematics growth through the end of first grade.  Relatedly, some ELLs’ native language was 

likely one other than Spanish, though I do not have access to this information in the public-use 

ECLS-K: 2011.  Non-Spanish speaking ELLs who scored below the preLAS cut score did not 

take any of the cognitive assessments; thus, these students were removed from the data.  Prior 

studies have utilized parent- and school-reported race/ethnicity as a proxy for native language 

(e.g., Roberts & Bryant, 2011); however, it was not the goal of the current study to analyze 

differences based on different native language.  Students whose native language was not Spanish 

nor English would have been assessed in English (if they scored 16 or above on the preLAS), 

making it more difficult to precisely measure mathematics growth within the ELL group given 

the lower-end of the ELP scale among non-Spanish-speaking is not at all represented. 

Hispanic/Latino students also represent the overwhelming majority of ELL students in the 
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current sample (> 90% of the sample), hence the non-Spanish-speaking ELLs are not adequately 

represented.  Though Spanish-speaking students represent a majority of ELLs in the U.S., the 

current demographic composition of our sample likely does not represent the general distribution 

of students in U.S. public schools.  Yet more research is needed to understand patterns of 

achievement among non-Spanish-speaking ELLs, as the cognitive and cultural factors implicated 

in their instructional response may vary significantly. 

Another limitation is the comparability of ELL and EPS groups.  First, the distribution of 

SES between the two groups is not comparable.  This is a frequent limitation of studies involving 

comparing ELLs and EPSs (Abedi & Lord, 2001), as SES is typically associated related to 

achievement patterns.  It is generally understood that language accounts for variance in 

achievement at varying levels; however, the relative contribution of SES to these achievement 

patterns in combination with language is less clear.  For example, Abedi and Lord (2001) 

determined the SES and second language proficiency among ELLs were confounded.  The goal 

of the current study was to translate differential achievement patterns into findings to inform RTI 

practices for ELLs, not to directly model the role of SES in ELL mathematics achievement 

patterns, though it is understood that SES is a general predictor of academic development, and 

the role of SES in development can play unique roles of ELLs given the diverse demographic 

backgrounds of students and their families (e.g., Reardon & Galindo, 2009).  Nevertheless, this 

difficulty in distinguishing between the role of SES, other contextual factors (e.g., time spent in 

U.S.)., and language proficiency continues to limit the conclusions of this research.  The 

confounding of SES and language proficiency (Abedi & Lord, 2001) makes it highly difficult to 

determine if the between-group differences that disappear after controlling for SES across groups 

is then due to the fact that SES explains most of the between-group differences or because 
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controlling for SES inherently controls for language differences.  This recurring difficulty is 

something that needs to be addressed by studying more within-group heterogeneity among ELLs 

to determine when and among whom SES is most predictive of achievement patterns.  The 

current study could not adequately parse out these relationships (e.g., ELLs were nearly 1 SD 

below EPSs on kindergarten SES), nor was it the goal to explicitly study SES. Relatedly, from a 

practitioner stand point, considering SES itself as a risk factor is not in the direct purview of the 

RTI model. However, ecological approaches to working with students from a range of 

socioeconomic strata, such as accessible and equitable family engagement practices to support 

academic skills and also social-emotional-behavioral well-being, may be effective in mitigating 

the roles of exogenous variables in students’ academic, cognitive, and social-emotional-

behavioral development. 

Finally, one frequent confound to modeling growth is the variability in when the outcome 

is observed across waves.  In the ECLS-K: 2011, Spring assessments took place in March 

through June of each year.  As such, the intervals between measures for some students could 

have been as few as nine months or as much as 15 months.  One significant disadvantage of the 

MG-LCSM approach in this area is that a basic assumption of the LCSM is equal intervals of 

measurement (McArdle & Nesselroade, 2014).  Potential ways to mitigate these problems might 

include using a placeholder latent true score that is estimated from the model between each latent 

true score estimated from the actual data (McArdle & Nesselroade, 2014), which would then 

generate an intermediary interval estimated from the model and may capture variation in timing 

of observations.  Although a core assumption of the LCSM approach, this issue has not been 

evaluated in the literature, making it difficult to assess the impact individually varying times of 
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observation has on model estimation.  Nevertheless, the model results and the assumption of a 

yearly change period should be assessed in light of this fundamental limitation of the data.   
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CHAPTER IV: STUDY 2 

Research Questions and Hypotheses 

The mains goals of this study were to, first, determine the extent to which gains in ELP 

across kindergarten predict mathematics development patterns between grades 1 and 4 when the 

majority of students have been assessed in math in English and, second, model potential 

unobserved heterogeneity in mathematics development patterns between first and fourth grades.  

Three primarily exploratory research questions are the focus of Study 2. 

Research Question 1 

Are there unobserved differential growth trajectories (i.e., mixtures) in mathematics 

development from grades 1 to 4? Even though average ELL performance is lower on average 

than EPS performance, do these potential heterogenous trajectories align with the average 

status/steeper growth (“mover”) lower status/flatter growth (“stayer”) trajectories commonly 

identified in other mixture modeling findings across language groups (e.g., Kaplan, 2002; Jordan 

et al., 2006; Jordan et al., 2007)?  If so, to what extent do these growth mixtures align with 

current assumptions about RTI tiers of defining academic risk (Fuchs & Fuchs, 2007)? 

Research Question 2 

Do gains in ELP across kindergarten predict greater mathematics growth? If multiple 

growth classes exist and align with the mover/stayer patterns of development, does gain in ELP 

across kindergarten predict membership to those classes and the probability of switching classes?  

Do ELP gains function differentially across mixture classes in predicting of growth patterns? 

Prior findings show the timing of reaching English proficiency is predictive of mathematics 

development (Halle et al., 2012), so I expected ELP gains to be positively related to later 

mathematics development trends given that greater gains imply greater progress towards ELP 
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over kindergarten and thus improved access to instruction and assessment.  However, prior 

research has focused largely on level of ELP rather than gains in ELP as a predictor of academic 

development, though ELP growth is predominantly the focus of policy and practitioner 

initiatives.  Due to the paucity of research relating ELP growth and mathematics, these analyses 

were largely exploratory, though I did primarily expect that ELP growth would positively predict 

later mathematics development trends.  However, it could also be the case that greater gains in 

ELP early on are not necessarily beneficial, especially as the students who gain more in ELP are 

likely to be lower in ELP to begin with.  Chow et al. (2013) found that greater proficiency and 

gains in early reading may drag behind mathematics development and noted this could be related 

to the disproportionate amount of time students potentially spend on acquiring literacy skills in 

early elementary school.  Schools may feel that it is more imperative for students to progress in 

ELP and literacy as the more fundamental academic skill, though this may come at the expense 

of mathematics development to some degree.  Nevertheless, given the prior findings indicating 

the importance of the timing of ELP, the prediction leaned more heavily in favor of ELP gains 

positively predicting later growth.  However, if growth mixtures can be extracted, it is possible 

the role of ELP may function differently depending on the qualitative characteristics of such 

mixture distributions.  For example, Chen and Chaloub-Deville (2016) employed quantile 

regression to show that English reading ability was more strongly predictive of mathematics 

performance among students with lower mathematics performance.  Similarly, it might be the 

case that ELP gains are more strongly predictive of later mathematics development among 

students who may exhibit riskier mathematics trajectories.   
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Research Question 3 

Because I primarily predicted that ELP growth would be a positive predictor of later 

growth, it was also important to identify differential relationships in the extent to which ELP 

predicts later growth.  Moderators can be particularly useful in the context of RTI given the 

emphasis on student characteristics that predict responsiveness to intervention and the need to 

assess profiles of mathematics and related skills to identify such responder patterns (Fuchs, 

Schumacher, Sterba, et al., 2014; Powell et al., 2017).  ELP might play a role in intervention 

response (e.g., Doabler et al., 2019), though recent evidence (Swanson et al., 2018) clearly 

establishes that ELP does not tell the whole story in terms of the mechanisms that drive 

mathematics development among ELLs, and by extension, potentially intervention response.  

Therefore, Question 3 probed whether ELP is a stronger predictor of mathematics trajectories 

among students with lower working memory capacity.  If multiple classes of growth exist, how 

does this interaction function across growth classes? ELP coupled with needing to manipulating 

multiple linguistic sources of information in mathematics (i.e., concepts, facts, and information 

partially stored and retrieved in native language but applied in a second language task), lower 

working memory capacity may increase the load of language in mathematics tasks because lower 

working memory may make mathematical problem solving less efficient.  Prior work has 

established mixed findings on the role of different components of executive functioning in terms 

of bilingualism; however, working memory would seem to most effectively link L1, L2, and 

mathematics because of the role of working memory in mathematics over time and the potential 

need of some (but not all) ELLs to attend to, hold, and manipulate a wider variety of information 

sources than EPSs.  Indeed, Swanson et al. (2018) provided evidence for this critical role of 

working memory among high and low ELP ELLs with and without mathematics difficulties.  As 



 

 

123 

123 

such, ELP may be less predictive of mathematics development at higher levels of working 

memory because those students might more effectively utilize their working memory resources 

to offset some of the language load of mathematics problems, thus gaining more in ELP may not 

be as important in predicting later performance.  Students with lower working memory ability 

may be less effective in utilizing executive functioning resources to work through mathematics 

problems with more language and cognitive load, thus the mathematics task could become more 

contingent on their level of ELP.  Consequently, early ELP gains may be more critical to later 

mathematics performance and development for these students.  If mixtures are present, then this 

interaction might function differently for students within each mixture.   

Study 2 Method  

Participants 

Participants for Study 2 were the ELL subsample utilized in Study 1 (unweighted N  = 

303; weighted N = 205,956).   

Measures 

The same measures used in Study 1 were used in study two except the ELP measures, 

which I describe below. 

 English language proficiency growth.  I assessed growth in English language using Fall 

to Spring gains in kindergarten on the preLAS, which models the latent difference between the 

Spring and Fall measurements of the preLAS.  I defined ELLs in this study in the same way as 

Study 1.  Thus, I measured gains from Fall to Spring among students who scored between 0 and 

22 on the preLAS in the Fall.  Fall and Spring a coefficients of the preLAS total raw scores (i.e., 

total score of 20) were 0.91 and 0.91, respectively.  As a secondary related but distal measure of 

English proficiency growth, I also utilized the English Basic Reading Skills (EBRS) portion of 
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the ECLS-K: 2011 reading assessment.  This measure consists of 18 basic reading skills items in 

addition to two items from the preLAS “Art Show” task (Tourangeau et al., 2018).  The content 

covered on the EBRS in kindergarten included phonological awareness, print familiarity, 

recognition of letters and sounds, and sight words (Najarian et al., 2018b), whereas the preLAS 

measured only expressive and receptive vocabulary in English.  There is likely considerable 

overlap in the underlying language skills measured between the two besides the two common 

preLAS items since proficiency in expressive and receptive vocabulary likely shares similar 

characteristics as L2 skills such as phonemic awareness and letter-sound recognition.   

Missing Data  

With the exception of the treatment ELP data, all other variables used in Study 2 were the 

same as Study 1.  As such, the same set of 20 imputed datasets generated in Study 1 was utilized 

in the current study.   

Analysis 

I used the SUBPOPULATION command in Mplus to analyze the subset of 303 ELL 

students from the larger dataset used in Study 1.  Because the data are weighted to produced 

population estimates (using the same sample weight, PSU, and strata as Study 1), traditional 

subgroup analysis that fully removes data from an analysis may not produce the correct standard 

error estimates.  To account for this, the SUBPOPULATION command utilizes data from the 

entire dataset but weights the group that is not being used in the analysis (in this case, EPSs) to 0.  

This allows the full sample to contribute to standard error calculation while providing estimates 

for only the weighted subgroup of interest.   
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The analytic technique of this study consisted of multiple exploratory stages.  First, I 

employed GMM3 to detect heterogeneity in growth trends between the Spring of grade one and 

the Spring of grade four, totaling four measurement waves.  Provided that a multiple-class 

mixture model fits better and is substantively more meaningful than a single, latent curve model, 

the second step of the modeling process is to include covariates into the model using the three-

step method (Asparahouv & Múthen, 2014).  Because mixture modeling takes into account all 

information that is included into a model during the estimation process, including covariates into 

the entire model may substantially impact the estimation of mixture classes in the outcome 

variables.  Although in some cases this may prove empirically and substantively advantageous 

(Stegmann & Grimm, 2018), the primary goal of mixture modeling is to detect heterogeneity in 

the outcome variable rather than in both the outcome itself as well as the covariate regressions 

(Jaccobucci, Grimm, & McArdle, 2017).  The three-step method offers a solution to this 

challenge by classifying the covariates as auxiliary variables in the estimation model, which 

effectively removes the covariates from the extraction of mixture classes but then allows class 

membership to be regressed on the covariates after the mixture class estimation procedure.  The 

third step in this analysis procedure is testing the stability in mixture class membership and the 

factors that predict stability or change (i.e., regime-switching; Chow et al., 2013).  The current 

Mplus software (Version 8.1; Muthén & Muthén, 2017) does not have an automatic procedure 

for conducting the three-step method for regime-switching growth mixture models, as the three-

step procedure can handle identification of only one set of latent mixture classes.  Consequently, 

I will use a latent transition analysis (LTA) technique to analyze stability and change in class 

 
3 Unlike Study 1, individually-varying times of observation can be more easily included into the estimation of a 
growth model.  However, this requires using the TYPE=RANDOM command, which would then preclude the use of 
both mixture modeling and complex design features.  As such, individually-varying times of observations were not 
permissible in Study 2. 
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analysis membership.  To conduct this technique, I will conduct a latent profile analysis (LPA) 

of each of the four mathematics measurements utilized in the GMM.  Membership to the classes 

at each wave will then be extracted and combined into one data set.  Then, an LTA will be 

conducted by regressing classes membership to membership at the previous time point.  

Predictors can then be included into the LTA model through the three-step specification 

technique identified in Nylund-Gibson, Grimm, Quirk, and Furlong (2014).  Although this 

technique does not identify growth mixtures per se, the specification of classes at each 

measurement wave in the RS-GMM parallels the process of conducting LPA at each wave, 

extracting class membership for each wave, then regressing that membership on each prior wave.  

The LTA approach is advantageous because it estimates fewer parameters within the same 

model, offering a more parsimonious approach to the modeling process.  Given the complexity 

of estimating the mover-stay component within a RS-GMM – which entails the specification of a 

GMM, the specification of the mixture classes at each wave, the regression of wave-specific 

mixture membership on the prior wave’s membership, then the added model constraints to 

identify the “movers” versus “stayers” – the added simplicity of conducting the mover-stayer 

modeling within just the LTA is significantly advantageous and estimated with relative ease in 

Mplus (Kaplan, 2008; Kaplan & Walpole, 2005).   

A primary aspect of mixture modeling is the selection and substantive identification of 

mixture classes based on qualitative and quantitative indicators.  On the quantitative end, the BIC 

is frequent measures of mixture identification as it assesses model parsimony by assigning a 

penalty for estimating unnecessary parameters (Kaplan, 2002; 2009; 2014).  Lower BIC values 

suggest better model fit (Kaplan, 2002; 2009; 2014).  Mixtures have to make sense substantively, 

however.  Over-extraction of mixture classes has been raised as a significant issue in the GMM 
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literature (Bauer & Curran, 2003).  Simply because separate mixtures of growth trajectories can 

be empirically identified does not necessarily imply that the mixtures are qualitatively and 

substantively meaningful.  Thus, mixture class identification ought to be guided by both the data 

at-hand (i.e., relative fit indices like the BIC [Kaplan, 2002]) and an understanding of what 

underlies observed heterogeneity in growth trajectories.      

The first step of growth mixture modeling is to descriptively inspect profile plots of 

individual growth trajectories (Kaplan, 2002; Ram & Grimm, 2009).  Profile plots of a random 

sample of 30 students out of the 303 individuals in the current study are provided in Figure 12.  

Additionally, because of the interest in ELP gains in predicting mathematics growth, profile plots 

of data from the two ELP measures under consideration from 30 randomly sampled students are 

presented in Figure 13.   
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Figure 12.  Profile plots of mathematics IRT scores in first through fourth grade for 30 randomly 

sampled ELL students.   
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Figure 13.  Profile plots of preLAS and EBRS data in Fall and Spring of kindergarten from 30 

randomly sampled ELLs  
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 For the most part, students appear to exhibit relatively stable trajectories over time based 

on Figure 12.  However, students who began the Spring of first grade with scores on the lower 

end of the distribution exhibit considerably more variability in their trajectories until the end of 

grade four, particularly in the one year between first and second grade.  This variability in initial 

status in addition to the ensuing trajectories indicates that a single latent growth curve may not 

adequately capture the underlying growth trend as hypothesized; thus, GMM is a justifiable 

approach. 

I estimated the GMM using an iterative procedure (Ram & Grimm, 2009).  One-, two-, 

and three-class unconditional models were investigated first with means varying across classes, 

then with means and variances/covariances varying across classes, and finally with means and 

variances/covariances freed across classes with residual variances freed across time.  I freed 

residual variances of manifest variables (i.e., mathematics measurements at each wave) over time 

within each class, as this may provide important information on the unaccounted variance (i.e., 

disturbance) within each mixture class.  Variance that is not explained by students’ initial status 

(intercept) or their pattern of growth and the extent to which this error changes over time may be 

potentially important information in qualitatively distinguishing growth patterns.  Residual terms 

are frequently not of substantive interest nor clearly discussed in studies (Enders & Tofighi, 

2008).  However, Enders and Tofighi (2008) conducted a simulation study showing that analysts 

must attend to manifest residual terms in GMMs, as incorrectly constraining or estimating these 

terms can lead to over-extraction, bias, and misspecification.  Thus, because the observed 

trajectories depicted in Figure 12 appeared heterogenous, I more closely scrutinized the viability 

of assuming the equality of residuals of time within each class.  The reliability of slope estimates 

is an important aspect of assessing the technical adequacy of progress monitoring tools (Christ & 
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Ardoin, 2008; Clarke et al., 2008), and higher unexplained variance may be indicative of less 

reliable estimates of growth.  The SEM growth modeling framework relaxes the homoscedastic 

residual assumption and offers an approach to estimate the variance for which students’ latent 

trajectories do not account. 

Study 2 Results 

 Descriptive statistics for all the variables used in this analysis are presented in Table 13, 

and demographic characteristics of the ELL sample are presented again for reference in Table 

14.   
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Table 13           

Study 2 ELL Weighted Sample Descriptive Statistics 

Variable M SD Min Max 
Proportion 

Missing 

EBRS – Fall K 8.05 4.63 0.00 20.00 .000 

EBRS – Sp. K 13.65 4.21 0.00 20.00 .000 

IRT Mathematics - Fall K 23.73 7.60 9.79 48.54 .000 

IRT Mathematics – Sp. K 38.24 10.58 14.13 76.11 .000 

IRT Mathematics - Sp. Gr. 1 58.93 13.88 25.88 103.40 .000 

IRT Mathematics - Sp. Gr. 2 78.10 16.02 23.45 115.43 .000 

IRT Mathematics - Sp. Gr. 3 92.66 15.14 43.95 123.92 .001 

IRT Mathematics - Sp. Gr. 4 100.87 14.77 28.16 130.95 .001 

WJ - III Numbers Reversed – Spring K 85.22 16.46 51.00 134.00 .000 

DCCS – Fall K 12.09 4.12 0.00 18.00 .000 

CBQ Attentional Focus – Fall K 4.39 1.32 1.00 7.00 .063 

CBQ Inhibitory Control – Fall K 4.73 1.32 1.00 7.00 .056 

Age at Kindergarten Entry  65.02 4.83 39.10 81.07 .003 

Socioeconomic Status – Fall/Sp. K -0.84 0.54 -2.33 1.61 .003 

preLAS Combined Score - Fall K 13.56 7.57 0.00 22.00 .000 

preLAS Combined Score – Sp. K 22.04 6.74 0.00 30.00 .000 

Unweighted N 303 

Weighted N 205,956 

Note. Missingness proportions are not weighted. EBRS = English basic reading skills, 
IRT = item response theory, WJ = Woodcock-Johnson, DCCS = Dimensional Change 
Card Sort, CBQ = Children’s Behavior Questionnaire, K = Kindergarten. 
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Table 14     
Study 2 Weighted Demographic Characteristics (Proportions)   

Variable Proportion 
Proportion 

Missing 

Black .007 .000 
White .006 .000 
Hispanic, Race Specified .91 .000 
Hispanic, No Race Specified .01 .000 
Asian .05 .000 
Hawaiian/Native Pacific Islander .01 .000 
American Indian/Alaskan Native .002 .000 
Female .50 .000 
Not First-Time Kindergartener .05 .003 
Parental Pre-K Care .38 .003 
Attended Full-Day Kindergarten (Fall) .91 .007 
Attended Full-Day Kindergarten (Spring) .93 .000 

Unweighted N 303 
Weighted N 205,956 

Note. Missingness proportions are not weighted.  
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To address Research Question 1, I conducted GMM in Mplus (Muthen & Muthen, 2017) 

with the TYPE = COMPLEX MIXTURE command, which allows the incorporation of complex 

survey design features (weights, primary sampling units, and strata) into the mixture modeling 

procedure.  I tested models in an iterative fashion starting with a single-class latent-basis growth 

curve model.  I chose the latent-basis model (as opposed to a quadratic or linear) given the 

apparent overall nonlinearity in change patterns and the inconsistency of nonlinearity.  

Moreover, given the descriptive plots of individual curves, a latent-basis model seemed more 

capable of capturing differential patterns of change over time than a model with a strict 

functional form.  Relatedly, due to this variability in change, I left residual variances 

unconstrained in the single-class model.  Then, I fit a two-class mixture model with residuals 

constrained over time and variances/covariances constrained to equality across groups (i.e., only 

the intercept and slope means varied between groups).  Following that model, I freed the latent 

intercept and slope variances/covariances.  Last, in a third two-class model I freed the residual 

variances as well as the latent intercept slope variances and covariances.  I conducted the same 

procedure with a three-class mixture mode.  However, the two-class models with freed means 

and variances/covariances and residuals constrained across time (but freed across groups) 

showed a non-positive-definite matrix and was therefore removed from consideration.  Similarly, 

the three-class model with the same constraints had a non-positive-definite matrix, as did a three-

class model with completely freed means, variances/covariances, and residuals.  As such, only 

four models were left for consideration in the class enumeration procedure. 

Results of this analysis are presented in Table 15.  BIC values from each mixture model 

(one-, two-, and three-class models) suggest a slight improvement in model fit from a one to two 

class model with freed means and a two-class model with all parameters freed across groups.  
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However, despite the lower BIC and entropy values were quite high (>.90), the classes were not 

qualitatively meaningful since the class mixing proportions were very small for some classes 

(».06 – .09).  Although this range of proportions may mirror the population estimate of students 

who exhibit specific learning disorder in mathematics (American Psychiatric Association, 2013), 

there is not a specific way to determine this with the available data.  Even though a binary 

variable indicates whether students have a disability or not, this would not provide any 

information regarding how their diagnostic classification might relate to mathematics outcomes.  

Additionally, in both the two-class models, the only significant quantitative differences observed 

between mixture classes was the intercept, the manifest residual terms (when they were freed), 

and one growth factor loading in the latent-basis model (grade 2).  Otherwise, the trajectories 

closely modeled each other.  The three-class model presented no advantage in terms of class 

distinctiveness (entropy) or relative model fit (BIC). 

Data inspection among the ELL subsample from Study 1 detected a significant univariate 

outlier in the fourth-grade mathematics data.  Although this value did not meaningfully impact 

prior analyses, it was further inspected here given that this particular student was included in the 

highly small mixture class.  Mixture models were re-fit with this student removed from the 

models. Model fitting for single-class as well as the two- and three-class models with only freed 

latent means was unaffected by the removal of the outlier.  The difference in BIC values between 

the single and two-class freed means model slightly shrunk, however, providing further evidence 

that the single-class model was likely the proper selection.  The two-class model with freed 

means, variances/covariances, and residuals showed a non-positive-definite matrix, so it was 

removed from consideration.  However, it is interesting to note that the removal of this outlier 
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significantly impacted the already highly small mixing proportion, suggesting it was driving 

much of the mixture detection. 
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Table 15   
Relative Fit Indices of Growth Mixture Models    

 BIC Entropy  Class Mixing 
Proportions* 

Including Gr.  4 Outlier     
     Single Class (freed residuals) 8980.38 --  1.00 
     2-Class: Means  8966.84 .83  .91, .09 
     2-Class: Means + Variances (Covariances) + Residual Variances 8973.23 .95  .94, .06 
     3-Class: Means 8980.51 .65  .09, .55, .37 
Gr.  4 Outlier Removed     
     Single Class (freed residuals) 8930.81 --  1.00 
     2-Class: Means 8922.23 .85  .92, .08 
     2-Class: Means + Variances (Covariances) + Residual Variances^ 8934.31 .99  .97, .03 
     3-Class: Means 8933.85 .67  .09, .57, .34 
Note.  All residual variances estimated separately within groups.  ^Model showed non positive-definite matrices.  
*Based on estimated posterior probabilities. 
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Considering the minor empirical advantage to the two different two-class models, the 

substantive relevance of the classes, and the influence of the outlier in the mixture detection 

procedure, a single class (i.e., no mixture) growth model appeared to be the model that most 

accurately represented the growth trajectories.  Although the weighted population mixing 

proportions correspond to class sizes of 12,063 for two-class model with means, 

variances/covariances, and residuals freed (outlier included) and 19,051 for the outlier-removed 

two-class model with only freed means, there is nonetheless unconvincing empirical support 

from a model parsimony perspective (i.e., the BIC) that specifying these mixtures provides a 

better model.  Comparing these mixing proportions to the entire population (weighting the entire 

sample of 5,014 students), these mixing proportions constitute only between 0.4% and 0.6% of 

the overall population (e.g., 12,063/3,432,072 = .004).  While the goal of the current analysis 

was to identify unique mixtures specifically among ELLs, it is important to examine these results 

in the broader context of the general population being studied.  The potential to observe a 

fundamentally unique trajectory of mathematics growth within a unique subpopulation (i.e., 

ELLs) in the context of the entire population with class proportions of less than half a percent 

seems unlikely from a practical perspective.  Of course, any proportion of mixtures among ELLs 

would inherently be quite small when compared to the whole population.  However, the lack of 

qualitative distinctiveness and cogent empirical support among ELLs specifically provides 

greater evidence that it is unlikely these mixtures are substantively or practically relevant at a 

population level.   

Generally, the single-class model can be characterized by high intercept and slope 

variance with high observed variable variance at each measurement wave.  Similar to Bauer and 

Curran’s (2003) cautions against over-extraction of mixture classes, this high variability in 
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growth patterns does not by default mean mixture classes exist.  Because only a single class 

model was selected, a regime-switching model or latent transition analysis was not permitted.  

Results of the single-class model are presented in Table 16.  Removing the outlier had no 

significant impact on model estimation besides lowering the BIC, so it was retained in the model 

estimation. 
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Table 16   
Unconditional Latent-Basis Growth Parameters 

Parameter Estimate (SE) 

Latent Intercept Mean 58.91 (1.10)*** 
Latent Intercept Variance 175.33  
Latent Slope Mean 13.98 (0.22)*** 
Latent Slope Variance 8.55  
Intercept-Slope Covariance -8.19 (4.68)^ 
Latent-Basis Slope Loadings   
    Sp.  Gr.  1 Fixed at 0 
    Sp.  Gr.  2 1.38 (0.05)*** 
    Sp.  Gr.  3 2.41 (0.03)*** 
    Sp.  Gr.  4 Fixed at 3 
Residual Variances   
    Sp.  Gr.  1 24.46  
    Sp.  Gr.  2 53.70  
    Sp.  Gr.  3 37.68  
    Sp.  Gr.  4 22.14  
Fit Indices  
      RMSEA  0.112 
      CFI  0.991 
      TLI  0.967 
      SRMR  
      BIC  

0.114 
8980.38 

      c2 (df) 14.344 (3) 
Note. To properly calculate CFI and TLI values for growth models (Widaman & 
Thompson, 2003), the CFI and TLI are calculated using an intercept-only model 
with residuals constrained to equality over time as the null model (c2 [df] = 
1284.060 [11]). ^p ³ .05, ***p < .001 
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After identifying the best-fitting model (i.e., the single-class latent-basis growth model), I 

then included covariates to analyze the role of ELP development across kindergarten in 

predicting future trends in mathematics development.  However, prior to that, latent change score 

models for Fall to Spring preLAS and EBRS were estimated separately.  Models were fit in R 

using the lavaan  (Rosseel, 2012) and lavaan.survey (Obserski, 2014) packages to estimate the 

model with complex survey design elements.  Robust maximum likelihood (“MLM”, as opposed 

to “MLR” in Mplus) was used in estimation.  Path diagrams for these models are presented in 

Figure 14.  Because no data were missing for the preLAS and EBRS measures in either Fall or 

Spring of kindergarten, the models were fit using the original, single dataset. When regressing 

change on prior level (autoproportional effect), both models show similar autoproportional 

effects: students who performed higher on preLAS or EBRS by one point gained 0.57 and 0.66 

fewer points by Spring, respectively. Because the latent change score is constructed from 

observed variables (rather than multiple indicator variables), manually-constructed and latent 

change scores are mathematically equivalent (McArdle, 2009). Manually-constructed change 

scores were thus used in subsequent analyses. On EBRS, ELLs gained an average of 5.65 points, 

and on preLAS students gained an average of 8.52 points. Another advantage of using manully-

constructed change scores is that it avoids estimation barriers with latent interactions, which 

cannot be used with complex survey features in Mplus. 
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Figure 14.  preLAS and EBRS change score diagrams.   

Note. Unlabeled paths fixed to 1.  *** p < .001. 
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Next, the full conditional growth curve model was estimated with the full set of 

covariates.  Table 17 displays the regression coefficients for each of the predictors in the model 

with preLAS and EBRS as predictors, and Table 18 displays the latent growth parameters and fit 

indices for each of the two the conditional models.  All continuous predictors were centered at 

the ELL-specific mean of each variable to aid in interpretation of the EBRS/preLAS-by-working 

memory interaction term and the conditional EBRS and preLAS effects.  
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Table 17     
Covariate Effects in Latent-Basis Growth Curve Model 

 Regression Coefficients (SE) 

Predictor Growth Intercept Growth Slope 

preLAS Model   

      (Intercept) 56.122 (1.340)*** 14.967 (0.624)*** 
      Sp.  K.  Working Memory 0.239 (0.058)*** -0.039 (0.013)** 
      preLAS Gain Score 0.115 (0.104) -0.031 (0.027) 
      Sp.  K Working Memory X 
      preLAS Gain Score 

0.002 (0.006) 0.001 (0.002) 

      Fall K Cognitive Flexibility 0.537 (0.157)** 0.009 (0.061) 
      Fall K Attentional Focus 1.516 (0.672)* 0.548 (0.195)** 
      Fall K Inhibitory Control 0.201 (0.849) -0.479 (0.211)* 
      Fall K Full-Day 2.784 (1.460) -0.255 (0.588) 
      Parental Pre-K Care -0.092 (1.721) -0.414 (0.658) 
      Age of Kindergarten Entry 0.081 (0.180) -0.156 (0.053)** 
      Not First-Time Kindergartener 4.270 (2.814) -2.318 (0.98)* 
      Socioeconomic Status 2.106 (1.218) -0.832 (0.413)* 
      Non-Hispanic, Non-Asian 0.571 (2.967) 0.419 (1.941) 
      Asian 5.748 (3.141) 1.926 (1.008) 
      Female -0.479 (1.221) -1.201 (0.417)** 
      Fall K Mathematics IRT 0.525 (0.097)*** 0.031 (0.035) 
EBRS Model   
     (Intercept) 57.717 (1.625)*** 14.654 (0.668)*** 
     Sp.  K.  Working Memory 0.227 (0.051)*** -0.038 (0.012)** 
     EBRS Gain Score 0.576 (0.158)*** -0.104 (0.042)* 
     Sp.  K Working memory X 
     EBRS Gain Score 

-0.005 (0.007) 0.002 (0.003) 

     Fall K Cognitive Flexibility 0.486 (0.164)** 0.018 (0.061) 
     Fall K Attentional Focus 1.581 (0.653)* 0.534 (0.211)* 
     Fall K Inhibitory Control 0.060 (0.845) -0.458 (0.209)* 
     Fall K Full-Day 1.325 (1.557) 0.025 (0.621) 
     Parental Pre-K Care -0.292 (1.539) -0.383 (0.621) 
     Age of Kindergarten Entry 0.125 (0.165) -0.165 (0.055)** 
     Not First-Time Kindergartener 5.211 (2.61)* -2.485 (0.929)** 
     Socioeconomic Status 2.564 (1.165)* -0.892 (0.404)* 
     Non-Hispanic, Non-Asian 0.271 (3.065) 0.485 (1.911) 
     Asian 6.316 (3.031)* 1.790 (0.969) 
     Female -1.024 (1.204) -1.067 (0.430)* 
     Fall K Mathematics IRT 0.620 (0.097)*** 0.019 (0.034) 
Note.  All estimates centered at the ELL group mean of each continuous variable. *p 
< .05, ** p < .01, ***p < .001  
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Table 18         
Conditional Latent-Basis Growth Curve Parameters   

Parameter 
preLAS Model EBRS Model 

Estimate (SE) Estimate (SE) 
Latent Intercept Conditional Intercept 56.12 (1.34)*** 57.72 (1.63)*** 
Latent Intercept Residual Variance 92.23 84.78 
Latent Slope Conditional Intercept 14.97 (0.62)*** 14.65 (0.67)*** 
Latent Slope Residual Variance 6.85 6.39 
Intercept-Slope Covariance -5.25 (3.56)^ -3.56 (3.17)^ 
Latent Slope Factor Loadings 
     Sp.  Gr.  1 Fixed at 0 Fixed at 0 
     Sp.  Gr.  2 1.38 (0.05)*** 1.38 (0.05)*** 
     Sp.  Gr.  3 2.42 (0.03)*** 2.41 (0.03)*** 
     Sp.  Gr.  4 Fixed at 3 Fixed at 3 
Residual Variances   
     Sp.  Gr.  1 27.26 29.53 
     Sp.  Gr.  2 52.53 51.86 
     Sp.  Gr.  3 37.36 37.29 
     Sp.  Gr.  4 22.90 22.96 
Fit Indices   
     R2 Latent Intercept .47 .51 
     R2 Latent Slope .16 .19 
     RMSEA  0.053 0.056 
     SRMR  0.033 0.033 
     BIC   8943.506 8926.687 
     c2 (df) 60.649 (33) 63.989 (33) 
Note.  p-values not provided for fit indices and residual variances. ^p ³ .05 ***p 
< .001 
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preLAS gains did not emerge as a positive predictor of later growth level or slope in 

mathematics.  In the EBRS model, the growth model intercept regression on EBRS change 

revealed a significant and positive relationship, indicating that students’ growth in basic English 

print knowledge skills predicts higher mathematics performance at the end of first grade.  

However, they see diminishing returns in this advantage through fourth grade due to the negative 

effect on the growth slope.  Nevertheless, the over half-point advantage at the end of first grade 

translates into only a quarter-point advantage by the end of fourth grade due to the negative slope 

coefficient (i.e., -.104 * 3).  Given the likely relationship between basic reading skills and 

receptive/expressive vocabulary in predicting mathematics performance (e.g., Chow & Ekholm, 

2019), a third model was run with both preLAS and EBRS change included in the same model to 

check the robustness of the EBRS finding.  This model did not change the pattern of results for 

the EBRS or preLAS effects on the growth model intercept and slope, indicating that 

kindergarten gains in basic reading skills in English are a unique predictor of mathematics 

performance level and growth beyond development of English expressive and receptive 

vocabulary.  In none of the models did working memory significantly moderate the effect of 

preLAS or EBRS gains on mathematics performance level or growth. 

The effect of working memory in this model also differed slightly than what was 

identified in Study 1.  This difference is largely driven by the difference in the model estimation 

technique and the different sources of data.  Because Spring of first grade rather than 

kindergarten was used as the intercept, the developmental relationship between students’ 

intercept and subsequent slope varies between studies.  Increases in working memory predict 

higher performance level but given the subsequent pattern of development after first grade, this 

higher performance level does not necessarily translate into compounding growth over time as it 
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does in kindergarten when constraining the effect of working memory to be equal across 

language groups as in Study 1.  When left unconstrained across groups, working memory shows 

a relatively similar though non-significant effect on the slope among ELLs in study one as 

observed here in study two.  However, Study 1 showed that the model is better fit with working 

memory constrained across groups, likely because there is far more power among EPSs to 

estimate the effect, thus greater efficiency in model estimation is gained when constraining the 

effect across groups.  The results here, however, show that for ELLs, the first-grade advantage 

gained from being higher in working memory at the end of kindergarten has slightly diminishing 

returns through the next three years.  Scoring one point higher in working memory predicts an 

increase in .226 of a point in mathematics at the end of first grade, though this is offset by a 

slightly flatter slope (working memory coefficients for slope of -0.039 and -0.038 in preLAS and 

EBRS models, respectively).  By the end of fourth grade, this negative slope coefficient 

translates into the advantage of working memory from first grade mathematics being cut in half.  

Another important aspect to note about the conditional model is that the BIC value is 

significantly lower than the unconditional model, and it is significantly lower than any of the 

mixture models with two or three classes.  This may suggest that including the baseline 

covariates may be more effective for building a better-fitting model (relative to the unconditional 

model) than modeling latent mixture classes, particularly in terms of balancing model 

complexity with parsimony (Kaplan, 2002; 2009; 2014). 

Study 2 Discussion 

 In Study 2, I investigated the presence of mixture classes of mathematics growth from 

Spring of first to Spring of fourth grade among 303 initially low ELP ELLs.  I predicted that 

multiple mixture classes of growth would be extracted, helping further identify students who 
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were potentially identifiable as at-risk learners between grades 1 and 4.  Upon establishing the 

presence of qualitatively distinct growth patterns, I planned to implement a regime-switching 

model to detect stability in mixture class membership and predictors of that stability.  However, 

no qualitatively distinct mixture classes could be extracted from the distribution of latent growth 

curves.  Instead, ELLs’ mathematics growth trend from first to fourth grade seemed to be best 

characterized as a single, highly variable pattern of growth.  Though this does not align with the 

initial prediction, this finding is nonetheless informative of the pattern of ELLs’ mathematics 

development.  Specifically, the population of lower ELP ELLs does not contain subpopulations 

that change in systematically heterogenous ways.  Rather, the significant majority of ELLs grow 

variably within the context of a single, normative pattern.  Variabilities that occur beyond this 

normative trajectory can be conceptualized as disturbances from an average pattern as opposed 

to distinct classes of growth.  Thus, teachers must utilize qualitative and quantitative data to 

monitor low ELP ELLs’ response to instruction and intervention and cross-validate this 

information with national, state, and local norms (Albers & Martinez, 2015).   

However, these results do not suggest that students with mathematics learning challenges 

or at-risk learning characteristics do not exhibit their own distinct set of characteristics.  Rather, 

these characteristics do not manifest in qualitatively distinct development patterns relative to 

other low ELP ELLs when viewing mathematics skills as a composite form of various subskills.  

Other studies have established latent subpopulations of general mathematics competence growth 

among Latino students in kindergarten and first grade (Hong & You, 2012).  In early elementary 

samples, Jordan et al. (2006, 2007) extracted latent subpopulations of mathematics growth using 

a more granular measure of mathematics that specifically tapped early numeracy ability.  The 

common characteristic of these studies was that both empirical and substantive assessments of 
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the mixtures provided a basis for the distinction among mixture classes.  In the current study, the 

mixture procedure extracted a very small subpopulation with model indices showed very strong 

class separation (entropy > .90) and marginally improved relative model fit.  However, the 

qualitative importance of the very small mixture class was minimal given that the growth curves 

differed meaningfully only in the intercept, one factor loading for the slope in grade one, and the 

residual variances.  Various forms of academic performance data for these students must be 

leveraged to capture the factors that contribute to learning difficulties in addition to the 

behavioral, social-emotional, and cultural characteristics that drive learning, as it may not be the 

developmental trajectory itself that establishes different subpopulations of students.  For 

example, given the differential predictive capability of early mathematics subskills (e.g., Nguyen 

et al., 2016), further research ought to attend to domain-specific mathematics subskills, as there 

is practical and theoretical justification to believe there may be differential profiles of 

development in specific skill areas among ELLs considering their consistent lower performance 

compared to EPSs. 

These results provide additional potential insights into the learning process itself.  For 

example, high variability in development may indicate difficulty building on mathematical 

knowledge to apply to new concepts and procedures, especially as fraction and word problem 

skills become more heavily recruited in intermediate elementary.  The decreasing magnitude of 

the mathematics measure correlations from first to fourth grade suggest deteriorating stability in 

individual differences over time, which is then captured in the high and varying residual variance 

of the growth model.  Students who are already higher performing in this area may be more 

buffered through these transitions with stronger mathematics prior knowledge and cognitive 

abilities (as they relate to mathematics) because they may be more capable of effectively 
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reasoning through the new content and language demands.  Further investigations into predictors 

of performance across these transitions is needed to understand learner characteristics that 

facilitate acquisition of fraction and prealgebraic skills among ELLs.  Fractions in particular have 

been a strong focus of intervention and developmental research in recent years given their critical 

role in continuing to perform in mathematics (Fuchs, Schumacher, Sterba, et al., 2014; Resnick 

et al., 2016; Rinne et al., 2017).  Fractions are also difficult because the language utilized to 

express their mathematical may be unique compared to other areas of mathematics learning, 

potentially placing a new academic language demand on ELLs, especially those who are less 

English proficient (e.g., “part of”, “percent”).  Such students require additional instructional 

scaffolding and considerations for prevention and intervention if they are unresponsive to general 

classroom instruction and language (L1 and L2) supports.   

Following the identification of a single class of growth, I investigated the extent to which 

growth in ELP across kindergarten and the interaction between ELP growth and working 

memory was predictive of later growth trends in mathematics.  The absence of a significant 

effect of preLAS change on later mathematics growth indicates that the rate at which students 

gain oral ELP is not a meaningful predictor of later growth in mathematics net of other 

demographic and cognitive characteristics.  However, the significant positive effect of change in 

EBRS across kindergarten on growth intercept and significant negative effect on slope is 

suggestive of a potentially stronger relationship between domain-specific performance in English 

language reading areas, such as phonemic awareness and print knowledge, rather than general 

expressive and receptive vocabulary.  Greenfader (2017) found a similar relationship between 

Hispanic students’ kindergarten-entry EBRS performance level and mathematics performance at 

the end of second grade.  Quickly acquiring basic print skills likely helps students build early 
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mathematics skills by improving the extent to which students can reason with print-based 

mathematical information.  One limitation to this change score approach is that students who 

changed more were likely to be lower scoring at kindergarten entry to begin with, partly because 

of the scaling of the measure.  Another potential explanation is that students with lower basic 

English print knowledge might grow more because they receive more instructional supports or 

interventions early in kindergarten, which may accrue and transfer to mathematical knowledge 

through elementary school.  Students who are already high performing on EBRS may receive 

fewer of these supports, and their skills may not build at the same rate as students who received 

more intensive supports.  In fact, many students (N = 30) actually decreased in their EBRS score 

from Fall to Spring, and 10 students did not change at all.  With the exception of the already high 

scoring students, students who grew more potentially responded to literacy instruction and ELL 

supports more robustly, and this response may have help them acquire the strategies and skills to 

perform higher in mathematics.  Another alternative explanation is that students who changed 

more were inherently more likely to respond more strongly to instruction, which means they 

were able to accrue academic content knowledge and skills in all subjects.  This hypothesis 

requires more investigation into bivariate processes of academic growth among ELLs to examine 

the processes that simultaneously compound and predict with each other.   

While both print knowledge and oral language are important for educational success 

among ELLs and EPSs alike, the current results seem to point towards more basic academic print 

knowledge growth (EBRS) as a stronger direct route to mathematics knowledge (over and above 

other skills) among ELLs.  As such, greater growth in oral language on measures like preLAS 

score may not be an indicator of strong responders to instruction over and above other skills.  

Skill gains on the preLAS may be more socially embedded and may not transfer as directly to 
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mathematics skills a year later over and above other abilities (e.g., working memory, attentional 

focus) that are also crucial to curriculum access and instructional response.  Chow and Ekholm 

(2019) found that language measures of syntax were more predictive of mathematics 

performance than receptive vocabulary and morphology among first and second graders.  This 

may offer an explanation of the current finding, given that basic reading skills may map more 

onto the structure of language (i.e., syntax) as opposed to measures of vocabulary especially as 

advance into more complicated syntactical structures in the years following kindergarten (i.e., 

among the age group Chow and Ekholm [2019] studied).  As Chow and Jacobs (2016) and Chow 

and Ekholm (2019) note, receptive vocabulary measures are some of the most frequently used 

measures of language in many mathematics studies.  Although English vocabulary among ELLs 

is highly important in developing ELP, the current findings, as well as Chow and Ekholm’s 

(2019) results, point towards more structural components of language as key predictors of 

mathematics performance, regardless of native language, though it may be particularly important 

as a gateway to accessing mathematics instruction for ELLs.  Chow and Ekholm’s (2019) results 

also controlled for ELL status, providing further evidence that the role of language syntax is 

unique of native language status (but not necessarily L1 or L2 proficiency).   

Synthesizing the findings from Study 2 shows not only that ELLs change in similar ways 

when assessed in English between grades 1 and 4 but also that early gains in oral ELP do not 

explain significant variation in growth patterns.  Rather, consistent with Study 1, working 

memory and kindergarten-entry mathematics performance emerged as significant predictors of 

grade 1 Spring mathematics performance level.  Additionally, in investigating English basic 

reading skills as an alternative measure of English proficiency and reading, students’ gains on 

this measure emerged as a significant positive predictor of grade 1 performance level but 
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negatively predicted growth.  Together, these findings show that the hypothesized patterns and 

predictors of growth among low ELP ELLs were not supported, and the theoretical mechanisms 

explaining change remain inconclusive.   

However, these results are likely contingent on the methods that were selected for 

investigation.  Specifically, alternative methods to identifying heterogeneities in growth should 

be explored in future research.  Additionally, this study was primarily concerned with the extent 

to gains in one domain (ELP) predicted gains in another and what may moderate those gains.  

Because neither oral ELP gains neither predicted nor were moderated by working memory in 

predicting later growth, more research is needed to examine the extent to which the rate at which 

students acquire ELP is related to mathematics growth, if at all.  At a theoretical level, it is 

important to investigate the ways in which language gains relate to development in mathematics 

given the other data suggesting that levels of ELP (and language in general) are highly related.  

From a practice and policy perspective, summative ELP assessments such as ACCESS directly 

assess students’ development along a continuum of ELP, and schools typically attend to the rate 

at which students acquire ELP as an indicator of success of their language and general classroom 

instruction.  Such large investments in measuring student growth ought to undergo rigorous 

quantitative evaluation to determine the use of such measures in instructional planning beyond 

English supports and reading.  However, Chen and Chaloub-Deville (2016) also note in their 

work using the ECLS-K: 1999 that English reading ability may be the more critical language-

based component of mathematics rather than oral English performance, as English reading 

explained all of the mathematics performance gaps between non-ELLs, former ELLs, and current 

ELLs.  For this reason, combined with more recent evidence from Chow and Ekholm (2019), 
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more nuanced research into the components of language that matter for mathematics learning 

among all students—but especially ELLs—must be conducted.   

Last, the circumstances under which these measures exhibit the highest utility in 

predicting performance in other domains (i.e., moderation) is crucial to consider given the role 

that cognitive characteristics play in mathematics development and response to mathematics 

intervention (Fuchs, Schumacher, Sterba et al., 2014).  Though the current study did not identify 

moderators of ELP in predicting mathematics, future research in mathematics and ELLs should 

consider the domain-general components of learning that uniquely and differentially contribute 

to trends in mathematics development.  Examining conditional and differential processes (i.e., 

moderation and moderated mediation) is particularly important given the prior empirical work 

supporting the hypothesis that bilingualism can benefit executive functioning.  As such, from an 

RTI perspective, it is imperative to examine the circumstances under which and for whom 

second language and executive functioning interact in predicting mathematics outcomes.  While 

this extends largely from a developmental perspective, testing conditional and differential 

processes such as these can directly inform the skills (both domain-general and -specific) 

interventions target and when those skills ought to be targeted. 

Limitations 

The principal limitation to this study is the form of measurement of ELP.  Although I 

tested multiple forms of potential English proficiency measures (EBRS and preLAS), these are 

highly limited in scope compared to the measures used in schools.  For example, the ACCESS 

2.0 (World-Class Instructional Design and Assessment, 2014) is a comprehensive measure of 

English language proficiency that assesses domain-specific content language, oral language, and 

English writing ability.  As such, the instructional and programmatical decisions that are made in 
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schools that use such assessments are drawing on data that is much deeper and broader in scope.  

Growth in ELP is then based on a much deeper understanding of the skills that comprise ELP 

and a better statistical model of growth since the assessment is designed to assess such change.  

Another significant related limitation is that not all students were assessed in the same time 

intervals.  While it is questionable how much this significantly impacts the current estimates (and 

extraction of mixture classes), this is a significant limitation of the ELP gain scores, as gains for 

one student may not be measured across the same time metric as another.  This is likely 

significantly more impactful for the change scores as opposed to the growth model because 

change was assessed from Fall to Spring, introducing more variability in the time intervals of 

assessment rather than Spring-to-Spring measurements of mathematics.  Additionally, though the 

definition of ELL used in this study was made conscientiously to better approximate the 

definition of language proficiency schools might use (in terms of the range of ELP captured on 

more comprehensive measures), alternative definitions should be considered when using the 

ECLS-K:2011 data and other datasets that employ less comprehensive measures of ELP. 

A second significant limitation of this study is the timing of the measures used to assess 

the moderating effect of working memory.  Specifically, ELP growth was assessed from Fall to 

Spring of kindergarten while working memory was assessed in Spring.  As a result, it is possible 

that working memory is better characterized as a mediator rather than a moderator.  This was a 

limitation of the available data since many students did not score high enough and were not old 

enough to receive a scale score in the Fall of kindergarten.  Alternative scores for working 

memory were available for students who scored too low to acquire a scale score; however, the 

scaling of these alternative scoring methods differed between Spanish and English versions of 

the assessment.  The minimum w-ability score for the Spanish WJ-III NR in Spanish was lower 
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than the English version across the entire scale, so different scores corresponded to the same 

level of performance (Tourangeau et al., 2015a). Thus, this score was deemed inappropriate for 

the current analyses.  The minimum standard score for the Spanish WJ-III was also lower than 

the English version; however, no students who took the Spanish version in the Spring of 

kindergarten obtained a minimum score lower than the minimum score in English.  As such, this 

measure appeared less problematic in terms of the scaling properties.  Psychometric properties 

notwithstanding, the timing of each measurement is important in terms of the temporal 

relationships between constructs.   
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Chapter V: General Discussion 

Summary 

The current studies addressed ELL-EPS differences in mathematics change patterns, 

potential heterogeneities in ELL mathematics development, and the interactions between 

working memory and language proficiency.  Findings from Study 1 show groups exhibited 

consistent growth in mathematics with varying degrees of fluctuation in the extent to which 

autoregressive relationships account for the amount of change that occurs.  Specifically, both 

ELLs and EPSs grew significantly through first grade then decelerated in grades three and four, 

though ELLs ended kindergarten nearly a standard deviation lower than their EPS peers.  

Considering the large gap at kindergarten entry, holding both ELLs and EPSs at the mean of Fall 

kindergarten mathematics closed essentially all of the achievement gap over time.   

Results from Study 2 are suggestive of a different pattern in ELL growth once students 

are assessed in English.  Growth from first to fourth grade was relatively homogenous in terms 

of the distribution of individual growth curves.  While there are significant time-varying 

disturbances from the general trend, a latent-basis, nonlinear (decelerating) trend seemed to 

adequately capture the growth in English-based mathematics assessment performance among the 

subpopulation of low ELP ELLs under investigation.  Nevertheless, student growth was highly 

variable while simultaneously being captured by a single underlying trajectory.  After identifying 

a single-class growth model among ELLs, kindergarten year gains in preLAS scores did not 

meaningfully predict growth from first to fourth grade, though there is evidence to suggest that 

gains in basic reading skills predict later mathematics performance level.  Yet gains in basic 

English reading skills (e.g., phonemic awareness, letter-sound correspondence) positively predict 

higher mathematics performance at the end of grade one while they also predict a declaration in 
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growth, essentially offsetting the initially intercept prediction.  Furthermore, contrary to the 

initial prediction, working memory did not moderate the extent to which language proficiency 

gains predicted mathematics growth.   

Taking both studies together, ELLs exhibit similar patterns of growth to their English 

proficient peers, though they end kindergarten performing significantly lower than EPSs.  These 

gaps persist over time, though baseline mathematics, basic reading, and working memory help 

explain these differences.  At the same time, key executive functioning skills, specifically 

working memory, similarly contributed to predicting development across groups.  Among ELLs 

specifically, gains in English expressive and receptive vocabulary did not meaningfully predict 

patterns of development in English-based mathematics skills, though basic reading was strongly 

related to initial level and trend in later mathematics growth. 

Support for Hypotheses and Research Questions  

Although the majority of the original hypotheses were not supported using the current 

data, these findings nevertheless contribute to the meager base of methodologically rigorous 

studies on mathematics development among ELLs, specifically regarding pattern and distribution 

of change as well as domain-general predictors of growth (i.e., ELP, working memory).  These 

results corroborate the well-established role of working memory in predicting individual 

differences in mathematics development while doing so among a particularly understudied 

subgroup of low ELP ELLs.  Significantly more research needs to be conducted to understand 

how and why this relationship holds (i.e., mediators), yet these results may help guide the 

formulation of theory in targeting common elements of intervention across language groups.  

Additionally, results from this work suggest that intraindividual change occurs somewhat 

similarly among ELLs and EPSs.  On the other hand, controlling for baseline characteristics 
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shows that, beyond the additive growth across years, change among ELLs is not contingent on 

prior performance levels until third grade while prior levels predict subsequent change across all 

years for EPSs.  However, this does not translate into vastly different trajectories, and these 

results do not align with the hypothesis that ELLs would exhibit greater plateauing relative to 

prior growth compared to EPSs.  In fact, the results suggest the opposite: EPSs plateau more 

noticeably compared to ELLs.  As mentioned in the Study 1 discussion, this may be due in part 

to the level at which students are performing in mathematics: EPSs, on average, are assessed in 

challenging content and thus reach a ceiling in their ability to make equal gains over time, thus 

generating the decelerating effect observed in the MG-LCSMs.   

  When examining distributions of growth among ELLs once they are assessed in English 

(i.e., first through fourth grade), there is a high enough level of homogeneity in the non-linear 

growth pattern to suggest a single, average trajectory best characterizes intraindividual change 

(though there are significant individual differences in terms of the deviations from that curve).  

The lack of cogent evidence for systematic heterogeneity in change is possible indicative of a 

greater level of developmental continuity among this subpopulation of ELLs than might be 

expected among EPSs, in part because EPSs constitute a much larger portion of students in the 

U.S. and thus contain far more potential subpopulations.  Latent subclasses of growth curves can 

provide extremely valuable information on how and for whom interventions should be targeted 

and what schools can expect of student growth under business-as-usual conditions.  The current 

results suggest that individual differences in developmental trajectories are highly variable 

though similar on average among ELLs while the pattern of intra-individual change is somewhat 

similar regardless of native language.   
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Implications and Future Directions 

The nature of the gains captured in the current study is an important consideration for 

multiple areas of theory, research, and practice.  First, these change patterns underscore the 

imperative for equitable access to instruction among ELLs (Robinson-Cimpian et al., 2016).  

Indeed, many adjustments to instruction need to be made to accommodate the learning of ELLs; 

however, many of these components are likely beneficial to all students.  For example, 

opportunities to verbalize problem solving and thinking is a frequent recommendation in the 

explicit instruction literature to improve mathematics performance (Jayanthi, Gersten, & Baker, 

2008).  Doabler, Clarke, Kosty, et al. (2016) demonstrated this main effect of verbalization of 

thinking and problem solving across language groups among kindergarteners in a large scale-up 

trial of a tier 1 mathematics curriculum.  Although there were not differentially positive effects 

for ELLs, all students increased their mathematics performance over kindergarten.  This 

indicates the critical role of employing linguistically rich mathematics instruction, though further 

scaffolds are needed to support ELLs in closing early performance and access gaps.  Consistent 

with developmental research (Vukovic & Lesaux, 2013), language accounts for mathematics 

knowledge development similarly across ELLs and EPSs.  Similarly, other findings from the RTI 

literature indicate that language ability (across language groups) is a strong predictor of response 

to mathematics intervention in second grade (Powell et al., 2017).  This is an important 

consideration for screening for students at risk for mathematics difficulties as well.  Looking 

solely at mathematics skills, the expectations of “at risk” among EPSs may not reflect the same 

dimensions of risk among ELLs given the nature of early disparities that endure across early and 

intermediate elementary school.  As such, the factors that predict mathematics development and 
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adequate response to instruction need to be examined more carefully across and within grade 

levels.   

These between-group growth patterns provide multiple insights into how practitioners 

and researchers must consider the role of RTI in mathematics development.  While screening for 

the same skills across all students constitutes the basis of universal screening procedures, 

additional considerations for defining academic risk among ELLs, such as qualitative and 

quantitative indicators of performance via teacher-guided formative assessment, local norms/cut 

scores, and  ELP data ought to be considered in practice throughout intervention progress 

monitoring and triannual screening procedures (Albers & Martinez, 2015; Hall, Moore, 

McMackin, Markham, & Albers, 2019).  Such data, corroborated with other indicators of 

performance, can provide further insight into students’ profiles of domain-specific skills.  Using 

their knowledge and training in normative development and evidence-based assessment practices 

for identifying at-risk students, school psychologists can play a crucial role in leveraging this 

data within school-based problem-solving teams to inform data-based decision making (Albers et 

al., 2013).   

Linguistic, literacy, and mathematics factors contribute to academic risk in mathematics, 

though the manner by which these factors are related to mathematics may differ for ELLs as their 

prior knowledge differentially accumulates over time.  The mechanisms of these change patterns 

(and the implicit patterns of instructional response) requires further investigation, building on 

both the current study and prior work investigating longitudinal patterns of language-

mathematics relationships (Chen & Chaloub-Deville, 2016; Hartano et al., 2018; LeFevre et al., 

2010; Vukovic & Lesaux, 2013).  Additionally, more research in this area pertaining to the 

mechanisms of building mathematical knowledge is required.  For example, the relationship 
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between how procedural and conceptual knowledge is built among lower ELP ELLs may help 

unpack the driving forces of developmental change, especially with regards to students’ 

progressing through mathematics domain competencies, such as those assessed in the ECLS-K 

measure.  Identifying these mathematical learning mechanisms can more effectively inform the 

targets for change in both universal, secondary, and tertiary instructional contexts.  While this 

study does not provide a causal basis for low ELP ELL and EPS differences over time, it is 

nonetheless clear that significant research must be devoted to understanding interventions to 

target early mathematics gaps and the resulting developmental patterns as well as how these 

performance gaps can be mitigated over time. 

Such research requires both analytical savviness and strong theoretical bases for how 

such interventions can sustain over time (Bailey, Duncan, Odgers, & Yu, 2017).  Alternative 

modeling techniques can provide more empirical basis for how mathematical knowledge is built 

and sustained.  For example, a state-trait framework may provide more insight into the 

breakdown in stable individual differences as opposed to autoregressive patterns in mathematics 

development (Bailey, Watts, Littlefield, & Geary, 2014).  Recent work has shown the value of 

state-trait model in evaluating intervention effects by decomposing intervention effects into 

impacts on stable performance across grades versus what helps students continue to perform 

between grades (Watts et al., 2017).  Such modeling could provide a stronger basis for stable 

time versus time-specific variability.  Although such work operates within the larger theoretical 

perspectives of development and education, it is exactly that which can help better inform the 

selection of measures, frequency of measures, and the development and targeting of feasible, 

efficient, and malleable intervention mechanisms.  These theoretical and developmental 

approaches to examining mathematics achievement among linguistically diverse individuals can 
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aid in understanding how to best leverage RTI data, instructional practices, and policy to close 

performance and access gaps in early schooling and sustain mathematical knowledge over time.  

The current results suggest that, even when considering the effect of prior mathematics 

achievement on growth, the fundamental pattern of change between ELLs and EPSs is not all 

that different.  Causal intervention and developmental evidence that can establish mechanisms 

that drive intraindividual change among ELLs and EPSs will help identify the malleable factors 

across groups that can be capitalized to efficiently and equitably accelerate mathematics growth 

among ELLs with multiple levels and contexts of instruction.   

Implications for Theory 

While the specific hypotheses were not supported, the results from both studies 

nevertheless confirm some of proposed process identified in Figure 1, Chapter 1.  Indeed, 

language proficiency as a category (i.e., Study 1) showed that there is strong evidence for 

significant differences in initial growth levels that sustain across elementary school.  Study 2 

showed that among those identified as low ELP ELLs, expressive and receptive vocabulary gains 

do not uniquely predict mathematics growth in English yet gains in basic English reading skills 

do.  Though these skills represent early literacy abilities rather than the broad construct of ELP, 

these skills are nonetheless likely important factors for students’ capacity to respond to general 

classroom instruction and language-specific services (e.g., dual-language instruction).  Across 

both studies, working memory emerged as a significant predictor of mathematics growth, albeit 

in different ways.  Study 1 showed that working memory predicted higher levels of mathematics 

performance at the end of kindergarten and a compounding effect on growth such that higher 

working memory performance predicted greater accrual of mathematics skills over time.  On the 

other hand, working memory positively predicted higher mathematics performance at the end of 
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grade one but simultaneously predicted a decline in growth, similar to EBRSs.  Considering the 

model techniques were quite different between Study 1 and Study 2, the general takeaway is that 

early working memory tends to predict an increase in both kindergarten performance and gains 

for both ELLs and EPSs, while solely among ELLs, those same increases in working memory 

translate into higher performance levels but greater decline in subsequent mathematics growth 

when predicting first grade performance level and subsequent growth.   

One potential explanation for this is that early higher performance as a result of higher 

working memory may help students accrue more mathematics skills and sustain increases in 

growth over time.  On the other hand, when predicting first grade performance levels and later 

growth from kindergarten working memory, the effect of being higher in first grade could relate 

to less capacity to sustain greater growth over time, possibly due to the increasing complexity of 

mathematics performance.  Indeed, when leaving all regressions unconstrained across groups, the 

effect of working memory on mathematics slope among ELLs  was non-significant with a point 

estimate close to zero (though the BIC suggested unconstrained working memory did not 

improve fit when all other regressions were constrained to equality across groups).  This may 

reflect the similar pattern observed in Study 2, though because the Study 1 model was 

significantly different both in its structure and the waves of data used, the effect of working 

memory emerged as close to zero rather than negative and significant as the slope estimate is 

estimated starting at kindergarten when more growth among ELLs occur.  Additionally, the 

estimate of working memory in Study 2 reflects an effect on students’ performance level and 

growth solely in English (except for the nine students at the end of first grade assessed in 

Spanish).  Relationships of working memory to earlier performance and growth in Study 1 may 

reflect an ability of working memory to offset some later declines as students tend to grow more 
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across kindergarten than in later periods, as such the decline predicted in the Study 2 model is 

washed-out in the Study 1 model.  In Study 2, advantages of early working memory for first 

grade performance are diminished as students age because there is greater likelihood of 

deceleration in mathematics growth between first and fourth grade.  Such relationships can be 

observed most directly in the intercept-slope covariances of each model.  In Study 1, the 

unconditional model covariance was constrained across groups but was negative and significant, 

indicating that performing higher in kindergarten was associated with flatter constant growth 

through fourth grade.  Including the covariates reversed the sign of this covariance, suggesting 

that after accounting for the variance the covariates explained in intercept-slope 

variances/covariances, there is a significant positive relationship between performance level and 

constant growth.  Because the covariates contribute to reversing this sign, it is then intuitive that 

working memory would positively predict both performance level and constant change in 

mathematics.  In Study 2, the intercept-slope covariance of the unconditional growth model was 

negative and nonsignificant (students who performed higher potentially grew less).  Including 

the set of covariates explained a significant portion of this covariance, leaving it still 

nonsignificant and negative.  As such, this negative sign is then consistent with the effect of 

working memory, that because working memory is in part explaining the negative intercept-

slope covariance, it is intuitive that as one of the stronger predictors of performance level and 

growth, it would positively and negatively predict level and growth, respectively.   

These relationships between prior and concurrent level and subsequent trend are 

indicative of how skill and performance compound over time.  This process reflects an 

unobserved cascade of effects, as prior status holds some relationship to the developmental 

pattern that ensues.  Identifying the specific cause of that relationship is untenable in this work; 
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however, it is important to theoretically consider why it occurs and the potential counterfactual 

of its absence.  Developmental systems and cascades (Ford & Lerner, 1992; Lerner et al., 2011; 

Masten & Cicchetti, 2010) posit that multiple dimensions of change influence the change of each 

other, and that the context in which those domains develop influences the strengths and patterns 

of cascading relationships.  This is specifically the process by which ELP  and working memory 

can be hypothesized to relate to mathematics development.  Similarly, this is implicitly the 

process by which change is theorized to occur in Figure 1.  The results here indicate that entry-

level ELP  is related to sustained lower levels of achievement.  Again, a causal inference about 

this effect is untenable in the current work; however, because the set of baseline covariates 

explains all of the between-group differences, level of ELP and factors associated with ELP level 

explain these sustained gaps.  Based on this, there are seemingly many processes that are 

simultaneously related that appear to in part generate these sustained gaps.  However, Study 2 

shows that growth in basic English reading skills – net of domain-general and -specific skills – 

relates to more proximal higher levels of mathematics performance while also predicting a distal 

fadeout through the end of fourth grade.  This indicates that the rate at which students acquire 

early reading then cascades (whether directly or indirectly) into temporarily higher mathematics 

performance, though these higher levels do not compound over time.  In essence, early English 

reading skills among ELLs cascade in two different ways in relation to mathematics.  Expressive 

and receptive vocabulary, though highly important on its own, does not cascade in the 

hypothesized fashion in this context.  As previously mentioned, this may be due to the content-

specificity of the EBRS measure and its contextual relationship to mathematics: basic reading 

skills likely relate more directly to being able to access mathematics content.  The current 

analyses approached this from essential a sequential process model (prior changes predicting 
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future changes).  Bivariate process techniques can assess cascade theories more effectively, 

though careful attention must be paid to distinguishing among between- and within-individual 

temporal differences in cross-lagged processes (Berry & Willoughby, 2017).   

The current findings on working memory can be framed in terms of cognitive load theory 

(de Jong, 2009; Sweller, 1988; Sweller et al., 2011).  Figure 1 theorizes a unique relationship of 

cognitive attributes to gaining mathematics skills as well as a simultaneous relationship with 

English proficiency for this reason.  ELLs are likely under greater cognitive load while learning 

compared to EPSs simply due to the added language barrier.  Assumedly, this varies significantly 

based on the instructional context and the strategies of the general classroom and language 

instructional program instruction.  Nevertheless, the dynamics of learning likely vary due in part 

to ELP.  Working memory plays a unique role in mathematics development, and it is also a core 

component of cognitive load.  As such, its relationship to mathematics among ELLs may provide 

highly important insight into how cognitive load relates to mathematics.  However, findings here 

suggest that working memory is not differentially predictive of mathematics development across 

language groups.  One perspective is that I controlled for a significant majority of the observable 

differences among ELLs and EPSs, so the remaining differences are highly limited, leaving 

working memory with a highly similar, unique effect across groups.  The other side of this 

explanation is that once I controlled for these between-group differences, there are very few 

meaningful between-group differences in mathematics development such that the role of 

cognitive load matching on all of these other observable differences then functions essentially 

identically in each group.  Findings from Study 2 show a slightly different effect of working 

memory specifically among ELLs (though this should not be confounded with the fact that the 

modeling process was significantly different in Study 2).  Nevertheless, Study 2 showed working 
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memory continued to evidence a significant unique relationship to later mathematics 

development.  The lack of an interaction with language growth, though, indicates that regardless 

of how ELP is measured (preLAS or EBRS), working memory does not affect the strength of 

language proficiency in predicting mathematics growth.  As such, the relationship between 

working memory and ELP based on Figure 1 must be further refined to reflect the uniqueness of 

working memory in particular.   

To that end, both working memory and language processes need to be tested with more 

refined connections between theory, methodology, and measurement.  Unique working memory 

domains ought to be tested as both cross-sectional and longitudinal (e.g., cross-lagged models) 

predictors of mathematics development, as these may have different relationships with how ELP 

may relate to cognitive load.  Verbal working memory clearly plays an important role in the 

development of mathematics; however, given its emphasis on verbal storage of numbers, it may 

inherently contain more shared variance in mathematics ability than measures of visuospatial 

working memory or other verbal listening recall tasks.  Additionally, controlling for the 

covariates in these analyses essentially removed all observable differences between ELLs and 

EPSs leaving little for working memory to differentially predict, but that does not necessarily 

imply that potential mediators between working memory and mathematics development operate 

with the same strength across groups.  Moreover, the relationship between ELP and mathematics 

must be assessed with greater detail to detect which components of ELP are most impactful in 

facilitating mathematics development, and equally importantly, how L1 relates to both of these 

development processes.  ELP frequently is used as a catchall term; however, the ELP 

assessments used in schools are in fact quite diverse, assessing students in oral language, writing, 

and reading skills.  The course of cascades between ELP, instructional response, and 
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mathematics performance thus needs to be more scrutinized to identify which, if any, unique 

paths between these areas exist. 

Testing such refined theoretical models can help lay a groundwork for targeting 

intervention and instructional practices that are shared across ELLs and EPSs as well as 

strategies that are unique to each group, increasing the efficiency and effectiveness of 

empirically-supported intervention approaches such as explicit instruction (Jayanthi et al., 2008).  

Specifically, finding similar and unique ways for each group to reduce cognitive load and 

maximize the efficiency with which students can build, use, and retain mathematical knowledge.  

In turn, this can help offset potential differential cascades that may sustain long-run performance 

gaps across groups. 

Implications for Research 

 The findings from the current research provide both confirmatory and new findings 

related to studying relationships between mathematics and language proficiency.  Results mainly 

from Study 1 confirm evidence from prior work that ELLs and EPSs change in relatively similar 

ways across early and intermediate elementary school, though without controlling for key 

baseline covariates, significant achievement gaps throughout those years remain (Roberts & 

Bryant, 2011).  While the current results confirm such prior findings from previous cohorts of 

ECLS-K data, the direct testing of how working memory operates across language groups (as 

well as the inclusion of a larger set of covariates) provides further insight into the domain-

general skills that are associated with developmental change in mathematics.  However, I extend 

the findings of Study 1 in Study 2 by investigating the distribution of growth in mathematics 

(assessed in English) for systematic subdistributions of growth curves (mixtures).  Those 
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analyses showed no substantive presence of mixtures, though I observed significant 

heterogeneity in growth curves.   

However, because this heterogeneity appeared more reflective of a general characteristic 

of the population of interest, the modeling approach did not extract qualitatively distinct 

mixtures.  The main implication of this is that change among ELLs occurs heterogeneously, 

though not in a seemingly systematic fashion so as to suggest subpopulations of “movers” or 

“stayers.”  This is not to say that systematic forms of heterogeneity in growth do not exist at all 

among ELLs; mixture modeling is one formulation of capturing heterogeneity.  If future research 

is concerned with investigating heterogeneity in mathematics performance among ELLs, 

alternate specifications ought to be considered.  Indeed, robustness to alternate methods and 

replicability in developmental research is critical to generating knowledge of developmental 

processes (Duncan, Engel, & Claessens, & Dowsett, 2014).  Nonetheless, GMM is particularly 

relevant to RTI research because it assumes subpopulations of growth curves are comprised of 

distributions and can better reflect differences in individual differences that can inform how to 

establish RTI tiers whereas many other methods assume homogeneity within each latent class.  

That said, mixture classes of growth curves did not seem to adequately capture heterogeneities in 

development.  It is possible that there are wave-specific mixtures that could be extracted with 

other latent variable analyses such as latent profile analysis, though these heterogeneities do not 

manifest in differential developmental trajectories.  Additionally, there are a number of other 

ways to detect heterogeneities in growth curves.  Another method of examining heterogeneity in 

growth is latent class growth analysis (LCGA).  Although highly similar to GMM, LCGM 

assumes homogeneity within classes (Kaplan, 2002). Extracting not only a class but a 

distribution of growth curves is one of the principle advantages to GMM (Kaplan, 2002).  
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However, assuming within-class homogeneity may have a strong theoretical basis, potentially 

making it a stronger candidate for examining heterogeneity among ELLs.  Another example of 

examining heterogeneities in growth is the recently developed semtrees package in R 

(Brandmaier et al., 2013).  This method, extending from classification and regression tree 

(CART) analysis, employs recursive partitioning based on a set of covariates to extract 

heterogeneities in structural relationships in a SEM while maximizing within-partition 

homogeneity.  Recent work has compared growth mixture modeling to semtree analysis, finding 

that both methods are effective in separate ways in uncovering heterogeneities (Jaccobucci et al., 

2017).  As Jaccobucci et al. discuss, GMM can be based solely on heterogeneities in the outcome 

variable (i.e., the indicator variables comprising the latent growth factors), whereas semtrees 

extracts heterogeneities in the outcome (i.e., a growth model) solely based on a set of covariates.  

As aforementioned, a number of studies have demonstrated the substantive and empirical 

importance of mixture modeling in developmental and educational science.  However, given the 

mixed empirical support for mixtures in the current study, alternative methods ought to be 

employed to explore heterogeneities in development among ELLs, provided there is a 

meaningful theoretical reason for doing so.   

Methodological implications aside, the primary implication for future research from both 

Study 1 and Study 2 is that pattern of development in mathematics does not occur markedly 

different among ELLs compared to EPSs, even after controlling for key individual differences.  

What remains to be further investigated is the manner by which early mathematics and cognitive 

gaps occur, how they are sustained over time, and how policy and instructional interventions can 

promote academic success among ELLs.  This is not based solely on the fact that, many times, 

ELLs are defined based on an achievement gap to begin with.  While differences in language 
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performance were used to establish ELLs in the current study, that distinction was not chosen 

assuming that would inherently translate to achievement gaps.  Although this research showed 

performance gaps are most evident in domain-specific skills (i.e., mathematics), ELLs also 

performed nearly two-thirds of a standard deviation below EPSs in working memory at the end 

of kindergarten (controlling for Spanish administrations had no effect on this).  As such, these 

early general and specific developmental process require significant further investigation to 

understand when and how these gaps arise.  Indeed, much of these gaps are ecological and 

sociological in nature in that interactions between early development, experiences, and contexts 

are socially stratified relate to ELLs differently than EPSs, resulting in highly different cascades 

of early relationships prior to starting school.  A number of significant sociological studies have 

been conducted to understand non-native English speaking and immigrant children’s schooling 

experiences and early contexts.  However, significant further research needs to identify malleable 

factors of change to promote and sustain successful academic, cognitive, and social-emotional-

behavioral development in a culturally responsive manner.  This relies on convergence of 

methods, theory, and substantive research hypotheses to empirically and qualitatively examine 

how early developmental cascades propagate throughout schooling and the risk/protective factors 

that affect those developmental systems.   

Although the specification of ELLs in the current study was quite specific and may not be 

generalizable beyond studies using the preLAS as a screener of ELP, there is significant 

variability in the definition of “ELL” in practice.  The current study took a data-based approach 

to distinguishing among English proficient students that is ideally more reflective of the fact that 

ELL is not based only on parent-reported primary language, nor is it based only on a cut score 

with little empirical basis.  Rather, the current study sought to establish the population of ELLs 
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based on both parent-reported home language and the degree of separation of ELP between 

students who do and do not speak English as a primary home language, knowing that there is 

also a range of ELP among all students at the start of kindergarten regardless of primary home 

language.  As such, an approach to defining ELLs that relied on native language and relative 

(instead of absolute) ELP is intended to generalize more to how schools observe and utilize 

information on ELP from both policy and instructional perspectives.  Based on this specification 

of ELLs, both groups exhibit significant variability in individual growth curves; however, on 

average, models from Study 1 suggest intraindividual change does not occur meaningfully 

different.  Any differences observed between those change patterns appears to be due to the 

significantly different sample sizes, resulting in very different levels of variance and parameter 

estimation precision.  That said, the MG-LCSM model results suggest that, on average, EPSs 

exhibit slightly steeper gains from kindergarten to first grade.  However, as aforementioned, this 

appears likely due to the fact that there is significantly more heterogeneity in the mathematics 

performance among EPSs.  The distribution of performance among EPSs becomes increasingly 

left-tailed as students age, resulting in a larger decrease in change scores among EPSs and 

greater deceleration in mathematics growth over time.  Controlling for baseline covariate results 

in closing the achievement gaps by the end of grade four, though the pattern of growth remained 

slightly different.   

From Study 1, the finding that working memory does not operate differently across 

groups suggests that, net of other factors, working memory is uniquely associated with 

mathematics change regardless of kindergarten-entry mathematics performance and categorical 

English proficiency.  However, based on results from Study 2, oral English proficiency gains do 

not predict level or trend in mathematics growth once assessed in English.  The finding that basic 
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English reading performance predicts level (but not trend) implicates gains in early basic print 

knowledge as a key lever in building mathematics proficiency by the end of first grade, though 

does not appear significantly related to subsequent mathematics growth.  To further unpack the 

role of working memory in the hypothesized developmental relationship between ELP gains and 

mathematics growth, I tested whether working memory moderated the relationship of ELP gains 

to mathematics building on the hypothesis that low working memory may impede mathematics 

development and that, as a result, ELP may become a stronger predictor of mathematics at lower 

WM levels as language proficiency gains may help offset lower working memory capacity.  The 

lack of the hypothesized moderating notwithstanding, working memory continued to evidence a 

main effect on mathematics performance in terms of both level and growth trend.   

Across both studies, working memory shows unique predictive capability among ELLs 

despite their linguistic (and thus in many ways cognitive) context of learning.  Future research 

needs to corroborate this relationship of working memory in light of relationships with other 

WM subdomains.  As aforementioned, backward digit span tasks – though frequently employed 

as a measure of central executive working memory – may be too strongly related to mathematics 

to offer the most effective estimate of the effect of working memory.  Additionally, backward 

digit span tasks do not capture all aspects of working memory, and the extent to which it captures 

phonological loop versus central executive is debated in the literature.  Gathercole et al. (2004) 

established backward digit span as a central executive measure of working memory as a result of 

its complex span structure: the authors established an age-invariant three-factor solution to 

working memory structure comprised of verbal-only span (e.g., digit span), complex-span 

(including backward digit span), and visual-spatial span (e.g., block recall).  By this definition, 

BDS tasks such as WJ-III Numbers Reversed would be classified as central executive, though 
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this formulation of central executive is not consistent across studies.  For example, Swanson et 

al. (2018) used conceptual span, listening sentence span, and updating tasks to reflect the 

structure of the central executive component of working memory.  Given the timing of the 

ECLS-K: 2011 study, the use of backward digit span is likely reflective of the understanding of 

WM based on research such as Gathercole et al. (2004).  Indeed, this is based on some of the 

most popular formulations of WM, extending from Baddeley and Hitch (1974) and, with respect 

to central executive in particular, Baddeley (1996).   

Such varying hypothesized structures of working memory is a catch-22.  On one hand, a 

variety of measures to ostensibly measure the same latent construct of central executive working 

memory helps corroborate empirical hypotheses across different kinds of studies and serves as 

robustness checks against instrumentation.  Conversely, this variability in measure selection 

fosters a debate about what constitutes central executive working memory, and these different 

formulations make it difficult to identify specific mechanisms of change that can be leveraged as 

malleable components of mathematics intervention.  For example, the complex span tasks 

tapping the central executive in Swanson et al. (2018) are likely more complex tasks than the 

Gathercole et al. (2004) formulation of complex tasks, including backward digit span and may 

have different implications for moderating intervention effects (e.g., Fuchs, Schumacher, Sterba 

et al., 2014) or predicting mathematics development and intervention response (e.g., Powell et 

al., 2017).  To that end, it would behoove future studies to clearly distinguish the rationale for the 

use of specific measures of working memory.  Given the multidimensionality of working 

memory, the process through which distinct areas of working memory are hypothesized to 

predict outcomes or interact with concurrent predictors ought to be clearly elucidated.  Doing so 

can significantly increase the specificity with which working memory and its subdimensions can 
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be established key predictors, moderators, and/or mediators of mathematics outcomes, helping 

inform developmental and cross-sectional observational research as well as the design and 

testing of interventions and testing of treatment-by-aptitude heterogeneity.   

Implications for Practice 

The extension of these findings to practice is not direct, and it is important to clarify what 

aspects of this study can and cannot be extrapolated to practice.  First, the two studies herein 

included very little information regarding the schools in the study, the classroom environments, 

or the types of instruction students were receiving.  In that light, it is difficult to draw inferences 

from this work regarding the role of schools in student development.  Such information is partly 

captured in the unexplained variance of the models, and estimates provided herein are corrected 

for the fact that students are clustered in specific schools and units of sampling.  The information 

about schools that is included is minimal and is used to control for group and individual 

differences that may confound the relationship between initial mathematics performance and 

subsequent development as well as the relationship between WM and mathematics outcomes.  

For example, full- versus part-day kindergarten was included as a control given the numerous 

studies investigated how that difference may influence student academic and behavioral 

outcomes.  Because there were no specific a priori hypotheses about the effects of, for example, 

pre-kindergarten care or full/half day kindergarten, further attention to those effects will not be 

given.  Moreover, these results do not generalize to the practice of RTI itself (e.g., the specific 

screening procedures, the choice of interventions, and frequency of intervention progress 

monitoring).  Instead, these results generalize to RTI in terms of how RTI builds upon 

knowledge of mathematics development and the predictors of that development.  What these 

results can say about RTI, however, is four-fold.   
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First, even after controlling for a variety of baseline characteristics, ELLs and EPSs 

change in similar ways, albeit at different levels.  Because achievement gaps appear relatively 

consistent across time, this would suggest that early interventions can, at the very least, 

potentially narrow achievement gaps relative to the gap size in kindergarten, even if the 

intervention effects fade out.  Intervention fade-out has been the focus of a number of recent 

studies with Bailey, Duncan, Odgers, and Yu (2017) presenting cogent theoretical arguments for 

sustaining early childhood intervention effects.  Some of Bailey et al.’s (2017) core arguments 

pertain to the timing of interventions (“foot in the door” techniques) and the role of “sustaining 

environments.”  For ELLs, both approaches are crucial in moving the needle on early 

mathematics achievement given the cooccurring development of both language and mathematics.  

Both factors are likely more malleable at earlier ages, which inherently is more preventative.  

However, the sustaining environments aspect is also highly important given that the targets of 

mathematics instruction shift over time and the language of mathematics increases in 

complexity.  As such, sustaining the linguistically rigorous mathematics instruction across 

elementary school may help not only target more sensitive periods in development but also 

maintain the target skills and contexts that may offset poor academic trajectories.   

Second, working memory appears to relate to mathematics development in similar ways 

across groups, suggesting that individual differences in working memory within each group 

operate similarly across groups.  Coupled with the findings from Study 2, working memory 

relates to mathematics development similarly for all individuals in these studies, and does not 

moderate relationships between ELP gains and mathematics development.  In essence, it serves 

as a similar risk/protective factor for mathematics development regardless of language level, and 

it does not create a heterogenous relationship between language gains and mathematics.   
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Third, the distribution of mathematics growth among ELLs is relatively uniform.  Though 

there is significant, time-based heterogeneity in the extent to which this uniform growth curve 

captures individual development (i.e., residual variances change over time), there do not appear 

to be specific subdistributions of students.  In an applied setting, this may imply that students 

could respond similarly to significantly different forms of instruction and that is the dosage of 

instruction on core, malleable skills that may be the key to improving performance.  On the other 

hand, significantly different subdistributions of mathematics growth may indicate that certain 

classes of students have more unique needs (i.e., differential risk or differential high growth) that 

extend beyond what is captured by an average trajectory.  The current findings suggest that 

although ELLs enter school with a variety of different experiences, backgrounds, and skills 

relative to EPSs, that does not necessarily imply that their needs for rigorous mathematics 

instruction is markedly different.  Rather, as aforementioned, making sure all students have 

access to the same grade-level content (Robinson-Cimpian et al., 2016) seems to be the core 

component to building mathematics abilities among ELLs.  Net of all other factors, differences in 

early mathematics achievement alone explain a significant amount of the EPS-ELL gaps through 

fourth grade.  As such, screening procedures that can accurately and efficiently identify 

mathematics fluency deficits and brief, targeted interventions that can build early numeracy 

skills in the general education classroom as well as in tiered instruction may help mitigate some 

of these gaps over time.  Again, while few results from this study can be directly applied to 

practitioners’ work, these results do help provide further insight into the general mathematics 

trends that may be expected to occur in school settings and can help guide the manner by which 

state, district, and classroom level practices are coordinated to the developmental trajectories of 

ELLs and EPSs.   



 

 

179 

 

Fourth, there is mixed evidence about the role of the rate at which students acquire 

English proficiency skills in acquiring mathematics skills while controlling for the array of 

baseline measures, including prior mathematics performance.  Gains in expressive and receptive 

vocabulary, typically viewed as key developmental skills given the popularity of them in ELL 

research (Swanson et al., 2018), did not predict mathematics outcomes a year later or the 

subsequent growth trends net of the other covariates.  However, gains in English reading skills 

such as phonemic awareness, print knowledge, and sound blending significantly positively 

predicted mathematics performance at the end of first grade while simultaneously predicting a 

deceleration in mathematics growth.  Given the content that the preLAS and EBRS measures 

assessed, one explanation could be that the content of the EBRS measure is more indicative of 

students’ access to core instruction and grade-level content.  Though English expressive and 

receptive vocabulary is highly important in both social and academic contexts, it may be that 

basic reading skills translate into greater access to instructional content across subjects and may 

aid students more directly in navigating the print and phonemic knowledge required for 

accessing English mathematics content over and above prior mathematics knowledge.  

Simultaneously, however, steeper gains in EBRS may be an indicator of quicker or more 

effective response to school-based instruction considering the fundamental role these skills play 

in acquiring a broad array of academic skills beyond prior mathematics performance.  Gains in 

expressive and receptive vocabulary, on the other hand, might be capturing gains in development 

that happen across a wider variety of contexts, many of which may have little to do with how 

students are accessing instructional content.  For instructional coaches, interventionists (i.e., 

mathematics or reading specialists, school psychologists), and teachers, measures like EBRS 

may represent more effective barometers of how students are able to access the core components 
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of kindergarten instruction, suggesting that the gains students exhibit may show an increasing 

ability to access rigorous grade-level reading abilities, which then may transfer to mathematics 

regardless of their level of mathematics performance at the beginning of kindergarten.  

Nevertheless, the diminishing effect of these gains in mathematics development also suggest 

that, controlling for students’ performance at kindergarten-entry, there are a significant amount 

of other individual differences that impact and accrue over time that mitigate the advantage of 

steeper kindergarten year EBRS gains.  This may be a product of the shifting content and 

difficulty of the content areas covered in the ECLS-K: 2011 mathematics measure.  Those early 

EBRS gains may help sustain students through first grade; however, gains in those basic skills, 

regardless if entry mathematics performance, may be not be enough on their own to help students 

continue to access rigorous mathematics content.   

This interpretation would then imply that access to the language of mathematics hinges 

on not only students’ prior gains but also the manner by which those prior gains are sustained 

and reinforced.  Combined with the effect of working memory ability, a rich, language-heavy 

mathematics environment may help sustain early basic reading gains to buffer students through 

the increasingly linguistically complex environment of mathematics.  Because of the sequential 

nature of mathematics content domains (e.g., the emphasis on fraction/ratio and algebra in 

intermediate elementary) and thus the changing linguistic context of mathematics, such early 

gains in basic English reading skills likely need to be sustained as the target of mathematical 

language shifts.  For example, if practitioners examined a student’s yearly growth in 

kindergarten and saw they gained quickly enough to reach grade level content, that does not 

imply that they will be able to sustain that level of access to instruction consistently in 

subsequent years.  The advantages from early basic reading gains that may accrue into increased 
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instructional access does not imply that students will naturally be able to sustain grade-level 

content access.  As such, practitioners can scaffold prior gains by engaging in practices such as 

dynamic assessment among ELLs (e.g., Orosco et al.,, 2011; Orosco, 2014), which can help 

assess students’ content-area and grade-level knowledge when provided when the appropriate 

instructional supports, thus ruling out the potential for individual differences to impact the extent 

to which they can access grade-level content.  Importantly, these implications may be helpful for 

students regardless of levels of other factors that are critical to instructional access (e.g., 

attentional focus, working memory, cognitive flexibility, prior mathematics ability).  Indeed, 

because the effect of early basic reading gains can be interpreted as the effect holding constant 

prior mathematics performance, early language gains in the form of the knowledge about the 

structure and components of the English language (as opposed to vocabulary knowledge), may 

serve as a key lever for change, provided that interventionists and teachers help explicitly 

support ELLs through the complex linguistic structure of mathematics with evidence-based 

practices, such as the problem verbalization components of explicit instruction.  Doabler, Clarke, 

Kosty, et al. (2016) established the effectiveness of these components for ELLs students at tier 1 

in kindergarten, while Doabler et al. (2019) similarly found evidence for explicit instruction 

among ELLs at tier 2.  Though much more empirical and qualitative work must be established, 

these techniques show promise in helping ELLs navigate the language of mathematics.  With 

potential evidence that gains in basic English reading skills may at least temporarily benefit 

ELLs, further attention should be given to scaffolding the language of mathematics to further 

strengthen the connections between mathematical language, basic reading skills, and English 

language proficiency.   
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Reading (Chen & Chaloub-Deville, 2016) and language (Chow & Ekholm, 2019; 

LeFevre et al., 2010; Powell et al., 2017; Vukovic & Lesaux, 2013) have evidenced strong 

connections to later mathematics achievement, and while not directly hypothesized a priori with 

the measure used (EBRS), the results presented herein present a similar pattern.  Relationships to 

language aside, the within-domain development of mathematics requires further attention in 

practice to untangle the multiple exo and endogenous factors contribute to mathematics abilities 

among ELLs.  Specifically, the nature of the measures used in the current study suggest that 

while ELLs and EPSs exhibit similar patterns of inter and intraindividual change, this change is 

not occurring within similar subdomains of mathematics skills.  The one-year lag in skill level at 

the end of kindergarten and subsequent skill growth ELLs demonstrate indicate that, while there 

are many unmeasured exogenous instructional and ecological factors impacting ELLs and EPSs 

between kindergarten and fourth grade, instruction as it occurs on average is not moving the 

needle on the gaps between ELLs and EPSs.  Thus, though the quantity of inter and 

intraindividual change is similar between groups, this does not imply that similar developmental 

processes are occurring.  As an example, between third and fourth grade, ELLs and EPSs would 

be predicted to change nearly the same amount based on their prior level, and their estimated 

change scores (across all three models considered) were highly similar.  However, at this point, 

ELLs still performed around 0.80 SDs below EPSs.  With the increasing focus on algebra by the 

third-grade round of assessment (Najarian et al., 2018b), coupled with the fact that the difference 

between ELLs and EPSs amounts to essentially one year of development, this subgroup of ELLs 

ends fourth grade with, on average, one year behind in their algebra, measurement, data 

analysis/probability, and numeracy abilities.  With fifth grade being a potentially key year 

developmentally in preparing students for middle school, a much more effective dosage of 
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instruction must be administered to prepare ELLs for an algebra, word-problem, and fraction-

laden context of mathematics.  In light of the other key developmental, psychosocial, emotional, 

and behavioral factors that make middle school a potentially challenging educational period, it is 

imperative to appropriately scaffold mathematics skills in order to buffer students through the 

changing stage of mathematics knowledge and educational context.  This is potentially one 

explanation for the decelerating growth as ELLs gain more basic reading abilities: language may 

initially benefit students, but as the complexity of mathematics increases, prior mathematics 

skills may become increasingly important beyond the rate at which basic reading skills were 

acquired.  Although few empirical examples of intermediate elementary mathematics 

interventions are currently published (though see Orosco, 2011 and Orosco et al., 2014), it is 

likely not a mystery as to how to best apply principles of explicit instruction and appropriate 

language and mathematics scaffolding to ELLs.  Increasing progress-monitoring (formally 

through CBMs or more qualitatively in formative assessment) may help increase the ability to 

trace skill development and target specific skill deficits.  Indeed, it would appear that as long as 

students acquire essential early numeracy skills, few other factors contribute to a significant 

achievement gap, which corroborates Jordan et al.’s (2007) findings that membership to a 

medium-steep or high-flat trajectory was most predictive of higher calculation outcomes.  

Progress-monitoring, opportunities to engage with grade-level content using the mathematical 

register (Kersaint et al., 2013) through explicit instruction (Jayanthi et al., 2008), and a 

combination of both native and second language skill reinforcement seem likely candidates to 

provide the necessary equity in access to instruction that Robinson-Cimpian et al. (2016) discuss.  

Yet given the consistent gaps over time, the most malleable, preventative lever would appear to 
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be early numeracy skills based on the sheer amount of variance for which kindergarten-entry 

mathematics explains in the ELL-EPS achievement gap.   

Many studies highlight the empirical and practical effectiveness of early numeracy, and 

the two studies focused on ELLs corroborate this evidence (Doabler, Clarke, Kosty, et al., 2016; 

Doabler et al., 2019), but far more insight from practitioners is needed to understand the real-

world circumstances in which early numeracy instruction for lower ELP ELLs takes place.  

Practical perspectives in the intervention design process is critical to closing research-practice 

gaps as well as understanding the ecological and student-level mechanisms through which 

intervention effects are generated.  Doabler, Clarke, Kosty, et al. (2016) recommend that an 

emphasis on vocabulary and the language of mathematics can likely bolster ELL success in tier-1 

early numeracy instruction; however, the manner by which teachers support such practices needs 

to be further understood to effectively test the effects and mechanisms of such a 

recommendation.  Theoretically and empirically there is a basis for improving the mathematical 

language use of ELLs, but the instructional process through which that occurs, and under what 

circumstances, needs to be more fully addressed.  In essence, the most relevant practical 

implication of these results is that more information needs to be gleaned from practitioners about 

how to best address the complexities of providing rigorous, grade-level instruction to ELLs given 

the cultural, economic, instructional, and policy barriers to doing so.   

Future Directions 

 Future directions for this work are focused primarily on next steps for identifying 

mechanisms of mathematics growth across language groups and the heterogeneities in these 

relationships.  Although Study 1 identified similar predictive capability of working memory 

across language groups, this does not imply that the similar variables of or magnitudes of the 
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same variable mediate the relationship between working memory and mathematics between 

ELLs and EPSs.   This hypothesis rests primarily on the different linguistic contexts (Van 

Rinsveld et al., 2016) of mathematics cognition and instruction and that, as a result, working 

memory may associate to mathematics through different cognitive or instructional pathways.  

Among ELLs specifically, a there is a similar need to assess mediators of the relationship from 

EBRS gains to mathematics.  Working memory did not moderate the relationship of EBRS or 

ELP gains to mathematics growth as predicted; however, other cognitive and executive 

functioning factors may account for whom EBRS gains are most predictive in light of L1 and L2 

learning and which cognitive factors generate such relationships effects.   

 In the current work, I used more typical multiple-group and mixture modeling 

approaches.  In light of the findings and limitations of these approaches, future work may be able 

to more precisely examine ELL mathematics development through two strategies.  First, the 

primary work of future studies should be to more critically examine the role of theory in 

assessing moderators and mediators.  Hypotheses of the current work drew on both practical 

strategies used to assess ELP in schools and developmental/cognitive theory to assess predictors 

of mathematics development through more general approaches to assessing moderation 

(multiple-group invariance testing and creating interaction terms).  These practical approaches 

included utilizing gains in ELP/EBRS growth to predict mathematics development given that 

such gains are typically used in schools to draw inferences on instructional response and the rate 

of ELP acquisition.  Indeed, the EBRS measure mirrors assessments more akin to CBM in 

reading than the preLAS, and findings for that measure should be interpreted as such.  

Nevertheless, similar measures in schools would be utilized to potentially make instructional 

provision decisions.  Additionally, academic year growth is one of the core norming benchmarks 
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among CBMs.  Drawing on cognitive load theory (Sweller, 1988; Sweller et al., 2011), I 

hypothesized that working memory may moderate the strength of the relationship between 

ELP/EBRS and mathematics growth as lower working memory may increase the cognitive load 

of mathematics such that greater gains in language proficiency may then become more predictive 

of later mathematics performance and growth.   

However, there are many design considerations limiting this perspective to assessing 

moderation of language gains, and alternative theories should be formulated to examine when 

differential changes relate to mathematics growth.  These theories can draw heavily on early 

mathematics cognition and language development—especially from the triple-code model 

(Dehaene, 1992), biological mechanisms of mathematics cognition (Spelke, 2017), and potential 

bilingual benefits to executive function—to more precisely examine how much, for whom, and 

why (mediators) language levels and gains may relate to mathematics growth.  The 

methodological strategies for such studies should directly relate to the theory in mind.  For 

example, though the mixture modeling technique used in the current study has strong precedent 

in developmental research, it is limited to examining heterogeneity in the outcome variable.  One 

technique that would be ideal to directly test drivers of heterogeneity in SEMs are the SEM tree 

(Brandmaier, Oertzen, McArdle, Lindenberger., 2013) and SEM forest (Brandamaier, Prindle, 

McArdle, & Lindenberger, 2016) approaches.  As Jaccobucci et al. (2017) highlighted, the SEM 

tree approach can be equally effective in uncovering heterogeneity in multivariate relationships 

as mixture models.  The process by which this occurs, however, differs significantly.  In SEM 

tree analysis, covariate sets drive enumeration of trees consisting of differential relationships 

through recursive partitioning, maximizing between-partition differences and within-partition 

homogeneity (Brandmaier et al., 2013).  Maximizing within-class homogeneity has similarity to 
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the assumptions of latent class growth analysis (LGCA), which assumes no variability of latent 

growth factors within classes, though classes derived in LGCA are not conditional on covariates 

as in SEM trees. Many different assumptions must be made about an analysis using SEM trees, 

but it is an important technique in subgroup analysis that highly aligns with the methodological 

and theoretical questions of ELL mathematics development with relevance to RTI.  The more 

general classification and regression tree (CART) analysis has been recently applied in a similar 

area of language and mathematics development to analyze differential relationships in regression 

models of language skills predicting mathematics outcomes among preschool-aged children 

(Purpura, Day, Napoli, & Hart, 2017).  To that end, SEM tree analysis is an important extension 

in this area with its applicability to heterogenous multivariate relationships that directly test 

developmental theory or conditional processes.   

Another important future direction is to continue to further research not only how much 

language matters in mathematics but what type (Chow & Jacobs, 2016; Chow & Eckholm, 

2019).  The role of language among EPSs continues to remain somewhat elusive, again in part 

due to how it’s measured.  Among ELLs, unlocking the specific components of language that 

matter most for mathematics may help reduce the language load and may improve the efficiency 

of instruction.  This may also help identify ways to help students across the ELP continuum 

access the curriculum.  Studying ELP as a broad construct, comprised of many aspects of reading 

and language, in relationship to mathematics would likely benefit from more nuanced and 

granular measurement to specify how and to what extent L2 components matter in mathematics 

and how L1 facilitates or impedes this relationship.  Chow and Jacobs (2016) highlighted some 

of the shortcomings of language measurement specifically in relationship to fractions.  L2 

vocabulary is undoubtedly important for accessing curriculum, yet in relation to mathematics, 
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facilitating understanding of the structure of language and how that structure relates to 

mathematics learning may help clarify the processes through which ELLs access mathematics 

knowledge in L2.   

Conclusions 

Factors that contribute to positive mathematics development are highly multidimensional.  

Cultural, socioeconomic, and systemic (e.g., district practices for ELL exit status) factors that 

impact students early on as well as consistently across schooling are crucial to structuring 

screening systems, data-based decision making, and monitoring intervention progress.  This 

work shows that development occurs similarly for ELLs and EPSs (potentially more so than is 

typically suspected); however, individual differences in mathematics abilities, language 

proficiency and prior development interact with the ecology of schools, homes, and mesosystems 

(e.g., school-home interactions) differently for different students.  For example, cultural factors 

may guide the manner by which parents interact with schools and view the relationship of 

schools with their child’s learning.  Promoting sustainable mathematics skill development then 

requires practitioners and researchers to leverage students’ strengths and the skills that maximize 

students’ abilities to learn, which requires considering the students’ ecology of development and, 

given the demographic factors of ELLs, the cultural factors that interact with school-based 

practices.  Building capacity in multiple ecological systems can help strengthen the data 

corroboration process and triangulate information to increase sensitivity and specificity of risk 

identification and monitoring intervention response (Albers et al., 2013).  The diverse needs of 

ELLs compared to EPS peers as well as within the ELL population necessitates systems-level 

coordination to promote monitoring of academic growth.  This is especially important to 

consider in the light of the similarity of working memory in predicting mathematics 
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development.  There may be different processes for ELLs and EPSs in how this relationship 

cascades given the contextual relationships that may differentially impact ELL and EPS 

development.  This is the basis for understanding the probabilistic epigenesis of development 

(Gottlieb, 2007) and resulting cascading effects of contexts on individual change patterns and 

changes across domains within individuals.  As such, the similarities between groups should not 

be taken as similarities in within-group processes given the contexts of development prior to and 

throughout schooling. 

Language-based mechanisms for mathematics interventions are crucial as well and serve 

as a core component of a number of evidence-based explicit-instruction interventions at tier 1 

and 2.  As Doabler, Nelson, and Clarke (2016) and Doabler, Clarke, Kosty, et al. (2016) 

emphasized, opportunities to meaningfully verbalize problem solving is critical in mathematics 

learning.  As such, a combination of basic print knowledge and knowledge of the structure of L2 

in combination with academic and social language capability likely comprises a fuller profile of 

the language components that relate to mathematics.  Nevertheless, underlying these ELP areas 

is more domain-general language ability that likely facilitates mapping of exact to approximate 

quantities (Dehaene, 1992) and a route to mathematics competence (LeFevre et al., 2010).  For 

ELLs, this domain-general language ability would likely facilitate both L1 and L2 proficiency.  

The lack of support for the hypothesis that ELP gains would predict mathematics development 

patterns indicates that much more research is required in both measurement and development to 

understand the role ELP gains play in subsequent mathematics growth, if any.  The hypothesis 

that the rate of change of ELP facilitates mathematics development should not be ruled out as a 

potential developmental cascade with mathematics growth.  Acquiring L2 typically relies on L1 

proficiency, cognitive characteristics, and ecological processes (Halle et al., 2012), which would 
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likely share significant variability with many other facilitators and protective factors of 

mathematics development.   

To that end, the role of native language is a key factor in this cascade as well.  Because 

L1 and L2 likely share many general language components, facilitating L1 is important in 

bolstering reading and mathematics abilities.  Guglielmi (2012) supported this hypothesis among 

secondary-level ELLs between eighth and twelfth grade.  Cárdenas-Hagan et al. (2007) also 

provided evidence for this cross-language transfer among young, Spanish-speaking ELLs.  

Beyond these developmental factors, and potentially equally important, is the cultural and social 

role L1 plays in student development, which likely also facilitate academic development.  As 

Umansky (2016) described, the relationship between L1 and L2 in an instructional context may 

have significant social psychological implications for learning, for example, in dual-language 

classrooms where the balance between majority and minority languages may not be effectively 

managed.  Hence, the cultural context and relevance of learning should remain a vital element to 

research the diverse needs of ELL mathematics learning, even when focusing on the cognitive 

factors that impact learning, as individual-by-context interactions promote and impede student 

success, health, and well-being.   

In light of these important factors, the current work does not provide conclusive evidence 

regarding considerations for cognitive development, RTI implementation, or 

cultural/socioecological components of education.  However, three primary conclusions can be 

drawn from this work.  First, early language-group mathematics performance gaps do not 

necessarily differentially compound over time.  The expected change individuals undergo 

between each year is not markedly different, especially when controlling for between-group 

differences, though the variance in such intraindividual change differs between groups (likely 
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due simply to the significant differences in sample sizes).  Second, variance in individual 

trajectories of English-based mathematics growth is quite noisy as opposed to differentially 

systematic.  From an RTI perspective, this may suggest that projected growth trajectories may 

not be as effective indicators of academic risk since there is such significant variability in growth 

across levels of performance.  The translation to practice of this is not direct, however.  Rather, 

this indicates that the measurements used to assess student progress and instructional response 

(e.g., CBMs) need to undergo more rigorous evaluation to determine how to most effectively use 

them in practice to guide identification, intervention provision, and instruction.  Significant 

research has been devoted to this in the summative and accountability assessment literature (e.g., 

Abedi, 2002; Solano-Flores, 2016).  The intersection between mathematics cognition 

development, second language learning, CBM, and instruction/intervention has yet to undergo 

the same empirical examination.   

Last, and perhaps more important to conclude from this work, is how research in this area 

ought to function moving forward.  Fuchs and Fuchs (2017) highlighted significant limitations of 

the national RTI evaluation (Balu et al., 2015), which used a regression discontinuity design 

(RDD) design to evaluate RTI for reading in 146 schools.  It found null effects for students’ 

reading performance based on their potential tier 2 or 3 assignment with some outcome measures 

showing even negative effects.  Yet, as Fuchs and Fuchs (2017) noted, the national evaluation 

had no information on whether students actually received intervention; causal effects were 

generated for students who scored differently, not who received differential dosages of 

instruction.  Additionally, as Fuchs and Fuchs (2017) also noted, Balu et al. (2015) likely 

overestimated the cut score for tiered intervention eligibility in the RDD analysis.  

Methodological limitations notwithstanding, Fuchs and Fuchs advocate for a more critical eye as 
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to why RTI does not generate the expected effects.  Their point rests on the implementation of 

the policy and the provision of services within each tier.  Weak evidence base for many 

interventions, few resources to effectively implement intervention to high fidelity, and 

assessment practices to efficiently and effectively identify at-risk students and monitor their 

progress all impact how inferences about RTI are drawn.  Fuchs and Fuchs caution against 

inferences drawn from the discontinuity evaluation, as they may skew the progress towards 

understanding the science and evidence behind academic interventions for general and tiered 

instruction and how to most effectively implement the science in real-world settings. 

These concerns and consideration for the evidence of RTI are especially poignant 

regarding mathematics assessment and intervention given the traditional dominance reading has 

had in the school psychology and education science literature (Balu et al.’s [2015] evaluation 

was conducted only on RTI for reading).  Compounding this, then, is how to identify the science 

of mathematics intervention for ELLs and align this science with studies of mathematics 

cognition, development, bioecology, and education policy.  RTI is inherently translational to 

practice; however, it can be strengthened through translation of content and theoretical domains 

within research in mathematics learning and cognition research.  Establishing these connections 

and the malleable components to promote equitable provision of instruction and sustainable 

growth across language groups will ideally mitigate many of the factors that ostensibly diminish 

the perceived effectiveness of RTI.  In turn, this interdisciplinary approach may help bolster the 

evidence for universal components of general classroom instruction, the concurrent and 

predictive validity of screening instruments (Albers & Martinez, 2015; Glover & Albers, 2007; 

Hall et al., 2019), the sensitivity of progress-monitoring tools to student growth (Ardoin & 
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Christ, 2008), and, in turn, the effectiveness and efficiency of both universal and tiered 

interventions.   
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