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Abstract: In this paper we explored whether engaging in tweiry skills associated
with data collection, designing controlled expenmseand testing stated hypotheses,
within microworlds for one physical science domaidensity) impacted the
acquisition of inquiry skills in another domain gs® change). To do so, we
leveraged educational data mining techniques tb besess and estimate students’
inquiry skills across domains. Analyses revealat tioning these skills in density
activities provided benefits in terms of transfendaskill acquisition. More
specifically, students who practiced in densityiaoes first were more likely to
show mastery of the designing controlled experimeskill than those who had no
prior practice. These same students were also rikedy to test their stated
hypotheses during their first data collection iragpd change. Thus, practice in one
domain can positively impact acquisition and trangif skill in a second domain,
suggesting that inquiry skills also have a degfedomain generality.

Introduction

Science educators agree that cultivating inquiryssis critical for students to become
scientifically literate (National Research Count®96, 2000, 2011; Kuhn, 2005a). However,
typical standardized science tests do not adequagiéct or assess complex inquiry process
skills (Quellmalz, Timms & Schneider, 2009). Penfi@nce assessments of inquiry, instead,
have been argued to be better-suited for this marpcf. Black, 1999; Pellegrino, 2001).
Devising scalable and reliable performance assegsitbough, is difficult for two reasons.
First, it is difficult to separate inquiry skillsdm content understanding (Mislevy, Steinberg
& Almond, 2002; Mislevy, et al., 2003). Second, uiry processes are mutli-faceted, and
there is no one single “right or wrong” way to eggan science inquiry (Shute, Glaser &
Raghavan, 1989; Glaser, Schauble, Raghavan, &,2€62). Given inquiry’s importance,
proper techniques for measuring inquiry are needed.

It is also important to better understand inqueagrhing so that we can foster transfer
of such skills to novel tasks (Kirschner, SwelleCéark, 2006; Hmelo-Silver, Duncan &
Chinn, 2007). Regarding transfer, it has been sstgdehat inquiry skills are tightly tied to
the domain in which they are learned (van JoolingenJong & Dimitrakopoulout, 2007),
but some evidence exists that long-term, repeatactipe of inquiry (Kuhn, Schauble &
Garcia-Mila, 1992; Dean Jr. & Kuhn, 2006; Kuhn &Be, 2008), and scaffolding or
teaching these skills explicitly (Klahr & Nigam, @4) can lead to successful acquisition and
transfer to novel tasks.

In the present paper, we address two goals. Riestlescribe our approach for
developing reliable, scalable performance measafregjuiry. Second we leverage those
assessment techniques to examine how inquiry skalitsfer between two physical science
domains. We focus on on two inquiry skills, designcontrolled experiments and testing
stated hypotheses. Designing controlled experimanmttsls selecting experiments to yield
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data that supports determining the effects of mdalge variables on outcomes. Testing
stated hypotheses refers to generating data wetintention to support or refute a specific
hypothesis. These skills are measured as studemdiict inquiry within microworlds for two
domains, phase change and density, developed witkiBcience Assistments system
(Gobert et al., 2007; Gobert et al., 2009).

In our approach, we leverage techniques from EdutatData Mining (cf. Baker &
Yacef, 2009; Romero & Ventura, 2010) to assessiaalt inquiry skills across several
activities within each domain. To assess thesésskie use validated detectors (models) of
students’ inquiry behaviors that were constructaskld on student log files (Sao Pedro et al.,
2010, in press). We then produce estimates of stymteficiency for each skill by
aggregating all assessments into a Bayseian Kngel&dacing model (Corbett & Anderson,
1995). This approach is rigorous because an EDbfddfthe ability to estimate how well the
models assess and track skill. Furthermore, thesde done in real time. Thus, we argue,
the approach is scalable, and could provide a plessiodel for inquiry assessment.

These techniques were also leveraged to measuteavhke two skills of interest,
designing controlled experiments and testing staygatheses, transfer across two physical
science domains. These two domains are Densityaade Change. More specifically, we
analyzed whether students who practiced in deastiyities first had a greater likelihood of
demonstrating the skills or reaching mastery thiadents with no prior practice. With our
assessment and skill tracking models, we can atsedsansfer in a finer-grained way than
other prior studies of inquiry (e.g. Kuhn & Pea2@08).

The remainder of this paper is organized as folldwirst, we describe the two skills
of interest in more detail, and present relatedkvaor assessing data collection skills. We
then present a high-level view of our approachaisessing and estimating proficiency at
these data collection skills using our educatial@h mining techniques. Next, we present
our results on the transfer of these skills betwd@nains which leveraged our assessment
and estimation techniques. Finally, we presensaugision and conclusions of our paper.

Background

Data Collection Skills of Interest

Skills related to designing and conducting expenitaécf. National Research Council, 1996)
are important to inquiry learning for two reasoRsst, they have been argued to support the
development of other scientific inquiry skills su@s correctly interpreting data, and
warranting claims (Klahr & Dunbar, 1988; Kuhn, Sghie & Garcia-Mila, 1992; Schauble,
Glaser, Duschl, Schulze & John, 1995; Kuhn, 20@®aJong et al., 2005). For example, if
controlled experiments are not designed, then w@iclusions cannot be drawn about the
effects of variables on outcomes. Second, studgpisally have difficulty with these skills
(de Jong & van Joolingen, 1998; Kuhn, 2005a,b) amda result, engage in unfruitful
exploration. For example, students may not colldata that support or falsify their
articulated hypotheses (van Joolingen & de Jong1,12993; Kuhn, Schauble, Garcia-Mila,
1992; Schauble, Klopfer, Raghavan, 1991). They ordy run a single trial when trying to
confirm a hypothesis, thereby not generating enodgha to make inferences (Kuhn,
Schauble, Garcia-Mila, 1992). They may also runséume trial repeatedly (Kuhn, Schauble
& Garcia-Mila, 1992; Buckley, Gobert & Horwitz, 26D Finally, they may change too many
variables between experimental trials, preventiraper inferences from being made (Glaser
et al.,, 1992; Reimann, 1991; Tsirgi, 1980; Shut&laser, 1990; Kuhn, 2005a; Schunn &
Anderson, 1998, 1999; Harrison & Schunn, 2004; Meiky & Linn, 2008, 2010).



In this paper, we focus on the acquisition andsi@nof two such data collection
skills, designing controlled experiments and tegtatated hypotheses. Skill at designing
controlled experiments is demonstrated when a stutlesigns experiments that yield data to
support determining the effects of manipulable €pehdent) variables on outcomes
(dependent variables). This skill is related toensthnding and successful use of the Control
of Variables Strategy (CVS; cf., Chen & Klahr, 199€VS entails the procedural and
conceptual understanding of how, when, and why atrotbed experiment should be
conducted so that one can make valid inferencesitathe effects of one independent
variable on a dependent variable (Chen & Klahr,919uhn, 2005b). We differentiate
designing controlled experiments from CVS as foBoWVS is a skill which emphasizes
creating a single, contrastive and controlled expent (a single pair of trials) to determine
the effects of a variable (e.g. Chen & Klahr, 19%9ahr & Nigam, 2004). Designing
controlled experiments, on the other hand, apptigke collection of an entire dataset during
open-ended inquiry and could involve multiple siahd variables.

A second, related skill we track is whether stusemderstand how to test their stated
hypotheses. Testing stated hypotheses refers &rajerg data with the intention to support
or refute a previously stated hypothesis about rilationship between an independent
variable and a dependent variable. We track thisadidition to designing controlled
experiments for two reasons. First, this skill da demonstrated separately as students
collect data. Students may attempt to test thgiotheses with confounded designs, or may
design controlled experiments for a hypothesisexgticitly stated. Second, skill at testing
hypotheses may be indicative of students’ succkepknning and monitoring of their inquiry
(de Jong, 2006).

Prior Work on the Transfer of Data Collection Skill s Across Domains

It is an open question whether or not inquiry skdle tied to the domain in which they are
learned (van Joolingen, de Jong, & Dimitrakopoul@@07). However, several researchers
have provided evidence that this is not the cagseekample, Glaser, Schauble, Raghavan &
Zeitz (1991) inferred that college students’ inguskills had a degree of domain generality
from improvements in content gains across threfergift simulation domains. Harrison and
Schunn (2004) found that two groups of expertsseéhwith domain expertise and those
without, showed comparatively skilled inquiry belmy Though both studies provide
evidence of the domain generality of inquiry skiltsa broad sense, they did not track how
development and transfer of specific skills occairmeross domains.

Others have researched the development of inqlillg ¢1 grade school and middle
school students at a more fine-grained level (Kehml., 1992; Kuhn & Pease, 2008). In
these studies, a recurring finding was that repeai@ctice over time is necessary for
transfer. More specifically, Kuhn et al. (1992) atwhn and Pease (2008) showed that with
repeated, long-term practice, inquiry skills can-dewelop across domains. Though
comprehensive in identifying how inquiry skills adep and transfer over time, both studies
had some limitations. First, smaller sample siZeatanost 30 students were used. Second,
the skills of data analysis and interpretationlskiere conflated with experimental design
skills, thereby, not providing data about how edekielop separately. Finally, scaling using
this approach is difficult because all performardaa consisted of hand-scored open
responses and/or reports.

In our approach, we aim to develop scalable assadsnof inquiry which can be
used, in part, to study how skills develop overetimnd transfer across domains. Our
approach aims to assess students log files whiolige rich performance metrics of
students’ inquiry skills. In order to do so, we ugg a rigorous way of assessing such skills;
we discuss others’ approaches for doing so below.



Prior Work on Assessing Data Collection Skills

Several researchers have assessed data collektiisnasid tracked their development to
address a variety of research questions. Bucklepe@ et al. (2006, 2010) defined a broader
notion of inquiry skill with regard to data collemt, “systematic” exploration, and measured
it looking at students’ log files within microwodd They then studied the relationship
between systematic inquiry and content knowledgmsgathat systematic inquiry was
beneficial at post-test, even if the students’ inglead them to the incorrect answer. Others
looked specifically at the impact of designing coléd experiments on various outcomes.
For example, Shute and Glaser (1990) analyzed whetrtain exploration behaviors, one
being the number of variables changed between enpets, impacted content gains. Schunn
and Anderson (1999) compared the number of extime@riables that were changed
between successive trials between novices and tsxipea domain during inquiry. Harrison
and Schunn (2004) also explored differences betwesites and experts’ inquiry tendency
to design controlled experiments, but did so by potmg several ratios of the number of
controlled trials compared to the total number rdils. Similarly, McElhaney and Linn
(2008, 2010) computed a “CVS score” for open-endediry by computing the number of
successive pairwise CVS trials. They then comp#neddegree to which students designed
controlled trials depending on the task goal. Fnd&uhn and Pease (2008) tracked students’
developing inquiry skills, in part, by computingethdegree to which students make
inferences, assessed on a 5-level scale. A comhmead in all these approaches is that data
collection, in particular the degree to which expents were controlled, was measured
using rules defined by the researchers. In otherdsyothese rules wer&nowledge-
engineered.

Such approaches, however, may fail to properlysmesaskill in environments where
students may exhibit a variety of data collectitrategies. For example, consider employing
McElhaney and Linn’s (2008, 2010) approach to mesmskill at designing controlled
experiments by computing successive pairwise C\éstrThis approach may fail to catch
“corner cases” in which students exhibit additiobahaviors. For example, a student may
run repeated trials to observe the microworld, geaone variable, run a few more repeated
trials, change one variable, etc. As another exemplstudent may initially run pairwise
experiments and then search for interaction effektsboth cases, students appear to
understand how to design controlled experimentswauwe engaging in other kinds of valid
exploration behaviors. The successive pairwiserotlet experiments rule, though, would
yield a low estimate of skill. The averaged-basggdr@aches of Harrison and Schunn (2004)
also would yield lower estimates. As illustrateitice students may collect any data they like
and exhibit a variety of strategies, engineeringgwand identifying all potential “corner
cases” can be quite difficult.

Rather than engineer rules, we, instead, develogadiated, machine-learned
detectors (models) to assess these skills usirifdanational Data Mining (EDM) approach
(cf. Baker & Yacef, 2009; Romero & Ventura, 201B).this approach, student log files are
used as a basis for discovering the “rules” deswilwhat it means to design controlled
experiments and test stated hypotheses. This glififem knowledge engineering in that rules
are not prescribed a-priori. Instead, given studiatd, human-classified labels, and a feature
set derived from student data, we use machineifeptachniques to build models of various
inquiry behaviors. Generally speaking, there aneise advantages to a machine learning
approach over knowledge engineering. First, thaltieg models can capture relationships
that humans cannot easily codify rationally, wh#eeraging the human ability to recognize
demonstration of skill. Thus, this approach mayldss subject to the “expert blind spot”



about what students will do. The models can alstuta corner cases, and the fuzziness at
the edges of these cases, more appropriately thanl&dge engineering approaches. Finally,
the accuracy and generalizability to new studempufadions or other domains of models are
easier to verify than for knowledge engineeringgcsimachine learning is amenable to cross-
validation. Cross-validation is a standard method predicting how well models will
generalize to new data (cf. Efron & Gong, 1983)ug;hthis approach facilitates concrete
determination of model goodness.

In the following sections, we describe our approBwhanalyzing the degree of data
collection skill transfer between two physical sde domains. We also describe the EDM-
based models which enabled us to conduct this nesela particular, we describe at a high
level our EDM approach to automatically assessetlsddls, and aggregate assessments to
yield estimates of student knowledge (Sao Pedab.,€2010, in press).

Method

Participants

Participants were 148 eighth grade students (13«dafs old) from a public school in
suburban Central Massachusetts. They had no pieeixperience using microworlds within
Science Assistments.

Materials
We studied the acquisition and transfer of the ‘tasigning and conducting experiments”
skills using inquiry activities developed for thei&ce Assistments System
(www.scienceassistments.@rdhis system is a web-based inquiry learning mmvnent for
Physics, Life Science, and Earth Science that aatically assesses (and in the future
scaffolds) scientific inquiry skills in real-timeitlin interactive microworld simulations.
These simulations, designed for use at the midtied level, span several science domains
including physical, life, and earth science (Gole¢rl., 2007, 2009). Each microworld
targets domain-specific concepts defined in theddalsusetts Curricular Frameworks
content standards for Middle School Science (Mdussetts Department of Education,
2006). Within each microworld, inquiry skills idéfred in the National Science Education
Standards for middle school (National Research Cigut996, 2011) are assessed. These
skills include: hypothesizing, designing and cortohgcexperiments, interpreting data,
warranting claims, and communicating findings.

In the present work, we examined transfer of skilsveen two physical science
topics, phase change and density. We describe iia detail below the microworlds and
associated activities in which behaviors were detkand skills were measured.

Phase Change Activities

Four activities built around one microworld (Figsire and 2) focused on the phase change of
ice. They aimed to foster understanding aboutriliariant properties of a substance’s
melting and boiling point through experimentati&ach activity provided students with an
explicit goal to determine if one of four variablesntainer size, heat level, substance
amount, and container covered) affected propeofiessubstance’s phase change (melting
point, boiling point, time to melt, and time to HoBtudents addressed the goal by
hypothesizing, collecting and analyzing data, asimunicating findings about how a
variable affected the outcomes. Each of these taaksstructured into different phases that
supported students’ overall experimentation: “obs&r‘hypothesize” (Figure 1),
“experiment” (Figure 2), and “analyze data”. Witldach phase, inquiry support tools were
provided. For example, a hypothesizing widget suj@gowriting of a well-structured,



testable hypothesis, and a “data table” tool (Feg2irkept track of students’ experimental
designs and the results of running trials. Thoughaverall inquiry process was organized
this way, students still had a moderate degre®wfral within the activities. Students had
some freedom to navigate between inquiry phasesaddlexibility within each phase to
conduct many actions. Furthermore, students cduddge to ignore the explicit goals and
test whatever hypotheses they wished. Finally,ghaoquiry was structured into phases,
explicit scaffolding on students’ experimentatiangesses was not provided. For more
information about these activities, see Sao Petdab én press).

Density Activities

Three activities utilized the Density Microworldigkre 3). This microworld enabled
students to inquire about the relationships betweass, volume, and density and is based on
Archimedes’ principle of buoyancy. Similar to Ph&sange, a typical task in this domain
provided students with an explicit goal to detereniina particular independent variable
(orientation of object, type of liquid, volume dbject and mass of object) affects density.
However, unlike Phase Change, the activities wayeeropen-ended in that the activities had
fewer inquiry support tools. For example, suppodis for hypothesizing and analyzing data
are not provided. Students instead write hypothasdsanalyses in open response boxes.
Second, the manner in which students moved betpleases of inquiry is slightly different.
Unlike Phase Change, students engage in hypothgsnly once. Finally, students could
not elect to “observe” before forming a hypothe$isese differences existed because the
inquiry support tools and navigation components matdbeen implemented for Density at
the time we collected our data.

Procedure

First, students took a paper-style pretest to asaéml data collection skills. Next, they
received an introduction on relevant vocabularydeéefor the activities. Then, the Science
Assistments System randomly assigned studentsloonain activity order, phase change
first or density first. After completing both aadtiv sets, another paper-style inquiry test was
administered. Since the pre and post-tests ara famus of this paper, we do not discuss
their contents. This procedure took two class misri@bout 1.5 hours in total.

We explored whether practicing data collectionlskil density activities, more open-
ended tasks, improved skill acquisition in the ghasange activities, slightly more
structured tasks. We note that though the expetahdesign enabled testing if phase change
practice impacted density activity performanceséanalyses were not conducted here
because the density log data has not yet beefiatistNext, we describe how we developed
automated mechanisms for measuring acquisitiohestwo inquiry skills within the phase
change activities. These mechanisms will be levezidag analyze the degree of transfer
between the two domains.



Scientific Process: Explore Hypothesize E:xperiment Analyze data
It's time to build a hypothesis, Use the boxes below, choosing parts of the sentence, to produce your hypothesis,

Hypothesis Builder:
If I change th'3| arnount of ice

4k

:lso that it| ~hoose

. thE| Choose One... :l Ehamse . | decreases
increases
‘ Add Statement ‘ :
‘ | Hypotheses | Tested analyzed

If I change the amount of heat so that it increases , the time the ice takes to

i
melt decreases

Mote: the current hypothesis is the one that is highlighted.

I need to explore more ‘ | I'm ready to run my experiment |

Figure 1. Hypothesizing tool for the Phase Change microworld.



Scientific Process: Explore Hypothesize Experiment  &nalyze data
Run trials to collect data for testing your hypothesis, Chck on 'Show table' to see your data.

My Current Hypothesis: 1, If [ change the amount of heat so that it increases |, the time the ice takes to

melt decreases

Show hypotheses list
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| I'm done experimenting. I'm ready to analyze. |
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Figure 2. Experiment Phase of the Phase Change microworld.
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Leveraging Educational Data Mining Techniques to Me  asure and Track Data
Collection Skills

Measuring and tracking the skills within the phelsange activities involved two steps. First,
we used an automated method for assessing whétlenss designed controlled
experiments or tested their stated hypothesesniti@world activity. Second, we used
another automated approach to aggregate singlssassets over all activities, and produce
final estimates of latent skill. These methodsharefly described below; a full description of
both approaches appears in Sao Pedro, et al.ggs)r

Assessing Data Collection Skills with Machine-Learn ed Behavior Detectors

Automatic assessment was performed using machamadd behavior detectors (models) of
behaviors associated with each skill. At a higtelethis approach leverages machine-
learning to “discover” what it means to design coltéd experiments and test stated
hypotheses in our learning environment. Thus, eritikowledge engineering in which rules
to describe behaviors are authored by a humarK@édinger & MacLaren, 2002), our
machine-learning approach attempts to derive todeasgd, in part, on student data. More
specifically, we employed “text replay tagging”log files (Sao Pedro, et al., 2010;
Montalvo et al., 2010; Sao Pedro et al., in preams)extension to the text replay approach
developed in Baker, Corbett and Wagner (2006) tlol laund validate behavior detectors.
Text replay tagging, a form of protocol analysisi¢Eson & Simon, 1980, 1984), leveraged
human judgment to identify whether students’ Idgsfidemonstrated inquiry skill.
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Figure 4. Overview of the text replay tagging process thatbéed the construction of
validated, machine-learned behavior detectors. g degectors are used to assess whether
students design controlled experiments or test thated hypotheses during their
experimentation.

As shown in Figure 5, there are several steps weebbur text replay tagging
approach. The process begins by having studentgeng inquiry within the Phase Change
activities and collecting their log files. From thethe log files are segmented into
meaningful sets of student actions caltigs. Human coders then tag a subset of these clips
with the behaviors of interest, designing contkxperiments and testing stated
hypotheses. These tags are combined with a $edtafes (attributes) which summarize the
clips. The clips, represented as a combinatiorebflsior tags and features, provide the
backbone for discovering behavior models and tgstow well the model performs. The
clips (features and tags) are given to a machiaetleg algorithm to “discover” models
relating the features to demonstration of each WehaFinally, the models are validated by
measuring how well they predict behavior in clipé nsed to build the models. The output of
this process is two validated behavior detectornghvban be leveraged to assess whether or
not a student demonstrates behavior during azlgggment of their experimentation in an
activity.

Two key processes in the text replay tagging appreae having human coders label
behavior within clips and building and validatirigetdetectors. We describe each in more
detail below to provide a more concrete sense of teat replay tagging was conducted.
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Figure 5. An example clip labeled by a human coder. This wigs tagged as involving
designing controlled experiments and testing staygatheses, in addition to other
behaviors.

Tagging Behavior in Clips for Phase Change Activities

A key part of this process is to have human codppsy behavior tags to clips. These
behavior tags act as the “gold standard” from whietectors are built and validated. To help
human coders identify behavior, a clip is cleanedl summarized into a text replay. A text
replay, shown in Figure 6, summarizes clip actiang highlights important aspects of
students’ inquiry processes. Choosing which actghrmuild be included in the replay is of
particular importance since a human coder neediisut information to identify whether a
student is demonstrating the behaviors. In theg@bhange microworld, such behavior is
exhibited in the hypothesizing and (primarily) #erimenting phases of inquiry. Thus, to
properly identify inquiry behavior, a clip contaial student actions relevant to
hypothesizing and experimenting. This enabled ctteobtain a more comprehensive view
of students’ inquiry processes, necessary for iappglrocesses (such as these) that unfold
over time.

Given a text replay representing a clip, that cbpld be tagged with either the
“designing controlled experiments” or “testing sthhypotheses” behaviors. It could also be
tagged with both behaviors, or neither behaviorewa tag is not applied, it means the
student did not demonstrate its corresponding hiehavthe clip. To give a better sense of
how behavior is labeled by a human coder, consiaetext replay shown in Figure 6, which
was tagged, in part, as demonstrating the “desigoamtrolled experiments” and “testing
stated hypotheses” behaviors. To tag these belsavtier human coder focuses primarily on



the trials run by the student. In the experimeatatycle, he specified one hypothesis
relating the level of heat applied to the ice t® time it takes to melt. He then ran a total of
three trials as indicated by the “microworld rutédtements at time 94s, 117s, and 140s. For
each trial, he changed only the “level of heat'iafale in a successive manner, comparing a
‘low’ level to ‘medium’, and then ‘medium’ to ‘highHe spent 78 seconds doing so. Due to
the consistency in manipulating only one variahla ame between trials, this clip was
tagged as demonstrating the “designing controliggbements” behavior. In his experiments,
he focused specifically on the independent variatdted in his hypothesis, the level of heat.
Because of this, the clip was also tagged as ftgsiiated hypotheses.”

In general, students’ experimentation varied gyeaithin the phase change
activities. Some students took very few actions@mgbhged in few experimentation cycles
within an activity. Others had more complex expemtation patterns. To ensure there was
consistency in identifying behaviors, we estabiigbr-rater reliability by having two human
coders tag 50 clips. Prior to this testing, the twders discussed the coding scheme and
coded several clips together. Inter-rater religbfior each behavior was high. The Cohen’s
for designing controlled experiments was 0.69, &0@ for testing stated hypotheses (Sao
Pedro et al., 2010, in press). This level of ages®ns on par with prior text replay-based
behavior detectors (Baker & de Carvalho, 2008; BaWérovic & Mathews, 2010; Lee et
al., 2011).

Building and Validating Behavior Detectors

Following the text replay tagging methodology, bebadetectors for “designing controlled
experiments” and “testing stated hypotheses” werssttucted and validated within the phase
change microworld. We present here only high-le\ahils and a summary of the results
from Sao Pedro et al. (in press). Detectors wenstcocted using all 148 students’
interactions within four phase change activitidse, after segmenting student actions into
clips, clips were tagged by two human coders whibdwhieved good inter-rater reliability.
One clip per student, per activity was randomlgsidd to be tagged. This ensured there was
a representative sample of all students and allites. In all, the human coders tagged 570
clips. In addition, a set of 73 features (Sao Peda., in press) was distilled to summarize
clips. Example features computed per clip includember of trials run, number of
hypotheses stated, count of pairwise controlledstrtime spent running experiments, and
number of simulation pauses. The corpus of cliggresented as a combination of summary
features and behavior tags, was used to train alideve detectors of each behavior.

We built and validated the detectors by followingixafold student-level cross-
validation approach. In this approach, studentsardomly selected to be in one of 6
groups. Five of the six group’s data are usedatim tfbuild) a detector. The remaining group
is used to test how well the detector can predibialior. This process is repeated, using each
group as a test group once. This approach enableaestimate how well the detectors will
work for new groups of students in the phase chamgeonment. Within each training and
testing loop, a detector was built as follows. f-ial correlated features above 0.6 were
removed. Then, J48 decision trees with automatexiipg to control for over-fitting were
used to derive models (Quinlan, 1993). These datisees relate feature values to behavior
predictions. Note that separate decision trees w@mnstructed for each behavior.

As part of the cross-validation process, we caimasé how well the behavior
detectors work by observing how well the detectprsdictions match the human coder’s
labels for all clips. We quantified the degree gfement between the two by computing two
metrics, A’ (Hanley & McNeil, 1982) and Cohen’s Kapk). A' is the probability that if the
detector is comparing two clips, one involving tategory of interest (designing controlled
experiments, for instance) and one not involvirgg ttategory, it will correctly identify which



clip is which. A model with an A’ of 0.5 performsabhance, and a model with an A’ of 1.0
performs perfectly. Cohen’s Kappa assesses whittbetetector is better than chance at
identifying the correct action sequences as invgithe category of interest.¥dof 0
indicates that the detector performs at chanceaanoff 1 indicates that the detector
performs perfectly.

In Sao Pedro et al. (2010, in press), we repohatithe detectors worked very well
overall. The detector for designing controlled ekpents could distinguish a clip which
demonstrated the behavior from a clip which did8&#o of the time (A’ = .85). The
detector'sk = .47 indicated that its predictions agreed with codegs better than chance.
The testing stated hypotheses detector also warkdidIt could distinguish clips 85% of the
time (A’ = .85) and also agreed with coders’ tagtdr than chance, = .40. This level of
performance is comparable to other behavior detg€otdiich have been refined over several
years (e.g., Baker & de Carvalho, 2008; Baker, ditr & Mathews, 2010). Thus, the
detectors can be used to automatically assessssudata collection. In the next section, we
describe how we leveraged the detectors to clagitudent clips, and aggregated them to
estimate each student’s proficiency at each skill.

Estimating Proficiency at Data Collection Skills Ac ross Practice Attempts

To amalgamate students’ performances across asidhd produce proficiency skill
estimates, we used Bayesian Knowledge-Tracing (BEorbett & Anderson, 1995). This is
a classic approach that has been successfullytasaddel learning within Intelligent
Tutoring Systems for mathematics problem solving.(Koedinger & Corbett, 2006; Feng,
Heffernan & Koedinger, 2009), genetics problem sg\(Corbett, Kaufmann, MacLaren,
Wagner, & Jones, 2010), computer programming (QGbo&A&nderson, 1995; Kasurinen &
Nikula, 2009), and reading (Beck & Chang, 2007BIT model (shown in Figure 7) is a
two-state Hidden Markov Model that estimates thabpbility a student possesses latent skill
(L) aftern observable practice opportunities. This model mesuthat knowledge of a skill is
binary; either the student knows the skill or dnets Given student performance data, it
estimates the likelihood that a student knows kile $o concretize this for our domain, the
observable student performance is whether or saident demonstrates one of the data
collection behaviors. This is determined usinglibbavior detectors. Latent skill {)Lis the
estimate of whether or not a student knows howetgh controlled experiments or test
stated hypotheses after mtih time collecting data.

BKT models are characterized by four parame®rs§ Lo, andT, used in part to
compute latent skilll(,). The Guess parameté&s)(is the probability the student will
demonstrate the skill despite not knowing it. Casedy, the Slip parameteg)(is the
probability the student will not demonstrate thel gven though they know it.dis the
initial probability of knowing the skill before amyractice. FinallyT is the probability of
learning the skill between practice attempts. Wiithie BKT framework, these four
parameters are assumed to be the same for alhssude

In this approach, a BKT model for each skill isffam student data in order to make
predictions about current students, and futureestted Thus, given student data, values for
the four parameters are found that minimize therem predicting whether or not they will
demonstrate behavior during data collection. In Beadro, et al. (in press), we used the
behavior detectors to label all students’ inquirthvia each activity. Then, we used a brute
force search to find the best fitting parametersrdkie data. This method previously has been
found to produce comparable or better model parerméhan other methods (Baker, Pardos,
Gowda, Nooraei, & Heffernan, 2011). Employing thiscess led to BKT models of each
skill estimated students’ skills at each practippartunity reasonably well (Sao Pedro et al.,
in press). This was determined by measuring howtiwelmodel could predict whether a
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Figure 6. Classic Bayesian Knowledge Tracing model (Corbeftr&lerson, 1995) for a

skill, e.g., knowing how to design controlled expents. The model estimates the likelihood
the student knows a skilL{) aftern observable practice opportunities. It does soguar
parameterdsl is the initial knowledgeSis the likelihood of slippingG is the likelihood of
guessing and is the learning rate of the skill.

student would demonstrate the skill at timdased in part on the estimate of knowing the
skill up to that pointl(,.;). BKT models for each skill could predict bettean chance, A’ =
.74 for designing controlled experiments and A7$ for testing stated hypotheses.

At this point we have described a process for agsg$wo data collection skills
during a single data collection activity, and aggting those assessments over several
activities to produce estimates of latent skill. 1&eerage the BKT models, in particular, to
explore our original research question: does priagtiin density activities first before phase
change activities lead to better acquisition ofi3kn other words, do inquiry skills related to
data collection learned in density transfer todbmain of phase change? We address this
guestion of transfer in the next section.

Results

Our main goal is to analyze whether practicing tlata collection skills, designing
controlled experiments and testing stated hypothes@ne domain (density), will lead to
improved performance on those skills in a differ@omain (phase change). We anticipate
students who practiced in density first would pessaore skill in phase change than those
who did not. In other words, we hypothesize théskiill transfer to the second domain.
Two design choices facilitate determining whethansfer occurred. First, the domain
practice order was counterbalanced; students a@adomly assigned to phase change
activities first, or density activities first. Thadlows us to compare the two groups, which
differ solely in whether they use density prioptease change Second, there were no
significant between-group differences on a prdtestore both environments) requiring
designing controlled experiments skilt€ld7) = 1.23,p = .222) and knowledge of
hypothesest(147) = 0.80,p = .428). This finding implies that initial prior kwledge
between groups is likely not a source of any déifiees that may be found between the
groups.

How should transfer between the two domains be ured® We chose to detect the
“additional skill” in phase change in two ways.dgjrstudents who had prior practice in
density activities may be more likely to demongtrsiill on their first attempt at data
collection. In other words, these students may maoee initial skill when starting the



activities, and thus show immediate transfer. Aosdovay this transfer can be measured is
to examine whether more students in one conditimwed proficiency by the end of the
activities. Thus, practice in density first may mepthe degree to which inquiry skill is
acquired in phase change. We address each oflikése as possible indicators of skill
acquisition and transfer across domains.

Comparing Initial Performance in the Phase Change A ctivities

If practicing in density activities impacted acqti and transfer of these skills, we would
expect students in that condition to demonstratediking their first data collection
opportunity within the phase change activities td@st this, we used the behavior detectors to
assess whether each student designed controllediergnts or tested stated hypotheses
during their first data collection within the phadeange activities. As shown in Table 1, 23
out of 147 students (15.7%) designed controllecearpents during their first data collection.
Almost twice as many students in the density-fimstdition (15 students) did so as compared
to the phase-change first condition (8 studentstal that at this point, this was the first

time these students in the phase-change first tondingaged in our inquiry activities. This
difference approached significangé(1)=3.66,p=.056. For testing stated hypotheses, 35 out
of 147 students (23.8%) did so during their firatadcollection. Of those students, more than
twice as many had practiced in density activitiest {24 students), as compared to those who
did not (11 students). This difference was sigatifigx(1)=8.63,p=.003. In summary, data
collection practice in the density environment apd to be associated with greater
acquisition and immediate transfer, particularlytisting stated hypotheses, to the phase
change tasks.

Comparing Mastery Levels upon Completing the Phase Change Activities

It is also relevant to analyze whether initial pi@e in density improves students’ acqusition
of the two skills over multiple practice attemptgphase change. If the initial, additional
practice in density provided such a benefit, we M@xpect students in the density-first
condition to have higher final estimates of lat&tl (Lsna). This estimate of skill at the end
of the phase change activities is given by the Bkadel.

Descriptive analyses revealed thg, sample distributions for each skill were
bimodal, with the two modes centered near 0 amdebning that students either “knew” the
skills or did not when they had completed the plthsange activities. We therefore
compared which condition contained a greater ptogpoof students who had mastered or
approached mastery of each skill by the end optiese change activities, indicated by their
Lsinas being above 0.8. As shown in Table 2, 30 out of didents (20.4%) in total
demonstrated mastery at designing controlled exygris. However, twice as many students
in the density-first condition (20 students) maastethis skill than the phase-change first
condition (10 students). This difference was sigaift, x*(1)=5.89,p=.015. Thus, practicing
inquiry in the density microworld improved acquisit of the designing controlled
experiments skill in phase change. For testingdthypotheses, 50 out of 147 students
(34%) demonstrated mastery. Again, more studentspwéacticed density first (28 students)
achieved mastery than students who did not (22stsyl but this difference was not quite
significant,x%(1)=2.50,p=.114. In summary, initial practice in density apgeto improve
acquisition of the desiging controlled experimesil in the phase change environment, but
not for the testing stated hypotheses skill. Weuwdis possible reasons for this in the
following section.



Table 1. Crosstabulations of domain order practice condjtaond display of behavior in first
phase change data collection activity

Designed Controlled Experiments? Tested Stated Hgpet?
No Yes No Yes
Denstity -> Phase Charige 54 15 45 24
Phase Change -> Density 70 8 67 11
x’(1) = 3.66 x°(1) = 8.63**

**p < .01

Table 2. Crosstabulations of domain order practice condjtaomd mastery of each data
collection inquiry skill.

Designing Controlled Experiments Testing Stated liygmes
Not Mastered Mastered Not Mastered Mastered
Denstity -> Phase Charige 49 20 41 28
Phase Change -> Density 68 10 56 22
x°(1) = 5.89* x°(1) = 2.50

*p <.05

Discussion and Conclusions

In this paper, we presented an approach for dewgapodels to assess and track students’
inquiry via Educational Data Mining (EDM) techniquéf. Baker & Yacef, 2009; Romero &
Ventura, 2010). Two inquiry skills related to desigg and conducting experiments (National
Research Council, 1996, 2011), namely, designimirotbed experiments and testing stated
hypotheses were assessed and tracked as studedtsisal inquiry with computerized
microworlds. We leveraged our models to exploretiviepracticing inquiry with a
microworld in one physical science domain (density)acted skill acquisition in another
domain (phase change). To do so, we counterbalaheeatder in which students practiced
inquiry within the two domains, and analyzed studeperformance in the phase change
activities. Thus, some students had prior practicensity whereas others had no prior
practice. We evaluated transfer performance intiags. First, we compared the groups on
whether they demonstrated the skill in their fitata collection task. This metric provided a
benchmark for determining whether students immetjiaecognize to use these skills when
collecting data in the second domain. Second, wigpemed groups on whether they achieved
mastery by the end of the phase change activiflds.enabled us to estimate whether prior
practice in density improved students’ ability tmjaire these skills over time.

We found that more students who were in the depsity phase change group were
able to demonstrate the skill designing controdigderiments in their first data collection
task when compared to the phase-change only giidup difference approached statistical
significance. However, significantly more studeintshe density plus phase change group
achieved mastery on this skill than did studenthiénphase-change only group. This
provides evidence that the skill of designing colteéd experiments may have a domain-
general component to it. In addition, we interphet group differences on our significant
findings to have two possible meanings. First,glgsig controlled experiments may be a
more difficult skill to learn than the testing hypeses skill (as evidenced by fewer students
mastering this skill across both conditions thanttdsting hypotheses skill). Thus, the
learning trajectory for this skill may be longemdarequire more practice than the phase-
change first condition received. Second, it mayhae prior practice in density better
prepared students for the skill when they reacheghase change activities. In other words,



the prior experience may have prepared them fordéuearning (Bransford & Schwartz,
1999). To test the latter, we will analyze studepésformance in the density activities and
separate out those who mastered the skill in defrsitn those who did not. This hypothesis
would be supported if more density-first studenk®were not “masters” at the end of
density activities became “masters” by the endhefghase change activities than students
with no prior practice.

For testing stated hypotheses, significantly namesity-first students demonstrated
this skill in their first data collection than tpease-change first condition. However, there
was no significant difference on levels of mast&e interpret these findings to mean that
this skill, too, has a domain general componentmihe group difference on this skill in the
first activity. We also believe that since thisllskiay be easier to acquire than the designing
controlled experiments skills, as evidenced byfitnding that it took fewer practice
opportunities to acquire it. Thus, overall our fimgs support earlier studies that data
collection skills have a domain-general componerithém, and that once learned/mastered,
they can be transferred (e.g. Klahr & Nigam, 2084rrison & Schunn, 2004; Dean Jr. &
Kuhn, 2006).

It is also worth noting that even with additionghgtice in density, only 29% of the
students showed mastery of designing controlleg¢exy@nts and only 41% showed mastery
at testing stated hypotheses after completing llasg change activities. This may be for two
reasons. First, students were not given explieitif@ck on their experimentation procedures.
Such feedback may help students acquire thess §Kihhr & Nigam, 2004; Strand-Cary &
Klahr, 2008; Sao Pedro et al., 2009, 2010). Intamili students did not engage in long-term,
repeated practice, which has been shown to proawofgisition and transfer of these skills
(Dean Jr. & Kuhn, 2006). In future work, we willdréss if providing both real-time
feedback on students’ experimentation strategidfoapracticing across several domains
will improve learning and transfer of these skills.

One possible limitation of this study is that wd dot analyze whether transfer was
bidirectional, meaning whether practice in phasange first impacted performance in
density activities. We did not do so because otealers had not yet been validated to work
across physical science domains. As mentioneceegaitiese analyses could be used to help
determine if practicing inquiry in separate domaias function as preparation for future
learning. This transfer is of interest to us als@e the density activities were slightly more
open-ended than the phase change activities sieaaequiry support tools (e.g.
hypothesizing widget) were not present in the dgraitivity. If transfer from state change to
density were borne out, this would provide furteeidence of domain generality of inquiry
skills. Additionally, since phase change includedgets that supported students’ inquiry and
density did not include these widgets, transfemffghase change to density would
demonstrate mastery of inquiry processes. Suatdanfy would illustrate Vygotsky’'s (1978)
notion of scaffolding.

As previously mentioned, central to our approadhésuse of EDM for the
development of our models, one for assessing thlee during a data collection activitiy,
and one for aggregating assessments to yield anagstof skill after completing the activity.
This approach, which requires as a first steprepay tagging (Montalvo et al., 2010; Sao
Pedro et al., 2010, in press) and educationalrdatang, is novel in its application to the
systematic study of inquiry learning. Text replagding, a form of protocol analysis
(Ericsson & Simon, 1980, 1984), leveraged humagnueht to identify whether students’
log files demonstrated inquiry skill. The data miiportion enabled us to leverage human’s
codes to build and validate automated “detector€agh skill that can replicate human
judgment. Our skill proficiency estimation (aggreéga) model was built using a Bayesian
Knowledge-Tracing framework (Corbett & Anderson9%® This approach, was chosen for



two reasons: 1) it had demonstated prior successtimating skill in several domains (e.g.
Koedinger & Corbett, 2006; Beck & Chang, 2007), @henabled us to measure the validity
of these skill estimates (Sao Pedro et al., ing)res

We believe our approach has three primary benafies previous approaches. First,
analyzing log data in this way enables a rigoraws scalable way to assess students’ inquiry
processes (Rupp et al., 2010). Second, with retgatitte two skills of interest, our approach
is advantageous over knowledge engineered appro&ette Schunn & Anderson, 1999;
McElhaney & Linn, 2008, 2010) in that the validdfour assessments can be more easily
determined (Sao Pedro et al., in press). Finallyapproach can identify skill in situations
where students also employ a variety of other valigiiry strategies (cf. Schunn &
Anderson, 1998; Veermans, 2003), whereas othepappes cannot because they
exclusively code sequential pairwise trials (e.ga® Jr. & Kuhn, 2006; Kuhn & Pease, 2008;
McElhaney & Linn, 2008, 2010).

In the future, we aim to address whether we caerdgye data mining for other
complex inquiry skills such as interpreting datd ararranting claims with data (NSES,
1996; NRC, 2011). This will involve similar methodsd techniques to those described in
this paper, namely text replay tagging and edusatidata mining, to identify such skills in
students’ log files. We also aim to leverage thistexg models to study transfer across more
disparate science domains, namely biology and sarémce. Such models can not only help
to more quickly assess students inquiry in a morepaled way, but also can enable
conducting broader-scale studies to empiricallyresislquestions such as the domain
generality of inquiry skills.



Acknowledgments

This research is funded by the National Sciencen#ation (NSF-DRL#0733286, NSF-
DRL#1008649, and NSF-DGE#0742503) and the U.S. Dmeat of Education
(R305A090170). Any opinions expressed are thos¢éhefauthors and do not necessarily
reflect those of the funding agencies.

References

Alonzo, A., & Aschbacher, P. (2004, April 15). ValAdded? Long assessment of students’
scientific inquiry skills.Paper presented at the annual meeting of the American
Educational Research Association. San Diego, CA: Retrieved December 20, 2010,
from the AERA Online Paper Repository.

Baker, R. S., Mitrovic, A., & Mathews, M. (2010)ei2cting Gaming the System in
Constraint-Based Tutors. In P. De Bra, P. Kobs®, &hin (Ed.),Proceedings of the
18th Annual Conference on User Modeling, Adaptation and Personalization, UMAP
2010. LNCS 6075, pp. 267-278. Big Island of Hawaii, HI: SpringeeNag.

Baker, R., & de Carvalho, A. (2008). Labeling StaidBehavior Faster and More Precisely
with Text Replays. In R. S. Baker, T. Barnes, & JBeck (Ed.)Proceedings of the
1st International Conference on Educational Data Mining, EDM 2008, (pp. 38-47).
Montreal, Quebec, Canada.

Baker, R., & Yacef, K. (2009). The State of Edugadil Data Mining in 2009: A Review and
Future VisionsJournal of Educational Data Mining, 1(1), 3-17.

Baker, R., Corbett, A., & Wagner, A. (2006). Hun@lassification of Low-Fidelity Replays
of Student ActionsProceedings of the Educational Data Mining Workshop held at
the 8th International Conference on Intelligent Tutoring Systems, I TS 2006, (pp. 29-
36). Jhongli, Taiwan.

Baker, R., Pardos, Z., Gowda, S., Nooraei, B., &¢taan, N. (2011). Ensembling
Predictions of Student Knowledge within Intelligédnttoring Systems. In J. Konstan,
R. Conejo, J. Marzo, & N. Oliver (EdRroceedings of the 19th International
Conference on User Modeling, Adaptation, and Personalization, UMAP 2011. LNCS
6787, pp. 13-24. Girona, Spain: Springer.

Baker, R., Pardos, Z., Gowda, S., Nooraei, B., &é¢taan, N. (2011). Ensembling
Predictions of Student Knowledge within Intelligédnttoring Systems. In J. Konstan,
R. Conejo, J. Marzo, & N. Oliver (EdBroceedings of the 19th International
Conference on User Modeling, Adaptation and Personalization, UMAP 2011. LNCS
6787, pp. 13-24. Girona, Spain: Springer.

Baxter, G., & Shavelson, R. (1994). Science perforoe assessments: benchmarks and
surrogateslnternational Journal of Education Research, 21(3), 279-298.

Beck, J., & Chang, K. (2007). Identifiability: A Rdamental Problem of Student Modeling.
In C. Conati, K. McCoy, & G. Paliouras (EdPy,oceedings of the Eleventh
International Conference on User Modeling, UM 2007. LNAI 4511, pp. 137-146.
Corfu, Greece: Springer-Verlag.

Beck, J., & Chang, K. (2007). Identifiability: A Rdamental Problem of Student Modeling.
In C. Conati, K. Mccoy, & G. Paliouras (EdPr,oceedings of the 11th International
Conference on User Modeling, UM 2007. LNCS4511, pp. 137-146. Corfu, Greece:
Springer-Verlag.

Black, P. (1999)Testing: Friend or Foe? Theory and Practice of Assessment and Testing.
New York, NY: Falmer Press.

Bransford, J., & Schwartz, D. L. (1999). Rethinkingnsfer: A Simple Proposal with
Multiple Implications. In A. Iran-Nejad, & P. Pears Review of Research in



Education, 24 (pp. 61-101). Washington, D.C.: American EducatldResearch
Association.

Buckley, B., Gobert, J. D., & Horwitz, P. (2006)sidg Log Files to Track Students' Model-
Based InquiryProceedings of the 7th International Conference on Learning
iences, (pp. 57-63). Bloomington, IN.

Buckley, B., Gobert, J., Horwitz, P., & O'Dwyer, (2010). Looking Inside the Black Box:
Assessments and Decision-making in BioLoglogernational Journal of Learning
Technology, 5(2), 166-190.

Chen, Z., & Klahr, D. (1999). All Other Things Beiequal: Acquisition and Transfer of the
Control of Variables Strategghild Development, 70(5), 1098-1120.

Corbett, A., & Anderson, J. (1995). Knowledge-TragiModeling the Acquisition of
Procedural KnowledgeéJser Modeling and User-Adapted Interaction, 4, 253-278.

Corbett, A., Kaufmann, L., MacLaren, B., Wagner, &Jones, E. (2010). A Cognitive
Tutor for Genetics Problem Solving: Learning Gaansl Student Modelinglournal
of Educational Computing Research, 42, 219-239.

de Jong, T. (2006). Computer Simulations - Techgiold advances in inquiry learning.
Science, 312(5773), 532-533.

de Jong, T., & van Joolingen, W. (1998). Scienfiliscovery Learning with Computer
Simulations of Conceptual DomairReview of Educational Research, 68, 179-201.

de Jong, T., Beishuizenm, J., Hulshof, C., Prinsy&n Rijn, H., van Someren, M., et al.
(2005). Determinants of Discovery Learning in a @ex Simulation Learning
Environment. In P. Gardenfors, & P. Johans&aognition, Education and
Communication Technology (pp. 257-283). Mahwah, NJ: Lawrence Erlbaum
Associates.

Dean Jr., D., & Kuhn, D. (2006). Direct Instructies. Discovery: The Long Viev&cience
Education, 384-397.

Efron, B., & Gong, G. (1983). A Leisurely Look &ktBootstrap, the Jackknife, and Cross-
Validation. The American Satistician, 37(1), 36-48.

Ericcson, K., & Simon, H. (1980). Verbal Reportsta.Psychological Review, 87, 215-
251.

Ericcson, K., & Simon, H. (1984Protocol Analysis: Verbal Reports as Data. Cambridge,
MA: Bradford Books/MIT Press.

Feng, M., Heffernan, N., & Koedinger, K. (2009).dkdssing the Assessment Challenge in
an Intelligent Tutoring System that Tutors as is@ssedJser Modeling and User-
Adapted Interaction, 19, 243-266.

Glaser, R., Schauble, L., Raghavan, K., & Zeitz(1©92). Scientific Reasoning Across
Different Domains. In E. DeCorte, M. Linn, H. Mandl L. Verschaffel, Computer-
based Learning Environments and Problem-Solving (pp. 345-371). Heidelberg,
Germany: Springer-Verlag.

Gobert, J.; Heffernan, N.; Koedinger, K.; Beck2D09). ASSISTments Meets Science
Learning (AMSL). Proposal (R305A090170) funded hg U.S. Dept. of Education.

Gobert, J.; Heffernan, N.; Ruiz, C.; Kim, R. (200&MI: ASSISTments Meets Inquiry.
Proposal NSF-DRL# 0733286 funded by the Nation&r®e Foundation.

Hanley, J., & McNeil, B. (1982). The Meaning andelés the Area under a Receiver
Operating Characteristic (ROC) CurRadiology, 143, 29-36.

Harrison, A., & Schunn, C. (2004). The Transfet.ogically General Scientific Reasoning
Skills. In K. Forbus, D. Gentner, & T. Regier (EdR)oceedings of the 26th Annual
Conference of the Cognitive Science Society, CogSci 2004 (pp. 541-546). Chicago,
IL: Erlbaum.



Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C.(R2007). Scaffolding and Achievement in
Problem-Based and Inquiry Learning: A Responserisckner, Sweller, and Clark
(2006).Educational Psychologist, 42(2), 99-107.

Kasurinen, J., & Nikula, U. (2009). Estimating Pragming Knowledge with Bayesian
Knowledge TracingProceedings of the 14th Annual ACM S GCSE Conference on
Innovation and Technology in Computer Science Education, ITiCSE 2009 (pp. 313-
317). New York, NY: ACM Press.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2008/hy Minimal Guidance During
Instruction Does Not Work: An Analysis of the Fadwof Constructivist, Discovery,
Problem-Based, Experiential, and Inquiry-Based g Educational Psychologist,
41(2), 75-86.

Klahr, D., & Dunbar, K. (1988). Dual search spaaeirty scientific reasoning ognitive
Science, 12(1), 1-48.

Klahr, D., & Nigam, M. (2004). The equivalence e&fning paths in early science
instruction: effects of direct instruction and disery learningPsychological
Science, 15(10), 661-667.

Koedinger, K., & Corbett, A. (2006). Cognitive Tuso Technology Bringing Learning
Sciences to the Classroom. In R. Sawybag Cambridge Handbook of the Learning
Sciences (pp. 61-77). New York, NY: Cambridge UniversityeBs.

Koedinger, K., & MacLaren, B. (2002peveloping a Pedagogical Domain Theory of Early
Algebra Problem Solving. Pittsburgh, PA: CMU-HCII Tech Report 02-100.

Kuhn, D. (2005a)Education for thinking. Cambridge, MA: Harvard University Press.

Kuhn, D. (2005b). What needs to be mastered inenasf scientific methodPsychological
Science, 16(11), 873-874.

Kuhn, D., & Pease, M. (2008). What Needs to Devalaihe Development of Inquiry Skills?
Cognition and Instruction, 26(4), 512-559.

Kuhn, D., Schauble, L., & M., G.-M. (1992). Crossiain Development of Scientific
ReasoningCognition and Instruction, 9, 285-327.

Lee, D., Rodrigo, M., Baker, R., Sugay, J., & Calpi\. (2011). Exploring the
Relationships Between Novice Programmer Confusi@mhAchievement. In S.
D'Mello, A. Graesser, B. Schuller, & J.-C. Martid.), Proceedings of the 4th Bi-
Annual International Conference on Affective Computing and Intelligent Interaction,
ACII 2011 - Volume Part I. LNCS 6975, pp. 175-184. Memphis, TN: Springer-Verlag.

Massachusetts Department of Education. (20@@¥sachusetts Science and
Technology/Engineering Curriculum Framework. Malden, MA: Massachusetts
Department of Education.

McElhaney, K., & Linn, M. (2008). Impacts of StudgrExperimentation Using a Dynamic
Visualization on their Understanding of MotidPr.oceedings of the 8th International
Conference of the Learning Sciences, ICLS 2008, Volume 2 (pp. 51-58). Ultrecht, The
Netherlands: International Society of the Learrfaugences, Inc.

McElhaney, K., & Linn, M. (2010). Helping Studeiake Controlled Experiments More
Informative. In K. Gomez, L. Lyons, & J. Radinskyd(), Learning in the
Disciplines: Proceedings of the 9th International Conference of the Learning
Sciences (ICLS 2010) - Volume 1, Full Papers (pp. 786-793). Chicago, IL:
International Society of the Learning Sciences.

Mislevy, R., Chudowsky, N., Draney, K., Fried, Baffney, T., & Haertel, G. (2003).
Design Patterns for Assessing Science Inquiry. Menlo Park, CA: SRI International.

Mislevy, R., Steinberg, L., & Almond, R. (2002). @re roles of task model variables in
assessment design. In S. Irvine, & P. Kyllorniéem generation for test devel opment
(pp. 97-128). Mahwah, NJ: Lawrence Erlbaum Assesiat



Mislevy, R., Steinberg, L., & Almond, R. (2002). @re Structure of Educational
Assessmentdvieasurement: Interdisciplinary Research and Perspectives, 1, 3-67.

Montalvo, O., Baker, R. S., Sao Pedro, M. A., Na&af, & Gobert, J. D. (2010).
Identifying Students' Inquiry Planning Using Maahibearning. In R. Baker, A.
Merceron, & P. Pavlik (Ed.Rroceedings of the 3rd International Conference on
Educational Data Mining, (pp. 141-150). Pittsburgh, PA.

National Research Council. (1996Jational Science Education Sandards. National Science
Education Standards. Washington, D.C.: Nationald&oay Press.

National Research Council. (2000)quiry and the National Science Education Sandards. A
Guide for Teaching and Learning. Washington, D.C.: National Academy Press.

National Research Council. (2018)Framework for K-12 Science Education. Washington,
D.C.: National Academies Press.

Pellegrino, J. (2001Rethinking and redesigning educational assessment: Preschool through
postsecondary. Education Commission of the States, US DepartmieBtucation,
Denver, CO.

Quellmalz, E., Timms, M., & Schneider, S. (2008sessment of Sudent Learning in
Science Smulations and Games. Washington, DC: National Research Council Report.

Quinlan, J. (1993)C4.5: Programs for Machine Learning. San Francisco, CA: Morgan
Kaufmann.

Reimann, P. (1991). Detecting Functional Relatiors Computerized Discovery
EnvironmentLearning and Instruction, 1(1), 45-65.

Romero, C., & Ventura, S. (2010). Educational DMiaing: A Review of the State-of-the-
Art. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and
Reviews, 40(6), 601-618.

Rupp, A., Gushta, M., Mislevy, R., & Shaffer, DOID). Evidence-centered Design of
Epistemic Games: Measurement Principles for Compéatning Environmentghe
Journal of Technology, Learning, and Assessment, 8(4), 1-45.

Sao Pedro, M. A., Baker, R. S., Montalvo, O., Nalam, & Gobert, J. D. (2010). Using
Text Replay Tagging to Produce Detectors of SystierBxperimentation Behavior
Patterns. In R. Baker, A. Merceron, & P. Pavlik JBroceedings of the 3rd
International Conference on Educational Data Mining, (pp. 181-190). Pittsburgh, PA.

Sao Pedro, M. A., Gobert, J. D., & Raziuddin, 81(@). Comparing Pedagogical Approaches
for the Acquisition and Long-Term Robustness of@uoatrol of Variables Strategy.
In K. Gomez, L. Lyons, & J. Radinsky (Edlgarning in the Disciplines:

Proceedings of the Sth International Conference of the Learning Sciences, ICLS 2010,
Volume 1, Full Papers (pp. 1024-1031). Chicago, IL: International Sogiet the
Learning Sciences.

Sao Pedro, M., Baker, R., Gobert, J., Montalvo&Nakama, A. (in press). Leveraging
Machine-Learned Detectors of Systematic Inquiry@®ebr to Estimate and Predict
Transfer of Inquiry SkillUser Modeling and User-Adapted Interaction.

Sao Pedro, M., Gobert, J., Heffernan, N., & Beck2009). Comparing Pedagogical
Approaches for Teaching the Control of Variablemt®gy.N.A. Taatgen & H.
vanRijn (Eds.), Proceedings of the 31st Annual Meeting of the Cognitive Science
Society (pp. 1294-1299). Amsterdam, Netherlands: Cogniigence Society.

Schauble, L., Glaser, R., Duschl, R. A., Schulze&Slohn, J. (1995). Students'
Understanding of the Objectives and Procedurexpé&imentation in the Science
ClassroomThe Journal of the Learning Sciences, 4, 131-166.

Schauble, L., Klopfer, L., & Raghavan, K. (1991jud&ents' Transition from an Engineering
Model to a Science Model of Experimentatidournal of Research in Science
Teaching, 28(9), 859-882.



Schunn, C. D., & Anderson, J. R. (1998). Scienfifiscovery. In J. R. Andersomhe Atomic
Components of Thought (pp. 385-428). Mahwah, NJ: Lawrence Erlbaum AsHesi

Schunn, C., & Anderson, J. (1999). The Generalggtsicity of Experise in Scientific
ReasoningCognitive Science, 23(3), 337-370.

Shute, V., & Glaser, R. (1990). A Large-Scale Eatiin of an Intelligent Discovery World:
Smithtown.Interactive Learning Environments, 1, 51-77.

Shute, V., Glaser, R., & Raghavan, K. (1989). lafee and Discovery in an Exploratory
Laboratory. In P. Ackerman, R. Sternberg, & R. @fasearning and Individual
Differences. Advancesin Theory and Research (pp. 279-326). New York, NY: W.H.
Freeman.

Strand-Cary, M., & Klahr, D. (2008). Developing mlentary science skills; Instructional
effectiveness and path independer@mgnitive Development, 23(4), 488-511.

Tsirgi, J. (1980). Sensible Reasoning: A Hypothabisut Hypothese€hild Development,
51, 1-10.

van Joolingen, W., & de Jong, T. (1991). SuppoHtypothesis Generation by Learners
Exploring an Interactive Computer Simulatidnstructional Science, 20(5-6), 389-
404.

van Joolingen, W., & de Jong, T. (1993). Exploran@omain through a Computer
Simulation: Traversing Variable and Relation Spaté the Help of a Hypothesis
Scratchpad. In D. Towne, T. de Jong, & H. Sp&iaulation-based Experiential
Learning (pp. 191-206). Berlin: Springer-Verlag.

van Joolingen, W., de Jong, T., & Dimitrakopouloit,(2007). Issues in Computer
Supported Inquiry Learning in Sciendeurnal of Computer Assisted Learning,
23(2), 111-1109.

Veermans, K. (2003)ntelligent Support for Discovery Learning, Ph.D. Thesis. Eindhoven,
The Netherlands: Twente University Press.

Vygotsky, L. (1978)Mind in Society: The Development of Higher Psychological Processes.
Cambridge, MA: Harvard University Press.


https://www.researchgate.net/publication/261911668

