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Abstract. Many national policy documents underscore the importance 
of 21st century skills, including critical thinking. In parallel, recent 
American frameworks for K-12 Science education call for the devel-
opment of critical thinking skills in science, also referred to as science 
inquiry skills/practices. Assessment of these skills is necessary, as indi-
cated in policy documents; however, this has posed a great challenge 
for assessment researchers. Recently, some science learning environ-
ments seek to assess these science skills. These systems log all stu-
dents’ interactions within the given system, and if fully leveraged, these 
logs provide rich assessments of inquiry skills. Here we describe our 
environment Inq-ITS (Inquiry Intelligent Tutoring System), that uses 
Educational Data Mining to assess science inquiry skills, as described 
as 21st century skills. Additionally, here we describe how we measure 
students’ skills at designing controlled experiments, a lynchpin skill of 
inquiry, in the context of complex systems. In doing so, our work ad-
dresses 21st century skill assessment in two ways, namely of inquiry 
(designing and conducting experiments), and in the context of complex 
systems, a key topic area of 21st century skills. We use educational data 
mining to develop our assessment of this skill for complex systems. 
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1. Introduction 

1.1. Background  
Following the launching of Sputnik in October of 1957, policy 

makers in the United States began to question the quality of science 
instruction in schools, which, in turn, instantiated a call for change in 
all science curricula. Post-Sputnik, educators and policy makers sought 
that science literacy should include science content knowledge, inquiry 
skills, and understanding of the nature of science (Perkins, 1986). Sec-
ondly, Post-Sputnik reform efforts also called for educating the broad 
populace rather than the top 10% of high achieving students. Taken 
together, the goal was and continues to be to develop a citizenry with 
knowledge and skills so that they can participate fully in a democracy 
(Stokes, 1997).  

 
In more recent reports, policy makers continue to emphasize the 

need for 21st century skills (NRC, 2011; Partnership for 21st  Century 
Skills, 2007). In brief, 21st century skills broadly include: cognitive 
knowledge/skills (e.g., critical thinking), interpersonal skills (e.g., 
communication and teamwork skills), and intrapersonal skills (e.g., 
metacognitive/motivational, self-regulated learning (Partnership for 
21st  Century Skills, 2007). Twenty-first century skills predict both 
college grades and future employment success, and as technological 
advancements continue, people will be increasingly expected to think in 
creative and divergent ways (Lai & Viering, 2012). Lastly, 21st century 
skills are acknowledged as important for developing innovative think-
ers (Sternberg, 2006; Sternberg & Lubart, 1991, 1995; Sawyer, 2006), 
necessary for a knowledge-based economy Bereiter, 2002; Resnick, 
2007). 

 
In the present work, we focus on the cognitive components of 

21st century skills, which include: critical thinking, non-routine prob-
lem-solving, and systems-thinking. Specifically, here we assess inquiry 
skills, critical thinking in science, in the context of complex systems 
(cf., Hmelo-Silver, 2007; Jacobson & Wilensky, 2006; Yoon, 2008). In 
other work, we address intrapersonal skills, namely engagement 
(Gobert, Baker, & Wixon, 2015). 



1.2. Traditional Educational Assessments 
The purpose of educational assessments, broadly described, is 

to make inferences about students’ knowledge and skills. Traditionally, 
as in the case of science, formal assessment is done on the basis of 
standardized tests, which use multiple-choice items to determine the 
level of proficiency a student has achieved. Items are developed using 
standards, for example, state content standards; these tests are criterion-
referenced in that they are intended to measure students in terms of 
their level of mastery on grade-appropriate knowledge and skills. These 
tests are also norm-referenced in that they compare students relative to 
their peers. These tests are typically implemented using paper and pen-
cil format and multiple-choice items (Anastasi & Urbina, 2009).  

However, given the richness of critical thinking involved in sci-
ence inquiry, it has been acknowledged that typical science achieve-
ment tests do not adequately reflect the complex science knowledge 
and inquiry process skills that are important components of scientific 
literacy or of 21st century skills (NSES, 1996; National Assessment of 
Educational Progress, 2004; Haertel, Lash, Javitz, & Quellmalz, 2006; 
Quellmalz & Haertel, 2004; Quellmalz, Kreikmeier, DeBarger, & 
Haertel, 2007; Clarke-Midura, et al, 2011; Leighton & Gierl, 2011). As 
discussed elsewhere (Gobert et al, 2013), the limitations of these tests 
are partly due to the simplified conceptions of the nature of science un-
derstanding at the time that the tests were designed (diCerbo & Behrens 
2012; Mislevy et al, 2012). Thus, more recently, it has been widely ac-
knowledged that multiple choice items are not suitable means to assess 
rich inquiry skills, and instead, tasks need to be designed to elicit data 
that can address what students know and how they use their knowledge, 
rather than elicit data that we can easily collect and analyze (Pellegrino, 
2009). In doing so, one can assess both the products and processes of 
inquiry (Rupp et al., 2010). 

 

In short, the problem becomes: how do we use policy docu-
ments about critical thinking in science (NRC, 2011; Partnership for 
21st Century Skills, 2007) use to inform the design and development of 
valid, reliable assessments of rich inquiry skills? (Leighton & Gierl, 
2011). Furthermore, specific to this paper, we address how to do this 



type of assessment in the context of complex systems, a key topic area 
of 21st century thinking. 

 
1.3.  Inq-ITS (Inquiry Intelligent Tutoring System) 

Our design work started with the specifications for what knowl-
edge and skills students should possess (NGAA, 2013) in order to de-
velop a system that could provide fine-grained assessment data on stu-
dents’ science inquiry skills. Our environment, Inq-ITS 
(http://slinq.org) is a rigorous, technology-based learning environment 
that assesses and scaffolds middle school students in Earth, Life, and 
Physical Science during learning. Our work recognizes that these envi-
ronments can provide a more fertile basis upon which to develop per-
formance-based assessments by leveraging computational techniques to 
analyze students’ log files of their inquiry processes (Gobert et al, 
2012, 2013). 
 

Inq-ITS uses microworlds (Papert, 1980) to engage students in 
inquiry. Microworlds are computerized representations of real-world 
phenomena whose properties can be inspected and changed (Pea & 
Kurland, 1984; Resnick, 1997). Since microworlds share many features 
with real apparati (Gobert, 2005; in press), they provide greater authen-
ticity for “doing science”. In turn, microworlds afford authentic per-
formance assessment of inquiry skills because with a microworld in 
Inq-ITS, students can generate a hypothesis, test it, interpret data, war-
rant their claims with data, and communicate findings with regard to 
what they discover. These inquiry tasks reflect the national frameworks 
for inquiry (NSES, 1996; NRC, 2011), and represent the critical think-
ing skills used to reason logically about scientific concepts as reflected 
in 21st century skills documents (Partnership for 21st Century Skills, 
2007).  

 
In terms of assessment techniques, we employ techniques that 

originate from Educational Data Mining (EDM henceforth; cf., Baker 
& Yacef, 2009; Romero & Ventura, 2010), which grew from computer 
science, human-computer interaction, and measurement. EDM broadly 
described, is a set of powerful methods for analyzing patterns in educa-
tional data. It has been used for a variety of goals: to compare the effi-
cacy of interventions (cf., Beck & Mostow, 2008; Chi, VanLehn, & 



Litman, 2010), to refine domain knowledge models (Cen, Koedinger, & 
Junker, 2008; Pavlik et al., 2009; Desmarais, Meshkinfam, & Gagnon, 
2006), to build automated detectors of relevant constructs during stu-
dent learning (Baker et al., 2008; Cetintas et al., 2010; Gobert, Baker, 
& Wixon, 2015; Hershkovitz, Wixon, Baker, Gobert, & Sao Pedro, 
2011), and to do both formative and performance assessment (Mislevy 
et al., 2012; Gobert et al., 2012).  

 
Educational data mining can be a powerful method; however in 

order to inform pedagogy and assessment of inquiry, data mining needs 
to be guided by theoretical principles about students’ inquiry learning 
(Gobert, in press). EDM, particularly exploratory data mining, on the 
face of it, appears to be distinct from the top-down, forward-design 
processes used in the psychometric community (Mislevy et al., 2012) in 
which design principles are derived exclusively from theoretical princi-
ples. In fact, elsewhere, we articulate how evidence-centered design, a 
rigorous and detailed framework for assessment design, was used in our 
system (Gobert et al., 2012). Here, we argue that our approach, which 
is both top-down and bottom up, can lead to valid metrics for develop-
ing of assessment models. Specifically, here, top-down processes are 
used to guide the development of categories for hand tagging, and bot-
tom-up processes, namely, machine learning (aka Educational Data 
Mining) are then used to predict hand tagging.  

 
Here we address a key skill of inquiry, namely, designing con-

trolled experiments, a lynch pin skill of inquiry. This skill is commonly 
referred to as the control for variables strategy (cf., Chen & Klahr, 
1999). Of all of the skills underlying inquiry, this one is particularly 
difficult for students: students may gather insufficient evidence to test 
hypotheses (Shute & Glaser, 1990; Schauble, Glaser et al., 1991), may 
run only one trial (Kuhn, Schauble, Garcia-Mila, 1992) or run the same 
trial repeatedly (Kuhn, Schauble & Garcia-Mila, 1992; Buckley, Gobert 
& Horwitz, 2006). They also change too many variables at once (Glaser 
et al., 1992; Reimann, 1991; Tschirgi, 1980; Shute & Glaser, 1990; 
Kuhn, 2005; Schunn & Anderson, 1998, 1999; Harrison & Schunn, 
2004; McElhaney & Linn, 2008, 2010). They also run experiments that 
try to achieve an outcome (i.e., make something burn as quickly as pos-
sible) or design experiments that are enjoyable to execute or watch 



(White, 1993), as opposed to testing a hypothesis (Schauble, Klopfer & 
Raghavan, 1991; Schauble, Glaser, Duschl, Schulze & John, 1995; 
Njoo & de Jong, 1993). 
 

Having successfully developed detectors for this skill for Physical 
science topics (Sao Pedro, Baker, Gobert, Montalvo, & Nakama, 2013; 
Sao Pedro et al, 2012), we conduct our assessment development in the 
area of Complex Systems, also referred to as Systems Thinking, a key 
aspect of 21st Century science knowledge (Lai & Viering, 2012). Our 
ecosystems microworld targets students’ understanding of the ways in 
which organisms interact and have different functions within an ecosys-
tems to enable survival (Sao Pedro, Gobert, & Betts, 2014). Since the 
ecosystems environment has multiple variables interconnected in a non-
linear fashion (Yoon, 2008; Greiff, Wustenberg, & Funke, 2012), the 
hypothesis space increases (Klahr & Dunbar, 1988), and the under-
standing of the effects the independent variables on dependent vari-
ables(s) is more challenging because, as previously stated, the simple 
control for variables strategy (cf., Chen & Klahr, 1999), desribed 
above, cannot be applied in a straightforward manner. The complexity 
that arises here is illustrated when contrasted to the application of this 
skill in Physical Science topics. Specifically, in Physics phenomena (at 
the middle school level) there is one independent and one dependent 
variable (ivs and dvs) underlying the causal system. Many Life Science 
topics, by contrast, are inherently different from Physical Science be-
cause the former have a number of interconnected, non-linear elements 
that are interacting in a complex causal system (Yoon, 2008; Jacobson 
& Wilensky, 2006), as in topics like Ecosystems and Cell functions.  

 
In brief, students have difficulties with complex systems because 

students view relationships between variables as univariate, simple, and 
direct (Grotzer & Perkins, 2000; Grotzer & Bell-Basca, 2003). Addi-
tionally, there are many emergent properties that are not predictable 
from the behavior of individual parts (Wilensky & Resnick 1999), and 
students favor explanations that assume central control and determinis-
tic causality (Resnick & Wilensky, 1993), rather than thinking about 
the interconnectedness of multiple variables. In terms of conducting 
inquiry, an important implication that impacts students’ difficulty is 
that the control of variables strategy (cf., Chen & Klahr, 1999) no 
longer works in it is simple form (Bachmann et al., 2010) because of 



the multiple interacting independent variables, i.e., where variables 
Variable 1 and Variable 2 interact, changing Variable 1 and keeping all 
else fixed will yield different results depending on the value at which 
Variable 2 is fixed. This is extremely difficult for students to under-
stand (Hmelo-Silver et al, 2007; Wilensky & Resnick, 1999; Yoon, 
2008). These complexities cause a challenge to middle school students 
both in understanding complex systems and in conducting inquiry in 
complex systems (Hmelo-Silver et al, 2007); as a corollary of these, 
students’ inquiry strategies are also difficult to measure. 

 
 In our microworld, students are said to demonstrate the skill of de-

signing controlled experiments when they generate trials that make it 
possible to infer how changeable factors (e.g., seaweed, shrimp, small 
fish, and large fish within an Ecosystem) affect outcomes (e.g., the 
overall balance of the ecosystem) (Sao Pedro, Baker, Gobert, 
Montalvo, & Nakama, 2013). This skill relates to application of the 
Control of Variables Strategy (CVS; cf., Chen & Klahr, 1999), but 
unlike CVS, it takes into consideration all the experimental design set-
ups run with the simulation, not just isolated, sequential pairs of trials 
(Gobert, Sao Pedro, Baker, Toto, & Montalvo, 2012; Sao Pedro, Baker, 
Gobert, Montalvo, & Nakama, 2013). 

In this paper, we aim to demonstrate how data-mining algorithms 
can be developed to assess students’ science inquiry skills (namely, 
designing and conducting experiments) in the context of complex sys-
tems. This is a well-acknowledged assessment challenge since this in-
quiry skill is ill-defined, i.e., there are many ways (both correct and 
incorrect) that students go about designing and conducting experiments 
(Kuhn, 2005). Specifically, we discuss the development and evaluation 
of a data-mined model that classifies the students who are demonstrat-
ing designing controlled experiments skill (vs. those who are not dem-
onstrating this skill) in a simulation of a complex system.    

3. Method 

3.1.  Participants 
101 eight graders at a Central Massachusetts middle school participated 
in this study. The teachers used the Life Science microworld during 
their regular science classes after students learned about food webs. 
Each student had access to an individual computer to engage in the mi-



crowold. 53% of the participants were female students, and the average 
age of the all participants was 15.67 (SD = 1.32).  
 
3.2.  Materials 

Inq-ITS (Gobert, et al., 2012, 2013) is a web-based environment in 
which students conduct inquiry with interactive simulations and inquiry 
support tools. The simulations are designed to assess inquiry in content 
areas aligned to middle school Physical, Life, and Earth Science as de-
scribed in the NGSS standards (NGSS Lead States, 2013). Each Inq-
ITS activity provides students a driving question and requires them to 
investigate that question using the simulation and tools (see Figure 1 
for an example Ecosystems activity). Students make hypotheses, collect 
data by changing the simulation’s variables and running trials, analyze 
their data, warrant their claims, and communicate their findings. A key 
aspect of Inq-ITS is that activities are performance-based assessments 
of inquiry skills. Metrics on students’ skills are derived from the proc-
esses they follow while conducting inquiry and the work products 
(Rupp et al., 2010) they create with the support tools. 
 
3.3. Microworld and Inquiry Scenarios 

The students engaged in inquiry within Inq-ITS environment 
(Gobert et al., 2012, 2013) using the EcoLife simulation. The EcoLife 
simulation (Figure 1) is an aquatic ecosystem containing big fish, small 
fish, shrimp, and seaweed where students conduct inquiry about how 
the populations of producers, consumers, and decomposers are interre-
lated. The microworld consists of two inquiry scenarios. In the first, 
students were asked to stabilize the ecosystem. In the second, students 
were asked to stabilize the shrimp population (or alternatively, ensure 
that the shrimp population is at its highest). For each scenario, students 
form a hypothesis, collect data by changing the population of a selected 
organism (on the left side of Figure 1), analyze data by examining 
automatically generated data tables and population graphs (on the right 
side of Figure 1), and communicate findings by completing a brief lab 
report.  

This microworld addresses the two strands of the Massachusetts 
Curricular Frameworks: (1) the functions of organisms and the ways in 
which organisms interact within an ecosystem that enable the ecosys-
tem to survive and (2) the roles and relationships among producers, 



consumers, and decomposers in the process of energy transfer in a food 
web.  

 

Figure 1. EcoLife design and conduct an experiment stage. Here, stu-
dents add and remove organisms and scan the ecosystem to investigate 
how the population changes over time. 

4. Data Analysis  

4.1.  Hand-Scored Classification  
With log data from 101 students, we carried out text replay tagging 

(Baker, Corbett, & Wagner, 2006) to classify students who demon-
strated the skill of designing controlled experiments from students who 
didn’t demonstrate the skill. This classification yields a label variable 
(i.e., skill demonstration vs. no skill demonstration) that can be later 
used for supervised machine learning of the model. In text replay tag-

ging, human coders are presented “pretty‐printed” versions of log files 



(i.e., clips), that contain textual sequences of low‐level student actions, 

then coders assign one or more tags (e.g., designing controlled experi-
ments) per clip. For the EcoLife microworld, the grain-size of a clip 
contains all actions associated with formulating hypotheses (e.g., 
selecting shrimp population as independent variable) and all actions 
associated with designing and running experiments (e.g., increasing the 
population of shrimp). After producing these classifications, each stu-
dent’s activity sequences were summarized by creating a feature set 
from the data, which was later used to generate a machine-learned de-
tector that can categorize who is demonstrating the skill of interest (Sao 
Pedro et al., 2013). There are several advantages of using machine-
learned detectors (Sao Pedro, 2013). First, such models can capture 
relationships that people cannot easily specify while leveraging the 
human coders’ ability to recognize demonstration of skill. Second, as 
machine learning approaches use standard methods for predicting how 
well models will generalize to new data (e.g., cross-validation), accu-
racy and generalizability of machine-learned models can be easily veri-
fied.  

Two coders participated in the hand-scoring of the clips. One coder 
hand-scored all the clips, and a second coder coded the first 50 clips to 
compute inter-rater reliability. A kappa of .71 was obtained between the 
two coders for these first 50 clips. This kappa was considered to be 
adequate and commensurate with coding such data in our prior work 
(Sao Pedro et al., 2013). Within the corpus of tagged clips, 52.2% of 
students had demonstrated the skill of controlling for variables. 
 
4.2.  Feature Distillation  

To build a data minded model (or detector) for designing controlled 
experiments that predicts the hand-coded labels of whether or not stu-
dents demonstrate this skill when collecting data, we then distilled cer-
tain features from the log files to use as predictors of the detector. Ini-
tially, we identified and extracted 73 features that were based on earlier 
literature on students’ inquiry (e.g., Buckley et al., 2006; Kuhn et al., 
1992; Chen & Klahr, 1999). In our earlier work, we further refined 
these features by iteratively testing how varying configurations of these 



features contribute to model performance, and selected 11 features that 
have good generalizability and construct validity based on literature 
review of indicators that are associated with science inquiry (See Sao 
Pedro et al., 2012 and Gobert et al., 2013 for detailed discussion of this 
process).For the current study, we also used these 11 features to build a 
detector. We briefly describe each feature as follows:  

 
1. All actions count: This is a count of all low-level actions found in a 

clip including all actions in the hypothesize and experiment phases 
of inquiry. These actions include: changing variables when making 
hypotheses; proposing hypotheses; running, pausing or resetting the 
simulation; changing values of simulation variables when designing 
experiments; and displaying or hiding the data table and hypothesis 
list from the simulation interface. 

2. Complete trials count: The number of trials in which the student ran 
the simulation to completion (i.e., without restarting the trial). 

3. Total trials count: The total number of trials started within the clip, 
regardless of whether the student allowed the simulation to run to 
completion. 

4. Simulation pause count: The number of times the simulation was 
paused. 

5. Simulation variable changes count: The number of times the values 
of simulation variables were changed while the student was design-
ing experiments. 

6. Simulation variable changes count related to stated hypotheses: The 
number of times the values of simulation variables explicitly stated 
in hypotheses were changed. 

7. Number of pairwise repeated trials: A count of the pairs of trials 
that had identical experimental setups. This count considers any 
two trials in the entire clip. 

8. Number of successive repeated trials: The same as the pairwise 
count, except that only adjacent (successive) trials (e.g., between 
Trials 2 and 3, between Trials 4 and 5) are considered. 

9. Number of pairwise controlled trials, with repeats: A count of the 
pairs of trials in which exactly one simulation variable (independent 
variable) had different values between trials, and all other variable 
values were identical (cf., Chen & Klahr, 1999). Because it is a 
pairwise count, any pair of trials is considered. Furthermore, if any 
trial is a repeat of an earlier trial, it is still considered in this count. 



10. Number of successive controlled trials, with repeats: Same as the 
pairwise controlled trial count, except that this count only considers 
successive trials. 

11. Number of pairwise controlled trials, ignoring repeats: Same as the 
pairwise controlled count previously mentioned, except that if a 
trial is a repeat of an earlier trial, it is not considered. 

 
4.3.  Detector Generation and Validation 

Continuing with the EDM-based method used in our group (Sao 

Pedro et al. 2013; Gobert et al. 2013), machine‐learned detectors were 

developed using the hand‐coded clips (i.e., label variable) and the 11 

features distilled from students’ log data (i.e., predictor variables) 
within EcoLife using RapidMiner 6.3 (Mierswa, Wurst, Klinkenberg, 
Scholz, & Euler, 2006). We used J48 decision trees algorithm with 
automated pruning as method to generate the detector. J48 decision tree 
algorithm is an open-source implementation of the C4.5 decision tree 
algorithm (Quinlan, 1993), and it has been widely used to detect behav-
iors in technology-enhanced learning environments (e.g., Baker & de 
Carvalho, 2008). J48 decision trees are particularly good at reducing 
over-fitting (i.e., the model is fitting to noise rather than the underlying 
relationship) as it uses a post hoc pruning approach that reduces tree 
complexity (Quinlan, 1993). That is, the pruning process removes 
nodes of the decision tree that does not provide significant information, 
which yields a comprehensible decision tree without unnecessary com-
plexity.  

The J48 decision tree has two parameters that we can control: 
minimum number of instances per leaf (M) and the confidence thresh-
old for pruning (C). In our previous work (Sao Pedro et al., 2013), we 
set these values at 2 for M and .25 for C (which are the default values 
for this algorithm). For the current study, we set the confidence thresh-



old at .25, and the minimum number of instances per leaf was put at 10 
to yield a parsimonious tree that can is more generalizable. This setting 
was selected to about 5% of the data points available. To further mini-

mize possible over-fitting, six‐fold cross‐validation was conducted at 

the student level, meaning that detectors were trained on five randomly 
selected groups of students and tested on a sixth group of students. By 

cross‐validating at this level, we can increase confidence that detectors 

will be accurate for new groups of students. We chose this technique 
for the following reasons. J48 decision trees have led to successful be-
havior detectors in previous research (e.g. Walonoski & Heffernan, 
2006; Baker & de Carvalho, 2008; Sao Pedro et al., 2013). Also, deci-

sion trees produce relatively human‐interpretable models (i.e., attributes 

and associated rules). For example, as depicted in Figure 2, each node 
is essentially a feature and the value associated with it that can be used 
to classify which incident is demonstrating designing for controlled 
experiments. This model in turn can be used to assess student behavior 
or integrate within the existing learning environments to update student 

model real‐time (Mislevy, Behrens, Dicerbo, & Levy, 2012). 

5. Results 

The confusion matrix (Table 1) captures raw agreement between 
the detector’s prediction and the human coders’ tags under stu-



dent‐level cross‐validation. For example, the first column of the confu-

sion matrix (“Hand-coded Positive”) indicates that among 118 hand-
coded clips labeled as demonstrating designing controlled experiments 
skill, the machine learned detector also classifies them as the case while 
7 cases were classified as negative. We used three performance metrics 
to evaluate the detector. Precision (.92) and recall (.94) are simply ac-
curacy of the detector where precision indicates the ratio of correct 
positive predictions and recall indicates the ratio of positive cases that 
were captured by the model. We further calculated Cohen’s Kappa (κ), 
a widely used metric to evaluate goodness of data-mined models (Baker 
& Inventado, 2014). Kappa assesses whether the detector is better than 
chance at identifying the correct action sequences. A Kappa of 0 indi-
cates that the detector performs at chance, and a Kappa of 1 indicates 
that the detector performs perfectly. This decision tree gave a kappa of 
.795 indicating a high agreement between the decision tree’s and hu-
man coders’ classification of students who demonstrate designing con-
trolled experiments. We should note that this value was a little bit 
higher than the inter-rater reliability of .71, which might indicate possi-
ble over-fitting.  
 

 
Figure 2 illustrates a fragment of the decision tree generated for the 

detector. Because a decision tree contains attributes and associated 
rules, it is more interpretable than other mining approaches (Bresfelean, 
2007). For example, the very first feature used to classify students who 
demonstrate designing for controlled experiments skill is, “Adjacent 
controlled with repeats” (i.e., feature # 10 from the list of the detector 
features). Following down the decision tree, if there is no controlled 
experiment (smaller than 1), then the detector is 94 out of 98 confident 
that the incident is not demonstrating the skill (i.e., N for no). If the 
incident has “Adjacent controlled with repeats” count greater than 1, 
then the detector uses the second feature, “Adjacent controlled with no 
repeats” to continue classification. The decision tree obtained for the 
present detector is very much aligned with our previous detectors ob-



tained using the data from Physical Science microworlds (e.g., Sao 
Pedro et al., 2013) 

 

 
Figure 2. A fragment of the decision tree generated for the detector. 

 

6. Discussion and Conclusions  

Ill-defined science inquiry (e.g., Clarke-Midura, Dede, & Norton, 
2011; Gobert, Sao Pedro, Baker, Toto, & Montalvo, 2012), such as the 
skill of designing and conducting experiments present many assessment 
challenges since traditional multiple choice items cannot be used to 
assess such skills (Haertel, Lash, Javitz, & Quellmalz, 2006; 
Quellmalz, Kreikmeier, DeBarger, & Haertel, 2007; Leighton & Gierl, 
2011). In the present work, there is added difficulty in measuring stu-
dents’ experimental strategies during inquiry because we sought to as-
sess these skills in a complex system, namely, Ecosystems. This adds 
an assessment challenge because as previously noted the simple control 
for variables strategy, whereby students should vary the target variable 
of interest and hold the remaining variables constant, cannot be applied 
because the independent variables interact in a complex causal system 



leading to the change in a dependent or set of variables. Thus, the goal 
of this paper was to determine whether our EDM-based detector, used 
in other domains in our work (Sao Pedro et al, 2013; Gobert et al, 2012, 
2013), could be successfully used to score students’ skills at designing 
and conducting experiments when applied to logs from inquiry in a 
complex system microworld with multiple interacting variables.  
 

As described in the results section, the detector’s performance was 
quite high and indicate that the detector can be used to evaluate stu-
dents’ inquiry performance for the designing for controlled experiments 
skill in the Ecosystems activities. It can distinguish when a student de-
signed controlled experiments in Ecosystems from when they did not 
79% of time (κ = .795). This performance is on par (slightly better 
than) with previous metrics computed at the student-level across our 
three physical science topics for this skill, κ ranging from .45 to .62 
across studies (Sao Pedro, Baker, & Gobert, 2012; 2013). 

 
It is important to note that the features used for the presented detec-

tor were the same features that were used in the development of our 
detector for this skill in Physical Science (Sao Pedro et al, 2013). There 
are several explanations for this. First, given that this task, though a 
complex system per se, it is representative of a fairly simple system in 
that only 4 variables (i.e., seaweed, shrimp, small fish, and large fish 
populations) are interacting. Specifically, Narayanan et al., (2003) laid 
out five characteristics of complex systems as follows: (1) they exhibit 
hierarchical structures composed of subsystems and components; (2) 
their subsystems and components exhibit natural behaviors or engi-
neered functions; (3) the component/subsystem behaviors causally in-
fluence other components/subsystems; (4) the propagation of the causal 
influences create chains of events in the operation of the overall system, 
and gives rise to its overall behavior and function; and (5) these chains 
of events extend in temporal and spatial dimensions. As such, it appears 
that our Ecosystem microworld, if viewed with these criteria, is at the 
less complex end of the spectrum. Additionally, our Ecosystems mi-
croworld can be solved using an “engineering approach”, as outlined by 
Narayanan, and thus our features used to detect the design of controlled 
experiments can get us “pretty far” in detecting this skill in students 
because there are only 4 interacting variables. With this in mind, it is 
not surprising then that the same features can be used for both Physical 



science topics and Ecosystems. It is an empirical question whether the 
same set of features would yield reliable metrics for evaluating this 
skill in a “more complex” complex system (say with 8 interacting vari-
ables), as outlined by Narayanan et al. (2003). Another possible expla-
nation for these findings is that students’ skills on this task are bimodal, 
i.e., either very buggy or very skilled and thus, the detector, as con-
structed, can discriminate “good” from “poor” examples of designing 
controlled experiments in these data.  

 
In closing, this work contributes to the literature on performance-

based assessment, and to the assessment of students’ skills at designing 
and conducting experiments in complex systems. Taken together with 
our earlier work (Sao Pedro, Baker, Gobert, Montalvo, & Nakama, 
2013; Sao Pedro et al, 2012) our results demonstrate the potential 
power of EDM for the broad scalability of our assessments across mul-
tiple science domains. Lastly, given their generalizability and power, 
these techniques provide a solution towards assessing this ill-defined 
skill in the context of complex systems, also referred to as systems 
thinking, as called for in reform documents on 21st century skills 
(NGSS, 2013; Partnership for 21st Century Skills, 2007). As previously 
stated, more research is needed with a other complex systems in which 
there are a greater number of interacting variables, etc., to address how 
well these techniques can validly assess students’ experimentation 
strategies. This work represents an advance in assessment, in particular 
in complex systems, a here-to-fore difficult context in which to conduct 
inquiry assessment, given the multiple interacting variables. As such, it 
also represents a step towards the assessment of other inquiry skills in 
the context of complex systems, a necessary component of 21st Century 
skills (NGSS, 2013; Partnership for 21st Century Skills, 2007). 
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Table 1. Confusion matrix and performance metrics for the Ecosystem 
clips 

 Hand-coded  
Positive  

Hand-coded  
Negative 

Predicted Positive  111 10 
Predicted Negative   7 98 

Precision = 0.92, Recall = 0.94, κ = .795 
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