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ABSTRACT.	Data	is	flexible	in	that	it	is	molded	by	not	only	the	features	and	variables	available	to	
a	 researcher	 for	 analysis	 and	 interpretation,	 but	 also	 by	 how	 those	 features	 and	 variables	 are	
recorded	 and	 processed	 prior	 to	 evaluation.	 “Big	 Data”	 from	 online	 learning	 platforms	 and	
intelligent	tutoring	systems	is	no	different.	The	work	presented	herein	questions	the	quality	and	
flexibility	of	data	from	two	popular	 learning	platforms,	comparing	binary	measures	of	problem-
level	accuracy,	the	scoring	method	typically	used	to	 inform	learner	analytics,	with	partial	credit	
scoring,	 a	 more	 robust,	 real-world	 methodology.	 This	 work	 extends	 previous	 research	 by	
examining	 how	 the	manipulation	 of	 scoring	methodology	 has	 the	 potential	 to	 alter	 outcomes	
when	testing	hypotheses,	or	specifically,	when	looking	for	significant	differences	between	groups	
of	students.	Datasets	from	ASSISTments	and	Cognitive	Tutor	are	used	to	assess	the	implications	
of	data	availability	and	manipulation	within	twelve	mathematics	skills.	A	resampling	approach	is	
used	to	determine	the	size	of	equivalent	samples	of	high-	and	low-performing	students	required	
to	 reliably	 differentiate	 performance	 when	 considering	 each	 scoring	 methodology.	 Results	
suggest	 that	 in	 eleven	 out	 of	 twelve	 observed	 skills,	 partial	 credit	 offers	more	 efficient	 group	
differentiation,	 increasing	analytic	power	and	reducing	Type	 II	error.	Alternative	applications	of	
this	approach	and	implications	for	the	Learning	Analytics	community	are	discussed.	

Keywords:	 Data	 flexibility,	 partial	 credit,	 group	 differentiation,	 resampling,	 ASSISTments,	
Cognitive	Tutor	

1 INTRODUCTION 

1.1 The Overlooked Flexibility of Data 

When	analyzing	a	dataset,	 it	 is	easy	to	fall	back	on	the	perspective	that	data	collected	in	 its	natural	or	
normalized	form	is	all	that	is	available	for	consideration.	Researchers	may	not	realize	that	their	datasets	
are	 flexible;	 data	 can	 be	 manipulated	 or	 combined	 to	 consider	 different	 perspectives	 and,	 often,	 to	
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arrive	 at	 different	 conclusions.	 In	 some	 ways,	 arguments	 for	 data	 flexibility	 toe	 the	 line	 of	 how	
researchers	 can	“lie	with	 statistics,”	by	using	and	abusing	data	 cleaning,	 analysis,	 and	presentation	 to	
sway	an	audience’s	interpretation	(Huff,	1954).	However,	in	the	age	of	“Big	Data,”	where	data	carries	a	
high	volume,	variety,	and	velocity	(Elgendy	&	Elragal,	2014),	changing	one’s	perspective	of	a	dataset	can	
be	 critically	 important.	 Big	 Data	 analysts	 define	 the	 processes	 by	 which	 data	 collection,	 storage,	
preparation,	 and	 analysis	 should	 be	 conducted,	 but	 often	 fail	 to	 consider	 how	 each	 of	 these	 steps	
interact	to	 impact	data	quality	 (Janssen,	van	der	Voort,	&	Wahyudi,	2017).	Resulting	data	quality	then	
influences	statistical	outcomes	that	drive	decisions	made	from	the	data.	

In	 the	 context	 of	 education,	 online	 learning	 platforms	 and	 intelligent	 tutoring	 systems	 have	
revolutionized	the	field’s	understanding	of	educational	data	by	drastically	expanding	the	amount	of	data	
available	for	mining	and	analytics.	These	systems	allow	for	the	collection	of	fine-grained	data	that	can	be	
aggregated	in	a	variety	of	ways	to	examine	student	performance.	However,	no	two	systems	are	created	
equal;	 learning	 platforms	 can	 vary	 by	 domain,	 environment,	 and	 functionality,	 adding	 to	 the	 overall	
complexity	 and	 dynamic	 understanding	 of	 learner	 analytics.	 These	 differences	 make	 it	 difficult	 for	
researchers	 to	 establish	 broad,	 generalizable	 claims	 regarding	 best	 practices	 in	 technology-driven	
education.	

Educational	researchers	should	consider	the	flexibility	of	their	data	by	assessing	how	sensitive	available	
data	is	to	cleaning,	manipulation,	and	analytic	efforts.	The	present	work	argues	that	educational	data	is	
flexible,	molded	by	not	only	the	variables	available	to	a	researcher	for	analysis	and	interpretation,	but	
also	by	how	those	variables	are	processed	prior	to	analysis.	

1.2 Why Does Data Flexibility Matter? 

How	 should	 researchers	 approach	 the	 problem	 of	 data	 flexibility?	 Is	 the	 problem	 a	 matter	 of	 data	
quality,	 potentially	 solved	 by	 refining	 data	 collection	methodologies?	 Past	work	 has	 shown	 that	 data	
accessibility	 and	 volume	provide	 stronger	 links	 to	 resulting	 outcomes	 and	 decisions	 than	 data	 quality	
(O’Reilly,	 1982;	 Keller	 &	 Staelin,	 1987).	 Researchers	may	 not	 even	 consider	 the	 quality	 of	 their	 data	
beyond	 traditional	 assumptions	 of	 normality	 or	 distribution,	 settling	 for	 that	 which	 is	 accessible.	
However,	data	quality	should	not	be	overlooked.	Quality	should	be	considered	alongside	the	context	of	
data	collection	and	the	researcher’s	personal	decisions	regarding	analysis	(O’Reilly,	1982).		

When	considered	as	a	facet	of	data	quality,	perhaps	the	problem	of	data	flexibility	is	actually	a	matter	of	
data	cleaning,	approached	by	practices	that	alter	the	underlying	distribution	of	critical	variables	(Dasu	&	
Loh,	2012).	While	data	cleaning	 is	an	 important	step	 in	 the	process	of	analysis,	over-cleaning	may	not	
establish	more	useful	data,	but	instead	may	move	data	farther	away	from	its	real-world	meaning	(Dasu	
&	Loh,	2012).	Understanding	the	appropriate	actions	to	take	on	a	dataset	 is	a	skill	 linked	to	the	data’s	
context	 and	 accuracy	 (Morgan,	 2015).	 The	 problem	 of	 data	 flexibility	 may	 also	 extend	 to	 feature	
generation	and	the	legitimacy	of	using	available	data	to	derive	new	perspectives.	
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Although	its	definition	may	be	varied,	perhaps	the	most	critical	reason	to	consider	data	flexibility	 is	 its	
potential	impact	on	statistical	findings.	Predictions	and	statistical	outcomes	are	only	as	good	as	the	input	
supplied	 for	 analysis.	 Decisions	 made	 from	 data	 extend	 from	 the	 processes	 by	 which	 the	 data	 was	
collected,	 processed,	 and	 analyzed	 (Janssen,	 van	 der	 Voort,	 &	 Wahyudi,	 2017).	 In	 the	 context	 of	
educational	 research,	 the	 manner	 in	 which	 data	 is	 collected	 from	 online	 learning	 platforms	 and	
intelligent	 tutoring	 systems,	 and	 the	ways	 in	which	 that	 data	 is	 processed	 and	 interpreted	 ultimately	
have	a	profound	impact	on	our	views	of	effective	educational	practices.	

1.3 Past Research and Present Goals 

While	a	focus	on	data	quality	is	hardly	new,	the	idea	of	data	flexibility	is	not	often	discussed.	The	present	
work	 considers	 a	 key	 question	 for	 Big	Data	 analytics	 in	 education:	what	 does	 data	 flexibility	 (i.e.,	 the	
manipulation	of	available	data	and/or	the	use	of	feature	generation	to	establish	new	data)	mean	for	the	
evidence	put	 forth	 in	support	of	best	practices	 in	education?	Specifically,	 this	work	examines	how	the	
nature	 of	 scoring	 employed	 by	 online	 learning	 platforms	 can	 alter	 results	 observed	 in	 the	 context	 of	
hypothesis	testing.	

In	online	learning	platforms,	students	are	typically	asked	to	solve	problems	pertaining	to	particular	skills	
or	domains	and	receive	feedback	with	regard	to	the	accuracy	of	their	responses.	These	platforms	also	
commonly	provide	assistance	 in	 the	 form	of	hints,	worked	examples,	 scaffolding,	or	messages	 tied	 to	
specific	 wrong	 answers	 in	 order	 to	 help	 guide	 and	 improve	 student	 learning.	 Many	 online	 learning	
platforms	rely	on	a	binary	scoring	system	that	allots	points	based	on	the	accuracy	of	the	student’s	first	
response	to	each	problem	(i.e.,	a	correct	answer	earns	a	score	of	1,	while	an	incorrect	answer	earns	a	
score	of	0).	

This	black	and	white	depiction	of	students’	problem-level	understanding	has	progressed	in	recent	years	
through	research	in	the	field	of	educational	data	mining.	Mathematically	speaking,	a	grey	area,	defined	
by	a	partial	credit	score,	should	usually	paint	a	more	robust	picture	of	a	student’s	knowledge.	Intuition	
in	 the	 field	 of	 assessment	 has	 expanded	 to	 the	 world	 of	 online	 learning	 platforms,	 with	 evidence	
repeatedly	 observed	 for	 the	 importance	 of	 partial	 credit	 in	 technology-driven	 assessment	 contexts	
(Attali	 &	 Powers,	 2008;	 2010).	 Partial	 credit	 scoring	 offers	 a	 finer-grained	 distinction	 of	 student	
knowledge	and	 increases	the	reliability	of	knowledge	estimates	 (Attali,	2011).	When	data	 is	subject	 to	
multiple	interpretations	(i.e.,	scoring	patterns),	it	is	critical	to	determine	which	format	is	more	practical	
and	credible	in	the	real	world	(O’Reilly,	1982).	Partial	credit	is	not	a	novel	concept,	with	teachers	using	
various	 iterations	of	 the	practice	 in	classrooms	around	the	world.	As	such,	 the	obvious	next	step	 is	 to	
establish	credible	partial	credit	metrics	for	online	learning	platforms,	and	subsequently,	to	gain	a	better	
understanding	of	how	scoring	methodology	relates	to	student	learning.	

The	 present	 work	 seeks	 to	 provide	 empirical	 evidence	 for	 the	 use	 of	 partial	 credit	 scoring	 in	 online	
learning	platforms	based	on	a	hypothesis	testing	approach.	This	work	extends	previous	research	on	the	
use	of	partial	credit	scoring	within	the	ASSISTments	learning	platform	(Ostrow,	Heffernan,	Heffernan,	&	
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Peterson,	 2015;	 Ostrow,	 Donnelly,	 &	 Heffernan,	 2015;	 Ostrow,	 Donnelly,	 Adjei,	 &	 Heffernan,	 2015;	
Wang,	Ostrow,	Beck,	&	Heffernan,	2016)	by	examining	how	a	system-specific	definition	of	partial	credit	
generalizes	to	data	from	a	different	platform.	

One	 source	 of	 inspiration	 for	 this	 line	 of	 research	 is	 rooted	 in	 the	 field	 of	 educational	 data	 mining.	
Bayesian	 knowledge	 tracing	 (BKT),	 one	 of	 the	 most	 popular	 student	 modelling	 techniques,	 and	 that	
employed	 by	 Carnegie	 Learning’s	 Cognitive	 Tutor,	 relies	 on	 the	 binary	 correctness	 of	 skill	 items	 (i.e.,	
problems	or	questions	pertaining	to	a	particular	skill)	and	a	series	of	latent	constructs	to	predict	when	a	
student	will	learn	or	“master”	a	skill	(Corbett	&	Anderson,	1995).	In	recent	years,	researchers	have	tried	
to	 enhance	 BKT	 predictions	 by	 considering	 additional	 data	 pertaining	 to	 student	 performance.	
Essentially,	by	supplementing	“black	and	white”	performance	data	with	additional	features,	researchers	
have	 established	 roundabout	 partial	 credit	measures	 for	 gauging	 student	 performance.	 Features	 that	
have	been	considered	in	past	work	include	personalized	measures	of	students’	prior	knowledge	(Pardos	
&	 Heffernan,	 2010;	 Yudelson,	 Koedinger,	 &	 Gordon,	 2013),	 estimates	 of	 item	 difficulty	 (Pardos	 &	
Heffernan,	2011),	and	algorithmically	defined	partial	credit	scores	meant	to	replace	binary	scores	(Wang	
&	 Heffernan,	 2011;	 Wang	 &	 Heffernan,	 2013;	 Ostrow,	 Donnelly,	 Adjei,	 &	 Heffernan,	 2015).	 Despite	
myriad	 attempts	 to	 enrich	 student	 models	 through	 additional	 student	 and	 content	 data,	 it	 remains	
common	 practice	 for	 tutoring	 systems	 to	 report	 students’	 problem-level	 performance	 using	 binary	
accuracy.	

A	 second	 source	 of	 inspiration	 for	 the	 present	work	 is	 rooted	 in	 the	 field	 of	 educational	 psychology,	
specifically,	in	the	analysis	of	randomized	controlled	trials.	A	randomized	controlled	trial	examining	the	
efficacy	 of	 interleaving	 skill	 content	 was	 conducted	 in	 ASSISTments.	 Published	 results	 revealed	 that	
significant	 differences	 between	 experimental	 and	 control	 conditions	 could	 only	 be	 observed	 when	
considering	 student	 performance	 data	 in	 addition	 to	 the	 binary	 accuracy	 of	 skill	 items	 (Ostrow,	
Heffernan,	Heffernan,	&	Peterson,	2015).	The	partial	 credit	of	 skill	 items,	defined	as	a	combination	of	
the	student’s	binary	accuracy	on	an	item	and	the	number	of	hints	and	attempts	used	while	solving	the	
item,	became	a	compelling	research	focus.	Additional	investigations	have	since	revealed	the	benefits	of	
partial	credit	when	predicting	student	performance	on	future	skill	items	(Ostrow,	Donnelly,	&	Heffernan,	
2015),	 pinpointed	 optimal	 system-specific	 definitions	 of	 partial	 credit	 (Ostrow,	 Donnelly,	 Adjei,	 &	
Heffernan,	 2015),	 and	 shown	 that	 partial	 credit	 scoring	 can	 lead	 to	 a	more	 robust	 understanding	 of	
student	knowledge	(Desmarais	&	Baker,	2011).	

To	 test	 an	 algorithmic	 definition	 of	 partial	 credit	 designed	 specifically	 for	 the	 ASSISTments	 platform,	
data	from	Ostrow,	Heffernan,	Heffernan,	and	Peterson’s	(2015)	randomized	controlled	trial	was	revived	
and	 reanalyzed.	Wang	et	al.	 (2016)	confirmed	 that	when	comparing	 the	dataset’s	original	binary	 item	
scoring	to	partial	credit	scores	derived	from	an	algorithm	that	combined	penalties	for	hint	and	attempt	
usage,	 significant	 differences	 between	 experimental	 and	 control	 conditions	 could	 be	 found	 more	
efficiently.	Enhanced	efficiency	was	defined	as	requiring	smaller	sample	populations	to	reliably	observe	
group	differences	within	hypothesis	tests,	essentially	equating	to	an	increase	in	power	and	a	reduction	
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of	 Type	 II	 error	 (Wang	 et	 al.,	 2016).	 The	 work	 also	 examined	 the	 use	 of	 partial	 credit	 when	
differentiating	 between	 groups	 of	 students	 known	 to	 differ	 significantly:	 high-performing	 and	 low-
performing	 students.	 By	 comparing	 groups	 with	 a	 known	 difference	 to	 groups	 from	 an	 experimental	
intervention	with	an	unknown	effect	size,	the	authors	observed	that	the	efficiency	gained	using	partial	
credit	was	potentially	mediated	by	the	magnitude	of	the	true	difference	between	groups	(Wang	et	al.,	
2016).	 That	 is,	 groups	 known	 to	 differ	 significantly,	 established	 using	 students’	 knowledge	 estimates	
measured	prior	to	randomization,	saw	increased	efficiency	in	group	differentiation	more	dramatic	than	
that	observed	for	groups	differing	by	an	unknown	magnitude.	

The	 present	 work	 seeks	 to	 extend	 past	 research	 by	 examining	 the	 paradigm	 of	 enhanced	 group	
differentiation	through	partial	credit	scoring	in	non-experimental	contexts	using	mastery-based	learning	
assignments	 within	 ASSISTments.	 Additionally,	 the	 generalization	 of	 this	 approach	 is	 considered	 by	
examining	 similar	 skill	 content	 sourced	 from	 Cognitive	 Tutor.	 It	 was	 hypothesized	 that,	 as	 previously	
observed	 in	 Wang	 et	 al.	 (2016),	 partial	 credit	 scoring	 would	 enhance	 the	 efficiency	 with	 which	
significantly	different	groups	of	students	could	be	detected.	Specifically,	 this	work	examines	groups	of	
students	 known	 to	 differ	 significantly:	 high-performing	 and	 low-performing	 students.	 Support	 for	 this	
hypothesis	would	 emphasize	 the	 notion	 that	 researchers	 should	 consider	 the	 flexibility	 of	 their	 data,	
especially	in	the	context	of	hypothesis	testing	and	between-group	analyses.	

2 DATASETS 

The	 flexibility	 of	 data	 from	 two	 popular	 learning	 platforms,	 ASSISTments1	 and	 Carnegie	 Learning’s	
Cognitive	Tutor,2	is	considered	in	the	present	work.	These	systems	are	used	to	examine	how	the	nature	
in	which	students	are	 scored	on	skill	 items	 (i.e.,	problems	or	questions	pertaining	 to	a	particular	 skill)	
can	sway	the	results	of	analyses.	

2.1 ASSISTments 

Past	 research	 on	 partial	 credit	 and	 group	 differentiation	 conducted	 in	 an	 experimental	 setting	within	
ASSISTments	served	as	inspiration	for	the	present	work.	The	ASSISTments	platform	has	a	primary	focus	
in	 K–12	mathematics,	 supporting	 over	 50,000	 students	 around	 the	world	 as	 they	 complete	 classwork	
and	homework.	Delivering	textbook	content	and	skill-based	assignments	aligned	with	the	Common	Core	
State	Standards	(NGACBP	&	CCSSO,	2010),	students	gain	insight	from	immediate	feedback	and	a	variety	
of	rich	tutoring	strategies,	while	teachers	receive	powerful	student-	and	class-level	reports	that	support	
opportunities	for	formative	assessment	(Heffernan	&	Heffernan,	2014).	The	ASSISTments	platform	also	
strives	 to	 advance	 educational	 research,	 serving	 as	 a	 tool	 for	 researchers	 to	 embed	 randomized	
controlled	 trials	meant	 to	examine	 the	effects	of	 learning	 interventions	at	 scale	 (Ostrow	&	Heffernan,	
2016).	

                                                                    
1	http://www.assistments.org/	
2	http://www.carnegielearning.com/	
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The	ASSISTments	dataset	used	in	the	present	work	is	composed	of	“Skill	Builder”	data	accrued	between	
September	2009	and	December	2014.	Skill	Builders	are	mastery-based	learning	assignments	mapped	to	
the	Common	Core	State	Standards	(NGACBP	&	CCSSO,	2010),	and	are	commonly	assigned	by	teachers	
using	ASSISTments.	These	assignments	provide	a	wealth	of	data	for	learning	analytics	research.	Within	a	
Skill	 Builder,	 students	 must	 complete	 a	 series	 of	 problems	 randomly	 selected	 from	 a	 skill	 pool	 until	
meeting	a	predefined	 threshold	of	 skill	 “mastery”	 (i.e.,	 answering	 three	consecutive	problems,	or	 skill	
items,	accurately	on	the	first	attempt).	While	working	through	a	Skill	Builder,	students	can	request	hints	
and	make	multiple	solution	attempts,	with	all	performance	data	logged	by	the	system.	For	brevity,	the	
dataset	considered	herein	examines	the	six	most	commonly	assigned	Skill	Builders	within	ASSISTments	
from	 2009–2014	 (details	 presented	 in	 Table	 1).	 This	 is	 non-experimental	 data;	 the	 Skill	 Builders	
considered	 were	 not	 altered	 to	 include	 experimental	 interventions	 during	 the	 collection	 period.	
Although	other	skill	 topics	could	have	been	considered,	 these	six	 topics	offered	the	highest	volume	of	
student	 data	 per	 skill,	 and	 as	 the	 volume	 of	 data	 degrades,	 so	 too	 would	 the	 quality	 of	 analysis.	
Therefore,	these	six	skills	are	presented	as	a	proof	of	concept	for	the	analysis	presented	herein.	

Table	1:	Details	Pertaining	to	Analyzed	ASSISTments	Skill	Builders	
Skill	Topic	 Students	 Difficulty	

Equation	Solving,	Two	or	More	Steps	 5,269	 0.43	
Greatest	Common	Factor	 5,169	 0.42	
Distributive	Property	 5,693	 0.37	
Multiplying	Fractions	and	Mixed	Numbers	 4,719	 0.26	
Positive	and	Negative	Integers	 6,314	 0.20	
Scientific	Notation	 6,502	 0.19	
Note.	Difficulty	increases	toward	1.0.	 	 	

	
For	 each	 Skill	 Builder,	 an	 estimate	 of	 difficulty	 was	 calculated	 by	 averaging	 accuracy	 across	 all	 items	
within	 the	 skill.	 The	 inverse	 of	 this	 measure	 was	 then	 taken	 to	 establish	 a	 scale	 in	 which	 difficulty	
increases	toward	1.0.	Thus,	a	difficulty	score	of	0.37	would	mean	that	students	averaged	63%	accuracy	
across	all	problems	in	the	skill,	while	a	difficulty	score	of	0.19	would	mean	that	students	averaged	81%	
accuracy	 across	 all	 problems	 in	 the	 skill.	 Level	 of	 difficulty	 was	 considered	 in	 an	 attempt	 to	 assess	
whether	difficulty	hinders	the	power	of	partial	credit	for	group	differentiation	(perhaps	by	altering	the	
number	 of	 hints	 or	 attempts	 required	 by	 students	 and	 thereby	 suggesting	 sensitivity	 in	 how	 partial	
credit	metrics	 should	be	defined).	Within	 Table	 1,	 the	 Skill	 Builders	 are	presented	 from	most	 difficult	
(equation	solving	with	more	than	two	steps)	to	least	difficult	(scientific	notation).	

Additionally,	 all	 skill	 items	 within	 the	 ASSISTments	 dataset	 carried	 binary	 scores	 for	 student	
performance,	 based	on	 the	 student’s	 first	 action	or	 solution	 attempt.	 The	dataset	 also	quantified	 the	
number	 of	 hints	 and	 attempts	 each	 student	 required	 per	 skill	 item.	 This	 extra	 data	 is	 algorithmically	
combined	with	student	accuracy	to	establish	partial	credit	scores,	as	discussed	in	the	Methods	section.	

The	 analyses	 presented	 herein	 consider	 a	 student’s	 average	 performance	 across	 the	 first	 three	 items	
solved	in	each	Skill	Builder.	For	instance,	when	considering	two	students	solving	problems	pertaining	to	
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the	distributive	property,	Susie	displayed	the	binary	solution	pattern	{inaccurate,	 inaccurate,	accurate,	
or	0,	0,	1}	on	 the	 first	 three	skill	 items,	while	 John	displayed	 the	binary	pattern	 {accurate,	 inaccurate,	
accurate,	or	1,	0,	1}.	By	 isolating	 the	 first	 three	 skill	 items,	or	problems	 solved,	 this	work	attempts	 to	
prove	that	group	differentiation	can	be	accomplished	more	efficiently	through	partial	credit	even	when	
student	 performance	data	 is	 strictly	 limited.	Using	 this	 approach,	 the	 dataset	was	 cleaned	 to	 remove	
students	answering	fewer	than	three	items	within	each	skill.	

2.2 Cognitive Tutor 

A	 Cognitive	 Tutor	 dataset	 was	 considered	 to	 assess	 how	 the	 algorithm	 for	 partial	 credit,	 originally	
defined	within	 the	 context	of	ASSISTments,	 generalized	 to	 a	different	platform.	Cognitive	 Tutor	bears	
some	similarity	to	ASSISTments,	but	it	also	differs	 in	several	ways.	Cognitive	Tutor	is	a	series	of	broad-
reaching	 tutoring	 systems	 for	 students	 in	 grades	 9–12	 distributed	 by	 Carnegie	 Learning	 (2016).	 The	
Cognitive	 Tutor	 series	 is	 built	 around	 the	 ACT-R	 theory	 of	 cognition,	 enlisting	 problem-solving	
techniques	 to	 compare	 automated	 solution	 steps	 against	 student	 solutions	 and	 provide	 immediate	
feedback	and	assistance	as	necessary	(Anderson,	Corbett,	Koedinger,	&	Pelletier,	1995;	Ritter,	Anderson,	
Koedinger,	&	Corbett,	2007).	Cognitive	Tutor	 is	distributed	as	a	portion	of	broader	curriculum	reform,	
with	courses	available	in	multiple	mathematics	domains	(VanLehn	et	al.,	2005;	Carnegie	Learning,	2016).	
Schools	 or	 districts	 adopt	 Cognitive	 Tutor	 and	 teachers	 assign	 tutored	 content	 for	 classwork	 or	
homework	in	alignment	with	other	Carnegie	Learning	materials.	

The	Cognitive	Tutor	dataset	used	 in	 the	present	work	 is	comprised	of	data	 from	the	Algebra	1	course	
that	was	promoted	as	part	of	the	Knowledge	Discovery	and	Data	Mining	(KDD)	Cup	dataset	in	2010	(KDD	
Cup,	2010).	The	full	dataset,	as	retrieved	from	the	PSLC	DataShop	(Stamper	et	al.,	2011),	spans	a	single	
academic	year	(2005–2006),	with	over	880K	skill	 items	completed	by	559	students	working	within	106	
Algebra	 skills.	 Again,	 for	 brevity	 and	 as	 a	 proof	 of	 concept,	 the	 present	 investigation	 focuses	 on	data	
from	the	six	skills	exhibiting	the	highest	volume	of	student	data.	Details	pertaining	to	these	six	skills	are	
presented	in	Table	2.	

Table	2:	Details	Pertaining	to	Analyzed	Cognitive	Tutor	Skills	
Skill	Topic	 Students	 Difficulty	

Expressions	with	Negative	Slopes	 263	 0.68	
Combining	Like	Terms	 264	 0.38	
Find	X	with	Positive	Slopes	 268	 0.35	
Labelling	Axes	 263	 0.33	
Consolidate	Variables	with	Coefficients	 266	 0.15	
Consolidate	Variables	without	Coefficients	 263	 0.10	
Note.	Difficulty	increases	toward	1.0.	

	
Estimates	 of	 difficulty	 for	 each	 of	 the	 six	 skills	were	 again	 calculated	 by	 averaging	 students’	 accuracy	
across	all	items	within	the	skill	and	subtracting	that	number	from	1.	Within	Table	2,	skills	are	presented	
from	most	difficult	 (Expressions	with	Negative	 Slopes)	 to	 least	difficult	 (Consolidate	Variables	without	
Coefficients).	
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All	skill	items	within	the	Cognitive	Tutor	dataset	carried	binary	scores	for	student	performance,	based	on	
the	 student’s	 first	 action	or	 attempt	 (paralleling	 the	 format	of	 the	ASSISTments	dataset).	 The	dataset	
also	 quantified	 the	 number	 of	 hints	 and	 attempts	 required	 by	 each	 student	 within	 each	 skill	 item.	
Paralleling	 the	 preprocessing	 method	 used	 to	 clean	 the	 ASSISTments	 dataset,	 the	 Cognitive	 Tutor	
dataset	was	cleaned	 to	 remove	students	answering	 fewer	 than	 three	 items	within	each	 skill.	 Isolating	
the	first	three	skill	items	within	each	skill	then	offered	a	comparable	view	of	the	efficacy	of	the	approach	
given	limited	student	data	in	an	alternative	platform.	

3 METHODS 

As	the	present	work	seeks	to	extend	previous	research	on	the	efficiency	and	reliability	of	partial	credit	in	
the	 context	 of	 group	 differentiation,	 the	 methodology	 presented	 herein	 was	 adapted	 from	 previous	
work	and	uses	much	of	 the	same	terminology	(Wang	et	al.,	2016).	The	following	subsections	highlight	
the	three	primary	steps	required	to	evaluate	partial	credit	in	the	context	of	group	differentiation.	

3.1 Appending Partial Credit Scores 

The	 present	 analysis	 relies	 on	 an	 algorithmic	 definition	 of	 partial	 credit	 adapted3	 from	 that	 originally	
presented	 in	Wang	et	al.	 (2016)	and	Ostrow,	Donnelly,	Adjei,	and	Heffernan	(2015)	 (see	Figure	1).	For	
each	 skill	 item	 or	 problem	 solved,	 the	 algorithm	 considered	 the	 student’s	 binary	 score	 (correct),	 the	
number	of	attempts	required	to	solve	the	item	(attempt),	the	number	of	hints	required	to	solve	the	item	
(hint_count),	and	a	binary	flag	denoting	whether	the	student	was	shown	the	answer	through	a	“bottom	
out	hint”	(bottom_hint).	

IF attempt = 1 AND correct = 1 AND hint_count = 0 
   THEN 1 
 
ELSIF attempt < 3 AND hint_count = 0 
   THEN .8 
 
ELSIF (attempt <= 3 AND hint_count = 0) 
  OR (attempt <=3 AND hint_count = 1 AND bottom_hint != 1) 
   THEN .7 
 
ELSIF (attempt < 5 AND bottom_hint != 1) 
  OR (attempt < 5 AND hint_count > 1 AND bottom_hint != 1) 
   THEN .3 
 
ELSE 0 

Figure	1:	Partial	credit	algorithm	adapted	from	Ostrow,	Donnelly,	Adjei,	and	Heffernan,	2015.	

                                                                    
3	It	should	be	noted	that	this	definition	of	partial	credit	was	designed	for	data	mining	within	ASSISTments.	As	such,	two	points	in	
the	 original	 code	 were	 found	 to	 be	 susceptible	 to	 outlying	 student	 behaviours	 in	 a	 new	 context.	 In	 the	 present	 work,	 the	
definitions	for	arriving	at	scores	of	0.7	and	0.3	have	been	amended	to	remove	this	potential	flaw	and	to	extend	the	capacity	for	
generalization	to	other	platforms.	These	flaws	would	have	allowed	students	to	make	an	endless	number	of	attempts	as	long	as	
the	hint	count	requirement	was	met	for	scores	of	0.7	and	0.3.	Datasets	for	previous	work	using	the	original	pseudo	code	were	
reviewed	and	no	such	outliers	existed,	leaving	published	results	unaltered.	The	errors	only	became	apparent	when	applying	the	
code	to	data	from	a	new	platform,	thus	requiring	amendment	for	the	present	work.	
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The	algorithm	presented	in	Figure	1	was	applied	to	both	datasets	and	categorical	partial	credit	scores	(0,	
0.3,	0.7,	0.8,	1.0)	were	appended	to	each	skill	item	for	each	student.	Domain	experts	and	the	creators	of	
ASSISTments	established	 these	 values	 following	a	data	mining	endeavor	 that	 examined	 the	predictive	
ability	of	various	penalizations	for	hint	and	attempt	usage	in	the	system	(Ostrow,	Donnelly,	&	Heffernan,	
2015).	Examples	of	resulting	partial	credit	scores	appended	to	ASSISTments	and	Cognitive	Tutor	data	are	
presented	in	Table	3.	Full	versions	of	the	modified	datasets	have	been	stripped	of	student	identifiers	and	
are	available	in	Wang	(2016).	

Table	3:	Excerpts	from	ASSISTments	and	Cognitive	Tutor	Datasets	Exemplifying	Partial	Credit	Scoring	

Student/	
System	 Performance	 Skill	 Opportunity	 Binary	 Hints	 Attempts	 Bottom	

Partial	
Credit	
Score	

1-ASM	 High	 Distributive	Property	 1	 0	 1	 2	 0	 0.7	
1-ASM	 High	 Distributive	Property	 2	 0	 0	 2	 0	 0.8	
1-ASM	 High	 Distributive	Property	 3	 1	 0	 1	 0	 1.0	
2-ASM	 Low	 Scientific	Notation	 1	 0	 2	 3	 0	 0.3	
2-ASM	 Low	 Scientific	Notation	 2	 0	 3	 3	 1	 0.0	
2-ASM	 Low	 Scientific	Notation	 3	 1	 0	 1	 0	 1.0	
1-COG	 Low	 Combine	Like	Terms	 1	 0	 3	 4	 1	 0.0	
1-COG	 Low	 Combine	Like	Terms	 2	 0	 0	 3	 0	 0.7	
1-COG	 Low	 Combine	Like	Terms	 3	 0	 3	 2	 0	 0.3	
2-COG	 High	 Labelling	Axes	 1	 1	 0	 1	 0	 1.0	
2-COG	 High	 Labelling	Axes	 2	 1	 0	 1	 0	 1.0	
2-COG	 High	 Labelling	Axes	 3	 0	 1	 2	 0	 0.7	

Note.	 ASM	=	ASSISTments,	 COG	 =	 Cognitive	 Tutor.	 Performance	 =	Discretized	 student	 performance	 level	 established	
from	 data	 prior	 to	 student	 participation	 in	 the	 considered	 skill.	 Opportunity	 =	 Sequential	 count	 of	 skill	 items	
experienced.	Binary	=	Original	binary	score.	Hints,	Attempts,	and	Bottom	flag	=	student	performance	metrics	for	use	in	
calculating	partial	credit.	

	
3.2 Discretizing Student Performance 

Within	each	dataset,	all	student	accuracy	data	collected	prior	to	the	student’s	involvement	with	the	six	
Skill	Builders	or	the	six	Algebra	1	skills	used	in	the	present	analyses	was	averaged	to	estimate	a	level	of	
global	knowledge	or	performance.	Specifically,	this	approach	aggregates	the	accuracy	data	for	all	items	
across	 all	 skills	 with	 earlier	 time	 stamps	 than	 those	 reflecting	 student	 participation	 in	 the	 skills	
considered	in	the	present	analysis.	In	order	to	establish	groups	with	a	known	difference	for	the	present	
analysis,	 dichotomization	 of	 the	 resulting	 variable	 around	 the	median	 can	 then	 be	 used	 to	 form	 two	
groups	 of	 distinctly	 different	 students:	 high-performing	 students	 (those	 typically	 answering	 problems	
with	 high	 accuracy)	 and	 low-performing	 students	 (those	 typically	 answering	 problems	 with	 low	
accuracy).	Table	3	includes	a	target	flag	denoting	student	performance	level,	derived	from	this	process.	
The	 amount	 of	 historical	 student	 performance	 data	was	more	 prevalent	 for	 the	ASSISTments	 dataset	
given	its	span	of	five	academic	years.	Historical	student-performance	data	in	the	Cognitive	Tutor	dataset	
was	 limited	by	data	 availability,	 considering	 its	 span	of	 only	 a	 single	 academic	 year,	 and	as	 such,	 it	 is	
possible	that	student	performance	classifications	are	more	accurate	in	the	context	of	ASSISTments.	
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Discretized	student	performance	was	used	in	the	present	work	to	 isolate	groups	of	students	known	 to	
have	 significantly	 different	 performance.	 Low-performing	 students	 tend	 to	 exhibit	 reliably	 lower	
accuracy,	 higher	 hint	 usage,	 and	 higher	 attempt	 counts	 (Ostrow,	 Heffernan,	 Heffernan,	 &	 Peterson,	
2015).	This	known	dichotomy	offers	a	ground	truth	from	which	to	examine	the	strength	of	partial	credit	
scoring	 for	 group	 differentiation.	 If	 the	 difference	 between	 groups	 is	 known,	 the	 question	 becomes	
“How	 efficiently	 can	 the	 difference	 be	 detected?”	 Validating	 this	 method	 on	mathematically	 distinct	
groups	supports	the	later	use	of	partial	credit	in	the	analysis	of	randomized	controlled	trials	in	which	the	
magnitude	of	group	difference	is	unknown	and	subject	to	the	effect	size	of	a	learning	intervention.	

3.3 Resampling with Replacement 

After	appending	partial	credit	scores	and	discretizing	students	by	performance	level,	the	datasets	were	
primed	for	examining	the	efficiency	of	partial	credit	in	comparison	to	binary	scoring	through	a	rigorous	
resampling	 procedure	 (depicted	 visually	 in	 Figure	 2).	 Equal	 sized	 groups	 of	 students	 were	 randomly	
sampled	(with	replacement)	 from	discretized	performance	 levels	 in	 increments	of	 five	students	 (i.e.,	5	
students,	10	students,	15	students,	etc.).	The	replacement	procedure	allowed	equivalent	sample	sizes	to	
extend	beyond	the	actual	number	of	students	available	in	the	dataset	to	examine	the	simulated	efficacy	
of	partial	credit	within	larger	samples	following	the	same	distributions.	

Following	 each	 paired	 sampling,	 an	 independent	 samples	 t-test	 was	 conducted	 to	 compare	 the	
difference	in	partial	credit	scores	between	performance	levels.	A	second	independent	samples	t-test	was	
conducted	to	compare	the	difference	in	binary	credit	scores	between	performance	levels.	Both	resulting	
p-values	were	 recorded,	 thereby	 concluding	 a	 single	 “trial.”	 These	 “trials”	were	 repeated	5,000	 times	
per	 sampling	 increment,	 n.	 This	 process	 produced	 a	 list	 of	 5,000	 p-values	 per	 scoring	 style,	 per	
equivalent	sampling	increment.	These	lists	were	then	assessed	to	determine	the	percentage	of	trials	in	
which	differences	between	student	performance	levels	were	observed	to	be	significant	(p	<	.05)	for	each	
sampling	increment,	n.	Findings	for	each	scoring	style	were	graphed	for	comparison,	and	are	presented	
in	Section	4,	Figures	3	and	4.	All	analyses	and	mappings	were	conducted	using	MATLAB	(2013)	via	code	
available	in	Wang	(2016).	

	
Figure	2:	The	resampling	(with	replacement)	process	from	Wang	et	al.	(2016).	
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4 RESULTS 

4.1 ASSISTments 

Considering	 the	 ASSISTments	 dataset,	 results	 suggested	 that	 partial	 credit	 consistently	 offered	 more	
efficient	group	differentiation.	For	each	Skill	Builder,	an	analysis	of	means	was	conducted	 to	compare	
average	binary	correctness,	hint	usage,	and	attempt	count	within	the	first	three	skill	items	(or	problems)	
experienced	by	each	student.	Results	depicted	distinct	trends	between	discretized	performance	levels,	
as	 shown	 in	 Table	 4.	 High-performing	 students	 typically	 showed	 higher	 average	 correctness,	 with	 a	
lower	prevalence	of	hint	usage	and	a	lower	average	attempt	count	than	low-performing	students.	

Table	4:	Means	and	SDs	for	Correctness,	Hints,	and	Attempts	across	Student	Performance	Levels	in	
Analyzed	ASSISTments	Skill	Builders	

Skill	Topic	 Correctness	 Hints	 Attempts	
Equation	Solving,	Two	or	More	Steps	 	 	 	
				High	 0.65	(0.33)	 0.63	(0.83)	 1.82	(3.80)	
				Low	 0.49	(0.37)	 1.13	(1.05)	 2.04	(2.46)	
Greatest	Common	Factor	 	 	 	
				High	 0.65	(0.30)	 0.42	(0.68)	 1.95	(6.24)	
				Low	 0.50	(0.33)	 0.94	(0.95)	 2.56	(3.16)	
Distributive	Property	 	 	 	
				High	 0.71	(0.31)	 0.47	(0.80)	 1.77	(2.93)	
				Low	 0.55	(0.35)	 0.93	(1.04)	 2.14	(4.08)	
Multiplying	Fractions	and	Mixed	Numbers	 	 	 	
				High	 0.82	(0.25)	 0.22	(0.50)	 1.72	(10.22)	
				Low	 0.66	(0.32)	 0.67	(0.89)	 1.91	(2.96)	
Positive	and	Negative	Integers	 	 	 	
				High	 0.87	(0.22)	 0.08	(0.30)	 1.24	(0.56)	
				Low	 0.73	(0.31)	 0.26	(0.62)	 1.66	(2.27)	
Scientific	Notation	 	 	 	
				High	 0.86	(0.23)	 0.13	(0.40)	 1.33	(1.01)	
				Low	 0.75	(0.30)	 0.35	(0.71)	 1.83	(6.36)	

	
Table	5:	Group	Size	at	which	90%	of	Samples	Result	in	Significant	Differentiation		

(p	<	.05)	for	Analyzed	ASSISTments	Skill	Builders	
	 Group	Size	 Efficiency	Gained	
Skill	Topic	 Partial	 Binary	 Binary	to	Partial	
Equation	Solving,	Two	or	More	Steps	 75	 95	 21%	
Greatest	Common	Factor	 50	 90	 44%	
Distributive	Property	 85	 100	 15%	
Multiplying	Fractions	and	Mixed	Numbers	 55	 70	 21%	
Positive	and	Negative	Integers	 70	 85	 18%	
Scientific	Notation	 115	 140	 18%	
Note.	A	paired	samples	t-test	of	group	sizes	suggested	that	observed	sample	reductions	were	significant,	p	<	.01.	
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Figure	3:	Significant	differentiation	of	student	performance	level	across	six	ASSISTments	Skill	Builders	

using	binary	scoring	(solid	blue)	and	partial	credit	scoring	(dashed	red).	Sample	size	required	for	
significant	differentiation	in	90%	of	trials	was	reduced	by	an	average	of	22.9%	(SD	=	10.8%,	Range	=	

15–44%).	
The	 set	 of	 graphs	 in	 Figure	 3	 reflect	 the	percentage	of	 trials	 in	which	 significant	 differences	 (p	 <	 .05)	
were	observed	between	performance	levels	for	each	Skill	Builder	and	each	style	of	scoring.	Skill	Builders	
are	presented	 from	most	difficult	 (top	 left)	 to	 least	difficult	 (bottom	right).	 For	all	 graphs,	dashed	 red	
lines	denote	partial	 credit	 and	 solid	blue	 lines	denote	binary	 scoring.	Within	each	Skill	Builder,	partial	
credit	 consistently	 outperformed	 binary	 scoring	 across	 sampling	 increments.	 Partial	 credit	 allowed	
reliable	group	differentiation	to	be	attained	with	significantly	fewer	students	regardless	of	Skill	Builder	
topic.	A	paired	samples	t-test	of	group	sizes	suggested	that	observed	sample	reductions	were	significant,	
p	 <	 .01.	 The	magnitude	of	 efficiency	gained	was	determined	by	 calculating	and	 comparing	 the	 size	of	
equivalent	samples	required	to	observe	significantly	different	groups	in	90%	of	trials.	That	is	to	say,	the	
requirement	was	a	significant	difference	(p	<.	05)	in	at	least	90%	of	trials	for	a	given	sample	size,	n.	This	
magnitude	differed	across	sets,	but	did	not	appear	to	be	correlated	with	skill	difficulty.	Efficiency	gained	
is	pinpointed	 in	each	graph	within	Figure	3,	and	presented	 in	detail	 in	Table	5.	The	average	efficiency	
gained	by	partial	credit	scoring	across	Skill	Builders	was	22.9%,	with	a	standard	deviation	of	10.8%.	
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4.2 Cognitive Tutor 

Considering	 the	 Cognitive	 Tutor	 dataset,	 results	 suggested	 that	 partial	 credit	 offered	 more	 efficient	
group	 differentiation	 in	 five	 out	 of	 the	 six	 skills	 analyzed.	 For	 each	 skill,	 an	 analysis	 of	 means	 was	
conducted	to	compare	average	binary	correctness,	hint	usage,	and	attempt	count	within	the	first	three	
items	(or	problems)	experienced	by	each	student.	Results	again	depicted	highly	discretized	performance	
levels,	as	shown	in	Table	6.	High-performing	students	again	showed	higher	average	correctness,	with	a	
lower	prevalence	of	hint	usage	and	a	lower	average	attempt	count	than	low-performing	students.		

Table	6:	Means	and	SDs	for	Correctness,	Hints,	and	Attempts	across	Student	Performance	Levels	in	
Analyzed	Cognitive	Tutor	Skills	

Skill	Topic	 Correctness	 Hints	 Attempts	
Expressions	with	Negative	Slopes	 	 	 	
				High	 0.42	(0.31)	 1.10	(1.36)	 2.41	(1.27)	
				Low	 0.26	(0.30)	 2.01	(1.85)	 2.91	(1.72)	
Combining	Like	Terms	 	 	 	
				High	 0.72	(0.30)	 0.18	(0.53)	 3.64	(3.26)	
				Low	 0.53	(0.35)	 0.46	(1.09)	 5.05	(4.49)	
Find	X	with	Positive	Slopes	 	 	 	
				High	 0.72	(0.27)	 0.46	(1.10)	 1.93	(2.21)	
				Low	 0.58	(0.28)	 1.35	(1.97)	 2.57	(1.95)	
Labelling	Axes	 	 	 	
				High	 0.69	(0.30)	 0.17	(0.49)	 1.38	(0.51)	
				Low	 0.65	(0.32)	 0.38	(0.98)	 1.45	(0.63)	
Consolidate	Variables	with	Coefficients	 	 	 	
				High	 0.88	(0.22)	 0.08	(0.29)	 1.18	(0.35)	
				Low	 0.81	(0.25)	 0.23	(0.55)	 1.30	(0.55)	
Consolidate	Variables	without	Coefficients	 	 	 	
				High	 0.92	(0.20)	 0.05	(0.20)	 1.09	(0.34)	
				Low	 0.88	(0.26)	 0.10	(0.32)	 1.12	(0.31)	

	
The	 set	 of	 graphs	 in	 Figure	 4	 reflect	 the	percentage	of	 trials	 in	which	 significant	 differences	 (p	 <	 .05)	
were	 observed	 between	 performance	 levels	 for	 each	 skill	 and	 each	 style	 of	 scoring.	 Again,	 skills	 are	
presented	from	most	difficult	(top	left)	to	 least	difficult	(bottom	right),	with	dashed	red	lines	denoting	
partial	 credit	 and	 solid	 blue	 lines	 denoting	 binary	 scoring.	 Partial	 credit	 failed	 to	 outperform	 binary	
credit	 in	 one	 skill,	 Combining	 Like	 Terms.	Within	 this	 skill,	 binary	 credit	 outperformed	 partial	 credit,	
reaching	 reliable	 group	 differentiation	 with	 equivalent	 samples	 of	 60	 students,	 while	 partial	 credit	
required	equivalent	 samples	of	 85	 students	 (a	 42%	 increase	 in	 sample	 size).	 This	 skill	may	have	been	
fundamentally	different,	as	 in	all	other	skills,	partial	credit	allowed	reliable	group	differentiation	to	be	
attained	 with	 significantly	 fewer	 students.	 Note	 that	 the	 number	 of	 students	 required	 to	 observe	
significant	 differences	 in	 90%	of	 trials	 differed	 across	 skills,	 thus	 causing	 variation	 in	 the	 x-axis	 across	
graphs,	 an	 unnecessary	 requirement	 in	 the	 context	 of	 ASSISTments	 Skill	 Builders.	 The	 magnitude	 of	
efficiency	 gained	 was	 differential	 across	 sets	 but	 did	 not	 appear	 to	 correlate	 with	 skill	 difficulty.	
Efficiency	 gained	 is	 pinpointed	 in	 each	 graph	 within	 Figure	 4,	 and	 presented	 in	 detail	 in	 Table	 7.	
Considering	the	five	skills	in	which	group	differentiation	was	made	more	efficient	through	partial	credit	
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scoring,	the	average	efficiency	gained	across	skills	was	41.2%,	with	a	standard	deviation	of	16.4%.	When	
all	six	skills	were	examined	together,	the	average	efficiency	gained	across	skills	dropped	to	27.4%,	with	a	
standard	 deviation	 of	 36.9%.	 Interestingly,	 while	 efficiency	 gained	 across	 skills	 offered	 a	 significant	
improvement	 for	 group	differentiation	within	ASSISTments	data,	 the	 same	was	not	 true	 for	Cognitive	
Tutor	skills;	a	paired	samples	t-test	of	group	sizes	suggested	that	observed	sample	reductions	were	not	
significant,	p	>	.05.	

Table	7:	Group	Size	at	which	90%	of	Samples	Result	in	Significant	Differentiation		
(p	<	.05)	for	Analyzed	Cognitive	Tutor	Skills	

	 Group	Size	 Efficiency	Gained	
Skill	Topic	 Partial	 Binary	 Binary	to	Partial	
Expressions	with	Negative	Slopes	 60	 85	 29%	
Combining	Like	Terms	 85	 60	 –42%	
Find	X	with	Positive	Slopes	 55	 75	 27%	
Labelling	Axes	 430	 1055	 59%	
Consolidate	Variables	with	Coefficients	 115	 280	 59%	
Consolidate	Variables	without	Coefficients	 385	 565	 32%	
Note.	A	paired	samples	t-test	of	group	sizes	suggested	that	observed	sample	reductions	were	not	significant,	p	>	
.05.	
	
5 METHOD VALIDATION 

To	mirror	 the	validation	check	 in	previous	work	 (Wang	et	al.,	2016),	a	 final	analysis	was	conducted	to	
verify	that	the	observed	reduction	 in	Type	II	error	made	possible	by	partial	credit	 (i.e.,	smaller	sample	
sizes	required	to	differentiate	between	discretized	groups)	was	not	linked	to	an	inflation	in	Type	I	error.	

When	 groups	 are	 not	 significantly	 different	 (i.e.,	 homogenous,	 random	 groups),	 Type	 I	 error	 should	
equal	5%	(i.e.,	 the	alpha	value).	To	verify	 this	concept,	null	 trials	were	simulated	 for	each	Skill	Builder	
and	 Cognitive	 Tutor	 skill	 by	 randomly	 selecting	 students	 from	 respective	 datasets	 (disregarding	
performance	 level)	 to	 establish	 two	 homogenous	 groups	 of	 students	 with	 no	 anticipated	 group	
difference.	P-values	were	collected	 from	5,000	 trials	 for	each	scoring	metric,	 following	 the	 resampling	
method	presented	in	Section	3.3,	and	results	were	graphed.	As	all	cases	resulted	in	similar	graphs,	one	
exemplary	skill	was	chosen	from	each	system	for	presentation	 in	Figure	5.	Results	showed	similar	and	
nondescript	noise	around	the	alpha	value	of	 .05,	suggesting	that	while	partial	credit	allowed	for	more	
efficient	 group	 differentiation,	 it	 did	 not	 significantly	 inflate	 Type	 I	 error,	 confirming	 findings	 from	
previous	work	(Wang	et	al.,	2016).	

As	also	noted	in	Wang	et	al.	(2016),	a	known	limitation	of	this	work	is	that	it	is	mathematically	possible	
for	 partial	 credit	 to	 underperform	 binary	 scoring.	 This	may	 be	why	 binary	 credit	was	 observed	 to	 be	
more	 efficient	 at	 differentiating	 between	 student	 performance	 levels	 in	 the	 context	 of	 the	 Cognitive	
Tutor	skill	“Combining	Like	Terms.”	When	using	t-test	comparisons,	smaller	p-values	are	obtained	as	the	
t-statistic	 increases.	 T-statistics	 inflate	 as	 mean	 differences	 between	 groups	 increase	 while	 variance	
within	groups	decreases.	Mathematically,	the	use	of	partial	credit	reduces	within-group	variance	while	
inflating	 the	 group	mean,	 simultaneously	narrowing	 and	 shifting	distributions	 to	 the	 right.	Despite	 an	
increase	in	means,	it	is	possible	for	binary	scoring	to	outperform	partial	credit	in	a	skewed	dataset.	For	
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instance,	 Table	 8	 examines	 two	 examples	 in	 which	 between-group	 (A	 &	 B)	 comparisons	 of	 scoring	
metrics	are	assessed	using	 independent	samples	t-tests,	similar	 to	a	single	“trial”	 from	the	resampling	
approach	used	in	the	present	work.	Note	that	the	scoring	methodology	in	this	example	is	not	restricted	
to	the	partial	credit	values	used	in	the	present	work,	but	is	merely	offered	as	a	mathematical	proof	that	
partial	credit	is	not	always	more	effective.	Although	Example	1	looks	quite	similar	to	the	majority	of	the	
findings	 presented	 herein,	 Example	 2	 reveals	 a	 scenario	 in	 which	 binary	 scoring	 outperforms	 partial	
credit,	 resulting	 in	 a	 lower	 p-value,	 similar	 to	 that	 observed	 in	 the	 “Combining	 Like	 Terms”	 Cognitive	
Tutor	skill.	

	
Figure	4:	Significant	differentiation	of	student	performance	level	across	six	Cognitive	Tutor	skills	using	
binary	scoring	(solid	blue)	and	partial	credit	scoring	(dashed	red).	Among	most	skills	(5/6),	sample	size	

required	for	significant	differentiation	in	90%	of	trials	was	reduced	by	an	average	of	41.2%	(SD	=	
16.4%,	Range	=	27–59%).	Binary	credit	was	found	to	be	more	successful	at	differentiating	between	

groups	in	the	skill	“Combining	Like	Terms,”	swaying	the	effect	of	the	data	manipulation	when	
considering	all	skills	(M	=	27.4%,	SD	=	36.9%).	
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Figure	5:	Type	I	error	within	an	ASSISTments	Skill	Builder	(left)	and	a	Cognitive	Tutor	skill	(right)	using	
binary	scoring	(solid	blue)	and	partial	credit	scoring	(dashed	red).	These	two	measures	show	natural	
noise	around	the	alpha	value,	α	=	0.05,	suggesting	that	while	partial	credit	typically	allowed	for	more	

robust	group	differentiation,	it	did	not	significantly	influence	Type	I	error.	
	

Additionally,	 sample	 size	 and	 relative	 sample	 homogeneity	 may	 have	 impacted	 the	 results	 observed	
across	skills.	Given	the	rigorous	resampling	technique	applied,	particular	skills	(especially	in	the	context	
of	Cognitive	Tutor)	required	a	greater	number	of	students	to	detect	significant	group	differences	in	90%	
of	 trials.	 This	 suggests	 high	 homogeneity	 of	 performance	 within	 the	 skill	 (i.e.,	 little	 variance	 in	 the	
number	 of	 hints	 or	 attempts	 used	 by	 students	 regardless	 of	 performance	 level).	 Future	work	 should	
consider	 how	 a	 partial	 credit	 definition	 can	 be	 tailored	 to	 specific	 skills	 to	 better	 discretize	 or	model	
performance.	

Table	8:	Potential	for	Partial	Credit	to	Outperform	Binary	Scoring	(Example	1)	and	Reverse	(Example	2)	
Example	1		 Example	2	

Binary	Scoring	 Partial	Credit	 Binary	Scoring	 Partial	Credit	
A	 B	 A	 B	 A	 B	 A	 B	
1	 1	 1	 1	 1	 1	 1	 1	
1	 0	 1	 0.1	 1	 0	 1	 0.6	
1	 1	 1	 1	 1	 1	 1	 1	
0	 0	 0.5	 0.3	 0	 0	 0.2	 0.3	
0	 0	 0.8	 0.2	 0	 0	 0.5	 0.2	
0	 0	 0.3	 0.8	 0	 0	 0.3	 0.8	

t	=	0.53	
p	=	0.60	

t	=	0.96	
p	=	0.36	

t	=	0.53	
p	=	0.60	

t	=	0.08	
p	=	0.94	
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6 DISCUSSION 

This	work	 extended	 previous	 research	 on	 the	 power	 of	 partial	 credit	 scoring	 in	 the	 context	 of	 group	
differentiation	 (Wang	 et	 al.,	 2016).	 Using	mastery	 learning	 datasets	 from	 ASSISTments	 and	 Cognitive	
Tutor,	 algorithmically	 defined	 partial	 credit	 was	 compared	 to	 traditional	 binary	 scoring	 for	 detecting	
significant	differences	between	discretized	student	performance	levels.	Results	suggested	that	in	eleven	
out	of	twelve	skills	analyzed,	partial	credit	proved	more	efficient	than	binary	scoring,	requiring	smaller	
samples	to	reach	reliably	significant	group	differentiation.	This	means	that	by	considering	a	more	robust	
perspective	of	student	performance,	it	was	possible	to	increase	the	power	of	analyses	and	reduce	Type	
II	error	without	increasing	Type	I	error.	This	translates	to	data	flexibility	in	that	the	observed	outcomes	
at	particular	sample	sizes,	n,	could	differ	based	on	the	amount,	type,	and	quality	of	data	considered.	

The	 results	 of	 the	 present	 work	 suggest	 that	 when	 exploring	 the	 differences	 between	 two	 sample	
populations,	 perhaps	 most	 importantly	 in	 the	 context	 of	 determining	 the	 strength	 of	 educational	
interventions,	 it	 is	 critical	 to	 consider	 all	 available	 data	 and	 ask	 questions	 of	 the	 data’s	 quality.	 The	
analysis	presented	here	has	shown	that	changing	the	scoring	methodology	of	online	learning	platforms	
by	 considering	 additional	 student	 data	 can	 alter	 the	 results	 observed	 at	 differing	 sample	 sizes,	n.	 For	
instance,	 with	 a	 smaller	 sample	 size	 and	 reduced	 power,	 a	 researcher	 may	 conclude	 that	 a	 specific	
learning	intervention	did	not	significantly	improve	student	learning	(i.e.,	the	experimental	group	did	not	
differ	 significantly	 from	 the	 control	 group)	 based	 on	 an	 examination	 of	 binary	 problem	 accuracy.	 By	
considering	more	 robust	 information	 about	 the	 students	 in	 the	 sample,	 the	 researcher	may	 uncover	
value	 in	 the	 intervention	 that	was	otherwise	hidden	at	 the	given	sample	size,	as	observed	by	Ostrow,	
Heffernan,	Heffernan,	and	Peterson	(2015).	

As	such,	the	present	findings	confirm	the	notion	that	allowing	students	to	learn	during	assessment	can	
be	beneficial	to	students	and	researchers	alike.	As	observed	in	related	work,	the	reliability	of	knowledge	
estimates	 increases	 using	 partial	 credit	 within	 assessment	 environments	 (Attali,	 2011).	 Rich	 features	
that	 are	 often	 lost	 on	 formal	 post-tests	 can	 help	 to	 better	 define	 student	 performance,	 allowing	 for	
improved	 data	 analysis.	 Further,	 these	 results	 suggest	 that	 by	 using	 robust	 measures	 of	 student	
performance,	 the	number	of	 items	or	opportunities	analyzed	need	not	be	 large	to	result	 in	significant	
group	differentiation,	offering	evidence	 for	 short,	minimally	 invasive	assessments.	 These	 findings	may	
impact	student	modeling	conducted	by	those	in	the	learning	analytics	community.	

For	each	platform,	the	observed	efficiency	gains	in	group	differentiation	varied	by	skill	content	but	did	
not	appear	to	be	directly	linked	to	skill	difficulty.	Instead,	it	is	possible	that	differences	observed	in	the	
amount	 of	 efficiency	 gained	 were	 linked	 to	 the	 algorithm	 used	 for	 partial	 credit	 calculation.	 As	 the	
algorithm	 was	 initially	 conceived	 by	 domain	 experts	 for	 data	 mining	 ASSISTments	 log	 files	 (Ostrow,	
Donnelly,	Adjei,	&	Heffernan,	2015),	it	is	important	to	note	that	while	the	potential	for	generalization	to	
other	systems	with	similar	data	was	observed,	tailoring	the	definition	of	partial	credit	to	other	systems,	
or	establishing	 skill	 specific	algorithms	would	 likely	produce	better	 fitting	models.	Data	mining	can	be	
used	 to	observe	how	students	 interact	with	an	online	 learning	platform,	and	 to	gain	 insight	 regarding	
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how	 those	 interactions	 should	 influence	 system	 or	 skill	 specific	 partial	 credit	 scoring.	 For	 instance,	
previous	work	within	ASSISTments	has	shown	that	partial	credit	scores	were	more	sensitive	to	attempt	
penalizations	 than	 hint	 penalizations	 (Ostrow,	 Donnelly,	 &	 Heffernan,	 2015),	 although	 attempt	 count	
may	 not	 help	 to	 significantly	 differentiate	 between	 groups	 within	 the	 system	 (Ostrow,	 Heffernan,	
Heffernan,	 &	 Peterson,	 2015).	 While	 Cognitive	 Tutor	 logs	 many	 of	 the	 same	 student/system	
interactions,	the	emphasis	of	attempts	and	tutoring	usage	on	optimal	scoring	could	vary	greatly	in	this	
different	context.	Future	work	should	further	examine	the	sensitivity	of	how	partial	credit	is	defined	and	
how	the	generalizability	of	a	static	algorithm	could	be	improved	when	considering	similar	systems.	

Similarly,	a	potential	limitation	of	this	approach	is	the	balance	between	enhancing	group	differentiation	
through	 rich	 features	 and	 the	 potential	 for	 overfitting	 student	 performance.	One	 could	 argue	 that	 to	
most	efficiently	differentiate	between	groups,	all	available	student	data	could	be	considered.	However,	
while	this	would	result	in	near	perfect	differentiation,	the	overly	robust	view	of	performance	would	fail	
to	generalize	 to	other	 intelligent	 tutoring	 systems,	or	possibly	even	 to	other	 content	within	 the	 same	
platform.	Results	suggest	that	overfitting	may	have	been	a	factor	in	the	present	analysis,	as	the	partial	
credit	 algorithm	 was	 finely	 tuned	 to	 the	 ASSISTments	 platform	 and	 did	 not	 translate	 perfectly	 to	
Cognitive	Tutor	data.	While	the	enhanced	efficiency	observed	using	partial	credit	was	significant	within	
ASSISTments,	the	gains	were	not	statistically	significant	in	Cognitive	Tutor.	Future	work	should	examine	
the	balance	between	enhancing	the	efficiency	of	measurement	and	the	potential	for	overfitting.	

An	open	question	that	remains	following	this	work	involves	the	potential	link	between	observed	findings	
and	 the	amount	of	data	considered.	The	partial	 credit	algorithm	used	 in	 the	present	work	considered	
students’	binary	scores,	the	number	of	attempts	required	to	solve	an	item,	the	number	of	hints	required	
to	 solve	 an	 item,	 and	 a	 binary	 flag	 denoting	 whether	 the	 student	 was	 shown	 the	 answer	 through	 a	
“bottom	 out	 hint.”	 Was	 partial	 credit	 more	 efficient	 than	 binary	 scoring	 in	 differentiating	 between	
groups	because	of	 the	type	of	 information	used,	or	simply	because	additional	 information	was	added,	
giving	a	more	robust	view	of	student	performance?	When	considering	only	three	skill	items,	the	method	
essentially	transformed	three	binary	data	points	into	an	aggregation	of	twelve	pieces	of	data	via	partial	
credit	 scoring.	 Future	 research	 should	 extend	 the	 number	 of	 skill	 items	 examined	 and	 compare	 the	
effect	of	including	various	features.	For	instance,	is	the	binary	scoring	of	twelve	skill	items	as	effective	as	
the	partial	credit	scoring	of	just	three	skill	items?	What	if	six	items	are	used	but	only	binary	accuracy	and	
hint	use	are	considered,	resulting	again	in	twelve	pieces	of	data?	If	all	findings	were	roughly	equivalent,	
when	would	it	be	more	appropriate	to	report	partial	credit	scores	rather	than	lengthen	assignments?	

The	method	utilized	herein	depicted	how	the	resulting	conclusions	drawn	from	an	educational	dataset	
can	 vary	 based	 on	 data	 availability,	 aggregation,	 and	 manipulation.	 While	 the	 argument	 for	 more	
efficient	group	differentiation	may	not	yet	be	a	popular	thesis	for	the	learning	analytics	community,	the	
benefits	of	partial	credit	scoring	are	likely	much	more	broad.	In	experimental	data,	such	as	that	originally	
investigated	 by	Wang	 et	 al.	 (2016),	 the	 use	 of	 partial	 credit	 scoring	 can	 reduce	 costs	 associated	with	
running	 randomized	controlled	 trials	 (by	 reducing	 the	number	of	 subjects	or	 items	 required	 to	 isolate	
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effective	 interventions).	 By	 examining	 non-experimental	 data,	 and	 specifically	 data	 sourced	 from	
mastery	learning	assignments,	the	present	work	has	shown	that	partial	credit	scoring	could	also	reduce	
the	number	of	subjects	or	items	required	to	build	individualized	learner	models	that	attempt	to	predict	
student	 performance	 or	 proficiency.	 Future	 work	 should	 assess	 potential	 avenues	 for	 using	 group	
differentiation	 within	 learner	 models	 to	 better	 predict	 student	 mastery	 (i.e.,	 groups	 that	 will	 reach	
mastery	vs.	 those	that	will	not).	Additionally,	 the	resampling	approach	presented	herein	could	also	be	
used	for	successful	latent	group	differentiation,	suggesting	powerful	implications	for	student	modeling.	

In	closing,	while	it	is	not	necessarily	surprising	that	considering	additional	student	data	results	in	a	more	
robust	view	of	performance,	thereby	helping	to	distinguish	groups	of	learners	and	strengthen	predictive	
models,	 this	 observation	 speaks	 volumes	 about	 the	 flexibility	 of	 educational	 data.	 Researchers	 in	
learning	analytics	 should	 remember	 to	consider	how	accessible	data	can	be	“flexed”	 through	cleaning	
and	manipulation,	 and	 how	 this	 flexibility	may	 impact	 observed	 outcomes	 and,	 ultimately,	 the	 field’s	
understanding	of	best	practices	in	education.	
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