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Spatial reasoning is seen as increasingly important in STEM fields. Within mathematics, 

geometry is a potential site to study and support young children’s spatial reasoning. In this 

paper we revisit Piaget and his colleagues’ theoretical perspective on children’s development 

of geometry concepts and take note of projective geometry in that theory. We outline 

critiques of Piaget and Inhelder’s (1967) theory of topological primacy and then situate the 

criticisms within current spatial reasoning literature. We suggest a return to research on 

projective geometry holds promise for exploring and expanding opportunities that promote 

spatial reasoning in the early years. 

For more than two decades, the push for STEM (Science, Technology, Engineering, 

Mathematics) skills worldwide has called attention to the importance of spatial skills, and 

specifically the role spatial reasoning plays in each of these domains as well as STEM-related 

fields. Spatial reasoning is integral to spatial skills and more generally, spatial ability, can 

be defined as “the ability to recognize and (mentally) manipulate the spatial properties of 

objects and the spatial relations among objects” (Bruce et al., 2017, p. 147). Studies indicate 

that spatial ability is a critical attribute for entry into and success in STEM professions (Wai 

et al., 2009). Moreover, everyday activities such as assembling furniture, packing a suitcase, 

or using a web-based mapping system to get from one location to another not only require 

spatial know-how but also spatial know-why.  

In fundamental ways, spatial reasoning shapes what we do, how we experience the 

world, and the ways we make sense of and think within it. Yet while spatial reasoning 

underlies all STEM domains, it is mathematics, in particular, that enables examination and 

communication of spatial concepts (Smith, 1964). Arguably then, spatial reasoning and 

spatial skills can be explored and developed in depth within the domain of mathematics.  

In this paper, we report on key conceptual areas informing our inquiry regarding the 

spatial reasoning involved in projective geometry. Focusing on spatial reasoning as generally 

defined and recognized within STEM, we identify its relevance within mathematics 

education, and specifically, its relationships to geometry in the early years of mathematics 

education. Following this discussion, we make the case for spatial reasoning being taught 

through projective geometry—a largely forgotten area of research. We provide a brief 

summary regarding Piaget and his colleagues’ theorizing of young children’s conceptions of 

projective space, including key critiques. We then bring the three criticisms of Piagetian 

theory forward to 2021 and situate them within current spatial reasoning literature. What 

results is a change of theoretical perspectives and the emergence of new sightlines for early 

years research in mathematics education.  
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Spatial Reasoning, Mathematics Education, and the Case for Geometry 

There is a strong link between spatial skills and STEM professions (Mix & Cheng, 2012), 

and increasingly studies reveal connections between spatial skills and mathematics 

performance (Gilligan et al., 2017). Such skills observed with young children appear to be 

critical predictors of mathematics achievement—even beyond measures of verbal and 

quantitative scores, throughout schooling and into STEM-field careers (Cheng & Mix, 

2014). Individual differences in spatial ability are apparent as early as the preschool years. 

For example, children who build with blocks, put together puzzles, and play with shapes 

tend to have stronger spatial reasoning skills than children who do not (Verdine et al., 2014).  

Once viewed as a static and innate attribute of intelligence, spatial ability is now proving 

to be malleable (Uttal et al., 2013). These findings suggest early skill development could 

enhance mathematics performance for students. In fact, spatial training on tasks such as 

mentally rotating objects has led to improved performance in mathematics for 6- to 8-year-

olds (Cheng & Mix, 2014). While findings differ, one conclusion is that some spatial skills 

are more likely than others to impact performance, such as constructing a mental number 

line (Lakoff & Núñez, 2000), solving missing term equations (Lourenco et al., 2018), and 

scaling related to proportional reasoning (Gilligan et al. 2018).  

Spatial skills entail many constructs such as spatial thinking, spatial sense, visualisation, 

spatial cognition, and spatial orientation. There is a debate as to which skills are relevant. In 

this paper, we use Newcombe et al.’s (2013) categorisation of spatial skills, and specifically, 

tool making. Tool making refers to skills involved in manipulating, transforming, and 

creating objects, as well as using these objects as tools. Doing so requires dynamic spatial 

(reasoning) processes such as rotating, bending, and scaling. More than ever, research is 

connecting these process skills and tools with mathematics performance, especially in the 

early years (Mix et al., 2017).  

However, despite evidence for spatial reasoning and spatial skills being essential to 

mathematics, especially in the early years, a clear absence of spatial skill development 

persists in K-12 mathematics classrooms (Woolcott et al., 2020). Given that it is mathematics 

“through which we communicate ideas that are essentially spatial” (Clements & Sarama, 

2011, p. 134), it is concerning that mathematics curricula do not emphasise spatial concepts, 

processes, skills, and thinking (Davis et al., 2015).  

Geometry, which underlies most if not all mathematical thinking (e.g., Bronowski 1947), 

is the curricular area with the greatest potential for providing educational experiences in 

spatial reasoning (Lowrie & Logan, 2018). However, geometry receives the least attention 

in schools K-12 (e.g., Larkin et al., 2016). Geometry content is often limited to sorting and 

naming 2D shapes (Clements & Sarama, 2011), yet young children are motivated by, capable 

of, and need opportunities to apply, analyse, and investigate geometric transformations of 

2D and 3D shapes through mental rotation, use of symmetry, multiple representations, and 

de/constructing parts (Frick et al., 2014).  

The importance of spatial reasoning within mathematics and the supporting role that 

geometry plays, prompted us to turn to educational research in projective geometry initiated 

over a half century ago. While studies in this area were essentially abandoned in the 1990s, 

we assert projective geometry employs extensive spatial processes, many of which are 

underexplored. As such, re-examining and extending research focused on young children’s 

projective thinking is vital to early years mathematics.  
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Projective Geometry 

Projective geometry involves the relationship between objects and images and their 

mappings or projections onto other surfaces. For example, what geometric properties are 

maintained between an object and the shadow it casts. Spatial transformations, such as 

rotation, translation, scaling, and shearing are central to projective geometry. Historically, 

projective geometry grew out of attempts by artists and architects to use perspective to draw 

or paint (i.e., project) the 3D world onto a flat surface. Today, we take for granted the ability 

of artists to draw with perspective. Yet, compared with Euclid’s geometry which is over 

2000 years old, perspective drawings only appeared 600 years ago, during the Renaissance.  

A key difference between Euclidean geometry, on which most of school geometry is built, 

and projective geometry, is that while lines remain lines and points remain points, in the 

latter, lengths, angles, and areas are not all preserved under projection. Figure 1 illustrates a 

2D presentation in which the 90-degree angles, edge lengths, and surface areas of a cube are 

not preserved. We know the image represents a cube because we have learned to read, 

interpret, and thus see it as possessing the geometric properties that can only be observed 

when actually holding the physical object itself. This common example illuminates how 

projective geometry lies at the very intersection between perceptual and representational 

space, and as such, holds tremendous potential for young children’s spatial reasoning in 

mathematics. Current studies on how children come to make sense of projective concepts 

are virtually nonexistent in the literature. As such, our inquiry starts with the research of 

Piaget and his colleagues on young children’s conception of space. 

 

Figure 1. Projective image of a cube 

Children’s Spatial Reasoning within Projective Geometry 

The spatial reasoning research by Piaget and his colleagues (e.g., Inhelder, Meyer) 

preceding and during the 1950s generated many further studies in the decades that followed 

up until and including the 1990s. Here we highlight key aspects of the theory concerning 

projective geometry, related studies, and critiques of the research. 

The Child’s Conception of Space 

Piaget (1953) described young children’s discovery of spatial relationships as 

spontaneous geometry. Central to Piaget and Inhelder's (1967) theory on how children come 

to make mathematical sense of space is that unlike a child’s perceptual space which directly 

reflects their sensorimotor schema of a spatial environment, geometric representations of 

space result from their ongoing building up of motor and internalised actions into logical 

operational systems. Piaget (1953) contended that children’s geometric conceptions follow 

a deductive or axiomatic progression, opposite in sequence to the historical development of 

the mathematics. That is, at 3 years old, the child first makes internal or topological 

distinctions about a particular figure (i.e., open and closed structures, interiority and 

exteriority, proximity and separation). By age 7, they begin to construct the projective 

concept of the straightness of a line. Then, at 9 or 10 years of age, the child understands 

problems involving perspective, such as angle of vision and point of view, and Euclidean 
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concepts relating figures with other figures through angles, sides, parallelism, and distance. 

It is only when the child reaches this point that they have “complete conception of how to 

represent space” (Piaget, 1953, p. 79). Known as the topological primary thesis, Piaget 

(1953) asserted that young children’s spatial reasoning was associated with their geometric 

representation of space as “another example of the kinship between psychological 

construction and the logical construction of science itself” (p. 75). 

 Piaget and Inhelder (1967) suggested that children begin to engage in projective 

geometry when they no longer view or represent objects in isolation but in relation to 

different viewpoints, including perspective in their drawings. For example, children at 7 to 

8 years old can correctly infer by drawing what the doll’s perspective or line of vision of the 

object is, when the doll is standing on the table and an object is placed in a certain direction 

in front of it. A similar experiment involved predicting the shape of an object’s shadow when 

the object is placed in a certain position between a light source and a screen. Piaget (1953) 

concluded, based on the findings from this task, that the coordination of different viewpoints 

does not occur until the child is 9 or 10 years old. Further, Piaget and Inhelder (1967) 

theorised that differently from children’s spatial constructs which are perceptual and 

experiential, or grounded in single viewpoint, their conception of basic projective relations 

requires their conscious constructing of reference systems through operationally connecting 

and coordinating all possible perspectives. 

Critiques of Topological Primacy Theory 

Subsequent studies by researchers who replicated Piaget and Inhelder's experiments 

have, for the most part, confirmed their findings (Laurendeau & Pinard, 1970; Page, 1959). 

However, while not dismissed outright, Piaget and Inhelder’s (1967) theory on topological 

primacy is not supported. We discuss three key criticisms of the theory which inform this 

initial stage of our research on children’s spatial reasoning through projective concepts. 

First, children’s conceptions of space may not follow the logical order of topological 

ideas then projective and Euclidean concepts. Research findings which revealed varied 

results in drawing experiments (Dodwell, 1963; Lovell, 1959) open the possibility that all 

three types of geometric concepts might occur simultaneously and over time, children 

develop the ideas by further integrating and synthesising them. For example, drawings by 4-

year-old children which were not predominantly topological suggest it might not be 

topological features that allow children to draw homeomorphic copies. Instead, it could be 

their coordinating of projective and Euclidean properties which enables topological 

properties to be maintained (Martin, 1976). Other research by Rosser et al. (1988) suggests 

an alternative developmental sequence wherein children progress in their spatial reasoning 

through three levels: from reproducing a set of geometric figures exclusively by encoding 

(i.e., given a set of shapes and then matching them to the original); to building the same 

configuration from memory; to then matching by building an identical configuration of 

geometric shapes from memory after a rotation or taking another's perspective. In their study, 

preschool children achieved the first two levels but not the third. Rosser et al’s (1988) study 

also emphasise the need for research to focus on how children’s projective processes relate 

to their thinking and activity in geometry.  

This point leads to the second critique of topological primacy theory regarding young 

children’s engagement as they develop projective ideas (Clements & Battista, 1992; Rosser 

et al., 1988). The contention concerns the overemphasis in Piagetian theory on identifying 

logical errors which then precludes examination of projective concepts that may not yet be 

fully fledged, articulated, and perhaps are altogether different. For example, Frick et al. 
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(2014) demonstrate how children, as young as 3 years old, engage in perspective-taking tasks 

when allowed to move the objects around or when provided with a model of the room. Here, 

the children encode the location of small objects through the use of landmarks. Additionally, 

these studies indicate that children’s development of projective space may not only require 

operationally connecting and coordinating all possible perspectives, but also forming and 

integrating an external framework as part of their reference system for spatial organisation. 

Third, while children's geometric conceptions of space may not be direct reproductions 

of their sensorimotor perceptions of the environment, at the same time, it is unlikely that 

their representations are purely logical operational systems. Clements and Battista (1992) 

identified this point as a key aspect that researchers had not yet examined in any depth. 

Drawing on the work of Fischbein (1987), Clements and Battista (1992) argued that space 

representations (e.g., a square shadow of a cube die projected on a screen) are more complex 

than exclusively abstract properties of space (e.g., four edge lengths and 90-degree vertices). 

Rather, children’s conceptions of space entail “sensorimotor and intellectual skills organized 

into a system of beliefs and expectations that constitute an implicit theory of space. Most 

important, intuitions thus constructed are enactively meaningful... because they express the 

direct behavioral meaningfulness of an idea” (Clements & Battista, 1992, p. 426). Today, 

even more, it is necessary for researchers to examine how Piagetian theory and theories that 

emphasise the intuitive and complex nature of cognition can inform children’s spatial 

reasoning through projective concepts. 

Changing Perspectives 

We now take the three critiques and consider them further by situating each of them 

within more current and general spatial reasoning literature. In doing so, we distinguish 

complementary theoretical perspectives which not only offer possibilities for how we might 

observe anew the ways young children reason spatially in projective geometry, but also 

prompt sightlines for reconceptualisation. 

1. Children’s conceptions of projective space may not follow the logical order 

proposed by Piaget and Inhelder (1967).  

This point calls into question several aspects of Piaget and Inhelder’s (1967) notion of 

topological primacy such as ages, stages, linear sequencing, mutual exclusion of the three 

types of geometries, and contexts. Moving deeper and changing tact, what might it mean if 

young children's conceptions of projective space were not characterised once and for all, as 

a predetermined sequence, or prescriptive stages? 

In Spatial Reasoning in the Early Years: Principles, Assertions, and Speculations, Davis 

et al. (2015) argue for theoretical perspectives and ways of interpreting spatial reasoning in 

mathematics which not only move beyond isolating observable and measurable aspects, but 

at the same time, more closely reflect learners’ cognitive activities as they engage in-situ 

where mathematics teaching and learning happen. Here the authors characterise spatial 

reasoning as:  

a clearly discernible whole that cannot be fully comprehended by reducing it to its components. Such 

forms arise in the entangled interactions of many aspects, agents, or subsystems – and, within those 

interactions, new and unpredictable possibilities can arise. Those possibilities, in turn, can affect and 

occasion the entire system’s current and future properties and behaviors. (Davis et al., 2015, p. 140) 

Both the description and circular model proposed by Davis et al. (2015) (see Figure 9.1, p. 

141) reflect spatial reasoning as neither linear nor hierarchical but instead dynamically 
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emergent and ever-changing. This perspective which complements Piaget and Inhelder’s 

psychological axiomatic order, facilitates more nuanced research, both theoretical and 

empirical, and enables alternate ways to understand young children’s spatial reasoning in 

projective geometry. We illustrate and discuss these aspects next. 

2. There is a need for research that examines children’s projective concepts which 

may not yet be fully fledged, integrated, or articulated, and perhaps are altogether 

different. 

Taking an emergent view of young children’s spatial reasoning in projective geometry 

implies that while their cognitive activities may be unpredictable in foresight, for example, 

the forms they take or the ways they manifest moment to moment in everyday learning 

settings such as mathematics classrooms, they can potentially be understandable in 

hindsight. Here the value of both artifacts and acts of children’s spatial reasoning is 

emphasised (Thom & McGarvey, 2015) as well as the prospect of gaining insight into the 

moments and contexts during which children bring projective ideas into being. 

Within this theoretical perspective, we revisit Piaget’s (1953) experiment with children 

predicting the shape of the shadow projected by an object (e.g., a six-sided die). Studying 

the emergence of their spatial reasoning demands paying even closer attention to children’s 

cognitive activities as they engage with the object, its projected image, and different points 

of view. Using Davis et al.’s (2015) descriptive terms, several discernable and possibly co-

emergent transformings include movings (e.g., rotations), alterings (e.g., 

dialating/contracting, distorting/morphing), situatings (e.g., dimension-shifting, orienting, 

and locating), and (de)constructings (e.g., de/re/composing, sectioning). Elements of 

understanding that could arise involve interpreting (e.g., diagramming, comparing, relating) 

and sensating (e.g., perspective-taking, visualising, imagining, tactilising). 

Further, we see still other and potentially different opportunities to examine young 

children’s conceptions of projective space within today’s contexts. Projective geometry 

underlies many different designing and map-making activities associated with computer 

modelling, 3D printing, digital photography and editing, perspective drawing, engineering 

and architectural plans, as well as other imaging applications. These activities of designing 

and map-making, along with projecting are also identified by Davis et al. (2015) in their 

circular model as emergent competencies. 

3. While children's geometric conceptions of space may not be direct reproductions 

of their sensorimotor perceptions of their environment, at the same, it is unlikely 

their representations are purely logical operational systems. 

It is worth repeating that what makes projective geometry striking, complex, and unique 

is how the concepts are inextricably perceptual and representational. Relevant theories that 

allow for inquiry into young children’s perceptual and representational conceptions of 

projective space include those which enable cognition to be viewed as dynamic, contextually 

contingent and body-centred, whereby logical forms of knowing are not separate from 

perceptually-guided activity (Varela et al., 1991).  

Perspectives such as those rooted in enactive and/or embodiment theories, take cognitive 

structures and activities to be co-implicated by our biological bodies and our social-cultural 

ways of knowing. That is, what we come to know, how we think, and that to which we 

choose to attend is influenced by how our material bodies move through space and in relation 

to other bodies, as well as historical and cultural significances (Nemirovsky et al., 2020; 
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Varela et al., 1991). Cognitive scientists increasingly show the vital role our body plays in 

the conceptual development of both simple and seemingly abstract mathematical concepts 

(Marghetis & Núnez, 2013).  

Past and current studies in mathematics education elucidate bodily aspects of young 

children’s spatial thinking such as the spontaneous and deliberate ways they use their bodies 

to express concepts and develop meanings, though not necessarily related to projective 

geometry, for 2D and 3D figures and transformations (e.g., Bussi & Baccaglini-Frank, 2015; 

Thom, 2018). These include gestures, movement, sound, speech, rhythm, and drawing(s). 

Thus, it seems reasonable to assume that the body and perception are not simply the means 

by which children progress to more formal projective thinking, but rather, the means with 

which their conceptual thinking depends, emerges, and evolves. Here lies tremendous 

potential for research to expand understanding of spatial reasoning in projective geometry, 

in terms of critical spatial skills, processes, and tools that young children ‘know’ as well as 

how they demonstrate and develop these perceptually, logically, informally, and formally, 

mentally and physically. 
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