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ABSTRACT
Massive Open Online Courses (MOOCs) which enable large-
scale open online learning for massive users have been play-
ing an important role in modern education for both students
as well as professionals. To keep users’ interest in MOOCs,
recommender systems have been studied and deployed to
recommend courses or videos that a user might be inter-
ested in. However, recommending courses and videos which
usually cover a wide range of knowledge concepts does not
consider user interests or learning needs regarding some spe-
cific concepts. This paper focuses on the task of recom-
mending knowledge concepts of interest to users, which is
challenging due to the sparsity of user-concept interactions
given a large number of concepts. In this paper, we propose
an approach by modeling information on MOOC platforms
(e.g., teacher, video, course, and school) as a Heterogeneous
Information Network (HIN) to learn user and concept rep-
resentations using Graph Convolutional Networks based on
user-user and concept-concept relationships via meta-paths
in the HIN. We incorporate those learned user and concept
representations into an extended matrix factorization frame-
work to predict the preference of concepts for each user. Our
experiments on a real-world MOOC dataset show that the
proposed approach outperforms several baselines and state-
of-the-art methods for predicting and recommending con-
cepts of interest to users.

Keywords
User Modeling, MOOC, Learning Analytics, Knowledge Con-
cept, Recommender Systems

1. INTRODUCTION
MOOCs (Massive Open Online Courses), which are free on-
line courses available to anyone to enroll around the world,
have gained a lot of popularity in the past decade. By
the end of 2018, popular MOOC platforms such as edX1,

1https://www.edx.org/

and Coursera2 have provided 11,400 courses with 101 mil-
lion users/learners on those platforms3. Previous studies
have shown that MOOCs do have a real impact [24, 8]. For
example, Chen et al. [8] showed that 72% of survey respon-
dents reported career benefits and 61% reported educational
benefits. Despite of the popularity, one main challenge of
MOOCs is the overall completion rate of those courses is
normally lower than 10% [19, 30]. Therefore, understanding
and predicting user behaviors and learning needs are impor-
tant to keep users learning on MOOC platforms.

To this end, previous studies have focused on understanding
dropout or procrastination behavior [28, 12, 38, 14] and rec-
ommending content such as courses and learning paths that
a user might be interested in [16, 26, 4]. A MOOC can be
seen as a sequence of videos where each video is associated
with some knowledge concepts. For example, a video in a
computer science MOOC can cover several concepts such as
“software” and “hardware”. More recently, Gong et al. [13]
argued that course or video recommendations overlook user
interests regarding specific knowledge concepts. For exam-
ple, data mining courses taught by different teachers can be
quite different in a microscopic view, and a user who is in-
terested in some specific concepts such as “association rules”
might be interested in various video clips or learning materi-
als from different teachers covering those concepts from dif-
ferent perspectives. Therefore, understanding a user’s learn-
ing needs from a microscopic view and predicting knowledge
concepts that the user might be interested in are important.

In this work, we focus on predicting and recommending
knowledge concepts that might be interesting to users on
MOOC platforms. Based on the interaction history be-
tween users and concepts (i.e., a user has interacted with
a concept if the user has learned that concept), traditional
recommendation approaches such as collaborative filtering
(CF) — which recommends similar items (concepts) based
on a user’s interaction history or interesting items from sim-
ilar users — can be applied. However, the sparsity of user-
item (user–concept) relationships can limit the performance
of CF-based methods. In addition to users and concepts,
MOOC platform data normally contain other entities such
as courses, videos, and teachers as well as the relationships
among those entities.

To cope with the sparsity problem, we model those enti-

2https://www.coursera.org/
3https://bit.ly/3tScITp
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Figure 1: Different types of entities and relationships be-
tween two entities in MOOCs. A user u is interested in a
concept if u has learned or is going to learn it in the future.

ties and their relationships as a heterogeneous information
network (HIN) [33] consisting of the entities and relation-
ships inspired by [13], which can be used for learning user
(concept) representations/embeddings by exploring indirect
user-user (concept-concept) relationships with Graph Con-
volutional Networks (GCNs). Figure 1 illustrates such a HIN
which we discuss in detail in Section 3. For example, one
can derive a homogeneous user graph based on an indirect
path in the HIN, e.g., a graph with users and edges between
two users if they have taken the same course. Given such
a homogeneous graph, traditional GCNs can be applied to
the graph to learn the representations/embeddings of users
and concepts with respect to the chosen path.

Based on different indirect paths chosen, we can derive var-
ious user (concept) representations, and those representa-
tions of users (concepts) regarding different paths can be
aggregated, e.g., using the mean of those representations.
Instead of the straightforward mean aggregation, we propose
and investigate different attention mechanisms to derive ag-
gregated user (concept) representations based on different
paths. The intuition behind using an attention mechanism
is that different paths might have different importance for
each user. Afterwards, those learned user and concept rep-
resentations can be used for predicting the preference scores
of concepts for recommendations. Our contributions in this
work are as follows: (1) We propose an end-to-end frame-
work4 for predicting and recommending knowledge concepts
of a user’s interest in Section 4; (2) We investigate two at-
tention mechanisms for aggregating information from differ-
ent meta-paths (the definition can be found in Section 3)
to derive user and concept representations. We then incor-
porate those representations into our extended matrix fac-
torization framework for predicting the preference score of
a concept with respect to a user; (3) Finally, we evaluate
our approach with several baselines and state-of-the-art ap-
proaches in terms of well-established evaluation metrics, and
show the effectiveness of our proposed approach in Section 6.

2. RELATED WORK

Recommender Systems and User Modeling on MOOC
Platforms. There has been growing interest in recommender
systems on MOOC platforms since 2013 with respect to dif-
ferent aspects such as course, video, and learning paths [16,

4GitHub repo:https://github.com/parklize/kgc-rec

26, 3, 43, 9, 23]. For instance, the authors in [3] proposed
YouEDU, which is a pipeline for classifying MOOC forum
posts and recommending instructional video clips that might
be helpful for resolving confusion detected in those posts.
In [21], the authors showed that peer recommendations can
improve users’ engagement significantly in the context of a
Project Management MOOC. Dai et al. [9] proposed analyz-
ing course content for recommending personalized learning
paths on MOOC platforms. Khalid et al. [18] provides a
comprehensive survey on recent advances regarding differ-
ent recommender systems in the context of MOOCs. More
recently, researchers have started modeling user interests in
the context of MOOCs while user modeling has been widely
studied in other domains such as social media [42]. For ex-
ample, Li et al. [22] investigated the impact of acquiring
user interests via surveys or questionnaires on course rec-
ommendations. In [2], the authors proposed LeCoRe which
exploits user interest modeling for recommending courses as
well as similar users for promoting peer learning in enterprise
environment. Gong et al. [13] argued that course recommen-
dations overlook user interests regarding specific knowledge
concepts, and studying users’ online learning interests from
a microscopic view and recommending knowledge concepts
can capture user interests better and provide the flexibility
of choosing learning resources of their interest. In this work,
we also focus on the microscopic view for knowledge concept
recommendations.

Recommendation Approaches with HIN. The basic idea
of early recommendation approaches with HIN is to leverage
path-based semantic relatedness between users and items
over HINs, e.g., leveraging meta-path-based similarities for
recommendation [40, 32, 41]. For example, Shi et al. [32]
proposed predicting item ratings based on those from similar
users measured via different meta-paths. With the advances
of graph representation learning, the authors in [31] pro-
posed using pre-trained user and item embeddings based on
meta-path information with random walk, and incorporated
those pre-trained embeddings as features into an extended
matrix factorization framework. The most similar work to
ours is Gong et al. [13], which is one of the first works
for recommending knowledge concepts on MOOC platforms
in a heterogeneous view. The authors showed that their
proposed approach outperforms other CF-based baselines as
well as metapath2vec [11], which uses learned node represen-
tations of a given HIN for knowledge concept recommenda-
tions by measuring the similarities between two nodes. Our
work differs from [13] in several aspects. First, we formu-
late interacted concepts for each user as implicit feedback
while [13] treated the number of clicks as ratings and for-
mulated the problem as rating prediction for recommending
top–k unknown concepts with higher ratings. Secondly, we
investigate different attention mechanisms including the one
incorporating the latent features of users (items) from ma-
trix factorization. Thirdly, the prediction layer (Eq. 6) for
estimating the preference score of a concept is different from
[13] which uses the user (item) representations as features
for the final prediction.

3. PRELIMINARIES
In this work, we consider the task of predicting and recom-
mending concepts that a user might be interested in based
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on their learning history, which includes a set of learned
concepts and their contextual information such as courses,
videos, etc. With n users U = {u1, · · · , un}, and m con-
cepts C = {c1, · · · , cm}, we define an implicit feedback ma-
trix R ∈ Rn×m with each entry ru,c = 1 if u has learned
c and ru,c = 0 otherwise. The task can be framed in the
context of HIN which is denoted as G = {V, E} consisting
of a object set V and a link set E . A HIN is also associated
with an object type mapping function φ : V → O and a link
type mapping function ψ : E → R. O and R denote the sets
of predefined object and link types, where |O|+ |R| > 2 [33].
The MOOC data in our study can be represented as a HIN.
The HIN consists of six types of entities such as user, con-
cept, video, course, school, and teacher. In addition, there
is a set of links describing the relationships among those
entities. On top of the definition of HIN, the concept of
network schema is used to describe the meta structure of a
network [31].

The network schema [35] is denoted as S = (O, R). It is
a meta template for an information network G = {V, E}
with the object type mapping φ : V → O and the link type
mapping ψ : E → R, which is a directed graph defined over
object types O, with edges as links fromR. Fig. 1 shows the
network schema of our MOOC dataset with the six different
entity types and the semantic links between them. Given
the network schema, we can extract semantic meta-paths
between a pair of entities. A meta-path can be formally
defined as follows:

A meta-path [34] MP is defined on a network schema S =

(O, R) and is denoted as a path in the form of O1
R1−−→

O2
R2−−→ · · · Rl−−→ Ol+1, which describes a composite relation

R = R1 ◦R2 ◦ · · · ◦Rl between object O1 and Ol+1, where ◦
denotes the composition operator on relations.

4. PROPOSED APPROACH
In this section, we introduce our proposed approach MOOCIR

(MOOC Interest Recommender) based on meta-paths in the
MOOC HIN. In high level, our approach extends the matrix
factorization (MF) ŷu,c = xT

u zc, where ŷu,c denotes the pre-
dicted preference score of concept c with respect to user u,
and xu and zc refer to latent features of u and c, respec-
tively. We extend the MF with user (concept) represen-
tations/embeddings that are learned by applying GCNs to
meta-path-based graphs. Fig. 2 shows an overview of our
approach, which consists of four main components. In the
following, we describe each component in detail.

Table 1: Meta-paths selected for extracting user-user and
concept-concept relationships.

Type Meta-path

User

user → concept
−1−−→ user

user → course
−1−−→ user

user → video
−1−−→ user

user → course→ teacher
−1−−→ course

−1−−→ user

Concept
concept→ user

−1−−→ concept

concept→ course
−1−−→ concept

MOOC	HIN	shown	in	Fig.	1

Prediction	(Eq.	6)

GCN GCN

Attention

...

...GCN GCN

Attention

...

...

Adjacency	matrices
based	on	selected	
meta-paths

Matrix	Factorization

...... 1

2

3

4

Figure 2: Overview of our proposed approach MOOCIR.

Meta-path selection. As discussed in Section 3, meta-paths
provide the capability to derive entity-entity relationships
through those paths. Similar to previous studies [13, 31],
we consider user-user and concept-concept relationships via
different meta-paths. To fairly compare with [31] in our ex-
periments, we use the same set of meta-paths used in [31]
for our study. Table 1 summarizes six meta-paths used for
our work where four paths for users and two for concepts.
For each meta-path, a homogeneous graph with respect to
users (concepts) can be extracted, which is depicted as its
corresponding adjacency matrix in Fig. 2. As one might
expect, each entry in the adjacency matrix A regarding a
meta-path is equal to one if two users (concepts) can be
connected via that meta-path, and zero otherwise. After-
wards, we can learn user (concepts) representations for each
meta-path using GCNs.

Graph Convolution Networks (GCNs). GCNs learn node
representations of a graph by inspecting neighboring nodes.
In this work, we adopt the following layer-wise propaga-
tion rule to learn user (concept) representations/embeddings
with respect to a meta-path.

h(l+1) = g(PhlWl) (1)

where g(·) is an activation function which we use ReLu [25]

here. P = D−1Ã where D is the diagonal node degree

matrix of A to normalize the matrix Ã, and Ã = A + I is
an adjacency matrix with self-loops in a graph based on a
specific meta-path. Wl refers to a trainable weight matrix at
layer l for all nodes. h0 can be fed with features of each node
if there is a set of features for each node or can be initialized
and learned afterwards as well. The output representation of
the last layer can be used as user (concept) representations.
For example, when l = 2, the representation of a user u
for a meta-path MPi will be eMPi

u = h3
uMPi

where h3
uMPi

is the output of the last layer of GCNs for the meta-path
MPi with respect to u. In our study, we use a single layer
GCN where h0 is initialized randomly and learned during
the training process, but one can easily extend it with more
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layers or using existing features for h0.

Attention. Attention mechanism [36] is motivated by how
we pay visual attention to different regions of an image or
relevant words in one sentence, and has been used widely to
advance various fields such as natural language processing
and recommender systems [37, 13]. In our context, different
meta-paths can have different importance with respect to
each user, and incorporating the importance of each meta-
path differently for each user can be beneficial when aggre-
gating user representations from different meta-paths, i.e.,

{eMP1
u . . . e

MP|MP |
u } → eu. In our work, we apply the atten-

tion mechanism from [6] for our context as follows:

αMPi
u =

exp(VT
uσ(Wue

MPi
u ))∑

j∈|MP | exp(V
T
uσ(Wue

MPj
u ))

(2)

where the output αMPi
u indicates the weight (or importance)

for eMPi
u , and VT

u and Wu are trainable matrices for users.
The attention mechanism can be formulated in the same
manner for concepts. Next, the user representations coming
from different meta-paths can be aggregated as follows:

eu =
∑

j∈|MP |

α
MPj
u e

MPj
u (3)

The above-mentioned attention mechanism takes into ac-
count different meta-paths but does not consider any con-
text in the extended MF, which can be the latent features
of users and concepts for MF. Therefore, we also investi-
gate the following attention mechanism which considers the
latent features of user xu, which has not been explored in
previous studies. In this case, a meta-path based embedding
eMPi
u and xu are concatenated together when calculating the

attention scores as follows.

βMPi
u =

exp(VT
uσ(Wu[eMPi

u ; f(xu)]))∑
j∈|MP | exp(V

T
uσ(Wu[e

MPj
u ; f(xu)]))

(4)

where f(xu) applies non-linearity with a single layer feed-
forward neural networks to xu instead of using it directly,
which is inspired by [31] where the authors showed that non-
linear fusion is required when combining latent features from
matrix factorization and entity embeddings from GCNs. Af-
terwards, the final user representation can be obtained in the
same manner as Eq. 3.

eu =
∑

j∈|MP |

β
MPj
u e

MPj
u (5)

The attention mechanism can be formulated in the same
manner for concepts.

Prediction. Given those learned user and concept repre-
sentations/embeddings eu and ec. The preference score of
a concept c for a user u can be calculated as follows by ex-
tending the matrix factorization framework:

ŷu,c = xT
u zc + γ · eT

uMec + bc (6)

where ŷu,c is the preference score, xu and zc are the latent
features for the matrix factorization, and bc is a bias term.
In addition, M is a trainable matrix to let eu in the same

space with ec, and γ is a trainable parameter for the trade-
off between the prediction scores from matrix factorization
and the user and concept embeddings.

4.1 Training Details

Loss function. We use the Bayesian Personalized Ranking
(BPR) [29] which has been widely used for recommender sys-
tems with implicit feedback [7, 5, 27]. The intuition behind
BPR is that a learned concept for a user should be ranked
higher (with a higher score) compared to a random one in
the list of concepts with which the user has not interacted,
which can be formulated as follows:

L =
∑

(u,i,j)∈Ds

−ln(σ(ŷuij)) + λ ‖Θ‖2 (7)

where (u, i, j) refers to a triplet including a user u, an in-
teracted concept i and an unknown concept j for the user.
ŷuij = ŷui − ŷuj measures the preference difference between
the interacted concept and the unknown one, σ denotes the
sigmoid function: s(x) = 1

1+e−x , λ is the regularization pa-
rameter for the L2 norm, and Θ denotes the set of parame-
ters to be learned. The training set Ds can be constructed
by paring an unknown concept randomly with an interacted
concept in the training set of a user.

To learn the parameters of our proposed approach for min-
imizing the loss in Eq. 7, we use a mini-batch gradient de-
cent with 1,024 as the batch size, and use the Adam update
rule [20] to train the model using the training set. In ad-
dition, the learning rate is set as 0.01, the regularization
parameter λ is set as 1e − 8, and the dimension of latent
features for MF and that of user (concept) embeddings are
set as 30 and 100 respectively as in [13].

To overcome the overfitting problem, we further construct a
validation set by using the last interacted concept for each
user, and randomly pair each known concept with 99 un-
known concepts. We run 500 epochs where the convergence
is observed, and monitor the performance of evaluation met-
rics (see Section 5) on the validation set. At the end, we
choose the best-performing model on the validation set in
terms of MRR (Mean Reciprocal Rank), which is one of
the evaluation metrics measuring how well a ground truth
concept is ranked in the corresponding set of 100 concepts.
Any other evaluation metric can be used for choosing the
best-performing model as well based on the preference for a
specific metric.

5. EXPERIMENTAL SETUP

MOOC Dataset. We use the MOOCCube dataset [39] from
the XuetangX platform for our experiments. The MOOC-
Cube dataset is one of the largest and comprehensive MOOC
datasets, and provides rich information about MOOCs and
user activities on the platform from 2017 to 2019 [39]. Each
course or video has a set of covered knowledge concepts in
the dataset. In this work, we use user activities from 2017-
01-01 to 2019-10-31 for training and those from 2019-11-01
to 2019-12-31 for testing. We limit users who have learned
concepts in both training and testing periods and have at
least one new concept (which did not appear in the training

490 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



Table 2: Statistics of the MOOCCube dataset for experi-
ments.

Entities Statistics Relations Statistics
users 2,005 user-concept 930,553

concepts 21,037 user-course 13,696
courses 600 course-video 42,117
videos 22,403 teacher-course 1,875
schools 137 video-concept 295,475
teachers 138 course-concept 150,811

period) in the testing period. Overall, the dataset consists of
2,005 users 21,037 concepts, 600 courses, 22,403 videos, 137
schools, 138 teachers, and the relationships among those en-
tities. In total there are 930,553 interactions between users
and concepts with 858,072 interactions in the training set
and the rest (72,481) in the test set. The overall statistics
of the dataset are presented in Table 2.

Evaluation Metrics. We evaluate the top–k predictions of
concepts for users with the following widely used evaluation
metrics where k is set to 5, 10, and 20. We calculate all
metrics for each set of 100 concepts (with one interacted
and 99 unknown) in the test set. For each interacted con-
cept with respect to a user u, we generate the corresponding
recommendation list Ru = {r1u, r2u, . . . , rku} where riu indi-
cates concept ranked at the i–th position in Ru based on
the predicted scores of those concepts.

Hit Ratio of top–k concepts (HR@k) measures the fraction
of relevant concepts in the test set that are in the top–k con-
cepts of the recommendations: HR@k = 1

N

∑
u I(|Ru∩Tu|)

where N is the total number of sets for testing, I(x) is an
indicator function which equals one if x > 0 and equals
zero otherwise. Normalized Discounted Cumulative Gain
(nDCG@k) takes into account rank positions of the rele-
vant concepts, and can be computed as follows:nDCG@k =

1
Z
DCG@k = 1

Z

∑k
j=1

2I(|r
j
u∩Tu|)−1

log2 (j+1)
where Z denotes the

score obtained by an ideal top–k ranking which serves as
a normalization factor. Mean Reciprocal Rank (MRR) is
the average of the reciprocal ranks of positive concepts:
MRR = 1

N

∑N
1

1
ranki

where ranki refers to the rank po-

sition of the one interacted concept in the corresponding set
of 100 concepts with the rest of unknown ones.

We use the paired t-test for testing the significance where the
significance level of α is set to 0.05 unless otherwise noted.

5.1 Compared Methods
To better understand and investigate the contribution of
each component and the performance with the two atten-
tion mechanisms introduced in Section 4, we first compare
several variants of our approach. MOOCIRa1 denotes our ap-
proach with the attention mechanism only considering differ-
ent meta-paths using Eq. 3. MOOCIRa2 refers to our approach
with the attention mechanism incorporating the latent fea-
tures of users (concepts) using Eq. 4. MOOCIRa- is a variant
of our approach without any attention, i.e., different meta-
paths are treated equally and the representations learned
from those paths are averaged. MOOCIRmf- refers to a variant
without the matrix factorization part for prediction in Eq. 6,

which only uses meta-path-based user and concept represen-
tations for predicting the preference score of a concept.

Next, we compare MOOCIR with the following baselines and
state-of-the-art methods to evaluate the performance of rec-
ommending knowledge concepts for users. TopPop is a straight-
forward baseline method which ranks concepts based on
their popularity. Here, the popularity of a concept can be
measured based on the number of users that have learned
the concept. MFBPR [29] is a matrix factorization approach
which optimizes a pairwise ranking loss for the recommen-
dation task as our approach but without meta-path-based
representation learning. That is, the second component in
Eq. 6 based on user (concept) representations is removed.
FISM [17] is an item-to-item collaborative filtering approach
which provides recommendations based on the average em-
beddings of all interacted concepts and the embeddings of
the target concept. NAIS [15] is also an item-to-item collabo-
rative filtering approach, but with an attention mechanism,
which is capable of distinguishing which historical items in a
user profile are more important for a prediction. We use the
author’s implementation for both NAIS and FISM5. metap-
ath2vec [11]. metapath2vec is a meta-path-based represen-
tation learning model which leverages meta-path-based ran-
dom walks to construct the heterogeneous neighborhood of
a node and then leverages a heterogeneous skip-gram model
to learn node embeddings. We use the StellarGraph [10] im-
plementation of metapath2vec for our experiment in which
the parameters of metapath2vec are set the same as in [11]
except the number of random walks is set as 500 instead
of 10006. ACKRec [13] also models the MOOC dataset as a
HIN and extracts user (concept) representations from the
same set of meta-paths in Table 1. However, ACKRec treats
the problem as rating prediction task where the rating of
a concept for a user is the number of interactions between
the user and the concept. Also, it exploits user and concept
representations as features while extending the matrix fac-
torization framework. We use the author’s implementation7

for our experiments. MFBPR and those MOOCIR variants are
implemented using Tensorflow [1]. All experiments are run
on an Intel(R) Core(TM) i5-8365U processor laptop with
16GB RAM, and MOOCIR variants take less than two days
for training.

6. RESULTS
Table 3 summarizes the results using the variants of MOOCIR.
As we can see from the table, MOOCIRmf- — which uses user
and concept representations learned based on meta-paths
with the HIN but without the matrix factorization compo-
nent — provides worse performance compared to the other
variants. The results indicate that extending the matrix
factorization is necessary for MOOCIR.

Next, we compare MOOCIRa- and the variants with atten-
tion mechanisms (i.e., MOOCIRa1 and MOOCIRa2). We observe
that both MOOCIRa1 and MOOCIRa2 outperform MOOCIRa- in
terms of all evaluation metrics, which shows that using at-

5https://github.com/AaronHeee/
Neural-Attentive-Item-Similarity-Model
6We noticed that using 1000 random walks took more than
10 days for training and did not improve the performance
compared to using 500.
7https://github.com/JockWang/ACKRec
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Table 3: Performance of several variants of our proposed
approach in term of different evaluation metrics with the
best-performing scores in bold.

HR nDCG
MRR

k=5 10 20 k=5 10 20
MOOCIRmf- 0.676 0.812 0.906 0.499 0.543 0.567 0.468
MOOCIRa- 0.701 0.832 0.920 0.513 0.556 0.578 0.477
MOOCIRa1 0.704 0.836 0.922 0.520 0.562 0.584 0.484
MOOCIRa2 0.703 0.838 0.922 0.517 0.561 0.583 0.482
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Randomly selected 100 users
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3
4

M
et
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th
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r u

se
rs Attention weights for different meta-paths

Figure 3: Attention weights of different meta-paths for 100
randomly chosen users learned using MOOCIRa1 where we ob-
serve different weights of meta-paths for each user. In this
heatmap, a darker cell indicates a higher attention weight.

tention can indeed improve the performance and different
meta-paths have different importance for deriving user (con-
cept) representations. This can be verified further by inves-
tigating learned attention weights for different meta-paths
in MOOCIR as well. For example, Fig. 3 shows a heatmap
regarding the learned attention weights for 100 randomly
selected users using MOOCIR. In the figure, x -axis refers to
the 100 users and y-axis indicates the attention weights for
the four different meta-paths for users described in Table 1
in Section 4. From the figure, we can notice that the first

meta-path (i.e., user → concept
−1−−→ user) overall has a

higher weight compared to others. In addition, we observe
that the attention weights vary across users, which indicates
the importance of each meta-path varies for different users.

Finally, by comparing the two different attention mecha-
nisms, we observe that the one incorporating the latent fea-
tures of users and concepts (Eq. 4) does not improve the
performance compared to the simpler one (Eq. 3), which
is different from our assumption. Instead, we observe that
MOOCIRa2 performs significantly worse than MOOCIRa1 in terms
of HR@10 and HR@20 for the users who have interacted
with a limited number of concepts. Table 4 shows the per-
formance for three groups of users with less than 150, 350,
and 550 concepts, respectively. As we can see form the
figure, MOOCIRa1 outperforms MOOCIRa2 significantly for the
first group of 353 users. The results suggest that fusing in-
formation from the latent features of users (concepts) into
the attention mechanism is a non-trivial task, and other ap-

Table 4: Results of HR@10 and HR@20 for MOOCIRa1 and
MOOCIRa2 for three groups of users (G150, G350, G550) with
less than 150, 350, 550 concepts in the training set.

HR@10 HR@20
G150 G350 G550 G150 G350 G550

MOOCIRa1 0.806 0.830 0.851 0.894 0.911 0.927
MOOCIRa2 0.801 0.829 0.852 0.886 0.908 0.925

Table 5: Performance of MOOCIRa1 and compared methods in
term of different evaluation metrics with the best-performing
scores in bold.

HR nDCG
MRR

k=5 10 20 k=5 10 20
TopPop 0.486 0.629 0.767 0.343 0.390 0.425 0.332
MFBPR 0.668 0.811 0.907 0.481 0.527 0.552 0.448
FISM 0.584 0.701 0.800 0.438 0.476 0.501 0.418
NAIS 0.568 0.691 0.811 0.420 0.461 0.491 0.403
metapath2vec 0.642 0.773 0.873 0.468 0.511 0.537 0.440
ACKRec 0.659 0.764 0.842 0.503 0.538 0.557 0.475
MOOCIRa1 0.704 0.836 0.922 0.520 0.562 0.584 0.484

proaches should be investigated in the future.

Overall, MOOCIRa1 provides the best performance among all
variants. In the following, we discuss the performance of
MOOCIRa1 compared with other baselines and state-of-the-art
methods.

Table 5 shows the performance of MOOCIRa1 and compared
methods. We first observe that all the other methods out-
perform TopPop which is a baseline method recommending
popular concepts. For example, MOOCIRa1 and ACKRec im-
proves MRR over TopPop 45.8% and 43.1%, respectively.
Among all the compared methods in Table 5, MOOCIRa1 pro-
vides the best performance followed by ACKRec, MFBPR, and
metapath2vec. ACKRec performs best in terms of nDCG
and MRR, and MFBPR performs best in terms or HR among
compared methods. In detail, a significant improvement of
MOOCIRa1 over ACKRec in MRR (+1.9%), nDCG@5 (+3.1%),
nDCG@10 (+4.5%), +nDCG@20 (4.8%) can be noticed
(α < 0.01). Compared to MFBPR, MOOCIRa1 improves the
HR scores 6.7%, 9.2%, and 9.4% when k =5, 10, 20, respec-
tively (α < 0.01). The two item-item CF methods (FISM
and NAIS) do not perform well compared to MFBPR and ACK-

Rec. One possible explanation might be due to the sparsity
of the dataset, which makes that deriving item-item similar-
ities based on interacted users for each item is challenging
and limits the performance.

Those results indicate that the proposed approach MOOCIRa1
can achieve competitive performance in terms of those evalu-
ation metrics for top–k concept recommendations compared
to the baselines and state-of-the-art methods.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented MOOCIR for predicting and recom-
mending concepts that might be of users’ interest on MOOC
platforms. The comparison of MOOCIR variants in Section 6
shows that extending the matrix factorization with user and
concept representations learned from different meta-paths
and using attention for deriving those representations play
crucial roles in achieving better performance. In addition,
the results compared to other baselines and state-of-the-
art methods indicate that MOOCIRa1 can improve the per-
formance of predicting and recommending concepts signifi-
cantly. The comparison between the two introduced atten-
tion mechanisms (Eq. 3 and 4) suggests that a more compre-
hensive approach is required while fusing the latent features
of users and concepts into the attention mechanism, which
will be investigated in the near future.
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