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ABSTRACT   

Constructing  effective  and  well-balanced  learning  groups  is         
important  for  collaborative  learning.  Past  research  explored  how          
group  formation  policies  affect  learners’  behaviors  and         
performance.  With  the  different  classroom  contexts,  many  group          
formation  policies  work  in  theory,  yet  their  feasibility  is  rarely            
investigated  in  authentic  class  sessions.  In  the  current  work,  we            
define   feasibility  as  the  ratio  of  students  being  able  to  find             
available  partners  that  satisfy  a  given  group  formation  policy.           
Informed  by  user-centered  research  in  K-12  classrooms,  we          
simulated  pairing  policies  on  historical  data  from  an  intelligent           
tutoring  system  (ITS),  a  process  we  refer  to  as   SimPairing .  As             
part  of  the  process  for  designing  a  pairing  orchestration  tool,  this             
study  contributes  insights  into  the  feasibility  of  four  dynamic           
pairing  policies,  and  how  the  feasibility  varies  depending  on           
parameters  in  the  pairing  policies  or  different  classes.  We  found            
that  on  average,  dynamically  pairing  students  based  on  their           
in-the-moment  wheel-spinning  status  can  pair  most  struggling         
students,  even  with  moderate  constraints  of  restricted  pairings.  In           
addition,  we  found  there  is  a  trade-off  between  the  required            
knowledge  heterogeneity  and  policy  feasibility.  Furthermore,  the         
feasibility  of  pairing  policies  can  vary  across  different  classes,           
suggesting   a   need   for   customization   regarding   pairing   policies.   
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1. INTRODUCTION   
Constructing  effective,  well-balanced  learning  groups  is  an         
important   task   in   computer-supported   collaborative   learning     

  

  

  

  

  

  

(CSCL) [1–3] .  The  importance  of  learning  group  formation  (LGF)           
has  been  validated  empirically   [4,5] .  For  instance,  Webb  et  al.’s            
experiment  proved  that  group  composition  had  a  major  impact  on            
the  quality  of  group  discussion  and  students’  test  scores,  both            
during  group  work  and  subsequent  individual  tests   [5] .  The           
majority  of  existing  approaches  to  LGF,  do  not  support   dynamic            
group  formation   [1] .  Dynamic  group  formation  refers  to  the           
process  of  groups  “created  on  demand  while  various          
domain-specific  restrictions  have  to  be  considered”   [6] ,  or  can           
“adapt  to  and  benefit  from  previous  information  about  group           
members  and  their  abilities”   [7,8] .  Compared  to  static,          
pre-planned  LGF,  the  dynamic  composition  of  groups  allows  for           
quick  regrouping  of  learners  based  on  up-to-date  information          
regarding  their  progress  and  struggle.  Dynamic  group  formation  is           
an  interesting  issue,  as  researchers  start  envisioning  more          
sophisticated  and  personalized  classroom  interactions   [9]  and         
more  fluid  social  transitions  (i.e.,  student  social  transitions  that           
occur  not  all  at  the  same  time  for  everyone  in  the  class)   [10] ,  that                
are   more   challenging   to   orchestrate.     

In  the  context  of  an  Intelligent  Tutoring  System  (ITS)  that            
supports  both  individual  and  collaborative  learning,  it  is  useful  to            
investigate  whether  dynamically  switching  students  between  the         
two  modes,  as  the  need  arises,  can  be  effective  and  feasible.             
Pairing  policies  that  work  well  in  practice  ideally  have           
characteristics  of  both  effectiveness  and  feasibility.  By  effective          
we  mean  that  the  pairing  policy  leads  to  students’  reaching  desired             
learning  goals,  and  by  feasible  we  mean  that  enough  partners  can             
be  found  under  the  given  grouping  policies  (i.e.,  good  policy            
coverage).  Specifically,  we  defined   feasibility  as  the  percentage  of           
students   who   can   be   teamed   up   under   a   given   pairing   policy.   

The  feasibility  of  LGF  is  an  important  issue  to  investigate  in             
designing  orchestration  tools  for  teachers,  and  can  be  a  central            
concern  at  the  initial  stage  of  tool  design.  This  is  because  during              
the  initial  design  stages  we  often  do  not  yet  have  data  to              
rigorously  evaluate  the  effectiveness  of  LGF,  given  testing  the           
LGF  requires  human  resources  of  learners,  instructors,  materials          
resources  of  devices,  systems,  and  a  long  time  period.           
Additionally,  an  effective  pairing  policy  that  only  covers  a  small            
percentage  of  students  in  a  classroom  may  have  limited  influence            
for  the  whole  class.  Thus,  the  feasibility  of  LGF  can  be  important              
in   providing   context   for   the   potential   coverage   of   LGF   in   a   class.   
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Literature  on  LGF  in  collaborative  learning  is  vast.  Researchers           
have  paired  students  based  on  gender   [11,12] ,  learning  style           
[13–16] ,  students’  social  network   [17] ,  and  their  intelligence  or           
task  proficiency   [18–20] .  Heterogeneous  and  homogeneous  group         
formation  are  two  main  approaches  in  team  formation,  and  many            
studies  have  demonstrated  their  effectiveness  in  CSCL         
[1,8,18,20–22] .  Students’  knowledge  level  is  argued  to  be  the           
most  suitable  and  important  attribute  to  form  educational  groups           
[8] .  Prior  work  has  also  used  machine  learning  or  other  algorithms             
to  incorporate  multiple  factors  for  optimizing  team  formation          
[23–26] .  However,  the  literature  on  LGF  provides  little  insight           
into  the  feasibility  of  these  LGF  policies,  especially  in  the  ITS             
context.   

Evaluating  the  feasibility  of  LGF  policies  offline,  prior  to           
implementing  them  in  real  classrooms,  is  challenging,  given  a           
lack  of  readily  accessible  approaches.  To  address  this  problem,  we            
adopt  a  process  we  call  “ SimPairing ”,  to  simulate  pairing  policies            
on  authentic  data  and  evaluate  their  feasibility.  In  this  process,  we             
used  transaction  data  from  several  classes  of  students  using  an            
ITS,  collected  from  classroom  studies  conducted  in  U.S.  middle           
schools.  We  computed  and  analyzed  how  the  feasibility  of  several            
LGF  policies  (described  below)  changed  as  each  class  progressed,           
and  how  the  feasibility  varied  across  different  classes.  Replaying           
historical  data  to  simulate  possible  futures  (e.g.,  Replay          
Enactment   [27] ),  has  been  used  as  a  method  by  researchers  to             
design  tools  with  similar  data-driven,  human-centered  approaches         
[28] .  Diana  et  al.   [29] ,  for  instance,  used  machine  learning  (ridge             
regression)  to  predict  students’  grades  based  on  historical  data  in            
CS  education  (i.e.,  programming).  Based  on  these  predicted          
grades   and  simulated  students’  “helped”  status,   they  determined          
which  students  needed  help  and  which  may  be  able  to  provide             
help.  They  then  used  a  network  graph  of  code-state  to  search  for              
potential  peer  tutors  who  shared  a  common  ancestor  node  with  the             
tutee.  They  found  that  grouping  low-performing  students  together          
and  using  better  model  features  can  increase  the  number  of            
students  helped.  Their  findings  suggest  that  using  low-level  log           
data  to  group  and  match  low-performing  students  with  a  peer  tutor             
may  be  an  effective  way  to  increase  the  amount  of  help  given  in  a                
classroom.  In  contrast,  we  simulated  different  policies  selected          
based  on  literature  and  teachers’  common  practice  revealed  in           
user-centered  research  with  K-12  teachers   [10,30,31] ,  in  a          
mathematics   education   context.   

The  current  work  is,  to  the  best  of  our  knowledge,  the  first  to  look                
at  dynamic  pairing  policies  that  consider  students’  in-the-moment          
wheel-spinning  status.  Identifying  students  who  are        
unproductively  struggling,  yet  failing  to  master  the  skill,  (i.e.,           
wheel  spinning)  is  a  first  step  to  getting  them  unstuck   [32] .  While              
there  has  been  significant  work  on  modeling  and  predicting  wheel            
spinning   [33–35] ,  little  work  has  been  dedicated  to  developing           
interventions  to  get  them  unstuck,  with  a  few  recent  exceptions            
[36,37] .  While  a  typical  classroom  has  students  who  are           
struggling  on  problems  and  those  who  have  excelled  on  the  same             
problem,  the  latter  students’  expertise  is  rarely  utilized.  Instead,           
often  the  only  source  of  help  is  the  instructor,  who  is  likely  unable               
to  help  all  the  students  who  need  help  within  the  time  constraints              
of  the  class  period   [38] .  Peer  tutoring  (i.e.,  pairing  a  struggling             
student  with  a  peer  tutor)  could  be  an  effective  way  to  help  get               
struggling  students  unstuck  when  the  instructor  has  their  hands           
full.     

Lastly,  instead  of  prescribing  a  specific  grouping  criterion,  our           
work  envisions  that  instructors  will  customize  pairing  policies  and           
parameters  to  their  classroom  contexts,  which  prior  work  argued           

to  be  especially  helpful  in  the  LGF  process   [1,8,30,39] .   Amara  et             
al.  found  that  most  of  the  proposed  LGF  solutions  do  not  allow              
instructors  to  customize  the  grouping  process   [1] .  They  argued           
that  it  is  less  helpful  to  apply  a  grouping  solution  for  all  types  of                
learners,  and  more  useful  to  leave  the  choice  to  instructors.            
Instructors  can  then  form  groups  according  to  different  learning           
objectives,  learners’  needs,  activity  types,  and  customize  the  LGF           
process  according  to  location  and  time   [1] .  Similarly,  Echeverria           
et  al.  envision  adaptability  in  an  orchestration  system,  which           
“enables  teachers  to  select  the  best  pairing  policies  based  on  their             
particular  goals,  needs,  and  classroom  dynamics”   [30] ,  to  be           
helpful  for  different  classrooms.  In  the  current  investigation,  three           
of  the  four  policies  we  studied  involve  an  adjustable  pairing            
threshold   or   parameter,   which   we   simulated   with   various   values.   

In  sum,  the  current  work  investigates  the  feasibility  of  four            
dynamic  LGF  policies  derived  from  user  research  with  math           
teachers.  We  investigate  from  three  angles:  overall  session          
simulation,  class-level  variance,  and  session-level  contrasting        
cases.  This  work  contributes  to  the  feasibility  results  of  the            
dynamic  pairing  policies,  recommendations  for  orchestration  tool         
design,  and  highlights  future  work  regarding  tools  supporting          
dynamic   LGF.     

2. STUDY   CONTEXT  
2.1 Intelligent   Tutoring   Systems   
This  study  used  student  transaction  data  collected  from  classroom           
studies  in  U.S.  middle  schools  ( dataset  link ).  This  data  logged            
students’  interaction  with  an  ITS  called  Lynnette,  which  offers           
guided  practice  to  students  in  basic  equation  solving.  ITS  (also            
called  AI-tutors)  are  increasingly  common  in  K-12  classrooms  to           
help  teachers  more  effectively  personalize  instruction   [40] .  As          
shown  in  Figure  1,  Lynnette  provides  step-by-step  guidance,  in           
the  form  of  adaptive  hints,  correctness  feedback,  and  error           
specific  messages.  Lynnette  supports  personalized  mastery        
learning,  and  has  been  proven  to  improve  students’          
equation-solving   skills   in   several   classroom   studies    [41–43] .     

  

Figure   1.   Example   student   interface   for   the   ITS,   Lynnette     

The  transaction  data  logs  detailed  events  by  the  timestamp  of            
students’  interaction  with  the  ITS,  including  but  not  limited  to            
actions  they  take  (e.g.,  requesting  hints  or  attempting  a  step),            
knowledge  components  (KC)  that  a  transaction  involves,  and  skill           
mastery,  calculated  based  on  Bayesian  Knowledge  Tracing  (BKT)          
student  model,  a  two-state  Hidden  Markov  Model.  BKT  is  a            
popular  student  model  that  has  been  successful  for  various           
applications   in   the   educational   technology   literature   (e.g.    [44] ).     

The  current  work  lays  a  foundation  to  (in  the  future)  use  Lynnette              
in  combination  with  a  second  ITS,  APTA,  which  extends           
Lynnette’s  functionality  to  support  reciprocal  peer  tutoring.  APTA          
allows  two  students  to  respectively  take  the  role  of  tutor  and  tutee.              
In  APTA,  the  tutee  can  seek  help  from  their  partner,  while  the              
tutor  can  see  the  tutee’s  progress,  and  help  them  to  make  progress              
with  the  math  problem  at  hand.  APTA  supports  the  peer  tutor  in              
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tutoring  the  tutee.  Classroom  studies  with  APTA  have          
demonstrated  that  its  adaptive  support  can  improve  the  quality  of            
help  peer  tutors  give  and  improve  students’  domain  learning           
[45,46] .  A  future  effort  for  the  current  work  is  to  implement             
feasible  student  pairing  policies  in  an  orchestration  tool,  to           
support  teachers  in  dynamically  pairing  students  to  work          
collaboratively  in  APTA.  Such  a  tool  plays  a  key  role  in  our              
vision  for  the  smart  classroom  of  the  future,  in  which  students             
alternate   fluidly   between   individual   and   collaborative   learning.   

2.2 Wheel-Spinning   Detector   
Detectors  have  been  developed  to  detect  student  behaviors  of           
interest  (e.g.,  gaming  the  system,  struggling)  from  the  transaction           
data.  Such  detectors  have  been  used  to  design  dashboards  or  tools             
that  can  alert  teachers  of  certain  student  status  (e.g.,   [9] ).  In  our              
policies  1  and  2,  we  paired  students  based  on  their  struggle  status              
indicated   by   a   wheel-spinning   detector.   

Wheel-spinning,  as  defined  by  Beck  and  Gong,  denotes  students           
who  are  failing  to  master  a  specific  skill  after  many  attempts  in  an               
intelligent  tutoring  system   [32] .  We  utilized  a  detector  that           
adopted  the  same  criterion  as  defined  by  Beck  and  Gong   [32] .  The              
detector  is  embedded  in  LearnSphere,  (i.e.,  a  large  learning           
analytics  infrastructure)   [47] .  The  detector  considers  students  who          
have  over  ten  practice  opportunities  yet  still  failing  to  reach  a  skill              
mastery  on  a  specific  knowledge  component  (KC)  of  above  0.95,            
to  be  wheel-spinning  on  this  KC   [9] .  Such  prolonged  repeated            
struggles  are  likely  to  be  an  inefficient  use  of  time  for  students              
[32]  and  may  contribute  to  a  lack  of  motivation  for  future  learning              
[36] .  Wheel-spinning  is  one  type  of  unproductive  struggle,  and  we            
use    struggling    and    wheel-spinning    interchangeably   in   this   paper.     

3. METHODS   
We  evaluated  how  feasible  four  pairing  policies  (described  below)           
are,  based  on  simulation  with  historical  transaction  data  from           
Lynnette.  We  applied  each  pairing  policy  to  data  from  each  class             
session.  For  every  minute  in  a  session,  we  calculated  the            
percentage  of  students  who  met  the  policy’s  criterion  for  being            
teamed  up.  Based  on  this  calculation,  we  evaluated  policy           
feasibility  using  two  measures,  FI 1  and  FI 2 ,  defined  in  3.2.  In  the              
simulation  process,  we  did  not  make  assumptions  about  how  long            
simulated  collaboration  episodes  would  last.  We  foresee  that  in           
any  of  these  episodes,  students  will  be  given  the  task  of             
collaboratively  solving  several  math  problems;  it  is  hard  to  predict            
how  long  that  will  take  them.  We  thus  did  not  simulate  taking              
tutors  or  tutees  out  of  the  pool  of  students  available  for  teaming              
up,  or  returning  them  to  this  pool,  at  the  beginning  and  end  of               
collaborative  episodes,  respectively.  Although  this  simplification        
might  introduce  some  inaccuracy  into  the  simulation  results,  it           
may  be  hard  to  do  better.  As  well,  the  asymmetric  roles  that              
paired-up  students  have  in  the  pairing  policies  may  limit  the            
inaccuracy.  For  example,  simultaneously  keeping  a  struggling         
student  and  a  non-struggling  in  the  pool  instead  of  taking  them             
both   out   might   have   offsetting   effects   in   terms   of   feasibility.     

Our   simulation   involved   four   pairing   policies,   namely:     

Policy  1  -  Struggle  with  Non-Struggle:  Pairing  students  who  are            
wheel-spinning  (unproductive  struggle)  with  students  who  are  not          
wheel-spinning.     

Policy  2  -  Pairing  with  Restriction:  Pairing  students  who  are            
wheel-spinning  with  those  who  are  not  wheel-spinning,  with  a           
varying  pairing  restriction  (PR)  rate   β .  The  PR  rate  simulates            
restrictions  regarding  who  can  collaborate  with  whom,  which  in           
real   life   would   be   provided   by   the   teacher.   

Policy  3  -  Knowledge  Difference  Pairing:  Pairing  students  whose           
knowledge  levels  (as  measured  by  the  tutor’s  BKT)  differ  by   more             
than   a   certain   threshold   .  α  

Policy  4  -  Knowledge  Similarity  Pairing:  Pairing  students  whose           
knowledge  levels  (as  measured  by  the  tutor’s  BKT)  differ  by   less             
than   a   certain   ceiling    γ.   

The  distinction  in  these  policies  aligns  with  Amara  et  al.’s            
categorization  for  dynamic  group  formation   [1] :   intra-session   and          
inter-session   grouping.  Intra-session  grouping  allows  for  changing         
group  members  during  the  learning  process,  which  is  useful,  for            
example,  for  synchronous  mobile  collaborative  learning   [1] .  In          
inter-session  grouping,  groups  are  formed  only  before  starting  or           
after  ending  the  learning  process.  Specifically,  policies  1  and  2  fall             
under   intra-session  grouping  since  we  simulated  pairing  students          
based  on  their  in-the-moment  struggle.  These  two  policies  also           
concern   fluid  social  transitions   [10] ,   since  the  students  in  a  given             
class  may  transition  from  individual  to  collaborative  learning  at           
different  times.  Our  pairing  policies  3  and  4  concern  inter-session            
grouping,  and  pair  students  based  on  their  initial  knowledge  level.            
To  apply  these  policies,  teachers  or  the  tutoring  system  would            
assess  students’  knowledge  level,  prior  to  (or  at  the  beginning  of)             
a   class   session.   

The   research   questions   we   aim   to   answer   are:     

RQ1:  Based  on  a  pairing  simulation  done  with  students’  historical            
transaction   data,   how   feasible   are   the   four   pairing   policies?     

RQ2:  How  does  varying  the  parameters  in  the  pairing  policies            
affect   the   feasibility   of   pairing   students?   

RQ3:  Does  the  feasibility  of  the  pairing  policies  vary  for  different             
classes   or   sessions,   if   so,   how?     

3.1 The   Four   Pairing   Policies   
3.1.1 Policy   1:   Struggle   with   Non-Struggle     
Description.   Policy  1  utilizes  the  struggle  detector  (section  2.2)  to            
pair  students  who  are  wheel-spinning  with  those  who  are  not.  The             
struggle  detector  assumes  students’  wheel-spinning  status  to  be  a           
binary  value  for  a  given  timestamp.  Inspired  by  the  work  of  Diana              
et  al.   [29] ,  we  categorized  students  in  the   Struggle  Pool   if  they              
were  wheel-spinning  on  at  least  one  KC,  indicating  they  could            
need  help  from  a  partner.  Students  not  wheel-spinning  on   any  KC             
were  categorized  in  the   Tutor  Pool   and   considered  as  available            
tutors.   We  simulated  pairing  students  in  the   Struggle  Pool  with            
students  in  the   Tutor  Pool .  To  determine  the  feasibility  of  this             
policy,  we  calculated  the  percentage  of  struggling  students  who           
had   a   potential   partner   (for   more   detail,   see   below).  

Rationale.   Literature  suggests  that  when  students  are         
wheel-spinning,  giving  them  more  of  the  same  type  of  math            
problems  to  solve  may  not  be  productive   [36] .  When           
wheel-spinning,  students  would  likely  benefit  from  instructor         
attention  or  extra  instruction.  However,  prior  user  research  in  the           
classroom  (e.g.   [9] )  found  that  teachers  often  cannot  help  all            
struggling  students.  In  this  case,  wheel-spinning  students  may          
benefit  from  a  peer  tutor’s  help,  which  leads  to  a  policy  that  seeks               
to   dynamically   find   them   partners    [36] .     

3.1.2 Policy   2:   Pairing   with   Restriction     
Description.   Policy  2  is  an  extension  to  Policy  1,  where  we  pair  a               
struggling  student  with  a  non-struggling  student,  while  enforcing          
a  constraint  that  not  all  students  are  eligible  for  teaming  up.  The              
proportion  of  ineligible  students  is  captured  as  the  Pairing           
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Restriction  (PR)  rate.  The  PR  rate  is  used  to  simulate  situations             
where  the  teacher  prefers  that  certain  students  do  not  work            
together.  Specifically,  we  simulate  pairing  students  in  the   Struggle           
Pool  with  students  in  the   Tutor  Pool,   while  enforcing  the            
restriction  that   β%   (0  <   β   <1,  step  =  0.1)  of  students  in  the   Tutor                 
Pool  are  ineligible  as  partners .   For  example,  a  PR  rate   β  of  0.2               
means  20%  of  the  students  in   Tutor  Pool  have  been  restricted             
from  working  with  any  students  in   Struggle  Pool .  It  is  important             
to   know   how   these   restrictions   affect   the   feasibility   of   the   policies.   

Rationale.   We  designed  this  policy  based  on  results  found  in  a             
survey  we  conducted  with  54  middle-school  math  teachers  on           
their  pairing  preferences  in  collaborative  learning   [31]  and          
semi-structured  interviews  conducted  with  middle  school        
teachers.  Teachers  expressed  a  desire  to  set  constraints  so  that            
certain  pairs  of  students  are  restricted  from  working  together.           
Previous  studies  and  user  research  by  Olsen  et  al.  and  Echeverria             
et  al.  also  informed  the  idea  of  ruling  out  certain  pairings  in              
advance   [10,30] .  Such  restrictions  usually  arise  from  information          
or  concerns  teachers  have  about  their  students’  traits,  behaviors           
and   interpersonal   relationships    [8] .     

3.1.3 Policy   3:   Knowledge   Difference   Pairing   
Description.   In  Policy  3,  we  pair  students  who  have   different            
Initial  Knowledge  (IK)  levels.  In  a  practical  scenario,  teachers           
may  assess  students’  knowledge  through  quizzes  or  exams.          
Alternatively,  if  the  classrooms  use  ITS,  teachers  may  have           
students  practice  several  math  questions  individually,  prior  to          
transitioning   into   collaborative   learning   activities.     

To  simulate  this  policy  without  having  pre-assessment  data,  we           
used  data  from  the  tutoring  sessions  (captured  in  the  log  data)  to              
compute  students’  IK  levels.  Specifically,  we  computed  a          
student’s  IK  for  each  KC,  as  the  average  mastery  for  their  first              
three  opportunities  for  this  KC.  The  reason  is  we  want  to  use  up               
only  a  small  portion  of  the  data  from  the  tutoring  session,  so  the               
measure  represents  initial  knowledge.  In  our  datasets,  three          
opportunities  generally  fall  in  the  first  quartile  (25%)  of  students’            
total  number  of  opportunities  for  any  given  KC.  Another  reason            
we  chose  the  cutoff  of  three  is  a  previous  EDM  study  with              
ASSISTments  data  showed  student  learning  often  appeared  to          
occur,  after  students  have  had   ten  opportunities  with  the  target            
knowledge   [48] .  Thus  one  may  assume  learners  to  have  little            
learning  on  their  first  three  times  in  transaction  data  practicing  a             
KC.  A  student’s  overall  IK   is  calculated  as  the  average       Sj j )  ( ∈ N       
of  their  IK  across  KCs.  To  more  accurately  calculate  students’   IK ,             
we  limit  our  simulation  to  sessions  that  practiced  the  first  (i.e.,  the              
most   basic)   level   of   KCs,   involving   25   sessions.     

KD  was  the  difference  between  two  students'  IK,  and  denoted  as             
 ,  which  was  calculated  as  the  absolute  value  of  Sjk  j, )  ( k ∈ N          

differences   between   two   students’   IK:   

 ) | IK(S  )  IK (S  )|  KD(Sjk =   j ­   k  

Inspired  by  Huang  and  Wu’s  work  that  proposed  a  clustering  LGF             
method  that  considers  a  threshold  of  learner  heterogeneity   [49] ,           
this  work  similarly  considers  a  KD  threshold.  For  this  policy,  the             
required  KD  of  two  students  (S1,  S2)  should  be  a   minimum  of   α  (0                
<    α    <1,   step   =   0.1)   for   them   to   be   eligible   to   pair   up.     

Rationale.  The  heterogenous  pairing  policy  was  informed  by          
findings  from  user  research  with  math  teachers.  In  the  survey            
conducted  with  54  math  teachers,  we  found  the  most  common            
way  teachers  paired  students  was  pairing  those  who  have  a            

different  level  of  knowledge  (67%,  N  =  34)   [31] .  In  our  study,  we               
use  students’   mastery  of  knowledge  components  (i.e.,  targeted          
math  skills)  calculated  based  on  the  BKT  model  to  represent            
students’  knowledge.  In  a  systematic  literature  review  on  LGF  in            
CSCL,  Maqtary  et  al.  found  the  knowledge  level  is  the  most             
commonly  used  attribute  in  LGF,  which  they  claim  to  be  the  most              
suitable  and  important  attribute  to  form  educational  groups          
because   of   its   effects   on   the   group   process    [8] .     

There  is  a  range  of  research  that  shows  heterogeneous  grouping            
can  promote  positive  interdependence,  better  group  performance,         
and  effective  interactions   [1,49–52] .  Heterogeneous  group        
composition  not  only  enhances  elaborative  thinking,  but  also  leads           
learners  to  deeper  understanding,  better  reasoning  abilities,  and          
accuracy  in  long-term  retention   [49,50] .  Research  also  suggests          
that  collaborative  learning  with  heterogeneous  group  composition         
by  characteristics  such  as  gender,  ability,  achievement,         
social-economic   status   (SES),   or   race,   can   be   beneficial    [51] .     

3.1.4 Policy   4:   Knowledge   Similarity   Pairing   
Description.   Policy  4  is  analogous  to  Policy  3,  with  the  same             
definition  of  KD  and  IK  as  in  Section  3.1.3.  To  pair  students  with               
similar  knowledge,  using  the  same  calculation  as  Policy  3,  this            
policy  simulated  pairing  students  that  have   a  small  KD.  To  be             
eligible  for  students  to  form  a  pair  under  this  policy,  the  KD  of               
two  students  (S1,  S2)  should  be  less  than  or  equal  to   γ  (0  <   γ  <1,                   
step  =  0.1).  For  example,  when   γ   =  0.2,  two  students  with              
knowledge  of  0.6  and  0.75  (KD  =  0.15,  below   γ )  would  be              
eligible  to  pair,  but  another  pair  with  knowledge  of  respectively            
0.5   and   0.8   (KD   =   0.3,   above    γ )   would   not   be   eligible.   

Rationale.   Policy  4  was  inspired  by  prior  literature  and  informed            
by  user  research.  Literature  suggests  that  homogenous  groups  can           
be  beneficial  for  students’  learning.  For  example,  Fuchs  et  al.            
found  homogenous  dyads  generated  greater  cognitive  conflict  and          
produced  better  quality  work  than  heterogeneous  groups   [22] .          
Additionally,  among  54  teachers  we  surveyed,  43%  reported  that           
they  pair  students  with  a  similar  level  of  knowledge   [31] .  This             
was  the  third  most  popular  grouping  method  that  teachers           
commonly  adopt  (43%,  N  =  23),  following  strategies  of  pairing            
students  with  different  knowledge   (Policy  3)  and  pairing  students           
randomly     [31] .   

3.2 Metrics     
In  this  section,  we  describe  the  metrics  to  evaluate  the  pairing             
policies.  We  discuss  how  prior  work  informed  the  metric           
definitions,  and  how  different  metrics  could  be  suitable  to           
evaluate  different  policies.  We  build  on  Diana  et  al.’s  work   [29] ,             
who  defined  an  Efficiency  Index  (EI)  as  a  measure  of  a  pairing              
algorithm’s   performance,   specifically:   

EI   =     LowPerformingStudents
LowPerformingStudentsHelped BeingHelped/   

We  adapted  EI  into  two  metrics  of  interest  for  our  pairing  policies:              
Feasibility  Index  1  and  2.  FI 1   is  the  percentage  of  students  who              
can   be   paired   among   all   struggling   students   in   a   session.   

Feasibility   Index   -   1   (FI 1 )    =    TotalStrugglingStudents
StrugglingStudentsCouldBeHelped  

FI 2  is  the  ratio  of  paired  students  among  all  the  students  in  a               
session.   

Feasibility   Index   -   2   (FI 2 )    =    TotalStudents
StudentsPaired  

For  Policies  1  and  2:  Given  the  goal  to  pair  all  struggling  students               
in  the  session,  FI 1  was  a  suitable  measure  for  policy  feasibility,             
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showing  what  percentage  of  students  who  are  wheel-spinning  can           
get  help.   For  Policies  3  and  4:   Given  the  goal  to  pair  all  students                
in  the  session  who  satisfied  a  certain  KD,  FI 2  was  a  suitable              
measure  for  policy  feasibility,  as  it  calculated  the  percentage  of           
the   paired   students   out   of   the   total   students.     

3.3 SimPairing   Approach   
There  are  three  main  steps  in   SimPairing :  1)  data  cleaning  and             
preprocessing,  2)  policy  simulation,  and  3)  policy  evaluation.  The           
data  cleaning  and  preprocessing  step  consists  of  clustering  student           
transaction  data  into  meaningful  class  sessions  based  on  meta-data           
(e.g.,  student  transaction  timestamp,  classes),  and  examining  the          
distribution  of  students  per  class  session  to  detect  outliers.  The            
policy  simulation  step  takes  the  preprocessed  transactional  data          
and  applies  a  pairing  policy  to  class  sessions.  In  the  policy             
evaluation  step,  we  computed  the  policy  feasibility  based  on  the            
simulation  results,  using  the  corresponding  feasibility  index  (FI 1          
or  FI 2 ).  We  also  observed  how  the  FI  changed  by  varying  the              
parameters   (i.e.,   KD,   and   PR   rate).     
4.  ANALYSIS   AND   RESULTS   
4.1 Data   Cleaning   and   Preprocessing     
We  first  clustered  student  transaction  data  into  meaningful  class           
sessions,  based  on  timestamp,  student  ID,  and  class.  We           
visualized  student  engagement  for  all  class  sessions  based  on           
transaction  data,  which  allowed  us  to  ensure  that  the  sessions  we             
analyzed  had  a  continuous  student  interaction  with  the  system,           
and  helped  us  check  for  outliers  (e.g.,  unusually  short  sessions).            
We  excluded  four  outlier  sessions:  2  sessions  that  had  only  1             
student,  2  sessions  that  lasted  less  than  15  min,  as  sessions             
commonly   lasted   40   minutes   or   more.     

Transaction  data  of  a  total  of  68  sessions,  from  six  middle  school              
math  classes,  collected  from  2013  to  2014  were  used  for  policy             
simulation.  It  consists  of  894  students  and  197,234  rows  of            
transactions.  The  average  number  of  students  in  a  session  was  13             
( Min  =  5,   Max  =  24,   SD  =  25.3);  the  average  duration  of  class                
session  was  41.9  minutes  ( Min  =  10,   Max  =  81,   SD  =  9.42);  the                
average  number  of  sessions  in  a  class  was  11  ( Min  =  3,   Max  =  23,                 
SD    =   9.33).     

4.2 Overall   SimPairing   Analysis   
In  this  section,  we  present,  for  each  policy,  the  SimPairing            
analysis  and  the  results.  The  goal  for  this  analysis  was  to  evaluate              
the  overall  feasibility  of  the  four  pairing  policies  (RQ1)  and  see             
how   the   feasibility   depends   on   policy   parameters   (RQ2).     

4.2.1 Policy   1:   Struggle   with   Non-Struggle     
We  simulated  Policy  1  for  every  minute  in  a  given  class  session,              
which  returned  the  number  of  struggling  students  who  did  or  did             
not  have  a  potential  partner.  Based  on  this  we  calculated  the  FI 1              
for  every  minute  in  a  class  session.  We  then  averaged  FI 1  across              
the  length  of  each  class  session,  to  obtain  an  average  FI 1  for  a               
given  session.  We  refer  to  it  as  the  Average  Number  of  Struggling              
Students  (ANSS).  We  then  took  the  average  of  the  ANSS  across             
all  sessions,  to  obtain  an  overall  simulation  result  for  all  68             
sessions.  Figure  2  (green  area)  shows  the  average  FI 1  for  all             
sessions  was  0.94  ( SD  =  0.007).  Thus,  on  average,  across  time,             
94%  of  struggling  students  could  be  paired  with  a  partner  who             
was   not   struggling.     

4.2.2   Policy   2:   Pairing   with   Restriction     
The  Policy  2  simulation  process  is  similar  to  Policy  1,  with  the              
addition  of  enforcing  a  varying  PR  rate.  PR  rate  specifies  a             

percentage  of  students  in   Tutor  Pool  as  restricted  from  partnering            
with  students  in  the   Struggle  Pool .  We  computed  FI 1  with  varying             
PR  rates.  As  shown  in  Figure  2  (white  area),  FI 1  dropped  as  the               
PR  rate  increased,  as  expected.  However,  even  with  a  relatively            
high  PR  rate  of,  for  example,  0.4,  meaning,  40%  of  non-struggling             
students  are  restricted  from  working  with  struggling  students,  we           
still  get  a  high  average  FI 1  of  around  0.80,  (i.e.,  80%  of  struggling               
students  could  be  paired).  The  simulation  result  means  that           
teachers  can  afford  to  set  moderate  restrictions  for  pairings,           
without   compromising   too   much   of   the   pairing   policy’s   feasibility.   

  

Figure   2.   FI 1    for   Policies   1   and   2   

4.2.3 Policy   3:   Knowledge   Difference   Pairing   
Policy  3  requires   students  to  be  above  a  given   minimum  distance             
in  their  IK   to  be  eligible   for  pairing  up.  We  simulated  this  policy               
by  computing  FI 2  with  varying  values  for  the  KD  distance            
threshold   α.   We  simulated  these  sessions  to  calculate  the  FI 2 .  As  in              
Figure  3  (blue  line),  FI 2  dropped  rather  quickly  as  the  required             
knowledge  distance  threshold  went  up.  For  example,  the          
simulation  results  show  that  if  we  want  to  ensure  an  average  of              
80%  of  paired  ratio,  the  KD  threshold  should  be  set  to  less  than               
approximately   0.1   (i.e.,   a   very   strict   bar).   

  

Figure   3.   FI 2    for   Policies   3   and   4     

4.2.4 Policy   4:   Knowledge   Similarity   Pairing   
Policy  4  requires   students  to  be  below  a   maximum  distance  in             
their  IK   to  be  eligible   for  being  paired  up.  We  simulated  this              
policy  and  computed  FI 2  with  different  values  for  the  KD  distance             
ceiling   γ.   We  found  that  this  policy  would  work  well  even  with  a               
low,  strict  ceiling  for  the  knowledge  distance  (Figure  3,  red  line).             
For  example,  when   γ  was  0.1,  (i.e.,  two  students’  knowledge            
distance  can  be  at  most  0.1  for  them  to  be  teamed  up),  the               
average  FI 2  was  still  0.81  ( SD  =  0.08)  across  the  class  sessions              
involved.  When   γ   was  set  to  above  0.3,  95%  of  students  in  class               
could   find   an   eligible   partner.     
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4.3 Class-Level   Variance   Analysis   
We  explored  how  the  four  pairing  policies  worked  for  different            
classes  and  whether  the  pairing  policies  should  be  adapted  to            
class-level   differences   (RQ3).     

4.3.1 Class-level   Differences   
Based  on  Echeverria  et  al.’s  insight  that  pairing  support  for            
teachers  should  ideally  be  adaptable  to  different  classroom          
contexts   [30] ,  we  analyzed,  first,  if  there  were  systematic           
differences  between  different  classroom  contexts,  and  second,  if          
these  differences  relate  to  policy  feasibility  differences.  The  main           
context  variables  taken  into  account  by  our  pairing  policies  are            
students’  struggle  status  (Policies  1  and  2)  and   initial  knowledge            
(Policies  3  and  4).  We  thus  analyzed  if  the  classes  had  different              
struggle   statuses    and    initial   knowledge   (IK) .   

  

Figure   4.   ANSS   (a)   and   ASSRs   (b)   for   Six   Classes     

Student  struggle  status :  We  first  calculated  the  number  of           
students  in  wheel-spinning  status  for  every  minute  within  each           
class  session.  We  then  computed  ANSS  (section  4.2.1),  and  the            
Average  struggling  students  ratio  (ASSR) =   ANSS  /  total  number  of            
students  in  the  session .  Histograms  for  ANSS  and  ASSR  for  all             
sessions  show  they  follow  the  normal  distribution.  We  conducted           
one-way  ANOVAs,  respectively  taking  the   ANSS   and   ASSR  as           
outcome  variables  and   Class  as  the  explanatory  variable.  The           
results  showed  a  significant  difference  for  ANSS  among  classes           
(Figure  4,  a)  [ F (5,62)  =  4.34,   p  <  0.001].  Post  hoc  Tukey  tests               
showed  C3  and  C1  have  significant  differences  ( diff  =  2.55,   p  <              
0.001).  All   post  hoc  pairwise  tests  conducted  in  this  study  were             
corrected  for  multiple  comparisons.  The  ANOVA  result  indicated          
that  the  classes  differed  with  marginal  significance  [ F   (5,62)  =            
1.94, p  <  0.1]  (Figure  4,  b).   Post  hoc  Tukey  tests  showed  a               
marginal  difference  in  the  ASRR  between  C3  and  C2  ( diff  =  0.10,              
p  =  0.08).  Thus,  there  were  class-level  differences  with  respect  to             
students’   struggle   status.   

  
Figure   5.   Initial   Knowledge   for   Six   Classes     

Initial  Knowledge:  We  calculated  each  student’s  IK  for  all  KCs            
involved  (defined  in  section  3.1.3).  The  histogram  for  all  students’            
IK  shows  it  follows  the  normal  distribution.  We  then  conducted            
one-way  ANOVAs  using   IK  as  the  outcome  variable,  and   Class  as             
the  categorical  explanatory  variable.  The  results  indicated  a          
significant  effect  of  classes  on  IK  for  the  six  classes  [ F (5,  320)  =               

5.895, p  <  0.05],  and  the  IK  for  the  six  classes  were  not  all  equal.                 
From  the   post  hoc  Tukey  tests  comparing  knowledge  level           
between  each  pair  of  the  classes,  we  saw  significant  differences            
between  classes  C2  and  C1  ( diff  =   0.12,   p  <  0.05),  C3  and  C2  ( diff                 
=  -0.095,   p  <  0.05),  and  C4  and  C2  ( diff  =  -0.189,   p  <  0.05).  C2                  
had  the  highest  median  of  student  IK  (Figure  5),  and  a             
significantly   higher   level   of   IK   than   C1   and   C3,   and   C4.     

Having  characterized  struggle  and  IK  at  a  class  level,  we  compare             
the   policies’   feasibility   across   classes.   

4.3.2 Policies   1   and   2     
Policy  1  had  an  average  FI 1  above  0.85  (Figure  6,  green  area).  We               
statistically  compare  if  Policy  1  behaved  differently  for  each  class            
and  see  whether  this  policy  should  be  adaptable  for  each  class.             
Using  session  as  the  unit  of  analysis,  we  conducted  a  one-way             
ANOVA  using  the   FI 1  for  each  session  as  the  outcome  variable,             
and   Class  as  the  categorical  explanatory  variable.  The  results           
indicated  that  there  was  not  a  significant  effect  of  class  on  FI 1              
[ F (5,62)  =  1.24,   p  =  0.30].  This  result  showed  that  Policy  1  was               
relatively  consistent  across  the  six  classes,  suggesting  that  Policy           
1   may   not   need   to   be   adaptable   to   classes.     

For  Policy  2,  with  increasing  PR  rate,  the  FI 1  decreases  at  a              
different  speed  for  different  classes,  indicating  some  degree  of           
class-level  difference  (Figure  6,  white  area).  We  conducted          
ANCOVAs  with   Class  being  the  categorical  explanatory  variable,          
the   PR  rate  as  the  quantitative  explanatory  variable,  and  FI 1  being             
the  quantitative  outcome  variable.  We  first  compared  the  model           
with  and  without  a  Class  ×  PR  rate  interaction  term.  The  model              
comparison  result  showed  no  evidence  of  an  interaction  effect           
among  explanatory  variables  ( F  =  1.63,   p  =  0.15).  We  thus             
perform  ANCOVA  using  an  additive  model.  Results  indicated          
there  were  eight  pairs  of  classes  that  had  significant  differences  in             
FI 1  for  this  pairing  policy  ( p   <  0.05).  The  eight  pairs  were  C1-C2,               
C1-C3,   C1-C6,   C2-C3,   C2-C6,   C3-C5,   C4-C6,   and   C5-C6.   

   

   Figure   6.   FI 1    of   Policies   1   and   2   for   Six   Classes     

Next,  we  looked  at  possible  relations  between  the  class-level           
feasibility  variance  of  policies  1  and  2,  and  the  class-level            
differences  in   struggle  status  (section  4.3.1).  We  found  that  for            
classes  that  differed  with  respect  to  the  number  of  struggling            
students  (C3-C2)  and  the  average  ratio  of  student  struggle           
(C3-C1),  the  feasibility  of  Policy  2  tended  to  differ  as  well.  This              
finding  suggests  that  1)  Policy  2  may  benefit  from  being  adaptable             
to  class-level  characteristics,  and  2)  variables  characterizing  a          
class’s  struggle  status  (e.g.,  ANSS  and  ASSR)  may  have  value  in             
indicating  how  Policy  2  should  be  adaptable.  On  the  other  hand,             
the  feasibility  of  Policy  2  was  different  in  Class  6  compared  to  all               
other  classes  except  C3,  yet  Class  6  did  not  differ  in  number  or               
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ratio  of  struggle  students  from  other  classes.  Thus,  students’           
struggle  status  alone  may  not  provide  enough  information  to  fully            
decide   whether   and   how   P2   should   be   adaptable.   

4.3.3 Policies   3   and   4     
For  Policy  3,  the  classes  shared  a  downward  trend  in  FI 2  with              
different  slopes  for  each  class  (Figure  7).  For  example,  when  the             
KD  was  0.1,  we  saw  the  FI 2  values  for  class  6  (green  dotted-line)               
drop  to  as  low  as  50%,  but  the  other  five  classes  have  FI 2  above                
75%.  This  shows  that  policy  feasibility  may  be  differently           
affected   by   the   knowledge   heterogeneity   threshold   in   each   class.   

  

Figure   7.   FI 2    of   Pairing   Policy   3   for   Six   Different   Classes     

To  test  whether  Policy  3  behaved  differently  for  each  class,  we             
conducted  ANCOVAs  with   Class  as  a  categorical  explanatory          
variable,   KD  as  a  quantitative  explanatory  variable,  and  FI 2  in            
each  session  as  the  outcome  variable.  We  first  compared  the            
model  with  and  without  a  Class  ×  KD  interaction  term.  Results             
indicated  no  evidence  supporting  the  interaction  effect  ( F   =  0.81,            
p  =  0.54).  We  performed  an  ANCOVA  using  an  additive  model.             
Results  indicated  that  three  pairs  of  classes  had  significant           
differences  in  FI 2  ( p   <  0.05),  and  that  two  pairs  of  classes  were               
marginally  different  ( p   <  0.1).  They  were  C1-C3,  C3-C5,  C3-C6            
( p    <   0.05)   and     C2-C5,   C2-C6     ( p    <   0.1)   .   

  

Figure   8.   FI 2    of   Policy   4   for   Six   Different   Classes     

For  Policy  4  (Figure  8),  the  six  classes  were  more  convergent  and              
clustered  closer  together  than  Policy  3  (Figure  7).  This  indicated            
the  class  level  difference  may  not  be  as  strong  as  that  in  Policy  3,                
which  our  ANCOVA  tests  confirmed.  Similar  to  Policy  3,  we            
compared  whether  Policy  4  behaved  differently  for  each  class.  We            
conducted  an  ANCOVA,  with   Class  as  a  categorical  explanatory           
variable,   KD  as  a  quantitative  explanatory  variable,  and  FI 2  as  the             
outcome  variable.  We  first  compared  the  model  with  and  without            
a  Class  ×  KD  interaction  term.  No  evidence  supporting  interaction            
effect  among  explanatory  variables  ( F  =  0.13,   p  =  0.99).  We  then              

performed  ANCOVA  using  an  additive  model.  Results  indicated          
that  there  were  no  significant  differences  in  FI 2  ( p  >  0.05)  for              
Policy  4.  We  confirmed  a  smaller  class-level  difference  as           
compared  to  Policy  3,  in  KD’s  effect  on  policy  feasibility.  From             
this  result,  we  conclude  Policy  4  performed  quite  consistently           
across  classes,  and  no  significant  evidence  showed  that  Policy  4            
should   be   adaptable   to   classes.     

Analogous  to  policies  1  and  2,  we  then  looked  at  relations             
between  feasibility  variance  for  policies  3  and  4  and  class-level  IK             
characteristics  in  Section  4.3.1.  We  observed  significant         
differences  in  IK  between  C2-C1,  C3-C2,  and  C4-C2.  However,           
the  differences  in  IK  for  two  classes  cannot  accurately  predict            
whether  they  had  different  feasibility  in  Policy  3  and  Policy  4,  and              
other  classroom  characteristics  may  be  needed  to  accurately          
represent   the   class-variance   of   feasibility.     
4.4 Analysis   of   Contrasting   Cases     
We  conducted  a  case  study  to  understand  how  policies  may            
perform  dynamically  (e.g.,  across  every  minute  during  class  time)           
and  differently  in  different  class  sessions  (RQ3).  For  every  policy,            
we  selected  a   typical  case  and  an   extreme  case  in  terms  of  the               
policy  feasibility  simulation  results.  For  the   typical  case  for  all            
four  policies,  we  selected  a  session  (Session  1,  C1)  that  had  an              
average  length  of  time  (i.e.,  41  minutes),  an  average  number  of             
students  (i.e.  13  students).  In  the  session,  policies  performed           
typically  (as  by  visually  comparing  the  simulation  results  of  each            
policy  for  all  sessions).  As  for  the   extreme  case ,  we  examined  the              
simulation  results  for  each  policy  on  each  session,  and  identified            
different  sessions  where  each  policy  performed  surprisingly  or          
differently  from  the  common  trend.  The  extreme  case  can  be  a             
worst  case  scenario  (Policies  1,  2  and  3)  or  a  case  that  works               
surprisingly  well  (Policy  4).  Below,  we  present  the  analysis  and            
results   for   these   contrasting   cases   for   each   policy.   

4.4.1 Policy   1   
In  Policy  1,  we  chose  the  extreme  case  (Session  19,  C3)  as  it  was                
a  session  that  this  policy  has  the  worst  performance  on,  and  thus  it               
had  the  most  different  FI 1  trend,  from  examining  visualizations  of            
FI 1  for  all  sessions  involved.  We  compare  the  typical  case  and             
extreme  case  by  first  contextualizing  the  struggle  status  of  the  two             
cases,  and  comparing  the  visualization  of  feasibility  (for  each           
minute)  in  the  two  sessions.  Figure  9  depicts  the   ratio  of             
struggling  students  (among  all  students  in  the  class  session)  for            
the  contrasting  cases.  For  Policy  1  simulation  (Figure  10),  we            
obtained,  for  every  minute  in  the  class  session,  three  values            
regarding  policy  feasibility:  the  number  of  students  who  were  not            
wheel-spinning  on  any  KCs  (green  bar),  the  number  of  students            
who  were  struggling,  and   had  a  potential  partner  (yellow  bar),  and             
the  number  of  students  who  were  struggling  and   did  not  have  a              
potential   partner   (red   bar).     

  
Figure   9.   Struggle   Ratio   of   a   Typical   (a)   and   Extreme   (b)   Case   
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Typical  Case.   In  the  typical  case,  students  started  to  struggle  after             
10  minutes,  as  shown  in  Figure  9  (a)  and  Figure  10  (a).  In  all                
instances  of  wheel-spinning,  a  potential  partner  was  available  (i.e.,           
FI 1  =  1  for  any  minute  in  this  session).  The  typical  case  aligned               
with  the  overall  simulation  results  from  Policy  1,  which  showed            
that,  for  an  average  class,  most  struggling  students  could  find            
potential   partners,   the   minute   they   struggled.   

Extreme  Case.   Among  all  sessions  in  our  dataset,  the  per-minute            
struggle  ratio  rarely  goes  over  50%.  By  contrast,  the  extreme  case             
session  had  more  struggling  students  than  non-struggling  students          
in  27  out  of  46  minutes,  indicated  by  a  struggle  ratio  of  above  0.5,                
as  shown  in  Figure  9  (b).  This  resulted  in  lower  feasibility  for              
Policy  1.  The  extreme  case  differs  from  the  typical  case  in  two              
aspects.  First,  unlike  the  typical  case,  almost  as  soon  as  the  class              
began,  students  started  wheel-spinning.  Second,  there  were         
wheel-spinning  students  without  potential  partners  in  almost  every          
minute   of   the   session   (indicated   by   red   bars   in   Figure   10   (b)).     

  

Figure   10.   Policy   1   for   a   Typical   (a)   and   an   Extreme   Case   (b)   

4.4.2 Policy   2   
Same  as  in  Policy  1,  we  chose  this  extreme  case  (Session  19,  C3)               
as  this  policy  had  the  worst  performance  on  this  session.  This             
session  also  had  the  most  different  FI 1  trend.  We  simulated  Policy             
2  and  calculated  FI 1  for  every  minute  in  the  two  contrasting  class              
sessions.  Figure  11  showed  the  typical  and  extreme  case,  of  how             
FI 1  changed  when  different  PR  rates  were  simulated.  We  plotted            
four   different   PR   rates   in   the   figure.     

Typical  Case.   We  saw  two  patterns  in  the  Policy  2  simulation  for              
the  typical  case.  Firstly,  the  policy  was  typically  robust  in            
maintaining  high  feasibility  with  a  non-zero  (albeit  low)  PR  rate.            
In  Figure  11(a),  lines  with  PR  rate  0.1  and  PR  rate  0  completely               
overlapped.  With  these  PR  rates,  there  were  no  instances  of            
struggle  without  a  potential  partner  (i.e.,  feasibility  was  1  across            
the  whole  session).  Secondly,  when  the  PR  rate  was  high  (0.5  or              
0.8),  FI 1  exhibited  a  sharp  decrease,  when  there  was  an  increase  in              
student  struggle.  For  instance,  in  Figure  9  (a)  at  minute  19,  the              
struggle  ratio  increased  from  0.07  to  0.23,  as  the  number  of             
wheel-spinning  students  went  from  1  to  3.  In  Figure  11  (a)  at  the               
same  time  (t  =  19  min),  we  saw  a  sharp  decrease  in  FI 1  when  the                 
PR   rate   was   0.8.     

Extreme  Case.   As  shown  in  Figure  11  (b),  the  extreme  case             
exhibited  very  different  patterns  compared  to  the  typical  case,           
mainly  in  three  aspects.  First,  given  it  had  a  higher  struggle  ratio,              
even  when  there  was  no  pairing  restriction  (i.e.,  PR  rate  =  0),  we               
observed  the  FI 1  was  not  always  1  or  even  close  to  1,  as  we  saw  in                  
the  typical  case.  Second,  even  a  slight  PR  rate  of  0.1  further              
worsened  the  policy  feasibility  and  lowered  the  FI 1 ,  unlike  the            
typical  case  which  showed  resistance  to  a  low  PR  rate.  Third,  if  a               
class  had  a  higher  struggle  ratio,  the  PR  rate  had  a  stronger  effect               

on  worsening  FI,  than  for  a  session  that  had  a  lower  struggle  ratio.               
This  effect  was  especially  prominent  when  the  PR  rate  was  high             
(e.g.,  0.5  or  0.8).  This  contrast  means  that  the  instructors  may             
afford  to  set  a  higher  PR  rate  without  affecting  the  FI 1  too  much,               
for  a  common  session  that  has  a  moderate  struggle  ratio.            
However,  the  instructors  may  need  to  consider  lowering  the  PR            
rate   for   a   high-struggle   session.     

  

Figure   11.   Policy   2   for   a   Typical   (a)   and   Extreme   (b)   Case   

4.4.3 Policy   3   
In  Figure  12  we  present  the  results  for  Policy  3  simulation  on  two               
contrasting  cases,  plotting  FI 2  for  every  step  of  the  knowledge            
distance  threshold  for  that  session.  The  extreme  case  was  chosen            
for  having  the  most  different  FI 2  trend,  from  examining           
visualizations   of   FI 2    for   all   sessions   involved.   

Typical  Case.  As  shown  in  Figure  12  (a),  for  the  typical  case,  the               
FI 2  dropped  gradually  as  the  required  KD  threshold  increased,           
which  aligned  with  the  overall  simulation  result.  To  pair  students            
based  on  different  knowledge  (Policy  3),  the  instructors  need  to            
balance  the  required  heterogeneity  (i.e.,  higher  knowledge         
distance  threshold)  and  the  desired  paired  ratio  of  the  whole  class.             
In  this  typical  case,  if  a  teacher  selects  a  threshold  of  0.5  or               
higher,   none   (0%)   of   students   in   the   class   session   would   be   paired.    

  
Figure   12.   Policy   3   for   a   Typical   (a)   and   Extreme   (b)   Case   

Extreme  Case.   As  shown  in  Figure  12  (b),  for  the  extreme  case              
(Session  1,  C5),   while  the  downward  trend  was  similar,  we            
observed  a  more  rapid  decrease  as  compared  to  the  typical  case.             
Specifically,  the  FI 2  dropped  to  only  20%  when  the  KD  threshold             
was  as  low  as  0.2,  compared  to  60%  of  FI 2  at  the  same  KD                
threshold  in  the  typical  case.  This  comparison  indicated  that  some            
class  sessions  were  more  heavily  influenced  by  the  parameter  of            
the  required  knowledge  distance  threshold,  and  the  effect  may           
differ   from   session   to   session.     

4.4.4 Policy   4   
From  the  previous  analyses,  we  noted  that  Policy  4  performed            
reliably  and  similarly  across  classes,  making  it  harder  to  select  an             
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extreme  case  or  a  worst  case  scenario.  We  selected  a  session             
where  Policy  4  performed  surprisingly  well  (Session  2,  C3).  In            
Figure  13  we  visualized  Policy  4  simulation  on  two  contrasting            
cases,  plotting  FI 2  for  every  step  of  the  knowledge  distance  ceiling             
γ    for   that   session.   

Typical  Case.   The  tradeoff  between  knowledge  homogeneity  and          
policy  feasibility  was  less  prominent  than  under  Policy  3.  This            
means  that  instructors  can  afford  to  choose  a  stricter  (i.e.,  lower)             
ceiling  so  students  have  a  very  small  knowledge  distance,  and  still             
achieve  high  feasibility  (FI 2 ).  For  example,  in  Figure  12  (a),  we             
saw  that  even  if  the  instructor  chooses  a  very  strict  threshold  of   γ               
=   0.1,    nearly   95%   of   students   were   able   to   find   a   potential   partner.      

  

Figure   13.   Policy   4   for   a   Typical   (a)   and   Extreme   (b)   Case   

Extreme  Case.   In  Figure  13  (b),  even  when  the  KD  ceiling  was              
set  to  0  (which  means  students  must  have  the  same  level  of              
mastery  to  be  paired  up),  40%  of  the  students  can  still  be  paired,               
unlike  typical  cases  where  usually  no  two  students  have  the  exact             
same  IK.  Another  noteworthy  distinction  is,  while  the  typical  case            
did  not  reach  FI 2  =  1  with  any  ceiling  of  KD,  the  extreme  case                
successfully  paired  all  students  (FI 2  =  1)  with  a  relatively  low             
ceiling   of   0.2.     

5. DISCUSSION     
In  line  with  previous  LGF  research   [8] ,  this  work  introduces  four             
dynamic  LGF  policies  contextualized  in  ITS  and  grounded  in  user            
research  with  K-12  teachers   [10,30] .  In  this  section,  we  discuss            
our  main  findings  for  research  questions,  grounded  design          
recommendation  for  pairing  orchestration  tools,  and  future         
research   direction   for   dynamic   LGF.     

5.1 Main   Findings   for   Research   Questions   
Regarding  the  feasibility  of  the  pairing  policies  (RQ1)  and  how            
the  feasibility  may  depend  on  parameters  of  the  pairing  policies            
(RQ2),  we  found  that   averaged  across  time  and  sessions,  it  is             
generally  feasible  (93.6%)  to  team  up  struggling  students  with           
non-struggling  students,  the  minute  they  struggle  (Policy  1).  This           
result  remains  true  even  when  a  high  percentage  of  students  is             
deemed  ineligible  for  being  teamed  up  with  struggling  students           
(Policy  2).  Specifically,  the  average  feasibility  remains  above  80%           
of  struggling  students  across  all  sessions  unless  the  pairing           
restriction  rate  is  above  40%.  However,  as  we  see  in  our  case              
study,  there  can  be  sessions  and  moments  with  high  struggle  ratios             
(hence,  low  feasibility)  when  using  Policy  1.  Relatedly,  sessions           
with  very  high  struggle  seem  more  susceptible  to  the  influence  of             
the   PR   rate   in   Policy   2   than   a   typical   session.   

When  pairing  students  based  on  whether  their  knowledge  levels           
are  different  (Policy  3)  or  similar  (Policy  4),  the  policy  feasibility             
is  highly  dependent  on  the  required  KD.  For  Policy  3,  there  is  a               
tradeoff  between  the  desired  heterogeneity  (i.e.,  the  knowledge          
distance  threshold)  and  the  policy’s  feasibility.  This  means          
instructors  cannot  set  a  high  threshold  for  the  KD  if  they  want  to               
pair  most  students.  In  Policy  4,  the  corresponding  tradeoff          

(between  homogeneity  in  knowledge  and  policy  feasibility)  is  less           
prominent.  Instructors  may  choose  a  stricter  ceiling  for  students’           
similarity  in  knowledge  levels  and  still  achieve  high  policy           
feasibility.  In  the  case  study,  we  found  that  the  policy  feasibility  in              
different  sessions  can  be  differently  influenced  by  the  required           
KD  threshold  or  ceiling,  depending  on  how  closely  clustered           
together  students’  IK  is.  For  a  given,  fixed  KD  threshold  (ceiling),             
a  class  of  students  closely  clustered  IK  may  result  in  higher             
feasibility  for  Policy  4  and  lower  feasibility  for  Policy  3.            
Presumably,  the  feasibility  of  these  policies  also  depends  on  class            
size.  For  example,  from  our  analysis,  we  hypothesize  that  for            
larger  classes,  the  feasibility  of  pairing  policies  may  change  less            
drastically,  when  the  policy  parameters  change  or  as  the  class            
progresses.   

Regarding  policy  feasibility  by  class  (RQ3),  our  results  show  no            
significant  difference  among  classes  for  Policy  1  (Struggle  with           
non-struggle)  or  Policy  4  (Knowledge  similarity  pairing).         
However,  we  observed  significant  differences  among  classes  for          
Policy  2  (Pairing  with  restriction)  and  Policy  3  (Knowledge           
difference  pairing).  Although  different  classes  have  significantly         
different  initial  knowledge  and  struggle  status,  these  differences  in           
IK  and  struggle  status  are  not  always  correlated  with  the            
feasibility  of  policies  for  that  class.  For  example,  classes  that  have             
different  IK  may  not  always  have  different  feasibility  for  Policy  3             
or   4.   

5.2 Recommendations   for   Tool   Design   
The  current  study  aims  to  inform  the  design  of  an  orchestration             
tool  that  can  help  pair  students  dynamically.  We  aim  to  lessen             
teachers’  orchestration  load  when  managing   fluid  social         
transitions .  Such  a  tool  plays  a  key  role  in  our  vision  for  the  smart                
classroom  of  the  future,  in  which  students  alternate  fluidly           
between  individual  and  collaborative  learning.  Here,  we  highlight          
three  design  implications  grounded  in  findings  from  the  current           
work.  These  design  implications  may  inform  tools  that  aim  to  help             
teachers  manage  fluid  social  transitions,  and  ensure  the  feasibility           
of  dynamic  LGF  policies.  It  may  also  offer  inspirations,  more            
broadly,  for  orchestration  tools  that  aim  to  team  up  students  in             
CSCL.    

Firstly,  technology  could  be  used  to  automatically  adjust  the           
parameters  used  in  LGF  policies.  Our  study  suggests  that  the  four             
pairing  policies  studied  provide  a  promising  foundation  for  an           
orchestration  tool,  but  greater  flexibility  is  needed  to  deal  with  a             
wide  range  of  circumstances  than  each  individual  policy  provides.           
While  some  policies  (e.g.,  Policies  1  and  2)  explored  in  this  study,              
have  a  good  chance  of  working  well  during  many  class  sessions,             
any  given  instantiation  of  a  policy  (with  fixed  parameter  settings)            
does  not  fully  deal  with  class  variability  and  extreme  cases.  One             
way  to  compensate  might  be  to  have  the  tool  automatically  loosen             
policy  parameters  as  needed.  For  example,  the  tool  may  gradually            
loosen  the  KD  threshold  or  ceiling  for  policies  3  and  4,  when  it               
senses   the   pairing   feasibility   to   be   low.     

Secondly,  technology  could  use  multiple  LGF  criteria  in          
cascading  fashion,  to  achieve  high  feasibility.  Specifically,  the          
tool  may  start  out  using  the  ideal  pairing  policies,  and  then             
iteratively  try  “more  loose”  criteria  if  the  previous  one  fails  to  pair              
up  all  students.  For  example,  the  tool  may  first  attempt  to  team  up               
students  based  on  struggle  on  specific  KCs  -  a  criterion  that  is              
more  specific  (and  restrictive)  than  Policy  1,  but  one  that  could             
potentially  be  more  effective  for  helping  struggling  students.  If           
that  fails,  then  it  might  pair  up  students  based  on  their  general              
struggle  (Policy  1).  If  that  fails  again  then  the  tool  could  try  to               
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pair  students  based  on  knowledge  distance.  The  tool  could  also            
customize  its  pairing  criteria  such  as  using  students  characteristics           
that   make   the   most   sense   in   the   given   classroom   context.     

Lastly,   technology  could  be  used  to  recommend  LGF  policies  or             
policy  parameters  with  high  feasibility  to  teachers.  Instead  of           
relying  solely  on  the  teachers  to  make  pairing  decisions,   the  tool             
may  adopt   SimPairing  to  automatically  calculate  and  maximize          
policies’  feasibility  based  on  classroom  contexts  and  recommend          
them  to  teachers.  For  example,  if  the  tool  determined,  using            
historical  transaction  data,  that  students  in  a  given  class  have            
consistently  low  struggling  ratios  and  fewer  wheel-spinning         
students  than  non-wheel-spinning  ones,  it  may  advise  that          
teachers  adopt  pairing  Policy  1  as  it  has  high  feasibility.  In             
addition,  our  findings  open  up  the  potential  for  the  tool   to  help              
teachers  make  informed  decisions  about  parameter  configuration,         
by  notifying  them  of  expected  feasibility.  For  example,  if  a            
teacher  severely  restricts  the  acceptable  pairings,  the  tool  could           
alert  teachers  of  the  low  feasibility  of  the  pairing  policy,  and  ask  if               
the  teacher  might  want  to  loosen  the  restrictions.  Running  such            
simulations  and  providing  notification  can  inform  the  teachers          
about  the  outcomes  of  the  policy  feasibility  in  their  classroom,            
prior  to  implementing  them.  This  may  prevent  teachers  from           
choosing  policy  configurations  that  are  misaligned  with  their          
goals.     

5.3 Future   Research   Directions   of   Dynamic   LGF     
Building  on  our  investigation,  we  outline  four  potential  directions           
for  how  future  research  could  further  explore  dynamic  LGF           
policies.     

Firstly ,  in  addition  to  inter-session  pairing  based  on  knowledge           
distance  (Policies  3  and  4),  future  work  could  explore           
intra-session  grouping  based  on  knowledge  level,  which  allows          
forming  pairings  during  the  learning  process.  Researchers  should          
explore  how  it  would  differ  from  our  inter-session  grouping  and            
which   approach   better   supports   teachers’   needs.     

Secondly ,  the  current  policies  identify  the  students  to  be           
wheel-spinning  if  they  struggle  on   any   of  the  KCs.  Future  work             
could  explore  whether  teachers  prefer  to  pair  students  based  on            
their  KC-specific  struggle  status.  For  example,  to  help  a  student            
struggling  on  the  KC   combine  constant  terms   in  equation  solving,            
teachers  may  prefer  to  find  a  partner  who  has  already  mastered  the              
same  KC,  or  at  minimum  is  not  struggling  on  the  same  KC;  they               
may  (or  may  not)  might  find  it  acceptable,   if  the  partner  is              
struggling  on  another  KC,  e.g.,   divide  by  variable  coefficient .           
Relatedly,  teaming  up  students  who  are  both  struggling,  but           
struggling  on  different  knowledge  components,  may  have         
benefits.  Such  a  pair  of  students  may  have  complementary           
knowledge  and  strength,  and  may  help  each  other  get  unstuck  and             
stop  wheel-spinning.  Such  pairing  criterion  opens  up  good          
opportunities  for  tutor-tutee  role-switching  and  mutual  peer         
tutoring.   

Thirdly ,  analogous  to  pairing  based  on  KC-specific  struggle          
status,  instead  of  using  the  mean  of  students’  mastery  on  different             
KCs  to  represent  their  knowledge,  future  work  could  explore  to            
what  extent   pairing  students  based  on  KC-specific  knowledge          
distance  can  be  more  effective,  feasible,  or  preferable  for  teachers.            
KC-specific  knowledge  pairing  might  be  useful  for  Policy  3,  if            
teachers  want  two  students  who  have  very  different  skill  levels  on             
one  specific  KC  so  that  the  one  with  higher  mastery  on  that  KC               
can   tutor   the   one   with   lower   mastery.     

Lastly ,  in  addition  to  knowledge  level  and  struggle  status,  which            
this  work  investigated  for  dynamic  grouping,  future  work  can           
investigate   other  student  characteristics  (e.g.,  history  of         
collaborative  episodes,  preferences  for  working  individually  or         
collaboratively)  or  other   sources  for  knowledge  level  (e.g.,  exams           
or  quizzes  score)  for  dynamic  pairing.  It  may  also  be  especially             
promising  to  further  study  pairing  based  on  dynamic  student           
behaviors  that  can  be  detected  real-time  by  ITS  from  interaction            
data,   to   allow   fluid   social   transitions   and   dynamic   pairing.     

5.4 Limitations   
There  is  uncertainty  in  the   SimPairing  process  in  that  we  do  not              
have  a  good  way  of  estimating  how  long  any  given  collaborative             
episode  will  last.  Thus,   SimPairing  does  not  simulate  students’           
being  unavailable  for  pairing  while  they  are  working          
collaboratively,  until  they  finish  the  collaborative  episode.  There          
is  some  reason  to  think  that  the  resulting  inaccuracy  in  the             
feasibility  results  is  not  severe,  as  argued,  but  we  do  not  have  a               
good  way  of  investigating  that  issue  in  depth.  Additionally,           
feasibility  of  pairing  policies,  while  important,  is  just  one  piece  of             
the  puzzle.  It  is  important,  as  well,  to  understand  if  students   learn              
better  with  these  pairing  policies  (effectiveness).  Future  research          
should  validate  these  pairing  policies  in  classroom  studies,  testing           
both   their   effectiveness   and   feasibility.     

6. CONCLUSION   
We  study  the  feasibility  of  pairing  policies  in  the  context  of  ITS,              
to  inform  the  design  of  a  tool  for  orchestrating  fluid  transitions             
between  individual  and  collaborative  learning.  Our  findings  show          
that  on  average,  dynamically  pairing  students  based  on  their           
in-the-moment  wheel-spinning  status  results  in  good  pairing         
feasibility  for  struggling  students  on  average,  even  with  moderate           
restrictions  on  the  allowed  pairings.  We  also  found  the  trade-off            
between  the   required  knowledge  distance  and   the  policy          
feasibility,  is  more  prominent  in  heterogeneous  grouping  than  in           
homogeneous  grouping.  However,  any  given  instantiation  of  a          
policy  (with  fixed  parameter  settings)  does  not  fully  deal  with            
class  variability  and  extreme  cases,  as  policies  have  different           
feasibility  for  different  classes  and  sessions.  This  suggests          
optimization  for  policy  feasibility  (e.g.,  through  gradually         
loosening  parameters)  or  classroom  customization  need  to  be          
taken  into  consideration.  Methodologically,  this  research  extends         
previous  work  (e.g.,  Replay  Enactments)  that  used  authentic  data           
and  algorithms  as  design  materials  to  augment  designers’          
intuitions   for   designing   future   tools    [27] .     

This  work  has  several  novel  elements.  First,  using  the   SimPairing            
approach,  our  work  explores  the   feasibility  of  LGF  policies           
derived  from  user  research  with  math  teachers.  In  addition,  to  the             
best  of  our  knowledge,  this  is  the  first  study  that  considers             
students’  in-the-moment  wheel-spinning  status  in  dynamic  pairing         
policies.  Finally,  our  work  addresses  a  gap  in  the  literature  for             
dynamic  intra-session  LGF   [1]  and  envisions  how  instructors          
and/or  an  orchestration  tool  will  customize  pairing  policies  and           
parameters  to  specific  classroom  contexts,  which  prior  work          
argued   to   be   especially   helpful   in   the   LGF    process    [1,8] .     

In  sum,  theoretically,  this  work  bridges  the  literature  gap  on  its             
investigation  of  the   feasibility  of  user-centered  dynamic  pairing          
policies.  Practically,  we  contribute  grounded  design  directions  for          
pairing  orchestration  tools,  and   SimPairing  as  an  approach,  to           
evaluate  dynamic  LGF  policies,  which  may  generalize  to  other           
online   educational   software   that   have   transaction   data.     
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