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ABSTRACT 
Student modeling within intelligent tutoring systems is a 
task largely driven by binary models that predict student 
knowledge or next problem correctness (i.e., Knowledge 
Tracing (KT)). However, using a binary construct for 
student assessment often causes researchers to overlook the 
feedback innate to these platforms. The present study 
considers a novel method of tabling an algorithmically 
determined partial credit score and problem difficulty bin 
for each student’s current problem to predict both binary 
and partial next problem correctness. This study was 
conducted using log files from ASSISTments, an adaptive 
mathematics tutor, from the 2012-2013 school year. The 
dataset consisted of 338,297 problem logs linked to 15,253 
unique student identification numbers. Findings suggest 
that an efficiently tabled model considering partial credit 
and problem difficulty performs about as well as KT on 
binary predictions of next problem correctness. This 
method provides the groundwork for modifying KT in an 
attempt to optimize student modeling. 
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INTRODUCTION 
Modeling student learning within an intelligent tutoring 
system can be a daunting task.  In order to make predictions 
about a student’s knowledge or their next problem 
correctness, models must decipher noisy input and isolate 
only those features that define the probability of knowledge 
or learning. As such, designers of intelligent tutoring 

systems have largely relied on Knowledge Tracing (KT), as 
presented by Corbett & Anderson [2], to model the 
probability of student learning at real time within popular 
systems such as Cognitive Tutor [5]. Other methods, such 
Performance Factors Analysis, seek to model learning when 
considering overlapping knowledge components (i.e., 
skills) and individualized student metrics [11], offering an 
alternative to KT in certain circumstances.   

Despite the popularity of KT and PFA, the standard 
models rely on binary input to establish predictions of 
students’ knowledge state or performance, failing to 
consider continuous metrics that would better individualize 
the model across students or skills. Expansion in the field 
educational data mining has since lead to a number of 
alternative or supplementary learning models. For instance, 
researchers have attempted to impart individualized prior 
knowledge nodes for each student [8], to supplement KT 
with a flexible metric for item difficulty [9], to ensemble 
various methods of binning student performance (i.e., 
partial credit) with standard KT models [12], and to 
consider the sequence of a student’s actions within the tutor 
to help predict next problem correctness [3]. 

Without modifying KT or PFA directly, adding 
parameters to student learning models can be a limited 
approach. Tabling methods that quickly establish maximum 
likelihood probabilities have previously been used by Wang 
& Heffernan [12, 13] to test and optimize various potential 
adaptations to KT. Following in this process, the present 
study uses a tabling method to lay the groundwork for 
future modifications to KT that will allow for predictions of 
next problem correctness using the partial credit score and 
difficulty estimate of the current item. While previous work 
has shown the benefit of ensembling tabling methods with 
KT, we hope to use the findings presented herein to modify 
KT directly, as it has previously been suggested that 
ensembling can be a rather sensitive approach [4].  

Perhaps standard learning models rely on binary 
correctness as measured by a student’s first response at 
each skill opportunity (i.e., a sequence of correct and 
incorrect responses based on a student’s first action within 
each problem) due to the complexity of accurately and 
universally defining an algorithm that validates partial 
credit scores within intelligent tutoring systems.  Within the  
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majority of current learning models, a student would be 
penalized with a score of zero for taking advantage of the 
tutoring that plays an integral role in these platforms. Yet 
the primary goal of most intelligent tutoring systems is not 
solely to assess student knowledge, but to simultaneously 
promote student learning through adaptive feedback, 
making binary correctness a stale concept. Students often 
require multiple attempts to solve a problem or request 
system feedback for guidance, thus assigning value to the 
concept of partial credit. Attali and Powers [1] suggested 
the benefits of considering partial credit when predicting 
learning outcomes in adaptive environments, as evidenced 
by the modification of standardized tests to allow partial 
credit when predicting GRE scores.  

Within ASSISTments, an adaptive mathematics tutor, a 
naïve model of partial credit scoring was previously 
established by Wang and Heffernan [12], termed the 
“Assistance” Model. This method calculated maximum 
likelihood probabilities for next problem correctness using 
a twelve-parameter table built from binning students’ hint 
usage and attempt count.  In this manner, the authors used 
system features to indirectly gauge a partial credit metric 
that would help predict binary performance.   

The present study provides methodological evidence 
that student modeling can be enhanced through the use of 
algorithmically derived partial credit scores and a binned 
metric of problem difficulty. We first use tabling method (a 
probabilistic approach employing maximum likelihood 
estimations) that considers the partial credit score of the 
current problem to predict both binary and partial next 
problem correctness. We also establish a more complex 
prediction table that considers both partial credit and 
problem difficulty. Through this novel concept, we hope to 
show that students can ultimately gain knowledge from a 
problem even if they fail to earn full credit. Our findings 
argue for the design of a modified KT model that is 
sensitive to a continuous measure of partial credit rather 
than binary input, and that isolates a known level of 
problem difficulty for each question. We seek to answer the 
following research questions: 
1. Does an algorithmically determined partial credit score 

outperform binary metrics when used to predict next 
problem correctness? 

2. Does a binned metric of current problem difficulty 
(e.g., Low, Medium, or High difficulty) provide a valid 
prediction of next problem correctness? 

3. Can current problem difficulty supplement partial 
credit score to outperform similar modeling 
techniques? 

DATASET 
The dataset used for this analysis was compiled from 
problem logs from the ASSISTments platform during the 
2012-2013 school year. The original file included roughly 
1.5 million rows of problem level data (i.e., each row 
detailed all logged actions for one problem for one student). 
For this study, we chose to analyze only the top ten most 

densely populated knowledge components. Attributes of 
these skills are further explained in Table 1. The dataset 
examined here has been made publicly available at [7]. 

In order to properly calculate partial credit, 
approximately 5,000 rows were removed due to a lack of 
logged end time, meaning that these problems had never 
been properly completed. Using the platform’s current 
grading method, which is based on the students’ first 
response, these logs carry binary correctness scores. 
However, as the problem was ultimately considered 
incomplete, partial credit could not be determined with 
certainty and the logs were therefore excluded from 
analysis. Further, the analysis presented herein reports only 
on main problems. Scaffolding problems, a feedback style 
within the ASSISTments platform typically used to break a 
problem down into steps or to provide worked examples, 
were excluded from the final dataset. The decision to work 
with main problems was based in part on the justification 
made by Pardos & Heffernan [9] when using a similar 
dataset from the ASSISTments platform. As scaffolding 
problems are guided, they offer a less accurate view of skill 
knowledge and skew performance data within an 
opportunity based analysis. An analysis of the remaining 
dataset revealed that only 0.3% of first actions were 
scaffold requests, further supporting the intuition that the 
removal of scaffolding data was appropriate.  

Due to the time constraints involved in running multiple 
models with five fold cross-validation (explained further in 
the Compared Models and Model Testing and Training 
sections), we chose to restrict the dataset to a maximum of 
15 opportunities per student per skill. This reduced the 
dataset by 46,680 rows, primarily removing students who 
were excessively struggling and those gaming the system; 
the majority of students were unaffected by this refinement. 

The resulting dataset consisted of 338,297 problem logs 
representative of 15,253 unique student identification 
numbers. On average, each student identifier linked to 
approximately 3.3 skills. Further exploration of this dataset 
revealed that it was comprised of 7,363 unique problems. A 
total of 3,787 unique assignments were made by 417 
teachers spanning 231 schools. The skill content ranged 
from grades 6-8 as shown in Table 1. The majority of 
logged problems (over 90%) were completed by students 
who ‘mastered’ or finished the full assignment from which 
the problem originated. 

Three types of questions were represented in the 
dataset. The majority of problems logged, 84.3%, were 
‘mathematical expressions,’ a problem type that accepts 
any answer that is mathematically equivalent to the correct 
answer (i.e., answers of 1/2 and 0.5 are both accurate).  In 
contrast, 12.5% of problems logged were ‘fill-in,’ a 
problem type that requires the student to input an exact 
string matching the preset correct response (i.e., if 1/2 was 
the preset answer, 0.5 would be incorrect). The remaining 
3.2% of problems logged in the dataset were ‘multiple 
choice,’ featuring two or more answers available for 
selection.



 

Skill ID  Definition  Grade Level # Logs (Rows) % Resulting Dataset 

277 Addition and Subtraction of Integers 7 44,731 13.2 

311 Equation Solving with Two or Fewer Steps 7 44,005 13.0 

280 Addition and Subtraction of Fractions 6 42,550 12.6 

276 Multiplication and Division of Positive Decimals 6 37,033 10.9 

47 Conversion of Fractions, Decimals, and Percentages 6 32,741 9.7 

67 Multiplication of Fractions 6 31,716 9.4 

61 Division of Fractions 6 28,809 8.5 

278 Addition and Subtraction of Positive Decimals 6 27,301 8.1 

310 Order of Operations 8 25,132 7.4 

79 Proportions 7 24,279 7.2 

Table 1. Skill details and distribution in resulting dataset

Further assessment of students’ responses provided insight 
into their first actions, attempt counts, and hint usage.  For 
95.5% of logged problems, the student’s first action was to 
make an answer attempt. Using ASSISTments’ current 
scoring scheme, these attempts would receive binary scores 
of either correct (1) or incorrect (0).  Within this subgroup 
of logged problems, 24% of the problems were marked as 
incorrect while 76% were marked as correct.  This suggests 
that a partial credit metric could provide benefit for 
approximately one quarter of attempted questions.  Of the 
remaining logged problems, 4.2% represented first action 
hint requests, and 0.3% represented first action scaffolding 
requests.  

Given that partial credit scores for the present study are 
algorithmically derived from an assessment of the student’s 
attempt count and hint usage for each logged problem, these 
variables were examined thoroughly.  Analysis of attempt 
counts across logged problems revealed a minimum of 0 
and a maximum of 496, with a mean of 1.47 and a standard 
deviation of 2.23.  For logs that were marked as incorrect 
based on first action, mean attempts rose to 2.70 with a 
standard deviation of 3.99.  Within the full dataset, students 
made a total of 496,533 attempts.  

Hint counts were also analyzed across logged problems 
and compared to the total number of hints available for each 
problem.  Each problem had at least one hint, usually 
serving as the bottom out hint (i.e., it provided the answer).  
The average number of hints available per problem was 
3.38, with a standard deviation of 0.88.  The majority of 
problems had three hints (38.9%) or four hints (33.4%), 
with the maximum number of hints available in any 
problem topping off at seven.  Across all logged problems, 
a total of 1,090,225 hints were available.  Of the available 

hints, students only used a total of 167,371, or roughly 
15.4%.  The average number of hints used was 0.49 with a 
standard deviation of 1.20.  For problem logs in which 
students answered incorrectly on their first attempt, 55.8% 
of available hints were utilized. Information particular to 
the bottom out hint showed that within problems initially 
answered incorrectly, only 14.5% of students proceeded to 
the bottom out hint.  Thus, when struggling, the majority of 
students used the adaptive feedback inherent to the tutoring 
system in an appropriate manner.  This provides further 
evidence for consideration of valid partial credit metrics. 

Figure 1 provides a screenshot of a typical problem 
within the ASSISTments tutor. Specifically, this problem is 
a representation of the second most densely populated skill 
in the 2012-2013 ASSISTments log file: “Equation Solving 
with Two or Fewer Steps.” This skill is exemplified, rather 
than highlighting the top skill, “Addition and Subtraction of 
Integers,” as the problem provides a more robust example 
of the system’s tutoring feedback.  As shown in Figure 1, 
the student is presented with the equation and asked to 
solve for the missing variable.  He or she can make an 
attempt to solve the problem, or may ask for the first of 
three hints.  The hints increase in specificity, in an attempt 
to guide the student without providing excess assistance.  
The first hint shown in Figure 1 provides a worked example 
of a similar problem solving for the missing variable, x.  If 
the student is unable to proceed using only the worked 
example, he or she can request the second and third hints as 
needed.  The third hint in Figure 1 is the bottom out hint; it 
provides the correct answer (“-24”) in an attempt to keep 
the student from getting stuck in the assignment, as it is not 
possible to skip problems and return at a later point as one 
can with traditional bookwork. 



 
Figure 1. An example problem featuring three hints for the 

skill “Equation Solving with Two or Fewer Steps” 

COMPARED MODELS 
The following subsections explain the design and brief 
history (when appropriate) of the five models compared in 
the current study. All five models are primarily designed to 
predict binary next problem correctness. For permitting 
models, we present predictions of partial credit next 
problem correctness using continuous probabilities for 
additional consideration. 

Partial Credit Predicting Next Problem Correctness 
A naïve partial credit algorithm was derived by the 
ASSISTments design team in hopes of providing the system 

with partial credit scoring capabilities based on students’ 
attempt count and feedback usage.  Scores were determined 
subjectively based on teacher input and a conceptual 
understanding of how students typically behave within the 
tutoring platform. For this study, the algorithm was altered 
slightly to consider multiple problem types and to account 
for the students’ first action.  For instance, if a student 
asked for tutoring feedback without making an attempt to 
solve the problem, we felt that a larger penalty was merited.  

The resulting algorithm used to define partial credit 
scores is depicted in Figure 2. Rather than establishing a 
deduction method on a per hint or per attempt basis as 
shown in previous work [12], the algorithm presented in 
Figure 2 places each logged problem into one of five partial 
credit bins (0, .03, 0.6, 0.7, 0.8, 1.0) by considering the 
logged data pertaining to first response type (attempt = 0, 
hint request = 1, scaffold request = 2), attempt count, and 
hint count.  

For example, if a student makes only one attempt and is 
correct without requiring feedback, they earn full credit (a 
score of 1). This is similar to the notion of binary 
correctness on first response that ASSISTments currently 
employs.  However, in the current method, all other first 
actions equate to an incorrect answer (i.e., requesting a hint 
or scaffold, or making a first attempt that is incorrect would 
both earn the student a score of 0).  

As shown in Figure 2, after ruling out a ‘correct’ 
response, the partial credit algorithm considers whether the 
student requested a scaffold before even making an attempt.  
This behavior would suggest that either the student was not 
actually trying to answer the problem, or that he or she was 
struggling conceptually. Thus, rather than earning no credit, 
the student is only discounted to a score of 0.6.     
 
IF type = algebra OR type = fill_in 
     IF attempt = 1 AND correct = 1 AND hint_count = 0 
          THEN 1 
     ELSIF first_action = 2  
          THEN .6 
     ELSIF attempt < 3 AND hint_count = 0  
          THEN .8 
     ELSIF (attempt <= 3 AND hint=0)  
          OR (hint_count = 1 AND bottom_hint != 1)  
          THEN .7 
     ELSIF (attempt < 5 AND bottom_hint != 1)  
          OR (hint_count > 1 AND bottom_hint != 1)  
          THEN .3 
     ELSE 0 
 
IF type = multiple_choice  
     IF correct = 1 
          THEN 1 
     ELSE 0 

Figure 2. Algorithm used to determine Partial Credit score 
based on first response, attempt count, and hint usage 

 



Regardless of the student’s first action, if he or she uses 
less than three attempts and does not request any hints, they 
earn slightly more, with a score of 0.8.  The next bin is 
marked by students who have three or fewer attempts and 
have not used a hint, or those who have asked for only one 
hint and were not provided the answer (i.e., if a student’s 
first action is to request a hint that is not the bottom out 
hint, they would fall into this bin). These students earn a 
score of 0.7.  If the student can solve the problem within 5 
attempts without seeing the bottom out hint, or if he or she 
uses multiple hints without ultimately reaching the bottom 
out hint, their partial credit score is 0.3.  Finally, for 
students who use five or more attempts, or for those that see 
the answer, the problem is marked incorrect (a score of 0).  

For multiple-choice questions the algorithm reverts to 
binary correctness because this type of problem does not 
usually provide feedback and guessing can be far more 
prevalent and consequential.  Thus, if a student fails to get 
the correct answer on their first attempt, he or she receives a 
score of 0.  This method was employed to keep the problem 
type from gaining an unfair advantage within the dataset.  
For instance, using the algorithm applied to other problem 
types, a student guessing through a multiple-choice problem 
with only four responses would still receive a score of 0.3. 

The full algorithm was run across the dataset and partial 
credit scores were obtained for each logged problem. These 
partial credit scores were then used to define a pivot table to 
predict averages for both binary and partial next problem 
correctness, using maximum likelihood estimation. Results 
are presented in Table 2. For all parameter Tables, the 
number of logged problems falling into respective bins is 
depicted by sample size, n. The distribution of the data 
suggests that slight improvements could be made to the 
partial credit algorithm as few students fell into the 0.6 bin. 
 Of all available ‘next problem’ data, only 14.7% of logs 
had partial credit values between 0 and 1.  Thus, 85.3% of 
students would be insured by the platform’s current method 
of binary correctness. This suggests that any significant 
finding among the models considered in the present study  
 

Partial Credit n Binary Partial 

0 45,735 0.5062 0.5634 

0.3 6,471 0.5902 0.7438 

0.6 940 0.3660 0.7948 

0.7 12,077 0.6921 0.8396 

0.8 22,797 0.7085 0.8668 

1 200,287 0.8050 0.8785 

Table 2. Parameters for predicting Binary and Partial Next 
Problem Correctness from current problem Partial Credit 

 

would be quite intriguing, as only a small portion of the 
sample is actually receiving the ‘partial credit’ treatment.   

It should be noted that a potential problem inherent to 
this tabling method (apparent in all tabled models in the 
present study) is the inability to predict correctness on a 
student’s first opportunity within a skill, as there is no 
preceding problem data. This essentially causes the loss of 
49,990 rows of data representing first problem predictions.  
Thus, sample sizes in Tables 2, 3, and 4 total 288,307 logs 
rather than 338,297. 

Problem Difficulty Predicting Next Problem Correctness 
A continuous metric of problem difficulty was calculated 
by retrieving data from all problems logged in the platform 
that were created before August 2012 (i.e., prior to the first 
timestamp in the modeling dataset). For each unique 
problem, all existing logs were averaged and a percentage 
of correct responses were determined.  The resulting value 
offers an inverse metric of the problem’s difficulty level.  
For instance, a problem on which students averaged 80% on 
all previous opportunities would not be considered very 
difficult.  This metric was then binned into Low, Medium, 
and High difficulties by defining Medium difficulty as 
scores falling within +/- 0.5 standard deviations from the 
mean.  Considering the inverse nature of the metric, High 
difficulty problems therefore had continuous values below 
this cut off, and Low difficulty problems had continuous 
values above this cutoff. 

The bins for current problem difficulty were used in a 
maximum likelihood probability table to predict averages 
for both binary and partial scores for next problem 
correctness. Resulting parameters are presented in Table 3.  
 

Difficulty n Binary Partial 

Low 91,712 0.7764 0.8465 

Medium 107,901 0.7452 0.8297 

High 88,694 0.6928 0.7895 

Table 3. Parameters predicting Binary and Partial Next 
Problem Correctness from current problem Difficulty 

Partial Credit and Problem Difficulty Predicting Next 
Problem Correctness 
Based on the definitions of partial credit and problem 
difficulty defined in the singular models above, our goal 
was to create a novel model that used a tabling approach to 
consider partial credit together with problem difficulty to 
make predictions about next problem correctness.  For each 
logged problem, partial credit score and problem difficulty 
were referenced to determine parameters for both binary 
and partial credit next problem correctness. Resulting 
probabilities are presented in Table 4. 
 



  High     Medium     Low 

Partial Credit n Binary Partial    n Binary Partial    n Binary Partial 

0 8,357 0.5130 0.5621    16,307 0.5027 0.5622    21,071 0.5062 0.5650 

0.3 1,107 0.6035 0.7401    2,332 0.6017 0.7548    3,032 0.5766 0.7367 

0.6 29 0.5902 0.8508    236 0.3388 0.7897    675 0.3661 0.7943 

0.7 2,829 0.6971 0.8288    4,888 0.6987 0.8463    4,360 0.6816 0.8391 

0.8 5,094 0.7770 0.8753    8,342 0.7354 0.8712    9,361 0.6473 0.8581 

1 74,296 0.8116 0.8787    75,796 0.8072 0.8841    50,195 0.7921 0.8697 

Table 4. Parameters predicting Binary and Partial Next Problem Correctness from Partial Credit and Problem Difficulty 

Knowledge Tracing 
Knowledge Tracing (KT) is perhaps the most common 
method for modeling student performance.  The standard 
KT model [2] has successfully proven itself as the basis for 
modeling student knowledge within intelligent tutoring 
systems [5] and thereby serves as a stable comparison for 
new work.   

As shown in Figure 3, the standard model of KT is a 
Bayesian Network comprised of four learned parameters. 
Two parameters represent student knowledge (prior 
knowledge and learn rate) and two parameters represent 
student performance (guess rate and slip rate).  The 
standard KT model is binary in that skills can only be in a 
‘learned’ or ‘unlearned’ state, and questions can only be 
‘correct’ or ‘incorrect.’  The model is updated with each 
skill opportunity based on the student’s performance by 
using the following equation as defined by Corbett & 
Anderson [2]:  

 

 
 

 
Figure 3. The standard Knowledge Tracing model with all 

learned parameters and nodes explained 

 

Forgetting does not factor into the standard KT model 
when observing individual skills, as guess and slip 
parameters are thought to account for incorrect answers 
within the students’ sequence of opportunities. For further 
information regarding the details of KT, refer to [2]. 

For this study, KT analysis was performed using the 
Bayes Net Toolbox (BNT), a popular open-source code for 
fitting directed graphical models within MATLAB [6]. 

Performance Factors Analysis 
Performance Factors Analysis (PFA) was proposed as an 
alternative to KT by Pavlik, Cen, and Koedinger [11].  The 
method can model problems with multiple skills and has 
been shown to accurately model and select practice within 
adaptive systems. PFA was derived from Learning Factors 
Analysis (LFA), an approach that considers a parameter for 
student ability, a parameter for the skill’s difficulty, and a 
learning rate for each skill. While PFA still considers skill 
difficulty, β, the model improves upon LFA by considering 
the frequency of both correct and incorrect answers in a 
student’s response pattern, rather than simply assessing the 
frequency of skill practice. Thus, PFA predictions are 
updated with each skill opportunity based on a cumulative 
history of the student’s successes (weighted by γ) and 
failures (weighted by ρ), as depicted in the following 
equation defined by Pavlik, Cen, and Koedinger [11]: 

 
The log-likelihood (m) attained through this equation can 
then be passed through an exponential function to find the 
probability that the student will get the item correct. This 
model suggests that learning is defined by more than just 
skill practice, and that performance is strongly tied to skill 
acquisition.  

For this study, PFA was performed using unpublished 
code within MATLAB. With properly formatted data, the 
analysis can also be performed using logistic regression in 
common statistical packages like IBM’s SPSS.  



MODEL TRAINING AND TESTING 
Five-fold cross validation was used to train and test each 
model.  In order to perform five-fold cross validation within 
our tabled models, the dataset was divided using a modulo 
operation on each student’s unique identification number.  
Thus, for every student in the file, student id mod 5 was 
called, returning a remainder falling into bins from 0 to 4, 
thereby assigning students to folds. The distribution of the 
resulting folds was roughly equivalent, as shown in Table 5. 
With 15,253 unique student identification numbers in the 
dataset, the largest fold had 3,082 student ids and the 
smallest fold had 2,996 student ids, leaving a range of 86 
and a standard deviation of 33.7. 

Within each iteration of the cross-validation process, the 
model was trained on approximately 80% of the data and 
tested on the 20% that had been held out. Thus, when 
trained on folds 1, 2, 3, and 4 (80% of the data) the model 
would impart predictions on fold 0 (the held out 20%). In 
this manner, for each tabling method described in Section 3, 
table parameters were learned using four training folds and 
predictions were made on the held out fold.  The process 
was repeated for all folds, thus resulting in five probability 
tables for each prediction type (i.e., five ‘training’ tables for 
partial credit predicting binary next problem correctness). 
Using an extensive formula in Microsoft Excel, the 
predicted averages were then applied back to each logged 
problem respective of test fold. For predictions of binary 
next problem correctness, rather than arbitrarily selecting a 
cutoff point for classifying binary correctness (e.g., simply 
using values greater than 0.5 to convey ‘1’), we instead 
subtracted the prediction directly from the actual binary 
result.  Thus, when predicting next problem correctness 
using partial credit alone, if the next problem is actually 
correct using binary standard, the resulting residual is 
calculated as: 1.0000 - 0.7085 = 0.2915. In this manner, 
residuals were calculated for each log entry in each test fold 
that contained data for next problem correctness.  

A similar method of five fold cross-validation was 
coded into the KT and PFA analyses within MATLAB. 
Without modification, KT and PFA are not intended to 
accurately predict partial credit next question correctness, 
and as such we have saved these analyses for future work. 
 

Fold Unique Students # Logs % Dataset 

0 3074 67,715 20.0 

1 3046 68,081 20.1 

2 3082 68,739 20.3 

3 3054 67,996 20.1 

4 2996 65,766 19.4 

Table 5. Distribution of data across five folds 

 

To compare our tabled models with KT and PFA, slight 
modifications were made to the standard modeling 
procedures.  Unlike tabling, these models carry the benefit 
of being able to predict performance on a student’s first 
opportunity within a skill. Based on a ‘prior knowledge’ 
parameter, KT is able to predict the student’s initial 
knowledge state, K1, and therefore their performance on the 
first question, Q1.  Similarly, the equation for PFA defaults 
a prediction of the skill’s difficulty parameter, β, as the 
student’s initial state. These values essentially define a 
baseline for the student’s knowledge, prior to any practice.  
Thus, in order to provide a fair comparison to tabled 
models, these first opportunity predictions were removed by 
shifting predictions to align with our ‘next problem’ 
analysis. Within KT, all subsequent skill opportunities were 
predicted using Expectation Maximization, a standard 
method for parameter learning within KT.  The model was 
supplied the following initial parameters as ‘ground truths’ 
to begin the hill climbing process: prior knowledge = 0.30, 
learn rate = 0.20, forget rate = 0.00, guess rate = 0.20, and 
slip rate = 0.08. Within PFA, all subsequent skill 
opportunities were predicted by updating the equation 
presented in the previous section. These modifications 
resulted in the same number of data points for each model, 
providing grounds for fair comparison of the models. 

Further, as noted briefly in the Dataset section, all 
models were restricted to 15 predicted opportunities per 
student per skill. This method was chosen largely to reduce 
the computation time required to fit KT using five-fold 
cross validation on such an extensive dataset. By capping 
the opportunity count, analysis time was reduced to 
approximately 20 hours.  Other models were far less time 
intensive, all taking under three hours to arrive at 
predictions. Setting this restriction also served to reduce 
potential skewing in student level analyses by removing 
outliers with extensive opportunity counts.  

RESULTS 
All models were compared using the fit statistics of RMSE, 
R2, AUC, and model accuracy. As the tabled models were 
not restricted to binary input, fit statistics were also found 
for consideration of modeling partial credit next problem 
correctness. 

For each model, these statistics were found at the 
problem log level, the skill level, and the student level 
where merited. These statistics were then averaged across 
the level of analysis, resulting in the findings presented in 
Table 6, Table 7, and Table 8, respectively. Thus, at the 
problem log level, fit statistics were determined overall for 
the 288,307 predictions, without consideration of student or 
skill before being averaged across all problems. At the skill 
level, ten sets of fit statistics were determined (one set for 
each skill), which were then averaged across skills.  At the 
student level, 15,253 sets of fit statistics were determined 
(one set for each student), which were then averaged across 
students.  The latter two procedures were intended to 
 



  
 Binary NPC  Partial NPC 

Model RMSE R2 AUC Accuracy  RMSE R2 AUC Accuracy 
Partial Credit + Problem Difficulty 0.4241 0.0674 0.6365 0.7310  0.3326 0.1062 0.5395 0.7298 
Partial Credit 0.4244 0.0660 0.6309 0.7309  0.3327 0.1060 0.5351 0.7298 
Problem Difficulty 0.4379 0.0057 0.5464 0.7300  0.3511 0.0043 0.3953 0.7298 
Knowledge Tracing 0.4240 0.0680 0.6621 0.7298  -- -- -- -- 
Performance Factors Analysis 0.4227 0.0738 0.6644 0.7485  -- -- -- -- 

Table 6. Problem Level Average RMSE, R2, AUC, and Accuracy for Models Predicting Next Problem Correctness (NPC) 

 

 Binary NPC  Partial NPC 
Model RMSE R2 AUC Accuracy  RMSE R2 AUC Accuracy 

Partial Credit + Problem Difficulty 0.4224 0.0670 0.6300 0.7414  0.3284 0.1032 0.5130 0.7399 
Partial Credit 0.4229 0.0656 0.6290 0.7414  0.3284 0.1031 0.5103 0.7399 
Problem Difficulty 0.4364 0.0046 0.5323 0.7402  0.3473 0.0037 0.3560 0.7399 
Knowledge Tracing 0.4225 0.0602 0.6500 0.7466  -- -- -- -- 
Performance Factors Analysis 0.4212 0.0664 0.6506 0.7499  -- -- -- -- 

Table 7. Skill Level Average RMSE, R2, AUC, and Accuracy for Models Predicting Next Problem Correctness (NPC) 
 

 Binary NPC  Partial NPC 
Model RMSE* R2 AUC Accuracy  RMSE* R2 AUC Accuracy 

Partial Credit + Problem Difficulty 0.3864 0.1027 0.5431 0.7684  0.2702 0.1108 0.3593 0.7674 
Partial Credit 0.3866 0.0994 0.5392 0.7683  0.2701 0.1057 0.3619 0.7674 
Problem Difficulty 0.4064 0.0829 0.5219 0.7676  0.2941 0.0851 0.3145 0.7674 
Knowledge Tracing 0.3897 0.1057 0.4425 0.7729  -- -- -- -- 
Performance Factors Analysis 0.3882 0.0970 0.5003 0.7754  -- -- -- -- 
*R2, AUC, and Accuracy are reported with less data than RMSE due to the nature of student level data.  

 Table 8. Student Level Average RMSE, R2, AUC, and Accuracy for Models Predicting Next Problem Correctness (NPC) 

 
properly weight skill and students based on their 
contribution to the dataset, thereby improving measures of 
model fit.  

Student level statistics of RMSE were calculated based 
on all predictions.  However, it should be noted that 
measures of R2, AUC, and model accuracy could not be 
calculated for students with less than three skill 
opportunities.  This discrepancy should affect all models 
equally, and thus we provide these measures for 
comparison in Table 8 with the caveat that they should not 
be directly compared to measures of student level RMSE.  

DISCUSSION 
The fit statistics for both the problem log and skill level 
generalizations paint very similar pictures of the relative 
success of our tabling method.  The combined Partial Credit 
and Problem Difficulty model performs about as well as KT 
at both levels of analysis. At these levels, PFA appears to 
be the ‘best’ model for predicting binary next problem 

correctness, showing the lowest RMSE and highest AUC 
and model accuracy. However, we feel that a simple tabling 
method that can be performed with extreme efficiency yet 
still meets the standards of KT is well worth discussion. 

Our first research question, “Does an algorithmically 
determined partial credit score outperform binary metrics 
when used to predict next problem correctness?” was 
answered with mixed results for binary predictions. 
Considering problem log level analysis, while KT and PFA 
attained fit statistics relative to those accepted in the field, 
our tabling method for partial credit considered alone only 
slightly underperformed these standards (RMSE = 0.4244, 
R2 = 0.0660, AUC = 0.6309, Accuracy = 0.7309).  
However, when considering student level analysis, our 
partial credit tabling method outperformed both KT and 
PFA in terms of RMSE and AUC. To confirm that these 
findings were significantly different, we used a two-tailed 
paired samples t-test for RMSE comparison at both the 
student level and skill level.  RMSEs obtained using our 



tabling method with partial credit alone were significantly 
different from those found using KT at the student level, t = 
5.65, p < .001, but were not significantly different at the 
skill level, t = -1.65, p = 0.133.  Thus, it is difficult to tell if 
this finding is truly significant. 

Our second research question, “Does a binned metric of 
current problem difficulty (e.g., Low, Medium, or High 
difficulty) provide a valid prediction of next problem 
correctness?” was answered by assessing the “Problem 
Difficulty” model.  When taken alone, problem difficulty is 
not very helpful in predicting next problem correctness.  
This was the worst performing model across all 
granularities of analysis.  A paired samples t-test was again 
used to compare student level and skill level RMSEs to 
those observed using the KT model. RMSEs obtained using 
our tabling method for Problem Difficulty were 
significantly worse than those found using KT at the 
student level, t = -41.27, p < .001, as well as those found 
using KT at the skill level, t = -9.93, p < .001.  Of the tabled 
models, this model was also the lowest performing model 
when considering predictions of partial next credit 
correctness, drastically underperforming models that 
considered current problem partial credit score. Thus, we 
argue that problem difficulty alone is a poor metric for 
modeling student performance. 

Our final research question, “Can current problem 
difficulty supplement partial credit score to outperform 
similar modeling techniques?” was answered by assessing 
the fit statistics for the combined “Partial Credit + Problem 
Difficulty” model. At the student level, this model 
outperformed both KT and PFA on predictions of binary 
next problem correctness as measured by RMSE (0.3864) 
and AUC (0.5431). This finding was significant using a 
two-tailed paired samples t-test comparing student level 
RMSEs, t = 6.50, p < .001, but was not significant when 
considering skill level RMSEs, t = -1.34, p = 0.214.  
Despite the low performance of the Problem Difficulty 
model, this combined model consistently outperformed 
partial credit when modeled alone, suggesting possible 
mediation effects.  Using a paired t-test comparison, this 
difference was significant at the student level, t = -4.55, p < 
.001, but was not significantly reliable at the skill level, t = 
-1.03, p = .310.  As such, it is difficult to quantify the 
potentially negative impact of considering problem 
difficulty when using partial credit to model next problem 
correctness.   

Model fit indices for the prediction of partial credit 
scores for next problem correctness are provided for further 
consideration, but do not specifically link to our research 
questions.  Drastic improvements in model fit suggest that 
intelligent tutoring systems should incorporate partial credit 
scoring as it has the potential to enhance the precision of 
student modeling.  In the current study, these findings 
cannot be compared to standard KT and PFA models that 
utilize binary input and essentially predict binary 
performance.  Future research will incorporate modifying 

these models to predict continuous partial credit metrics, 
thus allowing for further comparison. 

CONTRIBUTION 
The results from the present study suggest that considering 
partial credit for each skill opportunity can enhance the 
accuracy of student modeling. While the concept of using a 
tabling method to establish partial credit metrics that predict 
binary correctness is not novel [12], tabling a model based 
on algorithmically determined partial credit is, to the best of 
our awareness, a unique approach.  This method was shown 
to perform about as well as KT when predicting binary next 
problem correctness.  We feel that this finding still provides 
a significant contribution to the field, as KT is far more 
computationally expensive. Our KT analysis took 
approximately 20 hours to run, while all tabling methods 
were conducted by hand in less than three hours.  While this 
is impressive in and of itself, the second author was then 
able to implement the tabling method presented here within 
the ASSISTments test database, arriving at a replication of 
our predictions in less than two minutes.  If automated in 
such a manner, our Partial Credit + Problem Difficulty 
model could predict next problem performance on par with 
KT in approximately one 600th of the time. This increase in 
efficiency could prove essential for intelligent tutoring 
systems that currently incorporate KT models to adaptively 
control student skill practice. 

Further, the partial credit model was novel in its ability 
to predict partial credit scores for next problem correctness, 
thereby enhancing model fit even further. In future 
research, we hope to modify the standard KT and PFA 
models to allow for the prediction of continuous variables 
for comparison. We also anticipate directly comparing our 
partial credit model to the “Assistance” Model established 
in previous research [12].  The “Assistance” Model cited a 
clear cut, albeit subjective, method for the provision of 
partial credit scores. As the tabling technique employed 
made predictions on a continuous scale rather than by 
binning partial credit as we have shown in the present 
study, comparison was not presently possible without 
ensembling our findings with standard KT measures [12].  
However, as alternating ensembling techniques lead to 
inconsistent results [4], we argue for direct modifications 
within KT that will allow the model to learn partial credit 
scores at each opportunity and to gauge a student’s 
knowledge state on a continuum. A similar model was 
previously suggested by Pardos & Heffernan [10], but to 
our knowledge has never been implemented. Thus, the 
present study lays the groundwork for future research in 
modifying KT.  

The assessment of models considering problem 
difficulty also provides a contribution to the modeling 
literature.  It seems intuitive that problem difficulty should 
influence a students’ ability to answer the current problem 
correctly, and that it likely influences their knowledge state 
and next problem correctness.  The findings here suggest 
 



that problem difficulty alone, when binned into generic 
groups of Low, Medium, and High difficulty, does not 
provide accurate models of next problem correctness.  
However, problem difficulty appeared to enhance modeling 
when coupled with partial credit in comparison to partial 
credit modeled alone, although this difference was not 
shown to be significant.  Still, we believe that some 
measure of problem difficulty is important to consider when 
modeling student learning. Future research should 
investigate using a continuous metric or designing an 
alternative binning approach for this feature.  Future work 
should also consider devising an approach to remedy the 
issue of being unable to predict a student’s first opportunity 
within a skill when using tabled models. Possible solutions 
include per student estimates of prior knowledge based on 
performance on other skills within the tutor, or simply 
implementing problem difficulty as a measure of likelihood 
for accuracy. 

Despite the impressive performance of our partial credit 
model, we retain skepticism in regards to the subjective 
nature of our partial credit algorithm.  As multiple arbitrary 
partial credit models have now been designed to assess log 
data from the ASSISTments platform [12], we argue for the 
design of a data driven algorithm that considers and 
compares a myriad of logged features.  Future work will 
examine a grid search of possible hint and attempt penalties 
to examine the sensitivity of the approach described herein. 
The data files of intelligent tutoring system are rich with 
information pertaining to students’ actions, including the 
time required for first response, their sequence of actions 
within each problem, and the specific misconceptions that 
are driving incorrect responses. These features may provide 
critical information for the scoring of partial credit. When 
considering the approach used in the present study, using an 
algorithm to establish partial credit scores prior to tabling 
provides the leeway for tabled models to consider these 
additional features.  Future research could easily replicate 
similar models, combining partial credit with novel features 
for additional exploration of the observed effect. 
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