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Real-Time Scaffolding of Students’
Online Data Interpretation During
Inquiry with Inq-ITS Using Educational
Data Mining
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and Rachel Dickler

Abstract This chapter addresses students’ data interpretation, a key NGSS inquiry
practice, with which students have several different types of difficulties. In this work,
we unpack the difficulties associated with data interpretation from those associated
with warranting claims. We do this within the context of Inq-ITS (Inquiry Intelligent
Tutoring System), a lightweight LMS, providing computer-based assessment and
tutoring for science inquiry practices/skills. We conducted a systematic analysis of
a subset of our data to address whether our scaffolding is supporting students in the
acquisition and transfer of these inquiry skills. We also describe an additional study,
which used Bayesian Knowledge Tracing (Corbett and Anderson. User Model User-
Adapt Interact 4(4):253–278, 1995), a computational approach allowing for the
analysis of the fine-grained sub-skills underlying our practices of data interpretation
and warranting claims.
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8.1 Introduction

Science educators and policy makers (NGSS Lead States 2013; OECD 2014) agree
that richly integrating authentic inquiry with science content will promote well-
honed learning strategies and allow students to apply and transfer their science
knowledge in more flexible ways as is needed for tomorrow’s jobs (Hilton and
Honey 2011). As a result, as schools in the United States adopt the Next Generation
Science Standards (NGSS), educators will need to (1) incorporate more inquiry
experiences into instruction, (2) assess their students’ inquiry practices/skills, and
(3) ensure that each student demonstrates adequate progress on these.

Meeting these goals however poses significant challenges (Fadel et al. 2007).
First, educators may not have adequate time, lab space, and/or physical materials
for inquiry (Staer et al. 1998), particularly in schools with large class sizes (e.g.,
in Oregon there can be 50 students in a class). Second, grading inquiry is difficult,
subjective, and time-intensive (Deters 2005). Third, teachers need immediate and
actionable data to identify which of the many types of difficulties students are
experiencing (Kuhn 2005) in order to foster students’ growth (Shute 2008), but
current assessments yield data too late for teachers to impact students’ learning
(Pellegrino et al. 2001). Fourth, developing authentic inquiry tasks and assessments
is difficult due to its multifaceted, ill-defined nature (Williamson et al. 2006), and as
a result, there are too few empirically tested resources to assess and support inquiry
(Krajcik et al. 2000; Schneider et al. 2005). Lastly, since inquiry practices need to be
honed over time, students need to engage in authentic inquiry multiple times across
the school year, and without an automated solution, the burden on teachers to do
grading is extremely onerous.

To add to these issues, the most recent student data on international comparisons
of science performances show that American students continue to fall behind their
peers. For example, in 2015, the United States ranked 25th worldwide on a key
educational survey called the Program for International Student Assessment (PISA;
Organization for Economic Cooperation and Development 2018). This is no doubt
related, at least in part, to the many student difficulties that have been demonstrated
for all of the inquiry skills identified by NGSS (2013). Specifically, students have
trouble forming testable hypotheses (Chinn and Brewer 1993; Klahr and Dunbar
1988; Kuhn et al. 1995; Njoo and de Jong 1993; van Joolingen and de Jong 1997;
Glaser et al. 1992) and difficulty testing their hypotheses (van Joolingen and de
Jong 1991b, 1993; Kuhn et al. 1992; Schauble et al. 1991). They have difficulty
conducting experiments (Glaser et al. 1992; Reimann 1991; Tsirgi 1980; Shute and
Glaser 1990; Kuhn 2005; Schunn and Anderson 1998, 1999; Harrison and Schunn
2004; McElhaney and Linn 2008, 2010).

When interpreting data during inquiry, a key NGSS inquiry practice and the
one addressed in this chapter, students have several different types of difficulties.
They may draw conclusions based on confounded data (Klahr and Dunbar 1988;
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Kuhn et al. 1992; Schauble et al. 1995), state conclusions that are inconsistent
with their data (Kanari and Millar 2004), change ideas about causality (Kuhn et al.
1992), and/or have difficulty in making a valid inference and reconciling previous
conceptions with their collected data, falling back on prior knowledge (Schauble
1990; Kanari and Millar 2004), thereby exhibiting confirmation bias during inquiry
(Klayman and Ha 1987; Dunbar 1993; Quinn and Alessi 1994; Klahr and Dunbar
1988). They also fail to relate the outcomes of experiments to the theories being
tested in the hypothesis (Schunn and Anderson 1999; Chinn and Brewer 1993; Klahr
and Dunbar 1988).

When warranting their claims with evidence, one of the five essential features of
classroom inquiry per NRC’s (National Research Council 2011), they often provide
little to no justification (McNeill and Krajcik 2011; Schunn and Anderson 1999)
and create claims that do not answer the question posed (McNeill and Krajcik 2011).
Students can also rely on theoretical arguments rather than on experimental evidence
during warranting (Kuhn 1991; Schunn and Anderson 1999).

Lastly, they have difficulties developing rich explanations to explain their
findings (Krajcik et al. 1998; McNeill and Krajcik 2007). When students provide
reasoning for their claims, they often use inappropriate data by drawing on data
that do not support their claim (McNeill and Krajcik 2011; Kuhn 1991; Schunn
and Anderson 1999), make no mention of specific evidence (Chinn et al. 2008),
or generally state that an entire data table is evidence (McNeill and Krajcik 2011;
Chinn et al. 2008).

In this work, we sought to unpack the difficulties associated with data interpreta-
tion and warranting claims in particular.

8.2 Our Solution: Inq-ITS (Inquiry Intelligent Tutoring
System; www.inqits.com)

In response to calls such as the Next Generation Science Standards, as well
as teachers’ assessment challenges and students’ learning challenges, we have
developed a solution that leverages schools’ existing computing resources to help
teachers with inquiry assessment by providing automatic, formative data and to help
students learn these skills by providing real-time, personalized scaffolds as they
engage in inquiry. Inq-ITS (Inquiry Intelligent Tutoring System) is a lightweight
LMS, providing computer-based assessment and tutoring for science inquiry skills.
It is a no-install, entirely browser-based learning and assessment tool created using
evidence-centered design (Mislevy et al. 2012) in which middle school students
conduct inquiry using science microworlds (Gobert 2015). Within Inq-ITS, which
consists of different interactive simulations within microworlds, or virtual labs, for
different domains in physical, life, and earth science, students “show what they
know” by forming questions, collecting data, analyzing their data, warranting their
claims, and explaining findings using a claim-evidence-reasoning framework, all
key inquiry practices (NGSS Lead States 2013). As students work, the inquiry

http://www.inqits.com
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work products they create and processes they use are automatically assessed using
our patented assessment algorithms (Gobert et al. 2016a, b). These assessment
algorithms were built and validated using student data (Sao Pedro et al. 2010, 2012a,
2013b, c, 2014; Gobert et al. 2012, 2013, 2015; Moussavi et al. 2015, 2016a). They
have been shown to be robust when tested across inquiry activities with diverse
groups of students and match human coders with high precision (precision values
ranging from 84% to 99%; Sao Pedro et al. 2012a, b, 2013a, b, 2014, 2015).

8.3 Others’ Prior Research on Scaffolding Inquiry

Given student difficulties with inquiry as previously described, providing support
to students for inquiry is critical if the Next Generation Science Standards (2013)
or other policies emphasizing authentic science practices (e.g., OECD 2018) are
to be realized. Scaffolds for inquiry can help students achieve success they could
not on their own (Kang et al. 2014; McNeill and Krajcik 2011) and can lead to
a better understanding of scientific concepts and the purpose of experimentation,
as well as the inquiry skills used in experimentation (Kirschner et al. 2006). For
example, providing scaffolding for a PhET simulation on circuit construction lead
students to be more explicit in their testing (such as adding a voltmeter or connecting
an ammeter in the circuit); this systematicity also transferred once scaffolding was
removed (Roll et al. 2014). Additionally, the specific skill of collecting controlled
trials, a lynchpin skill of inquiry, can be learned via strategy training and transfers
to other topics (Klahr and Nigam 2004). Scaffolding can also be used to help
students make connections between experimental data and real-world scenarios
(Schauble et al. 1995). Lastly, scaffolding students’ explanations during inquiry can
yield positive effects on learning (Edelson et al. 1995; McNeill et al. 2006). Taken
together, these results demonstrate the potential for deeper inquiry learning when
students are provided with adequate support.

One drawback, however, to many of these studies is that the scaffolding is either
provided by a teacher, is in the form of text-based worksheets, or in some other
form that is either not scalable or fine-grained, i.e., operationalized at the sub-skill
level. Additionally, these approaches typically require a student to know when they
need help; however, students may not have the metacognitive skills needed to do so
(Aleven and Koedinger 2000; Aleven et al. 2004).

In our system, by contrast, we use an automated approach that detects students’
problems with inquiry and provides computer-based scaffolding in real time in
order to support the acquisition and development of inquiry skills/practices (Gobert
et al. 2013; Sao Pedro et al. 2013b, c, 2014; Gobert and Sao Pedro 2017). These
scaffolds are designed to address specific aspects of scientific inquiry on a fine-
grained level and can help students receive the help they need by targeting the exact
sub-skill on which they are having difficulty. Our identification of each of the sub-
skills underlying each of the science practices described by the NGSS (2013) is
described elsewhere (Gobert and Sao Pedro 2017). This approach provides both
scalable assessment of science inquiry practices as well scalable guidance so that



8 Real-Time Scaffolding of Students’ Online Data Interpretation During. . . 195

students can get help while they are having difficulty. Scaffolding in real time has
been shown to better support students’ learning in general (Koedinger and Corbett
2006) and in inquiry learning in particular (Gobert et al. 2013; Gobert and Sao Pedro
2017). This approach has a great benefit over the others in that it is scalable so that
NGSS practices, as described, can be learned.

8.4 Inq-ITS’ Prior Work on Efficacy of Scaffolding

In our work, we have shown that our scaffolding can help students who did not
know two skills related to planning and conducting experiments (NGSS Lead States
2013) – testing hypotheses and designing controlled experiments – acquire these
skills and transfer them to a new science topic. These findings were robust both
within the topic in which students were scaffolded and across topics for each domain
studied (physical, life, and earth science), with scaffolded students maintaining
and/or improving their skills in new topics when scaffolding was removed compared
to those who did not receive scaffolding (Sao Pedro et al. 2013a, b, 2014).

With regard to the inquiry practices of interest in this chapter, namely, inter-
preting data and warranting claims, we recently conducted a systematic analysis
of a subset of our data to address whether our scaffolding with Rex is supporting
students in the acquisition and transfer of these inquiry skills. Later in the chapter,
we provide an additional study, using Bayesian Knowledge Tracing (BKT) (Corbett
and Anderson 1995), a computational approach allowing for the analysis of the fine-
grained sub-skills underlying our practices of data interpretation and warranting
claims.

Our data were drawn from 357 students in six middle school classes in the
Northeast of the United States. Students completed two microworlds (Flower and
Density) in either the Rex (N = 156) or No Rex (N = 201) condition. Mixed
repeated measures ANOVAs on both interpretation skill and warranting skill were
performed. An independent variable of time phase (repeated) was included in order
to account for how participants consecutively completed two microworlds: Flower
and Density. In the Flower virtual lab, none of the students received scaffolding
from Rex, so performance in this virtual lab was used as the baseline. In the Density
virtual lab, students were randomly assigned to either the Rex or No Rex condition.
The Rex condition meant that Rex was available to assist students as they engaged
in the microworld, whereas the No Rex condition meant that Rex was not available
and could not be triggered. The results focused on the interactive effects of time ×
condition. Effect size was calculated using Cohen’s d. All significance testing for
the primary analyses was conducted with an alpha level of .05. Our main interest
was the effect of Rex’s scaffolding on learning.

Table 8.1 illustrates the estimated means of interpretation skill and warranting
skill in the Rex and No Rex conditions as well as standard errors, lower and upper
bound with 95% confidence interval, F values, and the effect size of Cohen’s d in
the pairwise analyses, respectively.
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Table 8.1 Statistics for condition × time in the Flower and Density virtual labs

95% CI Cohen’s
Skills Time Condition Mean SE Lower Upper F d

Interpreting data 1 No Rex 0.68 0.02 0.65 0.71 0.48 0.074
No Rex 0.66 0.02 0.63 0.70

2 No Rex 0.74 0.02 0.71 0.77 18.11*** 0.454
Rex 0.84 0.02 0.81 0.88

Warranting claims 1 No Rex 0.37 0.02 0.32 0.41 3.63 0.203
No Rex 0.30 0.03 0.25 0.35

2 No Rex 0.68 0.02 0.64 0.73 7.06** 0.283
Rex 0.77 0.03 0.72 0.82

N = 714; df = 1, 710. Time 1 is Flower and Time 2 is Density
SE standard error, CI confidence interval
***p < .001. **p < .01

Fig. 8.1 Estimated means of condition × time in Flower and Density microworlds, respectively

8.4.1 Data Interpretation

There was a significant two-way interaction between condition × time for data
interpretation skill, F(2, 710) = 12.25, p < 0.001 (see Table 8.1 and Fig. 8.1). The
pairwise comparisons showed that students’ interpretation substantially improved
in both the No Rex (mean increased from .68 to .74, p = .010, d = .26) and
Rex conditions (mean increased from .66 to .84, p < .001, d = .79). This implies
that students’ interpretation skills improved when they used the virtual lab even
without scaffolding from Rex. In the second virtual lab, Density, students who
received scaffolding from Rex achieved higher scores on interpreting data in the Rex
condition than in the No Rex condition with a medium effect size. These findings
confirm that students who received Rex’s support experienced greater improvement
on interpretation skills relative to students who did not receive support from Rex.
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8.4.2 Warranting Claims

There was a significant two-way interaction between condition × time for warrant-
ing skill, F(2, 710) = 10.40, p = 0.001 (see Table 8.1 and Fig. 8.1). The pairwise
comparisons showed that students’ performance on warranting claims substantially
improved in both the No Rex (mean increased from .37 to .68, p < .001, d = 1.02)
and Rex conditions (mean increased from .30 to .77, p < .001, d = 1.51). This
implies that students’ skills at warranting claims improved when they used the
virtual lab with or without scaffolding from Rex. Results also showed that there
were no significant differences in students’ skills at warranting claims when they
conducted the first virtual lab, Flower, without Rex scaffolding. However, in the
second virtual lab, Density, students who received scaffolding from Rex achieved
higher scores on warranting claims in the Rex condition than in the No Rex
condition with a small effect size. These findings further confirm that students
who received Rex’s support experienced greater improvement on warranting claims
skills relative to students who did not receive support from Rex.

8.4.3 Using Advanced Analytical Approaches to Study
the Fine-Grained Effects of Scaffolding on Students’
Data Interpretation and Warranting Claims

In this study, we hypothesized that an automated scaffolding approach that provides
personalized feedback would help students learn data interpretation skills and
warranting claims skills. As such, we developed scaffolds within Inq-ITS that react
when students have difficulty on these key skills and sub-skills (McNeill and Krajcik
2011; Gotwals and Songer 2009; Kang et al. 2014; Berland and Reiser 2009).

8.4.4 Method

8.4.4.1 Participants

Data were collected from 160 eighth grade students from the same school in the
Northeast of the United States using Inq-ITS Density activities. All the students had
previously used Inq-ITS, but not with this new scaffolding capacity.

8.4.4.2 Materials

Inq-ITS Density Virtual Lab Activities For each Inq-ITS virtual lab, there are
typically three or four inquiry activities, consisting of driving questions that help
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guide students through the inquiry phases. Within each activity, students conduct
inquiry by first articulating a testable hypothesis using a hypothesis widget with
pulldown menus. They then experiment by collecting data with an interactive
simulation through the manipulation of variables (Fig. 8.2a). Once they have
collected all of their data, they interpret the results of their experiment by forming
a claim in claim widget (similar to that used for hypothesizing) and selecting
trials as evidence (Fig. 8.2b). Finally, students write a short open-response report
that summarizes their findings from their inquiry using a claim-evidence-reasoning
format (McNeill and Krajcik 2011).

In this study, three Density virtual lab activities were used. These activities aim to
foster understanding about the density of different liquid substances (water, oil, and
alcohol). In the first activity, the goal was to determine if the shape of the container
affected the density of the liquid; the second was to determine if the amount of liquid
affected the density; and the third was to determine if the type of liquid affected the
density.

8.4.4.3 Procedure

Students worked on the Density activities in a computer lab at their school for
the length of one science class (approximately 50 min). Each student worked
independently on a computer at their own pace, meaning that not all students
completed the entire set of activities by the end of the class period. Students were
randomly assigned to one of two conditions: either the “Interpretation Scaffolding”
(n = 78) or “No Interpretation Scaffolding” (n = 82) condition. For the first activity,
none of the students, regardless of condition, received scaffolding. This allowed
us to collect a baseline for each student on the targeted data interpretation sub-
skills. For the next two activities, the students in the “Interpretation Scaffolding”
condition received scaffolding during hypothesizing, data collection, and data
interpretation. The students in the “No Interpretation Scaffolding” condition only
received scaffolding during hypothesizing and data collection. The scaffolding
during hypothesizing and data collection ensured that all students, regardless of
scaffolding condition, had both a testable hypothesis and relevant, controlled data
with which they could correctly undergo data interpretation (this design also allows
us to isolate and systematically study the effects of scaffolding for data interpretation
skills, as opposed to the two that proceed it in the inquiry process). Thus, students
in both conditions worked in the same environment and on the same activities
with access to hypothesizing and data collection scaffolding. The only difference
was the presence of data interpretation scaffolding for one condition (Interpretation
Scaffolding condition).

Evaluation of Inquiry Sub-skills For data interpretation and warranting claims,
there are eight main sub-skills that are evaluated in the system using the work
products students create. These work products are their claim (selecting the appro-
priate variables and relationship between them) and supporting evidence (selecting
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Fig. 8.2a In the “collect data” phase of the Inq-ITS Density virtual lab, students collect to test
their hypothesis

relevant, controlled trials from their data table that reflect the relationship stated in
their claim). These sub-skills and the specific criteria with which they are evaluated
can be seen in Table 8.1. Since these sub-skills, defined in the context of this
activity, are well-defined (Gobert and Sao Pedro 2017), they are evaluated using
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Fig. 8.2b After collecting data, students analyze their data. They review the data they collected,
use pulldown menus to describe the trends found in their data, and select the evidence (trials) to
support their claim

knowledge-engineered rules that specify if the sub-skill has been demonstrated. For
example, for the sub-skill “Claim DV” shown in Table 8.2, the system evaluates
whether or not the student has correctly chosen a variable that is measured, not
changeable, within the simulation (a dependent variable) in the appropriate part of
the claim. Within the context of the Density virtual lab, the appropriate dependent
variable is “density of the liquid.” So if the student states “density of the liquid”
as the dependent variable, they would be marked as correctly demonstrating the
DV sub-skill. However, if the student chooses another variable, such as one of
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Table 8.2 Data interpretation sub-skills

Data interpretation sub-skills Criteria

Interpreting the IV/DV
relationship

Is the IV DV relationship correct?

Claim IV Did the student correctly select an IV when
making a claim?

Claim DV Did the student correctly select a DV when
making a claim?

Interpreting the hypothesis/claim
relationship

Is the choice of whether the claim supports (or
refutes) the hypothesis correct?

Controlled trials Are all the selected trials controlled?
Warranting the IV/DV
relationship

Do the selected trials support the stated IV/DV
relationship?

Evidence Did the student select more than one trial as
evidence?

Warranting the hypothesis/claim
relationship

Do the selected trials support the student’s
statement on whether their interpretation
supports their hypothesis?

the independent variables like “type of liquid,” as the dependent variable, then
they would be scored as incorrectly demonstrating the DV sub-skill. As another
example, for the sub-skill “interpreting the IV/DV relationship,” a rule checks that
the relationship between the independent and dependent variables specified in the
claim is reflected in the data collected by the student. Elaborating further, if a student
claims that “When I increased the size of the container the density of the liquid
stayed the same” and their data reflects that relationship, that sub-skill would be
scored as correct. If the data they collected did not reflect that relationship, the
sub-skill would be scored as incorrect. The evaluation rules yield binary measure
of correctness on each sub-skill (i.e., the results are presented as being correct or
incorrect rather than having levels of correctness). This allows us to tease apart
separate components (the sub-skills) within the broader skill of analyzing data.

Scaffolds in Inq-ITS Inq-ITS delivers scaffolds to students in text format via a
pedagogical agent named Rex, a cartoon dinosaur (Fig. 8.3). Scaffolding is triggered
automatically when a student completes their data analysis and at least one of the
sub-skills is incorrectly demonstrated (evaluated by the knowledge-engineered rules
discussed previously). This proactive scaffolding approach helps to support students
in their inquiry processes (Schauble 1990; deJong 2006) by preventing students
from engaging in ineffective behaviors (Buckley et al. 2006; Sao Pedro 2013). This
proactive approach is also important because students may not be aware that they
need help (Aleven and Koedinger 2000; Aleven et al. 2004). Once scaffolding is
triggered, students may also ask Rex for additional clarification and support.

The scaffolds are designed to adapt to students’ skill level by both providing
multiple levels of automatic scaffolds and allowing students to request for further
help or clarification (once support is auto-triggered), as needed. In this way, the
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Fig. 8.3 Example scaffold delivered by Rex during data interpretation

scaffolds personalize each student’s learning, recognizing that different students
may need different amounts of help to successfully hone different sub-skills.
The data interpretation scaffolds address four categories of procedurally-oriented
difficulties that focus on the eight aforementioned sub-skills evaluated within
data interpretation and warranting claims (Moussavi et al. 2015). These data
interpretation and warranting claims scaffold categories are:

1. The Claim IV/DV does not match the hypothesis IV/DV.
2. The trials selected for warranting are not properly controlled or relevant to the

claim.
3. The claim does not reflect the data selected.
4. The claim is incorrect as to whether it supports/does not support the hypothesis.

Since students may require scaffolding support for none, one, or many of these
sub-skills, the scaffolds are designed to address these in the order listed above, so
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that each step of data interpretation is completed before moving onto the next. For
example, it is impossible for students to correctly select relevant trials for warranting
if they have not specified an appropriate IV and DV in their claim. Therefore,
difficulty with creating a claim with the correct IV and DV (i.e., category 1) is
scaffolded first until the sub-skill is demonstrated correctly before another difficulty
is addressed. On the other hand, if a student also demonstrates difficulty with stating
whether or not the claim supports the hypothesis, then the first three scaffolding
categories are skipped and the student only receives the specific scaffolds that
address category 4.

When students make multiple errors within the same category, we follow a
sequence that increases the level of feedback given to the student. For the first error,
a scaffold is provided to orient students to the current task. If the same error is
repeated, they are then guided through the necessary procedural skills. Finally, the
system provides a “bottom-out” hint telling students the procedure to follow. In this
way, the student receives more and more targeted support, similar to cognitive tutors
(e.g., Anderson et al. 1995; Corbett and Anderson 1995; Koedinger and Corbett
2006).

In sum, these scaffolds are designed to adapt to students’ skill level by both
providing multiple levels of automatic scaffolds and allowing students to request for
further help or clarification (once support is auto-triggered), as needed. In this way,
the scaffolds personalize each student’s learning, recognizing that different students
may need different amounts of help to successfully hone different sub-skills.

Data Analysis Approaches Due to the complexities and sub-skills inherent in
the inquiry practices of data interpretation and warranting claims, an advanced
analytical method using an extension of Bayesian Knowledge Tracing (Corbett and
Anderson 1995) is better suited to address the effects of scaffolding on students’
learning and transfer of sub-skills of inquiry under investigation here (Sao Pedro
et al. 2013b). Bayesian Knowledge Tracing (BKT henceforth), a cognitive modeling
approach to approximating the mastery of sub-skills in intelligent tutoring systems,
is a powerful technique, and its prediction of student performance is as good as
or better than similar algorithms that aggregate performance over time in order to
infer student skill (e.g., Baker et al. 2011). Additionally, our group has shown that
this approach is effective for modeling students’ learning of inquiry, both with and
without the presence of scaffolding (Sao Pedro et al. 2013b).

8.4.4.4 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) (Corbett and Anderson 1995) estimates the
likelihood that a student knows a particular skill (or sub-skill) and disentangles
between “knowing” and “demonstrating” that skill (or sub-skill) based on prior
opportunities in which students attempt to demonstrate a particular skill. BKT
assumes that knowledge of a skill is binary (either a student knows the skill or they
do not) and that skill demonstration is also binary (either a student demonstrates a
skill or they do not).
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Fig. 8.4 Bayesian Knowledge Tracing model

Mathematically, four parameters are used to model whether a student knows a
skill: L0, T, G, and S (Corbett and Anderson 1995). L0 is the probability of initial
knowledge that the student is already in the “learned state,” i.e., before they start
the first problem. T is the probability of learning, i.e., the chance that the student
goes from the “unlearned state” to the “learned state” over the course of doing all
of the problems in the sequence. G is the probability of guessing, i.e., the chance
that a student in the “unlearned state” answers the problem correctly. Lastly, S is
the probability of slipping, i.e., the chance that a student in the “learned state”
answers the problem incorrectly (Corbett and Anderson 1995). The parameters of
G and S mediate the difference between “knowing” a skill and “showing” a skill. A
student who shows the skill may not actually know it, contributing to G. Conversely,
a student who knows the skill may not always show it, contributing to S. BKT,
in this formulation, assumes that skills are not forgotten (Corbett and Anderson
1995); once a student is in the “learned state,” they cannot forget and go back to
the “unlearned state.” Instead, if a student in the “learned state” does not “show”
a skill at a specific practice opportunity, they are considered by the model to have
“slipped,” i.e., they were not able to show the skill at that time despite knowing
it. This then affects the S parameter but does not change what state the student is
considered to be in. See Fig. 8.4.

Prior work by Sao Pedro (2013) extended the traditional BKT model to account
for the presence of a tutor intervention, similar to that of Beck et al. (2008). To
incorporate scaffolding into the BKT framework, they introduced the dichotomous
observable variable of Scaffolded = {True, False} and conditioned the learning rate
(T) on that observable leading to two distinct learning rate parameters – Tscaffolded
and Tunscaffolded. This resulted in the following equations for computing P(Ln), the
likelihood of knowing a skill (Sao Pedro 2013):
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P (Ln|Scaffoldedn = True) = P (Ln−1|Pracn) + (1 − P (Ln−1|Pracn))∗ P (Tscaff)

P (Ln|Scaffoldedn = False) = P (Ln−1|Pracn) + (1 − P (Ln−1|Pracn))∗ P (Tunscaff)

We follow this approach to determine whether data interpretation scaffolds are
supporting students’ learning.

One of the main assumptions of BKT is that skills are considered to be
independent. This means that each skill that we want to track has to be modeled
separately. Because of this, there were certain design considerations that we had
to make when fitting our data to the BKT model, specifically with regard to how
scaffolding condition was defined and practice opportunities were defined. These
considerations are discussed in the following section.

8.4.4.5 Data Preparation Extensions to Leverage the BKT Framework

The data logged here differs from typical data logs due to how the data interpretation
scaffolds were integrated into the system. In the system, all of the data interpretation
sub-skills are designed to be evaluated at once. However, the data interpretation
scaffolds are designed to only address one sub-skill at a time in order to give directed
support, as described above. For example, if a student submits their analysis and is
evaluated as both choosing an incorrect IV and an incorrect IV/DV relationship,
even though they will have been evaluated on every data interpretation sub-skill,
they will only receive the scaffold for one of their errors, in this case the error of
the incorrect IV. Once the student revises their analysis and submits again, they are
once more evaluated on all of the data interpretation sub-skills, regardless of what
specific aspects of their analysis they changed.

Considering this and the fact that in BKT analysis every sub-skill is considered
separately and has its own model, it became important to consider how the BKT
framework defined the scaffolding condition and practice opportunity in order to
create an accurate model. These design decisions for the BKT model are described
in more detail below.

8.4.4.6 Determining Scaffolding Condition

Not all of the 78 students in the Interpretation Scaffolding condition needed the
data interpretation scaffolds, and while some students only used one scaffold, others
used multiple scaffolds targeting multiple sub-skills. Since BKT operates under the
assumption of independence of skills, it would not be appropriate to label all of
these students as having been scaffolded. Arguably, it is more important to model
the scaffolds students received on a per skill basis, rather than simply considering
them as scaffolded or not. Because of this, scaffolding was considered at the sub-
skill level so that any scaffolds a student received for one specific sub-skill had
no bearing on the student’s scaffolding classification for the other sub-skills. This
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means that in the BKT model for the Claim DV sub-skill, for example, a student will
only be considered to have been in the scaffolding condition if they ever received
the specific scaffold directly addressing the Claim DV sub-skill, regardless of any
other scaffold they may or may not have received. This makes it so that a student
may only be in the scaffolding condition in the BKT model for one sub-skill or may
be in the scaffolding condition in multiple BKT models on different sub-skills.

8.4.4.7 Determining Number of Practice Opportunities

In Inq-ITS, students click to submit their data interpretation after which the system
records all of the actions as one practice opportunity and evaluates all of the sub-
skills (Gobert et al. 2013). When scaffolding is being used, students who have been
evaluated as “incorrectly demonstrating any sub-skill” receive scaffolding and are
redirected to their data interpretation. Any subsequent actions students perform
(up until submitting again) are considered part of a new practice opportunity for
all sub-skills regardless of what specific sub-skill(s) were worked on, which can
make it seem as though students require more practice opportunities to master
a sub-skill than they actually do. For example, as shown in Table 8.3, based on
the evaluations, it looks like after three practice opportunities, the student is still
incorrectly demonstrating the “claim” and “support” sub-skills. However, if we look
at the student’s actions, we can see that the student was only focused on correctly
demonstrating the “DV” sub-skill (due to the scaffolding received) and was not
actually working on the other two sub-skills. Therefore, it would not be accurate to

Table 8.3 Example of practice opportunity succession

Student presses submit
Sub-skills Evaluation Practice opportunity
IV 1 1
DV 0 1
Claim 0 1
Supports 0 1
Student receives scaffolding for DV, only changes DV (still incorrect), and submits
Sub-skills Evaluation Practice opportunity
IV 1 2
DV 0 2
Claim 0 2
Supports 0 2
Student receives scaffolding for DV, only changes DV (correctly this time), and submits
Sub-skills Evaluation Practice opportunity
IV 1 3
DV 1 3
Claim 0 3
Supports 0 3
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Table 8.4 Example of
collapsed evaluation

Sub-skills Evaluation

IV 1
DV 0
Claim 0
Supports 0

say that the student had three practice opportunities for the “claim” and “support”
sub-skills. This, then, needs to be accounted for in the BKT models in order to more
accurately assess students’ probability of learning.

The option considered here was to collapse student evaluations for each sub-skill
within each activity into one practice opportunity. This acts as a “pre-smoothing”
of data, and while it looks at the data in a slightly coarser way because of the
rolling up of practice opportunities, it yields an easier model with fewer parameters.
In collapsing students’ evaluations, all of the evaluations for one sub-skill within
an activity were examined, and a student would receive a correct evaluation for a
particular sub-skill only if they always had correct evaluations for that sub-skill. This
was done because if a student ever incorrectly demonstrated a sub-skill, it could be
assumed that the student most likely did not know the sub-skill to begin with. This
resulted in the student’s evaluations in the above figure to be collapsed into one
practice opportunity as shown in Table 8.4.

Therefore, the BKT analysis was performed for each of the assessed data
interpretation and warranting claims sub-skills, using the scaffolding extension of
the BKT framework developed by Sao Pedro (2013), as previously described.

8.4.4.8 Fitting BKT Model Parameters

To learn the parameters (L0, TScaff, TUnscaff, G, S) from student data for each of the
BKT models (one model per targeted data interpretation sub-skill), we used a brute
force grid search approach (Baker et al. 2010) to find the parameters that minimize
the lowest sum of squared residuals (SSR) between the probability of demonstrating
a skill and the actual data, as done in Sao Pedro et al. (2013b).

8.4.4.9 Determining Goodness of the BKT Models

Once the BKT parameters were determined, they were applied to the model, and
then its predictive performance was tested against the same set of data used to
construct the model. Although cross-validation helps to ensure that the models are
accurate and can be applied to new students, it requires a held-out validation data set
collected from a similar population. Since this work is exploratory in nature in that
it is examining the first set of data collected with the data interpretation scaffolds,
we did not have a held-out data set that could be used for this purpose. As such,
the same set of data used for training was also used for validation, which can lead
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to over-fitting of the model. In ongoing work, we are addressing this limitation by
using a held-out test set to test the models.

As in Sao Pedro et al. (2013b), performance was measured using A′ (Hanley
and McNeil 1982), which is the probability that the detector will able to correctly
label two examples of students’ skill evaluation when in one the student is correctly
demonstrating the skill and in the other the student is not. An A′ of 0.5 is indicative
of chance performance, and an A′ of 1.0 is indicative of perfect performance.

8.5 Results

Our goal is to determine whether our automated scaffolding approach helps students
acquire data interpretation sub-skills. We first look at a descriptive analysis of the
frequency with which scaffolds were used across the activities. We also look at error
rates for the sub-skills to get an initial look at students’ progress with and without
scaffolding. Then, as mentioned, we used our BKT extensions to approximate
student learning of the data interpretation sub-skills and to make inferences about
whether scaffolding was effective.

Descriptive Analysis Table 8.5 shows the number of students who received any
data interpretation scaffold in an activity and the total number of scaffolds triggered
in an activity. Not all the students were able to finish the third activity within the
time frame of their science class, contributing to the lower number of students in
Activity 3. Looking at these numbers, we can see that by the third activity, a fewer
number of students received scaffolds, and that these students, overall, required less
scaffolding support to successfully demonstrate the data interpretation sub-skills
that we evaluate. This gives an initial indication that the scaffolding support, in its
entirety, is helping students successfully interpret the data they collected and warrant
their claims with data.

We next looked at the error rates for four of the data interpretation sub-skills most
tightly related to the evaluations that trigger the scaffolds. Error rate is defined as the
percentage of students who demonstrated that error in each activity. The graphs in
Fig. 8.5 show the error rate of students in each of the two conditions (Interpretation
Scaffolding condition and No Interpretation Scaffolding condition) as they worked
through the three activities.

Table 8.5 Students using any data interpretation scaffold

Activity 2 Activity 3

# of students in Interpretation Scaffolding condition who completed
activity

76 64

# of students who used scaffolds 25 12
Total # of scaffolds triggered 207 32

Activity 1 is not presented, because scaffolding was not available in that activity
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Fig. 8.5 Error rate analysis

As shown in these graphs (Fig. 8.5), student difficulty/error was present in each
of these sub-skills, with the sub-skill “Interpreting correct IV/DV relationship” and
“Interpreting hypothesis/claim relationship” having the highest initial error rates,
regardless of condition. Furthermore, this analysis revealed that students in the
“Interpretation Scaffolding” condition start with a higher error rate but end with a
lower error rate. For example, for the sub-skill “Warranting with controlled trials,”
on their first opportunity, students in the Interpretation Scaffolding condition had
an error rate of 0.33 compared to an error rate of 0.26 exhibited by the students
in the No Interpretation Scaffolding condition. However, by their third opportunity,
students in the Interpretation Scaffolding condition had a much lower error rate
of 0.05, which was less than the error rate of 0.16 exhibited by the students in
the No Interpretation Scaffolding condition. This indicates that students in the
Interpretation Scaffolding condition are improving faster than the students in the
No Interpretation Scaffolding condition.

The descriptive analyses suggest that scaffolding appears to be effective at
helping students acquire these sub-skills. We next conduct a deeper inferential
analysis using the BKT modeling framework described previously.

Inferential Analysis with Bayesian Knowledge Tracing As described previously,
we fit BKT models using the student data collected and use A′ (Hanley and McNeil
1982) to measure the goodness of the models. Recall that an A′ of 0.5 is indicative
of chance performance and an A′ of 1.0 is indicative of perfect performance. The A′
values for this analysis can be seen in Table 8.6. In this case, performance was
measured to be relatively high for all of the sub-skills with A′ values between
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Table 8.6 A′ values showing
high performance of the BKT
models

Sub-skill A′

Interpreting the IV/DV relationship 0.73
Claim IV 0.70
Claim DV 0.69
Interpreting the hypothesis/claim relationship 0.72
Controlled trials 0.79
Warranting the IV/DV relationship 0.73
Evidence 0.81
Warranting the hypothesis/claim relationship 0.72

Table 8.7 BKT parameters for each sub-skill

No
Interpretation
Scaffolding
condition

Interpretation
Scaffolding
condition

Sub-skill

Probability
of initial
knowledge

Probability
of guessing

Probability of
slipping

Probability of
learning

Claim DV 0.72 0.30 0.04 0.69 0.71
Claim IV 0.94 0.21 0.01 0.83 0.36
Interpreting
the IV/DV
relationship

0.61 0.13 0.09 0.24 0.62

Interpreting
the hypothe-
sis/claim
relationship

0.59 0.14 0.10 0.20 0.55

Controlled
trials

0.71 0.12 0.04 0.27 0.79

Warranting
the IV/DV
relationship

0.62 0.10 0.10 0.22 0.64

Evidence 0.81 0.22 0.00 0.22 0.84
Warranting
the hypothe-
sis/claim
relationship

0.59 0.13 0.10 0.20 0.53

0.69 and 0.81, allowing for parameter interpretation. However, again, since cross-
validation was not done, it is possible that some of these models may be over-fitting
to some student data (c.f. Sao Pedro et al. 2013).

The results from the BKT analysis indicate that the data interpretation scaffolds
were effective in supporting the acquisition of data interpretation sub-skills. This
can be seen through the values of the probability of learning. This value represents
the chance that the student goes from the unlearned state to the learned state over
the course of activities. As can be seen in the data in Table 8.7, the probability of
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learning for students receiving data interpretation scaffolding is higher for all but
one of the evaluated sub-skills. This sub-skill, selecting an IV for the claim, also
has a high probability of initial knowledge, which could indicate that the sub-skill
is not being learned because so many students already know it (e.g., Sao Pedro
et al. 2014). Also, compared to another sub-skill with a relatively high probability
of initial knowledge – such as the Evidence sub-skill – the Claim IV sub-skill is
noisier to assess, likely because it might be highly related to the content in each
activity.

8.6 Discussion

The goal of this work was to test the efficacy of our data interpretation scaffolding
on the sub-skills underlying the skill practices underlying data interpretation and
warranting claims. We tested this in two ways, both using analysis of variance on
the aggregate scores for each practice (data interpretation and warranting claims),
as well as an innovative extension to Bayesian Knowledge Tracing (BKT) that
considers the presence of scaffolding approximating mastery learning for each of
the sub-skills of interest (Sao Pedro et al. 2013b). We also developed modifications
to this framework, which allow it to be applied when condition and practice
opportunity can be defined on different levels (i.e., activity level vs. skill level).

In developing our BKT extension, this work contributes a fine-grained method
for unpacking the effect of scaffolding via logged, process data. Our extension
to BKT was used as a modeling paradigm to track the sub-skills underlying data
interpretation and warranting claims. This study was done within a complex domain
of science inquiry whereby the student data, number of practice opportunity counts,
and evaluated skills were not as clearly delineated as in previous studies in which
BKT was used to evaluate educational interventions (Koedinger et al. 2010). This
work provides a framework for how data in these complex environments can be
treated before BKT can be used.

This work also explores modifying the BKT framework to represent and track
students’ learning of the targeted data interpretation sub-skills with and without
scaffolding. Further analyses are needed to determine the efficacy of this model and
its accuracy in comparison to other models. As the data used for this work was
collected as an initial study of the data interpretation/warranting claims scaffolds,
additional data will be used to cross-validate the predictive performance of the
models used here and provide greater assurance in interpreting the parameters of the
model. This method could then be used as students work through multiple domains
with scaffolding to assess the efficacy of these scaffolds across a larger number of
practice opportunities (e.g., Sao Pedro et al. 2014). This will also allow us to assess
how scaffolding can impact the transfer of these skills from one science domain to
another. Additionally, we will use this method on studies without scaffolding, which
will give us data to better understand how this skill develops naturally.
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Regarding inquiry, this work builds on prior research (Kang et al. 2014; McNeill
and Krajcik 2011; Schauble 1990) on the nature of data interpretation and warrant-
ing claims skills, their assessment, and scaffolding. This work makes a contribution
to the prior research on argumentation practices for inquiry by conceptualizing and
framing the data interpretation and warranting claims practices as necessary but not
sufficient for appropriate scientific argumentation.

When it comes to unpacking the broad components of explanation, Toulmin’s
(1958) model of argumentation is typically used (McNeill and Krajcik 2011;
Gotwals and Songer 2009; Kang et al. 2014; Berland and Reiser 2009), breaking
down argumentation into three main components: the use of claims, evidence, and
reasoning. The interpretation of evidence and the creation of an evidence-based
explanation or argument are both key practice in national science standards and
essential for fostering students’ science literacy (McNeill and Krajcik 2011; Kang
et al. 2014).

We feel that unpacking the inquiry practices associated with data interpretation
and warranting claims separately from students’ data on claims, evidence, and
reasoning, as expressed in open response format, is important because if students are
having problems analyzing their data, they won’t be able to successfully engage in
explanation and argumentation. Our prior work has shown that a number of students
are not able to articulate a correct explanation or argument despite knowing the data
interpretation skills (Li et al. 2017). Moreover, there are large numbers of students
who are being mis-assessed when their open responses are used as the only source
of assessment: there are students who are skilled at science but cannot convey what
they know in words (i.e., false negatives), as well as students who are skilled at
parroting that they have read or heard but do not understand the science they are
writing about (i.e., false positives; Gobert 2016). In short, using solely students’
writing for assessment is only an accurate way of measuring what students know if
they are good at articulating words.

To this end, we conceptualize/frame data interpretation and warranting claims
practices as underlying the argumentation practices necessary for communicating
science findings and thus find it necessary to study these skills separately from
students’ overall written explanations and arguments. Conceptualizing and support-
ing students on the components of the explanation framework – claim, evidence,
and reasoning – in an automated and fine-grained way with appropriate sub-skills
can help us unpack and target known difficulties documented by previous research
(Gotwals and Songer 2009; McNeill and Krajcik 2011; Schunn and Anderson 1999).
While we could make the assessment of these skills easier by designing activities
that only target one skill at a time, this would be a much less authentic way
of conducting inquiry. This work attempts to disentangle the effects of learning
support delivered via automatic scaffolds that apply to individual sub-skills in
an environment where multiple performance-based skills are being practiced and
assessed at once. This gives us the nuance to examine these complex practices (as
set forth by NGSS) and allows us to look at specifically what aspects students are
having difficulty with and work to target those exact difficulties before moving on
to students’ claims, evidence, and reasoning.
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Lastly, this work provides a scalable solution toward the assessment and scaffold-
ing of these practices and in doing so represents a scalable solution to supporting
teachers and students in NGSS practices.
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