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ABSTRACT
Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data
(McArdle & Hamagami, 2001). However, applications of these models typically include constraints on
key parameters over time. Although practically useful, strict invariance over time in these parameters
is unlikely in real data. This study investigates the robustness of LCS when invariance over time
is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were
used to explore the impact of misspecification on parameter estimation, predicted trajectories of
change, and model fit in the dual change score model, the foundational LCS. When constraints were
incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean
and autoproportion coefficient, were severely and consistently biased, as were regression paths to
the slope factor when external predictors of change were included. Standard fit indices indicated
that themisspecifiedmodels fit well, partly becausemean level trajectories over timewere accurately
captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were
more unstable, and models frequently failed to converge. Results suggest that potentially common
sources of misspecification in LCS can produce distorted impressions of developmental processes,
and that identifying and rectifying the situation is a challenge.

Introduction

Latent change score models (LCS) combine both the
autoregressive and growth curve approaches to modeling
longitudinal data, taking advantage of each technique’s
strengths while compensating for some of their respec-
tive limitations (McArdle, 2009). Autoregressive models
capture the extent to which prior status is related to future
status, but fail to provide information on the absolute
trajectories of change over time. Growth curve models on
the other hand capture general trajectories of change over
time, but do not allow for prior status to influence future
status. LCS give researchers the opportunity to simultane-
ously examine both autoregressive processes and general
increasing or decreasing trends over time, making them
a potentially valuable tool for investigating development.
Accordingly, LCS are increasing in popularity across a
wide variety of disciplines (Ferrer & McArdle, 2010; Wu,
Selig, & Little, 2013), including education (e.g., Curby,
Grimm, & Pianta, 2010), clinical psychology (e.g., King,
King, McArdle, Shalev, & Doron-LaMarca, 2009), and
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lifespan development (e.g., McArdle, 2001; McArdle &
Prindle, 2008).

Despite their comprehensive nature and flexibility, in
practice LCS typically include a number of constraints on
certain parameter estimates. Specifically, key parameters
related to change over time (autoproportion and basis
coefficients) are fixed to equality over time (McArdle,
2001; McArdle & Hamagami, 2001). These constraints
do not reflect an inherent assumption of the model, and
can be tested, but even when this point is acknowledged,
didactic pieces (e.g., Grimm, An, McArle, Zonderman,
& Resnick, 2012; Grimm et al., 2016; King et al., 2006;
McArdle, 2001; McArdle & Grimm, 2010; McArdle &
Hamagami, 2001) and empirical applications (e.g., Curby,
Grimm, & Pianta, 2010; Ferrer et al., 2007; Finkel et al.,
2009; King et al., 2009; Ghisletta & Lindenberger, 2003)
almost always include such specifications without con-
sidering less constrained alternatives. As a consequence,
invariance over time in certain parameter estimates has
effectively become the default in these models. However,
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strict invariance along these lines is unlikely in real
data.

The purpose of the present study was thus to evaluate
the robustness of LCS when invariance is incorrectly
imposed over time in the major, change-related param-
eter estimates using Monte Carlo simulation methods.
We specifically focus on the most foundational LCS, the
univariate Dual Change Score Model (DCS), to address
three main research questions: (1) the impact of incorrect
equality constraints across time on parameter estimation
bias, (2) the ability of popular fit indices and their com-
monly used cutoffs to detect misspecified constraints, and
(3) the performance of LCS when parameters estimates
are not constrained across time. The simulated data
used to address these questions are based on an early
demonstration of LCS (McArdle, 2001) that focused on
the verbal and nonverbal development of elementary
school children. As such, the development of verbal
ability in childhood is often used in the present study as
an example to illustrate various points.

Modeling developmental trends with latent change
scoremodels

An illustration of a typical LCS is provided in Figure 1.
Latent change score models represent growth by breaking
down change over time in some outcome construct or
constructs (e.g., verbal ability) into a series of latent
change score factors that capture differences between
adjacent time points, or waves of assessment (lcsy2
through lcsy6 in Figure 1; McArdle & Grimm, 2010;
McArdle & Hamagami, 2001). These latent change score
factors are specified to be additive outcomes of two dis-
tinct developmental processes: autoproportional growth
and constant growth (McArdle & Hamagami, 2001).
Autoproportional growth refers to the extent that scores
at a prior time point are related to subsequent increases or
decreases. For example, childrenwith higher verbal ability
one year may make greater gains the next year. Auto-
proportional growth is represented in LCS via regression
paths that flow from one time point to the immediately
subsequent latent change score factor (β in Figure 1).

Constant growth refers to general increasing or
decreasing trends over time. For example, verbal ability
may increase continuously across elementary school.
Constant growth is represented in LCS via a latent factor
(g1 in Figure 1) that all change score factors load on
to. The constant change factor is often compared to
the slope factor of latent growth curve models given
the conceptual overlap between these factors (modeling
increasing or decreasing trends, and intraindividual vari-
ability in those trends, over time in observed scores or
latent change scores), and the fact that a LCS that omits
autoproportional growth processes is equivalent to a

Figure . The Dual Change Score Model. T-T = observed vari-
ables; y-y = latent scores; e-e = residual variance; lcsy-lcsSy= latent change score factors; g = initial level factor; g = slope
factor; k = constant; μg = time  mean; σ g

 = time one vari-
ance;μg = slope factor mean; σ g

 = slope factor variance; σ gg= covariance between time one and slope factor;β = autopropor-
tion coefficient; α = basis coefficient;� = residual variance.

latent growth curve model (Grimm, Castro-Schilo, &
Davoudzadeh, 2013). That is, when autoproportional
paths are omitted from a LCS the model operates as
a latent growth curve model with the constant change
factor serving the same ultimate function as the slope
factor (though trends over time are still modeled on
latent change score factors). Given this, we follow the
convention of using the term “slope factor” to refer to the
constant change factor throughout the manuscript, even
though autoproportional growth is included in these
models (e.g., McArdle, 2001).

By including both autoproportional paths and the
slope factor, LCS capitalizes on the advantages of both
autoregressive and growth curve models (McArdle &
Hamagami, 2001). That is, these models simultaneously
include both general growth trends over time (which
are allowed to vary across individuals, as is the case in
latent growth curve models), and the degree to which
prior levels of the construct are related to future change
(an effect which is fixed across individuals). Further-
more, these models have the benefit of directly capturing
change between time points, which is often what is of
interest to developmental researchers. Indeed, with this
information it is possible to both construct trajectories of
the target construct over time, and more directly model
determinants of change over time.
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The dual change scoremodel

The foundational LCS is the DCS (see Figure 1), named
for the simultaneous incorporation of the two major
change processes described above. More complex LCS
(e.g., bivariate and multivariate LCS; Corker, Donnel-
lan, & Bowles, 2013; King et al., 2009) are generally
extensions or respecifications of the DCS in one way
or another (Grimm et al., 2012). In the standard DCS,
a single outcome variable observed at each time point
is separated into systematic construct variance (y1–y6
in Figure 1), and residual variance (e1–e6 in Figure 1).
The specification of the model is such that the relevant
systematic variance may be identified and isolated even
when there is just a single observed variable at each time
point (McArdle & Nesselroade, 2014). The latent change
score factors are derived using the time point specific
latent constructs (i.e., the previously identified relevant,
systematic variance). There are as many latent change
score factors as there are waves of assessment minus one,
in order to model the intercept factor (lcsy2 through lcsy6
in Figure 1). These factors capture differences between
the latent variables of adjacent time points, for example,
changes in verbal ability between grades 3 and 4.

Importantly, DCS are cumulative models (expected
values at one time point are based on the expected val-
ues of the previous time points), using a “first differences”
(Liker, Augustyniak, & Duncan, 1985) approach to deriv-
ing subsequent values from the initial value and difference
(McArdle, 2001). This has the benefit of helping to com-
pensate for temporally uneven data collection, assuming
a relatively fixed change process (and presuming time
is treated as a discrete instead of a continuous variable,
which it typically is; McArdle & Nesselroade, 2014). If
the observation interval is not constant, latent placeholder
variables with values implied by the model (phantom, or
placeholder, variables) can be added to maintain a consis-
tent time scale (McArdle, 2001).

Autoproportional growth in the DCS is included via a
series of autoproportional regression paths (β in Figure 1)
that extend from one time point to the nearest subse-
quent latent change factor (though alternate specifications
are possible; see Grimm, 2012). Constant change is repre-
sented with a latent slope factor (g1 in Figure 1) that all
latent change score factors load on. The strength of the
constant change process for a given change score factor is
denoted by a basis coefficient (α in Figure 1), which acts
as a factor loading tying the slope factor to the individual
change factors. The slope factor is also typically correlated
with another latent factor that captures the initial level of
the variable under consideration (i.e., scores at time 1; g0
in Figure 1). This covariance denotes the degree to which
the constant rate of change is related to participants’ start-
ing values.

The autoproportion coefficients and slope factor form
the core of theDCS. As the residual variance of each latent
change score factor is usually set to 0, change between
timepoints in theDCS iswholly a function of the autopro-
portion coefficient (multiplied by the prior time point’s
score), and the slope factor value (multiplied by the basis
coefficient;McArdle &Hamagami, 2001). Specifically, the
model implied change between two time points is:

�t,t−1 = (α∗g1) + (β∗yt−1) (1)

where the values in the first set of parentheses represent
the constant change effect (e.g., children’s verbal ability
increases by a constant rate between all grades included
in the study), and the values in the second set of paren-
theses represent the autoproportion effect (e.g., children
with higher levels of verbal ability at one time point make
greater increases from one grade to the next). The con-
stant change process can be thought of as setting the base-
line rate of change, while the autoproportional process
either accentuates or attenuates this steady change effect
by serving as an accelerator or a brake on the constant
change process (McArdle & Nesselroade, 2014).

The model implied latent change score values of
Equation 1 can be used to calculate expected values at
each time point in order to obtain a model implied tra-
jectory (McArdle & Hamagami, 2001). For example, how
does verbal ability develop, on average, over the course
of the study? Thus, in addition to providing insight into
both the underlying constant change and autopropor-
tional processes, the DCS provides information on how
much change is expected between time points, and how
the construct of interest is expected to change over the
broader course of the study. TheDCS can also be extended
to include determinants of change by introducing vari-
ables that predict variance in the initial level and slope fac-
tors (Malone et al., 2004;Wu et al., 2013). This can be used
to address questions such as the extent to which nonver-
bal ability at grade 1 predicts the constant rate of change
in verbal ability across elementary school.

As noted above, applications of the DCS and other LCS
models typically include a number of equality constraints
on key change parameters over time: all autoproportion
coefficients (β in Figure 1) are constrained to equality,
and every basis coefficient (α in Figure 1) is fixed to 1
(McArdle, 2001; McArdle & Hamagami, 2001). Although
such constraints are not essential components of the
model(s) and can be tested and relaxed, instructional
and empirical applications (e.g., Curby, Grimm, &
Pianta, 2010; Ferrer & McArdle, 2007; Finkel et al., 2009;
Ghisletta & Lindenberger, 2003; Grimm et al., 2012;
Grimm et al., 2016; King et al., 2006; King et al., 2009;
McArdle, 2001; McArdle & Grimm, 2010; McArdle
& Hamagami, 2001) include these constraints more
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often than not, and rarely if ever evaluate less con-
strained alternatives. To be sure, these constraints on the
autoproportion and basis coefficients make the model
more parsimonious, and ease the burden on estima-
tion algorithms. Furthermore, given the complexity of
these models, thoroughly testing invariance in the major
change parameters over timemay appear to require a pro-
hibitive amount of data, discouraging such explorations
(e.g., Ghisletta & Lindenberger, 2003). However, though
these constraints may be reasonable and/or appear to
substantive researchers as necessary constraints, strict
invariance in the autoproportion and basis coefficients
across time is generally unrealistic in real data. As such,
these constraints will be incorrect to some degree and
thus can potentially introduce bias into the estimation of
the developmental parameters of interest.

Present study

To be sure, all models are approximations and therefore
at least somewhat misspecified, andmisspecification does
not necessarily lead to a meaningful amount of parameter
bias (MacCallum&Austin, 2000). Yet given the regularity
to which time-invariant constraints on the major change
parameters are utilized in applications of the DCS and
other LCS, it is important to understand the potential
impact of these simplifying specifications on the model.
The primary aim of the present study was therefore to
evaluate the extent to which incorrect impositions of
invariance on the major change parameters over time
(represented by equal autoproportion paths and unity
basis coefficients) lead to biased parameter estimates
in the DCS. Both conditional and unconditional DCS
were considered (i.e., models with and without external
predictors) in order to test whether the inclusion of
determinants of change reduces the magnitude of any
bias, and if these paths are themselves biased.

Misspecification and bias are less problematic if they
are easily detectable, as researchers know to interpret
with caution and consider altering their models. If a lack
of invariance in the major change parameters over time
can be detected, then researchers will know when non-
invariant parameter estimates might need to be uncon-
strained. Accordingly, the second aim of this study was
to investigate the ability of popular model fit statistics to
detect misspecification and bias in the context of overly
constrained DCS.

Of course, given the general implausibility of strict
invariance in the autoproportion and basis coefficients
over time, the argument could be made that it is sensible
to attempt to estimate models that do not include such
constraints, at the very least to evaluate their appro-
priateness. Again, such constraints are not necessary
components of the DCS (Grimm et al., 2012), and an

extension of the DCS with freely estimated basis coeffi-
cients has recently been labeled the triple change score
model (McArdle & Nesselroade, 2014; McArdle, Petway,
& Hishinuma, 2015). Thus, a third aim of this paper was
to examine the performance of DCS when autopropor-
tion and basis coefficients are freely estimated.

The three primary aims of this study were addressed
using Monte Carlo simulation methods. Several differ-
ent population models were created with varying degrees
of invariance in the autoproportion and basis coefficients
over time, and both unconditional and conditional DCS,
with the typical invariance constraints included, were fit
to the data. DCS with freely varying autoproportion coef-
ficients and/or basis coefficients were subsequently fit
to certain population models. Results are important for
understanding the robustness of a theoretically powerful
longitudinal model in the face of what are likely common
misspecifications.

Method

Data generation

Data were generated in Mplus version 7.4 (Muthen &
Muthen, 1998–2015). All population models included six
waves of data, and were specified in accordance with the
DCS structure in Figure 1. The populationmodel parame-
ters used for the baseline (i.e., invariant)model come from
the analysis of verbal ability in McArdle (2001), a semi-
nal demonstration of the DCS that drew on a widely used
data set tracking children’s cognitive development from
1st through 6th grade. In this model, autoproportion coef-
ficients were constrained to equality across time, and all
basis coefficients were set to 1. The population values for
each part of themodel can be found inTable 2. All datasets
were generated with 1000 observations at 6 time points

Table . Autoproportion and basis coefficient sets.

T→ T T→ T T→ T T→ T T→ T

Baseline Model
Autoproportion . . . . .
Basis Coefficient . . . . .

Autoproportion Sets
AP- . . . . .
AP- . . . . .
AP- . . . . .
AP- . . . . .
AP- . . . . .

Basis Coefficient Sets
BC- . . . . .
BC- . . . . .
BC- . . . . .
BC- . . . . .
BC- . . . . .

Note. AP= Autoproportion Set; BC= Basis Coefficient Set. For autoproportion
sets, all basis coefficients were , for basis coefficient sets, all autoproportion
coefficients were ..
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Table . Average unconditional model parameter estimates for all autoproportion sets.

μg σ g
 μg σ g

 σ gg β β β β β �

Baseline Model . . . . . . . . . . .
Estimate Mean . . . . . . . . . . .
Bias % .% −.% .% .% .% .% .% .% .% .% .%
Estimate SD . . . . . . . . . . .
Mean SE . . . . . . . . . . .

AP- . . . . . . . . . . .
Estimate Mean . . . . . − . − . − . − . − . .
Bias % −.% .% .% .% % −.% −.% −.% −.% −% .%
Estimate SD . . . . . . . . . . .
Mean SE . . . . . . . . . . .

AP- . . . . . . . . . . .
Estimate Mean . . . . . . . . . . .
Bias % −.% −.% .% .% .% .% −.% −.% −.% .% .%
Estimate SD . . . . . . . . . . .
Mean SE . . . . . . . . . . .

AP- . . . . . . . . . . .
Estimate Mean . . − . . − . . . . . . .
Bias % .% −.% −.% .% −% — .% .% .% .% .%
Estimate SD . . . . . . . . . . .
Mean SE . . . . . . . . . . .

AP- . . . . . . . . . . .
Estimate Mean . . . . . − . − . − . − . − . .
Bias % −.% −.% .% % % −.% −.% −.% −.% −.% .%
Estimate SD . . . . . . . . . . .
Mean SE . . . . . . . . . . .

AP- . . . . . . . . . . .
Estimate Mean . . . . . . . . . . .
Bias % −.% −.% .% .% % −.% −.% −.% −.% −.% .%
Estimate SD . . . . . . . . . . .
Mean SE . . . . . . . . . . .

Note. AP = Autoproportion set; SD = Standard Deviation; SE = Standard Error; μg = time  mean; σ g
 = time one variance; μg = constant change factor

mean; σ g
 = constant change factor variance; σ gg = covariance between time one and constant change factor; β = autoproportion coefficient;� = residual

variance. All basis coefficients fixed to one.

and no missing data, representing an ideal situation for
longitudinal data analysis (i.e., consistent data collection
and no attrition). For every condition described below,
1000 unique data sets were generated and analyzed.

Study conditions

Several major features of the data/model were systemat-
ically varied. The first feature to be manipulated was the
pattern of population autoproportion coefficients. In all,
five different sets of autoproportion coefficients were used
(AP1–AP5; see Table 1 for specific values), as well as the
baseline set. The baseline model included equal autopro-
portion coefficients at each time point; these values come
directly from themodel presented inMcArdle (2001). The
five other sets included different autoproportion coeffi-
cients at each time point, and were chosen to represent
a diverse array of patterns and values1 while remaining
consistent with the metric used in the original study (i.e.,
percent correct scores), and the general developmental

 All autoproportion values reported in the present studywere positive. Similar
conclusions emerged however when autoproportion values were negative,
or there was a mix of positive and negative values.

trend of verbal ability in early life (i.e., increasing). AP-1
values were selected by randomly generating 4 values
between .01 and .25, that when combined with .09 (the
original autoproportion value and fifth number of this
set), averaged to between .09 and .12 (final average was
.108). These values were then placed in descending order.
AP-2 and AP-3 included coefficients of similar (but not
exact) magnitude to AP-1 that were placed in increasing
and then descending, and descending, order respectively.
AP-4 consisted of larger coefficients (to represent a more
pronounced autoproportion process) that decreased at
a rate comparable to AP-1. AP-5 consisted of similarly
large coefficients that did not decrease as dramatically
over time. Across conditions, only the autoproportion
coefficients varied; the other population parameters
remained constant (see Table 2). The trajectories over
time implied by these population models can be found
in Table 4, and Figure 2. The population trajectories are
non-linear and increasing over time, which is consistent
with the original data, what would be expected for verbal
ability in early life (McArdle, 2001), and one of the oft
highlighted advantages of the DCS (i.e., flexibly modeling
non-linear change; Grimm et al., 2013).
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Figure . Average population and model implied trajectories for the six autoproportion conditions. Solid line denotes population trajec-
tory, dashed line denotesmodel implied trajectory. Timepoint on x-axis, scores on y-axis. All autoproportion conditions presented in order,
starting at top left: Baseline, AP-, AP-, AP-, AP-, AP-.

Next, in a separate set of simulations, basis coefficients
were manipulated while the autoproportion coeffic-
ients remained constant. Five different sets of basis coef-
ficients were used (BC1−BC5; see Table 1 for specific
values) in addition to the baseline set. In the baseline
model, all basis coefficients were set to 1, as is conven-
tion with the DCS. In the 5 other sets, basis coefficients
were different at each time point. Only the basis coeffi-
cients were manipulated across the population models,
all other parameters were held constant. Values were
chosen to represent a diverse assortment of constant
change patterns and magnitudes. BC-1 and BC-2 cap-
tured steadily increasing and decreasing growth trends,

respectively. BC-3 and BC-4 captured growth trends that
both increased and decreased across time. Finally, BC-5
captured a steadily increasing, but more pronounced,
growth trend. The specific values and rates of change
over time were selected to be reasonable in light of the
typical values assigned (i.e., 1), and the mean of the slope
factor. The final population model trajectories based on
these values can be found in Figure 3. Again, non-linear
increasing trends over time are represented, however the
non-linearity is less pronounced than in the autopro-
portion conditions. This is partly the consequence of
an invariant, modest autoproportion process in each
model (the autoproportion process is largely responsible
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Figure . Average population and model implied trajectories for the six basis coefficient conditions. Solid line denotes population tra-
jectory, dashed line denotes model implied trajectory. Time point on x-axis, scores on y-axis. All autoproportion conditions presented in
order, starting at top left: Baseline, BC-, BC-, BC-, BC-, BC-.

for decelerating and accelerating trends; McArdle &
Nesselroade, 2014).

The third data feature to be manipulated was the
presence or absence of an external predictor variable
for the initial level and slope factors. After first running
analyses for each autoproportion and basis coefficient
set without external predictor variables included in the
population model, an external variable was added to the
population model that predicted both the initial level
factor, and the slope factor. This external variable was
based on the 1st grade nonverbal ability variable from
the data used in McArdle (2001;M = 17.977 SD = 8.33).
Three conditional population models were generated
for each of the autoproportion and basis coefficient sets,

differentiated based on the size of the predictor effects,
which represented either weak, moderate, or strong
effects (i.e., standardized regression coefficients of .20,
.40, and .60, respectively).

Data analytic strategy

For each condition, a standard DCS was fit to each of
the 1000 generated data sets. Unconditional models were
examined first, followed by conditional models. As the
typical DCS includes constrained autoproportion coeffi-
cients and unity basis coefficients over time, these models
were correctly specified for only the baseline model, and
misspecified for every other set. Individual Mplus input
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files were generated and run for each simulated data set
using the Mplus Automation Package (Hallquist &Wiley,
2014) in R (RDevelopment Core Team, 2016). TheMplus
Automation package was also used to extract and consol-
idate parameter and fit information from the individual
output files.

For each condition, the average parameter estimates
across all replications were compared with the popula-
tion values. Deviations from the population values were
quantified with a percent bias statistic2 that denotes the
degree to which the average estimated value differs from
the population value (e.g., a value of 30 indicates that the
estimated value is 30% larger than the population value).
Following this, the average parameter estimates were used
to calculate the average model implied change between
each time points, and the average model implied tra-
jectory over the time points. Model implied scores were
compared to the corresponding population values. The
comparison of individual values was conducted using the
percent bias statistic. Additionally, the root mean square
error (RMSE) was calculated using the entire series of
model implied and population scores. This provides a sin-
gle value that holistically captures the overall bias in the
model implied values over time.

Model fit across the misspecified DCS was evalu-
ated by considering five of the most common structural
equation model fit indices (West, Taylor, & Wu, 2012):
the chi-square test (χ2), the root mean square error of
approximation (RMSEA), the standardized root mean
square residual (SRMR), the comparative fit index (CFI),
and the Tucker Lewis index (TLI). Information criteria
(e.g., Bayesian information criteria; BIC) were not consid-
ered here as the focus was largely on absolute fit (versus
comparative fit), and because model fit indices appear
to perform better than information criteria in evaluating
LCS (Usami, Hayes, & McArdle, 2016). Four statistics
for each of the fit indices of interest were calculated.
For the χ2, RMSEA, SRMR, CFI, and TLI, the mean
and standard deviation across all replications within a
condition was computed. For the χ2, the percentage of
models that demonstrated significant misfit at both the
.05 and .01 level was computed. For the RMSEA and
SRMR, the percentage of models with values below .08
and .05 was computed (lower values denote better fit). For
the CFI and TLI, the percentage of models with values
above .90 and .95 was computed (higher values denote
better fit). These thresholds represent the commonly
invoked standards for “adequate” and “excellent” fitting
models (Browne & Cudeck, 1993; Hu & Bentler, 1999;
West et al., 2012). The percentage of models evidencing

 Calculated via the formula ∗((E-P)/P) where E refers to the average esti-
mated value, and P refers to the actual population value

“adequate” and “excellent” fit were calculated excluding
models that did not converge.

The effects of loosening constraints on the autopro-
portion and basis coefficients over time were examined
by fitting less constrained models to the AP-1 population
model. Although only one population model was used
here for the sake of parsimony, similar results emerged
when other population models were used, including
population models with unequal basis coefficients, and
unequal autoproportion and basis coefficients. Twomajor
types of models were fit to the generated data (a slightly
altered version was also fit, and is described below).
The first matched the population model perfectly such
that only the autoproportion coefficients were freely
estimated. In the second, both autoproportion and basis
coefficients were allowed to freely estimate at all time
points (though 1 basis coefficient was fixed to 1 for
identification).

Results

The results for each major question are presented in turn.
Exploratory follow-up analyses are also briefly reviewed.
With the exception of the unconstrainedmodels, nomod-
els failed to converge. Non-convergence rates for the
unconstrainedmodels are discussed inmore detail below.

Misspecified autoproportion path constraints

Parameter estimates
Parameter population values, estimate averages, standard
deviations, average estimated standard errors, and per-
cent bias, are presented in Table 2. When the model was
correctly specified (baseline model) there was virtually
no bias in the parameter estimates. However, parameter
estimates were quite biased when the autoproportion
coefficients differed across time in the population model.
For example, for AP-1, parameter bias ranged from
.6% (initial level factor mean) to 1055% (initial level
factor-slope factor covariance). Though there was little
bias in the estimates of the initial level factor mean and
variance, the mean and variance of the slope factor was
substantially inflated (by 419% and 576%, respectively).
Furthermore, the average autoproportion coefficient
estimate (−.18) was well outside the range of any of the
population coefficients, and was even opposite in sign (all
population coefficients were positive).

Across the unequal autoproportion sets, parameter
bias was severe for the parametersmost relevant to change
over time: the autoproportion coefficient and the param-
eters related to the slope factor. The initial level factor
mean and variance, as well as the residual variance, were
relatively unaffected, as would be expected given their
relation to the change processes and factors. Typically,
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but not always, the direction of the bias was such that the
slope factor mean and variance were overestimated, and
the autoproportion value was underestimated, often to
the point that it was outside the range of all population
values. Notably, estimates were biased, but consistent.
The standard deviations of parameter estimates across
replications were small, and the estimated standard errors
accurately reflected this.

Growth trajectories
Model implied change between time points, and the cor-
responding population values, are presented in Table 3.
When the DCS was correctly specified, the average model
implied change between time points almost perfectly
matched the population change between time points.
When the DCS were misspecified, the model implied
change between time points still somewhat accurately
(i.e., bias generally < 20%), given the degree of param-
eter bias, captured the true change between time points.
Across all 5 sets of autoproportion coefficients, the aver-
age bias inmodel implied change scores was 3.60% (range
from 0% to 95%; RMSE from .14 to 2.30).

The average population trajectories over time were
accurately captured across all sets of autoproportion coef-
ficients (see Table 4). The trajectory for the correctly
specified model evidenced essentially no bias. For the
incorrect models, across all sets and time points, bias
ranged from only 0.1% to 5% (RMSE from .08 to 1.13; see
Figure 2).

Table . Average unconditionalmodel implied change for all auto-
proportion sets.

T→ T T→ T T→ T T→ T T→ T

Baseline Model . . . . .
Model Implied . . . . .
Bias % .% .% .% −.% −.%

AP- . . . . .
Model Implied . . . . .
Bias % .% −.% −.% .% .%

AP- . . . . .
Model Implied . . . . .
Bias % .% .% −.% −.% .%

AP- . . . . .
Model Implied . . . . .
Bias % −.% −.% .% −.% −.%

AP- . . . . .
Model Implied . . . . .
Bias % .% −.% −.% −.% .%

AP- . . . . .
Model Implied . . . . .
Bias % .% −.% .% −.% .%

Note. Change between time points calculated as: (μg
∗α) + (βx

∗Tx) where βx
represents the autoproportion coefficient from the earlier to the later time
point, and Tx represents the scores at the earlier time point. AP = Autopro-
portion set.

Table . Average unconditional model implied trajectory for all
autoproportion sets.

T T T T T T

Baseline Model . . . . . .
Model Implied . . . . . .
Bias % .% .% .% .% −.% −.%

AP- . . . . . .
Model Implied . . . . . .
Bias % −.% .% .% −.% −.% .%

AP- . . . . . .
Model Implied . . . . . .
Bias % −.% .% .% −.% −.% .%

AP- . . . . . .
Model Implied . . . . . .
Bias % .% −.% −.% .% .% −.%

AP- . . . . . .
Model Implied . . . . . .
Bias % −.% .% .% −.% −.% .%

AP- . . . . . .
Model Implied . . . . . .
Bias % −.% −.% −.% .% −.% .%

Note. Average scores at each timepoint calculated as: t−+ t− →Tx+ where
t −  represents the average score at the immediately prior time point, and
�t,t−  represents the average change between the immediately prior time
point and the current time point. AP= Autoproportion set.

Model fit
Fit information for all of the models can be found in
Table 5. When the models were correctly specified, fit
indices uniformly indicated excellent fit. However, fit
indices were only sporadically able to detect the mis-
specification and parameter bias when the models were
incorrectly specified. The χ2 test and RMSEA were most
likely to reject misspecified models, but still often indi-
cated that incorrect and substantially biased models were
acceptable. The SRMR, CFI, and TLI suggested that all
models at least fit the data adequately. In fact, the SRMR
and TLI indicated that most (> 95%)models except those
for AP-4 fit excellently.

Conditional models
Parameter population values, estimate averages, standard
deviations, average estimated standard errors, and per-
cent bias, are presented in Table 6. As results were very
similar across the weak, moderate, and strong predictor
models, only the results from the strong predictor models
are presented. When models were correctly specified
there was effectively no bias. When autoproportion val-
ues were incorrectly constrained to equality across time,
the bias for many parameters was severe. Bias in the
autoproportion coefficients ranged from 15% (AP-2) to
900% (AP-1), and bias in the slope factor mean ranged
from 50% (AP-2) to 851% (AP-4). The path from the
external predictor to the initial level factor was estimated
relatively accurately across autoproportion sets (bias
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Table . Fit information for all autoproportion sets.

χ  RMSEA SRMR CFI TLI

Baseline Model
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

Note. AP = Autoproportion set; M = Mean; SD = Standard deviation;
%Adequate=Percentage of replications that crossed fit thresholds for being
deemed adequate (χ  p > ., RMSEA < ., SRMR < ., CFI > ., TLI >
.); % Excellent = Percentage of replications that crossed fit thresholds for
being deemed excellent (χ  p > ., RMSEA < ., SRMR < ., CFI > .,
TLI> .).

ranged from 2% to 9%), whereas the path to the slope
factor was often quite distorted (bias ranged from 29% to
488%). Information regarding the fit of the conditional
models is presented in Table 7. Fit indices again did not
reliably signal (based on traditional thresholds) that there
was often a substantial amount of parameter bias.

Misspecified basis coefficient constraints

Parameter estimates
The results obtained from manipulating the population
basis coefficients and fitting overly constrained DCS were
analogous to the results obtained when manipulating
autoproportion coefficients. As such, these results are only
presented in text briefly. When models were misspeci-
fied, there was again substantial bias. Bias was most pro-
nounced in the autoproportion coefficient estimate, and
estimates related to the slope factor. Bias was minimal in
the initial level factor mean and variance, and the resid-
ual variance, estimates. Bias in the autoproportion esti-
mate ranged from a low of 5% (BC-3) to a high of 173%

(BC-2). Bias in the slope mean ranged from 94% (BC-
4) to 338% (BC-2). Bias tended to be smaller in magni-
tude when there was not a monotonically increasing or
decreasing trend in the basis coefficients.

Growth trajectories
For model implied change between adjacent time points,
bias ranged from 1% to 50% across all basis coefficient
sets and time points. RMSE values for the sets of model
implied difference scores ranged from .08 (BC-1) to 1.51
(BC-4). As for the overall trajectory, bias ranged from
.04% (BC-1) to 5% (BC-4) across the individual time
points. RMSE values for the total model implied trajecto-
ries ranged from .05 (BC-1) to 1.5 (BC-2) (see Figure 3).

Model fit
Fit indices generally indicated that the misspecified mod-
els were acceptable or excellent. Every fit index considered
with the exception of the χ2 indicated that the DCS fit
BC- 1, BC-2, and BC-5 at least adequately, andmost often
excellently. Only the RMSEA did not indicate an excellent
fit for BC-2. BC-3 and BC-4 were the least well fitting, but
although the RMSEA routinely rejected these models, the
CFI, TLI, and SRMR still indicated at least adequate fit,
even though these sets generally yielded the least amount
of estimation bias. Theχ2 rejectedmostmodels, but it had
low power for rejectingmodels fit to BC- 1 and BC-5, with
only 75%and 36%of thesemodels being rejected at the .05
level.

Freely estimating coefficients

Free autoproportion coefficients
Results from the unconstrained models are presented in
Table 8; fit information for these models is presented in
Table 9. When models with unconstrained autopropor-
tion coefficients were fit to AP-1 (Free AP in Tables 8 and
9), there was little bias in the average parameter estimates
across replications, and every marker of model fit indi-
cated that most or all replications fit excellently. How-
ever, there was substantial variability in the parameter
estimates across replications. For example, the average
estimate for the slope mean was 2.09, while the standard
deviation was 2.50, a value larger than the average esti-
mate itself. The standard errors accurately reflected this
instability, which had the side effect of greatly reducing
power to the point that most autoproportion coefficients
were non-significant (power for the five coefficients across
replications was: 44%, 32%, 16%, 8%, and 6%).

Free autoproportion and basis coefficients
We then considered the least constrained model with
freely estimated autoproportion and basis coefficients.
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Table . Average conditional model parameter estimates for all autoproportion sets.

μg σ g
 μg σ g

 σ gg β β β β β � βg βg

Baseline Model . . . . . . . . . . . . .
Estimate Mean . . . . . . . . . . . . .
Bias % .% −.% % % −.% % % % % % % % %
Estimate SD . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . .

AP- . . . . . . . . . . . . .
Estimate Mean . . . . . − . − . − . − . − . . . .
Bias % .% .% .% .% .% −.% −.% −.% −% −% .% −.% %
Estimate SD . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . .

AP- . . . . . . . . . . . . .
Estimate Mean . . . . . . . . . . . . .
Bias % −.% −.% .% .% .% .% −.% −.% −.% .% .% −.% .%
Estimate SD . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . .

AP- . . . . . . . . . . . . .
Estimate Mean . . − . . − . . . . . . . . − .
Bias % −.% −.% −% % −% — % % % % .% .% −%
Estimate SD . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . .

AP- . . . . . . . . . . . . .
Estimate Mean . . . . . − . − . − . − . − . . . .
Bias % −.% −.% % % % −% −% −% −% −% .% −.% %
Estimate SD . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . .

AP- . . . . . . . . . . . . .
Estimate Mean . . . . . . . . . . . . .
Bias % .% −.% % % % −.% −.% −.% −.% .% .% −.% %
Estimate SD . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . .

Note. AP = Autoproportion set; SD = Standard Deviation; SE = Standard Error; μg = time  mean; σ g
 = time one variance; μg = constant change factor

mean; σ g
 = constant change factor variance; σ gg = covariance between time one and constant change factor; β = autoproportion coefficient;� = residual

variance; βg = regression path from external variable to time  mean factor; βg = regression path from external variable to constant change factor. All basis
coefficients fixed to one.

Results are presented in Table 8 (FreeAP, BC); fit informa-
tion is presented in Table 9. This model encountered seri-
ous estimation difficulties; 773 of 1000 replications failed
to converge. The results in Tables 8 and 9 should thus be
interpreted cautiously, as they only pertain to those few
replications that successfully converged. Of the 227 mod-
els that did converge, bias was smaller than in the overly
constrained models, but more pronounced than in the
Free AP model (e.g., average bias across autoproportion
coefficients = 15% versus 0%). The CFI, TLI, and SRMR
indicated that thesemodels fit excellently, but the RMSEA
and χ2 rejected most models that converged. Compared
to the Free AP model, parameter estimates were more
stable across the replications (e.g., standard deviation for
the slope mean = .38). However, the estimated standard
errors were incredibly large and inaccurate (e.g., average
standard error for the slope mean = 90.07). Thus, most
models that were fully unconstrained failed to converge,
and those that did still evinced problems suggesting a gen-
eral instability.

In an attempt to improve the performance of the
Free AP, BC model and facilitate convergence, one
extra constraint was added such that the first two basis

coefficients were fixed to 1 instead of just the first (Free
AP, BC∗ Tables 8 and 9). Notably, this constraint accu-
rately reflects the underlying populationmodel. With this
model, 204 replications failed to converge out of the total
1000 runs, however, parameter estimateswere both biased
and unstable. For example, the average slope factor mean
was−2.37 (bias= 215%), and the standard deviation was
12.93. Standard errors were sporadic in over-estimating
versus under-estimating the actual degree of variation.
Despite this parameter bias and instability, most models
(>95%) fit excellently according to all markers of fit con-
sidered here.

Exploratory follow-up analyses

Two potential issues with the DCS highlighted by the
results of the main analyses are that the unjustified
application of standard constraints can result in substan-
tial parameter bias, and that popular indices of model
fit, or at least their commonly invoked thresholds, do
not reliably indicate that parameters are exceptionally
biased. Across models, the autoproportion coefficients
and parameter estimates associated with the slope factor
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Table . Fit information for conditional autoproportion sets.

χ  RMSEA SRMR CFI TLI

Baseline Model
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

AP-
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

Note. AP = Autoproportion set; M = Mean; SD = Standard deviation; % Ade-
quate = Percentage of replications that crossed fit thresholds for being
deemed adequate (χ  p > ., RMSEA < ., SRMR < ., CFI > ., TLI >
.); % Excellent = Percentage of replications that crossed fit thresholds for
being deemed excellent (χ  p > ., RMSEA < ., SRMR < ., CFI > .,
TLI> .).

(mean, variance) tended to have themost serious bias.We
therefore examined the correlations between parameter
estimates across replications; the correlations between
parameters for Baseline Model are presented in Table 10.
Although there were several moderate sized correlations,
the highest value by far was the correlation between the
autoproportion coefficient and the slope factor mean, at
r = −.99. Similarly large correlations were also evident
for the association between the autoproportion coeffi-
cient and slope factor mean across the other conditions
as well. For AP-1 through AP-5 the correlations between
these parameters were −.92, −.97, −.97, −.63, and −.82,
respectively. For BC- 1 through BC-5, the correlations
between these parameters were −.96, −.90, −.93, −.95,
and −.81, respectively.

The correlation between the autoproportion coeffi-
cient and slope factor mean implies that the model may
have difficulty distinguishing the two growth processes of
interest. In essence, this comes down to an issue of multi-
collinearity; the two predictors of growth over time (i.e.,
constant and autoproportional processes) are so highly

correlated that estimates become unstable. Problems with
multicollinearity are often indicative of an inadequate
amount of information (Farrar & Glauber, 1967). In this
context the amount of available information is largely tied
to the number of waves of data. Thus, increasing the num-
ber of waves of data may reduce the correlation between
the autoproportion coefficient and slope factor mean. To
test this, extra waves of data were added to the Base-
line Model. When there were 10 waves of data instead
of 6, the correlation between the autoproportion coeffi-
cient and slope factor mean dropped from −.99 to −.91.
When there were 15 waves of data the correlation was
−.64. Finally, when there were 20 waves of data the corre-
lation between these two parameters was only−.12. Thus,
it took 14 additional waves of data to reduce the correla-
tion between these two parameters to relative triviality.

Discussion

This paper examined the consequences of restrictive con-
straints on the parameter estimates and fit statistics of
dual change score models (DCS), which are the basic
and foundational latent change score model (LCS). DCS
are typically specified including constraints in which the
major growth parameters (autoproportion and basis coef-
ficients) are invariant across time. In real data these
restrictions are likely to be inaccurate, yet they offer
the advantage of more parsimonious and easy to esti-
mate models. The results of the current study show that
when invariance does not hold in the data, but is still
imposed, parameter estimates may become exception-
ally biased. Further, fit statistics are unreliable indicators
regarding the degree of misspecification and parameter
bias. Although this potentially suggests freely estimating
all parameters to attempt to assess the appropriateness of
such constraints across time, this approach has its own
corresponding limitations and pitfalls discussed below.
We thus caution readers against reaching such conclu-
sions from the present results.

Summary

If either autoproportion or basis coefficients varied over
time, constraining them to equality introduced a sub-
stantial amount of bias. Bias was most pronounced in
estimates of the autoproportion coefficient, and param-
eters related to the slope factor (i.e., slope factor mean,
variance, and covariance with the initial level factor).
As such, bias was most prevalent in the parameters that
are most relevant for capturing change over time: in
other words, the parameters that tend to be of the most
substantive interest. Notably, the estimate of the auto-
proportion coefficient often fell well outside the range
of the population model autoproportion coefficients.
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Table . Results for unconstrained models.

μg σ g
 μg σ g

 σ gg α α α α α β β β β β �

Free AP . . . . . . . . . . . . . . . .
Estimate Mean . . . . . . . . . . . . . . . .
Bias % % −.% .% % .% % % % % % % % % % % −.%
Estimate SD . . . . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . . . . .

Free AP, BC . . . . . . . . . . . . . . . .
Estimate Mean . . . . . . . . . . . . . . . .
Bias % .% −.% −% −.% −% % % % .% % .% .% % % % −.%
Estimate SD . . . . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . . . . .

Free AP, BC∗ . . . . . . . . . . . . . . . .
Estimate Mean . . − . . − . . . . . . . . . . − . .
Bias % .% −.% −% % −% % % −% −% % % % % % −% .%
Estimate SD . . . . . . . . . . . . . . . .
Mean SE . . . . . . . . . . . . . . . .

Note. Free AP = models estimated with freely estimating autoproportion coefficients; Free AP, BC = models estimated with freely estimating autoproportion and
basis coefficients; FreeAP, BC∗ =models estimatedwith freely estimating autoproportion andmostly freely estimatingbasis coefficients; SD= StandardDeviation;
SE = Standard Error; μg = time  mean; σ g

 = time one variance; μg = constant change factor mean; σ g
 = constant change factor variance; σ gg =

covariance between time one and constant change factor; β = autoproportion coefficient; α = basis coefficient; β = autoproportion coefficient;� = residual
variance.

For example, the estimated autoproportion coefficient
for AP-1 was −.18, which is larger in magnitude and of
opposite sign than all the population coefficients; it is
nowhere near the average of the population coefficients
as might be expected. Furthermore, estimates were both
biased and stable; across replications the DCS tended
to be consistent in its inaccurate estimates. This low
variability in estimates indicates that misspecified models
will reliably over or under estimate many parameters.

In addition to being large inmagnitude, bias was some-
what unpredictable in direction. Although with most

Table . Fit information for unconstrained models.

Autoproportion Set χ  RMSEA SRMR CFI TLI

Free AP
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

Free AP, BC
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

Free AP, BC∗
M . . . . .
SD . . . . .
% Adequate % % % % %
% Excellent % % % % %

Note. Free AP=models estimated with freely estimating autoproportion coef-
ficients; Free AP, BC = models estimated with freely estimating autopropor-
tion and basis coefficients; Free AP, BC∗ =models estimated with freely esti-
mating autoproportion and mostly freely estimating basis coefficients M =
Mean; SD = Standard deviation; % Adequate = Percentage of replications
that crossed fit thresholds for being deemed adequate (χ  p > ., RMSEA
< ., SRMR < ., CFI > ., TLI > .); % Excellent = Percentage of repli-
cations that crossed fit thresholds for being deemed excellent (χ  p > .,
RMSEA< ., SRMR< ., CFI> ., TLI> .).

autoproportion sets the slope mean was overestimated
and the autoproportion values were underestimated,
with AP-3 the slope factor mean was underestimated,
and the autoproportion value was overestimated. One
distinguishing feature of AP-3 was that autoproportion
values increased monotonically, whereas in many other
sets they decreased. The direction of bias may thus partly
be a function of the pattern of autoproportion coefficients
in the population. This is not an especially useful insight
however as in practical applications the population values
are unknown, and moreover, actual autoproportion val-
ues are unlikely to follow a strict increasing or decreasing
pattern. As an illustration of the problem this poses,
when the final autoproportion value of AP-3 had its
sign switched to negative (i.e., increasing autoproportion
values, then a sharp decrease), the overall magnitude of
bias remained consistent with the original analysis, but
the direction of the bias flipped.

The impact of overly constraining models was also
examined when external variables related to the latent

Table . Correlations between DCS parameters across 
replications.

Parameter μg σ g
 μg σ g

 σ gg

μg
σ g

 .

μg − . − .

σ g
 − . . .

σ gg − . − . . .

β . . − . − . − .

Note. Correlations based on parameter estimates from Baseline Model. μg =
time  mean; σ g

 = time one variance;μg = constant change factor mean;
σ g

 = constant change factor variance; σ gg = covariance between time
one and constant change factor; β = autoproportion coefficient.
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factors were included, as these paths could help reduce
bias, and are often of substantive interest (e.g., To what
extent does nonverbal ability predict the constant change
effect in the development of verbal ability?). The addi-
tion of these covariates did in fact reduce bias, but only
slightly, even when the extra variable was strongly related
to the factors (e.g., bias reduced from 419% to 391% for
the constant change mean in AP-1). Furthermore, the
new regression paths themselves were often biased to a
non-trivial degree (especially the paths to the slope fac-
tor; see Table 6), implying that the role of potential deter-
minants of change might also become distorted. Still,
it is notable that bias decreased as the strength of the
association between the external variable and the fac-
tors increased (e.g., bias of 419%, 410%, 399%, and 391%
for no, weak, moderate, and strong predictors for the
slope factor mean in AP-1). It is also worth pointing out
the interesting contradiction whereby adding a predictor
made parameters less biased, but fit indicesmore likely to
reject the model. Together these findings lend credence
to the idea that external variables can help to improve
estimates. However, this insight may not be practical, as
the bias remained large even with strong predictors, and
strong predictor variables are not common in psycholog-
ical research (Meyer et al., 2001).

Not all parameters were biased in the face of incor-
rect equality constraints. The initial level factor mean
and variance, as well as the residual variance, were accu-
rately captured generally. This is unsurprising given that
these parameters are not directly related to the misspec-
ified change processes. However, the estimated models,
although biased, also rather accurately captured the aver-
age change between adjacent time points, and the over-
all average trajectory over time. Incorrect models were
able to accomplish this in spite of themisspecification and
biased parameter estimates.

This fact may partly explain why popular indices of
model fit and their commonly used cutoff values gen-
erally indicated that the misspecified and biased models
fit the data adequately or excellently. Indeed, the exami-
nation of several individual replications from the differ-
ent conditions revealed that models were overall able to
reproduce both the observed means, and the observed
variance/covariance matrices rather accurately (e.g., the
average bias in the implied variance-covariance matrix
for three replications from AP-1 was 1.55%, 1.89%, and
1.29%). However, across conditions and replications there
was a consistent trend such that the observed means
were reproduced more accurately than the variances
and covariances (e.g., the average bias in the implied
means for the same three replications from AP-1 was
0.31%, 0.51%, 0.26%). This highlights that overall these
models are adept at accommodating misspecification to

reproduce the observed data, however this effective-
ness is especially pronounced in the mean structure.
Most models fit well or excellent by conventional stan-
dards, but to the degree that there was misfit (as most
models did evince some misfit), it was more likely to
come from the covariance, as opposed to the mean,
structure.

To be sure, some leniency in fit statistics can be a
virtue, especially as many fit statistics were developed to
counter the tendency of the chi-square test to pick up on
trivial misfit, especially with larger sample sizes. As such,
fit statistics should not necessarily indicate a major issue
when there is some misspecification, as misspecification
will not always have major consequences. However,
parameter bias in most of the misspecified models was
severe, which makes the performance of the fit statistics
in this context more troubling. Parameter estimates could
be 2 to 5 time larger in absolute magnitude than they
should have been, yetmostmodels fit the data well or very
well by several indices. Notably, the degree of parameter
bias was not consistently related to the performance of
the fit statistics. For example, AP-2 was associated with
the least amount of parameter bias, yet models were more
likely to be rejected for this set than were models based
on AP-1, which was associated with much more bias. Of
course, fit statistics primarily capture the ability of the
model to reproduce the observed data, and as highlighted
above, most models achieved this aim quite well in spite
of their problematic estimates. Reinforcing this notion,
even though AP-2 was associated with the least amount
of parameter bias, it was associated with some of the
most pronounced bias in the reproduced trajectories (see
Table 4). Thus, fit statistics will generally be more attuned
withmodels’ ability to accurately represent overall change
trajectories than their ability to accurately represent the
underlying change processes, which necessitates their
cautious application when using LCS.

Overall, these results are concerning as they indicate
that misspecified models with substantial parameter bias
may appear to provide a good fit to the data by con-
ventional standards. Follow-up analyses revealed a very
strong correlation between the autoproportion path and
slope factor mean that may help explain these issues,
as well as the fact that although parameter estimates
were biased, the population trajectory was mostly recov-
ered accurately. Given the high degree of correspondence,
these key parameters may compensate for one another in
reproducing the population trajectory. That is, the most
relevant growth parameters appear capable of accommo-
dating misspecification in their counterpart in order to
accurately capture the population trajectory. Increasing
the number of waves of assessment succeeded in reducing
the correlation between parameters, which could address
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the problems identified here, making this a potentially
fruitful avenue for future research.

Although this ostensibly implies that researchers
should attempt to freely estimate the autoproportion
and basis coefficients, the present findings indicate many
potential difficulties with this strategy. When only the
parameters that were unequal across time were freed,
models on average correctly recovered the parameter val-
ues, but estimates were quite variable across replications,
making it more difficult to interpret the results from any
one analysis. Further, as it is unrealistic to assume that the
parameters that are unequal across time are known, and
that only one growth process is time-varying, it would
likely be most defensible to begin by estimating every
parameter without imposing invariance over time. These
models tended to recover the parameters accurately with-
out much variability across replications, but they were
difficult to estimate, and often produced biased standard
errors. Indeed, the majority of fully estimating models
often failed to converge, suggesting a substantial degree
of instability. Given the rather low rates of convergence,
and biased standard errors, even models that successfully
estimate all parameters may not be the most trustworthy.
As such, convergence by itself cannot be used to indicate a
reliablemodel. Again, thismay be an issue stemming from
the difficulty of attempting to disentangle two highly cor-
related change processes without a substantial amount of
data.

Interestingly, adding a single extra constraint helped
increase the rate of convergence and the accuracy of the
standard errors, but even when accurate this single “stabi-
lizing” constraint introduced a substantial amount of bias,
and actual parameter instability. All of the more uncon-
strained models generally fit the data excellently (often
near perfectly), which is especially problematic in the lat-
ter scenario in which a single, seemingly innocuous, con-
straint introduces substantial bias. Indeed, it was often
possible to go from a nonconverging model to a near per-
fectly fitting, but very biased, model just by fixing one
extra basis coefficient to 1. This occurred even when the
basis coefficient was 1 in the population, suggesting that
even population-congruent constraints can lead to excel-
lent fitting but biased models when partially constrained
DCS are estimated.

Thus, less constrained models may be just as untrust-
worthy as constrained models, an issue compounded
by potential instability in estimation. As such, to the
extent they are useful, unconstrained models likely best
serve as tools for assessing the plausibility of constraints
rather than an end unto themselves. That is, given
the issues encountered here, to the extent such models
are employed, they should likely be utilized cautiously.
Parameters in unconstrained and constrainedmodels can
be compared, as can fit statistics. Further, the residuals of

models with varying degrees of constraint can be exam-
ined to assess how constraints contribute to the repro-
duction of themean and covariance structures. Of course,
these unconstrained models may fail to converge, or pro-
vide unstable estimates, especially if a minimal number
of constraints are added to improve rates of convergence.
Altogether then, the results based on unconstrainedmod-
els suggest that evaluating the plausibility of constraints
across timepresentsmany challenges, and thatwhen these
constraints appear invalid, itmay still be difficult to obtain
a trustworthy model. In such instances, different analytic
approaches may be necessary.

Implications

Latent change score models are conceptually powerful,
and offer developmental researchers a flexible tool for
investigating change over time without the substantive
limitations inherent to autoregressive or growth curve
models. The present study however suggests that LCS are
not without major pitfalls, and should be applied cau-
tiously in many contexts, particularly when invariance in
the change parameters across time is unrealistic. To be
sure, the present study only focused on one particular type
of LCS, the DCS, but the DCS serves as the underlying
model of other more complex LCS, such as the bivariate
dual change score model (King et al., 2009).

We briefly considered three potential ways to address
the issues we identified with LCSmodels. Including exter-
nal predictors of the components of the model, for one,
could reduce bias while providing the scientifically mean-
ingful insights that are often of primary interest. However,
our findings indicated that the ability of such variables to
reduce bias and improve the performance of fit statistics is
modest at best, and including them may actually exacer-
bate the problem as the regression paths themselves may
also be considerably biased. Alternatively, unconstrain-
ing parameters to assess the feasibility of such constraints
can result in accurate parameter estimates.However, these
models are more difficult to estimate, and parameter esti-
mates may be quite unstable and the standard errors inac-
curate, making these models difficult to interpret and
evaluate. Furthermore, even a single constraint to assist
estimation may result in substantially biased estimates.
Including more waves of data reduced the correlation
between parameters in the present study, and may thus
address some of the issues identified here; more work is
needed to explore this possibility. Our present results sug-
gest it may take many more waves of data to achieve this
level of stability than are commonly available in longitu-
dinal studies.

It is worth reiterating that despite the bias in
the individual parameter estimates, the misspecified
models rather effectively captured the change between
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time points in the latent change factors, and the overall
trajectory across time. This second characteristic is of
dubious usefulness if the actual parameters underlying
the trajectory cannot be trusted, as then these models
provide little about change beyond what can be gained
by simply examining the observed means and standard
deviations at each time point. That is, if the parameters
cannot be trusted, the model becomes descriptive rather
than explanatory, and therefore of limited scientific
value. The model implied latent change scores were also
generally well captured though, and these components
of the model are potentially more useful as outcome or
predictor variables in advanced investigations of develop-
mental processes. More work is needed to test the extent
to which the latent change factors can confidently be used
in investigations however.

Finally, the results here reemphasize the point that the
commonly applied cutoff values for fit statistics are not
universal, and should not be strictly adhered to across
analyses. Across replications, fit statistics commonly indi-
cated that substantially biased models fit the data excel-
lently. The fit cutoffs usually used are primarily based
on investigations of simple confirmatory factor analytic
models (e.g., Hu & Bentler, 1999), and there is evidence
that these standards do not apply to all types of models
(e.g., Fan & Sivo, 2007). The current results add to this
collection of evidence and indicate that the typical rules of
thumb for guiding model selection will not always apply
to LCS. As such, when estimating LCS researchers should
treat fit information cautiously, especially until the func-
tioning of fit indices in the context of latent change score
modeling is better understood.

Limitations and future directions

We note several limitations with our study. Notably, the
current study included no attrition, and data collected
at every necessary time point (LCS models generally
require evenly spaced time intervals). These conditions
are likely not the conditions faced by most developmental
researchers. Future work should more thoroughly exam-
ine the role of attrition and unequal time interval spac-
ing (i.e., the inclusion of phantom variables). Considering
that problematic trends were observed with ideal data, it
is likely that these additional real world concerns will only
exacerbate the challenges we identified (e.g., with missing
waves it is impossible to unconstrain all parameters, and
the results here suggest that even one extra constraint can
introduce substantial bias).

Further, although it is a strength that the population
model used here was based on real data (i.e., a realistic set
of parameters), it may be that the results here do not nec-
essarily generalize to other population models. However,

the primary goal here was to illustrate potential issues
with this model as a caution, not test all population values
and patterns. Indeed, despite the potential limitations on
generalizability, the current results are useful for showing
that, at the very least, under some circumstances (reason-
able circumstances as well, again, given the origins of the
populationmodel)DCS are likely to suffer from the short-
comings identified here. Given that population values are
generally unknown, the limited knowledge provided here
is thus still useful for engendering a justifiable caution in
developmental researchers.

Future work should thus build on the present find-
ings by examining the functioning of more advanced
LCS. To be sure, the DCS may be more popular as a
building block for more complex models than as a stan-
dalone model. The bivariate dual change score model, for
instance, includes two parallel DCS that are synched with
a series of cross-lagged coupling parameters (McArdle &
Hamagami, 2001). Two simultaneously misspecified DCS
could greatly increase the amount of bias present; how-
ever, the presence of another variable, paired up with the
coupling parameters, may help to stabilize estimates. Fur-
thermore, the coupling parameters themselves are often
constrained to equality across time, and the ramifications
of these constraints would also need to be investigated.
These questions require additional research.

It is alsoworth noting that the current study focused on
absolute model fit, however future work should consider
relative/comparative fit. Although fit statistics may strug-
gle to identify misspecification and bias in the absolute
sense, theymay bemore effective in comparingmore pro-
gressively constrained models. This will require improv-
ing the feasibility and integrity of more unconstrained
models, however.

In this vein, methods that may make unconstrained
models more computationally tractable and trustworthy
must be considered. One possibility is using Bayesian
SEM estimation techniques instead of the more typical
maximum likelihood approach (Kaplan&Depaoli, 2012).
The use of informative priors, for example, could ease the
computational burden of more unconstrained models. To
date however, there is little work on Bayesian estimation
and LCS. More reliably estimated unconstrained models
would in part make it more feasible to evaluate the appro-
priateness of constraints across time.

Conclusion

Latent change score models represent a flexible, modern
approach to rigorously analyzing change and devel-
opment of psychological constructs over time. These
models are potentially powerful tools, combining the
conceptual strengths of both autoregressive and growth
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curve models, that can provide numerous insights about
developmental processes beyond what can typically be
gained from more basic models. In this study, we found
that imposing the parameter invariance over time that
is typically introduced in these models can lead to a dis-
torted picture of the underlying developmental processes.
Furthermore, we found that model fit statistics do not
generally indicate that anything has gone awry in the
modeling process. Precautions can be taken in an attempt
to avoid these pitfalls (e.g., including predictors, freeing
parameters), but such safeguards provide limited protec-
tion, and may backfire under several circumstances.
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