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The Lack of Robustness of a Statistic Based on the Neyman-Pearson Lemma to Violations

of its Underlying Assumptions

Abstract

Drasgow, Levine, and Zickar (1996) suggested a statistic based on the Neyman-Pearson

lemma (e.g., Lehmann & Romano, 2005, p. 60) for detecting preknowledge on a known set

of items. The statistic is a special case of the optimal appropriateness indices of Levine and

Drasgow (1988) and is the most powerful statistic for detecting item preknowledge when

the assumptions underlying the statistic hold for the data (e.g., Belov, 2016; Drasgow et al.,

1996). This paper demonstrated using real data analysis that one assumption underlying

the statistic of Drasgow et al. (1996) is often likely to be violated in practice. This

paper also demonstrated, using simulated data, that the statistic is not robust to realistic

violations of its underlying assumptions. Together, the results from the real data and the

simulations demonstrate that the statistic of Drasgow et al. (1996) may not always be the

optimum statistic in practice and occasionally has smaller power than another statistic

for detecting preknowledge on a known set of items, especially when the assumptions

underlying the former statistic do not hold. The findings of this paper demonstrate the

importance of keeping in mind the assumptions underlying and the limitations of any

statistic or method.
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1. Introduction

Item preknowledge refers to some examinees having prior access to test items and/or

answers before taking the test. The items that the examinees have prior access to are

referred to as compromised. Levine and Drasgow (1988) suggested a set of test statistics

based on the Neyman-Pearson lemma (NPL; e.g., Lehmann & Romano, 2005, p. 60) to

detect examinees whose response patterns are aberrant due to cheating, language issues

etc.—these statistics are referred to as the optimal appropriateness indices (OAIs). A

statistic that is a special case of the OAIs and can be applied to detect preknowledge on a

known set of compromised items was suggested by Drasgow et al. (1996)—the statistic will

be referred to as the Drasgow-Levine-Zickar statistic (DLZS). Belov (2016) used a statistic

very similar to the DLZS to detect preknowledge on a known set of items (e.g., Sinharay,

2017a). Because of the similarity of the statistic of Belov (2016) to the DLZS, these two

statistics will be treated to be the same in this paper.

The DLZS is based on two assumptions, one regarding the true ability distributions

of the examinees and the other regarding the success probability of the examinees with

preknowledge on the compromised items. Researchers such as Belov (2016) and Drasgow et

al. (1996) stated that the DLZS is the most powerful statistic for detecting preknowledge

on a known set of items under the two aforementioned assumptions. The DLZS has been

employed to detect preknowledge by Drasgow et al. (1996), Belov (2016), Sinharay (2017a),

and Sinharay (2017b) among others. However, there is a lack of knowledge on the extent to

which the two assumptions underlying the DLZS hold for real data and on the robustness

of the DLZS to violations of its underlying assumptions. This paper aims to fill those

gaps. The goals of this paper are to (a) demonstrate using real data that one of the two

assumptions underlying the DLZS is often likely to be violated in practice, (b) demonstrate

using simulated data that the DLZS is not robust to realistic violations of its underlying

assumptions. The lack of the robustness is demonstrated by showing that the DLZS is

often less powerful than the signed likelihood ratio (SLR) statistic (Sinharay, 2017c), which

is another statistic for detecting preknowledge on a known set of compromised items, under

realistic violations of the underlying assumptions. The overarching goal of this paper is
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to demonstrate that the DLZS may not always be the optimum statistic for detecting

preknowledge on a known set of compromised items.

The next section includes descriptions of the DLZS and the SLR statistic. In the

following section, evidence from real data analyses and literature review are brought to

bear on the two assumptions under which the DLZS is the most powerful statistic. The

Simulations section includes a simulation study that examines the extent of robustness

of the DLZS to realistic violations of its underlying assumptions. The Real Data section

includes an example where the DLZS is found to flag fewer cheaters than the SLR statistic

for two real data sets that included some known compromised items and known cheaters.

Conclusions and recommendations are provided in the last section.

2. Background

2.1 Notation

Let xi denote the score of an examinee whose true ability is represented as θ on

item i, i = 1, 2, · · · , I, of a test. This paper only considers dichotomous items that are

scored as correct (1) or incorrect (0). Let Pi(θ) denote the probability of a correct answer

on item i by the examinee under an item response theory (IRT) model. For example, if the

2-parameter logistic model (2PLM) is used for modeling the data from the test, then

Pi(θ) =
exp[ai(θ − bi)]

1 + exp[ai(θ − bi)]
, (1)

where ai and bi respectively are the slope and difficulty parameters of item i.

Let x = (x1, x2, . . . , xI) denote the scores of the examinee on all the items. This

paper focuses on the case when a set C of items, which is known to the investigator, has

been compromised and the investigator intends to detect the examinees who may have

benefitted from preknowledge of the items in C. Examples of preknowledge on a known set

of compromised items for high-stakes tests can be found in Cizek and Wollack (2017, p.

14) and Eckerly, Smith, and Lee (2018). Therefore, the problem of detecting preknowledge

on a known set of items is important in practice, notwithstanding the fact that the set of

compromised items is often unknown.
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Let the vector xC denote the scores of the examinee on the compromised items.1 Let

U denote the set of uncompromised items, where an uncompromised item is one that is

not known to have been compromised, and let the vector xU denote the scores of the

examinee on the uncompromised items. Thus, for example, xC = (x1, x2, . . . , x10)
′ and

xU = (x11, x12, . . . , x30)
′ for a 30-item test whose first 10 items were compromised.

Suppose that for the examinee, nc1 denotes the number of correct answers to the

compromised items and nc0 denotes the number of incorrect answers to the compromised

items. That is,
∑

i∈C xi = nc1 and nc0 = I − nc1. It is assumed in this paper that there are

no missing item scores.

2.2 The OAI and the DLZS

In the approach of Levine and Drasgow (1988) for detecting examinees whose

responses/scores are aberrant due to factors such as cheating and carelessness, one assumes

a probability model PAberrant(X = x) to describe the item scores under aberrant

responding. One also assumes another model PNormal(X = x) to describe the item scores

under normal or non-aberrant responding. Then, one computes the likelihood ratio λ for

each examinee as

λ =
PAberrant(X = x)

PNormal(X = x)
, (2)

and flags an examinee as having a significant extent of aberrant responses if λ > k for

the examinee. The critical value k can be computed by simulating data of several normal

examinees. Levine and Drasgow (1988) referred to the λ of Equation 2 as the OAI.

Typically, PNormal(X = x) is computed as the marginal probability of x under an IRT

1This paper considers the simple case when all examinees benefitting from preknowledge were adminis-

tered all items in C. The methods and findings of this paper apply in a straightforward manner to the case

when those benefitting from preknowledge were administered some (but not all) items in C, which could

happen on an adaptive test.
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model. For example, Levine and Drasgow (1988, p. 170) stated that

PNormal(X = x) =

∫
θ

f(θ)
I∏
i=1

Pi(θ)
xi [1− Pi(θ)](1−xi)dθ, (3)

where f(θ), the examinee ability distribution, is assumed to be the standard normal

distribution, that is,

f(θ) =
1√
2π
e−

θ2

2 ·

The choice of the model for PAberrant(X = x) is more complicated and depends on the

type of aberrance that is of interest.

Drasgow et al. (1996) suggested a special case of the OAI to detect cheating, like

preknowledge, on a known set of items, which is the problem of interest in this paper. To

compute PAberrant(X = x) for this special case, it is assumed that the cheaters correctly

answer the compromised items with a large probability (p) and answer the uncompromised

items in the same manner as the non-cheaters. These assumptions allow one to compute

PAberrant(X = x) for this case as

PAberrant(X = x) = pnc1(1− p)nc0
∫
θ

f(θ)
∏
i∈U

Pi(θ)
xi [1− Pi(θ)](1−xi)dθ· (4)

The probability of normal responding is computed as in Equation 3. Then, using

Equations 2-4, the likelihood ratio for detecting cheating on a known set of compromised

items for an examinee, referred to here as the DLZS, is obtained as

DLZS =
PAberrant(X = x)

PNormal(X = x)
=
pnc1(1− p)nc0

∫
θ
f(θ)

∏
i∈U Pi(θ)

xi [1− Pi(θ)](1−xi)dθ∫
θ
f(θ)

∏I
i=1 Pi(θ)

xi [1− Pi(θ)](1−xi)dθ
· (5)

Thus, the DLZS is a special case of the OAI that is provided in Equation 2. Drasgow et al.

(1996, p. 50) suggested using p close to 1 depending on the investigator’s opinion about the

application and recommended using numerical integration to approximate the integrals in

the numerator and denominator of Equation 5.

Belov (2016) suggested a statistic to detect preknowledge on a known set of

compromised items. Sinharay (2017a) proved that the statistic of Belov (2016) is essentially

the same as the DLZS except that Belov (2016) suggested using p = 0.95 and replacing the
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integrals in the numerator and denominator of Equation 5 by a summation over a grid of

101 equispaced values θ1 = −5, θ2 = −4.9, · · · , θ100 = 4.9, θ101 = 5. Specifically, the version

of DLZS used by Belov (2016) is given by

DLZS =
0.95nc1(1− 0.95)nc0

∑101
j=1 f(θj)

∏
i∈U Pi(θj)

xi [1− Pi(θj)](1−xi)∑101
j=1 f(θj)

∏I
i=1 Pi(θj)

xi [1− Pi(θj)](1−xi)
· (6)

In this paper, the DLZS was approximated using Equation 6.2 The distribution of DLZS

under the null hypothesis of no item preknowledge is not known yet, even asymptotically.

Drasgow et al. (1996) recommended computing the critical/cutoff values for the DLZS

using simulations. Note that Drasgow et al. (1996) considered other types of aberrance

such as cheating on an unknown subset of items and faking on personality tests that involve

the computation of the λ in manners different from that in Equations 5 and 6.

2.3 The DLZS, the NPL, and the Underlying Assumptions

The OAI and, consequently, the DLZS, is based on the NPL that is briefly described in

Appendix A of this paper. For example, Levine and Drasgow (1988, p. 165) stated that

The Neyman-Pearson Lemma asserts that a likelihood ratio test is optimal in

the sense that if a statistical test for aberrance has the same probability of incor-

rectly classifying a normal examinee as a likelihood ratio test, then the likelihood

ratio test has equal or greater probability of correctly classifying aberrant exami-

nees. There may be other tests that classify as well as a likelihood ratio test, but

none can be better.

As discussed in Appendix A, the NPL can be used to obtain most powerful tests only for the

case when a simple null hypothesis is tested against a simple alternative hypothesis, where

a simple hypothesis is a hypothesis under which the distribution of the random variable

of interest is completely known, that is, does not depend on any unknown parameters.

2Other numerical integration approaches and a grid of more than 101 values lead to values very close to

those obtained from Equation 6.
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However, the problem of detecting item preknowledge on a known set of items, which is

the problem of interest in this paper, is not inherently equivalent to the test of a simple

null hypothesis versus a simple alternative hypothesis. For example, if an examinee has

preknowledge of an item, the probability of a correct answer is unknown and could be

equal to 1 or 0.95 or a value even smaller—so the probability distribution of the item scores

under preknowledge is not completely known. Drasgow et al. (1996) re-framed/converted

this problem of detecting preknowledge on a known set of items to a problem involving

the testing of a simple null hypothesis versus a simple alternative hypothesis. Their

re-framed (simple) null hypothesis is that the distribution of the examinee’s item scores

is provided by Equation 3 and the re-framed (simple) alternative hypothesis is that the

distribution of the examinee’s item scores is provided by Equation 4. This re-framing

ensured the applicability of the NPL to the problem and ensured that the DLZS is the

most powerful test of the simple null versus the simple alternative hypotheses assumed

by Drasgow et al. (1996). However, the re-framing of Drasgow et al. (1996) involved the

following two crucial assumptions: (a) the ability distribution of the examinees (both under

the null and alternative hypotheses) is the standard normal distribution—this assumption

allowed the integrations in Equations 3 and 4, and (b) the probability of a correct answer

by an examinee with preknowledge on a compromised item is a known number (like 0.95)

that is very close to 1.0.

As stated by, for example, Drasgow et al. (1996) and Belov (2016), the DLZS given

by Equation 6 is the most powerful statistic for detecting preknowledge on a known set of

compromised items only when the two aforementioned assumptions are satisfied for the data

at hand. However, there is a lack of any examination or evidence on how often these two

assumptions, which helped them to convert the complex null and alternative hypotheses to

simple ones, hold for real data. There is a similar lack of research on the robustness of the

DLZS to these assumptions, that is, on whether the DLZS is the most powerful statistic

under violations of one or more of these two assumptions.

The DLZS is also based on the assumptions that the IRT model holds and the item

parameters are precisely known, but these assumptions are not examined here and are
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assumed to hold. That is primarily because IRT model misfit and/or imprecise parameter

estimates would lead to all reported scores being unfair—so it is assumed that the test

administrators ensured adequate IRT model fit and precise parameters estimates. It may be

worthwhile to examine the relationship between IRT model misfit and the DLZS in future

research.

2.4 The Signed Likelihood Ratio Statistic

Sinharay (2017c) suggested the signed likelihood ratio (SLR) statistic for the detection

of preknowledge on a known set of compromised items. For an examinee, let us define

the maximum likelihood estimate (MLE) of the examinee ability from the scores on the

compromised items as θ̂C, that from the scores on the uncompromised items as θ̂U , and that

from the scores on all the items as θ̂. Sinharay (2017c) argued that the problem of detection

of preknowledge on a known set of items (C) is essentially the same as that of testing the

null hypothesis H0 : θC = θU versus the alternative hypothesis H0 : θC > θU , where θC and

θU respectively are the true values corresponding to θ̂C and θ̂U .

The likelihood ratio test (LRT) statistic (e.g., Guo & Drasgow, 2010) for testing

H0 : θC = θU versus the alternative hypothesis H0 : θC 6= θU is given by

Λ = 2[`(θ̂C;xC) + `(θ̂U ;xU)− `(θ̂;x)], (7)

where `(θ̂C;xC) = log-likelihood of the scores on the compromised items at θ̂C,

`(θ̂U ;xU) = log-likelihood of the scores on the uncompromised items at θ̂U ,

and `(θ̂;x) = log-likelihood of the scores on all the items at θ̂.

To test the null hypothesis H0 : θC = θU versus the alternative hypothesis H0 : θC > θU ,

Sinharay (2017c) suggested using the signed likelihood ratio (SLR) statistic, which is a

function of the statistic Λ, and is given by

Ls =


√

Λ if θ̂C ≥ θ̂U ,

−
√

Λ if θ̂C < θ̂U ·
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A large value of Ls leads to the rejection of the null hypothesis of no item preknowledge.

The statistic Ls was proved to have an asymptotic standard normal distribution under the

null hypothesis by Sinharay (2017c).

Because the null and alternative hypotheses underlying the SLR statistic are not simple

hypotheses, the SLR statistic cannot be expected to be the most powerful statistic for

detecting preknowledge on a known set of compromised items, even though the statistic is

based on a likelihood ratio. However, Sinharay (2017c), Sinharay (2017d), Sinharay and

Jensen (2019), and Wang, Liu, Robin, and Guo (2019) found the SLR statistic to be as

powerful as or more powerful than the existing statistics in detecting item preknowledge

and found the Type I error rate of the statistic to be very close to the nominal level.

Specifically, Sinharay (2017d) proved the performance of the SLR statistic to be very similar

to that of the posterior shift statistic that was found to be the most powerful among eight

preknowledge-detection statistics by Belov (2016). However, there is a lack of comparison

of the performance of the SLR statistic to that of the DLZS. In this paper, the performance

of the SLR statistic is compared to that of the DLZS in the Simulation and Real Data

sections.

3. Taking a Deeper Look at the Assumptions Behind the DLZS

This section focuses on two of the assumptions underlying the DLZS. The assumption of

a standard normal ability distribution is discussed first. Next, an examination is performed

of the assumption on the probability of a correct answer of an examinee who benefited from

item preknowledge.

3.1 The Assumption of Standard Normal Ability Distributions

In the computation of the DLZS, the true population/ability distributions for those

with item preknowledge and not with item preknowledge are assumed to be the standard

normal distribution. However, researchers such as Li and Cai (2017) and Woods and

Thissen (2006) asserted that given a specific IRT model, the examinee ability distribution
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may deviate from the normal distribution. Li and Cai (2017) further stated that if multiple

sub-populations are grouped together, the combined ability distribution may be multimodal

or another type of non-normal distribution. In the context of item preknowledge, those

with preknowledge and without preknowledge could constitute the multiple subpopulations

mentioned by Li and Cai (2017) and could lead to the violation of the assumption that

the population distribution is standard normal. Unfortunately, this assumption is not easy

to check in practice due to the lack of a decent-sized sample of examinees who are known

to have preknowledge on a known set of items. Note that the normality or otherwise of

the estimated examinee-ability distribution from the whole sample does not provide any

useful information about the violation of the assumption. Appendix B shows examples

of cases when (a) the normality assumption holds and the estimated ability distribution

is non-normal and (b) the normality assumption does not hold and the estimated ability

distribution is close to normal.

3.2 The Assumption Regarding the Probability of a Correct Answer

The expression of the DLZS given by Equation 6 was obtained by setting the probability

of a correct answer on a compromised item by an examinee with preknowledge (p of

Equation 5) equal to 0.95. However, there is a lack of evidence in favor of the assumption

that p is equal to 0.95 (or any other value like 0.90 or 0.99). In practice, compromised

items could be accompanied with correct answer keys, incorrect answer keys, or, no answer

keys. For example, Eckerly et al. (2018) reported that all the items, along with answer

keys, on a test form were found on a website, but the answer keys provided on the website

were correct for 24 items and incorrect for 36 items. One may expect p to depend on

whether the answer key was correct in such a case. In general, the value of p will depend

on several factors such as (a) additional information (like answers) that is available with

the item and the accuracy of that information, (b) the examinee’s ability level (stronger

examinees are more likely to find the correct answers if the answer keys are unavailable),

(c) the length of the time the examinees had between their availability of the items and the

test administration, and (d) the resources that are available to the examinee (for example,
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does the examinee know someone who can help him/her find the correct answers to the

compromised items if the answer keys are not available?). Therefore, a blanket assumption

of p = 0.95 is probably not justified. In addition, the probability of a correct answer on

an item for which, for example, ai = 1 and bi = −2 in Equation 1, is larger than 0.95

without preknowledge for all examinees with θ larger than about 1.0—the assumption of

p = 0.95 under preknowledge for such an examinee is equivalent to the assumption that

preknowledge leads to worse-than-expected performance for the examinee and contradicts

the common knowledge that preknowledge leads to better performance (e.g., Smith &

Davis-Becker, 2011). Three data sets are analyzed below in an attempt to obtain evidence

regarding the success probability of those with item preknowledge on compromised items.

3.2.1 Two Licensure Test Data Sets

Let us consider item-response data from two forms of a non-adaptive licensure test.

The data sets were analyzed in several chapters of Cizek and Wollack (2017) and also

in Sinharay (2017c). Both forms include 170 operational items that are dichotomously

scored. The sample sizes were 1,636 for Form 1 and 1,644 for Form 2. The licensure

organization who provided the data identified as compromised 63 and 61 items on Forms 1

and 2, respectively and flagged 46 and 48 individuals on Forms 1 and 2, respectively,

as possible cheaters from a variety of statistical analysis and a rigorous investigative

process that brought in other information. Given the rigor of the investigative process,

these examinees may be treated as true cheaters for all practical purposes. The exact

type of cheating that the 94 flagged examinees may have been involved with is unknown.

Consequently, the number of examinees flagged specifically for item preknowledge is

unknown. While researchers such as Sinharay (2017c) and Boughton, Smith, and Ren

(2017) found evidence of several examinees benefiting from item preknowledge for the

data set, other researchers such as Zopluoglu (2017) found evidence of several examinees

benefiting from answer-copying for the data set. The proportion-correct scores of all

examinees were computed on the items that were known to have been compromised. Thus,

for example, the proportion correct score on the compromised items for an examinee on
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the first form represents the proportion of the 63 compromised items that the examinee

answered correctly. Histograms of the proportion-correct scores on the compromised items

of only the flagged examinees for Forms 1 (left panel) and 2 (right panel) are provided in

Figure 1. A vertical dashed line is shown at the value of 0.95 in each panel. The figure
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Figure 1. Histograms of the proportion-correct scores on the compromised items of the

flagged examinees on the two forms of the licensure test.

shows that the proportion-correct is 0.95 or smaller for all flagged examinees—the mean

proportion correct on the compromised items for the flagged examinees for the two forms

are 0.74 and 0.73, respectively. Combining over the two test forms, the null hypothesis of

p = 0.95 is rejected at 5% level for 85 examinees3 among the 94 flagged examinees. For the

23 examinees for whom the DLZS was statistically significant at 5% level (see the real data

section later for details on the computation of DLZS for these data), the proportion-correct

3The proportion-correct scores of all of these 85 examinees were smaller than 0.89.
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scores range between 0.85 and 0.95, their mean is 0.90, and the null hypothesis of p = 0.95

is rejected at 5% level for more than half of these examinees.4 Thus, the results for the

licensure data sets do not provide much evidence in favor of the assumption that the p of

Equation 5 is equal to 0.95.

3.2.2 A Data Set Involving Artificially Created Item Preknowledge

Toton and Maynes (2019) and Belov and Toton (2020) analyzed a data set from a

study in which item preknowledge was artificially created for a sample of 93 undergraduate

students who were administered a 25-item test that resembles the GRE R© Quantitative

Reasoning test. Preknowledge on a known set of 12 items was artificially created by

sharing/disclosing 12 out of the 25 items with some of the 93 examinees 20 minutes before

the test; 30 examinees received only the 12 compromised/disclosed items while 30 others

received the 12 items and their answers. The average proportion correct scores of these

two groups of examinees on the 12 disclosed items are provided in Table 1. For comparison

purposes, the table also includes the average proportion correct scores on the disclosed

items of the 33 examinees without preknowledge and the average proportion correct scores

on the 13 undisclosed items for all the three groups of examinees. The table shows that the

average proportion correct score for the “Both Items & Answers” group (that is, the 30

examinees who received both the items and their answers) on the disclosed items was 0.94,

which is quite close to the value of 0.95. However, the average for the “Only Items, No

Answers” group on the disclosed items was 0.72, which, while being somewhat larger than

the corresponding value for those without preknowledge, is well below the value of 0.95

assumed in Belov (2016). The null hypothesis p=0.95 on the disclosed items is rejected at

5% significance level by an exact test of binomial proportions (e.g., Lehmann & Romano,

4It is expected that these 23 examinees include some false positives and hence cannot be considered as

the only cheaters. Also, it is expected that some actual cheaters do not feature in these 23 examinees due to

Type II error that is common in hypothesis testing. So these numbers cannot be used as evidence for setting

p=0.90 either.
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2005, pp. 68-69) for most examinees under the “Only Items, No Answers” condition (this

is clear from the mean of 0.72 for the condition in Table 1) and for three examinees (that

is, for 10% of the 30) under the “Both Items & Answers” condition.

Table 1. Average Proportion Correct Scores for Three Groups of Undergraduate Students
on the Disclosed and Undisclosed Items.

Examinee Sample Average Proportion Correct
Group Size Undisclosed items Disclosed items

No Preknowledge 33 0.58 0.64
Only Items, No Answers 30 0.59 0.72
Both Items & Answers 30 0.62 0.94

3.2.3 Discussion on Proportion Correct Scores on Compromised Items

The above real data examples demonstrate that the assumption that the probability

of a correct answer by a cheater on a compromised item is equal to 0.95 or any other fixed

number, which is a crucial assumption underlying the DLZS, is often likely to be violated

in practice. However, such a violation does not necessarily mean that the DLZS would not

be the most powerful statistic. That is because some statistical approaches are known to

be robust to certain assumptions and not robust to some other assumptions. For example,

analysis of variance and related procedures such as multiple comparison are robust to the

underlying normality assumption, but not robust to the presence of severe outliers (e.g.;

Montgomery, 2013, pp. 81-82). Therefore, a simulation study was performed to examine

the robustness of the DLZS to violations of the assumptions underlying the statistic. This

examination of robustness is performed by comparing the performances of the DLZS and

the SLR statistic (whose Type I error rate has been found to be very close to the nominal

level) in the context of detection of preknowledge on a known set of compromised items. It

would be examined whether the DLZS is more powerful among the two statistics when the

assumptions underlying the former are not satisfied.
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4. Simulations: A Comparison of the DLZS and the SLR Statistic

To examine the robustness of the DLZS to realistic violations of its underlying

assumptions, its performance was compared using simulated data sets to that of the SLR

statistic (Sinharay, 2017c) for the case of known compromised items. The simulated data

include data that satisfy the above-mentioned two assumptions (under which the DLZS

should be the most powerful statistic) and data that do not satisfy the assumptions (under

which it is unknown whether the DLZS is the most powerful statistic). In doing so, this

paper is the first to report a detailed comparison of the performances of the DLZS and the

SLR statistic.

4.1 Design of the Simulations

All simulations involved a non-adaptive assessment that includes 100 dichotomous

items. The true item parameters were randomly drawn from the estimated item parameters

of the item pool of one subject of a state test.5 The true abilities of those who did not

benefit from item preknowledge (non-cheaters) were simulated from a standard normal

distribution. The true abilities of those who benefited from item preknowledge (cheaters)

were simulated from one of the following three distributions: (a) a standard normal or

N (0, 1) distribution, (b) a uniform distribution between -3 and 0, or U(−3, 0) distribution,

(c) a mixture of the N (0, 1) and U(−3, 0) distributions.6 The first two of the three ability

distributions were used to simulate examinee abilities of cheaters by Belov (2016) and

Sinharay (2017d). The third distribution is in between the first two distributions. The first

distribution represents the case when the cheaters have the same ability on average as the

non-cheaters and the second and third represent the case when the cheaters have smaller

ability on average and an ability distribution of a different shape than the non-cheaters.

5The use of two other sets of estimated item parameters and a set of simulated item parameters did not

affect the comparative performance of the statistics (results not included here and can be obtained from the

author).
6To simulate a random draw from this mixture, one first simulates a random number r from the U(0, 1)

distribution and then simulates a draw from the N (0, 1) or the U(−3, 0) distribution depending on whether

r is smaller than 0.5 or not.
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Note that the DLZS is computed under the assumption of the standard normal ability

distribution of cheaters and non-cheaters—so the first of the three ability distributions

favors the DLZS and the other two do not. The set of the compromised items was assumed

to be a subset of size 10, 20, or 30 of the 100 items on the test; the set of uncompromised

items included the remaining 90, 80, or 70 items of the test. The number of cheaters was

assumed to be 5%, 10%, or 20% of the number of non-cheaters.

The item scores of the non-cheaters on all items and of the cheaters on the

uncompromised items were simulated from the 2PLM. In three sets of simulations, the

item scores of the cheaters on the compromised items were simulated in three different

ways. It was assumed in the first set of simulations that the probability of a correct

answer of a cheater on the compromised items is 0.95 (this assumption is favorable to the

DLZS)—the corresponding item scores were simulated from a Bernoulli distribution with

success probability of 0.95. This set of simulations will be referred to as those under the

“fixed success probability” condition. In the second set of simulations, the item scores

of a cheater on a compromised item were simulated from a Bernoulli distribution with

success probability that is randomly generated from a U(0.8, 1) distribution. This condition

will be referred to as the “less variable success probability” condition. In the third set of

simulations, the item scores of a cheater on a compromised item was simulated using the

2PLM, but using a value of ability that is obtained by adding 2.0 on the theta scale to the

true ability of the examinee, or, by shifting the ability to the right by 2.0. Item response

data under aberrant responding has been simulated after shifting the examinee ability (or

a “θ-shift”) by researchers such as Drasgow et al. (1996), Glas and Dagohoy (2007),

and Zickar and Drasgow (1996). The simulations with shifted examinee abilities recreate

the scenario that item preknowledge leads to a boost in the ability so that the success

probability of a cheater on a compromised item is not a fixed value and is larger than

what is expected under no preknowledge. This condition will be referred to as the “more

variable success probability” condition. When the ability distribution of the cheaters was

standard normal, their success probabilities on the compromised items varied between 0.63

and 1.00 (a range that is wider compared to that between 0.8 and 1.0 assumed under the
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“less variable success probability” condition) under the “more variable success probability”

condition, with the average value being equal to 0.91. Note that because of a θ-shift,

item preknowledge always leads to better performance under the “more variable success

probability” condition, unlike under the “fixed success probability” and “less variable

success probability” conditions.

The four simulation factors were crossed with each other. Thus, 81 simulation

conditions (involving all combinations of three ability distributions of the cheaters, three

ways to compute the success probability of the cheaters on the compromised items, three

sizes of the set of compromised items, and three values of the percent of cheaters) were

considered. For each simulation condition, 100 data sets were simulated; the number of

non-cheaters in each data set was 2,000 so that the number of cheaters in a data set was

100, 200, or 400 in the various simulation conditions. The set of compromised items was

the same for all examinees with preknowledge in each iteration/replication, but varied over

the 100 iterations for each simulation condition.

4.2 Computations

For each simulation condition, the following computational steps were performed 100

times to simulate and analyze 100 data sets:

1. Simulate scores of 2,000 non-cheaters to the 100 items from the 2PLM. Simulate scores

of 100, 200, or 400 cheaters (depending on the simulation condition) on the non-

compromised items from the 2PLM and on the compromised items after computing

their success probabilities on the compromised items in one among the three aforemen-

tioned manners.

2. Compute the estimated item parameters, using the marginal maximum likelihood es-

timation procedure, from the data set that included the cheaters and non-cheaters.

3. For each examinee, compute the SLR statistic and the DLZS. The MLE of ability,

restricted to the range -4.0 and 4.0, was used to compute the SLR statistic. The item

parameter estimates obtained in the previous step were used in these calculations.
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For each simulation condition, the values of the two statistics over the 100 simulated data

sets were used to compare their performances.

The Type I error rates and power of the SLR statistic were computed at 1% and

5% significance levels using cutoffs of 2.33 and 1.64 (that are the corresponding normal

percentiles), respectively. The computation of the Type I error rates and power of the DLZS

required the computation of appropriate cutoffs using simulated data, as recommended by

Drasgow et al. (1996), because the null distribution of the statistic is unknown; the cutoff

for a data set was computed as the 99th (at 1% level) or 95th (at 5% level) percentile of

the distribution of the DLZS among the true non-cheaters in the data set.

The comparison of the power of statistics for detecting aberrant examinees has

been performed using receiver operating characteristics (ROC) curves by, for example,

Drasgow, Levine, and Williams (1985). Given the values of a statistic (whose larger value

indicates more aberrance) from a data set for which the identities of the true aberrant and

non-aberrant examinees are known, a ROC curve requires the computation of the following

two quantities for several values of y:

• the false alarm rate (or “false positive rate” or “Type I error rate”), F (y), which is the

proportion of times when the statistic for a non-aberrant examinee is larger than y

• the hit rate (or “true positive rate” or “power”), H(y), which is the proportion of times

when the statistic for an aberrant examinee is larger than y

Then, a graphical plot is created in which F (y) is plotted along the x-axis, H(y) is plotted

along the y-axis, and a line joins {F (y), H(y)} for successive values of y. These lines

together constitute the ROC curve. Appendix C shows the ROC curve from one condition

of the simulation study.

The area under the ROC Curve (AUROC; e.g., Hanley & McNeil, 1982) of a statistic is

a measure of how powerful the statistic is. In the context of detecting aberrant examinees,

researchers such as Belov (2016) used truncated ROC areas, or areas under the ROC curves

truncated between 0 and 0.1 and divided by 0.10—that is because false positive rates

larger than 0.10 are hardly employed in the context of detecting aberrant examinees (e.g.,
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Wollack, Cohen, & Eckerly, 2015). The truncated ROC area of a very powerful statistic

is expected to be close to 1 and a larger area corresponds to a more powerful statistic.

The truncated ROC areas of the SLR statistic and the DLZS were computed for all the 81

simulation conditions.

4.3 Results
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Figure 2. The average truncated ROC areas for the two statistics for the simulated data.

When the other three simulation factors were fixed, the truncated ROC area of neither

statistic was affected by the percent of examinees benefiting from preknowledge—so the

truncated ROC areas were averaged over the three levels of this percent. The average

truncated ROC areas of the SLR statistic and the DLZS for the various levels of the other
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three simulation factors are shown in Figure 2. The three panels of the figure respectively

show the average ROC areas for the “fixed success probability”, “less variable success

probability”, and “more variable success probability” conditions. In each panel, two dotted

lines, two solid lines, and two dashed lines respectively show the average ROC areas for

the simulation conditions in which the U(−3, 0) distribution, the N (0, 1) distribution, or

their mixture was used as the true ability distribution for the cheaters. The hollow circles

and hollow triangles respectively denote the average ROC areas of the DLZS and the SLR

statistic.

Several findings are common for the two statistics. The average truncated ROC areas

for the statistics increase when the number of compromised items increase. For a given

way to compute the success probability of cheaters on the compromised items, the areas

for the statistics are the largest under the U(−3, 0) distribution and smallest under the

N (0, 1) distribution of the cheaters, a finding that is similar to one in Belov (2016) and

Sinharay (2017d). With respect to the comparative performance of the two statistics,

the two solid lines on the leftmost panel of Figure 2 indicate that the DLZS is more

powerful than the SLR statistic when the two above-mentioned assumptions underlying

the former statistic are satisfied, that is, under “fixed success probability” and standard

normal ability distribution. The two dotted lines on the leftmost panel indicate that when

the assumption of fixed success probability holds, but the assumption of standard normal

ability distribution does not, the DLZS is slightly more powerful than the SLR statistic

for 20 compromised items, but not for 10 or 30 compromised items. The rightmost panel

of the figure (that corresponding to the “more variable success probability” condition)

shows that when the assumption of fixed success probability is severely violated, the SLR

statistic has substantially larger power compared to the DLZS irrespective of the ability

distribution. The middle panel of the figure indicates that the comparative performance

of the two statistics is somewhere in between their comparative performance in the other

two panels and there is no clear winner under moderate violations of the assumption of

fixed success probability. That it, under the “less variable success probability” condition,

the DLZS is more powerful than the SLR statistic for the standard normal ability
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distribution (as indicated by the two solid lines), less powerful for the U(−3, 0) ability

distribution (two dotted lines), and more powerful for 20 or 30 compromised items for the

mixture distribution (two dashed lines).

The Type I error rates of the SLR statistic and the DLZS (not shown here) were

very close to the nominal level at both 1% and 5% significance levels. The comparative

performance of the SLR statistic and the DLZS with respect to power (not shown here) was

very similar to their comparative performance with respect to the average truncated ROC

area, that is, the DLZS is more powerful than the SLR statistic under the conditions with

fixed success probability and standard normal ability distribution, but not necessarily for

the other conditions.

Additional simulations, which were similar to the above simulations but involved

no estimation of item parameters, were also performed. In these simulations, the item

parameters were assumed known and equal to their true values—both Belov (2016) and

Sinharay (2017d) made this assumption in their simulation studies. The average truncated

ROC areas of both the statistics were larger than those in Figure 2 in these additional

simulations, but the comparative performance of the DLZS and the SLR statistic was

the same as above; that is, these simulations also showed that the DLZS statistic is more

powerful than the SLR statistic only when the two assumptions underlying the former

statistic hold. Results of these additional simulations are not included here and can be

obtained upon request from the authors.

Overall, the results from the simulations indicate that while the DLZS is more powerful

than the SLR statistic when the two assumptions underlying the former statistic hold, it

is often less powerful than the SLR statistic when the assumptions do not hold. In fact,

the DLZS can be considerably less powerful than the SLR statistic under violations of its

assumptions, as is clear from the rightmost panel of Figure 2. Thus, keeping in mind the

fact that the Type I error rate of the SLR statistic has been found to be very close to

the nominal level7 by researchers such as Sinharay (2017c), Sinharay (2017d), and Wang

7It should be noted that one can use the NPL to compare a statistic to other statistics whose Type I

error rates are not larger than the nominal level.
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et al. (2019), the DLZS cannot be considered entirely robust to realistic violations of its

underlying assumptions.

5. Comparison of DLZS and SLR statistics for Real Data

The values of the DLZS and the SLR statistic were computed for data from the

two above-mentioned licensure test forms after fitting the 2PLM to them. The values of

the S-χ2 item-fit statistic (Orlando & Thissen, 2000) and a statistic for detecting local

dependence (Chen & Thissen, 1997) for the two forms indicate that the 2PLM fits the data

sets adequately. The sets of compromised items (of sizes 63 and 61, respectively) that were

identified by the licensure organization were used as the set of compromised items (C) in

the analysis. The MLE of ability, restricted to the range -4.0 and 4.0, was used to compute

the SLR statistic. Critical values for the SLR statistic were appropriate percentiles from

the standard normal distribution. Critical values for the DLZS were computed using

simulations, as recommended by Drasgow et al. (1996), by simulating data from the 2PLM

using the item-parameter estimates from the original data sets, computing the values of the

DLZS for the simulated examinees, and setting the critical values equal to the appropriate

percentiles of the values of DLZS for the simulated examinees.

Table 2. Percent of Significant Values of the Statistics for the Two Licensure Test Data Sets.

Statistic Percent Significant Truncated ROC Area
Form 1 Form 2 Form Form

1% 5% 1% 5% 1 2
DLZS 15.2 30.4 22.9 29.2 0.57 0.59

SLR Statistic 19.6 39.1 25.0 29.2 0.61 0.60

Table 2 shows the percent of statistically significant values of the DLZS (first row of

numbers) and the SLR statistic (second row) at 1% and 5% significance levels among the

examinees who were flagged as cheaters by the licensure organization (46 and 48 examinees,

respectively, for the two forms). Columns 2-3 and 4-5 of Table 2 respectively show the

percentages for Forms 1 and 2. The percent-significants do not differ between the two
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statistics for the second form, but those for the SLR statistic are considerably larger than

those for the DLZS for the first form. It is possible to compute the truncated ROC areas

for the two statistics for the data sets by treating the flagged and non-flagged examinees

as true cheaters and non-cheaters, respectively. These areas are shown in Columns 6 and 7

of Table 2. The areas for the SLR statistic are slightly larger than those for the DLZS for

both the data sets.

Given that (a) the 2PLM appears to adequately fit the data sets, (b) the critical values

for the DLZS were found using simulations so that its Type I error rate is close to the

nominal level, (c) the Type I error rate of the SLR statistic has been found close to the

nominal level by researchers such as Sinharay (2017c), Sinharay (2017d), and Wang et al.

(2019), and (d) the investigative procedure used by the licensure organization was quite

rigorous so that the flagged examinees can be considered as true cheaters for all practical

purposes, Table 2 appears to demonstrate that the SLR may be more useful than the DLZS

for some real data sets. The reason for the larger number of significant values of the SLR

statistic may be that the assumption of p = 0.95 is unlikely to be true for these data sets,

as was demonstrated in Figure 1 and the surrounding discussion, causing the DLZS to not

be the most powerful statistic (among those whose Type I error rates are not larger than

the nominal level) for the data.

6. Conclusions

Researchers such as Belov (2016) and Drasgow et al. (1996) stated that the DLZS

suggested by Drasgow et al. (1996) is the most powerful statistic for detecting preknowledge

on a known set of (compromised) items under the assumptions that the ability distribution

is standard normal and the probability of a correct answer on a compromised item by a

cheater is equal to a large value such as 0.95. While one can expect the DLZS to be most

powerful only when these assumptions are satisfied for the data at hand, there is a lack of

studies on finding how often these assumptions hold for real data and on the robustness of

the DLZS to violations of these assumptions. This paper demonstrated using real data that

the second assumption may often not hold in practice and demonstrated using simulated
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data that another statistic (the SLR statistic suggested by Sinharay, 2017c) may be more

powerful than the DLZS, especially when the above-mentioned two assumptions are not

appropriate. Thus, this paper shows that the DLZS is not entirely robust to realistic

violations of its underlying assumptions. Drasgow et al. (1996) re-framed the problem of

detecting preknowledge on a known set of items as the test of a simple null versus simple

alternative hypotheses and suggested the DLZS to solve the problem. However, the problem

is inherently not a test of a simple null versus a simple alternative hypothesis8 and the

simple alternative hypothesis assumed by Drasgow et al. (1996) may not always reflect

the reality in real cases of item preknowledge—the DLZS may not be the most powerful

statistic in such cases. Thus, this paper has the important practical implication that one

should look beyond the DLZS in investigations of preknowledge on a known set of items,

especially when evidence justifying the two assumptions underlying the DLZS is lacking,

and should consider other statistics such as the SLR statistic that make milder assumptions.

Note that Bayesian approaches for detecting preknowledge (e.g., Wang, Liu, & Hambleton,

2017; Sinharay & Johnson, 2020b) were not considered here and those approaches may also

perform as well as or better than the DLZS in practice.

Three more limitations of the DLZS are the following:

• The DLZS is yet to be extended to polytomous items. Such an extension would require

the assumption of fixed probabilities of various scores for the cheaters on the compro-

mised polytomous items and it is very difficult to obtain such fixed probabilities. On

the other hand, the SLR statistic has been extended to polytomous items by Sinharay

(2017c).

• The asymptotic distribution of the DLZS under the null hypothesis is yet to be derived.

While Drasgow et al. (1996, p. 63) stated that simulations can be used to compute

critical values for the DLZS, they also admitted that critical values computed using

8Thus, a most powerful test may not exist for this problem in general. Discussions in, for example,

Lehmann and Romano (2005, p. 65) imply that most powerful tests often do not exist for hypotheses that

are not simple. The search for a most powerful statistic for this problem is a potential area of future research.
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simulations may not be accurate. In addition, researchers such as Box (1979) recom-

mended using test statistics with known null distributions in practice and the DLZS

does not satisfy this recommendation.

• The DLZS may have low power when the set of compromised items is not precisely

known, that is, when the assumption of known compromised items is violated. Under

the violation of this assumption, Belov (2016) found the posterior shift statistic to be

more powerful than the DLZS and Sinharay (2017c) found the SLR statistic to be

about as powerful as the posterior shift statistic—so the SLR statistic is expected to

be more powerful than the DLZS under violations of this assumption. In additional

simulations, the SLR statistic was found much more powerful than the DLZS under

such a violation even when the two assumptions on the true ability distribution and the

success probability of the cheaters on the compromised items are satisfied; appendix D

includes some details from one such simulation.

Given the abundance of assumptions in the models and methods in our field, the results

of this paper suggest that researchers and practitioners should carefully evaluate whether

their data are likely to support the assumptions underlying the model or method that they

plan to use, examine how the model or method is likely to perform under realistic violations

of the assumptions, and consider other models or methods if necessary. Specifically, before

using what they believe is the most powerful test, researchers and practitioners should ask

questions such as “Most powerful under what conditions?”, “Do those conditions hold for

the data at hand?”, and “What test should be used if the assumptions do not hold for the

data?”

This paper has several limitations, and, consequently, it is possible to perform future

research on several related areas. First, while this paper demonstrated that the DLZS is

not the most powerful test in general for detecting item preknowledge on a known set of

compromised items, it is possible to perform future research on finding a statistic that is in

some sense the optimum statistic (and is more powerful than other statistics in most

realistic conditions) for the problem. Second, because the DLZS is a special case of the
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OAI, it is possible to extend this study to examine the robustness of the OAI to violations

of its underlying assumptions. Third, it is possible to compare the DLZS to Bayesian

statistics (that are not covered by the NPL) for detecting item preknowledge (e.g., those

suggested by Sinharay & Johnson, 2020a, 2020b; Wang et al., 2017) in a future study.
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Appendix A: The Neyman-Pearson Lemma

Consider the case when an investigator has a sample of observations

x = (x1, x2, . . . , xn) and the joint probability density function (pdf) or the joint probability

mass function (pmf) of the sample observations under two competing hypotheses H0 and

H1 is given by f0(x) and f1(x), respectively. The NPL states that

• Any test that is given by

– Reject H0 if f1(x)
f0(x)

> k

– Do not reject H0 if f1(x)
f0(x)

< k

for some k ≥ 0 is the most powerful for its size for testing H0 versus H1, and

• Given 0 ≤ α ≤ 1, there exists a level-α test of the above form.

Note that f1(x)
f0(x)

, which is the ratio of the likelihoods under H1 and H0, is often referred

to as the likelihood ratio, and plays a vital role in rejecting the null hypothesis according to

the NPL. Also note that the lemma applies only to the case of simple null and alternative

hypotheses, that is, to the case when both f0(x) and f1(x) are completely known, that is,

do not involve any unknown parameters.
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Appendix B: The Assumptions on the Ability Distribution and the Estimated

Ability Distribution
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Figure B1. The estimated ability distributions when the assumption on the ability distribu-

tion made by the DLZS is violated (top row) and not violated (bottom row).

Figure B1 shows the estimated ability distributions for the full sample of

examinees (two leftmost panels), the examinees with statistically significant values of the

DLZS (“Detected”; two middle panels), and the examinees with non-significant values of

the DLZS (“Not Detected”; two rightmost panels) for two simulation conditions under item

preknowledge on a 100-item test on which 30 items were compromised. The R package

“mirt” (Chalmers, 2012) was used to fit the 2PLM to the data and then to simulate five

2



plausible values for each examinee—each estimated ability distribution is essentially a

density plot using all of these plausible values for the appropriate group of examinees. The

density of the standard normal distribution is shown using a dashed line in all panels of

Figure B1.

The top three panels correspond to a case when the true ability distribution is

standard normal for both the non-cheaters and cheaters and yet the estimated ability

distribution (solid line) is non-normal. The items were simulated to be difficult in general

for the examinee sample and the second mode in the top left panel for θ ≈ 1.6 corresponds

to the cheaters’ superior performance on several difficult items that are compromised.

The three bottom panels correspond to a case where the true ability distribution is

N (0, 1) for non-cheaters and U(−3, 0) for cheaters, the same assumptions that were made

to simulate some of the data in the Simulations section of this paper, and yet the estimated

ability distribution for the full sample is very close to standard normal.

Even though the top three panels correspond to the case of no violation of the

assumption on the ability distributions while the bottom three panels correspond to a

violation, the estimated ability distributions in all of the three panels in the top row of the

figure appear non-normal while the estimated ability distribution in only the middle panel

of the bottom row appears non-normal. Thus, Figure B1 shows that the normality or

otherwise of the estimated ability distribution may not provide adequate evidence

regarding the violation of the assumption of normality of the true ability distributions.
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Appendix C: The ROC Curve for One Simulation Condition

False Alarm Rate

H
it 

R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.2 0.4 0.6 0.8 1

SLR Statistic

DLZS

SLR Statistic

DLZS

SLR Statistic

DLZS

SLR Statistic

DLZS

SLR Statistic

DLZS

Figure C1. The ROC curve for the DLZS and the SLR statistic for one simulation condition.

Figure C1 shows the ROC curves for the SLR statistic (solid line) and the

DLZS (dotted line) for the case of 20 compromised items and 20% aberrant examinees

under the standard normal ability distribution and the “more variable success probability”

condition. A diagonal line is shown for convenience. The curve for the SLR statistic is

above that of the DLZS, which indicates that the former is more powerful than the latter

irrespective of the level of significance for this simulation case.
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Appendix D: Results for Compromised Items that Are not Precisely Known

One hundred data sets involving 100 items and 2,000 non-aberrant examinees were

simulated as in the Simulations section of this paper under the condition of 20% cheaters

and 30 compromised items. However, while simulating the data, it was assumed that

among the 20% cheaters in a data set, half had preknowledge of 15 of the 30 compromised

items and the other half had preknowledge of the other 15 compromised items. Such a

situation may arise when, for example, two sets of common/anchor items9 appeared on two

different websites and were potentially exposed to two different groups of examinees. In

these simulations, the true ability distributions of both the cheaters and non-cheaters were

assumed to be the standard normal distribution and it was assumed that those with

preknowledge of a compromised item had a probability of 0.95 of correctly answering the

item (note that under these conditions, the DLZS was more powerful than the SLR

statistic—see Figure 2).

While analyzing the data, the combined set of 30 compromised items was treated as C

and the set of the remaining 70 items was treated as U . The truncated ROC areas of the

SLR statistic and the DLZS for this simulation condition were 0.72 and 0.62, respectively.

Thus, the SLR statistic is much more powerful than the DLZS under this condition. The

application of the DLZS to a data set under this condition involves the assumption that

the success probability of a cheater on each of the 30 compromised items is 0.95, whereas,

the true success probability is 0.95 for only 15 of those items. Thus, the DLZS is testing

against the wrong alternative hypothesis (that makes an assumption on the cheaters that is

stronger than what is appropriate) and hence cannot be expected to be very powerful. In

contrast, in the application of the SLR statistic to a data set under this condition, the

alternative hypothesis is that the cheaters performed comparatively better on the set of 30

compromised items than on the 70 uncompromised items, which is correct even when the

cheaters have preknowledge of only 15 out of the 30 compromised items.

9Common items are items that are used for equating the scores on a new form of a test to those on an

old form, are often reused, and are occasionally compromised, as mentioned in Drasgow et al. (1996).
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