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The Use of the Posterior Probability in Score Differencing

Abstract

Score differencing is one of six categories of statistical methods used to detect test fraud

(Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the

performance of an examinee is similar over two item sets versus the alternative hypothesis

that the performance is better on one of the item sets. We suggest, to perform score

differencing, the use of the posterior probability of better performance on one item set

compared to another. In a simulation study, the suggested approach performs satisfactory

compared to several existing approaches for score differencing. A real data example

demonstrates how the suggested approach may be effective in detecting fraudulent

examinees. The results in this paper call for more attention to the use of posterior

probabilities, and Bayesian approaches in general, in investigations of test fraud.
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Researchers such as van der Linden (2009) noted that an increasing concern of producers

and consumers of test scores is fraudulent behavior before and during the test and that

such behavior is more likely to be observed when the stakes are high, such as in licensing,

admission, and certification testing. Naturally, there is an upswing in research on statistical

methods and models that can be used to detect test fraud. The statistical methods to

detect test fraud were divided into six categories by Wollack and Schoenig (2018). One of

the categories is “score differencing”, which involves a test of the null hypothesis of equal

ability of an examinee over two sets of items I1 and I2. Score differencing can be used

to detect several types of test fraud including item preknowledge (e.g., Sinharay, 2017a,

2017b; Sinharay & Jensen, 2019), fraudulent erasures (e.g., Sinharay, Duong, & Wood,

2017), fraudulent gain scores (e.g., Fischer, 2003), and cheating on unproctored tests (e.g.,

Guo & Drasgow, 2010).

With the exceptions of Sinharay and Johnson (2020) and Wang, Liu, and Hambleton

(2017), the currently used methods for score differencing are mostly frequentist and are

dependent on (frequentist) p-values. As researchers such as Allen and Ghattas (2016),

Skorupski and Wainer (2017), and van der Linden and Lewis (2015) noted, a frequentist

p-value is an answer to the question “What is the probability of a significant value of the

test statistic given that the examinee did not commit fraud?”, which is not the question the

investigators are interested in when they are trying to detect test fraud. The question of

interest actually is “Given the available information, what is the chance that the examinee

committed a test fraud?”, and this question conforms more with a Bayesian approach than

a frequentist approach. Consequently, van der Linden and Lewis (2015), Allen and Ghattas

(2016), Sinharay (2018), and Skorupski and Wainer (2017) called for more applications

of Bayesian statistical methods to the detection of test fraud. In addition, a recent

statement by the American Statistical Association (Wasserstein & Lazar, 2016) included

the recommendation that researchers and practitioners should explore approaches other

than the frequentist p-values and Bayesian approaches are included in their list of “other

approaches”.

However, Bayesian methods have rarely been applied in score differencing, with the
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exception of Sinharay and Johnson (2020) who suggested the use of Bayes factors and Wang

et al. (2017) who suggested the use of a Bayesian predictive checking methodology. The

goal of this paper is to suggest the Bayesian approach of using the posterior probability

given the item score for score differencing.

The next section includes descriptions of score differencing and of the existing

frequentist and Bayesian approaches for score differencing. The following section includes

a description of our suggested approach of the use of posterior probability for score

differencing. Simulated and real data sets are analyzed in the next two sections. The last

section includes conclusions and recommendations.

Review of Score Differencing

Description of Score Differencing

Consider a test with N items, each of which can be a dichotomously or polytomously

scored item. Let 0, 1, ... mi denote the possible scores on item i. Let us consider a randomly

chosen examinee whose true overall ability is θ. Score differencing for an examinee involves

an examination of whether the examinee’s performance is equal over item sets I1 and I2.

The item sets I1 and I2 are non-overlapping and together include all the N items. In

most applications of score differencing, the sets I1 and I2 would be naturally defined. For

example, Table 1 provides the sets I1 and I2 in four applications of score differencing.

Table 1. The Item Sets in Various Applications of Score Differencing.

Application in Detection of I1 I2
Item preknowledge Non-compromised items Compromised items
Fraudulent erasures Non-erased items Erased items

Fraudulent gain scores Items on first administration Items on second administration
Cheating on unproctored tests Items on proctored test Items on unproctored test

Also, note that I1 and I2 could vary over the examinees. For example, they would be
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different over the examinees in detection of item preknowledge on an adaptive test because

of the administration of different items over examinees on adaptive tests; and they would

be different over the examinees in detection of fraudulent erasures because the set of items

with erasures is typically different over the examinees.

Let the true ability of the examinee on I1 and I2 be denoted as θ1 and θ2, respectively.

The null hypothesis of interest in score differencing can then be expressed as H0 : θ1 = θ2.

The alternative hypothesis is that the performance on one item set is better than that on

the other due to reasons such as test fraud. Thus, the null and alternative hypotheses

respectively correspond to the answering behaviors of a non-cheater and a cheater,

respectively. Let us assume, without loss of generality, that the alternative hypothesis is

that the performance on I2 is better than that on I1 for the examinee, or, that θ2 > θ1. For

example, in an application of score differencing to the detection of item preknowledge, the

alternative hypothesis is that the performance on the compromised items is better than

that on the non-compromised items. The alternative hypothesis represents the situation

where, due to test fraud, the examinee received a performance boost that is equivalent to

an increase of θ2 − θ1 in ability (whereas, without the fraud, the boost would be zero and

θ2 would be equal to θ1).

Let y1, y2, ...yN denote the scores for the examinee on the N items of the test and let

(y1, y2, ...yN) be denoted as y. Let y1 = {yi, i ∈ I1} and y2 = {yi, i ∈ I2} respectively

denote the collection of the scores of the examinee on the items in Sets 1 and 2. Let the

probability of a score j on item i for the examinee be denoted as

Pij(θ) = P (yi = j|θ), j = 0, 1, 2, . . . ,mi; i = 1, 2, . . . , N,

where mi is the maximum possible score on item i. For example, for the generalized partial

credit model (GPCM; Muraki, 1992),

Pij(θ) =
exp[

∑j
h=0 ai(θ − bih)]∑mi

c=0 exp[
∑c

h=0 ai(θ − bih)]
,

where ai and bih respectively denote the slope and the location/threshold parameters of

item i, and bi0 = 0.
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Using the conditional independence assumption of item response theory (IRT), the

likelihood of the examinee, henceforth denoted as L(θ;y), is given by

L(θ;y) =
N∏
i=1

mi∏
j=0

Pij(θ)
dj(yi), (1)

where dj(yi) =

 1 if yi = j

0 otherwise.

The above description encompasses dichotomous items as well. If item i is dichotomous,

then mi = 1, and

d0(yi) = 1− yi, d1(yi) = yi, Pi0(θ) = P (yi = 0), and Pi1(θ) = P (yi = 1)·

For example, if the 2-parameter logistic model (2PLM) is used for item i that is

dichotomous, then

Pi1(θ) =
exp[ai(θ − bi)]

1 + exp[ai(θ − bi)]
and Pi0(θ) =

1

1 + exp[ai(θ − bi)]
,

where ai and bi respectively are the slope and difficulty parameters of item i. The Rasch

model (Rasch, 1960) is a special case of the 2PLM with the ai’s being the same over all the

items.

For an examinee, let us define the maximum likelihood estimate (MLE) or the weighted

maximum likelihood estimate (WLE; Warm, 1989) of the examinee ability from the scores

on I1, I2, and all the items as θ̂1, θ̂2, and θ̂, respectively.

A Frequentist Approach to Score Differencing

Let us denote the log-likelihood of an examinee as l(θ;y), that is,

l(θ;y) = log(L(θ;y)).
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The likelihood ratio test (LRT) statistic (e.g., Finkelman, Weiss, & Kim-Kang, 2010; Guo

& Drasgow, 2010) for testing the null hypothesis H0 : θ1 = θ2 is given by

Λ = 2
[
l(θ̂1;y1) + l(θ̂2;y2)− l(θ̂;y)

]
= 2

[∑
i∈I1

mi∑
j=0

dj(yi) logPij(θ̂1) +
∑
i∈I2

mi∑
j=0

dj(yi) logPij(θ̂2)−
N∑
i=1

mi∑
j=0

dj(yi) logPij(θ̂)

]

= 2

[∑
i∈I1

mi∑
j=0

dj(yi) log
Pij(θ̂1)

Pij(θ̂)
+
∑
i∈I2

mi∑
j=0

dj(yi) log
Pij(θ̂2)

Pij(θ̂)

]
· (2)

For score differencing, that is, for testing the null hypothesis H0 : θ1 = θ2 versus

the alternative hypothesis H1 : θ2 > θ1, Sinharay (2017a) suggested the signed likelihood

ratio (SLR) statistic given by

LS =


√

Λ if θ̂2 ≥ θ̂1,

−
√

Λ if θ̂2 < θ̂1·
(3)

When the log-likelihood l(θ;y) originates from the commonly used IRT models, the

statistic LS has an asymptotic standard normal distribution under the null hypothesis (e.g.,

Sinharay, 2017a; Cox, 2006, p. 104). A large value of LS leads to the rejection of the null

hypothesis. Sinharay (2017a), Sinharay (2017b), and Wang, Liu, Robin, and Guo (2019)

demonstrated using real and simulated data that the performance of LS was satisfactory

compared to that of several existing statistics for detecting item preknowledge and Sinharay

and Jensen (2019) found LS to have satisfactory Type I error rates and power in several

applications of score differencing. Therefore, LS is the only frequentist statistic for score

differencing that is considered in this paper.

Existing Bayesian Approaches for Score Differencing

Bayes Factor

The Bayes factor (e.g., Kass & Raftery, 1995) is a Bayesian approach for model

comparison and can be applied when one is interested in determining whether the model

M2 fits the available data better than does model M1. The Bayes factor in favor of model
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M2 in comparison to M1 is given by

BF21 =
p(y|M2)

p(y|M1)
, (4)

where, for example, p(y|M1) denotes the marginal probability of the data y under model

M1 and can be computed as

p(y|M1) =

∫
ψ

p(y|ψ,M1)p(ψ|M1)dψ,

where p(y|ψ,M1) is the distribution of the data given the parameters ψ under model M1

and p(ψ|M1) is the prior distribution under model M1. The larger (smaller) the value of

BF21, the stronger (weaker) is the evidence in favor of model M2 versus M1. Kass and

Raftery (1995) provided the guidelines shown in Table 2 on the relationship between the

value of the Bayes factor and the evidence it provides in favor of Model 2 versus Model 1.

Table 2. Interpretation of the Bayes Factor.

Bayes factor log of Bayes factor Evidence
1-3 0-1 Weak/Not worth more than a bare mention
3-20 1-3 Positive

20-150 3-5 Strong
>150 >5 Very strong

Sinharay and Johnson (2020) noted that it is possible to consider score differencing as a

comparison of two models M2 and M1, where M1 represents the assumption that a common

examinee ability (θ) underlies all the item scores (y) and M2 represents the assumption

that two different abilities (θ1 and θ2) underlie the scores (y1 and y2) of the examinee

on item sets I1 and I2. Therefore, the likelihood functions of an examinee’s scores under

M1 and M2 are L(θ;y) and L(θ1;y1)L(θ2;y2), respectively, M1 represents no performance

difference, and M2 represents a possible performance difference. Note that even though M1

and M2 typically represent two models in the computation of Bayes factors, they both are

based on the same IRT model in score differencing; they are different in the sense that M1
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involves one ability parameter (θ) while M2 involves two ability parameters (θ1 and θ2) for

the same examinee.

Then, Sinharay and Johnson (2020) showed that the Bayes factor in the context of

score differencing can be computed as

BF21 =
p(y|M2)

p(y|M1)

=

∫ θ1=∞
θ1=−∞

∫ θ2=∞
θ2=θ1

L(θ1;y1)L(θ2;y2)p(θ1, θ2)dθ1dθ2∫ θ=∞
θ=−∞ L(θ;y)φ(θ)dθ

, (5)

where p(θ1, θ2) is the joint prior distribution on θ1 and θ2. For example, if the 2PLM is

used, then L(θ1;y1) =
∏

i∈I1
exp[yiai(θ1−bi)]
1+exp[ai(θ1−bi)] , and the Bayes factor can be computed as

BF21 =
p(y|M2)

p(y|M1)

=

∫ θ1=∞
θ1=−∞

∫ θ2=∞
θ2=θ1

[∏
i∈I1

exp[yiai(θ1−bi)]
1+exp[ai(θ1−bi)]

] [∏
i∈I2

exp[yiai(θ2−bi)]
1+exp[ai(θ2−bi)]

]
p(θ1, θ2)dθ1dθ2∫ θ=∞

θ=−∞

[∏N
i=1

exp[yiai(θ−bi)]
1+exp[ai(θ−bi)]

]
φ(θ)dθ

, (6)

A large value of BF21 will provide strong evidence in favor of a large score difference. The

guidelines shown in Table 2 can be used to determine what value of Bayes factor is large.

Predictive Checking Method

Wang et al. (2017) suggested a Bayesian predictive checking method to detect item

preknowledge—the method can be used in other types of score differencing as well. In this

method, one computes g(θ1|y1), the posterior distribution of the examinee ability given

the examinee’s item scores on I1. Then one computes the predictive distribution of a test

statistic T (y2) such as the raw score on I2, as

g(T (y2) = t2|y1) =

∫
θ1

p(T (y2) = t2|θ1)g(θ1|y1)dθ1, (7)

where p(T (y2) = t2|θ1) is the probability that the test statistic is equal to t2 given θ1.

Finally, a predictive p-value is computed as the probability of the test statistic under the

predictive distribution being more extreme than the actual observed value of the statistic.

A small predictive p-value, for example, one smaller than 0.05 or 0.01, indicates potential
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item preknowledge for the corresponding examinee (Wang et al., 2017). The predictive

p-value is often computed using a simulation where several draws of the test statistic are

made from the abovementioned predictive distribution of T (y2). This predictive p-value

is similar in spirit to the posterior predictive p-value (e.g., Gelman et al., 2014, p. 146).

Wang et al. (2019) found the performance of the predictive checking method to be similar

to that of the SLR statistic and superior to that of another existing statistic. To compute

the predictive p-value, as in Wang et al. (2017) and Wang et al. (2019), we set

T (y2) =
∑
i∈I2

yi = the raw score on I2·

We computed p(T (y2)|θ1) using the recursive formula of Lord and Wingersky (1984) and

approximated the integral in Equation 7 using the Riemann approximation (e.g., Thisted,

1988, p. 262).

A New Bayesian Approach for Score Differencing: Use of Posterior Probability

Score differencing essentially is a test of a hypothesis, that of the equality of examinee

ability over two sets of items, against a one-sided alternative hypothesis. Researchers such

as Gelman et al. (2014, p. 95), Robert (2007, p. 226) and Stern (2005) suggested that a

direct measure of the scientific evidence in favor of an alternative hypothesis and against

the null hypothesis can be obtained as the posterior probability of the event corresponding

to the alternative hypothesis and Stern (2005) recommended the use of the posterior

probability specifically for testing against one-sided alternative hypotheses. The remainder

of this section includes (a) the definition and details on the computation of the posterior

probability for score differencing, (b) a discussion on the choice of an appropriate cutoff

for the posterior probability, (c) a discussion on the choice of the prior distributions while

computing the posterior probability, and (d) an illustration using a hypothetical data set.

Definition and Computations

Let the joint posterior distribution of θ1 and θ2 given the item scores for an examinee

be denoted as g(θ1, θ2|y). Because of the local independence assumption under IRT models,
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g(θ1, θ2|y) can be computed as

g(θ1, θ2|y) =
L(θ1;y1)L(θ2;y2)p(θ1, θ2)∫ θ1=∞

θ1=−∞

∫ θ2=∞
θ2=−∞ L(θ1;y1)L(θ2;y2)p(θ1, θ2)dθ1dθ2

· (8)

According to the recommendations of Gelman et al. (2014, p. 95), Robert (2007, p.

226) and Stern (2005), a direct measure of the scientific evidence in favor of a significant

score difference can be obtained from the posterior probability P (θ2 ≥ θ1|y), which, from

Equation 8, can be computed as

P (θ2 ≥ θ1|y) =

∫ θ1=∞

θ1=−∞

∫ θ2=∞

θ2=θ1

g(θ1, θ2|y)dθ1dθ2

=

∫ θ1=∞
θ1=−∞

∫ θ2=∞
θ2=θ1

L(θ1;y1)L(θ2;y2)p(θ1, θ2)dθ1dθ2∫ θ1=∞
θ1=−∞

∫ θ2=∞
θ2=−∞ L(θ1;y1)L(θ2;y2)p(θ1, θ2)dθ1dθ2

· (9)

In Equation 9, the integrands in the numerator and denominator are the same, but the

limits of integration are different.

The integrals in Equation 9 do not have closed forms—so one has to perform

numerical integration to compute them. For example, the numerator in Equation 9 can be

approximated, using simple Riemann approximation (e.g., Thisted, 1988, p. 262), as∫ θ1=∞

θ1=−∞

∫ θ2=∞

θ2=θ1

L(θ1;y1)L(θ2;y2)p(θ1, θ2)dθ1dθ2 ≈
K∑
k=1

M∑
m=1

θ2m>θ1k

L(θ1k;y1)L(θ2m;y2)p(θ1k, θ2m)∆1∆2,(10)

where θ11, θ12, . . . , θ1k, . . . , θ1K , is a grid of K equispaced points, θ21, θ22, . . . , θ2m, . . . , θ2M , is

a grid of M equispaced points, ∆1 = θ1,k+1 − θ1k, and ∆2 = θ2,m+1 − θ2m. In the simulation

study and real data example discussed later, we used 101 equispaced points between -5 and

5 as θ1k’s and θ2m’s to perform the numerical integrations.

The Choice of the Prior Distribution on θ1 and θ2

We constructed the joint prior distribution on θ1 and θ2, p(θ1, θ2), as the product of

p(θ1), the prior distribution on θ1, and p(θ2|θ1), the prior distribution of θ2 given θ1. We

assumed that θ1, which, for example, reflects the performance of an examinee under no test

fraud, follows the standard normal distribution a priori, that is,

p(θ1) = φ(θ1), (11)
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where φ(θ1) = 1√
2π

exp−
θ21
2 . The conditional prior distribution p(θ2|θ1) in an investigation

of score differencing, especially to detect test fraud, should ideally incorporate the fact

that θ2 is considerably larger than θ1 for the cheaters. Therefore, we assumed that for the

cheaters, θ2 given θ1 follows a normal distribution with the mean of θ1 + µ and standard

deviation (SD) of σc, and is truncated to the left at θ1 a priori; that is, for the cheaters,

p(θ2|θ1) =
k

σc
φ

(
θ2 − (θ1 + µ)

σc

)
I(θ2 > θ1), (12)

where

k =

[∫ ∞
θ2=θ1

1

σc
φ

(
θ2 − (θ1 + µ)

σc

)
dθ2

]−1
and I(θ2 > θ1) is equal to 1 if θ2 > θ1 and zero otherwise, and µ is a large positive number.

In addition, given the earlier framing of the score differencing problem, in which the null

hypothesis was stated as H0 : θ1 = θ2, one may make the assumption that a priori, θ2 is

equal to θ1 for the non-cheaters. However, we avoided making the assumption because,

under a Bayesian framework, θ1 and θ2 are continuous random variables so that the

probability is 0 that θ1 = θ2. Instead, we make the assumption that for the non-cheaters,

given θ1, θ2 is not exactly equal to, but is practically equal to θ1, or, θ2 − θ1 is not exactly

equal to zero but is practically equal to zero a priori. Specifically, we assume that for the

non-cheaters, given θ1, θ2− θ1 follows a normal distribution with mean of 0 and SD of σnc a

priori, or,

p(θ2|θ1) =
1

σnc
φ

(
θ2 − θ1
σnc

)
· (13)

The range of values of θ2 − θ1 over which the distribution provided by Equation 13 has

non-negligible mass represents the values that we think are practically equivalent to zero.

The concept of practically equal to is borrowed from the concept underlying the region of

practical equivalence (ROPE), indifference zone, and region of equivalence (e.g., Kruschke,

2018; Carlin & Louis, 2008). Each of ROPE, indifference zone, and region of equivalence

refers to a range of parameter values that are practically equivalent. For example, as Carlin

and Louis (2008) described, if one is testing the null hypothesis that the difference between

the mean for a treatment and a placebo is zero, then one typically does not care whether to
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use the treatment or placebo if the difference in the means falls in the ROPE or indifference

zone or region of equivalence that is of the form (-ε,ε).

Information provided by Equations 13 and 12 (for the non-cheaters and cheaters,

respectively) was utilized by assuming that the prior distribution of θ2 given θ1 is a mixture

of two normal distributions; the first is a normal distribution with mean θ1 and standard

deviation σnc and the second is a normal distribution with mean θ1 + µ and standard

deviation σc, truncated below at θ1. The first and second components of the mixture

respectively represent the distribution of θ2 given θ1 for a non-cheater and a cheater. The

joint prior distribution of θ1 and θ2 is therefore given by

p(θ1, θ2) = φ(θ1)

[
τ

1

σnc
φ

(
θ2 − θ1
σnc

)
+ (1− τ)

k

σc
φ

(
θ2 − (θ1 + µ)

σc

)
I(θ2 > θ1)

]
, (14)

where τ represents the weight provided to the first component of the mixture. The value

of τ should represent the investigator’s belief about the percentage of non-cheaters in the

sample.

The top panel of Figure 1 shows the densities of the two components (provided by

Equations 13 and 12) of the mixture in terms of the difference θ2− θ1. The bottom panel of

the figure shows the kernel density estimates of the distribution of a sample of 5,000 values

of θ2 − θ1 simulated from the abovementioned mixture prior distribution (dashed line) and

the values of θ̂2− θ̂1 for the real data set analyzed later in this paper (solid line). The values

of τ , µ, σnc, and σc in Equation 14 were set equal to 0.95, 2.0, 0.5, and 0.5 respectively,

in the computations leading to Figure 1 that was created using the R function “density”

(e.g., R Core Team, 2019). The closeness of the two curves in the bottom panel indicates

that the prior distribution reflects reality accurately.1 The solid line in the bottom panel in

Figure 1 also indicates that θ1 is unlikely to be exactly equal to θ2 even for non-cheaters (if

it were equal, the corresponding density would have had a sharp spike at 0), which lends

1In similar plots with these values of τ , µ, σnc, and σc for two other test data sets for which a set of

items was known to be compromised (these plots are not included in this paper and can be obtained from

the authors upon request), the prior distribution reflected reality accurately.

11



Two Components of the Mixture

θ2 − θ1

D
en

si
ty

−2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

Component 1 (Non−cheaters)

Component 2 (Cheaters)

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical Prior Versus the Sample Distribution

Difference between two abilities

D
en

si
ty

Sample Distribution
Prior

Figure 1. The Components of the Prior Distribution and the Theoretical Prior Versus the

Empirical Values.

support to the distribution assumed in Equation 13.2 In the rest of the paper, the prior

2While the solid line in the bottom panel of Figure 1 is created from the estimates of θ1 and θ2, the

estimates are expected to be very close to the corresponding true values given that both I1 and I2 include
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distribution is assumed to be the one given by Equation 14, with τ=0.95, µ=2.0, σnc = 0.5,

and σc = 0.5. Appendix A includes a small simulation study to examine the sensitivity of

the posterior probability and the Bayes factor to various choices of τ and µ in Equation 14

while fixing σnc = 0.5 and σc = 0.5—the results in the appendix indicate that the choices of

these two constants have only a small effect on the two statistics.

The Choice of An Appropriate Cutoff for the Posterior Probability

To use the posterior probability in score differencing, one needs an appropriate cutoff

value so that the individuals with values of the posterior probability above this cutoff can be

considered to have a statistically significant score difference. The choice of the cutoff should

ideally be guided by (Bayesian) decision theory (e.g., Robert, 2007, p. 51) and the specific

application at hand. For example, Robert (2007, p. 225) and Johnson and Sinharay (2016,

p. 249) noted that to apply Bayesian decision theory to a hypothesis-testing problem, one

should assign losses of c1 and c2 to false positive and false negative (or Type I and Type II)

errors. Then, one should minimize the “posterior expected loss” to obtain the “Bayes rule”

or “Bayes estimator,” which, in our context, is given by

Reject the null hypothesis if P (θ2 ≥ θ1|y) >
c1

c1 + c2
=

c1
c2

c1
c2

+ 1
·

Therefore, in an application, the choice of the cutoff for the posterior probability would

ideally depend on c1
c2

, which is the comparative severity of the false positive and false

negative errors. For example, if the test administrators think that a false positive error is

19 times as costly as a false negative error, then the cutoff would be 0.95 whereas if the test

administrators think that a false positive error is 99 times as costly as a false negative error,

then the cutoff would be 0.99. Given the observation by, for example, Wollack, Cohen,

and Eckerly (2015) that methods for detection of test fraud are typically applied with

conservative levels, it is more likely that a large value of c1
c2

would be used in determining a

cutoff for the posterior probability.

a large number of items.
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Reconcilability of Evidence from Posterior Probability and Frequentist

Approaches

Berger and Sellke (1987), Casella and Berger (1987), and Pratt (1965) discussed the

issue of reconcilability (or the lack of it) of frequentist test statistics/p-values and posterior

probabilities for testing against one-sided alternative hypotheses and two-sided alternative

hypotheses. Berger and Sellke (1987) showed that frequentist p-values and posterior

probabilities are usually irreconcilable, or, appear to provide different extents of evidence

for the same data set, when the alternative hypothesis is two sided, that is, of the type

H1 : θ 6= 0. In contrast, Casella and Berger (1987) and Pratt (1965) showed that the two

probabilities are often reconcilable when the alternative hypothesis is one-sided and of the

type H1 : θ > 0. In the context of score differencing, the findings of Berger and Sellke

(1987), Casella and Berger (1987), and Pratt (1965) imply that a posterior probability

would be reconcilable with the (frequentist) LS statistic because the alternative hypothesis

underlying LS is H1 : θ2 > θ1, which is a one-sided alternative hypothesis. Therefore,

our suggested posterior probabilities are expected to provide evidence that is mostly

reconcilable with the evidence provided by the p-value corresponding to the LS statistic.

A Simple Illustration

Consider a test with 20 items. Let us consider that the Rasch model fits the data

from the test and that the estimated item difficulty is 0 for all items. Let us consider that

score differencing has to be performed with the first 10 items and the last 10 items as the

two item sets and that the alternative hypothesis is that the performance is better on the

second set. Consider 7 examinees all of whom obtain a raw score of 3 on the first 10 items

on test, but obtained raw scores of 3, 4, 5, 6, 7, 8, and 9 on the last 10 items on the test.

Table 3 provides the difference in raw score between the second half and the first half,

θ̂1, θ̂2, θ̂, the SLR statistic, the p-value for the SLR statistic (‘P-value’), the predictive

p-value (‘PrP’), the Bayes factor given by Equation 5 (‘BF’), and the posterior probability

given by Equation 9 (‘PP’) for the examinees. The R code for computing the posterior

14



Table 3. Results for Seven Examinees.

Examinee Score Diff θ̂1 θ̂2 θ̂ SLR P-value PrP BF PP
1 0 -0.76 -0.76 -0.80 0.00 0.50 0.60 0.71 0.44
2 1 -0.76 -0.37 -0.59 0.45 0.32 0.45 0.82 0.54
3 2 -0.76 0.0 -0.39 0.91 0.18 0.28 1.10 0.65
4 3 -0.76 0.37 -0.19 1.35 0.09 0.19 2.30 0.74
5 4 -0.76 0.76 0.00 1.81 0.04 0.07 2.44 0.83
6 5 -0.76 1.22 0.19 2.29 0.01 0.04 4.13 0.90
7 6 -0.76 1.85 0.39 2.84 0.00 0.01 9.74 0.96

Note: ‘Score Diff’=difference in the raw score, ‘P-value’=p-value for the SLR statistic,
‘PrP’=predictive p-value, ‘BF’=Bayes factor, ‘PP’=posterior probability.

probability for Examinee 1 in Table 3 is provided in Appendix B.

As the score difference (shown in Column 2 of Table 3) increases, the methods are

expected to find stronger evidence in favor of a large score difference. So it is not surprising

that each statistic provides strong evidence of a significant score difference in the bottom

rows of the table. One using the SLR statistic would not reject the null hypothesis of no

performance difference between the two halves of the test for Examinees 1-4 and would

reject the null hypothesis for Examinees 5-7 at 5% level. If one uses the cutoff of 0.95

for the posterior probability, then one would conclude that there is no evidence of a

performance difference for Examinees 1-6 and some evidence of a performance difference

for Examinee 7. Thus, the SLR statistic (or, equivalently, the frequentist p-value) and the

posterior probability may lead to different conclusions for some examinees.

Simulations

Simulated data that involved different extents of score differences were used to compare

the properties of the posterior probability to those of three existing approaches for score

differencing. It was assumed in the simulations that the score differences originated from

preknowledge of compromised items.
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Design

All simulations involved a non-adaptive assessment that includes 100 dichotomous

items. The true item parameters were randomly drawn from the estimated item parameters

of the item pool of one subject of a state test.3 The true abilities of the examinees were

simulated from a standard normal distribution.

The following two factors were varied in the simulations:

• the number of compromised items (10, 20, or 30 items),4 For each simulated data set,

the compromised items were randomly selected out of the 100 items

• the number of examinees who had item preknowledge (the cheaters) as a percentage

of those who did not have preknowledge (5%, 10%, or 20%).

The simulation factors were crossed with each other. Thus, the number of simulation

conditions was nine. For each simulation condition, 100 data sets were simulated; the

number of non-cheaters in each data set was 2,000 so that the number of cheaters in a

data set was 100, 200, or 400 in the various simulation conditions. The item scores of the

non-cheaters (or, those without item preknowledge) on all items and of the cheaters (those

with item preknowledge) on the uncompromised items were simulated from the 2PLM. The

item scores of each cheater on a compromised item was simulated using the 2PLM, but

using a value of ability that is obtained by adding 2.0 on the theta scale to the true ability

of the cheater, or, by shifting the ability of the cheater to the right by 2.0. Item response

data under aberrant responding has been simulated after shifting the examinee ability (or a

“θ-shift”) by researchers such as Glas and Dagohoy (2007). The simulation of item scores

after a θ-shift recreates the scenario that item preknowledge leads to a boost in the ability.

For each simulated data set, the following computational steps were performed:

3The use of two other sets of estimated item parameters and a set of simulated item parameters did not

affect the comparative performance of the statistics (results not included here and can be obtained from the

authors).
4Thus, the number of uncompromised items was 90, 80, or 70.
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1. Compute the estimated item parameters using the marginal maximum likelihood esti-

mation procedure.

2. For each examinee, compute the SLR statistic. The MLE of ability, restricted to the

range -4.0 and 4.0, was used to compute the SLR statistic. The item parameters

computed in the previous step were used in these calculations.

3. For each examinee, compute the Bayes factor (Sinharay & Johnson, 2020), posterior

probability, and the predictive p-value (Wang et al., 2017) using Equations 6, 9, and

7, respectively.

For each simulation condition, the values of the four statistics over the 100 simulated data

sets were used to compare their performances.

Results

Figure 2 shows a scatter plot of the posterior probability (Y-axis) versus 1 minus

the p-value for the SLR statistic (X-axis) for the examinees in the simulation case with

30 compromised items and 10% examinees with preknowledge. We decided to plot the

posterior probability versus 1 minus the p-value because an increasing value of each of these

statistics indicates an increasing score difference. Each circle in the plot corresponds to

one examinee. The gray circles correspond to the examinees who are true non-cheaters and

the black circles correspond to the examinees who are true cheaters. The figure includes

horizontal and vertical dashed lines representing cutoffs of 0.95 for the two statistics and

also includes a diagonal line. The cutoff of 0.95 was used for 1-p-value because a p-value

smaller than 0.05 is equivalent to 1-p-value being larger than 0.95. The two plotted

quantities seem to be good agreement. Both are mostly smaller than the cutoff for the true

non-cheaters and both are often larger than the cutoff for the true cheaters. This agreement

is not a surprise given the finding of Casella and Berger (1987) of reconcilability of evidence

from posterior probabilities and frequentist p-values for testing a one-sided null hypothesis.

The posterior probability shows a tendency to be smaller than 1-p-value for both the true
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Figure 2. A scatter plot of 1-p-value versus posterior probability for the simulations.

cheaters and true non-cheaters in the right side of the figure and larger than 1-p-value in

the left side of figure, which means that if the same cutoff (of, say, 0.95 or 0.99) is used for

both, then the use of the posterior probability (rather than the frequentist statistic) will

lead to a more conservative detection of item preknowledge.

18



The comparison of the power of statistics for detecting aberrant examinees has been

performed using receiver operating characteristics (ROC) curves at least since Drasgow,

Levine, and Williams (1985). Given the values of a statistic (whose larger value indicates

more aberrance) from a data set for which the identities of the true aberrant and

non-aberrant examinees are known, a ROC curve requires the computation of the following

two quantities for several values of y:

• the false alarm rate (or “false positive rate” or “Type I error rate”), F (y), which is the

proportion of times when the statistic for a non-aberrant examinee is larger than y

• the hit rate (or “true positive rate” or “power”), H(y), which is the proportion of times

when the statistic for an aberrant examinee is larger than y

Then, a graphical plot is created in which F (y) is plotted along the x-axis, H(y) is plotted

along the y-axis, and a line joins {F (y), H(y)} for several values of y. These lines together

constitute the ROC curve. Appendix C shows the ROC curve from one condition of the

simulation study.

The area under the ROC Curve (AUROC; e.g., Sinharay, 2017b) of a statistic is a

measure of how powerful the statistic is. In the context of detecting aberrant examinees,

researchers such as Sinharay (2017b) used truncated ROC areas, or areas under the ROC

curves truncated between 0 and 0.1 and divided by 0.10—that is because false positive rates

larger than 0.10 are hardly employed in the context of detecting aberrant examinees (e.g.,

Wollack et al., 2015). The truncated ROC area of a very powerful statistic is expected

to be close to 1. The truncated ROC areas of all the statistics were computed for all the

simulation conditions.

When the number of compromised items was fixed, the truncated ROC area of the

statistics was not affected by the percent of examinees benefiting from preknowledge—so

the truncated ROC areas were averaged over the three levels of this percent. The average

truncated ROC areas of the statistics for the various number of compromised items are

shown in Figure 3. In the figure, the X-axis represents the number of compromised items

and the Y-axis represents the average truncated ROC area. The average truncated ROC
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Figure 3. Average truncated ROC areas for the four statistics for the simulation study.

area for the posterior probability, SLR statistic, Bayes factor, and predictive checking are

joined by a solid line, dashed line, dotted line, and a dotted-dashed line, respectively. The

figure shows that the average truncated ROC area increases as the number of compromised

items increases.

The average truncated ROC areas of the four statistics are very close for any given

number compromised items, all lying in a narrow interval of width about 0.02. The average

areas of the posterior probability are the largest by a small margin followed by that of the

SLR statistic. The average truncated ROC area of the SLR statistic is the largest among

the four statistics for 10 compromised items, but close to the smallest for 30 compromised
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items. The average truncated ROC areas of the posterior probability, SLR statistic, Bayes

factor, and predictive checking method, averaged over all simulation cases, are 0.87, 0.86,

0.86, and 0.85, respectively.

Note that the comparative performance of the approaches was very similar (results not

reported) in another set of simulations that were very similar to the above except that the

item parameters were not estimated in each iteration.

Real Data Example

Data

We analyzed item-response data from one form of a non-adaptive licensure assessment.

The source of the data set is Cizek and Wollack (2017, p. 14). Researchers such as Sinharay

(2017a), Sinharay and Jensen (2019), and Zopluoglu (2017) analyzed the same data set

to detect various types of test fraud. The test form comprises 170 operational items that

are dichotomously scored. The sample size for the form is 1,644. A total of 61 items on

the form were identified as compromised by the organization that provided the data. In

addition, 48 examinees were flagged by the organization as possible cheaters from a variety

of statistical analysis and a rigorous investigative process that brought in other information;

given the rigor of the investigative process, it is reasonable to treat these examinees as true

cheaters. As in Sinharay (2017a) and Sinharay and Jensen (2019), the interest here is in

detecting item preknowledge, that is, detecting the examinees who may have benefited from

the preknowledge of the 61 compromised items.

Analysis and Results

Though the Rasch model is operationally used in the assessment, the 2PLM was

found to fit the data better and was used for the analysis here. The item parameters were

estimated using the marginal maximum likelihood estimation procedure from the data set

using the R package ltm (Rizopoulos, 2006) and were used in the computation of the SLR

statistic and the posterior probability. We then computed the values of the SLR statistic,
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Bayes factor, predictive probability, and posterior probability for each examinee in the data

set. The MLEs of the abilities, truncated between -4 and 4, were used to compute the

SLR statistic. To perform score differencing, the first set of items (I1) comprised the set

of 109 non-compromised items and the second set of items (I2) comprised the set of 61

compromised items.

Figure 4 shows a scatter plot of the posterior probability versus 1 minus the p-value for

the SLR statistic for the examinees in the data set. The black and gray circles correspond

to examinees who were flagged (48 of them) and not flagged (1,596 of them), respectively,

by the licensure organization. The figure includes horizontal and vertical dashed lines

representing cutoffs of 0.95 for the two statistics. A diagonal line is also provided. The

two plotted quantities are mostly in agreement with each other, that is, the posterior

probability is mostly large for the examinees for whom the p-value is small. As in Figure 2,

there is a tendency for the posterior probability to be smaller than 1-p-value in the right

side of Figure 4 and larger than 1-p-value in the left side of Figure 4. Also, among the

flagged examinees, the posterior probability is larger than 0.95 whenever the p-value is

smaller than 0.05 (or, 1-p-value is larger than 0.95) except for one examinee. However, an

interesting pattern is visible towards the right of the plot. All of the gray circles to the

right of the vertical dashed line and below the horizontal dashed line belong to examinees

who are not flagged by the licensure organization but the frequentist p-value is smaller than

0.05 and the posterior probability is smaller than 0.95 for them. Thus, a frequentist using a

p-value at 5% level would conclude that these examinees benefited from item preknowledge

while a Bayesian using a posterior probability with a cutoff of 0.95 would not.

It is possible to draw an ROC curve and compute the truncated ROC areas for the

statistics for the licensure data sets by treating the flagged and non-flagged examinees as

true cheaters and non-cheaters, respectively. These areas for the posterior probability, Bayes

factor, SLR statistic, and predictive checking were 0.62, 0.61, 0.60, and 0.60, respectively,

so that the area for the SLR statistic is slightly larger than those for the other statistics

for the data set. Figure 5 shows the ROC curves for the posterior probability and SLR

statistic, truncated to show the false alarm rates between 0 and 0.10.

22



●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−P−value

P
os

te
rio

r 
P

ro
ba

bi
lit

y

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Flagged
Not flagged

Figure 4. A Scatter plot of 1-p-value versus posterior probability for the real data example.

Conclusions

In this paper, we suggested posterior probabilities as an alternative tool for score

differencing (Wollack & Schoenig, 2018). These probabilities are less likely to be

misinterpreted than frequentist p-values and are intended to provide direct evidence in
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Figure 5. The ROC Curve for the Posterior Probability (PP) and the SLR Statistic for the

Real Data Example.

favor of a significant score difference. In a simulation study and in a real-data application,

the posterior probability was found to have a slightly larger area under the ROC curve

compared to several existing approaches.

Although only non-adaptive tests were considered in the simulations and the real-data

example of this paper, the posterior probability can be computed for adaptive tests as well.

Sinharay (2017a) discussed how to apply the LS statistic for adaptive tests—the application

involved the computation of the likelihood over a set of items received by an examinee.

Once the likelihood is computed, Equation 9 can be applied to compute the posterior
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probability for an adaptive test when, for example, a subset of items administered to an

examinee is found to have been compromised. However, the number of compromised items

that each examinee receives on an adaptive test will most often be very small (possibly with

the exception of multistage tests where one or more first- or second-stage unit/module was

compromised) and the posterior probability will not be a powerful tool for score differencing

for adaptive tests.

While the posterior probability has the natural interpretation of being a probability

and is bounded between 0 and 1, it is possible to convert it to posterior odds that is given

by

Posterior odds =
Posterior probability

1− Posterior probability
,

and use the posterior odds instead of the posterior probability (e.g., Edwards, Lindman,

& Savage, 1963). For example, the posterior odds are equal to 1, 9, 19, and 99, when the

posterior probability is equal to 0.5, 0.9, 0.95, and 0.99, respectively.

There exist several approaches that are somewhat similar to the posterior probability

suggested in this paper. van der Linden and Lewis (2015) suggested the posterior odds

of cheating for detecting various types of cheating on tests. They provided details on the

computation of the posterior odds to detect fraudulent erasures, but the computation

was predicated on a specialized IRT model that applies only to fraudulent erasures and

cannot be easily extended to score differencing in general. The posterior probability of

answer-copying, suggested by Allen and Ghattas (2016), is conceptually similar to the

posterior probability suggested in this paper, but cannot be used for score differencing.5

Skorupski and Wainer (2017) suggested the posterior probability of cheating (PPoC) of an

individual as P (C|T ≥ t), where C is the event that the examinee is a true cheater, T is

the random variable corresponding to the test statistic, and t denotes the value of T for the

individual. The PPoC is conceptually similar to the posterior probability suggested in this

5Wollack and Schoenig (2018) included the methods to detect answer-copying in a separate category than

those for score differencing.
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paper. Skorupski and Wainer (2017) showed that the PPoC can be expressed as

PPoC = 1− Frequentist p-value× P(non-cheater)

P(T ≥ t)
,

where P(non-cheater) is the prior probability of non-cheaters in the population. Table 18.4

of Skorupski and Wainer (2017) showed that the choice of P(non-cheater) may be fairly

influential on the PPoC. In contrast, the posterior probability suggested in this paper is less

dependent on the prior distributions. The quantity τ in the prior distribution in this paper

is like P(non-cheater) in the expression of PPoC, but Appendix A of this paper shows that

the extent of sensitivity of the posterior probability to τ is considerably smaller than that

of PPoC on P(non-cheater).

The new approach can be applied only in the context of one set of statistical

methods (score differencing) out of six mentioned by Wollack and Schoenig (2018).

In addition, the approach can be used to detect preknowledge only when the set of

compromised items is known, as in the real example discussed earlier. The new approach

should not be used as the sole source evidence of test fraud in operational testing. Instead,

as recommended by, for example, Hanson, Harris, and Brennan (1987) and Holland (1996),

the new approach should be employed as a part of quality control and/or as secondary

evidence, along with other statistics and non-statistical evidence, in investigations of test

fraud.

While the research reported in this paper represents one of the first applications of

Bayesian methods to score differencing, the paper has several limitations and it is possible

to extend the research in several ways. First, more simulated data and real data should

be analyzed using the method. Second, it is possible to compare the suggested Bayesian

approach to other frequentist methods and to other (potentially new) Bayesian methods

for score differencing. Third, while the results in Appendix A provide some evidence that

the posterior probability is not influenced much by the joint prior distribution on the

ability parameters, especially for large I1 and I2, it is possible to perform a more detailed

examination of the influence of the joint prior distribution on the posterior probability.

Fourth, it is possible to extend the approach to utilize both item scores and response
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times on computerized tests; such an approach would involve an examination of whether

the examinees perform better and faster on a subset of items and may be more powerful

than one based only on item scores. Similarly, it is possible to extend this approach to

multivariate ability—the computations are likely to be more involved, especially in the

presence of within-item multidimensionality. Fifth, it is possible to perform more research

on the choice of an appropriate cutoff for the posterior probability. Sixth, while a simple

Riemann approximation was used to approximate the integrals in Equation 9, it is possible

to explore the use of other numerical integration approaches (e.g., Givens & Hoeting, 2013,

pp. 129-195). Finally, while this paper focuses on P (θ2 ≥ θ1|y), a more direct measure of

the scientific evidence in favor of a significant score difference would be P (C|y,Z) where

C is the event that the examinee is a true cheater and Z quantifies other information (like

test center information, proctor report etc.). However, the computation of P (C|y,Z)

would be extremely difficult, as argued by experts such as Holland (1996)—one reason of

the difficulty is the lack of, for example, a statistical model for the behavior of an examinee

who commits test fraud. So we focus on P (θ2 ≥ θ1|y) rather than P (C|y,Z) in this paper

and believe to have demonstrated that P (θ2 ≥ θ1|y) may provide useful evidence regarding

test fraud and should be considered for inclusion in the practitioner’s toolkit for detecting

test fraud.
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Appendix A: Sensitivity to the Prior Distributions

To examine the sensitivity of the Bayes factor and the posterior probability to the prior

distribution, we computed these two quantities for five different test length conditions. The

size of I1 was 10, 20, 40, 40, and 40 in the five conditions while that of I2 was 10, 20, 10,

20, and 40. Thus, the total number of items on the test is 20, 40, 50, 60, and 80 in the five

cases. The set I1 included the first several items in all the cases.

The Rasch model was assumed to hold with all item difficulties being equal to 0. The

scores yi, i = 1, 2, . . . , I were set so that the raw scores on I1 and I2 in the five test length

conditions were (5,7), (10,15), (20,7), (20,15), and (20,30), respectively. Thus, there were

score differences of various extent in all the cases. The frequentist p-values for the five test

length conditions do not depend on the joint prior distribution for θ1 and θ2 and were equal

to 0.18, 0.05, 0.13, 0.03, and 0.01, respectively. Six joint prior distributions of θ1 and θ2, all

special cases of Equation 14, were considered, with the values of σnc and σc set equal to

0.5, and the values of τ and µ given by: (a) 0.9 and 1.0, (b) 0.9 and 2.0, (c) 0.95 and 1.0,

(d) 0.95 and 2.0, (e) 0.99 and 1.0, (f) 0.99 and 2.0.

Table A1. The Bayes Factor and Posterior Probability for Different Prior Distributions.

Values Sizes of I1 and I2
of (10,10) (20,20) (40,10) (40,20) (40,40)

τ & µ BF PP BF PP BF PP BF PP BF PP
0.9, 1 1.84 0.74 6.40 0.89 1.36 0.79 5.09 0.92 46.3 0.97
0.9, 2 1.69 0.72 5.78 0.88 1.24 0.77 4.51 0.92 38.7 0.97
0.95, 1 1.75 0.72 5.88 0.88 1.29 0.77 4.63 0.91 41.1 0.97
0.95, 2 1.68 0.71 5.56 0.87 1.23 0.76 4.34 0.91 37.3 0.96
0.99, 1 1.68 0.70 5.45 0.86 1.24 0.75 4.27 0.90 36.9 0.96
0.99, 2 1.66 0.70 5.39 0.86 1.23 0.75 4.21 0.90 36.2 0.96

Note: ‘BF’=Bayes factor; ‘PP’=posterior probability.

Table A1 shows the values of the Bayes factor and posterior probability for all the

above-mentioned prior distributions for all test length conditions. Each row of the table

shows the values of these two statistics for one prior distribution for the five test length

1



conditions. Table A1 shows that the joint prior distribution has a small effect on Bayes

factor and posterior probability, with both statistics becoming more conservative as either

of τ or µ increases. For the fifth test length condition (that involves the largest I1 and I2),

the joint prior distribution has a very small effect on Bayes factor and posterior probability

and especially on the posterior probability. This finding implies that the posterior

probability is not likely to be influenced much by the prior distribution for large I1 and I2,

which is the case of the real data example in this paper.
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Appendix B: The R Code Used in the Illustration

The R code for computing the posterior probability for Examinee 1 in Table 3 is provided

below. The code makes use of the R function integral2 in the R package pracma (Borchers,

2019).

library(pracma)

pr2pl=function(t,a,b){return(1/(1+exp(a*(b-t))))}

logpr1=function(u,t,a,b) {p=pr2pl(t,a,b)

return(ifelse(u==1,log(p),log(1-p)))}

u=rep(c(rep(1,3),rep(0,7)),2)

a=rep(1,20)

b=rep(0,20)

s1=1:10

Joint=function(t1,t2){LL=0

for (j in s1)

{LL=LL+logpr1(u[j],t1,a[j],b[j])}

for (j in setdiff(1:length(u),s1))

{LL=LL+logpr1(u[j],t2,a[j],b[j])}

p2=0.95*dnorm(t2,mean=t1,sd=0.5)+0.05*dnorm(t2,mean=t1+2,sd=0.5)*ifelse(t2>t1,1,0)

return(exp(LL)*dnorm(t1,mean=0,sd=1)*p2)}

min=-5

max=5

ymin=function(t1) t1

num=integral2(Joint,min,max,ymin,max,vectorized=FALSE)

den=integral2(Joint,min,max,min,max,vectorized=FALSE)

PostProb=num$Q/den$Q
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Appendix C: An Example ROC Curve
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Figure C1. The ROC Curve for the Four Statistics for One Simulation Case.

Figure C1 shows the ROC curve for the posterior probability (solid line), SLR

statistic (dashed line), Bayes factor (dotted line), and the predictive checking

method (dotted-dashed line) for the simulation case with 10 compromised items and 5%

examinees having preknowledge. The curve is truncated between the values of 0 and 0.01

of the false alarm rate (X-axis). The curve for the posterior probability is the highest,
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followed by that of the SLR statistic.
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