Instructional Research Group

A Systematic Review and Meta-Analysis of Rational Number Interventions for Students

Experiencing Difficulty with Mathematics

2020

Robin Schumacher

Sarah Krowka

Kelly Haymond

Rebecca Newman-Gonchar

Russell Gersten

Instructional Research Group

This project was funded by the National Science Foundation (Grant No. DRL 1660853).

Copyright © 2020 Instructional Research Group. Not for reproduction, distribution, or use without permission from Instructional Research Group.

Preferred citation is:

 Schumacher, R., Krowka, S., Haymond, K., Newman-Gonchar, R., Gersten, R. (2020). A Systematic Review and Meta-Analysis of Rational Number Interventions for Students
 Experiencing Difficulty with Mathematics. Los Alamitos, CA: Instructional Research Group.

The data set compiled for this project (Schumacher et al., 2021) is available on the Harvard Dataverse Network.

To download a copy of this document, visit www.inresg.org

Author Note

The authors would like to thank Samantha Spallone, Madhavi Jayanthi, Christopher Tran, Pam Foremski, and Jonathan Cohen for their assistance in editing and preparing the manuscript.

Table of Contents

1.	Exec	sutive Summary
2.	Intro	duction7
	2.1	Previous Related Reviews
	2.2	Research Questions
3.	Metł	nod9
	3.1	Search Strategy9
	3.2	Inclusion and Exclusion Criteria10
		Population10
		Intervention
		Comparisons11
		Outcome Measures
		Study Designs
	3.3	Screening and Coding Procedures
	3.4	Risk of Bias14
	3.5	Data Analysis14
		Effect Size Metric
		Meta-Analytic Procedures14
		Publication Bias17
		Outliers
		Missing Data
4.	Resu	llts
	4.1	Search and Screening Results

4.2	Study Features	19
4.3	Overall Intervention Effect	20
4.4	Efficacy of Instructional Components	20
4.5	Exploratory Moderator Analyses of Study Features	22
4.6	Publication Bias	23
4.7	Risk of Bias	24
5. Sum	imary	24
Referen	ces	25
Tables		33
Figures.		47

1. Executive Summary

Our goal was to provide valuable information, grounded in evidence, on which aspects of rational numbers interventions were associated with positive student outcomes. We examined which instructional components (e.g., visual representations, use of number lines, teaching and using of mathematical language) and study features (e.g., group size, interventionist training) may have contributed to the effectiveness of intervention. In choosing to focus on instructional components and study features, the findings have the capacity to inform state and district leaders, as well as teachers providing intervention, on which instructional components are necessary for a rational numbers intervention to be effective.

We searched for studies that focused on teaching rational numbers concepts to students experiencing mathematics difficulties in Grades 3 through 9. Approximately 1,500 studies were identified and screened, leaving 77 reports to be screened more in-depth for relevance. Those still eligible were then screened for rigor by applying the What Works Clearinghouse (WWC) evidence standards. A total of 26 studies with 4,237 unique participants from 30 independent samples were included in the meta-analysis.

Findings indicated that rational numbers interventions are effective. The estimate of the mean effect size was statistically significant (g = 0.65; p < .001). To assess which specific instructional components were effective, a multivariate meta-regression model with robust variance estimation (RVE) was used. The majority of the instructional components were non-significant at p < 0.05, with the exception of the teaching and use of mathematical language (p < .047), indicating that studies including this component were associated with significantly larger positive effects on mathematics outcomes. Using this rigorous approach, the significant finding of teaching and using of mathematical language as a moderator (g = 0.57) can be interpreted with

confidence.

When exploring study features, we found that interventions had stronger impacts when they were (a) implemented for students in Grades 3–6, (b) delivered to small groups of 2–6 students, (c) provided by research project personnel, (d) longer than nine hours—and even more effective when 20 hours or longer, and (e) implemented by interventionists who received ongoing training.

The results from this meta-analysis suggest that intervention programs devoting time to the teaching and use of mathematical language can substantially enhance outcomes. Mathematical language is a type of abstract academic language (terms such as *equivalent*, *reciprocal*, *circumference*) that helps students learn mathematics concepts more precisely. When students understand and use mathematical language, it is believed that the students will more deeply understand the mathematics they are learning.

2. Introduction

According to many mathematicians, mathematics educators, and cognitive psychologists, understanding rational numbers–especially fractions–holds the key to future success in algebra and higher-level mathematics (National Mathematics Advisory Panel [NMAP], 2008; Schneider et al., 2017; Siegler & Lortie-Forgues, 2014). Unfortunately, the topic of rational numbers gets increasingly complex through upper elementary and early middle school (e.g., Common Core State Standards [CCSS]; National Governor's Association Center for Best Practices & Council of Chief State School Officers, 2015), the gap between lower- and higher-performing students tends to widen. Providing rational numbers intervention to students experiencing mathematics difficulties is therefore critical for long-term outcomes.

Fortunately, over the last decade there has been a growing body of intervention research

focused on rational numbers topics designed for elementary and middle school students (e.g., Barbieri et al., 2019; Dyson et al., 2020; Fuchs et al., 2014; Jitendra et al., 2017). A quantitative synthesis of this research base would help educators better understand which aspects of interventions focused on the critical, yet challenging topic of rational numbers, are effective (Therrien et al., 2020). Our goal, therefore, is to investigate which *instructional components* (e.g., visual representations, timed fluency-building activities) and *study features* (e.g., group size, interventionist training) may impact the effectiveness of intervention. In choosing to focus on instructional components and study features, the present meta-analysis has the capacity to inform state and district leaders, as well as teachers providing intervention, on which instructional components are necessary for a rational number intervention to be effective.

2.1 Previous Related Reviews

We identified five related narrative reviews and meta-analyses conducted previously on the topic of fractions alone—just one aspect of rational numbers intervention. Three are narrative reviews (Misquitta, 2011; Roesslein & Codding, 2019; Shin & Bryant, 2015) and therefore use qualitative approaches to summarize the evidence from single-case and group design studies. Two applied quantitative methodologies (Ennis & Losinski, 2019; Hwang et al., 2019). The present study extends these previous reviews by (a) including only studies appraised using the rigorous WWC standards, (b) using the most current meta-analytic techniques, and (c) focusing on instructional components and study features associated with impacts.

2.2 Research Questions

Through this meta-analysis, answers to the following research questions will be generated to better understand which instructional practices and study features might lead to stronger, weaker, or even non-existent impacts.

1. How effective are rational number interventions for students in Grades 3 through 9 who

are experiencing mathematics difficulties?

- Do specific *instructional components* in intervention (explicit instruction, representations, strategic prompting tools, cumulative review, teaching and use of mathematical language, timed fluency-building activities) moderate the impacts on mathematical knowledge?
- 3. Does inclusion of *number lines* as a central visual representation of the magnitude of rational numbers in intervention moderate the impacts on mathematical knowledge?
- 4. Do certain *study features* (grade level, group size, interventionist, technology usage, duration, initial training, ongoing training, instructional setting, type of measure, outcome domain) moderate the impacts of rational number interventions on mathematics outcomes?

3. Method

3.1 Search Strategy

We used a comprehensive search strategy to identify all studies published over the last three decades focused on rational number interventions for struggling students in Grades 3 through 9. An initial search was completed in September 2017. The literature search was then extended through August 2019. A targeted, database-specific keyword search of the following databases was conducted using ProQuest: ERIC, PsycINFO, Dissertation Abstracts, and the Social Sciences Citation Index. We then conducted extensive supplementary searches of the awards databases of both the National Science Foundation and the Institute of Educational Sciences along with the bibliographies of relevant screened studies and prior narrative reviews and meta-analyses—including those used by the WWC to evaluate the effectiveness of relevant rational number intervention programs. Finally, key researchers in the field were solicited for recommendations of studies likely to meet eligibility criteria. To locate all studies that potentially met the eligibility criteria, we searched titles and abstracts of studies using the following set of keywords and their variants and the Boolean operators "*," "AND," and "OR": *fraction, rational number, proportion, ratio, decimal, intervention, response to intervention, tutor, multi-tiered system of support, third grade, fourth grade, fifth grade, sixth grade, seventh grade, eighth grade, ninth grade, elementary, upper elementary, middle school, junior high, studies, experimental, random, experiment.*

3.2 Inclusion and Exclusion Criteria

All studies were screened for eligibility based on the title, keywords, and abstracts. Studies had to be published in English during or after 1987 as a dissertation, ERIC document, or article published in a peer-reviewed journal. The studies were then screened for eligibility using the PICOS framework (i.e., population, intervention, comparison, outcomes, and study design) to support identification of critical aspects of eligible studies.

Population

Eligible studies had to focus on students with difficulties in mathematics in Grades 3 through 9. This included students identified with a learning disability in mathematics by their school or district and students who are experiencing mathematics difficulties if they met one of the following criteria: performance below the 35th percentile on a valid screening measure of general mathematics knowledge or rational number topic(s), or attendance at a very low-performing school. To be included in the meta-analysis, the sample had to involve a minimum of 60% of students who met this criterion. Studies involving students in other grades were not included unless the authors disaggregated the results of the students in eligible grades or students in eligible grades comprised more than 50% of the mixed-age sample.

Interventions

For the purpose of this study, the term *intervention* was defined as one-on-one, smallgroup (2–6 students), or large-group (6 or more students) programs aimed at helping students considered at risk for future problems in learning rational numbers or mathematics. We included studies that were implemented in three instructional settings: (a) the general classroom, (b) supplemental intervention settings (e.g., pull-out for additional instruction to support core classroom mathematics instruction), or (c) special education settings including resource rooms. Eligible interventions were not merely tutoring or helping students with homework or class assignments. Rather, eligible interventions were designed to address key concepts from previous grades or to support the learning of challenging material with instructional approaches not typically found in core instruction.

To be considered for inclusion, the intervention needed to comprise specific areas of rational number knowledge (e.g., fractions, decimals, proportions, and rates). If topics unrelated to rational numbers were also part of an intervention, rational number topics needed to be at least 50% of the intervention content. Additionally, studies needed to provide details about the knowledge and skills that were targeted, the instructional approach, the unit of instructional delivery (e.g., one-on-one or small group), and mode of delivery (e.g., teacher-led instruction, computer-mediated intervention) to meet inclusion criteria.

Comparisons

Comparison conditions included business-as-usual control or an alternative treatment. We coded for the comparison condition as either business-as-usual (i.e., instruction provided by the school and not by the research team) or a researcher-implemented alternative treatment in the analysis and used comparison type as a covariate. We took this approach because of previous findings that effects can be differential based on the type of comparison condition (Lemons et al.,

2014).

Outcome Measures

Eligible studies were required to include at least one relevant student outcome that demonstrated sufficient reliability (i.e., internal consistency minimum of 0.50; temporal stability/test-retest reliability minimum of 0.40; or inter-rater reliability minimum of 0.50; U.S. ED & WWC, 2013) and content validity. Relevant outcome measures included nationally normed achievement tests; other standardized tests such as state assessments, published progress monitoring, and formative assessments; as well as research-based or locally developed tests or instruments.

To be considered eligible, outcomes had to fall within the following domains: knowledge of rational numbers topics, rational numbers magnitude, fractions computation (i.e., measures that present computation involving all four operations), fractions addition and subtraction, word problems (i.e., measures that present arithmetic word problems), problem solving (i.e., measures that include complex problem solving situations), or general mathematics achievement which included rational number topics and other areas of mathematics (e.g., measurement, wholenumbers concepts).

Study Designs

Only randomized controlled trials or quasi-experimental group design studies were included. This includes cluster-randomized control trials.

3.3 Screening and Coding Procedures

Under the supervision of the principal investigators, a team of Ph.D.-level researchers conducted eligibility screening and coding of the studies. An Excel-based codebook was used to capture all variables of interest. Screening first occurred at the title and abstract level. At this stage, if there was ambiguity about a study's potential eligibility, the screeners leaned toward inclusivity. Eligible studies were then retrieved for full-text screening, during which the two screeners independently reviewed each article for eligibility. Potential discrepancies were resolved to consensus via discussion with one of the principal investigators.

For all studies screened eligible, a three-phase coding process was used to extract data. In Phase 1, two WWC-certified reviewers independently examined each study design for strength and quality using the WWC Procedures and Standards Handbook (Version 3.0; U.S. ED & WWC, 2013). Only studies meeting WWC standards (with or without reservations) were eligible for Phases 2 and 3. During Phase 2, data were extracted for study features (i.e., grade level, group size, interventionist, technology usage, duration, initial training, ongoing training, instructional setting, type of measure, outcome domain; see Tables 1 & 2). Outcome characteristics, which are part of the study features, are presented with effect sizes in (Table 3). Study features were used either for descriptive purposes, explored as potential moderators in the meta-analysis as part of research question three, or included in analyses as control variables. Researchers discussed and resolved any discrepancies of the data coded in Phase 2. During Phase 3, we coded for the presence or absence of the major instructional components based on authors' descriptions of the interventions. Some instructional components of interest we could not reliably code for (e.g., feedback, guided inquiry) and others (e.g., student explanations, comparing worked examples) we did not have enough studies to include. Potential coding discrepancies were again resolved by consensus with one of the principal investigators. All study features and instructional components were coded by two researchers, and reliability exceeded 95%. All coding discrepancies were then reconciled to 100% agreement. See Table 4 for operational definitions of instructional components and study features.

3.4 Risk of Bias

The majority of potential sources of bias within studies included in this review were addressed by applying the WWC standards to appraise study quality. Bias sources that would determine that a study does not meet WWC standards include sources of bias such as those arising from the randomization process, incomplete outcome data, selection of the reported results, or lack of pretest equivalence. We also cross-checked the WWC standards against the Cochrane Collaboration tool for assessing the risk of bias in randomized trials (Higgins & Green, 2011). Areas of bias included in the Cochrane Collaboration risk-of-bias tool that are not addressed through the WWC review process include the assessment of bias arising from deviations from intended interventions. Because of this, the Cochrane Collaboration tool was used as an additional means to assess risk of bias in this area for the studies in our sample.

3.5 Data Analysis

Effect Size Metric

The outcomes of interest in the meta-analyses were calculated using means and pooled standard deviations for intervention and comparison groups, which includes an adjustment for small samples (Hedges, 1981). All effect sizes were reported to indicate that positive values indicate a favorable performance on outcome measures (e.g., more precise estimation on fraction number lines, stronger fractions magnitude understanding). This primarily involved reverse coding of number line estimation measures.

Meta-Analytic Procedures

The majority of studies in our sample (n = 23) provided multiple effect sizes of interest. To include all effect sizes from each study and account for dependencies within the dataset (e.g., studies reporting multiple effect sizes), we used the random effects robust variance estimation (RVE) technique developed by Hedges et al. (2010). This approach allows for clustered data (i.e., effect sizes nested within studies or samples) by applying a correction to the study standard errors to account for the correlations between effect sizes from the same sample. When studies included multiple treatment arms, generally, the two treatments were aggregated for the analyses. In two of these studies, aggregating treatments did not make sense. In those cases, the most relevant treatment for this meta-analysis was chosen.

Robust variance estimation does not result in the loss of any information, does not require knowledge of the underlying correlation structure, and can accommodate multiple sources of dependencies. Thus, RVE was used to estimate the overall effect size and conduct moderator analyses. All RVE analyses were run in Stata version 16.0 (StataCorp, 2019) using the *ROBUMETA* package (Hedberg, 2014). Because RVE requires an estimate of the mean correlation (ρ) between all pairs of effect sizes within a cluster (i.e., study) to be specified, we first conducted sensitivity analyses using ρ values of 0 to .90. Results showed that findings were robust across differing reasonable estimates of ρ . Thus, we estimated τ^2 using a value of .80 (Tanner-Smith & Tipton, 2013).

We used the intercept from the RVE meta-regression models to estimate the mean effect sizes and examined heterogeneity by using τ^2 as the between-study variance component. All analyses used random effects modeling to account for the expected heterogeneity in effect sizes. We also tested for moderators using a meta-regression approach. We estimated a series of both multivariate and univariate random-effects meta-regression models using *ROBUMETA* (Hedberg, 2014) to summarize effect sizes and examine associations between effect sizes and the different candidate moderators.

To answer research question two, a multivariate random-effects RVE meta-regression

was conducted to assess whether the specific instructional components in interventions (explicit instruction, representations, strategic prompting tools, cumulative review, teaching and use of mathematical language, and timed fluency-building activities) moderate the impacts on mathematical knowledge.

Methodological and procedural characteristics of studies are often at risk of confounding their substantive features and—by distorting measures of association of meta-regressions—risk leading to incorrect conclusions (Deeks et al., 2019). To address this, we used variables we believe may be potential confounders (i.e., group size, grade level, intervention duration, and the nature of the comparison condition) as statistical controls in the moderator analyses using multivariate meta-regression models.

We explored the moderating effects of the use of number lines in instruction for our third research question. To do so, we first ran a univariate meta-regression testing number line individually, then we ran a multivariate meta-regression including the four potential confounding variables to adjust for their potential influence.

Last, we applied a series of univariate random-effects meta-regression models to explore research question four. For variables with more than two categories, one was chosen as the *reference category*, or the category to which the other categories were compared. Univariate analyses were conducted due to the large number of variables of interest (three study-level, four intervention, and two outcome characteristics). While multivariate models are ideal, many models that included multiple moderators resulted in fewer than four degrees of freedom, which likely underestimates the true Type 1 error (Tipton, 2015). To avoid this, a series of univariate RVE meta-regression models were run as exploratory analyses. However, results should be interpreted with caution because other moderators that are unaccounted for may have potential

confounding effects.

Publication Bias

Extensive sensitivity analyses were conducted to assess the potential presence of publication bias within our sample. First, we visually inspected the symmetry of the funnel plot with pseudo 95% confidence limits. Next, to statistically test for funnel plot asymmetry, we conducted Egger regression tests (Egger et al., 1997). Finally, we conducted trim-and-fill analyses (Duval & Tweedie, 2000) to adjust for potential publication bias by correcting for funnel plot asymmetry. All analyses were run in Stata version 16.0 (StataCorp, 2019) using the *metafunnel, metabias*, and *metatrim* commands.

Outliers

To minimize the potential bias due to disproportionate influence of effect size outliers on the meta-analysis results, outliers were Winsorized to less extreme values (Lipsey & Wilson, 2001). We conducted an 80% Winsorization, which modified 10% of potential outliers from each tail area. Using this method, four studies were identified as outliers and were assigned effect estimates closer to other effect estimates in the set. We also re-ran the meta-analyses with these four outliers removed from the meta-analysis and found no substantive difference from the Winsorized results. As such, we conducted subsequent analyses with outliers included and Winsorized.

Missing Data

To meet eligibility inclusion criteria, studies were required to provide sufficient information for estimation of a pretest and posttest effect size on at least one relevant outcome measure. As a result, there were no missing data in the outcomes of interest. There were, however, missing data for some of the coded intervention components and study features. Our sample size was not large enough to conduct any defensible imputation of missing data. Instead, we first queried authors for missing data and then, in the event of non-response from author queries, we used listwise deletion.

This meta-analysis adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement (Moher et al., 2009). The methods were based on a protocol developed prior to data collection and analysis (Newman-Gonchar, et al., 2019).

4. Results

4.1 Search and Screening Results

We concluded our literature search in August 2019. See Figure 1 for a flow diagram detailing the eligibility coding for the 1,424 candidate reports yielded from our initial and extended search procedures. Following title and abstract screening, a majority of reports (n = 1,347) were excluded, leaving 77 reports to be screened at the full-text level for final eligibility status. After full-text screening, 51 ineligible reports were excluded, primarily due to: (a) a participant group that did not include a sufficient proportion of students with or at risk for difficulties in mathematics; (b) failure to meet WWC group design standards; (c) lack of relation of intervention content to rational number concepts or operations; (d) ineligibility of research design; or (e) absence of eligible outcomes in the study. A total of 26 studies with 4,237 unique participants from 30 independent samples were deemed eligible for inclusion in the final meta-analysis. These samples provided a total of 115 effect sizes.

Overall, 97% of the student sample for included studies (25 of the 26 included studies; n = 4,109) was identified as with or at risk for difficulties in mathematics either through a studyimplemented screening process or formal identification of a disability. The exception (Delacruz, 2011; n = 128), did not identify students through a screening process but targeted at-risk students by only including schools determined to primarily comprise students from "groups that historically do poorly in math" (p. 27).

4.2 Study Features

Table 1 shows descriptive statistics for some of the study features of the included studies. Sample sizes ranged from 22 to 755 students, with publication dates ranging from 1993 to 2019. Median publication year was 2014, and the majority of studies (n = 16) were published during or after 2014. Of the included studies, 21 were journal articles, three were dissertations, and two were technical reports.

Duration of initial interventionist training (prior to the beginning of intervention implementation) was more than one day (8 hours) for the majority of studies (n = 15). Five studies reported initial interventionist training duration to be less than one day, and the remaining studies (n = 6) either reported that no training was conducted or did not report on the presence or absence of initial training. Ongoing training (i.e., interventionist training and implementation monitoring/feedback that continued throughout the duration of intervention implementation) was reported in half of the studies (n = 13).

Twenty studies were appraised to meet WWC standards without reservations (i.e., RCTs with low attrition). The remaining six studies met WWC standards with reservations (i.e., QEDs or RCTs with high attrition and/or a lack of equivalence at baseline). With the exception of Turner (2012), a QED, all studies were RCTs. The sample of studies was divided approximately evenly between students in Grades 3 through 6 (n = 14) and Grades 7 through 9 (n = 12).

The 26 studies included in our analysis represent interventions that differ on several important characteristics. Intervention descriptions with study features related to implementation are presented in Table 2. These include the types of interventionists, the content type and level,

group size, duration, instructional setting, and extent of technology use during the intervention.

Overall, the majority of studies included interventions lasting more than 20 hours (n = 13); these interventions were delivered by research program staff (n = 12) and included no use of technology (n = 17). Intervention content focused on fractions-only instruction in 17 studies while the remaining nine studies included rations, proportions or fractions. The majority of intervention content was developed to target foundational knowledge combined with skills related to grade-level content (i.e., *integrated content*; n = 13) for students in a small-group setting (n = 14).

4.3 Overall Intervention Effect

Table 3 provides key features of the samples and outcomes along with outcome-level effect sizes. The estimate of the mean effect size across all 26 studies (115 effect sizes) included in the analysis was 0.65 and differed significantly from zero (p < .001, 95% CI [0.50, 0.80]). Figure 3 shows the corresponding forest plot for the 26 effect sizes. The forest plot shows the average effect size of each study (outliers Winsorized) as the dot in the center of each line (which represents the length of the 95% confidence interval). The τ^2 estimate of the true variance in the population of effects is 0.01. These results address research question one and indicate that students receiving rational number intervention report significantly larger impacts in relevant aspects of mathematics performance than those in control conditions.

4.4 Efficacy of Instructional Components

To better understand the instructional components that relate to the efficacy of rational number interventions as posed in research question two, we examined each instructional component for which we could identify 10 or more studies—thus excluding the instructional component category of student explanations from the analysis due to an inadequate number of studies (e.g., Borenstein et al., 2009). Many of the studies included instructional components that were nonexclusive (i.e., overlapping). That may mean that the studies have included both the use of timed fluency-building activities and cumulative review. See Table 7 for the instructional components included in each study.

We used a multivariate meta-regression model with RVE to assess the possible moderating effects of instructional components. The model included all instructional components simultaneously and controlled for important study and intervention characteristics within a single model (Pigott & Polanin, 2019).

As indicated by the mean effect sizes (i.e., the intercepts from the RVE meta-regression model; see Table 5), the majority of the instructional components were non-significant at p < 0.05, with the exception of the teaching and use of mathematical language (p < .047). Ten studies with 62 effect sizes reflected interventions including the teaching and use of mathematical language, indicating that studies including this instructional component were associated with significantly larger positive effects on the outcomes.

To better understand the role of the number line in rational number instruction we explored whether its use explained any variability while also including important controls in the metaregression model (i.e., group size, grade level, intervention duration, and the nature of the comparison condition). We found no significant relationship (b = 0.68, p = 0.07, 95% CI [-0.13, 1.48]). However, degrees of freedom were less than four, which likely underestimates the true Type 1 error (Tipton, 2015). A sensitivity analysis examining the meta-regression results without the presence of the control variables yielded significant results (p < 0.0001).

4.5 Exploratory Moderator Analyses of Study Features

Using univariate meta-regression models, we explored 10 categorial moderator variables related to study and intervention characteristics as raised in research question three. We used univariate models in lieu of recommended simultaneous, multivariate models due to a lack of power resulting from the relatively small number of studies and the moderately large set of multivariate moderators. We found some evidence of moderator effects related to intervention components (see Table 6). Here we discuss only those moderators significant at a Bonferroni corrected critical p value of 0.005.

In the outcome domain moderator category, outcomes in the *rational number magnitude* domain and the *fractions addition and subtraction* domain had significantly larger effect sizes than outcomes in the *knowledge of rational numbers topics* domain (the referent group). In this outcome domain analysis, we excluded the domain of general mathematics achievement because only two studies had outcomes in this outcome domain. We found a significant relationship (p < 0.005) between grade level and effect size: interventions for students in elementary grades (3 through 6) had larger effects than those for students in middle school (7 through 9). Interventions delivered to small groups had significantly larger (p < 0.005) effects than those delivered in large-group settings.

Interventions delivered by research project personnel were significantly more effective (p < 0.005) than those delivered by school personnel. We also found that interventions longer than nine hours (i.e., interventions 10–19 hours and interventions 20 hours or longer) were more effective than shorter interventions (0–9 hours). However, only the specific comparison with the category of interventions lasting 20 hours or longer was statistically significant (p < 0.005). Finally, interventions for which the interventionists participated in ongoing training were

significantly more effective than those without (p < 0.005).

We then conducted three supplemental moderator analyses using multivariate metaregression models which included all moderator variables in single models to explore the three outcome domains with the largest number of effect sizes: knowledge of rational numbers topics, rational numbers magnitude, and fraction addition and subtraction. Results from all three separate multivariate meta-regressions, along with the univariate model, indicated that the presence of ongoing training in an intervention remains a particularly strong moderator associated with improved effectiveness of intervention.

4.6 Publication Bias

To assess research quality, we conducted extensive sensitivity analyses to assess the potential presence of publication bias within our sample. The funnel plot with pseudo 95% confidence limits for the study-level effect sizes is shown in Figure 2. Visual inspection of the funnel plot suggests the potential absence of studies with large effects and small sample sizes. However, results from Egger regression tests (Egger et al., 1997) were non-significant and provided no evidence of small study bias (b = 0.37, p = 0.059). Because the Egger's test can be underpowered in small samples, these results are not confirmatory of the absence of publication bias but do suggest that its presence is unlikely. Trim-and fill analyses (Duval & Tweedie, 2000) were also conducted to adjust for potential publication bias. Estimated mean effects were attenuated, but results, again, provided no strong evidence of publication bias, such that the average effect sizes for intervention were substantively unchanged after the trim-and-fill procedure (g = 0.613, p < 0.001). Taken together, we can conclude that publication bias is likely only a minor concern for this set of studies.

4.7 Risk of Bias

Studies that did not adequately address potential sources of bias failed to meet the WWC standards and were excluded from the meta-analysis (n = 17). We also used the Cochrane Collaboration tool for assessing risk of bias to assess potential deviations from the intended interventions. The tool assesses additional sources of variance not covered by applying WWC review standards, such as allocation concealment or blinding of assessment administration. The sample of studies included in this review would be considered of *some concern* due to potential deviations from intended interventions. Studies in our sample did not report bias protections for these sources of bias due to the nature of school-based research, within which it is most often not possible to ensure participant or researcher blinding.

5. Summary

Findings from this study provide valuable information that may help educators understand effective intervention components for students experiencing mathematics difficulties and the conditions under which intervention is optimal. Specifically, the positive impact for teaching and using of mathematical language may guide schools and districts in choosing interventions that include this practice. Also, the impact for interventionists receiving highquality, ongoing training may guide districts when making decisions on how to provide training and professional development to teachers who deliver intervention. Providing evidence-based intervention on rational numbers topics addresses the ever-widening achievement gap in mathematics between low- and high-performing students as they prepare for high-stakes courses like Algebra 1. Findings from this project should be considered as schools make important decisions about the provision of mathematics services to students experiencing difficulties in mathematics.

References

- Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., & van Velsen, M. (2014). Using erroneous examples to improve mathematics learning with a web-based tutoring system. *Computers in Human Behavior*, *36*, 401–411. doi:10.1016/j.chb.2014.03.053
- Barbieri, C. A., Rodrigues, J., Dyson, N., & Jordan, N. C. (2019). Improving fraction understanding in sixth graders with mathematics difficulties: Effects of a number line approach combined with cognitive learning strategies. *Journal of Educational Psychology*, 112(3), 628–648. doi:10.1037/edu0000384
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to metaanalysis. John Wiley & Sons, Ltd. doi:10.1002/9780470743386
- Bottge, B. A., & Hasselbring, T. S. (1993). A comparison of two approaches for teaching complex, authentic mathematics problems to adolescents in remedial math classes. *Exceptional Children*, 59(6), 556–566. doi:10.1177/001440299305900608
- Bottge, B. A., Ma, X., Gassaway, L., Toland, M. D., Butler, M., & Cho, S.-J. (2014). Effects of blended instructional models on math performance. *Exceptional Children*, 80(4), 423–437. doi:10.1177/0014402914527240
- Bottge, B. A., Rueda, E., Grant, T. S., Stephens, A. C., & Laroque, P. T. (2010). Anchoring problem-solving and computation instruction in context-rich learning environments. *Exceptional Children*, *76*(4), 417–437.

doi:10.1177/001440291007600403

Bottge, B. A., Rueda, E., LaRoque, P. T., Serlin, R. C., & Kwon, J. (2007). Integrating reform-oriented math instruction in special education settings. *Learning Disabilities* *Research & Practice*, 22(2), 96–109. <u>doi:10.1111/j.1540-5826.2007.00234.x</u>

- Bottge, B. A., Toland, M. D., Gassaway, L., Butler, M., Choo, S., Griffen, A. K., & Ma, X. (2015). Impact of enhanced anchored instruction in inclusive math classrooms. *Exceptional Children*, *81*(2), 158–175. doi:10.1177/0014402914551742
- Butler, F. M., Miller, S. P., Crehan, K., Babbitt, B., & Pierce, T. (2003). Fraction instruction for students with mathematics disabilities: Comparing two teaching sequences. *Learning Disabilities Research and Practice*, 18(2), 99–111. doi:10.1111/1540-5826.00066
- Delacruz, G. (2011). Games as formative assessment environments: Examining the impact of explanations of scoring and incentives on math learning, game performance, and help seeking (CRESST Report 76). University of California, National Center for Research on Evaluation, Standards, and Student Testing (CRESST). https://files.eric.ed.gov/fulltext/ED522834.pdf
- Deeks. J. J., Higgins, J. P. T., & Altman, D. G. (2019). Chapter 10: Analysing data and undertaking meta-analyses. In J. P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, & V. A. Welch. (Eds.). *Cochrane handbook for systematic reviews of interventions* (Version 6.0 [updated July 2019], pp. 241–284). The Cochrane Collaboration. www.training.cochrane.org/handbook.
- Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*, 56(2), 455–463. doi:10.1111/j.0006-341x.2000.00455.x
- Dyson, N. I., Jordan, N. C., Rodrigues, J., Barbieri, C., & Rinne, L. (2020). A fraction sense intervention for sixth graders with or at risk for mathematics difficulties. *Remedial*

and Special Education, 41(4), 244–254. doi:10.1177/0741932518807139

- Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ*, *315*(7109), 629–634. doi:10.1136/bmj.315.7109.629
- Ennis, R. P., & Losinski, M. (2019). Interventions to improve fraction skills for students with disabilities: A meta-analysis. *Exceptional Children*, 85(3), 367–386. doi:10.1177/0014402918817504
- Fuchs, L. S., Malone, A. S., Preacher, K. J., Fuchs, D., Wang, A. Y., & Pachmayr, R. (2019). Effects of fourth-and fifth-grade Super Solvers intervention on fraction magnitude understanding and calculation skill. Unpublished manuscript. <u>http://frg.vkcsites.org/wp-content/uploads/2019/07/Effects-of-Fourth-and-Fifth-Grade-Super-Solvers-Intervention-on-Fraction-Magnitude-Understanding-and-Calculation-Skill.pdf</u>
- Fuchs, L. S., Malone, A. S., Schumacher, R. F., Namkung, J., Hamlett, C. L., Jordan, N. C., Siegler, R. S., Gersten, R., & Changas, P. (2016). Supported self-explaining during fraction intervention. *Journal of Educational Psychology*, *108*(4), 493–508. doi:10.1037/edu0000073
- Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., Jordan, N. C., Siegler, R., Gersten, R., & Changas, P. (2013). Improving at-risk learners' understanding of fractions. *Journal of Educational Psychology*, *105*(3), 683–700. <u>doi:10.1037/a0032446</u>
- Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Malone, A. S., Wang, A., Hamlett,
 C. L., Jordan, N. C., Siegler, R. S., & Changas, P. (2016). Effects of intervention to
 improve at-risk fourth graders' understanding, calculations, and word problems

with fractions. The Elementary School Journal, 116(4), 625-651. doi:10.1086/686303

Fuchs, L. S., Schumacher, R. F., Sterba, S. K., Long, J., Namkung, J., Malone, A., Hamlett,
C. L., Jordan, N. C., Gersten, R., Siegler, R. S., & Changas, P. (2014). Does working
memory moderate the effects of fraction intervention? An aptitude-treatment
interaction. *Journal of Educational Psychology*, *106*(2), 499–514.

doi:10.1037/a0034341

- Hedberg, E. (2014). *ROBUMETA: Stata module to perform robust variance estimation in metaregression with dependent effect size estimates.* Boston College.
- Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. *Journal of Educational Statistics*, 6(2), 107–128. doi:10.3102/10769986006002107
- Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. *Research Synthesis Methods*, 1(1), 39–65. <u>doi:10.1002/jrsm.5</u>
- Higgins, J. P., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (Version 5.1.0 [updated March 2011]). John Wiley & Sons. www.handbook.cochrane.org
- Hughes, E. (2011). The effects of concrete-representational-abstract sequenced instruction on struggling learners' acquisition, retention, and self-efficacy of fractions (Publication No, 747) [Doctoral Dissertation, Clemson University].

https://tigerprints.clemson.edu/all dissertations/747/

Hwang, J., Riccomini, P. J., Hwang, S. Y., & Morano, S. (2019). A systematic analysis of experimental studies targeting fractions for students with mathematics difficulties.

Learning Disabilities Research & Practice, 34(1), 47–61. doi:10.1111/ldrp.12187

- Jayanthi, M., Gersten, R., Spallone, S., Dimino, J., Schumacher, R., Smolkowski, K., Karp, K., & Haymond, K. (2018). Impact of a tier 2 fractions intervention on fifth-grade students' fractions achievement: A technical report. Instructional Research Group (IRG). <u>https://www.inresg.org</u>
- Jitendra, A. K., Dupuis, D. N., Star, J. R., & Rodriguez, M. C. (2016). The effects of schema-based instruction on the proportional thinking of students with mathematics difficulties with and without reading difficulties. *Journal of Learning Disabilities*, 49(4), 354–367. doi:10.1177/0022219414554228
- Jitendra, A. K., Harwell, M. R., Dupuis, D. N., & Karl, S. R. (2017). A randomized trial of the effects of schema-based instruction on proportional problem-solving for students with mathematics problem-solving difficulties. *Journal of Learning Disabilities*, 50(3), 322–336. <u>doi:10.1177/0022219416629646</u>
- Lemons, C. J., Fuchs, D., Gilbert, J. K., & Fuchs, L. S. (2014). Evidence-based practices in a changing world: Reconsidering the counterfactual in education research. *Educational Researcher*, 43(5), 242–252. doi:10.3102/0013189x14539189
- Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. SAGE.
- Malone, A. S., Fuchs, L. S., Sterba, S. K., Fuchs, D., & Foreman-Murray, L. (2019). Does an integrated focus on fractions and decimals improve at-risk students' rational number magnitude performance? *Contemporary Educational Psychology*, 59.
 Advance online publication. <u>doi:10.1016/j.cedpsych.2019.101782</u>
- McLaren, B. M., Adams, D. M., & Mayer, R. E. (2015). Delayed learning effects with erroneous examples: A study of learning decimals with a web-based tutor.

International Journal of Artificial Intelligence in Education, 25(4), 520–542. doi:10.1007/s40593-015-0064-x

- Misquitta, R. (2011). A review of the literature: Fraction instruction for struggling learners in mathematics. *Learning Disabilities Research & Practice*, 26(2), 109–119. doi:10.1111/j.1540-5826.2011.00330.x
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLOS Medicine*, 6(7), e1000097. <u>doi:10.1371/journal.pmed.1000097</u>
- National Governors Association Center for Best Practices, Council of Chief State School Officers. (2015). *Common Core State Standards*. <u>http://www.corestandards.org</u>
- National Math Advisory Panel. (2008). Foundations for success: The final report of the national mathematics advisory panel. U.S. Department of Education.
- Newman-Gonchar, R., Haymond, K., & Schumacher, R. (2019) Protocol: A systematic review and meta-analysis of instructional practices that enhance learning for students struggling with rational numbers.

https://osf.io/mtxvq/?view_only=67bdcdda372b4a51873758299dd37d46

- Pigott, T. D., & Polanin, J. R. (2019). Methodological guidance paper: High-quality metaanalysis in a systematic review. *Review of Educational Research*, 90(1), 24–46. <u>doi:10.3102/0034654319877153</u>
- Roesslein, R. I., & Codding, R. S. (2019). Fraction interventions for struggling elementary math learners: A review of the literature. *Psychology in the Schools*, 56(3), 413–432. doi:10.1002/pits.22196

Schneider, M., Thompson, C. A., & Rittle-Johnson, B. (2017). Associations of magnitude

comparison and number line estimation with mathematical competence: A comparative review. In P. Lemaire (Ed.), *Cognitive development from a strategy perspective: A festschrift for Robert S. Siegler* (pp. 100–119). Routledge/Taylor & Francis Group.

- Schumacher, R., Krowka, S., Haymond, K., Newman-Gonchar, R., & Gersten, R. (2021). Replication Data for: A Systematic Review and Meta-Analysis of Rational Number Interventions for Students Experiencing Difficulty with Mathematics (V1 ed.). Harvard Dataverse. <u>https://doi.org/10.7910/DVN/TB4QVB</u>
- Shin, M., & Bryant, D. P. (2015). Fraction interventions for students struggling to learn mathematics: A research synthesis. *Remedial and Special Education*, 36(6), 374–387. <u>doi:10.1177/0741932515572910</u>
- Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. *Child Development Perspectives*, 8(3), 144–150. <u>doi:10.1111/cdep.12077</u>

StataCorp. (2019). Stata (Version 16.0/IC) [for Mac].

- Tanner-Smith, E. E., & Tipton, E. (2013). Robust variance estimation with dependent effect sizes: Practical considerations including a software tutorial in Stata and SPSS. *Research Synthesis Methods*, 5(1), 13–30. doi:10.1002/jrsm.1091
- Therrien, W. J., Cook, B. G., & Cook, L. (2020). Utilizing meta-analyses to guide practice: A primer. *Learning Disabilities Research & Practice*, 35(3), 111–117. doi:10.1111/ldrp.12230
- Tipton, E. (2015). Small sample adjustments for robust variance estimation with metaregression. *Psychological Methods*, 20(3), 375–393. doi:10.1037/met0000011
- Turner, S. A. (2012). The effects of a constructivist-based fraction intervention on the achievement and self-efficacy beliefs of low socio-economic status students

(Publication No. 3500450). [Doctoral Dissertation, University of the Pacific]. UMI Dissertation Publishing.

- U.S. Department of Education [U.S. DOE], & What Works Clearinghouse [WWC]. (2013). *What Works Clearinghouse: Procedures and standards handbook* (Version 3.0). <u>https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures_v3_0_standards_handbook.pdf</u>
- Wang, A. Y., Fuchs, L. S., Preacher, K. J., Fuchs, D., Malone, A. S., & Pachmayr, R.
 (2019). Effects of Super Solvers fractions intervention for at-risk third graders.
 Unpublished manuscript. <u>http://frg.vkcsites.org/wp-</u>
 <u>content/uploads/2019/07/Effects-of-Super-Solvers-Fractions-Intervention-for-At-Risk-Third-Graders.pdf</u>
- Watt, S. J., & Therrien, W. J. (2016). Examining a preteaching framework to improve fraction computation outcomes among struggling learners. *Preventing School Failure: Alternative Education for Children and Youth*, 60(4), 311–319.

doi:10.1080/1045988X.2016.1147011

 Westenskow, A. (2012). Equivalent fraction learning trajectories for students with mathematical learning difficulties when using manipulatives (Publication No. 1368)
 [Doctoral Dissertation, Utah State University]. Digital Commons, USU.
 <u>https://digitalcommons.usu.edu/etd/1368</u>

Xin, Y. P., Jitendra, A. K., & Deatline-Buchman, A. (2005). Effects of mathematical word problem—Solving instruction on middle school students with learning problems.
 The Journal of Special Education, 39(3), 181–192.
 doi:10.1177/00224669050390030501

Table 1

Author (year)	Design	Grade Level	Quality Rating	Initial Training	Ongoing Training	Sample Size (Total <i>N</i>)	Publication Type
Adams et al. (2014)	RCT	$7^{th}-9^{th}$	MWOR	None	None	107	Journal
Barbieri et al. (2019)	RCT	$3^{rd}-6^{th}$	MWR	> 1 day	None	51	Journal
Bottge et al. (1993)	RCT	$7^{th}-9^{th}$	MWOR	None	None	29	Journal
Bottge et al. (2007)	C-RCT	$7^{th}-9^{th}$	MWOR	> 1 day	None	90	Journal
Bottge et al. (2010)	C-RCT	$7^{th}-9^{th}$	MWOR	< 1 day	None	54	Journal
Bottge et al. (2014)	C-RCT	$7^{th}-9^{th}$	MWOR	> 1 day	None	317	Journal
Bottge et al. (2015)	C-RCT	$7^{th}-9^{th}$	MWOR	> 1 day	None	123	Journal
Butler et al. (2003)	C-RCT	$7^{th}-9^{th}$	MWOR	< 1 day	Yes	50	Journal
Delacruz (2011)	RCT	$3^{rd}-6^{th}$	MWR	None	None	128	Report
Dyson et al. (2018)	RCT	$3^{rd}-6^{th}$	MWOR	< 1 day	Yes	52	Journal
Fuchs et al. (2013)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	164	Journal
Fuchs et al. (2014)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	259	Journal
Fuchs et al. (2016a)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	139	Journal
Fuchs et al. (2016b)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	142	Journal
Fuchs et al. (2019)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	97	Journal
Hughes (2011)	RCT	$7^{th}-9^{th}$	MWR	< 1 day	Yes	35	Dissertation
Jayanthi et al. (2018)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	185	Report
Jitendra et al. (2016)	C-RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	None	260	Journal
Jitendra et al. (2017)	C-RCT	$3^{rd}-6^{th}$	MWR	> 1 day	None	755	Journal
Malone et al. (2019)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	152	Journal
McLaren et al. (2015)	RCT	$7^{th}-9^{th}$	MWOR	None	None	200	Journal
Turner (2012)	QED	$7^{th}-9^{th}$	MWR	NR	None	88	Dissertation
Wang et al. (2019)	RCT	$3^{rd}-6^{th}$	MWOR	> 1 day	Yes	58	Journal
Watt et al. (2016)	RCT	$7^{th}-9^{th}$	MWR	< 1 day	None	32	Journal
Westenskow (2012)	RCT	$3^{rd}-6^{th}$	MWOR	NR	Yes	43	Dissertation
Xin et al. (2005)	RCT	$7^{th}-9^{th}$	MWOR	< 1 day	Yes	22	Journal

Note. C-RCT = cluster RCT; MWR = meets WWC standards with reservations; MWOR = meets WWC standards without reservations; 1 day = 8 hours; NR = not reported.

Table 2

Author (year)	Int.	Con tent	Intervention Description	Grou ping	Dura tion	Instructional Setting	Content Level	Tech. Usage
Adams et al. (2014)	None (Virtual)	D	Web-based tutoring; students critiqued incorrect solutions to decimal problems <i>Comparison</i> : Students solved problems with feedback from web-based tutoring	Ind.	≤ 9 hours	Supplementa 1 Intervention	Integrat ed	Yes (Full)
Barbieri et al. (2019)	Research Project Personnel	F	Fraction intervention centered on the number line <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Foundat ional	None
Bottge et al. (1993)	Research Project Personnel and School-Based Personnel	F	Students learned problem-solving skills to solve contextualized problems <i>Comparison</i> : Students learned problem-solving skills to solve arithmetic word problems	SG	≤ 9 hours	SpEd	At Grade	Yes (Partial)
Bottge et al. (2007)	School-Based Personnel	D, R/R	Enhanced Anchored Instruction (EAI); intervention focused on applied problem solving <i>Comparison</i> : BAU	LG	≥ 20 hours	SpEd	At Grade	Yes (Partial)
Bottge et al. (2010)	School-Based Personnel plus virtual	F	Formal fractions instruction plus (EAI) <i>Comparison</i> : Informal fractions instruction plus (EAI)	LG	≥ 20 hours	SpEd	At Grade	Yes (Partial)
Bottge et al. (2014)	School-Based Personnel	Per,	Enhanced Anchored Instruction (EAI); intervention focused on applied problem solving <i>Comparison</i> : BAU	LG	≥ 20 hours	SpEd	Integrat ed	Yes (Partial)

Intervention Descriptions and Study Features

Author (year)	Int.	Con tent	Intervention Description	Grou ping	Dura tion	Instructional Setting	Content Level	Tech. Usage
Bottge et al. (2015)	School-Based Personnel	Per,	Enhanced Anchored Instruction (EAI); intervention focused on applied problem solving <i>Comparison</i> : BAU	LG	≥ 20 hours	General Classroom	Integrat ed	Yes (Partial)
Butler et al. (2003)	School-Based Personnel	F	Concrete-representational-abstract instructional sequence (CRA) <i>Comparison</i> : Representational-abstract instruction only	LG	≤ 9 hours	SpEd	Foundat ional	None
Delacruz (2011)	None (virtual)	F	Computer-based pre-algebra math game with tutorials and feedback <i>Comparison</i> : Computer-based math game with different learning objectives than treatment group	Ind.	\leq 9 hours	Supplementa 1 Intervention	Foundat ional	Yes (Full)
Dyson et al. (2018)	Research Project Personnel	F	Fractions-sense intervention centered on the number line <i>Comparison</i> : BAU	SG	9	Supplementa 1 Intervention	Foundat ional	None
Fuchs et al. (2013)	Research Project Personnel	F	Fraction Challenge; intervention focused on the measurement interpretation of fractions <i>Comparison</i> : BAU	SG	9	Supplementa 1 Intervention	Integrat ed	None
Fuchs et al. (2014)	Research Project Personnel	F	Fraction Face-Off!; intervention focused on the measurement interpretation of fractions with two variants: fluency or conceptual activities <i>Comparison</i> : BAU	SG	9	Supplementa l Intervention	Integrat ed	None

Author (year)	Int.	Con tent	Intervention Description	Grou ping	Dura tion	Instructional Setting	Content Level	Tech. Usage
Fuchs et al. (2016a)	Research Project Personnel	F	Fraction Face-Off!; intervention focused on the measurement interpretation of fractions with two variants: word problem solving or providing explanations <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Integrat ed	None
Fuchs et al. (2016b)	Research Project Personnel	F	Fraction Face-Off!; intervention focused on the measurement interpretation of fractions with two variants: additive or multiplicative word problems <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Integrat ed	None
Fuchs et al. (2019)	Research Project Personnel	F	Super Solvers; intervention focused on fractions magnitude with two variants: fractions calculations and error analysis <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Integrat ed	None
Hughes (2011)	School-Based Personnel	F	Concrete-representational-abstract instructional sequence (CRA) <i>Comparison</i> : BAU	WC	10-1 9 hours	General Classroom	Foundat ional	None
Jayanthi et al. (2018)	Research Project Personnel	F	Adapted TransMath [®] ; intervention focused on foundational fractions concepts and procedures with a focus on student explanations <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Integrat ed	None
Jitendra et al. (2016)	School-Based Personnel	Pro,	Schema-Based Instruction (SBI); students learned proportional problem-solving <i>Comparison</i> : BAU	LG	≥ 20 hours	General Classroom	At Grade	None
Jitendra et al. (2017)	School-Based Personnel	Pro,	Schema-Based Instruction (SBI); students learned proportional problem-solving <i>Comparison</i> : BAU	LG	10-1 9 hours	General Classroom	At Grade	None

Author (year)	Int.	Con tent	Intervention Description	Grou ping		Instructional Setting	Content Level	Tech. Usage
Malone et al. (2019)	Research Project Personnel	F, D	Fraction Face-Off!; intervention focused on fraction and decimal magnitudes <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Integrat ed	None
McLaren et al. (2015)	None (virtual)	D	Web-based; students found, explained, and fixed errors in decimal problems <i>Comparison</i> : Web-based; students solved the same decimal problems and explained their solutions	Ind.	≤ 9 hours	Supplementa 1 Intervention	Integrat ed	Yes (Full)
Turner (2012)	School-Based Personnel	F	Constructivist-based fraction intervention <i>Comparison</i> : BAU	LG	≥ 20 hours	General Classroom	Foundat ional	None
Wang et al. (2019)	Research Project Personnel	F	Super Solvers; intervention focused on fractions magnitude and word problems with two variants: with or without self-regulation <i>Comparison</i> : BAU	SG	≥ 20 hours	Supplementa 1 Intervention	Integrat ed	None
Watt et al. (2016)	Research Project Personnel	F	Preteaching fraction computations using the concrete-representational-abstract (CRA) instructional sequence <i>Comparison</i> : Students received supplemental reading instruction	SG	≤ 9 hours	Supplementa 1 Intervention	Integrat ed	None
Westenskow (2012)	Research Project Personnel	F	Students learned equivalent fractions concepts using physical manipulatives <i>Comparison</i> : Students learned the same concepts using virtual manipulatives	SG	≤ 9 hours	Supplementa 1 Intervention	Foundat ional	Yes (Partial)

Author (year)	Int.	Con tent	Intervention Description	Grou ping	Dura tion	Instructional Setting	Content Level	Tech. Usage
Xin et al. (2005)		Pro,	Schema-based instruction (SBI); students learned mathematical word-problem solving <i>Comparison</i> : Student learned mathematical word- problem solving using general strategy instruction (GSI)	SG	10–1 9 hours	SpEd	At Grade	None
Note. All stud	<i>Note.</i> All studies with individual grouping are also computer-based (virtual) interventions. CRA (concrete-representational-abstract) is							

equivalent to CSA (concrete-semiconcrete-abstract). F = fractions; D = decimals; Per = percentages; Pro = proportions; R/R = rates and ratios; Ind. = individual; Int. = interventionist; SG = small group; LG = large group; BAU = business-as-usual.

Author(s) (year)	TX n	CON n	Outcome Domain	Measure Type	Outcome-Level Effect Sizes (SE)
Adams et al. (2014)	44	63	KN	IND	0.58 (0.20), 0.30 (0.20)
Barbieri et al. (2019)	28	23	FR	RD	0.29 (0.28), 0.28 (0.28)
	28	23	KN	IND	1.28 (0.31), 0.78 (0.29)
Bottge et al. (1993)	15	14	PS	RD	1.07 (0.40)
- ()	15	14	WP	RD	0.52 (0.38), 0.07 (0.37)
Bottge et al. (2007)	48	42	PS	RD	1.06 (0.22)
Bottge et al. (2010)	29	25	FR	RD	0.93 (0.29)
	29	25	PS	IND	-0.03 (0.27)
	29	25	CO	IND	-0.07 (0.27)
	29	25	PS	RD	0.01 (0.27)
Bottge et al. (2014)	154	171	PS	IND	0.21 (0.11)
	146	171	FR	IND	0.55 (0.11)
	153	171	PS	RD	0.29 (0.11)
Bottge et al. (2015)	56	67	FR	RD	0.72 (0.19)
	56	70	PS	IND	0.36 (0.18)
	55	68	FR	IND	0.31 (0.18)
	62	70	PS	RD	0.47 (0.18)
Butler et al. (2003)	26	24	MAG	IND	0.04 (0.28)
	26	24	KN	IND	-1.99 (0.28), 0.92 (0.30)
	26	24	WP	RD	0.07 (0.28)
	26	24	KN	RD	0.46 (0.28)
Delacruz (2011)	112	16	KN	RD	0.17 (0.27)
Dyson et al. (2018)	25	27	FR	RD	0.48 (0.28), 0.25 (0.28)
	25	27	KN	IND	0.99 (0.29), 0.63 (0.28)
	25	27	MAG	IND	0.92 (0.29), 1.03 (0.30)
Fuchs et al. (2013)	129	130	MAG	RD	1.87 (0.15)
	129	130	FR	RD	2.49 (0.17)
	129	130	MAG	IND	1.03 (0.13)
	129	130	KN	IND	0.92 (0.13)
Fuchs et al. (2014)	79	80	CO	RD	1.41 (0.21)
	79	80	MAG	IND	1.22 (0.39)
	79	80	KN	IND	0.64 (0.31)
	84	80	FR	RD	1.44 (0.17)
	84	80	MAG	IND	0.98 (0.17)
	84	80	KN	IND	0.63 (0.16)

Author(s) (year)	TX n	CON n	Outcome Domain	Measure Type	Outcome-Level Effect Sizes (SE)
Fuchs et al. (2016a) EXP Contrast	73	70	FR	RD	1.91 (0.23)
	73	70	KN	IND	0.59 (0.32)
	73	70	MAG	RD	1.34 (0.29), 1.16 (0.17)
	73	70	MAG	IND	0.62 (0.32)
	73	70	WP	RD	-0.11 (0.20)
Fuchs et al. (2016a) WP Contrast	69	70	FR	RD	1.96 (0.21)
	69	70	KN	IND	0.74 (0.17)
	69	70	MAG	RD	0.57 (0.18), 0.88 (0.18)
	69	70	MAG	IND	0.47 (0.17)
	69	70	WP	RD	1.18 (0.17)
Fuchs et al. (2016b) AWP Contrast	71	70	FR	RD	1.68 (0.17)
	71	70	KN	IND	0.32 (0.17)
	71	70	MAG	IND	0.62 (0.17)
	71	70	WP	RD	1.35 (0.17), 0.08 (0.17)
Fuchs et al. (2016b) MWP Contrast	72	70	FR	RD	1.19 (0.18)
	72	70	KN	IND	0.41 (0.17)
	72	70	MAG	IND	0.93 (0.18)
	72	70	WP	RD	0.99 (0.18), 0.89 (0.17)
Fuchs et al. (2019) SS Contrast	46	52	FR	RD	1.86 (0.26)
	46	52	KN	IND	-0.04 (0.27)
	46	52	MAG	IND	1.56 (0.37)
	46	52	MAG	RD	1.26 (0.23)
Fuchs et al. (2019) SSE Contrast	45	52	FR	RD	1.99 (0.24)
	45	52	KN	IND	0.10 (0.20)
	45	52	MAG	IND	1.42 (0.23)
	45	52	MAG	RD	1.33 (0.22)
Hughes (2011)	20	15	CO	RD	0.16 (0.34), 1.02 (0.36)
Jayanthi et al. (2018)	86	99	MAG	IND	1.08 (0.16), 0.79 (0.15)
•	86	99	KN	IND	0.66 (0.15)
	87	99	KN	IND	0.78 (0.15)
	86	99	CO	IND	1.06 (0.16)
Jitendra et al. (2016)	149	111	WP	RD	0.40 (0.13), 0.42 (0.13) 0.08 (0.13)
Jitendra et al. (2017)	381	374	WP	RD	0.26 (0.07)
	372	357	WP	RD	0.20 (0.07)

Author(s) (year)		CON n	Outcome Domain	Measure Type	Outcome-Level Effect Sizes (SE)
Malone et al. (2019)	76	76	FR	RD	1.54 (0.19)
	76	76	KN	IND	0.21 (0.16)
	76	76	MAG	IND	0.47 (0.17), 0.81 (0.17)
	76	76	MAG	RD	0.39 (0.16), 1.58 (0.18)
	76	76	WP	RD	0.49 (0.17)
McLaren et al. (2015)	98	102	KN	IND	0.27 (0.14), 0.20 (0.14)
Turner (2012)	45	43	GEN	IND	0.88 (0.22)
	45	43	KN	IND	0.82 (0.22)
Wang et al. (2019) SS Contrast	26	29	CO	RD	0.57 (0.31)
	26	29	FR	RD	1.05 (0.27)
	26	29	KN	IND	1.10 (0.32)
	26	29	MAG	IND	0.90 (0.30)
	26	29	MAG	RD	1.01 (0.30)
	26	29	WP	RD	0.96 (0.28)
Wang et al. (2019) SS-SR Contrast	29	29	CO	RD	0.84 (0.29)
	29	29	FR	RD	0.97 (0.28)
	29	29	KN	IND	0.70 (0.28)
	29	29	MAG	IND	0.85 (0.28)
	29	29	MAG	RD	1.25 (0.28)
	29	29	WP	RD	0.91 (0.28)
Watt et al. (2016)	17	15	GEN	IND	0.11 (0.35)
Westenskow (2012)	15	14	KN	RD	-0.02 (0.38)
	15	14	MAG	RD	0.20 (0.37), 0.20 (0.37)
Xin et al. (2005)	11	10	WP	IND	1.33 (0.46)
	11	11	WP	RD	1.87 (0.49)
	9	10	WP	RD	2.86 (0.62)

Note. CO = fractions computation; FR = fractions addition and subtraction; GEN = general mathematics achievement; KN = knowledge of rational numbers topics; MAG = rational numbers magnitude; PS = problem solving; WP = word problems; IND = independent; RD = researcher developed.

Operational Definitions for Instructional Components and Study Features

Variable	Definition
Comparison	TvsC=Treatment vs Business-as-usual control; TvsT=Treatment vs. Alternative active treatment; T+TvsC=Aggregated treatments vs Business-as-usual control
Cumulative Review	Yes=Intervention provided evidence of cumulative review; No=Authors did not report including cumulative review
Design	RCT=Randomized controlled trial; QED=Quasi-experimental design; Cluster RCT=RCT in which groups of students were randomized; Cluster QED=QED in which groups of students were assigned to conditions
Duration	>9= Intervention was 9 hours in overall duration; 10–19=Intervention was between 10 and 19 hours; >20=Intervention lasted longer than 20 hours
Explicit Instruction	Yes=Intervention included clear explanatory language, used scripts, included direct teaching and modeling of concepts and procedures; No=Intervention was constructivist in nature, computer-mediated intervention, discovery/explore description, student-driven rather than teacher driven
Timed Fluency Activities	Yes=Study included timed activities designed to build students' fluency; No=Authors did not report including timed fluency-building activities
Grade Level	Elementary=Grades 3-6; Middle School=Grades 7-9
Group Size	Small Group=Instruction was provided in small groups of 2–6 students; Large Group=Instruction was provided to a large group or whole class (greater than 6 students); No study provided one-on-one instruction delivered by an interventionist. The only instruction considered to be individualized was virtual (computer-based)
Initial Training	No=Interventionists were provided no initial training; <1 day=Interventionists participated in pre-intervention training lasting less than or equal to one day (8 hours); >1 day= Interventionists participated in pre-intervention training lasting greater than one day (8 hours), N/R=Presence or absence of initial training was not reported
Interventionist	RSCH=Research Project Personnel; SCH=School-Based Personnel
Measure Type	Researcher Developed=Developed by the research team to test the intervention; Independent=Standardized or norm-referenced measures developed independently of research project personnel. Contains specific standard instructions used when the measure is administered (usually not developed by the current researchers), or referenced data from a normative sample
Number Line	Yes=Intervention incorporated the use of the number line to support learning; No=Authors did not report the use of a number line during intervention
Ongoing Training	Yes=Interventionists participated in periodic training that continued throughout the intervention; No=Interventionists participated in only initial training or received no training

Variable	Definition
Outcome Domain	Knowledge of rational number topics, Rational numbers magnitude, Fractions computation (including all four operations), Fractions addition and subtraction, Word problems, Problem solving, General mathematics achievement
Strategic Prompting Tools	Yes=Intervention included cue card or notes, a step-by-step strategy, a monitoring strategy, strategic prompt cards, strategic cards; No=Authors did not report using prompting tools during intervention
Representations	Yes=Intervention included use of concrete or semi-concrete representations of mathematical concepts such as fraction tiles, number lines, or shaded models; No=Authors did not report using concrete or semi-concrete representations to teach concepts
Technology	Yes=Intervention included the full or partial use of technology (i.e., computers); No=Intervention did not include the use of technology
Instructional Setting	SPED=Instruction was delivered in a special education setting including resource rooms; General Classroom=Instruction was delivered in core/general mathematics classes; Supplemental Intervention=Instruction was supplemental and provided one-on-one or in small groups
Teaching and use of mathematical language	Yes=Intervention included instruction on mathematical language such as learning mathematical terminology or novel vocabulary in word problems; No=Authors did not report teaching mathematical terminology

Relationships Between Instructional Components and Effect Sizes Using Multivariate Meta-Regression Models

Variable	k(n)	<i>b</i> [95% CI]	SE	df	р	$ au^2$
Instructional Components						0.00
Explicit	19(101)	-0.34 [-0.87, 0.18]	0.18	3.76 ^a	0.142 ^a	
Representations	23(108)	-0.38 [-1.73, 0.96]	0.52	4.76	0.491	
Strategic Prompting Tools	14(87)	0.18 [-0.27, 0.63]	0.19	6.88	0.371	
Cumulative Review	14(79)	-0.22 [-0.59, 0.14]	0.15	6.90	0.183	
Teaching and Use of Mathematical Language	10(62)	0.57 [0.01, 1.14]	0.23	6.53	0.047^{*}	
Timed Fluency-Building Activities	10(67)	0.17 [-0.40, 0.74]	0.14	2.13 ^a	0.337 ^a	
Intervention and Design Characteristics (Controls)						
Group Size (small group, large group)		-0.34 [-1.04, 0.35]	0.28	6.08	0.275	
Grade Level (3 rd -6 th , 7 th -9 th)		-0.20 [-1.17, 0.77]	0.39	5.69	0.631	
Duration (≤ 9 hrs, 10–19 hrs, ≥ 20 hrs)		0.09 [-0.16, 0.34]	0.11	8.58	0.445	
Comparison Condition (BAU, active alt. treatment)		0.02 [-0.65, 0.68]	0.22	3.32 ^a	0.944 ^a	
Number Line Representation						0.00
Number line (with controls)	10(74)	0.68 [-0.13, 1.48]	0.19	1.98 ^a	0.069	
Number line (without controls)		0.52 [0.34, 0.69]	0.08	22.89	0.000^*	

Note. The assumed average intercorrelation across all variables, rho (ρ), is set at .80. A multivariate meta-regression model (simultaneous model) was estimated using robust variance estimation (RVE) to handle statistically dependent effect sizes. k = number of studies; n = number of effect sizes; CI = confidence interval.

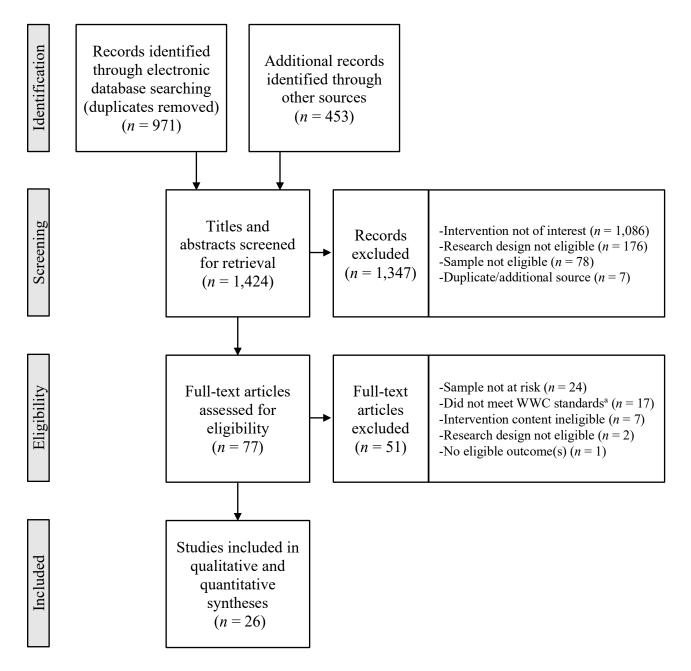
^a Degrees of freedom is less than four, thus the *p*-value is untrustworthy due to small sample size (Tipton, 2015). *p < .05.

Table 6

Exploratory Analyses: Relationships Between Study Features and Effect Sizes

	Exploratory Analyses: Relationships Between Study Features and Effect Sizes							
Moderator	k(n)	<i>b</i> [95% CI]	SE	df	р	$ au^2$		
Type of Measure ^a						0.02		
Researcher Developed	21(62)	0.10 [-0.16, 0.35]	0.12	24.27	0.44			
Independent	19(53)	0 (H	Ref)					
Outcome Domain ^a						0.00		
Knowledge of Rational Numbers	16(28)	0 (H	Ref)					
Rational Numbers Magnitude	11(31)	0.47 [0.22, 0.72]	0.12	16.85	0.00^{***}			
Fractions Computation	5(7)	0.24 [-0.20, 0.69]	0.17	4.32	0.21			
Fractions Addition and Subtraction	12(19)	0.52 [0.14, 0.90]	0.18	17.03	0.01^{*}			
Word Problems	9(20)	-0.02 [-0.39, 0.35]	0.16	9.18	0.89			
Problem Solving	5(8)	0.06 [-0.57, 0.69]	0.25	5.12	0.81			
Grade Level						0.00		
Elementary (3 rd -6 th)	12(78)	0.43 [0.22, 0.63]	0.10	22.56	0.00^{***}			
Middle School (7 th -9 th)	14(37)	0 (H						
Group Size						0.00		
Large Group (> 6)	9(26)	0 (H	Ref)					
Small Group (2–6 students)	14(84)	0.47 [0.28, 0.66]	0.09	21.38	0.00^{***}			
Interventionist	× ,					0.00		
Research Project Personnel	12(78)	0 (H	Ref)					
School-Based Personnel	9(26)	-0.43 [-0.67, -0.20]	0.11	14.85	0.00^{***}			
Technology Usage						0.00		
None	17(92)	0 (H	Ref)					
Partial or full	9(23)	-0.33 [-0.61, -0.05]	0.13	12.63	0.03^{*}			
Duration						0.00		
\leq 9 hours	7(17)	0 (H	Ref)					
10–19 hours	6(23)	0.41 [-0.28, 1.11]	0.30	8.05	0.21			
\geq 20 hours	13(75)			8.61	0.00^{***}			
Initial Training	× ,					0.02		
None	4(8)	0 (H	Ref)					
< 1 day	5(17)	0.23 [-0.25, 0.70]		6.83	0.30			
> 1 day	· · ·	0.37 [0.02, 0.72]			0.04^{*}			
Ongoing Training	× ,					0.00		
No	13(32)	0 (H	Ref)					
Yes	13(83)			22.27	0.00***			
Instructional Setting		r , .]				0.00		
Special Education	6(19)	0 (H	Ref)					
General Classroom	• •	-0.18 [-0.65, 0.30]		6.73	0.41			
Supplemental Intervention		0.19 [-0.26, 0.64]			0.35			
^a Meta-regression models were estimate						ichlog		

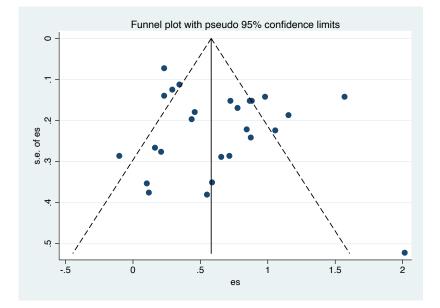
^a Meta-regression models were estimated at the outcome level, not the study level. The variables labeled "(Ref)" are the reference categories to which the other categories are being compared. k = number of studies; n = number of effect sizes; CI = confidence interval. *p < .05. **p < .01. ***p < .005 (the Bonferroni corrected critical p value).


	Instructional Components								
Author	Explicit Instruction	Representat ions	Strategic Prompting Tools	Cumulative Review	Teaching e and Use of Mathematic al Language	Building			
Adams et al. (2014)									
Barbieri et al. (2019)	Х	Xa	Х			Х			
Bottge et al. (1993)				Х					
Bottge et al. (2007)		Х							
Bottge et al. (2010)	Х	Х		Х					
Bottge et al. (2014)	Х	Х							
Bottge et al. (2015)	Х	Х							
Butler et al. (2003)	Х	Х	Х						
Delacruz (2011)		Х				Х			
Dyson et al. (2018)	Х	Xa	Х			Х			
Fuchs et al. (2013)	Х	Xa	Х	Х	Х	Х			
Fuchs et al. (2014)	Х	Xa	Х	Х	Х	X ^b			
Fuchs et al. (2016a)	Х	Xa	Х	Х	X ^b	Х			
Fuchs et al. (2016b)	Х	Xa	Х	Х	Х	Х			
Fuchs et al. (2019)	Х	Xa	Х	Х	Х	Х			
Hughes (2011)	Х	Х		Х					
Jayanthi et al. (2018)	Х	Xa	Х	Х	Х				
Jitendra et al. (2016)	Х	Х	Х	Х					
Jitendra et al. (2017)	Х	Х	Х	Х					
Malone et al. (2019)	Х	X ^a	Х	Х	Х	Х			
McLaren et al. (2015)									
Turner (2012)		Х							
Wang et al. (2019)	Х	Xa	Х	Х	Х	Х			
Watt et al. (2016)	Х	Х		Х	Х				
Westenskow (2012)		Х							
Xin et al. (2005)	Х	Х	Х		Х				

Instructional Components Included in Each Study

Note. ^a indicates that the study's use of representations included number lines. ^b indicates that some, but not all, contrasts of this study included the instructional component.

Figure 1


Study identification flow diagram following PRISMA guidelines

^a The study is a randomized controlled trial with high attrition or a quasi-experimental design study with analysis groups that are not shown to be equivalent.

Figure 2

Funnel Plot

Figure 3

Forest Plot

Author	% Weight
Butler et al., 2003	3.12
Watt et al., 2016	- 2.51
Westenskow et al., 2012	- 2.34
Delacruz et al., 2011	3.33
Bottge et al., 2010	3.22
Jitendra et al., 2017	5.58
McLaren et al., 2015	4.85
Jitendra et al., 2016	5.04
Bottge et al., 2014	5.19
Adams et al., 2014	- 4.14
Bottge et al., 2015	- 4.37
Bottge et al., 1993	2.29
Hughes et al., 2011	2.53
Barbieri et al, 2019	3.08
Dyson et al., 2018	3.12
Fuchs et al., 2016b	4.72
Malone et al, 2019	•
Turner et al., 2012	• 3.85
Jayanthi et al., 2018	4.70
Wang et al, 2019	• 3.59
Fuchs et al., 2016a	4.70
Fuchs et al, 2014	4.82
Bottge et al., 2007	3.83
Fuchs et al., 2019	4.27
Fuchs et al., 2013	4.82
Xin et al., 2005	• 1.49
Overall (I-squared = 74.7%, p = 0.000)	100.00
NOTE: Weights are from random effects analysis	
-2.18 0	2.18