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A B S T R A C T   

Three rational number notations – fractions, decimals, and percentages – have existed in their 
modern forms for over 300 years, suggesting that each notation serves a distinct function. 
However, it is unclear what these functions are and how people choose which notation to use in a 
given situation. In the present article, we propose quantification process theory to account for 
people’s preferences among fractions, decimals, and percentages. According to this theory, the 
preferred notation for representing a ratio corresponding to a given situation depends on the 
processes used to quantify the ratio or its components. Quantification process theory predicts that 
if exact enumeration is used to generate a ratio, fractions will be preferred to decimals and 
percentages; in contrast, if estimation is used to generate the ratio, decimals and percentages will 
be preferred to fractions. Moreover, percentages will be preferred over decimals for representing 
ratios when approximation to the nearest percent is sufficiently precise, due to the lesser pro
cessing demands of using percentages. Experiments 1, 2, and 3 yielded empirical evidence re
garding preferences that were consistent with quantification process theory. Experiment 4 in
dicated that the accuracy with which participants identified the numerical values of ratios when 
they used different notations generally paralleled their preferences. Educational implications of 
the findings are discussed.  

1. Introduction 

Rational numbers—fractions, decimals, and percentages—are pervasively important. A trip to a supermarket might include 
paying $0.99 (a decimal) for 1/8 lb of prosciutto (a fraction) on sale at 10% off of its usual price (a percentage). Rational numbers are 
frequently used in the workplace as well. In a poll of a random sample of over 2,000 U.S. adults, including both high-skill and low- 
skill white-collar and blue-collar workers, 68% reported using rational numbers at their jobs (Handel, 2016), almost as many as said 
they used whole numbers and far more than said they used any more advanced mathematics. Rational numbers also play a crucial 
role in numerical development. They are essential to mathematics beyond elementary school, as reflected in their pervasive use in 
algebra, statistics, and trigonometry. Individual differences in rational number understanding are also important: Fractions 
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knowledge in fifth grade predicts overall mathematics achievement in tenth grade, even after controlling for the effects of whole 
number arithmetic skill, verbal and non-verbal IQ, working memory, and socio-economic status (Siegler et al., 2012). 

Unlike whole numbers, for which a single standard notation is almost always used, three different rational number notations are 
common: fractions, decimals, and percentages. Fractions have the most expressive power among the three: Every rational number can 
be represented as a fraction, because every rational number is, by definition, a ratio between two numbers, the numerator and the 
denominator. Decimals, on the other hand, can only represent rational numbers whose implicit denominators are powers of 10 (e.g., 
0.7 signifies 7/10, 0.753 signifies 753/1000), and percentages can only represent rational numbers whose implicit denominator is 
100 (e.g., 75% signifies 75/100). (For simplicity, we do not consider percentages with decimal components, such as 75.33%, which 
are percentage-decimal hybrids.) 

The greater expressive power of fractions suggests the question of why decimals and percentages are needed at all. Fractions, 
decimals, and percentages have all existed in their modern forms for at least three centuries (Cajori, 1993). Thus, it appears likely that 
each serves a distinct function and could not easily be replaced by the others. But what are those distinct functions, and how do 
people choose which notation to use in a given situation? 

The purpose of the present study is to propose and test quantification process theory, an approach to understanding people’s 
preferences among fractions, decimals, and percentages. First, we review a previous proposal regarding preferences among rational 
number notations: semantic alignment theory (DeWolf et al., 2015). Then, we present quantification process theory and note si
milarities and differences between its predictions and those of semantic alignment theory. Finally, we describe four experiments 
designed to test predictions of the two theories. 

1.1. Semantic alignment theory 

DeWolf et al. (2015) applied the general theory of semantic alignment (Bassok, Chase, & Martin, 1998) to explain people’s 
preferences, as well as their speed and accuracy, in using rational number notations to represent spatial displays. DeWolf et al. (2015) 
posited that when choosing among rational number notations to represent the ratio in a given display, people prefer to use the 
notation whose semantic structure matches that of the ratio displayed. Regarding the particular alignment, DeWolf et al. (2015) 
argued that fractions are two-dimensional due to their “bipartite structure,” and that decimals are “inherently unidimensional be
cause the implied denominator is fixed (base 10)” (p. 129). They further proposed that ratios involving discrete quantities are two- 
dimensional, but ratios involving continuous quantities are unidimensional. Therefore, fractions “naturally express a two-dimen
sional relationship between the cardinal values of sets” (p. 140), whereas decimals “provide a one-dimensional measure of a portion 
of a continuous unit” (p. 129). 

To test this theory, DeWolf et al. (2015) presented U.S. university students with several types of visual displays representing ratios 
between: a) two small sets of discrete objects, henceforth referred to as “small-number discrete displays” (Fig. 1A); b) two small sets 
of units within continuous quantities, henceforth referred to as “small-number discretized displays” (Fig. 1B); and c) two parts of a 
continuous quantity, henceforth referred to as “continuous displays” (Fig. 1C). Consistent with semantic alignment theory, when 
asked whether the ratio depicted in each display should be represented with a fraction or a decimal, participants chose fractions more 
often than decimals to represent small-number discrete and discretized displays, but they chose decimals more often than fractions to 
represent continuous displays. Further, when asked to judge whether a given fraction or decimal represented the part-part ratio or the 
part-whole ratio in a given display (e.g., the ratio of red items to green items or the ratio of red items to all items in Fig. 1A), 
participants were faster and more accurate with fractions than with decimals for small-number discrete and discretized displays, but 
they were faster with decimals than with fractions for continuous displays. Subsequent studies with participants from the U.S., Korea, 

Fig. 1. Visual displays of ratios used in the present study to express 7/8. (A) Small-number discrete display. (B) Small-number discretized display. 
(C) Continuous display. (D) Large-number discrete display. Displays (A), (B), and (C) were modeled after stimuli from DeWolf et al. (2015). Display 
(D) was new to this study. 
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and Russia yielded similar results (Lee et al., 2016; Plummer, DeWolf, Bassok, Gordon, & Holyoak, 2017; Rapp et al., 2015; 
Tyumeneva et al., 2018). 

Gray, DeWolf, Bassok, and Holyoak (2017) extended semantic alignment theory to include percentages. U.S. university students 
were shown small-number discrete, small-number discretized, and continuous displays, with each display followed by a fraction, a 
decimal, or a percentage. Their task was to indicate whether the number represented the part-part ratio (i.e., the ratio of one color to 
the other color) or the part-whole ratio in the display (i.e., the ratio of one color to the whole). Results for decimals and percentages 
did not differ on any of the three types of displays. Therefore, Gray et al. (2017) concluded that the “dominant interpretation” of 
percentages is similar to that of decimals because percentages “are one-dimensional like decimals” (pp 14-15). 

1.2. Quantification process theory 

Quantification process theory, a specific application of strategy choice theory (Siegler, 1996), reflects an alternative analysis of 
preferences among rational number notations. The key assumption of quantification process theory is that the preferred notation for 
representing a ratio corresponding to a given situation depends on the processes used to quantify the ratio or its components, rather 
than the alignment of semantic structures. Quantification processes involve either exact enumeration of the numerator and de
nominator (via subitizing, counting, adding, or a combination of them) or estimation of the ratio as a single integrated magnitude. 
The theory predicts that if the exact numerator and denominator are to be enumerated, fractions will be preferred to decimals and 
percentages, because enumeration yields an exact numerator and an exact denominator that together constitute the relevant fraction. 
In contrast, the theory predicts that if a ratio is to be estimated, decimals and percentages will be preferred to fractions, because 
decimals and percentages permit directly representing an integrated magnitude as a single number. Thus, quantification process 
theory posits that the preferences documented in DeWolf et al. (2015) and follow-up studies reflect the quantification processes 
elicited by the spatial displays and instructions in those studies. It also predicts that eliciting different quantification processes 
through varying the spatial displays and instructions will produce choices of notations not predicted by semantic alignment theory. 

According to quantification process theory, whether a ratio is quantified via estimation or exact enumeration is largely de
termined by properties of the spatial display being represented. Exact enumeration is likely to be used when small numbers of discrete 
or discretized items are involved, because they can be easily counted or subitized; estimation is likely to be used when the display 
involves continuous proportions, which cannot be subitized or counted. Thus, both theories imply that fractions will be preferred to 
decimals and percentages for representing ratios of small-number discrete and discretized displays and that decimals and percentages 
will be preferred to fractions for representing ratios of continuous quantities. 

However, the theories also make several differing predictions. One involves their predictions regarding ratios of large numbers of 
discrete objects, henceforth referred to as “large-number discrete displays” (Fig. 1D), a type of ratio that was not examined in 
previous studies. Because ratios between large discrete sets have the same two-dimensional semantic structure as ratios between 
small discrete sets, semantic alignment theory implies that fractions should be preferred for representing ratios between discrete sets, 
regardless of the numbers of items in the sets. However, from the perspective of quantification process theory, large-number discrete 
displays are likely to elicit estimation rather than counting or subitizing, because exact enumeration becomes increasingly time- 
consuming and effortful as the number of items increases. Quantification process theory therefore predicts that for representing ratios 
between discrete sets, preferences for fractions over decimals and percentages will decrease as the number of items in the sets 
increases. For large sets of discrete items, decimals and percentages will be preferred to fractions. 

Especially important for distinguishing the two theories, quantification process theory implies that directly manipulating 
quantification processes should break the link between display properties and notation preferences. For example, according to 
quantification process theory, an individual who complies with a request to use counting to quantify a ratio in a large-number 
discrete display should prefer fraction notation, even if the display elicits a preference for percentages or decimals in the absence of 
such instructions. Similarly, instructions to estimate, together with time limits sufficiently stringent to preclude accurate counting, 
should lead to estimation being used to quantify the ratio and therefore to a preference for percentages or decimals to represent 
displays that otherwise would elicit a preference for fractions. Semantic alignment theory does not make these predictions, because it 
does not consider the quantification process used to generate numerical representations of ratios as a determinant of notation pre
ferences. 

Quantification process theory also posits that the amount of effort required to represent a ratio with each notation influences 
preferences among notations. The predictions described above were based in part on this assumption. The prediction that fractions 
will be preferred to decimals or percentages when the exact numerator and denominator of a ratio are enumerated was based in part 
on the fact that in this situation, using decimals or percentages would require the extra effort of dividing the numerator by the 
denominator after each had been enumerated. The prediction that decimals or percentages will be preferred to fractions when the 
ratio is estimated was based in part on the fact that in this situation, using fractions requires the extra effort of explicitly choosing a 
denominator. Finally, the prediction that increasing set size should give rise to decreasing preference for fractions over percentages 
and decimals was based on the fact that larger sets require more effort to count than do smaller sets, whereas the effort needed to 
estimate ratios remains roughly constant over set sizes. This analysis closely resembles that of the more general strategy choice model 
in numerous other domains (Siegler, 1996). 

The assumption that effort affects notation preferences also led to another prediction: Percentages will be preferred to decimals 
for representing ratios if the ratios are estimated and the number of decimal digits is not constrained. Choosing a decimal to represent 
a set requires choosing an implicit denominator (tenths, hundredths, thousandths, etc.). For example, with a display having 16 red 
and 28 blue dots, should the proportion of reds be represented as 0.4, 0.36, 0.364, or some other decimal? Such choices require effort. 
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In contrast, choosing a percentage to represent the set constrains the choices to ones with no greater precision than the nearest 
percent. Therefore, percentages should be preferred to both decimals and fractions for representing ratios that are quantified by 
estimation, unless there is a need to represent a ratio with more precision than percentages afford (i.e., more precision than the 
closest 1%). This prediction contrasts with the implication of semantic alignment theory that there should be no preference between 
percentages and decimals, because both are one-dimensional (Gray et al., 2017). 

Table 1 summarizes the predictions of quantification process and semantic alignment theories that were tested in the four ex
periments in this article. A more complete set of predictions of both theories is presented in the Supplementary Information, Table A. 

2. Experiment 1 

In this experiment, participants were presented small-number discrete, small-number discretized, and continuous displays 
(Fig. 1A-1C) and were asked on each trial which rational number notation they preferred to represent the ratio shown in the display. 
In the two-choice condition, the choice of notations was between fractions and decimals, as in DeWolf et al. (2015). In the three-choice 
condition, the choice was among fractions, decimals, and percentages. 

A key prediction of quantification process theory (Prediction 1) was that percentages should be the notation of choice when ratios 
are quantified by estimation. Therefore, we expected that participants in the three-choice condition would choose percentages more 
often than decimals and fractions to represent continuous displays. They would prefer percentages to fractions because continuous 
displays only allow estimation, and they would prefer percentages to decimals because using percentages avoids the cognitive effort 
needed to decide how many decimal digits to use. We also expected that in the two-choice condition, participants would choose 
decimals more often than fractions to represent continuous displays, again because continuous displays only allow estimation of 
ratios (and also following the results of DeWolf et al., 2015). For small-number discrete and discretized displays in both the two- 
choice and the three-choice conditions, both theories predicted that participants would choose fractions more often than decimals 
and percentages. 

2.1. Method 

2.1.1. Participants 
The participants were 47 Carnegie Mellon University students. Twenty-four participants were randomly assigned to the two- 

choice condition (fractions or decimals), and 23 were assigned to the three-choice condition (fractions, decimals, or percentages). 
Students received course credit or monetary compensation. This and the subsequent experiments were approved by the Institutional 
Review Board of the universities from which participants were recruited. Informed consent was obtained from participants in this and 
the subsequent experiments. 

2.1.2. Design 
Participants were individually tested in a quiet room on a laptop during a single session. Stimuli were presented in MATLAB 

(MathWorks, 2015) with Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007) here and in Experiments 2 and 4. 
All of the visual displays in all experiments were presented within a black rectangle at the center of the screen with an approximate 
visual angle of 3.5°×3.5°. 

The procedure followed that of Experiment 1 in DeWolf et al. (2015). On each trial, participants saw one of three types of display: 
small-number discrete, small-number discretized, or continuous (Fig. 1A-1C). Participants were instructed to choose the notation that 

Table 1 
Divergent Predictions of Quantification Process Theory and Semantic Alignment Theory.    

Predictions of Quantification Process Theory Corresponding Predictions of Semantic Alignment Theory  

Prediction 1. Both percentages and decimals should be preferred to fractions for 
representing ratios in continuous displays, because such displays elicit 
estimation, but percentages should be preferred to decimals because 
estimating percentages entails less effort. 

Both percentages and decimals should be preferred to fractions for 
representing ratios in continuous displays, and they should be equally 
preferred because both have a one-dimensional structure. 

Prediction 2. Notation preferences for large-number discrete displays should be 
similar to preferences for continuous displays, rather than preferences for 
small-number discrete displays, because large-number displays (like 
continuous displays) elicit estimation rather than exact enumeration. 

Notation preferences for large-number discrete displays should be similar to 
preferences for small-number discrete displays rather than preferences for 
continuous displays, because large-number displays (like small-number 
discrete displays) are two-dimensional rather than one-dimensional. 

Prediction 3. For representing discrete displays, the degree to which fractions 
are preferred over decimals and percentages should decrease, and the 
degree to which percentages or decimals are preferred over fractions 
should increase, as the number of items in the displays increases. 

For representing discrete displays, the degree to which fractions are 
preferred over decimals and percentages should not change as the number of 
items in the displays increases, because the discrete displays are always two- 
dimensional regardless of the number of items included. 

Prediction 4. Instruction to enumerate should produce a preference for fractions 
to represent large-number discrete displays that otherwise would elicit a 
preference for decimals or percentages. Instruction to estimate, and time 
limits short enough to preclude counting, should produce a preference for 
percentages or decimals to represent discrete displays that otherwise 
would elicit a preference for fractions. 

Instructions to enumerate or estimate and time limits should not affect 
notational preferences, because they do not affect the one-dimensional or 
two-dimensional structure of the displays or the notations. 
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they preferred to represent the part-whole ratio in each display. 
Twenty ratios were used to create the displays, with each ratio being presented for each type of display (Supplementary 

Information, Table B1). The number of entities in the discrete and discretized displays was equal to the denominator of the ratio used 
to create the display and ranged from 7 to 13. The part of the display corresponding to the numerator was red, and the remainder was 
green. For example, the discretized display that corresponded to 7/8 included eight rectangles, seven of which were red and one of 
which was green (Fig. 1B). Following DeWolf et al. (2015), rectangles, triangles, and several other shapes were used to create small- 
number discrete displays. 

As in DeWolf et al. (2015), the task involved choices among notations rather than numerical values. Participants in the two-choice 
condition were asked to “choose which notation is a better representation of the depicted relation – a fraction or a decimal”; 
participants in the three-choice condition were asked to “choose which notation is the best representation of the depicted relation – a 
fraction, a percentage, or a decimal.” The two-choice condition replicated that in DeWolf et al. (2015); the three-choice condition, 
new to this study, assessed the effect of adding percentages as an option. Participants were asked to press the key associated with their 
preferred notation for each display (i.e., for participants in both conditions, “z” for decimal and “m” for fraction; for participants in 
the three-choice condition, “v” for percentage). 

Participants were notified that they did not have to use both/all of the notations and that we were simply interested in their 
preferences. One example of each type of display was presented before starting the task. Displays were presented at the center of the 
screen until a response was detected; there was no pressure to respond quickly. A fixation cross was presented for 600 ms after each 
trial was completed. 

Each participant completed 60 trials (3 display types (small-number discrete, small-number discretized, or continuous) × 20 
ratios). Stimuli were presented in a pseudo-random order for each participant, with the restriction that no more than two successive 
trials involve displays of the same type. 

2.2. Analyses 

A bootstrap procedure was used to estimate the 95% confidence interval (CI) of preferences between each pair of notations for 
each type of display in each condition. To illustrate this bootstrap procedure, we describe how we generated the 95% CI for the 
preference between fractions and decimals for small-discrete displays in the two-choice condition. (1) For each of the 24 participants 
in the two-choice condition, we calculated a preference score between decimals and fractions for trials involving small-discrete 
displays by subtracting the proportion of those trials on which the participant chose decimals from the proportion of those trials on 
which the participant chose fractions. This yielded 24 preference scores. (2) In one simulated experiment, we randomly sampled, with 
replacement, 24 times from the 24 preference scores, then calculated the mean preference score across those 24 samples. (3) We ran 
10,000 simulated experiments as described in (2), yielding 10,000 mean preference scores. The 95% CI was the smallest range of 
scores that included at least 95% of these 10,000 scores. 

Preferences between a given pair of notations, for a given type of display in a given condition, were considered significant if the 
95% CI of the preference score excluded zero. All significant differences are reported. The bootstrap analyses were conducted in R 
(Canty & Ripley, 2019; Team R Core, 2018). 

2.3. Results 

Separate analyses were conducted for the two- and three-choice conditions. Consistent with predictions of both theories and with 
previous findings, participants in the two-choice condition (Fig. 2A) preferred fractions to decimals for representing both small- 
number discrete displays (mean preference score = 45%, 95% CI = [19%, 69%]) and small-number discretized displays (mean 
preference score = 54%, 95% CI = [29%, 76%]) but preferred decimals to fractions for continuous displays (mean preference 

Fig. 2. Notation preferences of U.S. students on small-number discrete, small-number discretized, and continuous displays in Experiment 1 in (A) 
the two-choice condition and (B) the three-choice condition. 
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score = 44%, 95% CI = [17%, 69%]). 
Also as predicted by both theories and by previous findings, in the three-choice condition, fractions were the preferred notation 

for the small-number discrete and discretized displays (Fig. 2B). Participants preferred fractions to decimals for both small-number 
discrete displays (mean preference score = 65%, 95% CI = [42%, 84%]) and small-number discretized displays (mean preference 
score = 41%, 95% CI = [12%, 67%]). Participants also preferred fractions to percentages for both small-number discrete (mean 
preference score = 65%, 95% CI = [46%, 81%]) and small-number discretized displays (mean preference score = 34%, 95% 
CI = [5%, 61%]). 

However, consistent with Prediction 1 of quantification process theory, the option to choose percentages greatly changed pre
ferences among notations for representing continuous displays. As shown in the rightmost column of Fig. 2B, participants in the three- 
choice condition chose percentages to represent continuous displays on 77% of trials with continuous displays. This was far more 
often than they chose not only fractions (mean preference score = 70%, 95% CI = [50%, 85%]) but also decimals (mean preference 
score = 63%, 95% CI = [39%, 83%]). 

2.4. Discussion 

Adding the option of choosing percentages revealed notational preferences for representing continuous displays that were not 
evident in prior experiments: Decimals were the preferred notation when the only alternatives were decimals and fractions, but 
percentages were strongly preferred when they were an additional option in the three-choice condition. The differences were very 
large: Decimals were preferred on almost 75% of trials when fractions were the only alternative, but on only 15% of trials when 
percentages were also an option. Percentages were preferred on more than 75% of trials when they were an alternative. The strong 
preference for percentages over decimals for representing continuous displays in the three-choice condition was predicted by 
quantification process theory but not by semantic alignment theory. 

An alternative interpretation of these findings was that the preference for percentages to represent continuous displays in the 
three-choice condition reflected the task providing three rather than two choices. To test this interpretation, we presented a new 
group of university students (N = 36) the same notation preference task but with only binary choices: fractions or percentages, 
decimals or percentages, and fractions or decimals. As in the three-choice condition of Experiment 1, when asked to represent 
continuous displays on the binary choice tasks, participants consistently preferred percentages to fractions (82% vs. 18%) and to 
decimals (75% vs. 25%). Thus, the option of choosing percentages yielded the preference for percentages for representing continuous 
displays regardless of whether the task involved two or three choices. Other findings from this new group of students were consistent 
with those reported above; a complete report of these findings is presented in the Supplementary Information, Part C. 

3. Experiment 2 

Consistent with Prediction 1 of quantification process theory, participants in Experiment 1 consistently preferred percentages over 
fractions and decimals for representing ratios in continuous displays. One purpose of Experiment 2 was to test whether this finding, 
which was obtained from U.S. university students, could be generalized to students from China, a nation with quite different edu
cational and cultural practices than the U.S. The notation preference task presented to U.S. students in Experiment 1 was used, with 
participants randomly assigned to either the two-choice or the three-choice condition. We predicted that despite the educational and 
cultural differences between China and the US, Chinese students would show the same pattern of preferences as their U.S. peers, 
because notation preferences in both countries would be driven by the same quantification processes in the same way. 

The other purpose of Experiment 2 was to test Prediction 2, that large-number discrete displays would produce preferences like 
those with continuous displays and unlike those with small-number discrete displays. This prediction was based on the logic that 
large-number discrete displays would elicit estimation rather than counting, due to the effort required to count the many objects in 
the sets. This reasoning, combined with Prediction 1, implied that participants would prefer percentages to represent these displays. 
The large-number discrete displays were presented under three-choice conditions to all participants, regardless of whether they 
earlier had been in the two-choice or three-choice condition. The reason was to maximize power to test whether participants pre
ferred percentages to represent these displays. 

3.1. Method 

3.1.1. Participants 
Forty-eight students at Beijing Normal University and Beijing University of Posts and Telecommunications in China were ran

domly assigned to the two-choice or the three-choice condition, 24 students in each condition. 

3.1.2. Design 
Participants first completed the notation preference task with small-number discrete displays, small-number discretized displays, 

and continuous displays, either under two-choice or three-choice conditions. Then, all participants were presented large-number 
discrete displays under three-choice conditions. The first author, a native Chinese speaker, translated the instructions and the text 
into Chinese and administered the experiment. 

The notation preference task with small-number discrete, small-number discretized, and continuous displays had the same design, 
stimuli, and procedure as the notation preference task in Experiment 1. The notation preference task with large-number discrete 
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displays was identical to the three-choice condition of the notation preference task in Experiment 1 except that displays were more 
numerous and only included dots, rather than rectangles and other shapes. The large-number discrete displays were created using the 
same ratios as the small-number displays, so that the total number of dots and numbers of dots in the subsets were multiples of the 
numbers of shapes in the small-number discrete displays. Each large-number discrete display included between 70 and 91 dots, 
compared to between 6 and 13 in the small-number discrete displays. For example, where the small-number discrete display re
presenting 7/8 contained 7 red squares and 1 green circle for a total of 8 shapes, the corresponding large-number discrete display 
contained 63 red dots and 9 green dots for a total of 72 dots (Fig. 1D). 

One large-number discrete display with dots of the same size and one large-number discrete display with dots of varied sizes were 
created for each of 20 ratios, resulting in 40 trials. Using dots of constant or variable sizes enabled us to investigate whether 
differences between area and numerical cues interacted with numerical notation (DeWind, Adams, Platt, & Brannon, 2015). Including 
variability of dot sizes in our analyses did not have any detectable effect; therefore, it was not included as a factor in the analyses here 
or in Experiment 4, which also employed variable-size dots displays. 

3.2. Results 

Chinese students’ performance on the notation preference task showed highly similar results to those with US students. For small- 
number discrete, small-number discretized, and continuous displays in the two-choice condition (Fig. 3A), Chinese participants, like 
those in the U.S., chose fractions more often than decimals for both small-number discrete displays (mean preference score = 30%, 
95% CI = [2%, 59%]) and small-number discretized displays (mean preference score = 66%, 95% CI = [53%, 79%]). The pro
portion of trials on which Chinese participants chose decimals and fractions did not differ for continuous displays. 

Similarly, in the three-choice condition (Fig. 3B), to represent small-number discrete displays, Chinese participants, like U.S. 
peers, preferred fractions over decimals (mean preference score = 49%, 95% CI = [24%, 71%]) or percentages (mean preference 
score = 32%, 95% CI = [3%, 61%]). Also like U.S. peers, to represent small-number discretized displays, Chinese participants chose 
fractions more often than decimals (mean preference score = 71%, 95% CI = [54%, 86%]) or percentages (mean preference 
score = 57%, 95% CI = [29%, 81%]). They also chose percentages somewhat more often than decimals for those displays (mean 
preference score = 14%, 95% CI = [2%, 28%]). Again like U.S. peers, to represent continuous displays, Chinese participants chose 
percentages more often than either fractions (mean preference score = 39%, 95% CI = [10%, 64%]) or decimals (mean preference 
score = 48%, 95% CI = [25%, 69%]). 

Of particular interest, when presented large-number discrete displays, the Chinese students chose percentages more often than 
fractions (mean preference score = 30%, 95% CI = [15%, 44%]) or decimals (mean preference score = 40%, 95% CI = [29%, 
52%]). The preference for percentages over decimals was consistent with Prediction 1 of quantification process theory; the fact that 
students also preferred percentages to fractions was consistent with Prediction 2 of the theory. As expected, preferences for large- 
number discrete displays (Fig. 3C) closely resembled preferences for continuous displays. 

3.3. Discussion 

In addition to replicating the Experiment 1 findings with students from a different country with a different educational system and 

Fig. 3. Notation preferences of Chinese students on small-number discrete, small-number discretized, and continuous displays in Experiment 2 in 
(A) the two-choice condition and (B) the three-choice condition. Results of the notation preference task with large-number discrete displays, in 
which all participants had three choices, are shown in (C). 
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culture, results of Experiment 2 demonstrated a preference for percentages over decimals and fractions for representing ratios in 
large-number discrete displays. The preferences closely resembled those with continuous displays. Taken together, these results are 
consistent with the prediction of quantification process theory that percentages are the preferred notation for representing ratios 
when the ratios are quantified by estimation rather than enumeration and when there is no need to represent ratios with more 
precision than percentages allow. 

4. Experiment 3 

Consistent with Prediction 2 of quantification process theory, participants in Experiment 2 preferred percentages for representing 
ratios between large discrete sets, as they earlier had been found to prefer them for representing ratios of continuous quantities. 
Experiment 3 tested a related hypothesis, Prediction 3: For ratios of discrete objects, preferences for fractions should decrease, and 
preferences for percentages, decimals, or both should increase, as the number of items in the sets increases. To test this prediction, we 
administered the notation preference task using discrete displays of 31 to 76 dots, a range within which pilot testing indicated that 
notation preferences vary. 

Experiment 3 also tested Prediction 4: Instructions to enumerate should produce a preference for fractions, and instruction to 
estimate should produce a preference for percentages or decimals to represent ratios in discrete displays. To test this prediction, we 
used a different task, the number generation task, in which participants were asked to generate a fraction, a decimal, or a percentage to 
represent the part-whole ratio in each display, either using counting (counting instructions condition) or estimation (estimation in
structions condition). When participants were instructed to count, we expected fractions to be preferred. When participants were 
instructed to estimate, we expected percentages to be preferred, based on Predictions 1 and 4 and the results of Experiments 1 and 2. 

The reason that we employed the number generation task to test Prediction 4 was to increase the likelihood that participants 
would use the instructed quantification process (i.e., counting or estimating). Display characteristics strongly influence choices 
among quantification processes (Boyer, Levine, & Huttenlocher, 2008; Plummer et al., 2017), and if asked to choose a notation 
without generating a number (as in Experiments 1 and 2), participants might ignore the instructions and choose a notation consistent 
with the quantification process they would typically use for that type of display. However, the requirement of the number generation 
task to state a specific number to represent the ratio was expected to increase the likelihood of participants using the requested 
quantification process. 

In this experiment, the same displays were used in the notation preference task and in the number generation task. In contrast to 
our Prediction 3, that number of items in the displays would affect preferences on the notation preference task, we predicted that to the 
extent that participants adhered to the instructions, number of items would have little or no impact on notation choices on the number 
generation task (Prediction 4). The reason was that by manipulating the quantification strategy directly, the instructions would sever 
the usual link between set sizes and notation preferences on the number generation task. According to quantification process theory, 
effects of display properties—such as number of items—on notation preferences are mediated by quantification processes. Therefore, 
on the number generation task, regardless of set size, instructions to count were expected to produce predominant choices of frac
tions, whereas instructions to estimate were expected to produce predominant choices of percentages. 

4.1. Method 

4.1.1. Participants 
The participants were 40 Florida State University students who received course credit for participating. 

4.1.2. Design 
Participants were individually tested in a quiet room on a laptop during a single session. Stimuli were presented in PsychoPy3 

(Peirce et al., 2019). All participants first performed the notation preference task and then performed the number generation task 
under both counting and estimation instructions conditions. The notation preference task was presented before the number gen
eration task so that instructions to use a particular quantification strategy in the number generation task would not affect responses in 
the notation preference task. 

Both the notation preference task and the number generation task involved discrete displays of red and blue dots. Two sets of 
ratios, with 12 ratios in each set, were used to create the displays, with each ratio used once (Supplementary Information, Table B2). 
The number of red dots in each display was equivalent to the numerator of the ratio used to create the display, and the total number 
of dots in each display was equivalent to the denominator. Denominators of the ratios ranged from 32 to 75 in one set and 31 to 76 in 
the other. In each set of ratios, three ratios fell into each quartile of the range 0 – 1. 

4.1.2.1. Notation preference task. The procedure of this task was identical to that in the three-choice condition of Experiment 1. Each 
participant was presented each of the 24 displays once in a random order (not blocked by stimulus set). 

4.1.2.2. Number generation task. Each participant performed this task in both the counting instructions condition and the estimation 
instructions condition. On each trial, participants were shown a display on a screen, asked to determine the part-whole ratio in the 
display, and asked to write down their answer on printed answer sheets in whichever rational number notation they preferred. 

In the counting instructions condition, participants were asked to determine the ratio in each display by counting the dots; they 
were given as much time as needed for each trial. The display remained on the screen until the participant pressed the Space key to 
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proceed to a screen that asked them to write their answer for that display on the answer sheet. Pressing the Space key again started 
the next trial. 

In the estimation instructions condition, participants were asked to estimate the ratio in each display. A display appeared on the 
screen for 2 s. This time limit was imposed to prevent participants from counting the dots. A fixation cross appeared at the center of 
the screen after the display disappeared. As in the counting instructions condition, participants were asked to press the Space key after 
they wrote each answer to start the next trial. 

In each condition, participants finished two practice trials without feedback before the test trials. Four ratios that were not in the 
two sets of ratios used to create stimuli for the test trials were used to create practice trial displays (Supplementary Information Table 
B2). Each participant saw displays created from one set of ratios in the counting instructions condition and displays created from the 
other set of ratios in the estimation instructions condition. Each display appeared once per participant. The order of the two con
ditions and the sets of displays used in them were counterbalanced across participants. 

Symbols for all three rational number notations were printed on the answer sheets for each trial so that participants only needed 
to fill in the numerals (see Supplementary Information Part D, for an example answer sheet). This manipulation was intended to 
eliminate differences in the effort needed to write rational numbers in different notations. Locations of symbols for the three notations 
were randomized for each participant. 

4.2. Analyses 

4.2.1. Notation preference task 
To examine the relation between the number of dots in each display and participants’ notation preferences on that display, we 

fitted a mixed-effects logistic regression model for each notation to predict whether that notation was chosen on each trial, with 
number of dots as a fixed effect and participant as a random effect. Models were fitted with R (Team R Core, 2018) and the lme4 
package (Bates, Mächler, Bolker, & Walker, 2014). P-values were obtained by likelihood ratio tests comparing the model including 
the effect of interest to the model without it. 

4.2.2. Number generation task 
The same bootstrap procedure used to analyze data on the notation preference task in Experiments 1 and 2 was used to estimate 

pairwise differences in the proportion of trials on which the participant generated answers in each notation in each condition. Then, 
to test our prediction that number of items would have little or no effect once quantification method was specified, we fitted mixed- 
effects logistic regression models to predict whether each particular notation was chosen, with number of dots as a fixed effect and 
participant as a random effect. Separate analyses were conducted for each combination of task condition and notation (six in total). 

Fig. 4. Probability of choosing percentages (A) or fractions (B) as a function of number of dots in the display on the notation preference task in 
Experiment 3. Circles indicate empirically observed probabilities; lines indicate probabilities predicted by the mixed-effects logistic regression 
models described in the text. 
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4.3. Results 

4.3.1. Notation preference task 
Consistent with Prediction 3 of quantification process theory, on the notation preference task, increased number of dots predicted 

higher likelihood of choosing percentages, Β = 0.03, χ2 (1) = 26.64, p  <  .001 (Fig. 4A), and lower likelihood of choosing fractions, 
Β = −0.03, χ2 (1) = 22.21, p  <  .001 (Fig. 4B). The number of dots did not influence likelihood of choosing decimals, β = −0.006, 
χ2 (1) = 0.66, p = 0.42. 

4.3.2. Number generation task 
Consistent with Prediction 4 of quantification process theory, in the counting instructions condition of the number generation 

task, participants generated fractions far more often than percentages (mean preference score = 86%, 95% CI = [72%, 96%]) or 
decimals (mean preference score = 91%, 95% CI = [83%, 97%]). Also consistent with Prediction 4, in the estimation instructions 
condition, participants generated percentages far more often than fractions (mean preference score = 53%, 95% CI = [30%, 73%]). 
Consistent with Prediction 1, participants also chose percentages far more often than decimals (mean preference score = 68%, 95% 
CI = [53%, 81%]). Moreover, mixed-effect logistic regressions for each combination of condition and notation, with use of a given 
notation as the dependent variable, number of dots as a fixed effect, and participant as a random effect, did not indicate an effect of 
number of dots for any combination of condition and notation, ps  >  0.09. 

4.4. Discussion 

Consistent with Prediction 3, on the notation preference task, preferences among rational number notations were dependent on 
the number of items in the display to be quantified. However, directly manipulating quantification strategy in the number generation 
task eliminated this effect of number of items. When instructed to count, participants more often represented the ratio with fractions 
than percentages, but when instructed to estimate, they more often represented the ratio with percentages than fractions. 

These findings provide strong evidence for quantification process theory. They show that when the quantification process is 
directly manipulated, that process controls the choice of rational number notation to represent ratios in sets of discrete objects. 
Number of items in the set, which influences choice of notations when quantification process is not manipulated, loses its influence 
when quantification process is manipulated. These findings were not predicted by semantic alignment theory, which posits that 
choice of notations to represent ratios in spatial displays depends on the semantic structure of the displays. All displays in Experiment 
3 had the same two-dimensional semantic structure, but choice of notation varied greatly with instructions to count or to estimate. 

5. Experiment 4 

Results of Experiments 1–3 were consistent with Prediction 1, that percentages are preferred to decimals for representing esti
mated ratios if there is no need for precision greater than 1%. The basis for this prediction was that although both decimals and 
percentages permit representing an estimated ratio as a single number, decimals—but not percentages—require determination of an 
implicit denominator, which can be any power of 10. This assumption holds implications not only for preferences, but also for 
performance. Specifically, if representing estimated ratios is more cognitively demanding when decimals rather than percentages are 
used, then accuracy and speed should be greater with percentages than decimals. 

Experiment 4 tested this prediction. Participants completed a number matching task, in which they were asked to choose which of 
two specific fractions, two specific decimals, or two specific percentages more accurately represented ratios in small-number discrete, 
small-number discretized, large-number discrete, and continuous displays. The key prediction was that responses would be slower 
and/or less accurate with decimals than with percentages for the types of displays on which we expected estimation to be used, 
namely, large-number discrete and continuous displays. 

This prediction contrasts with findings from a previous study (Gray et al., 2017) in which no performance differences between 
decimals and percentages emerged. However, in that study, all decimals had the same number of decimal digits (two). From the 
perspective of quantification process theory, the presence or potential for varying numbers of decimal digits, and therefore varying 
implicit denominators, is what makes decimals more difficult to use than percentages. Therefore, in Experiment 4, we examined 
whether performance was better with percentages than with decimals when number of decimal digits varied. 

5.1. Method 

5.1.1. Participants 
Thirty-eight Carnegie Mellon University students participated in the experiment and received course credit or monetary com

pensation for participating. 

5.1.2. Design 
Participants were individually tested in a quiet room during a single session. They first completed the number matching task with 

small-number discrete displays, small-number discretized displays, and continuous displays, and then with large-number discrete 
displays. The task was performed on a laptop. 
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5.1.2.1. Number matching task. On the number matching task, sixteen pairs of ratios were used to create the stimuli (Supplementary 
Information, Table B3). Each ratio pair consisted of a target ratio and a foil ratio; each foil ratio differed from the corresponding target 
ratio by between 0.12 and 0.18. Only the target ratios were used to create the displays shown to participants; the target and foil ratios 
together were used to generate the response options, as described below. 

For each target ratio, we created one small-number discrete display, one small-number discretized display, one continuous dis
play, and two large-number discrete displays with the same number of dots as each other (one with dots of constant size and one with 
dots of varied sizes). The displays were created as described in Experiments 1–3. The number of entities in small-number discrete and 
discretized displays was equal to the denominator of the ratio used to create the display. The number of dots in each large-number 
display was a multiple of the denominator of the ratio that was used to create the display and ranged from 70 to 91. 

For each target-foil pair, three pairs of response options were created—one pair of fractions, one pair of decimals, and one pair of 
percentages (as shown in Supplementary Information, Table B3). The fractions within each pair were exactly equal to the corre
sponding target and foil ratios. The decimals within each pair were within 0.03 of the corresponding target and foil ratios; also, the 
decimals within each pair had different numbers of decimal digits, ranging from one to three. The percentages within each pair were 
equal to the corresponding target and foil ratios rounded to the nearest hundredth. The distance between the target and foil ratio was 
very close (within 0.01) to being constant over the fraction, decimal, and percentage response option pairs. For example, on the trial 
with response options 7/8 and 5/7, the corresponding options with percentages was 88% and 71%, and with decimals was 0.9 and 
0.73. 

On each trial, participants were shown a display and a pair of numbers—either two fractions, two decimals, or two percentages. 
One of the numbers was either equal (in the case of fractions) or approximately equal (in the case of decimals and percentages) to the 
target ratio used to create the display; the other number was equal or approximately equal to the corresponding foil ratio. The task 
was to choose the number that better represented the part-whole ratio in the display; the correct answer was the number that was 
equal or approximately equal to the target ratio. 

The number matching task with small-number discrete, small-number discretized, and continuous displays employed a 3 (no
tation: fraction, decimal, or percentage) by 3 (display type: small-number discrete, small-number discretized, or continuous) design. 
Both factors were within-subjects. Each combination of notation, display type, and ratio pair was presented twice: once with the 
target rational number on the left and once with it on the right. Thus, each participant completed 288 test trials (3 rational number 
notations × 3 display types × 16 ratio pairs × 2 locations for the target number). Problems were completed in two blocks of 144 
trials each. The order of stimuli was pseudo-randomized for each participant, with the constraints that each combination of notation, 
display type, and ratio pair appeared only once in each block, and a ratio pair would not appear again until all 16 pairs were 
presented. 

The number matching task with large-number discrete displays employed a 3 (notation: fraction, decimal, or percentage) by 2 
(dot size: constant or variable) design. Both factors were within-subjects. Each combination of notation, ratio pair, and dot size was 
presented twice—once with the target fraction, decimal, or percentage shown on the left and once with it on the right—resulting in 
192 test trials (3 notations × 16 ratio pairs × 2 dot sizes × 2 locations for the target fraction, decimal, or percentage). The trials 
were completed in two blocks of 96 trials each. The order of stimuli was pseudo-randomized for each participant, with the same 
constraints as for the number matching task. 

Participants were told to choose as quickly as possible without sacrificing accuracy, and that the next trial would start if they did 
not respond within 5 s. Six practice trials were presented before the main task. Feedback was given on the correctness of participants’ 
answers on practice trials but not on test trials. 

5.2. Analyses 

Data were analyzed using ANOVAs. Significant effects of three-level factors (notation and display type) were investigated using 
pairwise post-hoc comparisons; p-values for these comparisons were adjusted using the Bonferroni correction. Trials on which 
participants did not respond within 5 s were excluded from analysis (< 1% of all trials). A small number of participants (three in the 
number matching task with continuous, small-number discrete, and small-number discretized displays, and four in the number 
matching task with large-number discrete displays) were excluded due to large numbers of no-response trials, extremely low ac
curacy, or technical failures (details are provided in the Supplementary Information, Part E). 

Analyses focused on accuracy. Response time patterns on correct trials generally converged with accuracy patterns or showed no 
effects of notation; there was no evidence of speed-accuracy tradeoffs. Analyses of RTs are reported in the Supplementary 
Information, Part F. 

5.3. Results 

A 3 (notation) by 3 (display type) ANOVA on accuracy yielded main effects of notation, F (2, 68) = 17.73, p  <  .001, p
2 = 0.34, 

and display type, F (2, 68) = 20.37, p  <  .001, p
2 = 0.37, and an interaction between the two , F (4, 136) = 26.89, p  <  .001, 

p
2 = 0.44. To interpret the interaction between notation and display type, we conducted separate ANOVAs for each display type. This 

allowed us to test the prediction that for display types expected to  elicit counting, choices between fractions would be more accurate 
than choices between percentages or decimals, but for display types expected to elicit estimation, choices between percentages would 
be more accurate than those between fractions or decimals. 
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For continuous displays, accuracy with percentages (M = 88%, SD = 9%) was higher than with fractions (M = 81%, SD = 10%), 
F (1, 34) = 18.76, p  <  .001, p

2 = 0.36. Accuracy with decimals (M = 85%, SD = 9%) was also higher than with fractions, F (1, 
34) = 8.61, p = .02, p

2 = 0.20. These findings were consistent with quantification process theory and with previous findings 
(DeWolf et al., 2015; Gray et al., 2017; Lee et al., 2016). Participants also were more accurate with percentages than decimals, as 
predicted by quantification process theory, but the difference was not significant, F (1, 34) = 3.11, p = 0.26, p

2 = 0.08. 
Results for small-number discrete and discretized displays also were consistent with previous findings (DeWolf et al., 2015; Gray 

et al., 2017; Lee et al., 2016), as well as with the predictions of the present theory. For small-number discrete displays, accuracy with 
fractions (M = 90%, SD = 9%) was higher than with percentages (M = 79%, SD = 10%), F (1, 34) = 64.26, p  <  .001, p

2 = 0.65 or 
decimals (M = 76%, SD = 9%), F (1, 34) = 69.03, p  <  .001, p

2 = 0.67. For small-number discretized displays, accuracy with 
fractions (M = 90%, SD = 10%) also was higher than with decimals (M = 82%, SD = 8%), F (1, 34) = 28.48, p  <  .05, p

2 = 0.46. 
Accuracy with fractions on these displays was slightly higher than accuracy with percentages (M = 87%, SD = 9%), but the 
difference was not significant, F (1, 34) = 3.10, p = 0.26, p

2 = 0.08. 
On the number matching task with large-number discrete displays, trials for 3 of the 32 displays were excluded from analyses 

because the displays were not exactly equal to the target ratios. Analyses that included these flawed stimuli yielded the same effects 
as reported in here (Supplementary Information, Part G). An ANOVA on accuracy, with notation as a within-subjects factor, yielded 
an effect of notation, F (2, 66) = 13.99, p  <  .001, p

2 = 0.30. Consistent with predictions of quantification process theory, post-hoc 
comparisons indicated that participants were more accurate on large-number discrete displays when the choice was between two 
percentages (M = 78%, SD = 8%) than when it was between two decimals (M = 74%, SD = 9%), F (1, 33) = 9.29, p = 0.013, 

p
2 = 0.22, or two fractions (M = 71%, SD = 7%), F (1, 33) = 27.80, p  <  .001, p

2 = 0.48. Participants also tended to be more 
accurate when the choice involved two decimals than two fractions, F (1, 33) = 5.15, p = .090, p

2 = 0.14. 

5.4. Discussion 

Consistent with quantification process theory, accuracy using rational numbers to represent ratios in spatial displays paralleled 
notation preferences. Critically, with large-number discrete displays, participants performed the number matching task more accu
rately with percentages than with decimals. This result is analogous to Experiment 2′s finding that percentages were preferred to 
decimals for representing ratios in large-number discrete displays. Both findings can be explained by quantification process theory’s 
assumption that using decimals with unequal numbers of decimal digits incurs a greater cognitive demand than using percentages to 
represent estimated ratios. 

6. General discussion 

In this study, we raised the question of how people choose among the three rational number notations in a given situation, 
proposed quantification process theory to explain people’s preferences, and reported empirical data from four experiments that tested 
predictions of the theory. In this concluding section, we discuss findings about each notation’s distinct functions, discuss how 
quantification process theory accounts for the findings, and then consider implications of the findings and theory for how rational 
numbers should be taught to students. 

6.1. Percentages 

The most striking findings to emerge from the present study relate to percentages. On the notation preference task, both U.S. and 
Chinese participants strongly preferred percentages over decimals and fractions for representing ratios in continuous displays and 
large-number discrete displays. As the number of items in discrete displays increased, participants’ preference for percentages also 
increased. On the number generation task, when asked to estimate ratios, participants generated more answers in percentage notation 
than in fraction or decimal notation for all types of spatial displays. Finally, on the number matching task, accuracy was higher with 
percentages than with fractions or decimals on large-number discrete displays, and higher with percentages than with fractions for 
continuous displays. These findings were consistent with our premise that percentage notation endures because people prefer it to 
other notations when using estimation to approximate ratios. 

Previous research on children’s and adults’ understanding of rational numbers has focused almost entirely on fractions and 
decimals; percentages have rarely been studied (Tian & Siegler, 2017). One reason why percentages have received so little attention is 
that they are mathematically interchangeable with decimals if hybrid representations such as 12.34% are allowed. This mathematical 
equivalence might be assumed to yield psychological equivalence. However, neither U.S. nor Chinese participants in the present 
study viewed decimals and percentages as interchangeable. If they had, they would not have shown strong, systematic preference for 
percentages over decimals for representing ratios in continuous and large-number discrete displays. 

Analyses based on quantification process theory implied that percentages are preferred over decimals for representing estimated 
ratios when precision beyond the nearest percent is not required, which was the case in the present study. The rationale for this 
prediction was that percentages require less cognitive effort than decimals when decimals can have varying numbers of decimal 
digits, as is usually true in real-world situations. With a fixed implicit denominator of 100, percentages only require choice of a whole 
number numerator to complete the ratio, whereas using a decimal also requires a choice of how many decimal digits to include. Our 
assumption that choosing the number of decimal digits imposes a cognitive cost led to the predictions that participants would prefer 
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percentages to decimals in situations that did not require highly precise answers, and that they would perform more accurately with 
percentages than with decimals if the decimal alternatives had varying numbers of digits. Both of these predictions proved accurate. 

Looking beyond the types of tasks examined to date, percentages are used in a vast range of contexts, from the everyday to the 
arcane. They are used to convey information about price discounts, sales and income tax rates, gratuities in restaurants, demographic 
descriptions, survey and poll results, growth rates, probabilities, and variance explained in statistical analyses. Percentages also 
appear in common phrases such as “give 100 percent,” “120% effort,” and “the 1 percent,” and they are implicit in phrases such as 
“the odds are 50–50.” Future research should further explore the range of contexts in which percentages are the rational number 
notation of choice and the variables that determine those contexts. 

6.2. Fractions 

Many findings of the present study pertain to differences between fractions on the one hand, and decimals and percentages on the 
other. Previous investigators concluded that for representing ratios between discrete sets, fractions are preferred to, and yield better 
performance than, decimals and percentages (DeWolf et al., 2015; Gray, DeWolf, Bassok, & Holyoak, 2017; Lee et al., 2016; Plummer 
et al., 2017; Rapp et al., 2015). The present study replicated these results, but only when the discrete sets contained small numbers of 
items or when participants were instructed to use counting to determine the ratios, conditions hypothesized to elicit counting1. When 
discrete sets contained large numbers of items that made counting implausible within the time provided, or when participants were 
instructed to quantify the ratios by estimating, participants strongly preferred percentages to fractions. Also, when participants 
performed the number matching task with large-number discrete sets (Experiment 4), accuracy was lower with fractions than per
centages. 

The preference for, and greater accuracy with, fractions over decimals and percentages for representing ratios between small 
discrete sets have previously been interpreted as evidence for an inherent semantic alignment between the bipartite structure of 
fractions and ratio relations between sets. If this interpretation were correct, these preferences should be present regardless of set 
sizes, instructions, and time limits. In contrast, quantification process theory posits that preferences for, and advantages of, fractions 
for representing ratios between discrete sets should disappear with sets that do not allow precise enumeration in the allocated time or 
when participants are instructed to use estimation. The predictions of quantification process theory were the ones consistent with the 
data in the present experiments. 

Like percentages, fractions are pervasively used in contexts beyond the ones examined in the current study. They are used in 
baseball statistics, displaying gasoline prices, and measurements with imperial units. Some simple fractions (such as 1/2, 1/3, 2/3, 1/ 
4, and 3/4) are also commonly used to express rough quantities in daily communications, just as percentages. For example, a child 
may say that 3/4 (or 75%) of his homework is completed. These practical uses of fractions may seem contradictory to the predictions 
of quantification process theory. However, we expect that magnitudes of these simple fractions, unlike most fractions (such as 3/7, 2/ 
11, and 12/29), are easily accessible to most people, which reduces the cognitive effort involved in using them to express estimated 
ratios. Future research is needed to examine this possibility. 

6.3. Decimals 

On the notation preference and number generation tasks presented in Experiments 1–3, fractions or percentages were preferred to 
decimals for every type of display. On the number matching task in Experiment 4, fractions or percentages afforded higher accuracy 
than decimals in most cases in which differences between notations were found. These results invite the question: “Decimals: What 
are they good for?” 

One answer is that decimals are a straightforward extension of the base-10 system for expressing whole numbers. With whole 
numbers, the digit immediately to the left invariably expresses a base that is 10 times as great as the one to its right. Decimals permit 
representation of rational numbers that follow the same principle. 

Another rationale for the use of decimals is that they are particularly useful for representing measurements, especially with metric 
units, because their implicit denominators can be any power of 10. Although decimals cannot represent all ratios exactly, they can 
represent any ratio to any desired degree of precision. This property may make decimals particularly advantageous for measurement, 
because different measurement situations require different degrees of precision. When weighing checked luggage in an airport, 
measurements may be rounded to the nearest 0.1 or 0.01 lb; when weighing items to be carried into orbit by a rocket, decimals permit 
much greater precision. Perhaps for this reason, decimals are frequently used to express measures of mass, length, area, volume, 
speed, force, energy, pressure, and other dimensions. 

Where decimals seem especially likely to be preferred for representing metric measures, fractions seem most likely to be preferred 
for representing imperial measures. The imperial system employs a variety of conversion ratios: 1 ft = 12 in, 1 yd = 3 ft, 
1 lb = 16 oz, 1 qt = 4 cups, etc. Fractions provide useful flexibility for representing imperial system measures (an inch is 1/12 of a 
foot, an ounce is 1/16 of a pound, a cup is 1/4 of a quart, etc.), because their denominators can be any number. 

An analysis of fraction and decimal word problems in mathematics textbooks—specifically, kindergarten to eighth grade text
books of Addison-Wesley Mathematics – yielded results consistent with this analysis. Rapp et al. (2015) found that when textbook 

1 Plummer et al., 2017 analyses of eye movements showed that small-number discrete displays tend to elicit counting and that continuous displays 
tend to elicit estimation. 

J. Tian, et al.   Cognitive Psychology 123 (2020) 101333

13



problems involved metric units (e.g., centimeters, grams, liters), decimals were used more often than fractions. In contrast, when 
textbook problems involved imperial units (e.g., inches, pounds, gallons), fractions were used more often than decimals. It seems 
likely that preferences between decimals and fractions for different types of measurement units are influenced by the variability of 
denominators in the notations. Further research is needed to test this hypothesis and to identify other influential factors involving 
notation preferences. 

6.4. Quantification process theory and semantic alignment theory 

Semantic alignment, the process of aligning multiple semantic structures, has much broader application than explaining pre
ferences among rational number notations. For example, it has been applied to understanding reasoning by analogy (Gentner, 1983; 
Hummel & Holyoak, 2003), solving and constructing problems mathematically (Bassok, Chase, & Martin, 1998; Novick & Holyoak, 
1991), modeling business processes (Brockmans, Ehrig, Koschmider, Oberweis, & Studer, 2006), and analyzing biological pathways 
(Gamalielsson & Olsson, 2008). The present findings are not intended to challenge semantic alignment theory in general, but rather to 
challenge its specific application for explaining preferences among rational number notations. 

It might seem that semantic alignment theory could accommodate some of the present findings if supplemented by assumptions 
about how semantic structure varies with stimulus features and context. For example, the finding that increasing the number of items 
involved in a discrete ratio leads to decreased preference for fractions to represent the ratio could be explained by assuming that large 
numbers of items are likely to be perceived as continuous quantities, so that ratios between large numbers are likely to be perceived 
as one-dimensional. Similarly, the finding that preference for fractions decreases when participants are instructed to quantify ratios 
by estimating rather than by counting could be explained by assuming that estimation leads to the ratios being perceived as one- 
dimensional. 

However, these explanations implicitly acknowledge that quantification processes shape preferences among rational number 
notations. In contrast, both the present and previous findings, especially ones involving notation preferences, can be accounted for by 
considering the quantification processes used in the situation, without reference to semantic alignment. Thus, quantification process 
theory appears to offer a more parsimonious account of findings regarding choices among rational number notations than does 
semantic alignment theory. 

6.5. Quantification process theory and strategy choice theory 

Quantification process theory assumes that the preferred notation for representing a ratio depends on the strategy employed to 
quantify it. Choices among quantification strategies, in turn, depend on contextual variables, such as the number of items in the 
display and instructions to count or estimate. These and other determinants of strategy choices follow from Siegler's (1996) more 
general strategy choice theory, which asserts that choices among strategies depend on task characteristics, situational variables, 
frequency of input of various types of problems, and past experience with the strategies being chosen among. 

This perspective implies that other variables that affect strategy choices in general, including variables that were not manipulated 
in the present study, would also affect rational number notation preferences. For example, a need for high precision (a task char
acteristic) would be expected to increase preference for decimals over percentages; a short time limit (a situational variable) would be 
expected to increase preference for estimation over counting, and therefore influence choice of rational number notations (as it, 
together with the instructions, did in Experiment 3 of the present study); exposure to percentage discounts in advertisements (an 
experiential variable) should increase preference for percentages. Future research should test these and other implications of 
quantification process theory and link the specific theory of choices among rational number notations more closely to the general 
strategy choice theory. 

6.6. Implications for education 

The present findings also have implications for how rational numbers should be taught. Addressing this issue is particularly urgent 
because many children struggle with rational numbers (Lortie-Forgues, Tian, & Siegler, 2015; Siegler & Braithwaite, 2017); because 
rational number knowledge in elementary school is predictive of mathematics achievement in high school, even after controlling for 
numerous relevant variables (Siegler et al., 2012); and because rational numbers have been found to be pervasively used in the 
workplace (Handel, 2016). 

Existing mathematics textbooks focus primarily on using fractions, decimals, and percentages to represent quantities exactly; 
mathematics instruction rarely address the use of rational numbers for approximation (Siegler & Booth, 2005). However, representing 
quantities that are difficult or impossible to determine exactly, and that therefore must be estimated, is also an important function of 
rational numbers. An implication is that rational number instruction should devote greater attention to the use of rational numbers 
for approximating quantitative values; doing so could better prepare children to apply rational numbers to the full range of tasks for 
which they are suitable. 

Another educational implication relates to the sequence in which different notations should be taught. Children in kindergarten to 
fourth grade can reason about ratios between continuous quantities earlier than they can reason about ratios between small sets of 
discrete objects (Boyer et al., 2008). For example, when asked to choose which of two pictures showed a ratio matching that in a 
target picture, kindergartners were more accurate when the pictures involved continuous quantities than second graders were when 
the pictures involved countable discretized quantities. This finding, together with the present ones, suggests that it might be 
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advantageous to introduce ratios between continuous quantities, using decimals and/or percentages, earlier in the curriculum than 
ratios between small discrete sets, using fractions. 

This conclusion runs counter to most U.S. mathematics curricula, which typically introduce fractions years before decimals and 
percentages (National Governors Association Center for Best Practices, 2010). However, the conclusion dovetails with findings from 
studies of an experimental rational number curriculum (Kalchman, Moss, & Case, 2001; Moss & Case, 1999). In a five-month in
tervention with fourth graders, percentages were introduced first, decimals second, and fractions last. When compared to peers in a 
control condition, who received business-as-usual instruction that introduced the three notations in the opposite order, children who 
received the experimental curriculum showed greater gains in rational number knowledge. The current findings provide additional 
reasons to explore whether introducing percentages and decimals earlier in the curriculum than is now typical leads to improved 
learning of rational numbers among younger children. 

6.7. Conclusion 

The present study suggests that there are good reasons why multiple notations for representing rational numbers have endured for 
more than 300 years. Each notation serves valuable functions, and people prefer different notations in different situations. Fractions 
are the preferred notation for representing ratios whose exact numerators and denominators are needed, known, or easily established. 
Decimals and percentages are preferred to fractions for representing estimates of ratios. Percentages are preferred to decimals when 
precision beyond the nearest percent is not required. Decimals seem to be preferred for expressing metric measures. Considering 
quantification processes involved in determining ratios, as well as properties of each notation, can help provide a unified account of 
how, when, and why people use percentages, decimals, and fractions, as well as linking this specific strategy choice to more general 
theories of strategy choice. 
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