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Learning fractions is a critical step in children’s mathematical development. However, many children
struggle with learning fractions, especially fraction arithmetic. In this article, we propose a general
framework for integrating understanding of individual fractions and fraction arithmetic, and we use the
framework to generate interventions intended to improve understanding of both individual fractions and
fraction addition. The framework, Putting Fractions Together (PFT), emphasizes that both individual
fractions and sums of fractions are composed of unit fractions and can be represented by concatenating
them (putting them together). To illustrate, both “3/9” and “2/9 + 1/9” can be represented by concate-
nating three 1/9s; similarly, 2/9 + 1/8 can be represented by concatenating two 1/9s and one 1/8.
Interventions based on the PFT framework were tested in 2 experiments with fourth, fifth, and sixth grade
children. The interventions led to improved performance on number line estimation and magnitude
comparison tasks involving individual fractions and sums of fractions with equal and unequal denomi-
nators. Especially large improvements were observed on relatively difficult unequal-denominator fraction
sum problems. The findings suggest that viewing individual nonunit fractions and sums of fractions as
concatenations of unit fractions provides a sound conceptual foundation for improving children’s
knowledge of both. We discuss implications of the research for teaching and learning fractions, children’s
numerical development, and mathematics education in general.

Educational Impact and Implications Statement

Fractions are a uniquely important part of the mathematics curriculum in primary school. However,
many children struggle with fractions, leading to difficulties with algebra and other more advanced
mathematics. We developed an approach to teaching about fractions that emphasizes using unit
fractions (fractions with a numerator of 1, such as 1/3) and the number line to think about both
individual fractions and fraction addition. After briefly playing an educational computer game based
on this approach, children displayed large improvements in their understanding of fractions and
fraction addition. Incorporating this new approach into existing math curricula has the potential to

improve children’s learning of fractions.

Keywords: numerical development, fractions, arithmetic, estimation, educational games
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Learning fractions is a critical step in mathematical development.
Individual differences in children’s knowledge of fractions predict
algebra proficiency and overall math achievement concurrently and
over periods of at least 1 to 5 years, even after controlling for potential
confounding variables including 1Q, whole number arithmetic profi-

ciency, and family SES (Booth & Newton, 2012; Booth, Newton, &
Twiss-Garrity, 2014; Siegler et al., 2012). Fractions are also important
in the workplace: 68% of participants in a large, nationally represen-
tative sample of American adults reported using fractions and other
rational numbers in their jobs (Handel, 2016).
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2 BRAITHWAITE AND SIEGLER

Commensurate with their importance, substantial time is de-
voted to fractions instruction over several years of school (Com-
mon Core State Standards Initiative [CCSSI], 2010). However,
despite the importance of fractions and fraction arithmetic, and the
time devoted to their study, many children struggle with them
(Hecht & Vagi, 2012; Jordan, Resnick, Rodrigues, Hansen, &
Dyson, 2017), with the difficulties often persisting into adulthood
(Schneider & Siegler, 2010; Stigler, Givvin, & Thompson, 2010).

In the present study, we propose a conceptual framework de-
signed to improve children’s understanding of fractions and frac-
tion arithmetic. The framework is called Putting Fractions To-
gether (PFT), because it emphasizes that individual fractions and
sums of fractions are both composed of unit fractions and can be
represented by concatenating (putting together) unit fractions. We
report results of two experiments investigating effects of playing
an educational computer game based on the PFT framework. We
first briefly review research on children’s difficulties with frac-
tions. Then we describe the PFT framework and introduce the
present study.

Children’s Difficulties With Fractions

Children have difficulty understanding both individual fractions
and fraction arithmetic. A central obstacle to understanding indi-
vidual fractions is the whole number bias, a tendency to think of a
fraction as two separate whole numbers rather than as a single
number (Mack, 1995; Meert, Grégoire, & Noél, 2009; Ni & Zhou,
2005). Whole number bias leads to errors involving fraction com-
parison, such as claiming that 2/9 > 1/2 because 2 > 1 and 9 >
2 (Fazio, DeWolf, & Siegler, 2016; Mazzocco & Devlin, 2008).
The bias also interferes with understanding fraction equivalence;
for example, it leads children to represent 9/18 as larger than 1/2
on a number line (Braithwaite & Siegler, 2018; Bright, Behr, Post,
& Wachsmuth, 1988). These and other difficulties understanding
individual fractions lead to results such as 50% of U.S. eighth
graders who took a national achievement test failing to correctly
order 5/9, 2/7, and 1/2 (U.S. Department of Education, Institute of
Education Sciences, 2007).

Whole number bias is also a major source of fraction arithmetic
errors. For example, in Siegler and Pyke (2013), sixth and eighth
graders erred on more than 20% of fraction arithmetic items by
treating numerators and denominators as independent whole num-
bers, for example when claiming that 3/5 + 1/4 = 4/9. These
errors may also reflect overgeneralization of the procedure for
multiplying fractions (Braithwaite, Pyke, & Siegler, 2017). Similar
errors have been documented in numerous other studies of fraction
arithmetic (Byrnes & Wasik, 1991; Gabriel et al., 2013; Hecht,
1998; Siegler, Thompson, & Schneider, 2011).

Beyond their difficulties calculating exact answers to fraction
arithmetic problems, many children lack a sense of the approxi-
mate sizes of the answers (Hecht, 1998; Hecht & Vagi, 2012;
Siegler & Lortie-Forgues, 2015). For example, on an early Na-
tional Assessment of Educational Progress (NAEP), when asked to
choose the best estimate of the answer to 12/13 + 7/8 from the
options 1, 2, 19, and 21, only 24% of U.S. 13-year-olds chose the
correct answer (Carpenter, Corbitt, Kepner, Lindquist, & Reys,
1980). More recently, when asked to estimate sums of pairs of
fractions on a number line, U.S. seventh and eighth graders’
estimates were no more accurate than if they had ignored the

numbers involved and simply marked the midpoint of the line on
every trial (Braithwaite, Tian, & Siegler, 2018). Strikingly, on a
majority of trials in Braithwaite et al. (2018), middle school
students’ number line estimates of answers to fraction addition
problems were smaller than their own estimates of one or both
addends. These findings suggest that many children do not under-
stand the meaning of even the most basic arithmetic operation,
addition, in the context of fractions.

Inability to represent and reason about the magnitudes (i.e.,
sizes) of fractions seems to be at the heart of many difficulties with
fractions and fraction arithmetic, including the whole number bias
and confusing different fraction arithmetic operations (Fuchs et al.,
2013; Hamdan & Gunderson, 2017; Hansen et al., 2015; Siegler et
al., 2011). Claiming that 2/9 > 1/2, representing 9/18 as larger
than 1/2, and being unable to order correctly three fractions with
single digit numerators and denominators all reflect inaccurate
understanding of the magnitudes of the fractions involved. Simi-
larly, claiming that 3/5 + 1/4 = 4/9, despite 4/9 being less than
3/5, violates a basic principle connecting arithmetic to numerical
magnitudes: a sum of positive numbers must be greater than any
addend in the sum. In summary, poor understanding of fraction
magnitudes is a common thread running through common errors on
many tasks involving individual fractions and fraction arithmetic.

Putting Fractions Together

This analysis suggests a need to improve not only children’s
understanding of the magnitudes of individual fractions, but also
their ability to reason about fraction magnitudes in the context of
arithmetic. The PFT framework was created to achieve these goals.
The central idea of the framework is that both individual fractions
and sums of fractions are composed of unit fractions and therefore
can be understood in the same way. Consistent with this idea, PFT
specifies that individual fractions and fraction sums are repre-
sented by concatenating, or “putting together,” representations of
unit fractions.

PFT was motivated by noting several closely analogous features
of whole numbers and fractions (see Table 1). As a whole number
represents a quantity of ones, so a fraction represents a quantity of
unit fractions; ones and unit fractions serve as units for whole
numbers and fractions, respectively. For both whole numbers and
fractions, a sum represents a number of units. Individual whole
numbers and whole number sums can be generated by counting.
For example, one may generate 3 by counting “1, 2, 3,” and one
may generate 3 + 2 by counting “1, 2, 3” for the first addend and
then “4, 5” for the second addend. Thus, counting connects indi-
vidual whole numbers with whole number arithmetic.

Concatenating unit fractions plays an analogous role for indi-
vidual fractions and fraction arithmetic. For example, 3/7 can be
generated by concatenating three 1/7s; 3/7 + 2/7 can be generated
by concatenating three 1/7s and two 1/7s, and 3/7 + 2/5 can be
generated by concatenating three 1/7s and two 1/5s. Thus, the PFT
approach was intended to connect individual fractions with frac-
tion arithmetic in the same way that individual whole numbers are
connected to whole number arithmetic.

Figure 1 shows a visual representation of this way of thinking
about individual fractions and the relation between them and
fraction sums. Unit fractions are represented by fraction strips with
lengths inversely proportional to their denominators (Figure 1A).
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Table 1
Analogy Between Whole Numbers and Fractions

Aspect of the analogy

‘Whole numbers

Fractions

The unit is . . .
A number means . . .

One (“17)

A sum means . . .
“3 ones and 2 ones”)
The magnitude of a number or sum can Counting ones

be generated by . . .

A quantity of ones (“3” means “3 ones”)

A combination of quantities of ones (“3 + 2” means

A unit fraction (“1/27, “1/3”, “1/4”, etc.)

A quantity of unit fractions (“3/7” means “3
1/7s”)

A combination of quantities of unit fractions
(“3/7 + 2/5” means “3 1/7s and 2 1/55”)

Concatenating unit fractions

Nonunit fractions are represented by concatenating fraction strips
whose unit is indicated by the fraction’s denominator and whose
number of iterations is indicated by the fraction’s numerator (Fig-
ure 1B). Sums of fractions are represented by concatenating frac-
tion strips that represent the addends; this procedure can be used
for sums of fractions with equal denominators (Figure 1C) or
unequal denominators (Figure 1D). Finally, magnitudes of frac-
tions and fraction sums are represented as positions on a number
line (Figures 1B, 1C, and 1D). The position of a fraction or fraction
sum can be found by placing the appropriate unit fractions above
the line beginning at 0; the right edge of the rightmost unit fraction
indicates the fraction’s or fraction sum’s magnitude, that is, its
position on the number line.

Several aspects of PFT have been proposed previously. PFT’s
emphasis on conceptualizing individual fractions as concatena-
tions of unit fractions is shared with existing approaches to fraction
instruction. For example, the Common Core State Standards for
Mathematics recommends that students “understand a fraction a/b
with @ > 1 as a sum of fractions 1/b” (4.NF.B.3; CCSSI, 2010), an
approach consistent with that of PFT in that both conceptualize a
fraction as a quantity of unit fractions. The Standards also advocate
that students “represent a fraction a/b on a number line diagram by
marking off a lengths 1/b from 0” (3.NF.A.2.B; CCSSI, 2010), a
recommendation consistent with the implementations of PFT
shown in Figure 1.

There is substantial theoretical and empirical basis for inclusion
of these ideas in the Common Core Standards. For example, Tzur
(1999) described the approach of constructing fractions by iterat-
ing unit fractions, and Steffe (2001) noted the analogy between
iterating unit fractions and counting with whole numbers (see also
Steffe, 2004; Tzur & Hunt, 2015). Children’s understanding of
these concepts begins with iterating unit fractions to make up a
whole, continues with construction of proper fractions, and then is
extended to improper fractions (Norton & Wilkins, 2009; Wilkins
& Norton, 2018).

Although previous work has articulated the role of iterating unit
fractions in children’s understanding of individual fractions, it has
not emphasized the utility of these ideas for understanding fraction
addition. A key innovation of PFT is the use of a single procedure,
concatenating unit fractions, to represent not only individual frac-
tions but also fraction sums with both equal and unequal denom-
inators (see Wu, 2009, for a similar proposal). In terms similar to
those of the Common Core Standards, PFT advocates that students
“understand a sum of fractions a/b + c/d as a sum of fractions 1/b
and 1/d” and “represent a sum of fractions a/b + c¢/d on a number
line diagram by first marking off a lengths 1/b from 0, then

marking off ¢ lengths 1/d from a/b.” This approach to fraction
addition is not mentioned in the Common Core Standards, and we
believe that it is an important contribution of PFT.

Learning to view fraction addition in this way could help chil-
dren to avoid common errors. As noted earlier, many children add
fractions by adding their numerators and denominators, as in 3/5 +
1/4 = 4/9 (Siegler & Pyke, 2013). From the perspective of PFT,
3/5 + 1/4 and 4/9 each comprise the same number of unit fractions
(i.e., four). However, all unit fractions comprising 3/5 + 1/4 (i.e.,
three 1/5ths and one 1/4th) are larger than any of the unit fractions
comprising 4/9 (i.e., four 1/9ths). Thus, 3/5 + 1/4 cannot equal
4/9; 3/5 + 1/4 must be larger. This reasoning could help children
understand why it makes no sense to add fractions by adding their
numerators and denominators. Similarly, as noted earlier, children
often estimate a sum of two positive fractions to be smaller than
one of the addends; this occurred on 52% of trials in Braithwaite
et al. (2018). PFT could help children to avoid such errors by
illustrating how a sum of positive fractions contains each addend
and therefore must exceed the individual addends.

PFT may also offer several more general advantages for learn-
ing about fractions. First, by emphasizing that both individual
fractions and fraction sums are composed of unit fractions, PFT
could help children to connect their understanding of individual
fractions and fraction addition. Second, by highlighting aspects of
fractions that are analogous to aspects of whole numbers, PFT
could leverage children’s whole number knowledge to help, rather
than hinder, learning about fractions. Third, PFT offers a way to
understand what it means to add two fractions that does not depend
on understanding the procedures required to calculate fraction
sums. Related, PFT provides a method for estimating the approx-
imate sizes of fraction sums without calculating the exact answers.

The Present Study

Although some aspects of the PFT framework have been de-
scribed previously (CCSSI, 2010; Steffe, 2001; Tzur, 1999), to our
knowledge, the effectiveness of this approach for improving un-
derstanding of either individual fractions or fraction arithmetic has
not been empirically tested. Consistent with this conclusion, in a
recent comprehensive review of fraction interventions aimed at
struggling math learners (Roesslein & Codding, 2018), no inter-
vention was cited that included the main elements of PFT.

The present study examined whether interventions based on the
PFT framework could improve children’s knowledge of the mag-
nitudes of individual fractions and fraction sums. The interventions
built on a computer game developed by Fazio, Kennedy, and
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Figure 1. Visual representation of the key components of Putting Fractions Together (PFT). A: Fraction strips.
B: Representation of an individual fraction. C: Representation of an equal-denominator fraction sum. D:
Representation of an unequal-denominator fraction sum. See the online article for the color version of this figure.

Siegler (2016). In that earlier intervention, fourth and fifth graders
first were told how to locate a fraction on a number line by
partitioning the line into segments and counting the appropriate
number of segments. Then the children were presented fractions,
told that each fraction indicated a hidden monster’s location on a
number line, and asked to use the fraction to estimate the monster’s
location. Children “caught the monster” if their estimate was suffi-
ciently close to the correct location; the monster “escaped” if the
estimate was not close enough. The intervention led to gains from
pretest to posttest in the accuracy of fraction number line estimates
and in percent correct on a fraction magnitude comparison task.
Understanding of fraction arithmetic was not assessed by Fazio
et al. (2016), but an initial test of that intervention that we con-

ducted indicated no improvement from pretest to posttest in esti-
mation of unequal-denominator fraction sums. The reason for the
lack of improvement with unequal-denominator fraction sums may
relate to the strategy for number line estimation emphasized within
the earlier intervention (and by many mathematics textbooks)—
partitioning the number line into the number of segments indicated
by the denominator and then counting the number of segments
indicated by the numerator. In our initial testing, we observed that
many students could use this strategy competently to estimate
individual fractions and equal-denominator sums but could not use
it to estimate unequal-denominator sums. For example, when
asked to estimate 1/3 + 1/2, a student first partitioned the line into
thirds to estimate 1/3, but then did not know how to add on the 1/2.
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Thus, instruction in partitioning may be a useful way to help
students understand the magnitudes of individual fractions and
addition of fractions with equal denominators, but it might not help
them understand addition with unequal denominators.

The PFT framework suggested a more generally applicable
approach in which fractions are represented by concatenating unit
fractions that are separate from the number line itself. This ap-
proach allows representation not only of individual fractions and
of sums of fractions with equal denominators but also of sums of
fractions with unequal denominators. We predicted that instruction
based on this approach would improve children’s understanding of

>

II N
(A

Clear Strips

both individual fractions and sums of fractions with both equal and
unequal denominators.

To test these predictions, we presented children a game (see
Figure 2) that involved concatenating fraction strips rather than
partitioning the number line into segments. While playing the
game, children needed to choose among fraction strips and move
them just above the number line to generate the answers. Fraction
strips also appeared as part of the feedback to children’s answers.

We created three interventions that differed in the targets that
children practiced estimating. In the individual-fractions interven-
tion, children estimated single fractions (Figure 2A). In the

Level Caught
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Figure 2. Example trials from the computer game used in the fraction interventions tested in Experiments 1 and
2, involving (A) an individual fraction, and (B) a fraction sum. Each example displays the feedback children
received after “catching the monster.” See the online article for the color version of this figure.
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6 BRAITHWAITE AND SIEGLER

fraction-sums intervention, children estimated fraction sums (Fig-

ure 2B). In the individual-fractions-and-sums intervention, children
estimated both individual fractions and fraction sums. Experiment 1
tested the individual-fractions and individual-fractions-and-sums in-
terventions; Experiment 2 tested the fraction-sums intervention and an
active control intervention involving whole number sums. The spe-
cific questions addressed by the interventions are presented in the
introductions to the two experiments.

Experiment 1

Experiment 1 was conducted to answer two questions. First,
would interventions based on PFT improve children’s understand-
ing of fraction addition with both equal and unequal denominators,
as well as their understanding of individual fractions? Second, if
so, which parts of the PFT framework are necessary to achieve the
improvements in understanding of fraction addition? Representing
individual fractions by concatenating unit fractions could give
children the insight that fraction sums can also be represented in
this way, resulting in improved understanding of fraction addition
even without fraction addition instruction; this would seem espe-
cially likely with sums of equal-denominator fractions. On the
other hand, instruction and practice in PFT-based procedures for
representing fraction sums might be required to achieve this im-
provement. To address these questions, children were randomly
assigned to either the individual-fractions intervention or the
individual-fractions-and-sums intervention.

Four assessment tasks were administered before and after the
interventions. Two tasks, fraction number line estimation and
fraction magnitude comparison, assessed understanding of individ-
ual fractions. The other two, number line estimation with equal-
and unequal-denominator sums, assessed understanding of fraction
addition. In all tasks, performance after the interventions was
assessed using stimuli (individual fractions or fraction sums) that
were not presented during the intervention. Thus, any improve-
ment would reflect generalization of training to novel items rather
than memorization of practiced items.

We predicted that performance on the tasks assessing under-
standing of individual fractions would improve following both
interventions. Amount of improvement in knowledge of individual
fractions was not expected to differ between conditions, because
both interventions included the same instruction and practice with
individual fractions. We also predicted improvement on the tasks
assessing understanding of fraction addition, with the improve-
ment expected to be greater after the individual-fractions-and-
sums intervention for the unequal denominator sum problems.
Strategies for estimating individual fractions may generalize easily
to estimating equal-denominator sums, because both estimates can
be generated by concatenating unit fractions with the same denom-
inators. However, concatenating unit fractions with unequal de-
nominators seemed likely to require instruction and practice in
how that can be done.

Participants were fourth- and fifth-grade children. The reason
was that individual fractions and fraction addition with equal
denominators are a major focus of mathematics education in fourth
grade, and fraction addition with unequal denominators is typically
taught in fifth grade (CCSSI, 2010).

Method

Participants. The participants, 63 fourth and fifth graders (9-
to 11-year-olds), were randomly assigned either to the individual-
fractions-and-sums condition (N = 32, 15 fourth graders and 17
fifth graders; 10 boys and 20 girls [sex was not recorded for two
children due to experimenter error]) or to the individual-fractions
condition (N = 31, 15 fourth graders and 16 fifth graders, 14 boys
and 17 girls). All children attended a middle school in the Pitts-
burgh, Pennsylvania area at which 39% of students were eligible
for free or reduced-price lunch, and at which 95% of students were
Caucasian, 2% African American, and 3% Other. Experimenters
were David W. Braithwaite, two female research assistants, and a
male postdoctoral research associate. The experiment was con-
ducted with the approval of the Carnegie Mellon University Insti-
tutional Review Board (Study #00000396).

General procedure. The study included two sessions. In the
first, children completed the pretest, Part 1 of the intervention, and
the midtest." In the second, children completed Part 2 of the
intervention and the posttest. The two sessions were conducted on
successive days for 41 children and two to six days apart for the
other 22. No differences in performance were found between
children who did or did not receive the sessions on successive days
on any task at any time of measurement. The interventions and
assessments were administered on a computer by an experimenter
working with a child one-on-one.

Interventions. Each of the two parts of the intervention con-
sisted of a tutorial followed by gameplay. Part 1 of the intervention
took an average of 20.5 min in both conditions; Part 2 averaged
19.0 min in the individual-fractions-and-sums condition; and 17.6
min in the individual-fractions condition. Time playing the game
in each part of the intervention was the same in both conditions
(see below); the 1.4-min difference between conditions in the
length of Part 2 therefore reflected a difference in tutorial time.
The scripts that experimenters followed for giving instructions and
feedback during the intervention are provided in the Supplement 1
of the online supplementary materials.

Part 1. This part of the intervention was identical for children
in the two conditions. Children first received a tutorial that intro-
duced them to the fraction strips representing unit fractions from
1/2 to 1/10; then, the experimenter explained a procedure for using
fraction strips to position fractions on the number line. The pro-
cedure involved selecting the appropriate type and number of
fraction strips and dragging them just above the number line to
create a graphical representation of the fraction (Figure 1B). Chil-
dren used this procedure to place five fractions on the line. If a
child used the fraction strips incorrectly, for example by choosing
fraction strips matching the target fraction’s numerator instead of
its denominator, the experimenter pointed out the error and guided
the child to perform the correct procedure.

Children then played the game. On each trial, a fraction ap-
peared above a 0—1 number line. The task was to show the size of
the fraction by clicking at its location on the number line. If
children clicked near the correct location, with the criterion for

! For six children, the first session was conducted over 2 days, the pretest
on the first day and Part 1 of the intervention and the midtest on the second
day. These children’s second session, including Part 2 of the intervention
and the posttest, was conducted on a later day, as with the other children.
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“near” changing as the children gained skill in playing the game,
the monster was “caught” inside a cage (Figure 2A); otherwise, the
monster “escaped” and chuckled wickedly.

Gameplay in both conditions progressed through three phases,
each lasting 4.5 min. Children completed as many items as they
could during that time (an average of 66.7 trials in the individual-
fractions condition and 74.2 trials in the individual-fractions-and-
sums condition). In Phase 1, children could, and almost all children
did, select fraction strips and move them onto the number line,
using the procedure practiced during the tutorial. If a child used the
fraction strips incorrectly, resulting in the monster escaping, the
experimenter explained the error before the next trial. In Phase 2,
the strips became immovable, and children were encouraged to
imagine moving them onto the number line. In Phase 3, the strips
were hidden, so children had to answer without moving or seeing
them. This “concreteness fading” approach (Fyfe, McNeil, Son, &
Goldstone, 2014) was intended to encourage children to transition
from relying on perception and manipulation of the fraction strips
to relying on mental representations. In all three phases, after
children responded on each trial, fraction strips representing the
target fraction appeared above the number line; in Phase 1, fraction
strips placed by children disappeared before the correct fraction
strips appeared.

Each phase was subdivided into three levels, in which increas-
ingly accurate responses were needed to catch the monster. For the
monster to be caught, the distance between a child’s response and
the fraction’s location needed to be within 20% of the number
line’s length at Level 1, 15% at Level 2, and 10% at Level 3. If
children caught the monster four consecutive times, they pro-
gressed to the next level, unless they were already at the highest
level. Each new level involved a smaller monster than the previous
one, to lend plausibility to the need for increasingly accurate
estimates.

The fractions that were presented had values approximately
evenly distributed from O to 1, with denominators from 2 to 10
appearing equally often. Fractions that later appeared on the num-
ber line estimation task on the midtest did not appear during the
tutorial or game.

Part 2: Individual-fractions-and-sums condition. Children in
the individual-fractions-and-sums condition received a tutorial in-
troducing a procedure for using fraction strips to find the location
of a sum of two fractions on the number line. This procedure
involved concatenating fraction strips representing the two ad-
dends (Figure 1D). Children used the procedure to place three
unequal-denominator fraction sums on the number line. As in Part
1, If a child used the fraction strips incorrectly, the experimenter
guided the child to perform the correct procedure.

Children then played the fraction sums game (Figure 2B). They
were asked to click on the line twice for each trial—once to show
the size of the first addend and then to show the size of the sum.
The monster appeared after the second click, the location of which
determined whether the monster was caught. After children re-
sponded, fraction strips representing the target sum appeared on
the number line; during Phase 1, fraction strips placed by children
disappeared before the correct fraction strips appeared. Gameplay
progressed as in Part 1, involving the same three phases of 4.5 min
each and the same three levels within each phase. During Phase 1,
if a child used the fraction strips incorrectly, feedback was given
as in the tutorial. Children completed an average of 49.2 trials.

All sums involved unequal-denominator addends and had values
less than 1; sums were below 1/2 on 46% of trials and above 1/2
on 54% of trials. Denominators between 2 and 10 appeared equally
often. Sums that appeared in the number line estimation task on the
posttest did not appear during the intervention, nor did sums
involving the same addends in reversed order.

Part 2: Individual-fractions condition. In the second part of
the intervention, children in the individual-fractions condition re-
ceived a review of the fraction strips and the procedure for esti-
mating individual fractions. They used this procedure to place
three fractions on the number line. They then played the game with
individual fractions, as in Part 1, which meant that they spent twice
as much time playing the individual fractions game as did children
in the individual-fractions-and-sums condition. Feedback was
given as in Part 1. Children completed an average of 82.3 trials.

Assessments. The pretest included two individual fractions
tasks—number line estimation with individual fractions and frac-
tion magnitude comparison—and two tasks involving fraction
sums—number line estimation with equal-denominator sums and
number line estimation with unequal-denominator sums. The mid-
test consisted of the two tasks involving individual fractions; the
posttest consisted of the two tasks involving fraction sums. In this
and the next experiment, two sets of stimuli were used for each
task, one for the pretest and the other for the midtest or posttest.
Which set of stimuli was used for the pretest was counterbalanced
within each condition. In both experiments, stimuli for each task
were presented to each participant in a different random order. All
assessment items are provided in the Supplement 1 of the online
supplementary materials.

Number line estimation of individual fractions. On each trial,
a fraction appeared above the center of a 0—1 number line. The
task was to mark the location of the fraction on the number line.
Stimuli were two sets of 12 fractions, 3 in each quartile from O to
1. Children did not have fraction strips available on this or any
other pretest or posttest task.

Fraction magnitude comparison. Children were shown a 0—1
number line, with 3/5 marked on the line. On each trial, a different
fraction appeared under the center of the number line, and children
were asked whether the fraction was less than or greater than 3/5.
Each set of comparison items contained 15 fractions with denom-
inators from 3 to 10, 8 smaller than 3/5 and 7 larger than 3/5.

Number line estimation of equal-denominator fraction sums.
Children were shown an addition problem involving fractions with
equal denominators (e.g., 3/8 + 2/8) above a 0—1 number line and
instructed to click on the line to mark the location of the first
addend and then click again to mark the location of the sum. These
instructions were intended to encourage children to create a visual
reference point for the location of the first addend before estimat-
ing the sum. Only the last mark for each trial affected children’s
scores. Stimuli were two sets of 8 equal-denominator fraction
sums, four in each set with answers less than or equal to 1/2 and
four with answers between 1/2 and 1. For five of the eight sums in
each set, at least one of the addends was a unit fraction. Each
number from 3 to 10 appeared as the denominator of the addends
on one item in each set.

Number line estimation of unequal-denominator fraction
sums. This task was the same as the previous one, except that the
addition problems involved fractions with unequal denominators
(e.g., 3/7 + 1/10). Stimuli were two sets of 9 problems, four with
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sums less than or equal to 1/2 and five with sums greater than 1/2
but less than 1. For all but two of the sums (both in the same set),
at least one of the addends was a unit fraction. Each denominator
from 2 to 10 appeared twice in each set.

Analyses. Performance on the number line estimation tasks
was measured using percent absolute error (PAE), defined as
|Participant’s Answer — Correct Answerl/Numerical Range X 100.
For example, if a participant was asked to estimate 1/2 + 1/4 and
marked the location corresponding to 0.65, the PAE for that trial
would be 10.65 — 0.75I/1 X 100 = 10. Lower PAE indicates higher
accuracy. Dividing by numerical range (which was always 1 in the
present study) permits meaningful comparison between PAEs de-
rived from tasks that use different numerical ranges, while ensur-
ing that the same distance between the child’s estimate and the
correct location on the number line always translates to the same
PAE within a task. The measure of magnitude comparison accu-
racy was percent correct choices.

For each measure, change scores (i.e., difference between pre-
test and midtest or posttest) were submitted to analyses of cova-
riance (ANCOVA) with condition and grade as between-subjects
factors and pretest score as a covariate. All significant effects are
reported. All reported effects remained if the covariate was ex-
cluded from the analysis, if the test version used on the pretest was
included as a factor, or both. All reported effects of condition also
appeared as interactions of condition with time of test when the
data were analyzed using performance as the dependent variable
and time of test as a within-subjects factor.

Next, to determine whether performance improved following
the intervention, paired ¢ tests were conducted to compare pretest
scores to midtest or posttest scores. If change scores differed by
condition in the ANCOVA, separate 7 tests were conducted for the
two conditions; if not, a single ¢ test was conducted, combining
across conditions. Estimates of effect size (d) were calculated
using the formula d = ¢ * [2 * (1 — r)/N 1'%, where ¢ is the value
obtained from the ¢ test, r is the pretest-posttest correlation, and N
is the sample size; this formula corrects for correlations between
repeated measures (Dunlap, Cortina, Vaslow, & Burke, 1996).

Results

Table 2 shows mean pretest and midtest or posttest performance,
change in performance, and estimated marginal mean change on
all tasks within each condition. (These data are presented separated
by grade in the Supplement 3 of the online supplementary mate-
rials).

Number line estimation of individual fractions. As ex-
pected, because the treatments were identical from pretest to
midtest, changes in PAE from pretest to midtest did not differ
between conditions, F(1, 59) < .001, p = .99, n§ < .001. Across
conditions, PAE improved from 11.7 to 6.6, #(62) = 5.3, p < .001,
d = 0.62.

Fraction magnitude comparison. As expected for the same
reason, change in accuracy from pretest to midtest also did not
differ between conditions, F(1, 59) = 1.8, p = .18, T]Z, = .030.
Accuracy increased marginally across conditions, from 75.0% to
78.9%, 1(62) = 1.7, p = .10, d = 0.20.

Number line estimation of equal-denominator sums. On
equal-denominator sums, change in PAE from pretest to posttest
did not differ between conditions, F(1, 59) = 042, p = .52, m2 =

Table 2

Mean (Standard Deviation) Pretest and Midtest or Posttest
Performance and Change in Performance by Condition
(Experiment 1)

Individual-fractions
condition

Individual-fractions-and-sums

Test measure condition

Number line estimation of individual fractions — PAE

Pretest 10.8 (8.7) 12.6 (9.8)
Midtest 6.4 (4.2) 6.9 (5.0)
Change —4.5(7.0) —5.7(8.3)
EMM of change =5.0 =5.0
Fraction magnitude comparison — % correct

Pretest 77.3 (19.9) 72.7 (18.5)
Midtest 83.1 (17.4) 74.6 (22.5)
Change 5.8 (13.5) 1.9 (22.8)
EMM of change 6.5 0.9

Number line estimation of equal-denominator sums — PAE

Pretest 16.6 (9.4) 16.5 (11.6)
Posttest 8.8 (6.5) 9.9 (9.4)
Change =7.7(9.5) —6.6 (8.1)
EMM of change =77 —6.6

Number line estimation of unequal-denominator sums — PAE

Pretest 22.4 (11.3) 22.4 (10.7)
Posttest 8.3(5.4) 13.8 (8.9)
Change —14.2 (10.8) —8.6(7.9)
EMM of change —14.1 —8.5

Note. EMM = estimated marginal mean (EMMs were derived from the
analyses of covariance described in the main text and are adjusted for the
covariate [pretest]); PAE = percent absolute error.

.007. Across conditions, PAE improved from 16.5 to 9.3, #(62) =
6.5, p < .001,d = 0.75.

Number line estimation of unequal-denominator sums. On
unequal-denominator sums, PAE improved by considerably more
from pretest to posttest in the individual-fractions-and-sums con-
dition (pretest: 22.4, posttest: 8.3, change: 14.2) than in the
individual-fractions condition (pretest: 22.4, posttest: 13.8,
change: 8.6), F(1, 59) = 12.4, p < .001, n; = .17. The improve-
ments in both conditions were significant, #(31) = 7.4, p < .001,
d = 1.52 for the individual-fractions-and-sums condition and
1(30) = 6.0, p < .001, d = 0.85 for the individual-fractions
condition.

Discussion

Experiment 1 replicated the improvements in children’s number
line estimates of individual fractions found by Fazio et al. (2016).
Improved accuracy on the fraction magnitude comparison task was
replicated marginally.

Children’s estimates of equal- and unequal-denominator frac-
tion sums improved substantially in both conditions (d ranging
from 0.75 to 1.52). These large improvements reflected transfer of
learning to novel addition problems that were not shown during the
intervention. Thus, instruction and practice based on the PFT
framework improved children’s understanding of fraction addition.

Although estimation accuracy for unequal-denominator sums
improved in both conditions, the gains were larger in the
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individual-fractions-and-sums condition than in the individual-
fractions condition. These findings suggest two lessons. First,
modeling the structure of individual fractions by concatenating
unit fractions helps to improve children’s understanding of fraction
addition even without explicitly modeling fraction addition. Sec-
ond, explicitly modeling addition of fractions with unequal de-
nominators appears necessary for children to enjoy the full benefits
of PFT for understanding unequal-denominator addition.

Experiment 2

In Experiment 2, we tested whether an intervention based on
PFT would improve children’s performance on a transfer task that
involved comparison of fraction sums to one. Reasoning about
fractions larger than one represents a major conceptual advance in
children’s fraction learning trajectories (Norton & Wilkins, 2009;
Wilkins & Norton, 2018), so it would be noteworthy if children’s
reasoning about fraction sums larger than one improved after the
intervention despite no such sums being presented during the
intervention. Children also did not compare fraction sums to any
specific number during the intervention. This skill seems valuable,
because it could help children to recognize the many instances
when common arithmetic errors yield implausible answers. For
example, the skill could have helped the 23% of children in Siegler
and Pyke (2013) who claimed that 2/3 + 3/5 = 5/8 to recognize
that 2/3 + 3/5 is greater than one, that 5/8 is not greater than one,
and therefore that 5/8 could not be the correct answer. This
recognition might motivate such children to try a different addition
strategy. Siegler and Pyke (2013) found that the same children who
used flawed arithmetic procedures on one problem of a given type
(e.g., addition with unequal denominators) often used a correct
procedure on another problem of the same type. Thus, if children
recognize that an answer is implausible, they often would know a
correct procedure and might well try it.

The transfer task allowed us to distinguish between two inter-
pretations of the results of Experiment 1. We interpreted the
Experiment 1 findings as indicating that PFT-based interventions
improved children’s understanding of fraction addition. An alter-
native interpretation, however, is that children merely learned a
task-specific procedure for estimating sums on a number line. The
former interpretation, but not the latter, suggests that PFT-based
interventions should lead to improved accuracy on the transfer
task.

To test whether improved accuracy on the transfer task (if
observed) resulted from increased use of estimation strategies, we
administered a version of the transfer task in which children
provided concurrent strategy reports. We were particularly inter-
ested in children’s estimation strategies, because we hypothesized
that the effectiveness of the fraction-sums intervention was due to
it leading children to use estimation strategies more frequently.
Thus, we analyzed whether children’s use of estimation strategies
increased after the intervention and whether changes in individual
children’s use of estimation strategies were related to changes in
their accuracy.

Participants in Experiment 2 were randomly assigned to one of
two interventions. The fraction-sums intervention was an abbrevi-
ated version of the individual-fractions-and-sums intervention of
Experiment 1. In the new intervention, children only estimated
fraction sums. Testing this intervention enabled us to determine

whether children could benefit from the fraction sum game without
prior practice estimating individual fraction magnitudes. It seemed
plausible that they could, because accurately estimating fraction
sums requires accurately estimating the individual fraction ad-
dends.

The whole-number-sums intervention served as an active con-
trol condition. It involved estimating whole number sums on a
0-1,000 number line, instead of fraction sums on a 0—1 number
line, and using whole number strips analogous to the fraction strips
in the fraction-sums condition. Thus, the whole-number-sums in-
tervention controlled for experience with the experimenter, the
experimental situation, the procedure of using physical and imag-
ined parts to generate a larger sum, and number line estimation.

Before and after the interventions, children completed the trans-
fer tasks and number line estimation with unequal-denominator
fraction sums. To enable completion of all tasks within a single
session, tasks involving individual fractions were not included, nor
was the number line estimation task with equal-denominator frac-
tion sums. Participants were fifth and sixth grade children, because
fraction addition is a major focus of mathematics education in fifth
and sixth grades (CCSSI, 2010).

We predicted that (a) the fraction-sums intervention would lead
to improved performance on the number line estimation task with
unequal-denominator fraction sums; (b) the fraction-sums inter-
vention would also lead to improved performance on the transfer
tasks; (c) these improvements would be accompanied by increased
use of estimation strategies; and (d) on all assessment tasks,
children who received the whole-number-sums intervention would
show either no improvement or smaller improvement than those
who received the fraction-sums intervention.

Method

Participants. Participants were 104 fifth and sixth graders.
The fraction-sums condition included 53 children (23 fifth graders
and 30 sixth graders; 17 boys and 35 girls; one child did not report
gender). The whole-number-sums condition included 51 children
(22 fifth graders and 29 sixth graders; 26 boys and 25 girls).
Children’s ages ranged from 10 to 12 years. Fourteen sixth graders
(seven in each condition) were recruited from a middle school in
Pittsburgh, Pennsylvania in which 84% of students were eligible
for free or reduced-price lunch and whose students were 68%
Caucasian, 23% African American, 8% biracial, and 1% Hispanic
or Latino. The remaining 90 children were recruited from a school
in Tallahassee, Florida in which 28% of students were eligible for
free or reduced-price lunch and in which 52% of students were
Caucasian, 28% African American, 19% Hispanic or Latino, and
2% Other. The experimenters were David W. Braithwaite and
three research assistants, one male and two females. Four children
were excluded from some or all analyses because they did not
finish the experiment or because of experimenter error; details are
provided in Supplement 5 in the online supplementary materials.
Data collection was conducted in Pittsburgh under the same insti-
tutional review board (IRB) approval as Experiment 1, and in
Tallahassee with the approval of the Florida State University IRB
(Study #29739).

General procedure. Each child completed the pretest, inter-
vention, and posttest during a single session. The intervention and
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assessments were administered on a laptop computer by an exper-
imenter working with children one-on-one.

Interventions. As in Experiment 1, the intervention consisted
of a tutorial followed by gameplay. The intervention took an
average of 21.1 min in the fraction-sums condition and 21.3 min in
the whole-number-sums condition. The scripts that experimenters
followed for giving instructions and feedback are provided in the
Supplement 2 in the online supplementary materials.

Fraction-sums condition. Children were first introduced to
the fraction strips and the procedure for using them to find the
location of a fraction on the number line, as in Part 1 of Experi-
ment 1. After children practiced this procedure with three frac-
tions, they were introduced to the procedure for estimating sums of
fractions using fraction strips, as in Part 2 of the individual-
fractions-and-sums condition intervention in Experiment 1. They
used this procedure to place three unequal-denominator fraction
sums on the number line. As in Experiment 1, if a child used the
fraction strips incorrectly, the experimenter pointed out the error
and guided the child to perform the correct procedure.

Children then played the game with fraction sums. The game
was the same as in Part 2 of the intervention in the individual-
fractions-and-sums condition of Experiment 1, except that the first
phase lasted 4 min, the second phase 5 min, and the third phase 6
min, instead of each phase lasting 4.5 min. This change was made
to increase practice time in the later, more difficult phases. As in
Experiment 1, if a child used the fraction strips incorrectly, result-
ing in the monster escaping, the experimenter explained the error
before the next trial. Children completed an average of 50.7 trials.

The sums that were shown met the same requirements as in the
individual-fractions-and-sums condition in Experiment 1. Also,
sums that later appeared in the fraction sum magnitude comparison
task on the posttest did not appear during the intervention, nor did
sums with the same addends in reverse order.

Whole-number-sums condition. Children were shown whole
number strips representing 1, 5, 10, 20, 50, 100, 200, and 500 and
taught to use the number strips to find the location of a number on
a 0—1,000 number line by concatenating number strips represent-
ing the hundreds digit, tens digit, and units digit of the number.
Children practiced this procedure with three whole numbers. Next,
they were instructed in a procedure for estimating whole number
sums by concatenating number strips representing the two addends
in each problem. Children used this procedure to place three whole
number sums on the number line. If a child used the whole number
strips incorrectly, the experimenter guided the child to perform the
correct procedure.

Children in this condition then played the game with whole
numbers. The game was the same as that employed in the fraction-
sums condition, with three exceptions: fraction strips were re-
placed with whole number strips; the 0—1 number line was re-
placed with a 0—1,000 number line; and the stimuli were whole
number sums. Stimuli were created by generating fraction sums in
the same way as in the fraction-sums condition and then convert-
ing the fractions to whole numbers roughly equal to the frac-
tions X 1,000 (e.g., 3/5 + 1/7 might be converted to 598 + 145).
Rough, rather than exact, equivalents were chosen to minimize
children’s computation of exact answers (e.g., computation
seemed less likely with an addend of 598 than 600). Gameplay
consisted of the same three phases, lasting the same lengths of
time, as in the fraction-sums condition. As in the fraction-sums

condition, feedback following incorrect use of the number strips
was given during phase 1. Children completed an average of 46.8
trials.

Assessments. The pretest and posttest each included three
tasks, all of which involved addition of fractions with unequal
denominators: fraction sum magnitude comparison, fraction sum
magnitude comparison with think-aloud protocols, and number
line estimation of unequal-denominator sums. The tasks were
always presented in that order, so that doing the comparison task
with think-aloud could not affect performance on the comparison
task without think-aloud and so that doing the number line esti-
mation task could not affect performance on either comparison
task. All assessment items are provided in Supplement 2 in the
online supplementary materials.

Fraction sum magnitude comparison. Children were shown a
fraction addition problem above a 0—1 number line and asked to
indicate whether the sum was less than or greater than one. They
were instructed not to calculate answers but to imagine where they
would mark the answers on the number line, to select “less” if their
mark would go before one, and to select “greater” if their mark
would go after one. Children could not actually mark the number
line. Each child was presented one of two sets of 12 unequal-
denominator sums, including three sums less than 0.5 (e.g., 2/8 +
1/9), three sums greater than 0.5 but less than 0.8 (e.g., 4/6 + 1/9),
three sums greater than 1.2 but less than 1.5 (e.g., 7/8 + 2/5), and
three sums greater than 1.5 (e.g., 9/10 + 6/7). For half of the sums
in each set, at least one of the addends was a unit fraction.

Fraction sum magnitude comparison with think-aloud
protocols. This task was the same as the fraction sum magnitude
comparison task, except that children were asked to think aloud
while performing it. The purposes of this task were to assess
children’s strategies on the fraction sum magnitude comparison
task and to test whether their strategies changed after each inter-
vention. Stimuli were two pairs of fraction sums: one pair was
2/10 + 1/8 and 8/9 + 5/6, and the other pair was 2/8 + 1/9 and
9/10 + 6/7. Children completed two trials on the pretest using one
pair of sums and two trials on the posttest using the other pair.

Number line estimation of unequal-denominator fraction

sums. This task was identical to the corresponding task in Ex-
periment 1.
Analyses. Analyses on all tasks were conducted as with the

corresponding tasks in Experiment 1. All reported effects from
ANCOVA remained if pretest score was not included as a cova-
riate, if the test version used on the pretest was included as a factor,
or both. All effects of condition also appeared as interactions of
condition and time of test when the data were analyzed using
performance as the dependent variable and time of test as a
within-subjects factor.

Results

Table 3 shows performance on all tasks at pretest and posttest in
the fraction-sums and whole-number-sums conditions. (These data
are presented separated by grade in Supplement 4 of the online
supplementary materials).

Fraction sum magnitude comparison. Accuracy improved
more in the fraction-sums condition (pretest: 65.7%, posttest:
80.8%, change: 15.1%) than in the whole-number-sums condition
(pretest: 77.3%, posttest: 77.8%, change: 0.5%), F(1, 99) = 8.0,
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Table 3
Mean (Standard Deviation) Pretest and Posttest Performance
and Change in Performance by Condition (Experiment 2)

‘Whole-number-sums
condition

Fraction-sums

Test measure condition

Fraction sum magnitude comparison — % correct

Pretest 65.7 (22.6) 77.3 (21.0)
Posttest 80.8 (21.0) 77.8 (22.7)
Change 15.1 (21.1) 0.5 (16.4)
EMM of change 12.9 32
Fraction sum magnitude comparison with think-aloud — % correct

Pretest 73.5 (30.6) 78.6 (28.9)
Posttest 85.3(23.0) 79.6 (24.8)
Change 11.8 (36.9) 1.0 (23.9)
EMM of change 10.2 3.0

Number line estimation of unequal-denominator sums — PAE

Pretest 26.0 (10.9) 21.9 (10.0)
Posttest 10.7 (4.8) 19.0 (9.1)
Change —15.3(10.5) —2.8(7.0)
EMM of change —13.8 —4.1

Note. EMM = estimated marginal mean (EMMs were derived from the
analyses of covariance described in the main text and are adjusted for the
covariate [pretest]); PAE = percent absolute error.

p = .005, m3 = .075. Improvement from pretest to posttest was
significant in the fraction-sums condition, #(51) = 5.2, p < .001,
d = 0.69, but not in the whole-number-sums condition, #(50) =
0.21, p = .83, d = 0.02.

Accuracy of comparisons to fraction sums greater than one to
the number one was of particular interest, because such sums were
not presented during the intervention in either condition. In the
fraction-sums condition, accuracy improved from pretest to post-
test for both sums greater than one (pretest: 64.7%, posttest:
77.2%, change: 12.5%, t(51) = 2.9, p = .005, d = 0.43) and sums
less than one (pretest: 66.7%, posttest: 84.3%, change: 17.6%,
t(51) = 4.6, p < .001, d = 0.58). Analogous tests were not
performed in the whole-number-sums condition because no overall
improvement was found in that condition.

Fraction sum magnitude comparison with think-aloud
protocols. Change in accuracy from pretest to posttest did not
differ between conditions, F(1, 96) = 2.4, p = .12, n§ = .025.
Across conditions, accuracy increased from 76.0% to 82.5%,
1(99) = 2.1, p = .042,d = 0.24.

On the two pretest and two posttest trials where think-aloud
protocols were obtained, the protocols were coded as involving
estimation strategies if they referenced position on the number line
(e.g., “I look at the number line and I picture 9/10 being around
here, and 6/7 being around here”) or if they referenced the approx-
imate size of the operands (e.g., “2/10 and 1/8 are less than 1/2 so
that means that they are going to be less than 17). The protocols
were coded independently by two coders; disagreements occurred
on 4% of trials and were resolved through discussion.

The number of children who reported using estimation on at
least one of the two test trials on which think-aloud protocols were
obtained increased from pretest to posttest in both the fractions-
sums condition (pretest: N = 4 [8%], posttest: N = 22 [43%]),
x*(1) = 16.1, p < .001, and the whole-number-sums condition

(pretest: N = 11 [22%], posttest: N = 18 [37%]), x*(1) = 5.1,p =
.023, as indicated by McNemar’s tests. Children’s reports of using
estimation strategies were quite consistent within the pairs of items
on both pretest and posttest: Twelve of the 15 children (80%) who
reported estimating on either pretest trial reported doing so on both
trials, and 34 of the 40 children (81%) who reported estimating on
either posttest trial reported doing so on both trials. Among chil-
dren who did not report estimating on the pretest (47 in the
fraction-sums condition and 38 in the whole-number-sums condi-
tion), there was a tendency for more children in the fraction-sums
condition than in the whole-number-sums condition to estimate
fraction sums at least once on the posttest (N = 18 [38%] in the
fraction-sums condition vs. N = 7 [18%] in the whole-number-
sums condition), x*(1) = 3.1, p = .078.

When children used estimation strategies, they did so effec-
tively: Accuracy was higher among children who reported esti-
mating on at least one of the two trials than among those who did
not on both the pretest (96.7% vs. 72.4%), t(98) = 3.04, p = .003,
and the posttest (92.6% vs. 75.8%), #(98) = 3.61, p < .001. To
assess more precisely the relation between changes in strategy use
and changes in accuracy, we identified three categories of children:
consistent-estimators, who estimated on at least one of the two
items on both pretest and posttest (N = 15); never-estimators, who
estimated on neither item on both the pretest and posttest (N = 60);
and posttest-estimators, who estimated only on at least one posttest
items but neither of the pretest items (N = 25). (No participants
estimated only on the pretest.) Change in percent correct magni-
tude comparison judgments from pretest to posttest differed among
the three categories, as indicated by an effect of category when it
was added as a factor to the ANCOVA on change scores, F(2,
88) = 4.5, p = .013, 2 = .094. Table 4 shows percent correct on
pretest and posttest and change in percent correct within each
category. Accuracy was higher at posttest than at pretest among
posttest-estimators, #24) = 2.1, p = .043, d = 0.64, whereas
pretest and posttest accuracy did not differ for consistent-
estimators, #(14) = 0.0, p = 1.0, d = 0.0, or never-estimators,
t(59) = 1.0, p = .30, d = 0.15.

Number line estimation of unequal-denominator sums.
PAE improved by considerably more in the fraction-sums condi-
tion (pretest: 26.0, posttest: 10.7, change: 15.3) than in the whole-
number-sums condition (pretest: 21.9, posttest: 19.0, change: 2.8),
F(1, 97) = 60.4, p < .001, m2 = .38. The improvement was

Table 4

Mean (Standard Deviation) Pretest and Posttest Percent Correct
and Change in Percent Correct on the Fraction Sum Magnitude
Comparison Task With Think-Aloud Among Consistent-
Estimators, Never-Estimators, and Posttest-Estimators
(Experiment 2)

Consistent- Never- Posttest-
Test measure estimators estimators estimators
Pretest 96.7 (12.9) 71.7 (31.0) 74.0 (29.3)
Posttest 96.7 (12.9) 75.8 (25.2) 90.0 (20.4)
Change 0.0 (18.9) 4.2 (30.9) 16.0 (37.4)
EMM of change 17.5 1.4 16.1

Note. EMM = estimated marginal mean (EMMs were derived from the
analyses of covariance described in the main text and are adjusted for the
covariate [pretest]).
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significant both in the fraction-sums condition, #(50) = 10.4, p <
.001, d = 1.72 and in the whole-number-sums condition, #(49) =
2.9, p = .006, d = 0.29.

Discussion

In Experiment 2, children in the fraction-sums condition im-
proved substantially not only on the task they encountered during
the intervention but also on a transfer task. Apparently, the
fraction-sums intervention helped children to gain a flexible un-
derstanding of fraction addition that they could apply to tasks other
than the one on which they gained experience. Children in an
active control condition—the whole-number-sums condition—in-
creased their accuracy of number line estimation of fraction sums,
a task that paralleled the estimation of whole number sums on
number lines that they practiced, but they showed no improvement
on the transfer task. This pattern suggests that the improvements in
the fraction-sums condition did not merely reflect test-retest ef-
fects or general benefits of playing a game involving number line
estimation.

The think-aloud version of the fraction-sum comparison-to-one
task proved revealing about the strategies underlying the improved
accuracy on these tasks. More children used estimation strategies
on the posttest than on the pretest. Moreover, accuracy improved
among children who switched from not estimating on the pretest to
estimating on the posttest, whereas accuracy did not change among
children whose use of estimation did not change from pretest to
posttest. These findings suggest that the improved accuracy largely
reflected increased use of estimation strategies. Interestingly, use
of estimation increased in both conditions, though the increase
tended to be greater in the fraction-sums condition. Children in the
whole-number-sums condition may have increasingly estimated
fraction sums as a result of estimating whole number sums during
that intervention or as a result of gaining a better understanding of
additive composition of sums.

Like the individual-fractions-and-sums intervention in Experi-
ment 1, the fraction-sums intervention led to a large improvement
in number line estimates of unequal-denominator fraction sums.
Children showed this improvement despite not having played the
game with individual fractions prior to playing it with fraction
sums. Moreover, estimates of unequal-denominator fraction sums
improved by much more in the fraction-sums condition than in the
whole-number-sums condition, although children in both condi-
tions were taught and practiced a procedure for estimating sums on
a number line by estimating the first addend and then estimating
and adding the second addend. Thus, the greater improvement
observed in the fraction-sums than in the whole-number-sums
condition did not merely reflect benefits of learning and practicing
a procedure for estimating sums on a number line.

General Discussion

Summary of Key Findings

The PFT framework is based on recognition of commonalities in
relations between individual numbers and arithmetic sums that are
shared by whole numbers and fractions. We hypothesized that this
framework provides a basis for interventions that would help
children understand both individual fractions and sums of frac-

tions. In the interventions that we created to test this hypothesis,
children created visuospatial representations of individual frac-
tions and fraction sums, used these representations to estimate
magnitudes by placing marks on a number line, and received
feedback on their answers in the form of representations based on
the PFT framework. The interventions led to large improvements
in performance on tasks assessing understanding of individual
fractions and fraction addition. Below, we discuss implications of
the findings for teaching and learning about fractions, for chil-
dren’s numerical development, and for mathematics education in
general.

Implications for Teaching and Learning About
Fractions

Many children experience great difficulty estimating fraction
sums, even after prolonged instruction in fraction addition (Braith-
waite et al., 2018; Carpenter et al., 1980; Hecht, 1998). The
interventions tested in the present study helped children to over-
come that difficulty for both equal- and unequal-denominator
fraction sums involving denominators from 2 to 10. To our knowl-
edge, these interventions are the first that have been shown to
improve children’s estimation of fraction sums. Improvement in
this ability was not demonstrated in any of the studies identified in
a systematic review of fraction interventions for struggling math
learners (Roesslein & Codding, 2018).

The ability to estimate fraction sums is important for several
reasons. First, estimation provides a pathway for making sense of
fraction addition that does not depend on knowing procedures for
calculating fraction sums. This pathway could be especially valu-
able for students who struggle with learning fraction arithmetic
procedures, because it may provide them an intuitive sense of what
the fraction arithmetic procedures do. Second, skill at estimating
fraction sums could facilitate learning fraction addition procedures
by enabling children to reject implausible answers and the incor-
rect procedures that generate such answers (Booth & Siegler,
2008). For example, a common incorrect procedure for adding
fractions is to add their numerators and denominators, as in 2/3 +
3/5 = 5/8, but knowing that 2/3 + 3/5 > 1 would enable children
to reject this procedure and perhaps try a correct procedure for
solving the problem. Third, accurate estimation is useful in the
many everyday situations where good approximations are suffi-
cient to meet people’s goals.

The success of the interventions likely resulted at least in part
from the PFT framework, which was the basis for the instruction
children received, the procedures they were encouraged to use, and
the feedback they received. PFT combines aspects of two promi-
nent interpretations of fractions: the part-whole interpretation and
the measurement interpretation (Kieren, 1976, 1980). According
to the part-whole interpretation, a fraction represents a certain
number of parts of a whole that is divided into equal-size parts.
Consistent with this interpretation, PFT emphasizes that fractions
are composed of parts—that is, unit fractions. This aspect of PFT
affords a unified approach to representing fractions and fraction
sums, because fraction sums are composed of unit fractions just as
individual fractions are. PFT also emphasizes the measurement
interpretation of fractions by encouraging children to put unit
fractions together end-to-end, making length a highly salient fea-
ture of the representation. Because length is a relatively transparent
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analog for numerical magnitude (de Hevia & Spelke, 2010; Lou-
renco & Longo, 2010), this aspect of PFT encourages attention to
magnitude for both individual fractions and fraction sums. The
present findings suggest that it can be productive for children to
integrate the part-whole and measurement interpretations of frac-
tions.

Implications for Understanding Children’s Numerical
Development

The present findings extend the integrated theory of numerical
development (Siegler & Braithwaite, 2017; Siegler et al., 2011) in
several ways. According to this theory, numerical development
involves increasingly precise representation of the magnitudes of
increasing ranges and types of numbers, including whole numbers
and fractions. Most relevant to the present findings, the theory
predicts that understanding numerical magnitudes is closely re-
lated to understanding arithmetic. This prediction has been sup-
ported by studies showing strong correlations between understand-
ing of whole number magnitudes and whole number arithmetic
(Booth & Siegler, 2008; Fuchs et al., 2010) and between under-
standing of fraction magnitudes and fraction arithmetic (Byrnes &
Wasik, 1991; Siegler et al., 2011). It has also been supported by
experimental studies in which interventions emphasizing accurate
representation of numerical magnitudes yielded improved arithme-
tic learning, again for both whole numbers (Booth & Siegler, 2008;
Siegler & Ramani, 2009) and fractions (Dyson, Jordan, Rodrigues,
Barbieri, & Rinne, 2018; Fuchs et al., 2013).

In the case of whole numbers, counting provides a mechanism
that could underlie associations between numerical magnitude
knowledge and arithmetic skill. Children initially count either to
assign a number to a quantity, as when counting a set of objects,
or to generate the quantity represented by a number, as when
counting five fingers to show the number five. Later, preschoolers
discover counting-based strategies for adding and subtracting
whole numbers (Shrager & Siegler, 1998; Siegler & Jenkins,
1989), such as calculating “3 + 2” by counting “1, 2, 3” and then
“4,5.” Because children count to generate individual whole num-
bers, as well as sums and differences of whole numbers, it seems
likely that counting helps children connect magnitudes of individ-
ual whole numbers with whole number arithmetic.

The present findings provide evidence for an analogous mech-
anism that can be used to connect fraction magnitudes with frac-
tion arithmetic— concatenating unit fractions to generate the mag-
nitudes of individual fractions and fraction sums. Thinking of
individual fractions as being composed of unit fractions seems to
improve children’s understanding of fraction addition, as evi-
denced by the fact that the individual-fractions intervention in
Experiment 1 led to improved estimation of both equal- and
unequal-denominator fraction sums. For equal-denominator sums,
the improvement was as large as that observed in the individual-
fractions-and-sums condition. The substantial transfer from indi-
vidual fractions to equal-denominator sums may reflect the fact
that both can be generated by repeatedly adding a unit fraction, just
as both whole numbers and whole number sums can be generated
by repeatedly adding one whole.

On the other hand, for estimation of unequal-denominator sums,
the individual-fractions-and-sums condition led to considerably
greater improvement than the individual-fractions condition. Esti-

mating unequal-denominator sums without first converting to a
common denominator requires concatenating different unit frac-
tions. Relatively brief practice doing so, in the individual-
fractions-and-sums condition, enabled children to solve these more
complex problems quite effectively. This complexity has no ana-
logue in the case of whole numbers, for which the unit is always
the same (one whole), which probably contributes to the greater
ease of understanding whole number than fraction arithmetic. This
illustrates a central tenet of the integrated theory: Understanding
numerical development requires recognizing both similarities and
differences among different types of numbers. One pair of simi-
larities and differences that students might benefit from knowing is
that fractions with common denominators, like whole numbers, are
composed of the same units, but fractions with different denomi-
nators are composed of different units.

Implications for Mathematics Education

The present results inform the interpretation of previous find-
ings regarding how visuospatial representations can be used to
improve mathematics instruction. Such representations have been
shown to sometimes improve mathematics learning. For example,
in Booth and Siegler (2008), first graders who studied whole
number addition facts accompanied by number line representations
of the addends and sums learned the facts better than children who
studied the facts alone. However, children who generated their
own number line representations before being shown accurate
representations, or who generated their own representations and
were not subsequently shown accurate representations, learned no
better than children who studied the facts alone. The authors
concluded that having children generate their own representations
of addends and sums did not improve learning and may have
decreased it.

In the present study, asking children to generate number line
representations of the magnitudes of fractions and fraction sums
was an effective approach. This effectiveness may reflect children
being explicitly taught procedures for generating the representa-
tions and being provided scaffolding—fraction strips—that led to
extremely accurate representations. Children’s mean absolute error
when estimating unequal-denominator fraction sums with the aid
of movable fraction strips was only 1.4% in the individual-
fractions-and-sums condition of Experiment 1 and 1.7% in the
fraction-sums condition of Experiment 2. These levels of accuracy
are superior to the PAEs previously found with university students
estimating whole numbers on 0—1,000 number lines (Siegler &
Opfer, 2003). The present findings are consistent with Booth and
Siegler’s (2008) conclusion that “pictorial representations of nu-
merical magnitudes must be accurate to enhance learning”; the
findings also show that children can generate accurate representa-
tions if provided appropriate scaffolding.

The present findings are also consistent with previous research
advocating “concreteness fading” in mathematics and science ed-
ucation. Concreteness fading describes instruction in which con-
crete representations are presented initially but are subsequently
withdrawn to focus learners’ attention on underlying structure
(Fyfe et al., 2014). The present study implemented this approach
by initially presenting children with movable fraction strips that
could be aligned along a number line, later making the strips
visible but immovable, and finally hiding them. The goal was for
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children to transition from relying on perception and manipulation
of the fraction strips to relying on mental representations. Chil-
dren’s improved performance on posttest assessments, in which
fraction strips were not available, indicates that they made the
transition successfully. The present study with children joins pre-
vious successful implementations of concreteness fading with
adults for instruction in combinatorics (Braithwaite & Goldstone,
2013), modular arithmetic (McNeil & Fyfe, 2012), and complex
systems concepts (Goldstone & Son, 2005). Concreteness fading
provides a promising approach to instruction in other areas as well.

Limitations and Directions for Future Research

Several limitations to the current research are worth noting. The
tasks used represent only part of what children need to learn about
fractions and fraction arithmetic (CCSSI, 2010). Neither the inter-
ventions nor the assessments required children to determine the
sizes of unit fractions given the size of the whole; to place fractions
or sums of fractions on number lines of varying lengths; to esti-
mate sums involving improper fractions, mixed numbers, or de-
nominators larger than 10; or to calculate exact numeric values of
fraction sums. Testing whether PFT facilitates learning in these
areas, either alone or in combination with other instructional
approaches, seems a useful direction for future research.

Related, the present study demonstrated the effectiveness of
PFT only in the context of brief, targeted interventions. Further
evaluation of the importance of PFT will require assessing the
added value of incorporating PFT into more comprehensive inter-
ventions, ideally ones that share PFT’s emphasis on magnitudes
and its use of the number line as a central conceptual structure.
Several such interventions have been developed recently, and each
of them has yielded better learning outcomes than control inter-
ventions lacking the aforementioned characteristics (Dyson et al.,
2018; Fuchs et al., 2013; Saxe, Diakow, & Gearhart, 2013).
However, none of these interventions emphasized the idea of
representing fraction sums by putting unit fractions together,
whereas this idea is central in PFT. Further, none of these inter-
ventions have been shown to improve children’s estimation of
fraction sums. These facts, and the promising results of the present
study, suggest that incorporating PFT into existing larger-scale
classroom interventions might improve their effectiveness.

Within a larger-scale intervention, PFT might be especially
useful for teaching about addition of fractions with unequal de-
nominators, an exceptionally pervasive and persistent source of
difficulty for children (Newton, Willard, & Teufel, 2014; Siegler
& Pyke, 2013). When beginning this topic, a teacher might ask
children to guess a simple sum, say 2/3 + 1/2; many children
would likely guess 3/5. The teacher or children might then repre-
sent the sum using two 1/3 strips and one 1/2 strip, showing that
the sum is larger than one and therefore cannot equal 3/5. Next, the
teacher might demonstrate that the sum is unchanged if the two 1/3
strips and one 1/2 strip are replaced by four 1/6 strips and three 1/6
strips respectively, so that the sum equals 7/6. Using this example
as a foundation, the teacher could now introduce a symbolic
method for calculating the sum by converting the addends to a
common denominator.

Another limitation of the present study is that the interventions
were administered one-on-one by experimenters working under
controlled conditions. It remains to be seen whether the approach

embodied in the interventions would be effective when adminis-
tered to groups of students by teachers in a classroom. Also, the
assessments were administered immediately after the interven-
tions, leaving open the question of whether gains resulting from
the interventions would be sustained over longer periods.

Another set of limitations involves the samples of students who
participated. Participants in both experiments were drawn from
schools where more than half of students were Caucasian and
fewer than half were eligible for free or reduced-price lunch. It is
therefore uncertain whether the present conclusions apply to
majority-minority or lower socioeconomic status school popula-
tions. Also uncertain is the degree to which the conclusions may be
generalized to different instructional contexts, because information
about the fractions instruction previously received by participants
was not collected during the experiments.

Finally, the present studies included only limited data on indi-
vidual differences among children that might influence the effec-
tiveness of PFT-based interventions. Information was not collected
about domain general cognitive characteristics, such as spatial
reasoning and working memory, or about overall math achieve-
ment. Because the interventions rely on visuospatial representa-
tions, they might be particularly helpful for children who are
strong at spatial reasoning, but less effective for children with
weak spatial skills. On the other hand, the strong scaffolding of the
concreteness fading procedure might make the present instruc-
tional procedure more effective than other approaches for children
with weaker spatial skills. Similarly, in the third phase of each
intervention, children were instructed to maintain and manipulate
mental representations of fraction strips that they could not see;
working memory limitations might lead some children to struggle
with this task, and therefore benefit less from the interventions
than students with superior working memories. Finally, the inter-
ventions might be more or less effective for children who struggle
with mathematics than for those who do not. Future research
should collect richer data on individual differences among children
to test these possibilities.

Conclusion

Like many others, Booth and Siegler (2008) argued in the
context of whole numbers that “arithmetic learning, even in the
sense of memorizing answers to unfamiliar problems, is not a rote
activity but rather a meaningful one.” In the case of fraction
arithmetic, this statement may seem more aspirational than de-
scriptive. Children’s answers to fraction arithmetic problems rou-
tinely violate basic principles of arithmetic, such as the principle
that a sum of positive numbers is greater than either addend. Such
errors suggest that many children do not understand the meaning
of arithmetic operations in the context of fractions.

The present findings, however, suggest that children can
make sense of fraction arithmetic when instruction helps them
acquire a conceptual framework that connects arithmetic to the
internal structure of individual fractions. PFT provides such a
framework, at least for the most basic arithmetic operation—
addition. Future research should explore whether similar ap-
proaches can help endow with meaning other arithmetic oper-
ations with fractions.
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