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Abstract 

Power in multilevel models remains an area of interest to both methodologists and substantive 

researchers. In two-level designs, the total sample is a function of both the number of level-2 

(e.g., schools) clusters and the average number of level-1 (e.g., classrooms) units per cluster. 

Traditional multilevel power calculations rely on either the arithmetic average or the harmonic 

mean when estimating the average number of level-1 units across clusters of unbalanced size. 

The current study evaluates and contrasts these two approaches with simulation-based power 

estimates in two-group two-level cluster randomized controlled trial designs with unbalanced 

cluster sizes. Results from the Monte Carlo study demonstrated the largest differences in 

simulated versus the two forms of calculated power occurred in study designs with large 

variability in the number of level-1 units sampled. Overall, power was less sensitive to the level-

2 sample size or the effect size, regardless of the imbalance in cluster size. Implications of these 

findings for the design of cluster randomized trials are discussed. 
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Statistical Power for Randomized Controlled Trials with Clusters of Varying Size 

Randomized controlled trials (RCTs) are recognized as the “gold standard” for assessing 

an intervention’s effectiveness (Institute of Education Sciences, 2003; Shadish et al., 2011). In 

the simplest RCT design, individuals are randomly assigned to an intervention group or to a 

control group, with the goal of estimating the effects of an intervention. Group or cluster 

randomized trials (CRTs) are increasingly prevalent as a means for designing evaluations of 

treatments in which nested data structures are present (Murray, 1998). In these designs, the 

higher-level units (clusters) are randomly assigned to treatment or control conditions. In 

educational settings, it is common for CRTs to involve the nesting of students within classrooms, 

or teachers within schools. In public health CRTs, it might involve individuals nested in 

communities or neighborhoods, whereas in health CRTs, patients might be nested within 

hospitals (Fitzmaurice et al., 2011). In CRTs, randomization equates entire clusters across 

treatment and control conditions on all pre-treatment variables (Berk, 2005). As such, CRTs are 

inherently multilevel in nature.  

CRTs are quickly becoming the norm in educational and public health research. For 

example, Atkinson and Wade (2015) evaluated the effects of a mindfulness-based intervention in 

the prevention of eating disorders by randomly assigning 19 high school classrooms to 

intervention or control. Another educational example included 37 elementary schools, which 

were randomly assigned to a control condition or a school-wide Positive Behavioral 

Interventions and Supports, a prevention strategy aimed at reducing disruptive behavior 

problems, to evaluate student and staff outcomes (see Bradshaw et al., 2008). Yet another 

example of a CRT involved 22 clusters of primary care sites, which were randomly assigned to a 
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control condition or the Sustained Patient-centered Alcohol-related Care prevention program, 

which aimed to address unhealthy alcohol use (Glass et al., 2018).  

In practice, CRT often have unbalanced cluster sizes due to sampling designs, variation 

in consent rates, or eligibility criteria. For example, schools may vary in the number of 

classrooms within the school building, thus creating imbalance among level-1 units across 

clusters. In other studies, eligibility criteria (e.g., children with special education needs, Autism, 

or an Individualized Education Program) may result in considerable variability in the level-1 

units across schools. It is also possible that low or variable consent rates may contribute to 

unbalanced level-1 units across the clusters. These and other such issues may make it 

challenging to estimate power, particularly when the number of level-1 units is small. To date, 

there has been limited consideration of the impact of small and variable cluster sizes on power 

within the context of CRTs. Having an enhanced understanding of the effects of these types of 

varying parameters on power calculations may prove useful both for designing CRT studies, and 

for determining the power to detect a significant effect in trials after they are fielded and 

experience these real-world implementation challenges.   

Evaluating Treatment Effects in CRTs 

Data arising from two-group two-level CRTs can be evaluated through the following 

equations, expressed here in hierarchical form: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 1: 𝑦𝑦ij = β0j + eij, eij ~ 𝑁𝑁(0,σ2) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 2: β0j = γ00 + γ01 ∗ 𝑇𝑇j  +  u0j, u0j ~ 𝑁𝑁(0, τ) (1) 

Where, at Level 1, 𝑦𝑦ij represents the observed outcome 𝑦𝑦 for unit 𝑖𝑖 in cluster 𝑗𝑗, β0j is the mean 

outcome for cluster 𝑗𝑗, and eij is an error term for each level-1 unit that is assumed to follow a 

normal distribution with a mean of zero and a within-cluster variance, σ2. At Level 2, γ00 is the 
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grand mean outcome, γ01 is the mean difference in the outcome between treatment and control 

clusters, 𝑇𝑇j is a binary treatment indicator variable for cluster 𝑗𝑗, and u0j is a random effect term 

for cluster 𝑗𝑗, that is assumed to follow a normal distribution with a mean of zero and a between-

cluster variance, τ.  

In two-group two-level CRTs, researchers are often interested in power calculations 

regarding the treatment effect, γ01:   

γ�01 =  𝑌𝑌�T −  𝑌𝑌�C (2)

Where, 𝑌𝑌�T and 𝑌𝑌�C represent mean outcome values for the treatment group and control group, 

respectively. When there is an equal probability for study participants to be assigned to treatment 

or control conditions, the variance of the treatment effect can be estimated as: 

𝑉𝑉𝑉𝑉𝑉𝑉(γ�01) =  
4 �τ + σ2

𝑛𝑛 �

𝐽𝐽
 (3) 

Where, n is the number of units per cluster, and J is the number of clusters (Raudenbush, 1997). 

A non-directional statistical hypothesis of: 

𝐻𝐻0: γ01 = 0  

𝐻𝐻𝑎𝑎: γ01 ≠ 0  

 

can be evaluated through an F statistic that can be derived from a two-factor ANOVA model 

(Kirk, 1982):  

𝐹𝐹 =  
𝑀𝑀𝑀𝑀T
𝑀𝑀𝑀𝑀C

 (4) 

Where, 𝑀𝑀𝑀𝑀T represents the mean squares for the treatment groups (fixed factor) and 𝑀𝑀𝑀𝑀C 

represents the mean squares for the clusters (random factor). As the number of clusters J 

increases, the F statistic converges to the following ratio of expected mean squares:  
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𝐸𝐸(𝑀𝑀𝑀𝑀T)
𝐸𝐸(𝑀𝑀𝑀𝑀C) = 1 +  λ 

where  

λ =  
𝑛𝑛𝑛𝑛γ012 /4
𝑛𝑛τ + σ2

 (5) 

 When the null hypothesis is false, the F statistic follows a non-central F-distribution with 

1 degree of freedom in the numerator and J-2 degrees of freedom in the denominator, and a non-

centrality parameter λ: 

λ =  
γ012

4 �τ + σ2
𝑛𝑛 � /𝐽𝐽

 (6) 

In balanced designs, when the number of clusters are equal across experimental conditions, 

estimation of the two-level CRT model using restricted maximum likelihood (REML) matches 

results of the nested ANOVA. However, REML estimation is better suited for instances in which 

the number of clusters varies across conditions (Raudenbush, 1993). 

To give more meaning to parameters, variability can be redefined in terms of the intra-

class correlation coefficient, ρ: 

ρ =  
τ

τ + σ2
 (7) 

Here, τ is equal to the between-cluster variance, σ2 is equal to the within-cluster variance, and τ 

+ σ2 is equal to the total variance. The intra-class correlation coefficient can be interpreted as the 

proportion of variance in the outcome that is between clusters, or more generally, an indicator of 

the degree of clustering. Similarly, the treatment effect can be standardized, δ: 

δ =  
γ01

√τ + σ2
 (8) 
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Here, γ01 is equal to the difference in population means between treatment and control groups. 

Thus, the estimated standardized effect size, δ�, can be estimated by:  

δ� =  
𝑦𝑦�T −  𝑦𝑦�C
√τ + σ2

 (9) 

Where, 𝑦𝑦�T and 𝑦𝑦�C represent the mean outcomes for the treatment and control groups, 

respectively. The standardized effect size can be interpreted as the standard deviation difference 

between mean outcomes for the treatment and control groups. 

Power in CRTs 

The probability of being able to reject the null hypothesis of no treatment effect, when 

one exists, is referred to as the power of a test. Given the significant time, effort, and costs 

associated with conducting CRTs, it is important that researchers design the trial to be 

adequately powered to detect a treatment effect for a particular design, estimated effect size, and 

projected sample size. Power in multilevel models is affected by multiple factors, including the 

significance level α, the treatment effect δ, the intra-class correlation coefficient ρ, the number 

of level-2 clusters, and the number of level-1 units per cluster (𝑛𝑛i; Spybrooket et al., 2011). 

Among these, the number of clusters and the number of units per cluster are likely to be 

the most malleable of the factors affecting power that are in the researchers’ control. For this 

reason, the effects of sampling decisions on power within multilevel frameworks has remained 

an active area of research (e.g., Cox & Kelcey, 2019; Kelcey et al., 2019; Konstantopoulos, 

2010; Usami, 2014). For example, research has demonstrated that increasing the number of J 

clusters sampled improves power more than increasing the number of i units per cluster (Snijders 

& Bosker, 1993; Spybrook et al., 2011). However, the sampling of additional clusters often 

comes at a greater financial cost than the sampling of more i units per cluster, and may be less 

realistic in applied settings. See for example, Raudenbush and Liu (2000) and Snijders and 
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Bosker (1999) for additional discussion of optimal costs and efficient allocations of resources in 

multilevel designs.  

One area of methodological focus has been on how different numbers of clusters assigned 

to experimental conditions impact estimates of power. For instance, Konstantopoulos (2010) 

examined the effects on power in CRT designs when sample sizes between treatment and control 

groups differed. Results indicated that power estimates for unbalanced designs were smaller than 

those from balanced designs (i.e., equal number of clusters in treatment and control). Similarly, 

Liu (2003) considered unbalanced designs in terms of unequal sample allocation between 

treatment and control units, and effects on costs per sampling unit. In the aggregate he found that 

statistical power may be higher for unbalanced designs as compared to balanced designs if the 

control condition costs significantly less money than the intervention condition. As such, optimal 

power occurs when approximately 75% of all clusters are assigned to control, with only 25% of 

clusters assigned to treatment.  

The Issue of Unbalanced Cluster Size 

As noted above, in multilevel CRTs, the total sample size is function of both the number 

of level-2 clusters and the number of level-1 units within clusters. In most power calculations, 

estimates of the total sample size are typically obtained as the product of the number of level-2 

clusters (J) multiplied by the average number of level-1 units per cluster (𝑛𝑛�i). Where, the 

arithmetic average number of level-1 units per cluster, 𝑛𝑛�i, is equal to the total number of level-1 

units sampled (i) divided by the total number of clusters sampled (J):  

𝑛𝑛�i  =  
∑ 𝑖𝑖
𝐽𝐽

 (10) 

Use of the arithmetic average number of level-1 units, however, might be inappropriate 

for scenarios in which the number of level-1 units vary widely across clusters. For example, 
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consider two different CRT designs. In Study A, exactly 10 units are sampled from each of 50 

clusters. In Study B, 2 units are selected from each of 49 clusters, and 402 units are selected from 

one cluster. In both studies, a total of J = 50 clusters was selected, and both have the same 

average number of units per cluster, 𝑛𝑛�i = 10. While there is no variability in the number of units 

per cluster sampled in Study A, there is extreme variability in the number of units per cluster in 

Study B (𝑆𝑆𝑆𝑆= 56). Yet traditional power calculations, which assume an average number of level-

2 units per cluster, would yield the same power estimates for both studies, holding all other 

factors constant. However, the standard errors in Study B would be materially influenced by the 

unbalanced nature of the single cluster in which 402 level-1 units were samples. For this reason, 

researchers have suggested replacing the arithmetic average with the harmonic mean to more 

closely approximate the standard error of a treatment effect, when cluster sizes are unequal 

(Cohen, 1988; Kelcey et al., 2019; Raudenbush, 1997; Spybrook et al., 2011). Where, the 

harmonic mean number of level-1 units per cluster (𝑛𝑛�iH) is equal to the total number of clusters 

(J) divided by the summation of the reciprocal of each cluster sample size (i) across all clusters: 

𝑛𝑛�iH =  
𝐽𝐽

∑ 𝑖𝑖−1𝐽𝐽
𝑗𝑗=1

 (11) 

In the example above, the harmonic mean number of units per cluster in Study A is equal to 𝑛𝑛�iH= 

10, while 𝑛𝑛�iH= 2.04 for Study B. The harmonic mean reflects the meaningful differences in 

sampling designs between the two fictitious studies.  

Several simulation-based studies of power in CRTs have focused on the performance of 

power estimates in the context of the arithmetic average of the projected cluster size (Maas & 

Hox, 2005; Scherbaum & Ferreter, 2009). For example, in school-based work, this is often done 

by estimating the average number of students or teachers per school that are likely to enroll in 
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the project. However, simulation work by Manatunga et al. (2001) demonstrated that use of the 

arithmetic average in CRT power calculations underestimated the sample size required when 

dealing with large variations in level-1 units across clusters. As a result, they proposed a 

correction term in which the total number of clusters sampled increases as the variability in 

cluster sizes increases. Others recommend increasing the number of clusters sampled by 10% to 

correctly account for variation in cluster sizes (Van Breukelen et al., 2007). Given the cost and 

burden associated with conducting CRTs, these adjustments to the study design need to be 

carefully considered, and more precise estimates are needed to ensure adequate power in the 

context of real-world situations where imbalance is likely to occur. As such, there is need for 

improved understanding of the impact of variation in the level-1 units on power in CRTs.  

Current Study 

Much of the research on power in the context of CRTs has focused on the effects on 

estimates derived from the arithmetic mean, the harmonic mean, and/or proposed correction 

terms. Yet little is known about how CRTs with variability in the number of level-1 units per 

cluster compare with power calculations that are based on either the arithmetic average or the 

harmonic mean number of level-1 units per cluster. The current study evaluated how variation in 

the number of level-1 units per cluster impacts statistical power in the context of two-level CRT 

designs through the use of a Monte Carlo simulation study. Specifically, we sought to address 

the following research question: How do traditional calculations of multilevel power, utilizing 

the arithmetic average number of level-1 units per cluster or the harmonic mean, compare to 

simulation-based estimates of power for two-level cluster randomized trials with clusters of 

varying size? 
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To address this research question, we used Monte Carlo simulations to generate data from 

a pre-defined population with fixed parameter values. Models were fit to the data and estimates 

of the treatment effect were used to determine the simulation-based estimates of power. These 

estimates of power were then compared to calculations of power that utilized the arithmetic 

average number of level-1 units per cluster, and the harmonic mean-based number of level-1 

units per cluster, to understand more about the role of variability in cluster sample sizes and its 

relation to statistical power. We were particularly interested in the lower end of this range, such 

as in the context of CRTs with few level-1 units (e.g., students with special education needs in a 

school, or few early-career teachers within a school), as we anticipated that imbalance in these 

situations would lead to more biased estimates of power than in studies with a large number of 

leverl-1 units. We also considered the impact of variation of several parameters, such as the total 

number of level-2 clusters, the intra-class correlation coefficient (ICC), and the effect size within 

the context of the Monte Carlo simulation.  

Method 

Simulation Study 

Multilevel data sets were simulated for two-level CRT designs, in which level-1 units 

were nested within level-2 clusters, and treatment was assigned at the cluster level. Outcome 

values for level-1 units were generated through the following equation: 

𝑦𝑦ij = δ ∗ 𝑇𝑇j +  u0j + eij (12) 

Here, 𝑦𝑦ij represents an observed continuous outcome value for unit i in cluster j, δ represents a 

standardized effect size associated with being in a treatment cluster, 𝑇𝑇j represents a binary 

treatment indicator variable for cluster 𝑗𝑗, u0j represents a random effect term for cluster 𝑗𝑗, and eij 



12 
 

represents an error term for each level-1 unit. Importantly, u0j followed a normal distribution 

with a mean equal to zero and a variance 𝜏𝜏 equal to a specified intra-class correlation 

coefficient ρ. Similarly, eij followed a normal distribution with a mean equal to zero and a 

variance equal to 1- ρ. Moreover, all clusters were assumed to have an equal probability of being 

assigned to treatment or control conditions, such that P(𝑇𝑇j = 1) = 0.5. Datasets were generated 

using R 2.3.1 software (R Core Team, 2020).  

Following data generation, a mixed-effects model was fit to the data, in which the 

average treatment effect estimate was the parameter of interest. All models were estimated using 

REML estimation to appropriately handle unbalanced cluster sizes (Raudenbush, 1993). The 

power to detect a treatment effect is defined as the proportion of replications for which the null 

hypothesis, that the parameter is equal to zero, is rejected at a given significance level. We used 

the .05 significance level (two-tailed test with a critical value equal to 1.96) for all models. 

Models were fit using the lme4 package in R (Bates et al., 2015).  

Power estimates obtained through the use of the arithmetic average number of level-1 

units per cluster and the harmonic mean number of level-1 units per cluster were then compared 

to simulation-based estimates of power. As previously noted, the computation of power for the 

average treatment effect uses an F statistic that follows a non-central F-distribution with 1 degree 

of freedom in the numerator and J-2 degrees of freedom in the denominator, with the 

noncentrality parameter λ. Let 𝐹𝐹CV represent the critical value of F for a non-directional test with 

a significance level of .05. Then, power for the model presented in equation 12 was calculated 

as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 −  β 

where 
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β = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝐹𝐹(1, 𝐽𝐽 − 2; λ) < 𝐹𝐹CV ] (13) 

Design Facets 

The Monte Carlo simulation contrasted a total of five design facets: 1) the number of 

level-2 units J, 2) the ICC ρ, 3) the standardized effect size δ, 4) the minimum number of level-1 

units per cluster, and 5) the maximum number of level-1 units per cluster. This resulted in a total 

of 1,260 unique simulation cells. All design facets are presented in Table 1.  

Regarding the number of level-2 clusters, prior research by Hox and Maas (2001) and 

Maas and Hox (2005) found cluster sizes less than 50 may lead to biased estimates in multilevel 

structural equation models. For simpler observed multilevel models, recommendations for more 

than 10 clusters (Snijders & Bosker, 1993) and more than 30 clusters (Hoyle & Gottfredson, 

2015) have been made to ensure reliable estimates. A recent review of 49 empirical studies 

examining school-level treatment effects for CRTs revealed a range of J = 11 to J = 60 sampled 

schools for two- and three-level designs (Spybrook, 2013). In these studies, the mean number of 

schools was 30.4 (SD = 16.7, median = mode = 30). Given that power approaches 1 as the 

number of clusters increases, regardless of other factors (Bloom, 2005; Spybrook et al., 2011), 

we anticipated that any differences between calculated power and simulation-based estimates of 

power would decrease toward 0 as J increased toward infinity. Based on these considerations, we 

fit models with four different sample sizes of level-2 units: J = 20, 30, 50, and 60.  

With regard to variation in the ICCs, research on educational interventions and meta-

analyses have reported ICC values typically ranging from 0.05 to 0.25 (Bloom et al., 1999; 

Bloom et al., 2007; Hedges & Hedberg, 2007; Murray & Short, 1995). Therefore, we chose three 

different ICCs: ρ = 0.05, 0.10, and 0.20 within this range.  
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Regarding standardized effect sizes, three different values were selected: δ = 0.20, 0.30, 

and 0.40. These values can be interpreted analogously to Cohen’s d (Cohen, 1992), in which 

effect size values of d = .20, .50, and .80 are considered small, medium, and large. In a meta-

analysis of 61 school-level CRTs, Hill et al. (2007) found mean effect sizes in the 0.20 to 0.30 

range. Similarly, Spybrook et al. (2016) conducted a meta-analysis of 38 school-level CRTs, in 

which the minimum detectable effect size for the two cohorts considered is 0.48 and 0.23, 

respectively, ultimately suggesting that educational CRTs be designed to detect effect sizes in the 

range of 0.20 to 0.30.  

Lastly, we varied both the minimum and maximum number of level-1 units per cluster. 

Specifically, we considered five values for the minimum number of level-1 units per cluster: 

𝑛𝑛min = 5, 10, 15, 20 and 30. We also considered seven values for the maximum number of level-

1 units per cluster: 𝑛𝑛max = 10, 15, 20, 25, 30, 40, and 50. In all scenarios, the minimum and 

maximum number of level-1 units per cluster were evenly split between clusters. For scenarios in 

which the minimum number of level-1 units per cluster were equal to the maximum number, the 

arithmetic average number of level-1 units per cluster was equal to the harmonic mean. In total, 

5,000 iterations were conducted for each unique simulation condition.  

Results 

Simulation-based estimates of power were calculated as the proportion of iterations for 

which the null hypothesis, that the treatment effect is equal to zero, was rejected at the .05 

significance level. The simulation-based estimates of power were then compared to calculations 

of power utilizing either the arithmetic average or harmonic mean number of level-1 units per 

cluster. Values representing the relative difference between simulation-based estimates of power 
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and calculated power are presented in Tables 2 through 5. To condense the amount of output 

provided in each table, while still providing key summaries, we restricted the maximum number 

of level-1 units per cluster to 10, 25, and 50 in our tables for ease of presentation.  

 Several general findings emerged across all conditions and scenarios. The majority (77%) 

of power calculations based on the arithmetic average number of level-1 units per cluster 

calculations were greater than the simulation-based estimates of power. This can be seen by the 

majority of positive values in the upper half of Tables 2 through 5, as this indicates arithmetic 

average calculations of power tend to overestimate true power. By contrast, the majority (77%) 

of power calculations based on the harmonic mean number of level-1 units per cluster were less 

than the simulation-based estimates of power. Similarly, this can be seen by the majority of 

negative values in the lower half of Tables 2 through 5, as this indicates harmonic mean 

calculations of power tend to underestimate true power. 

Differences between the arithmetic average and the harmonic mean number of level-1 

units per cluster were also related to differences in power. For example, the larger the difference 

between the arithmetic average and the harmonic average number of level-1 units per cluster, the 

larger the difference in power between simulation-based estimates and calculations utilizing the 

arithmetic average (r = -.73, p < .01). Similarly, the larger the difference between the arithmetic 

average and the harmonic average number of level-1 units per cluster, the larger the difference in 

power between simulation-based estimates and calculations utilizing the harmonic mean (r = .60, 

p < .01). Taken together, these findings suggest that calculations of power utilizing either the 

arithmetic average or harmonic mean number of level-1 units per cluster may over-estimate or 

under-estimate, respectively, the true power of a model when cluster sizes are unbalanced.  
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 With regard to variation in the number of level-1 units, holding constant all factors other 

than level-1 sample sizes, the largest difference in power between simulated power and 

arithmetic average power occurred in instances in which there were a minimum of 5 and 

maximum of 50 units per cluster, representing large level-1 variability. Here, simulated power 

was less than the arithmetic average calculation. For example, results for J = 20 clusters are 

shown in Table 2. The largest difference in power between simulated power and harmonic mean 

power also occurred with the minimum of 5 and maximum of 50 units per cluster scenario, 

where simulated power was greater than the harmonic mean calculation. For example, the largest 

difference in arithmetic average calculations of power and simulated power occur for the 

scenario with a minimum of 5 and maximum of 50 units per cluster, an ICC of 0.05, and an 

effect size of 0.3. By contrast, the smallest differences in power occurred for scenarios with 

almost no variation in level-1 sample sizes, for both the arithmetic average and harmonic mean 

calculations of power.  

Similar results were found for J = 30 clusters presented in Table 3. The largest 

differences in power, holding all else equal, occurred for the scenario with a minimum of 5 and 

maximum of 50 units per cluster, the scenario with the largest variability in level-1 sample sizes. 

For example, the largest difference in harmonic mean calculations of power and simulated power 

occur for the scenario with a minimum of 5 and maximum of 50 units per cluster, an ICC of 

0.05, and an effect size of 0.3. These differences in power were true for calculations utilizing 

either the arithmetic average or the harmonic mean. In general, simulated power in Table 3 was 

less than the calculation of power with the arithmetic average, but greater than the calculation of 

power with the harmonic mean.  
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Next, we examined the models for J = 50 clusters (see Table 4). Again, holding all facets 

constant, we see the largest difference in power between simulated power and calculation of 

power using the arithmetic average occurred for the scenario with a minimum of 5 and maximum 

of 50 units per cluster, where simulated power is less than the calculation. The largest difference 

in power between simulated power and calculation of power using the harmonic mean again 

occurs for the same scenario with large variability in level-1 units, where simulated power was 

greater than the calculation of power. More specifically, the largest differences in Table 4 can be 

seen for the scenario with a minimum of 5 and maximum of 50 units per cluster, an ICC of 0.05, 

and an effect size of 0.2. The smallest differences in power for both simulated power versus 

arithmetic average calculated power and simulated power versus harmonic mean calculated 

power were observed in scenarios with small variability in cluster sizes.  

Finally, results for J = 60 clusters are reported in Table 5. Holding all other factors equal, 

the largest differences in power occur for the scenario with a minimum of 5 and maximum of 50 

units per cluster, representing the scenario with the largest variability in level-1 sample sizes. 

While simulated power was less than calculated power using the arithmetic average, simulated 

power was greater than the calculated power using the harmonic mean. The smallest differences 

in power again occur for scenarios with very little variability in level-1 units. For example, the 

difference in harmonic mean calculated power and simulated power is less than 0.001 for the 

scenario with a minimum of 20 and maximum of 25 units per cluster, an ICC of 0.1, and an 

effect size of 0.4.   

It is important to note that overall, any differences between simulation-based estimates of 

power and calculations of power using the arithmetic average were not systematically related to 

level-2 sample size (r = .02, p = .58) or effect size (r = .02, p = .52), but were related to the ICC 
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(r = -.14, p < .01), although the relative magnitude of the correlation appears small. Similarly, 

differences between simulation-based estimates of power and calculations of power using the 

harmonic mean were not systematically related to level-2 sample size (r = .01, p =.68) or effect 

size (r = .01, p = .98), but were related to the ICC (r = .27, p < .01), again relatively small in 

magnitude. However, the difference in the number of level-1 units per cluster (i.e., 𝑛𝑛max −

 𝑛𝑛min) was significantly related to differences in simulation-based estimates of power for both 

arithmetic average calculations of power (r = .53, p < .01) and harmonic mean calculations of 

power (r = -.44, p < .01). Taken together, the findings consistently suggested that the variability 

in level-1 sample sizes was the primary source behind any differences in power between 

simulation-based estimates and calculations of power.  

Discussion 

CRTs have been the focus of considerable methodological work (Dong et al., 2018; 

Kelcey et al., 2019; Konstantopoulos, 2012; Schochet, 2008; Usami, 2014). The current study 

adds to the literature by considering designs with unequal level-1 sample sizes across clusters. 

Previous work in this area suggests that use of the harmonic mean is preferred over the 

arithmetic mean when number of level-1 units are not equal across clusters in CRT conducted in 

real-world settings, like schools. The current interrogation of this issue leveraged simulation-

based estimates of power, thereby enabling us to contrast power estimates that would be obtained 

through use of the arithmetic average or the harmonic mean, across a range of parameters (e.g., 

ICC, leve-1 sample sizes). In the real world, clusters vary in size; this is almost always the rule 

rather than the exception. This may be due in part to a limited eligible participant pool, dropout 

or attrition of participants, and other recruitment issues (Groves et al., 2009; Manatunga et al., 
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2001). For example, Resnicow et al. (1998) conducted a study in which 32 schools were 

randomized to a health promotion educational intervention or control. Here, all third-grade 

students in the same school received the same intervention or control condition. However, the 

number of third-grade students in each school ranged from 20 to 81. Other examples include 

Tolan et al. (2020) who sampled 188 teachers from 72 schools, with a range of 1-13 teachers 

sampled from each school, as well as Lam et al. (2015) who sampled 3,288 students in from 188 

classrooms, with a range of 6-28 students sampled from each school. 

 As such, this paper advances prior work on statistical power for CRTs and multilevel 

designs more generally by examining how different estimates of cluster size can impact 

traditional power calculations, when the number of units per cluster is not constant. To address 

these gaps, we examined simulation-based estimates of statistical power for two-level CRTs with 

variability in level-1 sample sizes. Our results suggest that differences between simulation-based 

estimates and calculation-based estimates of power increase as variability in level-1 sample sizes 

increase. Holding all simulation study facets constant (i.e., ICC, effect size), the largest 

differences in power values occurred in instances in which the there was a minimum of 5 and 

maximum of 50 units per cluster; more specifically, these power differences were most 

pronounced when the number of level-1 units was small (i.e., below 20).  

In such scenarios, calculated power utilizing the arithmetic average tended to 

overestimate true power, while calculated power utilizing the harmonic mean tended to 

underestimate true power. By contrast, the smallest differences in power values, holding all other 

facets constant, occurred for scenarios with the smallest variability in level-1 sample sizes. We 

were particularly interested in the low end of the level-1 sample size range to determine the point 

at which researchers should become concerned about such variability in the cluster sizes. Results 
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demonstrated that calculations of power increasingly diverged from the true simulation-based 

power as the minimum number of level-1 units per cluster decreased. Moreover, the larger the 

variability in level-1 sample sizes, the larger the differences in power.   

Limitations 

There are a few general limitations to our study that are important to note. First, the 

Monte Carlo simulation setup for this study examined a variety of facets with plausible values 

determined from prior meta-analyses in educational research. However, we were not able to 

explore all possible variants for each facet. For instance, we considered variability in the number 

of level-1 units per cluster toward the lower end of sample sizes. We did not consider a scenario 

with a minimum of 𝑛𝑛min= 50 level-1 units per cluster and a maximum of 𝑛𝑛max= 95, as the 

impact of cluster size variability on power estimates likely diminishes after level-1 sample sizes 

reach a certain threshold. Similar arguments hold for the total number of clusters, as power has 

been shown to increase toward 1 as the total number of clusters increases, regardless of other 

factors (Bloom, 2005; Spybrook et al., 2011). While the current study explored scenarios with 20 

clusters, Spybrook’s (2013) review of empirical studies revealed school-level CRs with fewer 

than 20 clusters. We therefore encourage future researchers to examine power for multilevel 

designs with fewer than 20 clusters.  

Other decisions made in the design of this simulation study may potentially limit our 

findings. For example, we assumed an equal probability of being assigned to treatment or 

control, such that P(𝑇𝑇𝑗𝑗 = 1) = 0.5. This allowed for a balanced design in that the number of 

clusters in the treatment group were equal to the number of clusters in the control group. 

However, CRTs and randomized control trials more generally may not always have such balance 

in practice (see Liu, 2003). Thus, findings from this study may or may not replicate in future 
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studies examining variability in level-1 sample sizes for unbalanced designs with treatment and 

control groups differing on the number of cluster (or units) per group. However, the issue of 

variable cluster sizes on power in CRTs has been understudies in the literature. As a result, there 

is a need for future research to examine scenarios in which the number of level-1 units per 

cluster are not evenly split between groups.  

Lastly, our study examined effects of unbalanced cluster sizes on power for a relatively 

simple two-level two-group CRT design, in which a single binary treatment indicator was used 

to estimate the average treatment effect. This model could be extended, for example, by 

including covariates such as pretest scores at level-1, while simultaneously accounting for 

information at level-2. The inclusion of covariates is a common way to increase the precision and 

power of a study, and empirical work has demonstrated that the inclusion of level-1 or level-2 

covariates produce similar improvements in power (Bloom et al., 2007; Spybrook et al., 2011). 

The improvement in power from the addition of a covariate would likely reduce the required 

sample size necessary for a desired level of power, where a reduction in level-1 sample size 

would not reduce power as much as a reduction in level-2 sample size (Snijders & Bosker, 1993; 

Spybrook et al., 2011). Another natural extension to the models considered in this study would 

be three-level models (see Dong et al., 2018). While we explored the effects of variability in 

level-1 sample sizes and power estimates in a simplistic two-level CRT design, future work 

should also explore such variability for more nuanced modeling approaches and study designs.  

Conclusions and Implications 

These findings highlight the need to carefully consider the impact of variation in the 

number of observations at level-1 when designing CRTs. While different power software and 

online tools currently exist for calculating power in multilevel models (e.g., optimal design; 
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Spybrook et al., 2011), these calculations rely upon either the arithmetic average or harmonic 

mean number of units per cluster. Simulation-based estimates of power may offer more 

flexibility for researchers designing and planning CRTs than power software and tools utilizing 

arithmetic average or harmonic mean calculations. Although we are hesitant to offer a rule of 

thumb as to when variation in level-1 sample sizes becomes large enough to significantly differ 

from traditional power calculations, one substantively important framing of this issue involves 

comparing differences in cluster sample sizes required for differences in power calculations and 

simulated power. To explore this, additional power calculations were computed to help answer 

the question, “How many more (or fewer) clusters are needed to sample for the original 

calculation of power to match the simulation-based estimate of power?” Data representing the 

difference in number of clusters required to equal simulated power are presented in Tables A1 

through A4 in the Appendix.  

Across all tables, the majority (71%) of values for the arithmetic calculations are equal to 

or less than zero, indicating less clusters are needed to be sampled for the arithmetic calculation 

of power to equal the simulation-based estimate of power. For example, in Table A2, a scenario 

with a minimum of 5 and maximum of 50 units per cluster, an ICC of 0.1, and an effect size of 

0.2, it can be seen that 6 fewer clusters are needed for the original arithmetic average calculation 

of power to equal the true simulated power. In this scenario, researchers entering the average 

number of units per cluster into a power software calculator would conclude a value of power 

greater than the true power. As such, researchers failing to recognize this would have studies 

under-powered for what they believed to be the actual power for their studies. By contrast, the 

majority (79%) of values for the harmonic calculation were greater than zero, suggesting that the 

harmonic calculation underestimates true power, and more clusters would need to be sampled to 
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equal the simulation-based estimate. Again, as an example, the scenario in Table A3 with a 

minimum of 10 and maximum of 50 units per cluster, an ICC of 0.05, and an effect size of 0.3 

indicates that an additional 7 clusters would need to be sampled for the original harmonic mean 

calculation of power to equal the true power.  

Along with findings in Tables 2 through 5, the largest differences in the number of 

clusters required occurs for a minimum of 5 and maximum of 50 units per cluster, the scenario 

with the largest ratio in cluster size. Differences in cluster sample sizes required for power 

calculations to match simulation-based estimates of power were slightly related to original level-

2 sample size (r = -.11), effect size (r = -.18), and the intra-class correlation coefficients (r = -

.15). However, differences in the number of level-1 units per cluster (i.e., 𝑛𝑛max −  𝑛𝑛min) were 

strongly related to differences in required clusters (r = .58). This perspective provides an 

alternative lens for understanding that variability in cluster sizes is most strongly associated with 

differences in the number of clusters required for calculations of power to match those obtained 

from simulation-based estimates of power.  

Issues related to sampling costs and increased burdens of data collection are directly 

related to differences cluster sample sizes. As variability in cluster size increases, researchers 

must be cognizant of the implications of differences in power estimates that can arise across 

different methods for capturing cluster size differences, and the number of level-2 clusters 

needed to obtain a desired level of power. As described elsewhere (Liu, 2003), these aspects of 

planning CRT designs will have direct impacts on study costs. Cost calculations would vary 

depending on the researcher’s choice of using the arithmetic average (fewer clusters needed) or 

harmonic mean (more clusters needed) to achieve a desired level of power. By contrast, 
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simulation-based estimates of power may provide more precision for researchers examining 

issues of costs and power for CRTs, as well as other multilevel designs. 

Taken together, these findings highlight the need for researchers to explicitly investigate 

characteristics unique to their study design, particularly those related to small and unbalanced 

cluster sizes, in light of their potential impact on statistical power. Calculations of power for 

CRT designs may over- or under-estimate the true power of a model, as such analytic approaches 

are often restricted in critical ways. Simulation-based approaches may provide a more nuanced 

understanding of the impact of these design facts on statistical power within the context of CRTs.   

  



25 
 

References 

Atkinson, M. J., & Wade, T. D. (2015). Mindfulness-based prevention for eating disorders: A 

 school-based cluster randomized controlled study. International Journal of Eating 

 Disorders, 48(7), 1024-1037. https://doi.org/10.1002/eat.22416 

Bates, D., Mächler, M. Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models 

 using lme4. Journal of Statistical Software, 67(1). doi: 10.18637/jss.v067.i01 

Berk, R. A. (2005). Randomized experiments as the bronze standard. Journal of Experimental 

 Criminology, 1(4), 417-433. http://dx.doi.org/10.1007/s11292-005-3538-2 

Bloom, H. S., Bos, J. M., & Lee, S. W. (1999). Using cluster random assignment to measure 

 program impacts: Statistical implications for the evaluation of education programs. 

 Evaluation Review, 23(4), 445-469. doi: 10.1177/0193841X9902300405 

Bloom, H. S. (2005). Randomizing groups to evaluate place-based programs. In H. S. Bloom 

 (ed.), Learning more from social experiments: Evolving analytic approaches (115-172). 

 New York: Russel Sage Foundation.  

Bloom, H. S., Richburg-Hayes, L., & Black, A. R. (2007). Using covariates to improve 

 precision: Empirical guidance for studies that randomize schools to measure the impacts 

 of educational interventions. Educational Evaluation and Policy Analysis, 29(1), 30-59. 

 https://doi.org/10.3102/0162373707299550 

Bradshaw, C. P., Koth, C. W., Bevans, K. B., Ialongo, N., & Lead, P. J. (2008). The impact of 

 school-wide positive behavioral interventions and supports (PBIS) on the organizational 

 health of elementary schools. School Psychology Quarterly, 23(4), 462-473. 

 https://doi.org/10.1037/a0012883 



26 
 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: 

 Academic Press.   

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. doi: 10.1037//0033-

 2909.112.1.155 

Cox, K., & Kelcey, B. (2019). Optimal design of cluster- and multisite-randomized studies using 

 fallible outcome measures. Evaluation Review, 43(3-4), 189-225. doi: 

 10.1177/0193841X19870878 

Dong, N., Kelcey, B., & Spybrook, J. (2018). Power analyses for moderator effects in three-level 

 cluster randomized trials. The Journal of Experimental Education, 86(3), 489-514. 

 https://doi.org/10.1080/00220973.2017.1315714 

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal data analysis (2nd 

 ed). Hoboken, NJ: John Wiley & Sons, Inc.   

Glass, J. E., Bobb, J. F., Lee, A. K., Richards, J. E., Lapham, G. T., Ludman, E., Achtmeyer, C., 

 Caldeiro, R. M., Parrish, R., Williams, E. C., Lozano, P., & Bradley, K. A. (2018). Study 

 protocol: A cluster-randomized trial implementing sustained patient-centered alcohol-

 related care (SPARC trial). Implementation Science, 13(1), 108. doi: 10.1186/s13012-

 018-0795-9 

Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. 

 (2009). Survey Methodology (2nd ed.) Hoboken, NJ: John Wiley & Sons, Inc.   

Hedges, L., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-

 randomized trials in education. Educational Evaluation and Policy Analysis, 29(1), 60-

 87. https://doi.org/10.3102/0162373707299706 



27 
 

Hill, C. J., Bloom, H. S., Black, A. R., & Lipsey, M. W. (2007). Empirical benchmarks for 

 interpreting effect sizes in research. MDRC. 

 https://www.mdrc.org/sites/default/files/full_84.pdf 

Hox, J. J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling 

 with pseudobalanced groups and small samples. Structural Equation Modeling, 8(2), 

 157-174. doi: : 10.1207/S15328007SEM0802_1 

Hoyle, R., & Gottfredson, N. C. (2015). Sample size considerations in prevention research 

 applications of multilevel modeling and structural equation modeling. Prevention 

 Science, 16(7), 987-996. doi:10.1007/s11121-014-0489-8 

Institute of Education Sciences. (2003). Identifying and implementing educational practices 

 supported by rigorous evidence: A user friendly guide. Washington, DC: Coalition for 

 Evidence-Based Policy. https://ies.ed.gov/ncee/pdf/evidence_based.pdf 

Kelcey, B., Spybrook, J., & Dong, N. (2019). Sample size planning in cluster-randomized 

 interventions probing multilevel mediation. Prevention Science, 20(3), 407-418. 

 https://doi.org/10.1007/s11121-018-0921-6 

Kirk, R. (1982). Experimental design: Procedures for the behavioral sciences (2nd ed.). Belmont, 

 CA: Brooks/Cole. 

Konstantopoulos, S. (2010). Power analysis in two-level unbalanced designs. The Journal of 

 Experimental Education, 78(3), 291-317. https://doi.org/10.1080/00220970903292876 

Konstantopoulos, S. (2012). The impact of covariates on statistical power in cluster randomized 

 designs: Which level matters more? Multivariate Behavioral Research, 47(3), 392–420. 

 https://doi.org/10.1080/00273171.2012.673898 



28 
 

Lam, A. C., Ruzek, E. A., Schenke, K., Conley, A. M., & Karabenick, S. A. (2015). Student 

 perceptions of classroom achievement goal structure: Is it appropriate to aggregate? 

 Journal of Educational Psychology, 107(4), 1102-1115. 

 http://dx.doi.org/10.1037/edu0000028 

Liu, X. (2003). Statistical power and optimum sample allocation ratio for treatment and control 

 having unequal costs per unit of randomization. Journal of Educational and Behavioral 

 Statistics, 28(3), 231-248. https://doi.org/10.3102/10769986028003231 

Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 

 1(3), 86-92. doi: 10.1027/1614-2241.1.3.86 

Manatunga, A. K., Hudgens, M. G., & Chen, S. (2001). Sample size estimation in cluster  

  randomized studies with varying cluster size. Biometric Journal, 43(1), 75-86. 

 https://doi.org/10.1002/1521-4036(200102)43:1<75::AID-BIMJ75>3.0.CO;2-N 

Murray, D. M. (1998). Design and analysis of group-randomized trials. New York, NY: Oxford 

 University Press, Inc.  

Murray, D. M., & Short, B. (1995). Intra-class correlation among measures related to alcohol use 

 by young adults: Estimates, correlates, and applications in intervention studies. Journal of 

 Studies on Alcohol, 56(6), 681-692. doi: 10.15288/jsa.1995.56.681 

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation 

 for Statistical Computing, Vienna, Austria. https://www.R-project.org/ 

Raudenbush, S. W. (1993). Hierarchical linear models and experimental design. In L. K. 

 Edwards (Ed.), Applied analysis of variance in behavioral science (pp. 459-495). New 

 York: Marcel Dekker.  



29 
 

Raudenbush, S. W. (1997). Statistical analysis and optimal design for cluster randomized trials. 

 Psychological Methods, 2(2), 173-185. http://dx.doi.org/10.1037/1082-989X.2.2.173 

Raudenbush, S. W., & Liu, X. (2000). Statistical power and optimal design for multisite 

 randomized trials. Psychological Methods, 5(2), 199-213. https://doi.org/10.1037/1082-

 989X.5.2.199 

Resnicow, K., Davis, M., Smith, M., Baranowski, T., Lin, L. S., Baranowski, J., Doyle, C., & 

 Wang, D. T. (1998). Results of the TeachWell worksite wellness program. American 

 Journal of Public Health, 88(2), 250–257. https://doi.org/10.2105/AJPH.88.2.250 

Scherbaum, C. A., & Ferreter, J. M. (2009). Estimating statistical power and required sample 

 sizes for organizational research using multilevel modeling. Organizational Research 

 Methods, 12(2), 347-367. http://dx.doi.org/10.1177/1094428107308906 

Schochet, P. Z. (2008). Statistical power for randomized assignment evaluation of education 

 programs. Journal of Educational and Behavioral Statistics, 33(1), 62–87. 

 https://doi.org/10.3102/1076998607302714 

Shadish, W. R., Rodolfo, G., Wong, V. C., Steiner, P. M., & Cook, T. D. (2011). A randomized 

 experiment comparing random and cutoff-based assignment. Psychological Methods, 

 16(2), 179-191. https://doi.org/10.1037/a0023345 

Snijders, T. A. B., & Bosker, R. J. (1993). Standard errors and sample sizes for two-level 

 research. Journal of Educational Statistics, 18(3), 237-259. doi: 10.2307/1165134 

Snijders, T., & Bosker, R. (1999). Multilevel analysis: An introduction to basic and advanced 

 multilevel modeling. Thousand Oaks, CA: Sage.  



30 
 

Spybrook, J. (2013). Detecting intervention effects across context: An examination of the 

 precision of cluster randomized trials. The Journal of Experimental Education, 82(3), 

 334.357. doi: 10.1080/00220973.2013.813364 

Spybrook, J., Shi, R., & Kelcey, B. (2016). Progress in the past decade: An examination of the 

 precision of cluster randomized trials funded by the U.S. Institute of Educational 

 Sciences. International Journal of Research & Method in Education, 39(3), 255-267. doi: 

 10.1080/1743727X.2016.1150454 

Spybrook, J., Bloom, H. Cogdon, R., Hill, C., Martinez, A., & Raudenbush, S. (2011). Optimal 

 design plus empirical evidence: Documentation for the “Optimal Design” software. 

 Available at: http://hlmsoft.net/od/od-manual-20111016-v300.pdf 

Tolan, P., Elreda, L. M., Bradshaw, C. P., Downer, J. T., & Ialongo, N. (2020). Randomized trial 

 testing the integration of the Good Behavior Game and MyTeachingPartnerTM: The 

 moderating role of distress among new teachers on student outcomes. Journal of School 

 Psychology, 78, 75-95. https://doi.org/10.1016/j.jsp.2019.12.002 

Usami, S. (2014). Generalized sample size determination formulas for experimental research 

 with hierarchical data. Behavior Research Methods, 46(2), 346-356. doi: 

 10.3758/s13428-013-0387-1 

Van Breukelen, G. J. P., Candel, M. J. J., & Berger, M. P. F. (2007). Relative efficiency of 

 unequal versus equal cluster sizes in cluster randomized and multicenter trials. Statistics 

 in Medicine, 26(13), 2586-2603. https://doi.org/10.1002/sim.2740 

 

 

 

https://doi.org/10.1002/sim.2740


31 
 

Table 1 

Summary of Monte Carlo Population Specifications for 

Two-Level CRT Designs with Variability in Level-1 Units 

Level 2 Sample Size J = 20, 30, 50, 60 

ICC ρ = 0.05, 0.10, 0.20  

Effect Size δ = 0.2, 0.3, 0.4 

Minimum L1 Sample Size 𝑛𝑛𝑖𝑖 = 5, 10, 15, 20, 30 

Maximum L1 Sample Size 𝑛𝑛𝑖𝑖 = 10, 15, 20, 25, 30, 40, 50 
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Table 2 
Differences between Calculated and Simulated Power for Two-Level CRT Designs for J = 20 Clusters 

  Calculated Power Using Arithmetic Average Minus Simulated Power 
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 .007 .007 .011 .003 .005 .009 -.005 .004 .006 
 25 .026 .034 .061 .008 .032 .046 .008 .010 .026 
 50 .046 .103 .085 .029 .065 .092 .020 .031 .048 

10 10 .008 .005 .004 .007 -.002 -.006 .003 .008 .012 
 25 .011 .032 .023 -.001 -.003 .006 -.007 -.004 .012 
 50 .025 .045 .050 .011 .034 .026 .010 .003 .021 

15 10 .011 .008 .001 -.004 .001 .010 -.004 .003 .010 
 25 .010 .007 .006 -.003 -.005 .014 -.001 -.001 -.010 
 50 .018 .035 .028 .003 .023 .017 -.004 .003 .012 

20 10 .004 -.003 .011 .001 -.002 .018 .012 .006 .014 
 25 .001 .005 -.003 .006 -.002 -.003 -.010 -.004 .003 
 50 .014 .013 .009 .001 .006 .014 -.002 .001 .008 

30 10 .014 .036 .030 -.002 .008 .020 -.003 .004 .003 
 25 -.003 -.008 .003 .007 .006 -.003 .001 -.001 .000 
 50 .003 .011 .013 -.004 .003 .004 -.008 -.004 .020 
   
  Calculated Power Using Harmonic Mean Minus Simulated Power 

5 10 -.002 -.015 -.021 -.004 -.008 -.012 -.008 -.003 -.005 
 25 -.031 -.082 -.094 -.022 -.034 -.052 -.004 -.017 -.018 
 50 -.063 -.109 -.166 -.023 -.045 -.068 .001 -.010 -.020 

10 10 .008 .005 .004 .007 -.002 -.006 .003 .008 .012 
 25 -.010 -.009 -.024 -.011 -.024 -.024 -.010 -.011 -.001 
 50 -.034 -.061 -.060 -.014 -.018 -.045 .002 -.014 -.008 

15 10 .007 .000 -.010 -.006 -.004 .003 -.005 .001 .007 
 25 .003 -.005 -.007 -.006 -.011 .005 -.002 -.003 -.014 
 50 -.016 -.023 -.026 -.010 -.005 -.019 -.008 -.006 -.002 

20 10 -.008 -.027 -.018 -.005 -.014 -.001 .010 .001 .006 
 25 .000 .003 -.005 .006 -.003 -.005 -.010 -.004 .003 
 50 -.005 -.019 -.019 -.006 -.009 -.005 -.004 -.003 .000 

30 10 -.015 -.021 -.034 -.015 -.020 -.021 -.008 -.007 -.013 
 25 -.004 -.009 .001 .006 .005 -.003 .001 -.001 -.001 
 50 -.002 .002 .006 -.006 -.002 -.001 -.009 -.006 .018 

Note: The maximum number of level-1 units per cluster has been restricted to 10, 25, and 50 to 
condense output. The full table of results is available upon request by the first author.  
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Table 3 
Differences between Calculated and Simulated Power for Two-Level CRT Designs for J = 30 Clusters 
  Calculated Power Using Arithmetic Average Minus Simulated Power 
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 -.004 .020 .010 .007 .001 .012 .000 .015 .013 
 25 .031 .050 .059 .023 .045 .059 .005 .031 .037 
 50 .065 .100 .067 .052 .086 .093 .016 .041 .068 

10 10 .010 .005 .002 -.007 .014 .008 -.011 .001 -.009 
 25 .014 .026 .017 .001 .020 .027 .009 .007 -.002 
 50 .045 .056 .030 .025 .027 .035 .010 .020 .028 

15 10 -.001 .005 -.004 -.002 -.002 .005 -.002 .003 .005 
 25 -.002 -.007 .010 .007 .012 .013 -.002 .004 .001 
 50 .029 .030 .019 .003 .008 .021 -.004 .010 .006 

20 10 -.004 .011 .010 .005 .025 .009 .012 -.002 .005 
 25 -.002 .000 .002 -.003 .020 -.001 -.007 .004 .002 
 50 .018 .021 .005 .016 .020 .001 -.002 .003 .010 

30 10 .018 .035 .017 .008 .019 .039 .000 .009 .022 
 25 .021 .008 .001 -.003 -.012 .000 .004 -.006 .005 
 50 .005 .005 .002 .002 .006 .009 -.006 -.005 -.005 
   
  Calculated Power Using Harmonic Mean Minus Simulated Power 

5 10 -.019 -.010 -.027 -.003 -.019 -.016 -.004 .005 -.003 
 25 -.057 -.102 -.084 -.025 -.048 -.054 -.014 -.010 -.024 
 50 -.101 -.153 -.130 -.030 -.066 -.076 -.014 -.022 -.024 

10 10 .010 .005 .002 -.007 .014 .008 -.011 .001 -.009 
 25 -.018 -.022 -.018 -.015 -.009 -.004 .003 -.004 -.019 
 50 -.042 -.058 -.037 -.014 -.042 -.032 -.002 -.007 -.009 

15 10 -.008 -.006 -.013 -.005 -.009 -.003 -.003 .000 .001 
 25 -.012 -.021 .002 .002 .003 .004 -.003 .000 -.004 
 50 -.020 -.027 -.010 -.018 -.027 -.012 -.010 -.003 -.012 

20 10 -.023 -.018 -.013 -.004 .007 -.011 .008 -.009 -.006 
 25 -.004 -.003 .001 -.004 .018 -.003 -.007 .004 .001 
 50 -.009 -.009 -.008 .004 .001 -.016 -.006 -.004 .000 

30 10 -.027 -.030 -.028 -.014 -.020 -.002 -.007 -.007 .000 
 25 .019 .006 .000 -.003 -.013 -.001 .004 -.006 .005 
 50 -.003 -.003 -.001 -.001 .001 .004 -.007 -.006 -.007 
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Table 4 
Differences between Calculated and Simulated Power for Two-Level CRT Designs for J = 50 Clusters 
  Calculated Power Using Arithmetic Average Minus Simulated Power 
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 .004 .009 .006 .012 .010 .005 .000 .017 -.005 
 25 .055 .046 .013 .037 .055 .041 .018 .045 .039 
 50 .103 .073 .013 .065 .085 .051 .031 .058 .069 

10 10 .000 .000 -.002 .013 -.008 -.003 .004 .003 .006 
 25 .017 .018 .004 .022 .019 .010 -.001 .016 .010 
 50 .055 .024 .002 .037 .044 .017 .025 .032 .033 

15 10 .012 -.001 .001 -.002 .000 .009 -.004 -.007 .012 
 25 -.002 -.005 .001 -.004 .013 .003 .004 .006 -.005 
 50 .041 .017 .002 .036 .019 .008 .006 .025 .019 

20 10 -.002 .013 .005 .016 .004 .004 -.002 .001 .007 
 25 -.002 -.002 .000 .006 .009 .001 .002 .003 -.008 
 50 .009 .003 .002 .002 .014 .005 -.002 .013 .016 

30 10 .022 .016 .005 .039 .023 .013 .005 .008 .009 
 25 -.006 .003 -.002 -.013 .000 -.003 -.001 .005 -.007 
 50 .002 .003 .000 .002 .017 .001 -.001 -.004 .000 
   
  Calculated Power Using Harmonic Mean Minus Simulated Power 

5 10 -.022 -.028 -.020 -.004 -.017 -.019 -.008 .001 -.024 
 25 -.080 -.099 -.048 -.041 -.059 -.036 -.014 -.016 -.027 
 50 -.135 -.128 -.050 -.066 -.086 -.049 -.020 -.033 -.024 

10 10 .000 .000 -.002 .013 -.008 -.003 .004 .003 .006 
 25 -.028 -.018 -.005 -.002 -.012 -.006 -.010 -.001 -.007 
 50 -.060 -.045 -.009 -.023 -.025 -.014 .003 -.005 -.003 

15 10 .003 -.010 -.002 -.008 -.008 .005 -.007 -.011 .008 
 25 -.015 -.014 -.001 -.011 .005 -.001 .001 .001 -.010 
 50 -.020 -.013 -.001 .004 -.015 -.005 -.005 .007 .002 

20 10 -.029 -.010 -.002 .001 -.016 -.007 -.008 -.010 -.004 
 25 -.005 -.004 -.001 .005 .007 .001 .002 .002 -.008 
 50 -.024 -.011 .001 -.015 -.003 -.001 -.007 .004 .007 

30 10 -.041 -.030 -.005 .005 -.018 -.008 -.008 -.014 -.013 
 25 -.008 .003 -.002 -.014 .000 -.003 -.001 .004 -.007 
 50 -.007 -.001 .000 -.003 .013 -.001 -.002 -.007 -.003 
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Table 5 
Differences between Calculated and Simulated Power for Two-Level CRT Designs for J = 60 Clusters 
  Calculated Power Using Arithmetic Average Minus Simulated Power 
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 .008 .009 .012 .001 .015 .011 .005 .014 .005 
 25 .053 .038 .008 .056 .064 .024 .020 .030 .036 
 50 .100 .040 .004 .083 .086 .032 .046 .077 .055 

10 10 -.009 .001 -.003 .004 .004 -.005 .003 -.007 .007 
 25 .015 .014 .002 .013 .010 .006 .012 .019 .005 
 50 .058 .015 .001 .057 .036 .012 .018 .029 .011 

15 10 .014 .005 .000 .001 .009 .002 -.008 .005 .006 
 25 .011 .005 .000 .011 .007 .003 -.001 .016 -.002 
 50 .023 .007 .000 .024 .019 .002 .010 .015 .008 

20 10 .016 .009 .001 -.003 .006 .003 .006 .011 .003 
 25 .007 .000 -.001 -.002 .002 .001 -.004 .002 .008 
 50 .023 .006 .000 .009 .019 .000 .009 .008 .003 

30 10 .020 .017 .002 .029 .031 .008 .018 .018 .013 
 25 .004 -.003 .000 -.005 .002 .003 .004 -.002 -.001 
 50 .006 .002 .000 .002 -.003 .000 .001 .014 -.010 
   
  Calculated Power Using Harmonic Mean Minus Simulated Power 

5 10 -.021 -.027 -.005 -.019 -.014 -.009 -.004 -.003 -.012 
 25 -.096 -.084 -.026 -.035 -.045 -.030 -.019 -.036 -.023 
 50 -.153 -.115 -.027 -.066 -.070 -.033 -.014 -.020 -.026 

10 10 -.009 .001 -.003 .004 .004 -.005 .003 -.007 .007 
 25 -.033 -.012 -.001 -.015 -.018 -.004 .001 .001 -.009 
 50 -.058 -.030 -.002 -.010 -.023 -.005 -.007 -.010 -.018 

15 10 .004 -.003 -.002 -.006 .002 -.001 -.011 .001 .002 
 25 -.002 -.001 -.001 .003 .000 .001 -.004 .011 -.005 
 50 -.036 -.010 -.001 -.011 -.009 -.005 -.003 -.004 -.006 

20 10 -.013 -.009 -.002 -.020 -.012 -.004 -.001 -.001 -.006 
 25 .004 -.001 -.001 -.003 .001 .000 -.005 .001 .007 
 50 -.009 -.002 .000 -.010 .005 -.003 .003 -.002 -.004 

30 10 -.045 -.016 -.002 -.009 -.006 -.004 .003 -.005 -.005 
 25 .003 -.004 .000 -.005 .001 .003 .004 -.002 -.002 
 50 -.002 .000 .000 -.004 -.006 -.001 -.001 .012 -.012 
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Appendix 

Table A1 
Differences in Required Clusters Sampled to Equal Simulated Power When J = 20 Clusters 

  Calculation of Power Using Arithmetic Average  
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 0 0 -1 1 0 -1 2 0 0 
 25 -2 -2 -3 0 -2 -3 -1 -1 -2 
 50 -3 -5 -5 -3 -4 -4 -3 -2 -3 

10 10 0 0 -1 0 0 0 1 0 -1 
 25 -1 -2 -2 1 0 -1 2 1 -1 
 50 -2 -3 -3 -1 -2 -2 -1 0 -2 

15 10 0 -1 -1 1 0 -1 2 0 -1 
 25 0 -1 -1 1 0 -1 1 1 0 
 50 -1 -2 -2 0 -1 -2 2 0 -1 

20 10 0 0 -1 1 0 -1 -1 0 -1 
 25 0 -1 -1 0 0 0 3 1 0 
 50 -1 -1 -2 0 -1 -1 1 0 -1 

30 10 -1 -2 -2 1 -1 -2 2 0 0 
 25 0 0 -1 0 0 -1 1 1 0 
 50 0 -1 -2 1 0 -1 2 1 -1 
   
  Calculation of Power Using Harmonic Mean  

5 10 1 1 0 2 1 0 3 1 0 
 25 4 5 3 4 2 2 2 2 1 
 50 8 6 6 4 3 2 1 1 1 

10 10 0 0 -1 0 0 0 1 0 -1 
 25 1 0 0 2 1 0 3 1 0 
 50 3 2 1 2 1 1 0 1 0 

15 10 0 0 0 2 0 -1 2 0 0 
 25 0 0 -1 1 1 -1 2 1 1 
 50 1 0 0 2 0 0 2 1 0 

20 10 1 1 0 1 1 0 -1 0 0 
 25 0 -1 -1 0 0 0 3 1 0 
 50 0 0 0 1 0 -1 2 1 0 

30 10 2 0 0 3 1 0 3 1 0 
 25 0 0 -1 0 0 -1 1 1 0 
 50 0 -1 -1 1 0 -1 3 1 -1 

Note: The maximum number of level-1 units per cluster has been restricted to 10, 25, and 50 to 
condense output. The full table of results is available upon request by the first author.  
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Table A2 
Differences in Required Clusters Sampled to Equal Simulated Power When J = 30 Clusters 

  Calculation of Power Using Arithmetic Average  
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 1 -2 -1 0 0 -1 1 -1 -1 
 25 -3 -4 -5 -3 -4 -5 -1 -3 -3 
 50 -5 -7 -8 -6 -6 -7 -3 -4 -5 

10 10 -1 -1 -1 2 -1 -1 3 0 0 
 25 -1 -2 -3 0 -2 -3 -1 -1 -1 
 50 -4 -5 -5 -3 -3 -4 -1 -2 -3 

15 10 0 -1 -1 1 0 -1 1 0 -1 
 25 0 0 -2 -1 -1 -2 1 0 -1 
 50 -3 -3 -4 0 -1 -3 1 -1 -1 

20 10 0 -1 -2 0 -2 -1 -1 0 -1 
 25 0 -1 -1 1 -2 -1 2 0 -1 
 50 -2 -2 -2 -2 -2 -1 1 0 -1 

30 10 -2 -3 -3 -1 -2 -3 1 -1 -2 
 25 -2 -1 -1 1 0 -1 0 0 -1 
 50 -1 -1 -1 0 -1 -2 2 0 0 
   
  Calculation of Power Using Harmonic Mean  

5 10 3 0 1 1 2 0 2 0 0 
 25 7 7 5 4 3 2 4 1 1 
 50 12 10 9 5 4 3 3 2 1 

10 10 -1 -1 -1 2 -1 -1 3 0 0 
 25 2 0 0 2 0 -1 0 0 0 
 50 3 2 2 2 2 1 1 0 0 

15 10 1 0 0 1 0 -1 1 0 -1 
 25 1 0 -1 0 -1 -1 1 0 0 
 50 1 1 0 2 1 0 2 0 0 

20 10 2 0 0 1 -1 0 -1 1 0 
 25 0 -1 -1 1 -2 -1 2 0 -1 
 50 0 0 0 0 -1 0 2 0 -1 

30 10 2 1 1 2 1 -1 2 0 -1 
 25 -2 -1 -1 1 0 -1 0 0 -1 
 50 0 -1 -1 0 -1 -1 2 0 0 
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Table A3 
Differences in Required Clusters Sampled to Equal Simulated Power When J = 50 Clusters 

  Calculation of Power Using Arithmetic Average  
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 -1 -2 -2 -2 -2 -2 0 -2 0 
 25 -7 -7 -6 -6 -7 -8 -4 -6 -5 
 50 -11 -13 -12 -9 -10 -12 -6 -7 -9 

10 10 0 -1 0 -2 0 -1 0 -1 -1 
 25 -3 -4 -3 -3 -3 -3 0 -2 -2 
 50 -7 -6 -4 -5 -6 -6 -5 -4 -5 

15 10 -2 -1 -1 0 -1 -3 1 0 -2 
 25 -1 0 -1 0 -2 -2 -1 -1 0 
 50 -5 -5 -5 -5 -3 -3 -1 -4 -3 

20 10 0 -3 -3 -3 -1 -2 1 -1 -2 
 25 0 0 1 -1 -2 -1 0 -1 0 
 50 -2 -2 -5 -1 -3 -3 0 -2 -3 

30 10 -3 -4 -4 -5 -4 -4 -1 -2 -2 
 25 0 -2 6 1 -1 0 0 -1 0 
 50 -1 -2 3 -1 -3 -1 0 0 -1 
   
  Calculation of Power Using Harmonic Mean  

5 10 3 2 2 1 1 1 2 -1 2 
 25 11 11 12 7 6 4 3 1 2 
 50 19 17 17 11 9 6 4 3 1 

10 10 0 -1 0 -2 0 -1 0 -1 -1 
 25 3 1 2 0 0 0 2 -1 0 
 50 6 7 9 2 1 2 -1 0 -1 

15 10 -1 0 0 1 0 -2 2 1 -2 
 25 1 1 1 1 -1 -1 0 -1 0 
 50 1 1 1 -1 0 0 1 -2 -1 

20 10 3 0 0 0 1 0 2 0 -1 
 25 0 0 1 -1 -2 -1 0 -1 0 
 50 2 2 -2 1 -1 0 1 -1 -2 

30 10 4 3 3 -1 1 1 2 1 0 
 25 0 -1 6 1 -1 0 0 -1 0 
 50 0 -1 4 0 -3 0 0 0 -1 
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Table A4 
Differences in Required Clusters Sampled to Equal Simulated Power When J = 60 Clusters 

  Calculation of Power Using Arithmetic Average  
  ρ = 0.05 ρ = 0.10 ρ = 0.20 

Min i/j Max i/j δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4 
5 10 -2 -2 -4 0 -3 -3 -1 -2 -2 
 25 -8 -9 -8 -9 -10 -9 -4 -5 -7 
 50 -13 -13 -13 -12 -13 -14 -9 -11 -10 

10 10 1 -1 1 -1 -1 0 -1 0 -2 
 25 -3 -4 -4 -2 -3 -3 -3 -3 -2 
 50 -8 -7 -8 -8 -7 -8 -4 -5 -3 

15 10 -3 -2 0 0 -2 -2 2 -1 -2 
 25 -2 -2 2 -2 -2 -2 0 -3 -1 
 50 -4 -5 5 -4 -4 -2 -2 -3 -3 

20 10 -3 -3 -2 0 -2 -2 -1 -2 -2 
 25 -2 -1 5 0 -1 -1 1 -1 -2 
 50 -4 -4 -1 -2 -5 -1 -2 -2 -2 

30 10 -4 -6 -5 -5 -6 -5 -4 -3 -3 
 25 -1 1 0 0 -1 -3 -1 -1 -1 
 50 -2 -2 0 -1 0 0 0 -3 1 
   
  Calculation of Power Using Harmonic Mean  

5 10 3 3 0 3 1 1 1 0 1 
 25 15 14 14 6 5 6 4 4 2 
 50 24 24 22 11 9 8 3 1 2 

10 10 1 -1 1 -1 -1 0 -1 0 -2 
 25 4 2 2 2 1 1 0 -1 0 
 50 7 8 6 1 2 1 1 0 2 

15 10 -1 0 1 1 -1 -1 2 -1 -1 
 25 -1 -1 4 -1 -1 -1 1 -2 0 
 50 4 3 14 1 0 3 0 -1 0 

20 10 1 1 2 3 1 1 0 -1 0 
 25 -1 0 5 0 -1 -1 1 -1 -2 
 50 0 0 4 1 -2 2 -1 -1 0 

30 10 5 3 3 1 0 1 -1 0 0 
 25 -1 1 0 0 -1 -2 -1 0 -1 
 50 -1 0 0 0 0 0 0 -2 1 
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