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Hierarchical organization of schooling in all nations insures that international

large-scale assessment data are multilevel where students are nested within

schools and schools are nested within nations. Longitudinal follow-up of these

students adds an additional level. Hierarchical or multilevel models are appro-

priate to analyze such data (Raudenbush and Bryk 2002; Goldstein 2003). A

ubiquitous problem, however, is that explanatory as well as outcome variables

may be subject to missingness at any of the levels, posing the data analyst with

a challenge.

This chapter explains how to efficiently analyze a two-level hierarchical linear

model given incompletely observed data where students at level 1 are nested

within schools at level 2. This social setting may also apply to occasions nested

within individuals, students nested within nations, and schools nested within

nations. The efficient missing data method we use in this chapter aims to analyze

all available data (Shin and Raudenbush 2007). The “all available data” include
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children with item as well as unit nonresponse as they belong to a school and a

nation having observed data and thus add information to strengthen inferences

at higher levels (Shin and Raudenbush 2011; Shin 2012).

Section 1 clarifies the assumptions we make about missing data for efficient

analysis of multilevel incomplete data. Section 2 summarizes currently avail-

able methods for analysis of multilevel incomplete data. Section 3 introduces

the missing data method we use in this chapter and explains how it efficiently

estimates a hierarchical linear model given incomplete data. Section 4 illus-

trates efficient analysis of a hierarchical linear model given the incompletely

observed US data from the Programme for International Student Assessment

(PISA, OECD 2007). Section 5 illustrates an analysis strategy with plausible

values given the PISA data where each missing value of the outcome variable is

filled in or imputed with five plausible values, but predictors may be subject to

missingness. Section 6 discusses the extensions and limitations of the efficient

missing data method.

1 Assumptions about Missing Data

In this chapter, we consider analysis of incompletely observed two-level data

with the most common missing data pattern in education, a general missing

pattern. That is, the missing data method to be introduced in section 3 ef-

ficiently handles explanatory as well as outcome variables that are subject to

missingness with any missing patterns at a single level or multiple levels. Con-

sequently, we do not distinguish different types of missing patterns produced by

item or unit nonresponse.

Nearly all educational data sets are multilevel and have missing data. Un-

til quite recently, researchers facing multilevel incomplete data analysis have

dropped cases with missing values. The complete-case analysis is more prob-
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lematic in multilevel analysis than it is in single-level analysis. A missing na-

tional characteristic, for example, implies deletion of not only the nation but

all nested schools and students within the nation. Such analysis lowers sample

sizes at multiple levels to produce inefficient inferences. Consequently, the stan-

dard errors of parameter estimates will be larger than they should, resulting

in conservative hypothesis tests and excessively wide confidence intervals. In

addition, the missing data patterns may be associated with the deleted data

to produce biased inferences (Little and Rubin 2002). Unbiased analysis is

achieved when missing data are a random sample of the complete data, so that

the missing data patterns are not associated with complete data, i.e., when data

are missing completely at random (MCAR, Rubin 1976). However, data MCAR

is seldom a reasonable assumption.

Missing values may be imputed or filled in by ad hoc imputation meth-

ods such as a sample-mean substitution and a regression model-based predic-

tion. The substituted or predicted values, however, under-represent the true

uncertainty in the missing values to produce underestimated standard errors of

parameter estimates. Consequently, the resulting hypothesis tests will be too

liberal and the confidence intervals too narrow. Missing values may also be

filled in by other imputation methods such as a last-observation-carry-forward

method (Krueger 1999) and hot deck imputation (Little and Rubin 2002) where

missing values are replaced with observed values of similar units. These single

imputation methods take each imputed value as if it is the true value for sub-

sequent complete-data analysis. The estimation, however, does not take into

account uncertainty due to missing data to yield understated standard errors

of parameter estimates. In general, these ad hoc imputation methods are not

recommended unless missing data consist of a small fraction of complete data.

In this chapter, we shall employ two comparatively mild assumptions in
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many applications that data are missing at random (MAR) and that the pa-

rameters, θ, of the desired hierarchical model are distinct from the nuisance pa-

rameters, φ, of the missing data generating mechanism or the model for missing

patterns (Rubin 1976). The MAR assumption means that missing data patterns

are conditionally independent of missing data given observed data. That is, the

association between missing data patterns and complete data is explained by

observed data. When variables subject to missingness are highly correlated, for

example, the observed data are likely to explain the association between missing

data patterns and complete data to make the MAR assumption plausible (Shin

and Raudenbush 2011; Shin 2012). The MAR assumption requires that we

analyze all observed data for efficient analysis. The distinct parameter assump-

tion is reasonable if there is little reason to believe that knowing the nuisance

parameters φ provides extra information on the desired parameters θ (Schafer

1997). In regression analysis for the effect of socioeconomic status on a math

achievement outcome, for example, a student may not take the exam because

she is sick or because she moves to a different school due to relocation of her

family. It is not reasonable to believe that knowing such a mechanism would

provide more information about the desired effect. In that case, the distinct

parameter assumption is reasonable. On the other hand, if low performers are

more likely to miss the exam than high performers such that knowing φ of the

missing data generating mechanism is informative about the desired effect, then

the distinct parameter assumption is not reasonable. Data missing under these

two assumptions are called ignorable (Little and Rubin 2002). The ignorable

missing data assumption is much weaker than the MCAR assumption (Rubin

1976; Schafer 1997; Little and Rubin 2002). Note that the MCAR implies the

distinct parameter assumption.

Missing data neither MAR nor MCAR are said to be not missing at random
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(NMAR, Rubin 1976; Little and Rubin 2002). Under this assumption, missing

patterns are associated with observed as well as missing data. A longitudinal

study, for example, produces informative dropouts where the dropout patterns

are associated with unobserved as well as observed outcomes (Diggle and Ken-

ward 1994; Little 1995; Muthén et al. 2011). Consequently, both θ and φ have to

be estimated from the joint distribution of complete data and missing patterns.

This amounts to estimating, in addition to the desired hierarchical model, the

model for missing patterns. Because the joint model involves missing data, the

model assumptions yield parameters that are not uniquely identifiable, or pa-

rameter estimates that are not supported by observed data (Little 2009). Such

a parameter may be constrained for identification or assumed to take a value in

estimation. In general, little evidence exists in observed data to support such

a parameter estimate. Consequently, sensitivity analysis should follow estima-

tion of the joint distribution over the range of plausible values of the parameter

(Little 1995, 2009). Therefore, analysis given data NMAR is more challenging

than that given data MAR or MCAR.

In this chapter, we employ the ignorable missing data assumption that is

quite plausible in many applications (Schafer 1997; Little and Rubin 2002).

It is also the weakest condition under which we produce valid inferences by

analyzing the desired hierarchical linear model only, i.e., by ignoring the missing

data generating mechanism (Rubin 1976). The next section reviews currently

available methods for analysis of ignorable multilevel missing data.

2 Missing Data Methods

A wide array of methods exist for efficient analysis of single-level ignorable miss-

ing data (Rubin 1976, 1987, 1996; Dempster et al. 1977; Meng 1994; Schafer

1997, 2003; Little and Rubin 2002). In particular, model-based multiple imputa-
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tion (Rubin 1987, 1996) is now routinely available based on widely used software

packages such as NORM (Schafer 1999) and SAS (PROC MI, Y.C. Yuan 2000).

These single-level methods, however, cannot be applied validly to hierarchical

missing data and their extension to multilevel data entails challenges (Demp-

ster et al. 1981; Schafer and Yucel 2002; Goldstein and Browne 2002, 2005;

Yucel 2008; Shin and Raudenbush 2007, 2010, 2011). If methods developed

for the multiple imputation of single-level data are applied to multilevel data,

the variance-covariance structure of the imputed data sets will not accurately

represent the multilevel educational processes that generated the data, nor will

the structural relations at each level be captured correctly. When multilevel

data are analyzed by a single-level method or under the misspecified number of

levels, the resulting inferences may be considerably biased or inefficient (Shin

2003; Shin and Raudenbush 2011; Van Buuren 2011).

Current widely available methods for efficient analysis of ignorable multi-

level missing data are quite limited. A two-level multivariate hierarchical linear

model, where level-1 outcomes are subject to missingness given completely ob-

served covariates, may be efficiently estimated via software packages such as

Mplus (Muthen and Muthen 2010) and MLwiN (Rasbash et. al. 2009; Browne

2012). With a univariate outcome in the model, this approach amounts to the

complete-case analysis. When outcomes and covariates have missing values in

the hierarchical model, however, a joint distribution of the variables subject to

missingness has to be formulated and estimated to efficiently handle the missing

data; and given the estimated distribution, multiple imputation of the complete

data may be generated for subsequent analysis of the desired hierarchical model

(Rubin 1987). Software packages such as WinBUGS (Spiegelhalter et al. 2000;

Lunn et al. 2009), Mplus (Muthen and Muthen 2010; Asparouhov and Methen

2010), MLwiN (Browne 2012) and R (Yucel 2008) provide Bayesian methods
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that enable formulation and estimation of such a joint distribution, and genera-

tion of the multiple imputation for subsequent analysis of the hierarchical model.

However, these software packages provide little guidance as to how to explic-

itly formulate the joint distribution corresponding to the hierarchical model.

For example, formulation of the joint distribution given a level-2 covariate sub-

ject to missingness in the hierarchical model is neither automated nor clearly

described by any of the software packages. In general, the transformation be-

tween the joint distribution and the hierarchical model is nontrivial, involving

an identification problem, and great care should be taken in formulation of the

joint distribution that will identify the hierarchical model (Meng 1994; Shin and

Raudenbush 2007). Otherwise, the estimation may produce biased point and

uncertainty estimates of the hierarchical model or the formulated joint distribu-

tion may be extremely high-dimensional to estimate well (Shin and Raudenbush

2007, 2013).

Multilevel ignorable missing data may be multiply imputed by univariate

sequential regression models (Raghunathan et al. 2001), which is also known

as multiple imputation by fully conditional specification (Van Buuren et al.

2006). Software packages such as IVEware (Raghunathan et al. 2001) and Mul-

tivariate Imputation by Chained Equations (MICE, van Buuren and Groothuis-

Oudshoorn 2011) use a Bayesian method to produce multiple imputation. This

approach specifies a univariate regression model for each variable subject to

missingness conditional on all other variables and generates multiple imputa-

tion based on the fitted model. While flexible in dealing with a mixture of

continuous and discrete variables subject to missingness, the chained univariate

models may not be compatible with a joint model (Horton and Kleinman 2007;

van Buuren and Groothuis-Oudshoorn 2011). The implied joint model by the

series of univariate regression models may not exist (Rubin 2003; Van Buuren
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et al. 2006). This approach has not been extended to outcomes and covariates

subject to missingness at multiple levels of a hierarchical model (Van Buuren

2011).

The next section introduces an efficient missing data method via multiple

imputation and its software for unbiased and efficient estimation of a two-level

hierarchical linear model given ignorable missing data. A key feature is that

the data analyst need only know the desired hierarchical model. This approach

removes or substantially reduces the burden of the incomplete data analysis from

the data analyst as intended by the method of multiple imputation (Rubin 1987,

1996; Meng 1994). Consequently, with the software in hand, the incomplete

hierarchical data analysis will introduce little more challenge than the complete-

data counterpart to the data analyst.

3 Efficient Handling of Missing Data

This section explains how to efficiently estimate a two-level hierarchical linear

model (HLM2) given incomplete data according to the missing data method

of Shin and Raudenbush (2007). The method employs a six-step analysis pro-

cedure to: (1) specify a desired hierarchical linear model given incompletely

observed hierarchical data; (2) reparametrize as the joint distribution of vari-

ables, including the outcome, that are subject to missingness conditional on all

of the covariates that are completely observed under multivariate normality; (3)

efficiently estimate the joint distribution using maximum likelihood (ML); (4)

generate multiple imputation of complete data based on the ML estimates of

the joint model; (5) analyze the desired hierarchical model by complete-data

analysis given the multiple imputation; and finally (6) combine the multiple

hierarchical model estimates (Rubin 1987). These steps have been implemented

in a software package HLM 7 (Raudenbush et al. 2011). Given the hierarchical
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linear model that a data analyst specifies at the first step, HLM 7 automates

the rest of the analysis procedure to produce efficient analysis of the hierarchical

model. Consequently, the data analyst need only know her desired hierarchical

linear model which is no different from the complete-data analysis.

In this section, we introduce two comparatively simple examples of hierarchi-

cal linear models with incomplete data to describe the problem that researchers

confront in the conventional incomplete data analysis and how the missing data

method resolves the problem by enabling efficient analysis via multiple impu-

tation. One is a random-intercept model, and the other a random-coefficients

model. Then, we present a reasonably general HLM2 given incomplete data,

which may be efficiently analyzed by the method. Finally, we describe how to

estimate the desired parameters and make inferences given multiple imputation

(Rubin 1987).

3.1 Random-Intercept Model

To see how to handle multilevel incomplete data efficiently, it is instructive to

consider a simple random-intercept model (Raudenbush and Bryk 2002). Let

child i attend school j for i = 1, · · · , nj and j = 1, · · · ,M . We consider a simple

child-level or level-1 model

Yij = β0j + β1jXij + εij (1)

where Yij is a univariate outcome variable, β0j is the level-1 intercept, β1j is the

effect of a level-1 covariate Xij and child-specific random effect εij is normally

distributed with mean zero and variance σ2, i.e., εij ∼ N(0, σ2). Note that the

model (1) is single-level within school j. Each coefficient in the level-1 model (1)

becomes an outcome variable that may vary across schools in the school-level
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or level-2 model. We consider level-2 models

β0j = γ00 + γ01Zj + u0j , (2)

β1j = γ10

where γ00, γ01 and γ10 are level-2 coefficients, Zj is a level-2 covariate, and

school-specific random effect u0j ∼ N(0, τ) is independent of child-specific εij .

By replacing β0j and β1j in the level-1 model (1) with γ00 +γ01Zj +u0j and γ10

on the right-hand side of the level-2 models, respectively, we obtain a random-

intercept model or HLM2

Yij = γ00 + γ01Zj + γ10Xij + u0j + εij . (3)

With data completely observed, this model may be analyzed by standard mul-

tilevel software such as SAS, HLM 7 and MLwiN (Rasbash et. al. 2009).

Difficulties arise given incompletely observed data. We consider (Yij , Xij , Zj)

all subject to missingness with a general missing pattern in the desired model

(3). Missing data may occur under seven different patterns for child i attending

school j: One, two or all three values of (Yij , Xij , Zj) may be missing. In general,

p variables subject to missingness may produce up to 2p − 1 different missing

patterns. Complete-case analysis drops children or observations that belong to

any one of the missing patterns. It also deletes school j with missing Zj which

entails deletion of all students attending the school. The resulting inferences

will be inefficient and subject to bias. Ad hoc single-imputation methods fill in

missing values for subsequent complete-data analysis. The imputed data under-

represent uncertainty due to missing data in estimation. In general, hypothesis

tests will be liberal, rejecting the null hypothesis too often. These methods are

not recommended unless children and schools with missing values consist of a
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small fraction of all children and schools.

Efficient analysis of the model (3) has to analyze all available data. That is,

rather than dropping observations that belong to any one of the seven missing

patterns in the complete-case analysis, we drop child i in school j if and only

if she belongs to one missing pattern: all three values of (Yij , Xij , Zj) missing.

If one of (Yij , Xij , Zj) is missing for the child, the other two values available

are analyzed; and if two values out of (Yij , Xij , Zj) are missing, the one value

observed is analyzed. Consequently, children with unit non-response are also

analyzed as long as they attend schools having observed Zj to strengthen in-

ferences at school level. Consider, for example, school j having a single child

sampled (nj = 1) who misses both Yij and Xij , but school j has Zj observed.

Note that school j is dropped if and only if all school mates miss both Yij and

Xij and the school misses Zj .

Efficient analysis of the HLM2 (3) using all available data may be formalized

in the joint distribution of (Yij , Xij , Zj) subject to missingness


Yij

Xij

Zj

 =


α1

α2

α3

+


b1j

b2j

b3j

+


e1ij

e2ij

0

 (4)

for the means (α1, α2, α3) of (Yij , Xij , Zj), and school-specific random effects
b1j

b2j

b3j

 ∼ N




0

0

0

 ,

ψ11 ψ12 ψ13

ψ12 ψ22 ψ23

ψ13 ψ23 ψ33


 of (Yij , Xij , Zj) independent of

child-specific random effects

 e1ij

e2ij

 ∼ N

 0

0

 ,
 σ11 σ12

σ12 σ22


 of (Yij , Xij)

where ψ11 = var(b1j), ψ12 = cov(b1j , b2j), ψ13 = cov(b1j , b3j), ψ22 = var(b2j), ψ23 =

cov(b2j , b3j), ψ33 = var(b3j), σ11 = var(e1ij), σ12 = cov(e1ij , e2ij) and σ22 =
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var(e2ij). Note that Zj stays the same among schoolmates with no level-1 ran-

dom effect. The missing data method for the desired hierarchical model (3)

via efficient estimation of the joint model (4) produces efficient analysis of the

hierarchical model as the conditional distribution of Yij given Xij and Zj (Shin

and Raudenbush 2007).

To explicitly show how to analyze all available data, we first consider children

with a single value missing. If a single value Yij is missing for child i attending

school j, the two observed values (Xij , Zj) of the child enable estimation of

 Xij

Zj

 =

 α2

α3

+

 b2j

b3j

+

 e2ij

0

 ∼ N

 α2

α3

 ,
 ψ22 + σ22 ψ23

ψ23 ψ33


 (5)

which adds information to estimation for (α2, α3, ψ22, ψ23, ψ33, σ22); if a single

value Xij is missing, the other two observed values enable estimation of a bivari-

ate model (Yij , Zj) to strengthen inferences involving (α1, α3, ψ11, ψ13, ψ33, σ11);

and with Zj missing, child i with observed (Yij , Xij) adds information to esti-

mation for (α1, α2, ψ11, ψ12, ψ22, σ11, σ12, σ22) in a bivariate model (Yij , Xij).

Let us now consider children with two values missing. Child i missing

(Yij , Xij) adds information to estimation of a univariate model Zj ∼ N(α3, ψ33)

at school level. Take, for example, school j having a single child (nj = 1) with

unit nonresponse, but the school has observed Zj . If the child misses (Yij , Zj),

she contributes to estimation of Xij ∼ N(α2, ψ22 + σ22); and if she misses

(Xij , Zj), she adds information to estimation of Yij ∼ N(α1, ψ11 + σ11).

Consequently, all partially observed cases contribute to estimation of the

joint model (4), and thus of the desired model (3). The only case when school

j is dropped from analysis happens if and only if school j misses Zj and all nj

schoolmates miss both Yij and Xij . Therefore, the method analyzes all available

data to achieve efficient analysis of the desired hierarchical model (3).
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Completely Observed Covariates. We now consider completely ob-

served covariates Uij and Wj at levels 1 and 2, respectively, in addition to

(Yij , Xij , Zj) subject to missingness. The desired level-1 model is

Yij = β0j + β1jXij + β2jUij + εij (6)

where β2j is the effect of the level-1 covariate Uij and everything else is defined

in the same way as that of the model (1). We consider level-2 models

β0j = γ00 + γ01Zj + γ02Wj + u0j , (7)

β1j = γ10,

β2j = γ20

where γ00, γ01, γ02, γ10 and γ20 are level-2 coefficients, Zj and Wj are level-2

covariates, and school-specific random effect u0j ∼ N(0, τ) is independent of

child-specific εij ∼ N(0, σ2). The desired random-intercept model or HLM2 is

Yij = γ00 + γ01Zj + γ02Wj + γ10Xij + γ20Uij + u0j + εij . (8)

To efficiently handle missing data, we formulate the joint distribution of

(Yij , Xij , Zj) subject to missingness conditional on (Uij ,Wj) completely ob-

served. That is, we formulate the joint model as Equation (4) where α1, α2

and α3 are replaced with α10 + α11Wj + α12Uij , α20 + α21Wj + α22Uij and

α30 +α31Wj , respectively, and every other component is the same as it appears

in the model (4). Note that the level-2 covariate Wj has its effects on level-1

as well as level-2 responses (Yij , Xij , Zj) while the level-1 covariate Uij affects

level-1 responses (Yij , Xij) only. The efficient handling of missing data for the
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joint model (4) also applies here for the joint model corresponding to the HLM2

(8).

3.2 Random-Coefficients Model

This section explains the strategy for efficient analysis of a random-coefficients

model given incomplete data. We consider the level-1 model (6) where the

intercept as well as the coefficient of Uij vary randomly across schools at level

2. Thus, we consider level-2 models

β0j = γ00 + γ01Zj + γ02Wj + u0j , (9)

β1j = γ10,

β2j = γ20 + u2j

where school-specific random effects uj ∼ N(0, τ) are independent of child-

specific εij ∼ N(0, σ2) for uj =

 u0j

u2j

 and τ =

 τ00 τ02

τ02 τ22

 and everything

else is defined identically as the counterpart of the level-2 models (7). The

desired random-coefficients model or HLM2 is

Yij = γ00 + γ01Zj + γ02Wj + γ10Xij + γ20Uij + u0j + u2jUij + εij (10)

for (Yij , Xij , Zj) subject to missingness, and (Uij ,Wj) completely observed.

Conventional analysis of the HLM2 (10) confronts the same problems with the

seven missing data patterns as does that of the random-intercept model (3).

Efficient handling of missing data for the hierarchical model (3) also applies

here for efficient analysis of the hierarchical model (10). We consider the joint

distribution of (Yij , Xij , Zj) subject to missingness conditional on completely
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observed Uij and Wj as


Yij

Xij

Zj

 =


α10 + α11Wj + α12Uij

α20 + α21Wj + α22Uij

α30 + α31Wj

+


b0j + b1jUij

b2j

b3j

+


e1ij

e2ij

0

 (11)

where (α10, α20, α30) are the intercepts, (α11, α21, α31) are the effects of Wj on

(Yij , Xij , Zj), respectively, (α12, α22) are the effects of Uij on (Yij , Xij), respec-

tively, and school-specific



b0j

b1j

b2j

b3j


∼ N





0

0

0

0


,



ψ00 ψ01 ψ02 ψ03

ψ01 ψ11 ψ12 ψ13

ψ02 ψ12 ψ22 ψ23

ψ03 ψ13 ψ23 ψ33




are independent of child-specific

 e1ij

e2ij

 ∼ N

 0

0

 ,
 σ11 σ12

σ12 σ22


.

Covariates Subject to Missingness Having Random Effects. Effi-

cient estimation of the random-coefficients model (10) requires that covariate

Uij having random coefficient u2j be completely observed. Difficulty arises

when Uij is subject to missingness in the hierarchical model. The joint model

for (Yij , Xij , Uij , Zj) subject to missingness has to be formulated for efficient

handling of missing data while Uij needs to be given on the right hand side of

the model for estimation of its random coefficient. Such a joint model cannot

be expressed as a multivariate normal distribution so that the normal factoriza-

tion of the joint model that leads to the hierarchical model as the conditional

distribution of Yij given covariates does not apply. Consequently, it is difficult

to efficiently handle missing data in the hierarchical model via ML estimation of

the multivariate normal joint model. We assume that covariates having random

effects are completely observed, which is a limitation of the method.
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3.3 General HLM2

We now express a general HLM2 given incomplete data, which can be efficiently

analyzed by the missing data method. The model is

Yij = XT
ijγx + ZTj γz + UTijγu +WT

j γw +DT
ijuj + εij (12)

where Yij is a univariate outcome variable, Xij and Zj are vectors of p1 level-1

and p2 level-2 covariates subject to missingness having fixed effects γx and γz,

respectively, Uij and Wj are vectors of p3 level-1 and p4 level-2 covariates com-

pletely observed having fixed effects γu and γw, respectively, and Dij is another

vector of p5 level-1 covariates completely observed having level-2 unit-specific

random effects uj ∼ N(0, τ) independent of level-1 unit-specific random errors

εij ∼ N(0, σ2) for a p5-by-p5 matrix τ and scalar σ2. The desired parameters

are θ = (γx, γz, γu, γw, τ, σ
2).

The hierarchical models considered so far are special cases of the HLM2 (12).

For example, the random-intercept model (3) is a special case of the HLM2 (12)

where Xij and Zj are scalar, Uij = 0, Wj = Dij = 1, γx = γ10, γz = γ01, γu = 0,

γw = γ00, and uj = u0j . Although the general HLM2 (12) is not required to

represent an intercept, many applications do where the first elements of Wj

and Dij are equal to one with the corresponding first elements of γw and uj

representing the mean intercept and the random deviation of the intercept from

the mean, respectively. We require that Dij be completely observed. Note that

Uij and Dij may share common covariates. For example, Dij may be a subset

of covariates in Uij .

The p variables (Yij , Xij , Zj) subject to missingness in the HLM2 (12) may

produce up to 2p−1 different missing patterns for p = 1+p1+p2. Complete-case

analysis drops children who belong to any one of the missing patterns. As the

number of p variables subject to missingness increases, a number of children and
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schools may have to be dropped from the analysis which results in inefficient

inferences that may also be substantially biased.

To describe a joint model that efficiently handles missing data in the HLM2

(12), let A ⊗ B be a Kronecker product that multiplies a b-by-b matrix B to

each element of an a-by-a matrix A (Magus and Neudecker 1988), and let In

denote an n-by-n identity matrix for a positive integer n. For example, I3⊗B is

a (3× b)-by-(3× b) diagonal matrix with diagonal submatrices (B,B,B) and all

other elements equal to zero. Given the HLM2 (12) with missing data, we for-

mulate the joint distribution of (Yij , Xij , Zj) subject to missingness conditional

on (Uij ,Wj , Dij) completely observed as


Yij

Xij

Zj

 =


U∗Tij α1

(Ip1 ⊗ U∗Tij )α2

(Ip2 ⊗WT
j )α3



DT
ijb1j

b2j

b3j

+


e1ij

e2ij

0

 (13)

for U∗ij = [WT
j UTij ]

T , vectors α1 and α2 of the fixed effects of U∗ij on Yij and

Xij , respectively, a vector α3 of the fixed effects of Wj on Zj , and school-specific

random effects


b1j

b2j

b3j

 ∼ N



0

0

0

 ,

ψ11 ψ12 ψ13

ψ12 ψ22 ψ23

ψ13 ψ23 ψ33


 and child-specific

random effects

 e1ij

e2ij

 ∼ N

 0

0

 ,
 σ11 σ12

σ12 σ22


 independent.

The missing data method for the HLM2 (12) via efficient estimation of the

joint model produces efficient analysis of the hierarchical model as the condi-

tional distribution of Yij given covariates (Shin and Raudenbush 2007). Note

that given complete data, the HLM2 (12) is Yij = UTijγu +WT
j γw +DT

ijuj + εij

equal to the joint model (13). The same strategy described above is used for

efficient handling of missing data in (Yij , Xij , Zj) where child i with at least a
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single value observed contributes to estimation of the joint model. See Shin and

Raudenbush (2007) for ML estimation of the joint model and multiple impu-

tation given the ML estimates. Note that the variables subject to missingness,

including the outcome, appear on the left-hand side given those completely ob-

served on the right-hand side, which is the required form of the joint model (13)

for efficient handling of missing data and efficient computation.

3.4 Combining Estimates from Multiple Imputation

Analysis of each of m imputed or completed data sets according to the desired

HLM2 (12) produces m sets of θ estimates and their associated variances. Fol-

lowing Rubin (1987) and Schafer (1997), let Q be a parameter or a function

of parameters in θ. Analysis of the tth completed data set produces the ML

estimate Q̂t and the associated variance Ut for t = 1, 2, · · · ,m. The combined

parameter estimate is simply the average

Q =
1

m

m∑
t=1

Q̂t. (14)

The variance associated with the combined estimate is

T = U +

(
1 +

1

m

)
B (15)

that consists of the average within-imputation variance

U =
1

m

m∑
t=1

Ut (16)

and the between-imputation variance

B =
1

m− 1

m∑
t=1

(Q̂t −Q)2. (17)
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The within-imputation variance Ut reflects uncertainty in estimation of Q given

the tth imputed data set (as if the missing values imputed were the true values)

while the between-imputation variance B conveys uncertainty across the m esti-

mates of Q due to missing data. No missing data implies B = 0 so that T = U .

With the infinite number of imputations, the variance (15) associated with Q is

T = U + B. The term (1 + 1/m) in Equation (15) adds extra uncertainty due

to the finite number of m imputations. (Rubin 1987; Schafer 1997; Little and

Rubin 2002)

For inferences on a column vector Q of k elements, Equations (14) to (16) are

of the same form, but Equation (17) becomes B = 1
m−1

∑m
t=1(Q̂t−Q)(Q̂t−Q)T

where (Q̂t −Q)T denotes the vector (Q̂t −Q) transposed.

3.5 Hypothesis Tests

Let Q be a fixed effect or a linear function of fixed effects. We make inferences

about Q based on

Q−Q√
T

∼ tν (18)

where tν is the t distribution with the degrees of freedom

ν = (m− 1)

(
1 +

1

r

)2

(19)

for

r =

(
1 +

1

m

)
B

U
(20)
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estimating “the relative increase in variance due to nonresponse” (Rubin 1987).

Consequently, a (1− α)× 100% confidence interval for Q is

Q± tν,1−α/2
√
T (21)

where tν,1−α/2 is the (1−α/2)×100th percentile from tν . The p-value for testing

a null hypothesis H0 : Q = Q0 against an alternative hypothesis Ha : Q 6= Q0

at a significance level α is

2× P
(
T >

|Q−Q0|√
T

)
(22)

where T is a tν random variable (Rubin 1987; Schafer 1997).

When the between-imputation variance B is low relative to U to yield a low

r such that the degrees of freedom in Equation (19) are high, tν,1−α/2 in the

interval (21) and T in the p-value (22) can be replaced with the corresponding

percentile z1−α/2 and a random variable Z from the standard normal distribu-

tion, respectively. When the relative increase r in variance due to missing data

is high to yield low degrees of freedom, Equation (20) implies that increasing

the number of m imputations decreases r to raise the degrees of freedom. HLM

7 prints the degrees of freedom ν in Equation (19) that can be solved for

r =
(√

ν/(m− 1)− 1
)−1

. (23)

Equation (20) with U replaced with T estimates “the fraction of information

about Q missing due to nonresponse” (Little and Rubin 2002)

s =

(
1 +

1

m

)
B

T
. (24)

Both r and s are positively associated with the between-imputation variance
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B, but negatively associated with the number of m imputations. Frequently,

researchers claim that a few imputations are enough to handle missing data rea-

sonably well based on the fraction of missing information estimated by Equation

(24). The size of the standard error of the Q estimate based on m imputations

relative to the ideal one based on infinitely many imputations is approximately√
1 + s/m (Rubin 1987, p. 114; Schafer 1997, p. 107). When the fraction of

missing information is high at s = 0.5, for example, the standard error
√
T of

Q based on m = 5 imputations will be about
√

1 + 0.5/5 = 1.05 times as high

as the counterpart based on infinitely many imputations. With s = 0.3, as few

as m = 3 imputations will achieve about the same efficiency in terms of the

relative size of standard errors.

To compare model fits based on the likelihood ratio tests, let Q be k pa-

rameters in θ of HLM2 (12) or the full model. We want to test a null hy-

pothesis H0 : Q = Q0 versus an alternative one Ha : Q 6= Q0. Let θ0 be the

parameters of the reduced model under Q = Q0. Consider, for example, a 2-

dimensional Q =

 τ01

τ11

 in θ = (γx, γz, γu, γw, τ, σ
2) for τ =

 τ00 τ01

τ01 τ11


and Q0 =

 0

0

. Then, θ0 has k = 2 parameters less than θ. The Q may also

include a combination of fixed effects, variances and covariances.

Let θ̂t and θ̂t0 be the ML estimates of θ and θ0, respectively, given the tth

completed data set for t = 1, · · · ,m. The log likelihoods l(θ̂t) and l(θ̂t0) evaluated

at θ̂t and θ̂t0, respectively, yield the likelihood ratio statistic dt = 2[l(θ̂t)− l(θ̂t0)].

The test statistic proposed by Li et al. (1991) is

D1 =
d̄/k − (m+ 1)(m− 1)−1r1

1 + r1
(25)
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for d̄ =
∑m
t=1 dt/m where

r1 =

(
1 +

1

m

)[
1

m− 1

m∑
t=1

(√
dt −

√
d
)2]

(26)

is (1 + 1/m) times the sample variance of
√
d1, · · · ,

√
dm for

√
d =

∑m
t=1

√
dt/m

(Little and Rubin 2002). The r1 estimates the average relative increase in

variance due to missing data across the k parameters Q (Schafer 1997). Let

Fk,ν1 denote a random variable from the F distribution with k numerator and

ν1 denominator degrees of freedom for

ν1 = k−3/m(m− 1)(1 + 1/r1)2. (27)

The p-value is given by

P (Fk,ν1 > D1). (28)

With r1 close to zero, ν1 is large so that kD1 has the chi-square distribution

with k degrees of freedom for D1 ≈ d̄/k. Then the p-value (28) may also be

obtained by

P (χ2
k > kD1) (29)

for a chi-square random variable χ2
k with k degrees of freedom. Given multi-

ple imputation, the likelihood ratio statistic dt may be obtained from the tth

completed data set to yield r1, D1 and ν1 for the hypothesis test. The test

statistic D1 yields an approximate range of p-values between one half and twice

the computed p-value (Li et al. 1991).

To obtain a more accurate p-value, let θ̄ =
∑m
t=1 θ̂

t/m and θ̄0 =
∑m
t=1 θ̂

t
0/m

so that d′t = 2[lt(θ̄) − lt(θ̄0)] is the likelihood ratio test statistic evaluated at
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the average ML estimates θ̄ and θ̄0 given the tth completed data set. The test

statistic proposed by Meng and Rubin (1992) is

D2 =
d̄′

k(1 + r2)
(30)

for d̄′ =
∑m
t=1 d

′
t/m where

r2 =
(m+ 1)

k(m− 1)
(d̄− d̄′) (31)

estimates the average relative increase in variance due to missing data across

the k parameters Q (Schafer 1997). The p-value is given by

P (Fk,ν2 > D2) (32)

where the denominator degrees of freedom is

ν2 =

 4 + (u− 4)[1 + (1− 2/u)/r2]2, if u = k(m− 1) > 4

(m− 1)(k + 1)(1 + 1/r2)2/2, otherwise.
(33)

Unlike D1, computation of D2 requires log likelihoods lt(θ̄) and lt(θ̄0) evaluated

at the average ML estimates θ̄ and θ̄0 given the tth completed data set that

HLM7 does not provide at the time of my writing this chapter.

The two approaches to testing H0 : Q = Q0 against Ha : Q 6= Q0 (Li et

al. 1991; Meng and Rubin 1992) are based on the likelihood ratio statistics.

When Q0 involves variance components equal to zero given complete data, the

likelihood ratio test is known to produce a conservative p-value based on the

chi-square distribution with k degrees of freedom (Pinheiro and Bates 2000).

Stram and Lee (1994) suggested use of a mixture of chi-square distributions

to improve the accuracy of the p-value (Pinheiro and Bates 2000; Verbeke and
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Molenberghs 2000; Snijders and Bosker 2012). Given incomplete data, the test

statistic D1 yields an approximate range of p-values between one half and twice

the observed p-value (Li et al. 1991), and the test statistic D2 produces the

p-value (32) that is more accurate than the corresponding p-value (28) (Meng

and Rubin 1992; Schafer 1997; Little and Rubin 2002). The next two sections

show how to analyze a hierarchical linear model given ignorable missing data

by HLM 7 according to the method explained in this section.

4 Data Analysis

This section illustrates how to efficiently analyze hierarchical linear model (12)

given incompletely observed data from the Programme for International Stu-

dent Assessment (PISA, OECD 2007). PISA has been collecting hierarchical

data about 15-year old students attending schools nested within nations every

three years since the year 2000. The data for analysis consists of 5611 students

attending 166 schools in the US from the PISA 2006 data collection. Table

1 summarizes the data. The outcome variable of interest is the mathematics

achievement score (MATH). PISA imputes each missing score five times to pro-

vide five sets of plausible mathematics scores. In this section, we analyze the

first set of plausible mathematics scores summarized in Table 1 as if they were

completely observed. The next section illustrates an analysis strategy with all

plausible values.

To summarize the data for analysis, at level 1, mathematics score (MATH)

and age (AGE) are completely observed while the highest parental occupation

status (HISEI), the highest education level of parents in the number of years of

schooling (PARENTED), family wealth (WEALTH) and first-generation immi-

grant status (IMMIG1) are missing for 390, 61, 34, and 189 students, respec-

tively. The 5611 students score 475 points in mathematics and are 190 months
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old on average; the highest occupation status and education level of parents are

52.46 units and 13.61 years on average, respectively; the average family wealth

is 0.15 units; and 6% of the students are first-generation immigrants. At level

2, the student-to-teacher ratio (STRATIO) is missing for 28 schools, or 17% of

the 166 schools, and the private school indicator (PRIVATE) is missing for 3

schools. The schools have 15.46 students per teacher on average, and 9% of the

schools are private (cf. OECD 2007).

Summary statistics reveal that first-generation immigrants scored 36.08 points

lower than did other students in mathematics achievement on average. In this

section, we ask how much of the difference is attributable to the individual and

school characteristics summarized in Table 1; and, controlling for the individ-

ual and school characteristics, how first-generation immigrants compare with

other students in mathematics achievement. The complete-case analysis drops

1405 students and 28 schools to produce inefficient inferences that may also be

substantially biased. We compare the complete-case analysis with the efficient

missing data analysis given incomplete data.

4.1 Complete-Case Analysis

Preliminary analysis reveals that the school means of the highest parent ed-

ucation (PARENTED), indicative of school quality, vary substantially across

schools with a 95% confidence interval (11.38, 15.82). The effect of the high-

est parent education may vary randomly across schools of different quality. A

random-coefficients model to test such a hypothesis is

Yij = γ00 + γ01STRATIO + γ02PRIV ATE + γ10AGE + γ20HISEI

+γ30PARENTED + γ40WEALTH + γ50IMMIG1

+u0j + u3jPARENTED + εij , (34)
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a special case of the HLM2 (12) where

Yij = MATH, Xij = [HISEI PARENTED WEALTH IMMIG1],

Zj = [STRATIO PRIV ATE], Uij = AGE, Wj = 1, Dij = [1 PARENTED],

γx = [γ20 γ30 γ40 γ50]T , γz = [γ01 γ02]T , γu = γ10, γw = γ00, uj = [u0j u3j ]
T

for τ =

 τ00 τ03

τ03 τ33

. We center HISEI, PARENTED, WEALTH, AGE and

STRATIO around their respective sample means, and carry out the complete-

case analysis by HLM 7 to produce the ML estimates under the heading “CC”

in Table 2. The CC analysis analyzed 4206 students attending 138 schools. The

τ33 estimate is 19 with the associated variance estimate 6.452, not shown in

Table 2. The hypothesis test of interest is

H0 : τ33 = 0 against Ha : τ33 > 0.

Approximate normality of the ML estimator ln(τ̂33) for the natural logorithm

ln(·) produces an approximate 95% confidence interval for ln(τ33) which is trans-

formed to an approximate 95% confidence interval (9.70, 36.90) for τ33. The

interval far away from zero provides some evidence in support of the alterna-

tive hypothesis. For the hypothesis test, HLM 7 produces a χ2 test statistic

196.47 with 136 degrees of freedom based on 137 schools with enough data

(Raudenbush and Bryk 2002, chapter 3). The p-value is less than 0.001 to re-

ject the null hypothesis. Therefore, the CC analysis shows that the effects of

the highest parent education vary randomly across schools, and that attending

a private school, age, the highest parental occupation status, the highest parent

education and family wealth are all positively associated with math achieve-

ment while student-to-teacher ratio and first-generation immigrant status are

not significantly associated with the outcome.
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4.2 Efficient Analysis

Now, we reanalyze the random coefficients model (34) given incomplete data by

HLM 7 according to the efficient missing data method explained in section 3.

The ML estimates based on m = 5 imputations are displayed under the heading

“Efficient” in Table 2. The Efficient analysis considered 5550 students attending

166 schools after dropping 61 students with the highest parent education missing

because the method requires that the covariate having a random coefficient

be completely observed. The τ33 estimate is 19 with the associated variance

estimate 5.382, not shown in Table 2, that is less than the CC counterpart 6.452

above. Consequently, an approximate 95% confidence interval for τ33 is (10.93,

33.11) narrower and farther away from zero than the corresponding CC interval

(9.70, 36.90). To test H0 : τ33 = 0 against Ha : τ33 > 0, we first note that the

null hypothesis τ33 = 0 implies τ03 = 0 so that k = 2. HLM 7 provides multiply

imputed data sets. Given the tth completed data set based on the full model, we

fit both the full and reduced models to obtain the likelihood ratio test statistic

dt and the average d̄ to compute D1 in Equation (25). The average relative

increase in variance due to missing data in Q = [τ03 τ33]T is r1 = 0.003 ≈ 0

to yield the test statistic D1 ≈ d̄/2. Consequently, 2D1 ≈ 50.75 gives the p-

value P (χ2
2 > 50.75) < 0.00001 based on Equation (29). This method provides

the range of the p-value between one half and twice the computed one (Li et

al. 1991). This precision gives enough evidence to reject the null hypothesis

in support of the alternative hypothesis that the effects of the highest parent

education vary randomly across schools.

Parameter estimates with the associated standard errors, degrees of freedom

and p-values are shown under “Efficient” in Table 2. The Efficient analysis

shows that attending a private school, age, the highest parental occupation sta-

tus, the highest parent education and family wealth are all positively associated
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with mathematics achievement as the CC analysis revealed. Controlling for the

individual and school characteristics, however, the first-generation immigrant

status is negatively associated with the outcome while the association is not

statistically significant according to the CC analysis. A main reason for the dif-

ferent inferences is the lower standard error 4.61 of the Efficient analysis than the

CC counterpart 5.27. Based on m = 5 imputations, the relative increase in vari-

ance due to missing data in the effect estimate is r = (
√

1191/4− 1)−1 = 0.06

based on the Equation (23). The fraction of missing information s in Equa-

tion (24) is lower than r = 0.06 so that the standard error 4.61 is at most√
1 + 0.06/5 = 1.006 times as high as the ideal one based on infinitely many

imputations (Rubin 1987, p.114; Schafer 1997, p.107). Consequently, the ef-

fect estimate based on m = 5 imputations loses little precision, relative to the

counterpart based on infinitely many imputations. That is, five imputations

provide enough precision for estimation of the effect. Overall, the standard er-

rors associated with the effect estimates of level-1 covariates under the Efficient

analysis are up to 14% lower than the CC counterparts. In addition, the effect

estimates 0.90 and 9.39 of age and family wealth under the Efficient analysis

are considerably higher than their CC counterparts 0.64 and 6.48, respectively.

Furthermore, the CC analysis seems to exaggerate the goodness of fit by pro-

ducing smaller variance estimates than those of the Efficient analysis. At level

2, the CC analysis produces a lower standard error associated with the effect

estimate of the private school indicator than does the Efficient analysis. The

relatively understated CC standard error reflects its positive association with

the comparatively underestimated CC variance components.

Based on the Efficient analysis, a typical non-immigrant student attending

a public school with average age, highest parental occupation status, highest

parent education, and family wealth scores 471 points in mathematics achieve-
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ment on average. Students attending a private school score 34.51 points higher

than do those attending a public school on average, controlling for the effects

of other covariates in the model. One month older in age, a unit increase in the

highest parental occupation status, one year increment in the highest parent

education and a unit increase in family wealth are expected to raise mathe-

matics scores by 0.90, 0.86, 4.18, and 9.39 points, respectively, ceteris paribus.

Controlling for the individual and school characteristics in the model (34), the

average difference in mathematics achievement between first-generation immi-

grants and other students reduces to 10.81 points or 30% of the initial gap,

36.08 points. Consequently, the individual and school characteristics considered

in the model (34) explain 70% of the initial gap in mathematics achievement

between first-generation immigrants and other students.

5 Data Analysis with Plausible Values

The Efficient analysis of HLM2 (34) in the previous section considers the first

set of plausible mathematics scores as if they were completely observed. Con-

sequently, the m(= 5) imputed or completed data sets reflect uncertainty due

to the missing values of covariates, but does not take into account uncertainty

from missing outcome values to produce understated standard errors of esti-

mates. This section illustrates an efficient analysis strategy for the model (34)

using all five sets of plausible mathematics scores. The first set has mean (stan-

dard deviation) equal to 475.18 (89.87) shown in Table 1. The second to the fifth

sets have means (standard deviations) equal to 474.44 (89.09), 474.46 (88.95),

474.97 (88.66), and 474.54 (89.41), respectively.

In the previous section, we produced m imputations to efficiently analyze

the desired HLM2 (34) with covariates subject to missingness given the first

set of plausible outcome values. In this section, we repeat the same analysis
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with identical covariates given each set of plausible outcome values. With the

number of q sets of plausible outcome values fixed at 5, this strategy produces

5m(= q ×m) completed data sets. Unlike the efficient analysis of the previous

section based on the first set of plausible outcome values, the 5m imputations

reflect uncertainty in parameter estimates due to missing values of both outcome

and covariates. Note that we may obtain more imputations by increasing the

number of m imputations per set of plausible outcome values. It is important

flexibility to be able to increase m that will decrease the relative increase in

variance due to missing data in Equation (20) and, thus, increase the degrees of

freedom of an estimate in Equation (19), in particular, when the missing values

of covariates account for a considerable amount of uncertainty in estimation.

The degrees of freedom of an estimate is negatively associated with the p-value.

This flexibility is not available to us for the outcome variable because the number

of q sets of plausible outcome values is fixed at 5 by the imputer. Because the

efficient analysis in the previous section reveals that uncertainty in estimation

due to the missing values of covariates is not substantial, we generate m = 1

imputation per set of plausible outcome values to analyze 5 imputations in

this section. Then we use the “Multiple Imputation” option of HLM 7 that

automates the complete-data analysis of the hierarchical model (34) given the

multiple imputation to produce the combined estimates (Rubin 1987).

The ML estimates are displayed under the heading “Efficient PV” in Table

2. We compare the Efficient PV analysis with the Efficient analysis based on the

first set of plausible values in the previous section. Again based on 5550 students

attending 166 schools, the estimated τ33 is 14, lower than 19 produced under the

Efficient analysis. The associated variance estimate is 6.092, higher than 5.382

under the Efficient analysis, to reflect added uncertainty due to missing outcome

values. An approximate 95% confidence interval for τ33 is (5.97,32.85) wider and
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closer to zero than the Efficient analysis counterpart (10.93, 33.11). For testing

H0 : τ33 = 0 versus Ha : τ33 > 0, the average relative increase in variance due

to missing data in Q = [τ03 τ33]T is r1 = 0.61 based on Equation (26) to yield

the test statistic D1 = 13.73. Higher than the corresponding r1 = 0.003 based

on the first set of plausible values in the previous section, the r1 = 0.61 implies

that missing outcome values add a considerable amount of uncertainty to the

Q estimates. The p-value (28) is P (F2,18 > 13.73) = 0.0002 to reject the null

hypothesis in support of the alternative hypothesis that τ33 > 0.

Both Efficient PV analysis and Efficient analysis produce comparable effect

estimates and the same statistical inferences. However, the Efficient PV analysis

yields comparatively low degrees of freedom overall to reveal added uncertainty

in the estimates due to the missing values of the outcome variable. In particular,

the degrees of freedom for the effect estimate of the first-generation immigrant

status reduce from 1191 under the Efficient analysis to 66 under the Efficient

PV analysis. The 66 degrees of freedom translate into the relative increase in

variance due to missing data r =
(√

66/4− 1
)−1

≈ 0.33 based on Equation

(23), which is a substantial increase from the corresponding r = 0.06 under the

Efficient analysis. The relative increase in r implies that added uncertainty due

to missing outcome values is considerable, thereby inflating the standard error

4.61 and the p-value 0.019 under the Efficient analysis to 5.08 and 0.045 under

the Efficient PV analysis, respectively.

6 Extensions and Limitations

This chapter explained how to efficiently analyze a two-level hierarchical lin-

ear model where explanatory as well as outcome variables may be subject to

missingness with a general missing pattern at any of the levels (Shin and Rau-

denbush 2007). The key idea is to reexpress the desired hierarchical model as
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the joint distribution of variables, including the outcome, that are subject to

missingness conditional on all of the covariates that are completely observed

under multivariate normality; estimate the joint distribution by ML; generate

multiple imputation given the ML estimates of the joint distribution; analyze

the desired hierarchical model by complete data analysis given the multiple im-

putation; and then combine the multiple hierarchical model estimates (Rubin

1987). Given the desired hierarchical model specified by a data analyst, the rest

of the analysis steps can be automated for efficient estimation of the hierarchi-

cal model. The automation has been implemented in a software package HLM

7 that is yet to be released to the public at the time of writing this chapter.

With such a software package in hand, multilevel incomplete data analysis is no

different from complete data analysis from the data analyst’s perspective.

This chapter illustrated two examples for efficient analysis of incompletely

observed PISA data with HLM 7. The outcome variable was a mathematics

achievement score subject to missingness. PISA imputed five sets of plausible

values for each missing outcome value. Assuming the first set of plausible math-

ematics scores completely observed in the first example, we efficiently analyzed

hierarchical linear model (34) given covariates subject to missingness at multi-

ple levels. We compared the efficient analysis with the complete-case analysis.

Overall, the complete-case analysis produced higher standard errors than did

the efficient analysis, and some estimates of the complete-case analysis were con-

siderably different from the counterparts of the efficient analysis. Consequently,

the two analyses produced different statistical inferences for the effect of a key

covariate. The second example was analysis of the same model (34) with co-

variates subject to missingness and all plausible outcome values. We repeated

the efficient analysis of the first example with identical covariates given each

set of plausible outcome values, each time imputing a single completed data set
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to eventually produce as many completed data sets as the five sets of plausible

outcome values for subsequent complete-data analysis. The combined estimates

were comparable to and produced the same statistical inferences as those of the

efficient analysis in the first example. On the other hand, the degrees of freedom

for estimates were considerably lower than those of the first example, overall.

That is, the estimates exhibited higher relative increase in variance due to miss-

ing data than did those of the first example based on the first set of plausible

values. Consequently, a substantial amount of uncertainty due to missing data

in estimation was from missing outcome values.

The second example illustrates one of the difficulties in incomplete data

analysis when the imputer of the plausible outcome values is different from

the data analyst of the desired hierarchical model (34) (Meng 1994; Rubin

1996). With q = 5 sets of plausible outcome values and covariates subject

to missingness at multiple levels, the analysis based on 5 imputations (m =

1 imputation per set of plausible outcome values) reveals that a considerable

amount of uncertainty due to missing data in estimation is from missing outcome

values. Consequently, the data analyst may want to increase the number of q

imputations of plausible outcome values, which may increase the degrees of

freedom and reduce the computed p-value because the degrees of freedom (19)

of an estimate is positively associated with the number of imputations. However,

with access to 5 sets of plausible outcome values only, she is unable to reduce

the relative increase in variance due to missing outcome values. Increasing the

number of m imputations per set of plausible outcome values may help reduce

the relative increase in variance due to the missing values of covariates, not due

to missing outcome values. When both outcome and covariates contain missing

values, the efficient missing data method and its software introduced in this

chapter provide flexibility to manipulate the number of imputations. In that
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case, the data analyst is able to set the number of imputations and produce

multiple imputation tailored to the analyst’s own analysis with the software.

Because the analyst is also the imputer, the analyst will not face the difficulty

that arises when he or she is not the imputer (Meng 1994; Rubin 1996).

The two-level missing data approach in this chapter has been extended to

efficient analysis of a two-level contextual-effects model (Raudenbush and Bryk

2002; Shin and Raudenbush 2010); of a three-level hierarchical linear model

(Shin and Raudenbush 2011; Shin 2012) and of an arbitrary Q-level hierarchical

linear model (Shin and Raudenbush 2013) given incomplete data. Three-level

user-friendly software based on the missing data methods of Shin and Rauden-

bush (2011) and Shin (2012) is under development at the time of writing this

chapter. These advances guide us with continuous variables subject to missing-

ness.

The efficient analysis of HLM2 (34) in Table 2 involves discrete first-generation

immigrant status and private school indicator subject to missingness at levels 1

and 2, respectively. Although it is not appropriate to handle the discrete miss-

ing data under the corresponding multivariate joint normal distribution (13) of

variables subject to missingness, the implied conditional model is the desired

hierarchical model (34). Furthermore, the joint model assumption (13) to han-

dle missing data affects only imputed data, not observed data. The advantage

is that the hierarchical model is analyzed by the efficient missing data method

(Schafer 1997; Shin and Raudenbush 2007). However, with the missing rate

high, the normal joint model assumption becomes nontrivial. A useful future

extension of this approach is to efficient and robust handling of normal and

nonnormal multilevel missing data.

It entails challenges to extend the missing data method introduced in this

chapter to analysis of multilevel incomplete data from multistage sampling
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where different selection probabilities of units are used (OECD 2007; Tourangeau

el al. 2009). The extent to which complicated sampling weights affect the miss-

ing data analysis is not well known. To minimize possible adverse impact such

as biased inferences, the sampling weights may be applied at the final stage of

complete-data analysis given multiple imputation (Graubard and Korn 1996;

Pfeffermann et al. 1998; Korn and Graubard 2003). An important future re-

search topic is extension of the efficient missing data method to analysis of

multilevel incomplete data generated from multistage sampling with different

selection probabilities of units.

Another limitation of the missing data method is that the covariates having

random coefficients must be completely observed. With such covariates subject

to missingness, the joint distribution of variables subject to missingness may

not be expressed as a multivariate normal distribution. Consequently, subse-

quent analysis given the estimated normal joint model by ML does not apply.

Research is under way to relax the assumption, which will broaden the applica-

bility of this method.
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