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Abstract

This paper extends single-level missing data methods to efficient estimation of a
Q-level nested hierarchical general linear model given ignorable missing data with a
general missing pattern at any of the Q levels. The key idea is to reexpress a desired
hierarchical model as the joint distribution of all variables including the outcome that
are subject to missingness, conditional on all of the covariates that are completely ob-
served; and to estimate the joint model under normal theory. The unconstrained joint
model, however, identifies extraneous parameters that are not of interest in subsequent
analysis of the hierarchical model, and that rapidly multiply as the number of levels,
the number of variables subject to missingness, and the number of random coefficients
grow. Therefore, the joint model may be extremely high dimensional and difficult
to estimate well unless constraints are imposed to avoid the proliferation of extrane-
ous covariance components at each level. Furthermore, the over-identified hierarchical
model may produce considerably biased inferences. The challenge is to represent the
constraints within the framework of the Q-level model in a way that is uniform without
regard to Q; in a way that facilitates efficient computation for any number of Q lev-
els; and also in a way that produces unbiased and efficient analysis of the hierarchical
model. Our approach yields Q-step recursive estimation and imputation procedures
whose qth step computation involves only level-q data given higher-level computation
components. We illustrate the approach with a study of the growth in body mass index
analyzing a national sample of elementary school children.
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1 Introduction

A seminal contribution to statistical methodology is the development of efficient methods
for handling missing data within the framework of a general linear model (GLM, Rubin,
1976, 1987, Dempster, Laird, and Rubin, 1977, Meng, 1994, Schafer, 1997, 2003, Little and
Rubin, 2002). These methods provide efficient estimation of the GLM given incomplete
data. In particular, model-based multiple imputation now provides state-of-the-art methods
for handling missing data (Rubin, 1987). These approaches are founded on a comparatively
mild assumption in many applications that missing data are ignorable (Rubin, 1976, Little
and Rubin, 2002).

This paper extends the methodology to an arbitrary Q-level hierarchical GLM where
lower-level units are nested within higher-level units (Raudenbush and Bryk, 2002, Gold-
stein, 2003). Many multilevel observational studies and controlled experiments produce
missing data. In cluster-randomized experiments, the dominant design involves the random
assignment of whole schools, hospitals, or communities, rather than students, patients, or
adults to treatments (Bingenheimer and Raudenbush, 2004). Multilevel analysis is pervasive
in health, education, and social science studies (Datar and Sturm, 2004, Gable, Chang, and
Krull, 2007, Danner, 2008, Shin and Raudenbush, 2010). Surveys involve multi-stage sam-
pling designs (Tourangeau, Nord, Lê, Sorongon, and Najarian, 2009). A ubiquitous problem
is that explanatory as well as outcome variables may be subject to missingness at any of the
levels.

In longitudinal studies, hierarchical data subject to missingness may be estimated by
maximum likelihood (ML) in a structural equation model (SEM) where latent means include
missing data (Allison, 1987, Muthén, Kaplan, and Hollis, 1987, Muthén, 1993, Arbuckle,
1996, Enders and Peugh, 2004). SEM software such as Mplus (Muthén and Muthén, 2010),
Amos (Arbuckle, 2003) and EQS (Bentler, 2007) performs ML estimation of such models.
When these models are formulated by multi-group analysis, the number of groups is the
number of missing patterns (Allison, 1987, Muthén et al., 1987, Muthén, 1993).

Recent advances have extended the single-level methods to multilevel ignorable missing
data. Liu, Taylor, and Belin (2000) considered Bayes inference to longitudinal designs having
a fixed within-subject design with repeated measures at level 1 nested within persons at level
2 where the data are missing at both levels. Schafer and Yucel (2002) developed Bayes and
ML inference for a broader class of two-level designs in which the level-1 design could vary
across level-2 units with level-1 data subject to missingness. Goldstein and Browne (2002,
2005) took a Bayesian approach to a two-level factor analysis where missing outcomes were
imputed by a Gibbs sampling step. Shin and Raudenbush (2007, 2010) extended these
methods to a two-level model where the outcome and covariates may have missing values at
both levels. Shin and Raudenbush (2011) and Shin (2012) illustrated an efficient ML method
to estimate a three-level model with incomplete data. To estimate a three-level hierarchical
linear model with incomplete data, Yucel (2008) modified a single-level imputation method
(Schafer, 1997, 1999) and a two-level imputation method (Schafer and Yucel, 2002) to carry
out the Gibbs Sampler to sequentially impute cluster-level missing values, intermediate-
level missing values given the multiply imputed cluster-level data and then, the lowest-level
missing values given the multiply imputed data at higher levels. These advances guide us
with continuous outcomes. Goldstein, Carpenter, Kenward, and Levin (2009) and Goldstein
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and Kounali (2009) used a Markov Chain Monte Carlo method to impute a mixture of
continuous and discrete outcomes subject to missingness in a two-level model.

Shin and Raudenbush (2007) illustrated two ways to handle two-level missing data: direct
ML estimation (MLE on Yobs) and a two-stage procedure of multiple imputation followed by
the second stage analysis of the multiply imputed data (MLE on Y mi). This paper general-
izes the two methods to an arbitrary number of Q levels and an arbitrary number of outcomes
defined at any level. A key emphasis in this paper is the difference in logic and assumptions
between the two methods. Using MLE on Yobs, one first writes down a desired hierarchical
model, then reparameterizes the model in terms of the joint distribution of outcome and co-
variates subject to missingness given the completely observed covariates. Great care must be
taken so that the transformation is one-to-one in order to insure unbiased estimation (Shin
and Raudenbush, 2007, 2010). This task generally requires the imposition of constraints on
regression surfaces at each level to avoid the proliferation of covariance components at higher
levels of the joint distribution. One challenge for this paper is to formulate these constraints
within the framework of the Q-level model. We show that the unconstrained joint model
identifies contextual effects (Raudenbush and Bryk, 2002) and interaction effects that are
typically extraneous for the desired model. In contrast, MLE on Y mi generally implies
that the imputation model should be unconstrained, allowing the data analyst to impose
the desired constraints at the second stage when using conventional software to analyze
the imputed data. A challenge with MLE on Y mi is that the need to avoid constraints
at stage one may lead to the formulation of extremely high-dimensional imputation models
that may be difficult to estimate well. The two methods have characteristic advantages and
disadvantages. MLE on Yobs imposes more assumptions than does MLE on Y mi, because
MLE on Yobs imposes distributional assumptions on all variables subject to missingness
while for MLE on Y mi, such assumptions do not affect the observed data. Given the pluses
and minuses, this paper considers a hybrid approach that combines the two methods.

Our aim is to formulate a Q-level model that unifies single- and multi-level models into
a single expression, facilitating extension of existing missing data methods to an arbitrary
number of levels of a linear model with efficient estimation and computation. The model
has two representations: a hierarchical linear model for a response variable conditional on
covariates, and a marginal model that represents the joint distribution of all variables -
the response and covariates - that are subject to missingness conditional on the completely
observed covariates. It is essential to clarify the relationship between these two models;
in particular, the conditional model is always equivalent to the joint model after imposing
certain constraints on the more general joint model. To clarify the needed constraints in
a general Q-level setting, we find it revealing to re-parameterize both forms of the model
such that all variables subject to missingness are decomposed orthogonally by level. In
this model, random components are correlated within but uncorrelated between levels. The
required constraints then fall out naturally for any number of levels.

The next section defines the joint model and decomposes all variables subject to missing-
ness into orthogonal random components. Section 3 considers the problem of estimation and
multiple imputation. The orthogonal decomposition is helpful. The key insight is that, if we
stack the joint model by level, we can write down estimation formulas at level q using level-q
data only given higher-level computation components that are uniform for all q even if we
ignore all other-level data. This recursive representation yields efficient computations using
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conventional ML methods such as the EM algorithm (Dempster, Laird, and Rubin, 1977).
Thus, orthogonal decomposition by level transforms a seemingly intractable computational
problem into a sequence of familiar, solvable problems as described in Section 3. Section 4
introduces the conditional hierarchical linear model. We show that the joint model represents
more parameters than desired in the hierarchical model, and describe how to constrain the
joint model for identification of the desired hierarchical model. Incorporating the constraints
is essential to avoid bias for MLE on Yobs. For MLE on Y mi, the constraints do not reduce
bias but may nonetheless be practically necessary for computation involving high dimen-
sional models. Analyzing data from a large, nationally representative longitudinal sample of
children, we illustrate these methods to study predictors of the growth of body mass index
(BMI) between ages 5 to 15 in Section 5. This is a three-level problem, with up to seven
repeated measures on children who are sampled within their elementary schools. Section 6
concludes with a discussion of limitations and next steps in the Q-level research agenda.

2 Joint Model

All of the models described in this article are subsets of a multilevel p-variate model

Y = µ+ Zb ∼ N(µ, V ), b ∼ N(0,Π) (1)

where every element of Y is subject to missingness, µ may be a linear function of completely
observed covariates, Z is a matrix of completely observed covariates having random effects
b and V = ZΠZT . For simplicity of exposition, we shall assume µ = 0 in this section. We
partition Y = [Y T

1 Y T
2 · · ·Y T

Q ]T such that Yq is a vector of pq variables at level q in a hierarchy

of Q levels for p =
∑Q
q=1 pq. In the case of Q = 2 where occasions are nested within children,

for example, elements of Y1 such as body mass index and daily TV viewing hours vary across
occasions at the lower level 1; and elements of Y2 such as years of highest parent education
and birth weight vary among children at the higher level 2.

The variance covariance matrix V may be structured by the fact that Yq varies at level
q or higher. In the case of Q = 2, for example, the body mass index in Y1 varies within
as well as between children while the birth weight in Y2 varies between children but not
within a child. Thus, we partition Z =

⊕Q
q=1 Zq = diag{Z1, Z2, · · · , ZQ}, a diagonal matrix

having diagonal submatrices (Z1, Z2, · · · , ZQ), and b = [bT1 bT2 · · · bTQ]T , and decompose Yq
orthogonally by level as

Yq = Zqbq ∼ N (0, Vqq) , bq ∼ N (0,Πqq) (2)

for Zq = [Zqq Z(q+1)q · · ·ZQq], bq = [εTqq ε
T
(q+1)q · · · εTQq]T and Vqq = ZqΠqqZ

T
q where Zrq is a

matrix of known covariates having level-r unit-specific random effects εrq ∼ N(0, πrqq) for
subscript and superscript r denoting the level of variation. The orthogonal random effects
εrq are independent between levels so that Πqq =

⊕Q
r=q π

r
qq, but correlated within levels by

cov(εrq, εrs) = πrqs so that cov(bq, bs) = Πqs =

[
0⊕Q

r=s π
r
qs

]
for q < s. Then, Π = [Πij],

a matrix with (i, j) submatrices Πij for i, j = 1, 2, · · · , Q. We may now express Equation
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(2) as Yq =
∑Q
r=q Zrqεrq having cov(Yq, Ys) = Vqs = ZqΠqsZ

T
s =

∑Q
r=s v

r
qs for q ≤ s where

vrqs = Zrqπ
r
qsZ

T
rs, and decompose V = [Vij] for i, j = 1, 2, · · · , Q by the level of variation as

var


Y1
Y2
...
YQ

 =


v111 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+


v211 v212 · · · 0
v221 v222 · · · 0
...

...
. . .

...
0 0 · · · 0

+ · · ·+


vQ11 vQ12 · · · vQ1Q
vQ21 vQ22 · · · vQ2Q
...

...
. . .

...

vQQ1 vQQ2 · · · vQQQ

 . (3)

To reveal the orthogonal decomposition explicitly, we show all random components of the
joint model (1) in Table 1. Row label Yq indicates a vector of variables that are decomposed

Table 1: All random components of Y in Equation (1).
1 2 3 · · · Q

Y1 ε11 ε21 ε31 · · · εQ1

Y2 ε22 ε32 · · · εQ2

Y3 ε33 · · · εQ3
...

. . .
...

YQ εQQ

into the random components bq = [εTqq ε
T
(q+1)q · · · εTQq]T listed in the row. The random compo-

nents (b1, b2, · · · , bQ) enable us to write down estimation formulas at level q that are uniform
for all q and that use level-q data only given higher-level computation components. This
representation facilitates construction of efficient computation formulas as will be explained
in Section 3. The column label shows the level at which the random components in the
column vary. Table 1 lists random effects that are correlated within, but uncorrelated across
columns or levels. Column q in Table 1 lists level-q unit-specific random effects εq ∼ N(0, πq)
for

εq =


εq1
εq2
...
εqq

 , πq =


πq11 πq12 · · · πq1q
πq21 πq22 · · · πq2q
...

...
. . .

...
πqq1 πqq2 · · · πqqq

 . (4)

Thus, all random effects b of the joint model (1) may also be expressed as (ε1, ε2, · · · , εQ),
displayed vertically in Table 1. Their parameters are π = (π1, π2, · · · , πQ). This expression
is useful for deriving estimators as will be described in the next Section.

3 Estimation of the Joint Model

The orthogonal decomposition by level shown in Table 1 enables us to write down the joint
model (1) as a familiar mixed linear model (2) for any level q. Next, we shall exploit the
fact that if we stack these level-specific models such that there is an equation at level q and
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a second equation stacked at all levels higher than q, we can write down familiar estimation
formulas that use level-q data only given higher-level computation components even when we
completely ignore all data at other levels. Moreover, the estimation formulas remain uniform
for all q to produce efficient computation formulas as will be explained below. Therefore,
the orthogonal decomposition of the joint model (1) enables us to obtain general, recursive,
and familiar estimation formulas for the Q-level problem.

3.1 Structure of Joint Model for All Data at or above Level q

Based on the model (2) at level q, we stack Y q = [Y T
q Y T

q+1 · · ·Y T
Q ]T , Zq =

⊕Q
r=q Zr and

bq = [bTq b
T
q+1 · · · bTQ]T to express the joint model (1) at level q or above as

Y q = Zqbq ∼ N(0, V qq), bq ∼ N(0,Πqq) (5)

for Y q =

[
Yq
Y q+1

]
, Zq =

[
Zq 0
0 Zq+1

]
, bq =

[
bq
bq+1

]
, Πqq =

[
Πqq Πq(q+1)

Π(q+1)q Π(q+1)(q+1)

]
and

V qq = ZqΠqqZqT =

[
Vqq V q(q+1)

V (q+1)q V (q+1)(q+1)

]
where Πq(q+1) =

[
Πq(q+1) Πq(q+2) · · · ΠqQ

]
and

V q(q+1) = ZqΠ
q(q+1)Z(q+1)T =

[
Vq(q+1) Vq(q+2) · · · VqQ

]
for the transpose Z(q+1)T of Zq+1.

Note that we express Y q, Πqq and V qq uniformly for all q to contain Y q+1, Π(q+1)(q+1) and
V (q+1)(q+1), respectively. For Q = 3, for example, Y 3 = Z3b3 ∼ N(0, V 33) for Y 3 = Y3, Z

3 =
Z3 = Z33, b

3 = b3 = ε33, Π33 = Π33 = π3
33, V

33 = V33 = Z3Π33Z
T
3 ; Y 2 = Z2b2 ∼ N(0, V 22) for

Y 2 =

[
Y2
Y 3

]
, Z2 =

[
Z2 0
0 Z3

]
, b2 =

[
b2
b3

]
, Π22 =

[
Π22 Π23

Π32 Π33

]
and V 22 =

[
V22 V 23

V 32 V 33

]

where Z2 = [Z22 Z32], b2 =

[
ε22
ε32

]
, Π22 =

⊕3
r=2 π

r
22, Π23 = Π23 =

[
0
π3
23

]
and V 23 = V23 =

Z2Π23Z
T
3 ; and Y 1 = Z1b1 ∼ N(0, V 11) for Y 1 =

[
Y1
Y 2

]
, Z1 =

[
Z1 0
0 Z2

]
, b1 =

[
b1
b2

]
,

Π11 =

[
Π11 Π12

Π21 Π22

]
and V 11 =

[
V11 V 12

V 21 V 22

]
where Z1 = [Z11 Z21 Z31], b1 =

 ε11
ε21
ε31

,

Π11 =
⊕3
r=1 π

r
11, Π12 = [Π12 Π13] and V 12 = [V12 V13] for Π12 =

 0 0
π2
12 0
0 π3

12

, Π13 =

 0
0
π3
13

,

V12 = Z1Π12Z
T
2 and V13 = Z1Π13Z

T
3 .

Equation (5) for q = 1 expresses the joint model (1) where Z1 may include covariates
having random effects at all levels. Often, the model (5) itself is of interest (Shin and
Raudenbush, 2011, Shin, 2012). For a positive integer n, let In denote an n by n identity
matrix. In this paper, we focus on estimation of the model (5) where Zqq = Ipq for all q as
many applications do. In what follows, we use the Kronecker product A⊗B that multiplies
matrix B to each scalar element of matrix A (Magnus and Neudecker, 1988). In particular,
In ⊗B = diag{B, · · · , B}.
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3.2 Estimation

In deriving estimators, it is essential to aggregate the stacked-up joint model (5) at the
highest level-Q cluster m. We refer to subscript m as a unit at the highest level Q for
m = 1, 2, · · · , NQ; Nqm as the number of units at level q nested within the cluster m; and Nq =∑NQ

m=1Nqm, hereafter. Let Yqm = [Y T
q1m Y T

q2m · · ·Y T
qNqmm]T and εqsm = [εTqs1m εTqs2m · · · εTqsNqmm]T

aggregate all Yq and εqs in cluster m for s ≤ q. The level-q unit-specific random effects in
column q of Table 1 are aggregated to form the aggregated Equations (4) for cluster m

εqm =


εq1m
εq2m

...
εqqm

 , var(εqm) =


INqm ⊗ π

q
11 INqm ⊗ π

q
12 · · · INqm ⊗ π

q
1q

INqm ⊗ π
q
21 INqm ⊗ π

q
22 · · · INqm ⊗ π

q
2q

...
...

. . .
...

INqm ⊗ π
q
q1 INqm ⊗ π

q
q2 · · · INqm ⊗ πqqq

 .

Table 1 may also be aggregated to reveal all random components for cluster m. The aggre-
gated table is of the same form as Table 1 with row label Yqm replacing Yq, the same column
label and the vector εqm instead of εq in column q. The random components in row Yqm of
the table are bqm = [εTqqm εT(q+1)qm · · · εTQqm]T to form the aggregated model (2)

Yqm = Zqmbqm ∼ N(0, Vqqm), bqm ∼ N(0,Πqqm) (6)

for a conformable matrix of known covariates Zqm = [Zqqm Z(q+1)qm · · ·ZQqm], Πqqm =⊕Q
r=q INrm ⊗ πrqq and Vqqm = ZqmΠqqmZ

T
qm where Zqqm = INqm×pq . Then, cov(bqm, bsm) =

Πqsm =

[
0⊕Q

r=s INrm ⊗ πrqs

]
for q < s, and Yqm =

∑Q
r=q Zrqmεrqm has cov(Yqm, Ysm) =

Vqsm = ZqmΠqsmZ
T
sm =

∑Q
r=s Zrqm(INrm ⊗ πrqs)ZT

rsm for q ≤ s.

Next, we stack Y q
m = [Y T

qmY
T
(q+1)m · · ·Y T

Qm]T , Zq
m =

⊕Q
r=q Zrm and bqm = [bTqm bT(q+1)m · · · bTQm]T

to express the aggregated model (5) uniformly for all q as

Y q
m = Zq

mb
q
m ∼ N(0, V qq

m ), bqm ∼ N (0,Πqq
m) (7)

for Y q
m =

[
Yqm
Y q+1
m

]
, Zq

m =

[
Zqm 0

0 Zq+1
m

]
, bqm =

[
bqm
bq+1
m

]
, Πqq

m =

[
Πqqm Πq(q+1)

m

Π(q+1)q
m Π(q+1)(q+1)

m

]
and

V qq
m = Zq

mΠqq
mZ

qT
m =

[
Vqqm V q(q+1)

m

V (q+1)q
m V (q+1)(q+1)

m

]
where Πq(q+1)

m =
[
Πq(q+1)m Πq(q+2)m · · · ΠqQm

]
and V q(q+1)

m = ZqmΠq(q+1)
m Z(q+1)T

m =
[
Vq(q+1)m Vq(q+2)m · · · VqQm

]
. By expressing Zqm =

[INqm×pq Z−qqm] having bqm = [εTqqm εT−qqm]T for Z−qqm = [Z(q+1)qm · · ·ZQqm] and ε−qqm =

[εT(q+1)qm · · · εTQqm]T so that εqqm ∼ N(0, INqm ⊗ πqqq), ε−qqm ∼ N(0,Φqqm) and Πq(q+1)
m =[

cov(εqqm, b
q+1
m )

cov(ε−qqm, b
q+1
m )

]
=

[
0

Φq(q+1)
m

]
for Φqqm =

⊕Q
r=q+1 INrm ⊗ πrqq, we structure V qq

m =[
INqm ⊗ πqqq + Z−qqmΦqqmZ

T
−qqm Z−qqmΦq(q+1)

m Z(q+1)T
m

Zq+1
m Φq(q+1)T

m ZT
−qqm V (q+1)(q+1)

m

]
in a familiar form (Shin and Rau-

denbush, 2007) that is uniform for all q and has recursive V (q+1)(q+1)
m = Zq+1

m Π(q+1)(q+1)
m Z(q+1)T

m .
Shin and Raudenbush (2007) illustrated how to efficiently estimate the two-level model
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(7) for Y 1
m = [Y T

1m Y T
2m]T by ML via the EM algorithm where Y1m and Y2m are vectors of

arbitrary length. The key insight of the model (7) is to express the familiar two-level form
Y q
m = [Y T

qm Y (q+1)T
m ]T uniformly at each level q and estimate it by the method of Shin and

Raudenbush (2007) given computation components at level q + 1, starting from the highest
level q = Q until we estimate the desired model for Y 1

m with arbitrary Q levels at q = 1. The
initial step is to estimate the single-level model (7) for q = Q, a special case of Shin and
Raudenbush’s two-level model. We formalize the recursive estimation within each iteration
of the EM algorithm after defining notation for estimation below. A major advantage of this
approach is that the step-q estimation uses only level-q data given higher-level computation
components for efficient computation as will be shown in the following section.

To express the relationship between complete and observed data, let Oqm =
⊕Nqm

i=1 Oqim

be a matrix of dummy indicators for observed values in Yqm = [Y T
q1m Y T

q2m · · ·Y T
qNqmm]T so

that Yqmobs = OqmYqm and Zqmobs = OqmZqm = [Oqm Z−qqmobs] for Z−qqmobs = OqmZ−qqm
(Shin and Raudenbush, 2007). At level Q, NQm = 1 and OQm = OQ1m for all m. Let
Y q
mobs = Oq

mY
q
m and Zq

mobs = Oq
mZ

q
m for Oq

m =
⊕Q
r=q Orm to express the observed model (7)

Y q
mobs = Zq

mobsb
q
m ∼ N(0, V qq

mobs), V qq
mobs = Oq

mV
qq
m OqT

m = Zq
mobsΠ

qq
mZ

qT
mobs. (8)

Estimation of π = (π1, π2, · · · , πQ) is carried out via the EM algorithm. The complete
data (CD) for cluster m may be viewed as b1m given π. Let ε = (b11, b

1
2, · · · , b1NQ

) for the
entire sample. If we denote εqim = εq in column q of Table 1 for unit i nested within cluster

m, the CD log likelihood of π may be expressed as l(π|ε) =
∑Q
q=1

∑NQ

m=1

∑Nqm

i=1 lnf(εqim|π)
for the density f(εqim|π) of level-q unit-specific εqim ∼ N(0, πq). The CD ML estimators

are π̂q =
∑NQ

m=1

∑Nqm

i=1 εqimε
T
qim/Nq. The E components are from b1m|Y 1

mobs ∼ N(b̃1m, Π̃
11
m ) the

conventional estimation of which requires inversion of V 11
mobs that may be extremely high

dimensional. The orthogonal decomposition by level of the joint model (1) enables expression
of bqm|Y

q
mobs ∼ N(b̃qm, Π̃

qq
m) that is uniform for all q and based on level-q data only given

computation components from higher levels. As will be explained below, this recursive
expression yields successive Q-step estimation formulas from (b̃Qm, Π̃

QQ
m ) down to (b̃1m, Π̃

11
m )

for efficient computation of the E step without directly inverting V 11
mobs.

To estimate fixed effects, let µ = [µ1 µ2 · · ·µQ] for µq = Xqβq in the model (1) where Xq is
a matrix of completely observed covariates having fixed effects βq. We replace Yq = Zqbq with
dq = Yq −Xqβq = Zqbq in the level-q model (2) to express the stacked-up model (5) as dq =
Y q −Xqβq = Zqbq for dq = [dTq d

T
(q+1) · · · dTQ]T , Xq =

⊕Q
r=qXr and βq = [βTq βT(q+1) · · · βTQ]T .

Let dqm = Yqm − Xqmβq aggregate dq = Yq − Xqβq such that the corresponding model (7)
has dqm = Y q

m −Xq
mβ

q = Zq
mb

q
m for dqm = [dTqm dT(q+1)m · · · dTQm]T and Xq

m =
⊕Q
r=qXrm. Then,

dqmobs = Oq
md

q
m and Xq

mobs = Oq
mX

q
m so that the observed model (8) is dqmobs = Y q

mobs −
Xq
mobsβ

q = Zq
mobsb

q
m. The desired parameters are θ = (π, β) for β = β1. For simplicity of

notations, let V −qmobs and V
−(q+1)
mobs denote the inverses of V qq

mobs and V
(q+1)(q+1)
mobs , respectively.

Given current β0, the Fisher scoring equivalent to the Newton-Raphson update is

β̂ = β0 +

 NQ∑
m=1

X1T
mobsV

−1
mobsX

1
mobs

−1 NQ∑
m=1

X1T
mobsV

−1
mobsd

1
mobs. (9)
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The following section describes efficient recursive computation of β̂ based onXqT
mobsV

−q
mobsX

q
mobs

and XqT
mobsV

−q
mobsd

q
mobs.

Equation (7) expresses a single-level GLM when Z1
m is an identity matrix and b1m has

Π11
m = Π11 for all m. The clustering of sample data discussed above gives rise to a Q-level

GLM. Next, we show that the aggregated joint model (7) enables us to write down efficient
Q-step recursive estimation formulas the qth-step computation of which involves level-q data
only and thus is not unduly burdened with respect to the number of Q levels, p variables
and random effects.

3.3 Efficient Computation

The conventional E step based on b1m|Y 1
mobs ∼ N(b̃1m, Π̃

11
m ) requires inversion of V 11

mobs which
may be extremely high dimensional and, thus, take long to compute within each iteration of
the EM algorithm. On the other hand, the E step based on Equation (8) produces Q-step
estimation formulas the qth step of which is to estimate bqm|Y

q
mobs, θ ∼ N(b̃qm, Π̃

qq
m) where

b̃qm = Πqq
mA

q
mobs, Π̃qq

m = Πqq
m − Πqq

mB
q
mobsΠ

qq
m (10)

for Aqmobs = ZqT
mobsV

−q
mobsd

q
mobs and Bq

mobs = ZqT
mobsV

−q
mobsZ

q
mobs. The key advantages of the E step

via Equations (10) are that b̃qm and Π̃qq
m stay uniform for all q; that computation of b̃qm and

Π̃qq
m uses level-q data only, given Aq+1

mobs, B
q+1
mobs and θ; that the expressions (10) enable efficient

computation of b̃1m and Π̃11
m via computation of recursive components Aqmobs and Bq

mobs; and
that the E step does not require direct inversion of V 11

mobs. Estimation of b̃1m and Π̃11
m starts

at the highest level q = Q with initial components

AQmobs = OT
QmV

−Q
mobsdQmobs, BQ

mobs = OT
QmV

−Q
mobsOQm (11)

for V QQ
mobs = πQQQm = OQmπ

Q
QQO

T
Qm, computes Aqmobs and Bq

mobs using level-q data only, given

Aq+1
mobs and Bq+1

mobs at step q, and finally evaluates Equations (10) given A1
mobs and B1

mobs at
q = 1 within each iteration of the EM algorithm.

To formulate the recursive computation, let

ε̃−qqm = E(ε−qqm|Y q
mobs) = ∆−1qm(Z−qqmobsψ

−1
qmdqmobs + Ω−1qm˜̃ε−qqm), (12)

V −q11mobs = ψ−1qm − ψ−1qmZ−qqmobs∆−1qmZT
−qqmobsψ

−1
qm,

V −qmobs =

[
V −q11mobs V −q12mobs

V −q21mobs V −q22mobs

]

where ∆qm = ZT
−qqmobsψ

−1
qmZ−qqmobs + Ω−1qm, ψqm =

⊕Nqm

i=1 π
q
qqim, Ωqm = var(ε−qqm|Y q+1

mobs) =

Φqqm−Φq(q+1)
m Bq+1

mobsΦ
q(q+1)T
m and ˜̃ε−qqm = E(ε−qqm|Y q+1

mobs) = Φq(q+1)
m Aq+1

mobs for πqqqim = Oqimπ
q
qqO

T
qim.

Note that computation of ε̃−qqm and V −q11mobs requires level-q Z−qqmobs and dqmobs only, given
Aq+1
mobs, B

q+1
mobs and θ. The following result shows that Aqmobs and Bq

mobs depend on level-q data
only, given higher-level components Aq+1

mobs and Bq+1
mobs. See the Appendix for proofs.
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Proposition 3.1 ZqT
mobsV

−q
mobsd

q
mobs and ZqT

mobsV
−q
mobsZ

q
mobs depend on level-q data Yqmobs, Xqmobs

and Z−qqmobs only, given Z
(q+1)T
mobs V

−(q+1)
mobs dq+1

mobs, Z
(q+1)T
mobs V

−(q+1)
mobs Zq+1

mobs and θ for all q < Q.

Proposition 3.1 enables a Q-step recursive computation of b̃1m and Π̃11
m the qth step of which

involves level-q data only without directly inverting V 11
mobs.

Theorem 3.2 b̃1m and Π̃11
m can be computed by a Q-step recursive procedure from level Q

down to level 1 given θ where step q involves level-q data only.

The E step for Q = 3, for example, computes A3
mobs = OT

3mπ
−3
33md3mobs and B3

mobs =
OT

3mπ
−3
33mO3m in Equations (11) initially for the inverse π−333m of π3

33m; A2
mobs and B2

mobs in
Equations (32) and (33) given A3

mobs and B3
mobs at q = 2; A1

mobs and B1
mobs in Equations (32)

and (33) given A2
mobs and A2

mobs to finally yield b̃1m and Π̃11
m in Equations (10) at q = 1.

Fisher scoring on β may also be based on recursive computation of Aqmobs, B
q
mobs,

F q
mobs = XqT

mobsV
−q
mobsd

q
mobs, Gq

mobs = XqT
mobsV

−q
mobsX

q
mobs, Hq

mobs = ZqT
mobsV

−q
mobsX

q
mobs. (13)

The following result shows that F q
mobs, G

q
mobs and Hq

mobs depend on level-q data only, given
Aq+1
mobs, B

q+1
mobs, F

q+1
mobs, G

q+1
mobs, H

q+1
mobs and θ.

Proposition 3.3 XqT
mobsV

−q
mobsd

q
mobs, X

qT
mobsV

−q
mobsX

q
mobs and ZqT

mobsV
−q
mobsX

q
mobs depend on level-

q data Yqmobs, Xqmobs and Z−qqmobs only, given Z
(q+1)T
mobs V

−(q+1)
mobs dq+1

mobs, Z
(q+1)T
mobs V

−(q+1)
mobs Zq+1

mobs,

X
(q+1)T
mobs V

−(q+1)
mobs dq+1

mobs, X
(q+1)T
mobs V

−(q+1)
mobs Xq+1

mobs, Z
(q+1)T
mobs V

−(q+1)
mobs Xq+1

mobs and θ for all q < Q.

Propositions 3.1 and 3.3 enable β̂ to be computed recursively.

Theorem 3.4 X1T
mobsV

−1
mobsX

1
mobs and X1T

mobsV
−1
mobsd

1
mobs can be computed by a Q-step recursive

procedure from level Q down to level 1 given θ where step q involves level-q data only.

The Fisher scoring on β for Q = 3, for example, computes A3
mobs = OT

3mπ
−3
33md3mobs,

B3
mobs = OT

3mπ
−3
33mO3m, F 3

mobs = XT
3mobsπ

−3
33md3mobs, G

3
mobs = XT

3mobsπ
−3
33mX3mobs and H3

mobs =
OT

3mobsπ
−3
33mX3mobs initially; A2

mobs, B
2
mobs, F

2
mobs, G

2
mobs and H2

mobs in Equations (32) to (36)
from level-2 data, given A3

mobs, B
3
mobs, F

3
mobs, G

3
mobs and H3

mobs at q = 2; F 1
mobs and G1

mobs

in Equations (34) and (35) from level-1 data given A2
mobs, B

2
mobs, F

2
mobs, G

2
mobs and H2

mobs to
finally yield β̂ in Equation (9) at q = 1.

The recursive estimation efficiently handles missing data one level at a time. Conse-
quently, the computation will be efficient given a number of variables subject to missingness
at higher levels. In that case, the observed joint model (8) yields recursive computation that
is not excessively burdened with respect to Q, p and the number of random effects. On the
other hand, given missing data at level 1 only, this approach amounts to the conventional
EM algorithm. The inverse of the Fisher information matrix yields var(θ̂).

Multiple imputation is based on Y 1
m|Y 1

mobs, θ̂ ∼ N
(
X1
mβ

1 + Z1
mb̃

1
m, Z

1
mΠ̃11

mZ
1T
m

)
given the

ML θ̂. Let vii and vij be variances of log(πii) and log 1+ρij
1−ρij where i 6= j and ρij = πij√

πiiπjj
for di-

agonal πii and off-diagonal πij in (π1, π2, · · · , πQ). Then, N [log(π̂ii), v̂ii] and N
(
log 1+ρ̂ij

1−ρ̂ij , v̂ij
)

estimated by ML imply the joint distribution of a vector, φq, of distinct log(πii) and log 1+ρij
1−ρij

from πq. Let the distributions of φq and β be N
[
φ̂q, var(φ̂q)

]
and N [β̂, var(β̂)] estimated by
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ML, respectively. To propagate uncertainty in estimation of θ for proper imputation (Little

and Rubin, 2002), we randomly generate β from N [β̂, var(β̂)] and πq from N
[
φ̂q, var(φ̂q)

]
for

all q, and then impute missing data given the θ for each imputation (Shin and Raudenbush,
2007).

Thus far, we have focused on estimating the joint model (1) for variables subject to
missingness given completely observed covariates. However, our goal in this paper is to
estimate a general Q-level hierarchial GLM for a univariate response conditional on covariates
where the covariates as well as the response may have ignorable missing data at any of the
levels. To efficiently estimate the GLM, we have to reparameterize it in the form of the joint
model (1). The next section will introduce the desired GLM, clarify its relationship with the
joint model, and describe methods to efficiently estimate the GLM via the joint model.

4 Hierarchical General Linear Model

The aim of this article is to estimate a Q-level hierarchial GLM that is a special case of the
joint model (1) in which a univariate response is defined at the lowest level of aggregation.
We show that the joint model overidentifies the desired model, in general, and describe
how to constrain the joint model to be a one-to-one transformation of the GLM. Without
the one-to-one correspondence, the estimated GLM via MLE on Yobs may be substantially
biased (Shin and Raudenbush, 2007). For simplicity of explication, we first consider the
desired GLM where all covariates having fixed effects are subject to missingness. This
consideration is without loss of generality because completely observed covariates having
fixed effects do not affect the constraints on the joint model. After explaining the needed
constraints for MLE on Yobs, we consider a more realistic GLM having both covariates
subject to missingness and covariates completely observed.

We write the general Q-level hierarchial GLM

R = CTγ +DT e, e ∼ N(0, τ) (14)

for C = [AT Y T
2 · · ·Y T

Q ]T having fixed effects γ = [γT1 γT2 · · · γTQ]T , D = [DT
1 DT

2 · · ·DT
Q]T

having random effects e = [eT1 eT2 · · · eTQ]T , and τ =
⊕Q

r=1 τr where A and Yr are vectors of
p1 − 1 level-1 and pr level-r covariates having fixed effects γ1 and γr, respectively, Dr is a
vector of pDr covariates having level-r unit-specific random effects er ∼ N(0, τr) independent
across levels and pD =

∑Q
r=1 pDr. Both R and C are subject to missingness while D is known.

We assume D1 = 1 and that Dr carries an intercept as many applications do, although it is
not required to have one.

The aim of this article is to efficiently estimate the Q-level hierarchical GLM (14) given
incomplete data. To do so, we must reparameterize the equation (14) in the form of the
joint distribution (1) of all variables subject to missingness - including the response and
covariates at any level given D. We define the first element of Y1 as the response R and
the remaining elements of Y1 as covariates A to partition Y1 = [R AT ]T and decompose Y
into the response and covariates Y = [R CT ]T where we decompose R =

∑Q
r=1D

T
r εrR and

C = [AT Y T
2 · · ·Y T

Q ]T = [
∑Q
r=1 ε

T
rA

∑Q
r=2 ε

T
r2 · · · εTQQ]T orthogonally by level. Then, Equation

11



(14) is a special case of the model (1) for µ = 0 where Y1 = [R AT ]T implies partitioning

Zr1 =

[
DT
r 0

0 Ip1−1

]
, εr1 =

[
εrR
εrA

]
, πr11 =

[
πrRR πrRA
πrAR πrAA

]
, πr1q =

[
πrRq
πrAq

]
(15)

and C implies Zrq = Ipq for q > 1. Then, V =

[
var(R) cov(R,C)
cov(C,R) var(C)

]
=

[
VRR VRC
V T
RC VCC

]
for

VRR =
Q∑
r=1

DT
r π

r
RRDr, VRC =

 Q∑
r=1

DT
r π

r
RA

Q∑
r=2

DT
r π

r
R2 · · ·DT

Qπ
Q
RQ

 , (16)

VCC =


π1
AA 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+


π2
AA π2

A2 · · · 0
π2
2A π2

22 · · · 0
...

...
. . .

...
0 0 · · · 0

+ · · ·+


πQAA πQA2 · · · πQAQ
πQ2A πQ22 · · · πQ2Q

...
...

. . .
...

πQQA πQQ2 · · · πQQQ

 .

We refer to Y = [
∑Q
r=1D

T
r εrR

∑Q
r=1 ε

T
rA

∑Q
r=2 ε

T
r2 · · · εTQQ]T as the form of the joint model (1)

for efficient estimation of the GLM (14) in this article. Then, the GLM (14) implies

var(R) = γTVCCγ +DT τD and cov(R,C) = γTVCC .

When Q = 1, the reparameterization is one-to-one between Equations (1) and (14) and
no difficulties arise in computation and interpretation as illustrated in Section 4.1. However,
when Q > 1, we find that the reparameterization required to equate the conditional model
(14) to the corresponding joint model (1) can be quite challenging. Without imposing
constraints, the joint model will over-identify the conditional model (14). We can readily
comprehend this problem in the case of two-level models shown in Sections 4.2 and 4.3. We
then generalize our approach in the subsequent section. We see that the problem of over-
identification can become severe as covariates, levels and random coefficients are added to
the model.

4.1 Single-Level Model

Equation (14) for C = A, γ = γ1, D = 1 and e = e1 expresses the conventional ordinary
least squares (OLS) regression model as the conditional distribution of R given covariates
A. Efficient estimation of the model from ignorable missing data (Rubin, 1976, Little and
Rubin, 2002) is straightforward when we estimate the corresponding joint model (1)[

R
A

]
∼ N

([
0
0

]
,

[
VRR VRC
V T
RC VCC

])
(17)

for VRR = π1
RR, VRC = π1

RA and VCC = π1
AA. The OLS model (14) implies VRR = γT1 VCCγ1+τ1

and VRC = γT1 VCC to yield the one-to-one transformations γT1 = VRCV
−1
CC and τ1 = VRR −

γT1 VCCγ1. That is, the p1 parameters in the OLS model (14) and the (p1 − 1)p1/2 variance
and covariance components in VCC are one-to-one functions of the p1(p1 + 1)/2 parameters
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in the joint model (17). Equivalently, the p1 parameters in the OLS model are one-to-one
functions of (VRR, VRC) without redundantly counting the number of parameters in VCC .

The general forms of the joint model (1) implied by the equations (16) and the conditional
model (14) remain intact when we consider the hierarchical linear model with arbitrary Q
levels. A central concern of interest to this paper is that, when we move beyond the single
level case for Q = 1, the desired model (14) is not a one-to-one transformation of the joint
model. To see how this works, we consider two-level data where level-1 units (e.g. students)
are nested within level-2 units (e.g. schools) before we consider arbitrary Q levels. We shall
consider the cases of the two-level model with a random intercept and the two-level model
with random coefficients.

4.2 Random-Intercept Model

A comparatively simple two-level hierarchical linear model with a random intercept is of
form

R = ATγ1 + Y T
2 γ2 + e1 + e2 ∼ N(ATγ1 + Y T

2 γ2, τ1 + τ2), (18)

a special case of model (14) with C = [AT Y T
2 ]T , γ = [γT1 γT2 ]T , D = [1 1]T , e = [e1 e2]

T and
τ =

⊕2
q=1 τq. The corresponding joint model (1) is

 R
A
Y2

 =

 ε1R
ε1A
0

+

 ε2R
ε2A
ε22

 ∼ N

0,

 π1
RR π1

RA 0
π1
AR π1

AA 0
0 0 0

+

 π2
RR π2

RA π2
R2

π2
AR π2

AA π2
A2

π2
2R π2

2A π2
22


 (19)

where VRR = π1
RR +π2

RR and VRC = [π1
RA +π2

RA π
2
R2] and VCC =

[
π1
AA 0
0 0

]
+

[
π2
AA π2

A2

π2
2A π2

22

]
.

We can see now that the desired model (18) constrains the joint model (19) by VRR =
γTVCCγ + τ1 + τ2 and VRC = γTVCC such that

π1
RR = [γT1 γT2 ]

[
π1
AA 0
0 0

] [
γ1
γ2

]
+ τ1, [π1

RA 0] = [γT1 γT2 ]

[
π1
AA 0
0 0

]
, (20)

π2
RR = [γT1 γT2 ]

[
π2
AA π2

A2

π2
2A π2

22

] [
γ1
γ2

]
+ τ2, [π2

RA π
2
R2] = [γT1 γT2 ]

[
π2
AA π2

A2

π2
2A π2

22

]
. (21)

To see how many constraints the desired model (18) has placed on the joint model (19),
the constrained model (18) identifies p1 + p2 + 1 parameters while the unconstrained joint
model (19) identifies 2p1 + p2 parameters in (VRR, VRC). Therefore, the constrained model
(18) has p1 − 1 fewer parameters than does the unconstrained joint model (19). The key
constraints occur in the variances and covariances (20) and (21) where the association γ1
between R and A is constrained to be the same at both levels. An alternative form of the
unconstrained model (19) replaces γ1 with γ11 in the equations (20) and γ1 with γ12 in the
equations (21). This would allow the association between R and A to be different at the
two levels, inducing what is known in the social science and public health applications as
a contextual effects model (Shin and Raudenbush, 2010). The constraints (20) and (21)
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impose γ12 − γ11 = 0, that is, no contextual effects.

4.3 Random-Coefficients Model

As the number pD of random coefficients increases, the number of potentially extraneous
parameters generated will increase non-linearly if no constraints are imposed. To show how
aggravated the over-identification can become, consider a random coefficients model that
adds level-1 covariates E2 having random coefficients to the model (18)

R = ATγ1 + Y T
2 γ2 + e1 +DT

2 e2 ∼ N(ATγ1 + Y T
2 γ2, τ1 +DT

2 τ2D2), (22)

another special case of model (14) for C = [AT Y T
2 ]T , γ = [γT1 γT2 ]T , D = [D1 DT

2 ]T ,

e = [e1 e
T
2 ]T and τ =

⊕2
q=1 τq where D1 = 1, D2 =

[
1
E2

]
, e2 =

[
e20
e21

]
, τ2 =

[
τ200 τ201
τ210 τ211

]
and pD = 1 + pD2. The corresponding joint model (1) is R
A
Y2

 =

 ε1R
ε1A
0

+

 DT
2 ε2R
ε2A
ε22

 ∼ N

0,

 π1
RR π1

RA 0
π1
AR π1

AA 0
0 0 0

+

 DT
2 π

2
RRD2 DT

2 π
2
RA DT

2 π
2
R2

π2
ARD2 π2

AA π2
A2

π2
2RD2 π2

2A π2
22


(23)

for ε2R =

[
ε2R0

ε2R1

]
, π2

RR =

[
π2
R0R0 π2

R0R1

π2
R1R0 π2

R1R1

]
, π2

RA =

[
π2
R0A

π2
R1A

]
and π2

R2 =

[
π2
R02

π2
R12

]
. Note that

VRR = π1
RR +DT

2 π
2
RRD2, VRC = [π1

RA +DT
2 π

2
RA DT

2 π
2
R2] and VCC as in the model (19). The

desired model (22) implies constraining the joint model (23) by VRR = γTVCCγ+τ1+DT
2 τ2D2

and VRC = γTVCC such that

π1
RR = [γT1 γT2 ]

[
π1
AA 0
0 0

] [
γ1
γ2

]
+ τ1, [π1

RA 0] = [γT1 γT2 ]

[
π1
AA 0
0 0

]
, (24)

π2
R0R0 = [γT1 γT2 ]

[
π2
AA π2

A2

π2
2A π2

22

] [
γ1
γ2

]
+ τ200,

[
π2
R0A π

2
R02

]
= [γT1 γT2 ]

[
π2
AA π2

A2

π2
2A π2

22

]
, (25)

π2
R0R1 = τ201, π2

R1R1 = τ211, π2
R1A = 0, π2

R12 = 0.

To see how many constraints the desired model (22) has placed on the joint model
(23), the constrained model (22) identifies p1 + p2 + pD2(pD2 + 1)/2 parameters while the
unconstrained joint model (23) has p1 + pD2(pD2 + 1)/2 + pD2(p1 + p2 − 1) components in
(VRR, VRC). Therefore, the model (22) has pD2(p1 + p2− 1)− p2 fewer parameters than does
the unconstrained joint model (23). Again, the key constraints occur in the variances and
covariances (24) and (25) where not only is the association γ1 between R and A constrained
to be the same at both levels, but the covariance components π2

R1A and π2
R12 that yield

extraneous interaction effects between E2 and C are also set to zero. That is, the desired
model (22) has no contextual effects of A and no interaction effects between E2 and C. Next,
we extend the model (14) to an arbitrary number of Q levels.
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4.4 Q-Level Model

We now focus on how to efficiently estimate the hierarchical GLM (14) for the arbitrary num-
ber of Q levels. Unlike the single-level case, however, the joint distribution (1) over-identifies
the desired model (14). This over-identification poses a major computational challenge as it
represents the components of cov(R,C) = VRC that are extraneous for subsequent analysis
and that rapidly multiply as Q, p and pD increase. The consequence is that estimation of
the over-identified hierarchical model (14) may produce substantially biased inferences in
the case of MLE on Yobs or computational problems in the case of MLE on Y mi.

To show the over-identification explicitly, we reexpress all random effects of the joint
model (1) in Table 1 according to the decomposition Y = [R CT ]T as listed in Table 2.
Column q lists level-q unit-specific random effects εq ∼ N(0, πq) that may now be partitioned

Table 2: All random components of Y in Equation (1).
1 2 3 · · · Q

R ε1R ε2R ε3R · · · εQR
A ε1A ε2A ε3A · · · εQA
Y2 ε22 ε32 · · · εQ2

Y3 ε33 · · · εQ3
...

. . .
...

YQ εQQ

as

εq =

[
εqR
εqC

]
, πq =

[
πqRR πqRC
πqCR πqCC

]
for εqC = [εTqA ε

T
q2 · · · εTqq]T .

The random effects (εqR, εqC) and their variances and covariances (πqRR, π
q
CC , π

q
RC) are useful

for explaining the over-identification problem and the constraints. Notice that the level-q
unit-specific εq generates pDq(

∑q
r=1 pr − 1) covariance components in πqRC . For Q = 3 with

three columns, for example, columns 1, 2 and 3 generate pD1(p1 − 1), pD2(p1 + p2 − 1) and
pD3(p1 + p2 + p3 − 1) components in cov(ε1R, ε1C) = π1

RC = π1
RA, cov(ε2R, ε2C) = π2

RC =
[π2
RA π2

R2] and cov(ε3R, ε3C) = π3
RC = [π3

RA π3
R2 π

3
R3] at levels 1, 2 and 3, respectively, for

ε1C = ε1A, ε2C = [εT2A ε
T
22]

T and ε3C = [εT3A ε
T
32 ε

T
33]

T . Overall, the random effects of the joint
model (1) produce

∑Q
q=1 pDq

∑q
r=1 pr − pD covariance components between R and C while

the desired model (14) implies p − 1 elements in γ. Consequently, the potential for severe
over-identification exists if no constraints are imposed on Equation (1).

A key task, then, is to formulate a general approach to imposing constraints, one that
applies to any value of Q and any number of covariates. The following theorem shows a
conditional model the joint model (1) identifies so that constraining the joint model amounts
to constraining the conditional model. Let εC = (ε1C , ε2C , · · · , εQC) and π−qCC be the inverse
of πqCC .
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Theorem 4.1 Joint model (1) represents
∑Q
q=1 pDq

∑q
r=1 pr− pD covariance components be-

tween R and C and is a one-to-one transformation of R|εC , D

R =
Q∑
q=1

(
DT
q ΓqεqC +DT

q δq
)
, δq ∼ N(0, πqR|C) (26)

for Γq = πqRCπ
−q
CC and πqR|C = πqRR − Γqπ

q
CCΓTq .

For each covariate in Yq, the conditional model (26) expresses the association between
the covariate and R to be distinct at each level s ≥ q while the desired model (14) rep-
resents a single effect of the covariate on R. Consequently, the joint model (1) produces∑Q
q=1 pDq

∑q
r=1 pr−pD−(p−1) parameters extraneous for subsequent analysis. The extrane-

ous parameters, representing the contextual effects of C and the interaction effects between
D and εC , rapidly multiply as Q, p and pD grow. Let Dq = [1 ET

q ]T and εqR = [εqR0 ε
T
qR1]

T so

that πqRC = cov(εqR, εqC) = [πqTR0C π
qT
R1C ]T . The following corollary to Theorem 4.1 establishes

one-to-one correspondence between a general contextual effects model and a constrained
joint model (1) where each level-q covariate has a distinct effect at every level s ≥ q without
involving interaction effects.

Corollary 4.2 Joint model (1) under constraints

πqR1C = 0, ∀q (27)

identifies a general contextual effects model given εC and D

R =
Q∑
q=1

(
γ∗Tq εqC +DT

q δq
)
, δq ∼ N(0, πqR|C) (28)

for γ∗q = [γT1q γ
T
2q · · · γTqq]T .

Equation (28) is nested within Model (26) for Γq =

[
γ∗Tq
0

]
=

[
πqR0C

0

]
π−qCC . We define

the contextual effects of covariates in Yq at level s > q as γqs−γq(s−1) (Shin and Raudenbush,
2010). Corollary 4.2 may involve γ∗q expressing constraints of different forms. For example, if
it is desirable for each covariate in A to have a single effect on R in the model (28), then the
corollary would constrain γ∗q = [γT1 γT2q · · · γTqq]T for all q in addition to the constraints (27).
For another example, if the contextual effects of A are desired at level 2 but no other levels in
the model (28), then the additional constraints would be γ∗1 = γ11 and γ∗q = [γT1 γT2q · · · γTqq]T
for q > 1. Shin and Raudenbush (2007) imposed πqR1C = 0 and a single effect of each
covariate on the joint model (1) to identify the desired model (14) for Q = 2. The following
corollary to Theorem 4.1 establishes the one-to-one correspondence between the model (14)
and a constrained joint model (1).

Corollary 4.3 Joint model (1) under constraints

πqR1C = 0 and πqR0C = [γT1 · · · γTq ]πqCC , ∀q (29)
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identifies hierarchical model (14).

Model (14) under the constraints (29) is equivalent to model (28) for γ∗q = [γT1 · · · γTq ]T that

implies γT1
∑Q
r=1 εrA = γT1 A, γTs

∑Q
r=s εrs = γTs Ys and τq = πqR|C for all s > 1 and all q.

Given Q-level incomplete data, Equation (1) under constraints (29) identifies hierar-
chical model (14) while the joint model under partial constraints Γq such as constraints
(27) may identify desired contextual effects of C or interaction effects between D and εC
(Shin and Raudenbush, 2010). All these applications may be carried out via MLE on Yobs,
MLE on Y mi or a hybrid method of imputation following estimation of the constrained joint
model. The choice will depend on computational feasibility and the goal of the application.
Given an analyst’s model (14), MLE on Yobs constrains the joint model (1) to just iden-
tify the analyst’s model while MLE on Y mi is more generally applicable by enabling the
data analyst to explore, in addition, contextual effects of C and interaction effects involving
D. Consequently, MLE on Yobs is tailored to estimation of the analyst’s model whereas
MLE on Y mi estimates an overidentified joint model so that it enables the data analyst to
explore multiple hierarchical models for correct specification of the analyst’s model. When
MLE on Y mi is desired, but produces an unconstrained joint model (1) that is extremely
high dimensional and thus difficult to estimate well, the hybrid method enables estimation of
fewer parameters and thus reduces computational burden in estimation by imposing partial
constraints such as Equations (27) on the joint model.

Now, we consider a more general model (14)

R = CTγ +W Tγw +DT e, e ∼ N(0, τ) (30)

for known covariates W = [W T
1 W T

2 · · ·W T
Q ]T having fixed effects γw = [γTw1 γ

T
w2 · · · γTwQ]T

and every other component defined identically as the counterpart of the model (14) where
level-q covariates Wq have fixed effects γwq. The corresponding joint model (1) has Xq =
Ipq ⊗ [W T

q W T
q+1 · · · ,W T

Q ] and everything else the same as previously defined.
The next section illustrates an application to three-level large-scale survey data subject to

missingness at all levels. We illustrate MLE on Y mi, which is more generally applicable than
MLE on Yobs and the hybrid method. Estimation and multiple imputation are carried out
by C programs written by the first author. The imputation program uses a random number
generating library of C routines, RANDLIB 1.3 by Barry W. Brown, James Lovato, Kathy
Russell and John Venier. Analysis of imputed data and complete-case analysis are carried
out by HLM 7 (Raudenbush, Bryk, Cheong, Congdon, and du Toit, 2011). The convergence
criterion is the difference in the observed log-likelihoods between two consecutive iterations
less than 10−5. The statistical significance is discussed at a significance level α = 0.1. The
user-friendly two-level program that implements MLE on Y mi is expected to be released
to the public in software package HLM 7 in the year 2014. The user-friendly three-level
program is under development at the time of writing this manuscript.

5 Illustrative Examples

In this section, we aim to identify the determining factors of body mass index (BMI) during
childhood that may span three levels, occasions nested within a child attending a school, via
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analysis of the Early Childhood Longitudinal Study Kindergarten Cohort of 1998 (ECLS-K,
Tourangeau et al., 2009). Specifically we consider ethnic and social disparities in the growth
of BMI, and ask how environmental exposures such as television watching and school quality
are associated with growth in BMI.

The ECLS-K is a nationally representative sample of 21260 kindergartners in the United
States who attended 1018 schools in 1998. The study followed the children in fall-kindergarten
(K) of 1998, spring-K of 1999, fall-first grade (G1) of 1999, spring-G1 of 2000, spring-third
grade (G3) of 2002, spring-fifth grade (G5) of 2004 and spring-eighth grade (G8) of 2007.
Due to cost constraints, a random subsample (41% to 54%) of students transferring schools
were followed from K to G5. Furthermore, the fall-G1 data collection was limited to 27% of
base-year students in a 30% subsample of the schools. Therefore, the ECLS-K contains many
item- and unit-nonresponses. For example, only 5044 first graders had their BMI measured
in fall of 1999. Consequently, researchers have analyzed the ECLS-K without the third wave
in longitudinal studies of obesity (Gable et al., 2007, Bhargava, Jolliffe, and Howard, 2008,
Danner, 2008). With the G8 data available since 2009, the longitudinal analysis demands
challenges as less than 7% of the children attended the same school from K to G8.

A longitudinal analysis of the ECLS-K should involve all seven waves of data to yield ef-
ficient analysis. Furthermore, missing data may be present at multiple levels. The approach
in this paper enables all waves and available data to be analyzed for efficient and unbiased
inferences. The “all available data” include children with item- as well as unit-nonresponse
because a child with time-varying characteristics missing but individual or school charac-
teristics observed strengthens inferences at higher levels (Shin and Raudenbush, 2011, Shin,
2012). Mobile students transferring schools are nested within their original schools in fall-K
and analyzed.

Following the previous studies of the ECLS-K (Datar and Sturm, 2004, Sturm and Datar,
2005, Danner, 2008, Bhargava et al., 2008), we analyze the raw BMI as a ratio of body weight
in kg to height in meters squared. Table 3 summarizes the data for analysis of 21,210 children
who attended 1,018 schools in 1998 after dropping 50 children with most characteristics
missing including gender and race. Also dropped are 6 eighth-grade BMIs ranging 98 to 207
that are influential on the fitted regression and 13 extraneous heights and weights such as a
20-pound weight and a height reduced by more than 10 inches. After dropping the influential
and extraneous observations, the standard deviation of G8 BMIs reduces from 6.29 to 5.29.
With 7 occasions nested within most children, there are a total of 148,451 occasions at level
1 nested within 21,210 children at level 2 attending 1,018 schools at level 3. BMI and the
daily number of hours spent watching television (TV) are time varying (Gable et al., 2007,
Bhargava et al., 2008, Danner, 2008). The BMI ranges 7.1 to 57.5. To produce TV, maximum
daily television viewing hours exceeding 7 per weekday and 10 per weekend day were set to
7 and 10 hours, respectively. TV was measured in spring-K for the first time and then once
in every other data collection. It is unreasonable to think that the TV values between fall-K
and spring-K for each child are different enough to treat all the values missing in fall-K. The
analysis uses the TV measured in spring-K for the first two data collections. In addition, the
analysis considers six dummy time indicators from spring-K to G8 to control for the natural
growth in BMI at level 1; base-year home neighborhood safety (HOMESAFETY), base-year
age in months (AGE), birth weight in pounds (BIRTHWEIGHT), base-year socioeconomic
status (SES), a female indicator (FEMALE) and six race ethnicity indicators at child level or
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Table 3: Data for analysis. K and Gn stand for kindergarten and nth grade respectively.

Level Variable Description Mean (SD) Missing (%)

Time BMI body mass index
Fall-K 16.27 (2.20) 2219 (10)
Spr.-K 16.40 (2.30) 1450 ( 7)
Fall-G1 16.62 (2.60) 16170 (76)
Spr.-G1 16.90 (2.86) 5805 (27)
Spr.-G3 18.66 (3.88) 7476 (35)
Spr.-G5 20.57 (4.75) 10241 (48)
Spr.-G8 22.80 (5.29) 12450 (59)

TV daily TV viewing in hours
Fall-K 2.01 (1.08) 2772 (13)
Spr.-K 2.01 (1.08) 2772 (13)
Fall-G1 2.44 (1.65) 16374 (77)
Spr.-G1 1.88 (1.25) 6018 (28)
Spr.-G3 1.91 (1.22) 8123 (38)
Spr.-G5 2.05 (1.22) 10468 (49)
Spr.-G8 3.09 (1.87) 12227 (58)

Child HOMESAFETY safety around home 1.66 (0.55) 2316 (11)
AGE age in months 68.41 (4.35) 2132 (10)
BIRTHWEIGHT birth weight in lb 6.91 (1.35) 1472 ( 7)
SES socioeconomic status 0.00 (0.80) 1088 ( 5)
FEMALE 1 if female 0.49 (0.50) 0 ( 0)
BLACK 1 if African-American 0.15 (0.36) 0 ( 0)
HISPANIC 1 if Hispanic 0.18 (0.38) 0 ( 0)
ASIAN 1 if Asian 0.06 (0.25) 0 ( 0)
PACIFIC 1 if pacific islander 0.01 (0.10) 0 ( 0)
ALASKAN 1 if American Indian/Alaskan 0.02 (0.13) 0 ( 0)
OTHER 1 if multiracial or others 0.03 (0.16) 0 ( 0)

School GRAFFITI Graffiti around school 0.55 (0.72) 262 (26)
PRIVATE 1 if private school 0.26 (0.44) 0 ( 0)

level 2; and base-year school neighborhood safety (GRAFFITI, the amount of graffiti around
school) and a private school indicator (PRIVATE) at school level or level 3.

An unsafe neighborhood is associated with elevated BMI among adults (Shin and Rau-
denbush, 2007). HOMESAFETY has three scales: not safe or low (0); somewhat safe or
medium (1); and very safe or high (2) while GRAFFITI, the lower the safer, has four scales:
none (0); a little (1); some (2); and a lot (3). Preliminary analysis shows that higher-order
than linear association between the safety factors and BMI is unlikely. BMI and TV miss
38 % and 44 % of their values overall, and 76% and 77% in fall-G1, respectively. HOME-
SAFETY, AGE, BIRTHWEIGHT and SES miss 5 to 11 % while GRAFFITI is missing for
26% of the schools. Complete-case analysis entails removing the 262 schools with missing
GRAFFITI and dropping 5,381 students attending the schools and their data from analysis.
The resulting inference is inefficient and may be considerably biased as will be illustrated
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below. The 2,166 missing birth weights in fall-K were recovered from later data collections.
The 21,210 students are 49% female and 55 % white. Out of the 1018 schools, 26 % are
private. The mean BMI grows with acceleration until G5.

5.1 Random Intercept Model

The analysis aims to efficiently identify the environmental factors of childhood BMI such
as television watching and school quality after controlling for natural growth as well as eth-
nic and social disparities in BMI. At level 1, over time nested within children, we model
change in BMI as a function of incompletely observed TV and time. At level 2, between
children nested within schools, we include incompletely observed measure of the safety
around the home, age, birth weight and socioeconomic status, and completely observed
female and race ethnicity indicators. At level 3, between schools, we include an incom-
pletely observed measure of the safety of the school by GRAFFITI and a completely ob-
served indicator for private school. In terms of our general model (30), we therefore have
Q = 3, R = BMI, A = TV , Y T

2 = [HOMESAFETY AGE BIRTHWEIGHT SES],
Y3 = GRAFFITI, D1 = 1, D2 = 1, D3 = 1, W T

1 = [T2 T3 T4 T5 T6 T7],
W T

2 = [FEMALE BLACK HISPANIC ASIAN PACIFIC ALASKAN OTHER]
and W T

3 = [1 PRIV ATE] where T2 through T7 are dummy indicators for spring-K through
spring-G8. Rather than subjecting the mean growth in BMI to a polynomial curve (Bhar-
gava et al. 2008; Danner 2008), W1 controls for it as the difference in mean BMIs between
each time point and fall-K.

Table 4 displays the output. Age and birth weight have been centered around the re-
spective sample means. The complete-case analysis of the desired model (30) under column
heading “CC” involves 12446 children attending 706 schools who have both BMI and TV
observed at one or more occasions. The children have a total of 55082 occasions. The
next column under “MLE on Y mi” presents the MLE on Y mi that uses five imputa-

tions based on the corresponding unconstrained joint model (1) for π1 =

[
π1
RR π1

RA

π1
AR π1

AA

]
,

π2 =

 π2
RR π2

RA π2
R2

π2
AR π2

AA π2
A2

π2
2R π2

2A π2
22

 and π3 =


π3
RR π3

RA π3
R2 π3

R3

π3
AR π3

AA π3
A2 π3

A3

π3
2R π3

2A π3
22 π3

23

π3
3R π3

3A π3
32 π3

33

 =

[
π3
RR π3

RC

π3
CR π3

CC

]
of respective

dimensions 2-by-2, 6-by-6 and 7-by-7. The number of covariance components between R
and C is

∑3
q=1 pDq

∑q
r=1 pr − pD = 12 while the desired hierarchical model has p − 1 = 6

effects of C on R. Consequently, 6 covariance components of the unconstrained joint model
are extraneous for subsequent analysis. An asterisk ‘*’ marks statistical significance at a
significance level α = 0.1. The CC standard errors are 8 to 83% higher than those under
the MLE on Y mi. Under the CC, females have 0.09 units higher than do males, and pacific
islanders and students of multiple or other races have 1.16 and 0.27 units higher than do
white counterparts, respectively, in BMI on average while these effects are insignificant un-
der the MLE on Y mi, controlling for other covariates. The effect estimates for females and
pacific islanders under the CC are 25 and 5 times higher than their counterparts under the
MLE on Y mi. The effect estimates for TV, SES, BLACK, ALASKAN and OTHER under
the CC are also 10 to 67 % higher than their MLE on Y mi counterparts. The CC variances
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are comparatively underestimated.

Table 4: Random-intercept model (30) by complete-case analysis (CC), by the MLE on Y mi

and by the MLE on Yobs based on the unconstrained joint model (1), and random-coefficients
model (30) by the MLE on Y mi. Statistical significance marked by ‘*’ at a significance level
α = 0.1.

Estimate (Std. Err.)
CC MLE on Y mi MLE on Yobs MLE on Y mi

Covariate Unconstrained Random Slope
Intercept 15.88 (0.11)* 15.94 (0.08)* 11.59 (0.37)* 15.93 (0.09)*
TV 0.10 (0.01)* 0.08 (0.01)* 0.18 (0.01)* 0.09 (0.01)*
T2 0.13 (0.02)* 0.13 (0.02)* 0.13 (0.02)* 0.13 (0.02)*
T3 0.34 (0.04)* 0.32 (0.03)* 0.28 (0.03)* 0.33 (0.03)*
T4 0.63 (0.03)* 0.63 (0.02)* 0.64 (0.02)* 0.63 (0.02)*
T5 2.36 (0.03)* 2.36 (0.02)* 2.37 (0.02)* 2.36 (0.03)*
T6 4.21 (0.03)* 4.24 (0.02)* 4.23 (0.02)* 4.23 (0.02)*
T7 6.38 (0.03)* 6.40 (0.02)* 6.29 (0.03)* 6.39 (0.03)*
HOMESAFETY -0.01 (0.05) 0.00 (0.04) 0.01 (0.04) -0.01 (0.04)
AGE 0.03 (0.01)* 0.03 (0.00)* 0.03 (0.00)* 0.03 (0.00)*
BIRTHWEIGHT 0.31 (0.02)* 0.32 (0.01)* 0.32 (0.02)* 0.32 (0.01)*
SES -0.30 (0.04)* -0.27 (0.03)* -0.28 (0.03)* -0.27 (0.03)*
FEMALE 0.09 (0.05)* 0.00 (0.04) 0.02 (0.04) 0.01 (0.04)
BLACK 0.52 (0.09)* 0.47 (0.06)* 0.35 (0.06)* 0.48 (0.07)*
HISPANIC 0.61 (0.08)* 0.62 (0.06)* 0.55 (0.06)* 0.62 (0.06)*
ASIAN 0.06 (0.13) -0.07 (0.09) -0.09 (0.09) -0.10 (0.09)
PACIFIC 1.16 (0.37)* 0.25 (0.20) 0.16 (0.20) 0.31 (0.20)
ALASKAN 0.66 (0.20)* 0.53 (0.17)* 0.47 (0.16)* 0.53 (0.17)*
OTHER 0.27 (0.16)* 0.16 (0.12) 0.15 (0.13) 0.16 (0.13)
GRAFFITI 0.04 (0.05) 0.00 (0.04) 0.00 (0.04) 0.00 (0.04)
PRIVATE -0.03 (0.07) -0.07 (0.06) -0.04 (0.06) -0.07 (0.06)

τ3 0.15 (0.03) 0.17 (0.02) 0.20 (0.03)

[
0.18(0.03) −0.07(0.05)
−0.07(0.05) 0.18(0.12)

]
τ2 6.95 (0.10) 7.01 (0.08) 6.98 (0.08) 6.98 (0.07)
τ1 3.08 (0.02) 3.07 (0.02) 3.05 (0.02) 3.07 (0.02)

The estimated natural growths of BMI under CC and MLE on Y mi are close to each
other. From the MLE on Y mi, a white student having mean age, birth weight and socioeco-
nomic status who does not watch TV has 15.94 BMI units on average in fall-K. The 6-month
BMI growth is 0.13 units in spring-K and then accelerates to 0.19 units (0.32-0.13) in fall-G1,
to 0.31 units (0.63-0.32) in spring-G1, to 0.43 units [(2.36-0.63)/4] until spring-G3 and to
0.47 units [(4.24-2.36)/4] until spring-G5, and then decelerates to 0.36 units [(6.40-4.24)/6]
until spring-G8. A polynomial curve may not reveal the details in growth. Controlling for
the natural growth, and demographic individual and organizational school characteristics, a
one-hour increment in daily TV viewing elevates child BMI by 0.08 units on average, 64% of
the 6-month BMI growth in kindergarten. Each month in base-year age and an additional
pound in birth weight contribute to 0.03 and 0.32 unit increases in BMI, respectively, while
one unit increase in SES lowers the child BMI by 0.27 units on average, ceteris paribus.
Black, Hispanic, and American Indian or Alaskan students have 0.47, 0.62 and 0.53 units
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higher, respectively, than do white counterparts in BMI on average, controlling for other
covariates.

The next column under “MLE on Yobs Unconstrained” illustrates how biased the result-
ing inferences may be relative to those of the desired model (30) under the MLE on Y mi if
we are to directly transform the corresponding unconstrained joint model (1) to the desired
model. The transformed parameters are

∑3
q=1 π

q
AA π2

A2 + π3
A2 π3

A3

π2
2A + π3

2A π2
22 + π3

22 π3
23

π3
3A π3

32 π3
33


 γ1
γ2
γ3

 =


∑3
q=1 π

q
AR

π2
2R + π3

2R

π3
3R

 , (31)

τ1 = π1
RR − γ21π1

AA, τ2 = π2
RR − [γ1 γ

T
2 ]

[
π2
AA π2

A2

π2
2A π2

22

] [
γ1
γ2

]
and τ3 = π3

RR − γTπ3
CCγ. We

compare the estimates to the counterparts under the MLE on Y mi. Most strikingly, the key
environmental effect of television watching (TV) under investigation increases by 126% to
0.18. The gaps in mean BMIs of black, Hispanic and American Indian or Alaskan students
relative to white students are noticeably underestimated, and so are the intercept and the
effects of T3 and T7. The level-1 and -2 error variances are understated while the level-
3 error variance is over-represented. This example is comparatively benign with only one
covariate, TV, at level 1 and four covariates at level 2 subject missingness. With more
covariates subject to missingness at nested levels, this method has the potential to produce
severely biased inferences. To correctly apply the MLE on Yobs for the desired hierarchical
model (30), the transformation should follow estimation of the joint model under constraints

(29): π1
AR = π1

AAγ1,

[
π2
AR

π2
2R

]
=

[
π2
AA π2

A2

π2
2A π2

22

] [
γ1
γ2

]
and π3

CR = π3
CCγ according to Corollary

4.3. To see how the constraints work, replace the right hand side in Equation (31) with the
constraints.

5.2 Random-Coefficients Model with Missing Data

The analysis above reveals that black, Hispanic, and American Indian or Alaskan students
have elevated BMIs relative to white counterparts on average controlling for other covariates
in the model. The minority students may attend lower-quality schools than those that white
counterparts attend which, by hypothesis, contributes to the disparity in BMI. School quality
may be indicated by school characteristics such as school safety, school-mean socioeconomic
status, contents of school meals, physical education time and school sector (Datar and Sturm
2004; Gable et al. 2007; Bhargava et al. 2008). If this hypothesis is true, then the minority
students may have a randomly varying effect on BMI across schools of different qualities.
Among the minority students, Hispanic students stand out in BMI. Overall, Hispanic stu-
dents are half as likely to attend private schools as white students. They also attend schools
having about three times as much graffiti around as those that white students attend on
average.

The random-intercept model above is extended to a random-coefficients model where
the Hispanic indicator has a random effect on BMI across schools. The desired model (30)
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has D3 =

[
1

HISPANIC

]
, τ3 =

[
τ300 τ301
τ301 τ311

]
and all other components identical to those

of the random intercept model. The corresponding unconstrained joint model (1) has an

8-by-8 covariance matrix π3 =

 π3
R0R0 π3

R0R1 π3
R0C

π3
R1R0 π3

R1R1 π3
R1C

π3
CR0 π3

CR1 π3
CC

 and all other parameters identical

to those of the joint model corresponding to the random-intercept model. The complete-
case analysis produced virtually identical estimates as those under the CC in Table 4. This
is not surprising in that the slope of HISPANIC does not vary significantly across schools
(variance estimate=0.23, standard error=0.17, p-value=0.24). The MLE on Y mi based
on m = 5 imputations yields the estimates under “MLE on Y mi Random Slope” in the
Table. Except for the level-3 covariance matrix, the estimates are close to the counterparts
under the MLE on Y mi. The slope for the Hispanic indicator seems to vary at most
modestly across schools (slope= 0.18, standard error= 0.12). To test the null hypothesis
that τ311 = 0 which implies τ301 = 0, let θF and θR be the parameters of the random-
coefficients (full) and -intercept (reduced) models, and θ̂tF and θ̂tR be the ML estimates,
respectively, given the tth imputation for t = 1, · · · ,m. The log likelihoods l(θ̂tF ) and l(θ̂tR)
evaluated at the ML θ̂tF and θ̂tR, respectively, given the tth imputation yield dt = 2[l(θ̂tF ) −
l(θ̂tR)]. The test statistic recommended by Li, Meng, Raghunathan, and Rubin (1991a)

is D =
[
d̄/2− (m+ 1)(m− 1)−1r

]
/(1 + r) = 0.53 where d̄ =

∑m
t=1 dt/m and r = (1 +

m−1)

[∑m
t=1

(√
dt −

√
d
)2

/(m− 1)

]
for
√
d =

∑m
t=1

√
dt/m (Schafer, 1997). The p-value is

P (F2,ν > D) = 0.59 where F2,ν is a random variable from the F distribution with 2 numerator
and ν denominator degrees of freedom for ν = (m−1)(1+1/r)2/23/m = 974. This test yields
an approximate range of p-values between twice and one half the computed value (Li et al.,
1991a, Schafer, 1997). The computed p-value 0.59 gives enough precision to conclude the
random intercept (null) model. Therefore, we do not find evidence that the slope for the
Hispanic indicator varies randomly across schools.

The unconstrained joint model identifies 18 covariance components between R and C
while the desired random coefficient model has 6 effects of C on R. Consequently, 12
covariance components between R and C are extraneous for subsequent analysis. Con-

straints to identify the desired model via MLE on Yobs are π1
AR = π1

AAγ1,

[
π2
AR

π2
2R

]
=[

π2
AA π2

A2

π2
2A π2
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] [
γ1
γ2

]
, π3

CR0 = π3
CCγ and π3

R1C = 0 by Corollary 4.3.

6 Discussion

This paper presented methods for efficient and unbiased analysis of a Q-level hierarchical
general linear model given incomplete data with a general missing pattern at any of the Q
levels. Our general approach uniformly expresses the Q-level model for Q ≥ 1 that greatly
facilitates extension of existing single-level and two-level efficient missing data methods to
general Q-level data; reexpresses the desired model as a joint distribution of the variables,
including the outcome, that are subject to missingness conditional on all of the covariates
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that are completely observed; and efficiently estimates the joint distribution. This approach
confronts two major challenges. As the number of Q levels, the number, p, of variables
subject to missingness and the number, pD, of random coefficients increase in the hierar-
chical model, the joint distribution may become extremely high dimensional and difficult to
estimate well. Moreover, the joint model, in general, over-identifies the desired hierarchical
model. The problem of over-identification can grow severe as levels, covariates, and random
coefficients are added to the hierarchical model. The consequence is that the overidenti-
fied hierarchical model may produce considerably biased inferences as was illustrated in this
paper. To overcome the computational challenges, we derived, within each iteration of the
EM algorithm, recursive Q-step computation formulas for efficient estimation of the joint
distribution where computation at each step involves single-level data only given higher-level
computation components. The consequence is efficient computation that is not excessively
burdened with regard to Q, p and pD. Furthermore, we showed how to impose constraints on
the joint distribution within the framework of the Q-level hierarchical model in a way that
is uniform without regard to Q; and in a way that produces unbiased and efficient analysis
of the hierarchical model.

This paper considered three methods for efficient handling of missing data: MLE on Yobs,
MLE on Y mi and the hybrid method. Given a Q-level hierarchical model with incomplete
data, MLE on Yobs constrains the joint model to be a one-to-one transformation of the
desired hierarchical model for unbiased analysis; efficiently estimates the constrained joint
model by ML; and transforms it to the hierarchical model. Consequently, MLE on Yobs is
tailored to estimation of the desired hierarchical model. On the other hand, MLE on Y mi

generates multiple imputation given the unconstrained joint model estimated by ML, allow-
ing the user to impose the desired constraints when using conventional software to analyze
the imputed data. Therefore, MLE on Y mi is more generally applicable by enabling the
data analyst to explore, in addition, contextual effects and interaction effects involving co-
variates having random coefficients. Theorem 4.1 provides the scope of hierarchical models
that can be explored under the joint model. When MLE on Y mi is desired, but produces an
unconstrained joint model that is extremely high dimensional and thus difficult to estimate
well, the hybrid method of imputation following estimation of a partially constrained joint
model enables estimation of fewer parameters and thus reduces computational burden in
estimation. The Corollaries to Theorem 4.1 provide the scope of hierarchical models that
may be explored by the data analyst under the partially constrained joint model.

We have illustrated the MLE on Y mi by a longitudinal analysis of ECLS-K for Q = 3
and compared it to the complete-case analysis that was shown to be relatively inefficient and
subject to biased inferences. We have also compared the MLE on Y mi to the MLE on Yobs
based on the unconstrained joint model that revealed the potential to produce substantially
biased inferences. The proliferation of extraneous parameters was comparatively moderate
with Q = 3, p = 7 and pD = 3. We have imposed six constraints to generate the results via
the MLE on Y mi in Table 4. For a model having larger Q, p or pD, it may be desirable
to use the hybrid method that reduces the computational burden of MLE on Y mi and,
at the same time, broadens the scope of MLE on Yobs by allowing an analyst to explore
multiple hierarchical models for the correct specification of the desired model. We may also
take advantage of extra variables not of direct interest in the desired hierarchical model,
but highly correlated with variables subject to missingness to more precisely impute missing
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data at multiple levels (Shin and Raudenbush, 2007).
The ECLS-K has a great majority of students transferring schools. Thus, it may be

more appropriate to consider a cross-classified model for the analysis that relaxes the strict
hierarchy of nesting a student within a single school. Estimation of a cross-classified model
is challenging because the growths in the outcome of students while attending the same
schools become dependent to produce a complicated network of dependence among children
and schools (Raudenbush and Bryk, 2002). All schools for each child and all children for
each school may have to be analyzed at once to fully account for the dependence. With many
covariates subject to missingness at multiple levels, the joint model of variables subject to
missingness may be too highly dimensioned to estimate well. Therefore, a valuable future
research topic is development of a method for efficient estimation of a cross-classified model
given incomplete data.

One restriction of the general Q-level hierarchical model is that the covariates having
random effects should be completely observed. If the covariates are subject to missingness,
they should appear on the left hand side of the corresponding joint model for efficient han-
dling of the missing data as well as on the right hand side of the model for estimation of the
random coefficients. Such a joint model is not multivariate normal, and the factorization
under joint normality that leads to the desired conditional hierarchical linear model does not
apply. Consequently, the ML approach is challenging. Relaxing this assumption is beyond
the scope of the current paper.

It took 21 seconds to complete each iteration in estimating each joint model in Table 4
on a 2.8 GHz laptop computer that has 8 GB memory. The estimated random intercept
and coefficients models took more than 5 hours to converge at 867th and 894th iterations,
respectively. No attempt to accelerate the convergence has been made. The convergence
criterion is the difference in the observed log-likelihoods between two consecutive iterations
less than 10−5. In some of our two-level test runs, we compared computation times for esti-
mation of a joint model between our program with a convergence criterion of the difference
in log-likelihoods between two consecutive iterations less than 10−6 (Shin and Raudenbush,
2007), and an alternative program with a convergence criterion of the percentage difference
in log-likelihoods between two consecutive iterations less than 10−6 and the Aitken accel-
eration (Aitken, 1926), the alternative program converged not only to practically identical
estimates and standard errors, but up to 90% faster than did our program in terms of the
number of iterations. Considerable saving in computation time is anticipated with the like-
wise acceleration in the three-level applications. It took us about 2 minutes to generate a
single imputation for the results in Table 4. So far, we have developed a three-level pro-
gram implementing the MLE on Y mi only and thus cannot compare the computation times
between MLE on Y mi and MLE on Yobs.

In Section 5.2, we found no evidence that the slope for the Hispanic student indicator
varies randomly across schools, based on the test statistic recommended by Li et al. (1991a).
This test provides an approximate range of p-values between twice and one half the computed
p-value. More accurate p-values may be obtained at the expense of extra computational
effort (Li, Raghunathan, and Rubin, 1991b, Meng and Rubin, 1992, Schafer, 1997, Little and
Rubin, 2002). Because the corollaries to Theorem 4.1 establish one-to-one correspondence
between hierarchical model (30) and joint model (1), the MLE on Yobs enables an alternative
likelihood ratio test between the two analyst’s models directly based on their constrained
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joint models.
Our illustrative examples in section 5 are based on a large sample. The performance of

our estimators in terms of bias and efficiency involving a small sample is yet to be assessed.
Therefore, simulation studies on the small-sample performance of our methods will be a
useful future research area.

The analysis in this paper involved discrete covariates, the safety factors, subject to
missingness at levels 2 and 3. Although it is improper for the normal linear joint model to
describe the marginal distribution for the discrete factors, the implied conditional distribu-
tion is the desired hierarchical model. An advantage is that it allows the discrete covariates
subject to missingness to be analyzed by the efficient missing data method (Schafer, 1997,
Shin and Raudenbush, 2007). In addition, the impact of the joint distribution assumptions
on the desired conditional model by the MLE on Y mi is comparatively weak because the
distributional assumptions do not affect the observed data. A valuable future extension of
this approach is to a hierarchical generalized linear model given incomplete data.

Appendix
Proof of Proposition 3.1. The model (8) implies

Aqmobs =

 OT
qmψ

−1
qm(dqmobs − Z−qqmobsε̃−qqm)

Ω−1qm(ε̃−qqm − ˜̃ε−qqm)

Aq+1
mobs −B

q+1
mobsΦ

q(q+1)T
m Ω−1q11m(ε̃−qqm − ˜̃ε−qqm)

 , (32)

Bq
mobs =


OT
qmV

−q11
mobs Oqm OT

qmV
−q11
mobs Z−qqmobs OT

qmV
−q12
mobs Z

q+1
mobs

ZT
−qqmobsV

−q11
mobs Z−qqmobs ZT

−qqmobsV
−q12
mobs Z

q+1
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Z
(q+1)T
mobs V −q22mobs Z

q+1
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 (33)

for a symmetric matrix (33) showing the upper triangular components only where Ωqm,
ε̃−qqm, ˜̃ε−qqm and V −q11mobs in Equations (12), and

V −q12mobs Z
q+1
mobs = −ψ−1qmZ−qqmobs∆−1qmΩ−1qmΦq(q+1)

m Bq+1
mobs,

Z
(q+1)T
mobs V −q22mobs Z

q+1
mobs = Bq+1

mobs +Bq+1
mobsΦ

q(q+1)T
m (Ω−1qm − Ω−1qm∆−1qmΩ−1qm)Φq(q+1)

m Bq+1
mobs

depend on level-q Z−qqmobs and dqmobs only, given Aq+1
mobs, B

q+1
mobs and θ.

Proof of Theorem 3.2. The initial step is to compute AQmobs and BQ
mobs in Equations

(11). Suppose that b̃qm and Π̃qq
m may be computed involving level-q data only given Aq+1

mobs,
Bq+1
mobs and θ. Then, b̃q−1m and Π̃(q−1)(q−1)

m may be computed based on level-(q − 1) data only
given Aqmobs, B

q
mobs and θ by Proposition 3.1.

Proof of Proposition 3.3. Equation (8) implies

F q
mobs =

[
XT
qmobsψ

−1
qm(dqmobs − Z−qqmobsε̃−qqm)

F q+1
mobs −H

(q+1)T
mobs Φq(q+1)T
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]
, (34)
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q+1
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]
(35)
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[
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where Ωqm, ε̃−qqm, ˜̃ε−qqm and V −q11mobs in Equations (12), V −q12mobs Z
q+1
mobs in Equation (33),

V −q12mobs X
q+1
mobs = −ψ−1qmZ−qqmobs∆−1qmΩ−1qmΦq(q+1)

m Hq+1
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X
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q+1
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mobs Φq(q+1)T

m (Ω−1qm − Ω−1qm∆−1qmΩ−1qm)Φq(q+1)
m Hq+1
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depend on level-q Z−qqmobs, Yqmobs and Xqmobs only, given Aq+1
mobs, B

q+1
mobs, F

q+1
mobs, G

q+1
mobs, H

q+1
mobs

and θ.

Proof of Theorem 3.4. The initial step is to compute AQmobs = OT
Qmπ

−Q
QQmdQmobs, B

Q
mobs =

OT
Qmπ

−Q
QQmOQm, FQ
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Q
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mobs. Suppose that F q
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from level-q data only, given Aq+1
mobs, B

q+1
mobs, F

q+1
mobs, G

q+1
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mobs and θ. Then, F q−1

mobs and
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mobs can be computed from level-(q− 1) data only, given Aqmobs, B

q
mobs, F

q
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q
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q
mobs

and θ by Proposition 3.3.

Proof of Theorem 4.1. Table 2 reveals
∑Q
q=1 pDq

∑q
r=1 pr − pD covariance components

in (π1
RC , π

2
RC , · · · , π

Q
RC) between R and C and implies E(εqR|εqC) = ΓqεqC and var(εqR|εqC) =

πqR|C for all q to identify model (26). Conversely, Equation (26) implies E(R|D) = 0,

var(R|D) =
∑Q
q=1D

T
q π

q
RRDq and cov(R,C|D) =

[∑Q
q=1D

T
q π

q
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∑Q
q=2D

T
q π

q
R2 · · ·DT

Qπ
Q
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]
which,

along with the marginal C, is one-to-one with the joint model (1).

Fisher Information
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cluster m and zeroes elsewhere for r < Q and AQq1mobs = ZQqmobs for r = Q. Let ϕq be a
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Likelihood
The observed log-likelihood l(θ|dobs) ∝ −1

2

∑NQ
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mobsd

1
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vergence to ML for dobs = (d1obs, d2obs, · · · , dNQobs). Recursive components are

log|V q
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