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Abstract

Background: Spatial skills and mathematical ability have been repeatedly identified as critical for achievement in
Science, Technology, Engineering, and Mathematics (STEM). Previous studies have identified correlations between
spatial skills and mathematical achievement; however, questions remain regarding improvements in non-spatial
areas associated with STEM achievement. The current study examined whether competency in spatial skills could
be related to individuals’ motivation for mathematics. Measures of spatial skills and mathematics motivation were
completed by 1056 seventh grade students.

Results: Using hierarchical linear modeling, spatial skills and math motivation were examined relative to students’
performance on a state standardized mathematics subtest. Results indicate that spatial skills and motivation interact
to significantly predict students’ mathematics performance.

Conclusions: These results suggest that spatial skills in combination with motivation play a significant role in
middle school students’ mathematics achievement.
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Introduction
Despite substantial efforts to increase achievement in sci-
ence, technology, engineering, and mathematics (STEM)
fields, children’s STEM performance in the USA continues
to lag behind their international counterparts (e.g.,
Organization for Economic Co-operation and Develop-
ment, 2016), particularly in mathematics. Thus, much re-
search aims to understand factors underlying students’
mathematics performance (e.g., Pajares & Graham, 1999;
Verdine, Golinkoff, Hirsch-Pasek, & Newcombe, 2017),
including spatial skills (e.g., Casey, Nuttall, & Pezaris,
2001) and motivation (Ramirez, Gunderson, Levine, &

Beilock, 2013). However, scant attention has been paid to
the potential interaction between these factors, and the ef-
fect of the interaction on students’ educational outcomes.
Social cognitive theory (Bandura, 2005, 2012) suggests
that if an individual believes spatial skills are relevant to
performance in mathematics, then spatial skills could also
impact an individual’s motivation for mathematics. To
date, no studies have examined how spatial skills and mo-
tivational factors together predict middle school students’
mathematics achievement.
Research has established that cognitive skills and mo-

tivation are closely related (e.g., Ashcraft & Kirk, 2001)
and together can help explain students’ mathematics
achievement. Much of this work has focused on under-
standing the relations between individuals’ working
memory capacity, mathematics anxiety, and mathematics
performance. For instance, Beilock and colleagues have
established that mathematics performance suffers in
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children and adults with high working memory capacity
who also have high levels of mathematics anxiety, but
this relationship is not true for individuals with low
working memory capacity (Beilock & Carr, 2005;
Ramirez et al., 2013). Here, we aim to understand the
nuances of how a set of cognitive skills important for
mathematical reasoning, spatial skills (e.g., Casey, Nut-
tall, Pezaris, & Benbow, 1995; Reuhkala, 2001), combine
with students’ motivation for learning mathematics, to
predict middle school students’ mathematics perform-
ance. Furthermore, building on prior research, we aim to
examine whether the relationships between spatial skills,
motivation, and mathematics performance differ for stu-
dents demonstrating different levels of mathematics mo-
tivation and mathematics-relevant skillsets (i.e., spatial
skills and mathematical skills).

Spatial skills and mathematics
Spatial skills enable us to mentally manipulate, organize,
reason about, and make sense of spatial relationships in
real and imagined spaces (e.g., Newcombe & Shipley,
2015; Uttal et al., 2013). They are commonly used when
completing everyday tasks such as assembling furniture or
navigating from one location to another. Researchers have
found that spatial skills are malleable and can be improved
through experience and practice (Uttal et al., 2013).
Studies examining the relationship between spatial skills

and mathematics achievement find that the two are signifi-
cantly correlated for students at all educational levels (e.g.,
Casey et al., 1995; Delgado & Prieto, 2004; Geer et al., 2019;
Mix et al., 2016; Mix et al., 2017; Verdine et al., 2017). For
example, visuospatial working memory relates to superior
performance on counting tasks (Kyttala, Aunio, Lehto, Van
Luit, & Hautamaki, 2003) and number line estimation
(Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007) in
children. Mental rotation performance relates to mathemat-
ical reasoning skills in middle school students (Delgado &
Prieto, 2004; Lombardi, Casey, Pezaris, Shadmehr, & Jong,
2019) and mathematical aptitude in undergraduates (Casey
et al., 1995). Furthermore, spatial skills predict students’ fu-
ture mathematics learning (Casey, Lombardi, Pollock, Fine-
man, & Pezaris, 2017) even after accounting for other skills,
such as verbal skills and executive functioning (Verdine
et al., 2017; Zhang et al., 2014).
In addition to the performance-based evidence of the re-

lation between spatial skills and mathematical achievement,
prior research suggests that a positive relation between
spatial and mathematical thinking may be based on shared
cognitive processes (Gunderson, Ramirez, Beilock, &
Levine, 2012; Mix & Cheng, 2012). Number information is
mentally represented in spatial formats (e.g., Mix & Cheng,
2012; Mix, 2019). For example, Gunderson et al. (2012)
found that quantitative magnitudes are represented in the
mind spatially as a mental number line. Further evidence

comes from brain imaging studies showing similar areas of
brain activation when individuals process both spatial and
numerical information (e.g., Hubbard, Piazza, Pinel, &
Dehaene, 2005). Lastly, successful interventions often focus
on helping students translate mathematical symbols or
problem statements into spatial representations, including
number lines, diagrams, concrete models, or hand gestures
(e.g., Uttal, Scudder, & DeLoache, 1997).
In summary, spatial skills are related to mathematical

learning and performance (e.g., Casey et al., 2001), and
spatial skills are malleable and can be improved with ex-
perience and practice (Uttal et al., 2013). Therefore, un-
derstanding how additional factors, such as students’
motivation for learning mathematics, interacts with spatial
skills to predict mathematics performance is critical to un-
derstanding how to improve students’ outcomes.

Motivation and mathematics
Middleton and Spanias (1999) define motivation as “the
reasons individuals have for behaving in a given manner
in a given situation” (p. 66). Motivation is part of one’s
goal structures, one’s beliefs about what is important, and
determines whether or not one will engage in a given ac-
tivity (Ames, 1992). Research suggests that students’ mo-
tivation and feelings towards mathematics influence their
performance (Cleary & Chen, 2009; Meyer & Fennema,
1985; Middleton & Spanias, 1999). Highly motivated stu-
dents tend to find academic activities more meaningful
and derive greater benefits from them (Brophy, 1988).
Motivation is influenced by interactions between student
characteristics, student behaviors, and the learning envir-
onment (Bandura, 2001, 2005, 2006). Learning is most ef-
fective when students engage in self-regulatory strategies
that help monitor and control their cognition, motivation,
and behavior (Schunk, 2001). Highly motivated students
engage in more self-regulatory behaviors, such as partici-
pating in class, seeking advice, and studying independently
(e.g., Leaper, Farkas, & Brown, 2012).
Several studies have found that students’ motivation for

mathematics influences their mathematics achievement
(e.g., Hembree, 1990; Pajares, 1996). As a result, researchers
from varying schools of thought have proposed many the-
ories and focused much research on trying to understand
the role of motivation in facilitating or inhibiting students’
mathematics achievement. For instance, research con-
ducted from the behaviorist perspective indicates that suc-
cess in mathematics is a powerful influence on the
motivation to achieve (Chang & Beilock, 2016). Students
perceive success as reinforcing, and they will engage in
mathematics if they expect to be successful. Additionally,
students will tend to enjoy tasks for which they have a
moderately high probability of success more than tasks for
which the probability of success is near chance (Dickinson
& Butt, 1989; Power, Lynch, & McGarr, 2020).
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Attribution theorists propose that how the outcomes
of an activity are evaluated in relation to the individual’s
perception of his or her own contribution (i.e., ability
and effort) and the contribution of the task demands
(i.e., difficulty) influences learning behavior. Students in
lower elementary grades are generally highly motivated to
learn mathematics. They believe that they are capable and
that working hard will enable them to succeed. Many first
and second graders do not differentiate between effort
and ability as causes of success in mathematics (Klooster-
man, 1993). By the middle grades, many students begin to
perceive mathematics to be a special subject in which
smart students succeed and other students merely “get by”
or fail. They begin to believe that success and failure are
attributable to ability and that effort rarely results in a sig-
nificant change in their patterns of success (Kloosterman
& Gorman, 1990). Studies have shown that when students
attribute their successes to ability, they tend to succeed;
when they attribute their failures to lack of ability, they
tend to fail (Meyer & Fennema, 1985; Wang, Shakeshaft,
Schofield, & Malanchini, 2018).
Relatedly, the expectancy value model (Eccles & Wigfield,

1985, 1995; Wigfield & Eccles, 2000), which has often been
examined in adolescents (Andersen & Ward, 2014; Berger
& Karabenick, 2011), asserts that expectancies for success
and task value are proximal determinants of such outcomes
as effort, choice, and persistence. Expectancy is represented
by self-concept of ability and self-efficacy. The four compo-
nents of value are (a) intrinsic interest, that is, the enjoy-
ment gained from doing the task; (b) attainment value that
captures the importance of doing well on the task; (c) util-
ity, which is defined as how useful the task is for the stu-
dent’s future; and (d) cost, that is, the effort and lost
opportunities for engagement in the activity (Eccles & Wig-
field, 1985, 1995; Wigfield & Eccles, 2000). Researchers
have found that the motivational factors encompassed
within the model predict student behaviors promoting
mathematics learning and achievement (e.g., Berger & Kar-
abenick, 2011), but that expectancy and value beliefs to-
wards the domain of mathematics declines as the student
progresses through their grade school education. The de-
cline in expectancy and value beliefs in students towards
the domain of mathematics generally begins around the
middle school grade levels (Jacobs, Lanza, Osgood, Eccles,
& Wigfield, 2002; Wigfield, Eccles, Mac Iver, Reuman, &
Midgley, 1991).
Proponents of goal theory suggest that how people

think about engaging in meaningful or meaningless ac-
tivity in conjunction with their perceptions, interpreta-
tions of academic and social information, and patterns
of self-regulation influence their learning behavior and
outcomes. An individual with a mastery goal orientation
values the improvement of skill or knowledge in a given
domain and believes that success depends on working

hard, attempting to understand the subject, and collab-
orating with others. An individual with an ego goal orienta-
tion values establishing superiority over others and believes
that success depends on social comparison and assertion of
superior ability (Duda & Nicholls, 1992). Lastly, an individual
who exhibits work avoidance does not value hard work and
believes that success results from extraneous factors to
studying, such as good behavior in class. An individual’s goal
orientation interacts with their intrinsic and extrinsic motiv-
ation and influences student behavior (Meece, Blumenfeld,
& Hoyle, 1988). Intrinsic motivation is the drive or desire of
a student to engage in learning for the sake of learning. Stu-
dents who are intrinsically motivated engage in academic
tasks because they enjoy them and feel that it is important
with respect to their self-images (Middleton, 1993). Extrinsic-
ally motivated students engage in academic tasks to obtain
rewards (e.g., good grades, approval) or to avoid punishment
(e.g., bad grades, disapproval) (Ames, 1992; Ames & Archer,
1988). Students who possess mastery goals will positively
mediate intrinsic motivation such that they will be more ac-
tively involved in a cognitive task. Students who possess ego
goals are much less affected by their intrinsic motivation and
show little to no changes in their cognitive engagement pat-
terns (Middleton & Spanias, 1999). Mastery goal orientation
has been found consistently to predict mathematics achieve-
ment in students (e.g., Keys, Conley, Duncan, & Domina,
2012), while ego and work avoidance orientations have not.
Other motivational factors that have been extensively

studied in relation to mathematics achievement are math-
ematics anxiety and self-efficacy. Mathematics anxiety,
“feelings of tension and anxiety that interfere with the ma-
nipulation of numbers and the solving of mathematical
problems in a wide variety of ordinary life and academic
situations” (Richardson & Suinn, 1972, p.551), hinders
mathematics achievement in both children and adults
(e.g., Hembree, 1990; Lee, 2009). Showing the opposite ef-
fect, self-efficacy, the belief in one’s ability to succeed
(Pajares, 1996), has been found to be a significant positive
predictor of mathematics achievement (e.g., Pajares &
Graham, 1999). Across skill levels, students with high self-
efficacy in mathematics solve problems more accurately
and show greater persistence on difficult items than stu-
dents with low self-efficacy (Collins, 1982).
The existing research on motivation in mathematics

highlights the interrelated and inter-dependent nature of
motivational constructs, such as self-efficacy and math-
ematics anxiety (Lee, 2009), and intrinsic and extrinsic
motivation (e.g., Ryan & Deci, 2000), on student behav-
ior and student outcomes. Furthermore, it highlights
that an individual’s mathematics motivation is influ-
enced by multiple factors such as one’s goal orientations,
one’s beliefs about what is important, and one’s percep-
tions about their own contributions (e.g., Pintrich, 2000).
Therefore, in this study, we chose to examine students’
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motivation for learning mathematics using a measure
grounded in prominent theories of academic motivation and
encompassing many of the motivational factors found to
underlie students’ desires to learn mathematics. For this
measure, we adapted Glynn, Taasoobshirazi, and Brickman’s
(2007) Science Motivation Questionnaire (SMQ) to assess
students’ motivation for learning mathematics. Based on
prior research on mathematics motivation and Glynn, Taa-
soobshirazi, and Brickman’s (2009) definition of a student’s
motivation to learn science, we define motivation to learn
mathematics as a student’s drive or desire to engage in math-
ematical tasks and/or learn the mathematical domain.
The Mathematics Motivation Questionnaire (MMQ) is

composed of items measuring the following six motivational
constructs: intrinsically motivated math learning, extrinsic-
ally motivated math learning, relevance of math learning to
personal goals, responsibility for learning math (i.e., self-
determination), confidence in learning math (i.e., self-
efficacy), and anxiety about math assessment (i.e., low math
anxiety). All of these constructs individually, or in different
combinations, by researchers embracing specific theoretical
perspectives, have been found to influence students’ math-
ematics learning behavior and mathematics outcomes (e.g.,
Berger & Karabenick, 2011; Lee, 2009; Meyer & Fennema,
1985). However, no research, to our knowledge, has crossed
multiple theoretical boundaries ascribed by individual
schools of thought and examined how motivation to learn
mathematics, measured by all six of these constructs com-
bined, are related to students’mathematics achievement.

Spatial skills and motivation together may contribute to
predicting mathematics performance
Research shows that cognitive skills and motivation inter-
act to influence behaviors and outcomes, including in
mathematics (e.g., Ashcraft & Kirk, 2001; Ramirez et al.,
2013). Ganley and Vasilyeva (2011) found that cognitive
and motivational factors together predict middle school
students’ mathematics achievement, though the patterns
differed by gender. Spatial skills predicted mathematics
performance in boys, but it was not a significant predictor
in girls when confidence and mathematics anxiety were
included in the model (Ganley & Vasilyeva, 2011). Fergu-
son, Maloney, Fugelsang, and Risko (2015) found that in-
dividuals with high mathematics anxiety perform worse
on spatial skills tests than individuals with low mathemat-
ics anxiety, indicating that spatial skills and mathematics
anxiety may be fundamentally linked (Ferguson et al.,
2015). To our knowledge, the present study is the first to
examine how spatial skills and students’ motivation to
learn mathematics together predict middle school stu-
dents’ mathematics achievement.
We focus on middle school students because the middle

grades appear to be a crucial time in developing student
interest in STEM domains (Bulunuz & Jarrett, 2010; Harmer

& Columba, 2010). Students’ middle school experiences
often influence the scholastic pathways they will take in the
future. More specifically, students’ beliefs about whether they
will pursue STEM careers in the future influence their later
educational and occupational choices. For instance, eighth
graders with expectations for a STEM related career were
3.4 times more likely to earn STEM baccalaureate degrees
when compared to students without similar expectations
(Tai, Liu, Maltese, & Fan, 2006). For many students, the mid-
dle grades are when interest and competency beliefs in
STEM subjects, such as mathematics, starts to decline (e.g.,
Jacobs et al., 2002; Wigfield et al., 1991). Thus, understanding
how motivational factors combine with spatial skills to pre-
dict mathematics achievement at this specific time in devel-
opment could shed light on how to bolster mathematics
outcomes and, in turn, improve students’ educational trajec-
tories with regard to STEM jobs and occupations.
In this study, we first examined whether spatial skills and

mathematics motivation individually predicted middle school
students’ mathematical achievement and whether these rela-
tions were moderated by gender as prior research has found
that gender differences are apparent on many tests of spatial
skills (e.g., Miller & Halpern, 2014) and also on many motiv-
ational constructs relevant to mathematics learning during
adolescence (Jacobs et al., 2002). Second, we investigated
how students’ spatial skills in conjunction with mathematics
motivation predicted middle school students’ mathematics
achievement. Lastly, we examined whether the influence of
spatial skills and mathematics motivation on student math-
ematics performance differed between students with low ver-
sus high levels of spatial skills. To ensure that the relations
between spatial skills, mathematics motivation, and mathem-
atics achievement are not solely driven by students’ overall
performance in school, we controlled for differences by con-
trolling for students’ science performance. As the relations
between spatial skills and varying mathematical domains
(e.g., geometry, algebra, trigonometry) are still unclear, we
used performance on a state standardized test of mathemat-
ics as our measure of overall mathematics achievement.

Method
Participants
We examined data from 1056 7th grade students (530
males, 526 females) from the state of Michigan in the
United States1. Students’ average age was 12.12 years
(minimum = 10 years old, maximum = 14 years old).
Students were from 26 different classrooms in 11

1The analyses presented here are from data collected as part of a larger
longitudinal study. In the larger study, 3061 7th grade students from 7
different states participated. Because standardized tests differ between
states and are not nationally normed (e.g., Stansfield, 2011), here, we
only examined data on participants who completed all of the relevant
measures from the state of Michigan, the state with the largest
number of participants.
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schools and were predominantly of White/Non-Hispanic
origin (91.4% White/Non-Hispanic, 2.5% Black/African
American, 1.7% American Indian/Alaskan Native, 1%
Asian/Asian American, 1.5% Hispanic/Hispanic
American, and 2.0% multiracial). Prior to students’ par-
ticipation in the study, parents or guardians received a
letter describing the research and a form to complete
and return to the researchers if they did not want their
child’s data included in the study. The study was con-
ducted under the guidance of the Institutional Review
Board at the University of Cincinnati.

Spatial skills measure
The spatial skills instrument administered in this study
was a twenty-item measure created using items from two
psychometric tests of spatial skills, the Differential Apti-
tude Test: Space Relations (DAT:SR; Bennett, Seashore, &
Wesman, 1973) and the Purdue Spatial Visualization Test:
Rotations (PSVT:R; Guay, 1977). The DAT:SR is a subtest
of the Differential Aptitude Test (DAT), a test of cognitive
abilities standardized in the USA with students 13 to 18
years of age (Lynn, 1992). The ten problems from the
DAT:SR assessed students’ skills in mental folding by re-
quiring participants to view a 2D figure with various iden-
tifying markings on multiple faces and asking participants
to select the 3D object constructed when the 2D figure is
folded (Bennett et al., 1973). The PSVT:R is a subtest of
the Purdue Spatial Visualization Test (PSVT)—a battery
of tests measuring various spatial skills. The ten problems
from the PSVT:R assessed students’ skills in mental rota-
tion. For each item, participants viewed two images of an
object, one in its original position and one after it was ro-
tated. They then selected the correct pairing for an analo-
gous set of objects rotated in the same manner as the first
set. Participants had 14 min to complete the full 20-item
spatial measure. Each correct item received one point;
Cronbach’s alpha for this measure was 0.67.

Other measures
Math Motivation Questionnaire (MMQ)
The MMQ is a self-report questionnaire measuring stu-
dents’ motivation to learn mathematics adapted from
Glynn et al.’s (2007) Science Motivation Questionnaire
(SMQ). Glynn et al. (2009) created the SMQ to study
students’ motivation to learn science. In studying stu-
dents’ motivation to learn science, “researchers examine
why students strive to learn science, how intensively they
strive, and what beliefs, feelings, and emotions
characterize them in the process” (p. 128). In this study,
we adapted the SMQ to examine students’ motivation to
learn mathematics, or the level at which students’ strive
to learn the mathematical domain, by changing the
word “science” to the word “math” in each of the items.

We chose the MMQ because it encompasses the breadth
of motivational constructs potentially relevant to middle
school students’ mathematics achievement. Since no work to
our knowledge has been conducted examining the link be-
tween spatial skills and mathematics motivation specifically,
we did not have prior insights into which motivational fac-
tors would be related to spatial skills. Thus, we chose to use
an instrument that includes multiple motivational constructs.
Furthermore, the SMQ was developed for use with under-
graduate students who were enrolled in non-science majors,
meaning that it was developed for a general audience, similar
to what would be expected in a middle school class setting.
The six constructs measured by the MMQ are intrin-

sically motivated math learning (α = .78), extrinsically
motivated math learning (α = .63), relevance of math
learning to personal goals (i.e., personal relevance; α =
.83), responsibility for learning math (i.e., self-
determination; α = .57), confidence in learning math (i.e.,
self-efficacy; α = .86), and anxiety about math assess-
ment (low math anxiety; α = .73). The MMQ includes
30 items (α = .90). For each item, participants chose a
response from a 5-point scale ranging from 1 (never) to
5 (always). Completion of the questionnaire was not
timed. The MMQ items and their correspondence to the
motivational constructs are listed in the Appendix.
Participants’ score on the MMQ was the sum of all six

construct scores. Scores ranged from 30 to 150; higher scores
indicate greater motivation for learning mathematics. We fo-
cused our analyses on students’ total score on the MMQ be-
cause of the measure’s good content and criterion validity
found in previous research (Glynn et al., 2007, 2009), as well
as the high reliability of the measure in our dataset (α = .90).
The items measuring anxiety about math assessment were
reverse scored, so higher scores corresponded to lower anx-
iety for this particular subset. Thus, we refer to this construct
as low math anxiety in this paper. Prior to calculating total
scores, the data were screened for incomplete assessments
and item nonresponses were identified. Data from partici-
pants who responded to fewer than 20 of the 30 total items
were excluded from further analysis as inferring more than a
third of the responses could lead to bias in the results (e.g.,
Dong & Peng, 2013; Jakobsen, Gluud, Wetterslev, & Winkel,
2017). For the remaining participants, item nonresponses
were dealt with in the following manner: construct scores
were calculated by taking the average of the included re-
sponses and multiplying it by five. This method was used to
avoid further loss of information due to listwise deletion and
the introduction of error resulting from missing value imput-
ation (Cheema, 2014).

Michigan Student Test for Educational Progress (M-STEP)
Mathematics (Michigan Department of Education, 2017)
The M-STEP mathematics subtest is one measure in a
battery of standardized assessments given to all
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Michigan students near the end of the school year in
grades three to eight to assess mastery of state standards
(Michigan Department of Education, 2017). We exam-
ined sixth grade M-STEP mathematics subtest score to
minimize the degree to which students’ cognitive profiles
may have changed due to academic experiences between
the time of assessments. Only the overall score on the
M-STEP mathematics subtest was used in our study.
Sample items from the assessment are available for
viewing and practice on the Michigan Department of
Education website: https://www.michigan.gov/mde/0,
4615,7-140-22709_70117-350540--,00.html (Michigan
Department of Education, 2019).

Science Grade Point Average (GPA)
Science GPA is a student’s calculated average performance
in his or her sixth-grade science class which ranges from
zero to 4.33 points. Because middle school science assess-
ments have been found to heavily rely on students’
memorization of scientific information presented through
lecture and in textbooks (Stern & Ahlgren, 2002), we used
science GPA as an indicator of students’ academic skill level.

Procedure
Seventh grade mathematics and science teachers admin-
istered the spatial measure and the MMQ to their stu-
dents at the beginning of the academic year2. Before
administering the assessments, teachers read aloud a
script informing students about the purpose of the test-
ing and their protections as research participants. The
teachers were asked to administer the assessments over
2 days in an order that was randomly assigned.

Results
All analyses were conducted using R version 3.3.2.

Relations among spatial skills, math motivation,
mathematics achievement, and gender
Table 1 presents descriptive data for the four measures
utilized in this study. Pearson’s correlations between all
measures and gender are presented in Table 2. Following
Cohen’s (1988) conventions, students’ spatial skills were
weakly correlated with their MMQ score and their sci-
ence GPA and strongly correlated with their M-STEP
mathematics subtest performance. Additionally, stu-
dents’ M-STEP mathematics subtest performance was
moderately correlated with students’ MMQ score and
strongly correlated with students’ science GPA. Lastly,

students’ gender was weakly correlated with their spatial
skills and their MMQ score. There was also a weak cor-
relation between students’ gender and their science
GPA. Gender was not significantly correlated with stu-
dents’ M-STEP mathematics subtest performance.
As gender differences are apparent on many tests of

spatial skills (Miller & Halpern, 2014) and also on many
motivational constructs relevant to mathematics learning
during adolescence (Jacobs et al., 2002), t tests were con-
ducted to examine for gender differences on the measures
conducted in this study. Analyses revealed that males out-
performed females on the test of spatial skills (t = 3.05, p
< .01) and the MMQ (t = 2.09, p = .04). Females showed a
higher science GPA than males (t = − 3.54, p < .001), but
there were no gender differences on the M-STEP math-
ematics subtest (t = 0.45, p = .65). Results from these ana-
lyses and the descriptive statistics for each measure
broken down by gender are provided in Table 3.

Hierarchical linear models examining explanatory factors
of mathematics achievement
Using the “lmer4” and “lmerTest” R packages, hierarch-
ical linear models (HLMs), which account for the nest-
ing of students within classrooms, were conducted to
explore how students’ spatial skills and motivational fac-
tors combine to predict mathematics achievement. We
did not group-mean center the students’ scores on each
of the measures for our HLM analyses because the inter-
cept by itself is meaningful. The intercept can be inter-
preted as the expected mathematics achievement for a
student in a specific classroom in the absence of influ-
ence from spatial skills or from motivational factors (see
Paccagnella, 2006). To account for variance attributed by
students’ ability to perform well academically, we con-
trolled for science GPA in all models.
Models 1 and 2, shown in Table 4, examined how stu-

dents’ spatial skills and mathematics motivation individu-
ally contribute to predicting performance on the M-STEP
mathematics subtest. Additionally, as prior work suggests
that spatial skills and motivational factors combine differ-
ently to predict mathematics achievement in girls versus
boys (Ganley & Vasilyeva, 2011), and because we found
gender differences in spatial skills and MMQ scores in our
study, we examined whether gender was a moderating

Table 1 Descriptive statistics for spatial measure, M-STEP
mathematics subtest, science GPA, and MMQ

Variable M SD skewness kurtosis min max n

Spatial skills 7.72 3.40 0.66 2.84 2 19 1056

MMQ 102.76 17.04 − 0.27 2.98 42 143 1056

M-STEP 1590.81 21.91 − 0.22 3.14 1518 1650 1056

Science GPA 2.97 1.02 − 0.96 3.19 0 4.33 1048

M-STEP M-STEP mathematics subtest score, min minimum score, max
maximum score

2In the larger study, the spatial measures and the MMQ were
administered twice during the school year (once at the beginning of
the school year and again at the end of the school year). Because
multiple exposures to an assessment can influence student response or
performance (e.g., Richland, Kornell, & Kao, 2009), only data collected
during the first wave of testing were examined in this paper.

Atit et al. International Journal of STEM Education            (2020) 7:38 Page 6 of 13

https://www.michigan.gov/mde/0


variable in both models. Analyses revealed that after con-
trolling for science GPA, spatial skills (model 1) and
MMQ score (model 2) each individually significantly pre-
dict students’ performance on the M-STEP mathematics
subtest (ps < .001). Furthermore, we found that gender
does not significantly moderate the effect of spatial skills
(model 1) or mathematics motivation (model 2) on stu-
dents’ M-STEP mathematics subtest performance, n.s.
To see whether students’ spatial skills interacted with

mathematics motivation to predict M-STEP mathematics
subtest performance, we compared the results of two add-
itional HLMs, models 3 and 4 shown in Table 5. Because
we did not find gender to be a significant moderator of
spatial skills or MMQ score on students’ M-STEP math-
ematics subtest score in models 1 or 2, gender was chan-
ged from a moderator to a covariate in models 3 and 4.
Covarying for gender would allow us to examine the rela-
tions between spatial skills and mathematics motivation
on students’ mathematics achievement while still account-
ing for the variance contributed by gender differences in
spatial skills or mathematics motivation. In model 3, we
included spatial skills and MMQ score as independent fac-
tors in the same model and found that spatial skills and
MMQ score independently contribute to predicting stu-
dents’ M-STEP mathematics subtest performance, ps <
.001. In model 4, we included a centered interaction term
between spatial skills and MMQ score in the model. Ana-
lyses revealed a significant effect of spatial skills, a signifi-
cant effect of MMQ score, and a significant interaction
between spatial skills and MMQ score on students’ M-
STEP mathematics subtest performance, ps < .05. Lastly,

an analysis of variance (ANOVA) comparing the two
models revealed that model 4 has a lower Akaike Informa-
tion Criteria (AIC = 8639.5) than model 3 (AIC = 8641.4),
Χ2(1) = 3.86, p = 0.049, indicating that the inclusion of an
interaction term between spatial skills and mathematics
motivation in the model (model 4) helps explain add-
itional variance in students’ mathematics performance
compared to the model in which spatial skills and motiv-
ation were included independently (model 3).

Exploratory analyses: further investigating the interaction
between spatial skills and mathematics motivation
To further investigate the interaction between spatial
skills and mathematics motivation on students’ mathem-
atics achievement, a continuous by continuous inter-
action, simple slopes were computed. Simple slopes are
the slopes of the dependent variable on the independent
variable when the moderator variable is held constant at
different combinations of values from very low to very
high (“How Can I Explain Continuous by Continuous
Interactions?”, 2020). For this analysis, the dependent
variable was M-STEP mathematics subtest performance,
the independent variable was MMQ score, and the mod-
erator variable was spatial skills. To conduct this ana-
lysis, we first examined the range of scores on the spatial
skills measure (min = 2, max = 19; see Table 1). Keeping
this range in mind, we next computed the slope for M-
STEP mathematics subtest score on MMQ score while
holding the value of the moderator variable, spatial skills,
constant at values running from 3 to 18. Then, using the
deltamethod command in the “msm” R package, we esti-
mated the standard errors of these slopes and their 95%
confidence intervals, summarized in Table 6. A plot
showing how the slope between M-STEP mathematics
subtest performance and MMQ score changes with the
level of spatial skills is provided in Fig. 1. To see if the
slope at low levels of spatial skills (a spatial skills score
of 3) was significantly different from the slope at high
levels of spatial skills (a spatial skills score of 18), a Z-
test was conducted. Results indicate no difference in the
simple slope for students with very low spatial skills and
students with very high spatial skills, Z = 1.66, p = 0.96.
In sum, after accounting for the variance contributed

by students’ academic skills (measured by their science
GPA) and differences in performance driven by gender,
spatial skills and mathematics motivation both contrib-
ute and interact to predict middle school students’
mathematics achievement. However, exploratory ana-
lyses revealed that the role of mathematics motivation
on students’ mathematics performance does not differ
depending on the levels of spatial skills. These results
suggest that for all students, the mechanism underlying
mathematical achievement includes both cognitive and
motivational factors.

Table 2 Correlational data among all examined variables

Variable 1 2 3 4

1. Spatial skills

2. MMQ 0.19***

3. M-STEP 0.50*** 0.34***

4. Science GPA 0.26*** 0.34*** 0.57***

5. Gender − 0.09** − 0.06* − 0.01 0.11***

M-STEP M-STEP mathematics subtest score
*p < .05, **p < .01, ***p < .001

Table 3 Results of t tests examining for gender differences
across all measures

Males Females

Measure M SD M SD t

Spatial skills 8.033 3.59 7.40 3.17 3.05**

MMQ 103.85 17.51 101.66 16.51 2.09*

M-STEP 1591.11 22.79 1590.50 21.00 0.45

Science GPA 2.86 1.06 3.08 0.96 − 3.54***

M-STEP M-STEP mathematics subtest score
*p < .05, **p < .01, ***p < .001
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Discussion
When examining the factors that predict students’ math-
ematics performance, students’ spatial skills and motivation
have largely been considered as independent contributors
(e.g., Casey et al., 2001; Ramirez et al., 2013). Yet, much re-
search suggests that cognitive skills and motivation are fun-
damentally linked (e.g., Ashcraft & Kirk, 2001; Ferguson
et al., 2015; Ganley & Vasilyeva, 2011). Our findings start to
reveal how middle school students’ motivation for learning
mathematics combines with their spatial skills to help pre-
dict mathematics performance.
Consistent with prior research, our study confirms that

spatial skills are critical for mathematics performance
(Casey et al., 1995; Verdine et al., 2017). Results from
longitudinal studies indicate that the relation between
spatial skills and mathematics increases across develop-
ment (e.g., Stannard, Wolfgang, Jones, & Phelps, 2006).
Li and Geary (2013) found that first to fifth grade gains
in visuospatial memory predicted fifth grade mathemat-
ics achievement; visuospatial memory was not related to
first grade mathematics achievement. In our study,
spatial skills measured in middle school predicted per-
formance on a state mathematics assessment. To our
knowledge, no research has examined whether spatial

skills in middle school are predictive for mathematics
learning in high school. Since gender differences in
mathematics become more pronounced in high school
(Hyde, Fennema, & Lamon, 1990), whether spatial skills
developed in middle school are fundamental to high
school mathematics performance is an important ques-
tion for future research.
In line with findings on motivation and mathematics

learning (e.g., Hembree, 1990; Pajares & Graham, 1999),
our study found that students’ motivation for learning
mathematics was a significant predictor of their mathemat-
ics achievement measured in our study by students’ scores
on a state standardized mathematics test. The M-STEP
mathematics subtest is an assessment of mathematics
achievement measuring students’ grade-level proficiency
and their overall mathematical thinking skills. Since stan-
dardized test performance does not typically influence stu-
dents’ grades in school, students’ motivation for performing
well in their mathematics classes in school may be distinct
from their motivation for performing well on the state stan-
dardized mathematical assessment. Future research should
investigate how motivational factors predict different kinds
of measures of mathematics achievement that influence
students’ course grades (e.g., homework grades or scores on

Table 4 HLMs examining whether gender moderates the effect of spatial skills or motivation on M-STEP mathematics subtest
performance (N = 1048 students, N = 26 teachers)

Model 1 Model 2

β df β df

Intercept, γ00 1544.68*** (2.40) 158.26 1536.42*** (4.54) 620.17

Science GPA, γ10 10.27*** (0.51) 1042.83 11.13***(0.55) 1040.97

Gender, γ20 − 2.58 (2.30) 1027.15 2.53** (5.97) 1021.17

Spatial skills, γ30 1.97*** (0.19) 1035.62

Spatial skills * gender, γ40 0.12 (0.27) 1026.96

MMQ, γ50 0.21*** (0.04) 1024.48

MMQ * gender, γ60 − 0.05 (0.06) 1021.30

Numbers in parentheses are standard errors. Random effects are included for the overall intercept
*p < .05, **p < .01, ***p < .001

Table 5 HLMs examining whether spatial skills and motivation predict M-STEP mathematics subtest performance (N = 1048
students, N = 26 teachers)

Model 3 Model 4

β df β df

Intercept, γ00 1531.43*** (3.32) 448.80 1531.00*** (3.32) 446.90

Science GPA, γ10 9.55***(0.52) 1042.26 9.54*** (0.52) 1041.23

Gender, γ20 − 1.19 (0.92) 1024.61 − 1.20 (0.92) 1024.00

Spatial skills, γ30 1.96*** (0.14) 1038.21 1.91*** (0.92) 1037.00

MMQ, γ40 0.15*** (0.03) 1030.77 0.15*** (0.03) 1030.00

Spatial skills * MMQ, γ50 0.02* (0.01) 1027.00

Numbers in parentheses are standard errors. Random effects are included for the overall intercept
*p < .05, **p < .01, ***p < .001
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a classroom-based math test) versus measures of mathem-
atics achievement that do not influence students’ course
grades (e.g., state standardized tests of mathematical
achievement).
Prior research suggests that cognitive skills and motiv-

ation are connected (e.g., Ashcraft & Kirk, 2001; Fergu-
son et al., 2015). Specifically related to mathematics
learning, Ferguson et al. (2015) found that low spatial
skills are a significant predictor of mathematics anxiety
in adults. Consistent with these findings, our results sug-
gest that spatial skills and students’ motivation for learn-
ing mathematics interact to predict mathematics
performance in middle school students. Work by Ganley
and Vasilyeva (2011) indicates that the mechanism by
which spatial skills and motivational factors, specifically
self-efficacy and mathematics anxiety, combine to pre-
dict mathematics performance in middle school students
differs by gender. Contrary to their results, we found
that students’ gender did not moderate the effect of
spatial skills and mathematics motivation on their math-
ematics achievement. Furthermore, the results of our
simple slope analysis suggest that the mechanism by

which motivation and spatial skills combine to predict
mathematics performance in middle school students
does not vary depending on students’ spatial skills. Even
though the interaction between spatial skills and mathemat-
ics motivation on students’ mathematics achievement was
significant, there was no difference in the simple slope for
students with very low spatial skills and students with very
high spatial skills. This means that the effect of mathemat-
ics motivation on mathematics achievement in students
with low levels of spatial skills was no different than the ef-
fect in students with high levels of spatial skills. The simple
slope analysis may not have confirmed the interaction re-
sults previously found because the interaction between
spatial skills and mathematics motivation was relatively
weak (p = .049). These findings indicate that spatial skills
and mathematics motivation underlie mathematics achieve-
ment in all students and that other factors may be contrib-
uting to students’ low versus high mathematics
achievement. A question for future research includes iden-
tifying whether bolstering students’ motivation to learn
mathematics in conjunction with their spatial skills can im-
prove mathematics outcomes in all students and whether it
has long-term benefits. Additionally, researchers should
examine whether earlier interventions aimed at improving
students’ mathematical motivation can curb the decline in
motivation that commonly occurs during adolescence (e.g.,
Jacobs et al., 2002; Wigfield et al., 1991), and thus mitigate
its potential negative effects on mathematical performance.
Consistent with prior studies examining gender differ-

ences in spatial skills (e.g., Miller & Halpern, 2013) and
motivation to learn mathematics (e.g., Jacobs et al., 2002),
in our research, females showed lower scores than males
on spatial skills and mathematics motivation. However,
we found no differences between females and males in
state standardized mathematics test performance. Add-
itional analyses revealed that gender did not moderate the
effect of spatial skills or motivation to learn mathematics

Table 6 Estimated standard errors and their 95% confidence
intervals of simple slopes examining spatial skills by motivation
interaction

Spatial skills Simple slope 95% CI

3 0.20 (0.04) [0.12, 0.28]

6 0.25 (0.06) [0.13, 0.36]

9 0.30 (0.08) [0.14, 0.45]

12 0.34 (0.10) [0.14, 0.55]

15 0.39 (0.13) [0.14, 0.64]

18 0.44 (0.15) [0.14, 0.73]

Spatial skills denotes score on the spatial skills measure. Simple slope is the
slope of the M-STEP mathematics subtest score on MMQ score when spatial
skills score is held constant at different values (e.g., 3, 6, 9, 12, 15, 18).
Standard error of each slope is presented in parentheses

Fig. 1 Graph depicting how the slope between M-STEP mathematics subtest performance and MMQ score changes with the level of spatial skills
and where the slope is significantly different from 0
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on students’ mathematics achievement. These findings in-
dicate that additional factors that we did not examine may
explain the equivalent levels of mathematics achievement
between females and males in our study despite the dis-
crepancies in their spatial skills and levels of motivation.
Future research should examine the role of additional cog-
nitive variables critical to mathematics learning, such as
executive functioning skills and working memory capacity
(e.g., Bull & Lee, 2014; Bull & Scerif, 2001), in conjunction
with spatial skills, motivation, and gender on students’
mathematical outcomes. This research is fundamental for
understanding how to improve mathematics outcomes in
different kinds of students.
One limitation of our study is that students’ sixth grade

science GPA was the only measure of students’ overall aca-
demic abilities. This could be problematic because spatial
skills are important for students’ science learning (e.g., Titus
& Horsman, 2009), and thus could have been a weak indi-
cator of students’ academic skills apart from spatial skills.
Due to middle school science learning primarily requiring
rote memorization of facts and concepts (Stern & Ahlgren,
2002) and not science problem-solving and diagrammatic
reasoning that generally utilizes spatial skills (e.g., Atit,
Weisberg, Newcombe, & Shipley, 2016), we believed that
students’ sixth grade science GPA would be reflective of
their intellectual skills rather than their spatial skill-
dependent science performance. Sixth grade science GPA
was weakly related to performance on the test of spatial
skills (r = .26). To ensure that the relations between spatial
skills, motivation, and mathematics found here were not
driven by students’ intellectual skills, future replications
should include additional measures of intellectual capacity
such as measures of verbal skills or fluid reasoning.
Another limitation of our study was that the SMQ, the

measure from which the MMQ was created, was origin-
ally designed for use with college students (Glynn et al.,
2009). However, in our study, we employed the measure
with middle school students. This may have contributed
to the reliability of certain individual motivational con-
structs within the measure to be especially low, specific-
ally the constructs of extrinsically motivated math
learning (α = .63) and responsibility for learning math (α
= .57). Cronbach’s alpha is a measure of internal
consistency, an indicator of how well the items are con-
sistent or are correlated with each other (Charter &
Feldt, 2002). As the items were originally developed for
college students, and not for middle school students,
some of the items within those constructs may have
been inapplicable to or interpreted differently by the stu-
dents in our study, resulting in lower reliability scores.
We deemed this limitation as acceptable as it facilitated
the use of an instrument that provided broad insight
into the most commonly studied constructs within
mathematics motivation. Noting that the current study

sought to explore a potential additional link to mathem-
atics motivation, spatial skills competency, we decided to
use the MMQ based on its explanatory value. Future
studies should focus on revising the items within these
two constructs, extrinsically motived math learning and
responsibility for learning math, to improve their reliabil-
ity when administered to a middle school population.
Additionally, replication studies should be conducted to
ensure that the remaining motivational constructs in the
MMQ remain reliable across different samples of
participants.
Finally, there are a number of implications of the find-

ings from this study to mathematics education and to
STEM education more generally. This research high-
lights the need for early interventions, perhaps at the
elementary level, focusing on bolstering students’ motiv-
ation to learn mathematics as well as their spatial skills.
Our research indicates that for all students with all levels
of spatial skills, mathematics motivation contributes to
their mathematics achievement. This implies that one
explanation for underperforming students in mathemat-
ics may be that students with weaker spatial skills may
struggle more with learning the domain than students
with stronger spatial skills. As the middle grades are a
critical time when it comes to a students’ STEM persist-
ence and interest (e.g., Tai et al., 2006), earlier interven-
tions focused on improving students’ spatial skills could
help improve mathematics performance in underper-
forming students and thus potentially change their edu-
cational trajectories. Moreover, this research indicates
that both spatial skills and motivational components
should be incorporated into the K-12 curriculum. As
prior research indicates that strong spatial skills are crit-
ical to early mathematics learning (e.g., Gunderson et al.,
2012; Verdine et al., 2017), and results from our study
revealed that both spatial skills and motivation to learn
mathematics contribute to students’ middle school
mathematics outcomes, integrating both of these com-
ponents into the everyday K-12 mathematics curriculum
could result in long-term benefits to all students’ math-
ematical achievement.

Conclusions
In conclusion, this study highlights the need to simul-
taneously account for cognitive and motivational factors
in explaining mathematics performance (e.g., Cromley,
Perez, & Kaplan, 2016). In particular, our findings pro-
vide insight into how spatial skills and motivation for
learning mathematics are intertwined as underlying fac-
tors of middle school students’ mathematics achieve-
ment. The ability to mentally visualize and manipulate
images is a cognitive skill critical for success in mathem-
atics. At the same time, students who are motivated to
succeed in mathematics are likely to show higher
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mathematics outcomes. Furthermore, our findings high-
light that the role of motivation in students’ mathematics
achievement does not differ for students who demonstrate
different levels of spatial skills. These results suggest that
future interventions may have the strongest impact by tar-
geting both the development of strong spatial skills and
positive motivational factors pertinent to mathematics
learning for middle school students.
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