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Abstract 
We use rich administrative microdata from Missouri to examine the potential to expand and diversify the 

production of STEM degrees at universities by tapping into the population of community college 

students. We find that the scope for expansion is modest, even at an upper bound, because most 

community college students have academic qualifications that make them unlikely to succeed in a STEM 

field at a university. We also find there is almost no scope for community college students to improve the 

racial/ethnic diversity of four-year STEM degree recipients. We conclude that it will be challenging to 

expand and diversify STEM degree production at universities with interventions targeted toward 

community college students. 
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1. Introduction 

We examine the potential for expanding and diversifying the production of university 

degrees in science, technology, engineering, and mathematics (STEM) fields by tapping into the 

pool of students who attend community colleges. Our analysis is based on a thought experiment 

in which we nudge—either in the traditional sense of the word (Thaler and Sunstein, 2008) or by 

meaningfully altering student incentives—academically-qualified community college students to 

enroll in universities. 

Our focus on STEM fields is motivated by concerns that the United States is falling 

behind globally in the production of STEM human capital and this will adversely impact long-

term economic prosperity (Atkinson and Ezell, 2012; National Academy of Sciences, National 

Academy of Engineering, & Institute of Medicine of the National Academies, 2007). Improving 

and expanding STEM education has been a consistent policy priority at the highest levels of 

government in the U.S. (National Science & Technology Council, 2018; White House, 2016) and 

an area of active scholarship (e.g., see Coleman, Smith and Miller, 2019). Underlying reasons for 

the focus on STEM education are its perceived importance for innovation and the potential for 

positive spillover effects of STEM-trained workers (Shambough, Nunn, and Portman, 2017; 

Winters, 2014).  

Diversifying the STEM workforce is also an explicit policy objective (e.g., White House, 

2016). Participation in STEM fields is low among women and underrepresented minorities 

(URMs; i.e., Black and Hispanic workers) relative to White and Asian men. An implication is 

that the size of the STEM workforce can be expanded by increasing participation among these 

groups (Anderson and Kim, 2006; Committee on Science, Engineering, and Public Policy, 

2011). STEM graduates also earn significantly more than graduates in other fields, on average, 
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which suggests that diversifying the STEM workforce can reduce earnings inequality (Altonji, 

Blom, and Meghir, 2012; Fayer, Lacey, and Watson, 2017; Kinsler and Pavan, 2015). Numerous 

government programs operate with the goal of improving STEM diversity.1 

Our focus on community college students is motivated by several factors. First, in efforts 

to expand and diversify degree production in STEM fields, the most natural alternative to 

community college students is students who already attend universities and either (a) tried and 

failed in a STEM field, or (b) made no attempt to pursue a STEM degree. While these students 

are an appealing group to consider in some respects—most notably, many have strong academic 

qualifications—a significant drawback is that they have actively decided against pursuing STEM 

degrees. This is important because Kirkeboen, Leuven, and Mogstad (2016) show that students 

choose their fields of study based on comparative advantage, which implies that altering these 

decisions may be undesirable. In contrast, nudging academically-qualified community college 

students up to the four-year-university level, then letting them self-select into STEM fields, 

ensures that students’ inherent field-selection processes are preserved.2  

The community college population is an also appealing group because it is diverse 

demographically and socioeconomically. Students who attend community colleges are more 

likely to come from groups that are traditionally underrepresented at universities along the 

dimensions of race/ethnicity and income (Deming, Goldin and Katz, 2012; Provasnik and Planty, 

2008; Wang, 2013). They also have a revealed preference for the pursuit of higher education and 

 
1 Examples include the USDA’s Women and Minorities in Science, Technology, Engineering and Mathematics 

Fields Program (WAMS) and the US Department of Education’s Developing Hispanic Serving Institutions STEM 

and Articulation Program. 
2 Empirically, it is uncommon for students who start in non-STEM fields to switch to STEM fields during college 

(Stinebrickner and Stinebrickner, 2014) and Kerr et al. (2020) show that getting students to change majors is 

generally difficult. 
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most indicate university aspirations.3 The potential benefits of infusing the STEM pipeline with 

community college students have been discussed recently in Bahr et al. (2017), Evans, Chen, and 

Hudes (2020), Hagedorn and Purnamasari (2012), and Terenzini et al. (2014). Bahr et al. (2017) 

claim “the potential role of community colleges in the production of STEM degrees and 

professionals is undeniably important, as is the role of community colleges in providing access to 

STEM pathways for historically disadvantaged groups” (p. 433). Similarly, Evans, Chen and 

Hudes (2020) argue that community colleges “can act as a bridge between local high schools, 4-

year institutions, and the STEM workforce” (p. 247). 

Noting these appealing aspects of the community college population, there are challenges 

associated with intervening with these students. First, success rates of transfer students from 

community colleges in STEM are low (Wang, 2015) and policies that ease transfer requirements 

have been shown to have little effect on outcomes at universities (Baker, 2016; Gross and 

Goldhaber, 2009; Roksa and Keith, 2008).4 This suggests that boosting the STEM pipeline 

through transfer policies is unlikely to be successful. For this reason, the hypothetical policy we 

consider aims to circumvent community colleges entirely by re-routing academically-qualified 

students directly to universities.5  

Another consideration is whether enough community college students have the academic 

preparation necessary to succeed in university STEM programs. Hoxby and Avery (2013) find 

that there are many academically-qualified, low-income students who are undermatched to 

 
3 Using data from the Beginning Postsecondary Students Longitudinal Study (BPS), Deming, Goldin and Katz 

(2012) and Horn and Skomsvold (2012) report that about 80 percent of first-time community college students self-

report their education goals as a bachelor’s degree or higher. 
4 We are not aware of any studies that have looked at the effect of transfer policies on STEM outcomes specifically, 

but the general lack of efficacy evidence for these types of policies suggests that any STEM specific policies in a 

similar vein will face similar challenges.  
5 Although we do not find any policies that specifically try to re-route academically-qualified students directly to 

universities, evidence from Carrell and Sacerdote (2013) and Hyman (2020) suggest that some interventions aiming 

to increase college attendings have more impact on enrolling in four-year colleges. 
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postsecondary institutions, including community colleges. These students would be prime 

candidates to move up to more rigorous academic programs at universities in STEM fields. 

However, Chetty et al. (2020) find that the Hoxby and Avery numbers are likely inflated and 

there are many fewer of these students. Our study is an indirect, empirical test of sorts for these 

competing numbers—undergirding our analysis is the question of whether there are enough 

academically-qualified students who attend community colleges to meaningfully boost the 

production of STEM degrees at universities, if we could shift their enrollment. 

Our research design is an exercise in predictive modeling. We use rich administrative 

data provided by the Missouri Department of Higher Education and Workforce Development 

(DHEWD) to design and evaluate a hypothetical policy that can be thought of as a perfectly-

effective “nudge” intervention; i.e., in which all nudged individuals respond as intended. The 

nudge shifts initial community college enrollees to attend universities instead. We start by 

identifying the subpopulation of community college students likely to succeed in a university 

STEM program based on observable information. To do this, we use a flexible logistic regression 

to estimate the likelihood of STEM degree attainment among university students, then apply the 

parameters out of sample to community college students. We label a community college student 

with academic qualifications that imply a (relatively) high likelihood of STEM degree 

completion at a university as “STEM qualified.” Assuming we could nudge all of these students 

to attend universities, we predict their individual likelihoods of completing STEM degrees and 

produce summary predictions of total STEM degrees produced. We also examine the diversity of 

students who we predict would earn degrees. 

 Our predictions assume that initial entrants into community colleges are just as likely to 

succeed at universities as their observationally-similar peers who start at universities, which is 
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unlikely. As noted above, we also assume that every student we “nudge” changes his or her 

behavior, which is well outside of the bounds of what can be expected from a plausible real-

world intervention (e.g., see Bird et al., 2019; Castleman and Page, 2016; DellaVigna and Linos, 

2020; Oreopoulos and Petronijevic, 2019).6 Primarily for these two reasons, our estimates reflect 

upper bounds—probably high upper bounds—on the potential for similarly-spirited, real-world 

policies to affect the production of STEM degrees at universities. We also perform analyses to 

get more realistic estimates by (1) parameterizing and removing bias from unobserved selection 

into two-year and four-year colleges, and (2) parameterizing more realistic behavioral changes in 

response to our hypothetical intervention.  

The most closely-related literature to our work includes studies of policy changes and 

other interventions targeted toward community college students that encourage them to either 

transfer to or directly enroll in a university (Castleman and Page, 2016; Marx and Turner, 2019; 

Hyman, 2020; Gurantz et al., forthcoming). We note two major differences between our work 

and these previous studies. The first difference is that we focus specifically on how community 

college students can impact STEM degree production at universities, motivated by policy interest 

in the STEM workforce. The second difference is that we do not study a specific policy 

intervention, but rather focus on the question of whether there is the potential for the community 

college population to be tapped in this way. We view our contribution as a predecessor to policy-

intervention studies. We ask whether there is the scope for such policies to be effective, and if so, 

at what scale, which can inform future efforts to expand and diversify the STEM pipeline. 

Our upper-bound results suggest modest potential to expand the production of four-year 

STEM degrees by tapping into the pool of community college students. The expansion effect is 

 
6 This is the true whether with respect to a textbook nudge as traditionally defined, or a more substantial and costly 

intervention. 
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modest, even at an upper bound, because the vast majority of community college students are not 

academically prepared to succeed in a STEM program at a university. While it is not surprising 

that few community college students are academically prepared for STEM programs at 

universities, we show that the magnitude of the drop-off is substantial from the full population of 

community college students to those who have an appropriate level of academic preparation. 

When we add more realistic features to our analysis to get away from the upper bound, the 

expansion potential of policies targeted toward students who attend community colleges shrinks 

rapidly.  

We also find that there is no scope for the community college pipeline to improve the 

racial/ethnic diversity of four-year STEM degree recipients. Although the community college 

population on the whole is more diverse than the university population, our analysis reveals that 

most URM students attending community colleges are not academically prepared to succeed in 

STEM at universities. Thus, while at a cursory glance the community college population seems 

like an appealing source to diversify the university-trained STEM workforce, our analysis 

suggests efforts in this regard will likely fall flat.  

A broad takeaway from our study is that it will be challenging to expand and diversify the 

pool of university-trained STEM workers with interventions targeted toward students who would 

otherwise plan to attend community college. This finding contributes to what is emerging as a 

common theme of research examining the determinants of postsecondary outcomes: 

interventions at the postsecondary level are too late (Cameron and Heckman, 2001; Arcidiacono 

and Koedel, 2014; Stinebrickner and Stinebrickner, 2014).  

2. Data 

We use administrative microdata from the Missouri DHEWD for our analysis. The data 
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contain student background characteristics (race, gender, age, high school attended, etc.), pre-

entry academic qualifications (high school class percentile rank, ACT test scores), and in-college 

outcomes (majors, credits, GPA, and graduation). We restrict our analytic sample to first-time, 

full-time, state-resident students who entered the public college system—which includes 13 

universities and 14 community colleges—between 2006 and 2010 as college freshman. We track 

students for up to six years after initial entry into the system to determine whether they graduate 

with a four-year degree from any public college in Missouri.7  

Table 1 shows summary statistics for all university and community college students, and 

for various restricted subsamples that lead to our primary analytic sample. We review our data 

restrictions briefly here and examine the sensitivity of our findings to relaxing them below. The 

first restriction, imposed going from columns (1)-(2) and (4)-(5) in Table 1, focuses the analysis 

on in-state students only. This is due to data limitations for out-of-state students, especially at 

two-year colleges.8 The more substantive restrictions occur moving from columns (2)-(3) and 

(5)-(6), where we drop students from the sample who are (a) older than 20 upon entry as a first-

time college student, (b) enrolled part-time at entry, which we define as attempting fewer than 12 

credits, (c) missing math or English ACT scores, and/or (d) are from a very small high school 

(i.e., that sent five or fewer students to a public university during the period covered by our data 

panel) or the high school attended is missing.  

 
7 Our data are comprehensive for public colleges and universities statewide but do not cover private or out-of-state 

institutions. This limits the generalizability of our analysis—most directly in that our results cannot speak to the 

potential for expanding the STEM pipeline by redirecting community college students to private universities or to 

universities outside of the state. We view this as a modest limitation in the context of our thought experiment 

because if we were to nudge community college students to universities at scale, existing transfer patterns suggest 

that they would be more likely to gravitate toward public in-state universities (Shapiro et al., 2017). 
8 The key data issue is that especially for students who attend two-year colleges, out-of-state students often have 

missing ACT scores even when they took the test. Some ACT scores are reported directly by institutions, but we 

also have access to scores for all ACT test takers in Missouri. We also use information about students’ individual 

high schools to predict their success in college and out-of-state students attend high schools that are typically 

sparsely attended by Missouri college-goers, which creates analytic problems in our empirical models. 
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The age restriction is to focus our thought experiment on the population most likely to be 

susceptible to an intervention that shifts the sector of enrollment. The ACT and full-time-

enrollment restrictions are because we treat the steps of taking the ACT prior to college 

enrollment, and enrolling full time, as indicators of stronger interest and ability to pursue a 

higher-level degree among community college students (virtually all four-year college entrants 

have ACT scores and enroll full time). We drop students from small high schools because we use 

the high school attended in our prediction models and small schools are problematic 

empirically.9 Additional information about data construction, including more information about 

how the sample changes and summary statistics as each data restriction is enforced, is in 

Appendix Tables A1-A3. Again, we examine the substantive implications for our findings to 

relaxing these data restrictions below. 

Students’ class percentile ranks are important predictors of STEM success and Table 1 

shows that class percentile ranks are particularly likely to be missing among community college 

students. This is because of inconsistent institution-level reporting in the DHEWD data, which 

derives partly from the fact that community colleges’ open enrollment policies do not require 

them to collect data on academic qualifications.10 For students with missing class percentile 

ranks, we use linear regression to impute their ranks based on their demographic information, 

math and English ACT scores, and high schools of attendance. A feature of imputing via linear 

regression is that the imputed values are shrunken toward the mean, which is problematic 

because it is students in the upper tail of the distribution of academic qualifications among 

community college students who are most likely to succeed in STEM fields at universities. To 

address this issue, we inflate the variance of the imputed values ex post at each college level 

 
9 This restriction has no substantive implications for our analysis because it affects very few students. 
10 In contrast, we have data on ACT scores for all students who took the test in Missouri, as noted above. 
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(two-year and four-year) to match the variance of observed percentile ranks at the same level. 

We also examine the sensitivity of our findings to the variance inflation procedure in the 

robustness section. 

The racial/ethnic diversity information in Table 1 previews our finding regarding the 

potential for community college students to impact the racial/ethnic diversity in STEM fields at 

universities. First, while the full community college population has a higher proportion of Black 

students than the university population (given Missouri demographics, the proportion Black is 

the most relevant consideration for diversity)—0.14 versus 0.12—the gap in Black 

representation is not large. Moreover, the Black share among community college students falls to 

just 0.10 after we restrict the sample to in-state, full-time students (with the latter restriction 

being most impactful), and then to just 0.08 in the final sample after we add the additional 

restrictions for age and taking the ACT. In the analytic sample, the Black share among 

community college students is below the Black share among university students. 

We use the Classification of Instructional Programs (CIP) to identify majors in STEM 

fields, then divide university students into groups of STEM and non-STEM entrants based on 

their majors at entry. Following Darolia et al. (2020), we use the NSF definition of STEM fields, 

which includes majors in mathematics, natural sciences, engineering, computer and information 

sciences, and selected technical subfields within the social and behavioral sciences. 

Table 2 shows the summary statistics for STEM and non-STEM university entrants. We 

also include summary statistics for STEM completers. Compared to non-STEM entrants, STEM 

entrants have higher ACT math scores (25.58 vs 22.16), higher ACT English scores (25.19 vs 

23.27), and higher percentile ranks in high school (0.77 vs 0.69). Compared to STEM entrants, 

students who successfully earn a STEM degree possess even stronger academic qualifications.  
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Consistent with previous research, there is a significantly lower percentage of female 

students in STEM fields (Chen, 2009) and a slightly lower percentage of URM students (Hill, 

2017). But whereas the percentage of female students is the same among STEM completers and 

STEM entrants, there is a significant drop in the percentage of Black students in STEM fields 

from entrants to completers (also see Arcidiacono, Aucejo, and Spenner, 2012). Unsurprisingly, 

both STEM entrants and non-STEM entrants at universities possess substantially stronger 

academic qualifications than their community college counterparts. 

The bottom row of Table 2 shows that 44 percent of STEM entrants graduate with a 

STEM degree in 6 years, but just 4 percent non-STEM entrants transfer to STEM fields and 

graduate with a STEM degree. This highlights the importance of the initially-declared major in 

determining the production of four-year STEM degrees.  

3. Methodology 

Our goal is to determine the potential for the STEM pipeline at universities to be 

expanded and diversified by tapping into the population of students who attend community 

colleges. We situate our investigation in the context of a behavioral intervention that shifts 

student enrollment from community colleges to universities. For most of our analysis we assume 

that all community college students who we choose to intervene with respond as intended by 

enrolling in a university. Based on the existing nudge literature, this is well outside the bounds of 

what is plausible. It is also implausible for an intervention with forceful incentives—i.e., an 

intervention that is more than a nudge. This feature of our study contributes to the interpretation 

of our estimates as giving upper bounds.  

The first step in our process is to identify who to target among the community college 

population for our hypothetical intervention. If the objective function is simply to maximize the 
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number of STEM degrees produced, then the optimal policy would be to target all community 

college students. However, it would be costly and undesirable to shift students to universities 

who are underprepared or uninterested in STEM fields given their low likelihoods of success. 

Therefore, we focus only on students whose observable characteristics suggest they are 

reasonably likely to succeed in a STEM field. We refer to these students as “STEM qualified,” 

noting that this term broadly reflects academic preparation and interest in STEM fields. 

We propose a simple data-driven framework to identify “STEM-qualified” community 

college students. We begin by estimating the following empirical model to predict STEM degree 

completion among four-year college students within six years of initial enrollment, which we 

specify as a logistic regression: 

𝑌𝑖𝑗𝑡
∗ = 𝑿𝒊𝜷𝟏 + 𝛾𝑗 + 𝛿𝑡 + 𝜀𝑖𝑗𝑡        (1)  

In equation (1), 𝑌𝑖𝑗𝑡
∗  is the latent utility of completing a STEM degree within six years, versus not 

completing a STEM degree, for student i from high school j who first enrolled in one of 

Missouri’s 13 four-year public universities in year t.  Students who complete a STEM degree 

within six years—i.e., 𝑌𝑖𝑗𝑡 = 1—have latent utility above zero. 𝑿𝒊 is a vector of control variables 

including student’ ACT math and English scores, high school percentile ranks, racial/ethnic and 

gender designations, and interaction terms between race/ gender and ACT scores/ rank. 𝛾𝑗 is a 

fixed effect for high school j and 𝛿𝑡 is a fixed effect for year t. 𝜖𝑖𝑗𝑡 is the error term.  

The fitted values from equation (1), 𝑃̂𝑖𝑗𝑡 = 𝑃𝑟(𝑌𝑖𝑗𝑡 = 1|𝑿𝒊, 𝛾𝑗, 𝛿𝑡), indicate the predicted 

likelihood of completing a STEM degree conditional on pre-entry student characteristics and 

qualifications among four-year-university entrants. The next step in our process is to apply the 

parameter estimates from equation (1) to the profiles of community college students. This 

generates predicted values 𝑃̂𝑖𝑗𝑡
𝑐𝑐 , where the superscript cc denotes that the value is an out-of-
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sample prediction for community college student i. 𝑃̂𝑖𝑗𝑡
𝑐𝑐  is the likelihood that student i would 

complete a four-year degree in a STEM field if the student initially enrolled in a university 

instead of a community college, and if there were no unobserved differences between 

observationally similar students who differ by initial enrollment sector. 

We identify the subpopulation of community college students who are “STEM qualified” 

based on the distribution of  𝑃̂𝑖𝑗𝑡 among university STEM entrants. Specifically, in our preferred 

set up, we identify student i as “STEM qualified” if 𝑃̂𝑖𝑗𝑡
𝑐𝑐 > 𝑃̃̂, where 𝑃̃̂ is the median predicted 

likelihood of STEM success among initial STEM entrants in the university sample. Again, 

although we refer students with  𝑃̂𝑖𝑗𝑡
𝑐𝑐 > 𝑃̃̂ as “STEM qualified,” the predicted values are more-

precisely described as embodying two factors that determine STEM success: academic 

preparation and interest in pursuing a STEM degree. In our data, 𝑃̃̂ ≈ 0.17.  

Whether the median value 𝑃̃̂ is an appropriate threshold for identifying STEM-qualified 

students is a normative question. On the one hand, we want to choose a threshold that is high 

enough that affected students would have a reasonable likelihood of success in STEM fields. On 

the other hand, total STEM degree production is at least weakly increasing as our threshold for 

STEM-qualified declines. We use the median success rate among observed four-year college 

STEM entrants as our primary threshold because it is an intuitive, data-driven anchor for this 

value. We consider the sensitivity of our estimates to modifications of the threshold below. 

The policies we have in mind are of the sort that alter behavior—either by a textbook 

nudge or a nudge combined with stronger incentives—such that the community college students 

we identify as “STEM qualified” instead choose to enroll in universities. The most-commonly 

studied interventions of this type in recent research are nudges that encourage students to make 

different college and major choices (Bird et al., 2019; Castleman and Page, 2016). Although the 
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literature is clear that the efficacy of these types of behavioral interventions is limited, we 

assume that all students who we intervene with will change their enrollment behavior. Under this 

assumption, and continuing to assume these students would succeed in STEM at the same rates 

as their observationally similar counterparts who initially enrolled in universities, the total 

number of predicted four-year STEM degrees produced among STEM-qualified community 

college students is given by: 

 𝜃𝑆𝑇𝐸𝑀
𝑐𝑐 = ∑ 𝑃̂𝑖

𝑐𝑐𝑁𝑠
𝑐𝑐

𝑖=1       (2) 

Finally, noting the interpretive caveats given above, it is also straightforward to modify 

equation (2) to get numbers for specific demographic groups to inform the diversity question 

(i.e., we can redefine the summations to be over targeted groups only). To obtain error bands for 

our estimates of STEM degrees produced that account for error throughout the process described 

in this section, we bootstrap the entire procedure 500 times and report 95-percent empirical 

confidence intervals based on the bootstrapped values. 

4. Primary Results 

Table 3 shows the raw logit coefficients and bootstrapped 95% confidence intervals for 

equation (1), estimated on the university sample and using our preferred specification. The 

results are intuitive and consistent with past research showing that students who succeed in 

STEM fields are positively selected (Arcidiacono and Koedel, 2014; Arcidiacono et al., 2016). 

Among the pre-entry academic qualifications in our data, the class percentile rank is by far the 

strongest predictor of STEM success. The ACT math score is also a significant predictor of 

STEM success.11 In terms of demographics, the familiar gender difference in STEM success is 

 
11 The coefficient on the ACT English score is negative, which is perhaps unintuitive, but this reflects the 

conditional relationship only—if the ACT English score is included without any other controls, the coefficient is 

positive (results omitted for brevity). 
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clearly present in our data (also see Kahn and Ginther, 2017). Similarly, the well-documented 

lack of differences in success by race/ethnicity after conditioning on pre-entry academic 

qualifications, with the exception of Asian students, is also present (Griffith, 2010; Sass, 2015). 

For all students in both the two-year and four-year samples, we use the median predicted 

likelihood of STEM success among initial STEM entrants as the threshold to identify “STEM 

qualified” students. Note that non-STEM entrants at universities can also be STEM-qualified by 

this definition, even if they prefer a non-STEM major. Summary statistics for these groups are 

shown in Table 4. Overall, about a fourth of all university entrants have academic qualifications 

that align with our definition of STEM qualified. These students have stronger academic 

qualifications along all dimensions than their non-STEM-qualified counterparts. The magnitudes 

of the differences in core qualifications (ACT scores and percentile ranks) are large, ranging 

from 0.8 – 1.4 standard deviations. 

STEM-qualified students are also more likely to be male and more likely to be white or 

Asian than non-qualified students, but for different reasons. The gender gap reflects the strong 

negative coefficient for female students in Table 3. In contrast, the low representation of Black 

and Hispanic students is not driven by conditional differences in the likelihood of succeeding in 

STEM by student group—this can be seen by the insignificant coefficients on the racial/ethnic 

indicators for these groups in Table 3. Instead, the racial/ethnic differences emerge due to 

differences in pre-entry academic qualifications, which are much lower on average for Black 

students in particular (this result is also consistent with previous research—e.g., see Arcidiacono 

and Koedel, 2014; Arcidiacono et al., 2016; Bahr et al., 2017). 

 Unsurprisingly, the fraction of community college students whose pre-entry 

characteristics and qualifications are sufficient to meet our definition of STEM-qualified is much 
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smaller than the fraction of four-year students, at around 7.4 percent. This can be seen in the 

bottom row of Table 4. Moreover, among the STEM-qualified group in community colleges, 

their academic qualifications are clearly below those of their STEM-qualified peers at four-year 

institutions. This reflects the fact that the distribution of academic readiness at community 

colleges, as measured by the observable information we have, is to the left of the distribution of 

academic readiness among four-year college students. The implication is that among students 

above the STEM-qualified threshold, those at community colleges are closer to the threshold 

value, on average, than their four-year-college counterparts. A notable result in Table 4 is that 

the STEM-qualified population of community college students does not include a larger 

proportion of Black students than the STEM-qualified population at universities. 

 In the first column of Table 5 we show our estimates for STEM degree production among 

the community college sample from equation (2). We report the total number of four-year STEM 

degrees produced among STEM-qualified community college students and the characteristics of 

completers. Recall that we bootstrap our entire procedure 500 times and the results in Table 5 are 

the average outcome values across the 500 bootstrap replications, with 95-percent confidence 

intervals reported in parentheses. The second column replicates descriptive statistics for STEM 

completers among university entrants from Table 2 for comparison. 

We focus first on our findings regarding the potential to expand the STEM pipeline, then 

turn to diversity. In total, recall that in Table 4 we move 3,209 STEM-qualified community 

college students to universities. Of these, our model based on observables predicts that 869 

would complete a STEM degree within 6 years (with an empirical 95 percent confidence interval 

of 778-965 students). The number of STEM degrees produced among four-year entrants over our 
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sample period was 9060 students (column 2), meaning that our estimate of 869 degrees 

corresponds to an increase in production of 9.6 percent.  

This is a non-negligible increase, although a reasonable interpretation is that it is actually 

quite small given the upper-bound assumptions built into our analysis. Moreover, the total 

number of STEM degrees conferred among the nudged sample overstates the number of new 

STEM degrees produced because in the absence of our hypothetical intervention, some STEM-

qualified community college students would still complete university STEM degrees (i.e., via 

transfer). Among the 3,209 students we would hypothetically intervene with, we observe 289 

actually transferred to a university and obtained a STEM degree within 6 years. Thus, our upper-

bound estimate of the net increase in degrees produced is 580 (869-289), or about 6.4 percent 

relative to observed STEM degree production.  

Turning to the characteristics of the new STEM completers, column (1) shows that their 

academic qualifications on average are similar to but slightly below their counterparts who start 

at universities: their average ACT math scores are 25.76, versus 26.63 for university entrants, 

and their average high school percentile ranks are 81 versus 82. There is no diversity 

improvement by race-ethnicity among STEM degree recipients in the community college sample 

relative to the four-year sample. In fact, the fraction of nudged community college students who 

complete a STEM degree and are Black (0.01) is substantially lower than the fraction of 

university students who complete a STEM degree and are Black (0.04). The result is driven by 

the low share of Black students at community colleges who meet our definition of STEM 

qualified (Table 4 shows that just 2 percent of STEM-qualified community college students are 

Black and the 95% confidence interval is just 1-2 percent).  
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The new STEM graduates from community colleges are also even more male-dominated 

than their four-year counterparts. This result derives from the fact that female community college 

students do not outperform their male peers academically to the same degree that female 

university students outperform their male peers. Put another way, female community college 

students are more negatively selected in terms of academic qualifications, in their gender-

specific distribution, than their male counterparts.  

5. Robustness 

In this section we explore the basic robustness of our findings. First, to get a better 

understanding of the plausibility of our out-of-sample predictions for community college 

students under the maintained assumption of selection on observables, we document the 

predictive validity of our models in and out of sample among four-year college students (for 

whom true outcomes are observed, which is required to test predictive validity). To facilitate in-

sample and out-of-sample comparisons, we use 80% of the data to comprise the “training 

dataset” and the remaining 20% to test predictive validity. We follow the same procedure 

described in the methodology section with this new data split: we use the training dataset to 

estimate equation (1), then apply the estimated parameters to the prediction dataset, which in this 

case is the 20% holdout sample of four-year entrants. 

In-sample and out-of-sample prediction accuracy are shown in Appendix Table A5. 

Columns (1)-(2) show the in-sample comparison of true outcomes versus predicted values, and 

Columns (3)-(4) give the out-of-sample comparison. For the in-sample comparison, 

unsurprisingly, we see no difference between predicted and true-outcome values. For the out-of-

sample comparison the actual and predicted values are also nearly identical. This basic test 

confirms that the prediction model is effective when applied to university students. 
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Next, we examine the robustness of our findings to modifying our procedure for imputing 

missing high school percentile ranks. As noted above, we inflate the variance of the imputed 

percentile rank values in order to offset the shrinkage inherent to the imputation process in our 

primary analysis. In Table 6, we explore the implications of using the shrunken class-rank values 

directly without the variance inflation. Following on the discussion above, a straightforward 

prediction is that using the shrunken values directly will reduce the number of community 

college students identified as STEM-qualified by reducing the prevalence of students with 

imputed values in the tails of the class-rank distribution. The bottom row of Table 6 shows that 

this is indeed the case—we predict a gross increase in STEM degree recipients of just 789 

students in Table 6 versus 869 students in Table 5. 

6. Minor Extensions 

Next we extend our analysis along several minor dimensions. We describe the extensions 

in this section as “minor” because their substantive implications for our key findings regarding 

STEM expansion and diversification are modest. 

6.1 Demographic Predictors of STEM Success 

In our preferred specification of equation (1) we include race/ethnicity and gender 

indicators, and interactions between these indicators and ACT scores and percentile ranks, to 

improve the accuracy of our predictions. To test the implications of this for our diversity 

findings, in Table 7 we replicate our entire procedure after (a) dropping the race/ethnicity and 

gender interactions with ACT scores and percentile ranks, but keeping the race/ethnicity and 

gender indicators themselves, and (b) dropping all racial/ethnic and gender information from the 

models. The results from these scenarios are shown in columns (3)-(6) of Table 7; columns (1)-

(2) replicate the results from our preferred specification for comparison. 
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Substantively, there are two main takeaways from Table 7. First, the racial/ethnic 

composition of STEM completers in the community college sample does not depend on whether 

we rely on racial/ethnic data in the prediction model, with the exception of Asian students, 

whose predicted STEM completion rate declines slightly when race-ethnicity information is 

omitted. This result is consistent with the pattern of estimates in Table 3, which shows that 

outside of Asian students, the racial/ethnic designations are not important predictors of STEM 

completion conditional on measured academic preparation.12 Second, in terms of gender 

diversity, the female shares jump markedly in columns (5) and (6) if we remove all information 

about gender from the predictive model. This is because female students have generally strong 

academic qualifications (much stronger than for male students, on average). If we ignore their 

preference for non-STEM fields in our prediction models, we predict many more female students 

would pursue and complete STEM degrees. Again, this result is not surprising based on the 

estimates in Table 3, and only informative if one believes that female students who attend two-

year colleges have fundamentally different preferences for STEM education than their four-year 

counterparts, which we view as unlikely. 

6.2 Modifications to the Sample Restrictions 

In Section 2 we describe a number of restrictions that we impose on our preferred 

estimation sample. In this section we examine the substantive implications of these restrictions 

for our findings. 

First, in Table 8 we relax the credit-hour and age-based restrictions, which are set to 12 

first-semester credits and age ≤ 20 in the main analysis. We consider reductions of the credit-

hour constraint to 9 and then 6 credit hours to accommodate part-time students, and raise the 

 
12 That said, the evidence in Table 7 is more comprehensive because Table 3 does not show all of the interaction 

coefficients. 



20 
 

maximum entry age to 22 and then 24. These changes results in small increases in the numbers 

of students who are identified as STEM qualified, and correspondingly, small increases in the 

number of new STEM degrees produced. For example, relaxing the credit-hours restriction from 

12 all the way to 6 credit hours results in a total increase in STEM degree production of just 73 

degrees; raising the entry age threshold from ≤ 20 to ≤ 24 adds just 14 degrees. The changes are 

small because relatively few part-time or older community college students are STEM qualified 

based on their academic profiles. And if anything, part-time and older community college 

students are even more likely to have unobservable characteristics that make them less likely to 

complete a STEM degree at a university than their full-time, younger peers.13 

 Next we revisit to our decision to drop students who did not take the ACT prior to college 

enrollment. Again, the rationale for this decision is that we view the act of taking the ACT as an 

observable indicator of interest in and/or aptitude for postsecondary education. However, it is 

possible that some well-prepared community college students elect not to take the ACT for other 

reasons and to the extent this is true, our exclusion restriction with respect to ACT scores would 

lead to an understatement of the potential STEM pipeline in community colleges. 

To test this, we bring community college students with missing ACT scores back into the 

analysis by imputing their ACT scores using their first-semester completed credit hours and 

GPAs. The imputation coefficients are obtained from a regression of each ACT score (math and 

English) on first-semester completed credit hours and GPAs among community college students 

with all available information. With these students added back into the sample, we replicate our 

 
13 Note that some or perhaps all of these unobservables will be unrelated to competency, but rather derived from 

circumstances. As just one example, older and part-time students are more likely to have more non-schooling 

commitments that would make it harder for them to attend universities, which might require moving and will 

typically have less flexible degree programs. 
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entire predictive procedure. Table 9 shows the results compared to the results using our main 

settings.14 

Incorporating students with missing ACT scores into the community college sample leads 

to a substantial increase in its size—the sample increases from 43,214 students (Table 1) to 

57,382 students, a 33 percent increase. However, Table 9 shows that this translates into only a 

very small increase in the sample of students identified as STEM qualified and who complete 

STEM degrees. Indeed, the number of STEM degrees produced increases by just 115 degrees 

relative to baseline. The reason is that most community college students have academic 

credentials that put them below the threshold for STEM qualified as we’ve defined it, and those 

without ACT scores are strongly negatively selected (i.e., when we impute their ACT scores, the 

imputed values are low). Consistent with the spirit of our initial exclusion of students who do not 

take the ACT, adding these students back into our sample has a negligible effect on our findings. 

6.3 Sensitivity to the Nudge Threshold 

Next we revisit our decision to set the intervention threshold at the median predicted 

likelihood of success among initial STEM entrants in the university sample. This is a reasonable 

but arbitrary threshold. As we lower the threshold we will identify more students as “STEM 

qualified,” but the STEM success rate will fall because the marginally-induced students will be 

less academically prepared. Alternatively, as we raise the threshold the likelihood of obtaining a 

STEM degree conditional on being identified as “STEM qualified” will rise, but fewer students 

will be identified so total degree production will fall. 

In Table 10 we show the sensitivity of our estimates to moving the nudge threshold 

between the 40th and 60th percentiles of the distribution, at 5-unit intervals. When we decrease 

 
14 Note that like with the imputed class ranks, we inflate the variance of students’ imputed ACT scores to match the 

variance of observed scores. 
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the intervention threshold substantially—i.e., down to the 40th percentile—we increase the 

number of identified students by 57 percent to just over 5000. We also increase the number of 

STEM degrees produced, although not commensurately because the average student is less 

prepared—the number of degrees produced increases by 31 percent, or 273 degrees. If we move 

the threshold up to the 60th percentile we produce 245 fewer degrees in total (624 versus 869), 

but also nudge 1265 fewer students (1,944 versus 3,209). The conversion rate of enrollment to 

STEM degrees increases from 27.1 percent (869/3,209) in the baseline case to 32.1 percent 

(624/1,944) using the 60th-percentile threshold, but at the expense of reduced total production. 

Table 10 also shows modest diversity implication of modifications to the intervention 

threshold. Although the implied diversity effects are substantively similar at all thresholds, at 

lower thresholds the population of students identified as STEM-qualified, and the population 

predicted to earn STEM degrees, is slightly more likely to be female and Black (relative to male 

and White). 

Overall, Table 10 illustrates the tradeoffs as the intervention threshold varies in terms of 

total STEM degrees produced, the degree-conversion rate, and to a lesser extent the diversity of 

students who receive STEM degrees. Determining the appropriate threshold requires a normative 

judgement about the value of degrees produced and the cost of failed interventions (i.e., students 

who do not complete a STEM degree) and we do not make this judgment here. That said, in 

assessing the cost of failures, an important distinction exists between failure in STEM and failure 

to complete any degree at a university. As a point of information, supplementary predictive 

models—for which the results are reported in Appendix Table A6—indicate that among students 

who we intervene with but who fail to complete a STEM degree, just under half (49 percent) 

would be expected to complete a non-STEM university degree based on their observable 
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characteristics and qualifications, and the other half would fail to complete a degree within 6 

years. Among these students, available evidence from Goodman, Hurwitz, and Smith (2017) and 

Mountjoy (2019) suggests that bachelor’s degree receipt would be much higher than in the 

absence of our intervention; moreover, Mountjoy (2019) shows that the diversion of marginal 

students toward four-year colleges (or similarly, away from two-year colleges) leads to an 

increase in earnings. 

6.4 Excluding Biology 

Biology is one of the largest STEM majors in Missouri and nationally (Snyder, de Brey 

and Dillow, 2019). However, the field of biology differs from other STEM fields in that it is less 

mathematically oriented and biology degrees have lower earnings returns.15 The lower labor-

market returns imply that compared to other STEM majors, market demand for biology degrees 

is low. Therefore, it may be appropriate for policies designed to increase STEM degree 

production to focus on fields outside of biology. 

In Table 11 we modify our analysis to examine STEM degree production outside of 

majors in biology; specifically, outside of majors under the 2-digit CIP code classification for 

biology. We exclude these majors from the definition of STEM fields, and replicate our entire 

analytic procedure. In the university sample for the cohorts we study, majors under the biology 

heading account for 29 percent of all STEM majors, or 2,619 degrees.  

Table 11 shows that excluding biology, our hypothetical intervention is predicted to 

generate 705 STEM degrees, versus 869 STEM degrees in the analysis inclusive of biology. The 

percent increase in non-biology STEM degrees at universities is similar to, but somewhat higher 

than, in the base case, at 10.9 percent (705/6441). The results for racial/ethnic and gender 

 
15 For example, Webber (2016) shows that the earnings returns to biology degrees are more closely aligned with the 

returns to degrees in arts and humanities fields than they are with earnings in other STEM disciplines. 
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diversity are substantively similar to what we find in the base case in that diversity conditions 

worsen in the community college sample. An especially sharp decline is apparent in the female 

share of STEM degrees produced—with biology included, 14 percent of STEM degrees 

predicted to result from our intervention are female (Table 5), versus just 7 percent when we 

exclude biology (Table 11). This is partly because female students are less likely to enroll in and 

complete STEM degrees in non-biology fields, which can be seen by comparing column (3) in 

Table 11 to column (2) in Table 5, but this does not explain the full decline. 

7. Major Extensions 

In this section we assess the implications of relaxing the two major assumptions that 

drive the upper-bound interpretation of our findings thus far: (1) selection-on-observables into 

universities, and (2) the perfect efficacy of our enrollment intervention. 

7.1 Selection on Unobservables 

Thus far we have maintained the unrealistic assumption of selection on observables into 

college sector. This assumption is imbedded in our predictions because we assume that students 

who choose to initially enroll in community colleges, if they were shifted to start at a university 

instead, would perform just as well as observationally similar students who choose to enroll in 

universities on their own. However, the fact that the community college students did not choose 

a university on their own suggests that this assumption is unlikely to hold. To the extent that it is 

violated the expected direction of bias in our estimates of STEM degree production will be 

positive—i.e., we will overstate the likelihood of STEM success among our hypothetically 

nudged students. 

Although we expect unobserved selection to be non-zero, we are not aware of any 

research that we can draw on to parameterize a precise value for its magnitude in our context. 
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Absent this, we perform a bounding exercise to assess how varying degrees of unobserved 

selection would impact our findings. Our procedure follows the logic of Rosenbaum (2002). We 

begin by estimating the magnitude of selection on observables between two-year and four-year 

students who we identify as STEM qualified. Although we use a fixed threshold to identify 

STEM-qualified students, Table 4 shows that on average the community college sample is 

negatively selected based on observables. Again, this is because the distribution of academic 

qualifications at community colleges is shifted to the left of the four-year distribution. The 

difference in observed selection between students in the two-year and four-year samples can be 

summarized by the average difference in the likelihood of STEM success between the groups, 

represented by (𝑝̄̂𝑖
𝑐𝑐 − 𝑝̄̂𝑖), where 𝑝̄𝑖

𝑐𝑐 and 𝑝̄𝑖 are the average predicted STEM degree completion 

rates for two-year and four-year students, respectively, obtained using the parameters from 

equation (1). This calculation indicates that STEM-qualified community college students are 4 

percentage points less likely to complete a STEM degree than their STEM-qualified peers who 

start at universities. 

Next, we assume that selection into college sector on unobservables is in the same 

direction as observed selection and consider magnitudes of unobserved selection ranging from 50 

to 300 percent as large as observed selection. To give a sense of the meaning of these values, at 

the high-end scenario with unobserved selection that is 300% as large as observed selection, we 

parameterize outcomes such that nudged community college students are 12 percentage points 

less likely to complete a STEM degree from a university than is implied by their observable 

student profiles alone. For this exercise we do not allow unobserved factors to affect who is 

nudged—a realistic policy could act only on observable information—but they will affect the 

degree production rate among the nudged sample.  



26 
 

Table 12 shows the results from the various selection-on-unobservables scenarios. The 

first row replicates our baseline condition with no unobserved selection. We nudge 3,209 

students and 27 percent of these students are predicted to complete a STEM degree. As 

unobserved selection becomes more severe the conversion rate, and total degree production, 

decline. Under the assumption that selection on unobservables is of the same magnitude as 

observed selection (the 100% scenario in row 3 of Table 12), the number of STEM degrees 

produced in our nudged sample declines by 141 degrees, to 738. In the largest selection-on-

unobservables condition we consider (at 300% of observed selection) degree production is 

reduced 45 percent, to just 481 STEM degrees. 

We do not have the means to assess the true magnitude of unobserved selection in our 

data, so we can only provide the range of estimates in Table 12 to provide insight into how 

unobserved selection may impact our findings. If unobserved selection is assumed to be small 

the implications are modest; if unobserved selection is large, which cannot be ruled out given our 

context, it would imply a substantially reduced potential to expand four-year degree production 

in STEM by shifting community college enrollment. 

7.2 A Less than Perfect Nudge 

The other important assumption imbedded in our analysis up to this point is that all of the 

students who we intervene with respond as intended—that is, we can shift enrollment of 

community college students to universities with perfect efficacy. This is a useful assumption for 

thinking about the potential upper-bound effect of tapping into the community college population 

to increase four-year degree production in STEM, but it is not realistic.  

If our intervention were a textbook nudge—which Thaler and Sunstein (2008) define as 

an intervention that is cheap and easy to avoid—evidence suggests that the behavioral response 
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would likely be very small, in the range of 0-5 percentage points (Barr and Turner, 2018; 

Castleman and Page, 2015; Gurantz et al, 2020; Oreopoulos and Petronijevic, 2019). The 

response rate could in principle be increased if the nudge became more expensive and costly to 

avoid, such as if tuition subsidies or stipends were offered, but even then available research 

suggests a modest behavioral response. For example, Deming and Walters (2017) find very 

modest impacts of tuition changes on enrollment, whereas they find much larger impacts of 

institutional spending changes. Marx and Turner (2019) find community college students who 

have more access to borrowing are around 4 percentage points more likely to transfer to a four-

year college. 

Based on these studies, in Table 13 we consider scenarios where we rescale the 

intervention effect to be more realistic, but we believe still optimistic, in terms of affecting 

community college students’ enrollment decisions: a 5-percent effect and a 10-percent effect. 

The idea is that we would still nudge the same baseline pool of STEM-qualified students (i.e., 

the 3,209 students from Table 4), but only 5 or 10 percent would change their behavior and 

enroll in a university. For each scenario considered in Table 13, we show results for two cases: 

one where the students who change behavior are a random sample of the STEM-qualified group 

and one where the students who change are those most likely to succeed in a four-year STEM 

program. 

Unsurprisingly, the results in Table 13 imply large reductions in degrees produced and no 

positive changes in diversity (moreover, gender diversity declines when the students who are 

most likely to succeed respond to the nudge, but this is tautological because our prediction model 

embodies the fact that female students are much less likely to succeed in STEM). The extensive-
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margin effects in these more realistic nudge scenarios are small in absolute terms and as a 

percentage of STEM degrees produced at universities. 

8. Conclusion 

We assess the prospects for expanding and diversifying STEM degree production in 

universities by tapping into the population of academically-qualified community college 

students. Our work complements a large and growing literature that examines specific policy 

interventions by providing upper-bound estimates of the types of changes to the STEM pipeline 

that would be possible via interventions targeted toward community college students. 

We find that the number of STEM degrees produced by universities can be modestly 

expanded by tapping into the community college student population. The exact magnitude of the 

change depends on assumptions and policy-design details along a variety of dimensions. In our 

baseline evaluation scenario, we estimate that the academically-qualified community college 

students who we would nudge with our hypothetical intervention would generate a gross increase 

of 869 four-year STEM degrees, or an increase of 9.6 percent on the number STEM degrees 

already produced by universities. The net increase is smaller—about 6.4 percent—because some 

of the students who we would hypothetically nudge go on to earn a STEM degree from a 

university regardless (i.e., by transferring to a university and completing a STEM degree).  

Our extensive-margin estimate can be made somewhat larger by modifying aspects of our 

hypothetical intervention, most notably by lowering the threshold we use to identify the “STEM 

qualified” students who are nudged, but even a fairly large reduction in the threshold results in 

tempered gains in STEM degrees. More likely, though, is that our estimates are far above what 

could be feasibly achieved through a real policy because of the variety of upper-bound 

conditions we impose on the analysis. The two most significant upper-bound conditions are 
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assumptions: our baseline estimates assume (a) no selection into college sector on unobservables 

and (b) that we could implement our enrollment intervention with perfect compliance. Relaxing 

these assumptions quickly degrades the magnitude of gains in STEM degrees we could hope to 

produce.  

Our findings for diversifying STEM degree production are even less promising. 

Community college students are more racial/ethnically diverse than their four-year counterparts 

overall. However, the fraction of non-White students who are academically qualified to succeed 

in four-year STEM degree programs among community colleges is lower than among four-year 

college students. The end result is that the diversity of individuals who are predicted to earn 

STEM degrees among our nudged sample of community college students is less than among 

university students already earning STEM degrees. We also find no scope for increasing the 

gender diversity of STEM degree production by tapping into the community college population. 

This result is partly tautological because we assume that female aversion to STEM, conditional 

on observable academic qualifications, is similar among two-year and four-year college students. 

However, the gender gap among community college students is also exacerbated because within 

their gender-specific distributions of academic qualifications, female students who attend 

community colleges are more negatively selected than their male peers. This compounds the 

gender gap in predicted STEM attainment among community college students. 

The broad takeaway from our analysis is that policies and interventions targeted toward 

community college students are unlikely to alter macro-level features of STEM degree 

production at universities. This does not mean that interventions cannot be effective at the micro-

level in terms of improving outcomes for individually-impacted students, and indeed there is 

evidence that at least for students at the margin of having appropriate academic qualifications, 



30 
 

shifts in enrollment from two-year to four-year colleges are beneficial (Goodman, Hurwitz, and 

Smith, 2017; Mountjoy, 2019). However, our analysis shows that the potential for intervening 

with community college students in a way that meaningfully impacts overall STEM degree 

production at universities is limited. 
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Table 1: Summary statistics for two-year and four-year college entrants overall and for key subsamples. 

 Four Year University  Community College 

 

(1) 

All 

(2) 

In state 

(3) 

Analytic Sample 

 

 

(4) 

All 

(5) 

In state 

(6) 

Analytic Sample 

ACT math 22.84 22.7 22.89  18.84 18.84 19.04 

 (4.88) (4.87) (4.78)  (3.85) (3.85) (3.78) 

ACT English 23.62 23.49 23.68  18.83 18.83 18.99 

 (5.45) (5.46) (5.34)  (4.95) (4.95) (4.78) 

High school percentile rank/100 0.69 0.69 0.71  0.49 0.49 0.56 

 (0.23) (0.23) (0.22)  (0.25) (0.25) (0.23) 

High school percentile rank missing indicator 0.16 0.16 0.12  0.55 0.55 0.35 

 (0.37) (0.36) (0.32)  (0.5) (0.5) (0.48) 

Female 0.55 0.55 0.55  0.54 0.54 0.54 

 (0.50) (0.5) (0.50)  (0.50) (0.5) (0.50) 

White 0.77 0.79 0.81  0.71 0.71 0.79 

 (0.42) (0.41) (0.39)  (0.45) (0.45) (0.41) 

Black 0.12 0.12 0.10  0.14 0.13 0.08 

 (0.32) (0.32) (0.30)  (0.34) (0.34) (0.27) 

Hispanic 0.02 0.02 0.02  0.03 0.03 0.02 

 (0.15) (0.15) (0.14)  (0.17) (0.16) (0.15) 

Asian 0.02 0.02 0.02  0.01 0.01 0.01 

 (0.14) (0.14) (0.14)  (0.12) (0.12) (0.11) 

Other Race 0.03 0.02 0.01  0.03 0.03 0.02 

 (0.17) (0.14) (0.11)  (0.16) (0.16) (0.14) 

Race missing unknown 0.04 0.04 0.04  0.09 0.09 0.07 

 (0.2) (0.19) (0.19)  (0.28) (0.28) (0.26) 

Number of observations 97749 83263 70737  110695 108198 43214 

Notes: Table shows means and standard deviations (in parenthesis) for university students and community college students. See the text and Appendix table A1 

for details about the construction of the analytic sample.    
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Table 2: Summary statistics for four-year college entrants in the analytic sample by STEM entry and exit conditions. 

  Four Year University 

 (1) 

Analytic Sample 

(2) 

STEM entrants 

(3) 

non-STEM entrants 

(4) 

STEM completers 

ACT math 22.89 25.58 22.16 26.63 
 (4.78) (4.76) (4.52) (4.54) 

ACT English 23.68 25.19 23.27 26.05 
 (5.34) (5.13) (5.32) (5.01) 

High school percentile rank/100 0.71 0.77 0.69 0.82 
 (0.22) (0.2) (0.23) (0.17) 

High school percentile rank missing indicator 0.12 0.10 0.12 0.12 
 (0.32) (0.30) (0.32) (0.32) 

Female 0.55 0.36 0.60 0.36 
 (0.5) (0.48) (0.49) (0.48) 

White 0.81 0.82 0.80 0.86 
 (0.39) (0.39) (0.4) (0.35) 

Black 0.10 0.08 0.11 0.04 
 (0.3) (0.27) (0.31) (0.20) 

Hispanic 0.02 0.02 0.02 0.02 
 (0.14) (0.15) (0.14) (0.13) 

Asian 0.02 0.03 0.02 0.03 
 (0.14) (0.17) (0.13) (0.18) 

Other Race 0.01 0.02 0.01 0.01 
 (0.11) (0.12) (0.11) (0.11) 

Race missing unknown 0.04 0.04 0.04 0.04 
 (0.19) (0.19) (0.19) (0.19) 

Graduate with STEM in 6 years 0.13 0.44 0.04 1.0 

 (0.33) (0.5) (0.2) (0) 

Number of observations 70737 15125 55612 9060 

Notes: Table shows means and standard deviations (in parenthesis).   
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Table 3: Results from predictive logistic regression of STEM degree completion among four-year college entrants. 

 
 

 Graduate with STEM  

ACT math 0.163*** 

 [0.153,0.173] 

ACT English -0.041*** 

 [-0.05,-0.032] 

Female -1.253*** 

 [-1.599,-0.900] 

Asian 2.467*** 

 [1.546,3.331] 

Black -0.356 

 [-1.191,0.335] 

Hispanic 0.609 

 [-0.709,1.661] 

Other Race 1.071 

 [-0.426,2.488] 

Race Missing Unknown 0.667 

 [-0.211,1.438] 

High school percentile rank (/100) 2.783*** 

 [2.589,2.995] 

High school percentile rank missing indicator 0.174** 

 [0.035,0.318] 

  
Number of observations 68798 

 [68432,69114] 

High School FE X 

Cohort FE X 

ACT*Race/Ethnicity interactions   X 

ACT*Gender interactions              X 

Percentile Rank*Race/Ethnicity          X 

Notes: The regression output corresponds to equation (1) in the main text. Bootstrapped mean estimates and 95 percent confidence intervals are reported. 

***p<0.01, **p<0.05, *p<0.10.  
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Table 4: Summary statistics by STEM qualified status at two-year and four-year colleges. 

  Four Year University Community College 

 (1) 

STEM qualified 

(2) 

Not STEM qualified  

(1) 

STEM qualified 

(2) 

Not STEM qualified 

ACT math 28.01 21.08 25.26 18.55 
 [27.9,28.11] [21.02,21.13] [24.98,25.54] [18.5,18.59] 

ACT English 26.95 22.52 22.42 18.71 
 [26.82,27.09] [22.45,22.58] [22.11,22.74] [18.66,18.77] 

High school percentile rank (/100) 0.86 0.66 0.79 0.53 
 [0.86,0.87] [0.65,0.66] [0.77,0.8] [0.52,0.53] 

Female 0.28 0.64 0.16 0.57 
 [0.27,0.3] [0.64,0.65] [0.13,0.19] [0.57,0.58] 

White 0.87 0.79 0.81 0.79 
 [0.86,0.87] [0.78,0.79] [0.77,0.85] [0.78,0.79] 

Black 0.03 0.13 0.02 0.09 
 [0.02,0.03] [0.13,0.13] [0.01,0.02] [0.08,0.09] 

Hispanic 0.02 0.02 0.02 0.02 
 [0.01,0.02] [0.02,0.02] [0.01,0.03] [0.02,0.02] 

Asian 0.04 0.01 0.04 0.01 
 [0.04,0.05] [0.01,0.01] [0.02,0.05] [0.01,0.01] 

Other Race 0.01 0.01 0.02 0.02 
 [0.01,0.02] [0.01,0.02] [0.01,0.04] [0.02,0.02] 

Race missing unknown 0.04 0.04 0.09 0.07 
 [0.03,0.04] [0.03,0.04] [0.06,0.13] [0.07,0.08] 

Number of students 18509 52228 3209 40005 

  [18088,18975] [51762,52649] [2907,3520] [39694,40307] 

Notes: Table shows means and 95 percent bootstrapped confidence intervals (500 repetitions) for university students and community college students by STEM 

qualified status.   
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Table 5: Summary statistics for community college students who are predicted to complete STEM degrees at four-year colleges 

compared to observed STEM completers at four-year colleges. 

 

(1) 

Graduate with STEM 

(2) 

STEM completers at universities (from Table 2) 

Avg ACT math 25.76 26.63 

 [25.45,26.07] [26.53,26.71] 

Avg ACT English 22.64 26.05 

 [22.3,22.96] [25.95,26.14] 

Avg HS percentile rank (/100) 0.81 0.82 

 [0.79,0.82] [0.82,0.83] 

Share Female 0.14 0.36 

 [0.11,0.17] [0.35,0.37] 

Share White 0.81 0.86 

 [0.77,0.85] [0.85,0.86] 

Share Black 0.01 0.04 

 [0.01,0.02] [0.04,0.05] 

Share Hispanic 0.02 0.02 

 [0.01,0.03] [0.02,0.02] 

Share Asian 0.04 0.03 

 [0.02,0.05] [0.03,0.04] 

Share Other Race 0.02 0.01 

 [0.01,0.04] [0.01,0.02] 

Share Race missing unknown 0.1 0.04 

 [0.06,0.14] [0.03,0.04] 

Number of STEM degrees (gross) 869 9060 

 [778,965] [8882,9212] 

Number of STEM degrees (net) 580 -- 

 [498,668]  
Notes: Table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions for nudged community college students. Column (2) reports 

means and standard deviations for actual STEM completers among initial university entrants. The net number of STEM degrees equals subtracting the number of 

STEM-qualified community college students observed transferring into university and obtaining a STEM degree within 6 years directly in the data from the 

number of gross STEM degrees.
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Table 6: Robustness of findings to selecting STEM-qualified community college students without the variance inflation adjustment to 

the imputed high-school class percentile ranks. 
 Main Settings Without imputed-HS Rank variance inflation 

 (1) (2) (3) (4) 
 STEM qualified Graduate with STEM STEM qualified Graduate with STEM 

Avg ACT math 25.26 25.76 25.46 25.94 
 [24.98,25.54] [25.45,26.07] [25.2,25.73] [25.64,26.24] 

Avg ACT English 22.42 22.64 22.52 22.7 
 [22.11,22.74] [22.3,22.95] [22.26,22.79] [22.41,22.99] 

Avg HS percentile rank (/100) 0.79 0.81 0.76 0.78 
 [0.77,0.8] [0.79,0.82] [0.75,0.78] [0.76,0.79] 

Share Female 0.16 0.14 0.15 0.13 
 [0.13,0.19] [0.11,0.17] [0.13,0.18] [0.11,0.16] 

Share White 0.81 0.81 0.81 0.81 
 [0.77,0.85] [0.77,0.85] [0.77,0.85] [0.77,0.85] 

Share Black 0.02 0.01 0.01 0.01 
 [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] 

Share Hispanic 0.02 0.02 0.02 0.02 
 [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] 

Share Asian 0.04 0.04 0.04 0.04 
 [0.02,0.05] [0.02,0.05] [0.03,0.05] [0.03,0.05] 

Share Other Race 0.02 0.02 0.02 0.03 
 [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] 

Share Race missing unknown 0.09 0.1 0.09 0.1 
 [0.06,0.13] [0.06,0.14] [0.06,0.13] [0.06,0.14] 

Number of students or degrees (gross)  3209 869 2940 789 
 [2907,3520] [778,965] [2670,3223] [712,869] 

Notes: Table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions for STEM-qualified community college students when we 

inflate the variance of imputed high school class percentile ranks in column (1) and (2), and do not inflate the variance of imputed high school percentile ranks in 

column (3) and (4).  
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Table 7: Robustness of findings to dropping race-gender indicators and/or race-gender indicator interactions in the model that predicts 

STEM four-year degree completion. 
 Main Settings No Race-Gender Interaction Terms No Race-Gender Indicators or Interactions 

 (1) (2) (3) (4) (5) (6) 

 STEM 

qualified 

Graduate with 

STEM 
STEM qualified 

Graduate with 

STEM 
STEM qualified 

Graduate with 

STEM 

Avg ACT math 25.26 25.76 25.46 25.98 25.86 26.37 

 [24.98,25.54] [25.45,26.07] [25.2,25.7] [25.71,26.23] [25.59,26.11] [26.07,26.63] 

Avg ACT English 22.42 22.64 22.74 22.99 22.94 23.16 

 [22.11,22.74] [22.3,22.95] [22.52,22.98] [22.75,23.23] [22.71,23.17] [22.92,23.41] 

Avg HS percentile rank (/100) 0.79 0.81 0.80 0.82 0.81 0.83 

 [0.77,0.8] [0.79,0.82] [0.79,0.81] [0.81,0.83] [0.8,0.82] [0.81,0.84] 

Share Female 0.16 0.14 0.16 0.14 0.41 0.39 

 [0.13,0.19] [0.11,0.17] [0.14,0.19] [0.12,0.17] [0.39,0.42] [0.37,0.41] 

Share White 0.81 0.81 0.85 0.84 0.87 0.87 

 [0.77,0.85] [0.77,0.85] [0.82,0.87] [0.82,0.86] [0.86,0.88] [0.86,0.88] 

Share Black 0.02 0.01 0.01 0.01 0.01 0.01 

 [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.01] 

Share Hispanic 0.02 0.02 0.02 0.01 0.01 0.01 

 [0.01,0.03] [0.01,0.03] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] 

Share Asian 0.04 0.04 0.03 0.03 0.02 0.02 

 [0.02,0.05] [0.02,0.05] [0.02,0.03] [0.02,0.04] [0.02,0.02] [0.02,0.02] 

Share Other Race 0.02 0.02 0.02 0.02 0.02 0.02 

 [0.01,0.04] [0.01,0.04] [0.01,0.03] [0.01,0.03] [0.02,0.02] [0.02,0.02] 

Share Race missing unknown 0.09 0.1 0.08 0.08 0.07 0.07 

 [0.06,0.13] [0.06,0.14] [0.06,0.1] [0.06,0.1] [0.06,0.07] [0.06,0.07] 

Number of students or degrees(gross) 3209 869 3080 827 3105 777  
[2907,3520] [778,965] [2814,3361] [754,908] [2844,3432] [713,859] 

Notes: table reports averages and 95 percent confidence intervals of 500 bootstrap predictions 

. 
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Table 8: Robustness of findings to using more inclusive pools of two-year college students by relaxing the full-time student and age 

restrictions. 

 Initial Credit Hours >=9 Initial Credit Hours >=6 Age<=22 Age<=24 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

STEM 

qualified 

Graduate with 

STEM 

STEM 

qualified 

Graduate with 

STEM 

STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

Avg ACT math 25.24 25.74 25.22 25.74 25.27 25.77 25.28 25.79 
 [24.92,25.57] [25.39,26.08] [24.93,25.51] [25.4,26.04] [24.96,25.55] [25.47,26.08] [24.99,25.56] [25.48,26.09] 

Avg ACT English 22.42 22.64 22.43 22.66 22.41 22.61 22.43 22.63 
 [22.1,22.72] [22.3,22.96] [22.13,22.75] [22.35,22.99] [22.11,22.73] [22.31,22.97] [22.13,22.74] [22.3,22.96] 

Avg HS percentile rank (/100) 0.79 0.8 0.79 0.8 0.79 0.81 0.79 0.81 
 [0.77,0.8] [0.79,0.82] [0.77,0.8] [0.79,0.82] [0.77,0.8] [0.79,0.82] [0.77,0.8] [0.79,0.82] 

Share Female 0.16 0.14 0.16 0.14 0.15 0.13 0.15 0.14 
 [0.13,0.18] [0.11,0.17] [0.13,0.19] [0.12,0.17] [0.12,0.18] [0.11,0.16] [0.13,0.18] [0.11,0.16] 

Share White 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 
 [0.77,0.85] [0.77,0.85] [0.76,0.84] [0.75,0.84] [0.77,0.85] [0.77,0.85] [0.77,0.85] [0.77,0.85] 

Share Black 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 
 [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] 

Share Hispanic 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
 [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] 

Share Asian 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
 [0.02,0.06] [0.02,0.06] [0.02,0.06] [0.02,0.06] [0.02,0.05] [0.02,0.05] [0.02,0.05] [0.02,0.05] 

Share Other Race 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
 [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] 

Share Race missing unknown 0.09 0.1 0.1 0.1 0.09 0.1 0.09 0.1 

 [0.06,0.13] [0.06,0.14] [0.06,0.13] [0.06,0.14] [0.06,0.13] [0.06,0.14] [0.06,0.13] [0.06,0.13] 

Number of students or degrees (gross) 3378 907 3509 942 3261 882 3271 883 

 [3041,3697] [807,1007] [3164,3892] [840,1049] [2940,3559] [793,973] [2961,3578] [798,973] 

Initial population considered 46493 48841 44001 44335 

Notes: table reports averages and 95 percent confidence intervals of 500 bootstrap repetitions under different under different sample restrictions: Minimum 

registered credit hours >=9, Minimum credit hours >=6, Maximum age in freshman year <=22, Maximum age in freshman year <=24. 
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Table 9: Robustness of findings to removing the ACT-taking requirement among two-year-college students to be nudged. 
 Main Settings Recover Missing ACT Scores 
 (1) (2) (3) (4) 
 STEM qualified Graduate with STEM STEM qualified Graduate with STEM 

Avg ACT math 25.26 25.76 25.06 25.53 
 [24.98,25.54] [25.45,26.07] [24.75,25.37] [25.19,25.85] 

Avg ACT English 22.42 22.64 21.6 21.79 
 [22.11,22.74] [22.3,22.95] [21.24,21.93] [21.39,22.2] 

Avg HS percentile rank (/100) 0.79 0.81 0.77 0.79 
 [0.77,0.8] [0.79,0.82] [0.75,0.79] [0.77,0.8] 

Share Female 0.16 0.14 0.14 0.13 
 [0.13,0.19] [0.11,0.17] [0.12,0.17] [0.1,0.16] 

Share White 0.81 0.81 0.8 0.8 
 [0.77,0.85] [0.77,0.85] [0.75,0.84] [0.74,0.84] 

Share Black 0.02 0.01 0.02 0.01 
 [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] 

Share Hispanic 0.02 0.02 0.02 0.02 
 [0.01,0.03] [0.01,0.03] [0.01,0.04] [0.01,0.04] 

Share Asian 0.04 0.04 0.04 0.04 
 [0.02,0.05] [0.02,0.05] [0.02,0.06] [0.02,0.06] 

Share Other Race 0.02 0.02 0.03 0.03 
 [0.01,0.04] [0.01,0.04] [0.01,0.05] [0.01,0.06] 

Share Race missing unknown 0.09 0.10 0.10 0.10 
 [0.06,0.13] [0.06,0.14] [0.07,0.15] [0.07,0.16] 

Number of students or degrees (gross)  3209 869 3680 984 
 [2907,3520] [778,965] [3263,4077] [870,1097] 

Initial population considered 43214 57382 

Notes: Table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions after we recover missing ACT test scores for community college 

students. We use students’ completed credit hours and GPAs during the first semester of community college to impute missing ACT test scores.  
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Table 10: Findings using different nudge thresholds for identifying STEM-qualified two-year college students based on the percentile 

of the distribution among four-year STEM entrants (the baseline case is at the 50th percentile). 

 40th Percentile 45th Percentile 55th Percentile 60th Percentile 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

Avg ACT math 24.53 25.16 24.9 25.46 25.63 26.08 26 26.4 
 [24.27,24.78] [24.89,25.42] [24.61,25.16] [25.17,25.74] [25.3,25.94] [25.73,26.4] [25.64,26.34] [26.01,26.76] 

Avg ACT English 22.1 22.38 22.27 22.51 22.58 22.77 22.74 22.91 
 [21.83,22.35] [22.09,22.63] [21.98,22.54] [22.2,22.78] [22.24,22.91] [22.41,23.13] [22.38,23.09] [22.54,23.27] 

Avg HS percentile rank (/100) 0.76 0.79 0.78 0.8 0.8 0.82 0.82 0.83 
 [0.75,0.78] [0.77,0.8] [0.76,0.79] [0.78,0.81] [0.79,0.82] [0.8,0.83] [0.8,0.83] [0.81,0.84] 

Share Female 0.2 0.17 0.17 0.15 0.14 0.12 0.12 0.11 
 [0.17,0.22] [0.14,0.2] [0.15,0.21] [0.13,0.18] [0.11,0.17] [0.1,0.15] [0.09,0.15] [0.08,0.14] 

Share White 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 
 [0.78,0.85] [0.77,0.85] [0.77,0.85] [0.77,0.85] [0.77,0.85] [0.76,0.85] [0.77,0.86] [0.76,0.86] 

Share Black 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 
 [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] [0.01,0.02] 

Share Hispanic 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
 [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.03] [0.01,0.04] [0.01,0.04] 

Share Asian 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
 [0.02,0.05] [0.02,0.05] [0.02,0.05] [0.02,0.05] [0.02,0.06] [0.02,0.06] [0.02,0.06] [0.02,0.06] 

Share Other Race 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 
 [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.04] [0.01,0.05] 

Share Race missing unknown 0.09 0.09 0.09 0.1 0.09 0.1 0.1 0.1 

 [0.07,0.12] [0.06,0.13] [0.06,0.13] [0.06,0.13] [0.06,0.13] [0.06,0.14] [0.06,0.14] [0.06,0.15] 

Number of students or degrees (gross) 5024 1142 4037 1003 2515 742 1944 624 

 [4645,5427] [1039,1248] [3696,4407] [905,1105] [2246,2769] [656,827] [1721,2163] [546,702] 

Notes: table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions under different nudge threshold: nudge threshold= 40th 

percentile, nudge threshold= 45th percentile, nudge threshold= 55th percentile, nudge threshold= 60th percentile. 
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Table 11: Summary statistics for STEM-qualified community college students after dropping Biology majors. 
 (1) (2) (3) 
 STEM qualified Graduate with STEM STEM completers at universities 

Avg ACT math 25.17 25.73 26.87 
 [24.84,25.51] [25.37,26.07] [26.75,26.97] 

Avg ACT English 21.86 22.07 25.79 
 [21.51,22.18] [21.7,22.42] [25.67,25.91] 

Avg HS percentile rank (/100) 0.75 0.77 0.81 
 [0.74,0.77] [0.76,0.79] [0.81,0.82] 

Share Female 0.08 0.07 0.28 
 [0.06,0.1] [0.05,0.09] [0.27,0.29] 

Share White 0.84 0.84 0.87 
 [0.79,0.88] [0.79,0.88] [0.86,0.88] 

Share Black 0.01 0.01 0.04 
 [0.01,0.02] [0.01,0.02] [0.03,0.04] 

Share Hispanic 0.01 0.01 0.02 
 [0,0.03] [0,0.02] [0.01,0.02] 

Share Asian 0.03 0.03 0.03 
 [0.02,0.05] [0.02,0.05] [0.02,0.03] 

Share Other Race 0.02 0.03 0.01 
 [0.01,0.04] [0.01,0.05] [0.01,0.02] 

Share Race missing unknown 0.08 0.08 0.04 
 [0.05,0.12] [0.05,0.12] [0.03,0.04] 

Number of students or degrees (gross) 2995 705 6441 
 [2721,3339] [636,787] [6307,6584] 

Notes: Table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions when we exclude biology from STEM majors. 
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Table 12: Summary statistics for STEM qualified community college students: different levels of selection on unobservables. 

(1) 

# of Nudged 

Community  

College 

Students 

(2) 

Average STEM  

Completion Likelihood among  

four-year STEM-Qualified Entrants 

(3) 

two-year Student  

Selection on  

Observables 

(4) 

Selection on  

Unobservables 

(5) 

Average Likelihood 

(community college) 

(6) 

# of STEM Degrees  

Produced via Nudge (gross) 

3209 0.31 -0.04 0 0.27 869 

3209 0.31 -0.04 -0.02 (50%) 0.25 802 

3209 0.31 -0.04 -0.04 (100%) 0.23 738 

3209 0.31 -0.04 -0.08 (200%) 0.19 610 

3209 0.31 -0.04 -0.12 (300%) 0.15 481 
Notes: Table describes the number of STEM degrees produced with different levels of selection on unobservables: 0%, 50%, 100%, 200% and 300% times 

selection on observables. Selection on observables value are calculated from the average likelihoods of graduating in STEM corresponding to equation (1). 

Column (5)= column (2)- column (3)- column (4). Column (6)= column (1) * column (5). 
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Table 13: Summary statistics for STEM-qualified community college students with 5/10-percent nudge compliance rate. 

 Randomly Selected 5 percent Top 5 Percent 
Randomly Selected 10 

percent 
Top 10 Percent 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

STEM 

qualified 

Graduate 

with STEM 

Avg ACT math 25.26 25.76 29.29 29.39 25.27 25.76 28.45 28.61 
 [24.63,25.83] [25.07,26.46] [28.12,30.24] [28.16,30.34] [24.83,25.71] [25.26,26.27] [27.69,29.11] [27.72,29.34] 

Avg ACT English 22.46 22.68 24.37 24.43 22.47 22.68 23.8 23.91 
 [21.76,23.22] [21.92,23.53] [23.35,25.36] [23.33,25.46] [21.9,23.1] [22.06,23.36] [23.05,24.54] [23.15,24.63] 

Avg HS percentile rank (/100) 0.79 0.81 0.92 0.93 0.79 0.81 0.9 0.9 
 [0.76,0.82] [0.77,0.84] [0.88,0.96] [0.89,0.96] [0.77,0.81] [0.78,0.83] [0.87,0.92] [0.87,0.93] 

Share Female 0.16 0.14 0.06 0.06 0.15 0.14 0.07 0.06 
 [0.09,0.22] [0.08,0.2] [0.02,0.12] [0.02,0.11] [0.11,0.2] [0.1,0.18] [0.03,0.11] [0.03,0.11] 

Share White 0.81 0.81 0.78 0.78 0.81 0.81 0.79 0.78 
 [0.73,0.88] [0.73,0.88] [0.66,0.88] [0.65,0.88] [0.75,0.86] [0.75,0.87] [0.69,0.86] [0.69,0.87] 

Share Black 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 
 [0,0.04] [0,0.04] [0,0.04] [0,0.04] [0,0.03] [0,0.03] [0,0.03] [0,0.03] 

Share Hispanic 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 
 [0,0.05] [0,0.05] [0,0.05] [0,0.05] [0,0.04] [0,0.04] [0,0.04] [0,0.04] 

Share Asian 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 
 [0.01,0.07] [0.01,0.08] [0.01,0.08] [0.01,0.08] [0.02,0.07] [0.01,0.07] [0.01,0.07] [0.01,0.07] 

Share Other Race 0.02 0.02 0.04 0.05 0.02 0.02 0.03 0.04 
 [0,0.05] [0,0.06] [0.01,0.09] [0.01,0.1] [0.01,0.05] [0.01,0.05] [0.01,0.07] [0.01,0.08] 

Share Race missing unknown 0.09 0.1 0.11 0.11 0.09 0.1 0.11 0.11 
 [0.05,0.15] [0.05,0.16] [0.03,0.21] [0.03,0.22] [0.05,0.14] [0.05,0.14] [0.05,0.21] [0.04,0.21] 

Number of students or degrees (gross) 159 43 159 90 318 86 318 159 
 [145,175] [38,49] [145,175] [80,103] [288,349] [77,96] [288,349] [142,180] 

Number of degrees (net) 29 54 58 95 

 [21,37] [40,69] [45,70] [71,120] 

Notes: Table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions when 5/10 percent STEM-qualified community college students 

actually choose to enroll at universities. Randomly selected 5/10 percent in column (1) and (2)/ (5) and (6); top 5/10 percent in terms of prediction likelihoods in 

column (3) and (4)/(7) and (8).  
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Appendix Table A1: Construction of the analytic sample. 
first time entrants at four year universities 

from 2006 to 2010 
 97749 

first time entrants at community colleges 

from 2006 to 2010 
 110695 

 
  

 
  

 
record 

lost 

Remaining 

sample 

 
record 

lost 

remaining 

sample  
  

 
  

Out of state/ Foreign student 14486 83263 Out of state/ Foreign student 2497 108198  
  

 
  

Not full time 3320 79943 Not full time 32647 75551  
  

 
  

Older than 20 2656 77287 Older than 20 12228 63323  
  

 
  

Missing high school code 
6053 71234 

Missing high school code, or out of state 

high school 
5529 57794 

 
  

 
  

Missing ACT Math score or ACT English 

Score 
398 70836 

Missing ACT Math score or ACT English 

Score 
14537 43257 

 
  

 
  

Missing high school rank* 8199 70836 Missing high school rank* 28299 43257  
  

 
  

Drop extremely small high schools ** 99 70737 Drop extremely small high schools ** 43 43214 

* We do not drop those students whose high school percentile ranks are missing, instead we impute their ranks based on other covariates 

** We drop high schools that sent five or fewer students to a public college during the period covered by our data panel   
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Appendix Table A2: Summary statistics for the university sample. 

 

(1) 

Raw 

(2) 

In state  

(3) 

In state full time 

(4) 

In state full time 

<=20 

(5) 

In state full time 

<=20, in state hs 

(6) 

In state full time <=20, in 

state hs, nomissing ACT 

(7) 

Analytic 

sample 

ACT math 22.84 22.7 22.83 22.89 22.88 22.89 22.89 

 (4.88) (4.87) (4.82) (4.81) (4.78) (4.78) (4.78) 

ACT English 23.62 23.49 23.64 23.7 23.68 23.68 23.68 

 (5.45) (5.46) (5.39) (5.37) (5.34) (5.34) (5.34) 

HS percentile rank 0.69 0.69 0.7 0.7 0.7 0.71 0.71 

 (0.23) (0.23) (0.23) (0.22) (0.22) (0.22) (0.22) 

HS percentile rank missing indicator 0.16 0.16 0.15 0.14 0.12 0.12 0.12 

 (0.37) (0.36) (0.35) (0.34) (0.32) (0.32) (0.32) 

Female 0.55 0.55 0.55 0.55 0.55 0.55 0.55 

 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) 

White 0.77 0.79 0.79 0.79 0.8 0.81 0.81 

 (0.42) (0.41) (0.41) (0.4) (0.4) (0.39) (0.39) 

Black 0.12 0.12 0.11 0.11 0.11 0.1 0.1 

 (0.32) (0.32) (0.31) (0.31) (0.31) (0.3) (0.3) 

Hispanic 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 (0.15) (0.15) (0.15) (0.15) (0.14) (0.14) (0.14) 

Asian 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 (0.14) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14) 

Other Race 0.03 0.02 0.02 0.02 0.01 0.01 0.01 

 (0.17) (0.14) (0.13) (0.13) (0.11) (0.11) (0.11) 

Race missing unknown 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 (0.2) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19) 

Number of observations 97749 83263 79943 77287 71234 70836 70737 
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Appendix Table A3 Summary statistics for the community college sample. 

 

(1) 

Raw 

(2) 

In state  

(3) 

In state  

full time 

(4) 

In state  

full time <=20 

(5) 

In state full time 

<=20, in state hs 

(6) 

In state full time <=20, in 

state hs,  nomissing ACT 

(7) 

Analytic 

sample 

ACT math 18.84 18.84 19.01 19.05 19.04 19.04 19.04 

 (3.85) (3.85) (3.8) (3.79) (3.78) (3.78) (3.78) 

ACT English 18.83 18.83 19.02 19.04 18.99 18.99 18.99 

 (4.95) (4.95) (4.82) (4.81) (4.78) (4.78) (4.78) 

HS percentile rank 0.48 0.49 0.51 0.52 0.52 0.56 0.56 

 (0.25) (0.25) (0.24) (0.24) (0.24) (0.23) (0.23) 

HS percentile rank missing indicator 0.55 0.55 0.46 0.41 0.37 0.35 0.35 

 (0.5) (0.5) (0.5) (0.49) (0.48) (0.48) (0.48) 

Female 0.54 0.54 0.53 0.52 0.52 0.54 0.54 

 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) 

White 0.71 0.71 0.76 0.77 0.78 0.79 0.79 

 (0.45) (0.45) (0.43) (0.42) (0.41) (0.41) (0.41) 

Black 0.14 0.13 0.1 0.09 0.09 0.08 0.08 

 (0.34) (0.34) (0.3) (0.29) (0.28) (0.27) (0.27) 

Hispanic 0.03 0.03 0.03 0.03 0.02 0.02 0.02 

 (0.17) (0.16) (0.16) (0.16) (0.15) (0.15) (0.15) 

Asian 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 (0.12) (0.12) (0.11) (0.11) (0.11) (0.11) (0.11) 

Other Race 0.03 0.03 0.02 0.02 0.02 0.02 0.02 

 (0.16) (0.16) (0.15) (0.15) (0.14) (0.14) (0.14) 

Race missing unknown 0.09 0.09 0.08 0.08 0.08 0.07 0.07 

 (0.28) (0.28) (0.27) (0.27) (0.26) (0.26) (0.26) 

Number of observations 110695 108198 75551 63323 57794 43257 43214 
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Appendix Table A4: Summary statistics for university students. 
 STEM-entrants non-STEM entrants 

 STEM qualified  
Not STEM 

qualified  
STEM qualified  

Not STEM  

qualified 

ACT math 28.7 22.45 27.53 20.84 
 [28.59,28.8] [22.34,22.56] [27.42,27.65] [20.79,20.9] 

ACT English 27.01 23.36 26.9 22.38 
 [26.87,27.14] [23.23,23.5] [26.76,27.06] [22.3,22.45] 

HS percentile rank 0.86 0.68 0.86 0.65 
 [0.86,0.87] [0.67,0.69] [0.86,0.87] [0.65,0.65] 

HS percentile rank missing indicator 0.1 0.11 0.12 0.12 
 [0.09,0.11] [0.1,0.11] [0.11,0.13] [0.11,0.12] 

Female 0.21 0.5 0.33 0.67 
 [0.2,0.23] [0.49,0.51] [0.31,0.35] [0.66,0.67] 

White 0.86 0.77 0.87 0.79 
 [0.85,0.87] [0.76,0.78] [0.86,0.88] [0.78,0.79] 

Black 0.03 0.13 0.02 0.13 
 [0.02,0.04] [0.12,0.14] [0.02,0.03] [0.13,0.13] 

Hispanic 0.02 0.03 0.02 0.02 
 [0.01,0.02] [0.02,0.03] [0.01,0.02] [0.02,0.02] 

Asian 0.04 0.01 0.04 0.01 
 [0.04,0.05] [0.01,0.02] [0.04,0.05] [0.01,0.01] 

Other Race 0.01 0.02 0.01 0.01 
 [0.01,0.02] [0.01,0.02] [0.01,0.01] [0.01,0.01] 

Race missing unknown 0.03 0.04 0.04 0.04 
 [0.03,0.04] [0.03,0.04] [0.03,0.04] [0.03,0.04] 

Number of students 7569 7570 10940 44658 

  [7466,7665] [7466,7668] [10549,11391] [44163,45118] 
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Appendix Table A5: In-sample and out-of-sample predictive validity among the university sample, equation (1). 

 (A) 

In-sample 

(B) 

Out-of-sample 

 (1) 

Actual Observed 

(2) 

Predicted Value 

(3) 

Actual Observed 

(4) 

Predicted Value 

Avg ACT math 26.64 26.64 26.62 26.60 
 

[26.57,26.72] [26.57,26.72] [26.47,26.77] [26.5,26.71] 

Avg ACT English 26.07 26.07 26.02 26.02 
 

[25.98,26.14] [25.98,26.14] [25.82,26.21] [25.92,26.14] 

Avg HS percentile rank 0.82 0.82 0.82 0.82 
 

[0.82,0.82] [0.82,0.82] [0.82,0.83] [0.82,0.83] 

Share Female 0.36 0.36 0.36 0.36 
 

[0.35,0.37] [0.35,0.37] [0.34,0.4] [0.35,0.38] 

Share White 0.86 0.86 0.86 0.85 
 

[0.85,0.86] [0.85,0.86] [0.84,0.87] [0.85,0.86] 

Share Black 0.04 0.04 0.04 0.04 
 

[0.04,0.05] [0.04,0.05] [0.03,0.05] [0.04,0.05] 

Share Hispanic 0.02 0.02 0.02 0.02 
 

[0.02,0.02] [0.02,0.02] [0.01,0.02] [0.02,0.02] 

Share Asian 0.03 0.03 0.03 0.03 
 

[0.03,0.04] [0.03,0.04] [0.03,0.04] [0.03,0.04] 

Share Other Race 0.01 0.01 0.01 0.01 
 

[0.01,0.01] [0.01,0.01] [0.01,0.02] [0.01,0.02] 

Share Race missing unknown 0.04 0.04 0.04 0.04 
 

[0.03,0.04] [0.03,0.04] [0.03,0.05] [0.03,0.04] 

Number of students 7158 7159 1820 1839 
 

[6965,7302] [6965,7302] [1749,1890] [1777,1887] 
Notes: Table shows the in-sample and out-of-sample comparison of predicted values versus true outcomes using equation (1) and the corresponding sample of 

initial STEM entrants. We use 80% of the data for the “training dataset” and the remaining 20% to test out-of-sample predictive validity. Averages and 95 

percent confidence intervals over 500 bootstrap repetitions are provided. 
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Appendix Table A6: Summary statistics for STEM-qualified community college students in supplementary predictive models. 

 
(1) 

Graduate with 

Non-STEM 

(2) 

Drop-out 

Avg ACT math 25.08 25.09 
 

[24.84,25.34] [24.76,25.43] 

Avg ACT English 22.72 22 

 [22.45,23.01] [21.65,22.35] 

Avg HS percentile rank 0.83 0.74 
 

[0.82,0.84] [0.72,0.75] 

Share Female 0.23 0.1 
 

[0.19,0.26] [0.07,0.12] 

Share White 0.84 0.78 
 

[0.81,0.87] [0.74,0.82] 

Share Black 0.01 0.02 
 

[0.01,0.02] [0.01,0.03] 

Share Hispanic 0.02 0.02 
 

[0.01,0.03] [0.01,0.04] 

Share Asian 0.03 0.04 
 

[0.02,0.05] [0.03,0.07] 

Share Other Race 0.02 0.03 
 

[0.01,0.03] [0.01,0.05] 

Share Race missing unknown 0.08 0.11 
 

[0.05,0.11] [0.07,0.14] 

Number of non-STEM degrees or dropouts 1145 1180 
 

[1036,1269] [1065,1312] 
Notes: Table reports averages and 95 percent confidence intervals over 500 bootstrap repetitions for nudged community college students: graduate with a non-

STEM degree in column (1) and fail to graduate with any bachelor’s degrees in column (2).



55 
 

Appendix B 

Supplementary Predictive Models 
 

In addition to the main model predicting STEM attainment, we also estimate two 

separate, supplementary models to predict the likelihood of graduating with a non-STEM degree 

and the likelihood of failing to earn any four-year degree (within six years). These models are of 

the same structure as equation (1): 

𝑃𝑖𝑗𝑡
∗ = 𝑿𝒊𝜷𝟏 + 𝛾1𝑗 + 𝛿1𝑡 + 𝜀1𝑖𝑗𝑡        (A1)  

In equation (A1),  𝑃𝑖𝑗𝑡
∗  is either the latent utility of completing a non-STEM degree within 

six years, or failing to complete a bachelor’s degree within six years.  

We estimate the models for these outcomes independently, but note that in conjunction 

with the main model estimated in the text for STEM degrees, the model can be further modified 

to account for outcome-dependence. That is, we can specify a single multinomial outcome and 

model the outcomes jointly. We did not do this here because we view this as an add-on to the 

main analysis and do not wish to overwrite the main model. That said, in unreported results we 

have confirmed that inference from the main analysis, and Appendix Table A6, is very similar if 

we use a multinomial model that accounts for outcome-dependence in the data to generate the 

predictions for the three categorical outcomes we consider in this brief extension: STEM degree 

attainment, non-STEM degree attainment, and dropout. 

 


	WP 244-1020.pdf
	Cover Page 244.pdf
	Title Page WP 244.pdf
	First Pages & Body.pdf
	Contents
	Acknowledgments
	Abstract


	qk_STEMpipeline_wp_v1.pdf



