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Abstract

Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013;

Micceri, 1989). However, less is known of the potential nonnormality of multivariate data

although multivariate analysis is commonly used in psychological and educational research.

Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study

examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors

of articles published in Psychological Science and the American Education Research Journal. We

found that 74% of univariate distributions and 68% multivariate distributions deviated from

normal distributions. In a simulation study using typical values of skewness and kurtosis that we

collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor

analysis under some conditions. Hence, we argue that it is time to routinely report skewness and

kurtosis along with other summary statistics such as means and variances. To facilitate future

report of skewness and kurtosis, we provide a tutorial on how to compute univariate and

multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.

Keywords: nonnormality, skewness, kurtosis, software
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Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence,

Influence and Estimation

Almost all commonly used statistical methods in psychology and other social sciences are

based on the assumption that the collected data are normally distributed. For example, t- and

F-distributions for mean comparison, Fisher Z-transformation for inferring correlation, and

standard errors and confidence intervals in multivariate statistics are all based on the normality

assumption (Tabachnick & Fidell, 2012). Researchers rely on these methods to accurately portray

the effects under investigation, but may not be aware that their data do not meet the normality

assumption behind these tests or what repercussions they face when the assumption is violated.

From a methodological perspective, if quantitative researchers know the type and severity of

nonnormality that researchers are facing, they can examine the robustness of normal-based

methods as well as develop new methods that are better suited for the analysis of nonnormal data.

It is thus critical to understand whether practical data satisfy the normality assumption and if not,

how severe the nonnormality is, what type of nonnormality it is, what the consequences are, and

what can be done about it.

To understand normality or nonnormality, we need to first define a measure of it. Micceri

(1989) evaluated deviations from normality based on arbitrary cut-offs of various measures of

nonnormality, including asymmetry, tail weight, outliers, and modality. He found that all 440

large-sample achievement and psychometric measures distributions were nonnormal, 90% of

which had sample sizes larger than 450. More recently, Blanca et al. (2013) evaluated

nonnormality using the skewness and kurtosis1 of 693 small samples, with sample size ranging

from 10 to 30. The study includes many psychological variables, and the authors found that

94.5% of distributions were outside the range of [-0.25, 0.25] on either skewness or kurtosis and

therefore violated the normality assumption. However, neither Micceri nor Blanca et al. discuss

the distribution of skewness or kurtosis, how to test violations of normality, or how much effect

1Without specific mention, the skewness and kurtosis refer to the sample skewness and kurtosis throughout the

paper.
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they can have on the typically used methods such as t-test and factor analysis.

Scheffe (1959, p.333) has commented that kurtosis and skewness are “the most important

indicators of the extent to which nonnormality affects the usual inferences made in the analysis of

variance.” Skewness and kurtosis are also an intuitive means to understand normality. If skewness

is different from 0, the distribution deviates from symmetry. If kurtosis is different from 0, the

distribution deviates from normality in tail mass and shoulder for univariate data (DeCarlo,

1997b).2

In practice, normality measures such as skewness and kurtosis are rarely reported. In order

to study nonnormality, we have contacted and obtained responses from 124 researchers, among

whom only three reported skewness and kurtosis in their papers. The under-report of normality

measures can be due to several reasons. First, many researchers are still not aware of the

prevalence and influence of nonnormality. Second, not every researcher is familiar with skewness

and kurtosis or their interpretation. Third, extra work is needed to compute skewness and kurtosis

than the commonly used summary statistics such as means and standard deviations.

This paper provides a simple and practical response to the continuing under-report of

nonnormality measures in published literature by elucidating the problem of nonnormality and

offering feasible recommendations. We begin with an easy-to-follow introduction to univariate

and multivariate skewness and kurtosis, their calculations, and interpretations. We then report on

a review we conducted assessing the prevalence and severity of skewness and kurtosis in recent

psychology and education publications. We show the influence of skewness and kurtosis on

commonly used statistical tests in our field using data of typical skewness, kurtosis, and sample

size found in our review. We offer a tutorial on how to compute the skewness and kurtosis

measures we report here through commonly used software including SAS, SPSS, R, and a Web

application. Finally, we offer practical recommendations for our readers that they can follow in

their own research, including a guideline on how to report sample statistics in empirical research

2Kurtosis measures can be centered at either 0 or 3, the former is usually referred to as “excess kurtosis”. This is

because the normal distribution has a kurtosis of 3, and therefore an excess kurtosis of 0.
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and some possible solutions for nonnormality.

Univariate and Multivariate Skewness and Kurtosis

Different formulations for skewness and kurtosis exist in the literature. Joanes & Gill

(1998) summarize three common formulations for univariate skewness and kurtosis that they refer

to as g1 and g2, G1 and G2, and b1 and b2. The R package moments (Komsta & Novomestky,

2015), SAS proc means with vardef=n, Mplus, and STATA report g1 and g2. Excel, SPSS, SAS

proc means with vardef=df, and SAS proc univariate report G1 and G2. Minitab reports b1 and b2,

and the R package e1071 (Meyer et al., 2015) can report all three. There are also several measures

of multivariate skewness and kurtosis, though Mardia’s measures (Mardia, 1970) are by far the

most common. These are currently only available in STATA, or as add-on macros multnorm in

SAS or mardia in SPSS (DeCarlo, 1997a).

Univariate Skewness and Kurtosis

For the univariate case, we adopt Fisher’s skewness (G1) and kurtosis (G2). Specifically, the

skewness, G1, is calculated as

G1 =

√
n(n− 1)
n− 2 · m3

m
3/2
2
, (1)

and the kurtosis, G2, as

G2 = n− 1
(n− 2)(n− 3) ·

[
(n+ 1)

(
m4

m2
2
− 3

)
+ 6

]
, (2)

where mr = ∑n
i=1(xi − x̄)r/n is the rth central moment with x̄ being the sample mean and n the

sample size. The sample skewness G1 can take any value between negative infinity and positive

infinity. For a symmetric distribution such as a normal distribution, the expectation of skewness is

0. A non-zero skewness indicates that a distribution “leans” one way or the other and has an

asymmetric tail. Distributions with positive skewness have a longer right tail in the positive

direction, and those with negative skewness have a longer left tail in the negative direction.
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Figure 1 portrays three distributions with different values of skewness. The one in the

middle is a normal distribution and its skewness is 0. The one on the left is a lognormal

distribution with a positive skewness = 1.41. A commonly used example of a distribution with a

long positive tail is the distribution of income where most households make around $53,000 a

year3 and fewer and fewer make more. In psychology, typical response time data often show

positive skewness because much longer response time is less common (Palmer et al., 2011). The

distribution on the right in Figure 1 is a skew-normal distribution with a negative skewness = -0.3.

For example, high school GPA of students who apply for colleges often shows such a distribution

because students with lower GPA are less likely to seek a college degree. In psychological

research, scores on easy cognitive tasks tend to be negatively skewed because the majority of

participants can complete most tasks successfully (Wang et al., 2008).

Kurtosis is associated with the tail, shoulder and peakedness of a distribution. Generally,

kurtosis increases with peakedness and decreases with flatness. However, as DeCarlo (1997b)

explains, it has as much to do with the shoulder and tails of a distribution as it does with the

peakedness. This is because peakedness can be masked by variance. Figures 2a and 2b illustrate

this relationship clearly. Figure 2a shows the densities of three normal distributions each with

kurtosis of 0 but different variances, and Figure 2b shows three distributions with different

kurtosis but the same variance. Normal distributions with low variance have high peaks and light

tails as in Figure 2a, while distributions with high kurtosis have high peaks and heavy tails as in

Figure 2b. Hence, peakedness alone is not indicative of kurtosis, but rather it is the overall shape

that is important. Skewness cannot increase without kurtosis also increasing because of the

relationship: kurtosis ≥ skewness2 − 2 (Shohat, 1929).

Kurtosis has a range of [−2(n− 1)/(n− 3),∞) in a sample of size n and a range of [-2,∞]

in the population.4 The expectation of kurtosis of a normal distribution is 0. If a distribution is

leptokurtic, meaning it has positive kurtosis, the distribution has a fatter tail than the normal

distribution with the same variance. Generally speaking, if a data set is contaminated or contains

3The inflation adjusted medium household income is $53,657 in 2014 based on census.
4Note that if g2 = m4/m2

2 − 3 is used to estimate kurtosis it also has a minimum value of -2.
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extreme values, its kurtosis is positive. If a distribution is platykurtic, meaning it has negative

kurtosis, the distribution has a relatively flat shoulder and short tails (e.g., see Figure 2b). For

example, the distribution of age of the US population has negative kurtosis because there are

generally the same number of people at each age.

Because for a normal distribution both skewness and kurtosis are equal to 0 in the

population, we can conduct hypothesis testing to evaluate whether a given sample deviates from a

normal population. Specifically, the hypothesis testing can be conducted in the following way.5

We first calculate the standard errors of skewness (SES) and kurtosis (SEK) under the normality

assumption (Bliss, 1967, p.144-145),

SES =

√√√√ 6n(n− 1)
(n− 2)(n+ 1)(n+ 3) , (3)

SEK = 2(SES)

√√√√ n2 − 1
(n− 3)(n+ 5) . (4)

Note that the standard errors are functions of sample size. In particular, standard error decreases

as sample size increases, and the strictness with which we call a distribution “normal” becomes

more and more rigid. This is a natural consequence of statistical inference. With these standard

errors, two statistics,

ZG1 = G1/SES

and

ZG2 = G2/SEK,

can be formed for skewness and kurtosis, respectively. Both of these statistics can be compared

against the standard normal distribution, N(0, 1), to obtain a p-value to test a distribution’s

departure from normality (Bliss, 1967). If there is a significant departure, the p-value is smaller
5Other hypothesis testing methods available for skewness and kurtosis are available (Anscombe & Glynn, 1983;

D’Agostino, 1970). The reason for adopting the method discussed here is that the standard errors of skewness and

kurtosis are reported in popular statistical software such as SPSS and SAS, and, therefore, it is a feasible method for

evaluating skewness and kurtosis through existing software.
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than .05 and we can infer that the underlying population is nonnormal. If neither test is

significant, there is not enough evidence to reject normality based on skewness or kurtosis

although it may still be nonnormal in other characteristics.

Multivariate Skewness and Kurtosis

The univariate skewness and kurtosis have been extended to multivariate data. Multivariate

skewness and kurtosis measure the same shape characteristics as in the univariate case. However,

instead of making the comparison of the distribution of one variable against a univariate normal

distribution, they are comparing the joint distribution of several variables against a multivariate

normal distribution.

In this study, we use Mardia’s measures (Mardia, 1970) of multivariate skewness and

kurtosis, because they are most often included in software packages. Mardia defined multivariate

skewness and kurtosis, respectively, as

b1,p = 1
n2

n∑
i=1

n∑
j=1

[
(xi − x̄) ′S−1 (xj − x̄)

]3
, (5)

b2,p = 1
n

n∑
i=1

[
(xi − x̄) ′S−1 (xi − x̄)

]2
, (6)

where x is a p× 1 vector of random variables and S is the biased sample covariance matrix of x

defined as

S = 1
n

n∑
i=1

[(xi − x̄)(xi − x̄)′] . (7)

Both measures have a p subscript, so they are specific to a set of p variables. The expected

Mardia’s skewness is 0 for a multivariate normal distribution and higher values indicate a more

severe departure from normality. The expected Mardia’s kurtosis is p(p+ 2) for a multivarite

normal distribution of p variables. As in the univariate case, values under this expectation indicate

platykurtism and higher values indicate leptokurtism.

Standardized measures can be formed for Mardia’s skewness and kurtosis using the

following formulations:
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z1,p = n

6 b1,p, (8)

and

z2,p = b2,p − [p(p+ 2)(n− 1)] /(n+ 1)√
[8p(p+ 2)] /n

. (9)

Standardized multivariate skewness z1,p can be compared against the chi-squared distribution

χ2
p(p+1)(p+2)/6, and standardized multivariate kurtosis z2,p can be compared against the standard

normal distribution N(0, 1). If the test statistic z1,p is significant, e.g. the p-value is smaller than

.05, the joint distribution of the set of p variables has significant skewness; if the test statistic z2,p

is significant, the joint distribution has significant kurtosis. If at least one of these tests is

significant, it is inferred that the underlying joint population is nonnormal. As in the univariate

case, non-significance does not necessarily imply normality.

Review of Skewness and Kurtosis in Practical Data

Although Micceri (1989) and Blanca et al. (2013) have studied univariate nonnormality, we

are not aware of any study that has investigated multivariate skewness and kurtosis with empirical

data or has tested the significance of nonnormality. Therefore, we conducted a study to further

evaluate the severity of nonnormality in our field, especially in the multivariate case. Focusing on

published research, we contacted 339 researchers with publications that appeared in

Psychological Science from January 2013 to June 2014 and 164 more researchers with

publications that appeared in the American Education Research Journal from January 2010 to

June 2014. The two journals were chosen due to their prestige in their corresponding fields. We

asked the researchers to provide the univariate and multivariate skewness and kurtosis of

continuous variables used in their papers. Binary, categorical, and nominal variables were

excluded, though likert items were included because they are often treated as normal in the

literature. To help the researchers compute the skewness and kurtosis, we provided a tutorial for

different software as we will present later in this paper. Our data collection ended in November,
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2014, by which point we had obtained 1,567 univariate measures and 254 multivariate measures

of skewness and kurtosis from 194 studies. Some authors submitted univariate results without

multivariate results so not all 1,567 univariate measures are included as part of a multivariate

measure. The median sample size for these studies was 106, and the sample size ranged from 10

to 200,000. The median number of variables included in a multivariate measure was 3, and ranged

from 1 to 36. Since researchers had the option to submit skewness and kurtosis anonymously, it is

unclear how many authors responded to our request or what their study characteristics may be.

Univariate Skewness and Kurtosis

As shown in Table 1a, univariate skewness ranged from -10.87 to 25.54 and univariate

kurtosis from -2.20 to 1,093.48, far wider than previously reported or tested. Because these most

extreme values may be outliers, we also report 1st through 99th percentiles of univariate skewness

and kurtosis. Percentiles can be interpreted as the percent of samples with lower skewness or

kurtosis than that value. There is clearly a large range from the 1st to the 99th percentile,

especially for kurtosis. The correlation between sample size and skewness is r = −0.005, and

with kurtosis is r = 0.025. These are comparable to what Blanca et al. (2013) have reported in

which correlations between sample size and skewness and kurtosis were .03 and -.02,

respectively. The results in Table 1a include skewness and kurtosis when the sample size is

smaller and larger than 106, the median sample size of all collected data. As shown in this table,

negative skewness and kurtosis are much more common than previously reported: 38% of

distributions have negative skewness and 47% have negative kurtosis. This could be due to the

number of likert measures provided, but because of the anonymous submission option there is no

way to confirm this. Means and sample size-weighted means are also provided in Table 1. Sample

size-weighted means are helpful because we expect sample measures to better-reflect that of the

population as sample size increases. Therefore, measures from large samples are given higher

weight than those from smaller samples. The mean univariate skewness is 0.51, and the sample

size-weighted mean is 0.47. The mean univariate kurtosis is 4.29, and the sample size-weighted
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mean is 8.41. Therefore, on average, the skewness and kurtosis are larger than that of a normal

distribution. To further visualize what these distributions look like, Figure 3 shows histograms of

20 randomly selected distributions from our review. Note that there is no common shape that

explains skewness or kurtosis.

Percentages of univariate distributions with significant skewness or kurtosis by sample size

are presented in Table 1b. About 66% of univariate distributions had significant skewness and

54% had significant kurtosis. Almost 74% of distributions had either significant skewness or

kurtosis and were therefore classified as nonnormal. As expected, it becomes easier for tests to

become significant with larger sample sizes. Over 95% of distributions with sample sizes greater

than the median sample size, 106, were tested as nonnormal. Conversely, when the sample size

was less than 106 only 56% of distributions were significantly nonnormal.

Multivariate Skewness and Kurtosis

The 254 collected Mardia’s multivariate skewness ranged from 0 to 1,332 and multivariate

kurtosis from 1.80 to 1,476. Percentiles of Mardia’s skewness and kurtosis split by median

sample size and median number of variables used in their calculation are presented in Table 2.

The correlation between sample size and Mardia’s skewness is r = −0.01 and with Mardia’s

kurtosis is r = 0.02. The correlation between the number of variables and Mardia’s skewness is

r = 0.58 and with Mardia’s kurtosis is r = 0.73. After centering Mardia’s kurtosis on p(p+ 2),

the expected value under normality, the correlation between kurtosis and the number of variables

becomes r = 0.05. The mean multivariate skewness is 32.94, and the sample size-weighted mean

is 28.26. The mean multivariate kurtosis is 78.70, and the sample size-weighted mean is 92.03.

Therefore, the average skewness and kurtosis are greater than that of a multivariate normal

distribution. This has important ramifications especially for SEM, for which multiple outcome

measures are often used and for which multivariate kurtosis can asymptotically affect standard

errors.

Percentages of multivariate distributions with significant Mardia’s skewness and kurtosis
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are presented in Table 3. About 58% of multivariate skewness measures and 57% of multivariate

kurtosis measures reached significance. Combining these, 68% of multivariate distributions were

significantly nonnormal. In particular, 94% of Mardia’s measures were tested significant when the

sample size was larger than 106. Similarly, more Mardia’s measures became significant with

more variables.

To summarize, based on the test of 1,567 univariate and 254 multivariate skewness and

kurtosis from real data, we conclude that 74% of univariate data and 68% of multivariate data

significantly deviated from a univariate or multivariate normal distribution. In examining only

those univariate measures included in a multivariate measure, 68% have significant nonnormality.

Therefore, nonnormality is a severe problem in real data, though multivariate nonnormality does

not appear to be a severe problem above and beyond that of univariate normality. However, this

relationship requires further study to evaluate.

Influences of Skewness and Kurtosis

In order to clearly show the influence of skewness and kurtosis, we conducted simulations

one on the one-sample t-test, simple regression, one-way ANOVA, and confirmatory factor

analysis (CFA). Simulation studies are helpful because we know what results the statistical tests

should show, and so we can evaluate how nonnormality affects those results. Note that for all of

these models, the normality of the dependent variable is what is of interest. There are no

normality assumptions put on the independent variable.

Influence of Univariate Skewness and Kurtosis

Yuan et al. (2005) show that the properties of mean estimates are not affected by either

skewness or kurtosis asymptotically, but that the standard error of sample variance is a function of

kurtosis. If normality is assumed (kurtosis = 0), the standard error of variance will be

underestimated when kurtosis is positive and overestimated when kurtosis is negative. In other

words, kurtosis will still have an effect on variance estimates at very large sample sizes while

mean estimates are only affected in small samples. For example, Yanagihara & Yuan (2005)
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found that the expectation and variance of the t-statistic depends on skewness, but that the effect

lessens as sample size increases.

To concretely demonstrate the influence of univariate skewness and kurtosis, we conducted

a simulation study on a one-sample t-test. In the simulation, we set the skewness to the 1st, 5th,

25th, 50th, 75th, 95th, and 99th percentiles of univariate skewness found in our review of

practical data. These were tested in sample sizes of the 5th, 25th, 50th, 75th, and 95th percentiles

of sample size found in our review. Therefore, these conditions should represent typical results

found in our field. Because kurtosis does not influence the t-test, it was kept at the 99th percentile,

95.75, throughout all conditions. In total, we considered 35 conditions for each test. Under each

condition, we generated 10,000 sets of data with mean 0, variance 1, and the specified skewness

and kurtosis from a Pearson distribution in R (R Core Team, 2016) using the package PearsonDS

(Becker & Klöß ner, 2016).6 Then, we obtained the empirical type I error rate to reject the null

hypothesis that the population mean is equal to 0 using the significance level 0.05 in a two-tailed,

a lower-tail, and an upper-tail one-sample t-test.

Table 4 displays the empirical type I error rate for each condition. For brevity, type I error

rates of just the lowest sample size are presented for conditions with skewness between -1.17 and

0.94 because these conditions did not present any problems. To better understand the empirical

type I error rate, we bold those that are outside of the range [0.025, 0.075]. When the skewness

and kurtosis are 0, the generated data are from a normal distribution and the empirical type I error

rate is close to 0.05 even when the sample size is as small as 18 for all three tests. When data

deviate from normality, the results show that a two-sided test is more robust than a one-sided test.

The two-sided test only has increased type 1 error rate for a skewness of 6.32, for which a sample

size of 554 is necessary to dissipate the effect. A lower tail t-test has even higher type 1 error rates

at this skewness, and an upper tail t-test has an increased type 1 error rate with negative skewness

and very low rates with high positive skewness.

6Pearson distribution includes a class of distributions. It is used here because it allows us to keep the mean and

variance fixed but at the same time change the skewness and kurtosis.
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A simple regression and a one-way ANOVA with three groups were also tested at all of

these conditions. The regression was robust to all conditions, even at the lowest sample size. Type

1 errors in the ANOVA were also robust to all conditions examined here, though it is known that

power can suffer when the population is platykurtic (Glass et al., 1972).

Influence of Multivariate Skewness and Kurtosis

In order to show the influence of multivariate skewness and kurtosis, we conducted

simulation studies on CFAs. First, we focus on a one-factor model with four manifest variables.

For each manifest variable, the factor loading is fixed at 0.8 and the uniqueness factor variance is

0.36. The variance of the factor is set to 1. Note that when kurtosis = 24 data are from a

multivariate normal distribution and so the centered kurtosis is 0. Although in our review of

practical data about half of the data sets had centered Mardia’s kurtosis less than 0, 21 is the only

multivariate kurtosis less than 24 we were able to successfully simulate. Hence, we used these

two values of Mardia’s kurtosis (21 and 24) along with the 75th, 95th, and 99th percentiles of

Mardia’s kurtosis found in our review of practical data of four manifest variables (30, 60, and

100). The same sample sizes from our review were used as in the previous simulation, with the

exception of 18. A sample size of 18 was excluded because it is not a sufficient sample size for

this analysis. Because skewness does not influence SEM, it was kept at 0 throughout all

conditions. In total, 20 conditions were considered. 1,000 data sets were used to evaluate each

condition.The authors are currently unaware of any method to simulate data with a particular

multivariate skewness or kurtosis, so instead we used the R package lavaan (Rosseel, 2012) to

simulate data from a model with certain univariate skewness and kurtosis. Appropriate univariate

values were found to simulate multivariate values of a population by trial and error.

The influence of skewness and kurtosis is evaluated through the empirical type I error rate

of rejecting the factor model using the normal-distribution-based chi-squared goodness-of-fit test.

This test is significant when the model does not fit the data. Because the true one-factor model

was fit to the simulated data, one would expect the empirical type I error rate to be close to the
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nominal level 0.05. Deviation from it indicates the influence of skewness and kurtosis. The

empirical type I error rates at different levels of Mardia’s kurtosis are summarized in Table 5.

The results show that when the data are from a multivariate normal distribution (kurtosis =

24), the empirical type I error rates were close to the nominal level 0.05. However, when the data

deviate from a multivariate normal distribution to a Mardia’s kurtosis of 60, the empirical type I

error rates are all greater than 0.05. Unsurprisingly, the problem becomes worse with an increase

in sample size. For example, when the multivariate kurtosis is 100 and the sample size is 1489, the

normal-distribution-based chi-squared test rejects the correct one-factor model 29.8% of the time.

Type 1 error rates were also compared in a one-factor model with eight manifest variables

and a two-factor model with four manifest variables each to investigate the effects of an increase

in the number of manifest variables or number of factors. Factor loadings were adjusted to

maintain uniqueness factor variance at 0.36 and total variance at 1. The same conditions were

tested as in the simulation study above, with the exception of those with a sample size of 48. This

sample size is not sufficient for an analysis of eight manifest variables. The same univariate

kurtoses were used to simulate the data, though they result in different multivariate measure for

eight variables than they do for four. The resulting empirical type I error rates of these

multivariate kurtoses for both of these models can be found in Table 6.

Once again, type I error is maintained when the distribution is multivariate normal (kurtosis

= 80), but once kurtosis reaches 150 all type I errors are above 0.05. As sample size increases, the

problem worsense. In comparison to the results shown in Table 5, type I errors are worse with an

increase in the number of manifest variables. However, holding the number of manifest variables

constant, an increase in the number of factors lowers type I error rate.

In summary, if either univariate or multivariate nonnormal data are analyzed using

normal-distribution-based methods, it will lead to incorrect statistical inference. Given the

prevalence of nonnormality as we have shown in the previous section, it is very important to

quantify the nonnormality. We suggest using skewness and kurtosis to measure nonnormality and

we will show how to obtain both univariate and multivariate skewness and kurtosis in the next
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section.

Computing Univariate and Multivariate Skewness and Kurtosis

In this section, we illustrate how to compute univariate and multivariate skewness and

kurtosis in popular statistical software including SAS, SPSS, and R as well as a newly developed

Web application. As previously mentioned, different softwares produce different types of

univariate skewness and kurtosis. Furthermore, most don’t report tests or multivariate measures.

Using our software and macros for SAS, SPSS, and R produces consistent and full results across

software. Some software requires macros that can be downloaded from our website at

http://psychstat.org/nonnormal. Our Web application can be found at

https://webpower.psychstat.org/models/kurtosis. As an example, we use a

subset of data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99

(ECLS-K) to show the use of different software. The ECLS-K is a longitudinal study with data

collected in kindergarten in the fall and spring of 1998-99, in 1st grade in the fall and spring of

1999-2000, in 3rd grade in the spring of 2002, in 5th grade in the spring of 2004, and in 8th grade

in the spring of 2007. The data used here consist of four consecutive mathematical ability

measures of 563 children from kindergarten to 1st grade. To simplify our discussion, we assume

that all files to be used are in the folder of “C:\nonnormal”, which needs to be changed

accordingly.

SAS

To use SAS for computing the univariate and multivariate skewness and kurtosis, first

download the mardia.sas macro file from our website. Our macro was modified from a SAS

macro MULTNORM provided by the SAS company. After saving the sas macro file, the

following code can be used to get the skewness and kurtosis for the ECLS-K data.7

SAS input

7The number on the right is used to identify the code only and is not part of the SAS code.
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1DATA eclsk;

2INFILE "eclsk563.txt";

3INPUT y1 y2 y3 y4;

4RUN;

5%INCLUDE "mardia.sas";

6%mardia(data=eclsk, var=y1 y2 y3 y4)

In the SAS input, Line 1 through Line 4 read the ECLS-K data in the file

“eclsk563.txt” into SAS. Line 5 includes the SAS macro file downloaded from our website

for use within SAS. The sixth line uses the function mardia in the macro to calculate skewness

and kurtosis. The argument “data=” specifies the SAS database to use and “var=” specifies the

variables to use in calculating the skewness and kurtosis.

The SAS output from the analysis of the ECLS-K data is given below. The first part of the

output, from Line 1 to Line 8, displays the univariate skewness and kurtosis as well as their

corresponding standard error. For example, the skewness for the ECLS-K data at time 1 is 0.69

with a standard error 0.10 (Line 5). Based on a z-test, one would conclude that the skewness is

significantly large than 0. For another example, the kurtosis for the data at time 4 is 1.29 with a

standard error 0.21 (Line 8), indicating the kurtosis is significantly larger than 0.

The second part of the output, from Line 10 to Line 23 includes the information on

multivariate skewness and kurtosis. First, the multivariate skewness is 2.26 (Line 16) with a

standardized measure of 212.24 (Line 17). The p-value for a chi-squared test is approximately 0

(Line 18). Therefore, the multivariate skewness is significantly larger than 0. Second, the

multivariate kurtosis is 25.47 (Line 21) with the standardized measure of 2.51 (Line 22). The

p-value for a z-test is approximately 0.01 (Line 23). Therefore, the multivariate kurtosis is

significantly different from that of a multivariate normal distribution with 4 variables (24).

Consequently, the data do not follow a multivariate normal distribution and therefore violate the

normality assumption if used in multivariate analysis.
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SAS output

1### Univariate Skewness and Kurtosis ###

2

3Skewness SE_skew Kurtosis SE_kurt

4

5y1 0.6932137 0.1029601 0.229546 0.2055599

6y2 0.0368512 0.1029601 -0.41783 0.2055599

7y3 -0.225271 0.1029601 -0.252103 0.2055599

8y4 -1.000066 0.1029601 1.2898344 0.2055599

9

10### Mardia’s multivariate skewness and kurtosis ###

11

12Sample size = 563

13Number of variables = 4

14

15Multivariate skewness

16b1p = 2.2618775

17z1 = 212.23951

18p-value = 0

19

20Multivariate kurtosis

21b2p = 25.468192

22z2 = 2.514123

23p-value = 0.0119329
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SPSS

DeCarlo (1997b) has developed an SPSS macro to calculate multivariate skewness and

kurtosis.8 We slightly modified the macro to make the output of univariate skewness and kurtosis

consistent to other software. To use the SPSS macro, first download the macro file mardia.sps to

your computer from our website. Then, open a script editor (File->New->Syntax) within SPSS

and include the following SPSS script.

The code on the first eight lines in the input is used to read the ECLS-K data into SPSS.

These lines are not necessary if your data are already imported into SPSS. Line 10 gets the SPSS

macro into SPSS for use. The function mardia calculates univariate and multivariate skewness

and kurtosis for the variables specified by the vars option on Line 11. Note that the folder to the

data file and the SPSS macro file needs to be modified to reflect the actual location of them.

SPSS input

1get data

2/type = txt

3/file = "C:\nonnormal\eclsk563.txt"

4/delimiters = " "

5/firstcase = 1

6/variables = y1 f2.0 y2 f2.0 y3 f2.0 y4 f2.0.

7

8execute.

9

10INCLUDE file="C:\nonnormal\mardia.sps".

11mardia vars=y1 y2 y3 y4 /.

12execute.

The SPSS output from the analysis of the ECLS-K data is given below. Similar to the SAS

8The original macro can be downloaded at http://www.columbia.edu/~ld208/Mardia.sps.
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output, the first part of the output includes univariate skewness and kurtosis and the second part is

for the multivariate skewness and kurtosis. SPSS obtained the same skewness and kurtosis as

SAS because the same definition for skewness and kurtosis was used.

SPSS output

1Sample size:

2563

3

4Number of variables:

54

6

7Univariate Skewness

8y1 y2 y3 y4 SE_skew

9.6932 .0369 -.2253 -1.0001 .1030

10

11Univariate Kurtosis

12y1 y2 y3 y4 SE_kurt

13.2295 -.4178 -.2521 1.2898 .2056

14

15Mardia’s multivariate skewness

16b1p z1 p-value

172.2619 212.2395 .0000

18

19Mardia’s multivariate kurtosis

20b2p z2 p-value

2125.4682 2.5141 .0119
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R

To use R, first download the R code file mardia.r to your computer from our website. Then,

in the editor of R, type the following code. The code on Line 1 gets the ECLS-K data into R and

Line 2 provides names for the variables in the data. The third line loads the R function mardia

into R. Finally, the last line uses the function mardia to carry out the analysis on Line 4.

R input

1eclsk <- read.table(’eclsk563.txt’)

2names(eclsk)<-c("y1", "y2", "y3", "y4")

3source("mardia.r")

4mardia(eclsk)

The output from the R analysis is presented below. Clearly, it obtains the same univariate

and multivariate skewness and kurtosis as SAS and SPSS.

R output

1Sample size: 563

2Number of variables: 4

3

4Univariate skewness and kurtosis

5Skewness SE_skew Kurtosis SE_kurt

6y1 0.69321372 0.1029601 0.2295460 0.2055599

7y2 0.03685117 0.1029601 -0.4178298 0.2055599

8y3 -0.22527112 0.1029601 -0.2521029 0.2055599

9y4 -1.00006618 0.1029601 1.2898344 0.2055599

10

11Mardia’s multivariate skewness and kurtosis

12b z p-value

13Skewness 2.261878 212.239506 0.00000000
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14Kurtosis 25.468192 2.514123 0.01193288

Web Application for Skewness and Kurtosis

To further ease the calculation of univariate and multivariate skewness and kurtosis, we also

developed a Web application that can work within a Web browser and does not require knowledge

of any specific software. The Web application utilizes the R function discussed in the previous

section to obtain skewness and kurtosis on a Web server and produces the same results as SAS,

SPSS, and R.

To access the Web application, type the URL http://psychstat.org/kurtosis in

a Web browser and a user will see an interface as shown in Figure 4. To use the Web application,

the following information needs to be provided on the interface.

Data. The data file can be chosen by clicking the “Choose File” button9 and locating the

data set of interest on the local computer.

Type of Data. The Web application allows commonly used data types such as SPSS,

SAS, Excel, and text data. To distinguish the data used, it recognizes the extension names of the

data file. For example, a SPSS data file ends with the extension name .sav, a SAS data file with

the extension name .sas7bdat, and an Excel data file with the extension name .xls or

.xlsx. In addition, a CSV file (comma separated value data file) with the extension name .csv

and a TXT file (text file) with the extension name .txt can also be used. If a .csv or .txt file

is used, the user needs to specify whether variable names are included in the file. For Excel data,

it requires the first row of the data file to be the variable names.

Select Variables to Be Used. Skewness and kurtosis can be calculated on either all the

variables or a subset of variables in the data. To use all the variables, leave this field blank. To

select a subset of variables, provide the column numbers separated by comma “,”. Consecutive

9Note that different operating systems and/or browsers might show the button differently. For example, for Internet

Explorer, the button reads “Browse...”.
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variables can be specified using “-”. For example, 1, 2-5, 7-9, 11 will select variables 1,

2, 3, 4, 5, 7, 8, 9, 11.

Missing Data. Missing data are allowed in the data although they will be removed before

the calculation of skewness and kurtosis. This field should be left blank if the data file has no

missing values. If multiple values are used to denote missing data, they can be specified all

together separated by a comma (,). For example, -999, -888, NA will specify all three

values as missing data.

After providing the required information, clicking the “Calculate” button will start the

calculation of skewness and kurtosis. The output of the analysis is provided below. The output is

identical to the R output except for the variable names for univariate skewness and kurtosis. This

is because by default the variable names are constructed using “V” and an integer in R.

Web application output

1Sample size: 563

2Number of variables: 4

3

4Univariate skewness and kurtosis

5Skewness SE_skew Kurtosis SE_kurt

6V1 0.69321372 0.1029601 0.2295460 0.2055599

7V2 0.03685117 0.1029601 -0.4178298 0.2055599

8V3 -0.22527112 0.1029601 -0.2521029 0.2055599

9V4 -1.00006618 0.1029601 1.2898344 0.2055599

10

11Mardia’s multivariate skewness and kurtosis

12b z p-value

13Skewness 2.261878 212.239506 0.00000000

14Kurtosis 25.468192 2.514123 0.01193288
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Discussion and Recommendations

The primary goals of this study were to assess the prevalence of nonnormality in recent

psychology and education publications and its influence on statistical inference, as well as to

provide a software tutorial on how to compute univariate and multivariate skewness and kurtosis.

First, nonnormality clearly exists in real data. Based on the test of skewness and kurtosis of data

from 1,567 univariate variables, we found that 74% of either skewness or kurtosis were

significantly different from that of a normal distribution. Furthermore, 68% of 254 multivariate

data sets had significant Mardia’s multivariate skewness or kurtosis. Our results together with

those of Micceri (1989) and Blanca et al. (2013) strongly suggest the prevalence of nonnormality

in real data.

Our investigation on the influence of skewness and kurtosis involved simulation studies on

the one-sample t-test and factor analysis. Through simulation, we concretely showed that

nonnormality, as measured by skewness and kurtosis, exerted great influence on statistical tests

that bear the normality assumption. For example, the use of the t-test incorrectly rejected a null

hypothesis 17% of the time and the chi-squared test incorrectly rejected a correct factor model

30% of the time under some conditions. Therefore, nonnormality can cause severe problems. For

example, a significant result might be simply an artificial effect caused by nonnormality.

Given the prevalence of nonnormality and its influence on statistical inference, it is critical

to report statistics such as skewness and kurtosis to understand the violation of normality. In Table

7, we list the summary statistics that are critical to different statistical methods in empirical data

analysis. For example, mean comparisons would be influenced by skewness while factor analysis

is more influenced by kurtosis. To facilitate the report of univariate and multivariate skewness and

kurtosis, we have provided SAS, SPSS, and R code as well as a Web application to compute them.

Once nonnormality has been identified as a problem, the main options for handling it in a

statistical analysis include transformation, nonparametric methods, and robust analysis.

Transforming data so that it becomes normal is an easy option, because after transformation the

researcher can proceed with whichever normality-based method they desire. In psychology, log
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transformation is a common way to get rid of positive skewness, for example. The Box-Cox

transformation method (Box & Cox, 1964) is also very popular because it’s easy to use and can

accomodate many types of nonnormality. However, it has been suggested that Box-Cox and other

transformations seldom maintain linearity, normality, and homoscedasticity simultaneously

(Sakia, 1992, for example), and even if transformation is successful the resulting parameter

estimates often have little substantive meaning.

Corder & Foreman (2014) offer an easy-to-follow review of nonparametric techniques,

including the Mann–Whitney U-test, Kruskal-Wallis test, and Spearman rank order correlation,

among others. The basic premise of most of these methods is to perform analysis on ranks rather

than the raw data. This is, of course, a more robust procedure than assuming normality of raw

data, but can be less powerful in some circumstances and the results can be less meaningful.

However, for data that is already ordinal or ranked these methods are certainly the best option,

and can still be a good option in other circumstances, as well.

Robust analysis is often the best method, though historically it has also been the most

difficult to conduct. Robust analysis generally addresses three points of concern: parameter

estimates, standard errors of those estimates, and test statistics. Within the context of SEM the

three most common methods with the best performance in dealing with each of these issues are

robust estimation using Huber-type weights (Huber, 1967), sandwich-type standard errors, and

the Satorra-Bentler scaled chi-squared statistic (Satorra & Bentler, 1988), respectively. See

Fouladi (2000) for a review of other adjusted test statistics and Yuan & Schuster (2013) for a

review of other estimation procedures. We focus on SEM at this time because those models are

asymptotically affected by nonnormality, and so provide the largest opportunity for improvement.

Recently, some software packages have begun to include these procedures, making robust

analysis a much easier option than it has ever been before. Table 8 shows which software

packages include which robust procedures. Currently, EQS (Multivariate Software, Inc.),

WebSEM (Zhang & Yuan, 2012), and the R package rsem (Yuan & Zhang, 2012) are the only

softwares to offer all three of the aforementioned methods, and WebSEM and rsem offer them for
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free. Additionally, WebSEM has a user-friendly interface in which researchers can draw the path

diagram they wish to fit.

As shown in Figure 3, there is no common distribution of practical data in psychology and

education. With such diversity in data shapes and research goals, it is impossible to create one

universal solution. However, we hope that through this paper we were able to elucidate the

problem through our review of practical data and simulation and offer some feasible

recommendations to researchers in our field. It is our hope that researchers begin to take

nonnormality seriously and start to report them along with means and variances that have already

been established in data analysis. We believe that reporting skewness and kurtosis in conjunction

with moving toward robust SEM analysis offer two high-impact changes that can be made in the

literature at this time. These actions will not only increase the transparency of data analysis but

also encourage quantitative methodologists to develop better techniques to deal with

nonnormality, improve statistical practices and conclusions in empirical analysis, and increase

awareness and knowledge of the nonormality problem for all researchers in our field.
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Table 1

Univariate skewness and kurtosis

(a) Skewness and kurtosis by sample size

n ≤ 106 n > 106 Overall

Percentile Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Minimum -4.35 -2.20 -10.87 -1.99 -10.87 -2.20

1st -1.68 -1.79 -2.68 -1.56 -2.08 -1.70

5th -1.10 -1.28 -1.27 -1.28 -1.17 -1.28

25th -0.33 -0.60 -0.33 -0.52 -0.33 -0.57

Median 0.27 0.02 0.15 0.12 0.20 0.07

75th 0.91 1.35 1.00 2.12 0.94 1.62

95th 2.25 5.89 3.56 19.39 2.77 9.48

99th 4.90 30.47 10.81 154.60 6.32 95.75

Maximum 6.32 40.00 25.54 1,093.48 25.54 1,093.48

(b) Percent of significant skewness and kurtosis by

sample size

n ≤ 106 n > 106 Overall

Skewness 51 82 66

Kurtosis 33 77 54

Either 56 95 74

Note. There were 805 distributions with n ≤ 106 and 762 with n > 106. Nonnormality is defined

by significant statistics ZG1 or ZG2 , p < .05.
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Table 2

Mardia’s measures by sample size and number of variables

(a) Mardia’s Skewness

By Sample Size By # of Variables Overall

Percentile n ≤ 106 n > 106 p ≤ 3 p > 3
Minimum 0.01 0.00 0.00 0.02 0.00

1st 0.03 0.00 0.00 0.43 0.00

5th 0.23 0.02 0.03 1.08 0.035

25th 1.15 0.35 0.33 5.72 0.76

Median 3.04 3.26 1.14 1.40 3.08

75th 13.91 14.92 2.95 44.43 14.32

95th 124.97 107.54 23.97 211.31 112.82

99th 635.90 496.77 343.60 786.84 610.66

Maximum 1,263.60 796.92 496.77 1,263.60 1,263.60

(b) Mardia’s Kurtosis.

By Sample Size By # of Variables Overall

n ≤ 106 n > 106 p ≤ 3 p > 3
b2,p b∗2,p b2,p b∗2,p b2,p b∗2,p b2,p b∗2,p b2,p b∗2,p

Min 2.19 -90.50 1.99 -18.57 2.00 -7.77 15.09 -90.50 1.99 -90.50

1st 2.23 -61.02 2.34 -15.43 2.20 -7.72 18.90 -63.61 2.23 -54.55

5th 3.35 -23.59 2.79 -7.51 2.39 -3.74 22.26 -30.83 2.92 -17.01

25th 8.08 -2.33 8.81 0.26 7.02 -0.82 37.76 -2.38 8.26 -1.35

Median 14.24 -0.70 31.69 5.37 8.71 0.26 60.86 5.55 18.90 0.59

Mean 61.40 0.01 98.63 48.34 22.45 12.87 152.3 35.02 78.70 22.46

Mean* 72.11 2.17 92.31 50.36 16.49 9.36 272.5 146.1 92.03 49.71

75th 43.00 2.22 90.89 29.32 14.84 2.34 153.3 27.36 56.69 7.47

95th 190.1 28.18 419.4 179.25 52.69 44.54 614.4 119.3 323.1 98.17

99th 942.6 87.45 755.4 732.9 384 369 1,356 719.4 914.9 541

Max 1,476 108.1 1,392 1,368 556 541 1,476 1,368 1,476 1,368

Note. There were 136 multivariate distributions with n ≤ 106, 118 with n > 106, 144 with p ≤ 3,

and 110 with p > 3. b∗2,p is b2,p centered on p(p+ 2).
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Table 3

Percent significant Mardia’s skewness and kurtosis at significance level 0.05.

By Sample Size By # of Variables Overall

n ≤ 106 n > 106 p ≤ 3 p > 3
Skewness 34 86 53 65 58

Kurtosis 35 82 47 70 57

Either 46 94 60 79 68

Note. There were 136 multivariate distributions with n ≤ 106, 118 with n > 106, 144 with p ≤ 3,

and 110 with p > 3. Nonnormality is defined by significant statistics z1,p or z2,p, p < .05.
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Table 4

Type I error rates of the one-sample t-test

Tail Tested

Sample Size Skewness Two-tailed Lower-tail Upper-tail

18 -2.08 0.057 0.029 0.079

48 -2.08 0.055 0.033 0.072

105 -2.08 0.052 0.037 0.065

555 -2.08 0.05 0.043 0.058

1488 -2.08 0.05 0.046 0.057

18 -1.17 0.048 0.035 0.064

18 -0.33 0.046 0.045 0.053

18 0.2 0.045 0.051 0.046

18 0.94 0.049 0.061 0.038

18 2.77 0.064 0.092 0.023

48 2.77 0.06 0.082 0.027

105 2.77 0.056 0.075 0.031

555 2.77 0.05 0.062 0.039

1488 2.77 0.052 0.059 0.045

18 6.32 0.177 0.216 0.005

48 6.32 0.123 0.157 0.011

105 6.32 0.09 0.12 0.016

555 6.32 0.062 0.081 0.028

1488 6.32 0.055 0.069 0.035

Note. Bolded entries are those outside of the range [0.025,0.075] and are therefore considered

different from the nominal 0.05.
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Table 5

Type I error rates of the χ2 test for factor analysis.

Sample Size

Kurtosis Centered Kurtosis 48 106 554 1489

21 -3 0.061 0.058 0.060 0.060

24 0 0.053 0.046 0.048 0.050

30 6 0.055 0.052 0.055 0.056

60 36 0.108 0.121 0.149 0.152

100 76 0.161 0.215 0.287 0.298

Note. Bolded entries are those outside of the range [0.025,0.075] and are therefore considered

different from the nominal 0.05.
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Table 6

Empirical Type I error rates of the χ2 test for factor analysis with 8 manifest variables.

Sample Size

# of Factors Kurtosis Centered Kurtosis 106 554 1489

1

75 -5 0.0654 0.0695 0.0688

80 0 0.0533 0.0528 0.0502

90 10 0.0546 0.0591 0.0574

150 70 0.191 0.2449 0.2603

250 170 0.4159 0.5847 0.6373

2

75 -5 0.0861 0.0675 0.0609

80 0 0.0729 0.0549 0.0522

90 10 0.0781 0.061 0.0597

150 70 0.1664 0.1695 0.1652

250 170 0.3134 0.3746 0.4126

Note. Bolded entries are those outside of the range [0.025,0.075] and are therefore considered

different from the nominal 0.05.
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Table 8

Robust procedures available in current software

Robust estimation Sandwich-type SE Satorra-Bentler Free

WebSEM X X X X

rsem X X X X

EQS X X X

Mplus X X

Amos

Note. This table shows which software packages currently offer robust estimation using Huber-

type weighting, sandwich-type standard errors, the Satorra-Bentler scaled chi-square statistic, and

are available for free to their users.
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Figure 1. Illustration of positive and negative skewness.
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(a) Normal distributions with the same kurtosis = 0,

different variance.
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(b) Distributions with same variance = 1, different kurtosis.

Figure 2. Illustration of the relationship between kurtosis and variance. In Figure 2(a) each

population has a kurtosis of 0, and variance varies from 0.5 to 2.0. In Figure 2(b) each population

has a variance of 1, and kurtosis varies from -1 to 3.
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Figure 3. Histograms of 20 randomly selected distributions collected for review
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3/8/2016 WebPower ­ Statistical Power based on t Test

http://webpower.psychstat.org/models/kurtosis/ 1/1

Univariate and multivariate skewness and kurtosis
calculation
How to use List of software 

Data: Upload or select a file  

eclsk563.txtChoose File

Type of data: Provide select type of data file  
TXT (free format text file) data without variable names   

Select variables to be used (To use the whole data set, leave this field blank. To select a subset of variables, provide the
column numbers that separated by comma (,). For example, 1, 2-5, 7-9, 11 will select variables 1, 2, 3, 4, 5, 7, 8, 9, 11):  

 

Missing data (Missing data values can be provided. If multiple values are used to denote missing data, they can be separated
by comma (,). For example, using -999, -888, NA will replace all three values above to missing data.):  

 

Calculate

Last modified: April 26 2015 06:12:48.
Figure 4. Interface of the Web application




